
Increasing Accessibility in Agent-Oriented

Methodologies

by

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

September 2006

ABSTRACT

Doctor of Philosophy

Increasing Accessibility in Agent-Oriented Methodologies

by

The computing world is rapidly changing from a one in which a centralised approach is taken

to one in which a highly distributed approach is taken, thus requiring software systems that

operate in open, dynamic and heterogeneous environments. This has significantly increased

the complexity of software systems, and has required the development of new paradigms for

software development, such as the multi-agent approach to system development.

However, even though there is evidence of the suitability of the multi-agent approach to cope

with the complexity of current systems, its use is not widespread in other areas of computing

science, nor in industrial and commercial environments. This can be explained, particularly

for agent-oriented methodologies, by the absence of key software engineering best practices.

In particular, we have identified three groups of drawbacks that limit the use of agent-oriented

methodologies: incomplete coverage of the development cycle, a lack of tools for supporting

the development process, and a high degree of dependence on specific toolkits, methods or

platforms. Although these issues negatively affect the applicability of the multi-agent approach

in general, it is arguably for open systems that their effect is particularly noticeable.

In this thesis, therefore, we aim to address the issues involved in taking existing agent-oriented

methodologies to a point where they can be effectively applied to the development of open

systems. In order to do so, we consider the combination of organisational design and agent

design, as well as the methodological process itself.

Specifically, we address organisational design by constructing a software engineering technique

(software patterns) for the representation and incorporation of standard organisations into the

organisational design of a multi-agent system. The agent design aspect is addressed by con

structing an agent design phase which uses standard agent architectures through a pattern cat

alogue. Based on this, we develop a methodological process that combines the organisational

and agent designs, and that also considers the use of iterations for making the development of a

system more agile. This methodological process is exemplified and assessed by means of a case

study. Finally, we address the problem of monitoring the correct behaviour of agents in an open

system, by constructing a model for the specification of open multi-agent systems.

Contents

Acknowledgements

1 Introduction
1.1 Modem computing

1.2

1.3

Agent-based computing

1.4

1.5

1.6

Agent-oriented software engineering

Drawbacks
Aims ...

Overview .

2 Agent-oriented soft-ware engineering
2.1 Introduction

2.2 Agents and multi-agent systems

2.3 Agent architectures

2.3.1 The subsumption architecture

2.3.2 PRS

2.4 Organisations in multi-agent systems.

2.5 Agent oriented software engineering

2.5.1 Requirements engineering

2.5.2 Languages

2.S.3 Modelling languages
2.5.3. j AUML
2.5.3.2 Others

2.5.4 Pl atforms

JADE.

ZEUS
2.5.4.1

2.5.4.2

2.5.4.3 Industry-oriented platforms

2.5.5 Methodologies

2.6 Representative agent-oriented methodologies

2.6.1 Gaia

2.6.2 KGR

2.6.3 MAS-CommonKADS

2.6.4 MaSE ...
2.6.5 Tropos ..

2.6.6 INGENIAS

2.6.7 Others ...

2.7 Evaluation of methodologies

2

12

14
14
15

15

16

17

18

20
20
21

22
24

24

26

28

29
29
30

31

33

33

34
34
35

36

38
38
39

40
41
42

43
44
45

3

2.7J Development process

2.7.2 Facilitators.........

2.8 Drawbacks in current methodologies

2.8.1 Supported phases

2.8.2 Agent architectures

2.8.3 Interactions in open systems

2.8.4 Iterative development .

2.9 Conclusions

Modemng organisational structures
3.1 Introduction

3.1.1

3.1.2
3.1.3
3.1.4

Interactions and organisations

Organisations in multi-agent systems

Organisation type selection .

Organisational patterns

3.1.5 Overview

3.2 Gaia as the basis for the methodological approach

3.2.1 The main models of Gaia ..

3.2.1.1 Role model

3.2.].2 Interaction model

3.2.1.3 The model of organisational mles

3.2.2 The Gaia process

3.2.2.1 The analysis phase

3.2.2.2 The architectural design phase

3.2.2.3 The detailed design phase

3.2.3 Discussion .

3.3 Organisational rules.

3.3.1 Organisations

3.3.2 Overview ..

3.3.3 Requirements of a language for organisational rules.

3.3.4 A language for organisational rules

3.4 Organisational structures

3.4.1 Introduction

3.4.2 Characterisation and informal analysis.

3.4.3 A model for organisational structures .

3.4.3.1 Characterisation of organisational structures

3.4.3.2 Characterisation of control relationships . .

3.4.3 . .3 Language for expressing organisational structures

3.4.3.4 Example ..

3.4.3.5 Conclusions

35 Organisational Patterns

3.5.1 Introduction

3.5.2 Pattern layout

3.5.2.1 Pattern requirements.

3.5.2.2 An organisational pattern layout.

3.6 Catalogue of patterns

3.6.1 Introduction

45

46
48

50
50
50
51
51

S4
54

54

55
56
57

58
58
59

59

60
62
62
62
63

64
64
65
65
66
70

71

75

75

76
76
77

79
80
81

82

82

82

83

83

84

86
86

3.7

3.6.2 The pipeline pattern

3.6.3 The Simple hierarchy pattern .

3.6.4 The Marketplace pattern

3.6.5 Selecting pattems .. .

3.6.6 Summary

Related work and conclusions

4 Modelling the internal structure of an agent
4.1 Introduction..........................

4.2 Internal representation of agents

4.2.1 Obtaining a detailed design from a high-level design

4.2.2 Pattern layout

4.3 The SUbsumption architectural pattern

4.3.1 The subsumption architecture

4.3.2 Pattern description

4.3.3 Obtaining a detailed design for the subsumption architecture

4.4 The dMARS architectural pattern .

4.4.1 The dMARS architecture

4.4.2 Pattern description .

4.4.3 Obtaining a detailed design for the dMARS architecture

4.5 The TouringMachines architectural pattern .

4.5. I The TouringMachines architecture

4.5.2 Pattern description

87

93

97

105
106
107

110
110
112
112

113

114

115

115

119
122

122
123

127

129
130

131

4.5.3 Obtaining a detailed design for the TouringMachines architecture 134

4.6 Towards a general pattern. 137

4.6.1 Guiding the development of an architectural pattem . 138

4.7 Related work 142

4.8 Conclusions..................... 143

5 An incremental and iterative methodological process
5.1 The approach

5.2 Requirements analysis

5.3 Analysis

5.3.1 Artefacts ..

5.3.2 Activities ..

5.4 Organisational design

5.4.l A.rtefacts ..

5A2 Activities ..

5.4.2.1 Defining the organisational sLructme

5.4.2.2 Creating tile organisational design models

5.5 Agent design

5.5.1 Artel~,cts.............

5.5.1.1 The stnlcture model ..

5.5.1.2 The functionality model

575.2 Activities ~ .. ~ . ~ ~

5.5,2.1 Determining the agent architecture

5.5.2.2 Creating class diagrams

145

147
149

150

150

151

151

152

153

153

155

155

156

156

157
157

159

159

5.6
5.7

5.5.2.3 Creating scenarios

Implementation

Iterations

5.8 Related work and conclusions

() Case study
6.1 Problem statement

6.2 Iterations

6.3 First iteration . . .

6.4

6.5

6.3.1 Analysis

6.3.1.1 Organisation model

6.3.1.2 Environmental model

6.3.1.3 Preliminary role and interaction models.

6.3.1.4 Preliminary rule model

6.3.2 Organisational design.

6.3.2.1 Organisational structure

6.3.2.2 Role model

6.3.2.3 Interaction model

6.3.2.4 Rule model ...

6.3.3 Agent design

6.3.3.1 Structure model .

6.3.3.2 Functionality model

Second iteration

6.4.1 Analysis

6.4.1 Organisational design.

6.4.3 Agent design

Conclusions

7 Specification and Integrity in the Development of Open Systems
7. J Introduction

7.2 Basic concepts
7.2.1 A layered model for open multi-agent systems

7.2.2 Roles

7.2.3 Protocols

7.1.4 Organisational rules

7.3 Specification of open multi-agent systems

7.3.1 General concepts model

7.3.2 Participants model . . .

7.3.3 Interactions model ...

7.3.4 Social constraints model

7.3.5 Summary

7.3.6 A model of open systems.

7.3.7 Ensuring information consistency

7.4 Compliance monitoring

7.4.1 Static analysis on agent entry .

7.4.2 Run-time participants analysis

7.4.3 Run-time protocol analysis ..

160
160
161
162

164
164
166
167
167
167
167
168
172
174
174
175
178

179

180
181
182
183
183
185
188
188

189
189
191
191
194
194
195
197
198
198
199
202
203

204
206

208
208

209

210

7.4.3.1 Algorithm for matching the head . . .

7.4.3.2 Algorithm for matching the messages.

7,4,4 Run-time organisational rules analysis .

7.4.5 A design for checking static conditions

7.5 Conclusions and further work

8 Condusions and future work
8. J Summary . .

8.2 Contributions

8.3 Limitations .
8,4 FuUlre work .

8.5 Concluding remarks .

A The Conference Management System problem statement

210
212
215
216
219

225
225

226
228
229

230

242

List of Figures

2.1 The sUbsumption architecture.

2.2 Main components of the PRS architecture

2.3 Example of an AUML sequence diagram.

2.4 The AUML connectors

2.5 Example of nested protocol in AUML (after [66])

3. I Organisation of the Conference Management System

3.2 The models of the Gaia methodology (modified from [134])

3.3 Example of a role schema

3.4 A generic protocol definition ..

3.5 Example of a prorocoJ definition

3.6 Components of an organisation

3.7 Topology representation

3.8 Nodes linked by more than one arc

3.9 Using arrows to denote control relationships

3.10 Graphical representation of a pipeline structure

3.11 The Filter role

3.12 The Pipe role

3.13 Topology of a pipeline structure

3.14 The environmental entities of the pipeline structure

3.15 The GetTnput protocol

3. J 6 The SupplyOutput protocol

3.17 Dynamics of the pipeline structure

3.18 The simple hierarchy structure

3.19 The Head role

3.20 The Leaf role

3.21 M,lin dynamics of the simple hierarchy structure.

3.22 Roles in a marketplace, partl .

3.23 Roles in a marketplace. pari 2 .

3.24 Roles in a marketplace, part 3 .

3.25 Roles in a ll1m-ketplace, part 4 .

3.26 Roles in a marketplace, part 5 .

3.27 Roles in a marketplace. part 6.

3.28 Topology of a market

3.29 The Sale scenario of the marketplace structure.

3.30 The Entrance scenario of the marketplace structure

3.31 The role of organisational patterns in the methodology

7

25

26

32

32

32

56

60
61

61

62

66

76

78
78
81

89

89
90
90
91

91

92
93

95
96
97

100
100
101
101
102

102

103
104

104
106

4,1 Class diagram for subsumption architecture

4,2 Dynamics for suhsumptioTl architecture "

43 Packages for the dM.ARS architecture , , ,

4A Class diagram for tbe dl'VIARS architecture,

4,5 Sequence diagram for the case when the event buffer is empty

4,6 Sequence diagram for the case when the event buffer is non-empty

4.7 The TouringMachines architecture , , , , ..

4.8 Packages in the TouringMachines architecture .. ,

4.9 Class Diagram of the Planning Layer.

4.10 Main flow of operation in the TouringMachines architecture

4.11 Modelling the structure of effectors.

4.12 IVIodelling the dynamics of effectors

4.13 Modelling sensors

5.1 The workilows in the process and their artefacts

5.2 WorkJlows and iterations of the process

5.3 Worktlows of the process

5 A Activities of the analysis , ,

5.5 Activities of the organisational design .

5.6 Example of a class diagram in the structure model

5.7 The structure model

5.8 The artefacts of the agent design

5.9 The activities of the agent design

6,1 Communication paths in the case study.
6.2 Preliminary roles, part 1

6.3 Preliminary roles, par1 2
6.4 Preliminary roles, PaJ1 3
6.5 Preliminary roles, pan 4

6.6 Preliminary roles, part 5

6.7 Prelilninary interaction protocols, part 1

6.8 Preliminary interaction protocols, part 2

6.9 Preliminary interaction protocols, part 3

6,10 Preliminary interaction protocols, part 4

6.1 J Preliminary interaction protocols, part 5

6.12 Preliminary interaction protocols, part 6

6.13 Preliminary interaction protocols, part 7
6.14 Preliminary organisational structure

6.15 Organisational structure.

6.16 Role model, part 1 .

6.17 Role modeL part 2.

6.18 Role model, part 3 .

6.19 Role model, part 4 ,

6.20 Interaction model. part I

6.21 Interaction model, part 2

6.22 Interaction model, part 3

6.23 Interaction model, part 4

117

118

125
126
128
129
130
132

133

133
140
140
140

147
148
149
152
154
157
158
158
159

169
169
170

170
171

171
172

172

172

173
173
173
173
175
175
176

176

177

177

178

178

178

178

6.24 Interaction model. part 5

6.25 Interaction model, part 6
6.26 Class diagram of the structure model

6.27 Sequence diagram of the functionality model

6.28 Preliminary protocol description of registering uSers.

6.29 Preliminary protocol description of expelling users .

6.30 Preliminar"y role description of the community clerk .

6.31 Preliminary role description of the personal clerk

6.32 Role description of the personal clerk .

6.33 Role description of the community clerk

6.34 Protocol description of registering llsers

6.35 Protocol description of expelling users .

7.1 Layered decomposition of open multi-agent systems

7.2 Example of a protocol specification

7.3 Organisational rules for the Conference Management System

7.4 The general form of [he General Concepts Model

7.5 The application of the General Concepts Model to the CMS example.

7.6 The paper concept

7.7 The general form of the participants model

7.8 The application of the Par·ticipants Model to the eMS example

7.9 The general form of the interactions model.

7. IO The application of the Interactions Model to the eMS example

7.11 The general form of the social constraints model

7.12 The application of the Social Constraints Model to the CIVIS example

7.1 3 Description oft.he UpdateCall service

7.14 The function of the monitor.

7.15 Different Connectors in AUML

7.16 Algorithm: MA.TCHING THE HEAD .

7.17 Algorithm:]VJATCHING THE MESS AGES

7.18 Example of sequence of messages

7.19 Algorithm: CHECKING STATIC ORGANISATIONAL RULES

7.20 Data stmcture of agents and their roles

7.2] Information needed by the monitor .

7.22 Monitor's database

7.23 Components of the monitor

7.24 Checking protocol compliance .. .

7.25 Algorithm: TRANSFORMING A SEQUENCE DIAGRAM INTO A FSM

7.26 The operation of the "var'den

179

179

182
183
184

184
184

185
186
186

187
187

192

196
196
199
200
201
201
202
202
203

203
203
204

209
211

212

214

216
217

218
218

219
220

221

223

List of Tables

2.1 Covered phases

2.2 Facilitators

3.1 Characterisation of roles in Gaia

3.2 Characterisation of services in Gaia

3.3 Temporaloperators

3.4 Practical operators

3.5 Grammar for the LEVOR language

3.6 Pre-detined functions in the LEVOR language

3.7 Pre-defined predicates in the LEVOR language

3.8 Slllilll1ary of notation

3.9 Pre-defined control relationships

3.10 Formal definition of a pipeiine

3.11 Summary of the Jayout for desclibing organisational patterns

3.12 Environmental entities of a pipeline and their rights of access

3.13 Environmental entities of a Marketplace and their rights of access

6.1 Iteration decomposition of the ease study

7.1 Summary of notation

7.2 Inputs for the protocol checking procedures

10

47
48

60
64

68
68
72

73

73

78
78
81

85

91

103

167

207
211

Acknowledgements

In the first place, I would like to thank my supervisor, Michael Luck, for his advice, patience

and motivation. His support has been crucial during the elaboration of this thesis. I also thank

Terry Payne, Chris Reed and Nick Jennings for their valuable comments and suggestions. I am

grateful to the Mexican Council for Science and Technology (Conacyt) for providing financial

assistance for most of the duration of my PhD studies. I thank my parents and relatives for their

unconditional financial and emotional support. Last, but not least, I wish to thank those friends

who made my stay in Southampton a more enjoyable experience: Fabiola, Cora, Alex, Arturo,

Suzana, and many others. In particular, I thank Rocio, for her help with printing and binding.

12

A Viridiana y Carmen, por ser fuente de motivaci6n y acompaiiarme en

esta aventura.

A Josefina y Joel, esto es suyo, al igual que mi coraz6n.

13

Chapter 1

Introduction

1.1 Modern computing

The last few years have witnessed a dramatic change in the computing world, which has shifted

from a centralised approach to a highly distributed one. This has been caused, arguably, by

the explosive increase in the number of computers and the networks they form. As a conse

quence, the complexity of computing systems has increased considerably. In particular, highly

distributed environments have increased the complexity of software systems because of the het

erogeneity, openness, and dynamism associated with them.

This increase in the complexity of software systems has also had a considerable impact on

the way software is developed, resulting in the problem of how to build systems which are

much more complex, but keeping to the same time and budget constraints and, at the same

time, maintaining high quality levels. Several approaches have been USed to solve this prob-

lem, among them the use of more powerful, although traditional j , software methodologies and

tools. Although such approaches have achieved some success in modelling the features found

in highly distributed systems - dynamic, heterogeneous and open environments - traditional

approaches have proven to be complicated, error prone and time-consuming. The reason for

this is that the concepts on which traditional software engineering is based are not at the level

of abstraction required to model complex systems [75]. For instance, pro-activeness and auton

omy (explained in Section 1.2) have been recognised as valuable modelling tools, but objects,

by themselves, are not capable of exhibiting pro-activeness, since objects are passive entities

that operate at the request of other objects. Similarly, objects are incapable of autonomy, since

objects cannot choose which other objects can access their public services.

The difficulty in overcoming these limitations by means of traditional approaches has led to the

search for new paradigms that cope successfully with the complexity of current software. Some

I In this context, we use traditional to refer to software paradigms commonly used in the development of software
systems, namely structured methods and object-based approaches.

14

of the new paradigms that have been used with certain success are extreme programming [8] and,

more generally, agile software development [19]. The idea behind these paradigms is to develop

the correct system in the right time by delivering and testing versions of the system from the very

early stages, for obtaining user feedback, and incorporating the suggested changes. However,

although these paradigms offer improvements in the methodological process, in general they

maintain the same basic modelling abstraction, namely objects, and so they suffer from the

same limitations as other object approaches.

1.2 Agent-based computing

In contrast, the multi-agent approach is a new paradigm based on a different modelling abstrac

tion, known as an agent. In this paradigm, a software system is considered as composed of

several agents that interact according to a high-level discourse in order to achieve individual or

overall goals. There are two aspects in this view that differentiate the multi-agent approach from

other approaches, and need further explanation.

First, the high-level discourse means that the interaction between agents is in terms of the prob

lem domain, rather than in terms of low-level communication protocols or procedure calls. This

allows agents to focus on the problem solution - rather than on managing communication de

tails - and to have a better model of the real world situation.

Second, agents are the distinguishing aspect of this approach for which, however, there is no con

sensus on their exact meaning. From an engineering perspective, nevertheless, it is convenient

to consider an agent as a software system that exhibits autonomy, pro-activeness and sociality.

Autonomy is a twofold concept, denoting the capability of acting without human intervention,

as well as the capability of deciding which actions to commit to. Pro-activeness refers to the

capability of pursuing goals. Last, but not least, the sociality property refers to the ability of an

agent to interact with other agents in order to achieve its goals.

The multi-agent approach has been successfully applied in the development of complex dis

tributed systems, in areas such as manufacturing systems [37], air-traffic control [104], and elec

tronic markets [J 7]. Additionally, practical evidence suggests that multi-agent systems are suit

able for developing the type of applications that emergent technologies - such as the Grid [42]

and ubiquitous computing [1] - require.

1.3 Agent-oriented software engineering

The use of the multi-agent approach to engineering software systems, known as agent-oriented

software engineering (AOSE), is a relatively new discipline that has had, nonetheless, a rapid

evolution. Nowadays, AOSE considers practically all the components of software development,

15

including programming languages [103,23], methodologies [134, 25, 9, 55], platforms of oper

ation [70, 120], and formal methods [90). Of all these components, methodologies are perhaps

one of the most important because they determine how the other components are used during

the development of a system. More generally, software methodologies provide a way to engi

neer systems in an efficient, repeatable, robust and controllable fashion, thus helping to reduce

development costs and to increase software quality.

It is, arguably, because of this importance that a large number of agent-oriented methodologies

have been proposed to date [67, 92,5]. Indeed, existing methodologies cover a broad range of

applications, and vary in several aspects, such as the concepts they use to model multi-agent

systems, the development activities they cover, the types of applications they are targeted at, and

their degree of openness for using different tools and technologies.

1.4 Drawbacks

However, in spite of their number and variety, agent-oriented methodologies are not completely

suitable for use in commercial and industrial environments - as well as in mainstream com

puting - mainly because of their immaturity from a software engineering viewpoint. In other

words, the absence of recognised software practices and principles in agent-oriented method

ologies has originated serious drawbacks, thus preventing their use in larger ~ommunities of

developers.

Most of the drawbacks found in agent-oriented methodologies can be classified as one or more

of the following groups (a more detailed review is presented in Chapter 2).

1. Incomplete coverage of the development cycle. Several methodologies consider only

some of the phases of the whole development cycle, typically analysis and design of agent

interactions. This seems reasonable if we consider that these phases form the core of the

multi-agent approach (the other core phase, the design of agents, has partially been ex

plored in the study of agent architectures). However, although some methodologies have

intentionally left out certain phases, a complete process is needed in order to build real

world systems.

2. Lack of tools for supporting development activities. Here, we refer to several types of

tools, including: tools for graphical design; integrated development environments (IDEs)

for analysis, design and code generation; libraries of common design solutions; and code

debuggers. Without these tools, many of the development tasks become unnecessarily

time-consuming and error prone, thus discouraging the use of the methodology in ques

tion, and even the multi-agent approach itself.

3. Dependence on specific toolkits, methods or platforms. Several methodological processes

rely strongly on specific toolkits (for example ZEUS [120] and Jade [70]), agent archi

tectures, or platforms (for example FIPA [35] implementations). This dependence has the

16

advantage of facilitating the learning process for those practitioners already familiar with

those components, and of alleviating the problem of carrying out a selection. However,

the effectiveness of a methodology is reduced by the impossibility of selecting the best

solution for each application.

1.5 Aims

Current methodologies for multi-agent systems are largely focused around the development of

closed systems, in which all their components are known in advance. This, however, is not

usually observed in highly distributed systems. The aim of this thesis, therefore, is to address

the issues involved in taking existing methodologies to a point where they can be effectively

applied to the development of open systems. Here, an open system is one in which agents are

not designed in common, do not share a common goal, are possibly developed by different

development teams, and whose composition varies by the incorporation of new agents into the

system or by their exit from the system [134]. To do so, we need to consider the combination of

macro-level (organisational design) and micro-level (agent design) aspects of methodologies, as

well as the methodological process itself.

The specific aims of this thesis are as follows.

• Incorporate agent design into methodologies. The agent design phase is an essential part

of a complete methodological process that is, nevertheless, absent from many current

methodologies and, when present, is usually tied to particular agent architectures. This is

inadequate for open systems, since it restricts the selection of the best architecture for a

particular agent, and violates the open nature of these systems. In this thesis, we aim to

provide a methodological process for designing the agents of a system.

• Represent organisations. Organisations are an appropriate means for modelling the struc

ture of multi-agent systems. Organisations, however, are usually described in agent

oriented methodologies by using informal methods, such as plain English or figures,

which produces inexact descriptions. In this thesis, we aim to develop a model for exact

and complete representation of the components of an organisation, including topology,

control regime and organisational rules.

• Construct a software engineering technique for incorporating standard organisations into

the architectural design of a multi-agent system. While the architecture of a multi-agent

system can be modelled by means of an organisation, it is not always easy to determine

the organisation that best models a particular system. In this thesis, we aim to develop

some means for determining the type of organisation that best suits the characteristics of

a given multi-agent system.

17

It Construct a software engineering technique for supporting the design of agents by the use

of standard agent architectures. The design of agents relies on the use of models for spec

ifying the internal structure and operation of an agent, and these are precisely the types of

models that agent architectures provide. However, in spite of this natural correspondence,

using agent architectures for engineering practical agents presents some obstacles, such as

the mismatch between agent-based and software engineering abstractions. In this thesis,

we will provide a technique that removes these obstacles and allows the incorporation of

well known architectures to a methodological process .

• Create a model for the specification of open multi-agent systems. With the purpose of

incorporating new agents into an open multi-agent system, it is important to specify the

facilities provided by the system, as well as the restrictions for its use. However, this must

be done in such a way that no assumptions are made about how the agents are actually

implemented, since this is undetermined at design time. To facilitate this specification,

we aim to describe a model that abstracts the properties of an open multi-agent system,

and can be instantiated to obtain specifications for particular systems. A specification

constructed in this way can also be used to check, at run-time, if the agents joining the

system comply with its restrictions of use.

In seeking to achieve these aims, we adopt software engineering principles for making agent

oriented methodologies more agile. More specifically, in this thesis we aim to develop a method

ological process that allows the construction of a system by means of incremental executable

versions. Producing executable versions of a system from early stages of the development, is

beneficial for obtaining rapid user feedback, and thus reducing the risk of producing the wrong

system. It also helps to reduce development time, since it increases the parallelism among the

development activities. The applicability of such a methodological process is assessed by means

In summary, it is important to overcome the drawbacks found in current methodologies, in order

to achieve widespread use of the multi-agent paradigm, and consolidate it as a real option for

the development of open systems. A possible approach for overcoming these drawbacks is by

considering that current agent-oriented software engineering contains much valuable work, and

what is missing is the introduction, or reinforcement, of recognised software practices. Thus, in

this thesis, we aim to provide a means for completing and incrementing the maturity of agent

oriented methodological processes, so that they can adequately cope with the construction of

such systems.

1.6 Overview

The rest of the thesis is organised as follows. Chapter 2 justifies the agent-oriented approach as

a valuable tool for systems development, and presents the state of the art of AOSE. In Chapter 3,

18

we present a framework for constructing organisational patterns, which are representations of

standard organisations for facilitating the organisational design of multi-agent systems. Chap

ter 4. deals with modelling internal composition of agents. We address this problem by incor

porating the use of agent architectures into the design processes. Although the results obtained

in these chapters can be used on their own, they are more useful as part of a methodological

process. Such a process, which also considers the use of iterations, is presented in Chapter S.

Chapter 6 describes a case study in which we apply several of the results obtained in the previ

ous chapters. Chapter 7 addresses the problem of monitoring the correct operation of an open

system at run-time. To this end, we present a specification template that, when instanced for a

particular system, produces a specification whose compliance ensures the correct operation of

the system. Finally, Chapter 8 presents our conclusions and indicates future work

19

Chapter 2

Agent-oriented software engineering

2.1 Introduction

The agent-oriented paradigm views a software system as composed of autonomous, pro-active

entities (agents) that interact to achieve overall goals. Although research in distributed artificial

intelligence has shown that the paradigm is suitable for modelling complex systems running in

dynamic environments [131], some form of engineering of agent-based applications is needed

to encourage its use in other areas of computing, as well as in real world applications. This

is because these require the development of applications in a systematic form which, at the

same time, is sufficiently comprehensive for a practitioner with average skills. Traditionally,

software methodologies have provided such a way of engineering computer applications. More

specifically, methodologies are useful for developing applications in an efficient, repeatable,

robust and controllable fashion, and in so doing they help to reduce development costs and to

increase software quality.

Although initially some attempts were made to develop agent-based systems following tradi

tional methods [80], nowadays it is agreed that a new approach is needed to take advantage

of all the characteristics of agenthood. Current work on agent-oriented software engineering

covers almost all the activities of software development, requirements engineering [130], anal

ysis [126], design [24], implementation [94], and code generation [96]. However, most of this

work can be considered experimental or at the exploration stage [124].

The aim of this chapter is twofold: to review the main concepts in the field of multi-agent sys

tems, particularly those essential to understand the benefits, obstacles and solutions in applying

the multi-agent approach for the development of software systems; and to present the state of

the art of agent-oriented software engineering (AOSE). With this aim, we first introduce general

concepts of agents and multi-agent systems in Section 2.2. Then, models for both aspects of

multi-agent systems are reviewed, the internal composition of agents (Section 2.3) and the ways

in which they interact (Section 2.4). Next, we move our attention to the state of the art in agent

oriented software engineeling in Section 2.5. After that, the focus is put on methodologies,

20

by reviewing some representative cases in Section 2.6, presenting an evaluation in Section 2.7,

and summarising their main drawbacks in Section 2.8. Finally, our conclusions are presented

in Section 2.9.

However, agent-oriented software engineering is a large field that is impossible to cover here

completely. For this reason, we focus our review on methodologies and directly related concepts.

Despite this consideration, the literature available is still so vast that it is impossible to carry out

any exhaustive review, so we only consider some representative cases.

2.2 Agents and multi-agent systems

Arguably, this chapter should begin with the definition of agenthood, since it deals with agent

oriented systems. However, since it is known that there is no unique definition of agent

hood [J29, 127,89] (the interested reader is referred to [47] for a survey of definitions), any

definition adopted at this point will constrain and bias what we can say about agent-based com

puting. Since the purpose of this chapter is to provide a general overview of the field, instead

of presenting a definition of agenthood, we prefer to review different perspectives, leaving until

Section 2.9 the definition we will adopt for the rest of the thesis.

Wooldridge and Jennings describe two viewpoints of agenthood [129]: a weak notion and a

strong notion. The weak notion is the most popular among the mainstream computing commu

nity, especially software engineers, and views an agent as a UNIX··like process with properties

such as autonomy, social ability, reactivity and pro-activity. Autonomy refers to the capabil

ities of agents to work without human intervention and to have control over their own states

and actions. Social ability is the capability to communicate with other agents at a high level of

discourse. Reactivity refers to the property of perceiving and responding, in a timely fashion, to

changes in the environment. Finally, pro-activity deals with the capability of an agent to select

its own goals and act according to them.

By contrast, the strong notion of agenthood is common among the artificial intelligence com

munity, and views an agent as a computer system that, in addition to having the properties

mentioned above, can be conceptualised or modelled as if it had human characteristics such as

mentalistic notions like knowledge, belief, intention and obligation.

In addition to the weak and strong notions, we must also emphasise the existence of a differ

ent perspective which consists in viewing agents as an abstraction for modelling software sys

tems [74, 127], since it is on this perspective that agent-oriented software engineering is based.

Here, agents are used to model entities of the world, and software systems are viewed as sets of

agents interacting to achieve the desired functionality. As a result of their characteristics, agents

represent a promising means for developing applications populated by autonomous, pro-active

and/or reactive entities. More generally, this suggests complex applications running in dynamic

environments.

21

It should be noted that each of these perspectives is closely related to the others. For example, the

relation between agents as a software abstraction and the weak notion of agenthood resembles

that between classes and instances of classes in the object-based paradigm, in the sense that

both refer to the same concept but differ in the phase they are used: run-time for the latter and

design for the former. Furthermore, far from being mutually exclusive, the different perspectives

complement each other, and it is this diversity in perspectives that has been recognised as a key

factor for the popUlarity of agents [127, 89].

2.3 Agent architectures

The term agent architecture has been employed in the literature with different meanings. For our

purposes, an agent architecture is a specific collection of software modules, typically designated

by boxes with arrows indicating the data and control flow among modules [129].

Agent architectures can be classified into deliberative, reactive, and hybrid. The deliberative ar

chitectures were the first to appear and are characterised by an explicitly represented, symbolic

model of the world; and by basing their decision processes on pattern-matching and symbolic

manipulation techniques. Thus, some of the problems to tackle in these architectures are the

translation of real world concepts into symbols, and an efficient and accurate representation of

the decision process. In general, however, solutions to these problems require large amounts

of computation, which makes deliberative architectures unsuitable for many practical problems.

We will not elaborate this problems here, since they relate more to traditional artificial intelli

gence than to the agent approach, but the interested reader can refer to [52]. The difficulty of

these problems has led to the creation of alternative (and specifically agent) approaches, such as

reactive architectures and hybrid architectures.

Reactive architectures cover a broad range of approaches having in common the avoidance of

any kind of central symbolic world model or complex symbolic reasoning. As a result of this,

these types of agents may respond more quickly to changes in the environment. In spite of their

simplicity, or perhaps because of it, it is not possible to use a reactive architecture to develop

agents whose behaviours depend strongly on their execution history or on complex reasoning.

Hybrid architectures attempt to combine the best of deliberative and reactive architectures by

having two (or more) separate components, at least one deliberative and one reactive. The re

active component deals with important events that need a quick response, while the deliberative

component is in charge of planning and reasoning activities. However, the exact relationship of

the components and the control between them depends on each specific architecture.

The belief desire intention (BDI) architectures [6],] 28] are an important type of hybrid archi

tecture. BDI architectures are representations of agents whose behaviour can be described as if

they had mental attitudes of beliefs, desires and intentions. Beliefs represent the knowledge the

22

agents possess, desires describe the goals the agent pursues, and intentions are the committed

plans chosen to pursue those goals,

BDI architectures form afamily of architectures sharing the BDI stance but differing in the roles

they assign to beliefs, desires and intentions in the functionality of the system, as well as the form

in which they are represented and controlled. Although beliefs are well understood, the exact

roles played by desires and intentions have been subject to controversy. While both desires and

intentions refer to a state of affairs that an agent wants to bring about, in the case of intentions

there must be a certain commitment to achieve them. Therefore, while an agent may have some

desires, it might never set out to accomplish them. On the other hand, intentions cause an agent

to act. There are several theories that attempt to describe, analyse and specify the behaviour of an

agent by describing the relationships between beliefs, desires and intentions, and the motivation

behind such theories is diverse. Thus, while some aim to explain and predict agent behaviour

from an observer's perspective [33], some are used to design agent architectures [29], and others

have been applied to social agents for supporting reasoning about other agents engaged in group

activity [72].

Since they first appeared, BDI architectures have been popular among the agent community

for three key reasons. First, it is more natural to us, as humans, to model systems based on

intentional notions. Second, most BDI architectures have a well-founded philosophical and

theoretical background. Finally, these architectures, arguably, are more flexible than purely

deliberative or reactive ones. Being hybrid, BDI architectures lie between purely reactive and

purely deliberative systems. For this reason, they cannot deliver the same performance as purely

reactive systems when operating in highly dynamic environments, although their performance

can be increased by tuning the reasoning and deliberation strategies to the specific requirements

of the application in question.

BDI arc.bitectures have been successfully used not only in research, but also in commercial and

industrial applications. For example, OASIS [104], whose development was based on a BDI

architecture, - dMARS [29] - is an air-traffic management system that has been successfully

tested at Sydney airport. Agents in OASIS are of two types: aircraft agents and global agents.

Each aircraft agent is associated with an aircraft and is responsible for controlling its flight.

By contrast, the global agents are responsible for the sequencing and coordination of aircraft

agents. During run-time, up to 80 agents operate concurrently to give control directives to flow

controllers on a real-time basis.

Arguably, the success of BDI architectures is due to the following aspects [104].

• The application programming is based on plan construction, facilitating modular and in

cremental development.

• The balance between reactive and goal-oriented behaviour is managed by the system, so

that end users need not be involved in complex low level programming, which improves

reliability.

23

It End users can encode their knowledge in terms of mental attitudes instead of low-level

languages.

The number of different architectures proposed to date makes an exhaustive review impossible

so, as discussed in the introduction, we restrict our review to some representative architectures.

Also, in this review we do not consider deliberative architectures, since they are essentially con

cerned with planning from traditional artificial intelligence, and not with agent-based computing

per se. Moreover, consideration of such architectures could easily double the length of the re

view and would not add to the content of this thesis. Below, therefore, we focus on other types

of architectures.

2.3.1 The subsumption architecture

The subsumption architecture [10, 128] is a reactive architecture developed by Brooks, that

bases its function on the existence of behaviours and their relationships of inhibition. Each be

haviour is intended to achieve a specific task and associates perceptual inputs with actions. For

example, in the case of a vehicle control application, the behaviour, changing direction if an

obstacle is found in front, associates the perceptual input, an obstacle is in front, with the task,

change direction. To pursue its aim, each behaviour continually senses the environment until the

environmental state matches its associated perceptual input, in which case the associated action

is performed. In this example, the environment is continually sensed until an obstacle is detected

in front of the vehicle, in which case the action of changing direction is performed. However,

since an environment state may match more than one behaviour, an inhibition relation is used to

specify priorities. According to this inhibition relation, the behaviours are arranged into layers,

with lower layers capable of inhibiting upper layers, and the higher the layer the more abstract

its behaviour (as in Figure 2.1, which illustrates the relationship between perceptual input, be

haviours and action, and in which the inhibition relation has been represented as dotted lines).

For example, in the case of vehicle control, the behaviour corresponding to collision avoidance

occupies a lower layer than that of the behaviour corresponding to reach the destination, since

avoiding an obstacle has priority over reaching the destination.

2.3.2 PRS

The Procedural Reasoning System [51] (PRS) was originally developed as part of a NASA

project, and is based on a well-founded theoretical background. Beliefs, desires and intentions

in PRS are represented explicitly, and together determine the actions of the system. They are also

dynamically modified by a reasoning mechanism. As indicated in Figure 2.2, PRS is composed

of an interpreter and the following modules: database, goal stack, knowledge area library, and

intention structure. The database contains current facts about the world, while the knowledge

area library is a store of knowledge areas (KAs), which in tum are knowledge about how to

accomplish tasks and how to react in certain circumstances.

24

Perceptual
input

Behaviour n

Behaviour n.1

Behaviour 1

FIGURE 2.1: The subsumption architecture

Action

A KA is composed of a body and an invocation condition. The body contains the steps of

the procedure, and the invocation condition describes the circumstances under which the KA

is applicable. Some of the KAs in the library are application specific, while others address the

general management of PRS itself, such as choosing among relevant KAs.

In contrast to other BDI architectures, in PRS goals represent the desired behaviour of the sys

tem instead of static states of the world to be achieved. They are presented not only in the

goal stack but also as part of the KAs. Intentions are tasks that the system has chosen to exe

cute immediately or in the future, and consist of an initial KA and of other sub-tasks invoked

in accomplishing the task. Such intentions are inserted into the intention structure, which is

essentially a list with precedence.

For reasons of relevance and brevity, we will not elaborate in detail the operation of PRS, but

briefly sketch it here only; we consider its successor dMARS in more detail in Chapter 4. In

short, however, the interpreter controls the operation of the system, as follows. At a given

time, the system has some goals and holds some beliefs, according to which some KAs become

applicable, one of which is chosen to be executed and so is placed in the intention structure.

While executing this KA, some goals are produced and placed in the goal stack. If new beliefs

are acquired, consistency-checking procedures are applied. Also, new beliefs and new goals

can activate some new KAs, in which case the interpreter can decide to perform some other

goal. This has the effect of making the agent less committed to intentions and more aware of

the environment. In fact, in PRS it is the KAs that provide a quick response to changes in

the environment, forming the reactive component found in hybrid architectures. This is not a

separate component of the architecture in this case.

25

KA
library

Interpreter

Goal
stack

Intention
structure

FIGURE 2.2: Main components of the PRS architecture

2.4 Organisations in multi-agent systems

While the previous section dealt with the internal aspects of agenthood, relating to how agents

are internally composed, this section deals with the interactions between agents, or the ways in

which they act together in order to solve common or inter-related problems.

Although several metaphors have been proposed to model the way agents interact in multi-agent

systems [68, 71], the organisational metaphor [45] is emerging as one of the most utilised in

agent-oriented software engineering [132, 82, 25], arguably because it is intuitive and has been

successfully applied in several situations. Roughly, the organisational metaphor is based on how

humans work together to solve problems in the context of an organisation, such as a business.

A business has goals to achieve and in order to achieve them the goals are decomposed into

specific tasks, like production and distribution. These specific tasks are assigned to roles that

are played by humans. In order to carry out their tasks, roles interact according to pre-defined

patterns, which define which roles are subordinated to the authority of others. These interactions

also form a distinguishable network of communication paths.

More generally, according to the organisational metaphor, each agent in a multi-agent system

can play one or more roles. Each role, in tum, is in charge of pursuing one or several well

defined responsibilities, which are fulfilled, generally, by interacting with other roles. However,

an interaction between two roles is not only a relation of association, but in fact establishes a

relation of authority, which is an integral part of the definition of the role. Roles, interactions

and authority relationships define the structure of the organisation.

Organisations guide the way in which agents interact in a multi-agent system to achieve individ

ual or global goals, and influence how they coordinate, allocate resources, and are subordinated

26

one to the other. Thus, by interacting with other agents, organisations help simple agents to

achieve complex tasks, and sophisticated agents to reduce the complexity of their processes [64].

Arguably, all multi-agent systems have some form of organisation, even implicit, since in any

multi-agent system distributed agents act together through relations, carry out assigned tasks,

and use resources to accomplish them. However, more than one organisation might fit a partic

ular system (e.g. a production line can be modelled as a pipeline, as well as a hierarchy [134]),

and different organisations produce different system performance in terms of efficiency (e.g.

communication and computation overhead), reliability and uncertainty management, since or

ganisations differ in the way tasks are distributed and the communication paths they possess.

Also, organisations present different levels of scalability, redundancy and flexibility.

Although no two organisations are identical, it is possible to group them in certain types, accord

ing to the topology their interactions form and the authority relationships their agents exhibit.

The following are some of the most used types, or paradigms, of organisations.

Hierarchies [45,64] This is one of the simplest and most studied form of organisation. In hier

archies, agents are conceptually arranged in a tree-like structure; the higher their position,

the more important, in some sense, their role. Generally, lower-level agents produce data

to feed higher-level agents, which in tum perform more complex processing such as con

solidation, analysis or decision making. Hierarchies have been extensively used to model

distributed applications [45, 135, 95]. In fact, the well known contract net protocol [115]

tends to produce hierarchical structures. (Under a contract net protocol an agent can be

assisted by other agents to complete its tasks, through assigning a sub task by advertising

it, receiving offers and selecting the most convenient.)

Holarchies [38, 64] In this paradigm a system is viewed as composed of basic units of or

ganisation, holons, which in tum can be seen as formed of other (more basic) holons; for

example, a manufacturing system is composed of manufacturing units, which are in tum

composed of devices, operators, processes, and so on. The key aspect of holarchies is the

partial autonomy of holons, since the absence of autonomy would degenerate into a hier

archy and complete autonomy would lead to an unorganised group. More specifically, if

the relationships between agents in a system are of complete subordination, the holarchy

can degenerate into a hierarchy. Another important aspect of holarchies is that each of the

holons represents a complex sub-organisation that can be decomposed further. Modelling

a system into a hierarchical nested structure has proven to be suitable for modelling cer

tain kinds of practical problems such as manufacturing control [37, 136]. For instance,

in [136] a model combining different types of holons (static, mediator, and dynamic) is

used to create an organisation for controlling manufacturing systems. Here, statically

created holons are used to represent entities of the environment such as manufacturing

devices, design plans and conveyors, whereas dynamically-created holons are used to

represent new tasks, and mediator-type holons manage orders and coordinate resources.

27

Teams A team [93, 7] is a system of cooperative agents that pursue a common goal. Since

there is no restriction on the types of their interactions, team topologies tend to be quite

arbitrary. However, it is often the case that members of a team share their mental state,

particularly for common representations of shared goals, mutual beliefs and team-level

behaviours. For example, Jennings [73J shows that, by sharing representations of com

mon tasks, and through the progress of cooperation, agents are able to successfully solve

electricity transportation problems, but they are prone to behaving incoherently in the lack

of shared representations.

Markets [108, 125, 45J In this particular type of organisation, agents can buy and sell items

such as goods, services or tasks. Agents playing the role of buyer place bids, and agents

playing the role of seller receive the bids and determine the winner, in a manner that

largely resembles a real-world marketplace. It is usually the case that some agents exist

to facilitate the operation of the organisation in common tasks such as receiving bids

and determining the winner. Kasbah [17] is one of the first examples of an agent-based

marketplace, in which buyers and sellers describe the type of goods they are interested in

by means of a list of features, a desired price and a threshold price. Here, a sale occurs

when a there is a buyer willing to pay the price of the seller.

The way organisations are characterised differs for each particular approach. For example, in the

Gaia methodology [J 32J, an organisation of roles is composed of structure and organisational

rules, where the structure of an organisation is described by its topology and control regime.

The topology consists of the set of communication paths formed by the interaction of the roles

in the organisation, and may take typical forms such as lines, trees or networks. On the other

hand, the control regime encompasses the authority relations between the roles; for example, in

an employment control regime, low-level roles are subordinated to high-level roles as the result

of a work partition. Finally, organisational rules provide constraints on the way the elements of

the organisation operate; for example, in a marketplace, an organisational rule could state that

no product delivery can be made without receiving the corresponding payment.

In summary, the organisational approach applied to the multi-agent paradigm is a promising

tool to cope with the complexity of current software systems [134, 25J, due to the fact that

organisations provide a conceptual framework in which the complex interactions carried out

by agents can be appropriately modelled. This conceptual framework constitutes a layer of

abstraction that is situated on top of, and complemented by, that provided by agents [88].

2.5 Agent oriented software engineering

Agent oriented software engineering (AOSE), which is concerned with engineering software

systems having agents as the main design concept, is an evolving discipline whose aim is to

provide methods, techniques and tools to facilitate the development of agent-based applications

28

in a repeatable, systematic and controlled way. We start this section by justifying the existence

of AOSE and characterising the type of problems it attempts to cope with, and then proceed to

present the current state of the art.

For the purpose of presentation, we divide AOSE into the following topics: requirements engi

neering; languages for programming, communication and coordination, and ontology specifica

tion; development tools and platforms; and methodologies for analysis, design, and implemen

tation. Each of these is described below.

2.5.1 Requirements engineering

Requirements engineering deals with eliciting, modelling and analysing the functional and non

functional capabilities that a system should have. It is the front-end activity in the development

process, and also plays an important role in the management of change in all phases. There are

two non-mutually exclusive approaches in requirements engineering that are relevant to agent

orientation: agent-oriented requirements engineering and goal-oriented requirements engineer

ing, both considered below. Agent-oriented requirements engineering encompasses several ap

proaches that primarily rely on the concept of agents, examples of which are i* [130] and AL

BERT [30]. i* is a modelling framework based on the concept of agents with intentional prop

erties such as goals and commitments, while ALBERT (Agent-oriented Language for Building

and Eliciting Real-Time requirements) is a formal language for requirements specification cen

tred around the notion of agent.

Goal-oriented requirements engineering is closely related to agent-oriented requirements engi

neering but explicitly captures non-functional requirements such as reliability, flexibility, in

tegrity and adaptability, by representing them as particular cases of goals (sometimes called

soft-goals). Examples of this approach are KAOS (Knowledge Acquisition in autOmated Speci

fication) [22], which is a formal framework focused on requirements acquisition I, and NFR [18],

which focuses on the representation of, and reasoning about, non-functional requirements.

2.5.2 Languages

Languages are used during several stages in the development of agent-based applications. In

this section we briefly describe the most notables cases of agent-oriented languages for pro

gramming, communication and ontology specification.

The most commonly used general languages to build agent-based systems are Java and C++.

However, from an agent-oriented perspective, these languages work at such a low level that it is

difficult to implement agent features unless an additional platform or framework is used. An al

ternative approach to using frameworks consists in using higher level languages that implement

INot to be confused with the KAoS (Knowledgeable Agent oriented System) system developed by Bradshaw.

29

agent concepts, known as agent-oriented programming languages, of which some examples are

briefly described below.

• AGENT-O is a language for the specification of agents and their behaviour, and is based on

the agent-oriented programming paradigm proposed by Shoham [J 12]. AGENT-K [23J,

a development of AGENT-O, integrates KQML [34] (see below) into AGENT-O.

• Concurrent METATEM [39] uses an executable temporal logic to specify the intended

behaviour of an agent. In this language, agents are viewed as concurrent processes that

communicate by means of messages.

• AgentSpeak(L) [103] is a rule-based language with a formal operational semantics that

views agents as composed of intentions, beliefs, recorded events and plan rules. It is

based on the PRS [5 J] architecture.

In addition, some other high level languages, such as Prolog and LISP, have been used for the

construction of multi-agent systems (particularly the knowledge component of agents [101]), or

simulation environments and testbeds for multi-agent systems [32].

Agents use high-level discourse to communicate, so agent communication languages bypass low

level aspects such as the characteristics of physical communication, and focus on the exchange

of communicative acts and domain concepts. Some prominent examples of agent communica

tion languages are outlined briefly below .

• Based on speech act theory, KQML [34] (knowledge query manipulation language) was

originally developed as part of a DARPA project, but is nowadays perhaps the most widely

used communication language .

• Similarly to KQML, FIPA-ACL [35] is part of the set of standards proposed by the Foun

dation for Intelligent Physical Agents (FIPA) and this has facilitated its popularity, par

ticularly as part of application development frameworks. It has a formal semantics and is

also based on speech act theory.

2.5.3 Modelling languages

In the context of this thesis, a modelling language is a language that allows us to express the

planning of a system, or part of it. By itself, a modelling language does not suggest a way to

design systems, but only provides a way to express the design. Modelling languages normally

use, or include, graphical representations, making the models more comprehensive. Although

traditional approaches to software engineering possess defacto modelling languages, such as the

Unified ModeIIing Language (UML) in the object-based approach, in the agent-based approach

none of the several proposed languages is clearly dominant. Below, we briefly describe one of

the most cited of these languages, namely the Agent Unified Modelling Language (AUML).

30

2.5.3.1 i\lJrvlI-

Based on the number of methodologies that employ AUML [66] (for example, ADELFE [100],

Tropos [9], PASSI [20] and INGENIAS [96]), we can argue that this language is one of the most

popular languages for modelling agent-based systems. Perhaps its popularity results from the

fact that it extends UML, a language widely used in the design of object-based systems, in a

straightforward fashion, so that anyone familiar with UML should be capable of using the agent

features.

AUML extends UML mainly in the sequence diagrams and in the class diagrams. These ex

tended sequence diagrams are arguably the most used aspect of AUML. Below, we present a

summary of how UML sequence diagrams have been modified to consider agent concepts [66].

• Agents, roles, and agent classes appear in the boxes at the top of the diagrams, instead of

object classes and object instances. For instance, in Figure 2.3, the boxes - pointed to by

marker 1 - are occupied by the Buyer, Marketer and Seller roles. (Roles are denoted by

a slash before their name.)

• Instead offocus of control- as in UML - the lifelines of the diagrams contain threads

of interaction. These threads are depicted in the diagram as narrow rectangles, such as the

one pointed to by marker 2 in Figure 2.3.

• In order to express parallelism when sending messages, AND, OR and XOR connectors

(applied to a set of messages) have been added, expressing that all the messages, several

of them, or just one, respectively, can be sent at the same time. These connectors are rep

resented graphically as shown in Figure 2.4, in which three messages have been depicted

for each connector.

• When using FIPA-ACL [35], message arrows can be labelled with the communicative act

that they represent, as in the communicative act request in Figure 2.3, and indicated by

marker 3. Also, the number of messages sent and the number of role instances that receive

the message may be added to the arrows. Examples of this can be seen in Figure 2.3, and

are indicated by marker 4.

• To promote re-usability, AUML allows the definition of a protocol inside another protocol

in the same sequence diagram, either by nesting or by interleaving. An example of the

former appears in Figure 2.5, in which the nested protocol is denoted by means of a

rounded corner box.

• By using protocol templates, AUML allows one unit to encompass several protocols that

change only in the value of some parameters, thus promoting re-usability.

In AUML, object classes are extended to agent classes. An agent class contains: an agent name;

a state description; actions; methods; capabilities, service description, and supported protocols;

31

o

FIGURE 2.3: Example of an AUML sequence diagram

AND OR XOR

FIGURE 2.4: The AUML connectors

FIGURE 2.5: Example of nested protocol in AUML (after [66])

32

and organisations. Agent names are prefixed with the stereotype agent in order to differentiate

them from object names. Apart from this, the instance, role or class name may be included with

the name of an agent. State description in an agent class is similar to the attributes section of

object classes and, in the case ofBDI agents, may contain beliefs, desires, intentions and goals.

Actions can be of two types in AUML: pro-active, which are those actions triggered by the agent

itself; and reactive, triggered by messages received from other agents. Methods are similar to

UML operations, with the addition of pre-conditions and post-conditions. Capabilities are like

UML responsibilities, while service descriptions are similar to UML interfaces. The last part,

organisations, is a list of groups to which an agent may belong, including the constraints for

joining the group and the roles the agent plays within it.

Note that AUML is an evolving effort, subject to continuous updates and additions, whose future

work considers not only modifications to diagrams but also the creation of tools to support their

production, and the definition of its semantics. In spite of its benefits, and as its authors argue,

AUML is not intended to be used to model all the characteristics of a multi-agent system, but it

might be complemented with other languages and notations.

2.5.3.2 Others

Other modelling languages have been used in specific parts of the design of multi-agents sys

tems. For instance, Cost et al. [21] employ Coloured Petri Nets for modelling agent commu

nicative interactions, including support for concurrency. Similarly, DeLoach [85] employs Finite

State Machines for constructing conversations in the design phase of the MaSE methodology.

2.5.4 Platforms

In the context of AOSE, we use the term platform to denote an infrastructure that provides facili

ties for the operation of a multi-agent system. Such facilities vary from platform to platform, but

typically include low-level communication protocols (such as TCPIIP), agent construction, and

agent management (such as registry in the platform, and white and yellow pages). In addition

to this, most platforms also include support for one or more phases of the development process,

analysis, design, implementation, testing and debugging. Notable examples of academic and

commercial tools are: ZEUS [120], developed at British Telecom; JADE [70J, developed at the

University of Parma; JATLite [41 J, for the development of agents that communicate using the In

ternet; FIPA-OS [36J, for the development of FIPA compliant agents; and JACK [116J, oriented

to BDI agents. Since it is not the intention of this thesis to go into details of implementation, we

will not attempt to review all these platforms, but consider only two of them below. For more

complete reviews, and comparisons of different platforms, the reader is referred to [92, 1 05J.

33

2.5.4.1 JADE

JADE [70] is an evolving project developed in the Telecom Italia Labs since 1999, consisting

mainly of a FIPA-compliant agent platfOlID and tools for development of multi-agent systems,

including an applications programming interface (API). JADE has a large community of users

who are continually providing feedback and contributing with development and additional tools.

JADE offers facilities for the construction of individual agents, as well as for the ensemble of

agents in a system. Regarding the construction of individual agents, JADE provides classes that

implement the agents' basic functionality, independently of any particular architecture. Such

functionality, based on the concepts of autonomy and sociability, views an agent as an active

object (i.e., an object with its own thread of execution), able to hold multiple conversations

through an asynchronous messaging protocol. In order to build an agent, developers extend

the agent class, giving agents access to a private message queue and to facilities for processing

FIPA-ACL messages. In order to implement agent tasks, JADE uses the concept of behaviours,

which are obtained by extending the behaviour class provided. For their execution, behaviours

are placed in a behaviour stack list that operates on a round non-pre-emptive scheduling policy,

but more sophisticated scheduling mechanisms are also provided, such as cyclic execution and

finite state machine implementations for composite behaviours.

Regarding the ensemble of agents to form a system, JADE offers a platform that complies with

FIPA specifications, including components for agent management (access to the platform, white

pages), directory facilitators (yellow pages), implementation of communicative and content lan

guages (ACL and SL-O) and support for FIPA interaction protocols.

Finally, although no software tools are provided for guiding the process of developing a MAS,

JADE offers comprehensive documentation of the APIs, a programmer's guide and many exam

ples to support the process.

2.5.4.2 ZEUS

ZEUS [120] is a platform for agent-based system development originally built at British Tele

com but now available as a free software project. ZEUS was developed with the purpose of

providing a platform that offered information discovery (information about the agents in the

system), communication, tools for ontology definition, coordination of agents, and integration

of agents with legacy software.

Agents in ZEUS are formed of components that correspond to common functionalities including

planning, scheduling, communication skills, coordination, and ontology support. To fit a specific

application, the designer can arrange these components in different, although limited, ways.

In ZEUS, a multi-agent system is formed by using two special agents - utility agents - that

carry out the tasks of system management, namely the agent name server and the facilitator.

34

The former functions as a white pages directory and also provides the system with a clock for

synchronisation purposes, while the latter acts as a yellow pages directory.

ZEUS provides three types of facilities for achieving coordination between agents, by using

protocols (based on the contract net protocol), by defining roles - such as peer, subordinate,

and superior - that can be used to define organisational structures, and by planning.

2.5.4.3 Industry-oriented platforms

There are also several platforms for constructing multi-agent systems specifically oriented to

the development of industrial applications, among which AdaptivEnterprise, Living Systems

Technology Suite, Magenta Multi-agent Platform, and the Lost Wax Agent Framework are rep

resentatives, and briefly described below.

AdaptivEnterprise [119, 3] is a system developed by Agentis that includes a framework for

developing multi-agent systems. Using this framework, complex applications can be designed

and maintained graphically as simple plans, each consisting of only a few steps. By using

code generation tools, agents can be automatically obtained from the graphic designs. These

agents are java components capable of operating in diverse environments, and are based on

a BDI architecture closely related to dMARS. AdaptivEnterprise has been used to construct

applications in areas such as financial services, insurance, retail and distribution, logistics, and

energy industries.

Living Systems Technology Suite (LSITS) [118] is a set of tools developed by Whitestein Tech

nologies that consists of a run-time platform and development tools. The run-time platform

provides the middleware that adds functionality to the java run-time environment for support

ing agent-based applications, and is available in personal, business and enterprise editions. The

core of this run-time platform, the Core Agent Layer, defines and implements agent abstractions

such as pro-activeness, goal-·driven behaviour and flexible communication, and provides ser

vices such as directory services, notification services and access to the messaging infrastructure.

On the other hand, the development tools include tools for design, implementation, debugging,

deployment, monitoring, testing, and a methodology for systems development based on a mod

elling language that extends UML with agent abstractions. LSITS is used as a basis for the

creation of applications in sectors such as logistics, telecommunications and financial services.

Magenta Multi-agent Platform [2] is a java-based library of tools for developing and executing

multi-agent systems. In this platform, every problem is considered as a problem of allocating

resources, such as vehicles or drivers, to demands, such as transportation instructions. Agents

match demands to resources through negotiating with each other. The core of the platform con

sists of generic components common to all applications, such as negotiation protocols, as well

as components for creating the environment in which such negotiations occur, for supporting

messaging mechanisms, for defining the ontology and decision making logics and process for

35

specific problem domains, and for data analysis. Magenta technology has been used in appli

cations such as car production planning and scheduling, management of fleet of vehicles and

planning of a complex logistics network for the transportation of heavy loads.

Similarly, the Lost Wax Agent Framework [46] is an environment for development and deploy

ment of multi-agent systems, and provides the following facilities: support for integration to

other agent environments, external systems, and external databases; an integrated security layer;

CASE tools for applications design; libraries of standard protocols; and libraries of architectural

templates for agent modelling. This framework has been applied to solutions in sectors such as

supply chains and logistics, manufacturing, telecommunications, and financial services.

2.5.5 Methodologies

Software methodologies have proved to be successful in increasing the speed of development,

in improving the quality of software, and in reducing development costs. Methodologies play

such an important role that some consider the broader acceptance of agent systems to be closely

tied to the availability and accessibility of adequate methodologies [89, 97, 67].

This section is devoted to reviewing the current state of agent-oriented methodologies, but it

should be noted that not all the approaches considered here are methodologies in a strict sense.

According to Kearney et al. [78], a software engineering methodology provides methods, guide

lines, descriptions and tools for each stage in the life of a system. However, very little work

involving agents can satisfy this view since most address only some parts of the system life

cycle, and the tools they provide are scarce. Thus, the criteria we use as a basis for including

work in this section is that it should address at least considerable aspects of the analysis and

design phases, since these are the phases on which this thesis is focused. Here, we consider

analysis and design as consisting of the acquisition of user requirements and their representa

tion in some model from which an implementation that fulfils them can be built. Addition

ally, we focus our analysis on general-purpose methodologies, thus leaving out specific-purpose

methodologies such as the methodology of Bussmann et al. [12] for manufacturing processes,

and ADELFE [100] for auto-adaptable systems.

Existing agent-oriented methodologies can be classified in several ways [124, 67]. According

to their origin, methodologies can be divided into those that extend object technology, those

based on multi-agent systems concepts and those based on knowledge engineering techniques,

considered in tum below.

Methodologies that extend the object paradigm Many of the first attempts to engineer

agent-based systems extended, in some way, object technology. In fact, object technology con

tinues to be a source of inspiration for some aspects of more recent methodologies. This seems

natural since the object paradigm is, at present, the most mature and most used paradigm for

36

software development. In addition, there are several benefits of using object technology as a

base for an agent methodology [67], as follows.

• The object-oriented and agent-oriented paradigms have several similarities since both en

capsulate knowledge (data) and behaviour (methods). Also, in both paradigms communi

cation is achieved by message passing. It has even been claimed that agents are active ob

jects or objects with an attitude [31], although we believe that such a claim oversimplifies

the characteristics agents possess (unless in attitude we encompass all the characteristics

mentioned previously).

• Object-oriented languages have been used to implement agent programming frameworks,

such as JADE [70]. Although such frameworks work at a higher level of abstraction, they

still reflect the characteristics of the object paradigm.

• The types of models used by object-oriented methodologies, static, dynamic and func

tional, can be satisfactorily applied to agents. The static view deals with representing

structural properties and has been used to model the inner structure of agents, and the

static relationships between them, such as aggregation. The dynamic view, which de

scribes how the elements of a system interact at run-time, is employed mainly to represent

protocols of interaction between agents. Finally, the functional view, that describes the

functionality of a system and how it is decomposed, is useful to represent the data flow

present in agent activities .

• Some well known techniques for object-based design and analysis can be successfully ex

tended to agent-based systems. For example, the use of use cases and class-responsibility

collaboration cards (eRe cards) are helpful in identifying agents during the analysis

phase. Use cases are abstractions that decompose the functionality of a system into well

identified parts, and represent the external actors that interact with the system to pursue

them. A eRe card is a physical card that contains the name of an object class, its respon

sibilities, and the name of the classes with which it collaborates to fulfil them. Due to

their simplicity, eRe cards have the benefit of forcing designers to focus on the identifi

cation of classes and collaborations, bypassing details that are irrelevant at that phase of

the analysis .

• The popularity of object··oriented methodologies potentially increases the number of users

of the agent-oriented methodology.

Two examples of methodologies that extend object technology are MaSE (Multiagent Systems

Engineering) [24] and the KGR (Kinny, Georgeff and Rao) method [80]. MaSE is a methodol

ogy that defines two languages to model agent-based systems: the Agent Modelling Language

and the Agent Definition Language. The fonner is a graphical language to describe the types

of agents of a system and their interfaces to other agents, while the latter is based on first order

predicate logic and is used to describe the internal behaviour of agents. Both languages can be

37

used as part of a traditional development technique or as part of a formal system synthesis. On

the other hand, the KGR method divides design into two parts, one for modelling the interaction

between the agents, and the other to model the internal aspects of each agent. For the latter part,

KGR uses a BDI architecture. A more detailed description of these two methodologies is given

in the next section.

Methodologies based on knowledge engineering techniques For some years, methodolo

gies have existed to engineer knowledge-based systems. If we assume that all agents have a

component of knowledge, then it logically follows that extensions of these methodologies could

be developed to engineer agent systems. However, these extensions must address aspects usu

ally not covered in these methodologies, such as the distributed and social aspects of agents and

their goal-oriented behaviour. Representatives of this approach, based on knowledge engineer

ing techniques, are CoMoMAS [53] and MAS-CommonKADS [68]. The latter is described in

more detail in the next section.

Methodologies based on multi-agent systems concepts Methodologies based on multi-agent

systems concepts do not find their inspiration from other areas of computer science, such as the

object paradigm or knowledge engineering technology, but from concepts derived from multi

agent systems, which are in turn inspired by interdisciplinary areas of knowledge such as organ

isation theory and coordination theory. Implicit in the approach of these methodologies is the

assumption that, although agent-oriented methodologies based on the object paradigm have suc

ceeded to some extent, the full potential of the multi-agent paradigm cannot be reached by just

extending the object model. Representatives of this kind of methodology are Gaia [126] (which

is described in the next section), Gaia extended with additional organisational concepts [J 33],

and SODA [99].

2.6 Representative agent-oriented methodologies

As previously noted, many methodologies have been proposed to date. Since it is impractical to

describe all of them, we have selected only a few to be described in more detail as representa

tives of their corresponding group. We based our selection on aspects such as how much they

have been referenced by the agent community, how much they have influenced other work, the

amount and accessibility of their literature, and how long they have been around.

2.6.1 Gaia

Proposed by Wooldridge, Jennings and Kinny, Gaia [126] is a methodology for analysis and

the first stages of design, and is applicable to problems where the number of agents is not

much greater than one hundred. In Gaia, the development of a system is seen as a process of

38

organisational design, in which the system is formed of roles with associated responsibilities,

permissions, activities and protocols. The process of modelling a system is divided into two

parts, analysis and design, each of which deals with the development and refinement of the

corresponding models.

The analysis models consist of the roles model and the interaction model. During the creation of

the roles model, the main roles in the system are identified, together with their responsibilities

and permissions. The roles model itself consists of a set of role schemata, one for each role,

and each comprising the description, protocols, activities, permissions, and responsibilities of

a role. Patterns of interaction between agents are modelled in the interaction model, which

consists of a set of protocol definitions, each comprising the description, initiator, responder,

inputs, outputs and processing of an interaction between two agents. The analysis phase in Gaia

is iterative. First, the main roles are identified, and then, for each role, its associated protocols

are documented. This leads to the refinement of the roles model, which in turn can lead to

refinements of the interactions model and so on.

The Gaia design phase yields three models, the agent model, the services model and the ac

quaintance model. The agent model is a tree where leaf nodes are roles and other nodes are

agent types comprising one or more roles. For example, for efficiency, a designer might decide

to put together three roles in an agent type, instead of having three different agents. The services

model is just a list of services of all the agents in the system, together with their inputs, outputs,

pre-conditions and post-conditions. A service is defined as a single, coherent block of activity in

which an agent will engage, and its characteristics are derived from the protocols model. Finally,

the acquaintance model is a directed graph, where nodes are agent types and arcs are potential

communication paths, so that there is an arc from node a to node b if at least one message would

be sent from a to b. The acquaintance model can be derived from the roles, protocols and agent

models, and it is useful to identify potential communication bottlenecks. Note that in Gaia, the

design is not intended to produce an output detailed enough to be implemented on a particular

platform, but it focuses on describing how the agents cooperate to achieve the system goals.

2.6.2 KGR

The KGR (Kinny, Georgeff, Rao) methodology [80] models an application from two viewpoints:

the external and the internal. The external viewpoint focuses on the interactions between agents,

whereas the internal viewpoint deals with the composition of each agent. Two models form

the external viewpoint: the agent model and the interaction model. The agent model represents

the hierarchical relationship among agent classes, while the interaction model represents the

responsibilities of agents, the services they perform to achieve them, and the interactions and

control relationships among agents. In order to develop these models, the following steps are

established.

1. Find the main roles of the application and create a preliminary agent hierarchy.

39

2. For each role, find its responsibilities and the services needed to provide those respon

sibilities. Consider not only interaction between agents, but also interaction with the

environment and human users.

3. For each service, identify interactions (performatives and content), determine control re

lationships between agents, and model the internal structure of each agent.

4. Refine the agent hierarchy by introducing inheritance and aggregation where appropri

ate, creating concrete agent classes, refining control relationships and introducing agent

instances.

The internal viewpoint is based on the BDI architecture, which views an agent as having mental

attitudes of belief, desire and intention representing, respectively, the information, motivation,

and deliberative states of the agent [104]. According to this, agents are characterised by the

events they perceive, the beliefs they hold, the goals they adopt and the plans to achieve those

goals. The internal viewpoint consists of three models: the belief model, the goal model and the

plan model. The first comprises information about the environment, the second deals with the

goals an agent can adopt and the events it responds to, and the last regards the plans to employ to

achieve the goals. Roughly speaking, the steps to model the internal viewpoint are the following.

1. For each goal, analyse the different context in which it is to be achieved. For each of these

contexts, establish how the goal is to be achieved in terms of sub-goals and operations.

Do the same for sub-goals.

2. Build the beliefs from the contexts and conditions that control the execution of actions

and activities.

3. Iterate the above steps as the models are refined.

It is assumed that the results of this methodology are used in an infrastructure like dMARS [28],

which provides additional execution mechanisms. For example, it describes how events and

goals produce intentions and how intentions lead to actions.

2.6.3 MAS-CommonKADS

The MAS-CommonKADS methodology [68] extends the CornrnonKADS methodology, and is

based not only on knowledge engineering but also on object-orientation and protocol engineer

ing. It can be divided into three phases: conceptualisation, analysis and design. The first is an

informal phase, while the analysis and design phases consist ofthe development of some models

and textual documents. The process of development is risk driven, so that the components with

the highest risk are tackled first, helping to reduce the risk of the project and to meet deadlines.

40

In the conceptualisation phase, a preliminary description of the system is produced by means

of use cases, in which the interactions are graphically represented using Message Sequence

Charts [J 07].

The analysis phase yields the following models.

• The agent model describes agent characteristics such as reasoning capabilities, services

and goals. The methodology proposes several helpful techniques to identify agents and

their characteristics.

• The task model describes the tasks that the agents carry out and their decomposition.

• The expertise model describes the knowledge needed by the agents to achieve their tasks,

and is divided into domain, task, inference and problem solving knowledge.

• The organisation model describes the organisation in which the agents will operate, as

well as the organisation of the agent society.

• The coordination model describes the conversations between agents, including protocols

and required capabilities.

• The communication model describes the interactions between humans and agents.

The design phase yields only the design model, which collects the analysis models and is divided

into the following three parts.

• Application design is concerned with the composition or decomposition of agents and the

selection of a suitable architecture for each agent.

• Architecture design deals with the design of agent network facilities.

• Platform design concerns the selection of a development platform for each agent archi

tecture.

2.6.4 MaSE

MaSE (Multi-agent Systems Engineering) is an agent-oriented methodology based on object

techniques that cover most phases of the development cycle: analysis, design and implemen

tation. There is also a CASE tool (agentTool) that supports all the phases of the methodology.

The main philosophy of MaSE is the construction of graphical models, each of which is built

according to guides provided by the methodology. The construction of a system begins with a

set of initial requirements and ends with a specification that is independent of any agent archi

tecture or platform. The development of a system is divided in MaSE into analysis and design,

each of which consists of several phases, as described below. However, it must be noted that the

41

phases do not follow a plain sequential order, but iterations are allowed and encouraged in order

to gradually refine the design.

The analysis encompasses the following three main activities.

• Identification of goals and their decomposition into sub-goals.

• Identification of use cases and creation of sequence diagrams to identify roles and their

interaction.

• Transformation of goals into roles.

On the other hand, the design consists of the following four phases.

• Assignment of roles to agent classes (which are similar to object classes but incorporate

agent features), and identification of conversations (patterns of interaction between the

roles).

• Detailing the conversations.

• Definition of the internal agent structure.

• Definition of the final system structure.

MaSE is a good example of a methodology that is continually evolving. From the methodology

described in [24] to the one described in [85], MaSE has gained in comprehensiveness, coverage

of phases and supporting tools. Also, the additions presented in [25J have made MaSE useful for

developing open systems. Other additions like verification of conversations and incorporation

of an ontology model have made MaSE one of the most complete current methodologies.

2.6.5 Tropos

Tropos [IS, 82, 81] is an evolving project being developed by researchers from several univer

sities. Its main purpose is to provide help during software development of systems in changing

environments. To this end, techniques, tools and a methodology are provided. The methodology,

which is also named Tropos, has the following characteristics.

• Tropos covers a wide range of development phases: early requirements, late requirements,

architectural design, detailed design and implementation.

• All the phases are requirements-driven, which means that the modelling concepts used in

the early requirements phase are consistently used along the other phases. This supposedly

reduces the gap between the system and its environment.

• Tropos is based on organisational concepts.

42

• Tropos incorporates the use of organisational patterns of two types: architectural styles

and social patterns. A style is used as a system architecture (a small, intellectually man

ageable model of system structure, which describes how system components work to

gether) during the architectural design. On the other hand, social patterns are used to

represent how a specific role goal is fulfilled by agents.

• In contrast to other agent-oriented software engineering projects, the literature and infor

mation about Tropos is vast [9, J 5, 82, 81, 102].

• Tropos uses (and in some cases extends) well-established tools and frameworks, for ex

ample, i * [130} for organisational modelling, AUML (see Section 2.5.3.1) as a graphical

modelling language, and JACK [116] as an implementation platform. i* is a modelling

framework built around the notion of agents with intentional properties such as goals and

commitments, and JACK is a commercial agent platform for BDI agents.

2.6.6 INGENIAS

INGENIAS [55] is a project developed at the Universidad Complutense of Madrid that consists

of a software methodology as well as set of tools. According to the purpose of this section,

we will focus our description only on the methodology. INGENIAS views a system as divided

into five complementary viewpoints, namely organisation, agents, tasks/goals, interactions and

environment. The organisation viewpoint describes a structure in which the elements of the

system are arranged. These elements include agents, resources, goals, tasks, groups (of agents,

roles, resources or applications), workflows (associations among tasks and the information for

their execution) and social relationships (restrictions on the interaction between entities).

The agents viewpoint deals with the internal functionality of the agents and is divided into

three components: mental state, mental state manager and mental state processor. The first

component is formed of all the information an agent needs to take decisions, the mental state

manager performs operations on the mental entities (such as creating, destroying and modifying

them), and the mental state processor determines how the mental state evolves based on, for

example, rules and plans.

The tasks/goals viewpoint addresses the decomposition of goals and tasks, including the reasons

why they should be performed and the consequences of their execution.

The interactions viewpoint deals with the requests or exchange of information between agents

and between agents and human users, identifying the participants of the interaction, the inter

action units (messages and speech acts), protocols involved, context (goal pursued and mental

state of the participants) and coordination mechanisms used.

Last, the environment viewpoint defines the entities with which the system interacts. These

entities can take the form of resources (entities that do not provide an API), applications (entities

for which an API is provided), and other agents outside of the system.

43

On the other hand, the main idea behind the methodological process of INGENIAS [54] is the

adaptation of the Unified Process [69] (RUP) to employ agents rather than objects. For this,

associations are proposed among the elements of RUP and those defined in the viewpoints cited

above: classes are matched with agents, organisations with architectures, groups with subsys

tems, interactions with scenarios, and roles, tasks and workflows with functionality. Based on

these associations, the resulting activities of the process are obtained. First, the main workflows

(analysis and design) are divided into three phases: inception, elaboration and construction.

During the analysis, organisation models are produced to obtain the general architecture of the

system, and these models are refined to identify common goals and relevant individual tasks.

During the design, more detail is added by defining workflows and refining the agents' mental

states. The previous activities are first carried out for the most significant use cases (in elab

oration phase) and then for the rest of them (in the construction phase). Regarding the imple

mentation, two options are possible: manual implementation using the specification provided by

the models, or automatic code generation using a provided tool, which generates code in Java,

Java Expert Systems Shell, April and Prolog. Finally, the testing workflow is no different from

conventional software testing.

2.6.7 Others

There have been several approaches to formally specifying and implementing agent systems.

Different formalisms have been employed to this end; for example, Luck et al. [90] provide an

outline for a possible methodology for the development of agent systems using the Z language

(hereafter called the Formal Agent Framework). Such a methodology is based on a formal

framework, which uses a hierarchy of entities (objects, agents and autonomous agents) to model

an application domain. Roughly, the process to develop an application is initiated by identifying

t..l}e entities, t..~eir purpose, a."'1d their control relationships. This results as a classification of the

entities in objects, agents or autonomous agents. The process continues with the design ofmeth

ods for behaviour and the control relationships, and ends by identifying structural similarities in

the entities in order to exploit them. The final product of this process is a specification whose

implementation by means of objects is straightforward. One restriction in this framework is that

it is difficult to express time properties about the behaviour of entities, due to the fact that Z has

no notion of time. Future work could tackle this restriction by using another formalism, either

alone or in combination with Z [90].

MESSAGE [78, 13] (Methodology for engineering systems of software agents) is a methodol

ogy designed by the EURESCOM consortium, mainly oriented towards the telecommunications

domain. MESSAGE extends some elements commonly found in object-oriented methodologies

- particularly RUP [117] - such as the use of UML [43] as the modelling notation, and a

methodological process based on iterations and increments.

SODA [99] is a methodology based on organisational concepts that covers only the phases of

analysis and interaction design. There are three characteristics that distinguish SODA from other

44

similar methodologies: the use of task, instead of role, as the primitive concept; the importance

given to the environment of a system during its modelling; and the use of interaction rules to

enforce the accomplishment of social tasks.

2.7 Evaluation of methodologies

In this section we present an evaluation of the agent-oriented methodologies reviewed above.

Such an evaluation is important for the identification not only of the weak points of each indi

vidual methodology, but also of the drawbacks of the overall agent-based approach. Although

several evaluations exist in the literature [Ill, 5], the evaluation presented in this section is

different in that it is oriented to determine the suitability of the methodologies to be used in

commercial and industrial environments by software engineers (in contrast to academic and

research communities of agent specialists).

We have limited our evaluation to the available literature for each methodology in the previous

section. However, we are aware that some of these methodologies are evolving projects, and

so are prone to updates. Also, for the purpose of the evaluation, we define the meaning of the

terms used and make an effort to match these definitions to those used by the authors of the

methodologies.

2.7.1 Development process

We first evaluate the coverage of the development process. To this end, we divide the devel

opment process of an agent-based application into the following phases, with their attached

meanings.

Requirements The collection and organisation of the requirements of the system.

Analysis The understanding of the system, its main components, and its environment

Structural design The specification of how the system fulfils its requirements, focusing on the

interactions between the agents.

Architecture design The specification of how the system fulfils its requirements, focusing on

the internal composition of each agent in the system.

Implementation The activities involved in the construction of an executable system from the

specification of the design phases.

Table 2.1 shows which of these phases are covered by each methodology. As can be seen from

the table, most methodologies fail to consider all the development phases.

45

Gaia describes in appropriate detail the phases that it covers, but the application of the method

ology relies on the use of artefacts that are not sufficiently described, such as the organisational

patterns and the language for describing structures. Also, the fact that Gaia covers only two

development phases limits its use in real-world applications, but the neutrality of these phases

makes Gaia attractive for extension, not only in terms of increasing the phases covered, but also

in enriching the process with the addition of iterations and increments.

KGR strongly relies on the object approach for describing the design of a system. It is also

strongly oriented towards the use of EDI architectures, particularly in the architecture design

phase, and although architecture-dependence is not regarded as a desirable characteristic, the

use of EDI architectures with KGR have proven to be successful in real-world applications.

Additionally, some parts of the methodological process are not described with enough detail,

and iterative design is not explicitly considered.

The way in which the process of MAS-CommonKADS is specified presents some drawbacks.

First, the process is described as an extension of CommonKADS, which is natural but assumes

that the practitioner is familiar with CommonKADS, which is not usually the case for a typical

software engineer. Second, the process is centred around the description of the models, but less

emphasis is placed on how to obtain the relevant information, and the order in which to develop

the models, including iterations. In addition, the architecture design is limited to the extent of

selecting an appropriate architecture for each agent, but does not cope with obtaining a detailed

specification of an agent.

Tropos covers all the development phases considered in our review, although in some cases it

is oriented towards a specific architecture or platfonn. The architecture design considers only

one agent architecture (which happens to be a purpose-built architecture based on mentalistic

notions such as goals and plans), and the implementation relies on the JACK platform [116]. The

organisational patterns (called architectural styles in Tropos tenninology) are useful to describe

the architecture of a system at a high level, but further refinement is needed to apply them to

specific applications.

INGENIAS has good coverage of phases and it is said to have an iterative-incremental process,

although no details are provided. Also, INGENIAS is highly architecture and platform indepen

dent, but at the cost of forcing the developer to build from scratch the description of the system

by means of diagrams.

2.7.2 Facilitators

We have also considered the elements of the methodology oriented to facilitate its application

to real world problems, hereafter called facilitators. These elements are diverse, but have have

in common that without them any practical design would tend to be highly time-consuming and

its results unreliable. In particular, in this evaluation we consider the following facilitators.

46

Methodology Req. Anal. Struct. Arch. Imp.
Des. Des.

Gaia x J J x x
KGR x V V V x
MAS-CommonKADS V V V V x
MaSE x J J V V
Tropos V V J V V
INGENIAS x V J V V

TAB LE 2.1: Covered phases

Graphical models The presence of adequate graphical models to describe the properties of the

system and specify its implementation.

Techniques Procedures to guide the derivation of relevant information and the accomplishment

of the activities of the process.

Tools Mechanisms that accelerates the development, such as automatic code generation and

reusable libraries (patterns).

Graphical tools The existence of graphical software tools, as integrated development interfaces

(IDEs), to support one or more of the development phases.

Table 2.2 shows the existence of the different types of facilitators in each methodology. In the

table, a facilitator is said to be present in the methodology only if plays a relevant role in it.

For example, the techniques column is ticked only if the methodology provides techniques for a

satisfactory proportion of the activities.

It can be observed from the table that only a few methodologies provide all the types of facilita-

tors considered, and their weakest point is the lack of techniques and tools. Regarding graphical

models, all the methodologies include them in some form, although with drawbacks in some

cases. Gaia, for example, uses graphical models to describe components of the system but not

the relationships between them. For instance, the role model shows each role of the system, but

does not show their relationship of interaction or dependency. In addition, most of the graph

ical models of these methodologies are based on those of the agent paradigm, and none of the

methodologies considers the use of the Agent Unified Modelling Language (AUML).

The inclusion of techniques as part of the process is important for the purpose of smoothing

the learning curve for novice practitioners. However, only a few methodologies provide detailed

and complete guidance about how to obtain the information required by the models, and the way

in which this information is related. This could be explained partially by the lack of extensive

documentation that most methodologies suffer, and is exemplified by the MAS-CommonKADS

methodology.

47

Methodology Graphical models Techniques Tools IDE
Gaia V x x x

KGR V V x x

MAS-CommonKADS V x x x

MaSE V J V V
Tropos V V V x
INGENIAS V V V V

TABLE 2.2: Facilitators

Although tools have been recognised as an important factor in spreading the use of agent

oriented methodologies, they are not included in most methodologies. One of the reasons for

this is that agent-oriented methodologies are relatively recent and the development of tools re

quires additional effort and time. Tools are present in these methodologies mainly in the form

of reusable patterns and code generation modules. Reusable patterns play an important role in

the Tropos methodology, although they are situated at such a high level that they are applicable

only for specific types of applications, for example electronic commerce. Code generation has

been used as a means to avoid platform and language dependence.

Similarly, IDEs help to substantially reduce development time, but surprisingly only a few

methodologies include them. Current IDEs are being used mainly for building diagrams and

code generation, but can also be used for checking completeness and consistency, guiding the

development process, and as a forefront for other tools such as compilers and debuggers.

2.8 Drawbacks in current methodologies

It is desirable to have standard criteria to evaluate methodologies~ Shehorj and Sturm [l} 1]

established some criteria to evaluate modelling techniques for agent-based systems, divided in

two parts: software engineering evaluation and agent-based system characteristics. The former

encompasses desirable characteristics of a modelling technique from the viewpoint of software

engineering, but deals mostly with how simple to use and how powerful the technique is. The

following are qualities assessed in the software engineering aspect of an evaluation.

Preciseness How unambiguous the semantics of the models is.

Accessibility How comprehensible the technique is for beginners and experts.

Expressiveness How applicable to multiple domains the technique is.

Modularity How stable to the introduction of new requirements the resulted models are.

Complexity Management How easy it is to work at different levels of abstraction.

48

Executability The quantity and quality of tools to support prototyping or simulation of at least

one aspect of the methodology.

Refinability How easy it is to obtain an implementation from the design specification.

Analysability The quantity and quality of tools to check consistency and coverage.

Openness The applicability of the methodology to different architectures, infrastructures and

programming tools.

The agent-based system characteristics part of the criteria focus on the evaluation of the method

ology to support agent-·oriented features. The characteristics included are the following.

Autonomy How well supported the representation of the self-control property is.

Complexity How well supported the complexity management is.

Adaptability The support for creating agents adaptable to dynamic changes in the environment.

Concurrency How well represented concurrent agent operation is.

Distribution How good the methodology is for representing the distribution over a network of

the multi-agent system components.

Communication richness What support it provides to express the communication richness re

quired to model agent interactions.

Shehory and Sturm applied these criteria to the evaluation of some methodologies [Ill, 110],

including Gaia [126], the Formal Agent Framework [90] and AUML [66]. Their conclusions

show that u~ese methodologies adequately addreSS agent characteristics like autonomy, complex-

ity and adaptability. However, they are poor in addressing agent characteristics like concurrency,

distribution and communication richness. In spite of this, they see the software engineering is

sues as the weakest point in the evaluated techniques.

There are several surveys of agent-oriented methodologies [5,67, 1] 1, 124], many of which also

attempt to provide an evaluation of the reviewed methodologies. One can note that there is some

consensus about the weak points of current methodologies. In general, the weak points refer to

the lack of software engineering features, like complete coverage of the development cycle.

In our evaluation, we identified drawbacks in current methodologies that complement those

found in other evaluations. These drawbacks can be grouped into four categories: supported

phases (coverage of the whole development cycle), agent architecture (support for the internal

design of agents), interactions in open systems (flexible modelling of agent interactions), and

iterative development (development by successive executable deliveries)_ The drawbacks we

identified are presented below, together with some possible ways to overcome them.

49

2.8.1 Supported phases

As was discussed in Section 2.7.1, current methodologies are not complete or detailed enough.

Even if we restrict our attention only to the analysis and design phases of the development cycle,

very few methodologies cover all the corresponding activities. For example, SODA and Gaia do

not address intra-agent issues, some of the MAS-CommonKADS models can be the subject of

further improvement [68], and MESSAGE is neither complete nor mature [78].

2.8.2 Agent architectures

It is inevitable that one must deal with specific agent architectures during the design of indi

vidual agents. We have identified the following three different approaches taken by current

methodologies:

1. For some methodologies, such as Gaia [126], agent architectures are considered to be out

of scope since they were designed only for analysis and high-level design.

2. Some methodologies are tied to a specific architecture; for example KGR [80] is tied to

the BDI architecture.

3. Other methodologies are tied to a specific architecture but claim that the same design prin

ciples can be applied for other architectures, or that other architectures can be adapted to

the architecture considered. For example, MESSAGE [78] uses a generic layer architec

ture as a template from which concrete architectures can be instantiated, depending on the

specific characteristics of the agent in question.

Thus, few current methodologies satisfactorily incorporates at least the most popular agent ar

chi tectures.

2.8.3 Interactions in open systems

Interactions are a key issue when modelling multi-agent systems, since agents achieve their

goals by interacting with other agents. In the case of open systems, the interaction mechanisms

should be flexible enough to allow new agents to be incorporated into the system (since although

conversation protocols are naturally open, modelling complete agent interactions requires par

ticular considerations, since no assumptions can be made about the identity and composition of

agents). It seems that INGENIAS (one of the most mature methodologies from the software en

gineering viewpoint) neither facilitates nor prevents the development of open systems. It would

be helpful to adapt or extend INGENIAS to explicitly consider this kind of system. In particular,

enriching the analysis and upper design phases of INGENIAS with the organisational abstrac

tions recommended by Zambonelli et al. [133] could lead to a methodology suitable for tackling

open systems.

50

Although addressing the semantic aspect of interactions is outside the scope of this thesis, it is

worth mentioning the approach towards this direction presented in [76J, in which Johnson et al.

describe a mathematical model for agent interaction. This model is based on the mathematical

notion of categOlY, which is a mathematical constmct consisting of two sets and a system of

combination rules. The first set (the objects) is largely a placeholder, while the second set (the

morphisms) consists of a collection of arrows from one object (the tail) to another (the head).

The system of combination rules consists in obtaining a larger arrow from two arrows, where

the head of one is the tail of the other. The model so obtained represents formally the utterances

and commitments in agent dialogues, and the relationships between them, and can be used

for modelling communication languages such as FIPA-ACL, and protocols such as an English

Auction.

Another relevant approach towards interaction modelling appears in [60J, where the WSCI (Web

Service Choreography Interface) language is presented. WSCI is an XML-based language, pro

posed by the W3C group, for the description of interactions between web servers, but several of

its features are also applicable for other types of interactions. The features of an interaction that

can be described by means ofWSCI include: the order in which the messages can be sent or re

ceived in a given message exchange; the messages that form a transaction; exception handling;

thread management; and alternatives based on run-time values. It is planned that WSCI be used

together with other standards to achieve complete semantic and technical interoperability of web

services.

2.8.4 Iterative development

One of the best practices adopted in successful software engineering methodologies is that of

iterative development [43, J 17], which encourages vertical development, in contrast to the clas

sic waterfall model. Roughly, the practice consists in dividing the development of a system into

iterations, each of which delivers an executable that upgrades the functionality of the previous

iteration, and consists of analysis, design and implementation phases. This approach has several

advantages, one of the most important being that it facilitates user feedback, thus avoiding de

veloping the wrong system. Other advantages are that it helps the development stay on schedule

and makes it easier to accommodate tactical changes [117]. None of the reviewed methodologies

satisfactorily applies this best practice, but this has been identified as important [78].

2.9 Conclusions

Despite the existing work in agent-oriented software engineering, there remain outstanding

problems. In particular, it is difficult to produce high quality tools because of the gap between

theory and practice. Fisher et al. [40] point out that, for instance, many AI theories of knowl

edge representation are never used because they have not been designed for practical use. They

51

suggest that such a gap can be filled by the convergence of theories at a lower level and program

ming languages at a higher level, or by producing methodologies that act as a bridge. In this

thesis we focus on the latter approach by attempting to complete the bridge; more precisely, we

refine some of the elements found in current methodologies to make them more comprehensive

and easier to understand for a broader public.

For the purpose of this chapter we have assumed a rather general concept of agenthood. How

ever, for the rest of the thesis we need to be more precise about what an agent means, since it

strongly determines the orientation and scope of the work presented in the next chapters. In the

rest of the thesis we assume, therefore, that an agent is a software program with its own thread

of execution that can exhibit run-time properties of autonomy, social ability, reactivity and pro

activeness, and that some of the several modules it encompasses can have their own thread of

execution. Whether or not an agent exhibits any of these properties is determined by its design,

and not by the limitations of the platforms on which it is implemented.

Based on what we presented in this chapter, we can summarise the state of agent-oriented soft

ware engineering as solid and promising but still embryonic. AOSE is solid because it is founded

on well studied concepts and principles, many of which existed even before the agent approach

and are the result of years of experience and refinement. AOSE is promising because there exists

analytical and practical evidence showing that it is a valuable tool for developing the systems

that today's complex applications require. However, from a software engineering perspective,

AOSE is embryonic in the sense that it does not incorporate practices that, for several years,

have proven to be useful in engineering software systems.

To overcome these limitations, in this thesis we address the issues involved in taking agent

oriented software methodologies to a point where they can be effectively applied to the devel

opment of open systems. To do so, we consider the two main aspects in which the development

process is divided, namely L~e macro-level (design of the interactions between agents) and the

micro-level (design of the internal composition of agents), as well as the process itself. Our

approach consists of incorporating a set of specific software practices to the development pro

cess of agent-oriented methodologies. This set of software practices tackle precisely those areas

identified as drawbacks in our evaluation, and consist basically of the use of software patterns

and an incremental iterative approach for the methodological process. However, to accomplish

these tasks, some other problems had to be solved first, as is explained in the following chapters.

Finally, it is important to make clear that this thesis focuses on the analysis and design phases of

the multi-agent systems lifecycle, which form, arguably, the core activities of the development

process. However, the lifecycle of multi-agent systems, and software systems in general, covers

many other activities, which are only briefly described below. Note that this list of activities

is neither exhaustive nor definitive, since the phases can be arranged and presented in different

forms, and with different names.

52

II As was stated in Section 25, the requirements engineering phase consists of eliciting,

modelling and analysing the functional and non-functional capabilities of a system, and

is performed before the analysis phase.

II The implementation phase follows the design and consists in the creation of an executable

version of the system, including the creation of source code, binary files and scripts.

II During the evaluation, a system is evaluated to determine if all the functional and non

functional requirements have been implemented.

II In the testing phase, the implementation of a system is tested for the existence of errors.

This is done by feeding the system with pre-established inputs and comparing expected

outcomes to actual outcomes.

II The validation of a system consists of determining if its functionality correctly imple

ments its requirements; that is, if the right system has been developed.

II The deployment phase encompasses the activities involved in making a system available

for use, including installation of executables and preparation of user manuals.

II The maintenance phase deals with modifying the system to accommodate changes to the

original requirements.

II Finally, the upgrade phase consists of extending a system to incorporate new require

ments, as well as managing the replacement, or coexistence, of different versions of the

system.

53

Chapter 3

Modelling organisational structures

3.1 Introduction

3.1.1 Interactions and organisations

As was briefl y discussed in Chapter 1, multi -agent systems provide an appropriate means for the

development of complex systems as a result of their ability to naturally and effectively represent

multiple loci of control, distinct and differing perspectives, and natural decentralisation and

distribution. This is becoming increasingly important in emerging computational systems which

are characterised by dynamism and openness, or where systems are modelled as being composed

of multiple interacting and independent entities or agents.

In this view, interaction between agents is a key characteristic of multi-agent systems. Yet this

changes the complexity of the system, making it much more difficult to manage than traditional

monolithic systems. Thus, in trying to ensure that the operation of such a distributed system, in

which the components interact, is effective, we need to develop appropriate control structures

and mechanisms to facilitate coherence and an overall integration of these components.

It was briefly discussed earlier that the use of organisations has been proposed as a means of

modelling and managing these interactions. Organisations are systems composed of entities

(usually people), positions (or roles) and resources. In human organisations, people play roles

and are in charge of executing a series of tasks. To carry out these tasks, roles interact with other

roles and use resources. These interactions give rise to a network of communication paths, or

the organisation topology, and to control relationships that determine the type of authority of

some roles over others, providing a control regime for the organisation. Human organisations

also involve the use of explicit or implicit rules for regulating the way in which people, roles,

interactions and resources can be combined in order to exhibit coherent behaviour, and obtain

meaningful results.

54

A primary school is a simple example of human organisation. The main roles of this organisation

are the headteacher, the teacher and the student, each with clearly defined tasks; for example,

evaluation is a task of the teacher role, which in turn requires the teacher to interact with the

students. In a primary school the resources are varied, and include books, blackboards, class

rooms, and so on. The organisation topology of a primary school resembles the form of a tree,

with the headteacher situated at the root, the teachers at the branches and the students occupying

the leaves. The control regime is formed by well-defined authority relationships: the students

are subordinated to the teachers, and the teachers are subordinated to the headteacher. There are

also many rules of organisation in a primary school, such as attendance rules and schedules.

3.1.2 Organisations in multi-agent systems

Organisations are used in agent-based software engineering as an abstraction for analysing and

designing systems. Specifically, organisations are used during the design to structure multi

agent systems, since they provide a general structure in which other design components - such

as roles, agents, interactions, tasks and environmental entities - can be accommodated, in a

similar way as software architectures are used in the development of object-based systems. For

example, in the Rational Unified Process methodology [117], an architecture encompasses de

cisions about the structure of the system, the elements that form the structure (e.g. subsystems),

the interfaces of these elements, the way these elements collaborate (behaviour), and the compo

sition of the structural and behavioural elements into subsystems. Such an architecture is used

for understanding the system, organising its development and promoting reuse.

Similarly to such software architectures, there are several types of organisation. In fact, a dif

ferent organisation can be obtained by varying the roles, the tasks associated with them or the

way they interact. In practice, however, organisations are grouped by their topology and control

regime; for example, the term hierarchy refers to any organisation that resembles the organisa

tion commonly found in most businesses, regardless of its number of roles and levels of controL

Each of these groups possesses different properties; for example, because of the centralised con

trol in the apex, hierarchies are poor at reliability, since failures in the apex may produce serious

consequences for the whole system. In addition, not all types of organisation are adequate for a

specific application; for instance, hierarchical organisations assume that all the roles (except the

apex) are willing to be subordinated to other roles, which is not the case in peer-to-peer systems.

At this point, it is important to note that this thesis deals with static organisational structures, this

is organisational structures whose properties do not change with time. Dynamic organisations

might require different models, particularly different forms of representation.

An example of how organisations are used to model multi -agent systems is presented in [134],

in which a hypothetical system is described to automate the management of a conference. In this

conference management system, a call for papers is sent and the submitted papers are received.

The committee then distributes the papers for review, collects the reviews and selects the best

55

8
authority authority

FIGURE 3.1: Organisation of the Conference Management System

papers. After an analysis of the characteristics of the system, it becomes clear that a suitable

way of organising the system is by means of a three-level hierarchy in which the first level or

apex is occupied by the program committee chair, the roles of the second level by other mem

bers of the program committee, and the roles of the third level by the reviewers. This hierarchy

is depicted in Figure 3.1, in which roles are represented by circles and the control regime by la

belled directed arrows (which in this case have the same label). According to this structure, each

program committee member coordinates the activities of his corresponding reviewers, based on

an authority relationship. Similarly, the program committee chair coordinates and supervises

the activities of the program committee members. The organisation also includes restrictions

on elements of the structure, such as that no agent cannot be the author and the reviewer of the

same paper.

3.1.3 Organisation type selection

The selection of an appropriate organisation type for a given application is important since it has

been shown that the type of organisation determines the performance of the system [J4], and its

characteristics in terms of adaptability, reliability and modularity [82]. However, selection is not

a trivial task, for several reasons. First, there are, at least in principle, a large number of possible

combinations of topologies, control regimes and organisational rules - that is of organisations

- that can fit a specific system. Such a large number of possibilities tends to be confusing,

especially for novice software development practitioners or teams. Second, the different parts of

56

an organisation tend to be related in a complicated way, so that giving priority to one may cause

undesirable effects in others. For example, in the Conference Management System mentioned

above, the coordination complexity can be reduced by replacing the three-level hierarchy by a

two-level hierarchy by combining the roles committee member and reviewer in just one role.

However, this increases the processing complexity of the role, making it vulnerable to delays

and to failures due to a potential lack of resources, resulting in a decrease of efficiency and

reliability of the organisation.

Without providing structured techniques, it is difficult to achieve the best combination of the

different components of an organisation. In order to facilitate this selection of the most ap

propriate organisation to use for a particular application, we advocate the combined use of a

suitable methodological process and adequate design tools. Within this approach, the role of the

process is twofold: to obtain the necessary elements for the selection decision to be taken, and

to indicate the precise stage of the development at which organisation selection must take place.

The role of the tools is to provide a repository of solutions (a'catalogue) from which to select an

organisation, as well as a procedure to guide the selection.

3.1.4 Organisational patterns

In relation to the processes, some methodologies already exist that guide the identification of

the elements for organisation selection [j 34, 25]. However, there are no design tools targeted

specifically at supporting this selection of an organisation. To address this omission, we could

consider the development of, for example, a library, encompassing the description of particular

types of organisation, the situations in which their use is recommended, and their benefits and

drawbacks. Such a library provides mUltiple benefits in the development of multi-agent systems.

First, it reduces the learning curve present in the introduction of any new technology. Second,

it reduces development time, since it is faster to select an organisation from the library than to

construct one from scratch. Third, it promotes standards and the appearance of tools. Finally, it

facilitates communication between developers, and serves as a reference and documentation.

In order to create such a library, we must deal with the description of organisations themselves,

which involves the description of their topology, organisational structure and organisational

rules. However, as explained below, no satisfactory form of describing organisational rules ex

ists, so we first need to construct suitable fonns of describing them. Similarly, we need to con

struct appropriate forms for describing organisational structures, since existing organisational

models (such as [122,58, 123]) do not explicitly consider the description of both topologies and

control regimes, as well as their relationship.

The practical solution to the development of such a library is the construction of a catalogue of

different organisational types, in which each such type would be a general fonn of organisation,

or a pattern [48]. Basically, patterns are general solutions to recurrent problems, and can be

easily specialised to provide a detailed solution for a specific situation. Patterns are suitable for

57

our purposes since they describe general solutions that can be adapted to particular situations,

and have the benefit that they are well known to software practitioners.

In relation to this catalogue, however, the number of patterns in the catalogue must be kept man

ageably small to avoid a transfer of complexity from organisation construction to organisation

selection. Although the number of possible organisations is infinite (one for each possible com

bination of topology, control regime, and set of organisational rules), they can be grouped by

taking into account two considerations. First, organisational rules can be separated into domain

dependent rules and domain-independent rules, so that several organisations can be grouped if

only domain-independent rules are considered. Second, the most effective reduction comes from

grouping different organisations with similar characteristics into families, also called paradigms.

For example, the hierarchies family encompasses single-level and multiple-level hierarchies, as

well as strict and non-strict hierarchies (a hierarchy is strict if roles other than the apex commu

nicate only with their superior). In addition to this form of reduction, it has been argued that that

a relatively small number of families might be enough to cover most practical situations [134].

In fact, several such families have already been identified and their domain-independence veri

fied by the number of different areas in which they have been applied [45, 64].

3.1.5 Overview

In this chapter, therefore, we present a framework in which organisational patterns can be de

veloped. This framework includes the languages for describing the components of the patterns,

a layout to specify the patterns themselves, and three examples of patterns. With this aim, the

rest of the chapter is organised as follows. Firstly, in Section 3.2 we review the methodological

context in which the catalogue of patterns is used. Then, in Section 3.3 we present a model

for expressing organisational rules. Similarly, in Section 3.4 we present a model for describing

organisational structures, including topologies and control regimes. Based on these models, the

layout for patterns specification is presented in Section 3.5, and the catalogue of patterns itself

in Section 3.6. Finally, our conclusions, and the benefits and limits of this work are presented in

Section 3.7.

3.2 Gaia as the basis for the methodological approach

Patterns are of limited use if they are not part of a methodological process. Such a process

provides the context in which the patterns are used, which includes the selection of a specific

pattern, how and when to use it, as well as what is expected from it. Among all the existing

processes based on organisational concepts, we adopt Gaia as the basis for the methodological

context of our catalogue of patterns, because it is well known and already considers the use of

organisational patterns in the design of a system. Thus, with the aim of providing the reader with

the context in which patterns are used, a review of the Gaia methodology is presented below.

58

As described in Chapter 2, Gaia is a general-purpose methodology for the development of multi

agent systems, and was first described in [126], but has evolved significantly in several aspects

up to the version presented in [134], on which this review is based. Gaia is one of the first agent

oriented methodologies that is not based directly on the object paradigm nor on knowledge

engineering concepts. In contrast to these approaches, the development of a system in Gaia

is based on the organisational metaphor. Basically, Gaia consists of a process and a series of

preliminary and definitive models constructed in accordance to that process. In the following,

we first present the models and then the methodological process.

3.2.1 The main models of Gaia

In this section we describe the main models in Gaia, which are: the role model, the interaction

model and the model of organisational rules l • In addition, the role and interaction models can

be divided into preliminary and final models, according to the information represented and to

the phase of development in which they are built (more on this in Section 3.2.2). The agent and

the service models complete the set of models used in Gaia (these two models are described

in Section 3.2.2.3). Figure 3.2 shows the models used in Gaia, as well as their dependency

relationships. For example, the role model is fed with information from the preliminary role

model and provides information to construct the agent model. Although not really a model

- which is indicated in the figure by a dotted box - the organisational structure has also

been included with the aim of showing its dependence on the other models. In this way, the

arrows entering this box denote information used to determine the organisational structure of the

system, whereas the arrows leaving point to those models that use the organisational structure

for their completion. However, the details about organisational structure will not be covered

here, but in Section 3.2.2.2.

3.2.1.1 Role model

The role model encompasses all the roles in the system, which represents well defined positions

in the organisation, and the behaviour expected from them. Roles are characterised by a set of

features defining their nature and activity as shown in Table 3. J: the name identifies the role

and reflects its main purpose; the description provides a brief textual description of the role; the

protocols describe interactions with other roles; the activities detail those computations that the

role performs without interacting with other roles; the responsibilities express the functionality

of the role (divided into two parts: liveness properties and safety properties, which relate to

states of affairs that a role must bring about, and the conditions whose compliance the role must

ensure, respectively); and the permissions identify both the resources that the role needs in order

to fulfil its responsibilities and its rights of access to use them. The characterisation of a role is
--~------------------------

lZambonelli et aL , the authors of Gaia, do not refer explicitly to the set of organisational rules as a model.
However, we do here for clarity of exposition.

S9

:-Organisatio--'
. nal .

~_._$t~l!c:tl!r.EO. __ j

FIGURE 3.2: The models of the Gaia methodology (modified from [J34])

Characteristic Sub-characteristic Meaning
name identifier
description brief description
protocols list of protocols
activities list of activities
responsibilities

liveness properties states to bring about
safety properties conditions to ensure

permissions resources and rights of access

TAB LE 3.1: Characterisation of roles in Gaia

I

depicted graphically by means of a role schema, an example of which is shown in Figure 3.3.

As can be observed in the figure, each box in the schema corresponds to one section of the role

definition, and the names of activities have been underlined to distinguish them from names of

protocols. Additionally, the responsibilities have been expressed in a purpose-built language

that includes operators to represent sequence C.), alternatives (J) and indefinite repetition (W).

3.2.1.2 Interaction model

The interaction model comprises all the interactions between the roles in the system. Interac

tions are characterised by means of protocol definitions, which consist of the following features:

60

Role Schema;
Filter,

Description: Performs the process
corresponding to stage i on the
input data

Protocols and
Activities: ProcessData, Getlnput,

SupplyOutpu"t, SenseFlows,
ChangeFlow

Permissions:

changes OataJlow"
agreedFlow

reads flowj

Responsibilities:

Liveness:

Filter, = (Process I AdjustFlow)W

Process =
Getinput.ProcessData:.SupplyOutput

AdjustFlow = SenseFlows I Change Flow
Safety:

·true

FIGURE 3,3: Example of a role schema

Purpose

Initiators I Responders

Processing desc In puts

Outputs

FIGURE 3.4: A generic protocol definition

a purpose that provides a brief textual description of the interaction; a list of initiators that enu

merates the roles that start the interaction (usually a single element); a list of responders that

enumerates the roles involved in the interaction, apart from the initiators; a list of inputs and

outputs that provides the information required or produced during the interaction; and a brief

textual description that outlines the processing performed by the initiators during the interaction,

This characterisation is represented graphically using a diagram like that shown in Figure 3.4,

An example of a protocol definition, corresponding to the Getlnput protocol of the Filter role,

is shown in Figure 3,5.

61

Getlnput

Filter; I Pipe;

The filter obtains the non e
next data to process

Data

FIGURE 3,5: Example ofaprotocol definition

3.2.1.3 The model of organisational rules

The model of organisational rules consists of all the organisational rules of the system, Organ

isational rules are constraints about how the different elements of the organisation interact, and

are classified as liveness rules and safety rules (similarly to the way in which roles' responsi

bilities are classified, although responsibilities refer to characteristics of only one role, whereas

organisational rules refer to characteristics of more than one organisational element), The live

ness rules express situations that agents try to bring about, while safety rules state conditions

that must be kept invariable. To express organisational rules, Gaia makes use of a language

whose details are presented in Section 3.3. The following is an example of a liveness rule:

Before being disseminated, any document must be approved by at least three mem

bers of the community.

Similarly, an example of a safety rule is:

An agent cannot be, at the same time, the buyer and the seller of a given item.

3.2.2 The Gaia process

The methodological process of Gaia is divided into three phases: analysis, architectural design,

and detailed design.

3.2.2.1 The analysis phase

The analysis phase deals with collecting the features needed to model the system, and consists

mainly of five activities: decomposition of the system into sub-organisations, identification of

environmental entities, creation of the preliminary role model, creation of the preliminary inter

action model, and creation of the model of organisational rules.

62

The decomposition of a system into sub-organisations aims to partition the system into more

manageable units. Such a decomposition can have as a basis a sub-goal decomposition, the

resemblance of a real world structure, the amount of interaction between subsystems, or sepa

ration of competences. The phase of identification of environmental entities deals with creating

a list of the resources used by the agents while carrying out their activities, but which are not

a part of them. Associated with each resource are the rights of access that agents have over it,

such as read or change.

The creation of the preliminary role model consists in the identification of the roles in the system

and the construction of their schemata. However, at this early stage it is not necessary (nor ap

propriate) to produce a complete role model, since the complete definition of the responsibilities

can be postponed until the design, when a more detailed view of the system is achieved.

Similarly, the creation of the preliminary interaction model consists in the creation of the def

initions of the protocols in the system, placing emphasis on their identification and purpose,

more than on their details. In particular, at this stage of the analysis it might be the case that not

enough information is available to completely determine the initiators and collabOJatOJs.

During the creation of these two preliminary models, it is important to keep the roles and in

teractions independent of any specific organisational structure. Also, iteration at this stage is

important: first, the main roles are identified; then, fOJ each role, its associated protocols are

documented; this leads to the refinement of the roles model, which in tum can lead to refine

ments of the interactions model, and so on.

Finally, the analysis phase is completed with the creation of the model of organisational rules,

which consists of compiling the rules that govern the behaviour of the system. These rules are

based on the roles and interactions identified previously in the preliminary role and interaction

models. For example, in an electronic commerce application, an organisational rule might state

that an agent cannot play the roles of seller and buyer of the same good at the same time. Or

ganisational rules must restrict the behaviour of agents in order to achieve the overall goals of

the system, but at the same time must allow the autonomous, and sometimes self-interested, be

haviour of agents. The developer must design the organisational rules of a system in such a way

that a good balance between these two conditions is obtained. It must be noted that the organ

isational rules may be inspired not only by the domain itself, but also by other considerations

such as required levels of efficiency or reliability.

3.2.2.2 The architectural design phase

The next phase in the Gaia process, the architectural design, has two main sub-phases, namely

the selection of an organisational structure, and the completion of the role and interaction mod

els. As was mentioned previously, during the analysis it is important not to commit to a specific

organisational structure. During the design, the selection of the organisational structure of the

system is determined. This decision is basically a compromise among different forces, each

63

Characteristic Meaning
name name of the service
inputs information needed
outputs information produced
pre-conditions restrictions of use
post-conditions effects

TABLE 3.2: Characterisation of services in Gaia

pushing in a different direction. These forces are: the complexity of the structure, in terms of

computation and coordination; the distance from the real-world organisation that the system is

modelling; and the need to respect the organisational rules. It is precisely at this stage of the

design that organisational patterns are needed, the benefits of which are twofold: they support

the decision process, and provide pre-defined organisational structures that can be customised

for specific applications.

The second sub-phase in the architectural design, the completion of the role and interaction

models, deals with detailing the roles and protocols with the information obtained once the

structure is determined. This activity includes the incorporation of new roles and interactions

which may have resulted from the application of the previous step. It is suggested that structure

dependent aspects be separated from those independent of the structure to facilitate a possible

change of structure.

3.2.2.3 The detailed design phase

The final phase of Gaia, the design phase, consists of producing two models, the agent model

and the services modeL The agent model indicates which roles will be played by which agents,

especially since an agent can comprise one or more roles. The decision of which roles are

played by an agent is based on considerations such as efficiency and physical distribution. For

example, for efficiency a designer might decide to include three roles in an agent type, instead

of having three different agents. The services model is a list of services of all the agents in

the system, together with their inputs, outputs, pre-conditions and post-conditions. A service is

defined as a single, coherent block of activity in which an agent will engage. The services and

their characteristics are derived from the protocols modeL Note that, in Gaia, the design is not

intended to produce an output detailed enough to be implemented on a particular platform, but

focuses on describing how the agents cooperate to achieve the system goals.

3.2.3 Discussion

In conclusion, Gaia is a methodology based on organisational concepts that explicitly considers

the three levels of a system organisation: elements (roles and protocols), organisational structure,

and the rules that govern its functionality (organisational rules). Also, Gaia presents a clear

64

separation between the analysis and design phases, as well as between social and internal aspects

of agents. Apart from this, Gaia offers the following valuable features.

• It is easy to understand even by nono·specialists, since the process is straightforward and

the modelling language simple.

• It is also architecture-independent so that no commitment is made to any specific agent

architecture, allowing different architectures to be used in the development process.

• Equally important, Gaia is very well known, being one of the most cited (and consequently

used) methodologies, and is suitable for extension and enhancement. This is already

indicated by the various different extensions that have been built around Gaia itself [131,

77,50, 16].

However, Gaia is limited in terms of its applicability to the full cycle of development, addressing

the analysis and architectural design phases, but leaving the agent design and implementation

largely unconsidered. Also, Gaia requires further work; for example, it lacks a catalogue of

patterns to support the development of applications and, in particular, it lacks organisational

patterns, the importance of which is highlighted in the methodology, but no such set is provided.

In this chapter we address this omission by describing a framework in which organisational

patterns may be developed. However, before proceeding, we first need to address the problem

of pattern representation, or finding a suitable form for describing organisational patterns. Since

organisational patterns represent organisations, such a description should include their different

components, such as organisational rules and structure. Thus, we first need to find appropriate

forms for describing organisational rules and organisational structures, which is done in the

following sections.

3.3 Organisational rules

3.3.1 Organisations

In the methodological approach described in the previous section, multi-agent systems are mod

elled by means of organisations, formed of roles and interactions between roles. Roles represent

positions or responsibilities within the organisation, whereas interactions are used to accomplish

tasks requiring the participation of more than one role. These role interactions give rise to the

formation of organisations, each one consisting of a set of organisational rules and an organ

isational structure, as depicted in Figure 3.6. Organisational rules are constraints on the way

agents, roles and interactions relate, and are used to ensure the correct behaviour of the system.

Organisational structures, as can be observed in the same figure, consist of topology and control

regime, both determined by the role interactions. The former encompasses the communication

65

Organisation

FIGURE 3.6: Components of an organisation

paths between the roles, while the latter comprises the control relationships. Here, the commu

nication path of an interaction is a link between the roles involved in the interaction, whereas the

control relationship of an interaction denotes the type of authority - or its absence - between

the roles.

If we assume that control relationships are a particular type of constraint between roles, then

control relationships can be regarded as organisational rules. Under this perspective, those rules

can be seen both as organisational rules or as part of the organisational structure (since control

relationships are part of organisational structures). However, in this thesis we have opted for

keeping the control regime separate from organisational rules, since the former can be used, on

its own, to describe the architecture of a multi-agent system.

In the following, we describe in detail these components of an organisation, and address the

problem of characterising and describing them. Specifically, the rest of this section deals with

organisational rules, while Section 3.4 deals with organisational structures. The results obtained

in these sections are employed in Section 3.5 for the description of organisational patterns.

3.3.2 Overview

As previously seen, organisational rules are a helpful abstraction to make a system exhibit co

herent behaviour and achieve its goals, and are present throughout the life cycle of the system.

In development, organisational rules are envisaged and documented in the analysis phase, then

refined and specified in the design phase, and finally implemented in the implementation phase.

Organisational rules also play an important role in determining the characteristics of the system.

During development, they are key to determining the organisation of the system, since the cor

rect organisation must facilitate the implementation of the organisational rules. At run-time the

observance of the organisational rules in part guarantees that the system exhibits the required

functionality.

66

In both stages, development and run-time, it is necessary to express and manipulate the rules.

For example, in design the rules are stated unambiguously in the system specification, whereas

at run-time the rules are interpreted and evaluated. For this reason, a computational language

for expressing organisational rules is required. Although some languages already exist, they are

incomplete for our purposes, as we discuss below.

In the literature, two languages have been proposed to specify organisational rules. The first

language is presented by Zambonelli et al. in [J 33] - hereafter called the Abstract language

- and is based on first-order temporal logic, together with the temporal connectives shown

in Table 3.3. The introduction of time concepts is necessary since some rules make reference,

implicitly or explicitly, to specific times or periods of time. The Abstract language makes use

of two predefined predicates, plays and card, the former of which is applied to an agent and a

role and expresses that the agent plays that role, while the latter is applied to a role and denotes

the number of agents playing the role at a given moment. Since it is was not the intention of

Zambonelli et al. to deal with the details of a formal description of the language, they merely

demonstrate its use by means of examples, and so do we. For instance, the formula below makes

use of this language to express the organisational rule:

No agent can be both author and reviewer of the same paper

which can also be expressed as:

It is false that at some future moment an agent plays the author role and also plays

the reviewer role

or more formally as:

,<) [plays (a, author) 1\ plays (a, reviewer) J

The second language for specifying organisational rules appears in [134], in which Zambonelli

et al. propose a less formal language, which we will call the Practical language, with the purpose

of facilitating the specification of organisational rules by non-experienced practitioners. The

basis of this language is the use of the operators presented in Table 3.4 for describing how roles

can be played by agents. The operator ---. denotes a condition on the order of the roles an agent

can play. In general, this operator can be used with the qualifier n to denote how many times a

given role must be played so that another specific role can be played too. The I operator specifies

that two roles can be played by an agent at the same time. Finally, the l..n qualifier establishes

the number of times a role can be played.

For example, the organisational rule:

No agent can be both author and reviewer of the same paper.

67

Op. Meaning Formula Satisfied now if ...

0 next Otp tp is satisfied in the next moment

0 sometime Otp tp is satisfied either now or at some future
moment

0 always Dtp tp is satisfied now and at all future mo-
ments

U until tpU¢ ¢ is satisfied at some future moment, and
tp is satisfied until then

W unless tpW¢ tp keeps satisfied until ¢ is satisfied (which
might never happen)

B before tpB¢ ¢ is eventually true, and at some time be-
fore this, tp is true

TABLE 3.3: Temporal operators

Op. Meaning Formula Satisfied now if ...
--> played R-->Q role Q can be played by an agent only if it

played role R before
n played n-times R n --> Q role Q can be played by an agent only if it

played role R at least n times before

I concurrency RIQ roles Rand Q can be played concurrently
l..n cardinality RL.n role R must always be played at least

once and no more than n times

TABLE 3.4: Practical operators

can be expressed, using this logic, as:

-->(Reviewer (paper (x)) IAuthor (paper (x)))

Even though these two languages are useful for some specific situations - such as the specifica

tion of organisational rules during design - their applicability is limited, mainly because of lack

of completeness. Specifically, these languages do not consider all the elements of a multi-agent

system, for example the entities of the environment and other agent features, such as tasks. As

a result, these languages leave some relevant relationships between the elements unconsidered,

for example the relationship of utilization between a protocol and an entity of the environment.

Regarding the notion of time, the Abstract language does include temporal operators, but in the

Practical language only a particular form of the before operator is considered.

Other approaches for organisation modelling have also appeared recently, some of which address

aspects closely related to modelling organisational structures, particularly organisational rules.

The most relevant approaches, for the purpose of this chapter, are briefly desclibed below.

MOCHA [122] (Model of Organisational CHange using Agents), is a model for specifying or

ganisations, including their changes over time. MOCHA explicitly distinguishes between the

components of an organisation and the population of the organisation. The former characterises

68

an organisation as a set of actions and a set of roles. Here, actions have duration (in arbitrary

units) and can be decomposed into sub-actions, while roles maintain relationships of obligation

(a role is obliged to execute an action specified by another role, within the corresponding du

ration) and influence (a role influences another role to adopt an obligation) between them. The

population of an organisation, which is not considered as part of the organisational structure,

specifies which roles are played by which agents, as well as the attitude of each agent to enact

the obligations and influences related to the corresponding roles. Regarding the specification

of how the different elements of an organisation are allowed to relate (organisational rules),

MOCHA provides a simple mechanism based on the duration of actions, and constraints on the

times that actions start and end. By carefully setting the values of such durations and constraints,

a desired sequence of actions can be established and potential conflicts can be avoided. As can

be observed, this approach concerns mainly the order of actions, but leaves unconsidered other

types of organisational rules, for example cardinality of roles.

In addition, several approaches for organisational modelling have been presented in the v/ork-

shop series on Coordination, Organisation, Institutions and Norms in agent system.s (COIN).

In [58] Grossi et al. define an organisational structure as a 4-tuple consisting of a finite set of

roles and three binary relations on roles: power, coordination and control. Power denotes that an

agent (enacting one role) can delegate a goal to another agent (enacting another role). Coordi

nation refers to the issue of the information needed by one agent (enacting a role) for achieving

its goals and complying with the norms of the organisation. Finally, control involves monitoring

activities to determine failures to achieve goals or violations to norms. As can be noted from

this brief review, this definition does not consider explicitly organisational rules to constrain the

way in which different elements of the organisation are allowed to relate.

Montealegre et al. [123] present a model for hierarchical organisations based on norms. This

model, expressed in UML, extends a normative framework for agent-based systems [87] with

organisational elements, some of which are specific to hierarchical structures. In this model,

norms are used to regulate the behaviour of the members of an organisation (like organisational

rules are used in this thesis) and consist of seven elements: the goals prescribed by the norm,

the agents that must comply with these goals, the agents that might benefited from compliance

with the norm, the conditions to activate the norm, the conditions under which an agent is not

obliged to comply with the norm, the punishments for not satisfying the goals, and the rewards

for complying with the norms. Goals, which form the core of norms, are described by means of

functions (for example read(paper)), but no details are provided about their representation.

In the same field of normative organisations, deontic logics (that is, logics concerned with obli

gation, permission and related concepts) have been used to express norms that regulate the

behaviour of the members of an organisation [86, 121].

69

3.3.3 Requirements of a language for organisational rules

This identification of drawbacks in existing specification languages naturally leads us to estab

lish the characteristics that such a language must meet. To begin with, since organisational

rules are constraints on the elements of a multi-agent system, they encompass a huge number

of situations. For example, some of the situations encompassed by rules referring only to roles

include: the number of agents that play it at the same instant or along the history of the system;

the relative order in which the role is played with respect to other roles of the same agent or

other agents; mutual exclusion with other roles of the same agent or other agents; the number of

times the role is played for a given agent or for the whole system; and so on. Since it is difficult

to foresee all the possible situations encompassed by organisational rules, the language must be

general enough to cover the most common situations, and must allow extensions to cover other

specific situations. We will call a language with this property expressive.

In principle, organisational rules can be described using simple natural language text. However,

such an ambiguous description is inappropriate for tasks such as the design, specification and

implementation of systems, or for manipulating organisational rules, as is the case when organ

isational rules are interpreted and evaluated at run-time. In order to accomplish these tasks a

manipulable language is needed.

Apart from being expressive and manipulable, such a language must satisfy the following re

quirements.

1. The language must consider all the elements of a multi-agent system that are relevant for

constraining the behaviour of the agents. This is required because organisational rules can

make reference to any element in the system.

2. Similarly, the language must c.onsider al! the meaningful relations between these eleillents;

for example, the relation plays between an agent and a role (when an agent plays a role),

and the relation initiates between an agent and a protocol. Some of these relations can

be an integral part of the language, and some can be added to the language for specific

applications.

3. The language must consider the representation of time, since many types of organisational

rules relate events that occur at different points of time, as in the following rule:

To play role r an agent must have played role q before

4. The language must include the elements commonly found in predicate logic, such as the

logical connectors and, or and not, since organisational rules are predicates that can be

evaluated to decide whether they are true or false. Also, the language must include the

existential quantifier, as a means to refer to an unspecified element, as well as a universal

quantifier, to refer to multiple elements at the same time, as is the case for the environ

mental entities papers in the following rule:

70

Every paper must be reviewed by three different reviewers

5. Finally, the language must be intuitive and easy to understand, since it is intended to be

used by an average software developer.

3.3.4 A language for organisational rules

To overcome the limitations of current approaches, we envisage a language based on the Abstract

language mentioned above, together with explicit inclusion of the entities of the environment, as

well as a characterisation of the relationships between the different types of elements. The Ab

stract language was selected over the Practical language because it can be more easily extended

to consider other elements, and the notion of time is more explicit. The resulting language,

which we call LEVOR (language for the expression and verification of organisational rules) is

detailed below.

Basically, LEVOR is a language based on first order predicate logic that uses temporal operators.

Its complete syntax is presented in Table 3.5, in which the entry symbol has been represented

by < OrganisationalRule >, the non-terminal symbols are surrounded by angular brackets,

the terminal symbols are in quotes, and the null string has been denoted by A.

LEVOR allows the expression of organisational rules as propositions that can be evaluated at

any moment to determine its logical value: true or false. In the former case the rule is said to be

observed, while in the latter it is said to be violated. Such propositions can be formed by using

the classical logical operators (not, and, or, implies), and the existential and universal quantifiers,

all with their usual meaning. Also, the proposition can contain the temporal operators mentioned

in Section 3.3.2, whose meaning and syntax appear in Table 3.3. As can be observed, next,

sometime and always are unary operators, while until (U), unless (W) and before (3) are binary

operators. In the LEVOR language, time is considered to be a sequence of discrete points.

The elements of the language consist of integers, the logical constants true and false, other

constants, variables, functions, and predicates. These other constants refer to names of roles,

agents, protocols, resources, parts of resources, and activities, and are denoted by plain strings,

with the exception of protocols and parts of resources. Protocols are denoted by their name,

initiator, collaborator and the data required or produced, as in

SubmitPaper(author, collector, paper).

The different parts of a resource are referred to by using a dot notation, for example the element

author of the resource paper is denoted by auth01:paper. Activities in LEVOR are also denoted

by means of the dot notation; for example, Jilter.keepFlow(f) denotes the activity keepFlow of

roleJilter, whose parameter is!

71

< OrganisationalRule >

< Proposition>

< AtomicFormula >

< Term>

< FunctionalTerm >

< Variable>

< Constant>

< Protocol Constant >

< Part Constant >

< ActivityConstant >

< Resources>

< ResourceList >

< UnaryLogicalOp >

< BinaryLogicalOp >

< Quantifier>

< UnaryTemporalOp >

< BinaryTemporalOp >

< ComparisonOp >

< PredicateSymbol >
< FunctionSymbol >
< ProtocolSymbol >

< AgentSymbol >
< RoleSymbol >

< ResourceSymbol >
< ActivitySymbol >

< Proposition >

< AtomicFormula >
< UnaryLogicalOp >< Proposition>
< Proposition >< BinaryLogicalOp >< Proposition>
< Quantifier >< Variable> H(" < Proposition> H)"

< UnaryTemporalOp >< Proposition>
< Proposition >< BinaryTemporalOp >< Proposition>

< Term >< ComparisonOp >< Term>
< PredicateSymbol > H("

< Term> (H," < Term>)* H)"

True
False

< Variable>
< FunctionalTerm >
< Constant>

< FunctionSymbol > H("

< Term> (H," < Term>)* H)"

< AgentSymbol >
< RoleSymbol >
< ResourceSymbol >

Integer
< Protocol Constant >
< PartConstant >
< ActivityConstant >
< AgentSymbol >
< RoleSymbol >
< ResourceSymbol >

< Protocol Symbol > H("
< RoleSymbol > H," < RoleSymbol >
(H," < ResourceSymbol >)* H)"

< ResourceSymbol > H." < ResourceSymbol >

< RoleSymbol > H." < ActivitySymbol > H("
< Resources> H)"

< ResourceList >
A

< ResourceSymbol >
< ResourceSymbol > H," < ResourceList >

"1\" 1 "v" 1 "=;."

"3" 1"'1"

"0"1"<)" 1 "0"

"U"I"W"I"B"

"=" 1 "'I" 1 ">" 1 "<" 1 "~" 1 ":S"

TABLE 3.5: Grammar for the LEVOR language

72

Function Target Syntax
card Role card(role_name)
card Protocol card(protocol_name)

TABLE 3,6: Pre-defined functions in the LEVOR language

Variables in LEVOR are used to denote agents, roles and resources. Although both variables

and constants are represented by strings, they are differentiated by how they are quantified:

elements referred to in the quantifiers are variables, whereas all the other elements are consid

ered constants. For example, in the organisational rule below, a is a variable, while Agent,

SeniorBuyer and JuniorBuyer are constants.

Va :Agent (plays(a, JuniorBuyer) B plays(a, Senior Buyer))

Functions are used to represent properties of elements. For example, the cardinality of a role

r, denoted as card(r), is the number of agents playing the role. Similarly, the cardinality of a

protocol p is the number of times that the protocol has been initiated and is denoted by card(p).

Table 3.6 summarises these functions of the language.

Predicates are used to express relations between different organisational elements, evaluating

to True if the relation holds, or false otherwise. plays is the most basic relationship involving

agents and roles. We can express that agentl plays role r by writing p lays (agent1, r).

Regarding roles and protocols, initiates(r, p) denotes that role (or agent) r commences the ex

ecution of protocol p, and participates(r, p) denotes that role r initiates or collaborates in the

execution of protocol p. If the initiator itself is not relevant, the relation initiated(p) can be more

convenient. In addition, terminated(p) indicates the end of execution of protocol p.

Relationships between roles and environment are represented through these generic relations:

reads(role, data) and modifies(role, data, value), which represent that a role reads (senses) and

modifies (acts on) a resource, respectively. Table 3.7 summarises the predicates of the language.

Predicate Argument 1 Argument 2 Syntax
plays Agent Role plays(agenLname, role_name)
initiates Role Protocol initiates(role_name, protocoLname)
participates Role Protocol participates(role_name, protocoLname)
initiated Protocol initiated(protocol_name)
terminated Protocol terminated(protocol_name)
reads Role Resource reads(role_name, resource_name)
modifies Role Resource modifies(role_name, resource_name,

new_value)
terminated Activity terminated(activity_name)

TABLE 3.7: Pre-defined predicates in the LEVOR language

73

The following are some examples of organisational rules and how the language is used to express

them.

1. An agent cannot be a senior buyer if it has not been a junior buyer before.

Va. Agent (plays(a, JuniorBuyer) B plays(a, Senior Buyer))

2. There must be at least 10 different reviewers of papers.

card(Reviewer) :?: 10

3. An agent cannot be a buyer and a seller at the same time.

Vi : Item(Vx: Buyer(Vz : Buyer(Vy: Seller(Vw: Seller

(initiates(a, Buy(x, y, i))/\

initiates(b, Sell(w, z, i)) =? a =1= b)))))

4. The selection process begins when all the papers have been reviewed three times.

Vp: Paper(Vr: Reviewer(Vc: Collector(card(ReviewPaper(r, c,p)) = 3

B initiated(SelectPapers))))

5. Every paper must be reviewed exactly three times.

Vp: Paper(Vr Reviewer(Vc Collector((card(ReviewPaper(r, c,p)) = 3))))

In summary, we have presented a language to specify organisational rules. We have clearly

established the terms and operators of the language, and have provided examples that show its

use. This language can be used to specify the organisational rules in the analysis and design of

a multi-agent system. Also, since the language is manipulable, it can be used in run-time tasks

such as monitoring the observance of organisational rules. The advantages of our proposal over

existing proposals are that we have limited the scope of the language, have explicitly considered

all the organisational elements of a multi-agent system and have characterised the relationships

between the elements of the system. The resulting language covers many practical situations,

but can easily be extended for other situations not considered here.

74

3.4 Organisational structures

3.4.1 Introduction

Organisational structures are often described in the literature either by means of figures or tex

tual description [134, 64]. Such a rough form of description relies on our intuition and our

knowledge of their real-world counterparts. Thus, for example, when the term hierarchical

organisation is used, most of us guess its meaning by association to the structures commonly

found in businesses. Although this form of description is adequate for communicating ideas

between humans, for other purposes a more exact and complete characterisation is needed, as

is the case when attempting to select the most appropriate structure for a multi-agent system,

or when checking the observance of the structure at run-time. In this section we tackle this

problem by first stating the features that such a characterisation must possess, then reviewing

current characterisations, and finally providing a model for organisational structures from which

a characterisation is obtained, as well as a language for their specification.

As indicated above, when organisational structures are represented by means of figures or, more

specifically, graphs, roles are depicted as nodes and their interaction as arcs joining them. Al

though this provides a good indication of the overall structure, it has the following drawbacks.

First, the figures can become burdensome in the case of big organisations. Second, in these

figures the control regime of the organisation is often omitted because labelling each arc with

its corresponding control relationships makes the graph illegible. Finally, and most important,

figures are useless for tasks in which some form of computational manipulation of the struc

ture is needed; for example, checking that the structure is not violated at run-time or creating

a catalogue of structural designs. These limitations can be overcome by using a non-graphical

model to describe the structure. In particular, we want to be able to: provide a definition for the

term control regime; describe organisational structures in an unambiguous way, including their

topology and control regimes; perform basic manipulation on the structures such as their storage

and retrieval in memory and files; and check at run-time if the structure of the organisation is

being respected. For this to happen, such a representation must exhibit the following features.

II Since an organisational structure comprises topology and control regime, the represen

tation must be expressive enough to specify the topology of the structure as well as the

authority relationships between the roles.

II The representation should be simple and easy to use by practitioners because we aim to

provide development tools for non-agent specialists.

III The representation must allow the identification not only of primitive elements of the

structure, which are roles and authority relations, but also of subsets of primitive elements.

For example, we need to represent the roles that satisfy certain conditions, as in the apex

has a relationship of authority over all the other roles of the structure.

75

Communication
paths

Roles

FIGURE 3.7: Topology representation

• Since the topology of an organisation resembles a graph fonned of nodes and arcs, the

representation should allow the expression of properties of an organisational structure by

means of referencing nodes and arcs, and vice versa. In other words, the representation

must allow to mix analytical and graph-based concepts, as in the expression:

each controller maintains a peer to peer relationship with the controllers with

which it communicates.

3.4.2 Characterisation and informal analysis

Organisational structures encompass two aspects: topology and control regime ([45]). The

topology of an organisation is fonned of all the communication paths between the member roles.

Conversely, the control regime refers to the control relationships between the member roles.

Control relationships denote the fonn in which one role influences the behaviour of the other.

Common control relationships are peer-to-peer, in which no role is subordinated to another, and

master-slave, where the existence of one role is justified only in terms of supporting another

role.

3.4.3 A model for organisational structures

Below, we propose a non-graphical representation of organisational structures. First, we provide

a characterisation of organisational structures. Then, we outline the language in which the char

acterisation can be expressed. Finally, we include an example of the representation of a simple

structure.

76

3.4.3.1 Characterisation of organisational structures

The characterisation of organisational structures contains the description of its elements and the

way in which they are related. We define an organisational structure as a 5-tuple of the form

(P, C, R, C, A), whose entries are the sets described below (a summary of the notation used can

be found in Table 3.8). The first three entries refer to the analytical description of the structure,

while the last two entries link the analytical characterisation to a graph of nodes and arcs.

1. P, the participants set, consists of the list of roles in the organisation.

2. C, the control relationships set, lists the control relationships used in the structure. The

members of this set can be defined as needed for a specific application or can be taken

from a general set of predefined relationships (for a list of predefined relationships see

Table 3.9).

3. R, the control regime model, is a relation between two members of the participants set

and a member of the control relationships set R <::: P x P xC. An element of the relation

means that the first role has the specified control relationship with the second role. R =

{(r, s, c) I r, s E P /\ c E C/\ there is a control relationship of type c between rand s}

4. C, the labels set, is a list of strings that name the nodes of the graph in a unique form; for

example:

{head, lefUeaf, rightJeaf}

or

{stage(i) I i = L3}

Graphically, each label is put near and outside the corresponding node.

5. A, the association model, is a relation from the participants set into the labels set (A <:::

p x C). Thus, its members are ordered pairs consisting of a role and a label, which means

that the role is associated to the node identified by the label: A = {(r, l) IrE P /\ I E C}.

Examples of association models include the following:

{(manager, root), (buyer,lefUeaJ), (seller, righUeaf)} ,

which means that the roles manager, buyer, and seller occupy the nodes root, lefUeaf

and righUeaf, respectively; and

{(controller(i), stage(i)) Ii = L3}

meaning that each controller occupies its corresponding stage node in the graph. Graphi··

cally, the name of the role is placed inside the corresponding node.

77

Relationship
authority
peer
dependency

Entry Denotes
p Participants set
C Control relationships set
R Control regime model
L Labels set
A Association model

TABLE 3.8: Summary of notation

Description
permanent authority of one role over the other
no permanent authority
dependence on information provided by the other role

TABLE 3.9: Pre-defined control relationships

Control relationship 1

Control relationship 2

FIGURE 3.8: Nodes linked by more than one arc

Program
Committee

master-slave
Caller

FIGURE 3.9: Using arrows to denote control relationships

Additionally, an element of the control regime R (whose meaning is that the first role has the

specified control relationship with the second role) can be represented by a labelled directed arc

from one role to another in which the label corresponds to the control relationship.

Note that any two roles can be linked by zero, one or two relationships. Accordingly, the corre

sponding nodes can be linked by one or two arcs (as in Figure 3.8, in which the nodes are linked

by two arcs) or not linked at all. On the other hand, nodes are commonly occupied by only one

role since there is no clear benefit in having more than one role in a node.

78

In general, the control relationships are not symmetric, so the order of the roles is important;

for example, master_slave(a, b) is different from master_slave(b, a). For this reason, arcs

with arrows are used in the graph, as in Figure 3.9, where the arrow indicates that the Program

Committee is the master and the Caller is the slave. If the control relationship is symmetric, the

arrows of the arc may be omitted.

3.4.3.2 Characterisation of control relationships

Although the number of different control relationships is unlimited, a small subset of control

relationships may be enough to represent the most common types of interaction. In the following

we present just such a small subset of these relationships. We choose these relationships because

they are simple to understand and together cover most situations.

It authority(r, s) holds if role r has some type of control over role s. The control may be a

expressed as a master-slave relationship, task allocation (such as work partition or work

specialisation), order, or any other relationship denoting authority (that one role agrees to

execute the orders given by the other).

It peer(r, s) holds if no role has authority over the other, if the authority position is alter

nated, or if their authority is based on requests (with no obligation to commit) or on a trust

relationship.

It dependency (r, s) holds if role s needs information provided by role r to accomplish its

responsibilities.

These relationships are summarised in Table 3.9. They are neither exclusive nor exhaustive, and

this default set of relationships can be replaced with a more appropriate one for each specific

application. Regarding the problem of how to identify the control relationship that best describes

the interaction between two roles, we envisage two approaches based on the strong ties between

protocols and control relationships (as described below). First, if the protocols between the

nodes have been defined, they can be used to determine the control relationship. For example, if

the messages exchanged between two nodes refer to requesting and providing information, their

control relationship can be described as dependency. The details of this approach depend on the

specific implementation. For instance, assuming a FIPA-compliant implementation, the use of

the FIPA-query protocol would suggest a dependency relationship, since the main objective of

the protocol is to obtain information, presumably to complete a task. On the other hand, the use

of the FIPA -request protocol would suggest an authority relationship in which one role requests

the other role to carry out an activity.

Second, a different approach is used when the control relationships are defined before the pro

tocols, for example when reusing a previous organisational structure. In this case, the control

relationships guide the design of the protocols.

79

Whichever the approach, protocols and control relationships must be consistent, and not in con

tradiction. For example, if the control relationship between two roles has been defined as au

thority, then those protocols in which the subordinated role orders the main role to perform an

action are not allowed. A procedure to check such consistencies at design time can be based

on an infonnation repository containing the control relationships, the type of messages allowed

for each of them, and in some cases the content of the messages. Although such a procedure is

straightforward in itself, determining the content of the repository requires careful inspection of

the meaning of the messages and their relation to the control relationships. Although a detailed

presentation of such a procedure is not included here because it depends on the particular set of

messages employed, a simple example is presented below.

Consider an application in which FlPA-type communicative acts [35] are used to express the

messages between the roles. In an authority relationship between two given roles, some com

manding communicative acts might not be used unrestrictedly in messages from the subordi

nated role to the other role, since this would violate the nature of the authOlity relationship.

For instance, the refuse act (which denotes the action of refusing to perfonn a given action,

and explaining the reason for the refusal) would be allowed only for valid reasons, such as un

availability of a service. Other communicative acts that might be totally or partially disallowed

are request (request to perform some action), propagate (send the received propagate message to

other agents), reject proposal (rejecting a proposal to perform some action during a negotiation),

and subscribe (requesting a persistent intention to notify whenever a selected object changes).

3.4.3.3 Language for expressing organisational structures

It can be observed that in an organisational structure (P, C, n, £, A), the sets £ and A are signif

icant only in a graphical sense, but the core of the structure is contained in the P, C and n sets.

Furthermore, the elements of P and C, (participants and control relationships, respectively) can

be obtained from the elements of n, the control regime model. This is why we define the control

regime model as the language to express an organisational structure. In other words, an organ

isational structure is defined by its control regime modeL Just like any set, the control regime

model is expressed by listing its elements (in the form controlrelationship(rolel, role2)); for

example,

{authority(manager, buyer), authority(manager, seller)} ,

or, equivalently, by providing a description of their elements, as in:

{peer(controller(i) , controller(i + l))li = 1..3}

80

Stage(1) Stage(2) Stage(3)

FIGURE 3.10: Graphical representation of a pipeline structure

Model Instance

Organisational structure {peer(Controller(i) , Controller(i + 1)) Ii = 1..2}
Participants set {Controller(l) , Controller(2), Controller(3)}
Control relationships set {peer}
Labels set {"Stage(l)", "Stage(2)", "Stage(3)"}
Association model ((Controller(i), "Stage(i)") Ii = 1..3}

TABLE 3.10: Fom1al definition of a pipeline

3.4.3.4 Example

In this section a pipeline structure is used to exemplify the model for organisational structures

presented above. In the first part, the pipeline is intuitively introduced, in the second part a

graphical representation is shown and, finally, in the third part, its definition and characterisation

are presented.

1. A pipeline structure resembles a manufacturing pipeline for producing items or goods.

Every raw item enters the pipeline and, at the end, the item, fully processed, is obtained.

Such processing is divided into several independent stages, arranged in sequence, with

each stage enhancing the item in a particular way. We model the functionality at stage

i by means of a role, namely controlleri. In addition, the independence of the stages is

modelled by a control relationship of type peer.

2. The graphical representation of such a pipeline (of three stages) is depicted in Figure 3.10,

which shows the three nodes in circles with their labels below, the roles names inside the

circles, and the two control relationships linking the nodes.

3. The expression that defines the organisational structure of this pipeline of three elements

is presented in Table 3.10, together with its corresponding set of participants, and set of

control relationships. The table also presents a possible labels set, and the corresponding

association model, to link the the structure with the graphical representation.

81

3.4.3.5 Conclusions

In summary, we have presented a model for the characterisation of organisational structures that

includes a language to describe them. This form of representing structures is helpful for automa

tising tasks such as storing and retrieving structures, deciding if two structures are equivalent,

and monitoring the observance of the structure at run time. Also, a graphical counterpart of a

structure can be easily obtained from this representation, which is valuable for use by main

stream software developers, for whom visualisation is an important tool.

3.5 Organisational Patterns

3.5.1 Introduction

The use of organisational patterns [56] is highlighted in the methodological process of Sec

tion 3.2 as a key part in the design of a multi-agent system. There, it is observed that before

selecting a pattern the developer has already identified the main roles and interactions needed to

accomplish the system goals, and has also identified the organisational rules. At this stage, the

developer uses a library of patterns to decide the best structure for the system. The library pro

vides the following benefits to the developer, all oriented towards facilitating the development

process .

.. Patterns help to reduce ambiguity. While the developer may sketch the organisational

structure using just an informal diagram, patterns are specified according to a more struc

tured and unambiguous description .

.. Patterns help to isolate the application-independent features of an organisation from those

applicable only in specific situations. This promotes re-usability and increases develop

ment speed.

.. Patterns help to avoid platform or technology dependence at this stage of the design pro

cess. Nevertheless, they provide general guidelines on matters related to implementation.

.. Patterns include a description of the situations in which their use is recommended, so that

matching a specific application with one of these situations, a pattern appropriate for that

application can be selected.

.. Patterns present a more detailed description of the structure than one that developers

would normally achieve at this stage of the design; for example, the list of organisational

rules corresponding to the management of the organisation is not normally included at

this point, but should appear in a pattern.

82

After selecting the right pattern, the developer must proceed to complete the role and interaction

models by adapting the pattern to the particular situation, resulting in the final role and interac

tion models. This may involve the creation of new roles and interactions, as well as detailing

those identified previously.

It should be noted that the main question when selecting one of these patterns is what organisa

tional structure best models the characteristics of the system-to-be. As pointed out in [J 33], such

a structure must not only appropriately describe the characteristics of the system but must also

take into account issues like efficiency and flexibility. According to Fox [45], when designing a

distributed system, one must consider two issues: task decomposition and selection of a control

regime. In Gaia, a preliminary task decomposition is undertaken in the analysis phase, but the

decision of the definitive topology is postponed until design. Thus, the selected pattern must

provide the topology and the control regime for the organisation.

A first attempt to create a set of patterns may be to take all possible combinations of known

topologies and control regimes. This, of course, would lead to an unman~geable number of

patterns. Another approach is to consider only those combinations that are potentially useful,

either based on experience, or by analogy to other areas in which organisational structures have

been applied. In our work, we assume that a small number of such organisational patterns

would suit a broad range of applications. In addition, each pattern in the set represents afamily

of organisational structures, rather than a specific instance.

3.5.2 Pattern layout

The form in which patterns are described, which we will refer to as their layout, is almost as

important as patterns themselves. A good form of description makes patterns easy to understand

and use. On the other hand, a bad form of description defeals the main purpose of pattel11s,

which is to facilitate the development process; it may lead to misinterpretation, a waste of time,

and eventnally discourage the use of patterns.

3.5.2.1 Pattern requirements

Since no layout for organisational patterns exists to date, we must develop one suitable for our

purposes. Before presenting our layout for organisational patterns, we consider the requirements

of such a layout. First, basically a pattern is a solution, so a pattern layout is a form of expressing

a solution. In our context, such a solution expresses how a particular organisational structure can

be used to model the operation of a multi-agent system. To model the operation of this system,

two aspects must be covered, the static structure and the dynamics, or the way the components

interact at run-time to achieve meaningful behaviour. Second, since a self-contained layout is

desirable, in addition to describing a solution a layout must include contextual information such

as the problem being solved, exemplar situations, advantages and disadvantages of its use, and

83

so on. Nevertheless, several of these contextual sections can be identical for some - or all

- of the patterns. Third, specifically for our purposes, the layout must facilitate the use of

the patterns as part of the methodological process. Finally, the layout must include a unique

name for identification purposes, and a description summarising the main characteristics of the

pattern.

Pattern descriptions are divided into sections. We determine the sections and their content in our

layout based on two notions. The first is the Context-Problem-Solution metaphor cited in [11],

and the second is the form in which design patterns [48] - particularly agent patterns [26, 84]

- are described. The former, the Context-Problem-Solution metaphor, states that the essence

of a pattern relies on the relationship between the problem, the situations in which it commonly

occurs, and its solution. In other words, every pattern description must include these three

aspects arranged in such a way that it clearly shows the problem in question, the context in

which the problem exists and the solution provided.

Regarding the second notion on which we base our layout, the way other agent patterns are

being described, we observe that in [26] the following sections are suggested as mandatory in

any layout: name, context, problem,forces and solution. Apart from these, rationale and known

uses are also included specifically for the description of coordination patterns. Similarly, the

layout employed in [84] consists of one part common to all the patterns and another part specific

to each of the categories considered. The common part includes: name, alias, problem,forces,

entities, dynamics, dependencies, example, implementation, known uses, consequences, and see

also (the meaning ofthese sections is given below). We can observe, in these two cases, that the

layout of agent patterns is divided into two parts: a general part, that deals with the identification

of the patterns, the statement of the problem they solve, the context in which they are used, and

general aspects of the solution they offer; and a specific part, that deals with those aspects of the

solution that are applicable only to that particular type of patterns.

However, there is no common agreement about what constitutes a good pattern description. For

instance, using a unique layout to describe patterns of different types has both disadvantages

and advantages. On the one hand, doing this could result in a superficial description that ignores

essential details that make a pattern distinct. On the other hand, different descriptions would

make it difficult to compare patterns when selecting one for a specific application. In the agent

oriented approach it is even less clear what a good pattern description is, mainly because of the

lack of consensus over agent terms and the diversity of agent-oriented methodologies.

3.5.2.2 An organisational pattern layout

Thus, based on the Context-Problem-Solution metaphor and on how similar agent patterns are

described, our layout is divided into two parts. It includes a general part, similar to those found

in other pattern descriptions, and a particular part, which is specific to organisational patterns.

As discussed above, this particular part is formed of specific issues concerning the solution of

84

Section Description
Name a unique identifier for the pattern
Alias other names to denote the pattern

Problem the problem to which the pattern provides a solution
Context the situation that surrounds the problem
Forces factors that determine whether to apply the pattern

Solution a textual description of the solution provided
Restrictions conditions for the pattern to be applicable

Consequences advantages and disadvantages of using the pattern
Implementation brief guidelines toward implementing the pattern

Based on traditional patterns on which the pattern is based
Roles the roles in the organisation

Environmental entities the resources in the system employed by the roles
Structure the structure of the organisation

Rules the organisational rules of the organisation
Dynamics the way the organisation operate at run-time

TABLE 3.11: Summary of the layout for describing organisational pattems

the problem, namely the static structure and the dynamics of an organisation and, consequently,

it consists of these sections: roles, structure, rules and dynamics.

The sections of the pattern layout are presented below, and a summary of the layout is given in

Table 3.11.

• Name: short descriptive name for the pattern.

• Alias: other names by which the pattern may be known.

• Context: a description of the situation in which the pattern is applicable. Note that the

context is a general description, and alone is not sufficient to determine the applicability

of the pattern. To this end, the context is complemented withforces (see below).

• Problem: the problem solved by the pattern. It basically takes the form of a search for an

appropriate organisational structure to model an agent-based system.

• Forces: description of factors that influence the decision as to when to apply the pattern in

a context. Forces push or pull the problem towards different solutions or indicate possible

trade-offs [26]. We identify the following forces in organisational patterns.

Coordination efficiency: the structure of an organisation strongly influences its effi

ciency for coordination tasks in terms of information shared and number of messages

interchanged.

Coupling: the degree of interdependence between the roles. Although coupling

is inherent in all structures, it varies in degree. A structure with high coupling is

difficult to extend.

85

Subordination relationships: some structures impose specific control regimes on

their roles, which may not be appropriate for some situations.

Topology complexity: simple topologies exhibit low coordination overhead but re

quire powerful roles in terms of resources and task processing.

• Solution: a textual description of the solution.

• Restrictions: scope of the pattern.

• Consequences: side-effects of using the pattern, including advantages and disadvantages.

• Implementation: brief advice on how to implement the pattern.

• Roles: the participating roles and their characteristics. The roles in the pattern are de

scribed by means of role schemata (see Section 3.2).

• Structure: the topology and the control regime of the organisation. We use the model

presented in Section 3.4.3 to describe this section of the pattern.

• Environmental entities: the resources or information that the roles use while carrying out

their tasks, but are not an integral part of them. The roles interact with the environmental

entities through sensing (reading) and affecting (modifying) them.

• Dynamics: the dynamics encompasses the way in which the roles interact to solve the

problem. The interactions between the roles are described using protocol definitions (see

Section 3.2) and AUML-style sequence diagrams (see Section 2.5.3.1). It is usually the

case that the dynamics can be decomposed into scenarios, each representing a meaningful

behaviour with distinct results. For example, one scenario can deal with the normal, or

expected, form of operation, while some others may be related to singular situations, for

instance exception management.

• Rules: constraints to be respected in the organisation independent of the application do

main. The language used to express the rules is presented in Section 3.3.4.

This layout is used in the following to describe three instances of organisational patterns. Note

that, since these patterns solve essentially the same problem and have the same context, the

content of some sections is the same for all.

3.6 Catalogue of patterns

3.6.1 Introduction

This section presents a catalogue of organisational patterns that consist of three representative

cases, covering a range of different situations. The pipeline is simple in concept and structure,

while the hierarchy is flexible and resembles real organisations, and the marketplace exemplifies

open organisations.

86

3.6.2 The pipeline pattern

According to the number of different roles and communication paths between them, the pipeline

is one of the simplest types of organisation. A pipeline is a structure that processes (produces,

transforms or augments) items in a series of steps, or stages. The stages are arranged in sequence,

so that the process of a given item initiates at the first stage, continues at the intermediate stages

and is completed at the last stage. For any item, each stage depends on the finalisation of the

process of the previous stage to carry out its own process. However, two or more stages can

process (different items) at the same time. In this pattern, we call the entities that perform the

process in each stage filters, and the maximum rate at which a filter can process items flow rate.

The entities that link two stages are called pipes, and although their main function is to serve as

a communication link between the stages, they can also perform more complex tasks, such as

compensate for any difference in the flow rate of the filters, and notify the filter that new data is

available. In a pipeline, the coordination consists of ensuring that the flow rates of all the stages

are similar, so that no bottlenecks occur. In addition, to alleviate the occurrence of bottlenecks,

buffers can be used.

The organisational pattern corresponding to a pipeline structure is as follows.

• Name: Pipeline.

• Alias: Flat.

• Context. According to the Gaia process, before selecting a pattern the developer has

already completed the roles and the interactions models, and has also compiled the or

ganisational rules and defined the organisational structure (topology and control regime).

After selecting the appropriate pattern, the developer must be ready to complete the final

roles and interactions models.

• Problem. The problem addressed by this pattern is finding an organisational structure

that best describes the system under development. The analysis of the system has already

produced the preliminary role and interaction models, and what is missing is to define the

topology and the control regime of the organisational structure. In addition, the following

characteristics of the system have been identified. First, the problem consists of (or can be

modelled as) a manufacturing process in which the overall goals are achieved by a strong

collaboration among the participating roles. Second, such a collaboration can be seen as a

processing line in which each role performs a transformation on some given information

and delivers it to the next member of the line .

• Forces:

Coordination efficiency: low.

Coupling: low.

Subordination relationships: none.

87

- Topology complexity: very simple.

II Solution. The pipeline has been used extensively in mainstream software engineering to

design applications in which the overall processing can be decomposed into independent

sequential tasks. The tasks are performed by filters, which are the processing components,

and each filter is connected to the next by means of a pipe, which transfers data from the

filter to its successor. Usually, the data are uniform and the tasks apply some sort of trans

formation on them, such as addition, modification or reduction of information. Although

several descriptions exist for this style [11, 109, 63], the pattern presented here is suitable

for the agent paradigm and has been adapted to be useful within the methodological con

text of Gaia. In particular, the components have been modelled as roles and agents, and

their interactions as organisations.

II Restrictions. First, the overall task must be decomposable into independent sequential

tasks. Second, the flow of information is restricted to be linear, sequential and only in one

direction (no loops or feedback). Third, the processing speed is determined by the slowest

filter, although the use of buffers in pipelines can alleviate this restriction to some extent.

Finally, to avoid bandwidth and storage problems, the data transferred from stage to stage

must be small.

lit Consequences. The mechanism of coordination provided is rather simple and is not suit

able for error management. This structure is flexible, since filters can be replaced or

bypassed and new filters can be easily added.

II Implementation. The overall task of the system has to be decomposed into independent

sequential tasks, with each assigned to one filter. The pipelines may be immersed in the

communication layer, in which case they will not be directly associated to any agent of

the system.

II Roles. Filters are obvious candidates to become roles. In addition, pipes are also mod

elled as roles since this highlights their existence within the structure. (The decision to

join a filter and a pipe in a single agent can be postponed to the detailed design phase.

Alternatively, pipes could be modelled as resources.) However, it should be noted that

filters are active entities while pipes are passive ones. Filters are allowed to be sub

organisations themselves, but pipes are assumed to be primitive entities. For simplicity of

the pattern, the roles of data source (the component which supplies data to the first pipe)

and the data sink (the component to which the data to the last pipe is supplied) are not

included. Figures 3.11 and 3.12 show templates of role schemata for the filter and pipe

roles respectively.

II Structure. Let us denote with N the number of filters in the structure and with Filteri

and Pipej the filters and pipes (1 SiS Nand 1 S j S N + 1) respectively (note that

the number of pipes is N + 1). (Figure 3.13 depicts a pipeline for the case N = 3.) The

88

Role Schema: Filter,

Description: Performs the process
corresponding to stage i on the
input data

Protocols and
Activities: ProcessData;o Getlnput,

SupplyOutpui, Sense Flows,
ChangeFlow

Permissions:

changes Data/low,
agreedFlow

reads flo~

Responsibilities:

Liveness:

Filter, = (Process I AdjustFlow)W

Process =
Getinput.ProcessData.SupplyOutput

AdjustFlow = Sense Flows I ChangeFlow
Safety:

·true

FIGURE 3,11: The Filter role

Role Schema: Pipe,

Description:
Transfers data (from Filter,_,) to
Filter"using a buffer

Protocols and
Activities: Fetch, Store, CheckOverflow,

Getlnput, SupplyOutput

Pennissions:
reads Data

Responsibilities:

Llveness:

Pipe, = (Transfer) W

Transfer=(Getlnput.Fetch) :

(SupplyOutput.Store)

Safety:

·BufferOverflow = false

FIGURE 3_12: The Pipe role

89

0-0--
Filter] Filter2 Filter3

FIG URE 3.13: Topology of a pipeline structure

I agreedFlow I

FIGURE 3.14: The environmental entities of the pipeline structure

structure is described by the following control regime (see Section 3.4.3.3):

{peer(Pipei, Filteri) Ii = 1 ... N} U {peer(Filteri' Pipei+l) Ii = 1 .. N}

(Each pipe interacts with the filter to its right and each filter interacts with the pipe to its

right.)

• Environmental entities. We denote by floWi the flow rate at stage i, and by agreedFlow

the operation flow of the overall pipeline. These are real numbers and their rights of access

are shown in Table 3.12. For example, the entity corresponding to the flow of stage i,

floWi, can be modified only by the role Filteri, but can be sensed by all the other filters.

Also, we denote by Data the items that the pipeline precesses. In Figure 3.14, these

90

Entity Type Description Modified by Sensed by
flowi real number flow rate at stage i Filteri Filterj, j i i
agreedFlow real number pipeline's operation flow 'l/j Filterj 'l/j Filterj
Data application the item processed 'l/j Filterj 'l/j Pipej

specific

TAB LE 3.12: Environmental entities of a pipeline and their rights of access

Getlnput

Filter; I Pipe;

The filter obtains the non e
next data to process

Data

FIGURE 3.15: The Getlnput protocol

SupplyOutput

Filter; I Pipe;

The filter supplies the Oat a
processed data

ack

FIGURE 3.16: The SupplyOutputprotocol

environmental entities have been depicted with boxes, and the rights of access with lines

of one or two arrowheads, for sensing and modifying, respectively. The figure highlights

the fact that these entities are not part of the roles by enclosing them in a dotted box.

It Dynamics. There are two main scenarios in the dynamics of a pipeline structure: item

processing and flow adjustment. The former refers to the normal operation of the struc

ture in which items are processed, while the latter deals with the way the agreed flow of

operation is adjusted.

The first scenario, item processing, relies mainly on the interaction of the roles in the

structure. As shown in the filter and pipe schemata (Figures 3.1 J and 3.12), the protocols

involved in the operation of the organisation are Get! nput and Suppl yOutput, described

in Figure 3.15 and Figure 3.16, respectively. The typical operation of the structure at stage

i is shown in Figure 3.17. First, the filter asks the pipe to its left for the next data using

the Get! nput protocol (the filter confirms the correct receipt of the data); next, the filter

91

GetInput

Pipei+1

I processData
I--...J

SupplyOutput

FIGURE 3.17: Dynamics of the pipeline structure

process the data; and finally, the filter asks the pipe to its right to store the processed data

using the SupplyOutput protocol.

The second scenario, flow adjustment, relies on the capabilities of the roles to sense and

affect the environment. In this case, it is assumed that the filters are continually sensing

the environmental entities corresponding to the other filters' flows. When a filter wants to

change the overall rate of flow (agreedFlow), it first modifies the environmental variable

corresponding to its own flow of operation (jlOWi, for the i corresponding to the stage).

The new value of floWi can be less than the previous value (for example, if the filter is

having problems with maintaining the current rate of operation), or greater (for example,

when the filter has recovered from a previous performance downgrade). Later, when each

filter senses all the filters' flows, the agreed flow is calculated as the minimum of all the

filters' flows. This agreed flow is the flow at which they agree to operate, whereas a filter's

flow is regarded as the flow at which the filter wishes to operate.

It Rules. The following are the organisational rules that control the operation of this struc

ture.

All the roles are played by at least one agent:

vi(3a(plays (a, Filter i)))

vj(3a(plays(a, Pipej)))

All the roles are played by at most one agent:

vi(

vj(
plays(a, Filteri) /\ plays(b, Filteri) =? a = b)

plays(a,Pipej) /\plays(b, Pipej) =? a = b)

92

Head

Leaf 1 Leaf 2 Leaf 3

FIGURE 3.18: The simple hierarchy structure

The rate of process is the same for all the filters:

Vi E {I, ... ,N}(Filteri.GetFlowO = agreedFlow)

Every filter delivers the data immediately after processing it:

Vi E {I, ... , N}(Vd : Data(terminated(Filteri .ProcessData(d)) =?

Oinitiated(Suppl yOutput(d))))

Every filter fetches the next data immediately after delivering the previous data:

Vd :Data(3d' :Data

(terminated(SupplyOutput(d)) =? Oinitiated(Get! nput(d'))))

3.6.3 The Simple hierarchy pattern

• Name: simple hierarchy.

• Alias: two-levels hierarchy.

• Context. According to the methodological process, before selecting a pattern the de

veloper has already constructed the preliminary roles and the interactions models, and

has also compiled the organisational rules. After selecting the appropriate pattern, the

93

developer must be able to complete the final roles and interactions models using the cor

responding organisational structure.

• Problem. The problem in question is to find the organisational structure that best describes

the system under development. In Gaia, the processes of the organisation are provided by

the roles model, so what is missing is to define the topology and the control regime of the

organisation. To this end, some characteristics of the problem have been identified. First,

the overall goal can be naturally decomposed into a reasonable number of independent

tasks arranged hierarchically. Second, although the tasks are independent, their execution

require non-trivial coordination. Lastly, scalability is desired.

• Forces:

- Coordination efficiency: medium.

Coupling: medium.

Subordination relationships: authority.

- Topology complexity: simple.

• Solution. Hierarchies are one of the most used types of organisational structures [45],

arguably because they are intuitive, simple in concept and relatively easy to implement. A

simple hierarchy has the form of a two-level tree, as shown in Figure 3.18 (a simple hier

archy of three elements at the lower level). The top level contains a single element whose

responsibility is to coordinate the activities of the lower-level elements or to consolidate

the data provided by them. Usually, such coordination consists of the apex sending control

orders to the lower-level elements and receiving from them the data they produced. For

this to happen, there must exist an authority relationship from the apex to the lower-level

elements (see Section 3.4.3.1). On the other hand, the consolidation of data performed by

the apex usually involves some form of analysis, summarising, filtering or approximation.

The consolidated information can then used by the apex for decision making.

In a strict simple hierarchy, the only communication paths allowed are between the apex

and the lower level elements, but in some applications, communication between the ele

ments of the same level can be allowed to increase efficiency and robustness.

Hierarchies are more useful in solving problems that can be decomposed into several

independent tasks, in particular those that tend to grow in the number of involved tasks.

• Restrictions. First, the overall task must be decomposable into independent subtasks.

Second, each one of these subtasks must not exceed the processing capabilities of the

corresponding element, and the coordination and information consolidation tasks must

not exceed the capabilities of the apex element. Third, direct communication between

elements of the lower-level is usually not allowed.

• Consequences. This structure presents the following disadvantages: in case of frequent

communication, bottlenecks may arise in the apex. Similarly, a failure in the operation of

94

Role Schema: Head

Description:
Coordinates the activities of the
elements at the lower level

Protocols and Consolidate, DataAvaiiable, Activities:
NextCommand, ChangeRate

Permissions:

changes agreedRate

Responsibilities;

Liveness:

Head =(ReceiveData : NextCommand)W

ReceiveData = wait(DataAvailable I
ChangeRate)

Safety:

• true

FIGURE 3,19: The Head role

the apex can have serious consequences in the operation of the whole structure, On the

other hand, simple hierarchies present the following advantages: hierarchies have a good

level of scalability in terms of the number of elements as well as the number of levels.

Compared to the pipeline structure, a simple hierarchy improves efficiency and increases

parallelism.

• Implementation. The most critical role of the structure is the apex, since it centralises the

communication, performs the coordination tasks, and consolidates the information. For

these reasons, it is important that the agent playing the role of the head is implemented

with enough communication bandwidth, memory capacity and processing speed. More

over, mechanisms of upgrade and backup are needed to recover from a possible failure in

this role.

• Roles. There are essentially only two roles in a simple hierarchy: the role situated at

the apex, which we call the head, and the role played by the elements at the lower-level,

which we will call the leaf Figure 3.19 shows the description of the head role and, as can

be seen, the only activity of the head is to consolidate the received data. The head uses the

protocols DataAvailable, NextCommand and ChangeRate to coordinate the behaviour of

the leaf role, which is described in the schema of Figure 3.20. The figure shows that the

behaviour of the leaf role is to wait for new commands, produce the corresponding data

and inform of its availability.

• Structure. The following expression defines a simple hierarchy of N leaves.

95

Role Schema: Leaf,

Description:
Performs the data
transformation corresponding to
stage I

Protocols and Process Data" NextCommand, Activities:
DataAvaiiable, changeRate

Permissions:

changes Rate,

changes supplied Data

Responsibilities:

Liveness:

Leaf, =
(NextCommand.ProcessData",DataAval
lable: changeRate)W

Safety:

·true

FIGURE 3.20: The Leaf role

{authority(Head,Leaf(i)) Ii = 1 ... N}

Thus, the participants set is:

{Head} U {Leaf(i) Ii = l..N};

and the control relationships set is:

{ authority} .

.. Environmental entities. We denote by Ratei the operation rate of Leaf(i) and with Data

the information processed by the hierarchy. The former are real numbers, while the latter

is a registry whose composition depends on the application.

.. Dynamics. The main scenario of the operation of the simple hierarchy structure is de

picted in Figure 3.21, which shows that the head requests a leaf to perform a specific task.

As a result of this, the leaf produces data and notifies the head about its availability.

.. Rules. The organisational rules governing this structure are the following.

All the roles are played by at least one agent:

3a(pZays(a, Head))

96

Head Lea~

N extCommand

DataA vailable

consolidate

FIGURE 3.21: Main dynamics of the simple hierarchy structure

\/j(:Ja(plays(a, Leaf))))

All the roles are played by at most one agent:

plays(a,Head) I\plays(b, Head) =? a = b

\/j(plays(a, LeafJ) I\plays(b, Leaf)) =? a = b)

3.6.4 The Marketplace pattern

One way to cope with task complexity is by subdivision, which consists in dividing the task into

subtasks and then distributing them among several roles, or several agents playing the same role.

This is useful only to some extent because, in general, the more subdivisions, the more complex

coordinating the roles is. An approach to cope with task complexity without incrementing coor

dination complexity is by means of a market system [45] in which the task is accomplished by

an independent entity that receives compensation for it. Normally, several entities are willing to

perform the task, so a mechanism of selection is used. In this way, coordination is reduced just

to the agreement of a contract.

• Name: Marketplace.

• Alias: Market or price system.

97

• Context. According to the Gaia process, before selecting a pattern the developer has

already completed the roles and the interactions models, and has also compiled the or

ganisational rules and defined the organisational structure (topology and control regime).

After selecting the appropriate pattern, the developer must be ready to complete the final

roles and interactions models.

• Problem. The problem in question is to find the organisational structure that best describes

the system under development. In Gaia, the processes of the organisation are provided by

the roles model, so what is missing is to define the topology and the control regime of

the organisation. Additionally, the following characteristics of the problem have been

identified: there is a strong belief that several tasks, or the main task, can be accomplished

by independent agents following a metaphor of buying and selling products; it is likely

that there will be a good number of agents willing to accomplish the task if they are

appropriately paid; and it is not worthwhile to to accomplish the task by itself .

• Forces:

- Coordination efficiency: high.

- Coupling: low.

Subordination relationships: peer.

- Topology complexity: simple.

• Solution. A possible solution to the problem is by using a marketplace organisational

structure, which is an organisation that supports the sale of products (or services) by pro

viding facilities for sellers and buyers. The set of facilities may vary in each marketplace,

but common facilities for buyers include the discovery of purchase opportunities, mecha

nisms to select the best selling option and payment channels. For sellers, the marketplace

usually offers marketing presence and payment channels. An additional benefit of mar

ketplaces is that they provide buyer and seller trust in that the information provided there

is reliable, and that the critical processes, such as payments, are confidential and secure.

In order to provide these facilities, there exist one or several special agents, orfacilitators,

in the marketplace whose job is to perform common activities, thus freeing sellers and

buyers from the burden of implementing them. The most important of these facilitators

- which we have called the Marketer - communicates directly with sellers and buyers,

matching a buyer with a seller, or acting as a communication channel between them.

The Marketer frees the buyers from the burden of maintaining a directory of all possible

sellers and vice versa. Additionally, a facilitator - here called the Guard - is needed to

keep track of all the buyers and sellers that enter the marketplace, partially to maintain a

directory of all the participants, but most importantly, to check that the new participants

comply with the corresponding marketplace rules. Apart from this, in some marketplaces

the mechanism to select the best selling option might be so complex that another facilitator

is required. In this pattern we call such a facilitator the Auctioneer because the selection

98

process usually consists of some form of auction, but some marketplaces may require

more general negotiation techniques.

.. Restrictions. First, the task must be suitable to be accomplished by an external entity; this

leaves out tasks that require much knowledge of the internal structure of the organisation.

Second, the only control over the independent entity is through the price of the contract.

Third, there must be at least one agent willing to accomplish the task; in general, the more

the better. Finally, although no authority relation must exist from the facilitators to the

buyers and sellers, at least a relationship of trust is necessary.

.. Consequences. The disadvantages of using a marketplace organisation are: there is a risk

that no buyer is willing to perform the task or that the final price is too high; since a

marketplace is essentially a competitive organisation, the final price is difficult to predict;

finally, buyers cannot impose explicit control on sellers. The advantages are: through

competition, buyers tend to obtain a better price; and the coordination complexity is very

low .

.. Implementation. The implementation of a marketplace includes two types of activities:

implementing the core of the system, the facilitators; and implementing the participants,

the sellers and buyers. The former is carried out by the administrators or owners of the

marketplace and consists mainly in developing the following critical parts of the system:

a reliable communications infrastructure; a secure payment facility; a set of organisa

tional rules that allow competition but without compromising the integrity of the system;

a mechanism to allow new participants to have access to the system; and mechanisms and

policies for offer selection. Since each of these parts has in itself been well studied in other

areas of research, and there are in fact developments that can be used or adapted, the im

plementation of marketplaces need not begin from scratch. For example, communication

infrastructure is provided by agent-oriented platforms such as JADE [70] or ZEUS [! 20],

while the mechanisms for obtaining a best offer are covered in the study of auctions. The

activities involved in implementing the participants are more closely related to a specific

application and the particular needs of the owners. Also, although there is some freedom

to select the best way to implement the participants, the resulting agents must comply

with the system in terms of communication protocols and observance of the operational

rules.

41 Roles. We distribute the functionality of marketplaces into six roles, in accordance with

the main tasks. Figure 3.22 and Figure 3.23 show the roles corresponding to the partic

ipants, Seller and Buyer, respectively. The roles corresponding to the facilitators, Mar

keter, Auctioneer, PaymentSystem and Guard are shown in Figure 3.24, Figure 3.25, Fig

ure 3.26 and Figure 3.27, respectively.

41 Structure. Figure 3.28 shows the topology of this organisational pattern. Note that all the

control relationships between the nodes are peer relationships, which are derived from

inter-role trust relationships. The following expression defines the organisational structure

99

Role Schema: Buyer

Description: Acquires a product or a service

Protocols and BrowseOportunities,
Activities: RequestProduct, ReceiveDeal,

AcceptDeal, Pay,
ReceiveProduct

Permissions:

reads Product, Contract, Offer

produces Request

Responsibilities:

Liveness:

Buyer=(BrowseOportunities .
RequestProduct . ReceiveDeal .
AcceptDeal . Pay. ReceiveProduct)

Safety:

Contract. payment <= balance

FIGURE 3.22: Roles in a marketplace, part 1

Role Schema: Seller

Description: Provides a product or a service

Protocols and ReceiveRequest, ProposeOffer,
Activities: ReceiveContract,

AcceptContract,
ReceivePayment, DeliverProduct

Pennissions:

reads Product, Contract,
Request

produces Offer

Responsibilities:

Liveness:

Seller=(ReceiveRequest . ProposeOffer .
ReceiveContract. AcceptContract
ReceivePayment . DeliverProduct)W

stock(Contract.ldProduct,
Safety: Contract.DispatchDay) > 0;

dateOfDispatch <= Contract.DispatchDay

FIGURE 3.23: Roles in a marketplace, part 2

100

Role Schema: Marketer

Description: Serves as a link between a
seiler and the potential buyers

AttendToProductRequest,
Protocols and RequestToPotentialSeliers,
Activities: ReceiveBestOffer, Send Contracts,

ReceiveContractAcceptances,
InstructPayment

Permissions;

reads Offer, Request

changes Product, Contract

Responsibilities:

Liveness;
Marketer=(AttendToProductRequest,
RequestToPotentialSeliers .
ReceiveBestOffer . SendContracts,
ReceiveContractAcceptances.
InstructPayment)W

Safety:
exists(RequestProduct/d)

Offer.Productld = Requesl.Product/d

FIGURE 3.24: Roles in a marketplace, part 3

Role Schema: Auctioneer

Description: Selects the best offer

Protocols and ReceiveOffers, SelectBestOffer,
Activities: NotifyBestOffer

Permissions:

reads Offer

Responsibilities:

liveness:

Auctioneer=(ReceiveOffers .
SelectBestOffer . NotifyBestOffer)W

Safety:

FIGURE 3.25: Roles in a marketplace, part 4

101

Role Schema:
Guard

Description: Checks that new participants
comply with the requirements

Protocols and ReceiveNewParticipant,
Activities: CheckCompliance

Permissions:

produces PermissionToOperate

Responsibilities:

Uveness:

Guard=(ReceiveNewParticipant.
CheckCompliance)W

Safety: PermissionToOperate.State = true

FIGURE 3.26: Roles in a marketplace, part 5

Role Schema: PaymentSystem

Description: Receives payments of sales

Protocols and ReceivePayment, NotifyPayment
Activities:

Permissions:

reads Contract

Responsibilities:

Liveness:

PaymentSystem=(ReceivePayment
NotifyPayment)W

Safety:

FLGURE 3.27: Roles in a marketplace, part 6

102

Entity Type
Product registry
Contract registry

Offer registry

Request registry

Guard

Payment
System

FIGURE 3.28: Topology of a market

Description Modified by
good or service to sell Marketer
deal of transaction Marketer

bid Seller

product required Buyer

Read by
Buyer, Seller
Buyer, Seller,

PaymentSystem
Auctioneer, Marketer,

Buyer
Seller, Marketer

TABLE 3.13: Environmental entities of a Marketplace and their rights of access

of the marketplace pattern. In this figure, we have denoted with double circle those roles

whose cardinality can be greater than one.

{peer (Seller, Buyer),peer(Seller, Marketer) , peer(Seller, PaymentSystem)} U

{peer(Buyer, M arketer),peer(Buyer, Guard),peer(M arketer, Guard)} U

{peer (PaymentSystem, Marketer), peer (Payment System, Buyer)} U

{peer (Auctioneer, Seller),peer(Auctioneer,!vI arketer)} .

III Environmental entities. The environmental entities of the Marketplace pattern are: Prod

uct, Contract, Offer, and Request. A Product represents the good or service involved in a

transaction, a Contract is the deal to which the seller and the buyer of a transaction agree

to adhere, an Offer is the proposal (usually a price) a buyer makes to buy a product, and a

Request consists of the requirements for a product that a buyer wants to buy. These enti

ties are data structures whose composition depends on the specific application. Table 3.13

summarises the rights of access that the roles have on these environmental entities.

103

BrowseOportunities() :

I' i Requestproduct():1·1
! J J jRequestToPotentiarSellerS() :

! i I >, I
I, ! i I I f-I _pr_op_OS_e_Offi_er_()~>,,",,
,• Ii j J I Se'lektBestOffer(}

I NotifyBesrobJ1() , ,

11 1- , LF
I,' 'I::'" SendContractsO Ii! SendContracts() I

- '<11

I I I J ' ' Notif;Pay;nen() >1.1 (L Delihrproduc~) : IfEc'----c--------i
w~ '-,- i /' lUi

u

FIGURE 3.29: The Sale scenario of the marketplace structure

: Guard i : Participant

L-----c,-,---.J
. ComplianceChecklng()

IssuePermission()

FIGURE 3.30: The Entrance scenario of the marketplace structure

• Dynamics. There are two main scenarios in the operation of a marketplace, one corre

sponding to the sale process and the other to the entrance of a new participant to the

system. Figure 3.29 shows how the roles interact to achieve a sale: a Buyer sends a prod

uct request to the Marketer, who contacts all the potential sellers. The sellers interested

in fulfilling the request send their offers to the Auctioneer, who selects the best offer.

After that, the Marketer prepares the contract and sends it to the Buyer and Seller for

their approval. Finally, the payment and product delivery are carried out. Figure 3.30

corresponds to the entrance of a new seller or buyer. In this simple scenario, the Guard

checks that the new participant complies with the requirements of the system, in which

case a permission to operate is issued, and the Marketer is notified of the entrance.

• Rules. The organisational rules that govern this marketplace are the following.

The buyer and the seller cannot be played by the same agent:

plays(a, Buyer) I\plays(b, Seller) =? a =I b

104

The seller and the auctioneer must be played by different agents:

plays(a, Seller) II pZays(b, Auctioneer) ::::} a::j:. b

A product is not delivered before the payment has been received:

terminated(NotifyPayment) B initiated(DeZiverProduct)

Payments are not made before contract acceptance:

terminated(AcceptContract(Buyer)) II terminated(AcceptContract(Seller))

B initiated(Deliver Product)

The marketer is not informed about a new participant before the participant has obtained

permission:

terminated(I ssuePermission) B initiated(N ewParticipantArrival)

Only one offer is selected in each auction:

card(NotifyBestOffer) = 1

When we compare the marketplace pattern against the FM market [1 06J, a practical agent-based

market, we find several differences and similarities. Regarding the roles in the structure, FM

employs eight roles, of which the Auctioneer, the Buyer, and the Seller coincide in name and

function \vit.~ the corresponding roles in the marketplace pattern. l-<M includes two roles for

tasks of admitting participants, namely the Buyer Admitter and the Seller Admitter, whereas the

marketplace encompasses both functionalities in one role, the Guard. The rest of the FM roles,

the Boss, the Seller Manager and the Buyer Manager, enact the functionality represented in

the pattern by the Marketer and the PaymentSystem. In particular, one of the functions of the

Seller Manager is to provide a facility for payments, which in the pattern is carried out by the

PaymentSystem. While this provides a good means for comparison with one specific market,

the unavailability of suitable documentation prevents us from make a more detailed analysis or

from a broader analysis against other agent-based markets, such as Kasbah [17J and TAC [113J.

3.6.5 Selecting patterns

Even for applications involving just a few roles and protocols, it is sometimes difficult to recog

nise if their organisational structure is similar to one of those typical structures such as group,

hierarchy or marketplace. This arises because it is difficult for humans to visualise the whole of

105

Architectural
f~

Detailed s
Design Design

"

"\\, .-

Determine Complete
Organisational Analysis

Structure Models

FIG URE 331: The role of organisational patterns in the methodology

a structure except for the simplest cases, or if the elements of the structure are represented in a

form with which we are not familiar, For this reason, it might be difficult to select - among a

set of organisational patterns - the pattern that best matches a given structure.

3.6.6 Summary

As mentioned previously, organisational patterns show their real benefit when used as part of an

agent-oriented software methodology. The details of using organisational patterns in a Gaia-like

methodology were described in this chapter, and are summarised below.

Figure 3.31 illustrates the role of organisational patterns in the methodological process. As

can be observed, organisational patterns are used during the architectural design phase, after

the analysis has been done. The analysis provides the preliminary versions of the roles and

interaction models, as well as of the organisational rules. From this information, an outline of

the organisational structure of the system is obtained.

However, the selection of the definitive organisational structure of a system depends not only

on the prelirninary models, but also on other factors such as the complexity of computation of

the roles, the complexity of coordination of potential organisational structures, the real-world

organisation that is being modelled, and the support offered for observance of the organisational

rules.

It is precisely in this process of selection that a catalogue of organisational patterns plays an im

portant role, by providing pre-defined options from which an appropriate organisational struc

ture can be selected. Such a selection is carried out basically by matching the characteristics of

the system-to-be with the characteristics provided by the patterns. In addition, given their high

lO6

re-usability, organisational patterns usually contain rnore information than is found in organisa

tional structures at that stage of developmenL

As a result of selecting an specific organisational pattern, the architectural design is completed

by incorporating the elements of the pattern into the analysis models. More specifically, the

preliminary roles and interaction models, and the analysis' organisational rules, are updated

with the roles, interactions and control relationships of the pattern, and the organisational rules

of the pattern are added.

Finally, the organisational structure and the architectural design models form the inputs to the

detailed design, which produces a list of roles enacted by each agent in the system and a list of

services provided by each agent.

3.7 Related work and conclusions

The patterns presented here are intended to be used during the methodological process outlined

by Zambonelli et al. [133], in which the importance of a set of organisational patterns is stated

but no such set is presented.

Patterns are extensively used to facilitate the development of software systems; in the agent

oriented approach they have been employed to design multiple aspects of an application. Some

examples of agent-based methodologies that include the use of patterns in their processes are

Tropos [81J, Kendall's methodology [79] and PASSI [20]. As part of the Tropos methodology,

Kolp et al. present a set of patterns in [81 J, in which patterns (called styles) are used to describe

the general architecture of a system under construction. Although there are similarities with

our work, we include organisational rules and classify structures based on topology and control

regime (or task decomposition), as opposed to the classification based on functionality used in

Tropos.

Kendall [79] also includes a catalogue of patterns as a part of a technique to analyse and design

agent-based systems. The patterns in that catalogue are more general than those presented here,

since they include not only interactions but also the roles themselves (it should be noted that

the concept of role there comes from role theory and is not identical to the concept used here).

Since there is no reference to organisational abstractions, that work cannot be directly used in

the methodological process we use, but perhaps the structure of those patterns may be used as a

base to populate the set of patterns proposed here.

Immersed in the PASSI methodology, Cossentino et al. present in [20] the design of a particular

type of agent pattern. They define a pattern as consisting of a model and implementation code.

The model includes two parts: structure and behaviour. Structural patterns are classified into:

action patterns, which represent the functionality of the system; behaviour patterns, which can

be viewed as a collection of actions; component patterns, which encompass the structure of an

agent and its tasks; and service patterns, which describe the collaboration between two or more

107

agents, Implementation code is available for two agent platforms, namely, JADE and FIPA

as. As can be noted from this brief description, the concept of organisation is not explicitly

addressed in their work.

Other patterns in the agent literature do not use a specific methodology. For instance, Aridor

and Lange [6] present a catalogue that covers different aspects of an application based on mobile

agents, travelling (management of the movements of a mobile agent), task (task decomposition

and assignment), and interaction (locating agents and facilitating their interaction), but these

are appropriate only for mobile-agent systems, and are object-based rather than role-based.

Lind [84] proposes a structure of a pattern catalogue in which the work presented here may

fit in the Society section, but it is not always clear how to apply the general-purpose patterns

within a specific methodology. This is also true for [26], in which Deugo et al. present a set

of coordination patterns that are not embedded in a methodology process. Their usage is more

complicated due to the fact that there is no separation of the different type of patterns, for ex

ample, coordination patterns and task delegation patterns. A similar set of patterns is presented

by Hayden et al. [62] but this focuses on defining how a goal assigned to a particular agent is

fulfilled by interacting with other agents. Finally, Silva and Delgado [J 14] present an agent

pattern that provides distribution, security and persistence transparency. This does not suit our

purposes because it focuses on access to a single agent rather than considering an organisation

of them.

Although several agent-oriented methodologies have recently been proposed, none of them is

mature enough to develop commercial and industrial applications. One step towards achieving

mature methodologies is to enhance existing ones with the inclusion of software engineering

best practices, such as the use of patterns in key parts of the design process. In this chapter

we have presented a framework in which organisational patterns may be developed to model the

organisational structure of software applications. Also included are three patterns corresponding

to representative structures. No framework or set of patterns like these have been proposed

before.

Specifically, the contributions of this chapter to the state of the art of agent-oriented software

engineering are the following.

• Definition of a language for the expression of organisational rules, namely LEVOR. The

manipulability of LEVOR also makes it suitable for the analysis and evaluation of organ

isational rules at run-time.

• Construction of a formal model for organisational structures. This model, although sim

ple, is expressive enough to formally describe organisational structures, and link them

with their corresponding graphical representation.

• Definition of a layout for the description of organisational patterns. Such layout facilitates

the understanding and use of the patterns in a catalogue.

108

• Construction of an initial catalogue of patterns. This catalogue uses the layout referred

above and includes the patterns corresponding to some representative organisational struc

tures.

The work presented here provides four distinct benefits. First, it extends Gaia, which is one of

the most used methodologies, since the exploitation of organisational patterns is an integral part

of its process. Second, it increases the accessibility of the methodology, in that the inclusion of

patterns makes the methodology easier to use, especially by non-expert users. Third, it helps to

reduce development time since developers may reuse the models to avoid building their appli

cations from scratch. Finally, it provides a basis on which further patterns can be developed and

improvements can be discussed.

It should be noted that although some patterns are very simple in concept, their usefulness is

twofold: they explicitly state the structure a system must conform to; and they serve as a basis

for designing complex applications, since, arguably, most real applications can be described by

a composition of several simpler structures.

Part of the work involved in creating the catalogue of patterns has also dealt with the charac

terisation of organisational structures and organisational rules - which are the most important

parts of the patterns - and the languages to describe them. Although these problems have been

explored before by other researchers [J 34, 44], our work includes formal characterisations and

languages. These characterisations and languages are independent of the patterns and can be

used on their own for other more general purposes, such as the analysis and design of agent

based systems.

However, the catalogue presented in this chapter has some limitations in terms of maturity. A

catalogue is an evolving project that improves with the participation of a community of users,

serving as a repository of the expertise of a community. It gains maturity through the participa

tion of a community of users in activities such as:

• adding new patterns to the catalogue;

• adding variants to existing patterns in the catalogue;

• providing feedback about the utility of a pattern;

• proposing generalisations of a pattern; and

• increasing the level of detail of a pattern.

As long as the population of the catalogue increases, new needs arise. For example, with a large

number of patterns in the catalogue, it is necessary to have a comparison table that summarises

the characteristics of the pattens. Also, in those cases in which the architectural design is sup

ported by a software tool (CASE tool), it might be desirable to feed that tool with the description

of the selected pattern, in order to speed up the design process.

109

Chapter 4

Modelling the internal structure of an

agent

4.1 Introduction

As discussed in Chapter 2, the design of a multi-agent system consists of two main parts: the

design of the interactions between the agents (in which agents are essentially viewed as black

boxes), and the design of the internal composition of each agent. While we addressed the former

in Chapter 3, in this chapter we consider the latter.

Although for each application the agents can be designed following tailor-made techniques, the

existence of standardised, well-defined and comprehensive methods for designing the internal

structure of agents is important for engineering solutions in a repeatable and controlled form.

For these reasons, we argue that modelling the internal stmcture of agents should be a mandatory

phase in every agent-oriented software methodology.

In spite of this, the phase of modelling the internal structure of agents is not included in most cur

rent methodologies or, when included, has some serious drawbacks. Regarding the former, some

methodologies consider this phase as part of the detailed implementation and thus out of their

scope [134]. This leaves practitioners with the problem of how to complete the specification

and, eventually, the implementation of the system, which can be a significant problem particu

larly for novice practitioners, and may discourage the widespread use of such methodologies.

When this phase is included in the methodology, the internal representations are tied to specific

- sometimes proprietary - models [15, 78, 55]. In the case of proprietary models, apart from

forcing their use, there is no connection between them and those models that the research com

munity has constructed in the field of agent architectures. Thus, they provide no insight into

how to incorporate well known architectures, or how the proprietary models compare to them.

Rather than creating new and isolated models, or architectures, this thesis strongly relies on

the employment of well known agent architectures. Specifically, in this chapter we explore

110

the use of existing well known architectures to support the design of agents. Although this

approach is very natural, taking it into practice is difficult, mainly because agent architectures

have not always been envisaged from a software engineering point of view. Basically, the use

of agent architectures in software development presents a problem of mismatch: on the one

hand, most current methodologies do not incorporate the expertise achieved in the study of

agent architectures, and on the other hand, the specification of most agent architectures is rarely

oriented towards software engineering practitioners

Regarding the difficulties in using agent architectures for modelling the internal structure of

agents, we can mention the following. First, most architecture descriptions are available only at

a high level of abstraction, or are not detailed enough, or are difficult to understand by non-agent

experts. Second, there is a large number of architectures and it is difficult to select one between

them for the implementation of a specific application.

In order to facilitate the use of well known agent architectures in the design of agents, we propose

the construction of the three following artefacts.

• A catalogue of representations corresponding to some of the most used architectures,

together with a selection criterion. The representations include design specifications and

descriptions of the requirements for using the specifications. The descliptions of these

elements must be such that they can be understood even for practitioners not proficient in

agent technology.

• A technique to obtain a detailed design of an agent from the specification produced by a

high-level methodology (such as Gaia [134]), using the representations mentioned above.

• A procedure to guide the development of a representation for any architecture not consid

ered previously.

The combined use of these artefacts can be helpful in several situations that arise during the

development of an agent. Once the requirements for the agent have been determined, the cat

alogue can be searched for a representation that appropriately models the agent, and then the

technique provided can be used to obtain a detailed design. In this way, developers do not be

gin each design from scratch, nor do they have to go into all the details of agent architectures

to determine which is the most appropriate for a particular agent. However, if the catalogue

does not contain any appropriate representation, the procedure provided can be used to obtain a

representation for a different architecture, and this representation added to the catalogue for its

eventual re-utilisation.

For these reasons, artefacts like these facilitate the design of the internal structure of agents.

However, since no artefacts like these exist to date, we need to establish methods for their con

struction and use. The chapter is organised in the following way. In Section 4.2 we describe our

approach to modelling the internal structure of agents, in particular we justify the use of software

patterns to represent such internal structures. Then, in Sections 4.3, 4.4 and 4.5, the patterns

111

for some selected agent architectures are presented> After this, in Section 4.6, methodologi

cal guidelines are provided for obtaining the corresponding pattern for any other architecture.

Finally, Section 4>7 contains related work, and Section 4.8 contains our conclusions.

4.2 Internal representation of agents

The main goal of this section is to provide a framework in which a catalogue of representations

may be developed. The aim of each representation is to model the internal structure of a family

of agents, according to the principles established by a known agent architecture. However, as

mentioned previously, several problems arise when using agent architectures in a methodologi

cal approach, mainly because most agent architectures are not described in a form that is useful

for software developers. In particular, some descriptions are difficult to understand by non

agent experts, because they contain vocabulary and concepts that are unfamiliar and intricate.

To alleviate this, we choose to describe the internal structure of agents by means of software

patterns [I I] (as used in Chapter 3, although for a slightly different purpose), since they are

artefacts with which most software developers are familiar and, at the same time, are a powerful

abstraction to represent families of solutions. Moreover, the object-oriented approach is suitable

to serve as a base for the description of these patterns, since it is one of the most used design

techniques and does not necessarily force an object-oriented implementation.

In summary, our approach consists of the creation of a catalogue of software patterns for selected

architectures. The patterns include a description of their components, and the way in which they

interact, as well as a description of the situations in which they are applicable. We evaluate the

results of this chapter by means of a case study, which is presented in Chapter 6.

In contrast to other approaches that leave the user with the work of customising a general ar

chitecture to meet their specific applications [78, 96], our work provides concrete designs that

correspond to well known architectures. Not only does this work include static descriptions of

the internal structure of agents, it also addresses the dynamics of their main scenarios.

4.2.1 Obtaining a detailed design from a high-level design

High-level design of multi-agent systems focuses on organisational modelling, leaving agent

modelling unconsidered, but a complete methodological process must provide links between

these two aspects. Although architectural patterns, such as those presented in this chapter, are

helpful in creating such links, there is still a gap between the results obtained by a high-level

design (one that does not consider the detailed modelling of the internal structure of the agents),

and the information required to use a specific agent architecture. This gap is a consequence of

the difference in concepts and abstractions used in the design and the architecture. To bridge

this gap, we have included, after each pattern in the catalogue, an explanation of how to obtain

the information required by the pattern, from the specification given in a high-level design.

112

However, since this specification varies from methodology to methodology, we first need to

establish what the output of the high-level design is.

In order to do this, we use the Gaia [134] methodology as representative of a methodology

which produces a high-level design but does not consider a detailed agent design. Under this

assumption, the results obtained by the high-level design are the following. (Each feature is

described in more detail elsewhere in this thesis, so here we just provide a brief description and

refer to the corresponding sections.)

The overall system is modelled through a set of agents, each of which plays one or more roles.

Such roles interact according to control relationships, governed by organisational rules. Control

relationships describe how two roles are related in terms of subordination; for example, control

relationships might be authority and peer. In this view, organisational rules are thus restrictions

about how roles and agents can interact; they may also involve other entities in the system, such

as environmental entities.

Each role is described by activities, protocols, permissions to use resources, responsibilities and

services, where:

• activities are tasks that a role can carry out alone, without interacting with other roles;

• protocols are patterns of interaction between the roles and consist of initiator, collabora

tors, input parameters and output parameters;

• permissions express the rights a role has to access the entities of the environment;

• responsibilities encompass the behaviour of the agent and are divided into liveness and

safety, the former specifying the behaviour the agent pursues, and the latter specifying the

conditions that must keep invariant through the life of the agent; and

• a service is a single coherent block of activity in which the agent will be engaged, and

consists of pre-conditions, post-conditions, inputs, and outputs.

For each of the architectural patterns presented below, we have included a procedure to move

from the design obtained by the methodology, to the information required by the pattern. Before

presenting the patterns, however, we establish the layout used to describe them.

4.2.2 Pattern layout

As was discussed in Section 3.5.2, the way patterns are described, or their layout, is important

to facilitates their understanding and their use. In order to describe architectural patterns, we

use the layout utilised by Buschmann et al. [11], but only slightly modified to leave out the

sections corresponding to alternative names of a pattern, its variants and references to closely

related patterns, since they are useless for the patterns presented below. (Note that this layout

113

was used by Buschmann et aL to describe design patterns, of which these architectural patterns

are a particular case.) In this way, the pattern layout we use consists of the following sections.

.. Name: a unique identifier of the pattern.

.. Context: a description of the situation in which the agent architecture is applicable.

CD Problem: the problem addressed by the pattern.

.. Solution: steps to follow in order to solve the problem, based on what is stated in the

structure and dynamics sections.

CD Known uses: real-world or experimental applications in which the architecture has been

used .

.. Structure: the structural aspects of the internal composition of an agent (according to the

architecture), represented by means of a class diagram.

CD Dynamics: the way internal components of an agent interact to accomplish its behaviour,

divided into scenarios (meaningful parts of functionality).

.. Implementation: guidelines for implementing the pattern .

.. Consequences: benefits and limitations of using the architecture.

.. Example: example to clarify the exposition or use of the pattern.

As can be observed, this layout considers the Context-Problem-Solution metaphor discussed in

Section 3.5.2.2, which states that the essence of a pattern relies on the relationship between the

problem, the situations in which it occurs (context), and its solution. Apart from the sections

related to this metaphor (context, problem and solution), the layout also includes sections to

identify the pattern(name), to describe the static and dynamic aspects of the solution (structure

and dynamics, respectively), and to facilitate the use of the pattern (known uses, implementation,

consequences and example).

4.3 The Subsumption architectural pattern

Using the layout presented above, in the following we describe the patterns corresponding to

three well known agent architectures, namely the subsumption, the dMARS and the Touring

Machines architectures. For each pattern, we include a procedure to use it in the context of a

methodological process. This section considers the architectural pattern corresponding to the

subsumption architecture. (A description of the subsumption architecture was given in Sec

tion 2.3.1.)

114

4.3.1 The subsuinption architecture

The subsumption architecture is a well-known reactive architecture that has inspired several

other reactive and hybrid architectures. Although simple in concept, the subsumption architec

ture contains vocabulary and notions not commonly found in mainstream software engineering

and, consequently, difficult to assimilate - in a first attempt - by a typical software developer,

such as the concepts of behaviour and inhibition relationship. In this sense, the pattern presented

below can act as a self-contained tool that developers can use for facilitating the construction of

agents, since the operation of the architecture is put into common software engineering terms.

4.3.2 Pattern description

In order to clarify the description of the subsumption pattern, we make use of the following

example [128, pSI].

"The objective is to explore a distant planet or, more concretely, to collect samples

of a particular type of precious rock. The location of the rock samples is unknown in

advance but they are typically clustered in certain spots. A number of autonomous

vehicles are available that can drive around the planet collecting samples and later

re-enter the mother spacecraft to go back to earth. There is no detailed map of the

planet available, although it is known that the terrain is full of obstacles - hills,

valleys, etc. - which prevent the vehicles from exchanging any communication".

The solution to this problem is based on two considerations [128]. First, since the terrain does

not allow direct communication, vehicles communicate by means of crumbs. Once a vehicle has

detected a cluster of samples, it shares its knowledge with other vehicles by repeatedly dropping

two crumbs along its path to the mother spacecraft. In this way, a vehicle simply has to follow a

track of crumbs to reach a cluster of samples. However, on its path from the mother spacecraft to

a cluster, each vehicle picks up only one crumb. This allows both the persistence of the pathway

for future vehicles, and the clearing of pathways in which the samples have been exhausted.

The second consideration is the use of a signal emanating from the mother spacecraft together

with its gradient field. To return to the mother spacecraft, a vehicle must follow the direction

with highest gradient, while a vehicle intending to get away from the mother spacecraft has to

move towards the direction with the lowest gradient. The use of the subsumption architecture

to model the structure of such an agent is justified mainly because it is difficult to maintain a

symbolic model of the environment, and because quick responses are required. This pattern is

described in the following.

NAME Subsumption.

115

CONTEXT A software developer has designed a multi-agent system at the macro level, which

means mainly the identification of agents, their responsibilities, and their interactions.

The next step is to model the internal structure of the identified agents. It has also been

determined that one agent requires reactive behaviour, so the subsumption architecture is

suitable for describing its internal structure. The developer might not be an expert in agent

architectures, so it would be desirable to have a mechanism that hides general aspects and

lets the developer focus on application-specific details. For example, the developer does

not need to be aware of details of the algorithm of action-selection (to select one action,

for execution, from a set of proposed actions).

PROBLEM The developer needs to specify the implementation of an identified agent, and has

already obtained the main characteristics of the agent, mainly in terms of its behaviour. It

is clear that the agent does not need to maintain a complex mental state and, at the same

time, needs to yield opportune responses to fast changes in the environment.

SOLUTION In order to utilise this architecture, the steps below must be followed.

1. Describe the environment as a set of states that can be recognised by the agent

(through its perception function, commonly referred to as its see function). Note

that this set represents what the agent is actually capable of perceiving from the

environment.

2. Decompose the functionality of the agent into behaviours.

3. For each behaviour, determine its perceptual input (from the set of environment

states), and describe its task.

4. Establish the inhibition relation, by assigning priorities to behaviours: more abstract

behaviours have higher priority while basic behaviours have lower priority. More

formally, the inhibition relation is a total ordering relation (transitive, irreflexive,

and anti symmetric) on the set of behaviours.

5. With the components obtained in the previous steps, complete the classes of the class

diagram shown in Figure 4.1 (which is explained in the STRUCTURE section) to

obtain a design specification for the agent.

KNOWN USES The subsumption architecture has been applied to the control of robots that

operate in unconstrained dynamic real-world environments. These robots wander in their

environments avoiding collisions with other robots, objects and humans [10].

STRUCTURE Since the subsumption architecture is relatively simple, and involves only a

small number of classes, we omit the use of packages to describe its structure. The main

classes of the pattern and their relationships are shown in Figure 4.1. The control resides

in the SubsumptionController class, which senses the environment through the Percep

tualInteiface class, affects the environment by means of the EffectorInteiface class, and

consults the class Inhibitor about the priority of the behaviours.

116

I SubsumptionContrnlier)

i ~SelecLActionO
i ~erceptualinpulO I __ ~;===::j
I 4ExecuteActionO r- l
i I'.tFindLis IOfBeha,,;oursO I 1: ","lnhibitedO , i,. ... FrrstBehaVlourOfLrstO 1-~

[!
.

1 ~extBeha,,;ourOfListO !~'

/ \ 1~
r-_~~ .. n 1_n J Behaviour
Percepfualln

terface

[","SeeO

(f

I
I 1

I Perceptor I

~nvironmentstate

i ~SenseEnv;ronmentO I ,

FIGURE 4,1: Class diagram for subsumption architecture

With the purpose of adapting to different situations, it is pennitted for an agent to have

more than one perceptual or effectoric interfaces. The environment itself is sensed by

the Environmentlnteiface, but what the agent actually perceives is obtained from the Per

ceptualInteiface. Similarly, the EffectoricInteiface is the class that abstracts the actions

that affect the environment. For example, in a FIPA-type agent ([35]) the Environmentln

teiface would contain the communications infrastructure, the Perceptor would encapsu-

late the recognition of the Agent COillLllunication Language, and the Perceptuallnte7iace

would manipulate the information at the application level.

DYNAMICS A high level view of operation of the sUbsumption architecture is depicted in Fig

ure 4.2, which uses a sequence diagram to show the participating classes, the involved

methods and their order of execution. As can be observed, the control module is con

tinually sensing the environment and matching its state to the perceptual conditions of

behaviours. Among all these behaviours, the control module chooses one, and then the

corresponding action is performed.

IMPLEMENTATION The algorithm for selecting a behaviour (and thus an action) among

those matching the current state of the environ..'11ent is quite simple to implement. First,

the set of all the behaviours fired by the state is obtained. Second, the behaviour selected is

the one with the minimum priority, or none if it does not exist. Finally, the corresponding

action is returned.

117

FIGURE 4.2: Dynamics for subsumption architecture

All the classes may belong to the same executable, although a major decoupling may be

achieved if the Effector and Perceptor classes are separated. The Environmentlntelface

class may even have its own thread of execution if continuous examination of the envi

ronment is required.

CONSEQUENCES The disadvantages and limitations of this architecture are as follows. First,

the sUbsumption architecture is behaviour-oriented while most current design methodolo

gies are goal-oriented. This mismatch imposes some constraints on the functionality of

some agents, particularly on agents with mUltiple goals. In addition, some effort on trans

lating from goals to behaviours must be exerted during the design. Second, the absence of

explicit representations of goals (like intentions in BDI architectures) makes the specifi

cation of pro-active behaviour difficult. Thus, this architecture is more suitable for agents

that act in response to a request than pro-active ones.

On the other hand, the advantages of the subsumption architecture are the following. First,

. its simple structure facilitates the quick and easy development of agents. Second, its

simple dynamics is adequate when high responsiveness is required. Finally, it promotes a

highly modular design, making the addition of new behaviours an easy task.

EXAMPLE Below, the solution to the problem example stated above is presented in the format

used in the SOLUTION section.

Step 1: The environment of this problem can be described as the set of tuples (time,

location, gradient, object), where:

• time is the instant at which the tuple refers to;

• location is the location of a position on the planet (usually, the whole planet is di

vided into zones to make the location a discrete variable);

• gradient is the gradient of the signal emanating from the mother spacecraft in the

location; and

• object is the type of object occupying the location: none, sample, crumb, obstacle,

base of mother spacecraft, etc.

118

Now, the agent only needs to perceive a small subset of the environment. Such a subset

can be described as the set of tuples (base, object, up gradient, down gradient), where:

It base is true or false, indicating whether the vehicle is at the spacecraft base;

It object is the type of object in front of the vehicle (obstacle, sample, crumb or other);

It up gradient is the direction with the highest gradient; and

III down gradient is the direction with the lowest gradient.

In addition to this, we note that expressing behaviours is easier if we include the cur

rent state of the agent as another dimension in the range of the perception function (see

function). The current state of a vehicle is formed of two variables: carrying sample,

indicating if the vehicle is carrying at least one sample; and direction, representing the

current direction.

Steps 2 and 3: The behaviours involved in the solution are the following, together with

their perceptual inputs and tasks.

• b 1. If an obstacle is detected then change direction.

III b2. If the vehicle is carrying samples and is at the base then drop samples.

III b3. Ifthe vehicle is carrying samples and is not at the base then drop two crumbs

and travel up gradient.

• b4. If a sample is detected then pick up a sample.

III bS. If crumbs are sensed then pick up one crumb and travel down gradient.

• b6. Choose a direction randomly and move to that direction.

Step 4: The inhibition relation, denoted by -<, is as follows:

bl -< b2 -< b3 -< b4 -< b5 -< b6

The activities that can be performed by a vehicle without interacting with the environment

are: change direction, and choose randomly a direction.

4.3.3 Obtaining a detailed design for the sUbsumption architecture

The pattern presented above can be viewed as a template in which the features of a particular

application can be inserted in order to obtain the detailed design of an agent. However, as was

discussed in Section 4.2.1, when the features of the particular application are provided by a

high-level design, additional work is needed to elaborate the information as required by the pat

tern. This section contains guidelines for obtaining the information required by the subsumption

architectural pattern from the high-level design obtained by a methodology.

Agents modelled through the subsumption architecture usually have either a single simple goal

- decomposable into behaviours - or no goals at all since they operate on the request of

119

other agents. As stated above, the subsumption architectural pattern requires the following

information.

• The set of environmental states that can be perceived by the agent.

• The behaviours of the agent.

• The perceptual inputs of each behaviour, which are taken from the set of environmental

states mentioned above.

.. The task of each behaviour.

.. The precedence of the behaviours.

This infOlmation can be obtained from the high-level design as follows. First, since the set of

environmental states represents how the agent perceives its environment, it is obtained from the

environmental entities that the agent can read or modify, as expressed in the roles' permissions.

These environmental entities include those needed by the agent to execute its activities and

protocols.

Next, since the behaviours represent the functional aspects of the subsumption architecture,

they must be associated with the roles' responsibilities. In the following we show how to map

responsibilities to behaviours, but since responsibilities are formed of activities and protocols,

we first state how to map activities and protocols to behaviours. First, each activity is simply

mapped to a behaviour which has no perceptual inputs (so it is always triggered), and whose

task is the activity itself.

Protocols, however, are more complicated. In the case of protocols involving only one message

exchange, the corresponding behaviour depends on whether the agent acts as the initiator or the

responder. If the agent is the initiator, the protocol can be seen as an activity whose purpose

is to send the message exchanged, and the mapping for activities described above applies. On

the other hand, if the agent acts as the responder of the message, the protocol gives rise to a

behaviour whose perceptual input is the message and its task is the processing of such a message.

In the case of a protocol consisting of more than one message, the same procedure applies, with

the addition that a mechanism is needed to keep track of the order of the messages, as well as to

differentiate it from other conversations. Such a mechanism can be based on the use of variables

that take mutually exclusive values.

Using these matches of activities and protocols to behaviours, the way liveness responsibilities

are represented in the subsumption architecture is stated below. Liveness responsibilities are

formed of protocols and activities (called operands for this purpose) linked by operators of

sequence (.), alternative (I), repetition (*, +, W), and concurrency (II) [134]. The basic idea for

representing the liveness responsibilities is to modify the operands' behaviours, by extending

in one dimension the space of perceptual inputs, to accommodate an artificial control variable,

and appending a basic instruction to their tasks, to manipulate that variable. The exact form in

120

which the variable is manipulated depends on the specific expression, and its aim is to force the

COlTect order of execution. This general idea is best explained by means of an example. To find

the representation of the liveness expression (a. b) w, assume that the associated behaviours of a

and b are ha and hb, respectively, and have the following form:

ha = ((v~" .. , v~), taska),

where (v~, ... ,v~) denotes the perceptual inputs of the behaviour, and taska denotes the task

of the behaviour.

The modified behaviours that represent the liveness expression are:

ha=((A,v~, .. ,v~),taskaU{val'+--B}),

hb = ((B, v~,,·· ,vb), taskb U {val' +-- A}),

where val' is the environmental entity representing the artificial variable (it is assumed that the

assignment instruction val' +-- a is executed as part of the initialisation of the agent, and that the

union operation (U) denotes that the instruction is added to the other instructions of taski).

The explanation is straightforward: in the beginning the value A would preclude the behaviour

hb from being triggered (since it requires a value B) and the trigger of behaviour ha is not

changed. Later, when behaviour ha has been triggered and its task executed, the value B leaves

no other possibility but to have the behaviour hb triggered when its perceptual inputs are met.

Safety responsibilities can be represented similarly in the subsumption architecture, as follows.

Since a safety responsibility is a condition that must always be true, we suggest the creation of

an associated liveness responsibility, whose purpose is to re-establish it when some unexpected

event causes its violation. Thus, to represent safety responsibilities we propose a twofold plan:

program the behaviour tasks in such a way that the safety responsibilities hold under normal

situations; and map the associated liveness expressions, as described above, to cover unexpected

situations. For example, if a safety responsibility states that a vehicle must avoid obstacles, the

task for changing direction must be programmed so to avoid obstacles. Additionally, aliveness

responsibility must exist to COlTect the unexpected situation of an eventual crash.

To complete the elements required by the subsumption architecture, we show below how to ob

tain the inhibition relation of the behaviours. Note that the inhibition relation is used to select

one behaviour when more than one matches the CUlTent environmental state. However, in the

way behaviours are constructed, it is impossible for two of them to match the same environmen

tal state if the following conditions hold .

• The values for the artificial variable are carefully chosen, so that they are unique.

121

It The messages are uniquely identified, for example, by means of protocol or conversation

identifiers.

Thus, under this assumption of uniqueness, no environmental state matches more than one be

haviour and, as a result, the inhibition relation is the empty set

4.4 The dMARS architectural pattern

The second architectural pattern considered corresponds to the dMARS architecture, which is

representative of BDI architectures. dMARS is an architecture that can be used in a broad range

of applications because of its flexibility, which is achieved by means of combining several re

active and deliberative components. Associated with this combination of components, however,

is the complexity of its operation, which is difficult to assimilate by novice developers. For this

reason, it is important to construct tools, like the pattern presented below, that hide the general

aspects of the architecture and allow the developers to focus on application specific issues.

4.4.1 The dMARS architecture

Although there are many agent architectures available, relatively few of them have been applied

to solve real-world problems. One of the most notable cases is the distributed Multi-Agent

Reasoning System (dMARS) [29], which is based on the Belief-Desire-Intention (BDI) model,

and has been applied in arguably the most significant multi-agent applications to date.

Four data strpctures are commonly found in BDI agents: beliefs, goals, intentions and a plan

library. Beliefs are information that the agent has about the world, which may be incomplete or

incorrect. Usually, beliefs are represented symbolically, for example, as Prolog facts.

Desires or goals are the tasks allocated to the agent. In general, an agent is not expected to

achieve all its desires. Those desires that an agent does choose to commit to are called intentions,

and an agent tries to fulfil an intention only until it is satisfied or until it is no longer achievable.

The operation of a dMARS agent is based on its plans, which are specifications of how to achieve

intentions, and are stored in the plan library.

A plan consists of four components: trigger or invocation condition, context or pre-condition,

maintenance condition and body. The invocation condition specifies which events trigger the

plan, while the context specifies the circumstances under which the execution of the plan can

start. During execution, the maintenance condition specifies the circumstances that should re

main true. Finally, the body specifies the course of action needed to satisfy the plan. These

actions can be sub-goals or primitive actions, which can be seen as procedure calls.

During execution, an interpreter is responsible for managing the operation of the agent, contin

ually executing the following processes:

122

• observe the world and the agent's internal state in order to update a queue of events;

• generate new possible desires, by finding plans whose trigger event matches an event in

the event queue;

• select one of these plans for execution (an intended means);

• if the event is a sub-goal, push the intended means onto an existing stack, otherwise push

it onto a new stack; and

• select an intention stack, take the topmost plan and execute the next step of this current

plan, if the step is an action, perform it, otherwise, if it is a sub-goal, post this sub-goal on

the event queue.

Thus, when a plan is executed, its sub-goals are placed on the event queue. These sub-goals,

in tum, trigger new plans that fulfil them, and so on. It should be noted that all the plans are

generated at design time, by the agent programmer.

Specifically, there are two different modes of operation, one when the event queue is not empty,

and one when the queue is empty. If the queue is not empty, an event is selected (usually the first

element) and relevant and applicable plans are determined. An applicable plan is selected and

its plan instance is generated. If the event is external (a newly originating event), a new intention

is created and the plan instance is pushed onto it. If the event is internal (caused by a sub-goal

of an existing intention), the plan instance is pushed onto the intention stack that generated that

event.

On the other hand, if the event queue is empty (in which case, the operation is called intention

execution operation), the first step is to select an intention. Then, from this intention the execut

ing plan is identified, and from this plan an action or sub-goal is selected for execution. When

such an action or goal succeeds, a new state is reached. If the new state is not an end state,

another action is executed, otherwise the plan has succeeded.

If there are more plans in the intention, the successful plan instance is removed from the intention

stack and the event that generated the completed plan is removed. If there are no more plans, the

intention has succeeded and is removed, and the corresponding (external) event that generated

the intention is removed, too.

Of course, there are further details that can be given of dMARS, and the interested reader should

see [29] for those details. However, they are not necessary for the presentation of the pattern,

and would overcomplicate and expand this chapter dramatically, so we do not present them here.

4.4.2 Pattern description

The architectural pattern corresponding to the dMARS architecture is based on the description

given in [29], and is presented below.

123

NAME dMARS.

CONTEXT After modelling the macro level of a multi-agent system, a developer identifies

that the behaviour of one of the agents can be appropriately modelled using the BDI

model. The developer might not be an expert in the BDI model, so it is desirable to have a

mechanism that hides general aspects and lets the developer focus on application-specific

details.

PROBLEM The developer needs to specify the implementation of an identified agent. The

developer has already obtained the main characteristics of the agent, mainly in terms of

its behaviour. The developer is certain that the agent needs to maintain a complex mental

state to achieve its goals, but at the same time it needs to yield opportune responses to fast

changes in the environment.

SOLUTION In order to design an agent according to the dMARS architecture, the activities

below must be performed.

1. Form the belief domain, which is the set of belief formulae representing all possible

beliefs of the agent.

2. Form the set of beliefs, which comprise the information the agent has about its en

vironment.

3. Define the events that will make the agent adopt new plans. According to the class

diagram in Figure 4.4, such events are of four types: acquisition of a new belief, the

removal of a belief, receipt of a message, and adoption of a new goal.

4. Define the goal domain of the agent, which is the set of all possible goals that a plan

may contain.

5. Form the plan library. Plans specify how to achieve a intention and, as can be seen in

the class diagram (Figure 4.4), are composed of several parts: invocation condition,

context, body, and maintenance, success and failure conditions.

6. Collect the expertise, all the external actions that the agent is capable of performing.

7. Define functions for selecting an intention, an event and a plan. Some simple func

tions are provided in the Logic class of Figure 4.4.

8. With these elements complete the Agent and Logic classes in the class diagram of

Figure 4.4.

KNOWN USES The dMARS architecture has been successfully used to build several real

world applications, for example air traffic management systems and server-side customer

service applications.

STRUCTURE The classes that form the structure of the design can be grouped into packages,

as illustrated in Figure 4.3, in which packages contain the classes indicated below .

., Agent: the class that control of the other classes, and classes referring to events.

124

FIG URE 4.3: Packages for the dMARS architecture

• Belief: classes related to the representation of beliefs and triggers.

• Goal: classes referring to goals.

• Intention: classes about intentions and plans.

• Action: classes referring to the different types of actions.

• Logic: classes related to the manipulation of logical expressions and procedures for

selecting plans and intentions.

The complete set of classes is depicted in the class diagram in Figure 4.4. Agent is the

main class in the diagram, and contains the cognitive and functional elements of the agent.

The Agent class also encompasses the control activities of the agent, determining the way

in which other entities are employed. Among these entities, the Selector and the Logic

classes are worth particular mention: the Selector class encapsulates the procedures for

selecting one of several relevant plans, applicable plans, intentions and branches, while

the Logic class contains the procedures for the logical manipulation required for other

classes. Other important classes in the structure are those that encapsulate the data and

functionality relating to beliefs, plans, plan instances, intentions, which are the Belief,

Plan, PlanInst and Intention classes, respectively.

DYNAMICS The main operation of a dMARS agent can be divided into two scenarios: when

the event buffer is empty, and when it is not empty. Figures 4.5 and 4.6 show the sequence

diagram for these scenarios, respectively. As can be observed, the Agent class uses the

services provided by the other classes to carry out the functionality of the interpreter

module, which is described above.

IMPLEMENTATION It can be observed that the implementation of this pattern requires the

use of procedures for the manipulation of logical formulae, for example for the unification

of formulas and the composition of environments. Since these procedures are indepen

dent of the rest of the agent, they can be developed independently. Moreover, since the

125

! .:.composeEm.ironmentsOi
, ~ASGoal0

4iouni1j.Ouerjo\)
'tASlntActionO

I !irtTEVa~O
.RestncIEn-Jronmen:(}

'~rrideEn-JronmentsO

FIGURE 4.4: Class diagram for the dMARS architecture

implementation of these procedures is non-trivial and time-consuming, the use of avail

able libraries - either commercial or free software - should be considered. In fact, the

availability of appropriate libraries might be a factor when selecting an implementation

platform.

EXAMPLE To illustrate the main concepts in the pattem, consider a simple example in which

a robot is used for waste disposal [103]. One plan in this example may consist of picking

up and disposing waste, and its components, according to the class diagram, are the fol

lowing. The event that triggers the plan (the inv attribute of the Plan class in Figure 4.4)

is that some waste appears in a particular lane, the context of the plan is that the robot is

located in the same lane as the waste, and the body of the plan consists of these sequence

of actions: pick up the waste, reach the bin location, and drop the waste in the bin. Reach

ing the bin location is a sub-plan that can be described, in tum, as a plan. Additionally,

126

the maintenance condition of the plan (the maint attribute of the the Plan class in Fig

ure 4.4) is that the bin is not full, the successful action (the succ attribute of the Plan class

in the same figure) is nil, and the failure action (the jail attribute of the Plan class in the

mentioned figure) is that the bin is left in its original location.

CONSEQUENCES The advantages of using this pattern to implement an agent are as follows.

Firstly, the BDI architecture is appropriate for modelling the behaviour of agents for a

variety of domains. Secondly, the dMARS architecture is an implementation of a BDI

architecture which is practical but also has a sound theoretical background. Finally, the

dMARS architecture is flexible in terms of achieving a good balance between deliberative

and reactive behaviours. The disadvantages of this architecture, and thus of this'pattern,

are that it requires significant effort from practitioners to be familiar with dMARS, due

to its complexity, and that the pattern does not explicitly address the situation when the

characteristics of the goals change with time.

4.4.3 Obtaining a detailed design for the dMARS architecture

BDI architectures, of which dMARS is representative, are among the most used architectures

in the implementation of agent-based systems. This popularity can be explained by the facts

that BDI architectures have been successfully used in real-world applications, that its flexibility

suits a great variety of domains, and that there exist many implementation platforms based on

BDI concepts. However, BDI architectures are difficult to assimilate because of the different

concepts involved, their large number of components, and the complexity of their operation.

This difficulty is even greater for non-agent specialists, as software developers usually are. It

is therefore, important to provide guidelines to facilitate the process of moving from a general

methodology, such as Gaia, to a detailed design. To this end, in the following we describe how to

use the design models of Gaia when applying the dMARS pattern described above. That is, we

consider what data is required by the pattern and how it can be determined from the information

provided by the models.

We begin the description by observing, from the SOLUTION section of the pattern, that the

information required by the pattern consists of: belief domain, beliefs, events, goals, plan library,

and expertise.

This information can be obtained from the methodological design as follows. First, the belief

domain can be obtained from the permissions of each role, since they contain the entities of

the environment to which the agent have right to access or change. Second, the beliefs can be

obtained from the environmental entities in the belief domain, and their corresponding values.

Third, external events, which are associated with perceptions, are generated by those activities

that perceive environmental entities, or process incoming messages. Fourth, the goals can be

obtained from the liveness responsibilities of each role that the agent implements. Each alterna

tive in a liveness responsibility (operands of the I operator) can be regarded as a specific goal,

127

[fa ill

FIGURE 4.5: Sequence diagram for the case when the event buffer is empty

and the composition of the alternative - formed of protocols and services - can function as a

first attempt to decompose the goal into sub-plans. In this way, the invocation of the sub-plans

should be made in such a way that reflects the sequence of the protocols and services in the

alternative. For the other parts of the plans, the design does not provide relevant information, so

they must be determined by some other means. Finally, the expertise (the external actions that

128

! thePgent :Pgent : Selector

L __ ---'
:! : Planlnst I : Irtention

L-___ ~ I ___ ~

sell'ctNeJdE\ent()

[Ine~al Event]
~r/dlntention()

!~ I

I
, Pus hPlanlnst()

.1 'If-e-Jde-m-a-I-l'i:

, ,e\ent pu... I :
:LI ___ ---'

, I I theE\ent : E\ent ,

I !

[EJdemal ~\enij upda(eld() U
--------------~----- ~

I I

FIGURE 4.6: Sequence diagram for the case when the event buffer is non-empty

the agent is capable of performing) is obtained from those activities and services that modify the

entities in the environment.

4.5 The TouringMachines architectural pattern

The last architectural pattern considered in this thesis corresponds to the TouringMachines ar

chitecture. Similarly to the subsumption and dMARS architectures, the TouringMachines archi

tecture contains vocabulary and notions not commonly used in software engineering, making it

difficult to assimilate by software developers. In this sense, the pattern presented below can act

as a self-contained tool that developers can use for facilitating the construction of agents.

129

Sensory Input
Action Output

Context-activated Control Rules

FIGURE 4.7: The TouringMachines architecture

4.5.1 The TouringMachines architecture

TouringMachines [33, 32] is a hybrid layered architecture proposed by Ferguson as part of his

doctoral thesis, and is formed of reactive components as welI as deliberative ones. It is layered

because its core is formed of three verticaIIy distributed layers, each with direct access to the

components that sense and act on the environment. These layers operate independently and

concurrently, and each generates an action as a result of every event perceived. In the foIIowing

we present a description of this architecture, focusing only on the aspects needed to understand

the pattern, and omitting details that are not relevant for this purpose.

The objective pursued when designing the TouringMachines architecture was threefold: to pro

vide resource-bounded agents with the ability to be reactive; to behave in a goal-directed fashion;

and to determine the impact of events - taking place in the environment -' on goals (including

the prediction of what is likely to happen in the near future). Roughly, each part of the objective

corresponds to: the Reactive Layer, the Planning Layer and the Modelling Layer, respectively,

the distribution of which is shown in Figure 4.7.

As stated above, each layer independently generates an action for each perceived event. How

ever, an action generated by one layer may conflict with the operation of another layer, so a

mechanism, or controlframework, is needed to select an appropriate overall action. This control

framework consists of two parts: a message passing mechanism between the layers (represented

in Figure 4.7 as arrows between the layers), and a set of control rules that are domain specific

and activated by context. By means of the control framework, one layer can alter the normal

operation of another layer. For example, in a vehicle controller, the Reactive Layer can be de

signed to prevent the vehicle straying over the lane marks but, while overtaking another vehicle,

the Planning Layer can inhibit this behaviour by avoiding the Reactive Layer from sensing the

lane marks. As suggested in the figure, the architecture operates only at every click of the clock.

The pattern corresponding to the TouringMachines architecture is presented below.

130

4.5.2 Pattern description

NAME TouringMachines.

CONTEXT A software developer has designed a multi-agent system at the macro level, which

implies the identification of agents, their responsibilities, and their interactions. The next

step is to model the internal structure of the identified agents. It has been determined

that one of the agents must possess planning as well as reactive characteristics, so the

TouringMachines architecture has been selected to model its internal structure. The de

veloper might not be an expert in agent architectures, so it would be desirable to have

a mechanism that hides the domain-independent aspects and lets the developer focus on

application-specific details.

PROBLEM The problem is to design an agent whose characteristics have already been identi

fied, using the TouringMachines architecture and an object-based design. Such a design

should be understood by any software engineer who knows only basic concepts of multi

agent systems.

SOLUTION In order to utilise this architecture, the steps below must be followed.

1. Arrange the reactive behaviour of the agent (that is, situations that need a quick

response) in the form of situation-action rules, which specify what action the agent

must perform as a response to an input received by the sensors. For example, a

moving agent might decide to change direction if it senses an object close ahead.

This set of situation-action rules fonns the core of the Reactive Layer.

2. Compile the goals of the agent into a goal stack in the Planning Layer.

3. Store the features of the agent's environment in a environment database in the Plan

ning Layer. For example, if the agent controls a vehicle, the environmental database

must contain a topological map of the world.

4. Express the plans of the agent in the form of schemata in the Planning Layer. A

schema is a procedural structure which consists of a body, a set of preconditions,

a set of applicability conditions, a set of postconditions, and a cost (in terms of

computational resources).

5. For each relevant entity in the environment build one or more models of behaviour,

consisting of a configuration vector, and the beliefs, desires and intentions ascribed

to the entity. Different models of the same entity differ in the depth of information

that can be represented and initial default values provided.

6. Provide lower and upper bounds within which variables of the configuration vector

can vary before a conflict is declared.

7. Provide a list of conflict resolution strategies that the agent must follow when a

conflict is detected between the observed behaviour and the planned behaviour of an

entity.

131

FIGURE 4.8: Packages in the TouringMachines architecture

8. Use the classes provided in the pattern to complete the design of the agent.

KNOWN USES Ferguson [33] describes an application in which the goal of a TouringMa

chines agent is to travel from one start point to an end point, in a simulated environment

of two dimensions that is occupied by other (independent) agents, obstacles, walls and

information signs. The architecture proved not only to be successful in this dynamic en

vironment, but also flexible enough to adapt itself to different levels of uncertainty in the

environment.

STRUCTURE To clarify the organisation of the pattern, the classes are grouped into packages,

which are shown in Figure 4.8. The package General contains all those classes that are

common to more than one package and usually represent basic concepts such as belief

or rule. The content of the other packages can be easily deduced by their name; for

example, the Reactive Layer package contains those classes necessary in the design of

the Reactive Layer. In Figure 4.9 a class diagram represents the classes contained in the

Planning Layer package, in which the Planner class contains the procedures to carry out

the functionality of the layer. These procedures act on the data structures represented in

the SchemaLibrmy and the Schema classes, and rely on the HierarchicalPartialPlanner

class for actually constructing the plans.

DYNAMICS The main flow of operation of the TouringMachines architecture is shown in the

sequence diagram of Figure 4.10. As can be observed, the controller obtains the next

event and sends it to the controller of rules, and the focus attention module of each layer.

From the former, the controller receives the applicable censored rules (rules that prevent

the event being fed to a layer), whereas from each of the attention modules it receives a

proposed action. With this information, the controller activates the corresponding censor

rule (a rule that inhibits the action of a specific layer), determines the action to execute,

and orders its execution.

132

I HierarchicalPa I,

I rtialPlanner I
, , Schema I

'body !
I SchemaLI [precOnditiOnS I

~
' ibrary f-! ___ --'y"'appIConditions

,-===p=la=n=n=e=r===, Ipostconditions I
rActO I l,cOSI j
ConslructPlanO '

I ExecuteSubplanO I /)~---\

l
ordersubPlanso I Emhronme I / \ t:====j SuspendOperationO I ntDB i / \

L ,SaveStateO I i
I FetchStateO [[;> \1
1,InstantiateSchemaO , I

I PrimitiveSchem~ , CompositeSchema I GenerateSensoryAcIO I ,I
~ Perform CalculationO II ITriggerLibrarySearchO I

I SUbmitAction() , iTriggerSUbPlanEXPansiono I
, I, I

FIGURE 4.9: Class Diagram of the Planning Layer

!'OOai() :

FIGURE 4.10: Main flow of operation in the TouringMachines architecture

133

IMPLEMENTATION Some non-trivial algorithmic components must be provided to com

plete the implementation of the architecture, namely a planner and a predictor. The plan

ner required is a hierarchical partial planner that can interleave plan formation and execu

tion, and defer committing to specific sub-plan execution methods or temporal orderings

of sub-plans until absolutely necessary. It must allow the possibility of being regularly

pre-empted and its state being suspended for subsequent use, and must use a combined

earliest-first depth-first search for constructing the plans. The predictor must be capable

of predicting the behaviour of an entity by making a temporal projection of its character

istics (configuration vector) in the context of the current world situation and the entity's

ascribed intentions.

CONSEQUENCES The advantages of using this pattern to implement an agent are the follow

ing. First, the architecture provides the agent with both reactive and deliberative features,

whose balance can be tuned to a specific application. Second, by modelling the behaviour

of the agent itself and of other entities, the architecture can accurately predict potential

conflicts in their goals, making it possible for the agent to change its behaviour to avoid

them. The disadvantages of this architecture are the following. First, before using the

agent in a real situation some tuning must be performed, which basically means finding,

by trial and error, the values of the parameters that make the agent suitable for a par

ticular application. Second, the architecture involves the use of concepts that a novice

practitioner may find complicated, such as conflict resolution strategies.

EXAMPLE In the application described by Ferguson [33] about agents travelling from one

point to another, the Reactive Layer contains situation-action rules for avoiding collisions

between agents travelling along the same lane. Such rules are simple to state; for example,

for an agent to avoid collision with the object in front, the situation part of the rule consists

of checking that the object is in front, that its velocity is less than the agent's and that the

distance between the object and the agent is less than a threshold. Additionally, the action

part of the rule commands the agent to reduce its velocity.

In the Planning Layer, determining a route is a goal of the agent, and is thus stored in the

goal stack. In relation to this goal, there must be a plan schema to plan a route, whose

elements consist of: no preconditions; a body consisting of three tasks, get a route, get the

speed of a route, and follow the route; an applicability condition that states that these tasks

must be performed in that order; no post-conditions; and a cost of three units (presumably

one unit per task).

4.5.3 Obtaining a detailed design for the TouringMachines architecture

The TouringMachines architecture consists of reactive, planning and predictive components,

making it suitable - at least in principle - to design a broad range of agents. However, the in··

formation required to use this architecture, and consequently its pattern, is not directly obtained

134

from a high-level design, Thus, an additional process is necessary in order to obtain an agent

design by using the TouringMachines pattern. Such a process is described below.

Summarising, the elements required by the TouringMachines architecture are the following .

.. Environmental states (in the perception subsystem). States of the environment that the

agent can recognise,

II Censor rules (in the control framework). They are if-then type rules that check the pres

ence of particular sensory objects and prevent them from being fed to selected layers.

II Suppressor rules (in the control framework). These are if-then type rules that check the

presence of particular actions and inner states and prevent them from being fed to the

effector subsystem.

II Situation-action rules (i:n the Reactive Layer). These rules form the core of the Reac

tive Layer, associating environmental states to actions, so that the action is (potentially)

executed when the corresponding environmental states hold.

" Focussing rules (in the Planning Layer). These rules filter the entities that are considered

relevant for planning tasks. They are built on pre-defined predicates which are mainly

domain-dependent.

.. Schemata (in the Planning Layer). A schema is a high-level description of an achievable

task, and is used by the planner to build plans to pursue tasks. It consists of: body, the

actual instructions that carry out the task; preconditions, states of the world that must hold

for the task to be performed; applicability conditions, that specify the order in which the

body steps can be performed; postconditions, states of the world that must hold for the

schema to complete; and cost, the amount of resources consumed by the execution of the

schema,

" Database of the world (in the Planning Layer). A database is used to store knowledge

about the environment of the agent; for example, for a navigating agent the database

contains a topographical map of its surrounding world.

e Focussing rules (in the Modelling Layer). These are similar to those of the Planning

Layer, but with the specific level of abstraction required by the Modelling Layer,

" Models (in the Modelling Layer). Models are representations of the entities external to

the agent such as other agents and environmental entities. Models consist of four parts:

a configuration for expressing the characteristics of the entity, such as a unique identi

fication and some other domain-specific features; and the beliefs, desires and intentions

ascribed to the entity.

II Conflict library (in the Modelling Layer). The contlict library specifies the possible goal

contlicts and the way in which they are resolved, and is formed of contlict resolution rules,

135

each consisting of three parts: the conflict identifier to which they refer, the goal that is

under conflict, and the procedure to follow for an eventual recovery.

In order to map a Gaia-type design to this architecture, we suggest beginning by defining the en

vironmental states, which includes the identification of the information perceived by the agent.

This is done in a similar way to other architectures, noting that each entity observed must be

uniquely identified. First, since the set of environmental states represents how the agent per

ceives its environment, it must be obtained from the the environmental entities that the agent

can read or modify, as expressed in the roles' permissions. These environmental entities must

include those needed by the agent to execute its activities and protocols, as well as the messages

exchanged with other agents during the execution of protocols.

Considering that the Reactive Layer contains those situations that require a quick reaction, the

candidates to be modelled in this layer are the following.

e Safety responsibilities with simple recovery procedures. The reason for this is that safety

requirements are usually based on the conditions of perceived information, and include a

recovery action; when violated they require a quick recovery. For example, in a pipeline

type production organisation, a safety responsibility might state that the processing flow

of items must be maintained to a constant. If an expected situation causes a reduction

of the flow, the appropriate action must be triggered, for instance to increase the speed

of a motor. In a TouringMachines this safety requirement can be naturally mapped to a

situation-action rule that monitors the difference between the constant flow and the agent's

flow, and the action increases the speed of the motor.

e Activities that consist of receiving a message, processing its content in a simple way,

and replying to the message. These are common activities for some type of agents, for

example those acting as wrappers of legacy software. The key point here is to decide if

the process of the content is actually simple enough to be completed in a short time.

• Any other actions triggered by external events that are simple and require quick response.

These requirements obey the fact that the actions will be part of the reactive behaviour of

the agent.

The rest of the agent functionality must be represented in the Planning Layer. Thus, the designer

must provide a decomposition of the corresponding safety and liveness responsibilities into sub

plans by means of the schemata referred to above. It must be noted that more than one sub-plan

can be available for the same task, in which case the sub-plan to use is selected by cost. However,

doing this requires the use of planning techniques that belong to the field of artificial intelligence

rather than agent computing, and it is out of the scope of this thesis to describe a form of plan

generation for responsibilities.

We suggest using the database of the world for storing the static information about the world

that is normally stored in the beliefs component in other architectures.

136

However, a design produced by Gaia does not provide enough information for obtaining the

other elements required by the architecture, so we can only mention some general guides. Fo

cusing rules are straightforward to define, although highly domain dependent. The key point

when defining the focusing rules is to note that they are used to filter all the possible perceptual

inputs and propagate only the relevant information at the correct level of abstraction.

In the case of the modelling library, which consists of one model for each agent in the system

and each entity in the environment, each of the models must be constructed. The first part of

the model consists of a characterisation of the entity or agent, including its unique identifier.

The rest of the model applies only to agents and specifies their beliefs, desires and intentions.

These models are used to predict the behaviour of the entities and thus foresee and solve possible

conflicts. However, it must be noted that accurate predictions in open systems is, in general, not

possible, since the exact behaviour of some agents in the system is unknown at design time.

Finally, the conflict library contains the procedures to solve a conflict that arises when pursuing

two or more goals.

Based on the above analysis, we can conclude that from a Gaia-type design it is difficult to

obtain a detailed internal structure for architectures such as TouringMachines, since the designer

must carry out complex activities such as a plan decomposition for each goal, and the explicit

representation of beliefs, desires and goals for each of the agents of the system. Also, the

TouringMachines architecture might not be appropriate for open systems, since the agent must

have an accurate representation of every other agent's beliefs, desires and intentions.

4.6 Towards a general pattern

The previous subsections show the architectural patterns corresponding to representative ar

chitectures. We envisage three approaches for extending these results to a broader range of

architectures (note that these approaches are not mutual1y exclusive). The first approach is to

populate the catalogue of architectural patterns so that more agent architectures are considered.

Populating the catalogue can be achieved by making the catalogue available to a community of

developers, since this would speed its population and, through active feedback, the quality and

accuracy of each pattern would be increased .. As the number of patterns grows, some upgrades

to the catalogue would be necessary, for example to consider a classification of the patterns by

domain of application, and the inclusion of facilities to assist in the selection of the appropriate

architecture for a specific application. Furthermore, the patterns may evolve to include code for

specific platforms. However, this is a long-term approach, due the time it takes for a natural

growth a significant number of patterns, receive feedback and update the patterns.

A second approach towards generalising the results of the previous subsections would be by

means of a general pattern. Such a pattern would encompass the functionality of a range of

architectures, allowing practitioners to specialise it for a specific application by choosing the

137

appropriate components and interconnections. The key disadvantage of this approach is the

highly specialised background a practitioner must possess to be able to select the elements that

are relevant for their purposes, assemble them, and finally generate the required pattern.

Finally, the third approach consists of guidelines to assist the development of a pattern for any

other architecture. The disadvantage here is that, since each architecture is different, some parts

can only be sketched, and there is always the risk that some aspects are not applicable to another

particular architecture. However, in this thesis, we adopt this approach because it can be used

to populate the catalogue (i.e. the first of the three approaches), and is more in accordance,

than the second approach, with our aim of providing tools that can be used by typical software

developers.

4.6.1 Guiding the development of an architectural pattern

There exist a large variety of agent architectures. This variety is beneficial because no single

architecture provides adequate solution for all types of applications. Since it is not the purpose

of the catalogue to reduce this variety, we need to find ways to allow the incorporation of other

architectures into the catalogue, and is described below. Our solution takes the form of method

ological guidelines for developing a pattern not considered in the catalogue. This, however, is

not a detailed procedure. In fact, due to the huge diversity of characteristics exhibited by agent

architectures, we believe that is not viable to construct a procedure that would be, at the same

time, practical and more specific.

1. It seems obvious that the first step is to find the documentation of the agent architecture

in question, but actually not all documentation is suitable for the purpose of developing

guidelines for the architecture for several reasons: some documents focus on how the

agent behaves instead of how it achieves that behaviour; some documents describe an ar

chitecture only for a specific problem; and some documents are vague in their description

of the architecture. When looking for appropriate documentation, we need to focus on

those that include a procedural viewpoint of the architecture. Documents that formalise

the operation of the architecture are excellent for this purpose, but they are scarce.

2. All the essential concepts of the architecture must be well understood, observing that

some terms have different meaning for different authors and even in different documents

by the same author. We must complete the description of those terms that are just poorly

described in the documentation.

3. A good form of starting the construction of the pattern is by defining the structure of the

architecture in a class diagram. Except for the simplest architectures, it is convenient to

divide the whole structure into parts by using packages (a graphical notation to group el

ements such as classes and relationships). Regarding the question of which packages to

138

define, we can say that it depends mainly on the size of the architecture and its composi

tion, since some architectures are highly modular while others tend to be monolithic. In

the case ofthose architectures that possess an intrinsic modularisation (e.g. layered archi

tectures), it is sensible to have a package for each of the modules. At least one package

should be reserved for input/output components such as sensors, actuators and message

passing mechanisms.

4. All architectures include components to interact with their environment, which are are

mainly of two types: components to sense and act on the environment (sensors and ef

fectors, respectively), and components to send to and receive messages from other agents

(message passing mechanisms). Without loss of generality, sensors and effectors can be

treated as information entities because even physical devices can be controlled by means

of computational interfaces. We deal with sensors and effectors below, while message

passing mechanisms are considered subsequently.

5. Sensors and effectors are simple in concept and structure and can be easily separated from

the rest of an agent. For this reason, it is easy to devise a general interface to express the

functional characteristics of these components, leaving only its implementation specific

to the platform. Effectors are the simpler of these two types of components since their

operation is generally under the command of the agent. Because of this, an effector can

be appropriately modelled as a class - shown in Figure 4.11 - whose main operation

is receiving an action as an input parameter, and delegating to another (interface) class

the performance of the action. If the rate of requests exceeds the rate of processing the

requests, a buffer might be used to store the excess. Subsequently, the actions in the buffer

might be processed on demand or at the discretion of the effector. This basic operation is

depicted in Figure 4.12 by means of a sequence diagram.

On the other hand, sensors come in two flavours: active and passive. These are depicted as

specialisation classes in the diagram of Figure 4.13. Passive sensors act on request, while

active sensors perceive the environment as soon as a relevant event occurs. Implementing

passive sensors is simple and it is enough to have a class whose main operation returns the

most recent event or the next one in a buffer. Regarding the type of value returned by this

operation, it is advisable to define a type general enough to fit all the types of events that

may occur (class EnvironmentalState in the figure). By contrast, active sensors need to

announce that new information is available. This can be achieved by having an operation

- NewSensedlnfoAvailable in the figure - that indicates whether or not a new chunk of

information is available or by knowing beforehand the operation to be called. In relation

to the implementation of active sensors, it is also important to establish what to do with

unread information when new information is obtained, the most common strategies being

to discard them, or to store them in a first-in first-out buffer. This is indicated in the figure

by means of the operation SelectMode.

6. Message passing mechanisms are used by an agent to communicate with other agents

in the system. From the viewpoint of functionality, it is sufficient to have a class with

139

Environm

Effector
Interface

: BufferOfActions
I

! Act(Action) I OperatePhysicalDeviceO i L_. _______ . _________ . ___ .-J

FIGURE 4.11: Modelling the structure of effectors

: Effector

Action is
temporarly
stored in
Buffer

I
OperatePhysicalDevice()

. ::>,',

FIGURE 4.12: Modelling the dynamics of effectors

PassiveS
ensor

Sensor

ActiveSensor

BufferOfStates

NewSensedlnfoAvailableO

FIGURE 4.13: Modelling sensors

140

two operations, one to receive and one to send messages. Such a class may also include

operations to parse and synthesise the language in which the messages are expressed.

However, some other aspects of message passing are highly platform dependent, such as

the form in which to denote the parameters of the communication, such as the sender, the

receiver and a time-out period.

7. The existence of a reactive component is common in several architectures because it pro

vides an effective way to deal with situations that require opportune responses to changing

conditions of the environment. A general means of modelling a reactive component is to

view it as a controller of behaviours. Behaviours consist oftwo parts, one part specifying

the environmental conditions that fire the rule, and another part to specify the actions to

be performed when the behaviour is fired. The controller is in charge of checking which

behaviours are fired and selecting one or more of the corresponding actions for execu

tion. It has been suggested that adding a state as a third component in behaviours can

be convenient in several situations. On the other hand, if the architecture possesses other

components (such as deliberative or planning components), the overall components can

be arranged in different forms.

8. Apart from a reactive component, many architectures include at least one non-reactive

component which may perform one or several tasks such as planning, predicting, schedul

ing, and coordination. When one or more of these components are present, they can be

arranged in different ways, for example in layers, both horizontal or vertical. In a horizon

tal distribution, each of the components, or layers, has access to the sensed information

as well as to the effectors, whereas in vertical layering only one layer has access to the

sensed information and only one layer has access to the effectory capabilities (the same

layer in some architectures). The specific number of layers and the functionality of each

layer vary for each architecture. For example, the TouringMachines architecture consists

of three layers, the lower layer being a reactive component, the middle layer containing

reactive plans to be used according to the situation, and the upper layer being a planner

which constructs plans and finds the best action to perform in order to achieve a goal.

9. Whichever components are present in an agent, it is important that they are distributed in

modules, that is, separated by function with their interactions clearly identified.

10. BDI architectures are some of the most used architectures for developing agent-based

applications. However, it must be noted that although all BDI architectures are based on

the same basic concepts, they vary widely in terms of composition and functionality

We conclude that, with the purpose of designing a general architectural pattern, only some

aspects of an agent can be generalised; for example, the input/output interfaces and the reactive

component. However, due to the great variety of architectures, not much can be said about

other components such as planners, coordinators, and predictors since they are not present in all

architectures and, even when they are present, they vary considerably in composition and in the

role they play in the agent functionality.

141

4.7 Related work

Some current methodologies use an explicit representation of the internal structure of the agents

by means of agent architectures. Kearney et al. provide a general architecture as part of the

MESSAGE [78] methodology, in which an agent is formed of at most four layers: the Per

ception and Communication Layer (PCL), the Decision and Management Layer (DML), the

Domain Layer (DM), and the Resource Layer (RL). The PCL gets information from the en

vironment and interacts with other agents. The DML controls actions of the agent through

deliberative decisions, the DL groups domain specific entities, and finally, the RL includes the

internal resources the agent may need. Kearney and colleagues state that such an architecture

may be configured to satisfy specific applications. For example, reactive agents would use only

the Perception and Communication Layer and the Resource Layer, whereas deliberative agents

would employ all the layers. However, no further details are provided and, after all, the decom

position of any agent into only four layers is a coarse analysis. For instance, decomposing the

structure of a reactive agent into only two layers (the PCL and the RL layers) does not provide

a comprehensive characterisation.

INGENIAS [96] is a methodology that evolved from MESSAGE. It emphasises the construction

of models for each relevant part of the system, in particular agents. The models are designed

according to meta-models, which are descriptions of the entities, their relationships and the

constraints allowed during model construction. In this way, for example, any agent is assumed

to include modules such as mental entity, mental state, a set of roles to be played, and a set of

tasks. Although this approach offers a rich internal representation of agents, we believe that it

may lead to designs which do not have any theoretical background. This gap between design and

theory makes it difficult to establish the conditions under which the agents will op5rate correctly.

Also, this approach leaves the developer alone with the burden of adjusting the architecture to

specific applications. In our work, we provide the developer with concrete designs of well

known architectures.

MaSE [85] is another example of a methodology that employs agent architectures to model the

internal structure of an agent. During the Assembling Agents sub-phase, the architecture and

its modules are defined by the developer, but both can be selected among those pre-defined by

the methodology. Pre-defined agent architectures (called architectural styles) include reactive,

knowledge-based, planning and BDI architectures. The architectural styles and the components

are described using a language similar to UML, considering only static aspects and leaving

out the description of control. In our work, we include a description of the dynamics of the

components of the structure, and our goal is to obtain a general method for any architecture.

Tropos [81] also uses an agent architecture to represent the internal structure of agents, but it is

tied to a BDI architecture. During the detailed design phase, the abstractions used in the previous

phases (e.g. example actor, goal and task) are mapped to BDI concepts (agent, belief, desire

and intention). Later, during the implementation phase, these BDI concepts are mapped onto

142

constructs provided by the ZEUS platfOlm. One drawback of this approach is that it depends on

a specific architecture, as well as on a platform.

In contrast to these methodologies, an alternative approach is to obtain an implementation di

rectly from the design specification, without an intermediate explicit representation of the inter

nal structure of the agents. This is the case in [94], where Massonet et al. present a case study

to show the transition from a design specification obtained with MESSAGE to an implemen

tation using the JADE platform. However, we have identified two limitations in this approach.

First, since no explicit agent architecture is used, it is difficult to envisage for which type of

applications the approach is suitable, and how it compares to other approaches. Second, this

approach clearly depends on the methodology and platform used, which makes it unsuitable for

open applications.

4.8 Conclusions

The adoption of the agent-oriented approach in industrial environments largely depends on the

existence of comprehensive software tools that assist developers in key parts of systems design,

for example during the design of the internal structure of the agents. Although it might be argued

that agent internal development can be carried out by means of traditional software engineering

- for example, object-oriented methodologies - these techniques present some drawbacks

when used on their own. To be more specific, consider the Unified Software Development

Process [69] as representative of object-oriented methodologies, in which the concepts of pro

activness, autonomy and goals do not have direct representation. Pro-activness and goals have

no direct representation because objects are not capable of pursuing goals. Similarly, autonomy

hasno direct representation because objects are not capable of select their own course of action.

Thus, to be used effectively for agent development, object-oriented methodologies need to be

complemented with other mechanisms.

Agent architectures provide a powerful mechanism on which tools for modelling the internal

structure of agents may be built, but they are difficult to use per se, because their descriptions

are not targeted at software engineers.

In this chapter we have presented a framework in which agent architectures are used to build

representations of the internal structure of agents, described by means of design patterns. We

have also included three patterns describing some of the most cited agent architectures.

A catalogue containing patterns like these has multiple benefits. First, these patterns allow agent

architectures to be viewed as tools to model the internal structure of agents. Second, a non-agent

expert can use the catalogue to learn about agent architectures. Third, the catalogue facilitates

the comparison of different architectures and the selection of the most appropriate one for a

particular application. Fourth, the use of patterns speeds up the development process. Finally,

143

by reusing general solutions, the use of patterns allows us to concentrate efforts on domain

specific aspects,

144

Chapter 5

An incremental and iterative

methodological process

In Section 2.5 we highlighted the importance of software methodologies for the development

of systems in a systematic and controlled form. We also noted that methodologies consist of

models, tools, and a process that is arguably the core of a methodology, describing the set of

activities needed to carry out the development of a system. Thus, the process details which activ

ities to perform, how to perform them, and in what order. At present, there exist a considerable

number of agent-based methodologies, and thus of development processes. The types of activ

ities considered in current processes are rich and varied, and so are the techniques to perform

them. However, the order in which the activities are performed has been explored much less,

and is usually in a sequential form. Although simple in concept, the problem with this sequential

form is that it is not suitable for tackling complex and large systems because of the difficulty

of designing a complete system in just one single iteration. Consequently, without the use of a

more powerful approach for decomposing the development process, such methodologies have

serious drawbacks in terms of the type and size of applications to which they can be applied.

The incremental iterative approach is one such approach that has been successfully used in

object-based software engineering to divide the development process into more manageable

units. Basically, this approach consists of decomposing the whole development of a system

into several mini-projects [69], in which each mini-project follows the traditional flow of re

quirements, analysis, design, implementation and testing, and results in executable code that

produces increments in the functionality of the system. The development of each mini-project

starts from the specification obtained during the previous mini-project and is seen as an itera

tion that continues the workflow of development of the complete system. In order to be useful,

the decomposition of the system into mini-projects must be carefully planned, usually with the

aims of extending the functionality of the product and reducing the risks of failure of the whole

project.

145

The application of the incremental iterative approach to practical problems provides multiple

benefits in terms of work organisation, since the parallelism of the development activities is

increased, as well as user feedback. A good level of parallelism helps to keep the project under

time and budget constraints, and adequate user feedback helps to develop the right system, since

the product of each iteration can be presented to the user, and the corrections included in the next

release. However, in spite of its many benefits, the incremental iterative approach has not been

applied in most agent-oriented software methodologies. In contrast, most agent methodologies

exhibit just a linear sequence of steps, or the existence of iterations is only vaguely outlined.

In this chapter we present an incremental iterative process based on the Gaia methodology [134].

To this end, we first present the general characteristics of the process in Section 5.1. Then, and in

accordance with how the process is decomposed, we describe the workflows - requirements,

analysis, organisational design, agent design, and implementation - in sections Section 5.2,

Section 5.3, Section 5.4, Section 5.5 and Section 5.6, respectively, and iterations in Section 5.7.

Finally, in Section 5.8 we analyse related work and present our conclusions.

Where appropriate, the workflow descriptions have been divided into two parts. The first

patt presents the artefacts - as graphical models are named in the Rational Unified Process

(RUP) [117] - and the second part presents the activities carried out during the workflow,

which typically involve one or more of the artefacts. With the aim of providing the reader with

a general view of the process, in Figure 5.1 we have depicted the workflows and their artefacts.

If read from top to bottom, the figure shows the workflows in the order they are realised in the

process. In the area corresponding to each workflow, the artefacts are represented by rectangles.

Note that, for reasons of presentation, in the organisational design workflow we have also in

cluded the organisational structure, although it is not strictly an artefact. Also, the requirements

analysis and the implementation workflows do not contain artefacts since they are not consid

ered in depth in this thesis. In particular, requirements engineering is not considered in detail

in this thesis, because its complete analysis lies beyond the limits of agent-based computing,

involving areas such as goal-oriented software engineering [22] and aspect-oriented software

development [49] (requirements engineering for agent-based systems is not tied to the agent

approach, but can be accomplished through other approaches). Such an analysis would signif

icantly increase the length of the thesis but would not contribute to improve the state of the art

of agent-oriented software engineering. Additionally, implementation is not considered in de

tail in this thesis because it largely depends on specific tools (programming languages, toolkits

and execution platforms). Although in any development approach the implementation process

depends on the tools used, in the agent approach this is exacerbated due to the heterogeneity of

the tools and the lack of standards.

146

Requirements analysis

Analysis

Organisational design

role
model

Agent design

Implementation

FIGURE 5 1: The workflows in the process and their artefacts

5.1 The approach

The main goal of applying the incremental iterative approach to the development of a system is

to reduce the risk of producing the wrong system, and the risk of exceeding delivery times. In

order to do so, the approach decomposes the development activities in two dimensions. The first

dimension is similar to traditional ways of developing software, decomposing the development

into requirements analysis, analysis, design and implementation (in this chapter we refer to each

of these parts as workflows). The second dimension in which the development is decomposed

is by means of iterations. Each iteration consists of the application, to some degree, of all the

workflows mentioned above, with several iterations during the whole development cycle. Early

iterations focus on the first workflows, requirements and analysis, while subsequent iterations

focus on design and implementation, thus delivering executable versions of the system. Here,

each new executable delivered extends the functionality of the previous one. These executable

deliveries are usually internal, and are useful for evaluating the correctness of the system, as

well as for obtaining user feedback. Also, these executables can be used as a tangible measure

of the progress of system development. This decomposition of system development is depicted

in Figure 5.2, in which the workflows and iterations occupy the Y-axis and X-axis, respectively.

In this figure, the amount of effort dedicated for each phase and workflow is indicated by the

area of the geometric form; for example, the base of the triangle in the first iteration is placed

around the requirements workflow, which means that most of the effort in the first iteration is

dedicated to the requirements.

147

Implementation

Design

~
o
~ Analysis
L-

o
$:

Requirements

1st n/2 th n-th

Iterations

FIGURE 5.2: Workflows and iterations of the process

The sections below describe each of the workflows and a generic iteration, in the natural order

they appear in the process, as depicted in Figure 5.3. Note that the design has been divided into

organisational design and agent design, reflecting that each addresses very different aspects of

a system. In the same figure, the existence of iterations has been indicated by an arrow going

back from the last workflow (implementation) into the first workflow (requirements analysis).

Most workflows are based on the Gaia methodology process, but contain some aspects that are

not included (or not explicitly included) in Gaia, such as techniques, activities, and the use of

the workflows in the context of the incremental iterative approach. In particular, in Figure 5.1,

the models not considered in Gaia (the structure model and the functionality model) have been

highlighted by means of thick lines. The description of the workflows include the artefacts

realised during the workflow, and the activities required to realised them.

148

1
Requirements

analysis

Organisational
design

Agent
design

Executable! Executablen

FIGURE 5.3: Workftows of the process

5.2 Requirements analysis

Although the requirements workflow is not considered in detail in this thesis, we include it here

because we need to state what is expected from it; that is, what information is to be provided to

the analysis workflow by the requirements workflow.

The role of the requirements phase is to gather and organise the information about the capability

that the system must possess and present it in a document from which the analysis of the system

stmts. The exact form of achieving this goal depends on the specific approach used, but is not

considered in this thesis, because its complete analysis lies beyond agent-based computing, as

can be exemplified by goal-oriented requirements engineering [22]. This does not mean that the

agent approach cannot be applied to this workflow, since some work does exist in that direction,

for example agent-oriented requirements engineering []30].

What is expected from the requirements phase is a document that contains the following:

149

It An overall description of the system, and of the vocabulary needed to understand this

description.

It A description of the environment of the system, the boundaries of the system and its

environment.

It A description of the functionality of the system, particularly its goals. If possible, this

should include the priorities of the different goals and sub-goals.

It Insights about non-functional requirements, such as the expected (or hoped for) number

of users.

It The authority that the main actors in the system have over each other.

It The rules and constraints that restrict the operation of the system.

5.3 Analysis

The analysis workflow copes with understanding the system and its goals, sub-systems, ele

ments, rules of behaviour, and the environment that surrounds it, but does not provide solutions

for how to achieve the desired functionality of the system. In this way, in the analysis, under

standing the functionality of the system is more important that providing a rigorous specification

of the system. This is reflected in the way the models are expressed, using a language that is

closer to the vocabulary of the application domain than to a formal language.

The analysis takes as input the information provided by the requirements analysis. By means

of artefacts, this information is structured and organised in such a way that it can be better

understood, consulted and modified. In the following subsection we describe these artefacts.

5.3.1 Artefacts

The artefacts in the analysis phase are arguably the most important artefacts of all the process,

since they are used, in one way or another, in the other workflows. These artefacts are: the

sub-organisation model, the environmental model, the preliminary role model, the preliminary

interaction model, and the preliminary organisational rule model. (The last three of these arte

facts were discussed in Section 3.2.1, although the organisational rule model was not explicitly

referred to as preliminary then).

• The sub-organisation model decomposes the whole system into separated, and usually

weakly-connected, sub-organisations, and can reflect the physical distribution of the com

ponents of the system, or can be based on other criteria, such as differentiated functional··

ity, the existence of legacy software, or simply modularisation to facilitate the design.

150

• The environmental model consists of a list of the entities in the environment, together with

their elements and the rights the different roles have to access them.

• The preliminary role model is formed by the roles in the system. Each role represents an

entity that is in charge of accomplishing one or more responsibilities by using environ

mental entities, carrying out activities and interacting with other roles through protocols.

Roles are described by means of their responsibilities and permissions to use the environ

mental entities.

• The preliminary interaction model consists of all the interaction descriptions of the sys

tem. Such interaction descriptions, or protocol~, are formed from the roles that participate

in the interaction and the data involved.

• Finally, the preliminary organisational rule model encompasses all the organisational rules

of the system. During the analysis, the organisational rules are identified and described

informally in plain text. Later, during the design, when all the elements of the system have

been sufficiently defined, the organisational rules are expressed in a formal language.

5.3.2 Activities

The activities involved in the analysis workflow, and the sequence in which they are performed,

are shown in Figure 5.4. As can be observed, first, the limits of the system are determined,

the sub-organisations of the system are identified and the sub-organisation model is generated.

Second, the entities in the environment are identified and described. Next, the main roles of

the system are identified, together with their main responsibilities, and the preliminary role

model is partially specified. Then, the interactions between the roles needed to accomplish their

responsibilities are identified, and used to create a preliminary interaction model. Finally, the

organisational rules are identified and described informaliy as plain text.

5.4 Organisational design

The organisational design proceeds the analysis, thus most of the organisational design artefacts

are extensions or refinements of those of the analysis. Furthermore, the design artefacts are

targeted at developers rather than at users, and so are described in a more precise and technical

form. However, the scope of the design does not include the actual way in which the system is

codified, since that is the concern of the implementation workflow.

While in other development approaches the design is regarded as a one-part workflow, in multi

agent systems it is convenient to divide the design into two parts because this reflects the intrinsic

nature of multi-agent systems. The first part, the organisational design, is concerned with mod

elling the interaction between agents, whereas the second part, the agent design, is concerned

with modelling the internal structure of the agents. In this section we describe the former, while

151

Create
sub-organisation

model

1
Create

environmental
model

1
Create

preliminary
role model

1
Create

preliminary
interaction model

1
Create

preliminary
rules model

FIGURE 5.4: Activities of the analysis

the latter is described in the following section. There are two main tasks during organisational

design, one of which is to find an appropriate orga!lisational structure to model the system, and

the other is to refine the artefacts obtained in the analysis. The artefacts and activities involved

in pursuing these tasks are described in the following subsections.

5.4.1 Artefacts

There are four artefacts in the organisational design: the organisational structure, the role model,

the interaction model, and the organisational rule model. To avoid confusion with the corre

sponding analysis models, sometimes we refer to these three last models as the definitive mod

els. As was discussed in Chapter 3, an organisational structure serves as a framework in which

agent interactions are modelled, and at the same time provides a structure that supports the de

velopment of the system, just like software architectures are employed in the Rational Unified

Process [117].

152

Because of their importance, organisational structures require an unambiguous description. A

language to describe organisational stluctures was presented in Chapter 3, and basically consists

of articulating the control regime of the organisation. The tasks of selecting an appropriate

structure and describing it can be alleviated by re-using organisational patterns, discussed in

Section 5.4.2.1.

Regarding their content, the design models take into account the selected organisational struc

ture, which means, on the one hand, the appearance of new roles, protocols and organisational

rules, and on the other hand, modifications of the elements already present in the preliminary

models. Additionally, the design models must be complete and expressed in more detail than

the analysis models. First, the role model must contain all the roles in the system, and each role

must be completely defined. In particular, the permissions and responsibilities must be fully

defined, since they specify the functionality of the roles. Second, the interaction model must in

clude a protocol description for each of the interactions of the system. Lastly, the organisational

model must include all the rules that govern the behaviour of the system, including those related

to the organisational structure. In the case of this model, an important refinement is that the

organisational rules must be expressed in the formal language defined in Section 3.3.4, rather

than in natural language.

5.4.2)\ctivities

The activities in the organisational design are oriented towards establishing the structure of the

system and towards detailing the interactions between the roles. The activities of the organi

sational design, and the order in which they are performed, are depicted in Figure 5.5. Also,

the figure highlights the use of organisational patterns in detemlining the structure of a system.

These activities are described in the following.

5.4.2.1 Defining the organisational structure

One of the main activities during the organisational design is precisely that of selecting an ap

propriate organisational structure·for the system. Once selected, the organisational structure

determines the information needed to complete the role and interaction models initiated during

the analysis. This organisational structure is selected on the basis of several factors. First, al

though not all the communication paths are defined in the analysis models, the available paths

provide a good insight into the topology. Second, the real-world problem modelled by the sys

tem typically possesses an integral organisational structure, which can be inherited in the system

itself. Third, although the consideration of non-functional requirements for the system is out of

the scope of this process, it is worth mentioning that different organisational structures exhibit

different degrees of efficiency and robustness. Finally, other factors to consider when selecting

153

Defrnethe
organisational

structure

1
Create

role model

J
Create

interaction model

1
Create

rules model

Organisational
patterns

FIGURE 5.5: Activities of the organisational design

an organisational structure deal with facilitating the implementation and monitoring of organi

sational rules. Depending on the particular rules, some structures can facilitate this more than

others.

Although it is difficult to give a detailed procedure to select the best organisational structure, we

can provide some guidelines. First, the topology is depicted. The way this is done was illustrated

in Figure 3.7, by representing roles as nodes and, for each protocol, an arc from the initiator to

every collaborator. Next, the control regime is obtained and depicted. For this purpose, each

protocol is analysed to determine the control relationship between the participants (initiator and

collaborator). Such an analysis can be based on the nature of the interaction, on what is stated in

the requirements, or by consulting an expert in the domain. If there is an authority relationship

from one role to the other, this is depicted by means of an arrow in the arc.

After this, there are three possible situations. The first and simplest is when the designer iden

tifies the organisational structure from the graphic. This assumes that the designer has previous

experience and that the graphic is sufficiently descriptive. The second case consists of compar

ing the graphic to the structures included in a catalogue of organisational patterns, and selecting

154

the one that best matches. Such a catalogue was presented in Section 3.6, together with a pro

cedure to select an appropriate pattern. The last case consists in building a new organisational

structure, for which the graphic can be completed with additional roles and interactions, and

then expressed in the language described in Chapter 3.

5.4.2.2 Creating the organisational design models

As mentioned above, the design models - the role model, the interaction model and the or

ganisational rule model - are built from the corresponding analysis models. Specifically, for

the interaction model each protocol description is checked to be consistent with the recently

selected organisational structure. For example, it might be that a collaborator in a given protocol

no longer exists, as a consequence of being joined with other roles or disappearing. In case of

inconsistency, the necessary modifications are carried out. After this, any additional interaction,

caused by the organisational structure, must be represented with a protocol description.

For the role model, each of the role descriptions in the preliminary role model is reviewed to be

sure that it complies with the organisational structure. Some possible causes of non compliance

are that the role is no longer part of the system, that the role no longer participates in a protocol,

or that the role needs to be involved in other protocols. After this, it is checked that all the roles

in the organisational structure have their corresponding role description in the model and, if not,

they are created. Note that the description of the roles at this point must be complete, includ

ing exhaustive lists of permissions and responsibilities, the former expressed in the language

proposed in the Gaia methodology [134].

Lastly, the organisational rule model is created from the preliminary organisational rule modeL

Again, the existing rules must be checked and adapted, if necessary, to the introduced organisa

tional structure. Some reasons for adapting the rules are that some elements - roles or protocols

- no longer exist, that they do exist but their meaning has changed, or that the rules have to

involve new elements. Then, the rules governing the operation of the structure - those indepen

dent of the domain - are incorporated into the model, taking care that they are not in conflict

with existing rules. Next, those rules that could have arisen as a result of the introduction of the

organisational structure are added to the modeL The last step in this activity is to express all the

rules in the model in the language described in Section 3.3.4.

5.5 Agent design

During the organisational design, agents are considered to be black boxes, and their detailed

composition is ignored. In contrast, during the agent design workflow - to which this section is

devoted - the emphasis is placed on the internal design of the agents. In this way, the objective

of agent design is to produce a specification of how each agent fulfils its requirements.

155

When detailing the internal structure of an agent, it must be noted that a huge variety of agents

exists. For instance, there are agents that rely on close interaction with humans, while others

act mainly with no human intervention. Also, some agents exhibit complex reasoning, whereas

others exhibit such a simple behaviour as providing services on request. These varied types of

agents differ in the details of their design; for example, agents with intense human interaction

might need special consideration in designing human interfaces. Since it would be difficult to

encompass all the possibilities in just a single method, in the following we provide guidelines

for the most common aspects of agent design.

The agent design workflow takes its input from the organisational design, and its outputs are used

in the next workflow, namely implementation. We describe below the artefacts and activities

involved in the agent design, using the object paradigm as an approach to design systems.

5.5.1)\rtefacts

There are two artefacts involved in the agent design: the structure model and the functionality

model. Since we use the object approach as the means to design agents, the artefacts are also

based on common object artefacts. The structure model provides a structural decomposition of

a role into components, while the functionality model specifies how these components interact

to achieve the desired role behaviour. We detail both artefacts below.

5.5.1.1 The structure model

The objective of the structure model is to decompose the design of each role into manageable

units, or classes. This decomposition is done in terms of data and functionality. More specif

ically, the structure model is formed of class diagrams [J 17], one for each role in the system.

Although a class diagram is a common concept in object-based techniques, it has several mean

ings and purposes - depending on the stage of the process in which is used - so it is worth

explaining the way in which we use it here. In the structure model, we use a class diagram to

describe the main internal components of a role (as classes), and the static relationships between

them, such as dependence, part-of and inheritance. The level of detail in the description must

be sufficient to identify the core classes, and for each of these classes, the operations neces

sary to achieve the functionality of the role, and the internal information required to implement

these methods (attributes). However, it is not necessary that the diagram includes all the classes

needed to implement the role, nor all the information and operations to implement each class.

Thus, this level of detail required is that usually found in the design phase of methodologies

such as RUP [117].

An example of a class diagram, corresponding to a fragment of a EDI agent, is shown in Fig

ure 5.6. This class diagram contains five classes (Agent, Intention, Event, Selector and Exter

naIEvent), each of which is divided into three parts, containing their name, attributes (infor

mation), and operations (functionality). Between the Agent and Selector classes there exist a

156

Agent

Inlentlon
! ~e!iefs : set of Belief
~ntentions : set of intention

i ~vents : list of Event
~jbrary : set of Plan
~e!iefdOma!n : set of BelForm : : 4tcreateintentionO
~oaldomain : set of Goal ~ ~ushPlanlnstO i ~xpertise : set of ExtAction ~ __ ·----"-·i ~PopPlanlnstO

. i ~etSecondPlanlnstO ;

: 'PerceiveExtEventO ~.~r:u~~~::~:.~~~~iL_ __ . ___ .j
, ~electNextEventO
j ftFindlntentlonO
1 ot,'ExecuteActionO
i ~ertormlntActionO
: AddEvenlO
j ~pdateBeliefsO
: "'-'FindEventO
: ~emoveEventO
! "tRemovelntentlon()
............. ., ;\

.... ~ ····_ .. ·"··--1
:::::::::::::::::?:~!~~~:~ ... :;:::. ':::::::"::1

: I

.
! "'selectRelevantPlansO ,.
~ ~electApplicab!ePlansO
! ~electPlanO I

: :::::~:~n::i~~O I

FIGURE 5.6: Example of a class diagram in the structure model

part-of relationship (indicated by the diamond and line), whereas between the Event and Exter

nalEvent classes there exist an inheritance relationship (indicated by the triangle and line). The

fact that the Agent class uses the Event class for its operation, is indicated by a line linking these

classes.

5.5.1.2 The functionality model

The functionality model consists of a set of scenarios, each of which belongs to a role, represents

a piece of functionality of the role, and contains a sequence diagram showing how the role

executes the functionality. Figure 5.7 depicts a generic functionality model, and the composition

of the scenarios. The classes involved in the sequence diagram are those of the class diagram

corresponding to the role. For example, in a market application, a possible scenario for the buyer

role would represent the functionality find the best price seller for a given product by means of

a sequence diagram showing how the classes of the buyer interact to achieve it.

The artefacts of the agent design workflow are illustrated in Figure 5.8, which shows that any

role in the system, such as Role i, has an associated class diagram and a number of scenarios,

each referring to a piece of functionality and described by a sequence diagram.

5.5.2 Activities

The activities involved in the agent design consist of selecting an appropriate agent architecture

and of building the artefacts described above. These activities are illustrated in Figure 5.9,

157

Role

Functionality

Sequence
diagram

FIGURE 5.7: The structure model

r

Structure model
Role 1

Role i

Rolen
Scenario j

sequence
'. .. :_ diagram __ Scenario m

Functionality model

FIGURE 5.8: The artefacts of the agent design

158

Detennine the
agent architecture

1
Create class

diagrams

1
Create

scenarios

/>"

.://

.--. Architectural
patterns

FIGURE 5.9: The activities of the agent design

together with indications of those stages in which the use of architectural patterns is useful. In

this way, for every role in the system, the following activities are performed.

5.5.2.1 Determining the agent architecture

In this activity, the architecture for the role is determined. In order to do this, several factors

must be considered. The most important factor deals with the degree of behaviour complexity

expected from the role. For example, simple behaviour can be more easily implemented through

reactive architectures, whereas complex behaviour may requires the use of deliberative or hy

brid architectures. Another factor that determines the architecture deals with the level of pro

activeness required. Reactive architectures typically produce agents which are not pro-active,

but operate only on request of other agents. On the other hand, BDIarchitectures are suitable

for constructing highly pro-active agents. Other factors that affect the decision are the level of

familiarity that the developers have with a specific architecture, and the support that different

development tools provide to specific architectures. The accomplishment of this activity can be

considerably facilitated by means of a catalogue (as the one presented in Chapter 4) showing,

for each architecture, its characteristics, advantages, limitations and applicability.

5.5.2.2 Creating class diagrams

In order to create the class diagram, two different methods can be used. The first is to employ

an object-based methodology such as RUP [J 17]. The second consists of using a catalogue of

159

architectural patterns, such as the one presented in Chapter 4, which also presents guidelines

for selecting an appropriate pattern for a specific role.

Regardless of which method is used to construct the class diagram, the inputs are taken from the

organisational design models. Specifically, the role model provides three inputs: the liveness

responsibilities (which describe the functionality that the role is expected to exhibit), the safety

responsibilities (describing the conditions that must hold during the lifetime of the role), and the

permissions (which contain the environmental entities employed by the role, together with the

rights to access them).

Additionally, the interaction model provides the inputs and outputs of the protocols in which

the role participates, the organisational structure provides the control relationships involving the

role, the organisational rule model provides the rules that constrain the behaviour of the agent

and, finally, the services model provides the services of the roJe.

5.5.2.3 Creating scenarios

Similarly to the class models, the scenarios can be obtained by following an object-based

methodology, or by using a catalogue of architectural patterns such as that in Chapter 4 which,

apart from containing a procedure to select the appropriate pattern, also contains the main sce

narios of the role functionality. When following an object-based methodology, it is advisable to

decompose the functionality of the role by means of use cases, and then build the corresponding

sequence diagram for each of them.

The inputs for creating the set of scenarios are the same as for creating the class diagrams, with

the addition of the class diagrams themselves.

5.6 Implementation

Although implementation is not covered in detail in this thesis, it is important to provide some

general guidelines mainly in tenus of how it interfaces with the design and detailed design

workftows.

Basically, the implementation consists in refining the models obtained in the organisational de

sign and agent design to the extent that they can be directly implemented. However, in order

to carry out this refinement, an important decision must be taken at this stage, particularly in

relation to the implementation platform to be used. Several types and instances of agent-based

platforms exist to date, some of the most popular being based on object technology, such as

JADE and FIPA-OS.

An agent can play one or more roles, and it is during implementation that the decision is made

about which agents will implement which roles. In principle, however, the fact that a role

160

is implemented in an agent does not ensure that the agent will actually play the role in the

system, or during all its life cycle, since temporal assignments of roles to agents is possible

in some platforms. The decision of which roles will be implemented by which agents must

consider aspects such as physical distribution, sub-modules shared by different roles, efficiency,

and cohesion of functionalities.

In the case that more than one role is implemented in a single agent, common sub-modules must

be identified so that they do not have to be programmed more than once. For example, if two

roles designed according to the same architectural pattern are implemented in the same agent,

the classes that implement the functionality of the architecture need to be programmed just once

and shared for the two roles.

Regarding the use of architectural patterns, it is important to note that in this thesis they are used

as design patterns, as a tool during the design activities. In addition, similar patterns can be used

to support the implementation. These patterns would differ in the level of detail that the classes

and sequence diagrams contain, and can even include some form of automatically generated

code. The construction of such patterns, however, is out of the scope of this thesis. Finally,

although not referred to as implementation patterns, the examples included in implementation

platforms can serve as a base from which specific applications can be constructed.

5.7 Iterations

The development cycle is divided into iterations. Each iteration encompasses all the workflows,

from requirements analysis to implementation (other workflows such as transition and testing

are not considered in this thesis). In this way, each iteration delivers an executable version of

the system, and adds information to the artefacts of each workflow. We can group iterations into

two parts, or phases: elaboration and construction. During the elaboration phase the emphasis is

put on understanding the system and creating a stable architecture, while during the construction

phase the efforts are directed towards accomplishing the functionality of the system.

While the decomposition into workflows is common for all applications, iteration decomposition

varies from application to application, in terms of work dedicated to each workflow, number

and, more importantly, purpose. As stated previously, early iterations generally dedicate more

work to requirements and analysis, while later iterations dedicate more work to design and

implementation. Also, as a general rule, the larger the system, the more iterations are needed.

The actual decomposition of the development cycle into iterations is guided by the functionality

of the system. This means that the functionality of the system is divided into parts, one or

more of which are assigned to an iteration, whose purpose is to accomplish that part of the

functionality. The order in which the iterations must be carried out is important and must be

established as part of the iteration decomposition, since the most critical and important parts

of functionality must be considered first, to obtain earlier user feedback and foresee possible

changes in delivery times.

161

The following are helpful guidelines for iteration decomposition.

• The set of iterations must cover all the functionality expected from the system.

• The early iterations in the decomposition must be occupied by those functionalities that

form the core of the system, or by those functionalities that involve a high risk of creating

the wrong system or delaying the delivery of the system. An example of the former risks

are processes that are critical but poorly described, while an example of the latter risk is

the employment of new technology.

• Early iterations must provide the insight of most of the system.

• It is desirable to achieve a balance in the iterations, so that no iteration is too big nor too

smalL

Thus, the criteria to decompose the development into iterations is based on the division of the

system by its intended functionality. This division can be facilitated by means of use cases, and

dedicating one iteration to fulfil one or more use cases. Among all the use cases, the first selected

are those that form the core functionality of the system or that may involve critical aspects that

may lead to unforeseen situations, for example the development of a complex algorithm or the

use of a new technology.

5.8 Related work and conclusions

Only few attempts have been made to employ the incremental iterative approach in agent

base methodologies. Among these attempts, MESSAGE [78] was one of the first agent-based

methodologies to include an incremental iterative approach in its process. In general, the idea

behind MESSAGE was to extend existing object-based methodologies to the agent paradigm.

As a consequence, the process of MESSAGE closely resembles the process ofRUP [69] (which

is one of the most popular methodologies based on the object paradigm, and is based on the

Unified Modelling Language (UML) [43]).

More recently, the incremental iterative approach process has been included in the process of the

INGENIAS methodology [54], which itself takes several of its characteristics from MESSAGE,

so it followed the same idea of adapting the RUP process. To put this idea into practice, some

associations were established between object and agent concepts; for example, class was associ

ated with agent, and architecture with organisation. These associations are natural, since - in

the object paradigm - classes represent entities that encompasses the functionality of the sys

tem, and the architecture is what provides the system with a structure. From these associations,

and using some previously defined meta-models, a list of activities was derived and grouped

into workftows and phases. These meta-models are arguably what charactelises INGENIAS,

162

and consist of diagrams of elements and their relationships, which are the components that a

practitioner can employ to model a system.

Since the process presented in this chapter is also inspired by the RUP process, it is similar

to the processes of INGENIAS (and, as a consequence, of MESSAGE), mainly in terms of

structure. However, there are also several differences: while the INGENIAS process is closely

based on object concepts, our process is based on the Gaia methodology, which is a genuine

agent-based methodology in itself. One consequence of this is that we use the graphical mod

els provided by Gaia (in the analysis and organisational design workftows), while INGENIAS

relies on purpose-built meta-models. Another difference is that of coverage, since our process

is focused on analysis and design, and INGENIAS' considers, in addition, implementation and

testing. Finally, the INGENIAS process does not explicitly facilitate the development of open

systems, since it uses purpose-built models and gives no insight into how other well known

models or architectures can be adapted to fit into the process. In contrast, our process relies

on common abstractions, on easily-adaptable models, and considers the use of different agent

architectures.

It is worth mentioning that, although not explicitly stated, the process presented in this chapter

can also be used in the construction of new agents that are incorporated into an existing open

system, taking into account the considerations described below. First, the analysis and design

of the overall system have already been undertaken, and their results must be available to the

developers of the new agents. At this point there are two possibilities. One possibility is that

the existing system has been designed according to the process presented in this chapter, or a

similar one (for example Gaia). In this case, the results of the design can take the form of the

design models presented in this chapter. The second possibility refers to the case in which the

existing system was designed using a completely different process. In this case, a specification

of the system which is independent of the process is needed (a specification such as this, based

on organisational concepts, is presented in the next chapter). Second, a decision has to be made

about the roles that a new agent will implement. Once the roles have been determined, the

developer can re-use the models of the agent design workflow corresponding to those roles (if

available), or can produce new designs.

163

Chapter 6

Case study

The previous chapters contain isolated examples that illustrate and clarify the contributions of

this thesis but, being isolated, they focus only on their stand-alone usage. However, most of

the benefit of our contributions relies on their use in the context of an overall methodological

process. To illustrate this, in this chapter we describe the development of a system using the

methodological process presented in Chapter 5, which encompasses most of the contributions

of this thesis. Most importantly, this case study provides evidence of the benefits of using this

development process, and its different parts.

The system selected for this case study is easy to understand, has a reasonable number of roles

and interactions, and is open; that is, it allows the incorporation of components not known at de

sign time. In addition, the problem statement of this system was extracted from the literature of

agent-oriented methodologies, which has the benefits of facilitating comparison of our process

with others and, most importantly, it offers a demonstration of its value for a standard problem,

rather than one tailored to our solution.

The rest of this chapter is organised as follows. In Section 6.1, we describe the problem state

ment of the system. Then, in Section 6.2, we present a decomposition of the development into

iterations. The activities perfonned, and the artefacts produced, during the first and second of

these iterations are presented in Section 6.3 and Section 6.4, respectively. Finally, our conclu

sions are presented in Section 6,5, Note that, although the development of this system requires

several iterations, only the first two are described, since the others are very similar, and their

inclusion would not add any benefit to the purpose of this chapter.

6.1 Problem statement

The case study considered in this chapter is based on an example presented in [96], where

it is used to illustrate the INGENIAS methodology, and deals with the segmentation of users

according to common interests. The following describes the problem statement of the system.

164

A new system is I;equired for segmenting users into groups of common interest

The system-to-be will complement the services provided by a commercial Web, and

will be used for marketing pmposes, such as offeling specific products only to users

in a group with related common interest. The system is conceived as a multi-agent

system in which each (human) user is represented by a personal clerk, which groups

with other personal clerks to form a community. Such a community is represented

by a clerk of community, and relates to one subject. Such a segmentation of interests

helps to control the quality of documents provided to users, as explained below.

A community can be seen as a source of information to which users subscribe to

obtain relevant information for their interests. Once subscribed, a user begins to re

ceive information from the community. This information originates from members

of the community or from other somces of information not specified. The informa

tion that the users receive passes through a series of filters to ensure its qUality.

When a user suggests information to the community, the community first com

pares the suggestion with the community profile. If the information matches the

community profile, the document is evaluated by a set of members of the commu

nity. However, before being evaluated by their users, each of their personal clerks

decides, on their own, whether the document is interesting to its user. In the af

firmative case, the evaluation request is presented to the user, so that he evaluates

the document. In the negative case, a vote against the document is produced. The

suggested document is approved only if most of the consulted members voted in

favom of the document, and the positive and negative evaluations are registered and

used in the acceptance of future suggestions.

The permanence of members in a community is subject to the following restric

tions.

III Users who have suggested many documents evaluated negatively are expelled,

since their interests are not in accordance with those of the community.

III Users who evaluate too many documents negatively are also expelled, since

they have not shown interest in the type of information provided by the com

munity.

Community clerks and personal clerks describe their interests by means of a

profile, which can take the form of a set of documents (the last documents evaluated

positively), keywords or categories. The keywords and categories of a clerk can be

modified by its user.

The system to be developed must admit the incorporation of new somces of

information, such as news forums of news and other communities. For example,

the news published in a forum can be valuable for the members of a community

whose interests are similar. In addition, different communities can collaborate to

exchange information. The exchange of information must be allowed as long as it

has been properly authorised by the administrator of the system. Both mechanisms

165

are used to supply information to communities, overcoming a possible passivity of

users.

Users connect with their clerks by means of a Web interface that allows them

to: suggest documents, evaluate documents, see documents, and see statistics of

operation.

Additionally, an administrator of the system is in charge of:

e creating new communities of users;

e eliminating communities with low numbers of members;

., eliminating users who have been inactive for too long; and

e configuring parameters of execution of the agents, such as the maximum num

ber of agents that can exist in the system, thresholds of document acceptance,

times that a user can negatively evaluate a document before being ejected from

the community, and the number of users that evaluate a document.

It should be clear that this system is inherently open, since it must allow the incorporation of

users (or personal clerks) not known at run-time, as well as of information sources. In the

following, we show the application of the methodological process described in Chapter 5 to this

problem.

6.2 Iterations

The functionality of the system can be divided into the following parts.

Part 1 Approve new information: the process of receiving, filtering, and disseminating docu

ments suggested by users.

Part 2 Exchange information: the part dealing with the exchange of information between dif

ferent communities or other sources of information.

Part 3 Create communities: the process of creating new communities in the system.

Part 4 Eliminate communities: the elimination of unwanted communities from the system.

Part 5 Register new users: the process of accepting new users in the communities.

Part 6 Expel users: the part dealing with expelling unwanted users from communities.

This partition is used as basis for the iteration decomposition of the system, which also takes

into account the following two factors. First, it considers the potential size of each of the parts,

and tries to keep a balance in the sizes of the iterations. Second, it prioritises the parts by their

importance in the functionality of the system. In particular, it recognises Part 1 as the core of

166

Iteration Parts Functionalities
1 Part 1 Approve new information
2 Part 5 and Part 6 Register new users and expel users
3 Part 3 and Part 4 Create communities and Eliminate communities
4 Part 2 Exchange information

TABLE 6.1: Iteration decomposition of the case study

the system, since it directly supports the accomplishment of the goal of the system, and is also

the most complex part, involving several components of the system. The decomposition of the

system into iterations is presented in Table 6.1, and the next section describes the first of these

iterations.

6.3 First iteration

As was established previously, the first iteration deals with approving new information to the

system, which means receiving, filtering, and disseminating documents suggested by users.

Consequently, in this section we show the results of applying the analysis, organisational de

sign and agent design workflows to this part of the functionality of the system.

6.3.1 Analysis

As was discussed in Section 5.3, the analysis workflow consists of the elaboration of five arte

facts: sub-organisation model, environment model, preliminary role model, preliminary interac

tion model, and preliminary rules model, each of which is described below.

6.3.1.1 Organisation model

Because of its small size, this system need not be decomposed into sub-organisations. However,

for purposes of exposition, we can say that a possible decomposition could be structured into

four sub-organisations: the components around the human user, including personal clerks; the

sources of information; the filters of information; and the components in charge of administering

the· system.

6.3.1.2 Environmental model

We divide the entities in the environmental model into two types: resources and external agents,

the former of which are entities composed only of information. The information in the resources

can be accessed or modified by the agents in the system that have the corresponding rights. In

167

our environmental model, the resources correspond to the tuples of the Gaia environmental

model [134].

However, in our model we also contemplate entities more complex than resources. The external

agents are entities for which a description based just on tuples of information would be unnatural

or very coarse. This type of entity encapsulates not only data but also behaviour, expertise,

autonomy or pro-activeness, and includes humans, non-trivial legacy software, and multi-agent

systems as the most representative examples. Similarly to agents in the system, external agents'

functionality can be decomposed into roles. It must be noted that, although external agents and

agents are similar, external agents do not belong to the system and it is only their interaction

with the system that is important and not their internal composition. The resources for this first

iteration are the following.

e Document: the key piece of information in the system, formed of a title, authors, keywords

and body.

III Profile: expresses document interests of a clerk, either personal or of a community.

III Evaluation: contains information about the acceptance of a document.

III Vote: expresses approval or rejection of a document by a user (or his clerk).

The external agents for this first iteration are the following.

III Reader: a human user interested in accessing a document, presumably for reading.

It Voter: a human user that shows his opinion about accepting a document.

• Recommender: a human user that proposes a document.

6.3.1.3 Preliminary role and interaction models

The roles necessary to accomplish the functionality of this iteration are obtained directly from

the problem statement and consist of: Personal Clerk, Community Clerk, Profiler, Evaluator and

Broadcaster.

The interaction protocols are shown in Figure 6.1, in which roles have been represented by

ovals, external agents by rectangles and protocols by solid arrows. Additionally, dashed arrows

indicate protocols whose participants have not yet been determined.

Based on this information, a preliminary description of the roles is obtained, as shown in Fig

ure 6.2, Figure 6.3, Figure 6.4, Figure 6.5 and Figure 6.6. Note that each role representation

contains the name of the role, a brief description, its permissions, and its responsibilities. How

ever, at the preliminary role model, it is not necessary that all the roles are completely described.

168

ChangeProfile
~ ProposeDoc

'----....JSe~~

Recomender

DisseminateDoc
Personal Clerk

Broadcaster ProposeDoc

DisseminateDoc CommunityClerk

EvaluateDoc

EvaluateDoc
EvaluateDoc

FIGURE 6.1: Communication paths in the case study

Role Schema: PersonalClerk

Description: Represents a human user

Protocols and See Doc, Propose Doc ,
Activities: DisseminateDoc

Permissions:

Responsibilities:

Liveness:

Safety:

FIGURE 6.2: Preliminary roles, part I

169

Role Schema: CommunityClerk

Description: Represents a community of
users

Protocols and Propose Doc, EvaluateDoc,
Activities: MatchDoc, ApproveDoc,

DisseminatDoc

Permissions:

Responsibilities:

Liveness:

Safety:

FIGURE 6.3: Preliminary roles, part 2

Role Schema: Evaluator

Description: Decides if a document is
interesting to a particular user

Protocols and EvaluateDoc, DecidelfDoclnter
Activities:

Permissions:

Responsibilities:

Liveness:

Safety:

FIGURE 6.4: Preliminary roles, part 3

170

Role Schema:

Description:

Protocols and
Activities:

Pennissions:

Responsibilities:

liveness:

Safety:

Profiler

Decides if a document is
relevant to a community

MatchDoc, ApproveDoc,
matchProfileDoc, CountVotes

FIGURE 6.5: Preliminary roles, part 4

Role Schema: Broadcaster

Description: Disseminates a document into
a community

Protocols and DisseminateDoc
Activities:

Permissions:

Responsibilities:

Liveness:

Safety:

FIGURE 6.6: Preliminary roles, part 5

171

SeeDoc

PersonalClerk I Reader

The personal clerk presents a
new document to its user

FIGURE 6.7: Preliminary interaction protocols, part 1

ProposeDoc

Recommender I PersonalClerk

A user suggests a document
to the community

FIGURE 6.8: Preliminary interaction protocols, part 2

,------------------------,

DisseminateDoc

I Personal Clerk

An approved document is sent to the
members ofthe community

FIGURE 6.9: Preliminary interaction protocols, part 3

In addition, the preliminary interaction model contains the main interaction protocols, and their

most significant characteristics. The protocols are taken from the role representations of the

preliminary role model. Figures 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, and 6.13 show the protocols for

this iteration. Note that in each protocol description, the upper box contains the name, the lower

box the description, the middle boxes the initiator and collaborators, and the inputs and outputs

are located outside the boxes. A question mark in the boxes of the initiator or collaborators

indicates that there is more than one possibility, and that the decision is postponed until the

design workflow.

6.3.1.4 Preliminary rule model

The following are the rules that control the operation of the system. Note that liveness rules are

rules that the agents try to bring about, while safety rules are those that the system must avoid

violating. Note also that, in the preliminary rule model, organisational rules are described just

in plain English.

172

EvaluateDoc

? I Evaluator, Voter

A document is evaluated by a
user and its clerk

FIGURE 6.10: Preliminary interaction protocols, part 4

MatchDoc

CommunityClerk. I Profiler

A document is checked against the
profile of a community

FIGURE 6.11: Preliminary interaction protocols, part 5

ApproveDoc

CommunityClerk I Profiler

A decision is taken about accepting or
rejecting a document

FIG URE 6.12: Preliminary interaction protocols, part 6

Change Profile

Reader I PersonalClerk

The user changes his profile

FIGURE 6.13: Preliminary interaction protocols, part 7

173

The liveness organisational rules for this iteration are as follows:

.. A suggested document is first compared to the community's profile; then it is evaluated

by personal agents of the community and final1y it is voted on by the users .

.. A suggested document must be evaluated by at least five users (and is approved if it has

been approved by a majority of its evaluators).

In addition, the safety rules for this iteration are as follows:

.. A user cannot suggest the same document more than once.

.. The same document must not be disseminated to a user more than once.

6.3.2 Organisational design

In the following we describe the application of the organisational design to the first iteration of

the system.

6.3.2.1 Organisational structure

In order to determine an organisational structure that fits the system, we note that the commu

nication paths of the system, depicted in Figure 6.1, do not resemble any common topology.

However, after considering the nature of the protocols and arranging the roles, the structure

shown in Figure 6.14 is obtained. If this structure is compared to the patterns of the catalogue

presented in Section 3.6, we can note that it is similar to the simple hierarchy, except for two

differences. The first difference is that, in the pattern, there are no communication paths between

members of the lower level, while in the structure of this case study, there is a communication

path between the Broadcaster and the Personal Clerk, both members of the lower level. The

second difference is that, in the pattern, all the control relationships from the head to the leaves

are authority relationships, while in this case study there is a peer relationship between the

PersonalClerk and the CommunityClerk.

At this point, there are two alternatives: to consider the organisational structure either as a

special type of hierarchy, or as a completely different structure. More generally, the alternatives

are: to adapt the problem to the pattern in question, or not to use any existing pattern at all (in

which case a new pattern can be constructed). This situation is not uncommon since it can be

the case that no pattern in a catalogue suits completely a given application. The selection of an

alternative largely depends on each particular situation, but should be based on what is stated in

the pattern, specifically in the/orees, restrictions and consequences sections.

In this case study, we assume that the alternative of adapting the problem is taken, and then

we adjust the preliminary role and interaction models to make the structure more similar to a

174

authority

peer

Personal Clerk

\

peer 8
FIGURE 6.14: Preliminary organisational structure

peer

authority

Personal Clerk authority

FIGURE 6.15: Organisational structure

simple hierarchy, thus yielding the structure depicted in Figure 6.15. The modification consists

in merging the CommunityClerk and Broadcaster roles, so that the peer relationship between

Personal Clerk and the Broadcaster is eliminated.

6.3.2.2 Role model

As a consequence of the introduction of this organisational structure, the list of roles in the

system has changed to: Personal Clerk, Community Clerk; Profiler and Evaluator, Note the

absence of the Broadcaster preliminary role, and that external agents are not modelled as roles,

since only their interactions are relevant. In the role model, the descriptions of the roles are

completed, resulting in the role descriptions shown in Figure 6.16, Figure 6.] 7, Figure 6.18 and

Figure 6.19.

175

Role Schema: PersonalClerk

Description: Represents a human user

Protocols and See Doc, Pro pose Doc,
Activities: DisseminateDoc,

UQdateProfile

Permissions:

reads document
changes profile

Responsibilities:

Liveness:

PersonaIClerk=(Propose Doc I
DisseminateDoc I (ChangeProfile
UQdateProfile))W

Safety:

FIGURE 6.16: Role model, part 1

Role Schema: CommunityClerk

Description: Represents a community of
users

Protocols and ProposeDoc, EvaluateDoc,
Activities: MatchDoc, ApproveDoc,

DisseminatDoc

Permissions:

reads document, evaluation,
vote
changes profile

Responsibilities:

Liveness:

CommunityClerk = (ProposeDoc I
EvaluateDoc I MatchDoc I ApproveDoc,
DisseminatDoc)w

Safety:

FIGURE 6.17: Role model, part 2

176

Role Schema: Evaluator

Description: Decides if a document is
interesting to a particular user

Protocols and EvaluateDoc, DecidelfDocinter
Activities:

Permissions:

reads document, profile
changes vote

Responsibilities:

Liveness:

Evaluator = (EvaluateDoc .
DecidelfDoclnter)w

Safety:

FIGURE 6.18: Role model, part 3

Role Schema: Profiler

Description: Decides if a document is
relevant to a community

Protocols and MatchDoc, ApproveDoc,
Activities: matchProfileDoc, CountVotes

Permissions:

reads document, profile
changes evaluation.

Responsibilities:

Liveness:

Profiler = ((MatchDoc . matchProfileDoc)
I (ApproveDoc . CountVotesl)W

Safety:

FIGURE 6.19: Role model, part 4

177

6.3.2.3 Interaction model

ProposeDoc

Recommender I PersonalClerk,
CommunityClerk

A user suggest a document to docu ment
the community

-

nil

FIGURE 6.20: Interaction model, part 1

DisseminateDoc

CommunityClerk I PersonalClerk,
Reader

An approved document is sent to the docu ment
members of the community

nil

FIGURE 6.21: Interaction model, part 2

EvaluateDoc

CommunityClerk I Evaluator, Voter

A document is evaluated by a docu ment
user and its clerk

vote

FIGURE 6.22: Interaction model, part 3

MatchDoc

communityClerk.1 Profiler

A document is checked against the docu
profile of a community profi

vote

FIGURE 6.23: Interaction model, part 4

ment,
Ie

The preliminary interaction model is modified to reflect the introduction of the organisational

structure, resulting in the protocol descliptions shown in Figure 6.20, Figure 6.21, Figure 6.22,

Figure 6.23, Figure 6.24 and Figure 6.25.

178

6.3.2.4 Rule model

ApproveDoc

CommunityClerk I Profiler

A decision is taken about accepting or
rejecting a document

Doc
eval

ument,
uation

evaluation

FIGURE 6.24: Interaction model, part 5

ChangeProfile

Reader I PersonalClerk

The user changes his profile nil

profile

FIGURE 6.25: Interaction model, part 6

The rule model expresses, in the LEVOR language, the organisational rules included in the

preliminary rule model. The following are the liveness organisational rules, expressed in the

LEVOR language (see Section 3.3.4).

card(PersonalClerk) :2: 1

card(Evaluaior) :2: 1

There must be at least one evaluator and one personal clerk.

card(CommunityClerk) = 1

card(Profiler) = 1

There must be one and only one community clerk and projiler.

179

terminated(ProposeDoc) B initiated(M atchDoc) 1\

terminated(M atchDoc) B initiated(EvaluateDoc) 1\

terminated(EvaluateDoc) B initiated(ApproveDoc) 1\

terminated(ApproveDoc) B initiated(DisseminateDoc)

Every suggested document must be filtered (compared to the community's profile,

evaluated and voted) before it is disseminated.

If d : Document(card(EvaluateDoc(CommunityClerk, Evaluator, d)) = 5)

A suggested document must be evaluated by exactly five users.

Note the relationship between this rule and the one stating that there must be at least one Eval

uator. The former refers only to evaluation of documents, while the latter applies to the whole

operation of the system (including the case when there are no documents to be evaluated). How

ever, an alternative design might state that there must be at least five Evaluators.

In addition, the safety rules for this iteration are as follows.

Ifp . PersonalClerk(Ifd : Document (

card(ProposeDoc(p, CommunityClerk, d)) :s: 1))

A user cannot suggest the same document more than once.

Ifp : PersonalClerk(Vd : Document(

card(DisseminateDoc(CommunityClerk,p, d)) :s: 1))

The same document must not be disseminated to a user more than once.

6.3.3 Agent design

The agent design workflow consists of the design of each role of the iteration. Since the process

is essentially the same for all the roles, we will describe here only the agent design for the

Pro filer role, since its simple functionality makes it suitable for exposition.

180

As can be observed in the organisational structure, the ProfileI' role is completely subordinated

to the autholity of the CommunityClerk. Additionally, according to the role model, the behaviour

of the ProfileI' role can be described as a process of receiving orders, performing the activities

related to accomplishing these orders, and replying with the results produced by the activities.

Considering its reactive behaviour, and based on the catalogue of architectural patterns of Chap

ter 4, we conclude that the ProfileI' role can be modelled by means of the subsumption architec

ture [J 0]. Thus, using the subsumption architectural pattern, specifically the SOLUTION section

(Section 4.3.2), and the corresponding procedure to obtain a detailed design (Section 4.3.3), we

construct the fragments of the structure and functionality models corresponding to this role, as

described below.

6.3.3.1 Structure model

The ProfileI' role interacts with the environment through two protocols: MatchDoc and Approve

Doc. According to this, the environment perceived by the ProfileI' can be described as the set of

tuples, (command, contentl, content2), where: command is an identifier of the type of protocol

(for example, Match for the MatchDoc protocol, or Approve for the ApproveDoc protocol); con

tent} is a document; and content2 is an evaluation if command is Match, or nil otherwise (this

corresponds to the outputs of these protocols, as stated in the interaction model).

Accordingly, there are two behaviours for this role, as described below.

bl if (Match, d, e) is perceived then execute MatchProfileDoc(d) and continue the execution of

protocol MatchDoc.

b2 if (Approve, d, e) is perceived then execute IsApproved(d, e) and continue the execution of

protocol ApproveDoc.

Here, MatchProfileDoc and IsApproved are activities of the Profiler role, dealing with matching

a document to the community profile, and approving a document, respectively, as is stated in its

role description.

To determine the inhibition relationship, it must be noted that, in this particular case, the inhibi

tion relationship is irrelevant, since no perceived state can match both h} and b2.

The class diagram for the structural model is obtained by enhancing the class diagram of the

subsumption pattern, with the particular characteristics of the ProfileI' role, resulting in the di

agram shown in Figure 6.26. As can be observed, the enhancements consist in the elimination

of the original Inhibitor class (since no inhibition relationship is required), the description of

the information perceived (Percept class), and the representation of the Inhibitor activities as

actions of behaviours.

181

r-~·-"""··----:-"---~--·----~ I SUbsumptionController !
I <:>SelectAclionO
I ~erceptua"nput{)
~xecutektionO '

1"B¥findUstOfBeha.,,;Ourso~ ~rstBehaviourOfListO fC:;~
! ~ext8ehaviourOfListO i ~~"

',"7r
----\\--' ~-",,,,_1 .. n

, ' ¥---

.--_---'k~A"" .. n-, Behaviour

~!~~~
; 'liSeeO '

~L_,
, Perceptor !

~ntSlate !
T %SenseEnvironmentOi

Percept

~ommand
~Dc;ument
i~>eva!uation

FIGURE 6.26: Class diagram of the structure model

6.3.3.2 Functionality model

The operation of the Profiler is so simple that only one scenario is needed to describe its func

tionality. Such scenario describes the dynamics fo11owed by the classes to accomplish the func

tionality of the role, and is expressed by a sequence diagram adapted from the subsumption

pattern. This sequence diagram, which is shown in Figure 6.27, is easier to interpret if we con

sider that the Profiler perceives the environment by receiving messages and interpreting their

content, and affects t..~e environment by sending messages.

In a real situation, the first iteration continues towards the development of an executable version

of the system that implements the functionality of the iteration. This executable is evaluated

by the stakeholders, and failures in satisfying the requirements are identified. Then, during the

second iteration, in addition to implementing the corresponding functionality, changes are made

to the appropriate deliverables (analysis and design models, and executables) in order to correct

those failures. During the evaluation of the executable, other changes to the deliverables may

arise due to modifications in the requirements. For example, in our case study, the stakeholders

may realise that the organisational rule

A suggested document must be evaluated by exactly five users.

can never be observed in communities with less than five users, which can cause them to modify

the original requirements, and in turn the organisational rules model and the executable.

182

FIGURE 6.27: Sequence diagram of the functionality model

6.4 Second iteration

Once the first iteration has been concluded, the second iteration is started. The second iteration

addresses another part of the functionality of the system, and consists of enhancing the results

of the previous iteration in terms of adding elements to the artefacts, extending those elements

or modifying them. For example, in the case of the preliminary role model, new roles can be

added and existing roles can be modified to include the interaction with the new roles. In this

case study, the second iteration deals with the registration of new users and the expulsion of

inadequate users, as described below.

6.4.1 Analysis

In order to address the introduction of new users into the community and expulsion of users

from the community, neither sub-organisations nor environmental entities need to be created.

Similarly, no new roles are required, since this functionality can be carried out by the Person

alClerk and Community Clerk. However, the incorporation of new protocols to the preliminary

interaction model is required to cope with these tasks. Such protocol descriptions are shown in

Figure 6.:::8 and Figure 6.29, the first of which refers to the registration of new users and the

second to the expulsion of users.

In addition, the preliminary role model must be modified to incorporate these new protocols.

Specifically, the descriptions of the roles involved in the protocols (the Community Clerk and

the PersonalClerk) must be updated, resulting in the descriptions shown in Figure 6.30 and

Figure 6.31.

183

RegisterUser

Reader I
Personal Clerk,
CommunityClerk

The user registers with the community

FIGURE 6.28: Preliminary protocol description of registering users

ExpeIUser

CommunityClerk I PersonalClerk,
Reader

Expels a user from the community

FIGURE 6.29: Preliminary protocol description of expelling users

Role Schema: CommunityClerk

Description: Represents a community of
users

Protocols and Propose Doc, EvaluateDoc,
Activities: MatchDoc, ApproveDoc,

DisseminatDoc, RegisterUser,
ExpelUser

Permissions:

reads document, evaluation,
vote
changes profile

Responsibilities:

Liveness:

CommunityClerk = (ProposeDoc I
EvaluateDoc I MatchDoc I ApproveDoc,
DisseminatDoc}w

Safety:

FIGURE 6.30: Preliminary role description of the community clerk

184

Role Schema: PersonalClerk

Description: Represents a human user

Protocols and See Doc, ProposeDoc,
Activities: DisseminateDoc,

RegisterUser, ExpelUser

-
Pennissions:

Responsibilities:

Llveness:

Safety:

FIGURE 6.31: Preliminary role description of the personal clerk

As for the organisational rules, the following rules regarding the expulsion of users must be

incorporated.

• A user is expelled if he has suggested more than five documents evaluated negatively.

• A user is expelled if he has evaluated negatively more than five documents.

Note that we have arbitrarily chosen five as the number of documents to decide the expulsions.

6.4.2 Organisational design

During the organisational design of the second iteration, the organisational structure, as well

as the role, interaction and rule models, are updated to reflect the changes introduced by the

new protocols. In the case of the organisational structure, it can be observed that no changes are

required, since the new protocols, RegisterUser and ExpeZUser, do not alter the peer relationship

between the Personal Clerk and the Community Clerk.

However, some updates are necessary for the role, interaction and rule models, since, dUling

the analysis, the corresponding preliminary roles were modified. In the case of the role model,

the updates consist in modifying the Protocols and Activities section, as well as the liveness

responsibilities of the descriptions of the Personal Clerk and the Community Clerk roles, resulting

in the descriptions shown in Figure 6.32 and Figure 6.33.

185

Role Schema:

Description:

Protocols and
Activities:

Permissions:

Responsibilities:

Uveness:

PersonalClerk

Represents a human user

SeeDoc, Propose Doc,
DisseminateDoc,
Update Profile , RegisterUser,
ExpelUser

reads document
changes profile

PersonaIClerk=(Propose Doc I
DisseminateDoc I (ChangeProfile
UpdateProfile) I RegisterUser I
ExpelUser)W

Safety:

I

FIGURE 6.32: Role description of the personal clerk

Role Schema: CommunityClerk

Description: Represents a community of
users

Protocols and
Propose Doc, EValuateDoc,

Activities: MatchDoc, ApproveDoc,
DisseminatDoc, RegisterUser,
ExpelUser, DecideExpel,
Registry

Permissions:

reads document, evaluation,
vote
changes profile

Responsibilities:

Liveness:

CommunityClerk = (Propose Doc I
EvaluateDoc I MatchDoc I ApproveDoc,
DisseminatDoc I (RegisterUser .
Registry) I (DecideExDel . ExpelUser))W

Safety:

FIGURE 6.33: Role description of the community clerk

186

RegisterUser

Reader I
PersonalClerk,
CommunityClerk

The user registers with the community profi Ie

acceptance

FIGURE 6.34: Protocol description of registering users

ExpelUser

CommunityClerk I PersonalClerk,
Reader

Expels a user from the community nil

nil

FIGURE 6.35: Protocol description of expelling users

For the interaction model, the updates consist of completing the protocol descriptions of the

RegisterUser and ExpelUser protocols, as shown in Figures 6.34 and Figures 6.35.

Finally, in order to update the rule model, the introduced organisational rules must be expressed

in the LEVOR language, as follows.

(PersonalClerk.NOfNegSugO > 5) =? initiates(Community Clerk , ExpelUser)

A user is expelled if he has suggested more than five documents evaluated nega

tively.

(PersonalClerk.NOfNegEvalO > 5) =? initiates (Community Clerk , ExpelUser)

A user is expelled if he has evaluated negatively more than five documents.

Note that in the expression of these organisational rules, we have assumed the existence of

the activities NOfNegSug and NOfNegEval in the PersonalClerk role, which are used to obtain

the number of suggested documents that are negatively evaluated by others, and the number of

documents suggested by others that it evaluates negatively, respectively.

187

6.4.3 Agent design

The second iteration concludes by perfonning the agent design of each role introduced in the

iteration, and by modifying the models for those roles who were affected by the introduction of

new protocols and activities. However, in our particular case, no new roles were introduced dur

ing the second iteration. Similarly, the agent design for the Profiler role needs no modification,

since this role was not affected by the protocols and activities introduced in the iteration.

The completion of this case study would require us to carry out the last two iterations, as was

described in Section 6.2. This, however, would easily double the number of pages dedicated to

this chapter and would add no benefit to its purpose, since the process would be essentially the

same as that presented for the first two iterations.

6.5 Conclusions

In this chapter, we have presented the development of a case study using the methodological

process described in this thesis, which includes the use of most of its contributions: the sup

port of the organisational design by means of organisational patterns; the incorporation of agent

design, based on agent architectures, into the development process; and the use of an iterative

approach to make more agile the development process. In summary, the development consisted

of decomposing the construction of the system into iterations, and accomplishing these itera

tions. Each iteration included the analysis, organisational design and agent design of a specific

part of the system.

Although simple in concept, this case study illustrates the characteristics of the process and

helps to draw some conclusions about its drawbacks and benefits. The most notable drawback is

the lack of a software tool to support the construction of artefacts, which tends to make this task

error-prone and burdensome. Also, the analysis of interactions, represented by the interaction

model, lacks detail, since it does not consider the decomposition of the protocol into messages

and, as a consequence, the decomposition of messages into communicative acts and content.

Finally, specifically for the organisational pattern used (the simple hierarchy pattern), some lack

of detail was found in the description of the roles involved.

In spite of these drawbacks, the case study showed that the process is straightforward, natural,

and requires relatively little knowledge about agent-based computing for its use. Additionally,

the incorporation of catalogues of patterns in key stages, reduces work, time, and alleviates

the learning curve. More generally, the case study suggests that the enhancements we made to

the basic process of the Gaia methodology (the incorporation of a catalogue of organisational

patterns, the incorporation of the agent design phase, the use of architectural patterns to support

this phase, and the decomposition of the process into iterations) are valuable and significantly

increment its maturity.

188

Chapter 7

Specification and Integrity in the

Development of Open Systems

7.1 Introduction

The number of computers and computational devices has increased significantly in the last few

years and, since these devices rarely work on their own, the number of networks has also ex

ploded. In software, new technologies such as the Internet, pervasive computing and the Grid

are also emerging and take advantage of these networks. These technologies have brought chal

lenging problems in computer science and software engineering, since they demand systems

that are highly distributed, proactive, situated and open.

As was stated in Section 1.5, an open system is one that allows the incorporation of components

at run-time whose internal composition may not be known at design time, but only their external

functionality. The components of an open system may not be designed and developed by the

same group, nor do they represent the same stakeholders. In addition, different groups may use

different development tools and may follow different policies or objectives. Regardless of how

and by whom a component is developed, it typically has the same rights to access the facilities

provided by the system, as well as the obligation to adhere to its rules.

However, traditional approaches (e.g., object-oriented and component-based computing) have

fallen short in engineering this type of application [91] because they operate at too Iowa level of

abstraction. For example, object-oriented computing decomposes a system into entities (or ob

jects) that encapsulate information and functionality. This information, however, usually refers

to basic data structures or to other objects. Similarly, the functionality of objects relies on simple

procedures like those normally found in most programming languages. Elaborated object de

compositions, although possible, tend to make it difficult to understand and design applications

that involve high-level concepts such as grid services and workftows.

189

In response, different approaches have been attempted to facilitate the development of such com

plex applications. In particular, some evidence suggests that the multi-agent approach provides

adequate abstractions to successfully develop this type of system [75], and this has resulted in

the appearance of several agent-oriented software methodologies which claim to support the

construction of open systems.

However, even though agent-oriented software methodologies exist to support the development

of open systems, they are lacking when dealing with the incorporation of new components (or

agents) to an existing system. In particular, these methodologies do not address two different

but very related problems:

• how to specify the facilities provided by the existing system for those interested in the

development of new agents; and

• how to design and construct mechanisms to ensure that the integrity of the system is not

violated at run-time by new agents.

Solving these problems requires the accomplishment of some non-trivial tasks. In order to solve

the first problem of specifying the facilities provided by the system, we must first accomplish the

selection of appropriate abstractions on which to base the specification. For the second problem

of ensuring that the integrity of the system is not violated at run-time, mechanisms for monitor

ing the behaviour of the system and evaluation of its characteristics must be provided [57].

Although complete solutions to these problems are highly application and platform dependent,

we can, nevertheless, separate more general problems from more specific ones and provide

partial solutions. In particular, in order to create agents that are eventually incorporated into

an existing system, developers need to know what facilities are provided by the system, and

the vvay in 'vv11ich they can access them, so that they can design new agents in accordance with

these characteristics. In addition, developers must be aware of the rules of behaviour of the

system, and design new agents in such a way that those rules are observed at run-time. From the

viewpoint of maintaining the integrity of the system, this is particularly important in the case of

multi-agent systems, because the autonomy and pro-activity exhibited by agents can easily lead

to unexpected behaviour.

In this chapter we present a model for the specification of open multi-agent systems based on

organisational concepts, and then apply it to create a mechanism for checking that a specification

is observed at run-time. With this in mind, we divide the structure of the chapter in the following

way. In Section 7.2 we analyse the characteristics of a specification in open multi-agent systems,

that is, what must be included, and how to express it. Then, in Section 7.3 we formalize such a

specification. After that, we focus on the problem of how to check that such a specification is

observed at nm-time in Section 7,4, which includes the design of a mechanism that monitors the

observance of a specification. Finally, Section 7.5 contains the conclusions of the chapter and

indicates future work.

190

7.2 Basic concepts

7.2.1 A layered model for open multi-agent systems

A specification describes the components of a system and their composition. Additionally, in the

case of multi-agent systems, apart from describing the components (agents) and their composi

tion, it is also necessary to include their interaction. The reason for this is that, since agents are

not passive service-providers but pro-active and autonomous entities, their interactions need to

be explicitly stated. Open multi-agent systems are complex in structure and, as a consequence,

so are their specification. For this reason, and because many diverse aspects are involved in

specifying agents, their composition and their interaction, we find it useful to decompose the

functionality of an open multi-agent system into several parts, or layers. (Such a perspective is

commonly used in the specification of open infrastructures as, for example, in the XlOpen plat

form and the ISO model of communications [65].) Each layer deals with a particular aspect and

rely on the previous layer to fully specify the cOlTesponding functionality. Furthermore, each

layer should add a higher level of abstraction, and at the same time impose further constraints

on the way agents behave.

Thus, an appropriate layered decomposition of open multi-agent systems must cover all their

intrinsic characteristics, from network communication to organisations. Our proposal for de

composing open multi-agent systems is depicted in Figure 7.1, obtained by listing the different

aspects of any multi-agent system by order of level of abstraction, as follows

• The lowest layer, Communication Protocols (CP), deals with the low level protocols for

communication; for example, nop and HTTP. Although strictly this layer does not con

tain elements of agenthood, it specifies the distlibuted aspect of a multi-agent system at

its most basic level..

• The next layer, Agent Platform (AP), relates to the infrastructure in which the agents

operate, in terms of which agent services are provided and how. Such agent services

include the management of agents in a system - registration and deletion - white and

yellow pages services, and message routing.

• The Agent Communication Language (ACL) layer is concerned with the language em

ployed by the agents to exchange messages during their discourse, particularly those el

ements of a language that are application independent. Among these elements, some of

the most important are the communicative acts (or peiformatives), which denote an inten

tion from the sender of the message for the receiver of the message to perform, such as

to execute or cancel an action. Instances of standard agent communication languages are

FIPA-ACL [35] and KQML [34],

191

Social constraints

Interaction protocols

Individual
responsibilities

Content language

Agent Communication
Language

Agent platform

Communication
protocols

FIGURE 7.1: Layered decomposition of open multi-agent systems

II The Content Language (CL) layer deals with the language used to represent concepts

specific to each application domain. Together, the content language and the agent com

munication language layers constitute the language in which the communication between

objects occurs.

II The Individual Responsibilities (IR) layer refers to the functionality that each agent is

capable of performing without interacting with other agents. In other words, this layer

specifies what is expected from each agent as an individual entity.

II The Interaction Protocols (IP) 1ayer relates to the interactions that agents perform to fu1fi1

their goals. Instead of referring to details of individual messages, as is the case of the

ACL and CL layers, this layer focuses on the way specific groups of messages are used to

carry out tasks concerning the overall system.

II Finally, the Social Constraints (SC) layer establishes the expected social behaviour of the

agents. The concept of social organisation is arguably what differentiates the multi-agent

approach from other software approaches. Although some of the organisational elements

of a system are specified in previous layers - the participating entities (IR layer), and

their interactions (IP layer) - the social constraints complete the organisational structure

by imposing rules on the way these elements are combined.

As can be observed, this decomposition is independent of any particular architecture, platform

or methodology, and focuses on high-level aspects of the system, rather than on the detailed

composition of the components.

192

It should be noted that this decomposition is similar to the Abstract Architecture I defined by

FIPA with the purpose of promoting interoperability and reusability. Such an architecture con

siders that agent-based systems can be decomposed into two parts, a (domain-specific) appli

cation layer, and an abstract architecture layer, which involves agent communication, agent

management and agent message transport. However, although the application layer might cor

respond to the IR, IP and SC layers, there is no explicit usage of organisational concepts. Simi

larly, the agent communication component corresponds to the CL and ACL layers, and the agent

management and agent message transport correspond to the AP and CP layers, respectively, but

in spite of this correspondence, the FIPA architecture dooes not exploit a layered structure in its

components.

Since any multi-agent system consists of these layers, a complete specification of an open multi

agent system must take into account all the layers. However, our concern is not to provide a

complete multi-agent system specification, but to address those aspects relevant to the construc

tion of open systems, building on prior work and infrastructure. Thus we avoid the enormous

effort that would be required, because of the variety of elements involved, and focus on creating

specifications for the manageable subset of layers that have not adequately been studied before,

and which address the focus of this thesis. More specifically, the lower layers of the model -

the CP, AP, ACL and CL layers - have received much attention in the past, as is indicated by

the existence of de facto standards (e.g. lIOP [59], FIPA [35], KQML [34], and KIF [4]). In

contrast, from the viewpoint of specification, the three upper layers - IR, IP and SC layers -

have been the less studied. Moreover, these three layers are specifically relevant to the organi

sational metaphor that we have used extensively through this thesis to model various aspects of

multi-agent systems.

Based on this decomposition, we structure the specification of a system into parts, or sections,

each corresponding to a layer. The content of the sections and the order in which they appear

are the same as those of the layers in the decomposition. Regarding how to describe the contents

of each section, the natural choice is to employ standards, since they are based on agreed terms

and concepts, and provide a commonly accepted way to describe systems. For example, in

the case of the ACL layer, the specification can make use of the FIPA agent communication

language (FIPA-ACL) [35]. On the other hand, although at the IP layer some standards have

emerged, fmiher down the IR and SC layers lack not only standards, but also commonly agreed

concepts. Thus, in order to progress with our goal of creating specifications, we need to adopt,

or construct, appropliate conceptual abstractions which, on the one hand, can remove artificial

distinctions between the different constraints of heterogeneous components (or agents) possibly

developed by different groups, with different architectures and methodologies and, on the other

hand, are still closely connected to real systems.

Although for the IP, IR, SC layers there are no standard abstractions, the concepts of role, pro

tocol and organisation are increasingly being used in fields such as agent-oriented software en

gineering as first-order abstractions to model relevant aspects of open systems. In consequence,

1 http://www.fipa.org/specs/fi paOOOO lISCOOOO 1 L.html

193

we use these abstractions as a basis for open systems specification, and present below a brief

review of the concepts (for more details, see Chapter 3).

Although the concepts of role, protocol and organisation can provide an appropriate means with

which to specify the IP, IR and SC levels, employing them can be problematic. First, despite

many charactelisations and definitions of these concepts being available in the literature, none is

entirely appropriate for our purpose. This is because we require a characterisation that abstracts

what is needed from the components and their interaction, bypassing the details of how it is

actually achieved, which is the usual stance taken. At the same time, it is desirable that such

characterisations are similar to those used in existing agent-based methodologies in order to

minimise incompatibilities when developing a new agent. Finally, the characterisations must

be independent from any specific implementation. In the following subsections we present the

characterisations for roles, protocols and organisations that will, in tum, be used to construct the

specifications of our models.

7.2.2 Roles

A role represents a position in charge of performing a specific service in an organisation. Ex

amples of roles in the Conference Management System (an hypothetical system for managing

conferences, whose statement problem is included in Appendix A) are Author and Reviewer. In

general, at run-time roles can be played by one or several agents, and a single agent can play

one or several roles. Role is a concept that is intuitive, simple and easy to understand; it is

used in different agent-oriented software methodologies, and serves as a basis for other useful

abstractions, such as protocols and organisations.

Although the concept of role is extensively used in the agent literature, there is no a common

characterisation. For the purposes of specifying an open system, we see a role as consisting of

the following parts.

III Name: a unique identifier of the role.

• Description: brief text explaining the purpose of the role.

III Services: functionality that the role is expected to perform .

• Non-functional requirements: special conditions that an agent must satisfy at run-time to

play this role, such as the minimum amount of a certain resource, or confidentiality.

7.2.3 Protocols

A role rarely accomplishes its objectives by itself, but interacts with other roles, as determined

by a protocol, which is a high level representation of the interaction of roles to accomplish an

objective. A protocol is a representation of pre-defined patterns of interaction, and is used not

194

only in the context of methodologies but also in the analysis of specific mechanisms, such as

negotiation.

The concept of protocol is also commonly used in the agent literature, but its definition valies

very from paper to paper. For example, in Gaia, protocols are characterised only by name,

initiators, partners, inputs and outputs. Other approaches provide additional information, for

example the messages exchanged (communicative act and content), their sequence, the tasks

that they trigger, and even the state changes of the agents as a result of exchanged messages.

For our purposes, we use the following characterisation, which has the benefit of considering

all the key elements to describe an interaction between roles, but without compromising to any

particular platform or implementation.

• Name: a unique name in the system. This serves as an identifier for the protocol.

• Initiator role: the role that begins the interaction. This role should not be repeated in the

next item.

• Partner roles: other roles involved in the interaction. We will also refer to partner roles as

collaborators.

• Inputs: information needed to perform the interaction. Inputs are environmental entities

passed as parameters to the protocol and whose values are not affected.

• Outputs: information obtained or modified as the result of the interaction. Outputs are

environmental entities passed as parameters to the protocol and whose values can be mod

ified.

• Messages: the messages exchanged in the protocol. The description of these messages

contains the sender, the receiver, a form of identification (such as a communicative act)

and, optionally, the content

• The message sequence: the order in which the messages must be exchanged during the

protocol. To describe this order, some constructors are provided, such as sequence, con

currence, and conditionals.

An example of a protocol in the Conference Management System is shown in Figure 7.2, in

which the name of the protocol is CallAndSubmission, the initiator is the Caller role, the partners

are the Author and the Collector roles, the input is the call for papers, and the outputs are the

paper and a confinnation of receipt. Also, the messages are call-for-papers, submit-paper and

confirm-number, and occur in that order.

7.2.4 Organisational rules

A multi-agent system is not completely defined by just a set of autonomous roles and their inter

actions. In fact, a multi-agent system typically possesses overall goals, and its components (even

195

sd CALL AND SUBMISSION Protocol

I :Caller 1 I I :Author n/ I :Collector 1 ,

call-far-papers

m
submit-paper

m
confirm-number

FIGURE 7.2: Example of a protocol specification

., Enough reviewers must be allocated

., All papers must be reviewed

., An author cannot send the same version of the paper more than one time

., No agent can be both author and
reviewer of the same paper

FIGURE 7.3: Organisational rules for the Conference Management System

if self-interested) act in an orchestrated way in order to achieve them. However, this orchestrated

behaviour does not emerge by itself - agents are pro-active and autonomous entities whose be

haviour can become highly unpredictable in dynamic environments - but some mechanism

is required to produce it. Organisations have proven to be an appropliate mechanism to fulfil

this task. More specifica11y, organisational rules, which have been used in the design of multi

agent systems [134,25], offer an appropriate analytical means to constrain the way in which the

different elements of a system interact. If carefully designed, compliance with organisational

rules at run-time can ensure the desired behaviour. To this end, we define organisational rules

as constraints on the relationships between roles, protocols and resources, with the purpose of

fulfilling the overall goals of the system. Some examples of organisational rules are included in

Figure 7.3 for the Conference Management System.

We can classify organisational rules in different ways. One possible classification is based on the

types of elements the rules constrain, giving place to horizontal and vertical rules. Horizontal

rules are applied to elements of only one type. For example, a rule that applies to all the roles in

the system is a horizontal rule, such as:

All the controller roles must maintain the same rate of operation.

On the other hand, vertical rules are those rules that apply to different types of elements. For

example, rules that affect roles and protocols are vertical rules, as in

The selection process begins after all the papers have been reviewed three times.

196

Although this classification is useful in general discussion of organisational rules, from the view

point of checking their compliance, it is more convenient to divide organisational rules into static

and dynamic rules, Static rules are those that need to be velified only at specific moments in the

life cycle of the system. For example, the rules restricting the roles played by an agent can be

verified simply at the moment the roles are assigned, as in the rule:

No agent can play the roles of buyer and seller at the sane time.

Dynamic rules, on the other hand, need to be checked frequently, or at moments that cannot

be easily predicted. For example, rules restricting the use of resources or protocols need to be

checked every time the resources are accessed or the protocols executed, and these events can

occur at any time, for instance for the rule:

A paper must be reviewed exactly three times.

Most static organisational rules can be checked by means of a run-time component that keeps

track of role assignments. Such a form of checking is simple, easy to implement, and most

importantly, does not interfere with the normal operation of the system.

Dynamic rules are potentially more difficult to check than static rules, due to their diversity and

dynamism. In principle, such checking can consist in monitoring every element of the system

and evaluating the relevant rules. Roughly, this could be accomplished by obtaining the relevant

information from the agents or, in the case of non-agentified elements - such as resources -

from tailor-made modules that control their access. However, this procedure must be carefully

designed not to significantly affect the performance and robustness of the system. Distinguishing

these two types of organisational rules is helpful when devising procedures to monitor them at

run-time, as can be seen in Section 7.4.

7.3 Specification of open multi=agent systems

We now use the basic concepts presented above for creating specifications of existing systems,

in such a way that potential participants can determine the requirements and benefits of joining

the system. In our case the targets of such a description are the designers of the agents.

Such a specification must be as neutral as possible, since the agents might be developed with

varied techniques. However, at least some basic assumptions must be made; in particular, the use

of some common, appropriate concepts is required. As was stated in Section 7.2, we use role,

protocol and organisation as the basic concepts on which a specification can be constructed. In

general, these abstractions appropriately model the characteristics found in multi-agent appli

cations, namely agents, interactions and rules. In particular, they give rise to a set of models

197

that provide the documentation necessary both for developers and for automatic compliance

monitoring in order for agents to join open systems in effective and managed ways.

We divide the specification into two parts. The first part deals with characterising and docu

menting the generic elements of the system that are always to be found, regardless of the nature

of the system, the general concepts model. The second part comprises the agent-specific models

based on organisational concepts, the participants model, the interactions model and the social

constraints model. All of these models are presented below.

7.3.1 General concepts model

The general concepts model contains the description of the resources and entities of the envi

ronment that are necessary, in turn, in the description of the other parts of the specification such

as protocols, activities and social constraints. Since these general concepts involve only infor

mation, we use a characterisation based on registers and fields. In other words, each concept

is described by the elements it encompasses, and each of these elements is in tum described

by its sub-elements. This process continues until the sub-elements are non-decomposable data

stmctures such as strings, numbers or dates. To completely define the part-whole relationship

between a concept and its elements, cardinalities are used, denoting how many elements can

be present in a concept; for example, the concept Paper has one or more author elements. Fig

ure 7.4 shows the general form ofthis model. The cardinalities are enclosed by square brackets

to denote that they are optional. If not specified, a cardinality of 1 is assumed.

As an example of a fragment of a general concepts model, we consider the Paper concept of

the Conference Management System. This concept consists of five parts: a title, an abstract, a

body, the authors and their affiliation. The model for this concept is shown in Figure 7.5. In

this figure, the + cardinality represents one or more parts, and the data sLnJcture string is used to

denote short textual information, whereas text is used for potentially large text. Equivalently, this

Paper concept is also depicted in Figure 7.6 by means of a UML class-type diagram, in which

the boxes represent concepts and elements, the lines ending in diamonds represent the whole

part relationship, and the numbers near the lines denote the cardinalities (Entity-Relationship

diagrams could also be used to this end, although we use UML for consistency).

7.3.2 Participants model

The participants model contains the description of each agent of the system, referring only to

those individual characteristics that do not involve interaction with other agents, and that are

independent of how the agent is implemented. Since we model agents by means of roles then,

according to the characterisation of roles we employ, the participant model consists of the set of

roles in the system and, for each of them, a list of their services and non-functional requirements.

198

ConceptI
Element1 [cardll
Element2 [card2l

Elementn [cardnl

Elementl
Subelementl [cardn+ll
Subelement2 [cardn+21

SubelemeniI
Subsubelementl [cardn+i +11

Subsubelementl : data structure

FIGURE 7.4: The general form of the General Concepts Model

Services are tasks that a role can perform without interacting with other roles. We propose a sim

ple characterisation of services consisting of a name, the role that performs it, their input and

output parameters, and a description of the task itself. Since the actual implementation of the

process is not restricted by the specification, its description can be text, pseudocode or any for

mal description. Regarding the non-functional requirements, we follow a simple approach con

sisting of representing each requirement by an identifier-value pair, for example (memory, 40),

where the identifiers and their possible values have previously been defined.

The general form of the participants model is shown in Figure 7.7, in which requirements iden

tifiers are denoted by idi and their corresponding value by valuei. The square brackets indicate

that the use of non-functional requirements is optional. As an example, Figure 7.8 presents a

fragment of the participants model corresponding to the Conference Management System. This

simple example shows three participants, each one having a service.

7.3.3 Interactions model

The interactions model describes the way roles interact by means of protocols. Our protocol

characterisation is inspired by a simplified version of sequence diagrams similar to those of

AUML [98J, and represents the participating roles in the protocol, the messages they exchange,

and the sequence of those messages. The messages are labelled with their communicative act

199

Paper
Title 1
AuthorName +
Abstract 1
Body 1

AuthorName
FirstName 1
LastName 1
Affiliation 1

Affiliation
Address 1
e-mail 1

Abstract: text
Body: text
Title: string
FirstName: string
LastName: string
Address: string
e-mail: string

Review
Paper 1
Comment +
Evaluation +

Comment: text
Evaluation: real

Fro URE 7.5: The application of the General Concepts Model to the CMS example

and content, or with an identifier (whose communicative act and content are defined elsewhere,

e.g. in [35]). The communicative acts must be described in the agent communication language

specified in the Agent communication language layer. In the same way, the content must belong

to the content language specified in the Content language layer and the specification of general

concepts.

As can be observed in Figure 7.9, the interactions model is composed of the list of protocols in

the system. Each protocol consists of a list of participants (the first of which is the initiator of

the protocol), a list of parameters, and a sequence of messages. The messages are fanned of a

sender, a receiver, a communicative act and a content (although, for simplicity, this is not shown

in the figure). An example showing a fragment of the interactions model for the Conference

Management System is presented in Figure 7.10, which contains two protocols, SubmitPaper

200

Body r---o Paper
10-

Abstract

body: text <> <> abstract: text

+ 1

Author Title

firstName:text
title: string

lastName: text

<>
1

Affiliation

address: text
email: string

FIGURE 7.6: The paper concept

Rolel
servicel (lisLo f _parameters) Iidescription

servicen (lisLof _parameters) Iidescription

FIGURE 7.7: The general fonn of the participants model

201

Author
write(Paper)

ProgramCommittee
select(Papers, Reviews)

Reviewer
review(Paper, Review)

Ilan original paper is written

Iiselect the conference papers

II review a paper

FIGURE 7.8: The application of the Participants Model to the eMS example

Protocoh
participantl, ... , participantn

parameterl, ... , parameterm
messagel, . , " messagek

Protocolr

FIGURE 7.9: The general form of the interactions model

and ReviewPaper. The latter, for instance, employs two messages for carrying out the interaction

between roles Program Committee and Reviewer.

7.3.4 Social constraints model

The specification of social constraints contains the restrictions imposed on the agents' social

behaviour. Such restrictions are represented by means of organisational concepts, more specif

ically, by organisational rules. Organisational rules are key to the definition of the organisation

and thus of the system itself. For this reason, an agent attempting to join an existing system

must be provided with the set of rules it must adhere to. The specification of social constraints

is formed from the list of organisational rules of the system, expressed in the language defined

in Section 3,3.4. The general form of this model is represented in Figure 7.11. An example con

sisting of two rules in the Conference Management System is shown in Figure 7.12, in which

the first rule states that there must be at least five reviewers, while the second rule states that a

paper must not be assigned to the same reviewer more than once.

202

SubmitPaper
Author, ProgramCommittee
paper, confirmation Number
Author, ProgramCommittee, inform_paper, paper
ProgramCommittee, Author, inform_confirmation, confirmation Number

ReviewPaper
ProgramCommittee, Reviewer
paper, review
ProgramCommittee, Reviewer, requesLreview, paper
Reviewer, ProgramCommittee, informJeview, review

FIGURE 7.10: The application of the Interactions Model to the eMS example

organisationaLrulel

organisationaLrulen

FIGURE 7.11: The general form of the social constraints model

card(Reviewer) 2 5

\if p:paper, r: Reviewer, w: review
card(ReviewPaper(ProgramComittee, r, p, w)) ::::; 1

FIGURE 7.12: The application of the Social Constraints Model to the CMS example

7.3.5 Summary

We have presented a specification for open multi-agent systems. The specification consists of

three main models and an auxiliary model, the latter being the general concepts model, and

the former the participants, the interactions and the social constraints models. As illustrated

in Figure 7.13, each of the main models corresponds to a layer in the system decomposition

presented previously. The auxiliary model contains descriptions that complete the main models,

as depicted in the figure by means of arrows. Also, we based the description of the participants,

interactions and the social constraints models on well known abstractions of roles, protocols and

organisational rules, respectively.

Up to this point, in this chapter we have focused on the creation of a system specification. Based

on the results obtained here, in the following sections we explore the problem of ensuring that

203

Social constraints

Interaction
protocols

Individual
responsibilities

Layers

Social
constraints

model

Interactions
model

Participants
model

General
: concepts
, model

Specification

FIGURE 7.13: Description of the UpdateCall service

what is stated in the specification is observed at run time. Roughly, our approach consists of

checking that the actions performed by an agent do not violate any of conditions stated in the

sections of the specification. However, before proceeding, we present a formal model of the

specification and consider the problem of examining that the specification is complete and free

of inconsistencies.

7.3.6 A model of open systems

In an open multi-agent system specification the details of the internal structure of the agents are

not important, but only their externally visible functionality. This is because the agents in the

system may be constructed by different developers and following different techniques. For the

same reason, the implementation details of the protocols are not relevant, but only their patterns

of interaction. This ensures that the agents need not to be developed with the same tool, should

they comply with the rules of the system. In this section we present a formal model for open

multi-agent systems, based on organisational concepts, and that abstracts the functionality of the

agents and the way they interact, regardless of implementation issues.

The system

We define a model for an open multi-agent system as a tuple (E,N, P, 5,0), where:

1. E is a 4-tuple of set of elements of the system;

204

2. N is the set of the roles' nonfunctional requirements;

3. P is the set of protocols;

4. S is the set of services; and

5. 0 is the set of social constraints.

The identifiers

E, the tuple of elements in the system, has the form (R, P, S, D), where each entry is a set whose

elements are identifiers, as follows:

1. R is the set of role identifiers;

2. P is the set of protocol identifiers;

3. S is the set of service identifiers; and

4. D is the set of general concept identifiers;

The non-functional role requirements

The elements of the set N have the form (r, n, v), where r E R, n denotes a type of non

functional requirement, and v represents a possible value of n. The interpretation of this is that

such a role requires at least that value for the non-functional requirement in order to be played.

For example, in the conference management system,

(ProgrammeCommitteeChair, confidentiality, 1)

indicates that the role Chair must comply with the highest (1) confidentiality. However, it must

be noted that the list of non-functional requirements and their associated values are highly de

pendent on the application and platform used.

The protocols

Each element of P, the set of protocols, is a 5-tuple of the form (p, i, C, A, .M), where:

1. pEP is a unique protocol name,

2. i E R is the initiator of the protocol,

205

3. C c R is the set of collaborators, that is, the roles that participate in the protocol, apart

from the initiator,

4. A c D is the set of input and output parameters,

5. M is the allowed sequence of messages, expressing the order the messages must follow

during the execution of the protocol. This is a sequence of instructions, each of which is

either a message or a compound message. A compound message encompasses a connector

and a set of messages, and represents the concurrency connectors of AUML Concurrency

connectors are used as a means to express that multiple messages are sent at the same

time, and are of three types: and (AND), inclusive or (OR), and exclusive or (XOR).

In the first case all the messages are sent in parallel, while in the second zero or more

messages are sent and in the last case only one message is sent. Each element of M, the

set of messages of a protocol, has the form

(rs, rr, b), where:

r s E R is the sender;

r r E R is the receiver; and

. b is the body of the message.

The services

5, the set of services, consists of elements of the form (r, n, B), where:

r E R is the role to which the service belongs,

S E S is a unique service name, and

BcD is the list of parameters of the service.

o c £ , the set of social constraints, contains the expressions that govern the function of the

system. Each element in this set is an element of the language defined in Section 3.3..1.

Table 7.1 summarises this notation. For simplicity, we do not include the part corresponding to

the sequence of messages, but only the structure of each message.

7.3.7 Ensuring information consistency

A specification describes a system from different perspectives; for example the specification

of protocols deals with the interaction aspects while the specification of participants focuses

on the individual aspect of roles. However, it is essential that these perspectives are not in

contradiction, but describe the system in a consistent form For instance, an organisational rule

cannot reference a protocol that has not been defined in the specification of interaction protocols.

For this reason, we need a mechanism for checking consistency in the specification. Such a

mechanism can be implemented in different ways; for example, by means of a software tool the

consistency can be checked every time the specification is updated. Whatever mechanism used,

the following conditions must be checked.

206

[; element identifiers
R role identifiers
p protocol identifiers
S service identifiers
D concept identifiers

N non-functional reqs.
r role to which applies
n non-functional reqs. identifier
v value

p protocols
p protocol identifier
i initiator
C collaborators
A protocol parameters
M sequence of messages

For each message:
Se sender
Sr receiver
b body

S serVices
s service identifier
r role
B service parameters

0 social constraints

TABLE 7.1: Summary of notation

1. The name of roles, protocols, responsibilities and general concepts must be unique.

2. All the protocols mentioned in the specification must be described in the specification of

interaction protocols.

3. All the roles mentioned in the specification participate in at least one protocol and have at

least one responsibility.

4. All the resources mentioned in the specification must be defined in the specification of

general concepts.

As a final observation about achieving completeness and consistency in a specification, we

should mention the use of organisational patterns. As discussed in Chapter 3, organisational

patterns represent the organisational structure of a system, including the roles of the system,

their protocols of interaction, and organisational rules. Organisational patterns may serve as a

basis on which the specification of a system can be completed, because they already contain

much of the relevant information. Additionally, since such patterns can be regarded as free from

incomplete or inconsistent information (assuming they have been used with success in several

applications), the amount of information needed to be checked is reduced. The usefulness of

207

this approach would be improved by means of a software tool to support the creation of a spec

ification by importing the appropriate organisational pattern, editing of the specification and

checking completeness and consistency.

7.4 Compliance monitoring

As mentioned previously, our approach to the problem of ensuring the integrity of an open sys

tem is to monitor, at run-time, that the system acts in compliance with the specification. In other

words, we are assuming that the integrity of a system is ensured if all the conditions expressed in

the specification are observed. Checking compliance with the specification in open multi-agent

systems must be done at run-time, because, by definition, there is no control over how the differ

ent components of the system are designed and developed. An additional benefit of monitoring

this compliance is that it guarantees that the system behaves correctly, since organisational rules

are part of the specification, and organisational rules ensure the correct behaviour of the system.

A different approach towards ensuring the correct behaviour of agents in an open system is

described in [27], in which Dignum et al. present a norm-based organisational model, OMNI,

that considers the use of violations, sanctions and enforcing roles to enforce compliance of

norms. A violation is a condition that indicates that an agent is in an illegal state, sanctions are

the actions carried against the violator, and enforcing roles are the roles in charge of detecting

the violation. OMNI provides procedures for obtaining these elements from norms, which are

situated at a more abstract level. Compared to our approach, the violations considered in OMNI

are less general than the organisational rules we employ, in terms of the type of constraints that

can be described. In addition, our approach is situated at a level closer to implementation than

OMNI.

Monitoring the compliance of the specification involves the analysis of a large number of con

ditions and situations caused by the actions of agents, for example executing a protocol or per

forming a service. We find it useful to divide this monitoring according to the nature of the

action that caused the situation. Thus, we classify the actions of an agent into static ones and

dynamic ones. Static actions are those that occur at one specific moment of the agent life cycle,

typically during the entry of the agent to the system, or when a role is assigned to the agent.

Dynamic actions, on the other hand, are those which can occur at any other moment. In accor

dance to this, we divide monitoring into static analysis, and dynamic analysis, both of which are

presented below.

7.4.1 Static analysis on agent entry

The moment of its entrance to a system and every moment it attempts to playa role are critical

points in an agent life cycle, since it is important to ensure that the agent is suitable for the

system or the role. In order to obtain meaningful results, we have to make some assumptions

208

Monitor

Q _ fills,
~ W

Multi-agent
System

FIGURE 7.14: The function of the monitor

regarding the way agents enter a system. We assume that each time an agent attempts to enter

the system, some mechanism is used to decide whether its entry is accepted. Once accepted,

agents can play roles, or quit playing roles. Both actions are notified to the system, and the

former needs to be authorised.

To clarify this point, suppose that an agent intends to enter the system. It must first receive

approval from a run-time component, hereafter called the monitor, as depicted in Figure 7.14.

As suggested in the figure, the only way for an agent to access'the system is by getting approval

from the monitor, based on the characteristics of the agent and the specification of the system.

The monitor provides a means to consider aspects that are verifiable statically, for example

to detect if a protocol has an incorrect initiator role, in the sense that it does not match what is

stated in the specification. However, the monitor does not consider aspects that are not verifiable

statically, such as if a protocol is executed at the wrong moment.

With these considerations in mind, we proceed to analyse how to check the observance of a

specification. We do this model by model, but omitting the general concepts model, since there

is nothing to analyse because it only supports the other models.

7.4.2 Run-time participants analysis

The run-time analysis for the participants has the aim of ensuring that the agents comply with

the participants ' model of the specification. This can be done statically, at the moment the agent

requests authorisation to playa given role. Note that the agent can be playing other roles, or no

role at all, before attempting to playa specific role. When an agent requests authorisation to play

a role, the monitor must check that the characteristics of the agent, and the way it implements

the role , match the conditions stated in the participants model. More specifically, given the role

209

in question, the services as implemented by the agent, and the resources that the agent possesses,

the monitor must check that the following conditions hold.

lit The role that the agent intends to play exists and is available; that is, the role has not

exceeded its cardinality.

lit The agent has enough resources to satisfy each of the non-functional requirements speci

fied in the participants model.

lit The agent implements all the services specified in the model, in the way they are specified,

in terms of name and parameters.

lit Optionally, for more strict checking, the agent does not implement other services apart

from those specified in the modeL

Note, however, that checking the services in this way only offers a guarantee that their inter

faces have been correctly implemented, but does not say anything about whether they have been

correctly implemented; for example, if instead of adding two numbers, they are multiplied.

7.4.3 Run-time protocol analysis

During the entry of an agent to the system, we can also check, to some extent, whether the

protocols implemented by the agent correspond to those specified. Essentially, the procedure is

a matter of matching the characteristics of both protocols: those of the agent implementation and

those specified in the system. Most of the checking is straightforward, except the part regarding

the sequence of messages of the protocol, which depends on how many features of the sequence

diagrams are considered. According to this, the algorithm is divided into two parts: matching the

head (which deals with matching the initiator, collaborators and parameters) and matching the

messages (which deals with checking the sequence of messages). Protocols are accepted only

if they are accepted in both parts. However, it must be noted that this procedure does not check

the dynamic characteristics of the protocol, such as the actual sequence in which the messages

are sent, nor the actual content of the messages.

In the following, such a procedure, together with its inputs and outputs, is presented, and have

been illustrated with diagrams, Table 7.2 shows the inputs in tabular form, while Figure 7.15

shows an example of a sequence of messages of a hypothetical protocol.

7.4.3.1 Algorithm for matching the head

Matching the head involves checking that the role exists and that the protocols correspond to

those specified in the interactions modeL The interactions model was presented in Section 7.3.3,

and is refined below using a notation that is more appropriate for expressing the algorithm.

210

Name of role intending to play
List of protocols intending to use

For each protocol: Initiator
Collaborators
List of Input parameters
List of Output parameters
Sequence of messages

For each input and output parameter: Name
Type

For each message: Sender
Receiver
Communicative act

TABLE 7.2: Inputs for the protocol checking procedures

Types of messages

I :RoJs_1 I

MS9_1
):

{n>O} MS9_2
);

H
MS9_3

j
MS9_4

MS9_5
"

, <h
MS9_6

FIGURE 7.15: Different Connectors in AUML

Let R = {rl' r2, ... , rd be the set of roles of the system (where k is the number of roles), and

QI the set of protocols associated to role rz.

QI contains the protocols associated with role rl, so it can be written as Qz = {qi, qb,· ., q~J,
where mz is the number of protocols associated with role l, and each q; denotes a protocol and

thus have the form

qj = (P~, ij, cj, A~, MY), where:

pj is the name of the protocol,

i; E R denotes the initiator,

cj c R denotes the collaborators,

A; is the (ordered) sequence of parameters of the protocol, each consisting of a name and a

211

INPUTS:

'I' the role in question; and
Q ~ P, the set of protocols involving r, as implemented by the agent

OUTPUT:

acceptance:
true if the header of the protocol complies with the specification;
false otherwise

ALGORITHM:

acceptance = false
'I' ~ R =? exit
:Je such that ('I' = re) 1\ (1::; e ::; m)
v(p,i,C,A,M) E Qr

p ~ {qi, q2) ... ,q~J =? exit
:Jt such that (p = qf) 1\ (1 ::; t ::; me)
i =f=. i't =? exit
C =f=. Cf =? exit
v (a,y) E A

(ai, yl) = nextElement [Mn
(al =f=. a) V (yl =1= y) =? exit

acceptance = true

FIGURE 7.16: Algorithm: MATCHING THE HEAD

type, so we can express it as

A; = ((al) t 1)) (a2) t2)) ...) (am~' tm})), where m; is the number of parameters of the pro

tocol, and finally

M; is the sequence of messages.

The algorithm is presented in Figure 7. J 6 and, as can be observed, is straightforward and con

sists of checking the compliance of the protocol name, the initiator, the collaborators and the

sequence of parameters of the protocoL

7.4.3.2 Algorithm for matching the messages

In the second part of the procedure, matching the messages, the objective is to check that the

sequence of messages stated in the specification is equivalent to the sequence of messages im

plemented by the agent, so that any possible difference in the expression of the protocol is not

important for execution. (From this perspective, we can ignore several features of sequence di

agrams, but we do have to consider some others which are relevant when describing a sequence

of messages.)

212

Before proceeding with the algorithm, it is worth mentioning the extent of the algorithm in terms

of how the sequence of messages is formed. Our representation of protocols is based on AUML

sequence diagrams [66], which are rich in features, some inherited from UML [43) sequence

diagrams and some exclusive to agents. Included in these features are multiplicity of the mes

sages - that the number of messages sent and the number of receivers of the messages must

correspond to those of the specification - and the type of message delivery - synchronous or

asynchronous. Also included are two types of message structure: conditions and concurrency

connectors. A condition is a logical expression that determines if a message is sent or not. As

was mentioned before, concurrency connectors are used as a means to express that multiple

messages are sent at the same time and are of three types: and (AND), inclusive or (OR), and

exclusive or (XOR).

However, for our purpose (checking whether two sequence diagrams represent essentially the

same protocol) not all the features are relevant. While we need to consider the roles involved

in the protocol and their existence in the system, and the and, or and exclusive or parallel

connectors, the conditions of messages can be ignored since they are meaningful only at the

execution of the protocol. We also left unconsidered: agents, since we only allow roles as

participants of protocols; lifelines and threads of interaction, since they are not relevant in the

functionality of the protocol; nested and interleaved protocols, since they are not considered in

our definition of protocol; and protocol templates, for the same reason.

Since this algorithm is meant to be executed statically, it simply checks that the sequence of

messages of a protocol matches the sequence specified in the system, but in the case of messages

joined by a concurrency connector, the messages can appear in any order. Conditions are just

ignored as they are relevant only at run-time.

To describe this algorithm we make use of the following functions. TIle first two functions oper-

ate on a message instruction, while the last two operate on a compound message. The message

function returns true if the message instruction is a simple message, and not joined to other

messages by a concurrency connector. The compound_message function returns true if the

message instruction is a compound message, (a set of messages joined by a concurrency con

nector). The connector _0 f function denotes the concurrent operator of a compound message (

an element of {AND, OR, X 0 R}). Finally, the seLo f _messages function returns the set of

messages of a compound message. Note that this function returns a set, not a sequence, since

the order of the messages is not important.

The algorithm is presented in Figure 7.17. As can be observed, for the protocol to be accepted,

the messages are compared. Simple messages are examined for equality, whereas for compound

messages of type OR and XOR, equality is not required, but being a subset is enough. An

example of a sequence of messages that does not match the sequence diagram of Figure 7.15 is

shown in Figure 7.18, in which the compound message in the second position of the sequence

is not a subset of the corresponding compound message of the diagram.

213

INPUTS:

S = (ml' m2, .. , m n), the sequence of message instmctions as described in the specification
S' = (mi, m;, ... , m~), the sequence of message instmctions as implemented by the agent

OUTPUT:

acceptance

ALGORITHM:

acceptance = false
\ll E {I, ... , n}

message (mz) =?

ml #- m; =? exit
compound_message (mz) =?

connectoLo f (mz) = AND II
seLof_messages (mD #- seLof_messages (mz) =? exit

connectoT_of(mz) E {OR,XOR}II
-, (seLof _messages (mD ~ seLof _messages (ml)) =? exit

acceptance = true

FIGURE 7.17: Algorithm: MATCHING THE MESSAGES

Ca_l

Ca.2
Begin and

End

Ca3
CaA

Begin or
Ca..5
Ca_6
Ca]

End

FIGURE 7.18: Example of sequence of messages

214

As can be observed, the algorithm for matching the messages presented above checks exact

matches. However, under certain circumstances (for example under tight constraints of effi

ciency), a more relaxed form of checking might be convenient, or enough. In those cases,

instead of checking that two protocols are identical, it can be checked whether one protocol is a

particular instance of the other. For example, regarding the OR concurrency connector, instead

of checking that both protocols contain the same messages, it might be enough to be sure that

the messages of one protocol are a subset of the messages of the other protocol.

7.4.4 Run-time organisational rules analysis

As stated in Section 7.2.4, organisational rules are classified into static and dynamic rules, static

ones being those that apply only at the moment at which an agent enters the system. In general,

among all the possible types of organisational rules, just those dealing only with roles can be

checked statically (which leaves out rules dealing with protocols and resources). The most

common kinds of this type of rule are the following.

• Cardinality of roles. These rules establish the maximum number of times a role can be

played at the same time; for example, no more than 20 reviewers are allowed.

• Sequence of roles. These rules constrain the sequence in which the roles can be played;

for example, an agent cannot play the role of buyer if it has not played the role of employer

previously.

• Exclusive roles. These rules express the fact that two or more roles cannot be played by

the same agent at the same time; for example, an agent cannot play the role of buyer and

seller at the same time.

In Figure 7.19 an algorithm is presented to check the compliance of static organisational rules.

As can be noted, the algorithm is straightforward and consists of checking each of the different

type of rules mentioned above.

In order to check these types of rules, a record must be maintained of the active agents in

the system, together with the roles they are playing and the roles they have previously played.

Figure 7.20 depicts a data structure that fulfils this purpose, in which a list of the active agents

is maintained. Any active agent, for example Ai, has two lists associated with it, one for the

role currently being played, and one for the roles played in the past. The algorithm assumes that

the data structure accurately keeps track of all the entrances and departures of the agents to the

system.

215

INPUTS:

The list of organisational rules involving roles
The agent
The role attempting to be played

OUTPUT:

acceptance

ALGORITHM:

acceptance = false
Select those rules involving the input role
Evaluate each of these rules
if the rule is about cardinality then

if according to the register, the role has reached its maximum cardinality then
acceptance = "exceeds maximum cardinality"
exit

end if
else if the rule is about sequence then

if the rule states that some other role must be played before and,
according to the register, that is not the case then
acceptance = "violates sequence"
exit

end if
else if the rule is about exclusiveness then

if according to the register, the offending role is being played then
acceptance = "violates exclusiveness"
exit

end if
end if

FIGURE 7 19: Algorithm: CHECKING STATIC ORGANISATIONAL RULES

7.4.5 A design for checking static conditions

In the previous sections, we focused on describing the information and procedures required for

checking the observance of static conditions. Based on this, in the following we present a high

level design that shows how this checking can be carried out.

For the purpose of checking, the agent must provide the following information to the monitor.

.. The roles it is intending to play.

• The protocols in which it will participate, either as the initiator or as a collaborator.

• The list of services it will perform.

216

Active agents

Roles
previously

played

Roles currently
being played

FIGURE 7.20: Data structure of agents and their roles

This information is represented in Figure 7.21, sUlTounded by an oval. The figure also shows

other relevant information required by the monitor, which consists of the specification of the

system (surrounded by bins), and the register with the role assignments (surrounded by a cloud).

Figure 7.22 shows the main entities stored in the monitor's database. As can be seen, the sys

tem maintains a list of roles where each role performs one or more protocols. Protocols are

formed of initiator, collaborators, input and output parameters and a sequence of messages (for

a description of these characteristics see Subsection 7.2.3). Each message is described by the

role that sends it, the role that receives it, the communicative act involved, and the position the

message occupies in the sequence.

The monitor is formed of four well defined components, which are shown in Figure 7.23 and

described below. The [ntelface to agent information module is in charge of obtaining the rele

vant information from each agent intending to join the system (see Section 7.3). In the simplest

case, the module may obtain the information from a file. However, in some implementations

the information could be obtained directly from the code of the agent. In the cases in which the

specification is not actually tied to the code, there may be inconsistencies, the purpose of the

monitor being to check compliance rather than ensuring integrity.

The System specification database contains the specification of all the roles in the system (see

Section 7.3), The database is organised by roles and consists mainly of text fields. Its main

job is to retrieve the information needed by the checker module, and occasionally to update the

information of the system.

217

System Role,

Role2

\

Organisational
rules

Structural rules

Roles model

Interactions
model

Role I
Assignment

module

Monitor

FIGURE 7,21: InfoITIlation needed by the monitor

Role Name

Protocol, Protocol Collaborator,

Protocol, Collaborator,

'" ",

Protocolm Collaborator,

InputParameter,

InputParameter2

",

InputParameterp

OutputParameter,

OutputParameter,

'"

OutputParameter,

Message,

Message,
/Message

I
Messageq

FIGURE 7,22: Monitor's database

218

lorigin I
Destination

ICommunicative act I

Monitor

I nterface to

C~ agent I information

1

<~ Notifier Checker

J
~ ---------

System
specification

FIGURE 7.23: Components of the monitor

The procedures to decide if the agent complies with the system specification are contained in

the Checker module. In the case of checking if a sequence of messages complies with the

specification, the data flow is depicted in Figure 7.24. As can be observed, the problem of

deciding if the two sequences of messages match is translated to the problem of deciding if two

Finite State Machines (FSM) are equivalent, and this is a problem whose solution is well known

in Computer Science [83]. The procedure to obtain a FSM from the sequence diagram is shown

in Figure 7.25, which basically consists of separating the creation of states and transitions in

accordance to the type of messages of the sequence diagram.

The last module, the Notifier, is in charge of notifying the acceptance or rejection of the agent

to join the system. The actual implementation of this module depends on who is to be notified,

for instance a human user, the agent itself, or another component of the system.

7.S Conclusions and further work

Since agents are autonomous and pro-active entities, their behaviour cannot be completely pre

dicted in open complex systems. This unpredictable behaviour can put at risk the integrity of

a system. Thus, some mechanism is needed to guarantee the integrity of the system. Such a

mechanism can be divided into two parts, the clear statement of what is considered to be correct

behaviour, and a form of checking that any agent behaviour complies with that statement. In

this chapter, we have presented our approach for the construction of these two parts of such a

mechanism. For the first part, we proposed a model for specifying open multi-agent systems.

219

000
,:-.-...;
, , ,
, ~

AUML sequence
diagram

Finite State
Machine

System Specification

Checker

FIGURE 7.24: Checking protocol compliance

This specification of a system states what a valid agent behaviour is, regardless of its the ac

tual implementation. Based on this model of specification, for the second part we presented a

high-level design for checking the compliance of static aspects of the specification. The check

ing of the dynamic aspects of the specification, however, requires additional considerations, as

sketched below.

Dynamic constraints must be continuously checked through the execution of a system. As stated

earlier, we represent dynamic constraints by means of dynamic organisational rules. Since pro

tocols and activities can be executed at any time, just as resources can be modified, any organi

sational rule involving at least one of these elements is considered to be dynamic, and must be

continuously monitored to check its compliance. For the purpose of checking these dynamic

characteristics, the monitor must be upgraded in several directions. First, its database must

contain the organisational rules to be checked, and procedures to manipulate them. Such ma

nipulation goes from basic tasks such as retrieval, or deciding if current conditions observe a

220

INPUTS:

a sequence of messages corresponding to a protocol

OUTPUT:

a finite state machine representing the sequence

ALGORITHM:

create new state
start_state = new state
currenLstate = new state
for all message in the sequence diagram

if message is simple then
create new _state
create new transition from currenLstate to new_state

with the communicative act of the message
currenLstate = new _state

else if the message connector == OR then
create new _state
create a new transition from currenLstate to new _state

with null symbol
create a new transition from new _state to itself

for each concurrent message, using their
communicative acts

currenLstate = new _state
else if the message connector == XOR then

create new _state
create a new transition from the currenLstate to new _state

for each concurrent message, using their
cOIlh'11upicative acts

currenLstate = new state
else if the message connector == AND then

create new _state
for each possible permutation of the concurrent messages do

create a path of transitions from currenLstate to new _state
with the communicative acts, as they appear in the permutation

end for
currenLstate = new_state

end if
end for

FIGURE 7.25: Algorithm: TRANSFORMING A SEQUENCE DIAGRAM INTO A FSM

221

rule (rule interpretation and evaluation), to more sophisticated tasks like indicating the reason

for failure of a rule, or detecting contradictory or redundant rules.

Second, since dynamic organisational rules are constraints on the elements of system (roles,

protocols, activities and resources), there must be a way to continually sense conditions related

to these elements; for example, the order in which protocols are performed. The obvious way

to do this is by storing in a single repository all the relevant information, namely the protocols

and activities executed, together with their parameters. (The information dealing with the roles

is stored in the monitor's database and the infonnation about resources can be obtained from the

parameters, assuming that each resource in the system can be uniquely identified.) This cen

tralised approach, however, presents several disadvantages in tenns of robustness and efficiency,

since failures in this component may result in a total breakdown of the checking process. Also,

concentrating such a large number of messages in one component may cause communication

bottlenecks to appear. In order to simplify the design, the checking of dynamic organisational

rules can be taken out of the monitor, and assigned to a new component, the warden, as follows.

The warden is in charge of ensuring that dynamic organisational rules are observed during the

execution of the system. To accomplish this task, the warden is provided with relevant infonna

tion from the monitor, the agents of the system, and from components c~lled collectors, whose

task is to filter the infonnation provided by the agents. Figure 7.26 shows the overall operation

of these components for checking dynamic organisational rules. First, when agents execute an

activity or a protocol, they notify the collectors of the type of protocol or activity and the pa

rameters used. When the collectors receive this infonnation, they decide if it is relevant to the

checking procedure, in which case they send it to the warden. The decision is made by em

ploying a repository of organisational rules elements (ORE in the figure) which contains all the

elements, and only those elements, of the system involved in one or more organisational rules.

Note that to carry out this task, the collectors only need a list of organisational rules elements,

so they can be destroyed and created as many times as needed. After receiving infonnation

from any collector, the warden updates its storage infonnation (IN in the figure) and evaluates

the corresponding organisational rules to verify that they have not been violated. The monitor

provides the warden with the information regarding roles.

Some aspects of this design, as well as of the corresponding to static conditions, require further

work to increase their applicability. The main aspects still to address are as follows.

First, since our design does not show, in detail, how to accomplish the monitoring of dynamic

specifications, a more detailed design is needed. Second, assuming that the violations to the

specification can be detected, some policies are needed to deal with them, as well as mechanisms

to enact these policies. For example, when an attempt to violate a specification has arisen, the

actions in question can just be ignored, or the involved agents can be notifi~d about the violation

and, additionally, about the conditions that originated it. In this case, the study of such policies

and the design of such mechanisms are needed. Finally, it is necessary to determine the way

these mechanisms affect the nOlmal operation of a system, in tenns of efficiency and robustness.

222

D

'I Ag,"" 1

./

FIGURE 7.26: The operation of the warden

In summary, although guaranteeing the integrity of an open system is an essential paJi of the

system life cycle, it has been largely unconsidered in agent research. As far as we are aware,

this is the first attempt to solve this problem in a general form. Specifically, our contributions

for the solution of this problem are the following.

OIl We have created a model for the specification of open multi-agent systems. This model is

based on organisational concepts, can be instantiated for a specific system for describing

the facilities provided by a system, and the way to access them, as well as for establishing

the valid behaviour of the agents of the system. Such a description is important for the

construction of new agents joining the system, and also forms a basis for monitoring that

valid behaviours are observed during the operation of the system .

• We have created a classification of the conditions checked at run-time. This classification

differentiates between static and dynamic conditions, which is essential for the design of

run-time mechanisms that monitor the compliance of the conditions.

'" We have designed a procedure for analysing equivalence between two protocols. Due to

the use of AUML concurrency operators, the sequence of messages in a given protocol can

be described in different ways. Thus, when monitoring the compliance of agents joining a

system, a procedure is needed to analyse if the description of a protocol, as implemented

by the agent, corresponds to the same protocol, as described in the specification. In this

chapter, we have presented a procedure, based on the equivalence of non-deterministic

finite automata that decides if two sequences of messages refer to the same protocol.

223

.. We constructed a high level design for monitoring the compliance of static conditions.

This design considers the information required for the monitoring, as well as procedures

and components to accomplish it. The information required about the system and agent is

based on the model of specification.

224

Chapter 8

Conclusions and future work

8.1 Summary

In this thesis, we have sought to address the problems involved in taking agent-oriented method

ologies to a point where they can be used effectively in the development of open systems. With

this aim, in this thesis we have sought to develop constructs and tools, as follows.

First, we have dealt with the development of a framework for constructing organisational pat

terns, which are representations of standard organisations, and are used for supporting the or

ganisational design of multi-agent systems. Included in this development is the creation of a

model for describing organisations.

Second, we have dealt with modelling the internal composition of agents, for which we have

presented a means to develop agent architectural patterns to enable the incorporation of agent

architectures into an agent design process. This includes techniques for obtaining t.~e elements

required to use the pattern from the results obtained by the design process. We have also devel

oped a catalogue of such patterns, populated with different instantiations of agent architectures.

By providing patterns for different architectures in this way, the catalogue avoids dependency

on a specific architecture.

Next, we have described a methodological process that incorporates the tools mentioned above

(organisational and architectural patterns), and that includes the use of iterations for decompos

ing the development of a system into more manageable units. This methodological process has

been exemplified and assessed by means of a non-trivial case study, taken from an independent

source.

Finally, we have presented a model for the specification of open systems which, when instan

tiated for a particular system, produces a specification whose compliance helps to ensure the

correct operation of the system. This specification also describes the facilities offered by the

system, and a means to access them, which is necessary for the construction of new agents

joining the system.

225

8.2 Contributions

In addressing the problems involved in taking agent-oriented methodologies to a point where

they can be used effectively in the construction of open systems, we have developed a series

of ideas which have led to the construction of specific techniques and tools, each addressing a

particular problem. These techniques and tools constitute the main contributions of this thesis

and are described in the following.

L LEVOR, a language for expressing organisational rules was created. Organisational rules

are restrictions on how the elements of an organisation relate, and are used for speci

fying the behaviour of a system. However, in order to be effective, the description of

organisational rules need to be exact. LEVOR is a language that allows the expression

of organisational rules in such a way that their meaning is exact. Additionally, LEVOR

is intuitive, easy to use, and can be extended to consider unforeseen situations. Being a

computable language, LEVOR can be used to evaluate organisational rules at run-time,

for monitoring their compliance during the operation of a system.

2. A model for characterisation and description of organisational structures was developed.

Organisational structures are usually described by informal methods, such as using plain

English or figures. Although useful, these methods are imprecise for specifying the archi

tecture of a system - as in agent-oriented methodologies based on organisational con.

cepts - or for creating representations of organisational structures - as in catalogues of

organisational patterns. In this thesis, we have presented a model that allows the exact and

complete representation of the components of an organisational structure, and from which

a graphical representation can be obtained. In particular, the model provides a character

isation of the control regime of an organisational structure which identifies and classifies

the most common types of control relationships.

3. A layout of organisational patterns was constructed. A pattern layout provides a means for

describing the problem addressed by a pattern, the context in which this problem arises,

and a solution to solve it. In particular, this layout of organisational patterns provides a

way to describe patterns of organisational structures, and is formed of sections commonly

found in any pattern layout, as well as sections specific for the description of organi

sational structures (which are based on the model for characterisation of organisational

structures mentioned above). This layout can be used in the construction of catalogues of

organisational patterns that support the organisational design of multi-agent systems, as

was described in the methodological process developed in this thesis, and exemplified in

associated the case study.

4. Instantiations of the layout for organisational patterns were developed. Three instantia

tions of the layout for organisational patterns were presented in this thesis, which served

as examples of the use of the layout, and also as the basis for the construction of a cata

logue of organisational patterns. Since these instantiations are pre-defined solutions that

226

can be re-utilised in different applications, they reduce development time by avoiding the

need to begin the design from scratch. They also facilitate the design of a system, since

the developer can focus only on those aspects specific for the application in question.

5. A mechanism for incorporating the use of agent architectures into the agent design phase

was created. Agent design is an essential phase in the development of a multi-agent sys

tem, but this is typically not considered in several agent-oriented methodologies. In this

thesis, we have not only considered this phase, but we have also provided tools to support

it. These tools are based on the use of architectural patterns, and consist of a number of

patterns that correspond to well known architectures, procedures for incorporating these

patterns into the agent design phase of a methodological process, and methodological

guidelines for the generation of new patterns. The architectural patterns provided can be

used to significantly speed up the design of an agent, as was shown in the the case study,

since the procedures help to match the inputs of the target pattern to the requirements pro

vided by a methodological approach, and the guidelines assist in the process of creating

architectural patterns for other agent architectures.

6. A methodological process for the design of multi-agent systems was developed. Although

based on an existing methodology (Gaia), this methodological process completes and ex

tends it with novel and valuable contributions. First, it incorporates an agent design phase,

which includes models and activities to produce them. Second, integrated within the pro

cess is the use of organisational and architectural patterns, that speed up the development

of a system by providing pre-defined solutions to the problems of determining the organi

sational structure of the system, and the internal composition of each agent of the system,

respectively. Finally, the process incorporates an iterative approach that decomposes the

development of a system into simpler, more manageable units, and allows the generation

of executable versions of the system for each unit. A decomposition like this serves to ob-

tain user feedback from early stages of the development and, in consequence, decreases

the risk of building the wrong system.

7. A model for the specification of open multi-agent systems was created. This model pro

vides a means to create specifications for open systems. Specifications are essential in

open systems because they state the facilities provided by the system and the way to ac

cess them, which is important for the construction of new agents incorporating to the

system. Additionally, specifications establish what is considered a valid behaviour of the

agents of a system, and thus form the basis for monitOling that these are observed during

the operation of the system.

8. A procedure for analysing equivalence between two protocols was designed. An impor

tant aspect of the specification of an open multi-agent systems refers to the protocols of

agent interaction. To this end, the specification establishes, for each protocol, which se

quences of messages are considered valid. However, depending on the way in which these

sequences are described, it can be the case that one sequence has associated more than one

227

description. In this case, when monitoring the compliance of agents joining the system,

a procedure is needed to analyse if the description of a protocol as implemented by the

agent, corresponds to the same protocol, as described in the specification. In this the

sis, we have presented a procedure, based on the equivalence of non-detelministic finite

automata, that decides if two sequences of messages refer to the same protocol.

LEVOR can be used for the analysis and evaluation of organisational rules, for instance, to

monitoring their compliance at run-time. LEVOR and the model for organisational structures,

together, can be used to describe organisational structures. The descriptions obtained in this way

can be used for different purposes, for example, for documenting a system or, as in this thesis,

for the creation of organisational patterns.

The organisational patterns included in the thesis, and other possible organisational patterns

generated by using the template, support the organisational design of a system and promotes

re-utilisation. Similarly, the architectural patterns support the design of agents in a system, and

help to avoid dependence on specific architectures.

The methodological process helps to manage the development cycle, with emphasis on control

ling the risk of developing the wrong system and on keeping the project on time. Finally, the

specification of open systems supports freedom to choose the most convenient fOlm of devel

opment, and is also useful in monitoring that the behaviour of agents does not put at risk the

integrity of a system.

8.3 Limitations

In spite of its contributions and benefits, there are some limitations in this work, as described

below. First, the tools provided in this thesis are potentially suitable to be used as part of other

methodologies, or even as stand-alone techniques, but additional work is needed to achieve this.

In the case of organisational patterns, their description is tied to the characterisation of roles and

protocols used in Gaia, which is not the same for other methodologies. However, the simplicity

and the neutrality of these characterisations would facilitate the adaptation of the patterns. The

case of the architectural patterns is slightly different, since they rely on agent architectures which

are independent of any specific methodology. As for the methodological process, the basic

idea of decomposing the development into iterations can be easily translated to other processes,

especially for those methodologies that are extensions of Gaia (such as Roadmap [77]) or similar

in structure to Gaia (such as SODA [99]).

Second, regarding the patterns, both organisational and architectural, although we have provided

a layout, and some instantiations, the catalogues are immature, contain only a small number of

patterns, and would benefit from refinement by the type of feedback obtained by recurrent use.

In general, software patterns achieve maturity by constant use and by incorporating feedback

provided by their users. In the long term, this process of utilisation and feedback incorporation

228

enhances a pattern with features that have proven to be useful in a significant number of appli

cations, and eliminates from the pattern features that are particular to only a reduced number of

situations. However, since the multi-agent approach is a relatively new approach, this maturity

is not likely to occur in the short term. Nevertheless, this process can be accelerated by the

construction of tools such as those provided in this thesis.

Third, the methodological process presented here does not consider in detail the phases of re

quirements analysis and implementation. These phases play an important role in development,

the former by collecting and organising the information needed to understand the problem and

the objectives pursued by the system, and the latter by providing the ultimate product of the

development process, which is an executable version of the system. Thus, it is important to

enhance the process with a complete consideration of these phases. The modular form in which

the process is organised, however, lead us to believe that the incorporation of these phases can

be achieved without significantly affecting the existing phases.

Fourth, regarding the monitoring of open multi-agent systems, we have provided a high-level

design for checking the compliance of dynamic specifications. This high-level design, however,

is far from a design from which a straightforward implementation could be obtained, since it

does not provide solutions to problems such as how to obtain the information needed, how

to minimise the traffic of information, what type of mechanism should be used to analyse if

compliance is achieved, and what to do when a violation has been detected. We have, however,

established the basis on which solutions to this problems can be devised, such as the model of

specification, the differentiation between static and dynamic specifications, and a manipulable

language for expressing this type of specification.

8.4 Future work

There are some areas of this thesis that would provide valuable benefits if they are subject of

further work. In the following we describe these areas and briefly outline the work required for

their completion.

The catalogues of organisational patterus and architectural patterns are potentially suitable for

being used as stand-alone tools, or as part of other methodologies, for which some additional

work is required. To begin with, those aspects of the patterns layout that depend on a partic

ular methodological approach must be identified. For example, in the case of organisational

patterns, these aspects include the form in which the elements of an organisation (such as roles

and protocols) are described. These aspects can then be either replaced or adapted to fit other

methodologies based on organisational concepts. Moreover, it can be possible to constructfam

ilies of layouts that can be customised for a specific methodology.

In the case of architectural patterns, the process of adaptation to other methodologies can be

facilitated by the absence of an agent design phase in many methodologies, and the fact that

229

agent architectures, on which the patterns are based, are standard tools, which do not depend on

the methodology used. For those methodologies which do not include an agent design phase, the

incorporation of the whole agent design phase presented in this thesis (including architectural

patterns) can be a better option. For those methodologies which already include an agent design

phase, only the procedures for generating the inputs to the pattems, from the outputs provided

by the methodology in question, would require adaptation. Nevertheless, it must be noted that

our architectural pattems use object-oriented notation and techniques, which can be unsuitable

for some applications.

Further work is also needed for using organisational patterns in the development of large sys

tems, in particular, when comparing different patterns for determining the pattern that best mod

els a given system. In the process presented in this thesis, such comparison largely relies on

visual examination, which can be adequate for small-sized systems and a small number of pat-

terns. However, for systems involving a large number of roles and interactions, or when the

number of patterns is significant, it is difficult to compare the structures visual1y, thus making a

fully automated comparison process necessary. Such a process can be based on the model for

organisational structures presented here.

For a complete coverage of the development cycle, the requirements analysis and implementa

tion phases need to be incorporated into the methodological process presented in this thesis. The

requirements analysis phase can be based on those requirements analysis techniques that have

already been applied to agent-based methodologies, for example, goal-oriented requirements

engineering [22J, and agent-oriented requirements engineering [130]. On the other hand, the in

corporation of the implementation phase requires the selection of some specific platforms, and

of methodological guidelines to obtain a detailed specification, from design models, for these

platforms.

Additionally, further work is required for the development of a graphical tool for supporting

the different phases of the methodology. Such a tool is needed to facilitate and speed up the

application of the methodological process (including the production of models), as well as for

detecting inconsistencies and conflicts between the models, and generating documentation.

Finally, further work is required to produce a more detailed design for monitoring the compli

ance of dynamic social constraints. This design must include mechanisms for the analysis and

evaluation of the constraints, for obtaining the information needed for such analysis, and must

provide strategies to follow when a failure in the compliance with the constraints is detected.

8.5 Concluding remarks

In spite of its mUltiple benefits, agent-based computing has not received widespread uptake, par

ticularly in sectors such as industry and commerce. This can be explained as a combination of

several factors, such as the relative youth of the approach, and the natural resistance to change of

230

human organisations. However, the lack of maturity present in CUlTent agent-based software en

gineering also negatively affects its acceptance. Although overcoming this immaturity is partly

a natural process that requires time, it also requires the development of tools and techniques to

provide software developers with methodologies that are comprehensive and easy to apply.

Agent-based computing will play an important role in the computing world of the next years

and, eventually, the multi-agent approach may become the dominant software paradigm for

complex systems development. These are not only expectations, but predictions based on CUlTent

evidence. However, the rate at which the multi-agent approach might become dominant largely

depends on the rate at which agent-oriented software engineering reaches the required maturity.

We believe that work like that presented in this thesis is impOltant as a step even to approach

such levels of maturity, especially if we are to realise true industrial take-up and application.

231

Bibliography

[1] Gregory D. Abowd and Elizabeth D. Mynatt. Charting past, present, and future research

in ubiquitous computing. ACM Transactions on Computer-Human Interaction, 7(1):29-

58,2000.

[2] Magenta Multi agent Platform. http://www.magenta-

technology.comltechnology/multiagentl, 2006.

[3] Agentis. http://www.agentissoftware.comlen/solutions/components.jsp. 2006.

[4] ANSI. http://logic.stanford.edulkif/specification.html, 1995.

[5] Ofer Arazy and Carson Woo. Analysis and design of agent-oriented information systems.

The Knowledge Engineering Review, 17(3):215-260,2002.

[6] Y. Aridor and D. Lange. Agent design patterns: Elements of agent application design. In

Autonomous Agents (Agents '98). ACM Press, 1998.

[7] G. Beavers and H. Hexmoor. Teams of agents. In IEEE International Conference on

Systems, Man, and Cybernetics, volume 1, 2001.

[8] Ken Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change,

Second Edition. Addison-Wesley, 2004.

[9] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos.

Tropos: An agent-oriented software development methodology. Autonomous Agents and

Multi-Agent Systems, (8):203-236, 2004.

[10] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation, 2(1):14-23, 1986.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented

Sojnvare Architecture. Wiley, 1996.

[12] Stefan Bussmann, Nicholas Jennings, and Michael Wooldridge. Multiagent Systems for

Manufacturing Control. Springer, 2004.

232

[13] Giovanni Caire, Wim Coulier, Francisco Garijo, Jorge Gomez-Sanz, Juan Pavon, Paul

Kearney, and Philippe Massonet. Methodologies and Software Engineering for Agent

Systems, chapter The MESSAGE methodology. Kluwer Academic, 2004.

[14] K. M. Carley and L. Gasser. Multiagent Systems, chapter Computational Organization

Theory. MIT Press, 1999.

[15] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-driven infor

mation systems engineering: The tropos project. Information Systems, 27(6):365-389,

2002.

[16] Luca Cernuzzi and Franco Zambonelli. Dealing with adaptive multi agent systems or

ganizations in the gaia methodology. In 6th International Workshop on Agent-Oriented

Software Engineering (AOSE 2005),2006.

[17] A. Chavez and P. Maes. Kasbah: an agent marketplace for buying and selling goods.

In First International Conference on the Practical Application of Intelligent Agents and

Multi-agent Technology PAAM'96, pages 75-90. Practical Application Company, 1996.

[18] L. Chung, B. Nixon, E. Yu, and l Mylopoulos. Non-functional Requirements in Software

Engineering. Kluwer Academin Press, 2000.

[19] Alistair Cockburn. Agile Software Development. Addison-Wesley, 2001.

[20] Massimo Cossentino, Piermarco Burrafato, Saverio Lombardo, and Luca Sabatucci. In

troducing pattern reuse in the design of multi-agent systems, 2002.

[21] R. Scott Cost, Ye Chen, Tim Finin, Yannis Labrou, and Yun Pengo Using Colored Petri

Nets for Conversation Modeling, volume 1916 of Lecture Notes in AI, pages 178-192.

Springer-Verlag, 2000.

[22] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition.

Science of Computer Programming, (20):3-50,1993.

[23] W. Davis and P. Edwards. AGENT-K: An integration of AOP and KQML In Proceedings

of the CIKM'94 Workshop on Intelligent Agents, 1994.

[24] Scott A. DeLoach. Multiagent systems engineering: A methodology and language for

designing agent systems. In Agent-Oriented Information Systems (AOIS'99), pages 45-

57, 1999.

[25] Scott A. DeLoach. Modeling organizational rules in the multiagent systems engineering

methodology. In R. Cohen and B. Spencer, editors, 15th Canadian Conference on Artifi

cial Intelligence, volume 2338 of Lecture Notes in Artificial Intelligence. Springer-Verlag,

2002.

233

[26] D. Deugo, M. Weiss, and E. Kendall. Coordination of Internet Agents: Models, Tech

nologies and Applications, chapter Reusable Patterns for Agent Coordination. Springer,

200l.

[27] Virginia Dignum, Javier Vazquez-Salceda, and Frank Dignum. Omni: Introducing social

structure, norms and ontologies into agent organizations. In Programming Multi-Agent

Systems: Second International Workshop ProMAS 2004, volume 3346 of Lecture Notes

in Artificial Intelligence. Springer, 2005.

[28] Mark d'Inverno, David Kinny, Michael Luck, and Michael Wooldridge. A formal spec

ification of dMARS. In M.P. Singh, A. Rao, and MJ. Wooldridge, editors, Intelligent

Agents IV. Proceedings of the Forth International Workshop on Agent Theories, Archi

tectures, and Languages, volume 1365 of Lecture Notes in Artificial Intelligence, pages

155-176. Springer-Verlag, 1998.

[29] Mark D'Inverno, Michael Luck, Michael Georgeff, David Kinny, and Michael

Wooldridge. The dMARS architecture: A specification of the distributed milti-agent

reasoning system. Autonomous Agents and Milti-Agent Systems, (9):5-53,2004.

[30] Eric Dubois, Philippe Du Bois, and Michal Petit. Agent-oriented requirements engi

neering: A case study using the ALBERT language. In Preceedings of the Fourth In

ternational Working Conference on Dynamic Modelling and Information Systems DYN

MOD '94, pages 205-238, 1994.

[31] J. Bradshaw (ed.). Software Agents. MIT Press, 1997.

[32] Innes Ferguson. TouringMachines: An Architecture for Dynamic, Rational, Mobile

Agents. PhD thesis, University of Cambridge, 1992.

[33] Innes Ferguson. Integrated control and coordinated behaviour: a case for agent models.

In Intelligent Agents ECAI-94, pages 203-218. Springer-Verlag, 1995.

[34] Tim Finin, Yannis Labrou, and James Mayfield. Software Agents, chapter KQML as an

agent communication language. MIT Press, 1995.

[35] FIPA. http://www.fipa.org/, 1999.

[36] FIPA-OS. http://fipa-os.sourceforge.net!, 2000.

[37] K. Fischer. Agent-based design of holonic manufacturing systems. Journal of Robotics

and Autonomous Systems, 1999.

[38] Klaus Fischer, Michael Schillo, and Jorg H. Siekmann. Holonic multiagent systems: A

foundation for the organisation of multiagent systems. In HoloMAS, pages 71-80, 2003.

[39] Michael Fisher. Representing and executing agent-based systems. In M. Wooldridge and

N. Jennings, editors, Intelligent Agents, volume 890, pages 307-323. Springer-Verlag,

1995.

234

[40] Michael Fisher, Jorg Muller, Michael Schroeder, Gerd Wagner, and Geof Staniford.

Methodological foundations for agent-based systems. In Proceedings of the UK Spe

cial Interest Group on Foundations of Multi-Agent Systems (FOMAS), volume 12. The

Knowledge Engineering Review, 1997.

[41] Stanford Center for Design. http://java.stanford.edu/java_agentlhtml, 2000.

[42] 1. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable

virtual organizations. International Journal of Supercomputer Applications, 15(3),2001.

[43] M. Fowler and K. Scott. UML Destilled: Applying the Standard Object Modeling Lan

guage. Addison-Wesley, 1997.

[44] M. Fox, M. Barbuceanu, M. Groninger, and J. Lin. Simulating Organizations, chapter An

Organizational Ontology for Enterprise Modeling. AAAI Presstrhe MIT Press, 1998.

[45] Mark S. Fox. An organizational view of distributed systems. IEEE Transactions on

Systems, Man, and Cybernetics, 11(1):70-80, 1981.

[46] Lost Wax Agent Framework. http://www.lostwax.comlagents/frameworkl. 2006.

[47] Stan Franklin and Art Graesser. Is it an agent or just a program? a taxonomy for au

tonomous agents. In Proceedings of the Third International Workshop on Agent Theories,

Architectures, and Languages (ATAL 96), volume 1193, pages 21-35. Springer-Verlag,

1996.

[48] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

[49] A. Garcia, C. Chavez, and R. ehoren. An aspect-oriented modeling framework for MAS

design. In 7th V/orkshop on Agent-Oriented Softvvare Engineering, .A.JlMAS'06, 2006.

[50] Juan Garcia-Ojeda, Alvaro Arenas, and Jose Perez-Alcazar. Paving the way for imple

menting multi agent systems. In 6th International Workshop on Agent-Oriented Software

Engineering (AOSE 2005),2006.

[51] Michael P. Georgeff and Amy L. Lansky. Reactive reasoning and planning. In AAAI,

pages 677-682, 1987.

[52] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning. The Morgan Kauf

mann Series in Artificial Intelligence. Morgan Kaufmann, 2004.

[53] N. Glaser. Contribution to Knowledge Modelling in a Multi-agent Framework. PhD

thesis, Universit Henry Poincar, 1996.

[54] Jorge Gomez-Sanz and Juan Pavon. Meta-modelling in agent oriented software engineer

ing. In F. Garijo, J. Riquelme, and M. Toro, editors, Advances in Artificial Intelligence

(IBERAMIA 2002), pages 606-615. Springer-Verlag, 2002.

235

[55] Jorge Gomez-Sanz and Juan Pavon. Agent oriented software engineering with INGE

NIAS. In V. Marik, J. Muller, and M. Pechoucek, editors, Multi-Agent Systems and

Applications Ill, pages 394-403. Springer-Verlag, 2003.

[56] Jorge Gonzalez-Palacios and Michael Luck. A framework for patterns in gaia: A case

study with organisations. In Agent-Oriented Software Engineering V (AOSE 2004), vol

ume 3382 of Lecture Notes in Computing Science, pages 174-188. Springer, 2005.

[57] Jorge Gonzalez-Palacios and Michael Luck. Towards compliance of agents in open multi

agent systems. In Software Engineering for Large Scale Multi-agent Systems 2006 SEL

MAS V, Lecture Notes in Computing Science. Springer, 2007. To appear.

[58] D. Grossi, F. Dignum, V. Dignum, M. Dastani, and L. Royakkers. Structural aspects of

the evaluation of agent organizations. In Proceedings of the Workshop on Coordination,

Organization, Institutions and Norms in Agent Systems (COIN @ ECA! 06), 2006.

[59] Object Management Group. http://www.omg.org, 2006.

[60] W3C group. http://www.w3.org/tr/wsci/, 2002.

[61] Afsaneh Haddadi and Kurt Sundermeyer. Foundations of Distributed Artificial Intelli

gence, chapter Belief-Desire-Intention Agent Architectures. John Wiley and Sons, 1996.

[62] S. Hayden, C. Carrick, and Q. Yang. Architectural design patterns for multi agent coordi

nation. In International Conference on Agent Systems '99 (Agents'99), 1999.

[63] G. Hohpe and B. Woolf. Entelprise Integration Patterns. Addison-Wesley, 2003.

[64] Bryan Horling and Victor Lesser. A survey of multi-agent organizational paradigms. The

Knowledge Engineering Review, 0(0):1-24, 2005.

[65] Zimmermann Hubert The ISO model of architecture for open systems interconnection.

IEEE Transactions on Communications, 28(4):425-432, 1980.

[66] Marc P. Huget, James Odell, and Bernhard Bauer. Methodologies and Software Engi

neering for Agent Systems, chapter The AUML approach. Kluwer Academic, 2004.

[67] Carlos A. Iglesias, Mercedes Garijo, and Jose C. Gonzalez. A survey of agent-oriented

methodologies. In J.P. Muller, M.P. Singh, and A. Rao, editors, Intelligent Agents V.

Proceedings of the Fifth International Workshop on Agent Theories, Architectures, and

Languages (ATAL-98), volume 1555, pages 317-330. Springer-Verlag, 1999.

[68] Carlos A. Iglesias, Mercedes Garijo, Jose C. Gonzalez, and

Juan R. Velasco. Analysis and design of multiagent systems using MAS-CommonKADS.

In M.P. Singh, A. Rao, and M.J. Wooldridge, editors, Intelligent Agents IV. Proceedings

of the Fourth International Workshop on Agent Theories, Architectures, and Languages

(ATAL-97), volume 1365, pages 313-326. Springer-Verlag, 1998.

236

[69] Ivar Jacobson, 1 Rumbaugh, and G. Booch. The Unified Software Development Process.

Addison-Wesley, 1999.

[70] JADE. hup://sharon.cselt.itJprojects/jade/, 1999.

[71] N. R. Jennings, S. Parsons, C. Sierra, and P. Faratin. Automated negotiation. In Proceed

ings of the 5th International Conference on Practical Application of Intelligent Agents

and Multi-Agent Systems (PAAM-2000), pages 23-30,2000.

[72] Nicholas R. Jennings. Specification and implementation of a belief, desire joint-intention

architecture for collaborative problem solving. Journal of Intelligent and Cooperative

Information Systems, 2(3):289·-318, 1993.

[73] Nicholas R. Jennings. Controlling cooperative problem solving in industrial multi-agent

systems. Artificial Intelligence, 2(75):195-240,1995.

[74] Nicholas R. Jennings. On agent-based software engineering. Artificial Intelligence,

117(2):277-296, 2000.

[75] Nicholas R. Jennings. An agent-based approach for building complex software systems.

Communications of the ACM, 44(4):35-41,2001.

[76] Mark W. Johnson, Peter McBurney, and Simon Parsons. A mathematical model of dialog.

Electr. Notes Theor. Comput. Sci., 141(5):33-48,2005.

[77] Thomas Juan, Adrian Pearce, and Leon Sterling. Roadmap: Extending the gaia method

ology for complex open systems. InAAMAS '02. ACM, 2002.

[78] Paul Kearney, Jamie Stark, Giovanni Caire, Francisco 1 Garijo, Jorge J. Gomez Sanz,

Juan Pavon, Francisco Leal, Paulo Chainho, and Philippe Massonet. Message: Method

ology for engineering systems of software agents. Technical Report EDIN 0223-0907,

Eurescom, 2001.

[79] E. Kendall. Role models: Patterns of agent system analysis and design. BT Technology

Journal, 17(4):46-57, 1999.

[80] D. Kinny, M. Georgeff, and A. Rao. A methodology and modelling technique for sys

tems of BDI agents. In W. van der Velde and J. Perram, editors, Agents Breaking Away:

Proceedings of the Seventh European Workshop on Modelling Autonomous Agents in a

Multi-Agent World (MAAMAW-96), volume 1038 of Lecture Notes in Artificial Intelli

gence, pages 56-71. Springer-Verlag, 1996.

[81] M. K01p, J. Castro, and 1 Mylopoulos. A social organization perspective on software

architectures. In First Int. Workshop From Software Requirements to Architectures, 2001.

[82] Manuel Kolp, Paolo Giorgini, and John Mylopoulos. A goal-based organizational per

spective on multi-agent architectures. In J. J. Ch. Meyer and M. Tambe, editors, Intelli

gent Agents VIII, INAI 2333, pages 128-140. Springer-Verlag, 2002.

237

[83] Harry Lewis and Christos Papadimitriou. Elements of the Theory of Computation.

Prentice-Hall, 1998.

[84] J. Lind. Patterns in agent-oriented software engineering. In Fausto Giunchiglia, James

Odell, and Gerhard Weiss, editors, Agent-Oriented Software Engineering III, volume

2585 of Lecture Notes in Computer Science. Springer, 2003.

[85] Scott A. Loach, Mark F. Wood, and Clint H. Sparkman. Multiagent systems engineering.

International Journal of Software Engineering and Knowledge Engineering, 11 (3):231-

258,2001.

[86] Alessio Lomuscio, Marek Sergot, John-Jules Meyer, and Milind Tambe. On multi-agent

systems specification via deontic logic. In Intelligent agents VIII: agent theories, ar

chitectures, and languages (ATAL 2001), volume 2333 of Lecture Notes in Computer

Science, pages 86-99. Springer, 2002.

[87] Fabiola Lopez, Michael Luck, and Mark D'Inverno. A normative framework for agent

based systems. In Proceedings of the Symposium on Normative Multiagent Systems (Nor

MAS 05), pages 24-35, 2005.

[88] M. Luck, P. McBurney, O. Shehory, and S.Willmott. Agent Technology: Computing as

Interaction. A Roadmap for Agent Based Computing. AgentLink III, 2005.

[89] Michael Luck. From definition to deployment: What next for agent-based systems? The

Knowledge Engineering Review, 14(2): 119-124, 1999.

[90] Michael Luck, Nathan Griffiths, and Mark d'Inverno. From agent theory to agent con

struction: A case study. In J.P. Muller, M.l Wooldridge, and N.R. Jennings, editors, In

telligent Agents III. Proceedings of the Third International Workshop on Agent Theories,

Architectures, and Languages, volume 1193 of Lecture Notes in Artificial Intelligence,

pages 49-63. Springer-Verlag, 1997.

[91] Michael Luck, Peter McBurney, and Jorge Gonzalez-Palacios. Agent-based computing

and programming of agent systems. In Programming Multi-Agent Systems, volume 3862

of Lecture Notes in Artificial Intelligence, pages 23-37. Springer, 2006.

[92] Michael M. Luck, Donald Ashri, and Mark D'Invemo. Agent Based Software Develop

ment. Artech House Publishers, 2004.

[93] Tambe M. Towards flexible teamwork. Journal of Artificial Intelligence Research, (7):83-

124,1997.

[94] Philippe Massonet, Yves Deville, and Cedric Neve. From aose methodology to agent

implementation. InAAMAS'02, pages 15-19. ACM, 2002.

[95] P. Mathieu, J. Routier, and Y Secq. Dynamic organization in multi-agent systems. In Pro

ceedings of the First International Conference on Autonomous Agents and Multi-Agent

Systems, pages 451--452. ACM Press, 2002.

238

[96] Juan Pavon Mestras, Jorge Gomez Sanz, and Ruben Fuentes.

http://grasia.fdi.ucm.es/ingenias/, 1999.

[97] Hyacinth S. Nwana and Divine T. Ndumu. A perspective on software agents research.

The Knowledge Engineering Review, 14(2):125-142, 1999.

[98] James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Representing agent interaction

protocols in UML. In Paolo Ciancarini and Michael Wooldridge, editors, Agent Oriented

Software Engineering, pages 121-140. Springer, 2001.

[99] Andrea Omicini. SODA: Societies and infraestructures in the analysis and design of

agent-based systems. In P. Ciancarini and M. J. Wooldridge, editors, Proceedings of

the First International Workshop in Agent-oriented Software Engineering (AOSE-2000),

volume 1957 of Lecture Notes in Artificial Intelligence, pages 185-194. Springer-Verlag,

2001.

[100] Gauthier Picard and Marie-Pierre Gleizes. Methodologies and Software Engineering for

Agent Systems, chapter The ADELFE methodology. Kluwer Academic, 2004.

[101] LISA Project. http://www.lisa.sourceforge.net/. 2006.

[102] Tropos project. http://www.troposproject.org/, 2006.

[103] A. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In

W. van der Velde and J. Perram, editors, Agents Breaking Away: Proceedings of the

Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World

(MAAMAW-96), volume 1038 of Lecture Notes in Artificial Intelligence, pages 42-55.

Springer-Verlag, 1996.

[104] Anand S. Rao and Michael P. Georgeff. BDI agents: From theory to practice. In ICMAS-

95. Proceedings of the First International Conference on Multi-Agent Systems, pages

312-319,1995.

[105] P. Ricordel and Y. Demazeau. From analysis to deployment: A multi-agent plataforrn

survey. In Working notes of the First International Workshop on Engineering Societies in

the Agents' World (ESAW-OO), 2000.

[106] Juan Rodriguez-Aguilar, Francisco Martin, Pablo Noriega, Pere Garcia, and Carles Sierra.

Towards a test-bed for trading agents in electronic auction markets. AI Communications,

11(1):5-19,1998.

[107] Ekkart Rudolph, Jens Grabowski, and Peter Graubmann. Tutorial on message sequence

charts (MSC). In Proceedings of FORTEIPSTV'96 Conference, 1996.

[108] Michael Schillo, Klaus Fischer, and Jorg H. Siekmann. The link between autonomy and

organisation in multiagent systems. In HoloMAS, pages 81-90, 2003.

239

[109] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.

Prentice Hall, 1996.

[llO] Onn Shehory and Amon Sturm. Evaluating agent-based systems modeling techniques.

Technical Report TR-ISEIIE-003-2000, Faculty of Industtial Engineering and Manage

ment Technion - Israel Institute of Technology, 2000.

[111] Onn Shehory and Arnon Sturm. Evaluation of modelling techniques for agent-based

systems. In J.P. Muller, Elisabeth Andre, Sandip Sen, and Claude Frasson, editors, Agents

01. Proceedings of the Fifth International Conference on Autonomous Agents, pages 624-

631. ACM Press, 2001.

[112] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 1(60):51-92,1993.

[113] SICS. Traiding agent competition, 2006.

[114] A. Silva and J. Delgado. The agent pattern for mobile agent systems. In 3rd European

Conference on Pattern Languages of Programming and Computing, EuroPLoP'98, 1998.

[115] R. G. Smith. The contract net: A formalism for the control of distributed problem solv

ing. In Proceedings of the Fifth International Joint Conference on Artificial Intelligence

(IlCAl-77), 1977.

[116] Agent Otiented Software. http://www.agent-software.com.au/sharedlhome/index.html.

1998.

[117] Rational Software. Rational unified process. Technical Report TP026B 11101, Rational

Software, 1998.

[118] Living Systems Technology Suite. http://www.whitestein.comipages/solutions/ls ts.html,

2006.

[119] Paul Taylor, Peter Evans-Greenwood, and James Odell. Agents in the enterprise. In

Australian Software Engineering Conference ASWEC 2005, 2005.

[120] British Telecom. http://www.labs.bt.comJprojects/agents/zeus. 1999.

[121] L. van der Torre, J. Hulstijn, M. Dastani, and J. Broersen. Specifying multiagent orga

nizations. In Proceedings of the Seventh Workshop on Deontic Logic in Computer Sci

ence (Deon'2004), volume 3065 of Lecture Notes in Computer Science, pages 243-257.

Springer, 2004.

[122] Wamberto Vasconcelos, Mairi McCallum, and Tim Norman. Modelling organisational

change using agents. Technical Report AUCS/TR0605, Department of Computing Sci

ence, University of Aberdeen, 2006.

[123] Luis Erasmo Montealegre Vzquez and Fabiola Lpez y Lpez. An agent-based model for

hierachical organizations. In Proceedings of the Workshop on Coordination, Organiza

tion, Institutions and Norms in Agent Systems (COIN @ ECAI 06), 2006.

240

[124] Gerhard Weiss. Agent orientation in software engineering. The Knowledge Engineering

Review, 16(4):349-373,2001.

[125] M. Wellman. Practical Handbook of Internet Computing, chapter Online marketplaces.

Chapman Hall & CRC press, 2004.

[126] M. Wooldridge, N. Jennings, and D. Kinny. The Gaia methodology for agent-oriented

analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3):285-312, 2000.

[127] Michael Wooldridge. Diversity and agent technology. The Knowledge Engineering Re

view, 14(2):151-152, 1999.

[128] Michael Wooldridge. Multiagent Systems: a Modern Approach to Distributed Artificial

Intelligence, chapter Intelligent Agents. MIT Press, 1999.

[129] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: theory and practice.

The Knowledge Engineering Review, 10(2):115-152, 1995.

[130] E. Yu. Towards modelling and reasoning support for early-phase requirements engineer

ing. In Preceedings of 3rd IEEE International Symposium on Requirements Engineering

RE'97, pages 226-235, 1997.

[131] Franco Zambonelli, Nicholas R. Jennings, Andrea Omicini, and Michael Wooldridge.

Coordination of Internet Agents: Models, Technologies and Applications, chapter Agent

Oriented Software Engineering for Internet Applications. Springer, 2001.

[132] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Organisational ab

stractions for the analysis and design of multi-agent systems. In First International Work

shop on Agent-Oriented Software Engineering, pages 127-141,2000.

[133] Franco Zambonelli, Nicholas R. Jennings, and Michael \Vooldridge. Organisational rules

as an abstraction for the analysis and design of multi-agent systems. International Journal

of Software Engineering and Knowledge Engineering, 11(3):303-328,2001.

[134] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing multia

gent systems: The Gaia methodology. ACM Transactions on Software Engineering and

Methodology, 12(3):317-370, 2003.

[135] H. Zhang and Victor Lesser. A dynamically formed hierarchical agent organization for

a distributed content sharing system. In Proceedings of the International Conference on

Intelligent Agent Technology, 2004.

[136] X. Zhang and D. Norrie. Holonic control at the production and controller levels. In

Proceedings ofIMS 99, pages 215-224,1999.

241

AppenrlixA

The Conference Management System

problem statement

The purpose of the system is to support the management of a medium to large conference.

The management of a conference can be divided into several phases: submission, review, and

notification. In the submission phase an open call is made for the authors to send their papers

within a deadline; authors send their papers and receive a number which serves as confirmation

of the reception.

During the review phase, the papers that will be presented in the conference are selected. The

selection is supervised and coordinated by the Program Committee and the review of the papers

is performed by referees. A number of papers are sent to each referee to review and each paper is

reviewed by three referees. Since the committee members and the referees can be authors, some

rules have to be observed, for example, a referee cannot review his own paper. The reviews are

the base to decide if a paper is accepted or rejected.

Finally, in the notification phase each author is sent a notification containing the reviews, the

decision of acceptance or rejection of his paper and, in the former case, a deadline to produce

the final version of the paper. Next, the publisher has to collect all the final versions and print

the proceedings.

242

