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Extracting full-body motion from monocular video sequences for gait recognition is an 

important and difficult problem. Very often, the motion will be highly articulated and 

have complex changing boundaries and images may suffer from high level correlated and 

random noise from the real world. Moreover, the large variations of the appearances 

of walking people caused by, for instance, carrying objects or wearing clothing, make 

the problem even more complicated. In this thesis, we propose a consistent and 

easily extensible Bayesian framework for the gait extraction problem using strong prior 

knowledge. This knowledge is imposed by a single two-dimensional articulated model 

having both time-invariant (static) and time-variant (dynamic) parameters. The model 

is easily extended to handle the variations of body shapes. To exploit the dynamics 

of human walk, we use a hidden Markov model to detect the phases of images in a 

walking cycle. The PDF projection theorem is introduced to learn the observation 

probability distributions accurately. We build a strong prior model from the statistics 

of the parameters of the articulated model, which are learned from noise-free indoor 

training data. The system parameters are first bootstrapped from a small amount of 

data and then refined by the Bayesian updating. \Ve demonstrate our approach on both 

high-quality indoor and noisy outdoor video data, as well as high-quality data with 

synthetic noise and occlusions added, and walkers with rucksacks, skirts and trench 

coats. Results are quantified in terms of the chamfer distance and average pixel error 

between automatically extracted body points and corresponding points hand-labelled. 

No one part of the system is novel in itself, but the overall framework makes it feasible 

to extract gait from very much poorer quality image sequences than hitherto. Vile devise 

a simple gait recognition algorithm based on the extracted model parameters obtained 

by the Bayesian framework. The gait signature consists of the static parameter and the 

amplitude and phase information measured by fitting Fourier series to the trajectories of 

the dynamic parameters. The algorithm is tested on both indoor and outdoor data and 

its performance is compared with the standard baseline algorithm. We have achieved 

a much higher recognition rate on the outdoor noisy data, once again proving the 

robustness of the framework against real-world noise. 
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Chapter 1 

Introd uction 

1.1 Problem statement 

Understanding human motion in video sequences is one of the most challenging tasks for 

computer vision. Because of the complexity of the human body structure, the motion is 

highly articulated, which means the targeted object has a constantly changing boundary 

and frequently causes self-occlusions. In general, it is difficult to deal with arbitrary 

human motion unless we have knowledge about the variations of the motion. This 

thesis focuses on the extraction of a universal type of human motion: walking motion. 

This work can benefit many applications including analysing human gait for medical, 

computer-animation, or biometric purposes. 

From early psychological experiments (Johansson 1975) we know that humans have the 

ability to identify people by their gait. Recent research on human gait also indicates the 

potential of using gait as a new biometric. Although many gait recognition systems have 

been built and achieved a high recognition rate, the current technology is far from being 

used in practice. The major problem is that most of the systems were designed and 

tested on some particular gait database produced in a well-controlled environment (e.g., 

in a indoor laboratory). The image quality is high and the background is relatively 

simple. Most gait information can therefore be obtained through segmentation but 

such segmentation can be hardly achieved from video sequences taken by a normal 

surveillance system. Recently, efforts have been made to build a gait database in which 

walkers are filmed under real-world conditions, for example, the Southampton large HiD 

gait database (Grant et al. 2004). However, the quality of images is still high, which 

makes clues such as the skin colour available for gait extraction (Zhang, Collins, and Liu 

2004). An ideal system should handle not only the real-world noise, but the dynamic 

nature of human gait. For example, the appearance of a walking individual in images can 

be changed significantly by wearing different clothing or carrying objects. Any practical 

system should be able to cope with such variations. 

1 



Chapter 1 Introduction 2 

Our goal is to develop a general framework capable of dealing with the uncertainties 

inherent in the problem of human gait extraction. We want to explore the limit of 

the kind of information we can obtain from the sort of difficult data which can be 

observed in practice and to see the capability of the information to identify walking 

people. The image sequences used in this work are from the Southampton HiD gait 

database. However, there is no intention to use the high quality of the images in this 

database to facilitate the motion extraction. Instead of using the images directly, we 

performed simple background subtraction at first and then used the silhouettes as input. 

Some examples of the silhouettes can be seen in Appendix A. 

To achieve our objective, we have adopted a Bayesian approach exploiting strong prior 

information about how humans walk. By strong, we mean very basic, almost inviolable 

knowledge such as the fact that all humans have a head and two legs, with each leg 

jointed at the knee. This strong prior information is imposed by a two-dimensional 

articulated model of a walker, which can be easily extended, for example, to allow for 

the walker carrying a bag, or wearing a coat or skirt. At this stage, we consider only 

walkers moving perpendicular to the camera as this is typical of the current state of the 

art, and because we have a large database collected under these conditions. As well as 

exploiting prior information about body articulation, knowledge of the characteristic, 

dynamic movement of the body was built into a hidden Markov model (HMM). The 

adopted framework also allows us to learn the statistics of normal walkers from high­

quality video images. In Bayesian language, we can use good data to obtain a posterior 

for the model parameters; this posterior can then be used as a prior when presented 

with noisy data. Such 'bootstrapping' via Bayesian updating prevents us having to 

obtain extensive statistics of human walkers manually, which might otherwise make this 

approach prohibitively expensive. Because we aim to extract the fullest information 

about articulated motion that the image quality allows, rather than to track walkers in 

real time, it is highly advantageous to process the whole sequence of images. In this 

way, and combined with the use of prior information, we can obtain a global solution 

that, for instance, copes with extreme noise, occlusions, etc. 

1.2 Contributions 

The main contribution of this work is to introduce a consistent Bayesian framework 

for addressing the important and well-studied problem of human gait extraction from 

video sequences. This framework allows us to integrate strong prior knowledge with 

data-driven learning and thereby to produce results comparable with the best reported 

in the literature, handling noise and occlusion especially well. Each component in the 

framework is itself quite simple. The novelty comes from combining them together 

to solve a complicated problem within a Bayesian framework. More specifically, the 

contributions are as follows. 
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• Providing a systematic way for the construction of a Bayesian framework for the 

problem of fitting a parametric model to observations in noisy image data. The 

likelihood is built from the robust chamfer distances and the prior is defined as a 

multivariate Gaussian using the statistics of the parameters of the model learned 

from noise-free training data. The bootstrapping which involves manual work is 

relatively cheap and system parameters can be refined by the Bayesian updating 

recursively. 

• Building carefully an HMM for modelling the dynamics of human walk. The 

HMM structure is well-designed, using tied-states to represent the true transition 

probabilities. The probability density function (PDF) projection theorem is used 

to learn the high-dimensional observation probability distributions accurately. 

Using this relatively new theorem in the gait-related problem is novel and proven 

to be useful in constructing the HMM. 

• The overall framework is flexible and easily extensible. The components in the 

framework are independent of each other so that we can easily modify one of them 

without breaking the whole framework. The extensibility has been demonstrated 

in the experiments ',\There we extend the basic articulated model to cope with 

walkers carrying a rucksack, wearing a long skirt, or wearing a trench coat. For 

all three cases, the only cost is adding one or two static parameters. 

• Various experiments have been designed to test the system. The framework 

was first tested on the clean data with artificial noise added. The chamfer 

distances were used to quantify the results. The fitting results for the outdoor 

noisy sequences were then shown visually. We marked manually five key joints 

on the original images and measured the errors between the marked joints and 

the ones recovered by the model. To prove further the accuracy, we built a gait 

recognition system that uses the extracted parameters to identify walkers. \iVe have 

implemented the baseline algorithm for gait recognition of Sarkar et al. (2005) on 

the same data. The comparison of performance of our algorithm with baseline has 

proven the robustness of the framework against random noise and occlusions. 

Produced publications: 

• Zhou, Z., A. Priigel-Bennett and R. 1. Damper (2006). A Bayesian framework 

for extracting human gait using strong prior knowledge. IEEE Transactions on 

Pattern Analysis and Machine Intelligence 28(11), pp.1738-1752 . 

• Zhou, Z., R. 1. Damper and A. Priigel-Bennett (2006) Model Selection within 

a Bayesian approach to extraction of walking motion. IEEE Conference on 

Computer Vision and Pattern Recognition Workshop (CVPRW' 06), p.44. 
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1.3 Outline of Thesis 

The rest of this thesis is organised as follows. In Chapter 2, we give a review of the 

previous research related to our work. Vie first describe the approaches aiming to extract 

general human body motion. After that, we focus on the extraction of the motion of 

walking people. Finally, we review some gait recognition systems. 

Chapter 3 describes the data used in our work as well as the normalisation procedure. As 

mentioned previously, we are using the Southampton HiD gait database. The database 

consists of three kinds of data: indoor, outdoor and supplemental image sequences. 

Some examples are given for each of them. We then describe the normalisation of the 

silhouettes obtained from background subtraction. The purpose of the normalisation 

is to locate the walking individual in images, cropping a sub-image where he or she is 

centred and resizing the sub-image to a proper size. This is done by a tracking algorithm 

using the generalised Hough transform and dynamic programming. 

Chapter 4, which is the main chapter of this thesis, gives the details of the whole Bayesian 

framework for the human gait extraction. At the beginning of this chapter, we justify 

the reason why we adopt a Bayesian framework for this problem. We then describe 

sequentially the way we exploit our prior knowledge of human walk in building the 

framework. An articulated model is constructed to represent a walker and a hidden 

Markov model used to model the periodicity of human gait. The PDF projection theorem 

is used to learn the observation probability distributions, which is one of the novelties 

in this thesis. We then give the definition of the likelihood and prior which are based 

on the chamfer distances and some statistics of the model parameters respectively. \iVe 

introduce the bootstrapping and the Bayesian updating component to learn the system 

parameters in an efficient way. In the end, we extend the framework to cope with walkers 

with different body configurations. 

Chapter 5 shows the experimental results to demonstrate the power of the framework. 

Three experiments have been designed to test the system. \iVe first test the system on the 

artificial noisy image sequences. Two kinds of noise, salt and pepper noise and occlusion, 

are added to the noise-free indoor data. \iVe show the system performance on the images 

with various levels of noise added in terms of the chamfer distance. Simulations are 

designed to test the effect of possible poor normalisation. The sequences used in the 

simulations are generated from the indoor sequences by perturbing the positions of 

silhouettes and adding artificial noise. After that, the framework is tested on the real 

outdoor noisy sequences. The results are quantified by the errors between the hand­

marked joints and the joints obtained by model fitting. Finally, we test the extensibility 

of the system on the supplemental data. We modified the model to cope with a walker 

carrying a rucksack, wearing a long skirt or wearing a trench coat. \iVe show some 

encouraging preliminary results from this experiment. 
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Chapter 6 describes a system that uses the gait information extracted by the Bayesian 

framework to identify walking people. The overall recognition algorithm is quite simple. 

For each given sequence, a feature vector is constructed for classification. The vector 

is built from the static parameters that describe the body size of a walker, and the 

dynamic features which are the phases and amplitudes obtained by fitting Fourier series 

to the extracted joint-angle trajectories. Each element in the vector is then normalised 

and weighted by its F-statistic. The classification is done by a simple nearest-mean 

classifier. The competitive baseline algorithm is implemented to make a comparison 

with our system. 

In the final chapter, we conclude our work and propose SOIne possible future work. 



Chapter 2 

Related Work 

2.1 Human Body Motion Extraction 

Understanding human body motion in image sequences is one of most challenging tasks in 

computer vision. The motion itself is highly articulated and not easy to predict. Usually, 

it is recorded in images and the loss of the depth information will cause the singularity 

problem when recovering motion in 3D. ~;[oreover, the imperfect image segmentation 

encountered in practice makes the problem even more difficult. In this section, we 

review the previous work on this problem. Good surreys can be found in Aggarwal and 

Cai (1999),Gavrila (1999),Moeslund and Granum (2001) and Wang et al. (2003). 

To model the non-rigidity of the human body, various models have been constructed in 

the previous work. Articulated models are commonly used to represent the full or partial 

human body. In general, such a model consists of two components: a representation of 

the skeletal structure and a representation for body appearance. The former is comprised 

of a collection of segments connecting joints on the human body. Around the segments 

are the geometries approximating the articulated body parts. The shapes used for a 

2D model include circles, rectangles, trapezoids and ellipses (Ju et al. 1996; Ning et al. 

2002; Lan and Huttenlocher 2004; Wagg and Nixon 2004a). Most of the 3D models use 

shapes from a class of geometric primitives, super-quadrics (Barr 1984), to model body 

parts (O'Rourke and Badler 1980; Hogg 1983; Rehg and Kanade 1994; Rehg and Kanade 

1995; Bregler and Malik 1998; Stenger et al. 2001). These include a large number of 

shapes such as cylinders, spheres, ellipsoids and hyper-rectangles. A combination of some 

of these primitives can usually result in satisfactory modelling of a human body. More 

accurate models can be achieved by deformations on the super-quadrics (Gavrila and 

Davis 1996; Kakadiaris and Metaxas 2000). In addition, parametric contour models have 

been also used to model the articulated human body. Examples of using contour models 

constructed from B-splines to extract the motion of walking people and moving hands 

can be found in Baumberg and Hogg (1994) and Isard and Blake (1998) respectively. 

6 
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Having had a suitable model, we attempt to find a set of parameters (state) that fit the 

model best to the object in the images. Many previous motion extraction systems did 

the fitting within a probabilistic framework. Very often, the fitting is done by measuring 

the posterior state distribution. The state space is usually high-dimensional and it is not 

straightforward to compute this distribution. We tackle this problem by decomposing 

the posterior according to the Bayes' rule, which states that the posterior is proportional 

to the multiplication of the likelihood and prior. The likelihood can be computed directly 

from the current frame while the prior is propagated from the state distribution learned 

for the previous frame. 

Based on the assumption that the state is a Gaussian random variable, the Kalman 

filter (Kalman 1960) provides a framework for propagating this random variable 

recursively and has been used in some previous work (Baumberg and Hogg 1994; Blake 

et a1. 1993; Kakadiaris and Metaxas 2000). Note that the original Kalman filter can only 

describe a linear system. For a nonlinear system, the random variable is propagated 

through the first-order linearisation of the nonlinear state estimation function. In 

this case, the Kalman filter is called the extended Kalman filter (EKF). Julier and 

Uhlmann (1997) introduced the unscented Kalman filter to improve the accuracy of the 

linearisation from first-order to third-order. Stenger et a1. (2001) utilised this technique 

in their hand tracking system. The unimodal state density assumed by the Kalman filter 

is sometimes not suitable in situations where the true state distribution is multi-modal 

(e.g., the background is cluttered or the object is occluded). To propagate the true 

state distribution, Isard and Blake (1998) proposed their condensation algorithm. The 

state distribution was represented and propagated by a set of samples (particles) over 

time. The propagation was done by two steps: building priors from the state distribution 

learned at the previous time using the learned dynamic models and measuring likelihoods 

of the current observation given the particles. The state density was then updated using 

Bayes' rule. A drawback of such non-parametric methods is that they require a large 

number of samples to be maintained to describe the distribution accurately enough, 

especially in a high-dimensional space. Cham and Rehg (1999), however, modelled the 

multimodal distribution by a piecewise Gaussian representation. Only the peaks of the 

posterior distribution were sampled and propagated to the next frame to generate a 

prior density, which greatly reduced the number of samples. 

Instead of inferring a probabilistic model, the inverse kinematics technique provides 

an alternative to recover human motion from image sequences using a parametric 3D 

articulated model (Yamamoto and Koshikawa 1991; Rehg and Kanade 1994; Rehg and 

Kanade 1995; Bregler and Malik 1998). In such a system, the state space is mapped onto 

the image space by a nonlinear measurement function that generates the 2D projection 

of the 3D model and calculates the error between the projected model and images. The 

inverse kinematics approach inverts this mapping to measure changes of the parameters 

of the model which minimise the error. The inverting involves the linearisation of the 
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measurement function which is described by the function's Jacobian matrix and is done 

by a gradient-based optimisation procedure. Minimising directly the error between the 

synthesised model and image features is another way to find the optimal set of parameters 

of the model (Hogg 1983; Ohya and Kishino 1994; Gavrila and Davis 1996). Gavrila 

and Davis measured the error as the chamfer distance between the projected model and 

the object in images. They used a decomposition approach and a best-first technique 

to search the optimal state. Ohya and Kishino carried out the optimisation using the 

genetic algorithm. 

2.2 Gait Extraction System 

Having described the work on general human motion extraction, we focus on a particular 

kind of human motion: walking motion. Extracting the motion of walking people still 

remains a challenge in computer vision. The motion is highly articulated, which causes 

complex changing boundaries and serious self-occlusion. Furthermore, walking in a 

cluttered environment and the large variations of body appearance make the problem 

even more difficult. However, we have a lot of prior knowledge of how human beings 

walk (spatial and temporal information of movement of walking people), which can be 

used to compensate for the complexity of this problem. Most of the previous work can 

be divided into two categories in terms of the way the motion is extracted and recovered. 

Fitting an articulated model is a common method to capture the motion of walking 

people. Hogg (1983) was among the first who used an articulated model to track 

walking people. His model consisted of 14 cylinders and the edge projection of the 

model was compared to the edge features of the walker. Based on Hogg's work, Rohr 

(1994) incorporated a Kalman filter to predict and smooth the model parameters in each 

frame. Such a linear dynamic system requires relatively noise-free image input and it is 

difficult to reach high accuracy. Ju et al. (1996) presented a cardboard person model, 

a set of connected planar patches, to track limbs of a walker. Rather than using edges, 

they exploited optical flows. They showed the tracking results for a person walking on a 

treadmill from different view points. However, the lack of ability to handle self-occlusion 

and the dependence on the optical flows limit its use in real cluttered situations. To 

model the sequential changes of the posterior distribution of the model parameters, Ning 

et al. (2002) implemented the condensation algorithm. The positions of the limbs were 

captured from indoor noise-free image sequences. Recently, Lan and Huttenlocher (2004) 

developed a tracking system aiming to handle self-occlusion and changes in view angles. 

They introduced a pictorial structure spatial model (similar to the cardboard person 

model) and a hidden Markov model (HMM) was used to model the temporal movement 

of walkers with each state exemplified by a pictorial structure model. The observation 

probabilities were approximated by sampling from the posterior distribution. Tracking 

was done by finding a maximum a posteriori (MAP) state sequence. \Ve use a similar idea 
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in our H\1M definition, that is, using walking models rather than selecting images from 

the sequence as the exemplars to compute the observation probabilities. They showed 

visually the tracking results on a multi-viewpoint sequence, but no quantitative results 

about the accuracy of the fitting were given. For purpose of extracting articulated motion 

accurately rather than purely tracking, we give an MAP solution for each frame in an 

image sequence. Generally, such a high-dimensional optimisation problem is intractable. 

But using the results of HMMs as the initialisation and a strong prior model, we can 

greatly reduce the search space and achieve good fitting results. We demonstrate the 

accuracy of the fitting both visually and quantitatively in Chapter 5. 

Tracking contours of walking people is the other widely used method for gait extraction. 

In Baumberg and Hogg (1994), active shape models built from closed B-splines were used 

to track the contours of walking people. They performed principal component analysis 

on the training data to reduce the dimension of the state space to be searched. A Kalman 

filter was used to carry out the tracking overtime. Exemplar-based methods (Toyama 

and Blake 2002) have proven to be efficient for tracking human motion and gesture 

recognition. The exemplars are acquired directly from the training data and the 

similarities between exemplars and images are modelled by a probability distribution in 

an image-distance metric space. Although the approaches are computationally efficient, 

they only track contours roughly which makes it difficult to recover high-level articulated 

structure of human motion. Recently, two systems have been built to extract the 

contours of walkers for higher-level gait analysis (e.g., gait recognition). VVagg and Nixon 

(2004a) constructed a geometric shape model for a walking individual. They found the 

parameters that determined the shape sizes from a global temporal accumulation of the 

input image sequence. Medical data of the variations of the joint angles were used to find 

the limb positions. Finally, they used an active shape model to force the edges of the 

model to match the contours of walkers. Zhang et al. (2004) constructed a sophisticated 

deformable body contour model, which was controlled by landmarks. These landmarks 

were then modelled by a Bayesian network and sampled sequentially using sequential 

Monte Carlo on a single image frame. The major drawback of using such contour 

models is that all possible variations of body appearance need to be well represented in 

the training data. For walkers with significant appearance changes, the models have to 

be re-constructed and the shape priors have to be re-learned. In contrast, assuming that 

people will not change their gaits significantly when their appearance changes greatly 

(e.g., through carrying a rucksack or wearing a trench coat), our system allows us to cope 

with the variations easily without learning a new prior. This is illustrated in Section 5.6. 

We have described two classes of methods for human gait extraction: one is fitting 

an articulated model and the other is tracking body contours of walking people. The 

former exploits prior knowledge of the human body. The motion is captured by finding 

the optimal set of parameters that minimise the error between the synthesised model and 

the objects in images. The posture can be naturally recovered by the model parameters. 
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The advantage of using an articulated model is that we can integrate our prior knowledge 

of human walking easily into the model to compensate for the potential noise and 

uncertainties. For example, we can control the parameters of the model to vary in 

a constrained region to prevent the model being distracted by the noise resulting in an 

unrealistic posture for a walker. Or the images can be corrupted so that image features 

representing the body parts are disconnected. An articulated model can compensate well 

for such discontinuity. There is a tradeoff between the complexity of the model and the 

system performance. The model should be constructed to take into account the quality 

of the images. An over-complicated model would introduce a high-dimensional state 

space which makes the fitting difficult and computationally expensive. The contour­

tracking systems are, in general, more computationally efficient since there is usually no 

need to solve a high-dimensional optimisation problem. The disadvantage is that it is 

image-quality sensitive. Some systems learn the spatial variations of points on contours 

to compensate for the noise when sampling. Another disadvantage is that it is not 

straightforward to obtain articulated motion from the extracted contours. However, for 

an appearance-based gait recognition system, the contours can be used directly as the 

gait features. 

2.3 Human Gait Analysis 

Human gait has been increasingly studied because of its potential as a new biometric, 

that is, using gait to identify walking people. In comparison with other biometrics such 

as the face and fingerprint, human gait can be captured passively at a distance by any 

surveillance system, which makes it difficult for the moving subjects to camouflage their 

real gait. In the rest of this section, we first introduce a few established gait databases 

which have significantly contributed to the current research on the gait recognition. After 

that, we describe some early psychological experiments that have largely motivated this 

research. Finally, we review some of the reported gait recognition systems. 

2.3.1 Human Gait Database 

A few human gait databases have been built for the purpose of using gait as a biometric 

around the world. They are the Southampton human identification at a distance (HiD) 

database (Shutler et al. 2002), CMU HiD database (Gross and Shi 2001), UMD HiD 

database (Chalidabhongse et al. 2001), MIT HiD database (Lee 2003) and USF HiD 

database (Sarkar et al. 2005). 

The Southampton HiD database contains 4824 video sequences from 115 people viewed 

from the side, walking at normal speed under both indoor laboratory and outdoor real­

world environments. High-quality silhouettes have been extracted from the indoor data 
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through chroma-key techniques. The outdoor data are much more challenging because 

of the real-world noise caused, for instance, by the natural illumination, shadows and 

moving objects in the background. The database also contains indoor images of walkers 

carrying bags, rucksacks, wearing clothing such as long skirts or trenchcoats. This work 

uses subset of this database and more details of this database can be found in the 

following chapter. 

The CMU HiD database contains sequences of 25 subjects walking on treadmills. 

For each subject, six sequences were taken simultaneously from different viewpoints. 

Subjects were asked to perform four types of walk: fast walk, slow walk, walking on an 

inclined surface and slow walk carrying a ball. 

There are 55 subjects included in the UMD HiD database. Each subject walked a T­

shaped pattern in a parking place and was filmed by two surveillance cameras from two 

orthogonal viewpoints. As a result, we can see the frontal, back, left and right sides of 

the walker in each sequence. 

The data in the MIT HiD database are gathered from 24 subjects under an indoor 

laboratory condition. Subjects were asked to wear different clothing ranging from 

sweaters and long pants to T-shirts and skirts during the data collection sessions on 

different days. All video sequences were recorded by one camera placed perpendicular 

to the predetermined walking direction. 

The USF HiD database (also called the gait challenging database) contains 122 subjects 

with 1870 outdoor video sequences. Sarkar et al. had each subject walk multiple times 

counterclockwise around each of two similar sized and shaped elliptical courses. Factors 

that could influence human gait were considered in this database including walking 

surface, viewpoints, shoes, carrying conditions and time. 

2.3.2 MLD Experiments 

Using gait as a biometric is largely motivated by Johansson's early psychophysical 

experiments (Johansson 1975). His experiments with moving light displays (MLD) 

attached to body joints of an actor showed that human observers could almost instantly 

recognise human motion patterns directly from several moving dots without any 

structural information, since they were not connected. After that, more experiments 

using MLDs were designed and reported. Cutting and Kozlowski (1977) showed that 

the gender of a person could be recognised from the moving dots. Moreover, Cutting 

et al. (1978) demonstrated from their experiments that people could even identify the 

gait of their friends by watching the moving dots. From the psychological point of view, 

there are two theories explaining the experiments mentioned above (Cedras and Shah 

1995). In the first, people recover a certain structure from the MLD type stimuli and then 

use the structure for recognition. The second theory states that the motion information 
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is directly used without recovering the structure. In terms of whether the structural 

information is used or not, there are also two classes of methods in the computer-vision 

domain for gait recognition: model-based and model-free. 

2.3.3 Model-based Methods 

Model-based methods attempt to recover a particular body structure from image 

sequences and use the structural information for recognition. The capture of such 

information usually involves searching a motion model. The model could be simply 

a stick-figure representing the skeletal structure or shapes connected articulatedly 

representing the whole or partial body of walking people. 

Johnson and Bobick (2001) gave an example of using a 2D stick-figure to model a walking 

person. The whole body was modelled by four points that marked the positions of the 

head, pelvis and both feet. They used magnetic sensors to locate the four points on 

subjects walking in their laboratory environment. Four distances were calculated from 

the model (the vertical distance between the head and foot, the distance between the 

head and pelvis, the distance between the pelvis and foot, and the distance between 

the left foot and right foot) at the maximal separation point of the feet during the 

double-support phase of the gait cycle. Feature vectors were built from the distances 

for personal identification. Tanawongsuwan and Bobick (2001) also used sensors to find 

joints on a walking person in their experiment. Instead of using static information 

(distances between the detected points), we recovered the joint angles and used the 

angle trajectories to identify walkers. Dynamic time warping (DT\V) was implemented 

to align and compare each pair of trajectories. 

Cunado et al. (2003) built a simple pendulum model for the motion of the upper legs. 

An evidence-gathering process, namely the velocity Hough transform, was implemented 

to capture the model from image sequences automatically. The sequences were filmed 

in the indoor laboratory environment and subjects were asked to wear special clothing 

to help find the midline of the thigh. Fourier analysis was performed on the extracted 

thigh angles to get the amplitudes and phases of the harmonics of the first few orders. 

These numbers were then used to recognise walkers. Extending the above work, Yam 

et al. (2004) constructed a model for the motion of both upper and lower legs. The 

model is a stick-figure connecting three joints: the pelvis, knee and ankle. They used 

temporal template matching to extract the model from images and then performed 

Fourier analysis to built the gait signature. The system was tested to identify subjects 

walking or running on a treadmill by their gait. In Yoo et al. (2002), a stick-figure for 

the full-body motion of a walker was constructed for gait recognition. The model was 

found using the edges detected in images and the recovered joint-angle trajectories were 

then input to a back-propagation neural network for recognition. 
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Shape models have also been used in model-based gait recognition methods. In general, 

they include some geometric shapes representing the body parts of a walker. These 

shapes are connected to simulate the body structure. In Bissacco et al. (2001), a shape 

model consisting of elliptical texture patches, which were connected to form a kinematic 

chain, was formed to model a human skeleton. A linear dynamic system was identified 

from the joint-angle trajectories recovered from the model. They computed distances 

between sequences using the system parameters to recognise three kinds of gait: walking, 

running and going up and down a staircase. Bhanu and Han (2002) constructed a 3D 

shape model for the full-body motion. For each video sequence, they fitted the model to 

four selected key frames (silhouettes) and then used the extracted stationary parameters, 

which controlled the sizes of the body parts, for recognition. 

More recent work using shape models can be found in Wang et al. (2003) and Wagg 

and Nixon (2004a). In the former, a sophisticated 2D articulated model was built for 

each of the subjects involved in their experiments. The model was fitted to images 

through a probabilistic framework: the condensation algorithm. They also carried 

out the shape analysis described in Boyd (2001) on silhouettes subtracted from video 

sequences. The extracted joint-angle trajectories were normalised by DT\V and used for 

identification. Wagg and Nixon presented a model-based gait extracted system guided 

by the biomechanical analysis of walking people. They represented the head and torso 

with two ellipses and outlined legs with parallel lines. These shapes were extracted from 

a global temporal accumulation of the given image sequence in a coarse-to-fine way. 

2.3.4 Model-free Methods 

Model-free methods focus on using the motion information directly without recovering 

any human body structure. Very often, such information is the monochromatic 

silhouettes or motion flow extracted from video sequences. Various gait features have 

been calculated from the motion information. 

One way to do that is to measure the scalar information (i.e., width, height, centroid, 

etc.) of silhouettes or flows. A typical example is the pioneering work done by Little 

and Boyd (1998). They computed the dense optical flow from video sequences and 

measured various scalar features of the flow. They then calculated phase features from 

the sequences of the scalars and used the feature vectors to recognise walking people. Lee 

and Grimson (2002) presented a similar gait-recognition system, which was tested on a 

much larger gait database. Instead of using optical flow, they calculated scalar features 

directly from silhouettes. Each silhouette in which a walking person had been centred 

was divided into seven regions. An ellipse was fitted to the pixels in each region. They 

then found the dominant walking frequency and computed first-order Fourier features 

(amplitudes and phases) from the time series formed by the scalars describing those 

ellipses. The identification of walkers was performed by classifying the feature vectors. 
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BenAbdelkader and Davis (2002) built a system that detected objects carried by walkers. 

They first extracted silhouettes from video sequences and found the bounding box for 

the foreground pixels. They then defined five regions in a boundary box and computed 

the maximal width of the pixels in each region. The width signals were used to detect 

people carrying objects. In Kale et al. (2004), the widths of a silhouette at each row were 

chosen as the features for recognition. An HMM was built to and trained for each walker 

in the database to classify the feature vectors. In a testing sequence, they computed 

the likelihoods of the sequence given each of the HMMs. The larger the corresponding 

likelihood was, the more likely the walker appeared in the sequence. 

Generating a spatiotemporal pattern from an image sequence for the purpose of 

recognition is another important way of using the motion information without a model. 

Early work can be found in Niyogi and Adelson (1994). They stacked frames of 

an image sequence to form a cube (XYT image cube). The pattern (XT-slice) was 

obtained by slicing the cube at a particular place on the Y-axis. They found that 

the XT-slice of a walker at the ankle contained the braided walking pattern. The 

pattern was then used to track and recognise people in images. Cutler and Davis 

(2000) introduced self-similarity plots to detect and identify periodic motion in video 

sequences. Each row or column in the plot corresponds to a frame in the sequence 

and the values in the plot gave the correlations between each pair of frames. They 

showed that periodic motion had its own characteristic patterns in the self-similarity 

plots. Moreover, the experiments for walking/running humans and walking/running 

dogs suggested that different periodic motions have different spatiotemporal patterns. 

Later on, the self-similarity plots were used to identify walking individuals in video 

sequences (BenAbdelkader et al. 2002). Principal component analysis was applied to 

reduce the dimensionality of the calculated self-similarity plots. Personal identification 

was then done by a k-nearest neighbour classifier. Bobick and Davis (2001) introduced 

an appearance based approach to recognise different human movements. They created 

temporal templates consisting of motion-energy images and motion-history images for 

various movements. The Hu moments were computed as discriminatory features and the 

!\1ahalanobis distances between feature vectors were used to recognise different motion. 

There is also some work using motion information other than the methods described 

in the previous paragraph. Boyd (2001) developed a system that measured the phase 

information at each pixel through a phase-locked loop. He showed that the patterns 

generated by the output phases had certain discriminatory capabilities to distinguish 

individuals by their gait. Shutler and Nixon (2001) computed the Zernike velocity 

moments to describe the motion of a walking person. Hayfron-Acquah et al. (2003) 

analysed the symmetry of walking motion using the generalised symmetry operator. 

The operator was performed both on silhouettes and optical flows. They defined the 

gait signature as the average of the symmetry maps and quantified the similarities 

using the Euclidean distance between the Fourier descriptions of each pair of signatures. 
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Recently, Sarkar et al. (2005) introduced a very simple baseline algorithm for human 

gait classification and tested it on a set of challenging data. The algorithm performed 

recognition by computing the temporal correlations of silhouettes. 

2.3.5 Discussion 

We have described the two categories of methods (model-based and model-free) for gait­

related problems. \Ve can see that the model-based approaches involve a shape model 

representing the skeletal structure of the human body. Very often, the parameter space 

of the model is constrained based on our knowledge or assumption of the walk. \Ve 

then search the set of parameters that make the shape model best fit the walkers in 

the images. Such a mechanism gives a model-based system the advantage that we can 

build our prior knowledge about human gait into the system naturally, which potentially 

makes the system robust to outside noise. However, the fitting of a sophisticated model 

could be computationally inefficient and sometimes bring difficulty in finding optima in 

a high-dimensional space. Using model-free methods, on the other hand, has an obvious 

advantage, that is, the gait features can be computed from images efficiently. The 

disadvantage is that most of the methods are appearance-based. Such a characteristic 

means that the systems could be very sensitive to the quality of the image sequences, 

which makes the techniques unreliable for real-world applications. 

2.4 Summary 

In this chapter, we have reviewed some of the previous work related with the topic of 

this thesis. In Section 2.1, we described approaches for the extraction of general human 

body motion. Some of them obtain the motion by computing the posterior probabilities 

of the model parameters given an observation in the state space. We discussed the 

two common frameworks for the propagation of the probability distributions over time: 

the Kalman filter and the particle filter. Other methods involve minimising the error 

between the synthesised model and the observed object, which can be computed by a 

nonlinear measurement function. The optimal state can be either obtained by the inverse 

kinematics that approximates the gradient information of the measurement function by 

linearisation or by searching directly in the state space. In Section 2.2, we described 

the systems extracting a particular type of human motion, i.e., walking. Articulated 

models and contour models are both used to capture the motion of walking people. We 

gave some examples of using these two kinds of models in this section. Discussion of the 

advantages and disadvantages of using the models was given in the end of the section. 

\Ve then gave an overview of the existing gait recognition technology. We first described 

some of the established gait databases and then the early MLD experiments which 
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motivated greatly the current research. Gait systems were classified as model-based and 

model-free, and described in detail afterwards. 



Chapter 3 

Data Description and 

Preprocessing 

This research has used a subset of the Southampton human identification at a 

distance (HiD) database (Shutler et al. 2002). It consists of both high-quality (indoor) 

data and lower quality outdoor data, representative of a real application. There is also 

supplemental data of some of the walkers carrying bags, wearing coats, skirts, etc. Our 

concern is to devise a system that is capable of extracting gait information from image 

sequences at least as challenging as the outdoor and supplemental data, exploiting the 

high-quality indoor data for initial learning only. Rather than taking raw color images 

as input, our algorithms are designed to work with simple extracted silhouettes. All 

silhouettes are normalised to ease the following procedure of extracting gait. 

3.1 The Southampton HiD Database 

The Southampton HiD database has been designed and built to provide a large multi­

purpose dataset enabling the investigation of gait as biometric as well as other sequence­

based vision applications. It contains sequences of just over 100 walkers, viewed from 

the side and filmed at 25 frames per second. There are different kinds of data stored in 

the database including: indoor, outdoor and supplemental image sequences. 

Indoor Sequences: These were filmed under laboratory conditions with a high-quality 

camera, controlled lighting and a constant green background to facilitate silhouette 

extraction. These data are clearly not representative of a real application scenario. For 

our purposes, they are treated as initial training data for learning typical body shape 

and motion parameters, and their variations. Figure 3.1 shows a sample sequence filmed 

indoor. 

17 
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(a) frame 1 (b) frame 6 

(c) frame 11 (d) frame 16 

(e) frame 21 (f) frame 26 

FIGl:RE 3.1: An example of indoor video sequences. The sequence is labelled by its 
walkerID = 001 and sequenceID = OlR in the indoor image data. 
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Outdoor Sequences: To test the potential of our Bayesian framework on data more 

representative of a practical application, we used the outdoor image sequences in the 

HiD database. These images are affected by changes in illumination, motion of trees, 

passers-by and cars, and ambiguous colour contrasts between the walker and background. 

Examples are shown in Figure 3.2. 

Supplemental Data: The database contains supplemental images of walkers carrying 

bags, rucksacks, wearing clothing such as long skirts or trenchcoats which obscure the 

legs, etc. Some of these have been used to test the Bayesian framework. Although 

collected under laboratory conditions, these represent difficult data, which stretch the 
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(a) frame 1 (b) frame 11 

(c) frame 21 (d) frame 31 

(e) frame 41 (f) frame 51 

FIGURE 3.2: An example of outdoor video sequences. The sequence is labelled by its 
walkerID = 004 and sequenceID = OOR in the outdoor image data. 
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methods developed in a different way from the outdoor data. Examples of such data are 

given in Figure 3.3. The top row shows walkers carrying a rucksack and the middle and 

bottom rows are images of walkers wearing, respectively, a long skirt and a trenchcoat, 

where the motion of limbs was severely occluded. 
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(a) (b) 

(e) (d) 

(e) (f) 

FIGURE 3.3: Examples of supplemental image data: rucksack (a, b), long skirt (c, d), 
and trench coat (e, f). 

3.2 Silhouette Extraction 
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For indoor image data, high-quality silhouettes were obtained using a chroma-key 

technique. Figure 3.4 shows examples of the silhouettes extracted from the indoor image 

data. It can be seen that the foreground pixels (walkers) were extracted nearly perfectly 

from the pure coloured backdrop and the effect of shadows was significantly reduced. 

Silhouettes for the outdoor images were produced by background subtraction (Grant 

et aL 2004). Figure 3.5 shows typical examples. It can bee seen that the quality of 

silhouettes largely depends on the environments when filming walkers. For example, in 
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(a) (b) 

(c) (d) 

(e) (f) 

FIGURE 3.4: Examples of silhouettes extracted from indoor image data. The left 
column shows the raw colour images (a, c, e) and the right column the extracted 

silhouettes (b, d, f). 
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(a) (b) 

(c) (d) 

(e) (f) 

FIGURE 3.5: Examples of silhouettes extracted from outdoor image data. The left 
column shows the raw colour images (a, c, e) and the right column the extracted 

silhouettes (b, d, f). 
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Figure 3.5(a), a passing bus caused a big block of noise in 3.5(b) while the relatively 

less cluttered background in Figure 3.5(e) resulted in a better silhouette obtained in 

Figure 3.5(f). Note that in Grant et al. (2004), further operations were carried out to 

clean and repair the silhouettes after background subtraction. To explore the potential of 

the Bayesian framework with challenging data, no such post-processing was implemented 

in our work. 
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3.3 Silhouette Normalisation 

To simplify the subsequent processing of gait extraction, silhouettes are normalised (i.e., 

centered in each image) before being input into the framework. Although normalisation 

could be simply and straightforward for the indoor data, the noise inherent in the outdoor 

data dictates the use of a relatively more sophisticated approach. For this purpose, 

we use an evidence-based tracking algorithm described by Lappas et al. (2002), who 

extended the dynamic Hough transform (GHT) to detect arbitrary shapes undergoing 

arbitrary affine motion. Details of the GHT can be found in Appendix B. In this 

section, we first describe their method briefly and then give examples of the normalised 

silhouettes for outdoor data. 

The tracking algorithm processes the whole image sequence globally and the optimal 

object trajectory is found by maximising its associated energy. For a sequence with 

length T, an object trajectory consists of a set of points {(Xt) yt) 1 ::;: t ::;: T} where 

(Xt, Yt) locates the object to be tracked in frame t. The speed vt and orientation CPt are 

computed for the point (Xt, Yt) in frame t as: 

(3.1) 

(3.2) 

where (Xt-l) Yt-l) is the location in the previous frame t 1. The energy function E traj 

of an object trajectory consists of two terms, the Hough energy EHough and the motion 

energy Emotion) and can be expressed as: 

(3.3) 

where Wl and W2 are weights that can be adjusted to vary the relative importance of 

each term. In their original paper, there is a third term called deformation energy 

standing for the smoothness of the changes in scale and rotation. Since walkers in the 

HiD database were viewed and filmed from the side, we assumed no deformation energy 

here and therefore omitted the third term. The Hough energy is defined as: 

T 

EHough = 2.:= Pt 

t=l 
(3.4) 

where Pt is simply the peak value at (Xt) Yt) obtained after fitting a template to frame t 

using the generalised Hough transform (GHT) (Ballard 1981). This term forces the 
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trajectory to pass through the points with maximum structure evidence. The motion 

energy represents the elasticity and rigidity of the trajectory, and has the form: 

T-l T-l 

Emotion = L Ivt-l - lItl + L l<Pt-l - <ptl (3.5) 
t=2 t=2 

where the first term penalises the large changes in speed and the second penalises 

the large changes in direction. The optimisation is achieved using temporal dynamic 

programming. 

In our work, the template used for the Rough transform is the very rough contour of 

the upper body (head and torso) formed by averaging across walkers. To generate the 

template, we chose 5 indoor sequences for each of the 50 walkers in our gait database. \iVe 

positioned the walking subjects in the centre of the images by calculating the centroid of 

silhouettes. We averaged all the silhouettes and the template was obtained by the edge 

detection on the mean silhouette. A limited number of templates with different sizes 

were generated and the optimal trajectory found for each. The overall best trajectory 

tells us the locations of the walker in the sequence, and the size of the optimal template 

is used to normalise the silhouettes. Figure 3.6 illustrates the normalisation for an 

outdoor sequence. Fig. 3.6(a) shows the average template; the sequence depicted in 

Fig. 3.6(b) shows the position found by the tracking algorithm with the optimal template 

superimposed. (Note that the polarity of the silhouette has been inverted to show the 

superimposed template more clearly.) As seen, the walker is reasonably located even in 

the presence of a passing bus. Finally, Fig. 3.6( c) shows the bounding box obtained by re­

centering the walker. Because walkers in the indoor images are large (in terms of number 

of pixels) relative to the outdoor images, they were reduced to fit in a (70 x 70) bounding 

box. The outdoor images were simply cropped to (120 x 120) pixels. Images can be 

smaller in the former case as (70 x 70) images were found adequate for bootstrapping 

Bayesian learning, which is the main purpose of these data. 

To improve the computational efficiency of the tracking algorithm for noisy outdoor data 

as in Figure 3.4 , we introduce some heuristic spatial constraints to define a reasonably 

small search window in each frame for CRT, so as to search for the position of the walking 

subject in a small restricted area instead of the whole image area. In the remainder of 

this section, we give the details of how we impose these constraints. 

Horizontal Constraints: Based on the fact that subjects walked normally when being 

filmed in the gait database, we assume that the walking speed of a walker remains 

approximately unchanged. The pixel-wise speed is then computed by dividing the width 

of an image by the number of frames of a sequence. Therefore, we can know roughly 

the horizontal position of a walker in a particular frame (by "roughly", we mean within 

an interval of 40-pixel width). 
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(a) 

(b) 

(c) 

FIGURE 3.6: Example of normalisation of an outdoor image sequence: (a) shows the 
average template somewhat enlarged relative to the other sequences; (b) shows a typical 
silhouette sequence with the best-fit position of this template superimposed; (c) shows 

the final (120 x 120) pixel bounding box obtained. 
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Vertical Constraints: To limit the search window on the perpendicular direction, we 

try to locate the head of the walking subject in a vertical interval. For silhouettes with 

a clean background, it is rather simple to do so by scanning each row of the silhouettes 

and counting the number of foreground pixels in a row from top to bottom. The position 

of the head can be located at a point where the number changes significantly. However, 

for noisy silhouettes, we can not implement the above method because many foreground 

pixels might be just noise. Also we might miss some pixels belonging to the walker in 

the silhouettes. 

To reduce the extent of noise, we use the difference between two consecutive frames 

to detect the location of the head. Given sequence X = {xtlT=l' for two consecutive 

frames Xt-l and Xt, the different image Xt is defined as the difference between Xt-l and 

Xt. Figures 3.7(a) and 3.7(b) show two consecutive frames. Their difference image X36 

is given by Figure 3.7 (c). 'Ve can see that the noise at the background is significantly 

reduced and the motion of the walking subject is captured by the pixels different in the 

two silhouettes. 

Since we have already had the horizontal constraints, we only have to consider the pixels 

in a small horizontal interval. We then chop a sub-image x; with 40-pixel width, which is 

the length of the corresponding horizontal search window, from the difference image Xt. 

Figure 3.7(d) shows the chopped sub-image x36 from the difference image on the left. 

In the sub-image, we can see that the majority of the pixels describe the motion of the 

walking subject. 'Ve then count the number of pixels at each row for x; to see if we can 

judge the head position from these numbers. Figure 3.7(e) shows the histogram of the 

number of pixels at each row for x36' It is clear that the value changes dramatically at 

the head position. Since the vertical position of the head of the walker does not change 

much in a sequence, we count the number of pixels over the whole sequence, that is, add 

the numbers from all {xnT=l' We denote the total number at row 7' as Yr' Figure 3.8 

shows the histogram for these numbers computed for the sample sequence in Figure 3.7. 

The shape of the histogram in Figure 3.8 is similar to that shown in Figure 3.7(e), but 

much smoother. We believe that it is more robust to use the total number of different 

pixels at each row to detect the head position. 

To find the jump in the histogram, we fit a sigmoid curve fsig' The curve is defined as: 

a 
fsig(x;a,b,c) = (b( )) 1 + exp - x + c 

(3.6) 

where a, band c are the parameters controlling the shape of the curve. 'Ve try to find a 

set of parameters (a*, b*, c*) which make the sigmoid curve best-fit the histogram. This 

is done by maximising sum of squares E(a,b,c) = L~l (Yr - fSig(7',a,b,c))2 where 7' is 

the row number and Yr is the number of pixels at row 7'. In 3.8 the best fitted sigmoid 

curve is shown by the solid line and we can see that it fits the histogram well. The 
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FIGURE 3.7: (a) Frame 35, (b) Frame 36, (c) difference image X36 between (a) and 
(b), (d) chopped sub-image x36 from X36 and (e) histogram of the number of pixels at 
each row of x 36 . The sequence is labelled in the gait database as: Walker ID = 002 

and Sequence ID = 0lR. 
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FIGURE 3.8: Histogram of the total number of different pixels for each row over the 
whole sequence and the best fitted sigmoid curve. The sequence is labelled in the gait 

database as: Walker ID = 002 and Sequence ID = 0lR. 
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vertical interval is then defined as [round ( - c* - b;) - 10, round ( - c* b2*) + 10] 

where function round() converts a decimal to the closet integer. 

The object tracking algorithm in Lappas et al. (2002) requires the implementation of 

the GHT to frames in a sequence to provide candidates of positions of the object. In our 

work, the first N = 50 positions with the largest peak values are chosen as candidates 

from which the optimal position is determined for each frame. Figure 3.9 shows a sample 

frame fitted by the template using the GHT. In Figure 3.9(a), the template was fitted 

without any spatial constraint. The upper body of the walker was very noisy and not he 

was properly located by the template. In comparison with the results in Figure 3.9(b) 

using constraints the spatial constraints significantly improved the fitting performance. 

\Ve chose 20 sequences randomly from total 500 outdoor sequences and checked the 

normalised silhouettes by eye. For all of the 20 sequences, the walkers were properly 

positioned in the images. 
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(a) 

(b) 

FIGURE 3.9: Results of fitting the upper-body template to a sample silhouette using 
Hough transform. The foreground pixels are displayed in gray while the template in 
black. The first N = 50 positions with largest peak value are shown in both images. 

(a) Without spatial constraints. (b) With spatial constraints. 

3.4 Summary 
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In this chapter, we have described the image data used in our work and discussed how we 

pre-process the images. The Southampton Hid database provides us various kinds of gait 

sequences including high-quality indoor data, lower quality outdoor data and challenging 

supplemental data. The indoor data from which high-quality silhouettes can be obtained 

by a chroma-key technique are used as the training data in our Bayesian framework to 

learn the priors. On the contrary, the outdoor sequences containing real-world noise are 

used to test the ability of the framework to handle noise. To prove our system's virtues 

of consistency and flexibility, the framework will be adapted to the supplemental data 

that include unusual gait data, such as walkers carrying bags, wearing long skirts and 

trenchcoats, etc., with only minor changes. 

All silhouettes extracted from raw colour images are normalised before being input 

to the framework. \Ve have implemented the tracking algorithm described in Lappas 

et a1. (2002) to locate the upper body of the walker in images. The utilisation 

of the generalised Hough transform and dynamic programming makes the algorithm 

computational efficient. To improve the efficiency further, we introduce some spatial 
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constraints to make the normalisation more robust. In the next chapter, we will describe 

the whole Bayesian framework, which is the key part in this thesis, in detail. It will be 

seen that the framework encodes successfully our prior knowledge of human walking to 

cope with the real encountered noise in a Bayesian formulism. Moreover, each component 

of the framework is relatively dependent from others, making it flexible and extensible 

for various situations. 



Chapter 4 

A Bayesian Framework for Gait 

Extraction 

Extracting human gait from real-world images poses a severe challenge for a computer 

vision system. The motion itself is highly articulated, which means the walking object 

have complex changing boundaries. In real-world situations, the motion will occur in 

a cluttered scene making segmentation difficult and ambiguous. Moreover, the large 

variations of the body appearance of walkers make the problem even more difficult. 

For example, carrying a rucksack changes the shape of the upper body of a walker 

dramatically and wearing a long skirt causes severe occlusions of legs. However, human 

gait is also a domain that has been well studied and therefore contains strong prior 

knowledge. The complexity of the problem demands a system with strong capability of 

handling uncertainty. Meanwhile, it should be able to incorporate existing knowledge 

of human gait to improve extraction. A Bayesian framework fits the requirements 

well. Such a framework allows us to combine observations (what we can see) and 

pnor knowledge (what we know) systematically and to model the uncertainties in a 

probabilistic way. 

4.1 Overview 

The problem we try to cope with is to extract human gait from image sequences with 

real-world noise or walkers with different body configurations. We decompose this 

complex problem into sub-problems and each of the sub-problems is solved by some 

simple component. Figure 4.1 shows the components and the way they are combined 

to extract human gait from image sequences. It can be seen that the framework has a 

simple structure and the components themselves are quite simple and based on some 

well-established techniques. VIe regard this simplicity as a virtue, since the components 

can be easily extended and modified to cope with various data (e.g., images with walkers 
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'AA j 
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FIGURE 4.1: Framework structure showing how human gait if extracted from image 
sequences. There are four components within the framework: 1) a hidden Markov model 
learning the phases of images in the gait cycel; 2) a maximum a posteriori component 
optimising the parameters (including static and dynamic parameters) of a model fitted 
to walkers in images; 3) a Bayesian updating component refining system parameters; 

and 4) a component bootstrapping system parameters. 
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carrying a rucksack or wearing a long skirt etc). In this work, we give an example 

of how to build a consistent, extensible and pricinpled Bayesian framework. The key 

contribution here is to illustrate the advantages of deploying an appropriate mix of 

strong prior knowledge and simple but powerful learning methodologies in just the way 

that the Bayesian framework allows. 

To define strong prior knowledge of shapes and movement of humans, we build a single 

articulated model. This is described in Section 4.2. \Ve try to fit the model to walking 

individuals in the images and extract their gait by the parameters of the model. Since the 

variations of the pose of a walker are large, it makes fitting the model difficult as there is a 

large region in the parameter space corresponding to feasible walker models. To ease this 

problem, we use a hidden Markov model to learn the phase of images in the gait cycle. 

The new PDF projection theorem (see Appendix D) is novelly used to learn observation 

probability distributions in this gait system. Sections 4.3 and refsec:Framework-pdf 

describe the HMM component and the implementation of the PDF projection theorem 

in the framework. After the HMM decoding, we try to solve a maximum a posteriori 

problem. In Section 4.5, we define the posterior probability to be maximised. There 

are two kinds of parameters of the articulated model: the static parameters that define 

the sizes of the body parts and the dynamic parameters controlling the post of the 

model. They are optimised separately using different strategies (see Section 4.6). A 

bootstrapping component is constructed to estimate the system parameters from a small 

amount of indoor training data. Section 4.7 describes the two components. In the last 

section, we extend the framework to handle different body configurations. 
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(a) 

static parameters 
head radius Tl 

torso width T2 

torso length T3 

leg width T4 

thigh length T5 

calf length T6 

(b) 

dynamic parameters (angle) 
front thigh (h 
back thigh (P2 
front calf rP3 
back calf rP4 
front foot rP5 
back foot rP6 

(e) 

FIGURE 4.2: The basic articulated model of a walker: (a) shows the body parts; 
(b) defines the various joint angles; and (c) lists the model's static and dynamic 
parameters. The arms are omitted in an attempt to match the complexity of the 

model appropriately to the available data. 

4.2 Articulated Model 
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A cornerstone of our approach is the exploitation of strong prior knowledge of human 

walkers and walking. The most basic level at which this knowledge is introduced is 

the articulated walker model. Both two-dimensional and three-dimensional articulated 

models have been used to model walking people in some applications (e.g., Hogg 1983; 

Rohr 1994; Ju et al. 1996; Ning et al. 2002; Lan and Huttenlocher 2004). Most of 

the shapes having been used to build an articulated model are surveyed in Gavrila 

(2000). Instead of a sophisticated three-dimensional model, we build a very simple two­

dimensional articulated model using three circles and seven rectangles for walkers viewed 

from the side. Figure 4.2 shows the model used and lists the parameters that control 

it. The basic model has 12 parameters which divide into two groups: those determining 

the sizes of the body parts which remain constant for all images in the sequence; and 

the angles between the body parts, which vary from frame to frame. We refer to these 

as static and dynamic variables respectively. 
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Clearly, the model is only a crude approximation to a real walker. No account is taken of 

perspective, parts of the body such as the neck, arms and hands are missing, foot lengths 

and widths are fixed across all sequences, and there is no distinction made between the 

left and right sides of the body. We rather distinguish between the front and back legs 

alone. Thus, our definition of a gait cycle is half the length of the one defined in Murray 

(1967). These simplifications reduce computational complexity and, more importantly, 

reflect our view of matching model complexity to the available data. For example, there 

is unlikely to be sufficient information in the outdoor images (see examples shown in the 

previous chapter) to be able to fit details such as the arms. (We have explores the use 

of arms in our articulated model, but results were no better than those reported later 

in this thesis.) Furthermore, we avoid possible ambiguities in fitting the model arising 

from having to determine which leg is which. 

Note that the basic model can be easily extended to cope with large variations of the 

appearance of a walker caused by carrying bags or wearing some special clothes. In our 

work later reported in this thesis, the model is generalised by the addition of a rucksack, 

a long skirt, and a trenchcoat respectively. The rucksack is represented by a half ellipse, 

a long skirt by filling the gaps between two legs, and a trapezoid is added to stand for a 

trenchcoat. The overall cost is no more than two static parameters added and no other 

changes for the framework. 

Gait information is extracted by finding the best set of model parameters to fit any 

given silhouette. In the Bayesian framework, this means determining the likelihood of 

the image given the model. To achieve this, we generate from the model a silhouette of 

the appropriate size. This 'model silhouette' is then matched against the observed data 

silhouette. In the following, we denote the set of parameters of the articulated model 

as 0 and the model silhouette as I(O). 

4.3 Locating Phase In the Gait Cycle 

As human walking can be considered approximately periodic (Murray 1967; Cunado 

et al. 2003), we can think of the dynamic parameters of the articulated model (i.e., joint 

angles) as a strong function of the phase within the gait cycle. The Bayesian framework 

exploits this information by finding which part of the gait cycle an image comes from. 

To automate this, we use a hidden Markov model (HMM) since it provides a natural 

framework of processing sequential stochastic data. 

In the rest of this section, we will describe the issues of how we design the HMM 

fitted in our gait-extraction problem. In Section 4.3.1, we give a brief introduction 

to H::\1Ms. The construction of the HMM is described in Section 4.3.2 including the 

whole HMM architecture and the learning of the transition probabilities and initial 

probabilities. Obtaining the observation probability distributions is not straightforward 
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in this case. We describe how to use the new PDF projection theorem to measure these 

high-dimensional unknown distributions in the next section. 

4.3.1 An Introduction to Hidden Markov Models 

A hidden Markov model describes a special Markov process whose random variables 

are not observable (hidden), but can only be observed through another stochastic 

process which produces a sequence of observations. See Rabiner (1989) for more 

detailed description of HMMs. Before describing the components of an HMM, we 

give the definition of a Markov chain. Given a discrete-time stochastic process 

y = {Yt : t = 1,2, ... } where t represents the time instance, we use S to denote the 

state space of Y which contains all possible values of any element in Y. The stochastic 

process Y is said to be a Markov chain if the distribution of the random variable at 

time t, Yt, given all the past of the process depends only on the immediate past, Yt-l' 
That is the following equation holds: 

P(Yt = silYt-l = Sj, Yt-2 = 5k, ... ) = P(Yt = silYt-l = 5j) ( 4.1) 

where states Si, 5j, Sk, ... are in S. The subscripts satisfies 1 ::; i, j, k ::; Ns where Ns is 

the size of S. The probability P(Yt = 5ilYt-l = 5j) is called the transition probability 

and denoted by aij' 

A hidden Markov model IS an extension of a Markov chain. It consists of three 

main components: the initial probability distribution 7f, the transition probability 

distribution A, and the observation probability distribution B. A brief explanation 

of each of these components is given as follows. 

1. Initial probability distribution 7f: The initial probabilities 7f = {7fi : 1 ::; i ::; N s} 
are the probabilities of the hidden stochastic process Y beginning in each state Si 

in the state space S. 

2. Transition probability distribution A: The distribution A is comprised of all 

possible transition probabilities {aij : 1 ::; i, j ::; N s}. Therefore, there are N s x N s 

entries in A. For two states Si and S j, if there is no connection between them, a;j is 

set to zero. 

3. Observation probability distribution B: The observation probabilities connect the 

hidden process with the observed process. In the case of discrete observations, the 

distribution in state Sj is a table listing the probabilities of all distinct observations 

observed when the hidden process is in 8j. For continuous observations, we need 

to estimate the probability density of the observations in each of the states in S. 
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The complete set of components of an HMM A can be expressed as A = (A, B, 71). The 

problem to be solved here is that given an observation sequence X = (Xl) X2, ... , XT) 

and an HMM A, how to find out a state sequence Q = (8 q1 , 8 q2 ) ... , 8 qT ) that maximises 

the likelihood P(QIX, A): 

P(QIX,A) 
P(XIQ, A)P(QIA) 

P(XIA) 

c (V,P(X,lq,)) (V, a"".)n" (4.2) 

Here, c is a normalisation constant and p(xtlqt) is the probability of observation Xt 

given state 8 qt and A. \Ve omitted A and replace 8 qt by qt to simply the above equation. 

The standard Viterbi algorithm can solve the problem (see Rabiner 1989 for details) 

efficiently and is implemented in my work. 

\Ve exploit our prior knowledge of human walking by locating the phase of an image 

in the gait cycle, or in other words, which part of the gait cycle an image comes from. 

The input image sequence can be viewed as the observations. Our task is to find a 

state sequence which is most likely to generate the observed image sequence. One of the 

challenges to build up the HMM is to measure the observation probability distributions. 

Since the probability is a conditional probability of an image, the distributions are in 

the high-dimensional image space. It is very difficult to measure them directly because 

we do not have enough data to represent the true distributions. Alternatively, we use 

the relatively new PDF projection theorem to estimate such distributions. 

4.3.2 Constructing the Hidden Markov Model 

\Ve hand-craft carefully a cyclic HMM to model the gait cycle. The structure of the 

HMM is shown in Figure 4.3. The gait cycle is divided into K = 6 sections and each 

section is modelled by some states with the same grey colour in the figure. These states 

are tied together to share the same initial probability 7Tk and observation probability 

distribution p(xlk). Here X is an observed image and k is the section number. 

Given the capability of modelling sequential stochastic data, HMMs have been used in 

previous gait-related work (e.g., Meyer et al. 1998; Lee et al. 2003; Sundaresan et al. 

2003; Lan and Huttenlocher 2004). A major structural difference between the HMMs 

they used and the one shown in Figure 4.3(a) is that they represented each section of the 

gait cycle by a single state with a self-transition and we used tied-states here. We believe 

that tied-states capture the dynamics of human walking more precisely. If we assume 

that a section is modelled by a single state with self-transition probability a, then the 
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U 
k=1 

n 
k=2 

probabilities values 

7rl 0.033 
7r2 0.050 

II 
PI 0.475 

P2 0.475 

P3 0.050 
k=5 ql 0.050 

q2 0.530 
k=3 q3 0.370 

q4 0.050 

II 
k=4 

(a) (b) 

FIGURE 4.3: Hand-crafted hidden Markov model used to locate images within the gait 
cycle: (a) shows the architecture of the HMM with sections labelled by an image of the 

corresponding prototype; (b) lists the values of transition probabilities. 
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probability of n consecutive frames observed in the section is given by an exponential 

function p(n): 

p(n) = an - 1(1 - a) (4.3) 

which reaches a maximum when n = 1. That probability function tells us that the most 

likely number of images in a section is always equal to one, which is apparently not true 

for the real situations. In contrast , the tied-state structure provides us a more accurate 

way to reflect the real transition distribution. For example, to model section k = 3 (the 

section numbers are given inside the circles standing for states), we use four tied states. 

The transition probabilities {qJt=1 are listed in Figure 4.3(b). Observing two or three 

consecutive frames is most likely for this section. 

There are two sections only having three tied states in the HMM while others have 

four. Originally, the walking cycle was divided into K = 5 sections, each having four 

tied states, to give a 20 state HMM. The intention was that each section was occupied 

for approximately the same time. Four states per section were chosen because this is 

a reasonable upper limit on the number of frames per section. Skip transitions will 

therefore model cycles of less than 20 frames. The largest skips (transitions P3 and 
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q4) are included to model possible missing frames, although this did not occur in the 

gait data. Subsequently, it was realised that for one particular section of the cycle, the 

variation in walker pose was very large as a consequence of rapid limb movement in this 

phase. This occurred at the bottom of the leg swing, where the dynamic movement is 

high. To remedy this, we split this section into two to give K = 6 sections with the 

split pair represented by three HMM states. The transition probabilities were adjusted 

to cater for this. 

The transition probabilities listed in Figure 4.3(b) are learned from a set of indoor image 

sequences. They are selected by choosing three sequences from each of seven random 

walkers in the gait database. Instead of the classical Baum-Welch learning algorithm, 

we used a rather simple method to learn the transition probabilities as follows: 

• Hand-labelling all the selected image sequences according to our prior knowledge 

so that for each frame we know the particular section the image comes from. 

• Counting the frequency of n consecutive frames occurring in the same section 

(n = 1,2,3,4). The transition probabilities are then computed according to these 

frequencies. The counting process was done separately for the sections having 3 

tied states and those having 4 tied states. 

The initial probabilities of states in the same section are assigned equally. For section k, 

the probability 'ifk is computed as: 

k length of section k 
'if = (4.4) 

(length of a gait cycle) x (number of states in section Ie) 

Since the two short sections (sections 1 and 2) are half the length of other sections, the 

initial probabilities of the states in these two sections are different from others as listed 

in Figure 4.3(b). 

Note that we have not given any explanation of the silhouettes in Figure 4.3(a). These 

silhouettes correspond to the mean walker models of the sections and are to be used to 

measure the observation probability distributions. 

4.4 Modelling Observation Probability Distribution 

Having discussed the structure of the HMM, the transition probabilities and the initial 

probabilities, we need to define the observation probabilities to complete the HMM. 

Estimating the probability of an image (an observation) belonging to (i.e., being emitted 

by) a particular state is non-trivial. Vle use the probability density function (PDF) 

projection theorem (Baggenstoss 2003) to derive the observation probability densities. 
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This theorem provides a general framework to project PDFs from a low-dimensional 

feature space back to the raw data space which is usually high-dimensional so as to 

avoid the curse of dimensionality. In Minka (2004) and Thayananthan et al. (2004), they 

discussed a scheme of estimating the likelihood PDFs for template-based (or exemplar­

based) matching using the PDF projection theorem. 

4.4.1 The PDF Projection Theorem 

Let x be the data points in the raw data space. \Ve define features z by z = T(x) where 

TO is a many-to-one mapping from the raw data space to a feature space. Given a fixed 

reference hypothesis Ho with known PDFs p(x[Ho) and p(z[Ho), the PDF projection 

theorem says that function p (x) defined by: 

p(x[Ho) 
p(x) = p(z[Ho)P(z), (4.5) 

is a PDF in the raw data space where p(z) is a PDF in the feature space. Very often (i.e, 

in the case of template matching), we want to estimate the observation density under 

the hypothesis Hk, p(x[Hk). Let Zk. be the features extracted in a way associated with 

Hk. Baggenstoss (2003) states that if Zk is a sufficient statistic for Hk versus Ho, we 

can estimate P(X[Hk) using Equation 4.5, that is: 

(4.6) 

~ote that it is difficult to establish the sufficiency in practice. Baggenstoss discussed this 

issue. It is said that the sufficiency is not essential in practice. Equation 4.6 provides us 

a way to approximate the real PDF. However, we can achieve near optimal performance 

by carefully choosing the features that contain enough information related to the raw 

data. In this case, the raw data space is the image space. Appendix D gives more details 

about the PDF projection theorem. 

To use the PDF projection theorem, we have to define hypothesis Hk feature Zk and 

reference hypothesis Ho. Moreover, we model the PDFs in the feature space explicitly 

using gamma distributions so that the projected PDFs in the raw data space can be 

derived analytically. 

Hypothesis Hk: In our case, hypothesis Hk states that an image x comes from 

section k. The observation PDF of a state in that section can then be written as 

P(X[Hk)' 
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Feature Zk: We define the feature as an image distance between the observed image 

and an exemplar associated with section k. All exemplars are the silhouettes shown in 

Figure 4.3(a). Since the image distance is a scalar, we use Zk instead of Zk to denote 

the feature. Each of the exemplar is a model silhouette that embodies the average 

articulated-model parameters extracted from its associated section of the walk. The 

average parameters are denoted by {Odf'=l' Given image x feature Zk can then be 

computed as: 

( 4.7) 

where p is a function measuring the similarity between two images. To quantify the 

similarity, we use the chamfer distance, whose power has been proven in object detection 

and tracking (Borgefors 1988; Gavrila 2000; Toyama and Blake 2002). There are of 

course other image distances, e.g., the one based on the number of pixels having same 

or different values in two silhouettes (Ju et al. 1996; Sarkar et al. 2005). However, they 

are not suitable to be used on the outdoor data which have poor silhouette quality. 

We denote the chamfer distance between silhouettes hand h by p(1l, 12)' Given their 

edge-point sets U = {Un};;'=l and V = {vm}~=l' the chamfer distance from U to V is 

defined as: 

p(U, V) = 1 'L min Ilun - vmll. 
N v",EV 

UnEU 

(4.8) 

In this work, the chamfer distance is computed efficiently using the chamfer transform. 

The real (silhouette) images and the prototype images are converted to edge images using 

the Sobel edge detector. The real edge images then serve as reference; they are chamfer 

transformed. We use a (3 x 3) mask with a (3,4)/3 distance measure to approximate 

a Euclidean distance using integer arithmetic as described by Borgefors (1988). More 

details of chamfer distances can be found in Appendix C. 

Reference Hypothesis Ho: The reference hypothesis Ho should be carefully chosen so 

as to make the estimations of p(xIHo) and p(zIHo) tractable. We define Ho as that an 

image comes from the walking cycle. \i\Te also assume that the probability of an image x 

belonging to the walking cycle, p(xIHo, is a constant. Since the reference hypothesis Ho 

is the union of all the hypotheses {H df'=l : 

(4.9) 

We can measure p(zkIHo) by: 
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K 

p(zkIHo) = LP(ZkIHj)p(Hj). 
j=l 
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(4.10) 

The prior p(Hj) can be thought as the probability of being in the jth section and is simply 

assigned by the proportion of the length of that section in the gait cycle. Substituting 

Equation 4.10 to 4.6, we have the way to approximate the probability of an image x 

coming from the kth section: 

(4.11) 

where p( Zk I H j ) is the distribution of the chamfer distances between the exemplar for the 

kth section and the images from the jth section. It has to be noticed that Equation 4.11 

is a way to approximate the true probability distribution since we can not prove the 

statistical sufficiency of Zk. 

4.4.3 Gamma Representation 

We model the probability distribution of the chamfer distances between the exemplar 

of the kth section and the observed images coming from the jth section of the walk by 

a gamma distribution: 

(4.12) 

Thus, to use the PDF projection theorem we need to know the parameters a and b for 

each of the gamma distributions describing the spread of chamfer matches between the 

images in the jth section of the walk and the prototype silhouette for section k-giving a 

total of [(2 gamma distributions. Figure 4.4 shows the learned gamma distributions for 

the indoor image data and Figure 4.5 illustrates how the computed gamma distributions 

fit the empirical chamfer distances. The ones for outdoor noisy image sequences are 

shown in Figure 4.6. As seen, the probability distributions learned from the outdoor 

data are wider and more overlapped by each other than those from the indoor data, 

which is coherent with the level of noise in the images. 

The parameters of the gamma distributions will be different for the high-quality indoor 

data and the noisy outdoor data. We therefore need to perform an initial calibration for 

each database used. Given a set of labelled images, we can perform this calibration by 

first calculating the chamfer distances between the images in each section of the walk and 

each of the prototypes and then finding the parameters of the gamma distributions that 

maximise the likelihood of the chamfer distance values. For the indoor data, we used 
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FIGURE 4.7: Labelling the phase of the gait cycle using the HMM: (a) shows the J{ = 6 
mean models used as prototypes. Typical labellings produced by the HMM are shown 

for (b) an indoor sequence and (c) an outdoor sequence. 
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the same training data as used to compute the average prototype parameters; for the 

outdoor later, we hand-labelled a similar number of images. Typical results are shown 

in Figure 4.7, where Figure 4. 7( a) shows the prototype silhouettes and Figure 4. 7(b) 

and 4.7(c) show labelling for illustrative indoor and outdoor sequences respectively. 

4.5 Posterior Probability for Model Parameters 

Having labelled each image according to its section in the walking cycle, we are in a 

position to find the parameters of the articulated model which best fit each of the images. 

The static parameters describing sizes of the body parts and the dynamic parameters 

describing the angles of the limbs are treated differently. The static parameters are 

assumed to remain constant over all frames in a sequence. \Ve thus accumulate evidence 

for these values from a large number of images. The dynamic parameters are optimised 

on a frame-by-frame basis. In both cases, we maximise a posterior probability for the 

parameters. For the dynamic parameters, this is the posterior given a particular image, 

while for the static parameters, it is the posterior given a sequence of images. The 

posterior for the sequence is the product of the posteriors for each of the single images. 

The posterior probability of the parameters e, given an image from section k and a 

model Mk, can be written as: 

(4.13) 
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where p(xiO, M k) is the likelihood of the image given the parameters and p(OIMk) is the 

prior for the parameters. The constant of proportionality is independent of the model 

so does not influence the maximum a posteriori parameters. We cannot use the pdf 

projection theorem for calculating the likelihood, p(xIO) of an image, x, given a set of 

model parameters, 0, because we now have a continuum of models. Instead we follow 

the conventional (maximum entropy) assumption that the likelihood is exponentially 

distributed in the chamfer distance: 

p(xIO) ex e-bp(x,T(e)) ( 4.14) 

where b is a Lagrange multiplier to be determined empirically. vVe make the additional 

assumption that the number of images with chamfer distance p(x, I( 0)) equal to r grows 

as a polynomial r a- 1. That is, the distribution of chamfer distances is given by: 

(4.15) 

i.e., a gamma distribution. Empirically, this distribution fits the data well as shown in 

Figure 4.8, in which the theoretical distribution is compared to a histogram of values 

obtained from selected calibration data (3606 chamfer distances), chosen on the basis 

of good visual fit. The parameters a and b can be found by fitting empirical data 

using maximum likelihood. This way to determine the exponent b is identical to that 

of Toyama and Blake (2002), although we give a slightly different (and we believe more 

direct) motivation. 

We assume a Gaussian prior for the parameters: 

(4.16) 

where Ok and Ck are the averages and covariances for the parameters in section k of 

the walk. The average parameters are the same as those of our prototypes described 

in the previous subsection. The covariance matrix is learned using Bayesian updating 

described in Section 4.7. In the next subsection, we discuss the practical details of 

finding the parameters that maximise the posterior probability. 

4.6 Optimising Parameters 

The posterior probability is a non-linear function of the parameters 0, which may have 

many local maxima. From Equation 4.13 and 4.14, we know that evaluating this function 

involves computing the chamfer distances. Such a distance is non-differentiable, which 



Chi 

3 

2.5 

2 

~ 

!2:: 1 5 Q.. . 

1 

0.5 

00 0.5 1 1.5 2 2.5 3 
P 

FIGURE 4.8: Distribution of empirical chamfer distance values for 3606 data points 
selected as calibration data and fitted gamma distribution. As can be seen, the fit is 

excellent. 

makes the standard gradient-based optimisation methods not suitable here. To find 

the best-fit parameters, we use a standard multi-dimensional continuous optimisation 

algorithm (Powell 1964) to maximise the log-posterior. It is an iterative method and at 

each iteration, we define carefully N directions in the search space so that each pair of 

them are conjugate. Here N is the space dimension. We start by picking up a direction 

and search the maximum on the line defined by the direction. We then move to the 

maximum and start another search along the next direction. This process is carried out 

until we have done the line search for all the directions. The optimisation process stops 

when it reaches a local maximum. 

During the optimisation, we need to compute the likelihood between the images and 

a 'silhouette model'. Pre-computing the chamfer transform for all the images speeds 

up this computation considerably. The chamfer transform is also used by the HMM in 

computing the likelihood of the image coming from a particular section of the walker. 

The quality of the solution found, as well as the time taken to perform the optimisation, 

depends on the initial values of the parameters. 

4.6.1 Optimising Static Parameters 

We start by finding the optimal static parameters over the sequence as they are time­

invariant in a sequence. Here we denote the static parameters as ,-. Knowing which 

part of the gait cycle images come from, we can easily cluster all images of a given 
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sequence into K image groups, {Gk}f"=l' according to the output of the HMM. We 

denote the images in Gk as {xnk};;r:=l where Nk is the number of images in this group. 

In this subsection, we introduce an iterative learning algorithm that can not only find 

the reasonable values for the static parameters, but learn the initial values ¢k of the 

dynamic parameters for the images in group Gk . 

We use ek to denote the set of model parameters including T and ¢k. Base on Bayes' 

theory, the posterior p( eklGk, Mk) can be computed as: 

Nk 

ex p(ekIMk) IT p(xnklek, Mk)' (4.17) 
nk=l 

Here to simplify the computation, we assume that the images in G k are mutually 

independent. Having Equation 4.17, we can define another posterior probability over 

the whole sequence: 

K 

p(<3IG,M) IT p(ekIGk, M k) (4.18) 
k=l 

<3 {el, ... , e K } 

G {G1, ... ,GK} 

M (4.19) 

Again for simplicity of computation, {ek}f"=l are assumed to be conditionally indepen­

dent with respect to Gk and Mk. Figure 4.9 shows the iterative learning algorithm 

for the static parameters. We use the average parameters {lh }f"=l to initialise T and 

{¢k}f"=l' Note that these parameters are also used in the HMM to generate the 

prototype silhouettes. In each iteration, we first optimise ¢l) ¢2," . , ¢K one-by-one 

using the static parameters obtained in the previous iteration. After that, we update 

the static parameters by maximising Equation 4.19 using the latest learned {¢df"=l' 
The algorithm stops if the posterior probability p(<3IG, M) is no larger than the one 

in the last iteration. Having determined the static parameters and the initial values of 

the dynamic parameters, we can optimise the dynamic parameters for each frame in a 

sequence. 
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~nput: 

• Image groups G1, ... , G K created according to the output of the HMM. 

• Average articulated-model parameters (h, . .. ,OK for the sections of the walk. 

~nitialise: 

too 

• Set T equal to the static parameters of the average parameters. 

• Set ¢ equal to the dynamic parameters of Ok (k = 1, ... ,K). 

for k = 1,2, ... ,K do 
Calculate ¢k +- argmax¢p(T, ¢!Gk, Mk). 

end 

Calculate T +- argmaxrP(T,¢IG,M). 

Until p(T, ¢ IG, M) stops increasing. 

Output: 

• T 

• ¢k (k = 1, ... , K) 

Figure 4.9: Algorithm for learning the static parameters iteratively. In each iteration, 
we first optimise K sets of dynamic parameters for each of the K image groups. \iVe then 
optimise the static parameters based on the latest learned parameters. The algorithm 
halts when there is no increment for the posterior over the whole sequence. 

4.6.2 Optimising Dynamic Parameters 

The dynamic parameters are extracted on an image-by-image basis. We optimise the 

dynamic parameters twice, from two different starting positions in the parameter space. 

The first initialisation are the initial values {¢d{;=l obtained from the learning algorithm 

described in the previous subsection. The second one is generated by a linear prediction 

using the parameters learned in the previous time steps. If we denote the optimal 

parameters found in frame t - 1 and t as O(t - 1) and O(t) respectively, the prediction 

of the dynamic parameters at time t + 1, (j(t + 1), can be computed as: 

(j(t + 1) = O(t) + (O(t) - O(t - 1)). ( 4.20) 

As we do the optimisation twice from two starting points, it ends up with two sets of 

dynamic parameters. We choose the one corresponding to the higher maximum posterior 

probability. 
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~nput: 

• Image sequence X+--{ Xl, ... , XT}' 

• Number sequence Q +-- {ql, q2, ... ,qT} output by the HMM. Each 
number qt (1 :::; qt :::; T) tells which section image Xt comes from. 

• Learned static parameters T. 

• Initial values learned in Figure 4.9, {¢l,' .. , ¢ K}. 

!for t = 1, 2 do 

Set initialisation iJt +-- [TT, ¢~lT. 

Compute the optimal parameters Ot by maximising the posterior 
probability p(OIXt, M) with respect to the dynamic parameters. 

end 

~or t = 3, 4, ... , T do 

Set initialisation iJf +-- [TT,¢~lT. 

Compute the optimal parameters of by maximising the posterior 
probability p(OIXt) M) with respect to the dynamic parameters. 

Set initialisation iJl +-- Ot-l + (Ot-l - Ot-2). 

Compute the optimal parameters ol by maximising the posterior 
probability p(OIXt, M) with respect to the dynamic parameters. 

if p(OfIXt, M) > p(OlIXt, M) then 

Ot +-- Of 
else 

Ot +-- ol 
end 

end 

Output: Articulated-model parameters {O l , ... , OT}. 
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Figure 4.10: Algorithm for learning the dynamic parameters. Besides the initial values 
learned in Figure 4.9, we use a linear prediction to generate another initialisation for 
the optimisation. We choose the fit with larger posterior. 

In principle, we can refine our estimates for the static and dynamic parameters 

iteratively. However, in practice, we found that after a single iteration our estimates 

for the model parameters were adequate and the improvements obtained by further 

iterations were insignificant. 

4.7 Bootstrapping and Updating 

To automate our gait-extraction framework, we have to learn the statistics of the 

parameters of the articulated model, namely, the average parameters {Od{'"=l and the 
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covariance matrices {Ck}f=l' :~Vleasuring these statistics accurately demands a large 

number of data points in the model-parameter space. Each of these points represent the 

parameters optimised from a given image. It could be expensive to get enough points by 

marking images manually. To avoid the tedious labour, we introduce a bootstrapping 

process to learn the statistics from clean indoor image data. After the system has been 

automated, we use the Bayesian updating to refine the statistics. The learned statistics 

are then used to build the strong priors against noise in images. 

Figure 4.11 shows the details of the bootstrapping process. We do the following 

operations in the bootstrapping: 

• We chose 21 image sequences from 7 random walkers in the indoor database; each 

of them had 3 sequences. \iVe then performed normalisation on the silhouettes and 

labelled them manually to know which section each frame came from. 

• The hand-labelled section numbers were used to calculate the transition probabil­

ities for the HMM. 

• Given some initial guess of the average model parameters, we used the same 

optimisation strategies described in Section 4.6 to find a best-fit model for 

each image except that we maximised the likelihood p(xIB, M) rather than the 

posterior p(Olx,M). Some hard constraints were imposed to prevent the model 

behaving unrealistically. For instance, we limited the radius of the head to be 

between 3 and 5 pixels. 

• We computed the average parameters {Ok}f=l and the covariance matri­

ces {Cdf=l from the learned model parameters. 

• Using the average parameters, we learned the gamma distributions so that the 

likelihood of an image given a state in the HMM could be measured by the PDF 

projection theorem. 

• vVe then built the statistics of the parameters into the prior model to make the 

measure of posteriors available. After that, the system was fully automated. 

Figure 4.12 shows the complete updating process. Once a new normalised image 

sequence is input into the framework, we first label it by the HMM. The transition 

probabilities are updated using the output section numbers by the HMM. For each 

frame, we learned a set of parameters by maximising the posterior. These parameters 

are used to update the average parameters {Odf=l and covariance matrices {Cdf=l' 
To do that, we need to remember the number of the sets of parameters, N, that have 

been used to learn the statistics. For a new frame from the kth section of the walk, we 

denote the extracted parameters by 0*. The updated average parameters 0rew can be 

computed as: 
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FIGURE 4.11: A flowchart describing the bootstrapping process for the Bayesian 
framework. The numbers in the figure are explained as follows: (1) 21 normalised 
gait sequences from 3 random chosen walkers; (2, 5) hand-labelled section numbers for 
the sequences; (3) learned transition probability distributions for the HMM; (4) those 
normalised sequences together with the hand-labelled section number; (6) extracted 
the articulated-model parameters; (7, 9) average parameters {Ok }f"=1; (8) observation 
probability densities for states in the HMM; and (10) average parameters {Odf"=l and 

covariance matrices {Cdf"=l 
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onew = ~O~ld + _1_0* 
k N+1k N+1 

(4.21) 

We calculated the updated covariance matrix crew as: 

c new 
k R new onew(onew)T k k k 

~ROld + _1_0*(0*)T ~ onew(onew)T 
N+1 k N+1 k k 

~ (COld + OOld(OOld)T) + _1_0*(0*? 
N+1 k k k N+1 
~Orew (Orew) T (4.22) 

where R represents the correlation of the parameters. The new statistics are then used 

to update the priors of the Bayesian framework. The observation probability densities 

are also updated using the new average parameters. 

Note that for outdoor noisy data, we use the same method to choose 21 sequences and 

label them manually to learn the corresponding observation probability densities. These 

densities are updated as more sequences are labelled automatically by the HMM. Only 

the densities are learned and updated since we have already obtained the strong priors 

from clean data. 
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FIGURE 4.12: A flowchart describing the process of ga.it extraction and Bayesian 
updating. The numbers in the figure are explained as follows: (1) an input 
normalised gait sequence; (2) Automatically learned section numbers for images in 
sequence; (3) updated the transition probability distributions; (4) the normalised 
sequence together with the section numbered output by the HMM; (5, 10) extracted 
articulated-model parameters; (6) updated average parameters {8df"=1 and covariance 
matrices {Cdf"=l; (7,8) updated average parameters {8k}f"=1; and (9) updated state 

observation probability densities. 
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A severe problem with gait extraction arises when the body appearance is changed by, 

for example, a carried rucksack or the limbs are obscured by, for example, an overcoat or 

carried briefcase. Because our approach combines a powerful statistical approach with 

a simple articulated model of a walker, it offers a straightforward way to cope with this 

situation by extending the walker model. VVe illustrate this with three examples in which 

the model is generalised by the addition of a rucksack, a long skirt, or a trenchcoat. 

4.7.1 Framework Extension 

The Bayesian framework is the combination of some simple components and therefore, 

can be easily extended. Here we show this advantage by extending the framework to 

handle a server problem inherent in gait extraction, that is the body-appearance changes 

or the motion occlusions caused by carrying objects or wearing special clothes. Because 

our approach combines a powerful statistical approach with a simple articulated model 

of a walker, it offers a straightforward way to cope with this situation by extending 

the articulated model. We illustrate this with three examples in which the model is 

generalised by the addition of a rucksack, a long skirt, or a trenchcoat. 

The basic articulated model (see Section 4.2) is simply modified to cater for each of the 

three cases. Figures 4.13, 4.14 and 4.15 show the extended models for walkers with a 

rucksack, a long skirt or a trenchcoat respectively. A rucksack is represented by a half 
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Added Parameters 
Rucksack Width w 

(a) (b) 

FIGURE 4.13: The extended articulated model for a walker carrying a rucksack: 
(a) shows the body parts; and (b) lists the only static parameter added to control 

the half ellipse standing for a rucksack. 
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ellipse, a long skirt by filling the gaps between the legs, and a trapezoid is added to stand 

for a trenchcoat. A maximum of two more static parameters is added to the basic model 

for the extra body appearance. Note that the parameters of the basic articulated model 

are still used to control the behaviour of the model so that we can still use the statistical 

priors learned from the indoor data to constrain the parameters in optimisation. 

We denote the parameters of the extended model as ()'. Following the definition in 

Equation 4.14, given an image x from the kth section of the gait cycle and the new 

model M~ we write the likelihood probability as: 

(4.23) 

Vie still use a multi-variate Gaussian as the prior probability: 

(4.24) 

where ()~ and C~ are the new average parameters and covariance for the extended model. 

Vie denote the added static parameters by 7' and their means and covariance by ()-,' 

and C -," The average parameters ()~ can be expressed as: 
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Added Parameters 
Skirt Length h 

(a) (b) 

FIGURE 4.14: The extended articulated model for a walker wearing a long skirt: 
(a) shows the body parts; and (b) lists the only static parameter controlling the length 

of the skirt which is represented by filling the gaps between two legs. 

Added Parameters 
h 1 Trenchcoat "\Vidth w 

2 Trenchcoat Height h 

(a) (b) 

FIGURE 4.15: The extended articulated model for a walker wearing a trenchcoat: 
(a) shows the body parts; and (b) lists the two static parameters added to control the 

trapezoid standing for the trenchcoat. 
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( 4.25) 

where {)k are the average parameters of the basic articulated model in section k. We build 

the covariance C~ simply from the previously learned covariance C k and the covariance 

of the added parameters C.,/: 

(4.26) 

where 0 stands for matrices with all elements equal to zero. This is based on the 

assumption that the parameters of the basic model are tightly correlated between 

each other since they describe the body structure, but less correlated with the added 

parameters. Vlith this definition, we only need to learn the statistics of the added static 

parameters from the training data, which significantly eases the learning process. 

A simplified bootstrapping process is carried out for each of the three cases (rucksack, 

skirt and trenchcoat) as follows: 

• Select 10 walkers randomly and choose 1 sequence for each of them. 

• Hand-label these 10 sequences and measure the added static parameters for each 

of the sequences. 

• Compute the average parameters {{)~}{f=l and the covariance {C~}{f=l using 

Equation 4.25 and 4.26. 

• Measure the observation probability densities for the HMM using {{)~ }~=1' 

As more sequences input into the framework, the statistics ({ {)~}~=1 and {C~H{=l) and 

the observation likelihoods can be updated through the process described in Figure 4.12. 

4.8 Summary 

We have discussed the whole Bayesian framework in this chapter. Our prior knowledge 

including the knowledge of human body structure and the knowledge of the walk has 

been naturally built into the framework in terms of a two-dimensional articulated model 

and a hidden Markov model (HMM) that detects which part of the gait cycle an image 

comes from. The articulated model is simply comprised by basic geometric shape (circles 

and rectangles) and controlled by 12 parameters (6 static parameters and 6 dynamic 

parameters). The simplicity of the model stems from the idea of matching model 
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complexity to the available data, which will be noisy image data encountered in real­

world conditions. 

In this work, we divide the gait cycle into a few sections and each of them is modelled 

by tied-states rather than single states with self-transitions for more accurate modelling 

of transition probabilities. To measure the observation likelihoods for the HMM, we 

exploit the PDF projection theorem. The probability densities in high-dimensional 

image space are projected from an image-distance metric space without the curse 

of dimensionality. Here, the distance metric is the chamfer distance because of its 

robustness and computational efficiency. 

The posterior probability is computed using Bayes' rule. The parameter in the exponent 

is obtained empirically from the assumed gamma distribution of the chamfer distances 

between the images and their best-fit models. The prior probabilities are defined as a 

multivariate Gaussian using the means and covariance of the parameters of the models 

extracted for each section. The static and dynamic parameters are optimised using 

different strategies. The static parameters are measured by an iterative algorithm upon 

the whole sequence since they are invariant for images in the same sequence. After that, 

we extract the dynamic parameters frame by frame. 

We then described the bootstrapping and Bayesian-updating processes. Initially, we 

measure all the parameters, such as the transition probabilities, observation probability 

densities and the statistics of the parameters by labelling several clean indoor sequences 

manually. After that, we make the whole system automatic. Once new sequences are 

input, these parameters can be updated to be more accurate. This prevents doing a 

large amount of manual work that is very expensive. 

We have claim the consistency and flexibility of our gait-extracting framework. The 

components within the framework are relatively independent which means changes of 

any module will not influence very much the others. For noisy outdoor images, we only 

need to learn the observation likelihoods which are different to those of the clean data. 

We also give an example of how easily the framework to be extended to cope with some 

difficult problems, e.g., to extract gait information for the walkers carrying a rucksack 

or wearing a long skirt or a trenchcoat. By adding one or two static parameters, we can 

achieve the tasks easily within the framework. Being able to work on such variations of 

image data is an important advantage of our system over other gait systems. 
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Experiments and Results 

We have tested our method on various sequences 111 the Southampton HiD 

database (Shutler et al. 2002), not only the indoor, outdoor and supplemental data as 

outlined in Chapter 3 but also some artificially modified data. The modifications tested 

are the addition of synthetic 'salt and pepper' noise and gait extraction in the presence of 

occluding bars. We believe it is very important to derive quantitative figures of merit for 

our results. In the case of high-quality images (i.e., indoor data), it is sufficient to use the 

chamfer distance for this purpose, since the extracted silhouettes are of a high fidelity. To 

see how possible poor normalisation could affect the gait extraction, we have generated 

some simulated sequences from indoor data by perturbing the positions of silhouettes 

and adding artificial noise as well. We have tested our system on the simulated data and 

used the chamfer distance to quantify results. For outdoor data, however, the chamfer 

distance is unreliable. We have, therefore, established (approximate) ground truth by 

hand labelling body points in a selection of images. The hand labels are 'unseen' in 

the automatic extraction. This approximate ground truth is then used to calculate an 

average pixel error per body point. 

5.1 Indoor Data 

Figure 5.1(a) illustrates three typical extracted model sequences superimposed on the 

corresponding high-quality indoor data. To enable the reader to judge the significance of 

the chamfer distance as an error measure, their respective values are shown below each 

image. As can be seen, most errors are attributable to the simplifications implicit in the 

model; for example, the walker on the bottom row has a pony-tail and long tee-shirt 

which are not well modelled by the rectangle-plus-circle representation of the torso and 

head. Nonetheless, it is clear that for the most part, the model fitting is very good with 

an average chamfer distance error of about 1 pixel. (Recall that the 'model silhouette' 
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FIGURE 5.1: Examples of extracted models overlaid on their original images. The 
models shown in (a) were found on noise-free data whereas those in (b) were found 
after 50% salt and pepper noise-not shown here-had been added to the silhouettes. 
The numbers below each image are the calculated chamfer distances between the fitted 

models and the noise-free silhouettes. 
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was edge detected before chamfer distance computation, so that the average quoted here 

is that computed across this number of edge points.) 

5.2 Sequences with Added Synthetic Noise 

To demonstrate the robustness of the system performance, salt and pepper noise was 

added to 10 normalised high-quality data sequences, each of length 20 images, from 

different walkers. A percentage p of pixels was randomly chosen; half of these were set 

to 1 and the remainder were set to 0, irrespective of their original values. Figure 5.2 

shows an example frame with different levels of noise added. \iVe then fitted models to 

these noisy data sequences. 
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(a) 0% (b) 10% (e) 20% (d) 30% (e) 40% (f) 50% (g) 60% 

FIGURE 5.2: Examples of normalised silhouettes with added salt and pepper noise. 

Results for 50% noise are shown in Figure 5.1 (b) for the same (noise-free) images as 

in Figure 5.1(a), allowing easy comparison of the two cases and giving further insight 

into the interpretation of the chamfer distance values. As expected, there is an overall 

increase in error that is easily seen to result largely from poorer fitting of the dynamic 

parameters. 

The means and corresponding error bars of the chamfer distance between the best-fit 

model and the original (noise-free) images are shown in Figure 5.3 as a function of 

percentage of added noise. First, we show the best-fit model obtained by optimising 

both static and dynamic parameters as described in Section 4.6. The results are shown 

by a full line. As can be seen, the system is almost completely unperturbed up to 

30% noise and deteriorates thereafter. Second, to see how much the static parameters 

can affect the overall fitting performance, we fit the model to the images by optimising 

the dynamic parameters only. The results are shown in a dotted line. It is obvious that 

the optimisation of the static parameters helps improve the performance significantly. 

Last, to determine the relative contribution of the HMM decoding and the parameter 

optimisation, we show the results using only the six mean model walkers (dashed line) as 

in Figure 4.3. It can be seen that the HMM is almost completed unperturbed up to 50% 

noise and fails catastrophically thereafter. As expected, the gain from the additional 

parameter optimisation is maximal under low noise conditions and degrades gracefully 

up to the point of failure. Although not shown on the figure, 100% added noise gives 

an average error of just below 2.5 pixels. This apparently low value can be understood 

from the fact that normalization was done before adding the synthetic noise, so that the 

average static model is automatically placed at approximately the right place. In other 

words, results for 60% noise are not really distinguishable from those for 100% noise. 

The fact that an error of about 2.5 pixels corresponds to complete misfit can be checked 

with reference to the bottom right image of Figure 5.1(b) where the chamfer distance is 

2.56 pixels and the fitted limbs are in essentially random positions. 

5.3 Sequences with Artificial Occlusion 

We also tested the system on the indoor data with artificial occlusion, for the same 

sequences as in the previous subsection. This is a good exemplar of difficult, structured 

'noise' as opposed to the previously-used random salt and pepper noise. The method of 
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FIGURE 5.3: Means of the chamfer distances between the models extracted from the 
sequences to which have been added salt and pepper noise and the original clean 
data. Key: 'HMM' means we use only the six mean model walkers (exemplars) as 
in Figure 4.3; 'Hl'vIM & Dynamic Fitting' means we fit model walkers by optimising 
dynamic parameters only; and 'HMM & Static+ Dynamic Fitting' means we fit using 

both static and dynamic parameters. 
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occlusion is illustrated in Figure 5.4(a). The walker is assumed to walk behind regularly­

spaced vertical bars. The mean width of the silhouettes in a sequence was calculated 

and the mid-lines of neighboring bars arranged at intervals of this distance. The width 

of the bars is expressed as a proportion of this mean width. Figure 5.4(b) shows an 

example silhouette occluded by bars with different widths. 

Chamfer distances were computed between the extracted models and the clean original 

images as before. Results are shown in Fig. 5.5 in terms of mean chamfer distances 

and estimated errors of these means versus the occlusion measure. The full line shows 

the fitting results by optimising both the static and dynamic parameters; the dotted 

line gives the results by optimising the dynamic parameters only; and the dashed 

line illustrates the contribution of the HMM decoding. Again, we can see that it is 

necessary to optimise both the static and dynamic parameters to maximise the system 

performance. 

5.4 Simulated Sequences 

Our system extracts human gait from a given sequence in a linear process: 1) the 

sequence is first normalised so that the walker is centralised in the images; 2) the 
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(a) (b) 

FIGURE 5.4: Artificially-occluded data: (a) illustrates how vertical bars are added to 
images; (b) shows a sample silhouette occluded by bars with different widths. 
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FIGURE 5.5: Means of the chamfer distances between the models extracted from the 
sequences which have been occluded and the original clean data. Key: 'HMM' means 
we use only the six mean model walkers (exemplars) as in Figure 4.3; 'HMM & Dynamic 
Fitting' means we fit model walkers by optimising dynamic parameters only; and 'HMM 
& Static+Dynamic Fitting' means we fit using both static and dynamic parameters. 
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normalised images are then labelle by the HMM in order to know the phase of each 

frame in the gait cycle; 3) after that, we fit the walker model to the images within a 

Bayesian framework and extract human gait through the optimised model parameters. 

To explore the effects of possible poor normalisation on the HMM labelling and model 

fitting, we tested our system on some simulated data. 

The simulated data were generated from the 10 indoor image sequences as used in the 

previous two tests. \iVe perturbed the positions of the silhouettes and added different 

levels of noise (salt and pepper noise and occlusions). The perturbations are added in 

the following way: 

• Decide the maximum perturbation, e.g., n pixels. 

• For each image, choose randomly an integer between -n and n as the horizontal 

perturbation Xh. Obtain the vertical perturbation Xv in the same way. 

• Change the position ofthe silhouette according to (Xh' xv). 

The artificial noise is added in the same way described in the previous two sections. 

We first tested the HMM on the simulated data without any noise added. For each 

added perturbation (from 1 to 5 pixels), we generated 100 simulated sequences from 

each of the 10 indoor sequences. The section numbers labelled by the HMM for these 

indoor sequences were used as the ground truth. Figure 5.6 shows the results. The 

bars show the percentage of the frames belonging to section kl (numbers on the left) 

mislabelled by k2 (numbers on the right). As the perturbation increases, we can see the 

increment of the number and height of the bars. In most of the cases, the images were 

mislabelled by the section number neighbouring its true section number. 

To quantify the results, we define the error of an image belonging to section kl but 

mislabelled by k2 as: 

(5.1) 

where K is the total number of sections in the gait cycle and 1 :::; k1, k2 :::; K. Here we 

consider section 1 and section K to be adjacent. After determining a way to calculate 

the mislabelled error, we repeated the above experiment but added different levels of 

salt and pepper noise and occlusions. Again, the section numbers of the original indoor 

sequences were used as the ground truth to calculate errors. Figure 5.7 shows the mean 

errors (per image sequence) for the simulated data with salt and pepper noise added. A 

group of bars shows the errors of the HMM labelling the simulated data with a particular 

perturbation added. Each of them is illustrated in a unique grey colour and gives the 

result for the data with a certain percent of salt and pepper noise added. We also tested 
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the HMM using the data with 50% noise and the errors where larger than 20, which 

meant total mislabelling. Therefore, we showed the results for the data with a level 

of noise up to 40% in the figure. As can be seen, the errors remain reasonably small 

with small perturbations added. They become larger when more normalisation noise 

is introduced in the simulation. Figure 5.8 shows the errors of the HMM labelling the 

simulated sequences with occlusions. We have slightly larger errors from the occlusion 

data than those from the data with random salt and pepper noise. It is coherent with 

the experimental results shown in the previous two sections. The HMM broke down 

when 50% occlusions were added to the perturbed image sequences. 

Having tested the HMM on the simulated data, we are now at a stage to simulate 

the effect of poor normalisation on the model-fitting component. Because of the 

computational limit, we did not generate as many simulated sequences from the clean 

sequences as we did to test the HMM component. As before, we added perturbations 

from 1 to 5 pixels to the images. Only one sequence was generated from each of the 

clean sequence by adding a certain perturbation and some level of noise (salt and pepper 

noise or occlusoin). 

We quantify the results using chamfer distances in the same way as in the previous two 

sections. Figures 5.9 and 5.10 show the means of chamfer distances between the models 

extracted from the simulated sequences and original clean data. Six different lines were 

used to show the results for the image sequences without or with different amount of 

perturbations in the figures. The level of noise added in the image was up to 40% since 

the Hl\1M component would fail at 50%. It can be seen that the system performance 

become worse when we increase the perturbation in the images. 

5.5 Outdoor Sequences 

The ultimate test of our approach is how well it performs on image sequences with 

realistic amounts of noise, exemplified by the outdoor data. Figure 5.11(a) illustrates 

the complexity of the problem by showing the raw silhouettes used as inputs to the 

algorithm. These are clearly contaminated with extraneous detail such as a passing 

bus and another walker at some distance. Although the silhouettes could be 'repaired' 

(e.g., Grant et al. 2004), the techniques for so doing are ad hoc and we wished to avoid 

using them because our method is intended to cope with challenging data. freffig-noisy­

result-model shows the models extracted from the data. To show the fidelity of the fit, 

Figure 5.11 (c) illustrates the original images with outlines of these models superimposed. 

As can be seen, an accurate fit of the model to the walker is obtained. There are some 

systematic errors; for example, the forward leg position in frame 4 is slightly misaligned. 

However, given the degree of noise, this test illustrates the robustness of our algorithm. 
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(a) 

(b) 

(c) 

FIGURE 5.11: Typical model fitting results: (a) cropped sample silhouettes; (b) ex­
tracted models, and (c) extracted models superimposed on the raw images. 
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These results, although typical, are illustrative only. Ideally, we wish to quantify 

performance on as large a set of data as possible. The real problem in so doing is 

to know what counts as correct. To approximate a 'gold standard', we manually marked 

the positions of five fiducial points, namely the hip, front/back knee and front/back 

ankle, in the original data. Although the manual labelling can never be perfect, we feel 

this is a reasonable, practical compromise. The labelling was done for 10 sequences of 

5 walkers from the database, each of which had 50 frames. The gait-extraction algorithm 

was then applied to these same sequences. We calculated the distances from the hip, 

front/back knee and front/back ankle positions obtained from the extracted models to 

the fiducial points in the corresponding images. 

In Figure 5.12(a), we illustrate an example frame that has been marked manually and 

the corresponding points on the model fitted to the walker in that frame are shown in 

Figure 5.12(b). Table 5.1 shows the means and standard deviations (SD) ofthe distances 

computed for each of the five points plus the overall mean and SD. Note that the overall 

mean and SD for the example sequence shown in Figure 5.11 were 2.49 and 1.35 pixels 

respectively; this justifies our earlier description of this sequence as 'typical'. 

We are unaware of any other system in the literature which is able to cope with this 

level of 'realistic' noise, especially when no attempt is made at repairing (cf. Grant et al. 

2004) the sort of silhouettes seen in Figure 5.11(a). The reason that the results are as 

good as they are is because we have a consistent way of exploiting the constraints of 

the problem by treating them as prior knowledge within the Bayesian framework. We 
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E 

FIGURE 5.12: Joint positions on walker: (a) shows an example frame from one of the 
video sequence where the joints were marked manually; (b) illustrates the joint positions 

calculated from the model best fitting the walker in the corresponding frame. 

I (pixel) Hip I Front Knee I Front Ankle I 
Mean 2.94 2.27 2.43 
Horizontal Mean 1.12 0.89 1.60 
Vertical Mean 2.51 1.92 1.48 

SD 1.57 1.40 1.50 
Horizontal SD 0.81 0.70 1.43 
Vertical SD 1.69 1.47 1.15 

I (pIxel) I Back Knee I Back Ankle I Overall 

Mean 2.19 2.62 2.49 
Horizontal Mean 1.19 1.29 1.22 
Vertical Mean 1.64 2.04 1.92 

SD 1.30 1.53 1.49 
Horizontal SD 0.91 1.00 1.03 
Vertical SD 1.25 1.55 1.48 

TABLE 5.1: Means and standard deviations (3D) of the distances between the five 
joints marked manually on the outdoor data and those obtained by fitting the model. 
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accept that these constraints (i.e., uninterrupted walk orthogonal to camera direction) 

do simplify the problem considerably, but this kind of data is very typical of that used 

in current studies. Such data are available to us in a large database which was expensive 

and time-consuming to collect, and is starting to become widely-used in gait studies, so 

it is only sensible to use it at this stage of research. 

5.6 Supplemental Data 

We tested the framework on the supplemental data from the Southampton HiD database. 

Tests used 4 sequences of 20 frames each from one walker for each condition (added 

rucksack, long skirt or trench coat). Figures 5.13, 5.14 and 5.15 show typical results for 
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FIGURE 5.13: Gait extraction results for a walker carrying a rucksack. 

each of the cases of rucksack, skirt and trenchcoat. It can be seen that the extended 

articulated models fit reasonably well to the walkers in the images. 

We quantified the fitting as for the outdoor sequences, using average joint pixel-error 

(Table 5.2). As expected, for walkers wearing a long skirt or a trench coat, the errors at 

the knees are larger than at other points. In spite of this, the overall results (as judged 

visually) remain good. Vve believe the level of disruption of body shape which occurs in 

these sequences would defeat most current approaches to gait extraction. 
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FIGURE 5.14: Gait extraction results for a walker wearing a long skirt. 

5.7 Summary 

We have demonstrated the robustness and extensibility of the Bayesian framework for 

extracting human gait through various experiments in this chapter. \iVe first tested this 

system on the clean indoor data with synthetic noise added to simulate the kind of noise 

encountered in real world. Two kinds of noise were added: salt and pepper noise and 

occlusions. We quantified the fitting results using the chamfer distances between the 

models extracted from the sequences to which had been added noise and the original 

clean data. We also carried out simulations to explore the effect of poor normalisation 

on gait extraction. The simulated data were generated by perturbing the positions of 

silhouettes and adding artificial noise. We showed the errors of the HMM labelling and 
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FIGURE 5.15: Gait extraction results for a walker wearing a trenchcoat. 

the chamfer distances between the models extracted from the simulated sequences and 

the original clean data. We then tested the system on the outdoor sequences with real­

world noise. Good fitting results were achieved and presented visually. The results were 

quantified by the pixel errors measured between some manually marked joints of the 

walkers in the original sequences and the ones delivered by the best-fit models. The 

statistics of the errors demonstrated the accuracy and robustness of the fitting. Finally, 

we designed an experiment on the difficult supplemental data to test the extensibility 

of the system. \iVe modified the basic articulated model to deal with the walkers with a 

rucksack, a long skirt, or a trench coat. Minimum changes were made in the framework 

and some highly encouraging results were shown in the end. 
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I (pixel) Hip I Front Knee I Front Ankle I 
Rucksack Mean I 2.24 I 3.53 I 3.79 I 

SD I 1.57 I 1.80 I 1.39 I 
Long Mean.1 3.17 J 6.26 I 3.72 J 
Skirt SD I 2.19 I 2.70 I 2.48 I 

Trench Mean I 2.01 I 6.19 I 3.63 I 
Coat SD I 1.04 I 1.63 I 2.24 

J 

I (pIxel) I Back Knee I Back Ankle I Overall 

Rucksack Mean 2.47 2.71 2.95 
SD 1.58 1.40 1.66 

Long Mean 6.33 4.68 4.83 
Skirt SD 2.64 2.41 2.80 

Trench Mean 5.23 3.01 4.02 
Coat SD 1.71 3.13 2.55 

TABLE 5.2: Means and standard deviations (SD) of the distances between the five 
points marked manually on the sequences with rucksack, long skirt or trench coat and 

those obtained by fitting the extended model. 
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Chapter 6 

Human Gait Recognition 

We have described a Bayesian framework for extracting human gait from video 

sequences. In this chapter, we extend our system to be able to identify walkers using 

the extracted gait information. There are three major issues to be considered for any 

gait recognition system: 

• What kind of gait data are used in the system and what experiments are designed 

on the data? 

• \Vhat gait features are extracted for recognition? 

• How does the system do recognition using the extracted features? 

This recognition system has used a subset of the Southampton human HiD 

database (Shutler et al. 2002). The identification algorithm is tested on silhouettes 

extracted from video sequences filmed under both indoor and outdoor conditions. The 

silhouettes from indoor data are of good quality, while those from outdoor data contain 

real-world noise. \Ve have designed three experiments to test the system, testing on 

• Indoor data (silhouettes). 

• Outdoor data (silhouettes). 

• Outdoor data using the gait information extracted from indoor data as references. 

The silhouettes in the first experiment are noise-free and each walker's data were filmed 

within the same session. The same experiment has been done in some previous work 

(Hayfron-Acquah et al. 2002; Foster et al. 2003) with high recognition rates reported. 

Veres et al. (2004) discussed what image information was important for a silhouette­

based gait recognition algorithm on the indoor data. The results showed that high 
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recognition rates could be achieved on such high-quality data by only using body shapes 

(especially from the head and upper body). The second experiment poses a much 

more challenging problem for a gait recognition system, that is, how to handle real­

world noise, although each walker's data were also filmed within one session. Since 

the silhouettes were extracted only using background subtraction, the quality of the 

silhouettes could be affected by various factors, such as illumination, moving objects at 

background, moving tree leaves, etc. Here, body shapes are no longer reliable and the 

use of dynamic information is increasingly demanded. The third experiment is the most 

difficult one. Besides the difficulty involved in the second experiment, we try to increase 

the difficulty by using the gait information extracted from data filmed in a different 

setting as references to identify walkers. No results have been reported for the second 

and third experiments by any other group. 

6.1 Recognition Algorithm 

We have managed to find a best-fitted model for each frame of a given walking 

sequence through the Bayesian framework. The parameters of these models are used 

to construct a feature vector. Since the static parameters are time-invariant and the 

dynamic parameters are time-variant, we can obtain the static parameters and some 

time series showing the changes of the joint angles over time from an image sequence. To 

characterise these time serious, we fit a Fourier series to each of them. The fundamental 

frequency, amplitudes and phases are viewed as the dynamic features and used to form 

the gait signature (a feature vector) together with the static parameters. 

6.1.1 Fitting Fourier Series 

We use Fourier series having a limited number of harmonics to approximate the extracted 

time series. The function F(t; fo, a, b) returns the value of the Fourier series at time t, 

that is 

K K 

F(t; fo, a, b) = ao + L ak cos(21rkfot) + L bk sin(21rkfot). (6.1) 
k=l k=l 

where fo is the fundamental frequency, a = {adf'=l and b = {bk}t'=l are the Fourier 

series coefficients and K is the highest rank of the harmonics. 

To estimate these parameters, we find the best fit between the joint-angle trajectories 

extracted from the model, cPi (t), 1 ~ t ~ T, and the four Fourier series symbolised by 

F(t; fo, ai, bi ), 1 ~ i ~ 4. Here the four trajectories describe the angular changes of the 

front thigh angle, back thigh angle, front calf angle and back calf angle. VVe have found 



Chapter 6 Human Gait Recognition 

0.45'--~----r=C:::;:=======:===il 
- - Fitted Fourier Series 
-B- Front Thigh Angles 

\ 

0 5 10 15 20 25 

Frame Number 

(a) Front Thigh Angle 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 
, 

./ 

-1 
0 5 10 15 20 25 

Frame Number 

(c) Front Calf Angle 

- - Fitted Fourier Series 
0.1 -B- Back Thigh Angles 

-0.3 

-0.4 
0 5 10 15 

Frame Number 

(b) Back Thigh Angle 

0.2 
- - Fitted Fourier Series 
-B- Back Calf Angles 

0 
I' 

I 
\ 

-0.2 

-0.4 

-0.6 

-0.8 

-1 
0 10 15 20 

Frame Number 

(d) Back Calf Angle 

FIGGRE 6.1: Results of fitting Fourier series to the joint-angle trajectories extracted 
from a sample sequence. The trajectories are displayed by the circles and solid lines 

while the crosses and dashed lines show the fitted FSs. 
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25 

25 

that it is sufficient to use K 3. Since the trajectories share the same fundamental 

frequency, it is sensible to fit them simultaneously. The fitting is done by minimising: 

4 T 2 

£(fo, al,· .. ,a4, bl , .. . ,b4) = ~ ~ (¢i(t) - F(t; fo, ai, bi)) (6.2) 
i=l t=l 

It is a standard non-linear least square problem and can be well solved by the Levenberg­

Marquardt algorithm (More 1977). Figure 6.1 shows the fitting results for the time series 

computed from a sample sequence. The joint-angle trajectories are labelled by circles 

and solid lines while the dashed lines show the fitted Fourier series. 



Chapter 6 Human Gait Recognition 77 

6.2 Gait Signature 

Having fitted the Fourier series to trajectories rPi(t), we have the coefficients ai = {af}f=o 

and bi = {bf}f=o' We can compute amplitudes Ai = {Af}f=o and phases \[Ii = {?j;f}f=o 

by: 

aO 
t 

1 I k _ bk · I 2 ai iJ 

arg(af - bfj) 1 ~ k~ K (6.3) 

Since a gait sequence can start at any phrase in the gait cycle, the phases can not be 

used directly for recognition. To align them, we use ?j;~, the phase of the first-order 

harmonic of back thigh angle, as a reference and subtract it from other phases. To avoid 

discontinuity in the angular space, we compute the absolute values of the phases after 

subtraction. Let \[t i = {~nf=l be the new aligned phases. 

We construct a feature vector z from 36 features including the extracted fundamental 

frequency 10, 16 amplitudes, 11 phases and static parameters T = {Tn}~=l: 

(6.4) 

Note that ~~ is always equal to zero and therefore not added in the feature vector. 

The feature vector z is not directly used to identify walkers because of two factors: 

• Its elements are evaluated using different metrics (i.e., 1 is measured m the 

frequency domain while the static parameters are in pixels.) . 

• We do not know whether the features have equal discriminatory abilities or not. 

Considering these two factors, we first normalise each element of the feature vector by 

subtracting the mean and then being divided by the standard deviation. To quantify the 

discriminative abilities of the features, we perform analysis of variance (ANOVA) and 

weight them by their F-statistics. See Appendix F for details of ANOVA and F-statistic. 

Using F-statistics to weight features has been proven to be effective in Lee (2003). 

Mathematically, we can express the normalised and weighted new feature Zi, 1 ~ i ~ 36, 

as: 
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(6.5) 

where Wi is the F-statistic, JLi the mean and (Ji the standard deviation of Zi. 

6.3 Classification 

Vie use the nearest-mean classifier to classify the normalised and weighted feature 

vectors. Assume that there N walkers to be recognised and each of them has 

M training sequences. After the model fitting and feature extraction, we have M feature 

vectors {z: }f1=1 for walker n. We then calculate the class mean Cn = fa Lm z:. Given 

an unknown sequence, we first compute the feature vector z'. After that, we calculate 

the Euclidean distance between z' and each of the class means. The more likely the 

sequence is classified as walker n, the less distance there is between z' and the class 

mean Cn. 

Leave-one-out cross validation is used to test the performance of our gait-recognition 

system. Cross validation partitions the data we have into subsets such that a single 

subset is considered as the unknown testing data, while other subsets are the classified 

training data. Leave-one-out cross validation uses a single data point, which in our case 

is an image sequence, from the original data as the testing data, and the rest of the data 

as the training data. This process is repeated such that each data point is used once as 

the testing data. 

6.4 Experiments and Results 

We tested our gait recognition system first on the indoor data. Fifty subjects in the gait 

database were selected, each with 10 sequences. We computed the best-fitted models 

for the dataset and from the model parameters constructed a feature vector for each 

sequence. As mentioned in the previous section, F-statistics were calculated as weights 

to quantify the discriminatory capability of each gait feature. ANOVA was implemented 

and the output p-values and F-statistics are listed in Table 6.1. It can be seen that most 

features have relatively small p-values which indicate certain discriminative capabilities. 

The fundamental frequency fa has the biggest F-statistic. Among the static features, 

only 74 which stands for the leg width has a relatively large F-statistic. For the dynamic 

features, the amplitudes have larger F-statistics than the phases do. Leave-one-out 

cross validation was performed on the chosen data by a nearest-mean classifier with 

a Euclidean distance metric. The classifier calculates the Euclidean distances between 

a feature vector and class means, and chooses the class whose mean is nearest to the 

vector. 
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I pvalue I 
fo 

< 10-20 

67.71 

71 72 73 74 

p-value 3.48 x 10-013 < 10-20 < 10-20 < 10-20 

F -statistic 3.65 7.20 6.65 23.85 

75 76 

p-value 9.44 x 10-15 2.66 X 10-15 

F -statistic 3.93 4.03 
AD 

1 
A1 

1 
A2 

1 A1 
p-value < 10 -£U < lO-LU < 10-20 < 10 20 

F -statistic 36.60 17.06 5.11 4.80 

A~ A~ A~ A~ 
p-value < 10-20 < 10-20 < 10-20 9.11 X 10-6 

F -statistic 23.23 16.58 6.03 2.26 
AD 

3 
A1 

3 
A2 

3 A3 
3 

p-value < 10-20 4.44 X 10-16 < 10-20 l.13 X 10-11 

F -statistic 13.81 4.17 1l.85 3.38 
AD 

4 
A1 

4 
A2 

4 Al 
p-value < 10-20 < 10-20 < 10-20 l.53 X 10-10 

F -statistic 10.31 4.97 4.42 3.17 

~f 7l;2 
' 1 ~r 

p-value < 10-20 l.08 X 10-2 0.89 
F -statistic 9.41 l.57 0.58 

~i </)5 
p-value 0.11 0.20 

F -statistic l.27 l.18 
'1 ~2 ~~ 7fJ3 3 

p-value < 10-20 0.14 8.12 x 10-::< 

F -statistic l.05 1.24 l.32 

~l 7l;2 
,4 ~~ 

p-value < 1O-2u 0.13 4.17 x 10 2 

F -statistic 4.63 l.24 l.41 

TABLE 6.1: F-statistics and p-values of the gait features extracted from noise-free 
indoor data. 
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To make a comparison, we implemented a baseline algorithm (Sarkar et al. 2005) on the 

silhouettes as well. It has been tested on various challenging datasets and proven to be 

robust and efficient on silhouette data. The algorithm evaluates the similarity between 

two sequences by computing temporal correlation of silhouettes. One deficiency of this 

algorithm is that it requires relatively accurate normalisation, that is, finding bounding 

boxes around walkers, which involved manual work in their work. We have provided 

an effective normalisation process in the framework and therefore can run the baseline 

algorithm directly on the normalised silhouettes. Details of the baseline algorithm can 

be found in Appendix E. 

Following the way of presenting face recognition results in Phillips et al. (2000), we use 

cumulative match characteristics (CMC) to report the recognition results. Figure 6.2 

shows the two CMC curves for the baseline and for our algorithm on the noise-free data. 

Each point in the figure corresponds to a value of k on the abscissa (labelled 'rank) and 

a probability p. This is the probability that the correct walker is included within the k 

top-ranking candidates. The performance of the baseline algorithm is superior in this 

case. It achieves 79%, 97% and 100% at ranks I, 5 and 10, whereas the corresponding 

recognition rates for our algorithm are 61%, 92% and 99%. We interpret these results in 

the light that a simple identification algorithm can do rather well on the relatively 'easy' 

indoor data; there is no advantage to using anything more complicated. Further, we 

believe our algorithm is adversely affected by poor estimation of the dynamic parameters 

(having a strong dependence on fa). By contrast, the baseline algorithm performs well 

on this high-quality database because it can exploit discriminative information about 

the shape of the head and upper torso. 

We chose the same walkers as in the first experiment for outdoor data. Each of them 

had 10 sequences in the testing dataset. Following the same process as for indoor data, 

we performed ANOVA on each of the extracted gait features and results are listed in 

Table 6.2. Compared with Table 6.1, we can see that F-statistics of most features 

become smaller, which is expected since the human gait extracted from noisy outdoor 

data should be less accurate than from indoor data. Among the static features, the leg 

width is again the one having largest F-statistic. 

Figure 6.3 shows the recognition results for outdoor data. The performance fell down 

in comparison with the performance on indoor data. For the baseline algorithm, there 

is 47% recognition rate drop at rank I, while at rank 5, the decrement reduces to 23% 

and only 4% at rank 10. Our algorithm has a much smaller loss in performance (15%) 

in terms of recognition rates at the first rank, but encounters the largest fall (17%) at 

rank 5. As we mentioned before, the real test of our approach is how well it performs on 

the difficult (and much more realistic) outdoor data. Here, we can see that at the low 

ranks our new algorithm does significantly better than the baseline algorithm, which is 

known to perform well across a range of gait recognition scenarios. 
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outdoor data for the baseline algorithm and the new Bayesian approach. 

81 



Chapter 6 Human Gait Recognition 

I ~valuc I 

fo 
< 10-20 

20.46 

Tl T2 T3 T4 
p-value 1.41 x 10-2 3.33 x 10 16 <10 20 < 10 2U 

F -statistic 1.54 4.21 4.96 42.08 

T5 T6 
p-value 6.89 x 10 -tl 9.63 x 10 11 

F -statistic 2.67 3.21 
AO 

1 At A2 
1 Ai 

p-value < 10 -;£u < 10 ·;£0 4.34 x 10 11 7.36 x 10 lu 

F -statistic 10.44 5.25 3.27 3.04 

A~ Al 
2 A§ A~ 

p-value < 10 2u < 10 20 3.67 x 10 7 4.69 x 10 12 

F -statistic 13.71 5.76 2.53 3.44 
AO 

3 
Al 

3 A§ A3 
3 

p-value < 10-20 2.79 X 10-11 < 10-20 2.04 x 10-;) 

F -statistic 6.75 3.31 7.01 1.75 
AD 

4 
Al 

4 
A2 

4 A~ 
p-value 1.67 x 10-15 2.53 X 10-8 1.66 X 10-12 7.36 x 10-;) 

F -statistic 4.07 2.76 3.53 1.62 

tf;i tf;t tf;r 
p-value < 10-20 0.15 0.69 

F -statistic 7.01 1.23 0.89 

'ljJ~ 'ljJ~ 
p-value 4.46 x 10-2 0.19 

F -statistic 1.40 1.19 

'ljJ§ 1.l;2 3 
,3 t/J3 

p-value 1.24 x 10 .J 1.65 x 10 3 8.73 x 10 -;£ 

F -statistic 1.81 1.78 1.31 

tf;l tf;1 tf;~ 
p-value 6.77 x 10 13 2.30 x 10 3 0.12 

F -statistic 3.60 1.74 1.27 

TABLE 6.2: F-statistics and p-values of the gait features extracted from noisy outdoor 
data. 
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FIGURE 6.4: Cumulative match characteristics for the experiment aiming to identify 
walkers from outdoor data using indoor data as references. 
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The last experiment is to use the gait information extracted from the indoor data as 

references to identify walkers in outdoor data. In other words, we learned the class means 

from the feature vectors extracted from the known and noise-free indoor sequences and 

used these means to classify the feature vectors calculated from the unknown and noisy 

outdoor sequence. Note that we used the F -statistics of the feature vectors from outdoor 

data as the weights to generate gait signatures. Both indoor and outdoor datasets in the 

previous two experiments are used here. As mentioned at the beginning of this chapter, 

this experiment poses the most challenging problem since indoor and outdoor data are 

filmed in a different setting on the same day and the extent of noise differs significantly 

in two kinds of data. Figure 6.4 shows the results. Both methods had a recognition rate 

around 20% at the first rank. The Cy[C curve of the baseline algorithm then approaches 

the high-recognition-rate area much faster than our algorithm. 

The baseline algorithm outperformed this system on the clean indoor data. It 

employs the shape information of the high-quality silhouettes simply by calculating 

the correlations between silhouettes. In contrast, the simple articulated model used in 

our system is only a crude representation of a walker and there, cannot extract enough 

silhouette information from the clean silhouettes to achieve high recognition rates. For 

the outdoor data, the silhouettes are much more noisy. It is more reliable to use the 

dynamic information (joint angles). Our recognition system had a better performance 

on the outdoor noisy sequences since we used a Bayesian framework for extracting the 
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dynamic information and such a framework could tolerate real-world noise by exploiting 

our strong prior knowledge. In both of the experiments, the leg width was reported to 

have the largest F-statistic. It is coincident with the results shown in "\Vagg and Nixon 

(2004a). Further research work is required to interpret this interesting result. 

6.5 Analysis of the Contribution of Different Features 

It has been demonstrated by the results shown in the previous section that the gait 

features we extract have discriminatory capabilities for gait recognition. However, we 

do not know whether the gait features contributed to the recognition rates equally or 

not. In this section, we extend the previous experiments by only using certain gait 

features to test their capabilities of identifying walkers. 

vVe are interested in three kinds of features: the fundamental frequency f, the static 

features which are just the static parameters of the extracted models, and the dynamic 

features which are the amplitudes and phases obtained by fitting Fourier series to 

joint-angle trajectories. Each kind was used to recognise walkers on both indoor and 

outdoor data alone. Results are shown in Figures 6.5 and 6.6. We can see that the 

dynamic features provided most of the biometric information. The static features did not 

contribute much to the overall performance. This was expected since the 2D articulated 

model we build for walkers is very simple. Some parts of the model are not appropriate 

from the anatomical point of view. However, it indicates the potential improvement for 

our method as the body-shape information could result in a high recognition rate (Veres 

et al. 2004). 

6.6 Summary 

Human gait extracted by the Bayesian framework has been used to identify walkers in 

this chapter. Three experiments were designed to test the discriminatory capabilities of 

the extracted gait information, that is, testing on indoor data, testing on outdoor data, 

and testing on outdoor data using the gait information extracted from indoor data as 

references. 

To build the gait signature, a feature vector, for each sequence, we fit Fourier series 

to the time series formed by the extracted joint angles. The computed fundamental 

frequency, amplitudes and phases together with the static parameters are used as the 

gait features. ANOVA is then performed on each feature to test its discriminatory 

ability. We normalised the features to have a zero mean and a unit deviation and weight 

them by their F-statistics. 
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FIGURE 6.6: Comparisons of the recognition performance on outdoor data using fully 
or partially the extracted gait features. 
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We compared the performance of our gait recognition system with the baseline 

system (Sm'kar et al. 2005). The baseline algorithm has a better performance on 

indoor data, but the recognition rates drop rapidly on outdoor data that contain real­

world noise. In contrast, our method is more robust to the noise in the images. The 

discriminatory capabilities of certain kinds of features were also tested. It is found that 

the dynamic features (amplitudes and phases) provide most of the biometric information. 

The low recognition rates for the static features indicate the possibility of improving the 

performance of our system by introducing a more sophisticated model for walking people. 



Chapter 7 

Conclusion 

Capturing the motion of walking people from image sequences is increasingly being 

demanded by applications in computer vision, computer animation, biometrics, etc. 

Many systems have been built for this problem, extracting the articulated motion or 

tracking the contours of the walkers in the images. However, most of them lack the 

capability to handle the inherent uncertainties in this problem (e.g., the motion often 

occurs in a complex condition, corrupted by real-world noise, or can be severely occluded 

by the clothing of the walker.) This thesis focuses on developing a general framework 

to cope with these uncertainties to extract the motion accurately from image sequences. 

This concluding chapter summarises the work presented in this thesis, analyses the 

limitation of this method, and suggests some future directions. 

7.1 Summary of Work 

We have adopted a Bayesian framework for extracting human gait. The framework is 

designed to be capable of handling the uncertainties including noise and occlusion. \iVe 

have built our system using the Southampton HiD gait database. It consists of indoor 

noise-free, outdoor noisy and supplemental data. We used the indoor image sequences 

as the training data and tested the framework on the other two kinds of data. The 

outdoor images test the framework's ability to cope with real-world noise, while the 

supplemental data challenge the system to cope with the significant changes of the body 

shapes caused by carrying rucksacks and severe occlusion caused by wearing skirts or 

trench coats. Details of the database were given in Chapter 3. The chapter also involved 

the normalisation for the input images. 

Chapter 4 described the construction of the framework. To compensate for the 

complexity of the gait-extraction problem, we exploited our prior knowledge of human 

walk within a Bayesian formalism. A simple articulated model was built to model the 
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articulation of the human body. Moreover, the periodicity of the walking motion was 

well captured by a hidden Markov model. \iVe used a new technique, the PDF projection 

theorem to learn the high-dimensional observation probabilities from a one-dimensional 

image-distance metric space, which avoided the curse of dimensionality. The articulated 

model was fitted to the images by maximising the posteriors (:MAP). For this MAP 

problem, we constructed a strong prior based on the statistics of the parameters of the 

articulated model. The prior imposes a soft constraint when searching for the optimal set 

of parameters, but gives a large penalty when the search process goes out of the feasible 

region in the parameter space. The statistics of the parameters were bootstrapped from 

a small amount of indoor data and refined by the updating component using more indoor 

sequences as training data. In the end, we demonstrated the flexibility and extensibility 

of the framework by modifying the articulated model to cope with walkers with different 

body configurations. 

In Chapter 5, we designed various experiments to demonstrate the robustness and 

extensibility of the framework. We first tested the system on synthetic noisy images. 

These images were generated from the indoor data with two kinds of artificial noise 

added: salt and pepper noise and occlusions. The results were quantified by the image 

distance (chamfer distance) and showed the robustness of the framework against the 

artificial noise. To explore the effect of possible poor normalisation on the performance 

of rest of the system, we tested our system on some simulated sequences. These sequences 

were generated by perturbing the positions of silhouettes and adding artificial noise. We 

then tested the system on the outdoor sequences with real-world noise. Good fitting 

was achieved by the framework and both visual and quantitative results were given 

in this chapter. The final experiment examined the extensibility of this framework 

to handle the significant changes of body shapes and severe occlusions of the limbs. 

The articulated model was modified slightly (adding one or two static parameters) to 

cope with a rucksack, a long skirt or a trench coat. Without learning new priors, the 

framework achieved a reasonable fit between the modified model and the walkers. 

We have argued several times in this thesis that the Bayesian framework is designed 

for accurate extraction of human gait from noisy image sequences. Although we have 

presented the fitting results in Chapter 5, it would be helpful if we studied a typical 

application using the extracted gait information and compared the results with other 

methods for this application. In Chapter 6, we attempted to use the extracted models 

to identify walking individuals. For each walker, the gait features consist of the static 

parameters and the Fourier descriptors (amplitudes and phases) of the trajectories of 

the dynamic parameters. These descriptors were obtained by fitting Fourier series to the 

trajectories. To make a comparison, we implemented a baseline algorithm (Sarkar et al. 

2005) which has been shown to be robust against noise. Based on the test results of 

the two systems on both indoor and outdoor data, we found that our system had higher 
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recognition rates on outdoor data and less loss of performance from indoor to outdoor 

data, indicating the robustness of the framework against noise. 

7.2 Limitations of Work 

The limitations of this work are discussed in this section. First of all, the system is 

built on two assumptions that walkers are viewed from the side in the image sequences 

and only one walking individual is analysed by the system at a time. Secondly, the 

system is automated based on the probability distributions (transition and observation 

probabilities of the HMM) and the statistics of the parameters of the articulated model 

learned from the training data. Such prior knowledge makes the framework effective 

and robust. However, it is difficult for the system to deal with the motion that is not 

represented by the training data (e.g., subjects in image sequences walk very fast or 

slowly). To cope with, for instance, the fast walking speed, it would be necessary to 

relearn the system parameters from new training data for the fast walk. To reduce the 

ambiguity when fitting the articulated model to a walker, we distinguish only front/back 

legs instead of the traditional left/right legs. Finally, the system can not do the motion 

extraction at real time. Such a characteristic is determined by the way we optimise 

the model parameters, which requires the entire image sequence to be available (see 

Section 4.6 for details). 

7.3 Future Work 

We have described a Bayesian framework for capturing the motion of walking people. 

The framework is robust and powerful since it provides a natural way to incorporate 

our prior knowledge of the motion. Each component of the framework is simple and 

relatively independent from the others, which makes it easy to extend this work to 

tackle more difficult problems. In this section, we discuss some future work. 

7.3.1 Extracting Human Gait in 3D 

The current framework is view-dependent and can only extract 2D motion from the 

images. We believe that the system could be extended to handle different views within 

the same Bayesian framework. A 3D articulated model could be introduced and the 

same process be performed on the training data to learn the statistics of its parameters. 

Once we have obtained the means, we can project the 3D model onto the image plane 

easily from a given view angle to generate the exemplars for the HMM. We could then 

learn the observation probability distributions using the PDF projection theorem. One 

thing to be concerned is the computational cost of the optimisation. Since there are 
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more parameters introduced by the new model, we might need to use a more efficient 

optimisation process. 

7.3.2 Detecting Changes of Walking Speed 

We can extend our system to detect different walking speed automatically. At the 

moment, for a subject walking fast or slowly, we need to rebuild the HMM and relearn 

the parameters of the HMM. Lan and Huttenlocher (2004) presented a system that could 

capture the dynamics of a subject walking along a circle by a hidden Markov model. 

The HMM contains multiple state cycle each of which models the dynamics of the walker 

viewed from a particular angle. There are transitions connecting these cycles to cope 

with the changes of the view in the images. A similar idea could be used to detect the 

changes of the walking speed. For a particular speed (e.g., very fast, fast, slow, or very 

slow), we can build a state cycle to model the dynamics of the walk as we have done for 

the normal speed in the framework. We then connect these cycles to form an HMM with 

a more cornplex structure. Given an image sequence, we try to find the state sequence 

with the largest likelihood. The output of the HMM would tell us not only the position 

of the image in the gait cycle but the speed of the walker. 

7.3.3 Model Selection 

In Section 5.6, we showed that we could change the model to capture rucksacks, long 

skirts and trench coats. This raises the issue of how to select the correct model for a 

walker. As we are using a Bayesian framework, we can in principle compute the evidence 

to allow us to perform model selection. One way to evaluate this evidence could be 

that we build an HMM for each of the models representing various body appearances. 

For a particular walking speed, the HMMs could share the same structure, transition 

probabilities and initial probabilities. They differ from each other as to the observation 

probability distributions. Different exemplars are to be generated from the models to 

learn the distributions using the PDF projection theorem (see Chapter 4 for details of 

the learning process). Given an image sequence, we calculate its likelihood given each of 

the HMMs and choose the model corresponding to the HMM with the largest likelihood. 

7.3.4 Other Applications Using the Bayesian Framework 

We have demonstrated the robustness of the Bayesian framevmrk against noise when 

extracting human gait from image sequences. We believe that such a framework can be 

well applied to other computer vision applications dealing with periodic motion. Once 

a parametric model is constructed, we can follow the learning process as described in 

Chapter 4 and make the system fully automatic. For example, we can implement the 
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framework for extracting the motion of hearts. It involves building a parametric shape 

model for a heart, constructing an HMM, evaluating the probability distributions for 

the HMM, learning the statistics of the parameters of the heart model to deliver strong 

priors in the Bayesian framework, and optimising the parameters. 



Appendix A 

Silhouette Examples 

Vie present more examples of the silhouettes used to test the framework in this appendix. 

Although some of the silhouettes have been shown in Chapter 3, we think that more 

examples will give a clearer picture of the variations of the image data in the HiD 

gait database (Shutler, Grant, Nixon, and Carter 2002). In the following, we will give 

4 sample sequences for images filmed indoor and 5 of those filmed outdoor. It will 

be seen that there are large variations of the silhouette quality in outdoor data. The 

5 sample sequences to be shown are representative of those with relative good quality 

to the very poor ones. 

FIGURE A.l: Sample sequence 1 for clean indoor data. 
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FIGURE A.2: Sample sequence 2 for clean indoor data. 

FIGURE A.3: Sample sequence 3 for clean indoor data. 
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FIGURE A.4: Sample sequence 4 for clean indoor data. 
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FIGURE A.5: Sample sequence 1 for noisy outdoor data. 
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FIGURE A.6: Sample sequence 1 for noisy outdoor data. 
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FIGURE A.7: Sample sequence 3 for noisy outdoor data. 
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FIGURE A.8: Sample sequence 4 for noisy outdoor data. 

FIGURE A.9: Sample sequence 5 for noisy outdoor data. 



Appendix B 

Generalised Hough Transform 

The Hough transform (HT) is a technique which can be used to detect a particular shape 

from the edges of an image. The classical Hough transform is used to isolate analytic 

curves (e.g., lines, circles, ellipses, etc.). The generalised Hough transform (GHT) is an 

extension of the classical Hough transform which can deal with non-analytic curves. 

B.1 Classical Hough Transform 

The basic idea behind the HT is to transform the edge points in the Cartesian image 

space to the Hough parameter space which is spanned by the parameters controlling the 

curves. Each edge votes for the curves passing it, that is to increase the value of the 

points corresponding to the curves in the parameter space. Those points having large 

values indicate the curves we want to detect from the images. 

We give two examples of how the HT works for some analytic curves below. In the 

first example, we show how to detect lines in images. Figure B.l illustrates the way we 

parameterise a line. We use the length of the normal from the origin to the line, p and 

the orientation of the normal with respect to the x-axis, 8 to describe the line: 

x cos 8 + Y sin 8 = p. (B.l) 

Given an image, we first detect its edges {(Xi) Yi)}i~l' Each edge (Xi, Yi) votes for the 

pair (p, 8) which makes Equation B.l hold and is therefore, transformed to a curve in the 

Hough parameters space spanned by p and 8. The curves transformed from the edges 

on the same line intersect at the same point (p*, 8*) which defines the line in the image 

space. 
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FIGURE B.l: Hough transform for a line. 
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FIGURE B.2: Hough transform for a circle. 

Figure B.2 shows the parametric description of a circle. We use three parameters, 

namely, the radius, the x coordinate Xo and y coordinate Yo of the center to describe a 

circle: 

(B.2) 

In this case, the Hough parameter space is three dimensional. 
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FIGURE B.3: Generalised Hough transform. 

In reality, the number of curves going through an edge is infinite. However, for practical 

purposes, we discretise the Hough parameter space to make the number finite. The 

parameter space is therefore no longer continuous, but rather is represented by a 

rectangular structure of cells. This array of cells is called the accumulator array whose 

elements are accumulator cells (Sonka, Hlavac, and Boyle 1998). For any pixel, the 

voting is carried out by increasing the values of those accumulator cells corresponding 

to the lines going through it. The curves in the image may be detected by the cells with 

high value. The computational cost of the classical HT is proportional to the product 

of the number of accumulator cells and the number of edges detected in the image. 

B.2 Generalised Hough transform 

The classical Hough transform can only detect analytic curves in images. For non­

analytic curves, the generalised Hough transform provides a solution. Figure B.3 shows 

the wayan analytic curve is parameterised. Every edge (x, y) can be located by a 

reference point (x ref , Yrer) , the distance r from (x, y) to (Xref, Yrer) and the angle (3 

between the x-axis and the line going through both points: 

X Xref - r cos (3 

Y Yref - r sin (3 (B.3) 



Appendix B Generalised Hough Transform 100 

A reference table (referred as the R-table by Ballard 1981) is constructed to store 

the parametric edge information. In the R-table, each edge is remembered by a set 

(Xref, Yref, T, {3) and the set is indexed by the edge orientation w (see Figure B.3). 

Consequently, there are two steps in the GHT. To use the R-table, we first do the 

edge detection on the given image to have the positions and orientations of the edge 

points. For each edge, we use its orientation as an index to look for the points with the 

same orientation on the curve. We then use the parameters in the R-table to locate the 

reference point and vote for it. The accumulator here is defined by the size of the image. 

Each accumulator cell is related to a pixel. Note that there could be zero or multiple 

entries indexed by an orientation. Therefore, an edge could vote for nothing or many 

positions. The high-value accumulator cells tell us directly the possible positions for the 

reference and therefore detect the curve in the image. 



Appendix C 

Chamfer Matching 

Chamfer matching provides a robust and efficient measure of the similarity between two 

images: a test image and a reference image. After edge detection, we can have two 

sets of edge point, namely, the test edge point set U = {un};;=l and the reference edge 

point set V = {vm}~=l. Note that Un and Vm are two-element vectors containing the 

coordinates of the edge points. For every Un, we then estimate the minimal distance 

from Un to the points in V. The chamfer distance is the average of these distances: 

1",", . 
p(U, V) = N 6 mm Ilun - vmll 

v",E\I 
UnEU 

(C.1) 

To compute the chamfer distance efficiently, a distance transformation (DT) image is 

generated for the reference image. In such a DT image, each pixel value is assigned the 

nearest distance to the edge points in V. When computing the chamfer distance, the 

edge points of the test image are overlapped onto the DT image. The chamfer distance 

is simply the average of the corresponding pixel values. Figure C.1 illustrates how we 

generate the DT image from a given silhouette. In Figure C.1(c), the gray colors reflect 

the pixel values. It can be seen that the dark color corresponds to a small pixel value 

and vice versa. The computational efficiency of using DT images arises because if we 

want to estimate the chamfer distances of different test images to the same reference 

image, we only need to calculate the DT image for the reference image once. 

To avoid using the true Euclidean distance that is computationally inefficient and 

unnecessary in an image space, some approximations have been used when creating 

DT images. For example, Borgefors (1988) introduced the utilization of a (3 x 3) mask 

with a (3,4)/3 distance measure to approximate the Euclidean distance. In our work, 

we use this approximation. \iVe denote the pixel value of a DT image at the ith row and 

the j th column as Vi,j. The algorithm for creating the DT image from an input reference 

image is shown in Figure C.2. 
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(a) (b) 

(c) 

FIGURE C.l: Example of the chamfer transformation: (a) original silhouette, (b) edge 
image, and (c) DT image. 

~nput: A reference image having R rows and C columns. 
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initialise: Edge detection for the input reference image. Create the initial DT image 
having R rows and C columns. All pixels corresponding to the reference 
edge points are set to zero and others infinity. 

Do (forward) 
for i = 2, 3, ... , R 1 do 

for j = 2, 3, ... , C 1 do 
Vi,j = min(vi-I,j-I + 4, Vi-I,j + 3, Vi-I,j+l + 4, Vi,j-I + 3, Vi,j) 

end 
end 

Until No pixel-value changes JOT the DT image 

Do (backward) 
for i = R - I, R - 2, ... ,2 do 

for j = C - I, C - 2, ... ,2 do 
Vi,j = min(vi,j, Vi,j+l + 3, Vi+l,j-1 + 4, Vi+l,j + 3, Vi+l,j+1 + 4) 

end 
end 

Until No pixel-value changes JOT the DT image 

Output: The DT Image. 

Figure C.2: Algorithm for creating the DT image from a reference image. 
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Having had the DT image, given a test image having N edge points, the chamfer distance 

is computed as: 

1 
p= 

3 

1 N 
- '\' v2 
N~n 

n=l 

where Vn is the pixel value corresponding to the nth edge point in the DT image. 

(C.2) 



Appendix D 

The PDF Projection Theorem 

The probability density function (PDF) projection theorem (Baggenstoss 2003) provides 

a general framework for projecting PDFs in the high-dimensional raw data space 

from PDFs in some low-dimensional feature space. Let Ho be some fixed reference 

hypothesis with known PDF Px(xIHo), X be the region including all x, where 

Px(xIHo) > 0, z = T(x) be a many-to-one transformation, Z be the image of X under 

the transformation T(x), and the PDF of z when x is drawn from Px(xIHo) exist and 

be denoted by Pz(zIHo). It follows that Pz(zIHo) > 0 for all z E Z. Let pAz) be any 

PDF with the same region of support Z. The theorem states the PDF Px(x), which is 

given by: 

(D.1) 

is a PDF on X, that is 

( Px(x)dx = 1. 
}XEX 

(D.2) 

The prove of this theorem was given in Baggenstoss (2001) and will be presented as 

follows. From Equation D.1, we have 

I Px(x)dx 
}XEX 

(D.3) 

where E calculates expectations. Using the change of variables theorem (Kaplan 1984), 

we have 
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Therefore 

r Px(x)dx 
}XEX 
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(D.4) 

(D.5) 



Appendix E 

Baseline Algorithm 

The baseline algorithm for gait recognition was designed and tested on some challenging 

data in Sarkar et al. (2005). It is proven to be efficient and robust according to the 

results reported in the paper. The whole algorithm can be divided into three parts: 

silhouette extraction, gait period detection and similarity estimation. Note that since 

silhouettes had already been extracted in our work, we did not use the first part when 

performing the algorithm. 

Gait Period Detection 

Gait period Ngait is estimated by the following steps: 

• Count the number of foreground pixels of lower body in each frame over time, 

Nf(t)· 

• Find out all minima of Nf(t) at the time when two legs overlap. 

• Gait period NGait is computed as the median of the distances between two 

consecutive minima. 

Similarity Estimation 

To measure the similarity between a probe (unknown) sequence 

Sp = {Sp(l), ... , Sp(M)} and a gallery (known) sequence Se = {Se(l), ... , Sc(M)} , 

the gait period of the probe, NGait is first estimated. The probe sequence is then 

partitioned into disjoint subsequences of NGait contiguous frames. The kth subsequence 

is denoted by SPk = {Sp(k), ... ,Sp(k + NGait)}. 

The similarity between two frames, FI and F2, is defined as: 

Num(FI n F2) 
FrameSim(FI, F2) = N (F . ) 

um I U F2 
(E.l) 
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where Num(-) returns the number of foreground pixels in a silhouette. Using the above 

definition, the correlation between SPk and Sc can be computed as: 

NGait 

Corr(SPk, Sc)(l) = L FrameSim(Sp(k + j), Sc(l + j)). (E.2) 
j=l 

The similarity between S p and Sc is defined as: 

(E.3) 



Appendix F 

ANOVA 

Analysis of variance (AN OVA) (Terrell 1999) is used to test the significant difference 

between means of multiple groups of data (the number of groups is usually larger than 

two). The null hypothesis of the ANOVA test is that all the groups share the same 

mean. If we have m groups of data, we denote the data in group i as {Xij} j~l where 

j = 1,2, ... : m and ni is the size of group i. The mean of group i is Xi = ';i l:j Xij and 

the total mean is X = ~ l:i l:j Xij where n = l:i ni. We then define the sum of squares 

for treatment (SST) and the sum of squares for error (SSE): 

m 

SST L ni(x - Xi)2 
i=l 
m ni 

SSE L L(Xij - Xi)2 (F.1) 
i=l j=l 

The mean of squares for treatment (MST) and mean of squares for error (MSE) are 

computed as: 

MST 

MSE 

SST 
m-1 
SSE 
n-m 

(F.2) 

where m - 1 and n - m are the degree of freedom of SST and SSE respectively. We 

then calculate the F-statistic, Fm - 1,n-m, which is the test statistic here: 

MST 
Fm - 1,n-m = MSE' 

108 

(F.3) 
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The significance of the test can be mea.sured by the p-value, which is the probability of 

the observed F-statistic given the null hypothesis is true. If the null hypothesis is true 

in the test, the F -statistic is somewhere near 1. On the other hand, if there is significant 

difference between the means, the F-statistic becomes much larger than 1. 



References 

Aggarwal, J. K. and Q. Cai (1999). Human motion analysis: A review. Computer 

Vision and Image Understanding 73(3), 428-440. 

Baggenstoss, P. M. (1999). Class-specific feature sets in classfication. IEEE Transac­

tions on Signal Processing 47(12), 3428-3432. 

Baggenstoss, P. M. (2001). A modified Baum-Welch algorithm for hidden Markov 

models with multiple observation spaces. IEEE Transactions on Speech and Audio 

Processing 9(4),411-416. 

Baggenstoss, P. M. (2003). The PDF projection theorem and the class-specific method. 

IEEE Transactions on Signal Processing 51 (3), 672-685. 

Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary shapes. 

Pattern Recognition 13(2), 111-122. 

Barr, A. (1984). Global and local deformation of solid primitives. Computer Graph­

ics 18(3), 21-30. 

Baumberg, A. M. and D. C. Hogg (1994). An efficient method for contour tracking 

using active shape models. In Proceedings of IEEE Workshop on Motion of Non­

Rigid and Articulated Objects, Austin, TX, pp. 194-199. 

BenAbdelkader, C., R. Cutler, and L. Davis (2002). Motion-based recognition of 

people in eigengait space. In Proceedings of IEEE International Conference on 

Automatic Face and Gesture Recognition, Washington, DC, pp. 267-272. 

BenAbdelkader, C. and L. S. Davis (2002). Detection of people carrying objects: 

A motion-based recognition approach. In Proceedings of IEEE International 

Conference on Automatic Face and Gesture Recognition, Washington, DC, pp. 

378-383. 

Bhanu, B. and J. Han (2002). Bayesian-based performance prediction for gait 

recognition. In Proceedings of IEEE Workshop on Motion and Video Computing 

(MOTION'02), Orlando, FL, pp. 145-150. 

Bissacco, A., A. Chiuso, Y. Ma, and S. Soatto (2001). Recognition of human gaits. In 

Proceedings of IEEE International Conference on Computer Vision and Pattern 

Recognition, Volume 2, Kauai Marriott, HI, pp. 52-57. 

110 



REFERENCES 111 

Blake, A., R. Curwen, and A. Zisserman (1993). A framework for spatio-temporal 

control in the tracking of visual contours. International Journal of Computer 

Vision 11 (2), 127-145. 

Bobick, A. F. and J. W. Davis (2001). The recognition of human movement 

using temporal templates. IEEE Transactions on Pattern Analysis and Machine 

Intelligence 23(3), 257-267. 

Borgefors, G. (1988). Hierarchical chamfer matching: a parametric edge matching al­

gorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(6), 

849-865. 

Boyd, J. E. (2001). Video phase-locked loops in gait recognition. In Proceedings of 

IEEE International Conference on Computer Vision, Vancouver, BC, pp. 696-

703. 

Bregler, C. and J. Malik (1998). Tracking people with twists and exponential maps. In 

Proceedings of IEEE International Conference on Computer Vision and Pattern 

Recognition, Santa Barbara, CA, pp. 8-15. 

Cedras, C. and YL Shah (1995). Motion-based recognition: a survey. Image and Vision 

Computing 13(2), 129-155. 

Chalidabhongse, T., V. Kruger, and R. Chellappa (2001). The UMD database for 

human identification at a distance. Technical reporL University of Maryland. 

Cham, T. J. and J. M. Rehg (1999). A multiple hypothesis approach to figure tracking. 

In Proceedings of IEEE International Conference on Computer Vision and Pattern 

Recognition, Ft. Collins, CO, pp. 239-245. 

Cunado, D., M. S. Nixon, and J. N. Carter (2003). Automatic extraction and 

description of human gait models for recognition purposes. Computer Vision and 

Image Understanding 90 (1), 1-4l. 

Cutler, R. and L. S. Davis (2000). Robust periodic motion and motion symmetry 

detection. In Proceedings of IEEE International Conference on Computer Vision 

and Pattern Recognition, Volume 2, Hilton Head, SC, pp. 615-622. 

Cutting, J. E., C. Barclay, and L. T. Kozlowski (1978). Temporal and spatial 

factors in gait perception that influence gender recognition. Perception and 

Psychophysics 23(2), 145-152. 

Cutting, J. E. and L. T. Kozlowski (1977). Rocognizing friends by their walk: Gait 

perception without familiarity cues. Bulletin Psychonomic Soc. 9(5), 353-356. 

Foster, J. P., M. S. Nixon, and A. Priigel-Bennett (2003). Automatic gait recognition 

using area-based metrics. Pattern Recognition Letters 24, 2489-2497. 

Gavrila, D. (2000). Pedestrian detection for a moving vehicle. In Proceedings of 

European Conference on Computer Vision, Dublin, Ireland, pp. 37-49. 



REFERENCES 112 

Gavrila, D. M. (1999). The visual analysis of human movement: A survey. Computer 

Vision and Image Understanding: CVIU 73(1), 82-98. 

Gavrila, D. M. and L. S. Davis (1996). 3-D model-based tracking of humans in 

action: a multi-view approach. In Proceedings of IEEE International Conference 

on Computer Vision and Pattern Recognition, San Francisco, CA, pp. 73-80. 

Grant, M. G., J. D. Shutler, M. S. Nixon, and J. N. Carter (2004). Analysis of a human 

extraction system for deploying gait biometrics. In IEEE Southwest Symposium 

on Image Analysis and Interpretation, Lake Tahoe, NY, pp. 46-50. 

Gross, R. and J. Shi (2001). The CMU motion of body (MoBo) database. Technical 

Report CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University. 

Hayfron-Acquah, J., M. S. Nixon, and J. N. Carter (2003). Automatic gait recognition 

by symmetry analysis. Pattern Recognition Letters 24, 2175-2183. 

Hayfron-Acquah, J. B., M. S. Nixon, and J. N. Carter (2002). Human identification 

by spatio-temporal symmetry. In Proceedings of IEEE International Conference 

on Pattern Recognition, Quebec, Canada, pp. 632-635. 

Hogg, D. (1983). Model based vision: a program to see a walking person. Image and 

Vision Computing 1 (1), 5-20. 

Isard, M. and A. Blake (1998). CONDENSATION - conditional density propagation 

for visual tracking. International Journal of Computer Vision 29(1), 5-28. 

Johansson, G. (1975). Visual motion perception. Scienbfic American 232(6), 76-88. 

Johnson, A. Y. and A. F. Bobick (2001). A multi-view method for gait recognition 

using static body parameters. Lecture Notes in Computer Science (LNCS) 2091, 

301-311. 

Ju, S. X., M. J. Black, and Y. Yacoob (1996). Cardbord people: a parameterized model 

of articulated motion. In Proceedings of International Conference on Automatic 

Face and Gesture Recognition, Killington, VT, pp. 38-44. 

Julier, S. J. and J. K. Uhlmann (1997). A new extension of the Kalman filter to non­

linear systems. In Proceedings of International Symposium on Aerospace/Defence 

Sensing, Simulation and Contmls. 

Kakadiaris, L. and D. Metaxas (2000). Model-based estimation of 3D human motion. 

IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1453-

1459. 

Kale, A., A. Sundaresan, A. N. Rajagopalan, N. P. Cuntoor, A. K. Roy-Chowdhury, 

V. Kruger, and R. Chellappa (2004). Identification of humans using gait. IEEE 

Transactions on Image Processing 13(9), 1163-1173. 

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. 

Transactions of the ASME - Journal of Basic Engineering, 35-45. 

Kaplan, W. (1984). Advanced Calculus (3rd ed.). Reading, MA: Addison-Wesley. 



REFERENCES 113 

Lan, X. and D. P. Huttenlocher (2004). A unified spatio-temporal articulated model 

for tracking. In Proceedings of IEEE International Conference on Computer Vision 

and Pattern Recognition, Volume I, Washington, DC, pp. 722-729. 

Lappas, P., J. N. Carter, and R. 1. Damper (2002). Robust evidence-based object 

tracking. Pattern Recognition Letters 23, 253-260. 

Lee, L. (2003). Gait analysis for classification. Technical Report 2003-014, Artificial 

Intelligence Laboratory, ~lIT, Cambridge, MA. 

Lee, L., G. Dalley, and K. Tieu (2003). Learning pedestrian models for silhouette 

refinement. In Proceedings of IEEE International Conference on Computer Vision, 

Nice, France, pp. 663-670. 

Lee, L. and W. E. L. Grimson (2002). Gait appearance for recognition. In ECCV 

Workshop on Biometric Authentication, Copenhagen, Denmark, pp. 143-154. 

Little, J. and J. Boyd (1998). Recognizing people by their gait: The shape of motion. 

Videre (online journal) 1 (2). 

Meyer, D., J. Pasl, and H. Niemann (1998). Gait classification with HMMs for 

trajectories of body parts extracted by mixture densities. In Proceedings of British 

Machine Vision Conference (BMVC'98), Southampton, UK, pp. 459-468. 

Minka, T. (2004). Exemplar-based likelihoods using the PDF projection theorem. 

Technical report, Microsoft Research Ltd., Cambridge, UK. 

Moeslund, T. B. and E. Granum (2001). A survey of computer vision-based human 

motion capture. Computer Vision and Image Understanding 81 (3), 231-268. 

More, J. J. (1977). The Levenberg-Marquardt algorithm: Implementation and theory. 

Lecture Notes in Mathematics 630, Springer Verlag, 105-116. 

Murray, M. P. (1967). Gait as a total pattern of movement. American Journal of 

Physical Medicine 46(1), 290-332. 

Ning, H., L. Wang, W. Hu, and T. Tan (2002). Articulated model based people 

tracking using motion models. In Proceedings of IEEE International Conference 

on Multimodal Interfaces, Pittsburgh, PA, pp. 383-388. 

Niyogi, S. A. and E. H. Adelson (1994). Analyzing and recognizing walking figures in 

XYT. In Proceedings of IEEE International Conference on Computer Vision and 

Pattern Recognition, Seattle, WA, pp. 469-474. 

Ohya, J. and F. Kishino (1994). Human posture estimation from multiple images using 

genetic algorithm. In Proceedings of IEEE International Conference on Pattern 

Recognition, pp. 750-753. 

O'Rourke, J. and N. 1. Badler (1980). Model-based image analysis of human 

motion using constraint propagation. IEEE Transactions on Pattern Analysis and 

Machine Intelligence 2(6), 522-536. 



REFERENCES 114 

Phillips, P. J., H. Moon, S. A. Rizvi, and P. J. Rauss (2000). The FERET 

evaluation methodology for face-recognition algorithms. IEEE Transactions on 

Pattern Analysis and Machine Intelligence 22(10), 1090-1104. 

Powell, M. J. D. (1964). An efficient method for finding the minimum of a function in 

several variables without calculating derivatives. The Computer Journal 7, 155-

162. 

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications 

in speech recognition. Proceedings of the IEEE 77(2), 257-286. 

Rehg, J. M. and T. Kanade (1994). Visual tracking of high DOF articulated structure: 

an application to human hand tracking. In Proceedings of European Conference on 

Computer Vision, Stockholm, Sweden, pp. 35-46. 

Rehg, J. M. and T. Kanade (1995). Model-based tracking of self-occlusion articulated 

objects. In Proceedings of IEEE International Conference on Computer Vision, 

Boston, MA, pp. 612-617. 

Rohr, K. (1994). Towards model-based recognition of human movement m image 

sequences. CVGIP, Image Understanding 59(1), 94-115. 

Sarkar, S., P. J. Phillips, Z. Liu, 1. R. Vega, P. Grother, and K. Bowyer (2005). 

The humanID gait challenge problem: data sets, performance, and analysis. IEEE 

Transactions on Pattern Analysis and Machine Intelligence 27(2), 162-177. 

Shutler, J., M. Grant, M. S. Nixon, and J. N. Carter (2002). On a large sequence­

based human gait database. In Proceedings of 4th International Conference on 

Recent Advances in Soft Computing, Nottingham, UK, pp. 66-72. 

Shutler, J. D. and M. S. Nixon (2001). Zernike velocity moments for description 

and recognition of moving shapes. In Proceedings of British Machine Vision 

Conference, Manchester, UK, pp. 705-714. 

Sonka, M., V. Hlavac, and R. Boyle (1998). Image Processing, Analysis, and Machine 

Vision (2nd ed.). Thomson-Engineering. 

Stenger, B., P. Mendonca, and R. Cipolla (2001). Model-based hand tracking using 

an unscented Kalman filter. In British A1achine Vision Conference, Manchester, 

UK, pp. 63-72. 

Sundaresan, A., A. RoyChowdhury, and R. Chellappa (2003). A hidden Markov model 

based framework for recognition of humans from gait sequences. In Proceedings of 

IEEE International Conference on Image Processing, Volume 2, Barcelona, Spain, 

pp.85-88. 

Tanawongsuwan, R. and A. Bobick (2001). Gait recognition from time-normalized 

joint-angle trajectories in the walking plane. In Proceedings of IEEE International 

Conference on Computer Vision and Pattern Recognition, Volume 2, Kauai 

Marriott, HI, pp. 726-731. 



REFERENCES 115 

Terrell, G. R. (1999). Mathematical Statistics: A Unified Introduction. New York: 

Springer. 

Thayananthan, A., R. Navaratnam, P. H. S. Torr, and R. Cipolla (2004). Likelihood 

models for template matching using the PDF projection theorem. In Proceedings 

of British Machine Vision Conference (BMVC 2004), Kingston, UK. pagination 

unknown. 

Toyama, K. and A. Blake (2002). Probabilistic tracking with exemplars in a metric 

space. International Journal of Computer Vision 48(1),9-19. 

Veres, G., 1. Gordon, J. N. Carterand, and M. S. Nixon (2004). What image 

information is important in silhouette-based gait recognition? In Proceedings 

of IEEE International Conference on Computer Vision and Pattern Recognition, 

Volume 2, Washington, DC, pp. 776-782. 

Wagg, D. K. and M. S. Nixon (2004a). Automated markerless extraction of walking 

people using deformable contour models. Computer Animation and Virtual 

Worlds 15(3-4), 399-406. 

Wagg, D. K. and M. S. Nixon (2004b). On automated model-based extraction and 

analysis of gait. In Proceedings of IEEE International Conference on Automatic 

Face and Gesture Recognition, Seoul, South Korea, pp. 11-16. 

Wang, L., W. Hu, and T. Tan (2003). Recent developments in human motion analysis. 

Pattern Recognition 36(3), 585-601. 

Wang, L., H. Ning, T. Tan, and W. Hu (2003). Fusion of static and dynamic body 

biometric for gait recognition. In Proceedings of IEEE International Conference 

on Computer Vision, Volume 2, Nice, France, pp. 1449-1454. 

Yam, C. Y., M. S. Nixon, and J. N. Carter (2004). Automated person recognition 

by walking and running via model-based approaches. Pattern Recognition 37(5), 

1057-1072. 

Yamamoto, M. and K. Koshikawa (1991). Human motion analysis based on a robot 

arm model. In Proceedings of IEEE International Conference on Computer Vision 

and Pattern Recognition, Maui, pp. 664-665. 

Yoo, J. H., M. S. Nixon, and C. J. Harris (2002). Model-driven statistical analysis of 

human gait motion. In Proceedings of IEEE International Conference on Image 

Processing, Rochester, NY, pp. 285-288. 

Zhang, J., R. Collins, and Y. Liu (2004). Representation and matching of articulated 

shapes. In Proceedings of IEEE International Conference on Computer Vision and 

Pattern Recognition, Volume 2, Washington, DC, pp. 342-349. 


