
Increasing Accessibility in Agent-Oriented 

Methodologies 

by 

A thesis submitted in partial fulfillment for the 

degree of Doctor of Philosophy 

in the 

September 2006 



ABSTRACT 

Doctor of Philosophy 

Increasing Accessibility in Agent-Oriented Methodologies 

by 

The computing world is rapidly changing from a one in which a centralised approach is taken 

to one in which a highly distributed approach is taken, thus requiring software systems that 

operate in open, dynamic and heterogeneous environments. This has significantly increased 

the complexity of software systems, and has required the development of new paradigms for 

software development, such as the multi-agent approach to system development. 

However, even though there is evidence of the suitability of the multi-agent approach to cope 

with the complexity of current systems, its use is not widespread in other areas of computing 

science, nor in industrial and commercial environments. This can be explained, particularly 

for agent-oriented methodologies, by the absence of key software engineering best practices. 

In particular, we have identified three groups of drawbacks that limit the use of agent-oriented 

methodologies: incomplete coverage of the development cycle, a lack of tools for supporting 

the development process, and a high degree of dependence on specific toolkits, methods or 

platforms. Although these issues negatively affect the applicability of the multi-agent approach 

in general, it is arguably for open systems that their effect is particularly noticeable. 

In this thesis, therefore, we aim to address the issues involved in taking existing agent-oriented 

methodologies to a point where they can be effectively applied to the development of open 

systems. In order to do so, we consider the combination of organisational design and agent 

design, as well as the methodological process itself. 

Specifically, we address organisational design by constructing a software engineering technique 

(software patterns) for the representation and incorporation of standard organisations into the 

organisational design of a multi-agent system. The agent design aspect is addressed by con

structing an agent design phase which uses standard agent architectures through a pattern cat

alogue. Based on this, we develop a methodological process that combines the organisational 

and agent designs, and that also considers the use of iterations for making the development of a 

system more agile. This methodological process is exemplified and assessed by means of a case 

study. Finally, we address the problem of monitoring the correct behaviour of agents in an open 

system, by constructing a model for the specification of open multi-agent systems. 
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Chapter 1 

Introduction 

1.1 Modern computing 

The last few years have witnessed a dramatic change in the computing world, which has shifted 

from a centralised approach to a highly distributed one. This has been caused, arguably, by 

the explosive increase in the number of computers and the networks they form. As a conse

quence, the complexity of computing systems has increased considerably. In particular, highly 

distributed environments have increased the complexity of software systems because of the het

erogeneity, openness, and dynamism associated with them. 

This increase in the complexity of software systems has also had a considerable impact on 

the way software is developed, resulting in the problem of how to build systems which are 

much more complex, but keeping to the same time and budget constraints and, at the same 

time, maintaining high quality levels. Several approaches have been USed to solve this prob-

lem, among them the use of more powerful, although traditional j , software methodologies and 

tools. Although such approaches have achieved some success in modelling the features found 

in highly distributed systems - dynamic, heterogeneous and open environments - traditional 

approaches have proven to be complicated, error prone and time-consuming. The reason for 

this is that the concepts on which traditional software engineering is based are not at the level 

of abstraction required to model complex systems [75]. For instance, pro-activeness and auton

omy (explained in Section 1.2) have been recognised as valuable modelling tools, but objects, 

by themselves, are not capable of exhibiting pro-activeness, since objects are passive entities 

that operate at the request of other objects. Similarly, objects are incapable of autonomy, since 

objects cannot choose which other objects can access their public services. 

The difficulty in overcoming these limitations by means of traditional approaches has led to the 

search for new paradigms that cope successfully with the complexity of current software. Some 

I In this context, we use traditional to refer to software paradigms commonly used in the development of software 
systems, namely structured methods and object-based approaches. 
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of the new paradigms that have been used with certain success are extreme programming [8] and, 

more generally, agile software development [19]. The idea behind these paradigms is to develop 

the correct system in the right time by delivering and testing versions of the system from the very 

early stages, for obtaining user feedback, and incorporating the suggested changes. However, 

although these paradigms offer improvements in the methodological process, in general they 

maintain the same basic modelling abstraction, namely objects, and so they suffer from the 

same limitations as other object approaches. 

1.2 Agent-based computing 

In contrast, the multi-agent approach is a new paradigm based on a different modelling abstrac

tion, known as an agent. In this paradigm, a software system is considered as composed of 

several agents that interact according to a high-level discourse in order to achieve individual or 

overall goals. There are two aspects in this view that differentiate the multi-agent approach from 

other approaches, and need further explanation. 

First, the high-level discourse means that the interaction between agents is in terms of the prob

lem domain, rather than in terms of low-level communication protocols or procedure calls. This 

allows agents to focus on the problem solution - rather than on managing communication de

tails - and to have a better model of the real world situation. 

Second, agents are the distinguishing aspect of this approach for which, however, there is no con

sensus on their exact meaning. From an engineering perspective, nevertheless, it is convenient 

to consider an agent as a software system that exhibits autonomy, pro-activeness and sociality. 

Autonomy is a twofold concept, denoting the capability of acting without human intervention, 

as well as the capability of deciding which actions to commit to. Pro-activeness refers to the 

capability of pursuing goals. Last, but not least, the sociality property refers to the ability of an 

agent to interact with other agents in order to achieve its goals. 

The multi-agent approach has been successfully applied in the development of complex dis

tributed systems, in areas such as manufacturing systems [37], air-traffic control [104], and elec

tronic markets [J 7]. Additionally, practical evidence suggests that multi-agent systems are suit

able for developing the type of applications that emergent technologies - such as the Grid [42] 

and ubiquitous computing [1] - require. 

1.3 Agent-oriented software engineering 

The use of the multi-agent approach to engineering software systems, known as agent-oriented 

software engineering (AOSE), is a relatively new discipline that has had, nonetheless, a rapid 

evolution. Nowadays, AOSE considers practically all the components of software development, 
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including programming languages [103,23], methodologies [134, 25, 9, 55], platforms of oper

ation [70, 120], and formal methods [90). Of all these components, methodologies are perhaps 

one of the most important because they determine how the other components are used during 

the development of a system. More generally, software methodologies provide a way to engi

neer systems in an efficient, repeatable, robust and controllable fashion, thus helping to reduce 

development costs and to increase software quality. 

It is, arguably, because of this importance that a large number of agent-oriented methodologies 

have been proposed to date [67, 92,5]. Indeed, existing methodologies cover a broad range of 

applications, and vary in several aspects, such as the concepts they use to model multi-agent 

systems, the development activities they cover, the types of applications they are targeted at, and 

their degree of openness for using different tools and technologies. 

1.4 Drawbacks 

However, in spite of their number and variety, agent-oriented methodologies are not completely 

suitable for use in commercial and industrial environments - as well as in mainstream com

puting - mainly because of their immaturity from a software engineering viewpoint. In other 

words, the absence of recognised software practices and principles in agent-oriented method

ologies has originated serious drawbacks, thus preventing their use in larger ~ommunities of 

developers. 

Most of the drawbacks found in agent-oriented methodologies can be classified as one or more 

of the following groups (a more detailed review is presented in Chapter 2). 

1. Incomplete coverage of the development cycle. Several methodologies consider only 

some of the phases of the whole development cycle, typically analysis and design of agent 

interactions. This seems reasonable if we consider that these phases form the core of the 

multi-agent approach (the other core phase, the design of agents, has partially been ex

plored in the study of agent architectures). However, although some methodologies have 

intentionally left out certain phases, a complete process is needed in order to build real 

world systems. 

2. Lack of tools for supporting development activities. Here, we refer to several types of 

tools, including: tools for graphical design; integrated development environments (IDEs) 

for analysis, design and code generation; libraries of common design solutions; and code 

debuggers. Without these tools, many of the development tasks become unnecessarily 

time-consuming and error prone, thus discouraging the use of the methodology in ques

tion, and even the multi-agent approach itself. 

3. Dependence on specific toolkits, methods or platforms. Several methodological processes 

rely strongly on specific toolkits (for example ZEUS [120] and Jade [70]), agent archi

tectures, or platforms (for example FIPA [35] implementations). This dependence has the 
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advantage of facilitating the learning process for those practitioners already familiar with 

those components, and of alleviating the problem of carrying out a selection. However, 

the effectiveness of a methodology is reduced by the impossibility of selecting the best 

solution for each application. 

1.5 Aims 

Current methodologies for multi-agent systems are largely focused around the development of 

closed systems, in which all their components are known in advance. This, however, is not 

usually observed in highly distributed systems. The aim of this thesis, therefore, is to address 

the issues involved in taking existing methodologies to a point where they can be effectively 

applied to the development of open systems. Here, an open system is one in which agents are 

not designed in common, do not share a common goal, are possibly developed by different 

development teams, and whose composition varies by the incorporation of new agents into the 

system or by their exit from the system [134]. To do so, we need to consider the combination of 

macro-level (organisational design) and micro-level (agent design) aspects of methodologies, as 

well as the methodological process itself. 

The specific aims of this thesis are as follows. 

• Incorporate agent design into methodologies. The agent design phase is an essential part 

of a complete methodological process that is, nevertheless, absent from many current 

methodologies and, when present, is usually tied to particular agent architectures. This is 

inadequate for open systems, since it restricts the selection of the best architecture for a 

particular agent, and violates the open nature of these systems. In this thesis, we aim to 

provide a methodological process for designing the agents of a system. 

• Represent organisations. Organisations are an appropriate means for modelling the struc

ture of multi-agent systems. Organisations, however, are usually described in agent

oriented methodologies by using informal methods, such as plain English or figures, 

which produces inexact descriptions. In this thesis, we aim to develop a model for exact 

and complete representation of the components of an organisation, including topology, 

control regime and organisational rules. 

• Construct a software engineering technique for incorporating standard organisations into 

the architectural design of a multi-agent system. While the architecture of a multi-agent 

system can be modelled by means of an organisation, it is not always easy to determine 

the organisation that best models a particular system. In this thesis, we aim to develop 

some means for determining the type of organisation that best suits the characteristics of 

a given multi-agent system. 
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It Construct a software engineering technique for supporting the design of agents by the use 

of standard agent architectures. The design of agents relies on the use of models for spec

ifying the internal structure and operation of an agent, and these are precisely the types of 

models that agent architectures provide. However, in spite of this natural correspondence, 

using agent architectures for engineering practical agents presents some obstacles, such as 

the mismatch between agent-based and software engineering abstractions. In this thesis, 

we will provide a technique that removes these obstacles and allows the incorporation of 

well known architectures to a methodological process . 

• Create a model for the specification of open multi-agent systems. With the purpose of 

incorporating new agents into an open multi-agent system, it is important to specify the 

facilities provided by the system, as well as the restrictions for its use. However, this must 

be done in such a way that no assumptions are made about how the agents are actually 

implemented, since this is undetermined at design time. To facilitate this specification, 

we aim to describe a model that abstracts the properties of an open multi-agent system, 

and can be instantiated to obtain specifications for particular systems. A specification 

constructed in this way can also be used to check, at run-time, if the agents joining the 

system comply with its restrictions of use. 

In seeking to achieve these aims, we adopt software engineering principles for making agent

oriented methodologies more agile. More specifically, in this thesis we aim to develop a method

ological process that allows the construction of a system by means of incremental executable 

versions. Producing executable versions of a system from early stages of the development, is 

beneficial for obtaining rapid user feedback, and thus reducing the risk of producing the wrong 

system. It also helps to reduce development time, since it increases the parallelism among the 

development activities. The applicability of such a methodological process is assessed by means 

In summary, it is important to overcome the drawbacks found in current methodologies, in order 

to achieve widespread use of the multi-agent paradigm, and consolidate it as a real option for 

the development of open systems. A possible approach for overcoming these drawbacks is by 

considering that current agent-oriented software engineering contains much valuable work, and 

what is missing is the introduction, or reinforcement, of recognised software practices. Thus, in 

this thesis, we aim to provide a means for completing and incrementing the maturity of agent

oriented methodological processes, so that they can adequately cope with the construction of 

such systems. 

1.6 Overview 

The rest of the thesis is organised as follows. Chapter 2 justifies the agent-oriented approach as 

a valuable tool for systems development, and presents the state of the art of AOSE. In Chapter 3, 
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we present a framework for constructing organisational patterns, which are representations of 

standard organisations for facilitating the organisational design of multi-agent systems. Chap

ter 4. deals with modelling internal composition of agents. We address this problem by incor

porating the use of agent architectures into the design processes. Although the results obtained 

in these chapters can be used on their own, they are more useful as part of a methodological 

process. Such a process, which also considers the use of iterations, is presented in Chapter S. 

Chapter 6 describes a case study in which we apply several of the results obtained in the previ

ous chapters. Chapter 7 addresses the problem of monitoring the correct operation of an open 

system at run-time. To this end, we present a specification template that, when instanced for a 

particular system, produces a specification whose compliance ensures the correct operation of 

the system. Finally, Chapter 8 presents our conclusions and indicates future work 
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Chapter 2 

Agent-oriented software engineering 

2.1 Introduction 

The agent-oriented paradigm views a software system as composed of autonomous, pro-active 

entities (agents) that interact to achieve overall goals. Although research in distributed artificial 

intelligence has shown that the paradigm is suitable for modelling complex systems running in 

dynamic environments [131], some form of engineering of agent-based applications is needed 

to encourage its use in other areas of computing, as well as in real world applications. This 

is because these require the development of applications in a systematic form which, at the 

same time, is sufficiently comprehensive for a practitioner with average skills. Traditionally, 

software methodologies have provided such a way of engineering computer applications. More 

specifically, methodologies are useful for developing applications in an efficient, repeatable, 

robust and controllable fashion, and in so doing they help to reduce development costs and to 

increase software quality. 

Although initially some attempts were made to develop agent-based systems following tradi

tional methods [80], nowadays it is agreed that a new approach is needed to take advantage 

of all the characteristics of agenthood. Current work on agent-oriented software engineering 

covers almost all the activities of software development, requirements engineering [130], anal

ysis [126], design [24], implementation [94], and code generation [96]. However, most of this 

work can be considered experimental or at the exploration stage [124]. 

The aim of this chapter is twofold: to review the main concepts in the field of multi-agent sys

tems, particularly those essential to understand the benefits, obstacles and solutions in applying 

the multi-agent approach for the development of software systems; and to present the state of 

the art of agent-oriented software engineering (AOSE). With this aim, we first introduce general 

concepts of agents and multi-agent systems in Section 2.2. Then, models for both aspects of 

multi-agent systems are reviewed, the internal composition of agents (Section 2.3) and the ways 

in which they interact (Section 2.4). Next, we move our attention to the state of the art in agent

oriented software engineeling in Section 2.5. After that, the focus is put on methodologies, 
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by reviewing some representative cases in Section 2.6, presenting an evaluation in Section 2.7, 

and summarising their main drawbacks in Section 2.8. Finally, our conclusions are presented 

in Section 2.9. 

However, agent-oriented software engineering is a large field that is impossible to cover here 

completely. For this reason, we focus our review on methodologies and directly related concepts. 

Despite this consideration, the literature available is still so vast that it is impossible to carry out 

any exhaustive review, so we only consider some representative cases. 

2.2 Agents and multi-agent systems 

Arguably, this chapter should begin with the definition of agenthood, since it deals with agent

oriented systems. However, since it is known that there is no unique definition of agent

hood [J29, 127,89] (the interested reader is referred to [47] for a survey of definitions), any 

definition adopted at this point will constrain and bias what we can say about agent-based com

puting. Since the purpose of this chapter is to provide a general overview of the field, instead 

of presenting a definition of agenthood, we prefer to review different perspectives, leaving until 

Section 2.9 the definition we will adopt for the rest of the thesis. 

Wooldridge and Jennings describe two viewpoints of agenthood [129]: a weak notion and a 

strong notion. The weak notion is the most popular among the mainstream computing commu

nity, especially software engineers, and views an agent as a UNIX··like process with properties 

such as autonomy, social ability, reactivity and pro-activity. Autonomy refers to the capabil

ities of agents to work without human intervention and to have control over their own states 

and actions. Social ability is the capability to communicate with other agents at a high level of 

discourse. Reactivity refers to the property of perceiving and responding, in a timely fashion, to 

changes in the environment. Finally, pro-activity deals with the capability of an agent to select 

its own goals and act according to them. 

By contrast, the strong notion of agenthood is common among the artificial intelligence com

munity, and views an agent as a computer system that, in addition to having the properties 

mentioned above, can be conceptualised or modelled as if it had human characteristics such as 

mentalistic notions like knowledge, belief, intention and obligation. 

In addition to the weak and strong notions, we must also emphasise the existence of a differ

ent perspective which consists in viewing agents as an abstraction for modelling software sys

tems [74, 127], since it is on this perspective that agent-oriented software engineering is based. 

Here, agents are used to model entities of the world, and software systems are viewed as sets of 

agents interacting to achieve the desired functionality. As a result of their characteristics, agents 

represent a promising means for developing applications populated by autonomous, pro-active 

and/or reactive entities. More generally, this suggests complex applications running in dynamic 

environments. 
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It should be noted that each of these perspectives is closely related to the others. For example, the 

relation between agents as a software abstraction and the weak notion of agenthood resembles 

that between classes and instances of classes in the object-based paradigm, in the sense that 

both refer to the same concept but differ in the phase they are used: run-time for the latter and 

design for the former. Furthermore, far from being mutually exclusive, the different perspectives 

complement each other, and it is this diversity in perspectives that has been recognised as a key 

factor for the popUlarity of agents [127, 89]. 

2.3 Agent architectures 

The term agent architecture has been employed in the literature with different meanings. For our 

purposes, an agent architecture is a specific collection of software modules, typically designated 

by boxes with arrows indicating the data and control flow among modules [129]. 

Agent architectures can be classified into deliberative, reactive, and hybrid. The deliberative ar

chitectures were the first to appear and are characterised by an explicitly represented, symbolic 

model of the world; and by basing their decision processes on pattern-matching and symbolic 

manipulation techniques. Thus, some of the problems to tackle in these architectures are the 

translation of real world concepts into symbols, and an efficient and accurate representation of 

the decision process. In general, however, solutions to these problems require large amounts 

of computation, which makes deliberative architectures unsuitable for many practical problems. 

We will not elaborate this problems here, since they relate more to traditional artificial intelli

gence than to the agent approach, but the interested reader can refer to [52]. The difficulty of 

these problems has led to the creation of alternative (and specifically agent) approaches, such as 

reactive architectures and hybrid architectures. 

Reactive architectures cover a broad range of approaches having in common the avoidance of 

any kind of central symbolic world model or complex symbolic reasoning. As a result of this, 

these types of agents may respond more quickly to changes in the environment. In spite of their 

simplicity, or perhaps because of it, it is not possible to use a reactive architecture to develop 

agents whose behaviours depend strongly on their execution history or on complex reasoning. 

Hybrid architectures attempt to combine the best of deliberative and reactive architectures by 

having two (or more) separate components, at least one deliberative and one reactive. The re

active component deals with important events that need a quick response, while the deliberative 

component is in charge of planning and reasoning activities. However, the exact relationship of 

the components and the control between them depends on each specific architecture. 

The belief desire intention (BDI) architectures [6], ] 28] are an important type of hybrid archi

tecture. BDI architectures are representations of agents whose behaviour can be described as if 

they had mental attitudes of beliefs, desires and intentions. Beliefs represent the knowledge the 
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agents possess, desires describe the goals the agent pursues, and intentions are the committed 

plans chosen to pursue those goals, 

BDI architectures form afamily of architectures sharing the BDI stance but differing in the roles 

they assign to beliefs, desires and intentions in the functionality of the system, as well as the form 

in which they are represented and controlled. Although beliefs are well understood, the exact 

roles played by desires and intentions have been subject to controversy. While both desires and 

intentions refer to a state of affairs that an agent wants to bring about, in the case of intentions 

there must be a certain commitment to achieve them. Therefore, while an agent may have some 

desires, it might never set out to accomplish them. On the other hand, intentions cause an agent 

to act. There are several theories that attempt to describe, analyse and specify the behaviour of an 

agent by describing the relationships between beliefs, desires and intentions, and the motivation 

behind such theories is diverse. Thus, while some aim to explain and predict agent behaviour 

from an observer's perspective [33], some are used to design agent architectures [29], and others 

have been applied to social agents for supporting reasoning about other agents engaged in group 

activity [72]. 

Since they first appeared, BDI architectures have been popular among the agent community 

for three key reasons. First, it is more natural to us, as humans, to model systems based on 

intentional notions. Second, most BDI architectures have a well-founded philosophical and 

theoretical background. Finally, these architectures, arguably, are more flexible than purely 

deliberative or reactive ones. Being hybrid, BDI architectures lie between purely reactive and 

purely deliberative systems. For this reason, they cannot deliver the same performance as purely 

reactive systems when operating in highly dynamic environments, although their performance 

can be increased by tuning the reasoning and deliberation strategies to the specific requirements 

of the application in question. 

BDI arc.bitectures have been successfully used not only in research, but also in commercial and 

industrial applications. For example, OASIS [104], whose development was based on a BDI 

architecture, - dMARS [29] - is an air-traffic management system that has been successfully 

tested at Sydney airport. Agents in OASIS are of two types: aircraft agents and global agents. 

Each aircraft agent is associated with an aircraft and is responsible for controlling its flight. 

By contrast, the global agents are responsible for the sequencing and coordination of aircraft 

agents. During run-time, up to 80 agents operate concurrently to give control directives to flow 

controllers on a real-time basis. 

Arguably, the success of BDI architectures is due to the following aspects [104]. 

• The application programming is based on plan construction, facilitating modular and in

cremental development. 

• The balance between reactive and goal-oriented behaviour is managed by the system, so 

that end users need not be involved in complex low level programming, which improves 

reliability. 
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It End users can encode their knowledge in terms of mental attitudes instead of low-level 

languages. 

The number of different architectures proposed to date makes an exhaustive review impossible 

so, as discussed in the introduction, we restrict our review to some representative architectures. 

Also, in this review we do not consider deliberative architectures, since they are essentially con

cerned with planning from traditional artificial intelligence, and not with agent-based computing 

per se. Moreover, consideration of such architectures could easily double the length of the re

view and would not add to the content of this thesis. Below, therefore, we focus on other types 

of architectures. 

2.3.1 The subsumption architecture 

The subsumption architecture [10, 128] is a reactive architecture developed by Brooks, that 

bases its function on the existence of behaviours and their relationships of inhibition. Each be

haviour is intended to achieve a specific task and associates perceptual inputs with actions. For 

example, in the case of a vehicle control application, the behaviour, changing direction if an 

obstacle is found in front, associates the perceptual input, an obstacle is in front, with the task, 

change direction. To pursue its aim, each behaviour continually senses the environment until the 

environmental state matches its associated perceptual input, in which case the associated action 

is performed. In this example, the environment is continually sensed until an obstacle is detected 

in front of the vehicle, in which case the action of changing direction is performed. However, 

since an environment state may match more than one behaviour, an inhibition relation is used to 

specify priorities. According to this inhibition relation, the behaviours are arranged into layers, 

with lower layers capable of inhibiting upper layers, and the higher the layer the more abstract 

its behaviour (as in Figure 2.1, which illustrates the relationship between perceptual input, be

haviours and action, and in which the inhibition relation has been represented as dotted lines). 

For example, in the case of vehicle control, the behaviour corresponding to collision avoidance 

occupies a lower layer than that of the behaviour corresponding to reach the destination, since 

avoiding an obstacle has priority over reaching the destination. 

2.3.2 PRS 

The Procedural Reasoning System [51] (PRS) was originally developed as part of a NASA 

project, and is based on a well-founded theoretical background. Beliefs, desires and intentions 

in PRS are represented explicitly, and together determine the actions of the system. They are also 

dynamically modified by a reasoning mechanism. As indicated in Figure 2.2, PRS is composed 

of an interpreter and the following modules: database, goal stack, knowledge area library, and 

intention structure. The database contains current facts about the world, while the knowledge 

area library is a store of knowledge areas (KAs), which in tum are knowledge about how to 

accomplish tasks and how to react in certain circumstances. 
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FIGURE 2.1: The subsumption architecture 

Action 

A KA is composed of a body and an invocation condition. The body contains the steps of 

the procedure, and the invocation condition describes the circumstances under which the KA 

is applicable. Some of the KAs in the library are application specific, while others address the 

general management of PRS itself, such as choosing among relevant KAs. 

In contrast to other BDI architectures, in PRS goals represent the desired behaviour of the sys

tem instead of static states of the world to be achieved. They are presented not only in the 

goal stack but also as part of the KAs. Intentions are tasks that the system has chosen to exe

cute immediately or in the future, and consist of an initial KA and of other sub-tasks invoked 

in accomplishing the task. Such intentions are inserted into the intention structure, which is 

essentially a list with precedence. 

For reasons of relevance and brevity, we will not elaborate in detail the operation of PRS, but 

briefly sketch it here only; we consider its successor dMARS in more detail in Chapter 4. In 

short, however, the interpreter controls the operation of the system, as follows. At a given 

time, the system has some goals and holds some beliefs, according to which some KAs become 

applicable, one of which is chosen to be executed and so is placed in the intention structure. 

While executing this KA, some goals are produced and placed in the goal stack. If new beliefs 

are acquired, consistency-checking procedures are applied. Also, new beliefs and new goals 

can activate some new KAs, in which case the interpreter can decide to perform some other 

goal. This has the effect of making the agent less committed to intentions and more aware of 

the environment. In fact, in PRS it is the KAs that provide a quick response to changes in 

the environment, forming the reactive component found in hybrid architectures. This is not a 

separate component of the architecture in this case. 
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FIGURE 2.2: Main components of the PRS architecture 

2.4 Organisations in multi-agent systems 

While the previous section dealt with the internal aspects of agenthood, relating to how agents 

are internally composed, this section deals with the interactions between agents, or the ways in 

which they act together in order to solve common or inter-related problems. 

Although several metaphors have been proposed to model the way agents interact in multi-agent 

systems [68, 71], the organisational metaphor [45] is emerging as one of the most utilised in 

agent-oriented software engineering [132, 82, 25], arguably because it is intuitive and has been 

successfully applied in several situations. Roughly, the organisational metaphor is based on how 

humans work together to solve problems in the context of an organisation, such as a business. 

A business has goals to achieve and in order to achieve them the goals are decomposed into 

specific tasks, like production and distribution. These specific tasks are assigned to roles that 

are played by humans. In order to carry out their tasks, roles interact according to pre-defined 

patterns, which define which roles are subordinated to the authority of others. These interactions 

also form a distinguishable network of communication paths. 

More generally, according to the organisational metaphor, each agent in a multi-agent system 

can play one or more roles. Each role, in tum, is in charge of pursuing one or several well

defined responsibilities, which are fulfilled, generally, by interacting with other roles. However, 

an interaction between two roles is not only a relation of association, but in fact establishes a 

relation of authority, which is an integral part of the definition of the role. Roles, interactions 

and authority relationships define the structure of the organisation. 

Organisations guide the way in which agents interact in a multi-agent system to achieve individ

ual or global goals, and influence how they coordinate, allocate resources, and are subordinated 
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one to the other. Thus, by interacting with other agents, organisations help simple agents to 

achieve complex tasks, and sophisticated agents to reduce the complexity of their processes [64]. 

Arguably, all multi-agent systems have some form of organisation, even implicit, since in any 

multi-agent system distributed agents act together through relations, carry out assigned tasks, 

and use resources to accomplish them. However, more than one organisation might fit a partic

ular system (e.g. a production line can be modelled as a pipeline, as well as a hierarchy [134]), 

and different organisations produce different system performance in terms of efficiency (e.g. 

communication and computation overhead), reliability and uncertainty management, since or

ganisations differ in the way tasks are distributed and the communication paths they possess. 

Also, organisations present different levels of scalability, redundancy and flexibility. 

Although no two organisations are identical, it is possible to group them in certain types, accord

ing to the topology their interactions form and the authority relationships their agents exhibit. 

The following are some of the most used types, or paradigms, of organisations. 

Hierarchies [45,64] This is one of the simplest and most studied form of organisation. In hier

archies, agents are conceptually arranged in a tree-like structure; the higher their position, 

the more important, in some sense, their role. Generally, lower-level agents produce data 

to feed higher-level agents, which in tum perform more complex processing such as con

solidation, analysis or decision making. Hierarchies have been extensively used to model 

distributed applications [45, 135, 95]. In fact, the well known contract net protocol [115] 

tends to produce hierarchical structures. (Under a contract net protocol an agent can be 

assisted by other agents to complete its tasks, through assigning a sub task by advertising 

it, receiving offers and selecting the most convenient.) 

Holarchies [38, 64] In this paradigm a system is viewed as composed of basic units of or

ganisation, holons, which in tum can be seen as formed of other (more basic) holons; for 

example, a manufacturing system is composed of manufacturing units, which are in tum 

composed of devices, operators, processes, and so on. The key aspect of holarchies is the 

partial autonomy of holons, since the absence of autonomy would degenerate into a hier

archy and complete autonomy would lead to an unorganised group. More specifically, if 

the relationships between agents in a system are of complete subordination, the holarchy 

can degenerate into a hierarchy. Another important aspect of holarchies is that each of the 

holons represents a complex sub-organisation that can be decomposed further. Modelling 

a system into a hierarchical nested structure has proven to be suitable for modelling cer

tain kinds of practical problems such as manufacturing control [37, 136]. For instance, 

in [136] a model combining different types of holons (static, mediator, and dynamic) is 

used to create an organisation for controlling manufacturing systems. Here, statically

created holons are used to represent entities of the environment such as manufacturing 

devices, design plans and conveyors, whereas dynamically-created holons are used to 

represent new tasks, and mediator-type holons manage orders and coordinate resources. 
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Teams A team [93, 7] is a system of cooperative agents that pursue a common goal. Since 

there is no restriction on the types of their interactions, team topologies tend to be quite 

arbitrary. However, it is often the case that members of a team share their mental state, 

particularly for common representations of shared goals, mutual beliefs and team-level 

behaviours. For example, Jennings [73J shows that, by sharing representations of com

mon tasks, and through the progress of cooperation, agents are able to successfully solve 

electricity transportation problems, but they are prone to behaving incoherently in the lack 

of shared representations. 

Markets [108, 125, 45J In this particular type of organisation, agents can buy and sell items 

such as goods, services or tasks. Agents playing the role of buyer place bids, and agents 

playing the role of seller receive the bids and determine the winner, in a manner that 

largely resembles a real-world marketplace. It is usually the case that some agents exist 

to facilitate the operation of the organisation in common tasks such as receiving bids 

and determining the winner. Kasbah [17] is one of the first examples of an agent-based 

marketplace, in which buyers and sellers describe the type of goods they are interested in 

by means of a list of features, a desired price and a threshold price. Here, a sale occurs 

when a there is a buyer willing to pay the price of the seller. 

The way organisations are characterised differs for each particular approach. For example, in the 

Gaia methodology [J 32J, an organisation of roles is composed of structure and organisational 

rules, where the structure of an organisation is described by its topology and control regime. 

The topology consists of the set of communication paths formed by the interaction of the roles 

in the organisation, and may take typical forms such as lines, trees or networks. On the other 

hand, the control regime encompasses the authority relations between the roles; for example, in 

an employment control regime, low-level roles are subordinated to high-level roles as the result 

of a work partition. Finally, organisational rules provide constraints on the way the elements of 

the organisation operate; for example, in a marketplace, an organisational rule could state that 

no product delivery can be made without receiving the corresponding payment. 

In summary, the organisational approach applied to the multi-agent paradigm is a promising 

tool to cope with the complexity of current software systems [134, 25J, due to the fact that 

organisations provide a conceptual framework in which the complex interactions carried out 

by agents can be appropriately modelled. This conceptual framework constitutes a layer of 

abstraction that is situated on top of, and complemented by, that provided by agents [88]. 

2.5 Agent oriented software engineering 

Agent oriented software engineering (AOSE), which is concerned with engineering software 

systems having agents as the main design concept, is an evolving discipline whose aim is to 

provide methods, techniques and tools to facilitate the development of agent-based applications 
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in a repeatable, systematic and controlled way. We start this section by justifying the existence 

of AOSE and characterising the type of problems it attempts to cope with, and then proceed to 

present the current state of the art. 

For the purpose of presentation, we divide AOSE into the following topics: requirements engi

neering; languages for programming, communication and coordination, and ontology specifica

tion; development tools and platforms; and methodologies for analysis, design, and implemen

tation. Each of these is described below. 

2.5.1 Requirements engineering 

Requirements engineering deals with eliciting, modelling and analysing the functional and non

functional capabilities that a system should have. It is the front-end activity in the development 

process, and also plays an important role in the management of change in all phases. There are 

two non-mutually exclusive approaches in requirements engineering that are relevant to agent 

orientation: agent-oriented requirements engineering and goal-oriented requirements engineer

ing, both considered below. Agent-oriented requirements engineering encompasses several ap

proaches that primarily rely on the concept of agents, examples of which are i* [130] and AL

BERT [30]. i* is a modelling framework based on the concept of agents with intentional prop

erties such as goals and commitments, while ALBERT (Agent-oriented Language for Building 

and Eliciting Real-Time requirements) is a formal language for requirements specification cen

tred around the notion of agent. 

Goal-oriented requirements engineering is closely related to agent-oriented requirements engi

neering but explicitly captures non-functional requirements such as reliability, flexibility, in

tegrity and adaptability, by representing them as particular cases of goals (sometimes called 

soft-goals). Examples of this approach are KAOS (Knowledge Acquisition in autOmated Speci

fication) [22], which is a formal framework focused on requirements acquisition I, and NFR [18], 

which focuses on the representation of, and reasoning about, non-functional requirements. 

2.5.2 Languages 

Languages are used during several stages in the development of agent-based applications. In 

this section we briefly describe the most notables cases of agent-oriented languages for pro

gramming, communication and ontology specification. 

The most commonly used general languages to build agent-based systems are Java and C++. 

However, from an agent-oriented perspective, these languages work at such a low level that it is 

difficult to implement agent features unless an additional platform or framework is used. An al

ternative approach to using frameworks consists in using higher level languages that implement 

INot to be confused with the KAoS (Knowledgeable Agent oriented System) system developed by Bradshaw. 
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agent concepts, known as agent-oriented programming languages, of which some examples are 

briefly described below. 

• AGENT-O is a language for the specification of agents and their behaviour, and is based on 

the agent-oriented programming paradigm proposed by Shoham [J 12]. AGENT-K [23J, 

a development of AGENT-O, integrates KQML [34] (see below) into AGENT-O. 

• Concurrent METATEM [39] uses an executable temporal logic to specify the intended 

behaviour of an agent. In this language, agents are viewed as concurrent processes that 

communicate by means of messages. 

• AgentSpeak(L) [103] is a rule-based language with a formal operational semantics that 

views agents as composed of intentions, beliefs, recorded events and plan rules. It is 

based on the PRS [5 J] architecture. 

In addition, some other high level languages, such as Prolog and LISP, have been used for the 

construction of multi-agent systems (particularly the knowledge component of agents [101]), or 

simulation environments and testbeds for multi-agent systems [32]. 

Agents use high-level discourse to communicate, so agent communication languages bypass low 

level aspects such as the characteristics of physical communication, and focus on the exchange 

of communicative acts and domain concepts. Some prominent examples of agent communica

tion languages are outlined briefly below . 

• Based on speech act theory, KQML [34] (knowledge query manipulation language) was 

originally developed as part of a DARPA project, but is nowadays perhaps the most widely 

used communication language . 

• Similarly to KQML, FIPA-ACL [35] is part of the set of standards proposed by the Foun

dation for Intelligent Physical Agents (FIPA) and this has facilitated its popularity, par

ticularly as part of application development frameworks. It has a formal semantics and is 

also based on speech act theory. 

2.5.3 Modelling languages 

In the context of this thesis, a modelling language is a language that allows us to express the 

planning of a system, or part of it. By itself, a modelling language does not suggest a way to 

design systems, but only provides a way to express the design. Modelling languages normally 

use, or include, graphical representations, making the models more comprehensive. Although 

traditional approaches to software engineering possess defacto modelling languages, such as the 

Unified ModeIIing Language (UML) in the object-based approach, in the agent-based approach 

none of the several proposed languages is clearly dominant. Below, we briefly describe one of 

the most cited of these languages, namely the Agent Unified Modelling Language (AUML). 
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2.5.3.1 i\lJrvlI-

Based on the number of methodologies that employ AUML [66] (for example, ADELFE [100], 

Tropos [9], PASSI [20] and INGENIAS [96]), we can argue that this language is one of the most 

popular languages for modelling agent-based systems. Perhaps its popularity results from the 

fact that it extends UML, a language widely used in the design of object-based systems, in a 

straightforward fashion, so that anyone familiar with UML should be capable of using the agent 

features. 

AUML extends UML mainly in the sequence diagrams and in the class diagrams. These ex

tended sequence diagrams are arguably the most used aspect of AUML. Below, we present a 

summary of how UML sequence diagrams have been modified to consider agent concepts [66]. 

• Agents, roles, and agent classes appear in the boxes at the top of the diagrams, instead of 

object classes and object instances. For instance, in Figure 2.3, the boxes - pointed to by 

marker 1 - are occupied by the Buyer, Marketer and Seller roles. (Roles are denoted by 

a slash before their name.) 

• Instead offocus of control- as in UML - the lifelines of the diagrams contain threads 

of interaction. These threads are depicted in the diagram as narrow rectangles, such as the 

one pointed to by marker 2 in Figure 2.3. 

• In order to express parallelism when sending messages, AND, OR and XOR connectors 

(applied to a set of messages) have been added, expressing that all the messages, several 

of them, or just one, respectively, can be sent at the same time. These connectors are rep

resented graphically as shown in Figure 2.4, in which three messages have been depicted 

for each connector. 

• When using FIPA-ACL [35], message arrows can be labelled with the communicative act 

that they represent, as in the communicative act request in Figure 2.3, and indicated by 

marker 3. Also, the number of messages sent and the number of role instances that receive 

the message may be added to the arrows. Examples of this can be seen in Figure 2.3, and 

are indicated by marker 4. 

• To promote re-usability, AUML allows the definition of a protocol inside another protocol 

in the same sequence diagram, either by nesting or by interleaving. An example of the 

former appears in Figure 2.5, in which the nested protocol is denoted by means of a 

rounded corner box. 

• By using protocol templates, AUML allows one unit to encompass several protocols that 

change only in the value of some parameters, thus promoting re-usability. 

In AUML, object classes are extended to agent classes. An agent class contains: an agent name; 

a state description; actions; methods; capabilities, service description, and supported protocols; 
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FIGURE 2.3: Example of an AUML sequence diagram 

AND OR XOR 

FIGURE 2.4: The AUML connectors 

FIGURE 2.5: Example of nested protocol in AUML (after [66]) 
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and organisations. Agent names are prefixed with the stereotype agent in order to differentiate 

them from object names. Apart from this, the instance, role or class name may be included with 

the name of an agent. State description in an agent class is similar to the attributes section of 

object classes and, in the case ofBDI agents, may contain beliefs, desires, intentions and goals. 

Actions can be of two types in AUML: pro-active, which are those actions triggered by the agent 

itself; and reactive, triggered by messages received from other agents. Methods are similar to 

UML operations, with the addition of pre-conditions and post-conditions. Capabilities are like 

UML responsibilities, while service descriptions are similar to UML interfaces. The last part, 

organisations, is a list of groups to which an agent may belong, including the constraints for 

joining the group and the roles the agent plays within it. 

Note that AUML is an evolving effort, subject to continuous updates and additions, whose future 

work considers not only modifications to diagrams but also the creation of tools to support their 

production, and the definition of its semantics. In spite of its benefits, and as its authors argue, 

AUML is not intended to be used to model all the characteristics of a multi-agent system, but it 

might be complemented with other languages and notations. 

2.5.3.2 Others 

Other modelling languages have been used in specific parts of the design of multi-agents sys

tems. For instance, Cost et al. [21] employ Coloured Petri Nets for modelling agent commu

nicative interactions, including support for concurrency. Similarly, DeLoach [85] employs Finite 

State Machines for constructing conversations in the design phase of the MaSE methodology. 

2.5.4 Platforms 

In the context of AOSE, we use the term platform to denote an infrastructure that provides facili

ties for the operation of a multi-agent system. Such facilities vary from platform to platform, but 

typically include low-level communication protocols (such as TCPIIP), agent construction, and 

agent management (such as registry in the platform, and white and yellow pages). In addition 

to this, most platforms also include support for one or more phases of the development process, 

analysis, design, implementation, testing and debugging. Notable examples of academic and 

commercial tools are: ZEUS [120], developed at British Telecom; JADE [70J, developed at the 

University of Parma; JATLite [41 J, for the development of agents that communicate using the In

ternet; FIPA-OS [36J, for the development of FIPA compliant agents; and JACK [116J, oriented 

to BDI agents. Since it is not the intention of this thesis to go into details of implementation, we 

will not attempt to review all these platforms, but consider only two of them below. For more 

complete reviews, and comparisons of different platforms, the reader is referred to [92, 1 05J. 
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2.5.4.1 JADE 

JADE [70] is an evolving project developed in the Telecom Italia Labs since 1999, consisting 

mainly of a FIPA-compliant agent platfOlID and tools for development of multi-agent systems, 

including an applications programming interface (API). JADE has a large community of users 

who are continually providing feedback and contributing with development and additional tools. 

JADE offers facilities for the construction of individual agents, as well as for the ensemble of 

agents in a system. Regarding the construction of individual agents, JADE provides classes that 

implement the agents' basic functionality, independently of any particular architecture. Such 

functionality, based on the concepts of autonomy and sociability, views an agent as an active 

object (i.e., an object with its own thread of execution), able to hold multiple conversations 

through an asynchronous messaging protocol. In order to build an agent, developers extend 

the agent class, giving agents access to a private message queue and to facilities for processing 

FIPA-ACL messages. In order to implement agent tasks, JADE uses the concept of behaviours, 

which are obtained by extending the behaviour class provided. For their execution, behaviours 

are placed in a behaviour stack list that operates on a round non-pre-emptive scheduling policy, 

but more sophisticated scheduling mechanisms are also provided, such as cyclic execution and 

finite state machine implementations for composite behaviours. 

Regarding the ensemble of agents to form a system, JADE offers a platform that complies with 

FIPA specifications, including components for agent management (access to the platform, white 

pages), directory facilitators (yellow pages), implementation of communicative and content lan

guages (ACL and SL-O) and support for FIPA interaction protocols. 

Finally, although no software tools are provided for guiding the process of developing a MAS, 

JADE offers comprehensive documentation of the APIs, a programmer's guide and many exam

ples to support the process. 

2.5.4.2 ZEUS 

ZEUS [120] is a platform for agent-based system development originally built at British Tele

com but now available as a free software project. ZEUS was developed with the purpose of 

providing a platform that offered information discovery (information about the agents in the 

system), communication, tools for ontology definition, coordination of agents, and integration 

of agents with legacy software. 

Agents in ZEUS are formed of components that correspond to common functionalities including 

planning, scheduling, communication skills, coordination, and ontology support. To fit a specific 

application, the designer can arrange these components in different, although limited, ways. 

In ZEUS, a multi-agent system is formed by using two special agents - utility agents - that 

carry out the tasks of system management, namely the agent name server and the facilitator. 
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The former functions as a white pages directory and also provides the system with a clock for 

synchronisation purposes, while the latter acts as a yellow pages directory. 

ZEUS provides three types of facilities for achieving coordination between agents, by using 

protocols (based on the contract net protocol), by defining roles - such as peer, subordinate, 

and superior - that can be used to define organisational structures, and by planning. 

2.5.4.3 Industry-oriented platforms 

There are also several platforms for constructing multi-agent systems specifically oriented to 

the development of industrial applications, among which AdaptivEnterprise, Living Systems 

Technology Suite, Magenta Multi-agent Platform, and the Lost Wax Agent Framework are rep

resentatives, and briefly described below. 

AdaptivEnterprise [119, 3] is a system developed by Agentis that includes a framework for 

developing multi-agent systems. Using this framework, complex applications can be designed 

and maintained graphically as simple plans, each consisting of only a few steps. By using 

code generation tools, agents can be automatically obtained from the graphic designs. These 

agents are java components capable of operating in diverse environments, and are based on 

a BDI architecture closely related to dMARS. AdaptivEnterprise has been used to construct 

applications in areas such as financial services, insurance, retail and distribution, logistics, and 

energy industries. 

Living Systems Technology Suite (LSITS) [118] is a set of tools developed by Whitestein Tech

nologies that consists of a run-time platform and development tools. The run-time platform 

provides the middleware that adds functionality to the java run-time environment for support

ing agent-based applications, and is available in personal, business and enterprise editions. The 

core of this run-time platform, the Core Agent Layer, defines and implements agent abstractions 

such as pro-activeness, goal-·driven behaviour and flexible communication, and provides ser

vices such as directory services, notification services and access to the messaging infrastructure. 

On the other hand, the development tools include tools for design, implementation, debugging, 

deployment, monitoring, testing, and a methodology for systems development based on a mod

elling language that extends UML with agent abstractions. LSITS is used as a basis for the 

creation of applications in sectors such as logistics, telecommunications and financial services. 

Magenta Multi-agent Platform [2] is a java-based library of tools for developing and executing 

multi-agent systems. In this platform, every problem is considered as a problem of allocating 

resources, such as vehicles or drivers, to demands, such as transportation instructions. Agents 

match demands to resources through negotiating with each other. The core of the platform con

sists of generic components common to all applications, such as negotiation protocols, as well 

as components for creating the environment in which such negotiations occur, for supporting 

messaging mechanisms, for defining the ontology and decision making logics and process for 
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specific problem domains, and for data analysis. Magenta technology has been used in appli

cations such as car production planning and scheduling, management of fleet of vehicles and 

planning of a complex logistics network for the transportation of heavy loads. 

Similarly, the Lost Wax Agent Framework [46] is an environment for development and deploy

ment of multi-agent systems, and provides the following facilities: support for integration to 

other agent environments, external systems, and external databases; an integrated security layer; 

CASE tools for applications design; libraries of standard protocols; and libraries of architectural 

templates for agent modelling. This framework has been applied to solutions in sectors such as 

supply chains and logistics, manufacturing, telecommunications, and financial services. 

2.5.5 Methodologies 

Software methodologies have proved to be successful in increasing the speed of development, 

in improving the quality of software, and in reducing development costs. Methodologies play 

such an important role that some consider the broader acceptance of agent systems to be closely 

tied to the availability and accessibility of adequate methodologies [89, 97, 67]. 

This section is devoted to reviewing the current state of agent-oriented methodologies, but it 

should be noted that not all the approaches considered here are methodologies in a strict sense. 

According to Kearney et al. [78], a software engineering methodology provides methods, guide

lines, descriptions and tools for each stage in the life of a system. However, very little work 

involving agents can satisfy this view since most address only some parts of the system life 

cycle, and the tools they provide are scarce. Thus, the criteria we use as a basis for including 

work in this section is that it should address at least considerable aspects of the analysis and 

design phases, since these are the phases on which this thesis is focused. Here, we consider 

analysis and design as consisting of the acquisition of user requirements and their representa

tion in some model from which an implementation that fulfils them can be built. Addition

ally, we focus our analysis on general-purpose methodologies, thus leaving out specific-purpose 

methodologies such as the methodology of Bussmann et al. [12] for manufacturing processes, 

and ADELFE [100] for auto-adaptable systems. 

Existing agent-oriented methodologies can be classified in several ways [124, 67]. According 

to their origin, methodologies can be divided into those that extend object technology, those 

based on multi-agent systems concepts and those based on knowledge engineering techniques, 

considered in tum below. 

Methodologies that extend the object paradigm Many of the first attempts to engineer 

agent-based systems extended, in some way, object technology. In fact, object technology con

tinues to be a source of inspiration for some aspects of more recent methodologies. This seems 

natural since the object paradigm is, at present, the most mature and most used paradigm for 
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software development. In addition, there are several benefits of using object technology as a 

base for an agent methodology [67], as follows. 

• The object-oriented and agent-oriented paradigms have several similarities since both en

capsulate knowledge (data) and behaviour (methods). Also, in both paradigms communi

cation is achieved by message passing. It has even been claimed that agents are active ob

jects or objects with an attitude [31], although we believe that such a claim oversimplifies 

the characteristics agents possess (unless in attitude we encompass all the characteristics 

mentioned previously). 

• Object-oriented languages have been used to implement agent programming frameworks, 

such as JADE [70]. Although such frameworks work at a higher level of abstraction, they 

still reflect the characteristics of the object paradigm. 

• The types of models used by object-oriented methodologies, static, dynamic and func

tional, can be satisfactorily applied to agents. The static view deals with representing 

structural properties and has been used to model the inner structure of agents, and the 

static relationships between them, such as aggregation. The dynamic view, which de

scribes how the elements of a system interact at run-time, is employed mainly to represent 

protocols of interaction between agents. Finally, the functional view, that describes the 

functionality of a system and how it is decomposed, is useful to represent the data flow 

present in agent activities . 

• Some well known techniques for object-based design and analysis can be successfully ex

tended to agent-based systems. For example, the use of use cases and class-responsibility

collaboration cards (eRe cards) are helpful in identifying agents during the analysis 

phase. Use cases are abstractions that decompose the functionality of a system into well 

identified parts, and represent the external actors that interact with the system to pursue 

them. A eRe card is a physical card that contains the name of an object class, its respon

sibilities, and the name of the classes with which it collaborates to fulfil them. Due to 

their simplicity, eRe cards have the benefit of forcing designers to focus on the identifi

cation of classes and collaborations, bypassing details that are irrelevant at that phase of 

the analysis . 

• The popularity of object··oriented methodologies potentially increases the number of users 

of the agent-oriented methodology. 

Two examples of methodologies that extend object technology are MaSE (Multiagent Systems 

Engineering) [24] and the KGR (Kinny, Georgeff and Rao) method [80]. MaSE is a methodol

ogy that defines two languages to model agent-based systems: the Agent Modelling Language 

and the Agent Definition Language. The fonner is a graphical language to describe the types 

of agents of a system and their interfaces to other agents, while the latter is based on first order 

predicate logic and is used to describe the internal behaviour of agents. Both languages can be 
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used as part of a traditional development technique or as part of a formal system synthesis. On 

the other hand, the KGR method divides design into two parts, one for modelling the interaction 

between the agents, and the other to model the internal aspects of each agent. For the latter part, 

KGR uses a BDI architecture. A more detailed description of these two methodologies is given 

in the next section. 

Methodologies based on knowledge engineering techniques For some years, methodolo

gies have existed to engineer knowledge-based systems. If we assume that all agents have a 

component of knowledge, then it logically follows that extensions of these methodologies could 

be developed to engineer agent systems. However, these extensions must address aspects usu

ally not covered in these methodologies, such as the distributed and social aspects of agents and 

their goal-oriented behaviour. Representatives of this approach, based on knowledge engineer

ing techniques, are CoMoMAS [53] and MAS-CommonKADS [68]. The latter is described in 

more detail in the next section. 

Methodologies based on multi-agent systems concepts Methodologies based on multi-agent 

systems concepts do not find their inspiration from other areas of computer science, such as the 

object paradigm or knowledge engineering technology, but from concepts derived from multi

agent systems, which are in turn inspired by interdisciplinary areas of knowledge such as organ

isation theory and coordination theory. Implicit in the approach of these methodologies is the 

assumption that, although agent-oriented methodologies based on the object paradigm have suc

ceeded to some extent, the full potential of the multi-agent paradigm cannot be reached by just 

extending the object model. Representatives of this kind of methodology are Gaia [126] (which 

is described in the next section), Gaia extended with additional organisational concepts [J 33], 

and SODA [99]. 

2.6 Representative agent-oriented methodologies 

As previously noted, many methodologies have been proposed to date. Since it is impractical to 

describe all of them, we have selected only a few to be described in more detail as representa

tives of their corresponding group. We based our selection on aspects such as how much they 

have been referenced by the agent community, how much they have influenced other work, the 

amount and accessibility of their literature, and how long they have been around. 

2.6.1 Gaia 

Proposed by Wooldridge, Jennings and Kinny, Gaia [126] is a methodology for analysis and 

the first stages of design, and is applicable to problems where the number of agents is not 

much greater than one hundred. In Gaia, the development of a system is seen as a process of 
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organisational design, in which the system is formed of roles with associated responsibilities, 

permissions, activities and protocols. The process of modelling a system is divided into two 

parts, analysis and design, each of which deals with the development and refinement of the 

corresponding models. 

The analysis models consist of the roles model and the interaction model. During the creation of 

the roles model, the main roles in the system are identified, together with their responsibilities 

and permissions. The roles model itself consists of a set of role schemata, one for each role, 

and each comprising the description, protocols, activities, permissions, and responsibilities of 

a role. Patterns of interaction between agents are modelled in the interaction model, which 

consists of a set of protocol definitions, each comprising the description, initiator, responder, 

inputs, outputs and processing of an interaction between two agents. The analysis phase in Gaia 

is iterative. First, the main roles are identified, and then, for each role, its associated protocols 

are documented. This leads to the refinement of the roles model, which in turn can lead to 

refinements of the interactions model and so on. 

The Gaia design phase yields three models, the agent model, the services model and the ac

quaintance model. The agent model is a tree where leaf nodes are roles and other nodes are 

agent types comprising one or more roles. For example, for efficiency, a designer might decide 

to put together three roles in an agent type, instead of having three different agents. The services 

model is just a list of services of all the agents in the system, together with their inputs, outputs, 

pre-conditions and post-conditions. A service is defined as a single, coherent block of activity in 

which an agent will engage, and its characteristics are derived from the protocols model. Finally, 

the acquaintance model is a directed graph, where nodes are agent types and arcs are potential 

communication paths, so that there is an arc from node a to node b if at least one message would 

be sent from a to b. The acquaintance model can be derived from the roles, protocols and agent 

models, and it is useful to identify potential communication bottlenecks. Note that in Gaia, the 

design is not intended to produce an output detailed enough to be implemented on a particular 

platform, but it focuses on describing how the agents cooperate to achieve the system goals. 

2.6.2 KGR 

The KGR (Kinny, Georgeff, Rao) methodology [80] models an application from two viewpoints: 

the external and the internal. The external viewpoint focuses on the interactions between agents, 

whereas the internal viewpoint deals with the composition of each agent. Two models form 

the external viewpoint: the agent model and the interaction model. The agent model represents 

the hierarchical relationship among agent classes, while the interaction model represents the 

responsibilities of agents, the services they perform to achieve them, and the interactions and 

control relationships among agents. In order to develop these models, the following steps are 

established. 

1. Find the main roles of the application and create a preliminary agent hierarchy. 
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2. For each role, find its responsibilities and the services needed to provide those respon

sibilities. Consider not only interaction between agents, but also interaction with the 

environment and human users. 

3. For each service, identify interactions (performatives and content), determine control re

lationships between agents, and model the internal structure of each agent. 

4. Refine the agent hierarchy by introducing inheritance and aggregation where appropri

ate, creating concrete agent classes, refining control relationships and introducing agent 

instances. 

The internal viewpoint is based on the BDI architecture, which views an agent as having mental 

attitudes of belief, desire and intention representing, respectively, the information, motivation, 

and deliberative states of the agent [104]. According to this, agents are characterised by the 

events they perceive, the beliefs they hold, the goals they adopt and the plans to achieve those 

goals. The internal viewpoint consists of three models: the belief model, the goal model and the 

plan model. The first comprises information about the environment, the second deals with the 

goals an agent can adopt and the events it responds to, and the last regards the plans to employ to 

achieve the goals. Roughly speaking, the steps to model the internal viewpoint are the following. 

1. For each goal, analyse the different context in which it is to be achieved. For each of these 

contexts, establish how the goal is to be achieved in terms of sub-goals and operations. 

Do the same for sub-goals. 

2. Build the beliefs from the contexts and conditions that control the execution of actions 

and activities. 

3. Iterate the above steps as the models are refined. 

It is assumed that the results of this methodology are used in an infrastructure like dMARS [28], 

which provides additional execution mechanisms. For example, it describes how events and 

goals produce intentions and how intentions lead to actions. 

2.6.3 MAS-CommonKADS 

The MAS-CommonKADS methodology [68] extends the CornrnonKADS methodology, and is 

based not only on knowledge engineering but also on object-orientation and protocol engineer

ing. It can be divided into three phases: conceptualisation, analysis and design. The first is an 

informal phase, while the analysis and design phases consist ofthe development of some models 

and textual documents. The process of development is risk driven, so that the components with 

the highest risk are tackled first, helping to reduce the risk of the project and to meet deadlines. 
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In the conceptualisation phase, a preliminary description of the system is produced by means 

of use cases, in which the interactions are graphically represented using Message Sequence 

Charts [J 07]. 

The analysis phase yields the following models. 

• The agent model describes agent characteristics such as reasoning capabilities, services 

and goals. The methodology proposes several helpful techniques to identify agents and 

their characteristics. 

• The task model describes the tasks that the agents carry out and their decomposition. 

• The expertise model describes the knowledge needed by the agents to achieve their tasks, 

and is divided into domain, task, inference and problem solving knowledge. 

• The organisation model describes the organisation in which the agents will operate, as 

well as the organisation of the agent society. 

• The coordination model describes the conversations between agents, including protocols 

and required capabilities. 

• The communication model describes the interactions between humans and agents. 

The design phase yields only the design model, which collects the analysis models and is divided 

into the following three parts. 

• Application design is concerned with the composition or decomposition of agents and the 

selection of a suitable architecture for each agent. 

• Architecture design deals with the design of agent network facilities. 

• Platform design concerns the selection of a development platform for each agent archi

tecture. 

2.6.4 MaSE 

MaSE (Multi-agent Systems Engineering) is an agent-oriented methodology based on object 

techniques that cover most phases of the development cycle: analysis, design and implemen

tation. There is also a CASE tool (agentTool) that supports all the phases of the methodology. 

The main philosophy of MaSE is the construction of graphical models, each of which is built 

according to guides provided by the methodology. The construction of a system begins with a 

set of initial requirements and ends with a specification that is independent of any agent archi

tecture or platform. The development of a system is divided in MaSE into analysis and design, 

each of which consists of several phases, as described below. However, it must be noted that the 
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phases do not follow a plain sequential order, but iterations are allowed and encouraged in order 

to gradually refine the design. 

The analysis encompasses the following three main activities. 

• Identification of goals and their decomposition into sub-goals. 

• Identification of use cases and creation of sequence diagrams to identify roles and their 

interaction. 

• Transformation of goals into roles. 

On the other hand, the design consists of the following four phases. 

• Assignment of roles to agent classes (which are similar to object classes but incorporate 

agent features), and identification of conversations (patterns of interaction between the 

roles). 

• Detailing the conversations. 

• Definition of the internal agent structure. 

• Definition of the final system structure. 

MaSE is a good example of a methodology that is continually evolving. From the methodology 

described in [24] to the one described in [85], MaSE has gained in comprehensiveness, coverage 

of phases and supporting tools. Also, the additions presented in [25J have made MaSE useful for 

developing open systems. Other additions like verification of conversations and incorporation 

of an ontology model have made MaSE one of the most complete current methodologies. 

2.6.5 Tropos 

Tropos [IS, 82, 81] is an evolving project being developed by researchers from several univer

sities. Its main purpose is to provide help during software development of systems in changing 

environments. To this end, techniques, tools and a methodology are provided. The methodology, 

which is also named Tropos, has the following characteristics. 

• Tropos covers a wide range of development phases: early requirements, late requirements, 

architectural design, detailed design and implementation. 

• All the phases are requirements-driven, which means that the modelling concepts used in 

the early requirements phase are consistently used along the other phases. This supposedly 

reduces the gap between the system and its environment. 

• Tropos is based on organisational concepts. 
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• Tropos incorporates the use of organisational patterns of two types: architectural styles 

and social patterns. A style is used as a system architecture (a small, intellectually man

ageable model of system structure, which describes how system components work to

gether) during the architectural design. On the other hand, social patterns are used to 

represent how a specific role goal is fulfilled by agents. 

• In contrast to other agent-oriented software engineering projects, the literature and infor

mation about Tropos is vast [9, J 5, 82, 81, 102]. 

• Tropos uses (and in some cases extends) well-established tools and frameworks, for ex

ample, i * [130} for organisational modelling, AUML (see Section 2.5.3.1) as a graphical 

modelling language, and JACK [116] as an implementation platform. i* is a modelling 

framework built around the notion of agents with intentional properties such as goals and 

commitments, and JACK is a commercial agent platform for BDI agents. 

2.6.6 INGENIAS 

INGENIAS [55] is a project developed at the Universidad Complutense of Madrid that consists 

of a software methodology as well as set of tools. According to the purpose of this section, 

we will focus our description only on the methodology. INGENIAS views a system as divided 

into five complementary viewpoints, namely organisation, agents, tasks/goals, interactions and 

environment. The organisation viewpoint describes a structure in which the elements of the 

system are arranged. These elements include agents, resources, goals, tasks, groups (of agents, 

roles, resources or applications), workflows (associations among tasks and the information for 

their execution) and social relationships (restrictions on the interaction between entities). 

The agents viewpoint deals with the internal functionality of the agents and is divided into 

three components: mental state, mental state manager and mental state processor. The first 

component is formed of all the information an agent needs to take decisions, the mental state 

manager performs operations on the mental entities (such as creating, destroying and modifying 

them), and the mental state processor determines how the mental state evolves based on, for 

example, rules and plans. 

The tasks/goals viewpoint addresses the decomposition of goals and tasks, including the reasons 

why they should be performed and the consequences of their execution. 

The interactions viewpoint deals with the requests or exchange of information between agents 

and between agents and human users, identifying the participants of the interaction, the inter

action units (messages and speech acts), protocols involved, context (goal pursued and mental 

state of the participants) and coordination mechanisms used. 

Last, the environment viewpoint defines the entities with which the system interacts. These 

entities can take the form of resources (entities that do not provide an API), applications (entities 

for which an API is provided), and other agents outside of the system. 
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On the other hand, the main idea behind the methodological process of INGENIAS [54] is the 

adaptation of the Unified Process [69] (RUP) to employ agents rather than objects. For this, 

associations are proposed among the elements of RUP and those defined in the viewpoints cited 

above: classes are matched with agents, organisations with architectures, groups with subsys

tems, interactions with scenarios, and roles, tasks and workflows with functionality. Based on 

these associations, the resulting activities of the process are obtained. First, the main workflows 

(analysis and design) are divided into three phases: inception, elaboration and construction. 

During the analysis, organisation models are produced to obtain the general architecture of the 

system, and these models are refined to identify common goals and relevant individual tasks. 

During the design, more detail is added by defining workflows and refining the agents' mental 

states. The previous activities are first carried out for the most significant use cases (in elab

oration phase) and then for the rest of them (in the construction phase). Regarding the imple

mentation, two options are possible: manual implementation using the specification provided by 

the models, or automatic code generation using a provided tool, which generates code in Java, 

Java Expert Systems Shell, April and Prolog. Finally, the testing workflow is no different from 

conventional software testing. 

2.6.7 Others 

There have been several approaches to formally specifying and implementing agent systems. 

Different formalisms have been employed to this end; for example, Luck et al. [90] provide an 

outline for a possible methodology for the development of agent systems using the Z language 

(hereafter called the Formal Agent Framework). Such a methodology is based on a formal 

framework, which uses a hierarchy of entities (objects, agents and autonomous agents) to model 

an application domain. Roughly, the process to develop an application is initiated by identifying 

t..l}e entities, t..~eir purpose, a."'1d their control relationships. This results as a classification of the 

entities in objects, agents or autonomous agents. The process continues with the design ofmeth

ods for behaviour and the control relationships, and ends by identifying structural similarities in 

the entities in order to exploit them. The final product of this process is a specification whose 

implementation by means of objects is straightforward. One restriction in this framework is that 

it is difficult to express time properties about the behaviour of entities, due to the fact that Z has 

no notion of time. Future work could tackle this restriction by using another formalism, either 

alone or in combination with Z [90]. 

MESSAGE [78, 13] (Methodology for engineering systems of software agents) is a methodol

ogy designed by the EURESCOM consortium, mainly oriented towards the telecommunications 

domain. MESSAGE extends some elements commonly found in object-oriented methodologies 

- particularly RUP [117] - such as the use of UML [43] as the modelling notation, and a 

methodological process based on iterations and increments. 

SODA [99] is a methodology based on organisational concepts that covers only the phases of 

analysis and interaction design. There are three characteristics that distinguish SODA from other 
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similar methodologies: the use of task, instead of role, as the primitive concept; the importance 

given to the environment of a system during its modelling; and the use of interaction rules to 

enforce the accomplishment of social tasks. 

2.7 Evaluation of methodologies 

In this section we present an evaluation of the agent-oriented methodologies reviewed above. 

Such an evaluation is important for the identification not only of the weak points of each indi

vidual methodology, but also of the drawbacks of the overall agent-based approach. Although 

several evaluations exist in the literature [Ill, 5], the evaluation presented in this section is 

different in that it is oriented to determine the suitability of the methodologies to be used in 

commercial and industrial environments by software engineers (in contrast to academic and 

research communities of agent specialists). 

We have limited our evaluation to the available literature for each methodology in the previous 

section. However, we are aware that some of these methodologies are evolving projects, and 

so are prone to updates. Also, for the purpose of the evaluation, we define the meaning of the 

terms used and make an effort to match these definitions to those used by the authors of the 

methodologies. 

2.7.1 Development process 

We first evaluate the coverage of the development process. To this end, we divide the devel

opment process of an agent-based application into the following phases, with their attached 

meanings. 

Requirements The collection and organisation of the requirements of the system. 

Analysis The understanding of the system, its main components, and its environment 

Structural design The specification of how the system fulfils its requirements, focusing on the 

interactions between the agents. 

Architecture design The specification of how the system fulfils its requirements, focusing on 

the internal composition of each agent in the system. 

Implementation The activities involved in the construction of an executable system from the 

specification of the design phases. 

Table 2.1 shows which of these phases are covered by each methodology. As can be seen from 

the table, most methodologies fail to consider all the development phases. 
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Gaia describes in appropriate detail the phases that it covers, but the application of the method

ology relies on the use of artefacts that are not sufficiently described, such as the organisational 

patterns and the language for describing structures. Also, the fact that Gaia covers only two 

development phases limits its use in real-world applications, but the neutrality of these phases 

makes Gaia attractive for extension, not only in terms of increasing the phases covered, but also 

in enriching the process with the addition of iterations and increments. 

KGR strongly relies on the object approach for describing the design of a system. It is also 

strongly oriented towards the use of EDI architectures, particularly in the architecture design 

phase, and although architecture-dependence is not regarded as a desirable characteristic, the 

use of EDI architectures with KGR have proven to be successful in real-world applications. 

Additionally, some parts of the methodological process are not described with enough detail, 

and iterative design is not explicitly considered. 

The way in which the process of MAS-CommonKADS is specified presents some drawbacks. 

First, the process is described as an extension of CommonKADS, which is natural but assumes 

that the practitioner is familiar with CommonKADS, which is not usually the case for a typical 

software engineer. Second, the process is centred around the description of the models, but less 

emphasis is placed on how to obtain the relevant information, and the order in which to develop 

the models, including iterations. In addition, the architecture design is limited to the extent of 

selecting an appropriate architecture for each agent, but does not cope with obtaining a detailed 

specification of an agent. 

Tropos covers all the development phases considered in our review, although in some cases it 

is oriented towards a specific architecture or platfonn. The architecture design considers only 

one agent architecture (which happens to be a purpose-built architecture based on mentalistic 

notions such as goals and plans), and the implementation relies on the JACK platform [116]. The 

organisational patterns (called architectural styles in Tropos tenninology) are useful to describe 

the architecture of a system at a high level, but further refinement is needed to apply them to 

specific applications. 

INGENIAS has good coverage of phases and it is said to have an iterative-incremental process, 

although no details are provided. Also, INGENIAS is highly architecture and platform indepen

dent, but at the cost of forcing the developer to build from scratch the description of the system 

by means of diagrams. 

2.7.2 Facilitators 

We have also considered the elements of the methodology oriented to facilitate its application 

to real world problems, hereafter called facilitators. These elements are diverse, but have have 

in common that without them any practical design would tend to be highly time-consuming and 

its results unreliable. In particular, in this evaluation we consider the following facilitators. 
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Methodology Req. Anal. Struct. Arch. Imp. 
Des. Des. 

Gaia x J J x x 
KGR x V V V x 
MAS-CommonKADS V V V V x 
MaSE x J J V V 
Tropos V V J V V 
INGENIAS x V J V V 

TAB LE 2.1: Covered phases 

Graphical models The presence of adequate graphical models to describe the properties of the 

system and specify its implementation. 

Techniques Procedures to guide the derivation of relevant information and the accomplishment 

of the activities of the process. 

Tools Mechanisms that accelerates the development, such as automatic code generation and 

reusable libraries (patterns). 

Graphical tools The existence of graphical software tools, as integrated development interfaces 

(IDEs), to support one or more of the development phases. 

Table 2.2 shows the existence of the different types of facilitators in each methodology. In the 

table, a facilitator is said to be present in the methodology only if plays a relevant role in it. 

For example, the techniques column is ticked only if the methodology provides techniques for a 

satisfactory proportion of the activities. 

It can be observed from the table that only a few methodologies provide all the types of facilita-

tors considered, and their weakest point is the lack of techniques and tools. Regarding graphical 

models, all the methodologies include them in some form, although with drawbacks in some 

cases. Gaia, for example, uses graphical models to describe components of the system but not 

the relationships between them. For instance, the role model shows each role of the system, but 

does not show their relationship of interaction or dependency. In addition, most of the graph

ical models of these methodologies are based on those of the agent paradigm, and none of the 

methodologies considers the use of the Agent Unified Modelling Language (AUML). 

The inclusion of techniques as part of the process is important for the purpose of smoothing 

the learning curve for novice practitioners. However, only a few methodologies provide detailed 

and complete guidance about how to obtain the information required by the models, and the way 

in which this information is related. This could be explained partially by the lack of extensive 

documentation that most methodologies suffer, and is exemplified by the MAS-CommonKADS 

methodology. 
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Methodology Graphical models Techniques Tools IDE 
Gaia V x x x 

KGR V V x x 

MAS-CommonKADS V x x x 

MaSE V J V V 
Tropos V V V x 
INGENIAS V V V V 

TABLE 2.2: Facilitators 

Although tools have been recognised as an important factor in spreading the use of agent

oriented methodologies, they are not included in most methodologies. One of the reasons for 

this is that agent-oriented methodologies are relatively recent and the development of tools re

quires additional effort and time. Tools are present in these methodologies mainly in the form 

of reusable patterns and code generation modules. Reusable patterns play an important role in 

the Tropos methodology, although they are situated at such a high level that they are applicable 

only for specific types of applications, for example electronic commerce. Code generation has 

been used as a means to avoid platform and language dependence. 

Similarly, IDEs help to substantially reduce development time, but surprisingly only a few 

methodologies include them. Current IDEs are being used mainly for building diagrams and 

code generation, but can also be used for checking completeness and consistency, guiding the 

development process, and as a forefront for other tools such as compilers and debuggers. 

2.8 Drawbacks in current methodologies 

It is desirable to have standard criteria to evaluate methodologies~ Shehorj and Sturm [l} 1] 

established some criteria to evaluate modelling techniques for agent-based systems, divided in 

two parts: software engineering evaluation and agent-based system characteristics. The former 

encompasses desirable characteristics of a modelling technique from the viewpoint of software 

engineering, but deals mostly with how simple to use and how powerful the technique is. The 

following are qualities assessed in the software engineering aspect of an evaluation. 

Preciseness How unambiguous the semantics of the models is. 

Accessibility How comprehensible the technique is for beginners and experts. 

Expressiveness How applicable to multiple domains the technique is. 

Modularity How stable to the introduction of new requirements the resulted models are. 

Complexity Management How easy it is to work at different levels of abstraction. 
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Executability The quantity and quality of tools to support prototyping or simulation of at least 

one aspect of the methodology. 

Refinability How easy it is to obtain an implementation from the design specification. 

Analysability The quantity and quality of tools to check consistency and coverage. 

Openness The applicability of the methodology to different architectures, infrastructures and 

programming tools. 

The agent-based system characteristics part of the criteria focus on the evaluation of the method

ology to support agent-·oriented features. The characteristics included are the following. 

Autonomy How well supported the representation of the self-control property is. 

Complexity How well supported the complexity management is. 

Adaptability The support for creating agents adaptable to dynamic changes in the environment. 

Concurrency How well represented concurrent agent operation is. 

Distribution How good the methodology is for representing the distribution over a network of 

the multi-agent system components. 

Communication richness What support it provides to express the communication richness re

quired to model agent interactions. 

Shehory and Sturm applied these criteria to the evaluation of some methodologies [Ill, 110], 

including Gaia [126], the Formal Agent Framework [90] and AUML [66]. Their conclusions 

show that u~ese methodologies adequately addreSS agent characteristics like autonomy, complex-

ity and adaptability. However, they are poor in addressing agent characteristics like concurrency, 

distribution and communication richness. In spite of this, they see the software engineering is

sues as the weakest point in the evaluated techniques. 

There are several surveys of agent-oriented methodologies [5,67, 1] 1, 124], many of which also 

attempt to provide an evaluation of the reviewed methodologies. One can note that there is some 

consensus about the weak points of current methodologies. In general, the weak points refer to 

the lack of software engineering features, like complete coverage of the development cycle. 

In our evaluation, we identified drawbacks in current methodologies that complement those 

found in other evaluations. These drawbacks can be grouped into four categories: supported 

phases (coverage of the whole development cycle), agent architecture (support for the internal 

design of agents), interactions in open systems (flexible modelling of agent interactions), and 

iterative development (development by successive executable deliveries)_ The drawbacks we 

identified are presented below, together with some possible ways to overcome them. 
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2.8.1 Supported phases 

As was discussed in Section 2.7.1, current methodologies are not complete or detailed enough. 

Even if we restrict our attention only to the analysis and design phases of the development cycle, 

very few methodologies cover all the corresponding activities. For example, SODA and Gaia do 

not address intra-agent issues, some of the MAS-CommonKADS models can be the subject of 

further improvement [68], and MESSAGE is neither complete nor mature [78]. 

2.8.2 Agent architectures 

It is inevitable that one must deal with specific agent architectures during the design of indi

vidual agents. We have identified the following three different approaches taken by current 

methodologies: 

1. For some methodologies, such as Gaia [126], agent architectures are considered to be out 

of scope since they were designed only for analysis and high-level design. 

2. Some methodologies are tied to a specific architecture; for example KGR [80] is tied to 

the BDI architecture. 

3. Other methodologies are tied to a specific architecture but claim that the same design prin

ciples can be applied for other architectures, or that other architectures can be adapted to 

the architecture considered. For example, MESSAGE [78] uses a generic layer architec

ture as a template from which concrete architectures can be instantiated, depending on the 

specific characteristics of the agent in question. 

Thus, few current methodologies satisfactorily incorporates at least the most popular agent ar

chi tectures. 

2.8.3 Interactions in open systems 

Interactions are a key issue when modelling multi-agent systems, since agents achieve their 

goals by interacting with other agents. In the case of open systems, the interaction mechanisms 

should be flexible enough to allow new agents to be incorporated into the system (since although 

conversation protocols are naturally open, modelling complete agent interactions requires par

ticular considerations, since no assumptions can be made about the identity and composition of 

agents). It seems that INGENIAS (one of the most mature methodologies from the software en

gineering viewpoint) neither facilitates nor prevents the development of open systems. It would 

be helpful to adapt or extend INGENIAS to explicitly consider this kind of system. In particular, 

enriching the analysis and upper design phases of INGENIAS with the organisational abstrac

tions recommended by Zambonelli et al. [133] could lead to a methodology suitable for tackling 

open systems. 
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Although addressing the semantic aspect of interactions is outside the scope of this thesis, it is 

worth mentioning the approach towards this direction presented in [76J, in which Johnson et al. 

describe a mathematical model for agent interaction. This model is based on the mathematical 

notion of categOlY, which is a mathematical constmct consisting of two sets and a system of 

combination rules. The first set (the objects) is largely a placeholder, while the second set (the 

morphisms) consists of a collection of arrows from one object (the tail) to another (the head). 

The system of combination rules consists in obtaining a larger arrow from two arrows, where 

the head of one is the tail of the other. The model so obtained represents formally the utterances 

and commitments in agent dialogues, and the relationships between them, and can be used 

for modelling communication languages such as FIPA-ACL, and protocols such as an English 

Auction. 

Another relevant approach towards interaction modelling appears in [60J, where the WSCI (Web 

Service Choreography Interface) language is presented. WSCI is an XML-based language, pro

posed by the W3C group, for the description of interactions between web servers, but several of 

its features are also applicable for other types of interactions. The features of an interaction that 

can be described by means ofWSCI include: the order in which the messages can be sent or re

ceived in a given message exchange; the messages that form a transaction; exception handling; 

thread management; and alternatives based on run-time values. It is planned that WSCI be used 

together with other standards to achieve complete semantic and technical interoperability of web 

services. 

2.8.4 Iterative development 

One of the best practices adopted in successful software engineering methodologies is that of 

iterative development [43, J 17], which encourages vertical development, in contrast to the clas

sic waterfall model. Roughly, the practice consists in dividing the development of a system into 

iterations, each of which delivers an executable that upgrades the functionality of the previous 

iteration, and consists of analysis, design and implementation phases. This approach has several 

advantages, one of the most important being that it facilitates user feedback, thus avoiding de

veloping the wrong system. Other advantages are that it helps the development stay on schedule 

and makes it easier to accommodate tactical changes [117]. None of the reviewed methodologies 

satisfactorily applies this best practice, but this has been identified as important [78]. 

2.9 Conclusions 

Despite the existing work in agent-oriented software engineering, there remain outstanding 

problems. In particular, it is difficult to produce high quality tools because of the gap between 

theory and practice. Fisher et al. [40] point out that, for instance, many AI theories of knowl

edge representation are never used because they have not been designed for practical use. They 

51 



suggest that such a gap can be filled by the convergence of theories at a lower level and program

ming languages at a higher level, or by producing methodologies that act as a bridge. In this 

thesis we focus on the latter approach by attempting to complete the bridge; more precisely, we 

refine some of the elements found in current methodologies to make them more comprehensive 

and easier to understand for a broader public. 

For the purpose of this chapter we have assumed a rather general concept of agenthood. How

ever, for the rest of the thesis we need to be more precise about what an agent means, since it 

strongly determines the orientation and scope of the work presented in the next chapters. In the 

rest of the thesis we assume, therefore, that an agent is a software program with its own thread 

of execution that can exhibit run-time properties of autonomy, social ability, reactivity and pro

activeness, and that some of the several modules it encompasses can have their own thread of 

execution. Whether or not an agent exhibits any of these properties is determined by its design, 

and not by the limitations of the platforms on which it is implemented. 

Based on what we presented in this chapter, we can summarise the state of agent-oriented soft

ware engineering as solid and promising but still embryonic. AOSE is solid because it is founded 

on well studied concepts and principles, many of which existed even before the agent approach 

and are the result of years of experience and refinement. AOSE is promising because there exists 

analytical and practical evidence showing that it is a valuable tool for developing the systems 

that today's complex applications require. However, from a software engineering perspective, 

AOSE is embryonic in the sense that it does not incorporate practices that, for several years, 

have proven to be useful in engineering software systems. 

To overcome these limitations, in this thesis we address the issues involved in taking agent

oriented software methodologies to a point where they can be effectively applied to the devel

opment of open systems. To do so, we consider the two main aspects in which the development 

process is divided, namely L~e macro-level (design of the interactions between agents) and the 

micro-level (design of the internal composition of agents), as well as the process itself. Our 

approach consists of incorporating a set of specific software practices to the development pro

cess of agent-oriented methodologies. This set of software practices tackle precisely those areas 

identified as drawbacks in our evaluation, and consist basically of the use of software patterns 

and an incremental iterative approach for the methodological process. However, to accomplish 

these tasks, some other problems had to be solved first, as is explained in the following chapters. 

Finally, it is important to make clear that this thesis focuses on the analysis and design phases of 

the multi-agent systems lifecycle, which form, arguably, the core activities of the development 

process. However, the lifecycle of multi-agent systems, and software systems in general, covers 

many other activities, which are only briefly described below. Note that this list of activities 

is neither exhaustive nor definitive, since the phases can be arranged and presented in different 

forms, and with different names. 
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II As was stated in Section 25, the requirements engineering phase consists of eliciting, 

modelling and analysing the functional and non-functional capabilities of a system, and 

is performed before the analysis phase. 

II The implementation phase follows the design and consists in the creation of an executable 

version of the system, including the creation of source code, binary files and scripts. 

II During the evaluation, a system is evaluated to determine if all the functional and non

functional requirements have been implemented. 

II In the testing phase, the implementation of a system is tested for the existence of errors. 

This is done by feeding the system with pre-established inputs and comparing expected 

outcomes to actual outcomes. 

II The validation of a system consists of determining if its functionality correctly imple

ments its requirements; that is, if the right system has been developed. 

II The deployment phase encompasses the activities involved in making a system available 

for use, including installation of executables and preparation of user manuals. 

II The maintenance phase deals with modifying the system to accommodate changes to the 

original requirements. 

II Finally, the upgrade phase consists of extending a system to incorporate new require

ments, as well as managing the replacement, or coexistence, of different versions of the 

system. 
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Chapter 3 

Modelling organisational structures 

3.1 Introduction 

3.1.1 Interactions and organisations 

As was briefl y discussed in Chapter 1, multi -agent systems provide an appropriate means for the 

development of complex systems as a result of their ability to naturally and effectively represent 

multiple loci of control, distinct and differing perspectives, and natural decentralisation and 

distribution. This is becoming increasingly important in emerging computational systems which 

are characterised by dynamism and openness, or where systems are modelled as being composed 

of multiple interacting and independent entities or agents. 

In this view, interaction between agents is a key characteristic of multi-agent systems. Yet this 

changes the complexity of the system, making it much more difficult to manage than traditional 

monolithic systems. Thus, in trying to ensure that the operation of such a distributed system, in 

which the components interact, is effective, we need to develop appropriate control structures 

and mechanisms to facilitate coherence and an overall integration of these components. 

It was briefly discussed earlier that the use of organisations has been proposed as a means of 

modelling and managing these interactions. Organisations are systems composed of entities 

(usually people), positions (or roles) and resources. In human organisations, people play roles 

and are in charge of executing a series of tasks. To carry out these tasks, roles interact with other 

roles and use resources. These interactions give rise to a network of communication paths, or 

the organisation topology, and to control relationships that determine the type of authority of 

some roles over others, providing a control regime for the organisation. Human organisations 

also involve the use of explicit or implicit rules for regulating the way in which people, roles, 

interactions and resources can be combined in order to exhibit coherent behaviour, and obtain 

meaningful results. 
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A primary school is a simple example of human organisation. The main roles of this organisation 

are the headteacher, the teacher and the student, each with clearly defined tasks; for example, 

evaluation is a task of the teacher role, which in turn requires the teacher to interact with the 

students. In a primary school the resources are varied, and include books, blackboards, class

rooms, and so on. The organisation topology of a primary school resembles the form of a tree, 

with the headteacher situated at the root, the teachers at the branches and the students occupying 

the leaves. The control regime is formed by well-defined authority relationships: the students 

are subordinated to the teachers, and the teachers are subordinated to the headteacher. There are 

also many rules of organisation in a primary school, such as attendance rules and schedules. 

3.1.2 Organisations in multi-agent systems 

Organisations are used in agent-based software engineering as an abstraction for analysing and 

designing systems. Specifically, organisations are used during the design to structure multi

agent systems, since they provide a general structure in which other design components - such 

as roles, agents, interactions, tasks and environmental entities - can be accommodated, in a 

similar way as software architectures are used in the development of object-based systems. For 

example, in the Rational Unified Process methodology [117], an architecture encompasses de

cisions about the structure of the system, the elements that form the structure (e.g. subsystems), 

the interfaces of these elements, the way these elements collaborate (behaviour), and the compo

sition of the structural and behavioural elements into subsystems. Such an architecture is used 

for understanding the system, organising its development and promoting reuse. 

Similarly to such software architectures, there are several types of organisation. In fact, a dif

ferent organisation can be obtained by varying the roles, the tasks associated with them or the 

way they interact. In practice, however, organisations are grouped by their topology and control 

regime; for example, the term hierarchy refers to any organisation that resembles the organisa

tion commonly found in most businesses, regardless of its number of roles and levels of controL 

Each of these groups possesses different properties; for example, because of the centralised con

trol in the apex, hierarchies are poor at reliability, since failures in the apex may produce serious 

consequences for the whole system. In addition, not all types of organisation are adequate for a 

specific application; for instance, hierarchical organisations assume that all the roles (except the 

apex) are willing to be subordinated to other roles, which is not the case in peer-to-peer systems. 

At this point, it is important to note that this thesis deals with static organisational structures, this 

is organisational structures whose properties do not change with time. Dynamic organisations 

might require different models, particularly different forms of representation. 

An example of how organisations are used to model multi -agent systems is presented in [134], 

in which a hypothetical system is described to automate the management of a conference. In this 

conference management system, a call for papers is sent and the submitted papers are received. 

The committee then distributes the papers for review, collects the reviews and selects the best 
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8 
authority authority 

FIGURE 3.1: Organisation of the Conference Management System 

papers. After an analysis of the characteristics of the system, it becomes clear that a suitable 

way of organising the system is by means of a three-level hierarchy in which the first level or 

apex is occupied by the program committee chair, the roles of the second level by other mem

bers of the program committee, and the roles of the third level by the reviewers. This hierarchy 

is depicted in Figure 3.1, in which roles are represented by circles and the control regime by la

belled directed arrows (which in this case have the same label). According to this structure, each 

program committee member coordinates the activities of his corresponding reviewers, based on 

an authority relationship. Similarly, the program committee chair coordinates and supervises 

the activities of the program committee members. The organisation also includes restrictions 

on elements of the structure, such as that no agent cannot be the author and the reviewer of the 

same paper. 

3.1.3 Organisation type selection 

The selection of an appropriate organisation type for a given application is important since it has 

been shown that the type of organisation determines the performance of the system [J4], and its 

characteristics in terms of adaptability, reliability and modularity [82]. However, selection is not 

a trivial task, for several reasons. First, there are, at least in principle, a large number of possible 

combinations of topologies, control regimes and organisational rules - that is of organisations 

- that can fit a specific system. Such a large number of possibilities tends to be confusing, 

especially for novice software development practitioners or teams. Second, the different parts of 
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an organisation tend to be related in a complicated way, so that giving priority to one may cause 

undesirable effects in others. For example, in the Conference Management System mentioned 

above, the coordination complexity can be reduced by replacing the three-level hierarchy by a 

two-level hierarchy by combining the roles committee member and reviewer in just one role. 

However, this increases the processing complexity of the role, making it vulnerable to delays 

and to failures due to a potential lack of resources, resulting in a decrease of efficiency and 

reliability of the organisation. 

Without providing structured techniques, it is difficult to achieve the best combination of the 

different components of an organisation. In order to facilitate this selection of the most ap

propriate organisation to use for a particular application, we advocate the combined use of a 

suitable methodological process and adequate design tools. Within this approach, the role of the 

process is twofold: to obtain the necessary elements for the selection decision to be taken, and 

to indicate the precise stage of the development at which organisation selection must take place. 

The role of the tools is to provide a repository of solutions (a'catalogue) from which to select an 

organisation, as well as a procedure to guide the selection. 

3.1.4 Organisational patterns 

In relation to the processes, some methodologies already exist that guide the identification of 

the elements for organisation selection [j 34, 25]. However, there are no design tools targeted 

specifically at supporting this selection of an organisation. To address this omission, we could 

consider the development of, for example, a library, encompassing the description of particular 

types of organisation, the situations in which their use is recommended, and their benefits and 

drawbacks. Such a library provides mUltiple benefits in the development of multi-agent systems. 

First, it reduces the learning curve present in the introduction of any new technology. Second, 

it reduces development time, since it is faster to select an organisation from the library than to 

construct one from scratch. Third, it promotes standards and the appearance of tools. Finally, it 

facilitates communication between developers, and serves as a reference and documentation. 

In order to create such a library, we must deal with the description of organisations themselves, 

which involves the description of their topology, organisational structure and organisational 

rules. However, as explained below, no satisfactory form of describing organisational rules ex

ists, so we first need to construct suitable fonns of describing them. Similarly, we need to con

struct appropriate forms for describing organisational structures, since existing organisational 

models (such as [122,58, 123]) do not explicitly consider the description of both topologies and 

control regimes, as well as their relationship. 

The practical solution to the development of such a library is the construction of a catalogue of 

different organisational types, in which each such type would be a general fonn of organisation, 

or a pattern [48]. Basically, patterns are general solutions to recurrent problems, and can be 

easily specialised to provide a detailed solution for a specific situation. Patterns are suitable for 
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our purposes since they describe general solutions that can be adapted to particular situations, 

and have the benefit that they are well known to software practitioners. 

In relation to this catalogue, however, the number of patterns in the catalogue must be kept man

ageably small to avoid a transfer of complexity from organisation construction to organisation 

selection. Although the number of possible organisations is infinite (one for each possible com

bination of topology, control regime, and set of organisational rules), they can be grouped by 

taking into account two considerations. First, organisational rules can be separated into domain

dependent rules and domain-independent rules, so that several organisations can be grouped if 

only domain-independent rules are considered. Second, the most effective reduction comes from 

grouping different organisations with similar characteristics into families, also called paradigms. 

For example, the hierarchies family encompasses single-level and multiple-level hierarchies, as 

well as strict and non-strict hierarchies (a hierarchy is strict if roles other than the apex commu

nicate only with their superior). In addition to this form of reduction, it has been argued that that 

a relatively small number of families might be enough to cover most practical situations [134]. 

In fact, several such families have already been identified and their domain-independence veri

fied by the number of different areas in which they have been applied [45, 64]. 

3.1.5 Overview 

In this chapter, therefore, we present a framework in which organisational patterns can be de

veloped. This framework includes the languages for describing the components of the patterns, 

a layout to specify the patterns themselves, and three examples of patterns. With this aim, the 

rest of the chapter is organised as follows. Firstly, in Section 3.2 we review the methodological 

context in which the catalogue of patterns is used. Then, in Section 3.3 we present a model 

for expressing organisational rules. Similarly, in Section 3.4 we present a model for describing 

organisational structures, including topologies and control regimes. Based on these models, the 

layout for patterns specification is presented in Section 3.5, and the catalogue of patterns itself 

in Section 3.6. Finally, our conclusions, and the benefits and limits of this work are presented in 

Section 3.7. 

3.2 Gaia as the basis for the methodological approach 

Patterns are of limited use if they are not part of a methodological process. Such a process 

provides the context in which the patterns are used, which includes the selection of a specific 

pattern, how and when to use it, as well as what is expected from it. Among all the existing 

processes based on organisational concepts, we adopt Gaia as the basis for the methodological 

context of our catalogue of patterns, because it is well known and already considers the use of 

organisational patterns in the design of a system. Thus, with the aim of providing the reader with 

the context in which patterns are used, a review of the Gaia methodology is presented below. 
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As described in Chapter 2, Gaia is a general-purpose methodology for the development of multi

agent systems, and was first described in [126], but has evolved significantly in several aspects 

up to the version presented in [134], on which this review is based. Gaia is one of the first agent

oriented methodologies that is not based directly on the object paradigm nor on knowledge 

engineering concepts. In contrast to these approaches, the development of a system in Gaia 

is based on the organisational metaphor. Basically, Gaia consists of a process and a series of 

preliminary and definitive models constructed in accordance to that process. In the following, 

we first present the models and then the methodological process. 

3.2.1 The main models of Gaia 

In this section we describe the main models in Gaia, which are: the role model, the interaction 

model and the model of organisational rules l • In addition, the role and interaction models can 

be divided into preliminary and final models, according to the information represented and to 

the phase of development in which they are built (more on this in Section 3.2.2). The agent and 

the service models complete the set of models used in Gaia (these two models are described 

in Section 3.2.2.3). Figure 3.2 shows the models used in Gaia, as well as their dependency 

relationships. For example, the role model is fed with information from the preliminary role 

model and provides information to construct the agent model. Although not really a model 

- which is indicated in the figure by a dotted box - the organisational structure has also 

been included with the aim of showing its dependence on the other models. In this way, the 

arrows entering this box denote information used to determine the organisational structure of the 

system, whereas the arrows leaving point to those models that use the organisational structure 

for their completion. However, the details about organisational structure will not be covered 

here, but in Section 3.2.2.2. 

3.2.1.1 Role model 

The role model encompasses all the roles in the system, which represents well defined positions 

in the organisation, and the behaviour expected from them. Roles are characterised by a set of 

features defining their nature and activity as shown in Table 3. J: the name identifies the role 

and reflects its main purpose; the description provides a brief textual description of the role; the 

protocols describe interactions with other roles; the activities detail those computations that the 

role performs without interacting with other roles; the responsibilities express the functionality 

of the role (divided into two parts: liveness properties and safety properties, which relate to 

states of affairs that a role must bring about, and the conditions whose compliance the role must 

ensure, respectively); and the permissions identify both the resources that the role needs in order 

to fulfil its responsibilities and its rights of access to use them. The characterisation of a role is 
--~------------------------

lZambonelli et aL , the authors of Gaia, do not refer explicitly to the set of organisational rules as a model. 
However, we do here for clarity of exposition. 
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FIGURE 3.2: The models of the Gaia methodology (modified from [J34]) 

Characteristic Sub-characteristic Meaning 
name identifier 
description brief description 
protocols list of protocols 
activities list of activities 
responsibilities 

liveness properties states to bring about 
safety properties conditions to ensure 

permissions resources and rights of access 

TAB LE 3.1: Characterisation of roles in Gaia 

I 

depicted graphically by means of a role schema, an example of which is shown in Figure 3.3. 

As can be observed in the figure, each box in the schema corresponds to one section of the role 

definition, and the names of activities have been underlined to distinguish them from names of 

protocols. Additionally, the responsibilities have been expressed in a purpose-built language 

that includes operators to represent sequence C.), alternatives (J) and indefinite repetition (W). 

3.2.1.2 Interaction model 

The interaction model comprises all the interactions between the roles in the system. Interac

tions are characterised by means of protocol definitions, which consist of the following features: 
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Role Schema; 
Filter, 

Description: Performs the process 
corresponding to stage i on the 
input data 

Protocols and 
Activities: ProcessData, Getlnput, 

SupplyOutpu"t, SenseFlows, 
ChangeFlow 

Permissions: 

changes OataJlow" 
agreedFlow 

reads flowj 

Responsibilities: 

Liveness: 

Filter, = (Process I AdjustFlow)W 

Process = 
Getinput.ProcessData:.SupplyOutput 

AdjustFlow = SenseFlows I Change Flow 
Safety: 

·true 

FIGURE 3,3: Example of a role schema 

Purpose 

Initiators I Responders 

Processing desc In puts 

Outputs 

FIGURE 3.4: A generic protocol definition 

a purpose that provides a brief textual description of the interaction; a list of initiators that enu

merates the roles that start the interaction (usually a single element); a list of responders that 

enumerates the roles involved in the interaction, apart from the initiators; a list of inputs and 

outputs that provides the information required or produced during the interaction; and a brief 

textual description that outlines the processing performed by the initiators during the interaction, 

This characterisation is represented graphically using a diagram like that shown in Figure 3.4, 

An example of a protocol definition, corresponding to the Getlnput protocol of the Filter role, 

is shown in Figure 3,5. 
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Getlnput 

Filter; I Pipe; 

The filter obtains the non e 
next data to process 

Data 

FIGURE 3,5: Example ofaprotocol definition 

3.2.1.3 The model of organisational rules 

The model of organisational rules consists of all the organisational rules of the system, Organ

isational rules are constraints about how the different elements of the organisation interact, and 

are classified as liveness rules and safety rules (similarly to the way in which roles' responsi

bilities are classified, although responsibilities refer to characteristics of only one role, whereas 

organisational rules refer to characteristics of more than one organisational element), The live

ness rules express situations that agents try to bring about, while safety rules state conditions 

that must be kept invariable. To express organisational rules, Gaia makes use of a language 

whose details are presented in Section 3.3. The following is an example of a liveness rule: 

Before being disseminated, any document must be approved by at least three mem

bers of the community. 

Similarly, an example of a safety rule is: 

An agent cannot be, at the same time, the buyer and the seller of a given item. 

3.2.2 The Gaia process 

The methodological process of Gaia is divided into three phases: analysis, architectural design, 

and detailed design. 

3.2.2.1 The analysis phase 

The analysis phase deals with collecting the features needed to model the system, and consists 

mainly of five activities: decomposition of the system into sub-organisations, identification of 

environmental entities, creation of the preliminary role model, creation of the preliminary inter

action model, and creation of the model of organisational rules. 
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The decomposition of a system into sub-organisations aims to partition the system into more 

manageable units. Such a decomposition can have as a basis a sub-goal decomposition, the 

resemblance of a real world structure, the amount of interaction between subsystems, or sepa

ration of competences. The phase of identification of environmental entities deals with creating 

a list of the resources used by the agents while carrying out their activities, but which are not 

a part of them. Associated with each resource are the rights of access that agents have over it, 

such as read or change. 

The creation of the preliminary role model consists in the identification of the roles in the system 

and the construction of their schemata. However, at this early stage it is not necessary (nor ap

propriate) to produce a complete role model, since the complete definition of the responsibilities 

can be postponed until the design, when a more detailed view of the system is achieved. 

Similarly, the creation of the preliminary interaction model consists in the creation of the def

initions of the protocols in the system, placing emphasis on their identification and purpose, 

more than on their details. In particular, at this stage of the analysis it might be the case that not 

enough information is available to completely determine the initiators and collabOJatOJs. 

During the creation of these two preliminary models, it is important to keep the roles and in

teractions independent of any specific organisational structure. Also, iteration at this stage is 

important: first, the main roles are identified; then, fOJ each role, its associated protocols are 

documented; this leads to the refinement of the roles model, which in tum can lead to refine

ments of the interactions model, and so on. 

Finally, the analysis phase is completed with the creation of the model of organisational rules, 

which consists of compiling the rules that govern the behaviour of the system. These rules are 

based on the roles and interactions identified previously in the preliminary role and interaction 

models. For example, in an electronic commerce application, an organisational rule might state 

that an agent cannot play the roles of seller and buyer of the same good at the same time. Or

ganisational rules must restrict the behaviour of agents in order to achieve the overall goals of 

the system, but at the same time must allow the autonomous, and sometimes self-interested, be

haviour of agents. The developer must design the organisational rules of a system in such a way 

that a good balance between these two conditions is obtained. It must be noted that the organ

isational rules may be inspired not only by the domain itself, but also by other considerations 

such as required levels of efficiency or reliability. 

3.2.2.2 The architectural design phase 

The next phase in the Gaia process, the architectural design, has two main sub-phases, namely 

the selection of an organisational structure, and the completion of the role and interaction mod

els. As was mentioned previously, during the analysis it is important not to commit to a specific 

organisational structure. During the design, the selection of the organisational structure of the 

system is determined. This decision is basically a compromise among different forces, each 
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Characteristic Meaning 
name name of the service 
inputs information needed 
outputs information produced 
pre-conditions restrictions of use 
post-conditions effects 

TABLE 3.2: Characterisation of services in Gaia 

pushing in a different direction. These forces are: the complexity of the structure, in terms of 

computation and coordination; the distance from the real-world organisation that the system is 

modelling; and the need to respect the organisational rules. It is precisely at this stage of the 

design that organisational patterns are needed, the benefits of which are twofold: they support 

the decision process, and provide pre-defined organisational structures that can be customised 

for specific applications. 

The second sub-phase in the architectural design, the completion of the role and interaction 

models, deals with detailing the roles and protocols with the information obtained once the 

structure is determined. This activity includes the incorporation of new roles and interactions 

which may have resulted from the application of the previous step. It is suggested that structure

dependent aspects be separated from those independent of the structure to facilitate a possible 

change of structure. 

3.2.2.3 The detailed design phase 

The final phase of Gaia, the design phase, consists of producing two models, the agent model 

and the services modeL The agent model indicates which roles will be played by which agents, 

especially since an agent can comprise one or more roles. The decision of which roles are 

played by an agent is based on considerations such as efficiency and physical distribution. For 

example, for efficiency a designer might decide to include three roles in an agent type, instead 

of having three different agents. The services model is a list of services of all the agents in 

the system, together with their inputs, outputs, pre-conditions and post-conditions. A service is 

defined as a single, coherent block of activity in which an agent will engage. The services and 

their characteristics are derived from the protocols modeL Note that, in Gaia, the design is not 

intended to produce an output detailed enough to be implemented on a particular platform, but 

focuses on describing how the agents cooperate to achieve the system goals. 

3.2.3 Discussion 

In conclusion, Gaia is a methodology based on organisational concepts that explicitly considers 

the three levels of a system organisation: elements (roles and protocols), organisational structure, 

and the rules that govern its functionality (organisational rules). Also, Gaia presents a clear 
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separation between the analysis and design phases, as well as between social and internal aspects 

of agents. Apart from this, Gaia offers the following valuable features. 

• It is easy to understand even by nono·specialists, since the process is straightforward and 

the modelling language simple. 

• It is also architecture-independent so that no commitment is made to any specific agent 

architecture, allowing different architectures to be used in the development process. 

• Equally important, Gaia is very well known, being one of the most cited (and consequently 

used) methodologies, and is suitable for extension and enhancement. This is already 

indicated by the various different extensions that have been built around Gaia itself [131, 

77,50, 16]. 

However, Gaia is limited in terms of its applicability to the full cycle of development, addressing 

the analysis and architectural design phases, but leaving the agent design and implementation 

largely unconsidered. Also, Gaia requires further work; for example, it lacks a catalogue of 

patterns to support the development of applications and, in particular, it lacks organisational 

patterns, the importance of which is highlighted in the methodology, but no such set is provided. 

In this chapter we address this omission by describing a framework in which organisational 

patterns may be developed. However, before proceeding, we first need to address the problem 

of pattern representation, or finding a suitable form for describing organisational patterns. Since 

organisational patterns represent organisations, such a description should include their different 

components, such as organisational rules and structure. Thus, we first need to find appropriate 

forms for describing organisational rules and organisational structures, which is done in the 

following sections. 

3.3 Organisational rules 

3.3.1 Organisations 

In the methodological approach described in the previous section, multi-agent systems are mod

elled by means of organisations, formed of roles and interactions between roles. Roles represent 

positions or responsibilities within the organisation, whereas interactions are used to accomplish 

tasks requiring the participation of more than one role. These role interactions give rise to the 

formation of organisations, each one consisting of a set of organisational rules and an organ

isational structure, as depicted in Figure 3.6. Organisational rules are constraints on the way 

agents, roles and interactions relate, and are used to ensure the correct behaviour of the system. 

Organisational structures, as can be observed in the same figure, consist of topology and control 

regime, both determined by the role interactions. The former encompasses the communication 
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Organisation 

FIGURE 3.6: Components of an organisation 

paths between the roles, while the latter comprises the control relationships. Here, the commu

nication path of an interaction is a link between the roles involved in the interaction, whereas the 

control relationship of an interaction denotes the type of authority - or its absence - between 

the roles. 

If we assume that control relationships are a particular type of constraint between roles, then 

control relationships can be regarded as organisational rules. Under this perspective, those rules 

can be seen both as organisational rules or as part of the organisational structure (since control 

relationships are part of organisational structures). However, in this thesis we have opted for 

keeping the control regime separate from organisational rules, since the former can be used, on 

its own, to describe the architecture of a multi-agent system. 

In the following, we describe in detail these components of an organisation, and address the 

problem of characterising and describing them. Specifically, the rest of this section deals with 

organisational rules, while Section 3.4 deals with organisational structures. The results obtained 

in these sections are employed in Section 3.5 for the description of organisational patterns. 

3.3.2 Overview 

As previously seen, organisational rules are a helpful abstraction to make a system exhibit co

herent behaviour and achieve its goals, and are present throughout the life cycle of the system. 

In development, organisational rules are envisaged and documented in the analysis phase, then 

refined and specified in the design phase, and finally implemented in the implementation phase. 

Organisational rules also play an important role in determining the characteristics of the system. 

During development, they are key to determining the organisation of the system, since the cor

rect organisation must facilitate the implementation of the organisational rules. At run-time the 

observance of the organisational rules in part guarantees that the system exhibits the required 

functionality. 
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In both stages, development and run-time, it is necessary to express and manipulate the rules. 

For example, in design the rules are stated unambiguously in the system specification, whereas 

at run-time the rules are interpreted and evaluated. For this reason, a computational language 

for expressing organisational rules is required. Although some languages already exist, they are 

incomplete for our purposes, as we discuss below. 

In the literature, two languages have been proposed to specify organisational rules. The first 

language is presented by Zambonelli et al. in [J 33] - hereafter called the Abstract language 

- and is based on first-order temporal logic, together with the temporal connectives shown 

in Table 3.3. The introduction of time concepts is necessary since some rules make reference, 

implicitly or explicitly, to specific times or periods of time. The Abstract language makes use 

of two predefined predicates, plays and card, the former of which is applied to an agent and a 

role and expresses that the agent plays that role, while the latter is applied to a role and denotes 

the number of agents playing the role at a given moment. Since it is was not the intention of 

Zambonelli et al. to deal with the details of a formal description of the language, they merely 

demonstrate its use by means of examples, and so do we. For instance, the formula below makes 

use of this language to express the organisational rule: 

No agent can be both author and reviewer of the same paper 

which can also be expressed as: 

It is false that at some future moment an agent plays the author role and also plays 

the reviewer role 

or more formally as: 

,<) [plays (a, author) 1\ plays (a, reviewer) J 

The second language for specifying organisational rules appears in [134], in which Zambonelli 

et al. propose a less formal language, which we will call the Practical language, with the purpose 

of facilitating the specification of organisational rules by non-experienced practitioners. The 

basis of this language is the use of the operators presented in Table 3.4 for describing how roles 

can be played by agents. The operator ---. denotes a condition on the order of the roles an agent 

can play. In general, this operator can be used with the qualifier n to denote how many times a 

given role must be played so that another specific role can be played too. The I operator specifies 

that two roles can be played by an agent at the same time. Finally, the l..n qualifier establishes 

the number of times a role can be played. 

For example, the organisational rule: 

No agent can be both author and reviewer of the same paper. 
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Op. Meaning Formula Satisfied now if ... 

0 next Otp tp is satisfied in the next moment 

0 sometime Otp tp is satisfied either now or at some future 
moment 

0 always Dtp tp is satisfied now and at all future mo-
ments 

U until tpU¢ ¢ is satisfied at some future moment, and 
tp is satisfied until then 

W unless tpW¢ tp keeps satisfied until ¢ is satisfied (which 
might never happen) 

B before tpB¢ ¢ is eventually true, and at some time be-
fore this, tp is true 

TABLE 3.3: Temporal operators 

Op. Meaning Formula Satisfied now if ... 
--> played R-->Q role Q can be played by an agent only if it 

played role R before 
n played n-times R n --> Q role Q can be played by an agent only if it 

played role R at least n times before 

I concurrency RIQ roles Rand Q can be played concurrently 
l..n cardinality RL.n role R must always be played at least 

once and no more than n times 

TABLE 3.4: Practical operators 

can be expressed, using this logic, as: 

-->(Reviewer (paper (x ) ) IAuthor (paper (x ))) 

Even though these two languages are useful for some specific situations - such as the specifica

tion of organisational rules during design - their applicability is limited, mainly because of lack 

of completeness. Specifically, these languages do not consider all the elements of a multi-agent 

system, for example the entities of the environment and other agent features, such as tasks. As 

a result, these languages leave some relevant relationships between the elements unconsidered, 

for example the relationship of utilization between a protocol and an entity of the environment. 

Regarding the notion of time, the Abstract language does include temporal operators, but in the 

Practical language only a particular form of the before operator is considered. 

Other approaches for organisation modelling have also appeared recently, some of which address 

aspects closely related to modelling organisational structures, particularly organisational rules. 

The most relevant approaches, for the purpose of this chapter, are briefly desclibed below. 

MOCHA [122] (Model of Organisational CHange using Agents), is a model for specifying or

ganisations, including their changes over time. MOCHA explicitly distinguishes between the 

components of an organisation and the population of the organisation. The former characterises 
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an organisation as a set of actions and a set of roles. Here, actions have duration (in arbitrary 

units) and can be decomposed into sub-actions, while roles maintain relationships of obligation 

(a role is obliged to execute an action specified by another role, within the corresponding du

ration) and influence (a role influences another role to adopt an obligation) between them. The 

population of an organisation, which is not considered as part of the organisational structure, 

specifies which roles are played by which agents, as well as the attitude of each agent to enact 

the obligations and influences related to the corresponding roles. Regarding the specification 

of how the different elements of an organisation are allowed to relate (organisational rules), 

MOCHA provides a simple mechanism based on the duration of actions, and constraints on the 

times that actions start and end. By carefully setting the values of such durations and constraints, 

a desired sequence of actions can be established and potential conflicts can be avoided. As can 

be observed, this approach concerns mainly the order of actions, but leaves unconsidered other 

types of organisational rules, for example cardinality of roles. 

In addition, several approaches for organisational modelling have been presented in the v/ork-

shop series on Coordination, Organisation, Institutions and Norms in agent system.s (COIN). 

In [58] Grossi et al. define an organisational structure as a 4-tuple consisting of a finite set of 

roles and three binary relations on roles: power, coordination and control. Power denotes that an 

agent (enacting one role) can delegate a goal to another agent (enacting another role). Coordi

nation refers to the issue of the information needed by one agent (enacting a role) for achieving 

its goals and complying with the norms of the organisation. Finally, control involves monitoring 

activities to determine failures to achieve goals or violations to norms. As can be noted from 

this brief review, this definition does not consider explicitly organisational rules to constrain the 

way in which different elements of the organisation are allowed to relate. 

Montealegre et al. [123] present a model for hierarchical organisations based on norms. This 

model, expressed in UML, extends a normative framework for agent-based systems [87] with 

organisational elements, some of which are specific to hierarchical structures. In this model, 

norms are used to regulate the behaviour of the members of an organisation (like organisational 

rules are used in this thesis) and consist of seven elements: the goals prescribed by the norm, 

the agents that must comply with these goals, the agents that might benefited from compliance 

with the norm, the conditions to activate the norm, the conditions under which an agent is not 

obliged to comply with the norm, the punishments for not satisfying the goals, and the rewards 

for complying with the norms. Goals, which form the core of norms, are described by means of 

functions (for example read(paper)), but no details are provided about their representation. 

In the same field of normative organisations, deontic logics (that is, logics concerned with obli

gation, permission and related concepts) have been used to express norms that regulate the 

behaviour of the members of an organisation [86, 121]. 
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3.3.3 Requirements of a language for organisational rules 

This identification of drawbacks in existing specification languages naturally leads us to estab

lish the characteristics that such a language must meet. To begin with, since organisational 

rules are constraints on the elements of a multi-agent system, they encompass a huge number 

of situations. For example, some of the situations encompassed by rules referring only to roles 

include: the number of agents that play it at the same instant or along the history of the system; 

the relative order in which the role is played with respect to other roles of the same agent or 

other agents; mutual exclusion with other roles of the same agent or other agents; the number of 

times the role is played for a given agent or for the whole system; and so on. Since it is difficult 

to foresee all the possible situations encompassed by organisational rules, the language must be 

general enough to cover the most common situations, and must allow extensions to cover other 

specific situations. We will call a language with this property expressive. 

In principle, organisational rules can be described using simple natural language text. However, 

such an ambiguous description is inappropriate for tasks such as the design, specification and 

implementation of systems, or for manipulating organisational rules, as is the case when organ

isational rules are interpreted and evaluated at run-time. In order to accomplish these tasks a 

manipulable language is needed. 

Apart from being expressive and manipulable, such a language must satisfy the following re

quirements. 

1. The language must consider all the elements of a multi-agent system that are relevant for 

constraining the behaviour of the agents. This is required because organisational rules can 

make reference to any element in the system. 

2. Similarly, the language must c.onsider al! the meaningful relations between these eleillents; 

for example, the relation plays between an agent and a role (when an agent plays a role), 

and the relation initiates between an agent and a protocol. Some of these relations can 

be an integral part of the language, and some can be added to the language for specific 

applications. 

3. The language must consider the representation of time, since many types of organisational 

rules relate events that occur at different points of time, as in the following rule: 

To play role r an agent must have played role q before 

4. The language must include the elements commonly found in predicate logic, such as the 

logical connectors and, or and not, since organisational rules are predicates that can be 

evaluated to decide whether they are true or false. Also, the language must include the 

existential quantifier, as a means to refer to an unspecified element, as well as a universal 

quantifier, to refer to multiple elements at the same time, as is the case for the environ

mental entities papers in the following rule: 
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Every paper must be reviewed by three different reviewers 

5. Finally, the language must be intuitive and easy to understand, since it is intended to be 

used by an average software developer. 

3.3.4 A language for organisational rules 

To overcome the limitations of current approaches, we envisage a language based on the Abstract 

language mentioned above, together with explicit inclusion of the entities of the environment, as 

well as a characterisation of the relationships between the different types of elements. The Ab

stract language was selected over the Practical language because it can be more easily extended 

to consider other elements, and the notion of time is more explicit. The resulting language, 

which we call LEVOR (language for the expression and verification of organisational rules) is 

detailed below. 

Basically, LEVOR is a language based on first order predicate logic that uses temporal operators. 

Its complete syntax is presented in Table 3.5, in which the entry symbol has been represented 

by < OrganisationalRule >, the non-terminal symbols are surrounded by angular brackets, 

the terminal symbols are in quotes, and the null string has been denoted by A. 

LEVOR allows the expression of organisational rules as propositions that can be evaluated at 

any moment to determine its logical value: true or false. In the former case the rule is said to be 

observed, while in the latter it is said to be violated. Such propositions can be formed by using 

the classical logical operators (not, and, or, implies), and the existential and universal quantifiers, 

all with their usual meaning. Also, the proposition can contain the temporal operators mentioned 

in Section 3.3.2, whose meaning and syntax appear in Table 3.3. As can be observed, next, 

sometime and always are unary operators, while until (U), unless (W) and before (3) are binary 

operators. In the LEVOR language, time is considered to be a sequence of discrete points. 

The elements of the language consist of integers, the logical constants true and false, other 

constants, variables, functions, and predicates. These other constants refer to names of roles, 

agents, protocols, resources, parts of resources, and activities, and are denoted by plain strings, 

with the exception of protocols and parts of resources. Protocols are denoted by their name, 

initiator, collaborator and the data required or produced, as in 

SubmitPaper( author, collector, paper). 

The different parts of a resource are referred to by using a dot notation, for example the element 

author of the resource paper is denoted by auth01:paper. Activities in LEVOR are also denoted 

by means of the dot notation; for example, Jilter.keepFlow(f) denotes the activity keepFlow of 

roleJilter, whose parameter is! 

71 



< OrganisationalRule > 

< Proposition> 

< AtomicFormula > 

< Term> 

< FunctionalTerm > 

< Variable> 

< Constant> 

< Protocol Constant > 

< Part Constant > 

< ActivityConstant > 

< Resources> 

< ResourceList > 

< UnaryLogicalOp > 

< BinaryLogicalOp > 

< Quantifier> 

< UnaryTemporalOp > 

< BinaryTemporalOp > 

< ComparisonOp > 

< PredicateSymbol > 
< FunctionSymbol > 
< ProtocolSymbol > 

< AgentSymbol > 
< RoleSymbol > 

< ResourceSymbol > 
< ActivitySymbol > 

< Proposition > 

< AtomicFormula > 
< UnaryLogicalOp >< Proposition> 
< Proposition >< BinaryLogicalOp >< Proposition> 
< Quantifier >< Variable> H(" < Proposition> H)" 

< UnaryTemporalOp >< Proposition> 
< Proposition >< BinaryTemporalOp >< Proposition> 

< Term >< ComparisonOp >< Term> 
< PredicateSymbol > H(" 

< Term> ( H," < Term> )* H)" 

True 
False 

< Variable> 
< FunctionalTerm > 
< Constant> 

< FunctionSymbol > H(" 

< Term> ( H," < Term> )* H)" 

< AgentSymbol > 
< RoleSymbol > 
< ResourceSymbol > 

Integer 
< Protocol Constant > 
< PartConstant > 
< ActivityConstant > 
< AgentSymbol > 
< RoleSymbol > 
< ResourceSymbol > 

< Protocol Symbol > H(" 
< RoleSymbol > H," < RoleSymbol > 
( H," < ResourceSymbol > )* H)" 

< ResourceSymbol > H." < ResourceSymbol > 

< RoleSymbol > H." < ActivitySymbol > H(" 
< Resources> H)" 

< ResourceList > 
A 

< ResourceSymbol > 
< ResourceSymbol > H," < ResourceList > 

"1\" 1 "v" 1 "=;." 

"3" 1"'1" 

"0"1"<)" 1 "0" 

"U"I"W"I"B" 

"=" 1 "'I" 1 ">" 1 "<" 1 "~" 1 ":S" 

TABLE 3.5: Grammar for the LEVOR language 
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Function Target Syntax 
card Role card( role_name) 
card Protocol card(protocol_name) 

TABLE 3,6: Pre-defined functions in the LEVOR language 

Variables in LEVOR are used to denote agents, roles and resources. Although both variables 

and constants are represented by strings, they are differentiated by how they are quantified: 

elements referred to in the quantifiers are variables, whereas all the other elements are consid

ered constants. For example, in the organisational rule below, a is a variable, while Agent, 

SeniorBuyer and JuniorBuyer are constants. 

Va :Agent (plays(a, JuniorBuyer) B plays(a, Senior Buyer)) 

Functions are used to represent properties of elements. For example, the cardinality of a role 

r, denoted as card(r), is the number of agents playing the role. Similarly, the cardinality of a 

protocol p is the number of times that the protocol has been initiated and is denoted by card(p). 

Table 3.6 summarises these functions of the language. 

Predicates are used to express relations between different organisational elements, evaluating 

to True if the relation holds, or false otherwise. plays is the most basic relationship involving 

agents and roles. We can express that agentl plays role r by writing p lays ( agent1, r). 

Regarding roles and protocols, initiates(r, p) denotes that role (or agent) r commences the ex

ecution of protocol p, and participates( r, p) denotes that role r initiates or collaborates in the 

execution of protocol p. If the initiator itself is not relevant, the relation initiated(p) can be more 

convenient. In addition, terminated(p) indicates the end of execution of protocol p. 

Relationships between roles and environment are represented through these generic relations: 

reads(role, data) and modifies(role, data, value), which represent that a role reads (senses) and 

modifies (acts on) a resource, respectively. Table 3.7 summarises the predicates of the language. 

Predicate Argument 1 Argument 2 Syntax 
plays Agent Role plays(agenLname, role_name) 
initiates Role Protocol initiates(role_name, protocoLname) 
participates Role Protocol participates(role_name, protocoLname) 
initiated Protocol initiated(protocol_name) 
terminated Protocol terminated(protocol_name) 
reads Role Resource reads(role_name, resource_name) 
modifies Role Resource modifies(role_name, resource_name, 

new_value) 
terminated Activity terminated(activity_name) 

TABLE 3.7: Pre-defined predicates in the LEVOR language 
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The following are some examples of organisational rules and how the language is used to express 

them. 

1. An agent cannot be a senior buyer if it has not been a junior buyer before. 

Va. Agent (plays(a, JuniorBuyer) B plays(a, Senior Buyer)) 

2. There must be at least 10 different reviewers of papers. 

card( Reviewer) :?: 10 

3. An agent cannot be a buyer and a seller at the same time. 

Vi : Item(Vx: Buyer(Vz : Buyer(Vy: Seller(Vw: Seller 

(initiates(a, Buy(x, y, i))/\ 

initiates(b, Sell(w, z, i)) =? a =1= b))))) 

4. The selection process begins when all the papers have been reviewed three times. 

Vp: Paper(Vr: Reviewer(Vc: Collector( card(ReviewPaper(r, c,p)) = 3 

B initiated(SelectPapers)))) 

5. Every paper must be reviewed exactly three times. 

Vp: Paper(Vr Reviewer(Vc Collector((card(ReviewPaper(r, c,p)) = 3)))) 

In summary, we have presented a language to specify organisational rules. We have clearly 

established the terms and operators of the language, and have provided examples that show its 

use. This language can be used to specify the organisational rules in the analysis and design of 

a multi-agent system. Also, since the language is manipulable, it can be used in run-time tasks 

such as monitoring the observance of organisational rules. The advantages of our proposal over 

existing proposals are that we have limited the scope of the language, have explicitly considered 

all the organisational elements of a multi-agent system and have characterised the relationships 

between the elements of the system. The resulting language covers many practical situations, 

but can easily be extended for other situations not considered here. 
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3.4 Organisational structures 

3.4.1 Introduction 

Organisational structures are often described in the literature either by means of figures or tex

tual description [134, 64]. Such a rough form of description relies on our intuition and our 

knowledge of their real-world counterparts. Thus, for example, when the term hierarchical 

organisation is used, most of us guess its meaning by association to the structures commonly 

found in businesses. Although this form of description is adequate for communicating ideas 

between humans, for other purposes a more exact and complete characterisation is needed, as 

is the case when attempting to select the most appropriate structure for a multi-agent system, 

or when checking the observance of the structure at run-time. In this section we tackle this 

problem by first stating the features that such a characterisation must possess, then reviewing 

current characterisations, and finally providing a model for organisational structures from which 

a characterisation is obtained, as well as a language for their specification. 

As indicated above, when organisational structures are represented by means of figures or, more 

specifically, graphs, roles are depicted as nodes and their interaction as arcs joining them. Al

though this provides a good indication of the overall structure, it has the following drawbacks. 

First, the figures can become burdensome in the case of big organisations. Second, in these 

figures the control regime of the organisation is often omitted because labelling each arc with 

its corresponding control relationships makes the graph illegible. Finally, and most important, 

figures are useless for tasks in which some form of computational manipulation of the struc

ture is needed; for example, checking that the structure is not violated at run-time or creating 

a catalogue of structural designs. These limitations can be overcome by using a non-graphical 

model to describe the structure. In particular, we want to be able to: provide a definition for the 

term control regime; describe organisational structures in an unambiguous way, including their 

topology and control regimes; perform basic manipulation on the structures such as their storage 

and retrieval in memory and files; and check at run-time if the structure of the organisation is 

being respected. For this to happen, such a representation must exhibit the following features. 

II Since an organisational structure comprises topology and control regime, the represen

tation must be expressive enough to specify the topology of the structure as well as the 

authority relationships between the roles. 

II The representation should be simple and easy to use by practitioners because we aim to 

provide development tools for non-agent specialists. 

III The representation must allow the identification not only of primitive elements of the 

structure, which are roles and authority relations, but also of subsets of primitive elements. 

For example, we need to represent the roles that satisfy certain conditions, as in the apex 

has a relationship of authority over all the other roles of the structure. 
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Communication 
paths 

Roles 

FIGURE 3.7: Topology representation 

• Since the topology of an organisation resembles a graph fonned of nodes and arcs, the 

representation should allow the expression of properties of an organisational structure by 

means of referencing nodes and arcs, and vice versa. In other words, the representation 

must allow to mix analytical and graph-based concepts, as in the expression: 

each controller maintains a peer to peer relationship with the controllers with 

which it communicates. 

3.4.2 Characterisation and informal analysis 

Organisational structures encompass two aspects: topology and control regime ([45]). The 

topology of an organisation is fonned of all the communication paths between the member roles. 

Conversely, the control regime refers to the control relationships between the member roles. 

Control relationships denote the fonn in which one role influences the behaviour of the other. 

Common control relationships are peer-to-peer, in which no role is subordinated to another, and 

master-slave, where the existence of one role is justified only in terms of supporting another 

role. 

3.4.3 A model for organisational structures 

Below, we propose a non-graphical representation of organisational structures. First, we provide 

a characterisation of organisational structures. Then, we outline the language in which the char

acterisation can be expressed. Finally, we include an example of the representation of a simple 

structure. 
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3.4.3.1 Characterisation of organisational structures 

The characterisation of organisational structures contains the description of its elements and the 

way in which they are related. We define an organisational structure as a 5-tuple of the form 

(P, C, R, C, A), whose entries are the sets described below (a summary of the notation used can 

be found in Table 3.8). The first three entries refer to the analytical description of the structure, 

while the last two entries link the analytical characterisation to a graph of nodes and arcs. 

1. P, the participants set, consists of the list of roles in the organisation. 

2. C, the control relationships set, lists the control relationships used in the structure. The 

members of this set can be defined as needed for a specific application or can be taken 

from a general set of predefined relationships (for a list of predefined relationships see 

Table 3.9). 

3. R, the control regime model, is a relation between two members of the participants set 

and a member of the control relationships set R <::: P x P xC. An element of the relation 

means that the first role has the specified control relationship with the second role. R = 

{(r, s, c) I r, s E P /\ c E C/\ there is a control relationship of type c between rand s} 

4. C, the labels set, is a list of strings that name the nodes of the graph in a unique form; for 

example: 

{head, lefUeaf, rightJeaf} 

or 

{stage( i) I i = L3} 

Graphically, each label is put near and outside the corresponding node. 

5. A, the association model, is a relation from the participants set into the labels set (A <::: 

p x C). Thus, its members are ordered pairs consisting of a role and a label, which means 

that the role is associated to the node identified by the label: A = {(r, l) IrE P /\ I E C}. 

Examples of association models include the following: 

{(manager, root), (buyer,lefUeaJ), (seller, righUeaf)} , 

which means that the roles manager, buyer, and seller occupy the nodes root, lefUeaf 

and righUeaf, respectively; and 

{(controller(i), stage(i)) Ii = L3} 

meaning that each controller occupies its corresponding stage node in the graph. Graphi·· 

cally, the name of the role is placed inside the corresponding node. 
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Relationship 
authority 
peer 
dependency 

Entry Denotes 
p Participants set 
C Control relationships set 
R Control regime model 
L Labels set 
A Association model 

TABLE 3.8: Summary of notation 

Description 
permanent authority of one role over the other 
no permanent authority 
dependence on information provided by the other role 

TABLE 3.9: Pre-defined control relationships 

Control relationship 1 

Control relationship 2 

FIGURE 3.8: Nodes linked by more than one arc 

Program 
Committee 

master-slave 
Caller 

FIGURE 3.9: Using arrows to denote control relationships 

Additionally, an element of the control regime R (whose meaning is that the first role has the 

specified control relationship with the second role) can be represented by a labelled directed arc 

from one role to another in which the label corresponds to the control relationship. 

Note that any two roles can be linked by zero, one or two relationships. Accordingly, the corre

sponding nodes can be linked by one or two arcs (as in Figure 3.8, in which the nodes are linked 

by two arcs) or not linked at all. On the other hand, nodes are commonly occupied by only one 

role since there is no clear benefit in having more than one role in a node. 
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In general, the control relationships are not symmetric, so the order of the roles is important; 

for example, master_slave(a, b) is different from master_slave(b, a). For this reason, arcs 

with arrows are used in the graph, as in Figure 3.9, where the arrow indicates that the Program

Committee is the master and the Caller is the slave. If the control relationship is symmetric, the 

arrows of the arc may be omitted. 

3.4.3.2 Characterisation of control relationships 

Although the number of different control relationships is unlimited, a small subset of control 

relationships may be enough to represent the most common types of interaction. In the following 

we present just such a small subset of these relationships. We choose these relationships because 

they are simple to understand and together cover most situations. 

It authority(r, s) holds if role r has some type of control over role s. The control may be a 

expressed as a master-slave relationship, task allocation (such as work partition or work 

specialisation), order, or any other relationship denoting authority (that one role agrees to 

execute the orders given by the other). 

It peer( r, s) holds if no role has authority over the other, if the authority position is alter

nated, or if their authority is based on requests (with no obligation to commit) or on a trust 

relationship. 

It dependency (r, s) holds if role s needs information provided by role r to accomplish its 

responsibilities. 

These relationships are summarised in Table 3.9. They are neither exclusive nor exhaustive, and 

this default set of relationships can be replaced with a more appropriate one for each specific 

application. Regarding the problem of how to identify the control relationship that best describes 

the interaction between two roles, we envisage two approaches based on the strong ties between 

protocols and control relationships (as described below). First, if the protocols between the 

nodes have been defined, they can be used to determine the control relationship. For example, if 

the messages exchanged between two nodes refer to requesting and providing information, their 

control relationship can be described as dependency. The details of this approach depend on the 

specific implementation. For instance, assuming a FIPA-compliant implementation, the use of 

the FIPA-query protocol would suggest a dependency relationship, since the main objective of 

the protocol is to obtain information, presumably to complete a task. On the other hand, the use 

of the FIPA -request protocol would suggest an authority relationship in which one role requests 

the other role to carry out an activity. 

Second, a different approach is used when the control relationships are defined before the pro

tocols, for example when reusing a previous organisational structure. In this case, the control 

relationships guide the design of the protocols. 
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Whichever the approach, protocols and control relationships must be consistent, and not in con

tradiction. For example, if the control relationship between two roles has been defined as au

thority, then those protocols in which the subordinated role orders the main role to perform an 

action are not allowed. A procedure to check such consistencies at design time can be based 

on an infonnation repository containing the control relationships, the type of messages allowed 

for each of them, and in some cases the content of the messages. Although such a procedure is 

straightforward in itself, determining the content of the repository requires careful inspection of 

the meaning of the messages and their relation to the control relationships. Although a detailed 

presentation of such a procedure is not included here because it depends on the particular set of 

messages employed, a simple example is presented below. 

Consider an application in which FlPA-type communicative acts [35] are used to express the 

messages between the roles. In an authority relationship between two given roles, some com

manding communicative acts might not be used unrestrictedly in messages from the subordi

nated role to the other role, since this would violate the nature of the authOlity relationship. 

For instance, the refuse act (which denotes the action of refusing to perfonn a given action, 

and explaining the reason for the refusal) would be allowed only for valid reasons, such as un

availability of a service. Other communicative acts that might be totally or partially disallowed 

are request (request to perform some action), propagate (send the received propagate message to 

other agents), reject proposal (rejecting a proposal to perform some action during a negotiation), 

and subscribe (requesting a persistent intention to notify whenever a selected object changes). 

3.4.3.3 Language for expressing organisational structures 

It can be observed that in an organisational structure (P, C, n, £, A), the sets £ and A are signif

icant only in a graphical sense, but the core of the structure is contained in the P, C and n sets. 

Furthermore, the elements of P and C, (participants and control relationships, respectively) can 

be obtained from the elements of n, the control regime model. This is why we define the control 

regime model as the language to express an organisational structure. In other words, an organ

isational structure is defined by its control regime modeL Just like any set, the control regime 

model is expressed by listing its elements (in the form controlrelationship(rolel, role2)); for 

example, 

{authority(manager, buyer), authority( manager, seller)} , 

or, equivalently, by providing a description of their elements, as in: 

{peer(controller(i) , controller(i + l))li = 1..3} 
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Stage(1) Stage(2) Stage(3) 

FIGURE 3.10: Graphical representation of a pipeline structure 

Model Instance 

Organisational structure {peer(Controller(i) , Controller(i + 1)) Ii = 1..2} 
Participants set {Controller(l) , Controller(2), Controller(3)} 
Control relationships set {peer} 
Labels set {"Stage(l)", "Stage(2)", "Stage(3)"} 
Association model ((Controller(i), "Stage(i)") Ii = 1..3} 

TABLE 3.10: Fom1al definition of a pipeline 

3.4.3.4 Example 

In this section a pipeline structure is used to exemplify the model for organisational structures 

presented above. In the first part, the pipeline is intuitively introduced, in the second part a 

graphical representation is shown and, finally, in the third part, its definition and characterisation 

are presented. 

1. A pipeline structure resembles a manufacturing pipeline for producing items or goods. 

Every raw item enters the pipeline and, at the end, the item, fully processed, is obtained. 

Such processing is divided into several independent stages, arranged in sequence, with 

each stage enhancing the item in a particular way. We model the functionality at stage 

i by means of a role, namely controlleri. In addition, the independence of the stages is 

modelled by a control relationship of type peer. 

2. The graphical representation of such a pipeline (of three stages) is depicted in Figure 3.10, 

which shows the three nodes in circles with their labels below, the roles names inside the 

circles, and the two control relationships linking the nodes. 

3. The expression that defines the organisational structure of this pipeline of three elements 

is presented in Table 3.10, together with its corresponding set of participants, and set of 

control relationships. The table also presents a possible labels set, and the corresponding 

association model, to link the the structure with the graphical representation. 
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3.4.3.5 Conclusions 

In summary, we have presented a model for the characterisation of organisational structures that 

includes a language to describe them. This form of representing structures is helpful for automa

tising tasks such as storing and retrieving structures, deciding if two structures are equivalent, 

and monitoring the observance of the structure at run time. Also, a graphical counterpart of a 

structure can be easily obtained from this representation, which is valuable for use by main

stream software developers, for whom visualisation is an important tool. 

3.5 Organisational Patterns 

3.5.1 Introduction 

The use of organisational patterns [56] is highlighted in the methodological process of Sec

tion 3.2 as a key part in the design of a multi-agent system. There, it is observed that before 

selecting a pattern the developer has already identified the main roles and interactions needed to 

accomplish the system goals, and has also identified the organisational rules. At this stage, the 

developer uses a library of patterns to decide the best structure for the system. The library pro

vides the following benefits to the developer, all oriented towards facilitating the development 

process . 

.. Patterns help to reduce ambiguity. While the developer may sketch the organisational 

structure using just an informal diagram, patterns are specified according to a more struc

tured and unambiguous description . 

.. Patterns help to isolate the application-independent features of an organisation from those 

applicable only in specific situations. This promotes re-usability and increases develop

ment speed. 

.. Patterns help to avoid platform or technology dependence at this stage of the design pro

cess. Nevertheless, they provide general guidelines on matters related to implementation. 

.. Patterns include a description of the situations in which their use is recommended, so that 

matching a specific application with one of these situations, a pattern appropriate for that 

application can be selected. 

.. Patterns present a more detailed description of the structure than one that developers 

would normally achieve at this stage of the design; for example, the list of organisational 

rules corresponding to the management of the organisation is not normally included at 

this point, but should appear in a pattern. 
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After selecting the right pattern, the developer must proceed to complete the role and interaction 

models by adapting the pattern to the particular situation, resulting in the final role and interac

tion models. This may involve the creation of new roles and interactions, as well as detailing 

those identified previously. 

It should be noted that the main question when selecting one of these patterns is what organisa

tional structure best models the characteristics of the system-to-be. As pointed out in [J 33], such 

a structure must not only appropriately describe the characteristics of the system but must also 

take into account issues like efficiency and flexibility. According to Fox [45], when designing a 

distributed system, one must consider two issues: task decomposition and selection of a control 

regime. In Gaia, a preliminary task decomposition is undertaken in the analysis phase, but the 

decision of the definitive topology is postponed until design. Thus, the selected pattern must 

provide the topology and the control regime for the organisation. 

A first attempt to create a set of patterns may be to take all possible combinations of known 

topologies and control regimes. This, of course, would lead to an unman~geable number of 

patterns. Another approach is to consider only those combinations that are potentially useful, 

either based on experience, or by analogy to other areas in which organisational structures have 

been applied. In our work, we assume that a small number of such organisational patterns 

would suit a broad range of applications. In addition, each pattern in the set represents afamily 

of organisational structures, rather than a specific instance. 

3.5.2 Pattern layout 

The form in which patterns are described, which we will refer to as their layout, is almost as 

important as patterns themselves. A good form of description makes patterns easy to understand 

and use. On the other hand, a bad form of description defeals the main purpose of pattel11s, 

which is to facilitate the development process; it may lead to misinterpretation, a waste of time, 

and eventnally discourage the use of patterns. 

3.5.2.1 Pattern requirements 

Since no layout for organisational patterns exists to date, we must develop one suitable for our 

purposes. Before presenting our layout for organisational patterns, we consider the requirements 

of such a layout. First, basically a pattern is a solution, so a pattern layout is a form of expressing 

a solution. In our context, such a solution expresses how a particular organisational structure can 

be used to model the operation of a multi-agent system. To model the operation of this system, 

two aspects must be covered, the static structure and the dynamics, or the way the components 

interact at run-time to achieve meaningful behaviour. Second, since a self-contained layout is 

desirable, in addition to describing a solution a layout must include contextual information such 

as the problem being solved, exemplar situations, advantages and disadvantages of its use, and 
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so on. Nevertheless, several of these contextual sections can be identical for some - or all 

- of the patterns. Third, specifically for our purposes, the layout must facilitate the use of 

the patterns as part of the methodological process. Finally, the layout must include a unique 

name for identification purposes, and a description summarising the main characteristics of the 

pattern. 

Pattern descriptions are divided into sections. We determine the sections and their content in our 

layout based on two notions. The first is the Context-Problem-Solution metaphor cited in [11], 

and the second is the form in which design patterns [48] - particularly agent patterns [26, 84] 

- are described. The former, the Context-Problem-Solution metaphor, states that the essence 

of a pattern relies on the relationship between the problem, the situations in which it commonly 

occurs, and its solution. In other words, every pattern description must include these three 

aspects arranged in such a way that it clearly shows the problem in question, the context in 

which the problem exists and the solution provided. 

Regarding the second notion on which we base our layout, the way other agent patterns are 

being described, we observe that in [26] the following sections are suggested as mandatory in 

any layout: name, context, problem,forces and solution. Apart from these, rationale and known 

uses are also included specifically for the description of coordination patterns. Similarly, the 

layout employed in [84] consists of one part common to all the patterns and another part specific 

to each of the categories considered. The common part includes: name, alias, problem,forces, 

entities, dynamics, dependencies, example, implementation, known uses, consequences, and see 

also (the meaning ofthese sections is given below). We can observe, in these two cases, that the 

layout of agent patterns is divided into two parts: a general part, that deals with the identification 

of the patterns, the statement of the problem they solve, the context in which they are used, and 

general aspects of the solution they offer; and a specific part, that deals with those aspects of the 

solution that are applicable only to that particular type of patterns. 

However, there is no common agreement about what constitutes a good pattern description. For 

instance, using a unique layout to describe patterns of different types has both disadvantages 

and advantages. On the one hand, doing this could result in a superficial description that ignores 

essential details that make a pattern distinct. On the other hand, different descriptions would 

make it difficult to compare patterns when selecting one for a specific application. In the agent

oriented approach it is even less clear what a good pattern description is, mainly because of the 

lack of consensus over agent terms and the diversity of agent-oriented methodologies. 

3.5.2.2 An organisational pattern layout 

Thus, based on the Context-Problem-Solution metaphor and on how similar agent patterns are 

described, our layout is divided into two parts. It includes a general part, similar to those found 

in other pattern descriptions, and a particular part, which is specific to organisational patterns. 

As discussed above, this particular part is formed of specific issues concerning the solution of 
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Section Description 
Name a unique identifier for the pattern 
Alias other names to denote the pattern 

Problem the problem to which the pattern provides a solution 
Context the situation that surrounds the problem 
Forces factors that determine whether to apply the pattern 

Solution a textual description of the solution provided 
Restrictions conditions for the pattern to be applicable 

Consequences advantages and disadvantages of using the pattern 
Implementation brief guidelines toward implementing the pattern 

Based on traditional patterns on which the pattern is based 
Roles the roles in the organisation 

Environmental entities the resources in the system employed by the roles 
Structure the structure of the organisation 

Rules the organisational rules of the organisation 
Dynamics the way the organisation operate at run-time 

TABLE 3.11: Summary of the layout for describing organisational pattems 

the problem, namely the static structure and the dynamics of an organisation and, consequently, 

it consists of these sections: roles, structure, rules and dynamics. 

The sections of the pattern layout are presented below, and a summary of the layout is given in 

Table 3.11. 

• Name: short descriptive name for the pattern. 

• Alias: other names by which the pattern may be known. 

• Context: a description of the situation in which the pattern is applicable. Note that the 

context is a general description, and alone is not sufficient to determine the applicability 

of the pattern. To this end, the context is complemented withforces (see below). 

• Problem: the problem solved by the pattern. It basically takes the form of a search for an 

appropriate organisational structure to model an agent-based system. 

• Forces: description of factors that influence the decision as to when to apply the pattern in 

a context. Forces push or pull the problem towards different solutions or indicate possible 

trade-offs [26]. We identify the following forces in organisational patterns. 

Coordination efficiency: the structure of an organisation strongly influences its effi

ciency for coordination tasks in terms of information shared and number of messages 

interchanged. 

Coupling: the degree of interdependence between the roles. Although coupling 

is inherent in all structures, it varies in degree. A structure with high coupling is 

difficult to extend. 
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Subordination relationships: some structures impose specific control regimes on 

their roles, which may not be appropriate for some situations. 

Topology complexity: simple topologies exhibit low coordination overhead but re

quire powerful roles in terms of resources and task processing. 

• Solution: a textual description of the solution. 

• Restrictions: scope of the pattern. 

• Consequences: side-effects of using the pattern, including advantages and disadvantages. 

• Implementation: brief advice on how to implement the pattern. 

• Roles: the participating roles and their characteristics. The roles in the pattern are de

scribed by means of role schemata (see Section 3.2). 

• Structure: the topology and the control regime of the organisation. We use the model 

presented in Section 3.4.3 to describe this section of the pattern. 

• Environmental entities: the resources or information that the roles use while carrying out 

their tasks, but are not an integral part of them. The roles interact with the environmental 

entities through sensing (reading) and affecting (modifying) them. 

• Dynamics: the dynamics encompasses the way in which the roles interact to solve the 

problem. The interactions between the roles are described using protocol definitions (see 

Section 3.2) and AUML-style sequence diagrams (see Section 2.5.3.1). It is usually the 

case that the dynamics can be decomposed into scenarios, each representing a meaningful 

behaviour with distinct results. For example, one scenario can deal with the normal, or 

expected, form of operation, while some others may be related to singular situations, for 

instance exception management. 

• Rules: constraints to be respected in the organisation independent of the application do

main. The language used to express the rules is presented in Section 3.3.4. 

This layout is used in the following to describe three instances of organisational patterns. Note 

that, since these patterns solve essentially the same problem and have the same context, the 

content of some sections is the same for all. 

3.6 Catalogue of patterns 

3.6.1 Introduction 

This section presents a catalogue of organisational patterns that consist of three representative 

cases, covering a range of different situations. The pipeline is simple in concept and structure, 

while the hierarchy is flexible and resembles real organisations, and the marketplace exemplifies 

open organisations. 
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3.6.2 The pipeline pattern 

According to the number of different roles and communication paths between them, the pipeline 

is one of the simplest types of organisation. A pipeline is a structure that processes (produces, 

transforms or augments) items in a series of steps, or stages. The stages are arranged in sequence, 

so that the process of a given item initiates at the first stage, continues at the intermediate stages 

and is completed at the last stage. For any item, each stage depends on the finalisation of the 

process of the previous stage to carry out its own process. However, two or more stages can 

process (different items) at the same time. In this pattern, we call the entities that perform the 

process in each stage filters, and the maximum rate at which a filter can process items flow rate. 

The entities that link two stages are called pipes, and although their main function is to serve as 

a communication link between the stages, they can also perform more complex tasks, such as 

compensate for any difference in the flow rate of the filters, and notify the filter that new data is 

available. In a pipeline, the coordination consists of ensuring that the flow rates of all the stages 

are similar, so that no bottlenecks occur. In addition, to alleviate the occurrence of bottlenecks, 

buffers can be used. 

The organisational pattern corresponding to a pipeline structure is as follows. 

• Name: Pipeline. 

• Alias: Flat. 

• Context. According to the Gaia process, before selecting a pattern the developer has 

already completed the roles and the interactions models, and has also compiled the or

ganisational rules and defined the organisational structure (topology and control regime). 

After selecting the appropriate pattern, the developer must be ready to complete the final 

roles and interactions models. 

• Problem. The problem addressed by this pattern is finding an organisational structure 

that best describes the system under development. The analysis of the system has already 

produced the preliminary role and interaction models, and what is missing is to define the 

topology and the control regime of the organisational structure. In addition, the following 

characteristics of the system have been identified. First, the problem consists of (or can be 

modelled as) a manufacturing process in which the overall goals are achieved by a strong 

collaboration among the participating roles. Second, such a collaboration can be seen as a 

processing line in which each role performs a transformation on some given information 

and delivers it to the next member of the line . 

• Forces: 

Coordination efficiency: low. 

Coupling: low. 

Subordination relationships: none. 
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- Topology complexity: very simple. 

II Solution. The pipeline has been used extensively in mainstream software engineering to 

design applications in which the overall processing can be decomposed into independent 

sequential tasks. The tasks are performed by filters, which are the processing components, 

and each filter is connected to the next by means of a pipe, which transfers data from the 

filter to its successor. Usually, the data are uniform and the tasks apply some sort of trans

formation on them, such as addition, modification or reduction of information. Although 

several descriptions exist for this style [11, 109, 63], the pattern presented here is suitable 

for the agent paradigm and has been adapted to be useful within the methodological con

text of Gaia. In particular, the components have been modelled as roles and agents, and 

their interactions as organisations. 

II Restrictions. First, the overall task must be decomposable into independent sequential 

tasks. Second, the flow of information is restricted to be linear, sequential and only in one 

direction (no loops or feedback). Third, the processing speed is determined by the slowest 

filter, although the use of buffers in pipelines can alleviate this restriction to some extent. 

Finally, to avoid bandwidth and storage problems, the data transferred from stage to stage 

must be small. 

lit Consequences. The mechanism of coordination provided is rather simple and is not suit

able for error management. This structure is flexible, since filters can be replaced or 

bypassed and new filters can be easily added. 

II Implementation. The overall task of the system has to be decomposed into independent 

sequential tasks, with each assigned to one filter. The pipelines may be immersed in the 

communication layer, in which case they will not be directly associated to any agent of 

the system. 

II Roles. Filters are obvious candidates to become roles. In addition, pipes are also mod

elled as roles since this highlights their existence within the structure. (The decision to 

join a filter and a pipe in a single agent can be postponed to the detailed design phase. 

Alternatively, pipes could be modelled as resources.) However, it should be noted that 

filters are active entities while pipes are passive ones. Filters are allowed to be sub

organisations themselves, but pipes are assumed to be primitive entities. For simplicity of 

the pattern, the roles of data source (the component which supplies data to the first pipe) 

and the data sink (the component to which the data to the last pipe is supplied) are not 

included. Figures 3.11 and 3.12 show templates of role schemata for the filter and pipe 

roles respectively. 

II Structure. Let us denote with N the number of filters in the structure and with Filteri 

and Pipej the filters and pipes (1 SiS Nand 1 S j S N + 1) respectively (note that 

the number of pipes is N + 1). (Figure 3.13 depicts a pipeline for the case N = 3.) The 
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Role Schema: Filter, 

Description: Performs the process 
corresponding to stage i on the 
input data 

Protocols and 
Activities: ProcessData;o Getlnput, 

SupplyOutpui, Sense Flows, 
ChangeFlow 

Permissions: 

changes Data/low, 
agreedFlow 

reads flo~ 

Responsibilities: 

Liveness: 

Filter, = (Process I AdjustFlow)W 

Process = 
Getinput.ProcessData.SupplyOutput 

AdjustFlow = Sense Flows I ChangeFlow 
Safety: 

·true 

FIGURE 3,11: The Filter role 

Role Schema: Pipe, 

Description: 
Transfers data (from Filter,_,) to 
Filter"using a buffer 

Protocols and 
Activities: Fetch, Store, CheckOverflow, 

Getlnput, SupplyOutput 

Pennissions: 
reads Data 

Responsibilities: 

Llveness: 

Pipe, = (Transfer) W 

Transfer=(Getlnput.Fetch) : 

(SupplyOutput.Store) 

Safety: 

·BufferOverflow = false 

FIGURE 3_12: The Pipe role 
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0-0--
Filter] Filter2 Filter3 

FIG URE 3.13: Topology of a pipeline structure 

I agreedFlow I 

FIGURE 3.14: The environmental entities of the pipeline structure 

structure is described by the following control regime (see Section 3.4.3.3): 

{peer(Pipei, Filteri) Ii = 1 ... N} U {peer(Filteri' Pipei+l) Ii = 1 .. N} 

(Each pipe interacts with the filter to its right and each filter interacts with the pipe to its 

right.) 

• Environmental entities. We denote by floWi the flow rate at stage i, and by agreedFlow 

the operation flow of the overall pipeline. These are real numbers and their rights of access 

are shown in Table 3.12. For example, the entity corresponding to the flow of stage i, 

floWi, can be modified only by the role Filteri, but can be sensed by all the other filters. 

Also, we denote by Data the items that the pipeline precesses. In Figure 3.14, these 
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Entity Type Description Modified by Sensed by 
flowi real number flow rate at stage i Filteri Filterj, j i i 
agreedFlow real number pipeline's operation flow 'l/j Filterj 'l/j Filterj 
Data application the item processed 'l/j Filterj 'l/j Pipej 

specific 

TAB LE 3.12: Environmental entities of a pipeline and their rights of access 

Getlnput 

Filter; I Pipe; 

The filter obtains the non e 
next data to process 

Data 

FIGURE 3.15: The Getlnput protocol 

SupplyOutput 

Filter; I Pipe; 

The filter supplies the Oat a 
processed data 

ack 

FIGURE 3.16: The SupplyOutputprotocol 

environmental entities have been depicted with boxes, and the rights of access with lines 

of one or two arrowheads, for sensing and modifying, respectively. The figure highlights 

the fact that these entities are not part of the roles by enclosing them in a dotted box. 

It Dynamics. There are two main scenarios in the dynamics of a pipeline structure: item 

processing and flow adjustment. The former refers to the normal operation of the struc

ture in which items are processed, while the latter deals with the way the agreed flow of 

operation is adjusted. 

The first scenario, item processing, relies mainly on the interaction of the roles in the 

structure. As shown in the filter and pipe schemata (Figures 3.1 J and 3.12), the protocols 

involved in the operation of the organisation are Get! nput and Suppl yOutput, described 

in Figure 3.15 and Figure 3.16, respectively. The typical operation of the structure at stage 

i is shown in Figure 3.17. First, the filter asks the pipe to its left for the next data using 

the Get! nput protocol (the filter confirms the correct receipt of the data); next, the filter 
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GetInput 

Pipei+1 

I processData 
I--...J 

SupplyOutput 

FIGURE 3.17: Dynamics of the pipeline structure 

process the data; and finally, the filter asks the pipe to its right to store the processed data 

using the SupplyOutput protocol. 

The second scenario, flow adjustment, relies on the capabilities of the roles to sense and 

affect the environment. In this case, it is assumed that the filters are continually sensing 

the environmental entities corresponding to the other filters' flows. When a filter wants to 

change the overall rate of flow (agreedFlow), it first modifies the environmental variable 

corresponding to its own flow of operation (jlOWi, for the i corresponding to the stage). 

The new value of floWi can be less than the previous value (for example, if the filter is 

having problems with maintaining the current rate of operation), or greater (for example, 

when the filter has recovered from a previous performance downgrade). Later, when each 

filter senses all the filters' flows, the agreed flow is calculated as the minimum of all the 

filters' flows. This agreed flow is the flow at which they agree to operate, whereas a filter's 

flow is regarded as the flow at which the filter wishes to operate. 

It Rules. The following are the organisational rules that control the operation of this struc

ture. 

All the roles are played by at least one agent: 

vi( 3a( plays (a, Filter i))) 

vj( 3a( plays( a, Pipej))) 

All the roles are played by at most one agent: 

vi( 

vj( 
plays( a, Filteri) /\ plays(b, Filteri) =? a = b) 

plays(a,Pipej) /\plays(b, Pipej) =? a = b) 
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Head 

Leaf 1 Leaf 2 Leaf 3 

FIGURE 3.18: The simple hierarchy structure 

The rate of process is the same for all the filters: 

Vi E {I, ... ,N}( Filteri.GetFlowO = agreedFlow) 

Every filter delivers the data immediately after processing it: 

Vi E {I, ... , N}(Vd : Data( terminated( Filteri .ProcessData( d)) =? 

Oinitiated( Suppl yOutput( d)))) 

Every filter fetches the next data immediately after delivering the previous data: 

Vd :Data( 3d' :Data 

(terminated(SupplyOutput( d)) =? Oinitiated( Get! nput(d')))) 

3.6.3 The Simple hierarchy pattern 

• Name: simple hierarchy. 

• Alias: two-levels hierarchy. 

• Context. According to the methodological process, before selecting a pattern the de

veloper has already constructed the preliminary roles and the interactions models, and 

has also compiled the organisational rules. After selecting the appropriate pattern, the 
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developer must be able to complete the final roles and interactions models using the cor

responding organisational structure. 

• Problem. The problem in question is to find the organisational structure that best describes 

the system under development. In Gaia, the processes of the organisation are provided by 

the roles model, so what is missing is to define the topology and the control regime of the 

organisation. To this end, some characteristics of the problem have been identified. First, 

the overall goal can be naturally decomposed into a reasonable number of independent 

tasks arranged hierarchically. Second, although the tasks are independent, their execution 

require non-trivial coordination. Lastly, scalability is desired. 

• Forces: 

- Coordination efficiency: medium. 

Coupling: medium. 

Subordination relationships: authority. 

- Topology complexity: simple. 

• Solution. Hierarchies are one of the most used types of organisational structures [45], 

arguably because they are intuitive, simple in concept and relatively easy to implement. A 

simple hierarchy has the form of a two-level tree, as shown in Figure 3.18 (a simple hier

archy of three elements at the lower level). The top level contains a single element whose 

responsibility is to coordinate the activities of the lower-level elements or to consolidate 

the data provided by them. Usually, such coordination consists of the apex sending control 

orders to the lower-level elements and receiving from them the data they produced. For 

this to happen, there must exist an authority relationship from the apex to the lower-level 

elements (see Section 3.4.3.1). On the other hand, the consolidation of data performed by 

the apex usually involves some form of analysis, summarising, filtering or approximation. 

The consolidated information can then used by the apex for decision making. 

In a strict simple hierarchy, the only communication paths allowed are between the apex 

and the lower level elements, but in some applications, communication between the ele

ments of the same level can be allowed to increase efficiency and robustness. 

Hierarchies are more useful in solving problems that can be decomposed into several 

independent tasks, in particular those that tend to grow in the number of involved tasks. 

• Restrictions. First, the overall task must be decomposable into independent subtasks. 

Second, each one of these subtasks must not exceed the processing capabilities of the 

corresponding element, and the coordination and information consolidation tasks must 

not exceed the capabilities of the apex element. Third, direct communication between 

elements of the lower-level is usually not allowed. 

• Consequences. This structure presents the following disadvantages: in case of frequent 

communication, bottlenecks may arise in the apex. Similarly, a failure in the operation of 
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Role Schema: Head 

Description: 
Coordinates the activities of the 
elements at the lower level 

Protocols and Consolidate, DataAvaiiable, Activities: 
NextCommand, ChangeRate 

Permissions: 

changes agreedRate 

Responsibilities; 

Liveness: 

Head =(ReceiveData : NextCommand)W 

ReceiveData = wait(DataAvailable I 
ChangeRate) 

Safety: 

• true 

FIGURE 3,19: The Head role 

the apex can have serious consequences in the operation of the whole structure, On the 

other hand, simple hierarchies present the following advantages: hierarchies have a good 

level of scalability in terms of the number of elements as well as the number of levels. 

Compared to the pipeline structure, a simple hierarchy improves efficiency and increases 

parallelism. 

• Implementation. The most critical role of the structure is the apex, since it centralises the 

communication, performs the coordination tasks, and consolidates the information. For 

these reasons, it is important that the agent playing the role of the head is implemented 

with enough communication bandwidth, memory capacity and processing speed. More

over, mechanisms of upgrade and backup are needed to recover from a possible failure in 

this role. 

• Roles. There are essentially only two roles in a simple hierarchy: the role situated at 

the apex, which we call the head, and the role played by the elements at the lower-level, 

which we will call the leaf Figure 3.19 shows the description of the head role and, as can 

be seen, the only activity of the head is to consolidate the received data. The head uses the 

protocols DataAvailable, NextCommand and ChangeRate to coordinate the behaviour of 

the leaf role, which is described in the schema of Figure 3.20. The figure shows that the 

behaviour of the leaf role is to wait for new commands, produce the corresponding data 

and inform of its availability. 

• Structure. The following expression defines a simple hierarchy of N leaves. 
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Role Schema: Leaf, 

Description: 
Performs the data 
transformation corresponding to 
stage I 

Protocols and Process Data" NextCommand, Activities: 
DataAvaiiable, changeRate 

Permissions: 

changes Rate, 

changes supplied Data 

Responsibilities: 

Liveness: 

Leaf, = 
(NextCommand.ProcessData",DataAval 
lable: changeRate)W 

Safety: 

·true 

FIGURE 3.20: The Leaf role 

{authority(Head,Leaf(i)) Ii = 1 ... N} 

Thus, the participants set is: 

{Head} U {Leaf(i) Ii = l..N}; 

and the control relationships set is: 

{ authority} . 

.. Environmental entities. We denote by Ratei the operation rate of Leaf( i) and with Data 

the information processed by the hierarchy. The former are real numbers, while the latter 

is a registry whose composition depends on the application. 

.. Dynamics. The main scenario of the operation of the simple hierarchy structure is de

picted in Figure 3.21, which shows that the head requests a leaf to perform a specific task. 

As a result of this, the leaf produces data and notifies the head about its availability. 

.. Rules. The organisational rules governing this structure are the following. 

All the roles are played by at least one agent: 

3a( pZays( a, Head)) 
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Head Lea~ 

N extCommand 

DataA vailable 

consolidate 

FIGURE 3.21: Main dynamics of the simple hierarchy structure 

\/j( :Ja( plays( a, Leaf)))) 

All the roles are played by at most one agent: 

plays(a,Head) I\plays(b, Head) =? a = b 

\/j( plays(a, LeafJ) I\plays(b, Leaf)) =? a = b) 

3.6.4 The Marketplace pattern 

One way to cope with task complexity is by subdivision, which consists in dividing the task into 

subtasks and then distributing them among several roles, or several agents playing the same role. 

This is useful only to some extent because, in general, the more subdivisions, the more complex 

coordinating the roles is. An approach to cope with task complexity without incrementing coor

dination complexity is by means of a market system [45] in which the task is accomplished by 

an independent entity that receives compensation for it. Normally, several entities are willing to 

perform the task, so a mechanism of selection is used. In this way, coordination is reduced just 

to the agreement of a contract. 

• Name: Marketplace. 

• Alias: Market or price system. 
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• Context. According to the Gaia process, before selecting a pattern the developer has 

already completed the roles and the interactions models, and has also compiled the or

ganisational rules and defined the organisational structure (topology and control regime). 

After selecting the appropriate pattern, the developer must be ready to complete the final 

roles and interactions models. 

• Problem. The problem in question is to find the organisational structure that best describes 

the system under development. In Gaia, the processes of the organisation are provided by 

the roles model, so what is missing is to define the topology and the control regime of 

the organisation. Additionally, the following characteristics of the problem have been 

identified: there is a strong belief that several tasks, or the main task, can be accomplished 

by independent agents following a metaphor of buying and selling products; it is likely 

that there will be a good number of agents willing to accomplish the task if they are 

appropriately paid; and it is not worthwhile to to accomplish the task by itself . 

• Forces: 

- Coordination efficiency: high. 

- Coupling: low. 

Subordination relationships: peer. 

- Topology complexity: simple. 

• Solution. A possible solution to the problem is by using a marketplace organisational 

structure, which is an organisation that supports the sale of products (or services) by pro

viding facilities for sellers and buyers. The set of facilities may vary in each marketplace, 

but common facilities for buyers include the discovery of purchase opportunities, mecha

nisms to select the best selling option and payment channels. For sellers, the marketplace 

usually offers marketing presence and payment channels. An additional benefit of mar

ketplaces is that they provide buyer and seller trust in that the information provided there 

is reliable, and that the critical processes, such as payments, are confidential and secure. 

In order to provide these facilities, there exist one or several special agents, orfacilitators, 

in the marketplace whose job is to perform common activities, thus freeing sellers and 

buyers from the burden of implementing them. The most important of these facilitators 

- which we have called the Marketer - communicates directly with sellers and buyers, 

matching a buyer with a seller, or acting as a communication channel between them. 

The Marketer frees the buyers from the burden of maintaining a directory of all possible 

sellers and vice versa. Additionally, a facilitator - here called the Guard - is needed to 

keep track of all the buyers and sellers that enter the marketplace, partially to maintain a 

directory of all the participants, but most importantly, to check that the new participants 

comply with the corresponding marketplace rules. Apart from this, in some marketplaces 

the mechanism to select the best selling option might be so complex that another facilitator 

is required. In this pattern we call such a facilitator the Auctioneer because the selection 
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process usually consists of some form of auction, but some marketplaces may require 

more general negotiation techniques. 

.. Restrictions. First, the task must be suitable to be accomplished by an external entity; this 

leaves out tasks that require much knowledge of the internal structure of the organisation. 

Second, the only control over the independent entity is through the price of the contract. 

Third, there must be at least one agent willing to accomplish the task; in general, the more 

the better. Finally, although no authority relation must exist from the facilitators to the 

buyers and sellers, at least a relationship of trust is necessary. 

.. Consequences. The disadvantages of using a marketplace organisation are: there is a risk 

that no buyer is willing to perform the task or that the final price is too high; since a 

marketplace is essentially a competitive organisation, the final price is difficult to predict; 

finally, buyers cannot impose explicit control on sellers. The advantages are: through 

competition, buyers tend to obtain a better price; and the coordination complexity is very 

low . 

.. Implementation. The implementation of a marketplace includes two types of activities: 

implementing the core of the system, the facilitators; and implementing the participants, 

the sellers and buyers. The former is carried out by the administrators or owners of the 

marketplace and consists mainly in developing the following critical parts of the system: 

a reliable communications infrastructure; a secure payment facility; a set of organisa

tional rules that allow competition but without compromising the integrity of the system; 

a mechanism to allow new participants to have access to the system; and mechanisms and 

policies for offer selection. Since each of these parts has in itself been well studied in other 

areas of research, and there are in fact developments that can be used or adapted, the im

plementation of marketplaces need not begin from scratch. For example, communication 

infrastructure is provided by agent-oriented platforms such as JADE [70] or ZEUS [! 20], 

while the mechanisms for obtaining a best offer are covered in the study of auctions. The 

activities involved in implementing the participants are more closely related to a specific 

application and the particular needs of the owners. Also, although there is some freedom 

to select the best way to implement the participants, the resulting agents must comply 

with the system in terms of communication protocols and observance of the operational 

rules. 

41 Roles. We distribute the functionality of marketplaces into six roles, in accordance with 

the main tasks. Figure 3.22 and Figure 3.23 show the roles corresponding to the partic

ipants, Seller and Buyer, respectively. The roles corresponding to the facilitators, Mar

keter, Auctioneer, PaymentSystem and Guard are shown in Figure 3.24, Figure 3.25, Fig

ure 3.26 and Figure 3.27, respectively. 

41 Structure. Figure 3.28 shows the topology of this organisational pattern. Note that all the 

control relationships between the nodes are peer relationships, which are derived from 

inter-role trust relationships. The following expression defines the organisational structure 
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Role Schema: Buyer 

Description: Acquires a product or a service 

Protocols and BrowseOportunities, 
Activities: RequestProduct, ReceiveDeal, 

AcceptDeal, Pay, 
ReceiveProduct 

Permissions: 

reads Product, Contract, Offer 

produces Request 

Responsibilities: 

Liveness: 

Buyer=(BrowseOportunities . 
RequestProduct . ReceiveDeal . 
AcceptDeal . Pay. ReceiveProduct) 

Safety: 

Contract. payment <= balance 

FIGURE 3.22: Roles in a marketplace, part 1 

Role Schema: Seller 

Description: Provides a product or a service 

Protocols and ReceiveRequest, ProposeOffer, 
Activities: ReceiveContract, 

AcceptContract, 
ReceivePayment, DeliverProduct 

Pennissions: 

reads Product, Contract, 
Request 

produces Offer 

Responsibilities: 

Liveness: 

Seller=(ReceiveRequest . ProposeOffer . 
ReceiveContract. AcceptContract 
ReceivePayment . DeliverProduct)W 

stock(Contract.ldProduct, 
Safety: Contract.DispatchDay) > 0; 

dateOfDispatch <= Contract.DispatchDay 

FIGURE 3.23: Roles in a marketplace, part 2 
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Role Schema: Marketer 

Description: Serves as a link between a 
seiler and the potential buyers 

AttendToProductRequest, 
Protocols and RequestToPotentialSeliers, 
Activities: ReceiveBestOffer, Send Contracts, 

ReceiveContractAcceptances, 
InstructPayment 

Permissions; 

reads Offer, Request 

changes Product, Contract 

Responsibilities: 

Liveness; 
Marketer=(AttendToProductRequest, 
RequestToPotentialSeliers . 
ReceiveBestOffer . SendContracts, 
ReceiveContractAcceptances. 
InstructPayment )W 

Safety: 
exists(RequestProduct/d) 

Offer.Productld = Requesl.Product/d 

FIGURE 3.24: Roles in a marketplace, part 3 

Role Schema: Auctioneer 

Description: Selects the best offer 

Protocols and ReceiveOffers, SelectBestOffer, 
Activities: NotifyBestOffer 

Permissions: 

reads Offer 

Responsibilities: 

liveness: 

Auctioneer=(ReceiveOffers . 
SelectBestOffer . NotifyBestOffer)W 

Safety: 

FIGURE 3.25: Roles in a marketplace, part 4 
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Role Schema: 
Guard 

Description: Checks that new participants 
comply with the requirements 

Protocols and ReceiveNewParticipant, 
Activities: CheckCompliance 

Permissions: 

produces PermissionToOperate 

Responsibilities: 

Uveness: 

Guard=(ReceiveNewParticipant. 
CheckCompliance)W 

Safety: PermissionToOperate.State = true 

FIGURE 3.26: Roles in a marketplace, part 5 

Role Schema: PaymentSystem 

Description: Receives payments of sales 

Protocols and ReceivePayment, NotifyPayment 
Activities: 

Permissions: 

reads Contract 

Responsibilities: 

Liveness: 

PaymentSystem=(ReceivePayment 
NotifyPayment)W 

Safety: 

FLGURE 3.27: Roles in a marketplace, part 6 
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Entity Type 
Product registry 
Contract registry 

Offer registry 

Request registry 

Guard 

Payment 
System 

FIGURE 3.28: Topology of a market 

Description Modified by 
good or service to sell Marketer 
deal of transaction Marketer 

bid Seller 

product required Buyer 

Read by 
Buyer, Seller 
Buyer, Seller, 

PaymentSystem 
Auctioneer, Marketer, 

Buyer 
Seller, Marketer 

TABLE 3.13: Environmental entities of a Marketplace and their rights of access 

of the marketplace pattern. In this figure, we have denoted with double circle those roles 

whose cardinality can be greater than one. 

{peer (Seller, Buyer),peer(Seller, Marketer) , peer(Seller, PaymentSystem)} U 

{peer(Buyer, M arketer),peer(Buyer, Guard),peer(M arketer, Guard)} U 

{peer (PaymentSystem, Marketer), peer (Payment System, Buyer)} U 

{peer (Auctioneer, Seller ),peer(Auctioneer,!vI arketer)} . 

III Environmental entities. The environmental entities of the Marketplace pattern are: Prod

uct, Contract, Offer, and Request. A Product represents the good or service involved in a 

transaction, a Contract is the deal to which the seller and the buyer of a transaction agree 

to adhere, an Offer is the proposal (usually a price) a buyer makes to buy a product, and a 

Request consists of the requirements for a product that a buyer wants to buy. These enti

ties are data structures whose composition depends on the specific application. Table 3.13 

summarises the rights of access that the roles have on these environmental entities. 
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BrowseOportunities() : 

I' i Requestproduct( ):1·1 
! J J jRequestToPotentiarSellerS() : 

! i I >, I 
I, ! i I I f-I _pr_op_OS_e_Offi_er_()~>,,",, 
,• Ii j J I Se'lektBestOffer( } 

I NotifyBesrobJ1( ) , , 

11 1- , LF 
I,' 'I::'" SendContractsO Ii! SendContracts() I 

- '<11 

I I I J ' ' Notif;Pay;nen() >1.1 ( L Delihrproduc~) : IfEc'----c--------i 
w~ '-,- i /' lUi 

u 

FIGURE 3.29: The Sale scenario of the marketplace structure 

: Guard i : Participant 

L-----c,-,---.J 
. ComplianceChecklng( ) 

IssuePermission( ) 

FIGURE 3.30: The Entrance scenario of the marketplace structure 

• Dynamics. There are two main scenarios in the operation of a marketplace, one corre

sponding to the sale process and the other to the entrance of a new participant to the 

system. Figure 3.29 shows how the roles interact to achieve a sale: a Buyer sends a prod

uct request to the Marketer, who contacts all the potential sellers. The sellers interested 

in fulfilling the request send their offers to the Auctioneer, who selects the best offer. 

After that, the Marketer prepares the contract and sends it to the Buyer and Seller for 

their approval. Finally, the payment and product delivery are carried out. Figure 3.30 

corresponds to the entrance of a new seller or buyer. In this simple scenario, the Guard 

checks that the new participant complies with the requirements of the system, in which 

case a permission to operate is issued, and the Marketer is notified of the entrance. 

• Rules. The organisational rules that govern this marketplace are the following. 

The buyer and the seller cannot be played by the same agent: 

plays(a, Buyer) I\plays(b, Seller) =? a =I b 

104 



The seller and the auctioneer must be played by different agents: 

plays( a, Seller) II pZays(b, Auctioneer) ::::} a::j:. b 

A product is not delivered before the payment has been received: 

terminated(NotifyPayment) B initiated(DeZiverProduct) 

Payments are not made before contract acceptance: 

terminated(AcceptContract(Buyer)) II terminated(AcceptContract(Seller)) 

B initiated( Deliver Product) 

The marketer is not informed about a new participant before the participant has obtained 

permission: 

terminated(I ssuePermission) B initiated(N ewParticipantArrival) 

Only one offer is selected in each auction: 

card(NotifyBestOffer) = 1 

When we compare the marketplace pattern against the FM market [1 06J, a practical agent-based 

market, we find several differences and similarities. Regarding the roles in the structure, FM 

employs eight roles, of which the Auctioneer, the Buyer, and the Seller coincide in name and 

function \vit.~ the corresponding roles in the marketplace pattern. l-<M includes two roles for 

tasks of admitting participants, namely the Buyer Admitter and the Seller Admitter, whereas the 

marketplace encompasses both functionalities in one role, the Guard. The rest of the FM roles, 

the Boss, the Seller Manager and the Buyer Manager, enact the functionality represented in 

the pattern by the Marketer and the PaymentSystem. In particular, one of the functions of the 

Seller Manager is to provide a facility for payments, which in the pattern is carried out by the 

PaymentSystem. While this provides a good means for comparison with one specific market, 

the unavailability of suitable documentation prevents us from make a more detailed analysis or 

from a broader analysis against other agent-based markets, such as Kasbah [17J and TAC [113J. 

3.6.5 Selecting patterns 

Even for applications involving just a few roles and protocols, it is sometimes difficult to recog

nise if their organisational structure is similar to one of those typical structures such as group, 

hierarchy or marketplace. This arises because it is difficult for humans to visualise the whole of 
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FIG URE 331: The role of organisational patterns in the methodology 

a structure except for the simplest cases, or if the elements of the structure are represented in a 

form with which we are not familiar, For this reason, it might be difficult to select - among a 

set of organisational patterns - the pattern that best matches a given structure. 

3.6.6 Summary 

As mentioned previously, organisational patterns show their real benefit when used as part of an 

agent-oriented software methodology. The details of using organisational patterns in a Gaia-like 

methodology were described in this chapter, and are summarised below. 

Figure 3.31 illustrates the role of organisational patterns in the methodological process. As 

can be observed, organisational patterns are used during the architectural design phase, after 

the analysis has been done. The analysis provides the preliminary versions of the roles and 

interaction models, as well as of the organisational rules. From this information, an outline of 

the organisational structure of the system is obtained. 

However, the selection of the definitive organisational structure of a system depends not only 

on the prelirninary models, but also on other factors such as the complexity of computation of 

the roles, the complexity of coordination of potential organisational structures, the real-world 

organisation that is being modelled, and the support offered for observance of the organisational 

rules. 

It is precisely in this process of selection that a catalogue of organisational patterns plays an im

portant role, by providing pre-defined options from which an appropriate organisational struc

ture can be selected. Such a selection is carried out basically by matching the characteristics of 

the system-to-be with the characteristics provided by the patterns. In addition, given their high 
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re-usability, organisational patterns usually contain rnore information than is found in organisa

tional structures at that stage of developmenL 

As a result of selecting an specific organisational pattern, the architectural design is completed 

by incorporating the elements of the pattern into the analysis models. More specifically, the 

preliminary roles and interaction models, and the analysis' organisational rules, are updated 

with the roles, interactions and control relationships of the pattern, and the organisational rules 

of the pattern are added. 

Finally, the organisational structure and the architectural design models form the inputs to the 

detailed design, which produces a list of roles enacted by each agent in the system and a list of 

services provided by each agent. 

3.7 Related work and conclusions 

The patterns presented here are intended to be used during the methodological process outlined 

by Zambonelli et al. [133], in which the importance of a set of organisational patterns is stated 

but no such set is presented. 

Patterns are extensively used to facilitate the development of software systems; in the agent

oriented approach they have been employed to design multiple aspects of an application. Some 

examples of agent-based methodologies that include the use of patterns in their processes are 

Tropos [81J, Kendall's methodology [79] and PASSI [20]. As part of the Tropos methodology, 

Kolp et al. present a set of patterns in [81 J, in which patterns (called styles) are used to describe 

the general architecture of a system under construction. Although there are similarities with 

our work, we include organisational rules and classify structures based on topology and control 

regime (or task decomposition), as opposed to the classification based on functionality used in 

Tropos. 

Kendall [79] also includes a catalogue of patterns as a part of a technique to analyse and design 

agent-based systems. The patterns in that catalogue are more general than those presented here, 

since they include not only interactions but also the roles themselves (it should be noted that 

the concept of role there comes from role theory and is not identical to the concept used here). 

Since there is no reference to organisational abstractions, that work cannot be directly used in 

the methodological process we use, but perhaps the structure of those patterns may be used as a 

base to populate the set of patterns proposed here. 

Immersed in the PASSI methodology, Cossentino et al. present in [20] the design of a particular 

type of agent pattern. They define a pattern as consisting of a model and implementation code. 

The model includes two parts: structure and behaviour. Structural patterns are classified into: 

action patterns, which represent the functionality of the system; behaviour patterns, which can 

be viewed as a collection of actions; component patterns, which encompass the structure of an 

agent and its tasks; and service patterns, which describe the collaboration between two or more 
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agents, Implementation code is available for two agent platforms, namely, JADE and FIPA

as. As can be noted from this brief description, the concept of organisation is not explicitly 

addressed in their work. 

Other patterns in the agent literature do not use a specific methodology. For instance, Aridor 

and Lange [6] present a catalogue that covers different aspects of an application based on mobile 

agents, travelling (management of the movements of a mobile agent), task (task decomposition 

and assignment), and interaction (locating agents and facilitating their interaction), but these 

are appropriate only for mobile-agent systems, and are object-based rather than role-based. 

Lind [84] proposes a structure of a pattern catalogue in which the work presented here may 

fit in the Society section, but it is not always clear how to apply the general-purpose patterns 

within a specific methodology. This is also true for [26], in which Deugo et al. present a set 

of coordination patterns that are not embedded in a methodology process. Their usage is more 

complicated due to the fact that there is no separation of the different type of patterns, for ex

ample, coordination patterns and task delegation patterns. A similar set of patterns is presented 

by Hayden et al. [62] but this focuses on defining how a goal assigned to a particular agent is 

fulfilled by interacting with other agents. Finally, Silva and Delgado [J 14] present an agent 

pattern that provides distribution, security and persistence transparency. This does not suit our 

purposes because it focuses on access to a single agent rather than considering an organisation 

of them. 

Although several agent-oriented methodologies have recently been proposed, none of them is 

mature enough to develop commercial and industrial applications. One step towards achieving 

mature methodologies is to enhance existing ones with the inclusion of software engineering 

best practices, such as the use of patterns in key parts of the design process. In this chapter 

we have presented a framework in which organisational patterns may be developed to model the 

organisational structure of software applications. Also included are three patterns corresponding 

to representative structures. No framework or set of patterns like these have been proposed 

before. 

Specifically, the contributions of this chapter to the state of the art of agent-oriented software 

engineering are the following. 

• Definition of a language for the expression of organisational rules, namely LEVOR. The 

manipulability of LEVOR also makes it suitable for the analysis and evaluation of organ

isational rules at run-time. 

• Construction of a formal model for organisational structures. This model, although sim

ple, is expressive enough to formally describe organisational structures, and link them 

with their corresponding graphical representation. 

• Definition of a layout for the description of organisational patterns. Such layout facilitates 

the understanding and use of the patterns in a catalogue. 
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• Construction of an initial catalogue of patterns. This catalogue uses the layout referred 

above and includes the patterns corresponding to some representative organisational struc

tures. 

The work presented here provides four distinct benefits. First, it extends Gaia, which is one of 

the most used methodologies, since the exploitation of organisational patterns is an integral part 

of its process. Second, it increases the accessibility of the methodology, in that the inclusion of 

patterns makes the methodology easier to use, especially by non-expert users. Third, it helps to 

reduce development time since developers may reuse the models to avoid building their appli

cations from scratch. Finally, it provides a basis on which further patterns can be developed and 

improvements can be discussed. 

It should be noted that although some patterns are very simple in concept, their usefulness is 

twofold: they explicitly state the structure a system must conform to; and they serve as a basis 

for designing complex applications, since, arguably, most real applications can be described by 

a composition of several simpler structures. 

Part of the work involved in creating the catalogue of patterns has also dealt with the charac

terisation of organisational structures and organisational rules - which are the most important 

parts of the patterns - and the languages to describe them. Although these problems have been 

explored before by other researchers [J 34, 44], our work includes formal characterisations and 

languages. These characterisations and languages are independent of the patterns and can be 

used on their own for other more general purposes, such as the analysis and design of agent

based systems. 

However, the catalogue presented in this chapter has some limitations in terms of maturity. A 

catalogue is an evolving project that improves with the participation of a community of users, 

serving as a repository of the expertise of a community. It gains maturity through the participa

tion of a community of users in activities such as: 

• adding new patterns to the catalogue; 

• adding variants to existing patterns in the catalogue; 

• providing feedback about the utility of a pattern; 

• proposing generalisations of a pattern; and 

• increasing the level of detail of a pattern. 

As long as the population of the catalogue increases, new needs arise. For example, with a large 

number of patterns in the catalogue, it is necessary to have a comparison table that summarises 

the characteristics of the pattens. Also, in those cases in which the architectural design is sup

ported by a software tool (CASE tool), it might be desirable to feed that tool with the description 

of the selected pattern, in order to speed up the design process. 
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Chapter 4 

Modelling the internal structure of an 

agent 

4.1 Introduction 

As discussed in Chapter 2, the design of a multi-agent system consists of two main parts: the 

design of the interactions between the agents (in which agents are essentially viewed as black 

boxes), and the design of the internal composition of each agent. While we addressed the former 

in Chapter 3, in this chapter we consider the latter. 

Although for each application the agents can be designed following tailor-made techniques, the 

existence of standardised, well-defined and comprehensive methods for designing the internal 

structure of agents is important for engineering solutions in a repeatable and controlled form. 

For these reasons, we argue that modelling the internal stmcture of agents should be a mandatory 

phase in every agent-oriented software methodology. 

In spite of this, the phase of modelling the internal structure of agents is not included in most cur

rent methodologies or, when included, has some serious drawbacks. Regarding the former, some 

methodologies consider this phase as part of the detailed implementation and thus out of their 

scope [134]. This leaves practitioners with the problem of how to complete the specification 

and, eventually, the implementation of the system, which can be a significant problem particu

larly for novice practitioners, and may discourage the widespread use of such methodologies. 

When this phase is included in the methodology, the internal representations are tied to specific 

- sometimes proprietary - models [15, 78, 55]. In the case of proprietary models, apart from 

forcing their use, there is no connection between them and those models that the research com

munity has constructed in the field of agent architectures. Thus, they provide no insight into 

how to incorporate well known architectures, or how the proprietary models compare to them. 

Rather than creating new and isolated models, or architectures, this thesis strongly relies on 

the employment of well known agent architectures. Specifically, in this chapter we explore 
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the use of existing well known architectures to support the design of agents. Although this 

approach is very natural, taking it into practice is difficult, mainly because agent architectures 

have not always been envisaged from a software engineering point of view. Basically, the use 

of agent architectures in software development presents a problem of mismatch: on the one 

hand, most current methodologies do not incorporate the expertise achieved in the study of 

agent architectures, and on the other hand, the specification of most agent architectures is rarely 

oriented towards software engineering practitioners 

Regarding the difficulties in using agent architectures for modelling the internal structure of 

agents, we can mention the following. First, most architecture descriptions are available only at 

a high level of abstraction, or are not detailed enough, or are difficult to understand by non-agent 

experts. Second, there is a large number of architectures and it is difficult to select one between 

them for the implementation of a specific application. 

In order to facilitate the use of well known agent architectures in the design of agents, we propose 

the construction of the three following artefacts. 

• A catalogue of representations corresponding to some of the most used architectures, 

together with a selection criterion. The representations include design specifications and 

descriptions of the requirements for using the specifications. The descliptions of these 

elements must be such that they can be understood even for practitioners not proficient in 

agent technology. 

• A technique to obtain a detailed design of an agent from the specification produced by a 

high-level methodology (such as Gaia [134]), using the representations mentioned above. 

• A procedure to guide the development of a representation for any architecture not consid

ered previously. 

The combined use of these artefacts can be helpful in several situations that arise during the 

development of an agent. Once the requirements for the agent have been determined, the cat

alogue can be searched for a representation that appropriately models the agent, and then the 

technique provided can be used to obtain a detailed design. In this way, developers do not be

gin each design from scratch, nor do they have to go into all the details of agent architectures 

to determine which is the most appropriate for a particular agent. However, if the catalogue 

does not contain any appropriate representation, the procedure provided can be used to obtain a 

representation for a different architecture, and this representation added to the catalogue for its 

eventual re-utilisation. 

For these reasons, artefacts like these facilitate the design of the internal structure of agents. 

However, since no artefacts like these exist to date, we need to establish methods for their con

struction and use. The chapter is organised in the following way. In Section 4.2 we describe our 

approach to modelling the internal structure of agents, in particular we justify the use of software 

patterns to represent such internal structures. Then, in Sections 4.3, 4.4 and 4.5, the patterns 
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for some selected agent architectures are presented> After this, in Section 4.6, methodologi

cal guidelines are provided for obtaining the corresponding pattern for any other architecture. 

Finally, Section 4>7 contains related work, and Section 4.8 contains our conclusions. 

4.2 Internal representation of agents 

The main goal of this section is to provide a framework in which a catalogue of representations 

may be developed. The aim of each representation is to model the internal structure of a family 

of agents, according to the principles established by a known agent architecture. However, as 

mentioned previously, several problems arise when using agent architectures in a methodologi

cal approach, mainly because most agent architectures are not described in a form that is useful 

for software developers. In particular, some descriptions are difficult to understand by non

agent experts, because they contain vocabulary and concepts that are unfamiliar and intricate. 

To alleviate this, we choose to describe the internal structure of agents by means of software 

patterns [I I] (as used in Chapter 3, although for a slightly different purpose), since they are 

artefacts with which most software developers are familiar and, at the same time, are a powerful 

abstraction to represent families of solutions. Moreover, the object-oriented approach is suitable 

to serve as a base for the description of these patterns, since it is one of the most used design 

techniques and does not necessarily force an object-oriented implementation. 

In summary, our approach consists of the creation of a catalogue of software patterns for selected 

architectures. The patterns include a description of their components, and the way in which they 

interact, as well as a description of the situations in which they are applicable. We evaluate the 

results of this chapter by means of a case study, which is presented in Chapter 6. 

In contrast to other approaches that leave the user with the work of customising a general ar

chitecture to meet their specific applications [78, 96], our work provides concrete designs that 

correspond to well known architectures. Not only does this work include static descriptions of 

the internal structure of agents, it also addresses the dynamics of their main scenarios. 

4.2.1 Obtaining a detailed design from a high-level design 

High-level design of multi-agent systems focuses on organisational modelling, leaving agent 

modelling unconsidered, but a complete methodological process must provide links between 

these two aspects. Although architectural patterns, such as those presented in this chapter, are 

helpful in creating such links, there is still a gap between the results obtained by a high-level 

design (one that does not consider the detailed modelling of the internal structure of the agents), 

and the information required to use a specific agent architecture. This gap is a consequence of 

the difference in concepts and abstractions used in the design and the architecture. To bridge 

this gap, we have included, after each pattern in the catalogue, an explanation of how to obtain 

the information required by the pattern, from the specification given in a high-level design. 
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However, since this specification varies from methodology to methodology, we first need to 

establish what the output of the high-level design is. 

In order to do this, we use the Gaia [134] methodology as representative of a methodology 

which produces a high-level design but does not consider a detailed agent design. Under this 

assumption, the results obtained by the high-level design are the following. (Each feature is 

described in more detail elsewhere in this thesis, so here we just provide a brief description and 

refer to the corresponding sections.) 

The overall system is modelled through a set of agents, each of which plays one or more roles. 

Such roles interact according to control relationships, governed by organisational rules. Control 

relationships describe how two roles are related in terms of subordination; for example, control 

relationships might be authority and peer. In this view, organisational rules are thus restrictions 

about how roles and agents can interact; they may also involve other entities in the system, such 

as environmental entities. 

Each role is described by activities, protocols, permissions to use resources, responsibilities and 

services, where: 

• activities are tasks that a role can carry out alone, without interacting with other roles; 

• protocols are patterns of interaction between the roles and consist of initiator, collabora

tors, input parameters and output parameters; 

• permissions express the rights a role has to access the entities of the environment; 

• responsibilities encompass the behaviour of the agent and are divided into liveness and 

safety, the former specifying the behaviour the agent pursues, and the latter specifying the 

conditions that must keep invariant through the life of the agent; and 

• a service is a single coherent block of activity in which the agent will be engaged, and 

consists of pre-conditions, post-conditions, inputs, and outputs. 

For each of the architectural patterns presented below, we have included a procedure to move 

from the design obtained by the methodology, to the information required by the pattern. Before 

presenting the patterns, however, we establish the layout used to describe them. 

4.2.2 Pattern layout 

As was discussed in Section 3.5.2, the way patterns are described, or their layout, is important 

to facilitates their understanding and their use. In order to describe architectural patterns, we 

use the layout utilised by Buschmann et al. [11], but only slightly modified to leave out the 

sections corresponding to alternative names of a pattern, its variants and references to closely 

related patterns, since they are useless for the patterns presented below. (Note that this layout 
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was used by Buschmann et aL to describe design patterns, of which these architectural patterns 

are a particular case.) In this way, the pattern layout we use consists of the following sections. 

.. Name: a unique identifier of the pattern. 

.. Context: a description of the situation in which the agent architecture is applicable. 

CD Problem: the problem addressed by the pattern. 

.. Solution: steps to follow in order to solve the problem, based on what is stated in the 

structure and dynamics sections. 

CD Known uses: real-world or experimental applications in which the architecture has been 

used . 

.. Structure: the structural aspects of the internal composition of an agent (according to the 

architecture), represented by means of a class diagram. 

CD Dynamics: the way internal components of an agent interact to accomplish its behaviour, 

divided into scenarios (meaningful parts of functionality). 

.. Implementation: guidelines for implementing the pattern . 

.. Consequences: benefits and limitations of using the architecture. 

.. Example: example to clarify the exposition or use of the pattern. 

As can be observed, this layout considers the Context-Problem-Solution metaphor discussed in 

Section 3.5.2.2, which states that the essence of a pattern relies on the relationship between the 

problem, the situations in which it occurs (context), and its solution. Apart from the sections 

related to this metaphor (context, problem and solution), the layout also includes sections to 

identify the pattern(name), to describe the static and dynamic aspects of the solution (structure 

and dynamics, respectively), and to facilitate the use of the pattern (known uses, implementation, 

consequences and example). 

4.3 The Subsumption architectural pattern 

Using the layout presented above, in the following we describe the patterns corresponding to 

three well known agent architectures, namely the subsumption, the dMARS and the Touring

Machines architectures. For each pattern, we include a procedure to use it in the context of a 

methodological process. This section considers the architectural pattern corresponding to the 

subsumption architecture. (A description of the subsumption architecture was given in Sec

tion 2.3.1.) 
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4.3.1 The subsuinption architecture 

The subsumption architecture is a well-known reactive architecture that has inspired several 

other reactive and hybrid architectures. Although simple in concept, the subsumption architec

ture contains vocabulary and notions not commonly found in mainstream software engineering 

and, consequently, difficult to assimilate - in a first attempt - by a typical software developer, 

such as the concepts of behaviour and inhibition relationship. In this sense, the pattern presented 

below can act as a self-contained tool that developers can use for facilitating the construction of 

agents, since the operation of the architecture is put into common software engineering terms. 

4.3.2 Pattern description 

In order to clarify the description of the subsumption pattern, we make use of the following 

example [128, pSI]. 

"The objective is to explore a distant planet or, more concretely, to collect samples 

of a particular type of precious rock. The location of the rock samples is unknown in 

advance but they are typically clustered in certain spots. A number of autonomous 

vehicles are available that can drive around the planet collecting samples and later 

re-enter the mother spacecraft to go back to earth. There is no detailed map of the 

planet available, although it is known that the terrain is full of obstacles - hills, 

valleys, etc. - which prevent the vehicles from exchanging any communication". 

The solution to this problem is based on two considerations [128]. First, since the terrain does 

not allow direct communication, vehicles communicate by means of crumbs. Once a vehicle has 

detected a cluster of samples, it shares its knowledge with other vehicles by repeatedly dropping 

two crumbs along its path to the mother spacecraft. In this way, a vehicle simply has to follow a 

track of crumbs to reach a cluster of samples. However, on its path from the mother spacecraft to 

a cluster, each vehicle picks up only one crumb. This allows both the persistence of the pathway 

for future vehicles, and the clearing of pathways in which the samples have been exhausted. 

The second consideration is the use of a signal emanating from the mother spacecraft together 

with its gradient field. To return to the mother spacecraft, a vehicle must follow the direction 

with highest gradient, while a vehicle intending to get away from the mother spacecraft has to 

move towards the direction with the lowest gradient. The use of the subsumption architecture 

to model the structure of such an agent is justified mainly because it is difficult to maintain a 

symbolic model of the environment, and because quick responses are required. This pattern is 

described in the following. 

NAME Subsumption. 
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CONTEXT A software developer has designed a multi-agent system at the macro level, which 

means mainly the identification of agents, their responsibilities, and their interactions. 

The next step is to model the internal structure of the identified agents. It has also been 

determined that one agent requires reactive behaviour, so the subsumption architecture is 

suitable for describing its internal structure. The developer might not be an expert in agent 

architectures, so it would be desirable to have a mechanism that hides general aspects and 

lets the developer focus on application-specific details. For example, the developer does 

not need to be aware of details of the algorithm of action-selection (to select one action, 

for execution, from a set of proposed actions). 

PROBLEM The developer needs to specify the implementation of an identified agent, and has 

already obtained the main characteristics of the agent, mainly in terms of its behaviour. It 

is clear that the agent does not need to maintain a complex mental state and, at the same 

time, needs to yield opportune responses to fast changes in the environment. 

SOLUTION In order to utilise this architecture, the steps below must be followed. 

1. Describe the environment as a set of states that can be recognised by the agent 

(through its perception function, commonly referred to as its see function). Note 

that this set represents what the agent is actually capable of perceiving from the 

environment. 

2. Decompose the functionality of the agent into behaviours. 

3. For each behaviour, determine its perceptual input (from the set of environment 

states), and describe its task. 

4. Establish the inhibition relation, by assigning priorities to behaviours: more abstract 

behaviours have higher priority while basic behaviours have lower priority. More 

formally, the inhibition relation is a total ordering relation (transitive, irreflexive, 

and anti symmetric) on the set of behaviours. 

5. With the components obtained in the previous steps, complete the classes of the class 

diagram shown in Figure 4.1 (which is explained in the STRUCTURE section) to 

obtain a design specification for the agent. 

KNOWN USES The subsumption architecture has been applied to the control of robots that 

operate in unconstrained dynamic real-world environments. These robots wander in their 

environments avoiding collisions with other robots, objects and humans [10]. 

STRUCTURE Since the subsumption architecture is relatively simple, and involves only a 

small number of classes, we omit the use of packages to describe its structure. The main 

classes of the pattern and their relationships are shown in Figure 4.1. The control resides 

in the SubsumptionController class, which senses the environment through the Percep

tualInteiface class, affects the environment by means of the EffectorInteiface class, and 

consults the class Inhibitor about the priority of the behaviours. 
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FIGURE 4,1: Class diagram for subsumption architecture 

With the purpose of adapting to different situations, it is pennitted for an agent to have 

more than one perceptual or effectoric interfaces. The environment itself is sensed by 

the Environmentlnteiface, but what the agent actually perceives is obtained from the Per

ceptualInteiface. Similarly, the EffectoricInteiface is the class that abstracts the actions 

that affect the environment. For example, in a FIPA-type agent ([35]) the Environmentln

teiface would contain the communications infrastructure, the Perceptor would encapsu-

late the recognition of the Agent COillLllunication Language, and the Perceptuallnte7iace 

would manipulate the information at the application level. 

DYNAMICS A high level view of operation of the sUbsumption architecture is depicted in Fig

ure 4.2, which uses a sequence diagram to show the participating classes, the involved 

methods and their order of execution. As can be observed, the control module is con

tinually sensing the environment and matching its state to the perceptual conditions of 

behaviours. Among all these behaviours, the control module chooses one, and then the 

corresponding action is performed. 

IMPLEMENTATION The algorithm for selecting a behaviour (and thus an action) among 

those matching the current state of the environ..'11ent is quite simple to implement. First, 

the set of all the behaviours fired by the state is obtained. Second, the behaviour selected is 

the one with the minimum priority, or none if it does not exist. Finally, the corresponding 

action is returned. 

117 



FIGURE 4.2: Dynamics for subsumption architecture 

All the classes may belong to the same executable, although a major decoupling may be 

achieved if the Effector and Perceptor classes are separated. The Environmentlntelface 

class may even have its own thread of execution if continuous examination of the envi

ronment is required. 

CONSEQUENCES The disadvantages and limitations of this architecture are as follows. First, 

the sUbsumption architecture is behaviour-oriented while most current design methodolo

gies are goal-oriented. This mismatch imposes some constraints on the functionality of 

some agents, particularly on agents with mUltiple goals. In addition, some effort on trans

lating from goals to behaviours must be exerted during the design. Second, the absence of 

explicit representations of goals (like intentions in BDI architectures) makes the specifi

cation of pro-active behaviour difficult. Thus, this architecture is more suitable for agents 

that act in response to a request than pro-active ones. 

On the other hand, the advantages of the subsumption architecture are the following. First, 

. its simple structure facilitates the quick and easy development of agents. Second, its 

simple dynamics is adequate when high responsiveness is required. Finally, it promotes a 

highly modular design, making the addition of new behaviours an easy task. 

EXAMPLE Below, the solution to the problem example stated above is presented in the format 

used in the SOLUTION section. 

Step 1: The environment of this problem can be described as the set of tuples (time, 

location, gradient, object), where: 

• time is the instant at which the tuple refers to; 

• location is the location of a position on the planet (usually, the whole planet is di

vided into zones to make the location a discrete variable); 

• gradient is the gradient of the signal emanating from the mother spacecraft in the 

location; and 

• object is the type of object occupying the location: none, sample, crumb, obstacle, 

base of mother spacecraft, etc. 

118 



Now, the agent only needs to perceive a small subset of the environment. Such a subset 

can be described as the set of tuples (base, object, up gradient, down gradient), where: 

It base is true or false, indicating whether the vehicle is at the spacecraft base; 

It object is the type of object in front of the vehicle (obstacle, sample, crumb or other); 

It up gradient is the direction with the highest gradient; and 

III down gradient is the direction with the lowest gradient. 

In addition to this, we note that expressing behaviours is easier if we include the cur

rent state of the agent as another dimension in the range of the perception function (see 

function). The current state of a vehicle is formed of two variables: carrying sample, 

indicating if the vehicle is carrying at least one sample; and direction, representing the 

current direction. 

Steps 2 and 3: The behaviours involved in the solution are the following, together with 

their perceptual inputs and tasks. 

• b 1. If an obstacle is detected then change direction. 

III b2. If the vehicle is carrying samples and is at the base then drop samples. 

III b3. Ifthe vehicle is carrying samples and is not at the base then drop two crumbs 

and travel up gradient. 

• b4. If a sample is detected then pick up a sample. 

III bS. If crumbs are sensed then pick up one crumb and travel down gradient. 

• b6. Choose a direction randomly and move to that direction. 

Step 4: The inhibition relation, denoted by -<, is as follows: 

bl -< b2 -< b3 -< b4 -< b5 -< b6 

The activities that can be performed by a vehicle without interacting with the environment 

are: change direction, and choose randomly a direction. 

4.3.3 Obtaining a detailed design for the sUbsumption architecture 

The pattern presented above can be viewed as a template in which the features of a particular 

application can be inserted in order to obtain the detailed design of an agent. However, as was 

discussed in Section 4.2.1, when the features of the particular application are provided by a 

high-level design, additional work is needed to elaborate the information as required by the pat

tern. This section contains guidelines for obtaining the information required by the subsumption 

architectural pattern from the high-level design obtained by a methodology. 

Agents modelled through the subsumption architecture usually have either a single simple goal 

- decomposable into behaviours - or no goals at all since they operate on the request of 
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other agents. As stated above, the subsumption architectural pattern requires the following 

information. 

• The set of environmental states that can be perceived by the agent. 

• The behaviours of the agent. 

• The perceptual inputs of each behaviour, which are taken from the set of environmental 

states mentioned above. 

.. The task of each behaviour. 

.. The precedence of the behaviours. 

This infOlmation can be obtained from the high-level design as follows. First, since the set of 

environmental states represents how the agent perceives its environment, it is obtained from the 

environmental entities that the agent can read or modify, as expressed in the roles' permissions. 

These environmental entities include those needed by the agent to execute its activities and 

protocols. 

Next, since the behaviours represent the functional aspects of the subsumption architecture, 

they must be associated with the roles' responsibilities. In the following we show how to map 

responsibilities to behaviours, but since responsibilities are formed of activities and protocols, 

we first state how to map activities and protocols to behaviours. First, each activity is simply 

mapped to a behaviour which has no perceptual inputs (so it is always triggered), and whose 

task is the activity itself. 

Protocols, however, are more complicated. In the case of protocols involving only one message 

exchange, the corresponding behaviour depends on whether the agent acts as the initiator or the 

responder. If the agent is the initiator, the protocol can be seen as an activity whose purpose 

is to send the message exchanged, and the mapping for activities described above applies. On 

the other hand, if the agent acts as the responder of the message, the protocol gives rise to a 

behaviour whose perceptual input is the message and its task is the processing of such a message. 

In the case of a protocol consisting of more than one message, the same procedure applies, with 

the addition that a mechanism is needed to keep track of the order of the messages, as well as to 

differentiate it from other conversations. Such a mechanism can be based on the use of variables 

that take mutually exclusive values. 

Using these matches of activities and protocols to behaviours, the way liveness responsibilities 

are represented in the subsumption architecture is stated below. Liveness responsibilities are 

formed of protocols and activities (called operands for this purpose) linked by operators of 

sequence (.), alternative (I), repetition (*, +, W), and concurrency (II) [134]. The basic idea for 

representing the liveness responsibilities is to modify the operands' behaviours, by extending 

in one dimension the space of perceptual inputs, to accommodate an artificial control variable, 

and appending a basic instruction to their tasks, to manipulate that variable. The exact form in 
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which the variable is manipulated depends on the specific expression, and its aim is to force the 

COlTect order of execution. This general idea is best explained by means of an example. To find 

the representation of the liveness expression (a. b) w, assume that the associated behaviours of a 

and b are ha and hb, respectively, and have the following form: 

ha = ((v~" .. , v~), taska), 

where (v~, ... ,v~) denotes the perceptual inputs of the behaviour, and taska denotes the task 

of the behaviour. 

The modified behaviours that represent the liveness expression are: 

ha=((A,v~, .. ,v~),taskaU{val'+--B}), 

hb = ((B, v~,,·· ,vb), taskb U {val' +-- A}), 

where val' is the environmental entity representing the artificial variable (it is assumed that the 

assignment instruction val' +-- a is executed as part of the initialisation of the agent, and that the 

union operation (U) denotes that the instruction is added to the other instructions of taski ). 

The explanation is straightforward: in the beginning the value A would preclude the behaviour 

hb from being triggered (since it requires a value B) and the trigger of behaviour ha is not 

changed. Later, when behaviour ha has been triggered and its task executed, the value B leaves 

no other possibility but to have the behaviour hb triggered when its perceptual inputs are met. 

Safety responsibilities can be represented similarly in the subsumption architecture, as follows. 

Since a safety responsibility is a condition that must always be true, we suggest the creation of 

an associated liveness responsibility, whose purpose is to re-establish it when some unexpected 

event causes its violation. Thus, to represent safety responsibilities we propose a twofold plan: 

program the behaviour tasks in such a way that the safety responsibilities hold under normal 

situations; and map the associated liveness expressions, as described above, to cover unexpected 

situations. For example, if a safety responsibility states that a vehicle must avoid obstacles, the 

task for changing direction must be programmed so to avoid obstacles. Additionally, aliveness 

responsibility must exist to COlTect the unexpected situation of an eventual crash. 

To complete the elements required by the subsumption architecture, we show below how to ob

tain the inhibition relation of the behaviours. Note that the inhibition relation is used to select 

one behaviour when more than one matches the CUlTent environmental state. However, in the 

way behaviours are constructed, it is impossible for two of them to match the same environmen

tal state if the following conditions hold . 

• The values for the artificial variable are carefully chosen, so that they are unique. 
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It The messages are uniquely identified, for example, by means of protocol or conversation 

identifiers. 

Thus, under this assumption of uniqueness, no environmental state matches more than one be

haviour and, as a result, the inhibition relation is the empty set 

4.4 The dMARS architectural pattern 

The second architectural pattern considered corresponds to the dMARS architecture, which is 

representative of BDI architectures. dMARS is an architecture that can be used in a broad range 

of applications because of its flexibility, which is achieved by means of combining several re

active and deliberative components. Associated with this combination of components, however, 

is the complexity of its operation, which is difficult to assimilate by novice developers. For this 

reason, it is important to construct tools, like the pattern presented below, that hide the general 

aspects of the architecture and allow the developers to focus on application specific issues. 

4.4.1 The dMARS architecture 

Although there are many agent architectures available, relatively few of them have been applied 

to solve real-world problems. One of the most notable cases is the distributed Multi-Agent 

Reasoning System (dMARS) [29], which is based on the Belief-Desire-Intention (BDI) model, 

and has been applied in arguably the most significant multi-agent applications to date. 

Four data strpctures are commonly found in BDI agents: beliefs, goals, intentions and a plan 

library. Beliefs are information that the agent has about the world, which may be incomplete or 

incorrect. Usually, beliefs are represented symbolically, for example, as Prolog facts. 

Desires or goals are the tasks allocated to the agent. In general, an agent is not expected to 

achieve all its desires. Those desires that an agent does choose to commit to are called intentions, 

and an agent tries to fulfil an intention only until it is satisfied or until it is no longer achievable. 

The operation of a dMARS agent is based on its plans, which are specifications of how to achieve 

intentions, and are stored in the plan library. 

A plan consists of four components: trigger or invocation condition, context or pre-condition, 

maintenance condition and body. The invocation condition specifies which events trigger the 

plan, while the context specifies the circumstances under which the execution of the plan can 

start. During execution, the maintenance condition specifies the circumstances that should re

main true. Finally, the body specifies the course of action needed to satisfy the plan. These 

actions can be sub-goals or primitive actions, which can be seen as procedure calls. 

During execution, an interpreter is responsible for managing the operation of the agent, contin

ually executing the following processes: 
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• observe the world and the agent's internal state in order to update a queue of events; 

• generate new possible desires, by finding plans whose trigger event matches an event in 

the event queue; 

• select one of these plans for execution (an intended means); 

• if the event is a sub-goal, push the intended means onto an existing stack, otherwise push 

it onto a new stack; and 

• select an intention stack, take the topmost plan and execute the next step of this current 

plan, if the step is an action, perform it, otherwise, if it is a sub-goal, post this sub-goal on 

the event queue. 

Thus, when a plan is executed, its sub-goals are placed on the event queue. These sub-goals, 

in tum, trigger new plans that fulfil them, and so on. It should be noted that all the plans are 

generated at design time, by the agent programmer. 

Specifically, there are two different modes of operation, one when the event queue is not empty, 

and one when the queue is empty. If the queue is not empty, an event is selected (usually the first 

element) and relevant and applicable plans are determined. An applicable plan is selected and 

its plan instance is generated. If the event is external (a newly originating event), a new intention 

is created and the plan instance is pushed onto it. If the event is internal (caused by a sub-goal 

of an existing intention), the plan instance is pushed onto the intention stack that generated that 

event. 

On the other hand, if the event queue is empty (in which case, the operation is called intention 

execution operation), the first step is to select an intention. Then, from this intention the execut

ing plan is identified, and from this plan an action or sub-goal is selected for execution. When 

such an action or goal succeeds, a new state is reached. If the new state is not an end state, 

another action is executed, otherwise the plan has succeeded. 

If there are more plans in the intention, the successful plan instance is removed from the intention 

stack and the event that generated the completed plan is removed. If there are no more plans, the 

intention has succeeded and is removed, and the corresponding (external) event that generated 

the intention is removed, too. 

Of course, there are further details that can be given of dMARS, and the interested reader should 

see [29] for those details. However, they are not necessary for the presentation of the pattern, 

and would overcomplicate and expand this chapter dramatically, so we do not present them here. 

4.4.2 Pattern description 

The architectural pattern corresponding to the dMARS architecture is based on the description 

given in [29], and is presented below. 
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NAME dMARS. 

CONTEXT After modelling the macro level of a multi-agent system, a developer identifies 

that the behaviour of one of the agents can be appropriately modelled using the BDI 

model. The developer might not be an expert in the BDI model, so it is desirable to have a 

mechanism that hides general aspects and lets the developer focus on application-specific 

details. 

PROBLEM The developer needs to specify the implementation of an identified agent. The 

developer has already obtained the main characteristics of the agent, mainly in terms of 

its behaviour. The developer is certain that the agent needs to maintain a complex mental 

state to achieve its goals, but at the same time it needs to yield opportune responses to fast 

changes in the environment. 

SOLUTION In order to design an agent according to the dMARS architecture, the activities 

below must be performed. 

1. Form the belief domain, which is the set of belief formulae representing all possible 

beliefs of the agent. 

2. Form the set of beliefs, which comprise the information the agent has about its en

vironment. 

3. Define the events that will make the agent adopt new plans. According to the class 

diagram in Figure 4.4, such events are of four types: acquisition of a new belief, the 

removal of a belief, receipt of a message, and adoption of a new goal. 

4. Define the goal domain of the agent, which is the set of all possible goals that a plan 

may contain. 

5. Form the plan library. Plans specify how to achieve a intention and, as can be seen in 

the class diagram (Figure 4.4), are composed of several parts: invocation condition, 

context, body, and maintenance, success and failure conditions. 

6. Collect the expertise, all the external actions that the agent is capable of performing. 

7. Define functions for selecting an intention, an event and a plan. Some simple func

tions are provided in the Logic class of Figure 4.4. 

8. With these elements complete the Agent and Logic classes in the class diagram of 

Figure 4.4. 

KNOWN USES The dMARS architecture has been successfully used to build several real

world applications, for example air traffic management systems and server-side customer

service applications. 

STRUCTURE The classes that form the structure of the design can be grouped into packages, 

as illustrated in Figure 4.3, in which packages contain the classes indicated below . 

., Agent: the class that control of the other classes, and classes referring to events. 
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FIG URE 4.3: Packages for the dMARS architecture 

• Belief: classes related to the representation of beliefs and triggers. 

• Goal: classes referring to goals. 

• Intention: classes about intentions and plans. 

• Action: classes referring to the different types of actions. 

• Logic: classes related to the manipulation of logical expressions and procedures for 

selecting plans and intentions. 

The complete set of classes is depicted in the class diagram in Figure 4.4. Agent is the 

main class in the diagram, and contains the cognitive and functional elements of the agent. 

The Agent class also encompasses the control activities of the agent, determining the way 

in which other entities are employed. Among these entities, the Selector and the Logic 

classes are worth particular mention: the Selector class encapsulates the procedures for 

selecting one of several relevant plans, applicable plans, intentions and branches, while 

the Logic class contains the procedures for the logical manipulation required for other 

classes. Other important classes in the structure are those that encapsulate the data and 

functionality relating to beliefs, plans, plan instances, intentions, which are the Belief, 

Plan, PlanInst and Intention classes, respectively. 

DYNAMICS The main operation of a dMARS agent can be divided into two scenarios: when 

the event buffer is empty, and when it is not empty. Figures 4.5 and 4.6 show the sequence 

diagram for these scenarios, respectively. As can be observed, the Agent class uses the 

services provided by the other classes to carry out the functionality of the interpreter 

module, which is described above. 

IMPLEMENTATION It can be observed that the implementation of this pattern requires the 

use of procedures for the manipulation of logical formulae, for example for the unification 

of formulas and the composition of environments. Since these procedures are indepen

dent of the rest of the agent, they can be developed independently. Moreover, since the 
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FIGURE 4.4: Class diagram for the dMARS architecture 

implementation of these procedures is non-trivial and time-consuming, the use of avail

able libraries - either commercial or free software - should be considered. In fact, the 

availability of appropriate libraries might be a factor when selecting an implementation 

platform. 

EXAMPLE To illustrate the main concepts in the pattem, consider a simple example in which 

a robot is used for waste disposal [103]. One plan in this example may consist of picking 

up and disposing waste, and its components, according to the class diagram, are the fol

lowing. The event that triggers the plan (the inv attribute of the Plan class in Figure 4.4) 

is that some waste appears in a particular lane, the context of the plan is that the robot is 

located in the same lane as the waste, and the body of the plan consists of these sequence 

of actions: pick up the waste, reach the bin location, and drop the waste in the bin. Reach

ing the bin location is a sub-plan that can be described, in tum, as a plan. Additionally, 
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the maintenance condition of the plan (the maint attribute of the the Plan class in Fig

ure 4.4) is that the bin is not full, the successful action (the succ attribute of the Plan class 

in the same figure) is nil, and the failure action (the jail attribute of the Plan class in the 

mentioned figure) is that the bin is left in its original location. 

CONSEQUENCES The advantages of using this pattern to implement an agent are as follows. 

Firstly, the BDI architecture is appropriate for modelling the behaviour of agents for a 

variety of domains. Secondly, the dMARS architecture is an implementation of a BDI 

architecture which is practical but also has a sound theoretical background. Finally, the 

dMARS architecture is flexible in terms of achieving a good balance between deliberative 

and reactive behaviours. The disadvantages of this architecture, and thus of this'pattern, 

are that it requires significant effort from practitioners to be familiar with dMARS, due 

to its complexity, and that the pattern does not explicitly address the situation when the 

characteristics of the goals change with time. 

4.4.3 Obtaining a detailed design for the dMARS architecture 

BDI architectures, of which dMARS is representative, are among the most used architectures 

in the implementation of agent-based systems. This popularity can be explained by the facts 

that BDI architectures have been successfully used in real-world applications, that its flexibility 

suits a great variety of domains, and that there exist many implementation platforms based on 

BDI concepts. However, BDI architectures are difficult to assimilate because of the different 

concepts involved, their large number of components, and the complexity of their operation. 

This difficulty is even greater for non-agent specialists, as software developers usually are. It 

is therefore, important to provide guidelines to facilitate the process of moving from a general 

methodology, such as Gaia, to a detailed design. To this end, in the following we describe how to 

use the design models of Gaia when applying the dMARS pattern described above. That is, we 

consider what data is required by the pattern and how it can be determined from the information 

provided by the models. 

We begin the description by observing, from the SOLUTION section of the pattern, that the 

information required by the pattern consists of: belief domain, beliefs, events, goals, plan library, 

and expertise. 

This information can be obtained from the methodological design as follows. First, the belief 

domain can be obtained from the permissions of each role, since they contain the entities of 

the environment to which the agent have right to access or change. Second, the beliefs can be 

obtained from the environmental entities in the belief domain, and their corresponding values. 

Third, external events, which are associated with perceptions, are generated by those activities 

that perceive environmental entities, or process incoming messages. Fourth, the goals can be 

obtained from the liveness responsibilities of each role that the agent implements. Each alterna

tive in a liveness responsibility (operands of the I operator) can be regarded as a specific goal, 
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FIGURE 4.5: Sequence diagram for the case when the event buffer is empty 

and the composition of the alternative - formed of protocols and services - can function as a 

first attempt to decompose the goal into sub-plans. In this way, the invocation of the sub-plans 

should be made in such a way that reflects the sequence of the protocols and services in the 

alternative. For the other parts of the plans, the design does not provide relevant information, so 

they must be determined by some other means. Finally, the expertise (the external actions that 
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FIGURE 4.6: Sequence diagram for the case when the event buffer is non-empty 

the agent is capable of performing) is obtained from those activities and services that modify the 

entities in the environment. 

4.5 The TouringMachines architectural pattern 

The last architectural pattern considered in this thesis corresponds to the TouringMachines ar

chitecture. Similarly to the subsumption and dMARS architectures, the TouringMachines archi

tecture contains vocabulary and notions not commonly used in software engineering, making it 

difficult to assimilate by software developers. In this sense, the pattern presented below can act 

as a self-contained tool that developers can use for facilitating the construction of agents. 
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FIGURE 4.7: The TouringMachines architecture 

4.5.1 The TouringMachines architecture 

TouringMachines [33, 32] is a hybrid layered architecture proposed by Ferguson as part of his 

doctoral thesis, and is formed of reactive components as welI as deliberative ones. It is layered 

because its core is formed of three verticaIIy distributed layers, each with direct access to the 

components that sense and act on the environment. These layers operate independently and 

concurrently, and each generates an action as a result of every event perceived. In the foIIowing 

we present a description of this architecture, focusing only on the aspects needed to understand 

the pattern, and omitting details that are not relevant for this purpose. 

The objective pursued when designing the TouringMachines architecture was threefold: to pro

vide resource-bounded agents with the ability to be reactive; to behave in a goal-directed fashion; 

and to determine the impact of events - taking place in the environment -' on goals (including 

the prediction of what is likely to happen in the near future). Roughly, each part of the objective 

corresponds to: the Reactive Layer, the Planning Layer and the Modelling Layer, respectively, 

the distribution of which is shown in Figure 4.7. 

As stated above, each layer independently generates an action for each perceived event. How

ever, an action generated by one layer may conflict with the operation of another layer, so a 

mechanism, or controlframework, is needed to select an appropriate overall action. This control 

framework consists of two parts: a message passing mechanism between the layers (represented 

in Figure 4.7 as arrows between the layers), and a set of control rules that are domain specific 

and activated by context. By means of the control framework, one layer can alter the normal 

operation of another layer. For example, in a vehicle controller, the Reactive Layer can be de

signed to prevent the vehicle straying over the lane marks but, while overtaking another vehicle, 

the Planning Layer can inhibit this behaviour by avoiding the Reactive Layer from sensing the 

lane marks. As suggested in the figure, the architecture operates only at every click of the clock. 

The pattern corresponding to the TouringMachines architecture is presented below. 
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4.5.2 Pattern description 

NAME TouringMachines. 

CONTEXT A software developer has designed a multi-agent system at the macro level, which 

implies the identification of agents, their responsibilities, and their interactions. The next 

step is to model the internal structure of the identified agents. It has been determined 

that one of the agents must possess planning as well as reactive characteristics, so the 

TouringMachines architecture has been selected to model its internal structure. The de

veloper might not be an expert in agent architectures, so it would be desirable to have 

a mechanism that hides the domain-independent aspects and lets the developer focus on 

application-specific details. 

PROBLEM The problem is to design an agent whose characteristics have already been identi

fied, using the TouringMachines architecture and an object-based design. Such a design 

should be understood by any software engineer who knows only basic concepts of multi

agent systems. 

SOLUTION In order to utilise this architecture, the steps below must be followed. 

1. Arrange the reactive behaviour of the agent (that is, situations that need a quick 

response) in the form of situation-action rules, which specify what action the agent 

must perform as a response to an input received by the sensors. For example, a 

moving agent might decide to change direction if it senses an object close ahead. 

This set of situation-action rules fonns the core of the Reactive Layer. 

2. Compile the goals of the agent into a goal stack in the Planning Layer. 

3. Store the features of the agent's environment in a environment database in the Plan

ning Layer. For example, if the agent controls a vehicle, the environmental database 

must contain a topological map of the world. 

4. Express the plans of the agent in the form of schemata in the Planning Layer. A 

schema is a procedural structure which consists of a body, a set of preconditions, 

a set of applicability conditions, a set of postconditions, and a cost (in terms of 

computational resources). 

5. For each relevant entity in the environment build one or more models of behaviour, 

consisting of a configuration vector, and the beliefs, desires and intentions ascribed 

to the entity. Different models of the same entity differ in the depth of information 

that can be represented and initial default values provided. 

6. Provide lower and upper bounds within which variables of the configuration vector 

can vary before a conflict is declared. 

7. Provide a list of conflict resolution strategies that the agent must follow when a 

conflict is detected between the observed behaviour and the planned behaviour of an 

entity. 
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FIGURE 4.8: Packages in the TouringMachines architecture 

8. Use the classes provided in the pattern to complete the design of the agent. 

KNOWN USES Ferguson [33] describes an application in which the goal of a TouringMa

chines agent is to travel from one start point to an end point, in a simulated environment 

of two dimensions that is occupied by other (independent) agents, obstacles, walls and 

information signs. The architecture proved not only to be successful in this dynamic en

vironment, but also flexible enough to adapt itself to different levels of uncertainty in the 

environment. 

STRUCTURE To clarify the organisation of the pattern, the classes are grouped into packages, 

which are shown in Figure 4.8. The package General contains all those classes that are 

common to more than one package and usually represent basic concepts such as belief 

or rule. The content of the other packages can be easily deduced by their name; for 

example, the Reactive Layer package contains those classes necessary in the design of 

the Reactive Layer. In Figure 4.9 a class diagram represents the classes contained in the 

Planning Layer package, in which the Planner class contains the procedures to carry out 

the functionality of the layer. These procedures act on the data structures represented in 

the SchemaLibrmy and the Schema classes, and rely on the HierarchicalPartialPlanner 

class for actually constructing the plans. 

DYNAMICS The main flow of operation of the TouringMachines architecture is shown in the 

sequence diagram of Figure 4.10. As can be observed, the controller obtains the next 

event and sends it to the controller of rules, and the focus attention module of each layer. 

From the former, the controller receives the applicable censored rules (rules that prevent 

the event being fed to a layer), whereas from each of the attention modules it receives a 

proposed action. With this information, the controller activates the corresponding censor 

rule (a rule that inhibits the action of a specific layer), determines the action to execute, 

and orders its execution. 
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IMPLEMENTATION Some non-trivial algorithmic components must be provided to com

plete the implementation of the architecture, namely a planner and a predictor. The plan

ner required is a hierarchical partial planner that can interleave plan formation and execu

tion, and defer committing to specific sub-plan execution methods or temporal orderings 

of sub-plans until absolutely necessary. It must allow the possibility of being regularly 

pre-empted and its state being suspended for subsequent use, and must use a combined 

earliest-first depth-first search for constructing the plans. The predictor must be capable 

of predicting the behaviour of an entity by making a temporal projection of its character

istics (configuration vector) in the context of the current world situation and the entity's 

ascribed intentions. 

CONSEQUENCES The advantages of using this pattern to implement an agent are the follow

ing. First, the architecture provides the agent with both reactive and deliberative features, 

whose balance can be tuned to a specific application. Second, by modelling the behaviour 

of the agent itself and of other entities, the architecture can accurately predict potential 

conflicts in their goals, making it possible for the agent to change its behaviour to avoid 

them. The disadvantages of this architecture are the following. First, before using the 

agent in a real situation some tuning must be performed, which basically means finding, 

by trial and error, the values of the parameters that make the agent suitable for a par

ticular application. Second, the architecture involves the use of concepts that a novice 

practitioner may find complicated, such as conflict resolution strategies. 

EXAMPLE In the application described by Ferguson [33] about agents travelling from one 

point to another, the Reactive Layer contains situation-action rules for avoiding collisions 

between agents travelling along the same lane. Such rules are simple to state; for example, 

for an agent to avoid collision with the object in front, the situation part of the rule consists 

of checking that the object is in front, that its velocity is less than the agent's and that the 

distance between the object and the agent is less than a threshold. Additionally, the action 

part of the rule commands the agent to reduce its velocity. 

In the Planning Layer, determining a route is a goal of the agent, and is thus stored in the 

goal stack. In relation to this goal, there must be a plan schema to plan a route, whose 

elements consist of: no preconditions; a body consisting of three tasks, get a route, get the 

speed of a route, and follow the route; an applicability condition that states that these tasks 

must be performed in that order; no post-conditions; and a cost of three units (presumably 

one unit per task). 

4.5.3 Obtaining a detailed design for the TouringMachines architecture 

The TouringMachines architecture consists of reactive, planning and predictive components, 

making it suitable - at least in principle - to design a broad range of agents. However, the in·· 

formation required to use this architecture, and consequently its pattern, is not directly obtained 
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from a high-level design, Thus, an additional process is necessary in order to obtain an agent 

design by using the TouringMachines pattern. Such a process is described below. 

Summarising, the elements required by the TouringMachines architecture are the following . 

.. Environmental states (in the perception subsystem). States of the environment that the 

agent can recognise, 

II Censor rules (in the control framework). They are if-then type rules that check the pres

ence of particular sensory objects and prevent them from being fed to selected layers. 

II Suppressor rules (in the control framework). These are if-then type rules that check the 

presence of particular actions and inner states and prevent them from being fed to the 

effector subsystem. 

II Situation-action rules (i:n the Reactive Layer). These rules form the core of the Reac

tive Layer, associating environmental states to actions, so that the action is (potentially) 

executed when the corresponding environmental states hold. 

" Focussing rules (in the Planning Layer). These rules filter the entities that are considered 

relevant for planning tasks. They are built on pre-defined predicates which are mainly 

domain-dependent. 

.. Schemata (in the Planning Layer). A schema is a high-level description of an achievable 

task, and is used by the planner to build plans to pursue tasks. It consists of: body, the 

actual instructions that carry out the task; preconditions, states of the world that must hold 

for the task to be performed; applicability conditions, that specify the order in which the 

body steps can be performed; postconditions, states of the world that must hold for the 

schema to complete; and cost, the amount of resources consumed by the execution of the 

schema, 

" Database of the world (in the Planning Layer). A database is used to store knowledge 

about the environment of the agent; for example, for a navigating agent the database 

contains a topographical map of its surrounding world. 

e Focussing rules (in the Modelling Layer). These are similar to those of the Planning 

Layer, but with the specific level of abstraction required by the Modelling Layer, 

" Models (in the Modelling Layer). Models are representations of the entities external to 

the agent such as other agents and environmental entities. Models consist of four parts: 

a configuration for expressing the characteristics of the entity, such as a unique identi

fication and some other domain-specific features; and the beliefs, desires and intentions 

ascribed to the entity. 

II Conflict library (in the Modelling Layer). The contlict library specifies the possible goal 

contlicts and the way in which they are resolved, and is formed of contlict resolution rules, 
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each consisting of three parts: the conflict identifier to which they refer, the goal that is 

under conflict, and the procedure to follow for an eventual recovery. 

In order to map a Gaia-type design to this architecture, we suggest beginning by defining the en

vironmental states, which includes the identification of the information perceived by the agent. 

This is done in a similar way to other architectures, noting that each entity observed must be 

uniquely identified. First, since the set of environmental states represents how the agent per

ceives its environment, it must be obtained from the the environmental entities that the agent 

can read or modify, as expressed in the roles' permissions. These environmental entities must 

include those needed by the agent to execute its activities and protocols, as well as the messages 

exchanged with other agents during the execution of protocols. 

Considering that the Reactive Layer contains those situations that require a quick reaction, the 

candidates to be modelled in this layer are the following. 

e Safety responsibilities with simple recovery procedures. The reason for this is that safety 

requirements are usually based on the conditions of perceived information, and include a 

recovery action; when violated they require a quick recovery. For example, in a pipeline

type production organisation, a safety responsibility might state that the processing flow 

of items must be maintained to a constant. If an expected situation causes a reduction 

of the flow, the appropriate action must be triggered, for instance to increase the speed 

of a motor. In a TouringMachines this safety requirement can be naturally mapped to a 

situation-action rule that monitors the difference between the constant flow and the agent's 

flow, and the action increases the speed of the motor. 

e Activities that consist of receiving a message, processing its content in a simple way, 

and replying to the message. These are common activities for some type of agents, for 

example those acting as wrappers of legacy software. The key point here is to decide if 

the process of the content is actually simple enough to be completed in a short time. 

• Any other actions triggered by external events that are simple and require quick response. 

These requirements obey the fact that the actions will be part of the reactive behaviour of 

the agent. 

The rest of the agent functionality must be represented in the Planning Layer. Thus, the designer 

must provide a decomposition of the corresponding safety and liveness responsibilities into sub

plans by means of the schemata referred to above. It must be noted that more than one sub-plan 

can be available for the same task, in which case the sub-plan to use is selected by cost. However, 

doing this requires the use of planning techniques that belong to the field of artificial intelligence 

rather than agent computing, and it is out of the scope of this thesis to describe a form of plan 

generation for responsibilities. 

We suggest using the database of the world for storing the static information about the world 

that is normally stored in the beliefs component in other architectures. 
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However, a design produced by Gaia does not provide enough information for obtaining the 

other elements required by the architecture, so we can only mention some general guides. Fo

cusing rules are straightforward to define, although highly domain dependent. The key point 

when defining the focusing rules is to note that they are used to filter all the possible perceptual 

inputs and propagate only the relevant information at the correct level of abstraction. 

In the case of the modelling library, which consists of one model for each agent in the system 

and each entity in the environment, each of the models must be constructed. The first part of 

the model consists of a characterisation of the entity or agent, including its unique identifier. 

The rest of the model applies only to agents and specifies their beliefs, desires and intentions. 

These models are used to predict the behaviour of the entities and thus foresee and solve possible 

conflicts. However, it must be noted that accurate predictions in open systems is, in general, not 

possible, since the exact behaviour of some agents in the system is unknown at design time. 

Finally, the conflict library contains the procedures to solve a conflict that arises when pursuing 

two or more goals. 

Based on the above analysis, we can conclude that from a Gaia-type design it is difficult to 

obtain a detailed internal structure for architectures such as TouringMachines, since the designer 

must carry out complex activities such as a plan decomposition for each goal, and the explicit 

representation of beliefs, desires and goals for each of the agents of the system. Also, the 

TouringMachines architecture might not be appropriate for open systems, since the agent must 

have an accurate representation of every other agent's beliefs, desires and intentions. 

4.6 Towards a general pattern 

The previous subsections show the architectural patterns corresponding to representative ar

chitectures. We envisage three approaches for extending these results to a broader range of 

architectures (note that these approaches are not mutual1y exclusive). The first approach is to 

populate the catalogue of architectural patterns so that more agent architectures are considered. 

Populating the catalogue can be achieved by making the catalogue available to a community of 

developers, since this would speed its population and, through active feedback, the quality and 

accuracy of each pattern would be increased .. As the number of patterns grows, some upgrades 

to the catalogue would be necessary, for example to consider a classification of the patterns by 

domain of application, and the inclusion of facilities to assist in the selection of the appropriate 

architecture for a specific application. Furthermore, the patterns may evolve to include code for 

specific platforms. However, this is a long-term approach, due the time it takes for a natural 

growth a significant number of patterns, receive feedback and update the patterns. 

A second approach towards generalising the results of the previous subsections would be by 

means of a general pattern. Such a pattern would encompass the functionality of a range of 

architectures, allowing practitioners to specialise it for a specific application by choosing the 
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appropriate components and interconnections. The key disadvantage of this approach is the 

highly specialised background a practitioner must possess to be able to select the elements that 

are relevant for their purposes, assemble them, and finally generate the required pattern. 

Finally, the third approach consists of guidelines to assist the development of a pattern for any 

other architecture. The disadvantage here is that, since each architecture is different, some parts 

can only be sketched, and there is always the risk that some aspects are not applicable to another 

particular architecture. However, in this thesis, we adopt this approach because it can be used 

to populate the catalogue (i.e. the first of the three approaches), and is more in accordance, 

than the second approach, with our aim of providing tools that can be used by typical software 

developers. 

4.6.1 Guiding the development of an architectural pattern 

There exist a large variety of agent architectures. This variety is beneficial because no single 

architecture provides adequate solution for all types of applications. Since it is not the purpose 

of the catalogue to reduce this variety, we need to find ways to allow the incorporation of other 

architectures into the catalogue, and is described below. Our solution takes the form of method

ological guidelines for developing a pattern not considered in the catalogue. This, however, is 

not a detailed procedure. In fact, due to the huge diversity of characteristics exhibited by agent 

architectures, we believe that is not viable to construct a procedure that would be, at the same 

time, practical and more specific. 

1. It seems obvious that the first step is to find the documentation of the agent architecture 

in question, but actually not all documentation is suitable for the purpose of developing 

guidelines for the architecture for several reasons: some documents focus on how the 

agent behaves instead of how it achieves that behaviour; some documents describe an ar

chitecture only for a specific problem; and some documents are vague in their description 

of the architecture. When looking for appropriate documentation, we need to focus on 

those that include a procedural viewpoint of the architecture. Documents that formalise 

the operation of the architecture are excellent for this purpose, but they are scarce. 

2. All the essential concepts of the architecture must be well understood, observing that 

some terms have different meaning for different authors and even in different documents 

by the same author. We must complete the description of those terms that are just poorly 

described in the documentation. 

3. A good form of starting the construction of the pattern is by defining the structure of the 

architecture in a class diagram. Except for the simplest architectures, it is convenient to 

divide the whole structure into parts by using packages (a graphical notation to group el

ements such as classes and relationships). Regarding the question of which packages to 
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define, we can say that it depends mainly on the size of the architecture and its composi

tion, since some architectures are highly modular while others tend to be monolithic. In 

the case ofthose architectures that possess an intrinsic modularisation (e.g. layered archi

tectures), it is sensible to have a package for each of the modules. At least one package 

should be reserved for input/output components such as sensors, actuators and message 

passing mechanisms. 

4. All architectures include components to interact with their environment, which are are 

mainly of two types: components to sense and act on the environment (sensors and ef

fectors, respectively), and components to send to and receive messages from other agents 

(message passing mechanisms). Without loss of generality, sensors and effectors can be 

treated as information entities because even physical devices can be controlled by means 

of computational interfaces. We deal with sensors and effectors below, while message 

passing mechanisms are considered subsequently. 

5. Sensors and effectors are simple in concept and structure and can be easily separated from 

the rest of an agent. For this reason, it is easy to devise a general interface to express the 

functional characteristics of these components, leaving only its implementation specific 

to the platform. Effectors are the simpler of these two types of components since their 

operation is generally under the command of the agent. Because of this, an effector can 

be appropriately modelled as a class - shown in Figure 4.11 - whose main operation 

is receiving an action as an input parameter, and delegating to another (interface) class 

the performance of the action. If the rate of requests exceeds the rate of processing the 

requests, a buffer might be used to store the excess. Subsequently, the actions in the buffer 

might be processed on demand or at the discretion of the effector. This basic operation is 

depicted in Figure 4.12 by means of a sequence diagram. 

On the other hand, sensors come in two flavours: active and passive. These are depicted as 

specialisation classes in the diagram of Figure 4.13. Passive sensors act on request, while 

active sensors perceive the environment as soon as a relevant event occurs. Implementing 

passive sensors is simple and it is enough to have a class whose main operation returns the 

most recent event or the next one in a buffer. Regarding the type of value returned by this 

operation, it is advisable to define a type general enough to fit all the types of events that 

may occur (class EnvironmentalState in the figure). By contrast, active sensors need to 

announce that new information is available. This can be achieved by having an operation 

- NewSensedlnfoAvailable in the figure - that indicates whether or not a new chunk of 

information is available or by knowing beforehand the operation to be called. In relation 

to the implementation of active sensors, it is also important to establish what to do with 

unread information when new information is obtained, the most common strategies being 

to discard them, or to store them in a first-in first-out buffer. This is indicated in the figure 

by means of the operation SelectMode. 

6. Message passing mechanisms are used by an agent to communicate with other agents 

in the system. From the viewpoint of functionality, it is sufficient to have a class with 
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two operations, one to receive and one to send messages. Such a class may also include 

operations to parse and synthesise the language in which the messages are expressed. 

However, some other aspects of message passing are highly platform dependent, such as 

the form in which to denote the parameters of the communication, such as the sender, the 

receiver and a time-out period. 

7. The existence of a reactive component is common in several architectures because it pro

vides an effective way to deal with situations that require opportune responses to changing 

conditions of the environment. A general means of modelling a reactive component is to 

view it as a controller of behaviours. Behaviours consist oftwo parts, one part specifying 

the environmental conditions that fire the rule, and another part to specify the actions to 

be performed when the behaviour is fired. The controller is in charge of checking which 

behaviours are fired and selecting one or more of the corresponding actions for execu

tion. It has been suggested that adding a state as a third component in behaviours can 

be convenient in several situations. On the other hand, if the architecture possesses other 

components (such as deliberative or planning components), the overall components can 

be arranged in different forms. 

8. Apart from a reactive component, many architectures include at least one non-reactive 

component which may perform one or several tasks such as planning, predicting, schedul

ing, and coordination. When one or more of these components are present, they can be 

arranged in different ways, for example in layers, both horizontal or vertical. In a horizon

tal distribution, each of the components, or layers, has access to the sensed information 

as well as to the effectors, whereas in vertical layering only one layer has access to the 

sensed information and only one layer has access to the effectory capabilities (the same 

layer in some architectures). The specific number of layers and the functionality of each 

layer vary for each architecture. For example, the TouringMachines architecture consists 

of three layers, the lower layer being a reactive component, the middle layer containing 

reactive plans to be used according to the situation, and the upper layer being a planner 

which constructs plans and finds the best action to perform in order to achieve a goal. 

9. Whichever components are present in an agent, it is important that they are distributed in 

modules, that is, separated by function with their interactions clearly identified. 

10. BDI architectures are some of the most used architectures for developing agent-based 

applications. However, it must be noted that although all BDI architectures are based on 

the same basic concepts, they vary widely in terms of composition and functionality 

We conclude that, with the purpose of designing a general architectural pattern, only some 

aspects of an agent can be generalised; for example, the input/output interfaces and the reactive 

component. However, due to the great variety of architectures, not much can be said about 

other components such as planners, coordinators, and predictors since they are not present in all 

architectures and, even when they are present, they vary considerably in composition and in the 

role they play in the agent functionality. 
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4.7 Related work 

Some current methodologies use an explicit representation of the internal structure of the agents 

by means of agent architectures. Kearney et al. provide a general architecture as part of the 

MESSAGE [78] methodology, in which an agent is formed of at most four layers: the Per

ception and Communication Layer (PCL), the Decision and Management Layer (DML), the 

Domain Layer (DM), and the Resource Layer (RL). The PCL gets information from the en

vironment and interacts with other agents. The DML controls actions of the agent through 

deliberative decisions, the DL groups domain specific entities, and finally, the RL includes the 

internal resources the agent may need. Kearney and colleagues state that such an architecture 

may be configured to satisfy specific applications. For example, reactive agents would use only 

the Perception and Communication Layer and the Resource Layer, whereas deliberative agents 

would employ all the layers. However, no further details are provided and, after all, the decom

position of any agent into only four layers is a coarse analysis. For instance, decomposing the 

structure of a reactive agent into only two layers (the PCL and the RL layers) does not provide 

a comprehensive characterisation. 

INGENIAS [96] is a methodology that evolved from MESSAGE. It emphasises the construction 

of models for each relevant part of the system, in particular agents. The models are designed 

according to meta-models, which are descriptions of the entities, their relationships and the 

constraints allowed during model construction. In this way, for example, any agent is assumed 

to include modules such as mental entity, mental state, a set of roles to be played, and a set of 

tasks. Although this approach offers a rich internal representation of agents, we believe that it 

may lead to designs which do not have any theoretical background. This gap between design and 

theory makes it difficult to establish the conditions under which the agents will op5rate correctly. 

Also, this approach leaves the developer alone with the burden of adjusting the architecture to 

specific applications. In our work, we provide the developer with concrete designs of well

known architectures. 

MaSE [85] is another example of a methodology that employs agent architectures to model the 

internal structure of an agent. During the Assembling Agents sub-phase, the architecture and 

its modules are defined by the developer, but both can be selected among those pre-defined by 

the methodology. Pre-defined agent architectures (called architectural styles) include reactive, 

knowledge-based, planning and BDI architectures. The architectural styles and the components 

are described using a language similar to UML, considering only static aspects and leaving 

out the description of control. In our work, we include a description of the dynamics of the 

components of the structure, and our goal is to obtain a general method for any architecture. 

Tropos [81] also uses an agent architecture to represent the internal structure of agents, but it is 

tied to a BDI architecture. During the detailed design phase, the abstractions used in the previous 

phases (e.g. example actor, goal and task) are mapped to BDI concepts (agent, belief, desire 

and intention). Later, during the implementation phase, these BDI concepts are mapped onto 
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constructs provided by the ZEUS platfOlm. One drawback of this approach is that it depends on 

a specific architecture, as well as on a platform. 

In contrast to these methodologies, an alternative approach is to obtain an implementation di

rectly from the design specification, without an intermediate explicit representation of the inter

nal structure of the agents. This is the case in [94], where Massonet et al. present a case study 

to show the transition from a design specification obtained with MESSAGE to an implemen

tation using the JADE platform. However, we have identified two limitations in this approach. 

First, since no explicit agent architecture is used, it is difficult to envisage for which type of 

applications the approach is suitable, and how it compares to other approaches. Second, this 

approach clearly depends on the methodology and platform used, which makes it unsuitable for 

open applications. 

4.8 Conclusions 

The adoption of the agent-oriented approach in industrial environments largely depends on the 

existence of comprehensive software tools that assist developers in key parts of systems design, 

for example during the design of the internal structure of the agents. Although it might be argued 

that agent internal development can be carried out by means of traditional software engineering 

- for example, object-oriented methodologies - these techniques present some drawbacks 

when used on their own. To be more specific, consider the Unified Software Development 

Process [69] as representative of object-oriented methodologies, in which the concepts of pro

activness, autonomy and goals do not have direct representation. Pro-activness and goals have 

no direct representation because objects are not capable of pursuing goals. Similarly, autonomy 

hasno direct representation because objects are not capable of select their own course of action. 

Thus, to be used effectively for agent development, object-oriented methodologies need to be 

complemented with other mechanisms. 

Agent architectures provide a powerful mechanism on which tools for modelling the internal 

structure of agents may be built, but they are difficult to use per se, because their descriptions 

are not targeted at software engineers. 

In this chapter we have presented a framework in which agent architectures are used to build 

representations of the internal structure of agents, described by means of design patterns. We 

have also included three patterns describing some of the most cited agent architectures. 

A catalogue containing patterns like these has multiple benefits. First, these patterns allow agent 

architectures to be viewed as tools to model the internal structure of agents. Second, a non-agent 

expert can use the catalogue to learn about agent architectures. Third, the catalogue facilitates 

the comparison of different architectures and the selection of the most appropriate one for a 

particular application. Fourth, the use of patterns speeds up the development process. Finally, 
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by reusing general solutions, the use of patterns allows us to concentrate efforts on domain

specific aspects, 
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Chapter 5 

An incremental and iterative 

methodological process 

In Section 2.5 we highlighted the importance of software methodologies for the development 

of systems in a systematic and controlled form. We also noted that methodologies consist of 

models, tools, and a process that is arguably the core of a methodology, describing the set of 

activities needed to carry out the development of a system. Thus, the process details which activ

ities to perform, how to perform them, and in what order. At present, there exist a considerable 

number of agent-based methodologies, and thus of development processes. The types of activ

ities considered in current processes are rich and varied, and so are the techniques to perform 

them. However, the order in which the activities are performed has been explored much less, 

and is usually in a sequential form. Although simple in concept, the problem with this sequential 

form is that it is not suitable for tackling complex and large systems because of the difficulty 

of designing a complete system in just one single iteration. Consequently, without the use of a 

more powerful approach for decomposing the development process, such methodologies have 

serious drawbacks in terms of the type and size of applications to which they can be applied. 

The incremental iterative approach is one such approach that has been successfully used in 

object-based software engineering to divide the development process into more manageable 

units. Basically, this approach consists of decomposing the whole development of a system 

into several mini-projects [69], in which each mini-project follows the traditional flow of re

quirements, analysis, design, implementation and testing, and results in executable code that 

produces increments in the functionality of the system. The development of each mini-project 

starts from the specification obtained during the previous mini-project and is seen as an itera

tion that continues the workflow of development of the complete system. In order to be useful, 

the decomposition of the system into mini-projects must be carefully planned, usually with the 

aims of extending the functionality of the product and reducing the risks of failure of the whole 

project. 
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The application of the incremental iterative approach to practical problems provides multiple 

benefits in terms of work organisation, since the parallelism of the development activities is 

increased, as well as user feedback. A good level of parallelism helps to keep the project under 

time and budget constraints, and adequate user feedback helps to develop the right system, since 

the product of each iteration can be presented to the user, and the corrections included in the next 

release. However, in spite of its many benefits, the incremental iterative approach has not been 

applied in most agent-oriented software methodologies. In contrast, most agent methodologies 

exhibit just a linear sequence of steps, or the existence of iterations is only vaguely outlined. 

In this chapter we present an incremental iterative process based on the Gaia methodology [134]. 

To this end, we first present the general characteristics of the process in Section 5.1. Then, and in 

accordance with how the process is decomposed, we describe the workflows - requirements, 

analysis, organisational design, agent design, and implementation - in sections Section 5.2, 

Section 5.3, Section 5.4, Section 5.5 and Section 5.6, respectively, and iterations in Section 5.7. 

Finally, in Section 5.8 we analyse related work and present our conclusions. 

Where appropriate, the workflow descriptions have been divided into two parts. The first 

patt presents the artefacts - as graphical models are named in the Rational Unified Process 

(RUP) [117] - and the second part presents the activities carried out during the workflow, 

which typically involve one or more of the artefacts. With the aim of providing the reader with 

a general view of the process, in Figure 5.1 we have depicted the workflows and their artefacts. 

If read from top to bottom, the figure shows the workflows in the order they are realised in the 

process. In the area corresponding to each workflow, the artefacts are represented by rectangles. 

Note that, for reasons of presentation, in the organisational design workflow we have also in

cluded the organisational structure, although it is not strictly an artefact. Also, the requirements 

analysis and the implementation workflows do not contain artefacts since they are not consid

ered in depth in this thesis. In particular, requirements engineering is not considered in detail 

in this thesis, because its complete analysis lies beyond the limits of agent-based computing, 

involving areas such as goal-oriented software engineering [22] and aspect-oriented software 

development [49] (requirements engineering for agent-based systems is not tied to the agent 

approach, but can be accomplished through other approaches). Such an analysis would signif

icantly increase the length of the thesis but would not contribute to improve the state of the art 

of agent-oriented software engineering. Additionally, implementation is not considered in de

tail in this thesis because it largely depends on specific tools (programming languages, toolkits 

and execution platforms). Although in any development approach the implementation process 

depends on the tools used, in the agent approach this is exacerbated due to the heterogeneity of 

the tools and the lack of standards. 
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5.1 The approach 

The main goal of applying the incremental iterative approach to the development of a system is 

to reduce the risk of producing the wrong system, and the risk of exceeding delivery times. In 

order to do so, the approach decomposes the development activities in two dimensions. The first 

dimension is similar to traditional ways of developing software, decomposing the development 

into requirements analysis, analysis, design and implementation (in this chapter we refer to each 

of these parts as workflows). The second dimension in which the development is decomposed 

is by means of iterations. Each iteration consists of the application, to some degree, of all the 

workflows mentioned above, with several iterations during the whole development cycle. Early 

iterations focus on the first workflows, requirements and analysis, while subsequent iterations 

focus on design and implementation, thus delivering executable versions of the system. Here, 

each new executable delivered extends the functionality of the previous one. These executable 

deliveries are usually internal, and are useful for evaluating the correctness of the system, as 

well as for obtaining user feedback. Also, these executables can be used as a tangible measure 

of the progress of system development. This decomposition of system development is depicted 

in Figure 5.2, in which the workflows and iterations occupy the Y-axis and X-axis, respectively. 

In this figure, the amount of effort dedicated for each phase and workflow is indicated by the 

area of the geometric form; for example, the base of the triangle in the first iteration is placed 

around the requirements workflow, which means that most of the effort in the first iteration is 

dedicated to the requirements. 
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The sections below describe each of the workflows and a generic iteration, in the natural order 

they appear in the process, as depicted in Figure 5.3. Note that the design has been divided into 

organisational design and agent design, reflecting that each addresses very different aspects of 

a system. In the same figure, the existence of iterations has been indicated by an arrow going 

back from the last workflow (implementation) into the first workflow (requirements analysis). 

Most workflows are based on the Gaia methodology process, but contain some aspects that are 

not included (or not explicitly included) in Gaia, such as techniques, activities, and the use of 

the workflows in the context of the incremental iterative approach. In particular, in Figure 5.1, 

the models not considered in Gaia (the structure model and the functionality model) have been 

highlighted by means of thick lines. The description of the workflows include the artefacts 

realised during the workflow, and the activities required to realised them. 
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5.2 Requirements analysis 

Although the requirements workflow is not considered in detail in this thesis, we include it here 

because we need to state what is expected from it; that is, what information is to be provided to 

the analysis workflow by the requirements workflow. 

The role of the requirements phase is to gather and organise the information about the capability 

that the system must possess and present it in a document from which the analysis of the system 

stmts. The exact form of achieving this goal depends on the specific approach used, but is not 

considered in this thesis, because its complete analysis lies beyond agent-based computing, as 

can be exemplified by goal-oriented requirements engineering [22]. This does not mean that the 

agent approach cannot be applied to this workflow, since some work does exist in that direction, 

for example agent-oriented requirements engineering []30]. 

What is expected from the requirements phase is a document that contains the following: 
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It An overall description of the system, and of the vocabulary needed to understand this 

description. 

It A description of the environment of the system, the boundaries of the system and its 

environment. 

It A description of the functionality of the system, particularly its goals. If possible, this 

should include the priorities of the different goals and sub-goals. 

It Insights about non-functional requirements, such as the expected (or hoped for) number 

of users. 

It The authority that the main actors in the system have over each other. 

It The rules and constraints that restrict the operation of the system. 

5.3 Analysis 

The analysis workflow copes with understanding the system and its goals, sub-systems, ele

ments, rules of behaviour, and the environment that surrounds it, but does not provide solutions 

for how to achieve the desired functionality of the system. In this way, in the analysis, under

standing the functionality of the system is more important that providing a rigorous specification 

of the system. This is reflected in the way the models are expressed, using a language that is 

closer to the vocabulary of the application domain than to a formal language. 

The analysis takes as input the information provided by the requirements analysis. By means 

of artefacts, this information is structured and organised in such a way that it can be better 

understood, consulted and modified. In the following subsection we describe these artefacts. 

5.3.1 Artefacts 

The artefacts in the analysis phase are arguably the most important artefacts of all the process, 

since they are used, in one way or another, in the other workflows. These artefacts are: the 

sub-organisation model, the environmental model, the preliminary role model, the preliminary 

interaction model, and the preliminary organisational rule model. (The last three of these arte

facts were discussed in Section 3.2.1, although the organisational rule model was not explicitly 

referred to as preliminary then). 

• The sub-organisation model decomposes the whole system into separated, and usually 

weakly-connected, sub-organisations, and can reflect the physical distribution of the com

ponents of the system, or can be based on other criteria, such as differentiated functional·· 

ity, the existence of legacy software, or simply modularisation to facilitate the design. 

150 



• The environmental model consists of a list of the entities in the environment, together with 

their elements and the rights the different roles have to access them. 

• The preliminary role model is formed by the roles in the system. Each role represents an 

entity that is in charge of accomplishing one or more responsibilities by using environ

mental entities, carrying out activities and interacting with other roles through protocols. 

Roles are described by means of their responsibilities and permissions to use the environ

mental entities. 

• The preliminary interaction model consists of all the interaction descriptions of the sys

tem. Such interaction descriptions, or protocol~, are formed from the roles that participate 

in the interaction and the data involved. 

• Finally, the preliminary organisational rule model encompasses all the organisational rules 

of the system. During the analysis, the organisational rules are identified and described 

informally in plain text. Later, during the design, when all the elements of the system have 

been sufficiently defined, the organisational rules are expressed in a formal language. 

5.3.2 Activities 

The activities involved in the analysis workflow, and the sequence in which they are performed, 

are shown in Figure 5.4. As can be observed, first, the limits of the system are determined, 

the sub-organisations of the system are identified and the sub-organisation model is generated. 

Second, the entities in the environment are identified and described. Next, the main roles of 

the system are identified, together with their main responsibilities, and the preliminary role 

model is partially specified. Then, the interactions between the roles needed to accomplish their 

responsibilities are identified, and used to create a preliminary interaction model. Finally, the 

organisational rules are identified and described informaliy as plain text. 

5.4 Organisational design 

The organisational design proceeds the analysis, thus most of the organisational design artefacts 

are extensions or refinements of those of the analysis. Furthermore, the design artefacts are 

targeted at developers rather than at users, and so are described in a more precise and technical 

form. However, the scope of the design does not include the actual way in which the system is 

codified, since that is the concern of the implementation workflow. 

While in other development approaches the design is regarded as a one-part workflow, in multi

agent systems it is convenient to divide the design into two parts because this reflects the intrinsic 

nature of multi-agent systems. The first part, the organisational design, is concerned with mod

elling the interaction between agents, whereas the second part, the agent design, is concerned 

with modelling the internal structure of the agents. In this section we describe the former, while 
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FIGURE 5.4: Activities of the analysis 

the latter is described in the following section. There are two main tasks during organisational 

design, one of which is to find an appropriate orga!lisational structure to model the system, and 

the other is to refine the artefacts obtained in the analysis. The artefacts and activities involved 

in pursuing these tasks are described in the following subsections. 

5.4.1 Artefacts 

There are four artefacts in the organisational design: the organisational structure, the role model, 

the interaction model, and the organisational rule model. To avoid confusion with the corre

sponding analysis models, sometimes we refer to these three last models as the definitive mod

els. As was discussed in Chapter 3, an organisational structure serves as a framework in which 

agent interactions are modelled, and at the same time provides a structure that supports the de

velopment of the system, just like software architectures are employed in the Rational Unified 

Process [117]. 
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Because of their importance, organisational structures require an unambiguous description. A 

language to describe organisational stluctures was presented in Chapter 3, and basically consists 

of articulating the control regime of the organisation. The tasks of selecting an appropriate 

structure and describing it can be alleviated by re-using organisational patterns, discussed in 

Section 5.4.2.1. 

Regarding their content, the design models take into account the selected organisational struc

ture, which means, on the one hand, the appearance of new roles, protocols and organisational 

rules, and on the other hand, modifications of the elements already present in the preliminary 

models. Additionally, the design models must be complete and expressed in more detail than 

the analysis models. First, the role model must contain all the roles in the system, and each role 

must be completely defined. In particular, the permissions and responsibilities must be fully 

defined, since they specify the functionality of the roles. Second, the interaction model must in

clude a protocol description for each of the interactions of the system. Lastly, the organisational 

model must include all the rules that govern the behaviour of the system, including those related 

to the organisational structure. In the case of this model, an important refinement is that the 

organisational rules must be expressed in the formal language defined in Section 3.3.4, rather 

than in natural language. 

5.4.2 )\ctivities 

The activities in the organisational design are oriented towards establishing the structure of the 

system and towards detailing the interactions between the roles. The activities of the organi

sational design, and the order in which they are performed, are depicted in Figure 5.5. Also, 

the figure highlights the use of organisational patterns in detemlining the structure of a system. 

These activities are described in the following. 

5.4.2.1 Defining the organisational structure 

One of the main activities during the organisational design is precisely that of selecting an ap

propriate organisational structure·for the system. Once selected, the organisational structure 

determines the information needed to complete the role and interaction models initiated during 

the analysis. This organisational structure is selected on the basis of several factors. First, al

though not all the communication paths are defined in the analysis models, the available paths 

provide a good insight into the topology. Second, the real-world problem modelled by the sys

tem typically possesses an integral organisational structure, which can be inherited in the system 

itself. Third, although the consideration of non-functional requirements for the system is out of 

the scope of this process, it is worth mentioning that different organisational structures exhibit 

different degrees of efficiency and robustness. Finally, other factors to consider when selecting 
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an organisational structure deal with facilitating the implementation and monitoring of organi

sational rules. Depending on the particular rules, some structures can facilitate this more than 

others. 

Although it is difficult to give a detailed procedure to select the best organisational structure, we 

can provide some guidelines. First, the topology is depicted. The way this is done was illustrated 

in Figure 3.7, by representing roles as nodes and, for each protocol, an arc from the initiator to 

every collaborator. Next, the control regime is obtained and depicted. For this purpose, each 

protocol is analysed to determine the control relationship between the participants (initiator and 

collaborator). Such an analysis can be based on the nature of the interaction, on what is stated in 

the requirements, or by consulting an expert in the domain. If there is an authority relationship 

from one role to the other, this is depicted by means of an arrow in the arc. 

After this, there are three possible situations. The first and simplest is when the designer iden

tifies the organisational structure from the graphic. This assumes that the designer has previous 

experience and that the graphic is sufficiently descriptive. The second case consists of compar

ing the graphic to the structures included in a catalogue of organisational patterns, and selecting 
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the one that best matches. Such a catalogue was presented in Section 3.6, together with a pro

cedure to select an appropriate pattern. The last case consists in building a new organisational 

structure, for which the graphic can be completed with additional roles and interactions, and 

then expressed in the language described in Chapter 3. 

5.4.2.2 Creating the organisational design models 

As mentioned above, the design models - the role model, the interaction model and the or

ganisational rule model - are built from the corresponding analysis models. Specifically, for 

the interaction model each protocol description is checked to be consistent with the recently 

selected organisational structure. For example, it might be that a collaborator in a given protocol 

no longer exists, as a consequence of being joined with other roles or disappearing. In case of 

inconsistency, the necessary modifications are carried out. After this, any additional interaction, 

caused by the organisational structure, must be represented with a protocol description. 

For the role model, each of the role descriptions in the preliminary role model is reviewed to be 

sure that it complies with the organisational structure. Some possible causes of non compliance 

are that the role is no longer part of the system, that the role no longer participates in a protocol, 

or that the role needs to be involved in other protocols. After this, it is checked that all the roles 

in the organisational structure have their corresponding role description in the model and, if not, 

they are created. Note that the description of the roles at this point must be complete, includ

ing exhaustive lists of permissions and responsibilities, the former expressed in the language 

proposed in the Gaia methodology [134]. 

Lastly, the organisational rule model is created from the preliminary organisational rule modeL 

Again, the existing rules must be checked and adapted, if necessary, to the introduced organisa

tional structure. Some reasons for adapting the rules are that some elements - roles or protocols 

- no longer exist, that they do exist but their meaning has changed, or that the rules have to 

involve new elements. Then, the rules governing the operation of the structure - those indepen

dent of the domain - are incorporated into the model, taking care that they are not in conflict 

with existing rules. Next, those rules that could have arisen as a result of the introduction of the 

organisational structure are added to the modeL The last step in this activity is to express all the 

rules in the model in the language described in Section 3.3.4. 

5.5 Agent design 

During the organisational design, agents are considered to be black boxes, and their detailed 

composition is ignored. In contrast, during the agent design workflow - to which this section is 

devoted - the emphasis is placed on the internal design of the agents. In this way, the objective 

of agent design is to produce a specification of how each agent fulfils its requirements. 
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When detailing the internal structure of an agent, it must be noted that a huge variety of agents 

exists. For instance, there are agents that rely on close interaction with humans, while others 

act mainly with no human intervention. Also, some agents exhibit complex reasoning, whereas 

others exhibit such a simple behaviour as providing services on request. These varied types of 

agents differ in the details of their design; for example, agents with intense human interaction 

might need special consideration in designing human interfaces. Since it would be difficult to 

encompass all the possibilities in just a single method, in the following we provide guidelines 

for the most common aspects of agent design. 

The agent design workflow takes its input from the organisational design, and its outputs are used 

in the next workflow, namely implementation. We describe below the artefacts and activities 

involved in the agent design, using the object paradigm as an approach to design systems. 

5.5.1 )\rtefacts 

There are two artefacts involved in the agent design: the structure model and the functionality 

model. Since we use the object approach as the means to design agents, the artefacts are also 

based on common object artefacts. The structure model provides a structural decomposition of 

a role into components, while the functionality model specifies how these components interact 

to achieve the desired role behaviour. We detail both artefacts below. 

5.5.1.1 The structure model 

The objective of the structure model is to decompose the design of each role into manageable 

units, or classes. This decomposition is done in terms of data and functionality. More specif

ically, the structure model is formed of class diagrams [J 17], one for each role in the system. 

Although a class diagram is a common concept in object-based techniques, it has several mean

ings and purposes - depending on the stage of the process in which is used - so it is worth 

explaining the way in which we use it here. In the structure model, we use a class diagram to 

describe the main internal components of a role (as classes), and the static relationships between 

them, such as dependence, part-of and inheritance. The level of detail in the description must 

be sufficient to identify the core classes, and for each of these classes, the operations neces

sary to achieve the functionality of the role, and the internal information required to implement 

these methods (attributes). However, it is not necessary that the diagram includes all the classes 

needed to implement the role, nor all the information and operations to implement each class. 

Thus, this level of detail required is that usually found in the design phase of methodologies 

such as RUP [117]. 

An example of a class diagram, corresponding to a fragment of a EDI agent, is shown in Fig

ure 5.6. This class diagram contains five classes (Agent, Intention, Event, Selector and Exter

naIEvent), each of which is divided into three parts, containing their name, attributes (infor

mation), and operations (functionality). Between the Agent and Selector classes there exist a 
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FIGURE 5.6: Example of a class diagram in the structure model 

part-of relationship (indicated by the diamond and line), whereas between the Event and Exter

nalEvent classes there exist an inheritance relationship (indicated by the triangle and line). The 

fact that the Agent class uses the Event class for its operation, is indicated by a line linking these 

classes. 

5.5.1.2 The functionality model 

The functionality model consists of a set of scenarios, each of which belongs to a role, represents 

a piece of functionality of the role, and contains a sequence diagram showing how the role 

executes the functionality. Figure 5.7 depicts a generic functionality model, and the composition 

of the scenarios. The classes involved in the sequence diagram are those of the class diagram 

corresponding to the role. For example, in a market application, a possible scenario for the buyer 

role would represent the functionality find the best price seller for a given product by means of 

a sequence diagram showing how the classes of the buyer interact to achieve it. 

The artefacts of the agent design workflow are illustrated in Figure 5.8, which shows that any 

role in the system, such as Role i, has an associated class diagram and a number of scenarios, 

each referring to a piece of functionality and described by a sequence diagram. 

5.5.2 Activities 

The activities involved in the agent design consist of selecting an appropriate agent architecture 

and of building the artefacts described above. These activities are illustrated in Figure 5.9, 
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together with indications of those stages in which the use of architectural patterns is useful. In 

this way, for every role in the system, the following activities are performed. 

5.5.2.1 Determining the agent architecture 

In this activity, the architecture for the role is determined. In order to do this, several factors 

must be considered. The most important factor deals with the degree of behaviour complexity 

expected from the role. For example, simple behaviour can be more easily implemented through 

reactive architectures, whereas complex behaviour may requires the use of deliberative or hy

brid architectures. Another factor that determines the architecture deals with the level of pro

activeness required. Reactive architectures typically produce agents which are not pro-active, 

but operate only on request of other agents. On the other hand, BDIarchitectures are suitable 

for constructing highly pro-active agents. Other factors that affect the decision are the level of 

familiarity that the developers have with a specific architecture, and the support that different 

development tools provide to specific architectures. The accomplishment of this activity can be 

considerably facilitated by means of a catalogue (as the one presented in Chapter 4) showing, 

for each architecture, its characteristics, advantages, limitations and applicability. 

5.5.2.2 Creating class diagrams 

In order to create the class diagram, two different methods can be used. The first is to employ 

an object-based methodology such as RUP [J 17]. The second consists of using a catalogue of 
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architectural patterns, such as the one presented in Chapter 4, which also presents guidelines 

for selecting an appropriate pattern for a specific role. 

Regardless of which method is used to construct the class diagram, the inputs are taken from the 

organisational design models. Specifically, the role model provides three inputs: the liveness 

responsibilities (which describe the functionality that the role is expected to exhibit), the safety 

responsibilities (describing the conditions that must hold during the lifetime of the role), and the 

permissions (which contain the environmental entities employed by the role, together with the 

rights to access them). 

Additionally, the interaction model provides the inputs and outputs of the protocols in which 

the role participates, the organisational structure provides the control relationships involving the 

role, the organisational rule model provides the rules that constrain the behaviour of the agent 

and, finally, the services model provides the services of the roJe. 

5.5.2.3 Creating scenarios 

Similarly to the class models, the scenarios can be obtained by following an object-based 

methodology, or by using a catalogue of architectural patterns such as that in Chapter 4 which, 

apart from containing a procedure to select the appropriate pattern, also contains the main sce

narios of the role functionality. When following an object-based methodology, it is advisable to 

decompose the functionality of the role by means of use cases, and then build the corresponding 

sequence diagram for each of them. 

The inputs for creating the set of scenarios are the same as for creating the class diagrams, with 

the addition of the class diagrams themselves. 

5.6 Implementation 

Although implementation is not covered in detail in this thesis, it is important to provide some 

general guidelines mainly in tenus of how it interfaces with the design and detailed design 

workftows. 

Basically, the implementation consists in refining the models obtained in the organisational de

sign and agent design to the extent that they can be directly implemented. However, in order 

to carry out this refinement, an important decision must be taken at this stage, particularly in 

relation to the implementation platform to be used. Several types and instances of agent-based 

platforms exist to date, some of the most popular being based on object technology, such as 

JADE and FIPA-OS. 

An agent can play one or more roles, and it is during implementation that the decision is made 

about which agents will implement which roles. In principle, however, the fact that a role 
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is implemented in an agent does not ensure that the agent will actually play the role in the 

system, or during all its life cycle, since temporal assignments of roles to agents is possible 

in some platforms. The decision of which roles will be implemented by which agents must 

consider aspects such as physical distribution, sub-modules shared by different roles, efficiency, 

and cohesion of functionalities. 

In the case that more than one role is implemented in a single agent, common sub-modules must 

be identified so that they do not have to be programmed more than once. For example, if two 

roles designed according to the same architectural pattern are implemented in the same agent, 

the classes that implement the functionality of the architecture need to be programmed just once 

and shared for the two roles. 

Regarding the use of architectural patterns, it is important to note that in this thesis they are used 

as design patterns, as a tool during the design activities. In addition, similar patterns can be used 

to support the implementation. These patterns would differ in the level of detail that the classes 

and sequence diagrams contain, and can even include some form of automatically generated 

code. The construction of such patterns, however, is out of the scope of this thesis. Finally, 

although not referred to as implementation patterns, the examples included in implementation 

platforms can serve as a base from which specific applications can be constructed. 

5.7 Iterations 

The development cycle is divided into iterations. Each iteration encompasses all the workflows, 

from requirements analysis to implementation (other workflows such as transition and testing 

are not considered in this thesis). In this way, each iteration delivers an executable version of 

the system, and adds information to the artefacts of each workflow. We can group iterations into 

two parts, or phases: elaboration and construction. During the elaboration phase the emphasis is 

put on understanding the system and creating a stable architecture, while during the construction 

phase the efforts are directed towards accomplishing the functionality of the system. 

While the decomposition into workflows is common for all applications, iteration decomposition 

varies from application to application, in terms of work dedicated to each workflow, number 

and, more importantly, purpose. As stated previously, early iterations generally dedicate more 

work to requirements and analysis, while later iterations dedicate more work to design and 

implementation. Also, as a general rule, the larger the system, the more iterations are needed. 

The actual decomposition of the development cycle into iterations is guided by the functionality 

of the system. This means that the functionality of the system is divided into parts, one or 

more of which are assigned to an iteration, whose purpose is to accomplish that part of the 

functionality. The order in which the iterations must be carried out is important and must be 

established as part of the iteration decomposition, since the most critical and important parts 

of functionality must be considered first, to obtain earlier user feedback and foresee possible 

changes in delivery times. 
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The following are helpful guidelines for iteration decomposition. 

• The set of iterations must cover all the functionality expected from the system. 

• The early iterations in the decomposition must be occupied by those functionalities that 

form the core of the system, or by those functionalities that involve a high risk of creating 

the wrong system or delaying the delivery of the system. An example of the former risks 

are processes that are critical but poorly described, while an example of the latter risk is 

the employment of new technology. 

• Early iterations must provide the insight of most of the system. 

• It is desirable to achieve a balance in the iterations, so that no iteration is too big nor too 

smalL 

Thus, the criteria to decompose the development into iterations is based on the division of the 

system by its intended functionality. This division can be facilitated by means of use cases, and 

dedicating one iteration to fulfil one or more use cases. Among all the use cases, the first selected 

are those that form the core functionality of the system or that may involve critical aspects that 

may lead to unforeseen situations, for example the development of a complex algorithm or the 

use of a new technology. 

5.8 Related work and conclusions 

Only few attempts have been made to employ the incremental iterative approach in agent

base methodologies. Among these attempts, MESSAGE [78] was one of the first agent-based 

methodologies to include an incremental iterative approach in its process. In general, the idea 

behind MESSAGE was to extend existing object-based methodologies to the agent paradigm. 

As a consequence, the process of MESSAGE closely resembles the process ofRUP [69] (which 

is one of the most popular methodologies based on the object paradigm, and is based on the 

Unified Modelling Language (UML) [43]). 

More recently, the incremental iterative approach process has been included in the process of the 

INGENIAS methodology [54], which itself takes several of its characteristics from MESSAGE, 

so it followed the same idea of adapting the RUP process. To put this idea into practice, some 

associations were established between object and agent concepts; for example, class was associ

ated with agent, and architecture with organisation. These associations are natural, since - in 

the object paradigm - classes represent entities that encompasses the functionality of the sys

tem, and the architecture is what provides the system with a structure. From these associations, 

and using some previously defined meta-models, a list of activities was derived and grouped 

into workftows and phases. These meta-models are arguably what charactelises INGENIAS, 
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and consist of diagrams of elements and their relationships, which are the components that a 

practitioner can employ to model a system. 

Since the process presented in this chapter is also inspired by the RUP process, it is similar 

to the processes of INGENIAS (and, as a consequence, of MESSAGE), mainly in terms of 

structure. However, there are also several differences: while the INGENIAS process is closely 

based on object concepts, our process is based on the Gaia methodology, which is a genuine 

agent-based methodology in itself. One consequence of this is that we use the graphical mod

els provided by Gaia (in the analysis and organisational design workftows), while INGENIAS 

relies on purpose-built meta-models. Another difference is that of coverage, since our process 

is focused on analysis and design, and INGENIAS' considers, in addition, implementation and 

testing. Finally, the INGENIAS process does not explicitly facilitate the development of open 

systems, since it uses purpose-built models and gives no insight into how other well known 

models or architectures can be adapted to fit into the process. In contrast, our process relies 

on common abstractions, on easily-adaptable models, and considers the use of different agent 

architectures. 

It is worth mentioning that, although not explicitly stated, the process presented in this chapter 

can also be used in the construction of new agents that are incorporated into an existing open 

system, taking into account the considerations described below. First, the analysis and design 

of the overall system have already been undertaken, and their results must be available to the 

developers of the new agents. At this point there are two possibilities. One possibility is that 

the existing system has been designed according to the process presented in this chapter, or a 

similar one (for example Gaia). In this case, the results of the design can take the form of the 

design models presented in this chapter. The second possibility refers to the case in which the 

existing system was designed using a completely different process. In this case, a specification 

of the system which is independent of the process is needed (a specification such as this, based 

on organisational concepts, is presented in the next chapter). Second, a decision has to be made 

about the roles that a new agent will implement. Once the roles have been determined, the 

developer can re-use the models of the agent design workflow corresponding to those roles (if 

available), or can produce new designs. 
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Chapter 6 

Case study 

The previous chapters contain isolated examples that illustrate and clarify the contributions of 

this thesis but, being isolated, they focus only on their stand-alone usage. However, most of 

the benefit of our contributions relies on their use in the context of an overall methodological 

process. To illustrate this, in this chapter we describe the development of a system using the 

methodological process presented in Chapter 5, which encompasses most of the contributions 

of this thesis. Most importantly, this case study provides evidence of the benefits of using this 

development process, and its different parts. 

The system selected for this case study is easy to understand, has a reasonable number of roles 

and interactions, and is open; that is, it allows the incorporation of components not known at de

sign time. In addition, the problem statement of this system was extracted from the literature of 

agent-oriented methodologies, which has the benefits of facilitating comparison of our process 

with others and, most importantly, it offers a demonstration of its value for a standard problem, 

rather than one tailored to our solution. 

The rest of this chapter is organised as follows. In Section 6.1, we describe the problem state

ment of the system. Then, in Section 6.2, we present a decomposition of the development into 

iterations. The activities perfonned, and the artefacts produced, during the first and second of 

these iterations are presented in Section 6.3 and Section 6.4, respectively. Finally, our conclu

sions are presented in Section 6,5, Note that, although the development of this system requires 

several iterations, only the first two are described, since the others are very similar, and their 

inclusion would not add any benefit to the purpose of this chapter. 

6.1 Problem statement 

The case study considered in this chapter is based on an example presented in [96], where 

it is used to illustrate the INGENIAS methodology, and deals with the segmentation of users 

according to common interests. The following describes the problem statement of the system. 
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A new system is I;equired for segmenting users into groups of common interest 

The system-to-be will complement the services provided by a commercial Web, and 

will be used for marketing pmposes, such as offeling specific products only to users 

in a group with related common interest. The system is conceived as a multi-agent 

system in which each (human) user is represented by a personal clerk, which groups 

with other personal clerks to form a community. Such a community is represented 

by a clerk of community, and relates to one subject. Such a segmentation of interests 

helps to control the quality of documents provided to users, as explained below. 

A community can be seen as a source of information to which users subscribe to 

obtain relevant information for their interests. Once subscribed, a user begins to re

ceive information from the community. This information originates from members 

of the community or from other somces of information not specified. The informa

tion that the users receive passes through a series of filters to ensure its qUality. 

When a user suggests information to the community, the community first com

pares the suggestion with the community profile. If the information matches the 

community profile, the document is evaluated by a set of members of the commu

nity. However, before being evaluated by their users, each of their personal clerks 

decides, on their own, whether the document is interesting to its user. In the af

firmative case, the evaluation request is presented to the user, so that he evaluates 

the document. In the negative case, a vote against the document is produced. The 

suggested document is approved only if most of the consulted members voted in 

favom of the document, and the positive and negative evaluations are registered and 

used in the acceptance of future suggestions. 

The permanence of members in a community is subject to the following restric

tions. 

III Users who have suggested many documents evaluated negatively are expelled, 

since their interests are not in accordance with those of the community. 

III Users who evaluate too many documents negatively are also expelled, since 

they have not shown interest in the type of information provided by the com

munity. 

Community clerks and personal clerks describe their interests by means of a 

profile, which can take the form of a set of documents (the last documents evaluated 

positively), keywords or categories. The keywords and categories of a clerk can be 

modified by its user. 

The system to be developed must admit the incorporation of new somces of 

information, such as news forums of news and other communities. For example, 

the news published in a forum can be valuable for the members of a community 

whose interests are similar. In addition, different communities can collaborate to 

exchange information. The exchange of information must be allowed as long as it 

has been properly authorised by the administrator of the system. Both mechanisms 
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are used to supply information to communities, overcoming a possible passivity of 

users. 

Users connect with their clerks by means of a Web interface that allows them 

to: suggest documents, evaluate documents, see documents, and see statistics of 

operation. 

Additionally, an administrator of the system is in charge of: 

e creating new communities of users; 

e eliminating communities with low numbers of members; 

., eliminating users who have been inactive for too long; and 

e configuring parameters of execution of the agents, such as the maximum num

ber of agents that can exist in the system, thresholds of document acceptance, 

times that a user can negatively evaluate a document before being ejected from 

the community, and the number of users that evaluate a document. 

It should be clear that this system is inherently open, since it must allow the incorporation of 

users (or personal clerks) not known at run-time, as well as of information sources. In the 

following, we show the application of the methodological process described in Chapter 5 to this 

problem. 

6.2 Iterations 

The functionality of the system can be divided into the following parts. 

Part 1 Approve new information: the process of receiving, filtering, and disseminating docu

ments suggested by users. 

Part 2 Exchange information: the part dealing with the exchange of information between dif

ferent communities or other sources of information. 

Part 3 Create communities: the process of creating new communities in the system. 

Part 4 Eliminate communities: the elimination of unwanted communities from the system. 

Part 5 Register new users: the process of accepting new users in the communities. 

Part 6 Expel users: the part dealing with expelling unwanted users from communities. 

This partition is used as basis for the iteration decomposition of the system, which also takes 

into account the following two factors. First, it considers the potential size of each of the parts, 

and tries to keep a balance in the sizes of the iterations. Second, it prioritises the parts by their 

importance in the functionality of the system. In particular, it recognises Part 1 as the core of 

166 



Iteration Parts Functionalities 
1 Part 1 Approve new information 
2 Part 5 and Part 6 Register new users and expel users 
3 Part 3 and Part 4 Create communities and Eliminate communities 
4 Part 2 Exchange information 

TABLE 6.1: Iteration decomposition of the case study 

the system, since it directly supports the accomplishment of the goal of the system, and is also 

the most complex part, involving several components of the system. The decomposition of the 

system into iterations is presented in Table 6.1, and the next section describes the first of these 

iterations. 

6.3 First iteration 

As was established previously, the first iteration deals with approving new information to the 

system, which means receiving, filtering, and disseminating documents suggested by users. 

Consequently, in this section we show the results of applying the analysis, organisational de

sign and agent design workflows to this part of the functionality of the system. 

6.3.1 Analysis 

As was discussed in Section 5.3, the analysis workflow consists of the elaboration of five arte

facts: sub-organisation model, environment model, preliminary role model, preliminary interac

tion model, and preliminary rules model, each of which is described below. 

6.3.1.1 Organisation model 

Because of its small size, this system need not be decomposed into sub-organisations. However, 

for purposes of exposition, we can say that a possible decomposition could be structured into 

four sub-organisations: the components around the human user, including personal clerks; the 

sources of information; the filters of information; and the components in charge of administering 

the· system. 

6.3.1.2 Environmental model 

We divide the entities in the environmental model into two types: resources and external agents, 

the former of which are entities composed only of information. The information in the resources 

can be accessed or modified by the agents in the system that have the corresponding rights. In 
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our environmental model, the resources correspond to the tuples of the Gaia environmental 

model [134]. 

However, in our model we also contemplate entities more complex than resources. The external 

agents are entities for which a description based just on tuples of information would be unnatural 

or very coarse. This type of entity encapsulates not only data but also behaviour, expertise, 

autonomy or pro-activeness, and includes humans, non-trivial legacy software, and multi-agent 

systems as the most representative examples. Similarly to agents in the system, external agents' 

functionality can be decomposed into roles. It must be noted that, although external agents and 

agents are similar, external agents do not belong to the system and it is only their interaction 

with the system that is important and not their internal composition. The resources for this first 

iteration are the following. 

e Document: the key piece of information in the system, formed of a title, authors, keywords 

and body. 

III Profile: expresses document interests of a clerk, either personal or of a community. 

III Evaluation: contains information about the acceptance of a document. 

III Vote: expresses approval or rejection of a document by a user (or his clerk). 

The external agents for this first iteration are the following. 

III Reader: a human user interested in accessing a document, presumably for reading. 

It Voter: a human user that shows his opinion about accepting a document. 

• Recommender: a human user that proposes a document. 

6.3.1.3 Preliminary role and interaction models 

The roles necessary to accomplish the functionality of this iteration are obtained directly from 

the problem statement and consist of: Personal Clerk, Community Clerk, Profiler, Evaluator and 

Broadcaster. 

The interaction protocols are shown in Figure 6.1, in which roles have been represented by 

ovals, external agents by rectangles and protocols by solid arrows. Additionally, dashed arrows 

indicate protocols whose participants have not yet been determined. 

Based on this information, a preliminary description of the roles is obtained, as shown in Fig

ure 6.2, Figure 6.3, Figure 6.4, Figure 6.5 and Figure 6.6. Note that each role representation 

contains the name of the role, a brief description, its permissions, and its responsibilities. How

ever, at the preliminary role model, it is not necessary that all the roles are completely described. 
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ChangeProfile 
~ ProposeDoc 

'----....JSe~~ 

Recomender 

DisseminateDoc 
Personal Clerk 

Broadcaster ProposeDoc 

DisseminateDoc CommunityClerk 

EvaluateDoc 

EvaluateDoc 
EvaluateDoc 

FIGURE 6.1: Communication paths in the case study 

Role Schema: PersonalClerk 

Description: Represents a human user 

Protocols and See Doc, Propose Doc , 
Activities: DisseminateDoc 

Permissions: 

Responsibilities: 

Liveness: 

Safety: 

FIGURE 6.2: Preliminary roles, part I 
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Role Schema: CommunityClerk 

Description: Represents a community of 
users 

Protocols and Propose Doc, EvaluateDoc, 
Activities: MatchDoc, ApproveDoc, 

DisseminatDoc 

Permissions: 

Responsibilities: 

Liveness: 

Safety: 

FIGURE 6.3: Preliminary roles, part 2 

Role Schema: Evaluator 

Description: Decides if a document is 
interesting to a particular user 

Protocols and EvaluateDoc, DecidelfDoclnter 
Activities: 

Permissions: 

Responsibilities: 

Liveness: 

Safety: 

FIGURE 6.4: Preliminary roles, part 3 
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Role Schema: 

Description: 

Protocols and 
Activities: 

Pennissions: 

Responsibilities: 

liveness: 

Safety: 

Profiler 

Decides if a document is 
relevant to a community 

MatchDoc, ApproveDoc, 
matchProfileDoc, CountVotes 

FIGURE 6.5: Preliminary roles, part 4 

Role Schema: Broadcaster 

Description: Disseminates a document into 
a community 

Protocols and DisseminateDoc 
Activities: 

Permissions: 

Responsibilities: 

Liveness: 

Safety: 

FIGURE 6.6: Preliminary roles, part 5 
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SeeDoc 

PersonalClerk I Reader 

The personal clerk presents a 
new document to its user 

FIGURE 6.7: Preliminary interaction protocols, part 1 

ProposeDoc 

Recommender I PersonalClerk 

A user suggests a document 
to the community 

FIGURE 6.8: Preliminary interaction protocols, part 2 

,------------------------, 

DisseminateDoc 

I Personal Clerk 

An approved document is sent to the 
members ofthe community 

FIGURE 6.9: Preliminary interaction protocols, part 3 

In addition, the preliminary interaction model contains the main interaction protocols, and their 

most significant characteristics. The protocols are taken from the role representations of the 

preliminary role model. Figures 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, and 6.13 show the protocols for 

this iteration. Note that in each protocol description, the upper box contains the name, the lower 

box the description, the middle boxes the initiator and collaborators, and the inputs and outputs 

are located outside the boxes. A question mark in the boxes of the initiator or collaborators 

indicates that there is more than one possibility, and that the decision is postponed until the 

design workflow. 

6.3.1.4 Preliminary rule model 

The following are the rules that control the operation of the system. Note that liveness rules are 

rules that the agents try to bring about, while safety rules are those that the system must avoid 

violating. Note also that, in the preliminary rule model, organisational rules are described just 

in plain English. 
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EvaluateDoc 

? I Evaluator, Voter 

A document is evaluated by a 
user and its clerk 

FIGURE 6.10: Preliminary interaction protocols, part 4 

MatchDoc 

CommunityClerk. I Profiler 

A document is checked against the 
profile of a community 

FIGURE 6.11: Preliminary interaction protocols, part 5 

ApproveDoc 

CommunityClerk I Profiler 

A decision is taken about accepting or 
rejecting a document 

FIG URE 6.12: Preliminary interaction protocols, part 6 

Change Profile 

Reader I PersonalClerk 

The user changes his profile 

FIGURE 6.13: Preliminary interaction protocols, part 7 
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The liveness organisational rules for this iteration are as follows: 

.. A suggested document is first compared to the community's profile; then it is evaluated 

by personal agents of the community and final1y it is voted on by the users . 

.. A suggested document must be evaluated by at least five users (and is approved if it has 

been approved by a majority of its evaluators). 

In addition, the safety rules for this iteration are as follows: 

.. A user cannot suggest the same document more than once. 

.. The same document must not be disseminated to a user more than once. 

6.3.2 Organisational design 

In the following we describe the application of the organisational design to the first iteration of 

the system. 

6.3.2.1 Organisational structure 

In order to determine an organisational structure that fits the system, we note that the commu

nication paths of the system, depicted in Figure 6.1, do not resemble any common topology. 

However, after considering the nature of the protocols and arranging the roles, the structure 

shown in Figure 6.14 is obtained. If this structure is compared to the patterns of the catalogue 

presented in Section 3.6, we can note that it is similar to the simple hierarchy, except for two 

differences. The first difference is that, in the pattern, there are no communication paths between 

members of the lower level, while in the structure of this case study, there is a communication 

path between the Broadcaster and the Personal Clerk, both members of the lower level. The 

second difference is that, in the pattern, all the control relationships from the head to the leaves 

are authority relationships, while in this case study there is a peer relationship between the 

PersonalClerk and the CommunityClerk. 

At this point, there are two alternatives: to consider the organisational structure either as a 

special type of hierarchy, or as a completely different structure. More generally, the alternatives 

are: to adapt the problem to the pattern in question, or not to use any existing pattern at all (in 

which case a new pattern can be constructed). This situation is not uncommon since it can be 

the case that no pattern in a catalogue suits completely a given application. The selection of an 

alternative largely depends on each particular situation, but should be based on what is stated in 

the pattern, specifically in the/orees, restrictions and consequences sections. 

In this case study, we assume that the alternative of adapting the problem is taken, and then 

we adjust the preliminary role and interaction models to make the structure more similar to a 
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authority 

peer 

Personal Clerk 

\ 

peer 8 
FIGURE 6.14: Preliminary organisational structure 

peer 

authority 

Personal Clerk authority 

FIGURE 6.15: Organisational structure 

simple hierarchy, thus yielding the structure depicted in Figure 6.15. The modification consists 

in merging the CommunityClerk and Broadcaster roles, so that the peer relationship between 

Personal Clerk and the Broadcaster is eliminated. 

6.3.2.2 Role model 

As a consequence of the introduction of this organisational structure, the list of roles in the 

system has changed to: Personal Clerk, Community Clerk; Profiler and Evaluator, Note the 

absence of the Broadcaster preliminary role, and that external agents are not modelled as roles, 

since only their interactions are relevant. In the role model, the descriptions of the roles are 

completed, resulting in the role descriptions shown in Figure 6.16, Figure 6. ] 7, Figure 6.18 and 

Figure 6.19. 
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Role Schema: PersonalClerk 

Description: Represents a human user 

Protocols and See Doc, Pro pose Doc, 
Activities: DisseminateDoc, 

UQdateProfile 

Permissions: 

reads document 
changes profile 

Responsibilities: 

Liveness: 

PersonaIClerk=( Propose Doc I 
DisseminateDoc I (ChangeProfile 
UQdateProfile) )W 

Safety: 

FIGURE 6.16: Role model, part 1 

Role Schema: CommunityClerk 

Description: Represents a community of 
users 

Protocols and ProposeDoc, EvaluateDoc, 
Activities: MatchDoc, ApproveDoc, 

DisseminatDoc 

Permissions: 

reads document, evaluation, 
vote 
changes profile 

Responsibilities: 

Liveness: 

CommunityClerk = ( ProposeDoc I 
EvaluateDoc I MatchDoc I ApproveDoc, 
DisseminatDoc)w 

Safety: 

FIGURE 6.17: Role model, part 2 
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Role Schema: Evaluator 

Description: Decides if a document is 
interesting to a particular user 

Protocols and EvaluateDoc, DecidelfDocinter 
Activities: 

Permissions: 

reads document, profile 
changes vote 

Responsibilities: 

Liveness: 

Evaluator = (EvaluateDoc . 
DecidelfDoclnter )w 

Safety: 

FIGURE 6.18: Role model, part 3 

Role Schema: Profiler 

Description: Decides if a document is 
relevant to a community 

Protocols and MatchDoc, ApproveDoc, 
Activities: matchProfileDoc, CountVotes 

Permissions: 

reads document, profile 
changes evaluation. 

Responsibilities: 

Liveness: 

Profiler = ( (MatchDoc . matchProfileDoc) 
I (ApproveDoc . CountVotesl )W 

Safety: 

FIGURE 6.19: Role model, part 4 
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6.3.2.3 Interaction model 

ProposeDoc 

Recommender I PersonalClerk, 
CommunityClerk 

A user suggest a document to docu ment 
the community 

-

nil 

FIGURE 6.20: Interaction model, part 1 

DisseminateDoc 

CommunityClerk I PersonalClerk, 
Reader 

An approved document is sent to the docu ment 
members of the community 

nil 

FIGURE 6.21: Interaction model, part 2 

EvaluateDoc 

CommunityClerk I Evaluator, Voter 

A document is evaluated by a docu ment 
user and its clerk 

vote 

FIGURE 6.22: Interaction model, part 3 

MatchDoc 

communityClerk.1 Profiler 

A document is checked against the docu 
profile of a community profi 

vote 

FIGURE 6.23: Interaction model, part 4 

ment, 
Ie 

The preliminary interaction model is modified to reflect the introduction of the organisational 

structure, resulting in the protocol descliptions shown in Figure 6.20, Figure 6.21, Figure 6.22, 

Figure 6.23, Figure 6.24 and Figure 6.25. 
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6.3.2.4 Rule model 

ApproveDoc 

CommunityClerk I Profiler 

A decision is taken about accepting or 
rejecting a document 

Doc 
eval 

ument, 
uation 

evaluation 

FIGURE 6.24: Interaction model, part 5 

ChangeProfile 

Reader I PersonalClerk 

The user changes his profile nil 

profile 

FIGURE 6.25: Interaction model, part 6 

The rule model expresses, in the LEVOR language, the organisational rules included in the 

preliminary rule model. The following are the liveness organisational rules, expressed in the 

LEVOR language (see Section 3.3.4). 

card(PersonalClerk) :2: 1 

card(Evaluaior) :2: 1 

There must be at least one evaluator and one personal clerk. 

card(CommunityClerk) = 1 

card(Profiler) = 1 

There must be one and only one community clerk and projiler. 
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terminated(ProposeDoc) B initiated(M atchDoc) 1\ 

terminated(M atchDoc) B initiated(EvaluateDoc) 1\ 

terminated(EvaluateDoc) B initiated(ApproveDoc) 1\ 

terminated(ApproveDoc) B initiated(DisseminateDoc) 

Every suggested document must be filtered (compared to the community's profile, 

evaluated and voted) before it is disseminated. 

If d : Document( card(EvaluateDoc( CommunityClerk, Evaluator, d)) = 5) 

A suggested document must be evaluated by exactly five users. 

Note the relationship between this rule and the one stating that there must be at least one Eval

uator. The former refers only to evaluation of documents, while the latter applies to the whole 

operation of the system (including the case when there are no documents to be evaluated). How

ever, an alternative design might state that there must be at least five Evaluators. 

In addition, the safety rules for this iteration are as follows. 

Ifp . PersonalClerk( Ifd : Document ( 

card(ProposeDoc(p, CommunityClerk, d)) :s: 1)) 

A user cannot suggest the same document more than once. 

Ifp : PersonalClerk( Vd : Document( 

card(DisseminateDoc(CommunityClerk,p, d)) :s: 1)) 

The same document must not be disseminated to a user more than once. 

6.3.3 Agent design 

The agent design workflow consists of the design of each role of the iteration. Since the process 

is essentially the same for all the roles, we will describe here only the agent design for the 

Pro filer role, since its simple functionality makes it suitable for exposition. 
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As can be observed in the organisational structure, the ProfileI' role is completely subordinated 

to the autholity of the CommunityClerk. Additionally, according to the role model, the behaviour 

of the ProfileI' role can be described as a process of receiving orders, performing the activities 

related to accomplishing these orders, and replying with the results produced by the activities. 

Considering its reactive behaviour, and based on the catalogue of architectural patterns of Chap

ter 4, we conclude that the ProfileI' role can be modelled by means of the subsumption architec

ture [J 0]. Thus, using the subsumption architectural pattern, specifically the SOLUTION section 

(Section 4.3.2), and the corresponding procedure to obtain a detailed design (Section 4.3.3), we 

construct the fragments of the structure and functionality models corresponding to this role, as 

described below. 

6.3.3.1 Structure model 

The ProfileI' role interacts with the environment through two protocols: MatchDoc and Approve

Doc. According to this, the environment perceived by the ProfileI' can be described as the set of 

tuples, (command, contentl, content2), where: command is an identifier of the type of protocol 

(for example, Match for the MatchDoc protocol, or Approve for the ApproveDoc protocol); con

tent} is a document; and content2 is an evaluation if command is Match, or nil otherwise (this 

corresponds to the outputs of these protocols, as stated in the interaction model). 

Accordingly, there are two behaviours for this role, as described below. 

bl if (Match, d, e) is perceived then execute MatchProfileDoc( d) and continue the execution of 

protocol MatchDoc. 

b2 if (Approve, d, e) is perceived then execute IsApproved( d, e) and continue the execution of 

protocol ApproveDoc. 

Here, MatchProfileDoc and IsApproved are activities of the Profiler role, dealing with matching 

a document to the community profile, and approving a document, respectively, as is stated in its 

role description. 

To determine the inhibition relationship, it must be noted that, in this particular case, the inhibi

tion relationship is irrelevant, since no perceived state can match both h} and b2. 

The class diagram for the structural model is obtained by enhancing the class diagram of the 

subsumption pattern, with the particular characteristics of the ProfileI' role, resulting in the di

agram shown in Figure 6.26. As can be observed, the enhancements consist in the elimination 

of the original Inhibitor class (since no inhibition relationship is required), the description of 

the information perceived (Percept class), and the representation of the Inhibitor activities as 

actions of behaviours. 
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FIGURE 6.26: Class diagram of the structure model 

6.3.3.2 Functionality model 

The operation of the Profiler is so simple that only one scenario is needed to describe its func

tionality. Such scenario describes the dynamics fo11owed by the classes to accomplish the func

tionality of the role, and is expressed by a sequence diagram adapted from the subsumption 

pattern. This sequence diagram, which is shown in Figure 6.27, is easier to interpret if we con

sider that the Profiler perceives the environment by receiving messages and interpreting their 

content, and affects t..~e environment by sending messages. 

In a real situation, the first iteration continues towards the development of an executable version 

of the system that implements the functionality of the iteration. This executable is evaluated 

by the stakeholders, and failures in satisfying the requirements are identified. Then, during the 

second iteration, in addition to implementing the corresponding functionality, changes are made 

to the appropriate deliverables (analysis and design models, and executables) in order to correct 

those failures. During the evaluation of the executable, other changes to the deliverables may 

arise due to modifications in the requirements. For example, in our case study, the stakeholders 

may realise that the organisational rule 

A suggested document must be evaluated by exactly five users. 

can never be observed in communities with less than five users, which can cause them to modify 

the original requirements, and in turn the organisational rules model and the executable. 
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FIGURE 6.27: Sequence diagram of the functionality model 

6.4 Second iteration 

Once the first iteration has been concluded, the second iteration is started. The second iteration 

addresses another part of the functionality of the system, and consists of enhancing the results 

of the previous iteration in terms of adding elements to the artefacts, extending those elements 

or modifying them. For example, in the case of the preliminary role model, new roles can be 

added and existing roles can be modified to include the interaction with the new roles. In this 

case study, the second iteration deals with the registration of new users and the expulsion of 

inadequate users, as described below. 

6.4.1 Analysis 

In order to address the introduction of new users into the community and expulsion of users 

from the community, neither sub-organisations nor environmental entities need to be created. 

Similarly, no new roles are required, since this functionality can be carried out by the Person

alClerk and Community Clerk. However, the incorporation of new protocols to the preliminary 

interaction model is required to cope with these tasks. Such protocol descriptions are shown in 

Figure 6.:::8 and Figure 6.29, the first of which refers to the registration of new users and the 

second to the expulsion of users. 

In addition, the preliminary role model must be modified to incorporate these new protocols. 

Specifically, the descriptions of the roles involved in the protocols (the Community Clerk and 

the PersonalClerk) must be updated, resulting in the descriptions shown in Figure 6.30 and 

Figure 6.31. 
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RegisterUser 

Reader I 
Personal Clerk, 
CommunityClerk 

The user registers with the community 

FIGURE 6.28: Preliminary protocol description of registering users 

ExpeIUser 

CommunityClerk I PersonalClerk, 
Reader 

Expels a user from the community 

FIGURE 6.29: Preliminary protocol description of expelling users 

Role Schema: CommunityClerk 

Description: Represents a community of 
users 

Protocols and Propose Doc, EvaluateDoc, 
Activities: MatchDoc, ApproveDoc, 

DisseminatDoc, RegisterUser, 
ExpelUser 

Permissions: 

reads document, evaluation, 
vote 
changes profile 

Responsibilities: 

Liveness: 

CommunityClerk = ( ProposeDoc I 
EvaluateDoc I MatchDoc I ApproveDoc, 
DisseminatDoc}w 

Safety: 

FIGURE 6.30: Preliminary role description of the community clerk 
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Role Schema: PersonalClerk 

Description: Represents a human user 

Protocols and See Doc, ProposeDoc, 
Activities: DisseminateDoc, 

RegisterUser, ExpelUser 

-
Pennissions: 

Responsibilities: 

Llveness: 

Safety: 

FIGURE 6.31: Preliminary role description of the personal clerk 

As for the organisational rules, the following rules regarding the expulsion of users must be 

incorporated. 

• A user is expelled if he has suggested more than five documents evaluated negatively. 

• A user is expelled if he has evaluated negatively more than five documents. 

Note that we have arbitrarily chosen five as the number of documents to decide the expulsions. 

6.4.2 Organisational design 

During the organisational design of the second iteration, the organisational structure, as well 

as the role, interaction and rule models, are updated to reflect the changes introduced by the 

new protocols. In the case of the organisational structure, it can be observed that no changes are 

required, since the new protocols, RegisterUser and ExpeZUser, do not alter the peer relationship 

between the Personal Clerk and the Community Clerk. 

However, some updates are necessary for the role, interaction and rule models, since, dUling 

the analysis, the corresponding preliminary roles were modified. In the case of the role model, 

the updates consist in modifying the Protocols and Activities section, as well as the liveness 

responsibilities of the descriptions of the Personal Clerk and the Community Clerk roles, resulting 

in the descriptions shown in Figure 6.32 and Figure 6.33. 
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Role Schema: 

Description: 

Protocols and 
Activities: 

Permissions: 

Responsibilities: 

Uveness: 

PersonalClerk 

Represents a human user 

SeeDoc, Propose Doc, 
DisseminateDoc, 
Update Profile , RegisterUser, 
ExpelUser 

reads document 
changes profile 

PersonaIClerk=( Propose Doc I 
DisseminateDoc I (ChangeProfile 
UpdateProfile) I RegisterUser I 
ExpelUser)W 

Safety: 

I 

FIGURE 6.32: Role description of the personal clerk 

Role Schema: CommunityClerk 

Description: Represents a community of 
users 

Protocols and 
Propose Doc, EValuateDoc, 

Activities: MatchDoc, ApproveDoc, 
DisseminatDoc, RegisterUser, 
ExpelUser, DecideExpel, 
Registry 

Permissions: 

reads document, evaluation, 
vote 
changes profile 

Responsibilities: 

Liveness: 

CommunityClerk = ( Propose Doc I 
EvaluateDoc I MatchDoc I ApproveDoc, 
DisseminatDoc I (RegisterUser . 
Registry) I (DecideExDel . ExpelUser) )W 

Safety: 

FIGURE 6.33: Role description of the community clerk 
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RegisterUser 

Reader I 
PersonalClerk, 
CommunityClerk 

The user registers with the community profi Ie 

acceptance 

FIGURE 6.34: Protocol description of registering users 

ExpelUser 

CommunityClerk I PersonalClerk, 
Reader 

Expels a user from the community nil 

nil 

FIGURE 6.35: Protocol description of expelling users 

For the interaction model, the updates consist of completing the protocol descriptions of the 

RegisterUser and ExpelUser protocols, as shown in Figures 6.34 and Figures 6.35. 

Finally, in order to update the rule model, the introduced organisational rules must be expressed 

in the LEVOR language, as follows. 

(PersonalClerk.NOfNegSugO > 5) =? initiates( Community Clerk , ExpelUser) 

A user is expelled if he has suggested more than five documents evaluated nega

tively. 

(PersonalClerk.NOfNegEvalO > 5) =? initiates ( Community Clerk , ExpelUser) 

A user is expelled if he has evaluated negatively more than five documents. 

Note that in the expression of these organisational rules, we have assumed the existence of 

the activities NOfNegSug and NOfNegEval in the PersonalClerk role, which are used to obtain 

the number of suggested documents that are negatively evaluated by others, and the number of 

documents suggested by others that it evaluates negatively, respectively. 
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6.4.3 Agent design 

The second iteration concludes by perfonning the agent design of each role introduced in the 

iteration, and by modifying the models for those roles who were affected by the introduction of 

new protocols and activities. However, in our particular case, no new roles were introduced dur

ing the second iteration. Similarly, the agent design for the Profiler role needs no modification, 

since this role was not affected by the protocols and activities introduced in the iteration. 

The completion of this case study would require us to carry out the last two iterations, as was 

described in Section 6.2. This, however, would easily double the number of pages dedicated to 

this chapter and would add no benefit to its purpose, since the process would be essentially the 

same as that presented for the first two iterations. 

6.5 Conclusions 

In this chapter, we have presented the development of a case study using the methodological 

process described in this thesis, which includes the use of most of its contributions: the sup

port of the organisational design by means of organisational patterns; the incorporation of agent 

design, based on agent architectures, into the development process; and the use of an iterative 

approach to make more agile the development process. In summary, the development consisted 

of decomposing the construction of the system into iterations, and accomplishing these itera

tions. Each iteration included the analysis, organisational design and agent design of a specific 

part of the system. 

Although simple in concept, this case study illustrates the characteristics of the process and 

helps to draw some conclusions about its drawbacks and benefits. The most notable drawback is 

the lack of a software tool to support the construction of artefacts, which tends to make this task 

error-prone and burdensome. Also, the analysis of interactions, represented by the interaction 

model, lacks detail, since it does not consider the decomposition of the protocol into messages 

and, as a consequence, the decomposition of messages into communicative acts and content. 

Finally, specifically for the organisational pattern used (the simple hierarchy pattern), some lack 

of detail was found in the description of the roles involved. 

In spite of these drawbacks, the case study showed that the process is straightforward, natural, 

and requires relatively little knowledge about agent-based computing for its use. Additionally, 

the incorporation of catalogues of patterns in key stages, reduces work, time, and alleviates 

the learning curve. More generally, the case study suggests that the enhancements we made to 

the basic process of the Gaia methodology (the incorporation of a catalogue of organisational 

patterns, the incorporation of the agent design phase, the use of architectural patterns to support 

this phase, and the decomposition of the process into iterations) are valuable and significantly 

increment its maturity. 
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Chapter 7 

Specification and Integrity in the 

Development of Open Systems 

7.1 Introduction 

The number of computers and computational devices has increased significantly in the last few 

years and, since these devices rarely work on their own, the number of networks has also ex

ploded. In software, new technologies such as the Internet, pervasive computing and the Grid 

are also emerging and take advantage of these networks. These technologies have brought chal

lenging problems in computer science and software engineering, since they demand systems 

that are highly distributed, proactive, situated and open. 

As was stated in Section 1.5, an open system is one that allows the incorporation of components 

at run-time whose internal composition may not be known at design time, but only their external 

functionality. The components of an open system may not be designed and developed by the 

same group, nor do they represent the same stakeholders. In addition, different groups may use 

different development tools and may follow different policies or objectives. Regardless of how 

and by whom a component is developed, it typically has the same rights to access the facilities 

provided by the system, as well as the obligation to adhere to its rules. 

However, traditional approaches (e.g., object-oriented and component-based computing) have 

fallen short in engineering this type of application [91] because they operate at too Iowa level of 

abstraction. For example, object-oriented computing decomposes a system into entities (or ob

jects) that encapsulate information and functionality. This information, however, usually refers 

to basic data structures or to other objects. Similarly, the functionality of objects relies on simple 

procedures like those normally found in most programming languages. Elaborated object de

compositions, although possible, tend to make it difficult to understand and design applications 

that involve high-level concepts such as grid services and workftows. 

189 



In response, different approaches have been attempted to facilitate the development of such com

plex applications. In particular, some evidence suggests that the multi-agent approach provides 

adequate abstractions to successfully develop this type of system [75], and this has resulted in 

the appearance of several agent-oriented software methodologies which claim to support the 

construction of open systems. 

However, even though agent-oriented software methodologies exist to support the development 

of open systems, they are lacking when dealing with the incorporation of new components (or 

agents) to an existing system. In particular, these methodologies do not address two different 

but very related problems: 

• how to specify the facilities provided by the existing system for those interested in the 

development of new agents; and 

• how to design and construct mechanisms to ensure that the integrity of the system is not 

violated at run-time by new agents. 

Solving these problems requires the accomplishment of some non-trivial tasks. In order to solve 

the first problem of specifying the facilities provided by the system, we must first accomplish the 

selection of appropriate abstractions on which to base the specification. For the second problem 

of ensuring that the integrity of the system is not violated at run-time, mechanisms for monitor

ing the behaviour of the system and evaluation of its characteristics must be provided [57]. 

Although complete solutions to these problems are highly application and platform dependent, 

we can, nevertheless, separate more general problems from more specific ones and provide 

partial solutions. In particular, in order to create agents that are eventually incorporated into 

an existing system, developers need to know what facilities are provided by the system, and 

the vvay in 'vv11ich they can access them, so that they can design new agents in accordance with 

these characteristics. In addition, developers must be aware of the rules of behaviour of the 

system, and design new agents in such a way that those rules are observed at run-time. From the 

viewpoint of maintaining the integrity of the system, this is particularly important in the case of 

multi-agent systems, because the autonomy and pro-activity exhibited by agents can easily lead 

to unexpected behaviour. 

In this chapter we present a model for the specification of open multi-agent systems based on 

organisational concepts, and then apply it to create a mechanism for checking that a specification 

is observed at run-time. With this in mind, we divide the structure of the chapter in the following 

way. In Section 7.2 we analyse the characteristics of a specification in open multi-agent systems, 

that is, what must be included, and how to express it. Then, in Section 7.3 we formalize such a 

specification. After that, we focus on the problem of how to check that such a specification is 

observed at nm-time in Section 7,4, which includes the design of a mechanism that monitors the 

observance of a specification. Finally, Section 7.5 contains the conclusions of the chapter and 

indicates future work. 
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7.2 Basic concepts 

7.2.1 A layered model for open multi-agent systems 

A specification describes the components of a system and their composition. Additionally, in the 

case of multi-agent systems, apart from describing the components (agents) and their composi

tion, it is also necessary to include their interaction. The reason for this is that, since agents are 

not passive service-providers but pro-active and autonomous entities, their interactions need to 

be explicitly stated. Open multi-agent systems are complex in structure and, as a consequence, 

so are their specification. For this reason, and because many diverse aspects are involved in 

specifying agents, their composition and their interaction, we find it useful to decompose the 

functionality of an open multi-agent system into several parts, or layers. (Such a perspective is 

commonly used in the specification of open infrastructures as, for example, in the XlOpen plat

form and the ISO model of communications [65].) Each layer deals with a particular aspect and 

rely on the previous layer to fully specify the cOlTesponding functionality. Furthermore, each 

layer should add a higher level of abstraction, and at the same time impose further constraints 

on the way agents behave. 

Thus, an appropriate layered decomposition of open multi-agent systems must cover all their 

intrinsic characteristics, from network communication to organisations. Our proposal for de

composing open multi-agent systems is depicted in Figure 7.1, obtained by listing the different 

aspects of any multi-agent system by order of level of abstraction, as follows 

• The lowest layer, Communication Protocols (CP), deals with the low level protocols for 

communication; for example, nop and HTTP. Although strictly this layer does not con

tain elements of agenthood, it specifies the distlibuted aspect of a multi-agent system at 

its most basic level.. 

• The next layer, Agent Platform (AP), relates to the infrastructure in which the agents 

operate, in terms of which agent services are provided and how. Such agent services 

include the management of agents in a system - registration and deletion - white and 

yellow pages services, and message routing. 

• The Agent Communication Language (ACL) layer is concerned with the language em

ployed by the agents to exchange messages during their discourse, particularly those el

ements of a language that are application independent. Among these elements, some of 

the most important are the communicative acts (or peiformatives), which denote an inten

tion from the sender of the message for the receiver of the message to perform, such as 

to execute or cancel an action. Instances of standard agent communication languages are 

FIPA-ACL [35] and KQML [34], 
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FIGURE 7.1: Layered decomposition of open multi-agent systems 

II The Content Language (CL) layer deals with the language used to represent concepts 

specific to each application domain. Together, the content language and the agent com

munication language layers constitute the language in which the communication between 

objects occurs. 

II The Individual Responsibilities (IR) layer refers to the functionality that each agent is 

capable of performing without interacting with other agents. In other words, this layer 

specifies what is expected from each agent as an individual entity. 

II The Interaction Protocols (IP) 1ayer relates to the interactions that agents perform to fu1fi1 

their goals. Instead of referring to details of individual messages, as is the case of the 

ACL and CL layers, this layer focuses on the way specific groups of messages are used to 

carry out tasks concerning the overall system. 

II Finally, the Social Constraints (SC) layer establishes the expected social behaviour of the 

agents. The concept of social organisation is arguably what differentiates the multi-agent 

approach from other software approaches. Although some of the organisational elements 

of a system are specified in previous layers - the participating entities (IR layer), and 

their interactions (IP layer) - the social constraints complete the organisational structure 

by imposing rules on the way these elements are combined. 

As can be observed, this decomposition is independent of any particular architecture, platform 

or methodology, and focuses on high-level aspects of the system, rather than on the detailed 

composition of the components. 
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It should be noted that this decomposition is similar to the Abstract Architecture I defined by 

FIPA with the purpose of promoting interoperability and reusability. Such an architecture con

siders that agent-based systems can be decomposed into two parts, a (domain-specific) appli

cation layer, and an abstract architecture layer, which involves agent communication, agent 

management and agent message transport. However, although the application layer might cor

respond to the IR, IP and SC layers, there is no explicit usage of organisational concepts. Simi

larly, the agent communication component corresponds to the CL and ACL layers, and the agent 

management and agent message transport correspond to the AP and CP layers, respectively, but 

in spite of this correspondence, the FIPA architecture dooes not exploit a layered structure in its 

components. 

Since any multi-agent system consists of these layers, a complete specification of an open multi

agent system must take into account all the layers. However, our concern is not to provide a 

complete multi-agent system specification, but to address those aspects relevant to the construc

tion of open systems, building on prior work and infrastructure. Thus we avoid the enormous 

effort that would be required, because of the variety of elements involved, and focus on creating 

specifications for the manageable subset of layers that have not adequately been studied before, 

and which address the focus of this thesis. More specifically, the lower layers of the model -

the CP, AP, ACL and CL layers - have received much attention in the past, as is indicated by 

the existence of de facto standards (e.g. lIOP [59], FIPA [35], KQML [34], and KIF [4]). In 

contrast, from the viewpoint of specification, the three upper layers - IR, IP and SC layers -

have been the less studied. Moreover, these three layers are specifically relevant to the organi

sational metaphor that we have used extensively through this thesis to model various aspects of 

multi-agent systems. 

Based on this decomposition, we structure the specification of a system into parts, or sections, 

each corresponding to a layer. The content of the sections and the order in which they appear 

are the same as those of the layers in the decomposition. Regarding how to describe the contents 

of each section, the natural choice is to employ standards, since they are based on agreed terms 

and concepts, and provide a commonly accepted way to describe systems. For example, in 

the case of the ACL layer, the specification can make use of the FIPA agent communication 

language (FIPA-ACL) [35]. On the other hand, although at the IP layer some standards have 

emerged, fmiher down the IR and SC layers lack not only standards, but also commonly agreed 

concepts. Thus, in order to progress with our goal of creating specifications, we need to adopt, 

or construct, appropliate conceptual abstractions which, on the one hand, can remove artificial 

distinctions between the different constraints of heterogeneous components (or agents) possibly 

developed by different groups, with different architectures and methodologies and, on the other 

hand, are still closely connected to real systems. 

Although for the IP, IR, SC layers there are no standard abstractions, the concepts of role, pro

tocol and organisation are increasingly being used in fields such as agent-oriented software en

gineering as first-order abstractions to model relevant aspects of open systems. In consequence, 

1 http://www.fipa.org/specs/fi paOOOO lISCOOOO 1 L.html 
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we use these abstractions as a basis for open systems specification, and present below a brief 

review of the concepts (for more details, see Chapter 3). 

Although the concepts of role, protocol and organisation can provide an appropriate means with 

which to specify the IP, IR and SC levels, employing them can be problematic. First, despite 

many charactelisations and definitions of these concepts being available in the literature, none is 

entirely appropriate for our purpose. This is because we require a characterisation that abstracts 

what is needed from the components and their interaction, bypassing the details of how it is 

actually achieved, which is the usual stance taken. At the same time, it is desirable that such 

characterisations are similar to those used in existing agent-based methodologies in order to 

minimise incompatibilities when developing a new agent. Finally, the characterisations must 

be independent from any specific implementation. In the following subsections we present the 

characterisations for roles, protocols and organisations that will, in tum, be used to construct the 

specifications of our models. 

7.2.2 Roles 

A role represents a position in charge of performing a specific service in an organisation. Ex

amples of roles in the Conference Management System (an hypothetical system for managing 

conferences, whose statement problem is included in Appendix A) are Author and Reviewer. In 

general, at run-time roles can be played by one or several agents, and a single agent can play 

one or several roles. Role is a concept that is intuitive, simple and easy to understand; it is 

used in different agent-oriented software methodologies, and serves as a basis for other useful 

abstractions, such as protocols and organisations. 

Although the concept of role is extensively used in the agent literature, there is no a common 

characterisation. For the purposes of specifying an open system, we see a role as consisting of 

the following parts. 

III Name: a unique identifier of the role. 

• Description: brief text explaining the purpose of the role. 

III Services: functionality that the role is expected to perform . 

• Non-functional requirements: special conditions that an agent must satisfy at run-time to 

play this role, such as the minimum amount of a certain resource, or confidentiality. 

7.2.3 Protocols 

A role rarely accomplishes its objectives by itself, but interacts with other roles, as determined 

by a protocol, which is a high level representation of the interaction of roles to accomplish an 

objective. A protocol is a representation of pre-defined patterns of interaction, and is used not 
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only in the context of methodologies but also in the analysis of specific mechanisms, such as 

negotiation. 

The concept of protocol is also commonly used in the agent literature, but its definition valies 

very from paper to paper. For example, in Gaia, protocols are characterised only by name, 

initiators, partners, inputs and outputs. Other approaches provide additional information, for 

example the messages exchanged (communicative act and content), their sequence, the tasks 

that they trigger, and even the state changes of the agents as a result of exchanged messages. 

For our purposes, we use the following characterisation, which has the benefit of considering 

all the key elements to describe an interaction between roles, but without compromising to any 

particular platform or implementation. 

• Name: a unique name in the system. This serves as an identifier for the protocol. 

• Initiator role: the role that begins the interaction. This role should not be repeated in the 

next item. 

• Partner roles: other roles involved in the interaction. We will also refer to partner roles as 

collaborators. 

• Inputs: information needed to perform the interaction. Inputs are environmental entities 

passed as parameters to the protocol and whose values are not affected. 

• Outputs: information obtained or modified as the result of the interaction. Outputs are 

environmental entities passed as parameters to the protocol and whose values can be mod

ified. 

• Messages: the messages exchanged in the protocol. The description of these messages 

contains the sender, the receiver, a form of identification (such as a communicative act) 

and, optionally, the content 

• The message sequence: the order in which the messages must be exchanged during the 

protocol. To describe this order, some constructors are provided, such as sequence, con

currence, and conditionals. 

An example of a protocol in the Conference Management System is shown in Figure 7.2, in 

which the name of the protocol is CallAndSubmission, the initiator is the Caller role, the partners 

are the Author and the Collector roles, the input is the call for papers, and the outputs are the 

paper and a confinnation of receipt. Also, the messages are call-for-papers, submit-paper and 

confirm-number, and occur in that order. 

7.2.4 Organisational rules 

A multi-agent system is not completely defined by just a set of autonomous roles and their inter

actions. In fact, a multi-agent system typically possesses overall goals, and its components (even 
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FIGURE 7.2: Example of a protocol specification 

., Enough reviewers must be allocated 

., All papers must be reviewed 

., An author cannot send the same version of the paper more than one time 

., No agent can be both author and 
reviewer of the same paper 

FIGURE 7.3: Organisational rules for the Conference Management System 

if self-interested) act in an orchestrated way in order to achieve them. However, this orchestrated 

behaviour does not emerge by itself - agents are pro-active and autonomous entities whose be

haviour can become highly unpredictable in dynamic environments - but some mechanism 

is required to produce it. Organisations have proven to be an appropliate mechanism to fulfil 

this task. More specifica11y, organisational rules, which have been used in the design of multi

agent systems [134,25], offer an appropriate analytical means to constrain the way in which the 

different elements of a system interact. If carefully designed, compliance with organisational 

rules at run-time can ensure the desired behaviour. To this end, we define organisational rules 

as constraints on the relationships between roles, protocols and resources, with the purpose of 

fulfilling the overall goals of the system. Some examples of organisational rules are included in 

Figure 7.3 for the Conference Management System. 

We can classify organisational rules in different ways. One possible classification is based on the 

types of elements the rules constrain, giving place to horizontal and vertical rules. Horizontal 

rules are applied to elements of only one type. For example, a rule that applies to all the roles in 

the system is a horizontal rule, such as: 

All the controller roles must maintain the same rate of operation. 

On the other hand, vertical rules are those rules that apply to different types of elements. For 

example, rules that affect roles and protocols are vertical rules, as in 

The selection process begins after all the papers have been reviewed three times. 

196 



Although this classification is useful in general discussion of organisational rules, from the view

point of checking their compliance, it is more convenient to divide organisational rules into static 

and dynamic rules, Static rules are those that need to be velified only at specific moments in the 

life cycle of the system. For example, the rules restricting the roles played by an agent can be 

verified simply at the moment the roles are assigned, as in the rule: 

No agent can play the roles of buyer and seller at the sane time. 

Dynamic rules, on the other hand, need to be checked frequently, or at moments that cannot 

be easily predicted. For example, rules restricting the use of resources or protocols need to be 

checked every time the resources are accessed or the protocols executed, and these events can 

occur at any time, for instance for the rule: 

A paper must be reviewed exactly three times. 

Most static organisational rules can be checked by means of a run-time component that keeps 

track of role assignments. Such a form of checking is simple, easy to implement, and most 

importantly, does not interfere with the normal operation of the system. 

Dynamic rules are potentially more difficult to check than static rules, due to their diversity and 

dynamism. In principle, such checking can consist in monitoring every element of the system 

and evaluating the relevant rules. Roughly, this could be accomplished by obtaining the relevant 

information from the agents or, in the case of non-agentified elements - such as resources -

from tailor-made modules that control their access. However, this procedure must be carefully 

designed not to significantly affect the performance and robustness of the system. Distinguishing 

these two types of organisational rules is helpful when devising procedures to monitor them at 

run-time, as can be seen in Section 7.4. 

7.3 Specification of open multi=agent systems 

We now use the basic concepts presented above for creating specifications of existing systems, 

in such a way that potential participants can determine the requirements and benefits of joining 

the system. In our case the targets of such a description are the designers of the agents. 

Such a specification must be as neutral as possible, since the agents might be developed with 

varied techniques. However, at least some basic assumptions must be made; in particular, the use 

of some common, appropriate concepts is required. As was stated in Section 7.2, we use role, 

protocol and organisation as the basic concepts on which a specification can be constructed. In 

general, these abstractions appropriately model the characteristics found in multi-agent appli

cations, namely agents, interactions and rules. In particular, they give rise to a set of models 
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that provide the documentation necessary both for developers and for automatic compliance 

monitoring in order for agents to join open systems in effective and managed ways. 

We divide the specification into two parts. The first part deals with characterising and docu

menting the generic elements of the system that are always to be found, regardless of the nature 

of the system, the general concepts model. The second part comprises the agent-specific models 

based on organisational concepts, the participants model, the interactions model and the social 

constraints model. All of these models are presented below. 

7.3.1 General concepts model 

The general concepts model contains the description of the resources and entities of the envi

ronment that are necessary, in turn, in the description of the other parts of the specification such 

as protocols, activities and social constraints. Since these general concepts involve only infor

mation, we use a characterisation based on registers and fields. In other words, each concept 

is described by the elements it encompasses, and each of these elements is in tum described 

by its sub-elements. This process continues until the sub-elements are non-decomposable data 

stmctures such as strings, numbers or dates. To completely define the part-whole relationship 

between a concept and its elements, cardinalities are used, denoting how many elements can 

be present in a concept; for example, the concept Paper has one or more author elements. Fig

ure 7.4 shows the general form ofthis model. The cardinalities are enclosed by square brackets 

to denote that they are optional. If not specified, a cardinality of 1 is assumed. 

As an example of a fragment of a general concepts model, we consider the Paper concept of 

the Conference Management System. This concept consists of five parts: a title, an abstract, a 

body, the authors and their affiliation. The model for this concept is shown in Figure 7.5. In 

this figure, the + cardinality represents one or more parts, and the data sLnJcture string is used to 

denote short textual information, whereas text is used for potentially large text. Equivalently, this 

Paper concept is also depicted in Figure 7.6 by means of a UML class-type diagram, in which 

the boxes represent concepts and elements, the lines ending in diamonds represent the whole

part relationship, and the numbers near the lines denote the cardinalities (Entity-Relationship 

diagrams could also be used to this end, although we use UML for consistency). 

7.3.2 Participants model 

The participants model contains the description of each agent of the system, referring only to 

those individual characteristics that do not involve interaction with other agents, and that are 

independent of how the agent is implemented. Since we model agents by means of roles then, 

according to the characterisation of roles we employ, the participant model consists of the set of 

roles in the system and, for each of them, a list of their services and non-functional requirements. 
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FIGURE 7.4: The general form of the General Concepts Model 

Services are tasks that a role can perform without interacting with other roles. We propose a sim

ple characterisation of services consisting of a name, the role that performs it, their input and 

output parameters, and a description of the task itself. Since the actual implementation of the 

process is not restricted by the specification, its description can be text, pseudocode or any for

mal description. Regarding the non-functional requirements, we follow a simple approach con

sisting of representing each requirement by an identifier-value pair, for example (memory, 40), 

where the identifiers and their possible values have previously been defined. 

The general form of the participants model is shown in Figure 7.7, in which requirements iden

tifiers are denoted by idi and their corresponding value by valuei. The square brackets indicate 

that the use of non-functional requirements is optional. As an example, Figure 7.8 presents a 

fragment of the participants model corresponding to the Conference Management System. This 

simple example shows three participants, each one having a service. 

7.3.3 Interactions model 

The interactions model describes the way roles interact by means of protocols. Our protocol 

characterisation is inspired by a simplified version of sequence diagrams similar to those of 

AUML [98J, and represents the participating roles in the protocol, the messages they exchange, 

and the sequence of those messages. The messages are labelled with their communicative act 

199 



Paper 
Title 1 
AuthorName + 
Abstract 1 
Body 1 

AuthorName 
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Comment: text 
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Fro URE 7.5: The application of the General Concepts Model to the CMS example 

and content, or with an identifier (whose communicative act and content are defined elsewhere, 

e.g. in [35]). The communicative acts must be described in the agent communication language 

specified in the Agent communication language layer. In the same way, the content must belong 

to the content language specified in the Content language layer and the specification of general 

concepts. 

As can be observed in Figure 7.9, the interactions model is composed of the list of protocols in 

the system. Each protocol consists of a list of participants (the first of which is the initiator of 

the protocol), a list of parameters, and a sequence of messages. The messages are fanned of a 

sender, a receiver, a communicative act and a content (although, for simplicity, this is not shown 

in the figure). An example showing a fragment of the interactions model for the Conference 

Management System is presented in Figure 7.10, which contains two protocols, SubmitPaper 
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Protocoh 
participantl, ... , participantn 
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messagel, . , " messagek 

Protocolr 

FIGURE 7.9: The general form of the interactions model 

and ReviewPaper. The latter, for instance, employs two messages for carrying out the interaction 

between roles Program Committee and Reviewer. 

7.3.4 Social constraints model 

The specification of social constraints contains the restrictions imposed on the agents' social 

behaviour. Such restrictions are represented by means of organisational concepts, more specif

ically, by organisational rules. Organisational rules are key to the definition of the organisation 

and thus of the system itself. For this reason, an agent attempting to join an existing system 

must be provided with the set of rules it must adhere to. The specification of social constraints 

is formed from the list of organisational rules of the system, expressed in the language defined 

in Section 3,3.4. The general form of this model is represented in Figure 7.11. An example con

sisting of two rules in the Conference Management System is shown in Figure 7.12, in which 

the first rule states that there must be at least five reviewers, while the second rule states that a 

paper must not be assigned to the same reviewer more than once. 
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FIGURE 7.11: The general form of the social constraints model 
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FIGURE 7.12: The application of the Social Constraints Model to the CMS example 

7.3.5 Summary 

We have presented a specification for open multi-agent systems. The specification consists of 

three main models and an auxiliary model, the latter being the general concepts model, and 

the former the participants, the interactions and the social constraints models. As illustrated 

in Figure 7.13, each of the main models corresponds to a layer in the system decomposition 

presented previously. The auxiliary model contains descriptions that complete the main models, 

as depicted in the figure by means of arrows. Also, we based the description of the participants, 

interactions and the social constraints models on well known abstractions of roles, protocols and 

organisational rules, respectively. 

Up to this point, in this chapter we have focused on the creation of a system specification. Based 

on the results obtained here, in the following sections we explore the problem of ensuring that 
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FIGURE 7.13: Description of the UpdateCall service 

what is stated in the specification is observed at run time. Roughly, our approach consists of 

checking that the actions performed by an agent do not violate any of conditions stated in the 

sections of the specification. However, before proceeding, we present a formal model of the 

specification and consider the problem of examining that the specification is complete and free 

of inconsistencies. 

7.3.6 A model of open systems 

In an open multi-agent system specification the details of the internal structure of the agents are 

not important, but only their externally visible functionality. This is because the agents in the 

system may be constructed by different developers and following different techniques. For the 

same reason, the implementation details of the protocols are not relevant, but only their patterns 

of interaction. This ensures that the agents need not to be developed with the same tool, should 

they comply with the rules of the system. In this section we present a formal model for open 

multi-agent systems, based on organisational concepts, and that abstracts the functionality of the 

agents and the way they interact, regardless of implementation issues. 

The system 

We define a model for an open multi-agent system as a tuple (E,N, P, 5,0), where: 

1. E is a 4-tuple of set of elements of the system; 
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2. N is the set of the roles' nonfunctional requirements; 

3. P is the set of protocols; 

4. S is the set of services; and 

5. 0 is the set of social constraints. 

The identifiers 

E, the tuple of elements in the system, has the form (R, P, S, D), where each entry is a set whose 

elements are identifiers, as follows: 

1. R is the set of role identifiers; 

2. P is the set of protocol identifiers; 

3. S is the set of service identifiers; and 

4. D is the set of general concept identifiers; 

The non-functional role requirements 

The elements of the set N have the form (r, n, v), where r E R, n denotes a type of non

functional requirement, and v represents a possible value of n. The interpretation of this is that 

such a role requires at least that value for the non-functional requirement in order to be played. 

For example, in the conference management system, 

(ProgrammeCommitteeChair, confidentiality, 1) 

indicates that the role Chair must comply with the highest (1) confidentiality. However, it must 

be noted that the list of non-functional requirements and their associated values are highly de

pendent on the application and platform used. 

The protocols 

Each element of P, the set of protocols, is a 5-tuple of the form (p, i, C, A, .M), where: 

1. pEP is a unique protocol name, 

2. i E R is the initiator of the protocol, 
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3. C c R is the set of collaborators, that is, the roles that participate in the protocol, apart 

from the initiator, 

4. A c D is the set of input and output parameters, 

5. M is the allowed sequence of messages, expressing the order the messages must follow 

during the execution of the protocol. This is a sequence of instructions, each of which is 

either a message or a compound message. A compound message encompasses a connector 

and a set of messages, and represents the concurrency connectors of AUML Concurrency 

connectors are used as a means to express that multiple messages are sent at the same 

time, and are of three types: and (AND), inclusive or (OR), and exclusive or (XOR). 

In the first case all the messages are sent in parallel, while in the second zero or more 

messages are sent and in the last case only one message is sent. Each element of M, the 

set of messages of a protocol, has the form 

(rs, rr, b), where: 

r s E R is the sender; 

r r E R is the receiver; and 

. b is the body of the message. 

The services 

5, the set of services, consists of elements of the form (r, n, B), where: 

r E R is the role to which the service belongs, 

S E S is a unique service name, and 

BcD is the list of parameters of the service. 

o c £ , the set of social constraints, contains the expressions that govern the function of the 

system. Each element in this set is an element of the language defined in Section 3.3..1. 

Table 7.1 summarises this notation. For simplicity, we do not include the part corresponding to 

the sequence of messages, but only the structure of each message. 

7.3.7 Ensuring information consistency 

A specification describes a system from different perspectives; for example the specification 

of protocols deals with the interaction aspects while the specification of participants focuses 

on the individual aspect of roles. However, it is essential that these perspectives are not in 

contradiction, but describe the system in a consistent form For instance, an organisational rule 

cannot reference a protocol that has not been defined in the specification of interaction protocols. 

For this reason, we need a mechanism for checking consistency in the specification. Such a 

mechanism can be implemented in different ways; for example, by means of a software tool the 

consistency can be checked every time the specification is updated. Whatever mechanism used, 

the following conditions must be checked. 
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[; element identifiers 
R role identifiers 
p protocol identifiers 
S service identifiers 
D concept identifiers 

N non-functional reqs. 
r role to which applies 
n non-functional reqs. identifier 
v value 

p protocols 
p protocol identifier 
i initiator 
C collaborators 
A protocol parameters 
M sequence of messages 

For each message: 
Se sender 
Sr receiver 
b body 

S serVices 
s service identifier 
r role 
B service parameters 

0 social constraints 

TABLE 7.1: Summary of notation 

1. The name of roles, protocols, responsibilities and general concepts must be unique. 

2. All the protocols mentioned in the specification must be described in the specification of 

interaction protocols. 

3. All the roles mentioned in the specification participate in at least one protocol and have at 

least one responsibility. 

4. All the resources mentioned in the specification must be defined in the specification of 

general concepts. 

As a final observation about achieving completeness and consistency in a specification, we 

should mention the use of organisational patterns. As discussed in Chapter 3, organisational 

patterns represent the organisational structure of a system, including the roles of the system, 

their protocols of interaction, and organisational rules. Organisational patterns may serve as a 

basis on which the specification of a system can be completed, because they already contain 

much of the relevant information. Additionally, since such patterns can be regarded as free from 

incomplete or inconsistent information (assuming they have been used with success in several 

applications), the amount of information needed to be checked is reduced. The usefulness of 
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this approach would be improved by means of a software tool to support the creation of a spec

ification by importing the appropriate organisational pattern, editing of the specification and 

checking completeness and consistency. 

7.4 Compliance monitoring 

As mentioned previously, our approach to the problem of ensuring the integrity of an open sys

tem is to monitor, at run-time, that the system acts in compliance with the specification. In other 

words, we are assuming that the integrity of a system is ensured if all the conditions expressed in 

the specification are observed. Checking compliance with the specification in open multi-agent 

systems must be done at run-time, because, by definition, there is no control over how the differ

ent components of the system are designed and developed. An additional benefit of monitoring 

this compliance is that it guarantees that the system behaves correctly, since organisational rules 

are part of the specification, and organisational rules ensure the correct behaviour of the system. 

A different approach towards ensuring the correct behaviour of agents in an open system is 

described in [27], in which Dignum et al. present a norm-based organisational model, OMNI, 

that considers the use of violations, sanctions and enforcing roles to enforce compliance of 

norms. A violation is a condition that indicates that an agent is in an illegal state, sanctions are 

the actions carried against the violator, and enforcing roles are the roles in charge of detecting 

the violation. OMNI provides procedures for obtaining these elements from norms, which are 

situated at a more abstract level. Compared to our approach, the violations considered in OMNI 

are less general than the organisational rules we employ, in terms of the type of constraints that 

can be described. In addition, our approach is situated at a level closer to implementation than 

OMNI. 

Monitoring the compliance of the specification involves the analysis of a large number of con

ditions and situations caused by the actions of agents, for example executing a protocol or per

forming a service. We find it useful to divide this monitoring according to the nature of the 

action that caused the situation. Thus, we classify the actions of an agent into static ones and 

dynamic ones. Static actions are those that occur at one specific moment of the agent life cycle, 

typically during the entry of the agent to the system, or when a role is assigned to the agent. 

Dynamic actions, on the other hand, are those which can occur at any other moment. In accor

dance to this, we divide monitoring into static analysis, and dynamic analysis, both of which are 

presented below. 

7.4.1 Static analysis on agent entry 

The moment of its entrance to a system and every moment it attempts to playa role are critical 

points in an agent life cycle, since it is important to ensure that the agent is suitable for the 

system or the role. In order to obtain meaningful results, we have to make some assumptions 
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FIGURE 7.14: The function of the monitor 

regarding the way agents enter a system. We assume that each time an agent attempts to enter 

the system, some mechanism is used to decide whether its entry is accepted. Once accepted, 

agents can play roles, or quit playing roles. Both actions are notified to the system, and the 

former needs to be authorised. 

To clarify this point, suppose that an agent intends to enter the system. It must first receive 

approval from a run-time component, hereafter called the monitor, as depicted in Figure 7.14. 

As suggested in the figure, the only way for an agent to access'the system is by getting approval 

from the monitor, based on the characteristics of the agent and the specification of the system. 

The monitor provides a means to consider aspects that are verifiable statically, for example 

to detect if a protocol has an incorrect initiator role, in the sense that it does not match what is 

stated in the specification. However, the monitor does not consider aspects that are not verifiable 

statically, such as if a protocol is executed at the wrong moment. 

With these considerations in mind, we proceed to analyse how to check the observance of a 

specification. We do this model by model, but omitting the general concepts model, since there 

is nothing to analyse because it only supports the other models. 

7.4.2 Run-time participants analysis 

The run-time analysis for the participants has the aim of ensuring that the agents comply with 

the participants ' model of the specification. This can be done statically, at the moment the agent 

requests authorisation to playa given role. Note that the agent can be playing other roles, or no 

role at all, before attempting to playa specific role. When an agent requests authorisation to play 

a role, the monitor must check that the characteristics of the agent, and the way it implements 

the role , match the conditions stated in the participants model. More specifically, given the role 
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in question, the services as implemented by the agent, and the resources that the agent possesses, 

the monitor must check that the following conditions hold. 

lit The role that the agent intends to play exists and is available; that is, the role has not 

exceeded its cardinality. 

lit The agent has enough resources to satisfy each of the non-functional requirements speci

fied in the participants model. 

lit The agent implements all the services specified in the model, in the way they are specified, 

in terms of name and parameters. 

lit Optionally, for more strict checking, the agent does not implement other services apart 

from those specified in the modeL 

Note, however, that checking the services in this way only offers a guarantee that their inter

faces have been correctly implemented, but does not say anything about whether they have been 

correctly implemented; for example, if instead of adding two numbers, they are multiplied. 

7.4.3 Run-time protocol analysis 

During the entry of an agent to the system, we can also check, to some extent, whether the 

protocols implemented by the agent correspond to those specified. Essentially, the procedure is 

a matter of matching the characteristics of both protocols: those of the agent implementation and 

those specified in the system. Most of the checking is straightforward, except the part regarding 

the sequence of messages of the protocol, which depends on how many features of the sequence 

diagrams are considered. According to this, the algorithm is divided into two parts: matching the 

head (which deals with matching the initiator, collaborators and parameters) and matching the 

messages (which deals with checking the sequence of messages). Protocols are accepted only 

if they are accepted in both parts. However, it must be noted that this procedure does not check 

the dynamic characteristics of the protocol, such as the actual sequence in which the messages 

are sent, nor the actual content of the messages. 

In the following, such a procedure, together with its inputs and outputs, is presented, and have 

been illustrated with diagrams, Table 7.2 shows the inputs in tabular form, while Figure 7.15 

shows an example of a sequence of messages of a hypothetical protocol. 

7.4.3.1 Algorithm for matching the head 

Matching the head involves checking that the role exists and that the protocols correspond to 

those specified in the interactions modeL The interactions model was presented in Section 7.3.3, 

and is refined below using a notation that is more appropriate for expressing the algorithm. 
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Name of role intending to play 
List of protocols intending to use 

For each protocol: Initiator 
Collaborators 
List of Input parameters 
List of Output parameters 
Sequence of messages 

For each input and output parameter: Name 
Type 

For each message: Sender 
Receiver 
Communicative act 

TABLE 7.2: Inputs for the protocol checking procedures 

Types of messages 
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FIGURE 7.15: Different Connectors in AUML 

Let R = {rl' r2, ... , rd be the set of roles of the system (where k is the number of roles), and 

QI the set of protocols associated to role rz. 

QI contains the protocols associated with role rl, so it can be written as Qz = {qi, qb,· ., q~J, 
where mz is the number of protocols associated with role l, and each q; denotes a protocol and 

thus have the form 

qj = (P~, ij, cj, A~, MY), where: 

pj is the name of the protocol, 

i; E R denotes the initiator, 

cj c R denotes the collaborators, 

A; is the (ordered) sequence of parameters of the protocol, each consisting of a name and a 
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INPUTS: 

'I' the role in question; and 
Q ~ P, the set of protocols involving r, as implemented by the agent 

OUTPUT: 

acceptance: 
true if the header of the protocol complies with the specification; 
false otherwise 

ALGORITHM: 

acceptance = false 
'I' ~ R =? exit 
:Je such that ('I' = re) 1\ (1::; e ::; m) 
v(p,i,C,A,M) E Qr 

p ~ {qi, q2) ... ,q~J =? exit 
:Jt such that (p = qf) 1\ (1 ::; t ::; me) 
i =f=. i't =? exit 
C =f=. Cf =? exit 
v (a,y) E A 

(ai, yl) = nextElement [Mn 
(al =f=. a) V (yl =1= y) =? exit 

acceptance = true 

FIGURE 7.16: Algorithm: MATCHING THE HEAD 

type, so we can express it as 

A; = (( al) t 1 ) ) (a2) t2) ) ... ) (am~' tm}) ), where m; is the number of parameters of the pro

tocol, and finally 

M; is the sequence of messages. 

The algorithm is presented in Figure 7. J 6 and, as can be observed, is straightforward and con

sists of checking the compliance of the protocol name, the initiator, the collaborators and the 

sequence of parameters of the protocoL 

7.4.3.2 Algorithm for matching the messages 

In the second part of the procedure, matching the messages, the objective is to check that the 

sequence of messages stated in the specification is equivalent to the sequence of messages im

plemented by the agent, so that any possible difference in the expression of the protocol is not 

important for execution. (From this perspective, we can ignore several features of sequence di

agrams, but we do have to consider some others which are relevant when describing a sequence 

of messages.) 
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Before proceeding with the algorithm, it is worth mentioning the extent of the algorithm in terms 

of how the sequence of messages is formed. Our representation of protocols is based on AUML 

sequence diagrams [66], which are rich in features, some inherited from UML [43) sequence 

diagrams and some exclusive to agents. Included in these features are multiplicity of the mes

sages - that the number of messages sent and the number of receivers of the messages must 

correspond to those of the specification - and the type of message delivery - synchronous or 

asynchronous. Also included are two types of message structure: conditions and concurrency 

connectors. A condition is a logical expression that determines if a message is sent or not. As 

was mentioned before, concurrency connectors are used as a means to express that multiple 

messages are sent at the same time and are of three types: and (AND), inclusive or (OR), and 

exclusive or (XOR). 

However, for our purpose (checking whether two sequence diagrams represent essentially the 

same protocol) not all the features are relevant. While we need to consider the roles involved 

in the protocol and their existence in the system, and the and, or and exclusive or parallel 

connectors, the conditions of messages can be ignored since they are meaningful only at the 

execution of the protocol. We also left unconsidered: agents, since we only allow roles as 

participants of protocols; lifelines and threads of interaction, since they are not relevant in the 

functionality of the protocol; nested and interleaved protocols, since they are not considered in 

our definition of protocol; and protocol templates, for the same reason. 

Since this algorithm is meant to be executed statically, it simply checks that the sequence of 

messages of a protocol matches the sequence specified in the system, but in the case of messages 

joined by a concurrency connector, the messages can appear in any order. Conditions are just 

ignored as they are relevant only at run-time. 

To describe this algorithm we make use of the following functions. TIle first two functions oper-

ate on a message instruction, while the last two operate on a compound message. The message 

function returns true if the message instruction is a simple message, and not joined to other 

messages by a concurrency connector. The compound_message function returns true if the 

message instruction is a compound message, (a set of messages joined by a concurrency con

nector). The connector _0 f function denotes the concurrent operator of a compound message ( 

an element of {AND, OR, X 0 R}). Finally, the seLo f _messages function returns the set of 

messages of a compound message. Note that this function returns a set, not a sequence, since 

the order of the messages is not important. 

The algorithm is presented in Figure 7.17. As can be observed, for the protocol to be accepted, 

the messages are compared. Simple messages are examined for equality, whereas for compound 

messages of type OR and XOR, equality is not required, but being a subset is enough. An 

example of a sequence of messages that does not match the sequence diagram of Figure 7.15 is 

shown in Figure 7.18, in which the compound message in the second position of the sequence 

is not a subset of the corresponding compound message of the diagram. 
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INPUTS: 

S = (ml' m2, .. , m n ), the sequence of message instmctions as described in the specification 
S' = (mi, m;, ... , m~), the sequence of message instmctions as implemented by the agent 

OUTPUT: 

acceptance 

ALGORITHM: 

acceptance = false 
\ll E {I, ... , n} 

message (mz) =? 

ml #- m; =? exit 
compound_message (mz) =? 

connectoLo f (mz) = AND II 
seLof_messages (mD #- seLof_messages (mz) =? exit 

connectoT_of(mz) E {OR,XOR}II 
-, (seLof _messages (mD ~ seLof _messages (ml)) =? exit 

acceptance = true 

FIGURE 7.17: Algorithm: MATCHING THE MESSAGES 

Ca_l 

Ca.2 
Begin and 

End 

Ca3 
CaA 

Begin or 
Ca..5 
Ca_6 
Ca] 

End 

FIGURE 7.18: Example of sequence of messages 
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As can be observed, the algorithm for matching the messages presented above checks exact 

matches. However, under certain circumstances (for example under tight constraints of effi

ciency), a more relaxed form of checking might be convenient, or enough. In those cases, 

instead of checking that two protocols are identical, it can be checked whether one protocol is a 

particular instance of the other. For example, regarding the OR concurrency connector, instead 

of checking that both protocols contain the same messages, it might be enough to be sure that 

the messages of one protocol are a subset of the messages of the other protocol. 

7.4.4 Run-time organisational rules analysis 

As stated in Section 7.2.4, organisational rules are classified into static and dynamic rules, static 

ones being those that apply only at the moment at which an agent enters the system. In general, 

among all the possible types of organisational rules, just those dealing only with roles can be 

checked statically (which leaves out rules dealing with protocols and resources). The most 

common kinds of this type of rule are the following. 

• Cardinality of roles. These rules establish the maximum number of times a role can be 

played at the same time; for example, no more than 20 reviewers are allowed. 

• Sequence of roles. These rules constrain the sequence in which the roles can be played; 

for example, an agent cannot play the role of buyer if it has not played the role of employer 

previously. 

• Exclusive roles. These rules express the fact that two or more roles cannot be played by 

the same agent at the same time; for example, an agent cannot play the role of buyer and 

seller at the same time. 

In Figure 7.19 an algorithm is presented to check the compliance of static organisational rules. 

As can be noted, the algorithm is straightforward and consists of checking each of the different 

type of rules mentioned above. 

In order to check these types of rules, a record must be maintained of the active agents in 

the system, together with the roles they are playing and the roles they have previously played. 

Figure 7.20 depicts a data structure that fulfils this purpose, in which a list of the active agents 

is maintained. Any active agent, for example Ai, has two lists associated with it, one for the 

role currently being played, and one for the roles played in the past. The algorithm assumes that 

the data structure accurately keeps track of all the entrances and departures of the agents to the 

system. 
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INPUTS: 

The list of organisational rules involving roles 
The agent 
The role attempting to be played 

OUTPUT: 

acceptance 

ALGORITHM: 

acceptance = false 
Select those rules involving the input role 
Evaluate each of these rules 
if the rule is about cardinality then 

if according to the register, the role has reached its maximum cardinality then 
acceptance = "exceeds maximum cardinality" 
exit 

end if 
else if the rule is about sequence then 

if the rule states that some other role must be played before and, 
according to the register, that is not the case then 
acceptance = "violates sequence" 
exit 

end if 
else if the rule is about exclusiveness then 

if according to the register, the offending role is being played then 
acceptance = "violates exclusiveness" 
exit 

end if 
end if 

FIGURE 7 19: Algorithm: CHECKING STATIC ORGANISATIONAL RULES 

7.4.5 A design for checking static conditions 

In the previous sections, we focused on describing the information and procedures required for 

checking the observance of static conditions. Based on this, in the following we present a high 

level design that shows how this checking can be carried out. 

For the purpose of checking, the agent must provide the following information to the monitor. 

.. The roles it is intending to play. 

• The protocols in which it will participate, either as the initiator or as a collaborator. 

• The list of services it will perform. 
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Roles currently 
being played 

FIGURE 7.20: Data structure of agents and their roles 

This information is represented in Figure 7.21, sUlTounded by an oval. The figure also shows 

other relevant information required by the monitor, which consists of the specification of the 

system (surrounded by bins), and the register with the role assignments (surrounded by a cloud). 

Figure 7.22 shows the main entities stored in the monitor's database. As can be seen, the sys

tem maintains a list of roles where each role performs one or more protocols. Protocols are 

formed of initiator, collaborators, input and output parameters and a sequence of messages (for 

a description of these characteristics see Subsection 7.2.3). Each message is described by the 

role that sends it, the role that receives it, the communicative act involved, and the position the 

message occupies in the sequence. 

The monitor is formed of four well defined components, which are shown in Figure 7.23 and 

described below. The [ntelface to agent information module is in charge of obtaining the rele

vant information from each agent intending to join the system (see Section 7.3). In the simplest 

case, the module may obtain the information from a file. However, in some implementations 

the information could be obtained directly from the code of the agent. In the cases in which the 

specification is not actually tied to the code, there may be inconsistencies, the purpose of the 

monitor being to check compliance rather than ensuring integrity. 

The System specification database contains the specification of all the roles in the system (see 

Section 7.3), The database is organised by roles and consists mainly of text fields. Its main 

job is to retrieve the information needed by the checker module, and occasionally to update the 

information of the system. 

217 



System Role, 

Role2 

\ 

Organisational 
rules 

Structural rules 

Roles model 

Interactions 
model 

Role I 
Assignment 

module 

Monitor 

FIGURE 7,21: InfoITIlation needed by the monitor 

Role Name 

Protocol, Protocol Collaborator, 

Protocol, Collaborator, 
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InputParameter, 
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Message, 

Message, 
/Message 

I 
Messageq 

FIGURE 7,22: Monitor's database 
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FIGURE 7.23: Components of the monitor 

The procedures to decide if the agent complies with the system specification are contained in 

the Checker module. In the case of checking if a sequence of messages complies with the 

specification, the data flow is depicted in Figure 7.24. As can be observed, the problem of 

deciding if the two sequences of messages match is translated to the problem of deciding if two 

Finite State Machines (FSM) are equivalent, and this is a problem whose solution is well known 

in Computer Science [83]. The procedure to obtain a FSM from the sequence diagram is shown 

in Figure 7.25, which basically consists of separating the creation of states and transitions in 

accordance to the type of messages of the sequence diagram. 

The last module, the Notifier, is in charge of notifying the acceptance or rejection of the agent 

to join the system. The actual implementation of this module depends on who is to be notified, 

for instance a human user, the agent itself, or another component of the system. 

7.S Conclusions and further work 

Since agents are autonomous and pro-active entities, their behaviour cannot be completely pre

dicted in open complex systems. This unpredictable behaviour can put at risk the integrity of 

a system. Thus, some mechanism is needed to guarantee the integrity of the system. Such a 

mechanism can be divided into two parts, the clear statement of what is considered to be correct 

behaviour, and a form of checking that any agent behaviour complies with that statement. In 

this chapter, we have presented our approach for the construction of these two parts of such a 

mechanism. For the first part, we proposed a model for specifying open multi-agent systems. 
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FIGURE 7.24: Checking protocol compliance 

This specification of a system states what a valid agent behaviour is, regardless of its the ac

tual implementation. Based on this model of specification, for the second part we presented a 

high-level design for checking the compliance of static aspects of the specification. The check

ing of the dynamic aspects of the specification, however, requires additional considerations, as 

sketched below. 

Dynamic constraints must be continuously checked through the execution of a system. As stated 

earlier, we represent dynamic constraints by means of dynamic organisational rules. Since pro

tocols and activities can be executed at any time, just as resources can be modified, any organi

sational rule involving at least one of these elements is considered to be dynamic, and must be 

continuously monitored to check its compliance. For the purpose of checking these dynamic 

characteristics, the monitor must be upgraded in several directions. First, its database must 

contain the organisational rules to be checked, and procedures to manipulate them. Such ma

nipulation goes from basic tasks such as retrieval, or deciding if current conditions observe a 
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INPUTS: 

a sequence of messages corresponding to a protocol 

OUTPUT: 

a finite state machine representing the sequence 

ALGORITHM: 

create new state 
start_state = new state 
currenLstate = new state 
for all message in the sequence diagram 

if message is simple then 
create new _state 
create new transition from currenLstate to new_state 

with the communicative act of the message 
currenLstate = new _state 

else if the message connector == OR then 
create new _state 
create a new transition from currenLstate to new _state 

with null symbol 
create a new transition from new _state to itself 

for each concurrent message, using their 
communicative acts 

currenLstate = new _state 
else if the message connector == XOR then 

create new _state 
create a new transition from the currenLstate to new _state 

for each concurrent message, using their 
cOIlh'11upicative acts 

currenLstate = new state 
else if the message connector == AND then 

create new _state 
for each possible permutation of the concurrent messages do 

create a path of transitions from currenLstate to new _state 
with the communicative acts, as they appear in the permutation 

end for 
currenLstate = new_state 

end if 
end for 

FIGURE 7.25: Algorithm: TRANSFORMING A SEQUENCE DIAGRAM INTO A FSM 
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rule (rule interpretation and evaluation), to more sophisticated tasks like indicating the reason 

for failure of a rule, or detecting contradictory or redundant rules. 

Second, since dynamic organisational rules are constraints on the elements of system (roles, 

protocols, activities and resources), there must be a way to continually sense conditions related 

to these elements; for example, the order in which protocols are performed. The obvious way 

to do this is by storing in a single repository all the relevant information, namely the protocols 

and activities executed, together with their parameters. (The information dealing with the roles 

is stored in the monitor's database and the infonnation about resources can be obtained from the 

parameters, assuming that each resource in the system can be uniquely identified.) This cen

tralised approach, however, presents several disadvantages in tenns of robustness and efficiency, 

since failures in this component may result in a total breakdown of the checking process. Also, 

concentrating such a large number of messages in one component may cause communication 

bottlenecks to appear. In order to simplify the design, the checking of dynamic organisational 

rules can be taken out of the monitor, and assigned to a new component, the warden, as follows. 

The warden is in charge of ensuring that dynamic organisational rules are observed during the 

execution of the system. To accomplish this task, the warden is provided with relevant infonna

tion from the monitor, the agents of the system, and from components c~lled collectors, whose 

task is to filter the infonnation provided by the agents. Figure 7.26 shows the overall operation 

of these components for checking dynamic organisational rules. First, when agents execute an 

activity or a protocol, they notify the collectors of the type of protocol or activity and the pa

rameters used. When the collectors receive this infonnation, they decide if it is relevant to the 

checking procedure, in which case they send it to the warden. The decision is made by em

ploying a repository of organisational rules elements (ORE in the figure) which contains all the 

elements, and only those elements, of the system involved in one or more organisational rules. 

Note that to carry out this task, the collectors only need a list of organisational rules elements, 

so they can be destroyed and created as many times as needed. After receiving infonnation 

from any collector, the warden updates its storage infonnation (IN in the figure) and evaluates 

the corresponding organisational rules to verify that they have not been violated. The monitor 

provides the warden with the information regarding roles. 

Some aspects of this design, as well as of the corresponding to static conditions, require further 

work to increase their applicability. The main aspects still to address are as follows. 

First, since our design does not show, in detail, how to accomplish the monitoring of dynamic 

specifications, a more detailed design is needed. Second, assuming that the violations to the 

specification can be detected, some policies are needed to deal with them, as well as mechanisms 

to enact these policies. For example, when an attempt to violate a specification has arisen, the 

actions in question can just be ignored, or the involved agents can be notifi~d about the violation 

and, additionally, about the conditions that originated it. In this case, the study of such policies 

and the design of such mechanisms are needed. Finally, it is necessary to determine the way 

these mechanisms affect the nOlmal operation of a system, in tenns of efficiency and robustness. 
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FIGURE 7.26: The operation of the warden 

In summary, although guaranteeing the integrity of an open system is an essential paJi of the 

system life cycle, it has been largely unconsidered in agent research. As far as we are aware, 

this is the first attempt to solve this problem in a general form. Specifically, our contributions 

for the solution of this problem are the following. 

OIl We have created a model for the specification of open multi-agent systems. This model is 

based on organisational concepts, can be instantiated for a specific system for describing 

the facilities provided by a system, and the way to access them, as well as for establishing 

the valid behaviour of the agents of the system. Such a description is important for the 

construction of new agents joining the system, and also forms a basis for monitoring that 

valid behaviours are observed during the operation of the system . 

• We have created a classification of the conditions checked at run-time. This classification 

differentiates between static and dynamic conditions, which is essential for the design of 

run-time mechanisms that monitor the compliance of the conditions. 

'" We have designed a procedure for analysing equivalence between two protocols. Due to 

the use of AUML concurrency operators, the sequence of messages in a given protocol can 

be described in different ways. Thus, when monitoring the compliance of agents joining a 

system, a procedure is needed to analyse if the description of a protocol, as implemented 

by the agent, corresponds to the same protocol, as described in the specification. In this 

chapter, we have presented a procedure, based on the equivalence of non-deterministic 

finite automata that decides if two sequences of messages refer to the same protocol. 
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.. We constructed a high level design for monitoring the compliance of static conditions. 

This design considers the information required for the monitoring, as well as procedures 

and components to accomplish it. The information required about the system and agent is 

based on the model of specification. 
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Chapter 8 

Conclusions and future work 

8.1 Summary 

In this thesis, we have sought to address the problems involved in taking agent-oriented method

ologies to a point where they can be used effectively in the development of open systems. With 

this aim, in this thesis we have sought to develop constructs and tools, as follows. 

First, we have dealt with the development of a framework for constructing organisational pat

terns, which are representations of standard organisations, and are used for supporting the or

ganisational design of multi-agent systems. Included in this development is the creation of a 

model for describing organisations. 

Second, we have dealt with modelling the internal composition of agents, for which we have 

presented a means to develop agent architectural patterns to enable the incorporation of agent 

architectures into an agent design process. This includes techniques for obtaining t.~e elements 

required to use the pattern from the results obtained by the design process. We have also devel

oped a catalogue of such patterns, populated with different instantiations of agent architectures. 

By providing patterns for different architectures in this way, the catalogue avoids dependency 

on a specific architecture. 

Next, we have described a methodological process that incorporates the tools mentioned above 

(organisational and architectural patterns), and that includes the use of iterations for decompos

ing the development of a system into more manageable units. This methodological process has 

been exemplified and assessed by means of a non-trivial case study, taken from an independent 

source. 

Finally, we have presented a model for the specification of open systems which, when instan

tiated for a particular system, produces a specification whose compliance helps to ensure the 

correct operation of the system. This specification also describes the facilities offered by the 

system, and a means to access them, which is necessary for the construction of new agents 

joining the system. 
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8.2 Contributions 

In addressing the problems involved in taking agent-oriented methodologies to a point where 

they can be used effectively in the construction of open systems, we have developed a series 

of ideas which have led to the construction of specific techniques and tools, each addressing a 

particular problem. These techniques and tools constitute the main contributions of this thesis 

and are described in the following. 

L LEVOR, a language for expressing organisational rules was created. Organisational rules 

are restrictions on how the elements of an organisation relate, and are used for speci

fying the behaviour of a system. However, in order to be effective, the description of 

organisational rules need to be exact. LEVOR is a language that allows the expression 

of organisational rules in such a way that their meaning is exact. Additionally, LEVOR 

is intuitive, easy to use, and can be extended to consider unforeseen situations. Being a 

computable language, LEVOR can be used to evaluate organisational rules at run-time, 

for monitoring their compliance during the operation of a system. 

2. A model for characterisation and description of organisational structures was developed. 

Organisational structures are usually described by informal methods, such as using plain 

English or figures. Although useful, these methods are imprecise for specifying the archi

tecture of a system - as in agent-oriented methodologies based on organisational con.

cepts - or for creating representations of organisational structures - as in catalogues of 

organisational patterns. In this thesis, we have presented a model that allows the exact and 

complete representation of the components of an organisational structure, and from which 

a graphical representation can be obtained. In particular, the model provides a character

isation of the control regime of an organisational structure which identifies and classifies 

the most common types of control relationships. 

3. A layout of organisational patterns was constructed. A pattern layout provides a means for 

describing the problem addressed by a pattern, the context in which this problem arises, 

and a solution to solve it. In particular, this layout of organisational patterns provides a 

way to describe patterns of organisational structures, and is formed of sections commonly 

found in any pattern layout, as well as sections specific for the description of organi

sational structures (which are based on the model for characterisation of organisational 

structures mentioned above). This layout can be used in the construction of catalogues of 

organisational patterns that support the organisational design of multi-agent systems, as 

was described in the methodological process developed in this thesis, and exemplified in 

associated the case study. 

4. Instantiations of the layout for organisational patterns were developed. Three instantia

tions of the layout for organisational patterns were presented in this thesis, which served 

as examples of the use of the layout, and also as the basis for the construction of a cata

logue of organisational patterns. Since these instantiations are pre-defined solutions that 
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can be re-utilised in different applications, they reduce development time by avoiding the 

need to begin the design from scratch. They also facilitate the design of a system, since 

the developer can focus only on those aspects specific for the application in question. 

5. A mechanism for incorporating the use of agent architectures into the agent design phase 

was created. Agent design is an essential phase in the development of a multi-agent sys

tem, but this is typically not considered in several agent-oriented methodologies. In this 

thesis, we have not only considered this phase, but we have also provided tools to support 

it. These tools are based on the use of architectural patterns, and consist of a number of 

patterns that correspond to well known architectures, procedures for incorporating these 

patterns into the agent design phase of a methodological process, and methodological 

guidelines for the generation of new patterns. The architectural patterns provided can be 

used to significantly speed up the design of an agent, as was shown in the the case study, 

since the procedures help to match the inputs of the target pattern to the requirements pro

vided by a methodological approach, and the guidelines assist in the process of creating 

architectural patterns for other agent architectures. 

6. A methodological process for the design of multi-agent systems was developed. Although 

based on an existing methodology (Gaia), this methodological process completes and ex

tends it with novel and valuable contributions. First, it incorporates an agent design phase, 

which includes models and activities to produce them. Second, integrated within the pro

cess is the use of organisational and architectural patterns, that speed up the development 

of a system by providing pre-defined solutions to the problems of determining the organi

sational structure of the system, and the internal composition of each agent of the system, 

respectively. Finally, the process incorporates an iterative approach that decomposes the 

development of a system into simpler, more manageable units, and allows the generation 

of executable versions of the system for each unit. A decomposition like this serves to ob-

tain user feedback from early stages of the development and, in consequence, decreases 

the risk of building the wrong system. 

7. A model for the specification of open multi-agent systems was created. This model pro

vides a means to create specifications for open systems. Specifications are essential in 

open systems because they state the facilities provided by the system and the way to ac

cess them, which is important for the construction of new agents incorporating to the 

system. Additionally, specifications establish what is considered a valid behaviour of the 

agents of a system, and thus form the basis for monitOling that these are observed during 

the operation of the system. 

8. A procedure for analysing equivalence between two protocols was designed. An impor

tant aspect of the specification of an open multi-agent systems refers to the protocols of 

agent interaction. To this end, the specification establishes, for each protocol, which se

quences of messages are considered valid. However, depending on the way in which these 

sequences are described, it can be the case that one sequence has associated more than one 
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description. In this case, when monitoring the compliance of agents joining the system, 

a procedure is needed to analyse if the description of a protocol as implemented by the 

agent, corresponds to the same protocol, as described in the specification. In this the

sis, we have presented a procedure, based on the equivalence of non-detelministic finite 

automata, that decides if two sequences of messages refer to the same protocol. 

LEVOR can be used for the analysis and evaluation of organisational rules, for instance, to 

monitoring their compliance at run-time. LEVOR and the model for organisational structures, 

together, can be used to describe organisational structures. The descriptions obtained in this way 

can be used for different purposes, for example, for documenting a system or, as in this thesis, 

for the creation of organisational patterns. 

The organisational patterns included in the thesis, and other possible organisational patterns 

generated by using the template, support the organisational design of a system and promotes 

re-utilisation. Similarly, the architectural patterns support the design of agents in a system, and 

help to avoid dependence on specific architectures. 

The methodological process helps to manage the development cycle, with emphasis on control

ling the risk of developing the wrong system and on keeping the project on time. Finally, the 

specification of open systems supports freedom to choose the most convenient fOlm of devel

opment, and is also useful in monitoring that the behaviour of agents does not put at risk the 

integrity of a system. 

8.3 Limitations 

In spite of its contributions and benefits, there are some limitations in this work, as described 

below. First, the tools provided in this thesis are potentially suitable to be used as part of other 

methodologies, or even as stand-alone techniques, but additional work is needed to achieve this. 

In the case of organisational patterns, their description is tied to the characterisation of roles and 

protocols used in Gaia, which is not the same for other methodologies. However, the simplicity 

and the neutrality of these characterisations would facilitate the adaptation of the patterns. The 

case of the architectural patterns is slightly different, since they rely on agent architectures which 

are independent of any specific methodology. As for the methodological process, the basic 

idea of decomposing the development into iterations can be easily translated to other processes, 

especially for those methodologies that are extensions of Gaia (such as Roadmap [77]) or similar 

in structure to Gaia (such as SODA [99]). 

Second, regarding the patterns, both organisational and architectural, although we have provided 

a layout, and some instantiations, the catalogues are immature, contain only a small number of 

patterns, and would benefit from refinement by the type of feedback obtained by recurrent use. 

In general, software patterns achieve maturity by constant use and by incorporating feedback 

provided by their users. In the long term, this process of utilisation and feedback incorporation 
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enhances a pattern with features that have proven to be useful in a significant number of appli

cations, and eliminates from the pattern features that are particular to only a reduced number of 

situations. However, since the multi-agent approach is a relatively new approach, this maturity 

is not likely to occur in the short term. Nevertheless, this process can be accelerated by the 

construction of tools such as those provided in this thesis. 

Third, the methodological process presented here does not consider in detail the phases of re

quirements analysis and implementation. These phases play an important role in development, 

the former by collecting and organising the information needed to understand the problem and 

the objectives pursued by the system, and the latter by providing the ultimate product of the 

development process, which is an executable version of the system. Thus, it is important to 

enhance the process with a complete consideration of these phases. The modular form in which 

the process is organised, however, lead us to believe that the incorporation of these phases can 

be achieved without significantly affecting the existing phases. 

Fourth, regarding the monitoring of open multi-agent systems, we have provided a high-level 

design for checking the compliance of dynamic specifications. This high-level design, however, 

is far from a design from which a straightforward implementation could be obtained, since it 

does not provide solutions to problems such as how to obtain the information needed, how 

to minimise the traffic of information, what type of mechanism should be used to analyse if 

compliance is achieved, and what to do when a violation has been detected. We have, however, 

established the basis on which solutions to this problems can be devised, such as the model of 

specification, the differentiation between static and dynamic specifications, and a manipulable 

language for expressing this type of specification. 

8.4 Future work 

There are some areas of this thesis that would provide valuable benefits if they are subject of 

further work. In the following we describe these areas and briefly outline the work required for 

their completion. 

The catalogues of organisational patterus and architectural patterns are potentially suitable for 

being used as stand-alone tools, or as part of other methodologies, for which some additional 

work is required. To begin with, those aspects of the patterns layout that depend on a partic

ular methodological approach must be identified. For example, in the case of organisational 

patterns, these aspects include the form in which the elements of an organisation (such as roles 

and protocols) are described. These aspects can then be either replaced or adapted to fit other 

methodologies based on organisational concepts. Moreover, it can be possible to constructfam

ilies of layouts that can be customised for a specific methodology. 

In the case of architectural patterns, the process of adaptation to other methodologies can be 

facilitated by the absence of an agent design phase in many methodologies, and the fact that 
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agent architectures, on which the patterns are based, are standard tools, which do not depend on 

the methodology used. For those methodologies which do not include an agent design phase, the 

incorporation of the whole agent design phase presented in this thesis (including architectural 

patterns) can be a better option. For those methodologies which already include an agent design 

phase, only the procedures for generating the inputs to the pattems, from the outputs provided 

by the methodology in question, would require adaptation. Nevertheless, it must be noted that 

our architectural pattems use object-oriented notation and techniques, which can be unsuitable 

for some applications. 

Further work is also needed for using organisational patterns in the development of large sys

tems, in particular, when comparing different patterns for determining the pattern that best mod

els a given system. In the process presented in this thesis, such comparison largely relies on 

visual examination, which can be adequate for small-sized systems and a small number of pat-

terns. However, for systems involving a large number of roles and interactions, or when the 

number of patterns is significant, it is difficult to compare the structures visual1y, thus making a 

fully automated comparison process necessary. Such a process can be based on the model for 

organisational structures presented here. 

For a complete coverage of the development cycle, the requirements analysis and implementa

tion phases need to be incorporated into the methodological process presented in this thesis. The 

requirements analysis phase can be based on those requirements analysis techniques that have 

already been applied to agent-based methodologies, for example, goal-oriented requirements 

engineering [22J, and agent-oriented requirements engineering [130]. On the other hand, the in

corporation of the implementation phase requires the selection of some specific platforms, and 

of methodological guidelines to obtain a detailed specification, from design models, for these 

platforms. 

Additionally, further work is required for the development of a graphical tool for supporting 

the different phases of the methodology. Such a tool is needed to facilitate and speed up the 

application of the methodological process (including the production of models), as well as for 

detecting inconsistencies and conflicts between the models, and generating documentation. 

Finally, further work is required to produce a more detailed design for monitoring the compli

ance of dynamic social constraints. This design must include mechanisms for the analysis and 

evaluation of the constraints, for obtaining the information needed for such analysis, and must 

provide strategies to follow when a failure in the compliance with the constraints is detected. 

8.5 Concluding remarks 

In spite of its mUltiple benefits, agent-based computing has not received widespread uptake, par

ticularly in sectors such as industry and commerce. This can be explained as a combination of 

several factors, such as the relative youth of the approach, and the natural resistance to change of 
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human organisations. However, the lack of maturity present in CUlTent agent-based software en

gineering also negatively affects its acceptance. Although overcoming this immaturity is partly 

a natural process that requires time, it also requires the development of tools and techniques to 

provide software developers with methodologies that are comprehensive and easy to apply. 

Agent-based computing will play an important role in the computing world of the next years 

and, eventually, the multi-agent approach may become the dominant software paradigm for 

complex systems development. These are not only expectations, but predictions based on CUlTent 

evidence. However, the rate at which the multi-agent approach might become dominant largely 

depends on the rate at which agent-oriented software engineering reaches the required maturity. 

We believe that work like that presented in this thesis is impOltant as a step even to approach 

such levels of maturity, especially if we are to realise true industrial take-up and application. 
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AppenrlixA 

The Conference Management System 

problem statement 

The purpose of the system is to support the management of a medium to large conference. 

The management of a conference can be divided into several phases: submission, review, and 

notification. In the submission phase an open call is made for the authors to send their papers 

within a deadline; authors send their papers and receive a number which serves as confirmation 

of the reception. 

During the review phase, the papers that will be presented in the conference are selected. The 

selection is supervised and coordinated by the Program Committee and the review of the papers 

is performed by referees. A number of papers are sent to each referee to review and each paper is 

reviewed by three referees. Since the committee members and the referees can be authors, some 

rules have to be observed, for example, a referee cannot review his own paper. The reviews are 

the base to decide if a paper is accepted or rejected. 

Finally, in the notification phase each author is sent a notification containing the reviews, the 

decision of acceptance or rejection of his paper and, in the former case, a deadline to produce 

the final version of the paper. Next, the publisher has to collect all the final versions and print 

the proceedings. 
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