
UNIVERSITY OF SOUTHAMPTON

Barrier Trees For Studying Search

Landscapes

by

Jonathan Hallam

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

July 2006

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Jonathan Hallam

The landscapes of Combinatorial optimisation problems are huge, multidimensional,

topographically complex structures. A better understanding of the cost landscapes of

difficult Combinatorial optimisation problems is vitally important to the development

of a strong theory to guide the design of heuristic search algorithms. This thesis

presents Barrier Trees and Barrier based models as tools to study small instances of

problems exempla of the difficult problems faced by practitioners.

Barrier Trees represent a cost landscape as a tree structure, with the leaves repre­

senting local minima and the internal nodes representing barriers between different

parts of the landscape. They are a development of similar structures used in the

study of protein folding, molecular clusters and potential energy surfaces amongst

other fields. A novel definition of Barrier Trees is developed which has the advantage

of defining a partitioning of the landscape, which can be used for further analysis and

the animation of search heuristics working on the landscape. These techniques and

various analyses using this partitioning are demonstrated.

Barrier based models are model problems derived from small instances of real prob­

lems. They maintain the structure and connectivity between different local minima,

and many other properties of the original problem, while massively reducing the

state space. They provide a model Neighbourhood function that allows many dif­

ferent search algorithms to be implemented on the model problem, and they are

particularly well suited to modelling search heuristics as Markov chains. These mod­

els are defined, and simple descent is used as an example of how the models can be

used. The relationship between descent on the model problem and on the original

problems is examined in detail. Variations on the basic model are explored.

Contents

Nomenclature

1 Introduction

2 Combinatorial Optimisation
2.1 Notation
2.2 Combinatorics
2.3 Problem Difficulty

2.3.1 NP-Hardness

ix

1

4
4

5
6

6

2.3.2 Phase Transitions 9
2.3.3 Some examples of NP-Hard Combinatorial Optimisation Prob-

lems .. 11

3 Heuristic Search Algorithms And Cost Landscapes
3.1 Heuristic Search

3.1.1 Example Heuristic Search Algorithms
3.1.2 Neighbourhoods

3.2 Cost Landscapes
3.2.1 Common Obstacles In Landscapes

4 Barrier Trees
4.1 Definitions

4.1.1 Level-Accessible and Level-Connected Sets
4.2 Features of a Barrier Tree
4.3 Larger Landscapes . . .
4.4 Barrier Trees Algorithm

5 Barrier Tree Examples
5.1 Comparison of Different Landscapes

5.1.1 Different Problem Classes ..
5.1.2 Different Instance Sizes ...
5.1.3 Variations Over The Phase Transition

5.2 Statistics on a Single Instance .
5.3 Animated Search Heuristics

5.3.1 Genetic Algorithm .
5.3.2 Simulated Annealing

11

15
16
17
21
24
24

28
29
34
35
38
40

45
45
46
46
46
50

56

56

56

CONTENTS

5.4 Conclusions

6 Barrier Based Problem Models
6.1 Markov Chains and Heuristic Search
6.2 Definitions

6.2.1 Modelling Simple Descent
6.2.2 Partitioning.

6.3 Markov Chains ..
6.3.1 Definitions

7 Accuracy of Barrier Based Models
7.1 Simple Descent

7.1.1 Level-Connected Set Partitioning
7.1.2 Picking model of Descent

7.2 Coarse Graining

8 Limitations and Improvements to Barrier Based Models
8.1 Mixing Problem and Accuracy
8.2 Limits of the Neighbourhood Model and Crossover

8.2.1 Results
8.3 Size Limitations and Larger Models

8.3.1 Results

9 Conclusions and Future Work

Bibliography

iii

56

60
61
63
64

65

66

66

71

71

72
75
77

87
87
91

92
93
95

97

100

List of Figures

2.1 Venn diagram showing the problem complexity classes of P, NP and
NP-complete, assuming P ::F NP 7

2.2 Outline of the shortest tour through all the 24,978 Cities in Sweden.
This was calculated in May 2004 and is currently the largest non-trivial
TSP problem that has ever been solved. 13

2.3 Illustration of a spin-glass problem. An edge marked with a '1' indi-

2.4

3.1

3.2
3.3
3.4

3.5

3.6

4.1
4.2

4.3

4.4

4.5

4.6

cates a constraint requiring the two connected nodes to have the same
orientation; edges marked with '-1' indicate a constraint requiring the
nodes to have opposite orientations. The constraint on the bottom is
unsatisfied with the nodes in their current orientation.
A Perceptron

Binary Tournament .

One-point crossover.
Uniform crossover. .
Golfcourse landscape
Example of a local minima on a simple one dimensional continuous
(1hs) and discrete (rhs) landscape.
An extreme deceptive landscape

A saddle of a continuous 2D landscape.
Example of a Barrier Tree. Landscape represented is of a 20 variable
MAX-3-SAT problem with 100 clauses.
A Barrier Tree with a local minimum (A), part of a basin (B) and a
saddle point (C) marked. Landscape represented is of a MAX-3-SAT
problem with 20 variables and 120 clauses.
The circled nodes in the 1.h.s. are part of a single local minimum, using
a definition based on accessibility. There is no local minimum on the
1'.h.s. even though only one node has changed.
The 1.h.s. shows a contour plot of a saddle-point on a continuous 2D
landscape, with lighter shades of grey indicating a lower cost. The
1'.h.s. shows what we call a saddle-point in a discrete landscape
Simple 1-D landscape demonstrating the difference between a level­
accessible set of a merging node on a Barrier Tree and a saddle point.
The circled nodes make up a level accessible set which will be the
merging node between the local minima 'M1' and 'M2', however only
the node marked with'S' could be considered a saddle point.

IV

14
14

20
21
21
25

26
27

32

35

36

37

37

38

LIST OF FIGURES v

4.7 A partially completed Barrier Tree, to illustrate the algorithm. . . 41
4.8 The same tree as in figure 4.7 after cost level c has been processed. 43

5.1 Examples of Barrier Trees from different problem classes.
5.2 Barrier trees for instances of the Max-3-SAT problem with a varying

number of variables, N. The clause to variable ratio is held constant

47

at 0' = MIN = 5 , 48
5.3 Barrier trees for instances of the Max-3-SAT problem for N = 20, with

the ratio of clauses varying over the phase transition at 0' = NIl N = 4.5 49
5.4 A Max-3-SAT problem, N = 30 and a clause to variable ratio of

0' = Ail N = 4. Statistics gathered on this problem are displayed
in table 5.1 , 51

5.5 Number of configurations per cost level for the cost levels shown in
table 5.1 51

5.6 Example of a compact (1.h.s.) and a non-compact (r.h.s) set of config-
urations on a 3D cube, the topology of a 3 binary variable landscape. 54

5.7 A Genetic algorithm working on Max-3-SAT problem. t is the iteration
of the algorithm. , 57

5.8 A simulated annealing algorithm working on a 40 Max-3-SAT problem
with a fixed temperature of T = 3. , 58

7.1 Average costs graphs of 20 variable MAX-3-SAT problems 73
74 7.2

7.3
A verage cost graphs of fully connected Spin-Glass problems .
Histogram of the average difference in cost between model instances
and the original instances after 1000 iterations of descent. Sample of
fifty 20 variable Max-3-SAT instances. 75

7.4 A verage cost predicted by the model using accessible sets and con­
nected sets (LCS), on a Max-SAT and Spin-glass instances. First 500
iterations displayed separately for greater clarity. 76

7.5 Average cost of Descent, with the Descent model and the Picking
Model, for various problem instances.., 79

7.6 Log (base 10) frequency that individual configurations within one level­
connected set are visited averaged over 10000 descent runs, with a nor-
mal distribution with the same mean and variance drawn for comparison. 81

7.7 Representation of a simplified level-connected set as a Markov chain . 82
7.8 The same Markov model as in figure 7.7, except the lower cost config­

urations, in black, are considered to be a single absorbing exit state.
The two separate groups, while unconnected, are represented by the
same Markov state. 83

7.9 Barrier Tree of a 20 variable Max-3-SAT problem with 120 clauses .. , 84
7.10 Average cost of a descent algorithm with a random walk, restricted to

configurations of the same cost and a length of 5000 attempted moves,
for an instance of a Spin-glass and a Max-3-SAT problem. The line
for the model descent and for the random walk descent are on top of
each other; the model using connected sets matches the descent with
random walk very closely, 85

LIST OF FIGURES

8.1 Comparison of models using a level-connected set partitioning, and a
level-connected set partitioning with each partition further split into

VI

edge and partition sets. 89
8.2 Comparison of descent on model problems using a plateau/edge par­

titioning and further partitioning the edge states into which level con-
nected set they lead to. 90

8.3
8.4

Barrier 'Iree of 40 variable Max-3-SAT problem.
Comparison of a sampled 40 variable MAX-3-SAT problem
descent. ,

to real

9.1 Optimal annealing schedules calculated using Barrier-based models
by Will Benfold. Each line is the schedule for an algorithm lasting
Titerations. The schedules are optimised for "where you are", the cost
at the finish of the algorithm, as opposed to "best seen", the best so­
lution seen by the algorithm. These schedules are optimised for an

95

96

instance of Max-SAT. 98

List of Tables

5.1 Details of the different basins of the problem represented in figure 5.4.
Type is either gm for global minimum, 1m for local minimum or s for
saddle point. 52

5.2 The percentage of the results of uniform crossover of randomly chosen
configurations from basin 4d, from the problem in figure 5.4. Off tree
are the crossovers that resulted in a configuration not mapped to the
tree

7.1 Anderson-Darling tests on the distribution that each configuration
within a level-connected are visited by a descent algorithm. The p­
values for each distribution are all above a significance level of 5%,
meaning that our hypothesis that the distribution is log normal should

55

not be rejected. .. 81
7.2 The mixing and exit times for the larger level-connected sets that are

part of the saddle-points of a Max-3-SAT problem with 20 variables
and 120 clauses. .. 83

8.1 The top 10 most frequent results of crossover performed, compared to
the prediction from our crossover model. The parents of the crossover
were chosen from the states at rank 1 and rank 4.. 92

vii

Listings

3.1 Pseudo code giving an outline of a heuristic search algorithm
4.1 Top level of algorithm to generate Barrier Trees
4.2 Algorithm for adding a single cost level to Barrier Tree.
7.1 Picking model of descent

viii

16

41
42

78

Nomenclature

Sets are given a capital, calligraphic character.

"When indexing a singular members from a set, the set is written in a

normal font.

M,T,A Matrices have a capital, bold character.

M1,l,T2,1,Ax,y When indexing a singular member of a matrix the matrix letter is

written in a normal font

X,Y,Z

lSI
2s

5xy

[exprlb

~n

1

J(x)
N(x)

Vectors have lower case bold letter. All vectors are column vectors

When indexing a singular member from a vector, the vector is given a

normal font.

The cardinality of set S.

The power set of set S.

Kronecker delta function. 1 if x = y, 0 otherwise.

An indicator function that evaluates to a if expr is true and to b if expr is false.

The vector consisting of Os, except at index n which is l.

The identity matrix.

The vector of all Is.

The cost function of a problem, J : C 1-+ lR.

The Neighbourhood function of a problem, N : C 1-+ 2c

The set of all paths on a landscape.

ix

Chapter 1

Introduction

This thesis presents novel tools for studying heuristic search algorithms on Combi­

natorial optimisation problems. Combinatorial optimisation problems are extremely

common in any number of practical situations. Many resources are by their nature

discrete, such as machine parts, desk spaces and aircraft crew, and organising these

discrete components efficiently often requires the solution of a Combinatorial optimi­

sation problem. In real life situations, these problems often involve a huge number

of resources, and even a small improvement in the quality of the solution found can

save many millions of pounds.

As well as being extremely common, Combinatorial optimisation problems are often

computationally difficult. In fact, Combinatorial optimisation problems are often

examples of problems that are 'NP-hard', the classic class of computationally difficult

problems. It is believed that these problems take exponentially longer to solve exactly

as the size of the problems grows, so that increasing computer power is of limited

use. Not all Combinatorial problems can be definitely classed in this category, but

the size and complex set ups of many problems make exact algorithms impractical.

Heuristic search algorithms are one of the most popular approaches to solving Com­

binatorial optimisation problems. They can be easily applied to a wide range of

problems, and require very little a priori knowledge of the problem class. For many

problem.s with complex constraints and goals they are the only practical type of al­

gorithnl to use, as interpreting the problem in greater detail is impractical. The

stochastic nature of search algorithms means it is often worthwhile repeating them

several times to increase the chance of a good result; this makes it extremely easy to

exploit parallel computing resources.

Despite their wide use and a great deal of attention from the theoretical commu­

nity, heuristic search algorithms have proven to be extremely challenging to analyse

1

Chapter 1 Introduction 2

theoretically. There is no well established methodology into how heuristic search al­

gorithms should be designed, little understanding of their behaviour or what makes

problems hard for heuristic search algorithms. Considering the importance of Combi­

natorial optimisation, and the wide use of Heuristic search algorithms to solve them,

such a theory would be extremely useful. As Papadimitriou states:

developing the mathematical methodology for explaining and predicting

the performance of heuristics is one of the most important challenges

facing the fields of optimisation and algorithms today (Papadimitriou and

Steiglitz, 1998).

A major challenge to the study of heuristic search algorithms is the difficulty with

working with complex Combinatorial optimisation problems. In the context of heuris­

tic search it is common to describe problem instances in terms of a 'cost landscape'

metaphor. The cost landscapes of problems of interest to practitioners are typically

huge, highly dimensional with complex topologies. Working with these structures is

so difficult that many basic questions about them are still unknown. Faced with this

difficulty many theoreticians have developed model problems that have some of the

features of challenging optimisation problems but are far more amenable to mathe­

matical analysis; typically the model problems have a large degree of symmetry that

can be exploited. The hope is that these model problems can teach us something

about heuristic search which can then be applied to the more challenging problems

faced by practitioners. So far this approach has not succeeded. One of the central

themes of the recently developed 'No Free Lunch' theorems is the importance of

knowing what features of a problem class a search heuristic tries to exploit. Unfortu­

nately, the challenges of studying instances of Combinatorial optimisation problems

means that their exploitable structure is poorly understood.

The work in this thesis develops Barrier Trees as a tool to study and characterise

problem instances. Barrier Trees represent a problem instance as a tree structure,

which can be used as both a visualisation of the landscape and as the basis of further

analysis. Cost landscapes of practical problems are intractably difficult to analyse;

Barrier Trees only overcome this difficulty because they are limited to small problem

instances. However, these small instances still have a direct relationship to more

challenging practical problems, and the technique of extrapolating from small systems

to larger ones, scaling analysis, is well understood.

Barrier Trees are well established in the field of physics and biology, and have been

used to study Combinatorial optimisation problems. The contribution of this Thesis

is a new (though equivalent) definition of Barrier trees, which has the benefit of

providing a mapping of every configuration to some part of the tree. This mapping

Chapter 1 Introduction 3

greatly increases the usefulness of Barrier Trees, providing information that can be

used for many analyses that are not possible without it. This mapping can also be

used to animate a heuristic search algorithm acting on the problem; this technique

along with several other uses of the mapping information are presented. A more

complex use of this information is the development of model problems which we

call 'Barrier-based' models. This is a powerful technique for creating model problems

from real problem instances that are amenable to Inathematical analysis. A definition

of these models and an analysis of their accuracy makes up the second part of this

thesis.

All the techniques presented in this Thesis have been implemented by me. The ideas

have mostly been developed in discussions with my tutor Adam Priigel-Bennett.

The work in chapters 4 and 5 has been previously presented in Hallam and Priigel­

Bennett (2003, 2005c). The Barrier-based models introduced in chapter 6, the results

presented in chapter 7 and the improvements investigated in chapter 8 with the

exception of the work on crossover have been submitted to Theoretical Computer

Science as Hallam and Priigel-Bennett (2005b). The work on crossover has been

presented in Hallam and Priigel-Bennett (2005a).

Chapter 2

Combinatorial Optimisation

This chapter provides a brief background on Combinatorial optimisation, the prob­

lems that are the focus of this thesis. This starts with a brief formalisation of com­

binatorial optimisation problems. This is followed by a description of the theory

of NP-completeness, one of the most important concepts in complexity theory, and

a brief discussion of some of its implications. The concept of phase transitions and

their relationship to the complexity of NP-complete problems is then discussed. This

chapter concludes with some brief descriptions of several exemplar problem classes.

2 .1 Notation

A brief note on the mathematical notation that will be used.

• Atomic objects and functions will have a normal lower-case letter e.g. x, y, f(x).

• Vectors and strings will be have a lower-case bold sYIl1bol e.g. X,y and z.

Vectors will always be column vectors.

• Sets will in general be represented by a bold, calligraphic font, e.g. A, Band

C. Due to the variety of mathematical constructs that can be considered sets,

this is somewhat arbitrary.

• Matrices are indicated by a bold capital letter, e.g. M.

• When an atomic member of a vector, set or matrix is indexed, the vector, set or

matrix is written in a normal font. This can be useful for clarifying the meaning

of certain complex expressions e.g. MLy, the x, y element of the matrix Mi
, or

(Mt)x,y, as opposed to J1![~,y, the x, y element raised to the power t of M, or

(Mx,y)t.

4

Chapter 2 Combinatorial Optimisation 5

2.2 Combinatorics

In almost every industry and service, resources which are indivisible, whether they

are labourers, machinery parts or work shifts need to be organised to meet some

criteria. These organisation problems are practical examples of Combinatorial Opti­

misation problems. The huge range and importance of Combinatorial Optimisation

cannot be over-stated. These problems are often considered as the classic example of

"computationally difficult" problems, and any improvements in the techniques used

to solve them could lead to large rewards.

The general form of a Combinatorial Optimisation problem is simple. An optimi­

sation problem requires that the arguments that minimise or maximise the value of

some function are found. In a Combinatorial Optimisation problem, the domain of

the function is a set of combinations of the input variables.

Formally, an instance of a Combinatorial Optimisation problem can be defined as

having,

1. A discrete set, C, of feasible solutions,

2. An objective function, sometimes called a fitness or cost function, f : C ----+ lR'.,

3. An optimum, normally the minimum or maximum.

Often, a feasibility predicate is used to define the set of feasible solutions as a subset of

some larger solution set. This is particularity relevant when finding feasible solutions

is expensive. For our purposes, we consider infeasible solutions as having an infinite

cost (or negative infinity fitness) within the above framework. Note that the difference

between minimisation or maximisation is trivial, as the maximum of f (x) is the

minimum of - f (x). Throughout this thesis we will consider minimisation, so that

our objective function is a cost function and a lower cost solution is the better solution.

From the perspective of algorithm design, algorithms are created to solve instances

of a particular problem class. A problem class specifies a general form for many

different instances, each of which has a different cost function and different optimal

solutions. An instance is specified by some additional information. For example,

an algorithm could be designed to arrange different shaped boxes to fit inside the

smallest possible containing box. This would be considered a class of problems (this

is in fact a version of the 'knapsack' problem class). A particular set of boxes of

different sizes is the additional information required to specify an instance of the

problem with some specific set of optimal solutions. An algorithm designed to solve

the class of box packing problems could then be applied to nlany different instances.

Some examples of some well known problem classes are given in section 2.3.3.

Chapter 2 Combinatorial Optimisation 6

2.3 Problem Difficulty

In studies of complexity, a difficult problem is one which requires a large amount

of some limited computational resource. It is not related to the human intellectual

effort required to solve, or create an algorithm to solve, a particular problem. Usually,

the resource considered is runtime, the amount of time required on a computer to

solve the problem, although sometimes other resources such as computer memory

are considered. In practice, one resource can often be exchanged for another, for

example, caching techniques can be used to reduce the runtime at the cost of using

more memory.

In general, there is no method of proving that a particular problem class reqUIres

any amount of a particular resource to solve. A problem's difficulty is given as the

resources required by the best known algorithm to solve it. In some rare cases it

is possible to obtain lower bounds on the resources needed to solve a problem, but

for most problems this is not known. For most problem classes, it is possible that

there is a currently unknown algorithm that could solve the problem class using less

resources. Computational complexity theory uses several techniques to work around

this limitation, and some of the most important results are described in 2.3.1.

Due to the rapidly increasing nature of computer performance, and the vast differ­

ences that can occur between different implementations of the same algorithm, an

algorithm's performance is described by the way it grows as the problem size increases.

Only the dominant term of the function describing the algorithm's performance as

the size of a problem increases to infinity is considered, the asymptotic value. This is

written using "Big-O" notation, so that an algorithm that takes 4n2 + 10 seconds to

solve a problem, (where n is a measure of problem size), is said to take time 0(n2).

Two important groups of algorithms are those said to have polynomial or better

run times, and those said to have worse than polynomial run times. Polynomial

algori thms are those with run times such as 0 (n 2) or 0 (log n) ; examples of worse

than polynomial algorithms are those with exponential run tin1.es, O(en), or factorial

runtimes O(n!).

2.3.1 NP-Hardness

It is, unfortunately, extremely difficult to show what the best possible algorithm for

a particular problem class is, and this limits our ability to specify 'hard' and 'easy'

problem classes. Complexity theory has developed several different techniques to

partially overcome this limitation, and several complexity classes of different problems

have been defined. Of these, the class of NP-hard problems is the most important.

Chapter 2 Combinatorial Optimisation

Np

FIGCRE 2.1: Venn diagram showing the problem complexity classes of P, NP and
NP-complete, assuming P /:: NP

7

To define NP-hard problems, it is first necessary to discuss the problem classes P

and NP. P and NP are complexity classes of decision problems. Decision problems

have a simple 'yes' or 'no' answer. The complexity of decision problems is simpler to

analyse than other types of problem. In particular, it is simpler to reduce problems

to decision problems, which will be described shortly. The difference between the

complexity classes P and NP is on the types of Turing machine in which they can be

solved in polynomial time. Tllring machines are theoretical computing machines used

to analyse aut011l.atic computation. A deterministic Turing machine is closely related

to modern computers. A non-deterministic Turing machine is purely theoretical; in

essence, a non-deterministic Turing machine never has to make decisions without the

necessary information to make the decision, while a deterministic Turing machine has

to try every possible solution. The complexity class P consists of decision problems

with a known deterministic-polynomial time algorithm. The problems in NP have

a non-deterministic polynomial time algorithm. Note that deterministic algorithms

take the same or less time on a non-deterministic machine, so P c NP (see figure

2.1).

Reduction is a central concept in defining complexity classes. Reduction makes it

possible to state that one problem class is at least as difficult as another. As al­

ready mentioned, reduction is simpler to define on decision problems. If we have two

decision problem classes A and 5, A is reducible to 5 if

Chapter 2 Combinatorial Optimisation 8

1. There exists a transform, from every instance in A to an instance in B. We

label this transform as a function T : A f-----7 B.

2. T can be performed in deterministic polynomial time.

3. T(Ai) E B has the solution 'yes' if and only if Ai has a solution of 'yes'.

This is the specific form of reduction used to define the class of NP-complete prob­

lems. In complexity theory, reduction has a more general definition that encompasses

problems other than decision problems, different resources than runtime and different

boundaries than polynomial and worse than polynomial. For our purposes, reduction

as it has been defined here is sufficient.

The way reduction is used to define difficulty often causes confusion, because it

involves the use of the contra-positive rule. To describe how it is used, we define

reduction as a relationship R(A, B) which is true if and only if A reduces to B, and

we define E(A) as a predicate that is true if there exists a polynomial time algorithm

to solve (A). E(A) therefore matches our concept of an easy problem, and --.E(A)

indicates a difficult problem. vVe can then state the axiom

R(A, B) 1\ E(B) ----7 E(A).

In words, if A reduces to B, and B is 'easy', then A is easy. This follows because if A

reduces to B and there is a polynomial time algorithm to solve B, then any instance

of A can be solved by transforming it into an instance of B and solving it using the

algorithm for B, all in polynomial time. We are more interested in showing difficulty,

so we express the second part using the contra-positive rule,

R(A, B) 1\ --.E(A) ----7 --.E(B).

This is the statement that the more usual expression of reduction comes from: if A

reduces to B then B is as difficult as A. This is an extremely specific use of the word

difficult.

The central discovery in defining NP-hard problems was made by Stephen Cook in

Cook (1971). He showed that the problem of running a non-deterministic Turing

machine could be reduced to solving a SAT problem. Therefore, if SAT could be

solved in deterministic polynomial time, any problem in NP could also be solved

deterministically, so P = NP. This result was followed up by Karp (1972) showing

that 21 well known difficult problems were of equivalent difficulty to SAT (i.e. the

problem reduced to SAT and SAT could be reduced to the problem). This group

of problems is called NP-complete, and has been continuously added to until now

Chapter 2 Combinatorial Optimisation 9

there are several thousand problems that have been shown to be members (Garey

and Johnson, 1979).

Decision problems have little direct relevance to most practical applications. To show

that other types of problems are difficult, a NP-complete decision problem that can

be reduced to the problem in question is found. If such a decision problem can be

found, the problem is as difficult as the NP-complete problem class, and is described

as NP-hard. For Combinatorial optimisation problems, the usual form of the decision

problem is "does there exist a solution to the optimisation problem with a cost less

than x". This decision problem trivially reduces to the optimisation problem, and

can be shown to be NP-complete.

2.3.2 Phase Transitions

Statistical physics has many similarities to Combinatorial Optimisation that make its

techniques and concepts relevant. One of the most important concepts is that of the

'phase transition'. It is well known that many NP-hard problems are rarely hard;

for many instances, heuristic algorithms can often find solutions extremely quickly.

The idea of phase transitions has helped explain where the difficult instances of NP­
complete problems are.

In physical systems, a phase transition is an abrupt, discontinuous change in some

property with a small change in some controlling variable, typically the tempera­

ture. The classical examples are the transitions between solids, liquids and gases and

the transition between ferromagnetic (fixed magnetic alignment) and paramagnetic

(magnetic alignment dominated by external magnetic field) phases of lTl.agnetic mate­

rials. These transitions are between different types of symn"letry within the material;

the term symmetry breaking is often used in relation to phase transitions.

In Combinatorial Optimisation, phase transitions have been observed in many dif­

ferent problems. The key characteristic that changes between phases is the average

difficulty of randomly chosen instances. The difficulty is measured as the average

number of iterations of a good performing exact algorithm (e.g. branch and bound)

to solve a random instance. For SAT and Max-SAT the control variable is the num­

ber of clauses per variable (Mitchell et al., 1992a; Kirkpatrick and Selman, 1994;

Monasson et al., 1999). For the Asymmetric Travelling Salesman problem, the crit­

ical control variable is the precision of intercity distances, typically represented by

the number of digits for the distances (Zhang and Korf, 1996).

The characteristics of the phase transitions differ between decision problems and their

corresponding optimisation problem. In decision problems, the transition is described

Chapter 2 Combinatorial Optimisation 10

as "Easy-Hard-Easy". Below the transition, almost every instance has one solution

('yes' or 'no'), and above the transition, almost every instance has the other solution.

At or very close to the phase transition, however, almost an equal proportion of

instances have each solution. For example, in SAT, almost every instance below the

phase transition is satisfiable, while above the transition almost every instance is

unsatisfiable. Instances from these two phases are also easy to solve algorithmically.

Below the transition there are many satisfying configurations, making it easy to prove

that the problem is satisfiable. Above the bound, a contradicting set of clauses can

quickly be found, proving the instance is unsatisfiable. Neither of these techniques

is effective close to the transition value. Similar quick methods can be found for the

easy phases of other problem classes.

In Combinatorial Optimisation, the phase transition tends to be "easy-hard" instead

of "easy-hard-easy". The first easy phase in both tends to correspond to finding some

limiting minimal state, for example, in Max-SAT, showing that every clause can be

satisfied, so there are zero unsatisfied clauses. This is the same for both the decision

and optimisation versions of the problem. Above the phase transition, however, the

problems become different. In the decision problem, it is only necessary to show

that it is not possible to satisfy every clause. For the optimisation problem this is

not sufficient; it is necessary to find the maximum number of clauses that can be

satisfied, which does not become easier beyond the phase transition.

It is believed that the phase transition is a defining characteristic of NP-hard prob­

lems, and it is the phase transition that makes these problem classes difficult. This is

difficult to prove in the same manner that it is difficult to prove that NP i- P; it is

always possible that some undiscovered algorithm could solve instances of NP-hard

problems at the centre of the phase transition. There is no way to prove that such a

algorithm does not exist. However, the wide range of problems in which phase tran­

sition behaviour has been found and the wide range of characteristics that change

over the phase transition have led researchers in recent years to identify phase transi­

tions as being the cause of the computational difficulty of NP-hard problems (Zhang

and Korf, 1996; Stadler et al., 2003; Kirkpatrick and Selman, 1994; Monasson et al.,

1999).

Chapter 2 Combinatorial Optimisation 11

2.3.3 Some examples of NP-Hard Combinatorial Optimisation Prob­

lems

Max-SAT

Max-SAT is the optimisation version of the SAT problem. An instance is defined by

a set of clauses, where each clause is a boolean formula in conjunctive-normal-form

(CNF). The SAT problem is to determine whether any assignment of variables sat­

isfies every clause. The Max-SAT problem is find the assignment of variables the

maximises the number of satisfied clauses; we consider the corresponding minimisa­

tion problem to be minimising the number of unsatisfied clauses. Often the number

of terms in each clause is fixed at some number, and these problems are described

as Max-n-SAT, where n is the number of terms in each clause. Note that only Max­

n-SAT problems where n ;:::: 3 are NP-complete, as detenTlinistic polynomial time

algorithms exist for Max-2-SAT and Max-I-SAT is trivial.

For example a set of 4 clauses with 4 variables might be

If the problem is defined as each clause being a predicate in the list P, the cost

function can be written as

j(x) = L[P(X)]6
pEP

where [expr]b is the indicator function that evaluates to a if expr is true and to b if

expr is false.

Sometimes a variation known as Weighted Max-SAT is discussed, where each clause

is assigned a weight. The cost is then the sum of the weights of the unsatisfied

clauses. A Weighted Max-SAT problem can be converted into a normal Max-SAT

problem by duplicating clauses so the weight is represented by the number of times

a clause is repeated. This is trivial if the weights are integer valued. Rational-valued

weights can be converted to integer equivalents by calculating the lowest common

denominator of all the weights.

As discussed in section 2.3.2, SAT exhibits a phase transition in the difficult of ran­

domly generated instances as the ratio of clauses to variables, a = C IN is changed.

For 3-SAT, this transition is around 4.3.

Chapter 2 Combinatorial Optimisation 12

Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is one of the classic 'hard' computing prob­

lems. Early versions of the problem were studied in the 1800s. The modern, general

case problem, can be stated as finding the minimum cost tour on some weighted

graph. An instance is thus specified by a weighted graph. More commonly, the

problems are restricted to 2-dimensionalmaps, where the weights between the nodes

is the distance between them. Such problems are easier to solve, as the geometry

provides information that can be exploited.

Solving ever larger Travelling Salesman Problems is something of a competition. The

current record is the tour through all the cities of Sweden, shown in Figure 2.2. This

tour contains 24,978 cities, up from the previous record of 15,112 cities set in April

2001. Fifty years ago Dantzig et al. (1954) reported the solving of a 49 city Travelling

Salesman Problem; it is perhaps ironic that as the classic example of an exponentially

hard problem, the Travelling Salesman Problem has received so much attention that

the size of the largest problem solved has grown exponentially.

Spin-glass

Spin-glasses are problelTls from physics. A spin-glass is a material which has signif­

icant magnetic frustration. For our purposes, a spin glass consists of a set of nodes

which can have one of two possible orientations, and a set of constraints, each spec­

ifying that two nodes' alignment should be the same or opposite. The objective is

to find the set of orientations that minimises the number of unsatisfied constraints.

Figure 2.3 is an illustration of a spin glass problem. The connectivity between the

nodes can be organised in several different fashions. The nodes can be arranged in a

2 or 3 dimensional grid or the connections can be chosen randomly. The spin-glass

problems we consider throughout the rest of this thesis are all fully connected; there

is a constraint between every pair of nodes.

Binary Perceptron

The Binary Perception (sometimes called the Ising Perceptron) is a binary version

of the classic percept ron (figure 2.4) sometimes used in machine learning. In the

perceptron, there are a set of patterns Xk, where each pattern x is vector of inputs.

Each pattern is associated with a class label Ck. In the Binary perceptron, the problem

Chapter 2 Combinatorial Optimisation

FIGURE 2.2: Outline of the shortest tour through all the 24,978 Cities in Sweden.
This was calculated in May 2004 and is currently the largest non-trivial TSP problem

that has ever been solved.

13

Chapter 2 Combinatorial Optimisation

-1 1

-1

FIGURE 2.3: Illustration of a spin-glass problem. An edge marked with a '1' indi­
cates a constraint requiring the two connected nodes to have the same orientation;
edges marked with '-1' indicate a constraint requiring the nodes to have opposite
orientations. The constraint on the bottom is unsatisfied with the nodes in their

current orientation.

sign(W T . t)

FIGURE 2.4: A Perceptron

14

is to find the vector of binary weights, W E {-I, l}n, to minimise the cost function

T

f(w) = L[CkXk . W :s: 0]6·
k=l

The binary perceptron is mainly of theoretical interest, particularly to physicists. In

particular, the phase transition in the difficulty of the decision problem version of the

binary perceptron has been closely studied as a form of replica symmetry breaking

(Priigel-Bennett, 2004a; Krauth and lVIezard, 1989).

Chapter 3

Heuristic Search Algorithms

And Cost Landscapes

Solving difficult Combinatorial optimisation problems is a major problem in a huge

variety of real world situations. Heuristic search algorithms are a vital tool in solving

these problems. They are easy to understand, can be applied widely, require little

problem-specific modification and often achieve acceptable performance. However,

despite much research, heuristic search is poorly understood. There is no concrete

theory to guide the design of search heuristics, and only limited understanding of how

to predict the performance of differing algorithms. The massive variety and complex­

ity of search algorithms and Combinatorial optimisation problems has presented a

barrier to analysis that has not been overcome.

However, several key concepts and ideas have been developed that are useful in de­

scribing and understanding Heuristic search algorithms' behaviour, and in comparing

behaviour on different problem instances and classes. Of particular importance to

this thesis are the ideas of a Neighbourhood and of a Cost Landscape. This chapter

describes these concepts and provides the definitions used throughout the rest of this

thesis.

This chapter begins with a brief description of Heuristic search algorithms, giving

some examples. This is followed by a definition of the idea of Neighbourhood, and

a discussion of some of the issues associated with them. Cost landscapes are then

defined, and this chapter is concluded with a discussion of several key features of cost

landscapes.

15

Chapter 3 Heuristic Search Algorithms And Cost Landscapes 16

3.1 Heuristic Search

Heuristic search algorithms attempt to solve optimisation problems through a process

of iterative improvement. In their simpler forms, a Heuristic search algorithm starts

by a single possible solution being chosen at random, and set as the current solution.

Then at each iteration, a solution that is similar to the current solution is chosen,

and its cost is evaluated, and if that cost meets some criteria relative to the current

solutions cost, the new solution becomes the current solution. This is continued

until some ending criterion is met, such as a certain number of iterations without

improvement have elapsed.

This simple outline does not include Genetic algorithms, a Inore complex form of

search algorithm~ that uses a population of current solutions instead of just a single

solution. The process is essentially the same however, and the only difference for

our simple outline is that instead of changing the current solution to a new one, the

algorithm selects new solutions to add to current solution set, and some to remove

from it. A general outline of a heuristic search algorithm is given in listing 3.1

1 .1:'+-make_random_solutions ();

2 Cx+-getCosts(.1:');

3 repeat

4 Y+-get_similar_solutions(.1:');

5 Cy+-getCosts (Y);

6 (.1:',Cx)+-choose_new(.1:', CX, Y, Cy);

7

8 until finished ()

LISTING 3.1: Pseudo code giving an outline of a heuristic search algorithm

.1:' is the current solution set. The termination condition is normally considered a

separate issue to the performance of the algorithm, and from this view, heuristic

search algorithms have two key components:

• A similarity operator, used in line 4, to generate new candidate solutions. This

is often known as a Neighbourhood operator, but more complex operators such

as crossover perform the same task. This operator is probably the biggest

influence on a search algorithm's performance, and is discussed in more detail

in section 3.1.2 .

• Some method of choosing which similar solutions should become part of the

solution set, represented by the procedure choose-.new called on line 7. In the

simplest case this simply chooses the lowest cost solutions to become members

Chapter 3 Heuristic Search Algorithms And Cost Landscapes 17

of the solution set but more complex methods are also used. This is often

known as the navigation strategy of the algorithm.

These are the key characteristics of a heuristic search algorithm. Complex algorithms

such as Genetic algorithms use several different operators to define each component.

Crossover and mutation, for example, are both different ways of generating solutions

similar to other solutions, but both can be used by the same algorithm. In these

cases it can be useful to consider each operator separately (Jones, 1995).

3.1.1 Example Heuristic Search Algorithms

This section gives some examples of Heuristic Search Algorithms. Since the neigh­

bourhood used by a heuristic search algorithm's is highly problem dependent, this is

mainly a comparison of different navigation strategies.

Simple Descent

Simple descent, some times known as greedy search or hill climbing is the most basic

form of heuristic search algorithm. A single solution is chosen at random, and new

candidate solutions are accepted if they have an equal or lower cost. ~While simple,

this form of descent can be extremely effective, and many problems can be solved

using simple descent without resorting to more complicated algorithms.

There is one major problem with simple descent. As the acceptance rule is simple,

descent algorithms can easily get trapped in solutions with no lower cost neighbours,

and these solutions can often be of a poor quality. These are known as local minima,

and are discussed in more detail in section 3.2.1. The simplest way of overcoming this

problem is simply to run several descents (starting with a randomly selected solution

each time), to increase the chance that local minima are avoided. In addition to

this simple method, there are many heuristic search algorithms that can be seen as

modifications of descent designed to overcome the problems caused by local minima,

such as simulated annealing (discussed in this section) and Tabu search (Glover, 1989,

1990).

Another problem with simple descent is that, unmodified, a long time can be spent

revisiting solutions that have already been explored, when a large number of potential

solutions have an identical cost. This is often known as a plateau, and is described

in more detail in section 3.2.1. This problem has some effect on all heuristic search

algorithms, since without differences in cost, an algorithm has no information to

guide the search. However, some techniques can lessen the problem. An obvious

Chapter 3 Heuristic Search Algorithms And Cost Landscapes 18

method is to cache the costs of visited configurations, so that even if configurations

are revisited, little time is wasted in doing so. For large problems, this cache can

quickly become impracticably large. One of the motivations behind Tabu search is

to improve performance on plateaus.

Simulated Annealing

Simulated Annealing is a variation of simple descent inspired by statistical mechanics.

Annealing is the process by which metals or glass are heated to high temperatures to

release internal stresses caused by flaws in the microscopic structure. It is necessary

to raise the temperature to a point that is high enough for the flaws to be eased, but

not so hot for that the item deforms. The glass or metal is then very slowly cooled,

so that differences in temperature cannot create new flaws in the material, until a

critical temperature is reached, below which flaws cannot form.

In simulated annealing, first proposed in Kirkpatrick et al. (1983) this process is

mimicked. Instead of rejecting higher cost solutions outright, higher cost solutions

are accepted depending on the difference in cost and a "temperature" T. As in

the physical process, the temperature starts high and is reduced as the algorithm

continues. The probability of acceptance of a move to a higher cost state is normally

calculated by the equation

Note that at a temperature of 0, the probability of accepting a higher cost solution

becomes ° and simulated annealing behaves identically to simple descent. Different

methods of calculating this probability can be used, but in general the the following

properties are expected:

• Moves to equal or lower costs states should always be accepted.

• When T = 0, the probability of accepting higher cost states would be 0.

• The probability of accepting a state should be lower for large D.C than for a

small D.C.

However, the equation listed above allows several properties of the algorithm to be

calculated easily as a Markov chain. For example, assuming the algorithlTl has been

run at a constant T for long enough to reach equilibrium, the probability of being in

any particular state x is proportional to the cost of that state,

e
P(x) = --.

z

Chapter 3 Heuristic Search Algorithms And Cost Landscapes

where z
-f(x)

LXEc e - T -.

19

In a practical setting, it is also necessary to define some sort of annealing schedule,

that is, the way that the temperature T changes as the algorithm runs. The annealing

schedule is critical to the performance of the algorithm, and it is not known how best

to design annealing schedules.

While simulated annealing does have advantages over simple descent, its theoretical

use is also of great interest. There is a huge body of theoretical work on simulated

annealing, and it is by far the best understood heuristic search algorithm. However,

in a practical setting there is little theory that can be applied, and the difficulty in

choosing an annealing schedule is a significant problem.

Genetic Algorithms

Genetic Algorithms are search heuristics based upon evolutionary principles. Popu­

larised by Holland (1975), the term now covers a huge range of differing algorithms,

for both combinatorial and real valued problems. Genetic Algorithms can be roughly

distinguished by the following characteristics

• A population of candidate solutions,

• Some selection criteria which keep some members of the population and discard

others,

• A mutation operator,

• Often (but not always) some kind of recombination operator.

The key feature distinguishing Genetic Algorithms from other algorithms is the use

of a population instead of a single candidate solution. This is also why Genetic

Algorithms have the potential to be more powerful than other algorithms; the use of

a population means that the algorithm has far more data to work with than a normal

type of algorithm, and if these data can be exploited a Genetic algorithm. should be

able to outperform simpler algorithms.

In the terminology of Genetic Algorithms, the navigation strategy is called selection.

Selection is the process by which candidate solutions are chosen to be included into the

population, and members of the population are removed. There are many different

forms of selection; one of the most common is binary tournament, illustrated in

figure 3.1. In this form of selection, two members are selected at random, and the

one with the lower cost is kept as part of the population, and the one with the

Chapter 3 Heuristic Search Algorithms And Cost Landscapes

Population

o

o
o

Random Selection

Compet

Lower cost wins

Stays in population

Higher cost loses

FIGURE 3.1: Binary Tournament

20

higher cost is discarded. Many other forms of selection have been suggested, such

as Boltzmann selection, roulette-wheel selection and stochastic universal selection

Baker (1987). Different selection methods vary in the amount of selection pressure

they apply, how that pressure can be controlled, and stochastic variability of the

results of the selection. Selection pressure describes how directed a search is; a high

selection pressure causes quicker convergence, at the cost of less exploration and an

increased risk of convergence to a poorer quality solution.

Genetic algorithms use a huge variety of methods to generate candidate solutions.

Two of the most common are mutation and crossover. Mutation is an operator that

changes candidate solutions by some small amount. Mutation operators are normally

fairly simple, for example, flipping bits on a binary string with some small probability.

While mutation may slow convergence, it is a simple way of introducing variation into

a population, which can be important as certain operators used by Genetic algorithms

do not introduce any variation.

Crossover is an operator that creates new candidate solutions from two or more

solutions in the population. This can be achieved in many different ways. In I-point

crossover, both parent strings are cut at the same, single point, and then a new

solution is generated by joining together the opposite sides of the cut (see figure 3.2).

More than one cut can be made, leading to 2, 3 or n point crossover. These forms of

crossover are useful when the variables are ordered in a useful fashion (i.e. variables

close together on the string are more closely related than variables far apart). In

uniform crossover, at each location in the string, the value for that location is chosen

randomly (and independently of any other point) from the values each parent has at

Chapter 3 Heuristic Search Algorithms And Cost Landscapes 21

Parent I Parent 2

I 0 I I 0 I 0 I I 0 I 0 11 I 0 I 10 I

~ Cut cJ
~--,IIII 0 .11 I 0 I 0 I 11 I 0 I 0 IIII 1 I 0 I I 0 I

~Recombine ~
I 1 I I 1 I 1 I 0 I 10 I

Child

FIGURE 3.2: One-point crossover.

Parent 1 Parent 2

Recombine

~
11 I 0 I I I I I 0 I 0 I

Child

FIGURE 3.3 : Uniform crossover.

that location, (see figure 3.3). This form of crossover makes more sense if there is no

ordering of the variables.

Genetic algorithms are very challenging to study theoretically. The use of a popu­

lation creates complex dynamics, and crossover is difficult to study since it is very

different to other forms of search heuristic. This lack of a strong theory has con­

tributed to the huge number of different Genetic algorithms that have been devised.

3.1.2 Neighbourhoods

A neighbourhood of a configuration is a set of configurations that are similar to that

configuration. Heuristic search algorithms use neighbourhoods to create candidate

solutions similar to the best solutions seen so far. The outcome of applying the

operators used in a search algorithm to generate neighbours is often represented by

Chapter 3 Heuristic Search Algorithms And Cost Landscapes 22

a Neighbourhood junction, which maps a configuration to the set of configurations in

its neighbourhood.

To be useful in a heuristic search algorithm, it must be possible to generate members

of the neighbourhood quickly; it is generally assumed that the time taken generating

candidate solutions is negligible relative to the time taken evaluating the cost of

possible solutions. For this reason, Neighbourhood functions often work directly on

the representation (e.g. a binary string, a tour of a graph) of a solution with little

reference to any inform.ation specific to the problem instance.

The other main criterion of a neighbourhood is that it must produce candidate so­

lutions with a similar cost to the original configuration. This can perhaps be best

explained in the context of the No Free Lunch theorem (Wolpert and Macready,

1995, 1997). This can be summarised by a quote from Wolpert and Macready (1997)

.. .for any algorithm, any elevated performance over one class of problems

is exactly paid for in performance over another class.

An algorithm can only be better than another algorithm on a specific class of prob­

lems; in general, every search algorithm is equal. The only way that an algorithm can

perform well is for it to be designed for a specific class of problems; over a random

class of problems, an algorithm will perform no better than random search.

Heuristic search algorithms can often appear to be so called 'Black-box' optimisers,

with the algorithm capable of solving any problem class without any knowledge of

the problem class. However, this is not correct; all heuristic search algorithms assume

that with the neighbourhood they use, neighbours have a greater similarity in cost,

on average, than configurations chosen at random. The neighbourhood function of

an algorithm contains the a priori knowledge of the problern class, necessary for the

algorithm to outperform random search.

In general, a neighbourhood is dependent upon the algorithm as well as the problem.

class. The use of a particular neighbourhood with reference only to a particular

problem class without reference to a particular algorithm or search operator has been

criticised (Jones, 1995). However, in practice a particular Combinatorial optimisation

problem class has a natural neighbourhood that is used almost universally. For

example, in Max-SAT, it is usual for the Hamming neighbourhood to be used, where

the neighbourhood of a configuration is all the configurations that vary by exactly one

bit. As the configurations vary by only one bit, only a few clauses will be affected (on

average), and the cost difference between a configuration and its neighbour is thus

limited. In fact, for almost all problems which use a binary encoding, a Hamming

Chapter 3 Heuristic Search Algorithms And Cost Landscapes 23

neighbourhood is an appropriate neighbourhood, since in most problems we would

expect the change in cost caused by the change in a single bit to be less than changing

several bits.

·While it is possible to use a different neighbourhood to the natural one, it is often

extremely difficult, and requires a thorough understanding of the problem class. Using

a different neighbourhood means you are relying on different a priori knowledge of

the problem, and it is likely that a completely difFerent navigation strategy would be

most successful. For these reasons, we tend to assume a single neighbourhood will

be used for each problem class.

It is of course possible to create classes of problems which have a binary encoding

where the Hamming neighbourhood is not useful, and for these classes a heuristic

search algorithm using a Hamming neighbourhood will perform poorly. Also, even

within classes where a particular neighbourhood is useful, it is often possible to create

pathological instances where a neighbourhood does not meet the criteria necessary to

be useful. For example, in Max-SAT, an instance may have a small set of its binary

variables in almost every clause, while the other variables are involved in very few

clauses. Changing certain bits would then result in a huge change in cost. In these

cases, a heuristic search algorithm using that particular neighbourhood would fail.

However, since algorithm performance is only meaningfully measured as an average

over an entire class of problems, it is sufficient that a neighbourhood is useful for the

large majority of instances.

While the idea of neighbourhood is useful for simple algorithms, it can be too simple

for more complex operators. Mutation on a binary string (discussed in 3.1.1), where

there is a small probability that each bit may flip, technically has a neighbourhood

that includes the entire cost landscape, since any configuration can be created by this

operation, even though many configurations are extremely unlikely to be created. A

more general concept than that of neighbourhoods is a distance measure, represented

as function d : x E C, Y E C f---+ R Ideally, a distance metric should have the following

properties

• d(x, y) 2: 0,

• d(x,y) = ° <===? x = y,

• Symmetry d(x,y) d(y,x),

• Triangular inequality d(x, y) :::; d(x, z) + d(z, y),

for all x, y, z E C. For operators which can be described sensibly using a neighbour­

hood function, we can define the distance metric as the minimum number of moves

Chapter 3 Heuristic Search Algorithms And Cost Landscapes 24

to a neighbour necessary to move from x to y. For a Hamming neighbourhood, this

is the Hamming distance, the number of bits different between the two configura­

tions. This is also a useful distance metric for the mutation operator, as mutation

is unlikely to create configurations which have many different bits, and there is a

correspondingly large distance between them.

Genetic algorithms are difficult to fit into a cost landscape framework. The use

of a population and operators that use more than one solution to create candidate

solutions mean that no simple distance metric can be defined. However, in these cases

a simpler metric produces a landscape that is still relevant for Genetic algorithms.

For example, the Hamming distance is relevant when examining both mutation and

uniform crossover on binary strings; configurations with a large Hamming distance

are unlikely to be generated from each other by mutation, or by crossover with any

string (Stadler, 1999).

3.2 Cost Landscapes

Cost landscapes are a central concept in search algorithm design. The cost landscape

is a metaphor for the solution space an algorithm has to explore, with different

landscape features hindering or helping the algorithm towards high quality parts of

the landscape. Thus, an algorithm can walk along or fall off ridges, and get trapped

in basins and ravines.

A cost landscape is defined as consisting of three parts

1. A set C of configurations

2. A fitness or cost function f : C ----+ lR

3. A distance measure on C, d(x, y), as described above.

Notice that this definition does not specify whether the landscape is discrete or real

valued, and landscapes are used (sometimes confusingly) to describe solution spaces

of either type of problem.

3.2.1 Common Obstacles In Landscapes

One of the most common uses of landscapes is to describe certain features of prob­

lem instances that cause difficulty for search algorithms. In this section we give a

brief description of the main features that are commonly described in combinatorial

optirnisation.

Chapter 3 HeUTistic Search Algorithms And Cost Landscapes 25

c

x

FIGURE 3.4: Golfcourse landscape

Plateau

Plateaus are "fiat" areas of landscape, where a collection of connected configurations

have equal cost. Plateaus cause big problems for search algorithms, as they can

be very large. A major problem with searching plateaus is re-visiting the same

configurations many times; a naIve algorithm will random walk over a plateau, and

therefore revisit many configurations and take a long time to travel across the whole

of the plateau. This problem can be partly overcome by caching costs or by using a

Tabu algorithm (Glover, 1989, 1990).

The golf course landscape in figure 3.4 is an extreme exmnple of the difficulties cre­

ated by plateaus. This is a fiat landscape except for the one configuration which

forms the global optimum. Beyond using caching or Tabu techniques to avoid re­

visiting the same configurations, no search algorithm can expect to do any better

than enumerative search, as there is no information to guide the algorithm.

Local Minima

On a continuous landscape, local minima are stationary points with positive second

derivatives. On a discrete, non-degenerate landscape (where every configuration has

a different cost), local minima are configurations whose neighbours all have a greater

cost 1. Local minima are features which cause difficulty for search algorithms, because

to improve the solution once in a local minimum requires that worse quality solutions

must be accepted.

1 Defining local minima on degenerate landscapes is not as simple as it may seem; further discussion
and one definition of local minima on degenerate landscapes is given in section 4.2

Chapter 3 Heuristic Search Algorithms And Cost Landscapes 26

c c

x X

FIGURE 3.5: Example of a local minima on a simple one dimensional continuous
(lhs) and discrete (rhs) landscape.

Local minima are one of the main difficulties in search algorithm design. Search

algorithms work by focusing the search around the best solutions found so far. Local

minima force search algorithm designers to compromise this approach, so that search

algorithms can escape from local minima. Algorithms such as simulated annealing

and kick-start descent sacrifice convergence time with the hope of escaping low quality

local minima in favour of better ones.

Deception

Deception is a property of a landscape which causes search algorithms to be lead

away from the global optimum towards a local minima. All landscapes that contain

non global local minima can be considered to be somewhat deceptive; figure 3.6 is

an example of an extremely deceptive landscape. Note that this landscape is similar

to the golf course landscape in that the global optimum has no basin to lead an

algorithm~ towards it. Also note that this deceptive landscape is purely a property of

the neighbourhood function used; a different neighbourhood function could create a

completely non-deceptive landscape for the same problem instance.

Deception became a topic of great interest in the Genetic Algorithm community after

it was identified as a cause of difficulty for Genetic Algorithms (Goldberg, 1987). In

terms of the schema theorem (Holland, 1975), deception can be considered as the

high fitness small building blocks (or 'low order schema') being contradictory to the

high fitness large building blocks (or 'high order schema'). A Genetic Algorithm

cannot, therefore, combine high fitness smaller building blocks to make high fitness

larger building blocks. Deceptiveness can be considered as local minima for Genetic

Chapter 3 Heuristic Search Algorithms And Cost Landscapes 27

c

x
FIGURE 3.6: An extreme deceptive landscape

Algorithms (if an effective landscape could be designed for GAs); a Genetic Algorithm

has to move away from the best solutions it has found so far to reach better solutions.

Long Path

The long path problem is a theoretical feature that makes a problem difficult for

a search algorithm. in the absence of any other feature thought to make landscapes

difficult to search, such as local minima or plateaus. In a long path problem, the

landscape guides a search algorithm towards a global optimum, but along a long

path instead of directly. Therefore, even without local minima or plateaus, a search

algorithm can take an extremely long time to reach the global optimum. The long

path problem can be visualised best as a maximisation probleIn, with a hill with

the global maximUIn at the top and the path spiralling around the outside, with a

sharp drop in fitness either side of the path stopping an algorithm taking any short

cuts. The long path problem is a theoretical problem, and it is not clear how much

real algorithms are affected by long path problems as opposed to plateaus and local

minima.

Chapter 4

Barrier Trees

Barrier Trees are a tool to study cost landscapes. Cost landscapes are a central

concept in search algorithm design, providing a simple, understandable metaphor for

algorithm behaviour. But little is known about the characteristics of the landscapes

of hard combinatorial problems, and how they affect search. Part of the difficulty is

due to the landscape metaphor being misleadingly simple. Features such as saddle­

points, slopes and ridges are often thought of in relation to landscapes, but such terms

are n1.eaningless in combinatorial landscapes without gradient information. Even

relatively simple ideas such as local-minima need to be carefully defined; does a

completely flat landscape have no local minima or is every configuration within such

a landscape a minima? It is clear that the simple three dimensional landscape, with

slopes, hills and hollows implied by the landscape metaphor is misleading, and cost

landscapes are actually huge, highly dimensional and have complex topologies.

Barrier Trees are a visualisation technique that attempts to highlight the important

features of small cost landscapes. Barrier Trees are well defined, and many of the

features of interest to algorithm design have a simple representation on the tree. For

example, local minima are leaves on the tree. Barrier Trees also provide a parti­

tioning of the landscape, with every partition representing a node of the tree. This

partitioning can be used to analyse the size and shape of particular features, or it can

be used to animate a search heuristic. These techniques are demonstrated in chapter

5.

The concepts behind Barrier 1\'ees have developed independently in several different

fields, such as protein folding (Becker and Karplus, 1997; Garstecki et al., 1999), RNA

secondary structure formation (Flamm et al., 2000) and ±J-spin models (Klotz and

Kobe, 1994a, b). Barrier Trees were first used to study combinatorial optimisation

problems by Peter Stadler and Christoph Flamm. Their most important work on

28

Chapter 4 Barrier Trees 29

the subject is Flamm et a1. (2002) which formalises many of the ideas behind Barrier

Trees and tackles the difficulty of defining Barrier Trees on a degenerate landscape

where several configurations can have an equal cost. In this chapter we present a

formalism that is different to that in Flamm et a1. (2002). We believe our definition

is simpler than that presented by Flamm et a1. (2002) and has the advantage of

providing a partitioning of the cost landscape in addition to the tree itself. \Ve make

considerable use of this partitioning in later chapters.

This chapter provides a formal definition of Barrier Trees including a proof that a

Barrier Tree exists for any fully connected landscape. A formal description of the

algorithm we use to generate the Barrier Tree is given, and a description of the types

of landscapes on which it is practicable to use a Barrier Tree, in particular how

Barrier Trees for landscapes that are too large to fully enumerate can be generated.

To help with the interpretation of Barrier Trees, a discussion of how several common

features of landscapes are represented on a Barrier Tree, and how the Barrier Tree

provides a useful formal definition for some of these features is given.

4.1 Definitions

Cost landscapes are defined in chapter 3 as consisting of a set of configurations

C, a cost function f : C ~ lR. and a Neighbourhood function N : C ~ 2c. The

Neighbourhood functions are related to types of search operators, and the significance

of this is discussed in chapter 3. Barrier Trees can be defined on all combinatorial

cost landscapes that meet the following criteria:

1. the Neighbourhood function must be symmetric,

2. the landscape must be fully connected.

However, if the landscape is not fully connected, several trees (a forest), one for each

connected component of the landscape, can be defined instead.

We define a path on the landscape as any connected set, so that the set of all paths

is defined as

lP' = {IT E 2cI ('\IS E 21f S = 0 V S = IT V (3x E S 3y E IT\S y E N(x))) V (IITI = I)}.

That is, a path is any set of configurations where every possible subset has a neighbour

in the complement of that subset, and single configurations. Strictly speaking, this

definition is closer to the concept of a walk, where the same configuration can be

Chapter 4 Barrier Trees 30

revisited, than a path. This definition is convenient, for example, if we have two

paths'lrx and 'lry, then if 'lrx n'lry i- 0 then 'lrx U'lry is also a path under this definition.

Theorem 4.1. If'lrx and'lry are two paths where 'lrx n'lry i- 0, then 'lrx U'lry is also a

path.

Proof. If 'lrx U 'lry is a path, then one of the following must be true for all subsets
S E 27fxU7fy

1. S = 0

2. S = 'lrx U'lry

3. 3x E S 3y E ('lrx U 'lry)\S y E N(x)))

We assume 1 and 2 to be false, so that S i- 0 and S C 'lrx U'lry. For convenience, we

will call the complement of the subset S, S / = ('lrx U'lry). S must intersect 'lrx or 'lry

or both. Since 'lrx n'lry i- 0 and S C 'lrx U'lry, if'lrx C S then 'lry n S i- 0 and 'lry rt S.

That is, S must partially intersect either 'lrx or in 'lry. We take 'lrz to be the path for

which this is true for, so that 'lrz = 'lrx V'lrz = 'lry /\ 'lrz n S i- (/) /\ 'lrz ~ S

VVe observe that S n 'lrz C 'lrz, and as 'lrz is a path, it follows that there must exist

an x and y to satisfy statement 3 above. Since S was an arbitrary subset and this

follows if both statements 1 and 2 are false, one of the statements must be true for

all subsets of'lrx U'lry. It follows that 'lrx U'lry must be a path. 0

A Barrier Tree is a form of Hasse diagram (also known as partially ordered set or

poset diagram). A Hasse diagram is a graph representation of a partially ordered set.

Our definition of a Barrier Tree therefore consists of first of all defining the members

of the set, and then the partial ordering on that set. We then show that the Hasse

diagram always takes the form of a rooted tree.

The central concept used to define the members of the set and the partial ordering

of the set is accessibility. A configuration x is accessible from configuration y at cost

c, if there exists a path containing both x and y, and every member of that path has

cost less than or equal to c. Formally,

3'lr E IP (x E 'lr) /\ (y E 'lr) /\ ('liz E 'lr(J(z) :::; c)).

Accessibility is a set of relations, indexed by the cost c. We use a special notation,

borrowed from Flamm et al. (2002),

Chapter 4 Barrier Trees 31

The members of the poset which form the vertices of the Barrier Tree are defined

as the equivalence classes of the cost landscape under the equivalence relationship

level-accessibility. Level-accessibility is defined as a relation,

£A = {(x, y) If(x) = f(y) 1\ x....p f(x) 9-+Y}.

That is, two configurations are level-accessible if they have equal cost and are acces­

sible to each other at that cost.

Theorem 4.2. Level-accessibility is Tefiexive, symmetTic and tmnsitive and is theTe­

fOTe an equivalence Telation.

Pmof. (i) f(x) = f(x), and the path containing only x satisfies x....p f(x) 9-+X therefore

£A is reflexive.

(ii) vVe assume x and yare any two configurations for which (x, y) E £A. This

implies f(x) = f(y), and therefore the path satisfying x....p f(x) CJ-+y also satisfies

y....p fry) 9-+:1:. Therefore £A is symmetric.

(iii) We take X,y and z to be any three configurations for which (x, y) E £A and

(y, z) E £A is true. Trivially, f(x) = f(y) = f(z). There exists two paths, 'ifxy and

'if yz, from x to y and from y to z respectively with every member of equal or lower

cost than f (x). Since y is a member of both paths, 'if xy U 'if yz is a path that satisfies

x....p f(x) 9-+Z, and it follows that (x, z) E £A. As x, y and z were any configurations,

£A is transitive.

£A is reflexive, symmetric and transitive. This is necessary and sufficient for £A to

be an equivalence relation. 0

This equivalence relationship is used to partition the landscape into equivalence

classes, where every pair of configurations within an equivalency class satisfy the

relationship £A,

CI£A = {[xlix E C}.

We call these equivalency classes level-accessible sets, and for convenience we label

them PI to Pn ,

C I £A = {Pi 11 :::; i :::; n},

where n = IC I £AI the number of level-accessible sets. We extend the definition of

the cost function f (x) so that it can be applied to level-accessible sets and returns

the cost that every configuration with a level-accessible set has.

This partitioning can be seen as splitting the landscape along the principal barriers

in the landscape; hence "Barrier" tree. If we consider a continuous two-dimensional

Chapter 4 Barrier Trees 32

250
200
150

250 100
200 50
150 0
100 -50
50 -100

0 -150

-50 -200

-100 -250

-150
-200
-250

-15

FIGURE 4_1: A saddle of a continuous 2D landscape_

landscape, the barriers are saddle points (see figure 4_1). The barriers in our combi­

natoriallandscape (which each form a level-accessible set themselves) are analogous

to these saddle-points, and are referred to as saddle points, although in combinatorial

landscapes without gradients the metaphor of a saddle shape is not meaningfuL

To complete the poset, a relationship that forms a partial ordering on the set is

required_ We define a relation between level-accessible sets, A,

In writing, we say that Pj is accessible from Pi, without stating at what cost; it is

implied that they are accessible at the cost of Pi.

Theorem 4.3. The relationship A is reflexive, transitive and anti-symmetric, and

therefore defines a partial ordering on C / .cA.

Proof. (i) From the definition of the accessible sets Pi, A is trivially reflexive.

(ii)We take Pi,Pj and Pk to be any three level-accessible sets for which (Pi, Pj) E

A 1\ (Pj , Pk) E A is true. This implies f(Pi) ?: f(Pj) ?: f(Pk). It follows that there

exists two paths 7rij and 7rjk , which contain all the configurations in Pi , Pj and Pj ,Pk

respectively, and every configuration in these paths has cost less than or equal to Pi.

Therefore every member of the path 7rij U 7rjk has a cost lower than Pi and connects

Pi to Pk, which is necessary and sufficient for (Pi, Pk) E A_ Since Pi,Pj and Pk were

any level-accessible sets, A is transitive.

Chapter 4 Barrier Trees 33

(iii) We take Pi and Pj to be two level-accessible sets for which (Pi, Pj) E A and

(Pj, Pd EA. Trivially, f(Pi) = f(Pj). By definition, \/x E Pi \/y E PjXf--£ f(x) q.-.c,y/\

f(x) f(y), and it follows that \/x E Pi \/y E Pj (x, y) E LA. Since P is defined as

the partitioning under LA, Pi = Pj. Since Pi and Pj were any level-accessible set,

A is anti-symmetric.

A is therefore reflexive, transitive and anti-symmetric, so forms a partial ordering on

P. o

In partial ordering terminology, if (Pi, P j) E A then Pj is a successor of Pi and Pi is

a predecessor of Pj. This partial ordering completes the definition of the poset that

forms a Barrier Tree. A Hasse diagram is a graph of a poset, where the nodes of the

graph are members of the set, and edges indicate covering relations. A cover relation

is a reduction of a partial order with only the immediate successor included. For an

arbitrary partial order 0, the cover relation 0, is

0, = {(x, y) E Ol~z z tJ- {x, y}(x, z) E 0/\ (z, Y) EO}

For our accessibility relationship this is:

This can be read as 'there is an edge between Pj and Pi if P j is accessible from Pi

and Pj is not accessible from any other member of C I LA that is accessible from Pi'·

In summary the Barrier Tree can be defined, given the equivalence relationship LA

and the partial ordering A, as a graph with vertices V and edges [;

V CILA,

[; {(Pi, Pj)I(Pj, Pi) E A /\ ~Pk((Pj, Pk) E A /\ (Pk, Pi) E A)}.

A Hasse diagram forms a connected tree if it contains one member that is a prede­

cessor to every other member, and every member can be shown to be covered by at

most one member.

Theorem 4.4. The Hasse diagram defined by the partially ordered set (C I LA, A) zs

a connected tree on a fully connected set of configurations.

Proof. (i) Given that the cost landscape is finite, there exists some level-accessible

set, PMAX E V, with the maximum cost value of any configuration in the landscape.

The cost landscape is fully connected, so a path must exist from PM AX to every

Chapter 4 Barrier Trees 34

other level-accessible set in V. Since every configuration has a cost lower than or

equal to PMAX, every other level-accessible set is accessible from it, and PMAX is a

predecessor to every other member.

(ii) A Hasse diagram is acyclic if every element is covered by at most one member.

Assume a level-accessible set Px is covered by two other level-accessible sets, Pa

and Pb, such that f(Pa) ~ f(Pb) and Pa I- Pb. Since Px is accessible from both

Pa and Pb at the cost of f(Pa), and accessibility is symmetric and transitive, Pb is

accessible from Pa . This is a contradiction of the stateInent that Pa covers Px or

the statement the Pa I- Pb, therefore a level-accessible set cannot be covered by two

other level-accessible sets.

Therefore, the Barrier Tree is a rooted tree. o

An example Barrier Tree is shown in Figure 4.2. We only draw from the highest

cost saddle point downwards; there are level-accessible sets at every cost level above

the displayed root of the tree, however they are structurally uninteresting, each node

having only one child each. Each merging node is drawn as a horizontal line to

improve the clarity of the tree. The vertical axis is used to indicate the cost of

each level-accessible set and is labelled C. Only the leaves and merging nodes are

represented on the tree, nodes with only one child are not marked. For example, in

figure 4.2, there are six level-accessible sets with cost 2. The level connected set with

cost 2 attached to the global minimum is not explicitly shown.

4.1.1 Level-Accessible and Level-Connected Sets

Level-accessibility is used as a partitioning as it forms a tree when accessibility is

used as a partial ordering. An alternative, and perhaps siIl1_pler partitioning to level­

accessible sets is what we call level-connected sets. Two configurations are in the same

level-connected set if there exists a path between them where every member of that

path has equal cost. A level-connected set corresponds to the idea of a plateau on the

landscape. Level-connectedness is a more restrictive relation than level-accessibility,

so a level-accessible set is made up of one or more level-connected sets. At first

appearance, level-connected sets may seem to be a more natural partitioning for

handling degenerate landscapes. However, accessibility is not a partial ordering on

level-connected sets, as it is not anti-symmetric. It is still possible to create a graph

like structure from level-connected sets, however this forms a merging graph (Flamm

et a1., 2002) instead of a tree. Merging graphs are more complex to visualise and

understand, and are therefore considerable less useful than a Barrier Tree. The

other limitation of level-connected sets is that the number of level-connected sets

Chapter 4 Barrier Trees

C

4

3

2

FIGURE 4.2: Example of a Barrier Tree. Landscape represented is of a 20 variable
MAX-3-SAT problem with 100 clauses.

35

that partition a landscape can be orders of magnitude larger than the number of

level-accessible sets, severely limiting their use as a visualisation and analysis tool.

An extreme example of this is the Ones-counting problem where the cost of a binary

string is the number of 'Is' in that string. In this case, if a Ham.ming neighbourhood is

used every configuration is a separate level-connected set, making 2N level-connected

sets, while there are only N + 1 level-accessible sets.

\iVe make substantial use of level-connected sets in the Barrier based models described

in chapters 6 and 7. In these models, basing them on level-connected sets removes

what could be a significant source of error, although the difficulties caused by the

increased number of partitions remain.

4.2 Features of a Barrier Tree

The formal definition of a Barrier Tree does not give a very intuitive understanding

of what the different features of a Barrier Tree are. In this section, we try to give a

better idea of what the different parts of a Barrier Tree represent. Figure 4.3 will be

used to illustrate the features being described.

Chapter 4 Barrier Trees

C

8

7

6

5

4

3

A

C

B

FIGURE 4.3: A Barrier Tree with a local minimum (A), part of a basin (B) and a
saddle point (C) marked. Landscape represented is of a lVIAX-3-SAT problem with

20 variables and 120 clauses.

Leaves

36

Each leaf on the tree (example marked 'A' on Figure 4.3) represents a local minimum.

While local mininm are an important concept in optimisation literature, there can be

some confusion as to what exactly a local minimum is on a Combinatorial landscape,

without gradient information and where several configurations can have the same

cost. Definitions which look at only a single configuration tend to have difficulty in

distinguishing shoulders from basins (see figure 4.4).

The definition that follows naturally from the definition of Barrier Trees is that a local

minimum is a level-accessible set from which no other configurations are accessible.

This is illustrated in figure 4.4. Note that for local minima the level-accessible set is

made up of only one level-connected set. The definition of whether a configuration

is a local minimum or part of a local minimum is now non-local; figure 4.4 shows

how a configuration being a part of a local minimum can be decided by the cost of

configurations several steps away, not just on a configuration and its neighbours. The

advantage of this definition is that it is intuitively closer to what we consider to be a

local minimum.

Chapter 4 Barrier Trees

c

FIGURE 4.4: The circled nodes in the l.h.s. are part of a single local minimum,
using a definition based on accessibility. There is no local minimum on the r .h.s.

even though only one node has changed.

FIGURE 4.5: The l.h.s. shows a contour plot of a saddle-point on a continuous 2D
landscape, with lighter shades of grey indicating a lower cost. The r.h.s. shows what

we call a saddle-point in a discrete landscape.

Merging Nodes

37

Merging nodes are internal nodes with more than one child, as marked with a 'C' in

figure 4.3. They are the lowest cost accessible sets from which their descendants are

accessible. There is some correspondence to the idea of a saddle-point in continuous

landscapes, illustrated in figure 4.5. Like saddle-points, merging nodes are the lowest

cost point from which two or more minima can be reached by only going "down hill" .

However, a merging node may contain level-connected sets from which only one local

minimum can be reached. Figure 4.6 illustrates this on a simple landscape. Both

local minima can only be reached by moves to lower cost solutions from'S', however

the other two circled solutions are part of the same level-accessible set.

Chapter 4 Barrier Trees

c

s

Ml

M2
FIGURE 4.6: Simple I-D landscape demonstrating the difference between a level­
accessible set of a merging node on a Barrier Tree and a saddle point. The circled
nodes make up a level accessible set which will be the merging node between the local
minima 'MI' and 'M2', however only the node marked with'S' could be considered

a saddle point.

N on-merging Nodes

38

Nodes with only one child, as marked with a 'B' on figure 4.3, do not have any

representation in our diagrams, as we do not explicitly draw every node. This has

not been an issue with the problem classes we have looked at, since they have integer

cost-levels, and typically have a large number of configurations per cost-level, so the

chance of a 'gap' in a branch at any particular cost-level is very small.

Non-merging nodes represent level-accessible sets which can be thought of as being

parts of a basin around their descendant node. Around a local minimum, a basin

represents the configurations frorn which only the local minimum can be reached if

only moves to equal or lower cost states are accepted (for example, a descent algo­

rithm). Above a saddle point, a basin is a less intuitive concept. Barrier trees provide

a useful definition that meets one possible concept of a basin around a configuration

x

B(x) = {e E Clef-(? fCc) q.....x!\ ~y E C (ef-(? fCc) Cf-+y!\ yfp fey) 9fx)}.

4.3 Larger Landscapes

So far, it has been assumed that the landscape has been fully evaluated. This limits

us to very small problems; around 8 million configurations or 23 binary variables.

However, we have less interest in the higher cost areas of the landscape, in particular

Chapter 4 Barrier Trees 39

those above the highest cost barrier in the landscape. Configurations with a cost

higher than this barrier can access every configuration with an equal or lower cost.

The Barrier Tree representation of this part of the landscape is therefore just a

straight line of nodes with a single child each (we automatically cut this part of a

Barrier Tree off our diagrams, and use the first splitting node as the root). The

Barrier Tree tells us very little about this part of the landscape.

As we have little interest in this part of the landscape, it makes little sense to enumer­

ate the higher cost solutions. We use a modified branch-and-bound algorithm with

a fixed bound, to only generate solutions below a fixed cost (Land and Doig, 1960).

vVe attempt to set this cost above the highest cost saddle-point. Unfortunately, while

it is possible to calculate certain expected statistics on the cost landscape (Reeves

and Eremeev, 2004) this cannot be guaranteed. If the partially evaluated landscape

is not fully connected, that gives us a clear indication that there is a saddle point at

a higher cost than our bound. The resulting Barrier Tree will actually be a forest

(i.e. several trees). However, a fully connected partial landscape does not guarantee

that the highest cost saddle point has been evaluated, because there may be a local

minimum at a higher cost than we have evaluated. In general, there is no way that we

can guarantee there are no local minima above a particular cost without evaluating

the entire landscape. To gain some confidence in the tree evaluated from a partial

landscape, the end results from multiple descents be can examined. If all descents

end at a cost below our threshold, we can assume that any missed local minima have

very small basins of attraction and are therefore of little importance to search.

The algorithm used to generate Barrier Trees described in the next section, is correct

up to any particular cost level. That is, the algorithm does not require higher cost

configurations to generate the Barrier Tree for lower cost configurations. If the lower

cost configurations given to the algorithm are not connected, then the algorithm will

output a set of trees, one for each disconnected part of the landscape.

The use of a branch and bound method unfortunately introduces a problem specific

algorithm. A branch and bound technique can be applied to any problem. where a

bound can be calculated on the best possible solution containing a partial solution.

The efficiency of a branch and bound technique depends on how tight the bound is and

on the heuristic used to choose how to build the partial solution. Branch and bound

techniques have been developed for a wide range of problen1s including spin-glass,

MAX-SAT and the Binary perceptron problem. However, we have only implemented

the technique on MAX-SAT, using the Davis-Putnam-Loveland algorithm as a basis

(Borchers and Furman, 1999; Davis and Putnam, 1960; Davis et al., 1962).

Chapter 4 Barrier Trees 40

4.4 Barrier Trees Algorithm

Barrier Trees are generated by a 'flooding' style algorithm. The configurations are

sorted into order of cost, and the low cost configurations are processed first. We will

call the set of configurations at a particular cost a cost-level, and the algorithm is

best understood by examining the algorithm at a single cost level.

As input the algorithm takes a cost landscape as defined in chapter 3, made up of

a set of configurations C, a cost function f : C ---) JR., and a neighbourhood function

N : C ---) 2c. For convenience we label all configurations with a cost c as Cc . As

output, the algorithm produces three main structures:

1. A mapping, M, from every configuration to its level-connected set. Each level­

connected set is represented by a unique identifier

2. A mapping, A, from every level-connected set to the level-accessible set of which

it is a part.

3. A tree structure of level-accessible sets, T. ·When the algorithm is complete

this is the Barrier Tree; as the algorithm progresses this is the set of subtrees

of the Barrier Tree below the current cost level.

In this section, N! and A are taken to be mappings to sets; a set of configurations in

a level-connected set for M, and a set of level-connected sets in a level-accessible set

for A. In practice, it is more practicable to represent level-connected sets and level­

accessible sets with a unique identifier, rather than passing around set constructs.

Therefore, when implementing the algorithm, lVI and A should be mappings to a

unique identifier, and a separate mapping should then point to the sets that make

up the level-connected sets and level-accessible sets.

The algorithm can be best understood by considering how a single cost level is pro­

cessed. The algorithm starts with the lowest cost level and works through each cost

level in order until the entire landscape is processed. Each cost level is processed

independently, with the exception that it is assumed that M, A and T have been

correctly calculated for the lower cost levels. The top level algorithm is given in list­

ing 4.1. The algorithm first loads the problem landscape and initialises some values.

Each cost level is then processed from the lowest to the highest cost.

Most of the processing occurs within the procedure add_cost_level. Pseudo code for

this procedure is given in listing 4.2. Firstly, the procedure geLleveLconnected_sets

calculates the level-connected sets at this cost level, and adds the associated mappings

Chapter 4 Barrier Trees

C+-load_landscape ()
M +- 0;
A +- 0;
T +- 0;

//enumerate cost levels from low cost to high cost
for Cc=CMIN to CMAX

(M,A, T) +-process_cost_level (Cc,M,A, T);
endfor

LISTING 4.1: Top level of algorithm to generate Barrier Trees

c

A
-G- -----

B C
--G- -- ---------G- --

D
-----0 c

FIGURE 4.7: A partially completed Barrier Tree, just prior to cost level c being
processed. The filled in circles represent level-accessible sets, arranged into subtrees
in T. The hollow circles represent level-connected sets at the current cost level
that have not yet been collated into level-accessible sets. The dotted lines indicate
a neighbour connection from a connected set to a level-accessible set. A,B and C
are all accessible to each other through lower cost branches so are part of the same

level-accessible set.

41

}

Chapter 4 Barrier Trees

procedure add_cost_level(Cc,Af, A, 7)
{

forall l E £: Ilenumerate through level-connected-sets
connected_branches +-- 0;
Ilgoing to iterate through every neighbour

42

Ilof every configuration in this level connected-set
ne ighbours +-- UXEI N(x);

forall n Eneighbours
if f(n) < C then

Iionly interested in lower cost neighbours
Iithey have been assigned to a branch in 7
branch +-- f ind_ branch (A(111(n)), 7)) ;
c onne ct ed_ branches [l]

+-- C onne ct ed_ branche s [l] U {branch};
endif

endfor
endfor

(A, ANEW) +-- cl ust er _LeS (conne ct ed_ branches, £:, A);

Iinow go through every new accessible set
I I and add them to the tre e in 7
forall a E ANEW

descendant_branches=UIEa connected_branches[l]
if Idescendant_branchesl=O then

Iino lower connections, so a local mznzmum
7 +-- add_subtree (7, a);

else if Ineighbour_branchesl=1
II 1 lower connection, so part of basin
7 +-- add_ to_subtree (7, des cendant_ branches) ;

else if Ineighbour _branchesl > 1
Iiseveral lower branches, so a merging node
7 +-- jOin_subtrees (7, descendant_branches);

endif
endfor
return (]'vI, A, 7) ;

LISTING 4.2: Algorithm for adding a single cost level to Barrier Tree

Chapter 4 Barrier Trees 43

c

A,B,C D
c

FIGuRE 4.8: The same tree as in figure 4.7 after cost level c has been processed.

from configurations to each level-connected set to NI. This is a standard clustering

algorithm, which we will not detail further here.

Each level-connected set is then examined in turn. The neighbours of every config­

uration within the level-connected set are found 1. For each neighbour with a lower

cost, the subtree in T that the neighbour is part of is found. Each subtree is a

branch of the Barrier tree that is joined to the other subtrees by merging node with

a cost higher than the current cost level. In figure 4.7 the subtrees are labelled 1,2

and 3. The subtree each neighbour is in is found by the procedure find_branches.

The set of branches in which each level-connected set has neighbours is stored in

connected_branches, which is a map from a level-connected set to the set of branches

to which it is directly connected.

Any two configurations that map to the same branch in T are accessible to each

other at the current cost level. Our mapping connected_branches gives us the

branches that are trivially accessible from each level-connected set; they are trivially

accessible because there is direct neighbour relation between them. Since accessi­

bility is transitive, any two level-connected sets that can access the same branch

must also be accessible to each other. The procedure cluster ..LeS uses this to cal­

culate the level-accessible sets. This is a similar clustering algorithm as used by

get_leveLconnected_sets, except it collates level-connected sets that can access

the same branches, instead of configurations that neighbour each other.

IThis can be efficiently calculated at the same time the level-connected sets are calculated by
get_level_connected_sets.

Chapter 4 Barrier Trees 44

The procedure cluster-.LCS adds mappings to A from each level-connected set to its

level-accessible set, and returns the level-accessible sets at the current cost level in a

set ANEW. All that remains to do is to calculate how to update the tree structure

T for this cost level. For each level-accessible set, all the connected branches of

the level-connected sets within the level-accessible set are collected together into

descendant_branches. If the level-accessible set is connected to no branches, it is a

local minimum, and is added to T by the procedure add_subtree. If it is connected

to a single branch, it is a part of that branch, and is added to it with the procedure

add_to_subtree. Finally, if it is connected to several branches, those branches are

now connected to each other (i.e. they are accessible to each other at the current

cost level though the level-accessible set). The branches are joined by the procedure

join_subtrees.

Figure 4.7 shows a partially completed Barrier Tree before the level-connected sets

at cost c have been collected together into level-accessible sets. Figure 4.8 shows the

same tree after the cost level c has been processed.

The algorithm for an individual cost level is correct, as long as the NI,A and T for

all lower cost levels have been correctly calculated, so that configurations that are in

the same branch in T are accessible to each other at the current cost level. At the

lowest cost level,]1.1, A and T are all trivially empty, so it is possible to build up a

correct Barrier Tree from the lowest cost level up to the highest.

Chapter 5

Barrier Tree Examples

This chapter demonstrates the use of Barrier Trees, both as a visualisation and an

analytical tool. It is only a demonstration of Barrier Trees and various techniques

that can be used with Barrier Trees; to draw any meaningful conclusions on problem

landscapes a large number of instances would need to be studied and analysed, which

would require more computational resources than we have available. This chapter

aims to demonstrate the wide range of features that Barrier Trees can emphasise and

be used to measure.

5.1 Comparison of Different Landscapes

A useful ability of a visualisation tools such as Barrier Trees is the large amount of

information that humans can easily interpret in visual fonn. Barrier trees present the

large scale landscape features of a problem in a form that hopefully allows an overview

of the landscape to be understood' at a glance'. Many complex features can be shown

by a Barrier Tree, and these features do not have to be explicitly searched for. These

features can provide insight into what the important features of a landscape are,

and allow researchers to gain an instinctive understanding and characterisation of

landscapes. This characterisation is best demonstrated by comparing example Barrier

Trees of different landscapes, which allows clearly identifiable visual features to be

picked out. This section presents several comparisons of these types, firstly showing

very distinct differences between different classes of problems, and then more subtle

differences between problem landscapes from the same class of problems.

45

Chapter 5 Barrier Tree Examples 46

5.1.1 Different Problem Classes

Figure 5.1 shows a comparison of example landscapes from three classes of prob­

lems, Max-SAT, Spin-glasses and Binary-perceptron, all described in chapter 2. The

Max-3-SAT and Spin-glass instances have 20 variables, and the Binary Percept ron

instances have 13; while we can generate Barrier Ttees for Binary Percept ron prob­

lems with 20 variables, the high number of local minima (around 8000) means they

are difficult to draw using our normal tree layout. Where there is a complexity pa­

rameter (as described in section 2.3.2), this has been set at the easy-hard transition.

Distinctive differences can be seen at a glance. The spin-glass problem is symmetric,

with the binary complement of any solution having an identical cost. This symmetry

in the landscape is reflected in their trees; the trees aren't actually symmetric, but the

fact that every saddle point has an identical partner is immediately clear. The trees

of the landscapes of Max-3-SAT problems and Binary Perceptron problems are also

distinctive, with the Binary Percept ron landscapes having a high number of leaves

spread over relatively few cost levels, while the Max-3-SAT trees have relatively few

local minima but more complex subtrees.

5.1.2 Different Instance Sizes

Figure 5.2 shows Barrier trees for instances of the Max-3-SAT problem for a fixed

clause to variable ratio of a = fv1 IN = 5, slightly above the easy-hard transition at

MIN = 4.5, and a varying number of variables. The 25 and 30 variable trees have

only a partially evaluated landscape, as described in section 4.3. While we cannot

guarantee the entire tree has been drawn, 10,000 descent runs have been run on each

of the instances, and no local minima with a cost greater than our bound were found,

giving us a good assurance that the entire tree has been evaluated; any local minima

that do exist above the bound must have very small basins of attraction. Typically,

the size of the tree, in both the number of local minima and the number of cost levels,

increases with the number of variables.

5.1.3 Variations Over The Phase Transition

As discussed in section 2.3.2, randomly chosen instances of Max-3-SAT above the

phase transition of a = A1 I N ~ 4.3 seem to be fundamentally different frorn those

below the phase transition. Barrier Trees may be a useful method for examining the

effect this change has on the landscape.

Chapter 5 Barrier Tree Examples

c
3

2

C

78

77

76

75

74

73

72

71

70

69

68

67

66

c
6

5

4

3

2

o

C

5

4

3

2

(a) l'vlax-3-SAT 20 variables, 90 clauses

c
73

72

71

70

69

68

67

66

65

64

(b) Spinglass, 20 variables, fully connected.

c
8

7

6

5

4

3

2

o

(c) Binary Perceptron, 13 variables 11 training examples.

FIGURE 5.1: Examples of Barrier ilees from different problem classes.

47

Chapter 5 Barrier Tree Examples

C

3

2

0

c
8

7

6

5

4

3

2

(a) N

C

5

4

3

2

20

C

3

2

(b) N 25

c C
5 5

4 4

3 3

2 2

(c) N = 30

FIGURE 5.2: Barrier trees for instances of the l\IIax-3-SAT problem with a vary­
ing number of variables, N. The clause to variable ratio is held constant at

a=M/N=5

48

Chapter 5 Barrier Tree Examples

C

1

o

c
6

5

4

3

2

(a) N/C = 2.5

C

6

5

4

3

2

(d) N/C = 5.5

c
3

2

(c) N/C = 4.5

C

6

5

4

3

2

(b) N/C 3.5

,--

(e) N/C=6.5

FIGURE 5.3: Barrier trees for instances of the Max-3-SAT problem for N = 20,
with the ratio of clauses varying over the phase transition at a = 1'v1 / N = 4.5

49

Chapter 5 Barrier Tree Examples 50

Figure 5.3 shows Barrier Trees both sides of the phase boundary and at aNI C =

4.5. There seems to be an increase in complexity in the trees as the number of clauses

increases, with more saddle points and local minima spread over a wider range of cost

values. There is no evidence of a distinctive change at the phase transition. However,

at the small size of problems we are looking at, the phase transition is less distinct,

and can only be observed by averaging over a very large nUIl1ber of samples.

5.2 Statistics on a Single Instance

In addition to visualisation, Barrier Trees also provide a useful basis for gathering

more detailed statistics for a more quantitative approach. There are measures that

can be taken on the tree itself, such as the distribution of local minima and the average

cost difference between saddle-points. And there are measurements based upon the

partitioning, which allows a detailed examination of the basins and plateaus in the

landscape.

We will now focus on a single instance to demonstrate some of these statistical mea­

sures. We have chosen a lVIax-3-SAT problem with N = 30 and a = MIN = 5,

shown in Figure 5.4. This landscape is too large to be completely evaluated, how­

ever it is relatively small compared to the largest landscapes that can be calculated,

to increase the likelihood that all local minima have been captured. A large number

of descent runs were run without finding any unevaluated local minima (see "Re­

suIts of Descent", page 52). To further facilitate the presentation, an instance with

only one global minimum was selected. Table 5.1 contains a number of statistical

measurements, each of which is described in more detail below.

Sizes of Level-accessible Sets

A simple measure to take is the number of configurations in each level-accessible set,

and this is shown in column 3 of table 5.1. Figure 5.5 shows that the number of

configurations per cost level roughly follows an exponential growth as cost increases,

except at a cost of 1, which has a lower than expected number of configurations. This

appears to be an exceptional case; in the vast majority of problem instances seen, the

number of configurations per cost level grows exponentially, as expected. Looking in

more detail at the sizes of the local minima and saddle points in table 5.1, most of

the exponential growth is in the saddle point at each cost level.

Chapter 5 Barrier Tree Examples

c
7

6

5

4

3

2

6a

5a 5b

6b

5c

4b

3e
3a 3b 3c 3d 31 3g 3h 3i

2a 2b 2c2d

1a

FIGURE 5.4: A Max-3-SAT problem, N 30 and a clause to variable ratio of
0; = M / N = 4. Statistics gathered on this problem are displayed in table 5.1

1e+006 ,-----------,-----------,-----------,-----------,-----------.

100000

W 10000 o
'fij
:s
0>

'E
o
u
0; 1000
52

100

10 ~ __________ ~ __________ L-__________ L-__________ ~ __________ ~

1 2 3 4 5

Cost

FIGURE 5.5: Number of configurations per cost level for the cost levels shown in
table 5.1

6

51

Chapter 5 BaTTier Tree Examples

Basin Type # of Correlation Distance % Probability Compaction
Configs. with gm from gm of Descent Measure

la gm 90 0.728 0 27.9 0.93
2a 1m 9 -0.0577 10 4.94 0.99
2b 1m 8 0.458 4 7.36 0.98
2c 1m 2 0.347 5 7.95 0.93

"<

2d 1m 4 0.516 2 2.41 1.00
3a 1m 4 0.249 6 1.51 1.00
3b 1m 4 0.218 6 3.85 1.00
3c 1m 6 0.0696 8 8.14 0.99
3d 1m 1 0.144 8 5.49 N/A
3e s 871 0.590 1 N/A 0.78
3f 1m 1 -0.158 13 3.25 N/A
3g 1m 1 0.124 10 1.76 N/A
3h 1m 12 -0.0506 11 6.71 0.99
3i 1m 2 -0.000 11 1.68 1.00
4a 1m 1 -0.297 15 0.791 N/A
4b s 5634 0.431 1 N/ A 0.52
4c 1m 5 -0.0114 10 1.57 0.99
4d 1m 74 0.171 5 8.58 0.89
4e 1m 1 0.103 10 0.290 N/A
4f 1m 3 -0.216 13 1.86 0.99
4g 1m 16 -0.0815 12 1.02 1.00
4h 1m 2 -0.167 14 0.956 1.00
5a 1m 1 -0.208 15 0.636 N/A
5b 1m 1 0.201 8 0.286 N/A
5c s 32645 0.335 1 N/A 0.42
6a 1m 2 -0.212 15 0.121 1.00
6b s 137519 0.281 1 N/A 0.39

TABLE 5.1: Details of the different basins of the problem represented in figure 5.4.
Type is either gm for global minimum, 1m for local minimum or s for saddle point.

Results of Descent

52

One measure of the basin of attraction of a local minimUIn is the probability of

a descent algorithm reaching the minimum. This can be estimated by repeatedly

running a descent algorithm, and counting how often it ends in each minimum. We

use a simple greedy descent algorithm, modified so that it will only terminate in local

minima (using our definition). This is done by making it explore plateau regions fully.

This algorithm was repeated one million times. The percentage each minimum was

reached is shown in column 6 of table 5.1. As there may be minima above the bound,

it is possible this algorithm could terminate in a minimum we have not calculated.

In the case of the problem represented in Figure 5.4, the descents always terminate

Chapter 5 Barrier Tree Examples 53

below the bound suggesting that all the local minima have been captured and the

entire Barrier Tree has been evaluated.

Correlation in and Between Basins

An important aspect of the landscape is the closeness of configurations in different

subtrees. There are a number of different measures we could use. One important

measure is the average correlation. The correlation between two binary strings x and

Xl is equal to
N

q(X, Xl) = ~ l:)2Xi - 1) (2x~ - 1).
i=l

where we use the convention that Xi = 1 if it is true and Xi = 0 otherwise. If the

strings are identical q = 1, while if they are anti-correlated (i.e. x~ 'Xi for all i)

then q = -1. The correlation function is related to the Hamming distance, H, by

H = N(l - q)/2. The mean correlation between two sets of configurations, Pi and

Pj is given by

This provides a measure of the average distance between the two sets of configura­

tions. The fourth column of table 5.1 shows the correlation between the basin of the

global minimum and the other basins in the Barrier tree.

Compaction

An idea that can be used to help understand the shape of a basin is that of com­

paction. That is, whether a basin is a stringy structure, stretched out over many

sides of the hypercube, or tightly compressed into a small number of sides. We have

used a measure of compaction based upon the single set correlation

q(Pd = IPil (I;il- 1) L L q(x, Xl).
rEE'Pi re' E'Pi

re' I rE

Note that we do not include strings correlating with themselves.

While this may appear to give a good measure of compactness, it does not fully

take into account the size of the set. Larger sets end up with a lower self correlation

because they contain more strings, and those strings must therefore differ by a greater

degree. To compensate for this, we calculate the maximmu possible correlation of a

connected set of the same size. The maximum self correlation occurs when as few

Chapter 5 Barrier Tree Examples

/

/

/

(0,0,0)

/
/

/

------1------

/-------

/
/

/

/

/

/

(0,0,0)

/

/

/

.r

/-------

/
/

/

FIGURE 5.6: Example of a compact (Lh.s.) and a non-compact (r.h.s) set of con­
figurations on a 3D cube, the topology of a 3 binary variable landscape.

54

sides of the hypercube are occupied as possible, so that there is a minimal variation in

the binary variables describing the different configurations. The minimum number of

binary variables that need to vary to describe a set of size IPi 1 unique configurations

is given by 10g2 IPi I. The maximum self correlation of a set of size IPi 1 is therefore

given by

Our measure of compactness then becomes the fraction q(Pi)/qmax(IPil). A value of

1 means that the basin is as compact, and occupying as few sides of the hypercube,

as possible.

Compaction is an interesting measure because it relates directly to uniform crossover.

Each variable of the result of a uniform crossover between two configurations can

only have a value that at least one of it's parents have for the same variable. If

both parents have an equal value for a particular variable, the child will have the

same value. Therefore highly correlated parents will produce a child that is highly

correlated to both parents. A high compaction value over a set of configurations

therefore indicates that uniform_ crossover between randomly selected members of

that set is likely to be a member of the same set.

The compaction of the basins is shown in the last column of table 5.1. Note that there

is no compaction measure for a basin of size one, and basins of size two always have

a compaction of 1. Most minima are compact. This is perhaps a surprising empirical

observation. The saddle-points are non-compact, but these can be composed of Inany

disconnected level-connected sets.

Chapter 5 Barrier Tree Examples

Basin Percentage result of crossover
Off tree 7.436

6b 12.785
5c 27.350
4d 52.428

TABLE 5.2: The percentage of the results of uniform crossover of randomly chosen
configurations from basin 4d, from the problem in figure 5.4. Off tree are the

crossovers that resulted in a configuration not mapped to the tree

Minimum Hamming Distance

55

Another measure giving an idea of closeness between different subtrees of the Barrier

tree is the minimum Hamming distance. That is, the smallest number of bit-flips

required to get from a configuration in one level-accessible set to a configuration in a

different level-accessible set. We show the minimum Hamming distance between each

level-accessible set and the global minimum in column five of table 5.1. The local

minima are typically quite distant from the global minimum. However, the saddle­

points usually contain at least one configuration very close to the global minimum.

This is not surprising when the size of the saddle-points is taken into account.

Crossover

An operator vitally important to Genetic Algorithms is crossover. A simple way to

gain understanding of Genetic Algorithms is to look at how crossover performs within

a basin. A more complex model of crossover is explored in chapter 6.

We performed 10000000 uniform crossovers (defined in section 3.1.1) on members

selected randomly from basin 4d, from the problem in Figure 5.4. This basin was

chosen as it is one of the larger local minima which is not the global minimum. The

percentage of times the result of each crossover landed in a particular basin is shown

in table 5.2.

As can be seen, most crossovers resulted in a configuration within the same basin,

which agrees with the high compaction value of basin 4d (see table 5.1). No child

produced by crossover ever jumped across or down the Barrier tree. This, supports

the hypothesis that the Hamming neighbourhood is an appropriate neighbourhood

to use when using Barrier Ttees to study uniform crossover.

Chapter 5 Barrier Tree Examples 56

5.3 Animated Search Heuristics

Our definition of Barrier Trees and the partitioning of the landscape implicitly defines

a mapping from every configuration to a vertex on the tree. One use of this mapping

is to animate a search algorithm. In this section we show the animation of a Genetic

Algorithm and a simulated annealing algorithm

5.3.1 Genetic Algorithm

Figure 5.7 shows several stages from a run of a genetic algorithm. Each level

accessible-set containing a member of the genetic algorithms population is marked

with a dot. Often several members are in the same level-accessible set, so are repre­

sented by only a single dot, but the software allows the number of candidate solutions

represented by a single dot to be determined interactively.

The GA run is of a simple steady-state GA with a population size of 10. Binary

tournament selection is used with crossover and a mutation probability of 0.1. The

problem is a 20 variable Max-3-SAT problem with 120 clauses. In this case it can be

seen that the algorithm descends straight down the tree, without getting trapped in

local minima. A more detailed view of the algorithm can be obtained interactively in

the program, however in print we are limited to just a few 'snapshots' of an algorithms

run.

5.3.2 Simulated Annealing

A simple simulated annealing algorithm with a fixed temperature of T i was run

on a 40 variable Max-3-SAT problem with 180 clauses. Figure 5.8 shows the location

of the search at various intervals throughout the run of the algorithm. It can be

seen that the algorithm moves to lower cost solutions. What is less clear from these

snapshots is the amount of time spent moving back and forth to higher cost solutions.

5.4 Conclusions

Barrier Trees are a useful visualisation and analysis tool for looking at snmll instances

of combinatorial optimisation problems. Distinct visual characteristics can be iden­

tified, and the data provided by Barrier Trees are a useful basis to calculate many

different statistics.

Chapter 5 Barrier Tree Examples

C

7

6

5

4

3

2

c
7

6

5

4

3

2

--

r-

(a)t=16

di

(c) t = 1805

C

7

6

5

4

3

2

C

7

6

5

4

3

2

1 -

r

(b)t=341

~r

I
(d) t = 2514

FIGURE 5.7: A Genetic algorithm working on Max-3-SAT problem. t is the iteration
of the algorithm.

57

There are many different ways the visualisation could be improved. It would be

useful to have some representation of the size of each level-accessible set on the tree.

An obvious way to represent this would be circles or bars at each node, with a size

proportional to their corresponding node. It is likely a log scale would provide a more

useful scaling for this. It would also be useful to have some idea of the number and

distribution of sizes of the level-connected sets making up each level-accessible set;

in Max-SAT, most level-accessible sets are Inade up of one large level-connected set

and several very small (lor 2 configuration) ones, but this information cannot be

seen on the Barrier Tree, and is relevant to understanding the landscape represented

Chapter 5 Barrier Tree Examples

C

5

4

3

2

C

5

4

3

2

c
5

4

3

2

(a) t = 78

~~
(e) t = 180

ffi~
(e) t = 401

C

5

4

3

2

C

5

4

3

2

c
5

4

3

2

(b)t=104

(d)t=370

,I
(f) t = 424

FIGURE 5.8: A simulated annealing algorithm working on a 40 l\IIax-3-SAT problem
with a fixed temperature of T = 3.

58

Chapter 5 BaTTier Tree Examples 59

by the tree.

Looking at underused resources in our Barrier Tree figures, there are two main vi­

sual resources which remain unused: colour and the x-axis, which currently has no

meaning. Obvious uses for these would be the colouring of nodes to indicate size, and

ordering the x-axis to give some idea of the proximity of different level-accessible sets

to each other. These ideas obviously need exploring, and it is likely that different

approaches would be more useful for different situations.

The animation of search heuristics is quite basic. In addition to relatively simple

additions such as showing how many members of a population are in a single level­

accessible set, it would be useful to have some method to display many different

repetitions of an algorithm effectively. This would make it far easier to gain an un­

derstanding of an algorithm's behaviour. Currently, it is necessary to compare many

different animations of different runs of an algorithm to try and pick out common

features; a difficult and time consuming process.

Barrier Trees are useful as a basis for analysis. The partitioning makes it easy to

collect many statistics, such as the size of basins, the number of local minima and

the sizes of the barriers between them. In combination with the visual representation

of the landscape, Barrier Trees are a flexible and powerful tool.

Chapter 6

Barrier Based Problem Models

Model problems are one of the key tools used to study the complexity of heuristic

search on combinatorial optimisation problems. These models are designed to test

theories of what features and properties are important to algorithm design, but are

constructed in a way that makes them amenable to numerical analysis. This is the

approach behind several 'toy' problems, such as Ones Counting, the Hurdle problenl

(Prugel-Bennett, 2004b), the Royal Road problem (Mitchell et al., 1992b), De Jong's

test-bed function (De Jong, 1995) and the H-IFF problem (Watson, 2001). These

models have an analytical solution, and have been effectively used to show particular

features and behaviours of different algorithms. The problem with this approach

is that the relationship to practical problems faced by practitioners is unknown.

The models tell us nothing about the types of problems on which heuristic search

algorithms are actually used on. Even if the properties the model problem is designed

to show exist in practical problems, it cannot be said whether they are dominant

properties influencing algorithm performance on those practical problems.

In this chapter we present a technique for generating nlOdel problems from small

instances of NP-hard problems that are considered examples of the problems typ­

ical of practical settings. The goal is not to create an accurate predictive model

but to create numerically analysable models that have a well defined relationship to

challenging practical problems, so we can learn about these problems. From these

models we hope that conclusions can be drawn on algorithm behaviour on large,

difficult problemB.

\;Ve call the models described in this chapter Barrier Based models, in a reference to

Barrier Trees. They consist of a partitioning of the landscape and an approximation

of the Neighbourhood function acting on a configuration within a partition. For this

the principal partitioning we use is that of level-accessibility, defined in chapter 4.

60

Chapter 6 Barrier Based Problem Models 61

This partitioning is useful as it results in a greater reduction in states than other

partitionings while maintaining the separations between basins in the landscapes;

this is why the models are described as Barrier Based. Other partitionings of the

landscape can be used, and we explore level-connected sets as an alternative.

Different heuristic search algorithms can be modelled on the Barrier Based models.

The model provides a neighbourhood function, so all algorithms that use a simple

neighbourhood, such as descent and simulated annealing can be "run" on the model

problems. The extent to which such simple algorithms can be numerically analysed

depends on the complexity and form of their navigation strategies. While search

operators with more complex neighbourhoods are more difficult to represent in this

framework, they can be approximated by careful use of a simpler neighbourhood. In

chapter 8 we explore a simple way of modelling crossover using a Barrier based model

with a Hamming neighbourhood.

Combinatorial search algorithms lend themselves to analysis as simple Markov chains.

An analytical solution can often be written for a search algorithm working on a

problem directly, although the number of states in the Markov chain is normally

proportional to the size of the search space, and therefore massively too large for any

useful calculation. A Markov chain analysis has only been performed on very small

problems (e.g Hoffmann and Salamon (1990)). By partitioning the search space, our

model massively reduces the number of states needed in the Markov chain, making

the Markov chain analysis practical. A Markov chain analysis is the technique we

use to analyse algorithm behaviour on the Barrier Based models; this is the tool the

models were designed around.

In this chapter, we give an overview of previous work that has used Markov models to

model heuristic search algorithms. This is followed a definition of our Barrier Based

models and a demonstration of how simple descent can be modelled within this frame­

work. We then go through several calculations on Markov chains that we will use.

Chapter 7 presents results comparing descents on the original problem instance and

on the model, and then contains an analysis of the differences in algorithm. Finally,

chapter 8 discusses the limitations of the types of problem that can be modelled, and

explores a couple of techniques that reduce these limitations.

6.1 Markov Chains and Heuristic Search

The use of Markov chains as a tool for modelling heuristic search has been of particular

interest in the genetic Algorithm community. An important early work was Goldberg

and Segrest (1987), which was a dynamic model of a genetic algorithm for 2 bit

Chapter 6 Barrier Based Problem Models 62

strings. This was an infinite population model, sometimes called an exact model. By

taking the population to be infinite in size, the dynamics of the model become stable,

allowing an exact calculation of the expected behaviour to be made. Goldberg's

model was further developed in Bridges and Goldberg (1987); Whitley (1993). Vose

and Liepins (1991) presented a new independently created infinite population model,

which also included mutation. This model quickly became very popular, and perhaps

the best known work on infinite population models for Genetic Algorithms is Vose

(1999).

While infinite population models are very powerful, they are limited because finite

population effects are very important, both in explaining Genetic algorithm behaviour

and for design of Genetic algorithms. As a trivial example, an infinite population

model provides no clue as to what size population a Genetic algorithm should have

to solve a problem most efficiently. There has consequently been interest in finite

population models. One of the first papers modelling a finite population GA with

a Markov chain was Nix and Vose (1992). This used fixed-length binary strings, 1-

point crossover, bit-flipping mutations and fitness proportional selection. This model

requires a state for every possible population, and the number of possible populations

becomes large very quickly with increasing population size and the number of vari­

ables. For a population of size P on a problem with N binary variables, the number

of possible populations, as calculated in Nix and Vose (1992) is

(2N+P-1)!
P!(2N - I)! .

Clearly, it is almost impossible to work with all but the smallest problems and pop­

ulations using this model directly.

To tackle this problem, many researchers have looked at clustering or coarse graining

techniques. Spears and de Jong (1996) was perhaps the first paper to look at this

technique in the Genetic Algorithm community, with a novel algorithm described in

more detail in Spears (1998). This technique merges Markov states directly, and can

be applied to any Markov chain representation. Many other researchers have looked

at coarse graining for example Rattray (1996), Rowe (1998) and van Nimwegen et al.

(1999). Some of these techniques rely on knowledge of the model gained from knowing

the algorithm and problem being modelled, for example Rowe and Moey (2004). It is

into this latter category of coarse graining techniques that the model presented here

falls into.

Chapter 6 Barrier Based Problem Models 63

6.2 Definitions

The basis of our models is to partition the landscape, and to make the approximation

that a search heuristic will treat each configuration within a partition identically.

We then calculate an approximation of the neighbourhood function acting on each

partition, which is an average of the Neighbourhood function working on all the

configurations within that partition. The result is a model of the problem that

maintains the connectivity relation between the different partitions of the landscape,

but has a massively reduced state space and is therefore more amenable to analysis

as a Markov chain.

We begin by defining our model of the neighbourhood function; this remains the same

whatever partitioning is used. We discuss how the landscape can be partitioned in

section 6.2.2. For our purposes it is sufficient that some partitioning exists, in addition

to a cost landscape, defined in chapter 2 as consisting of a set of configurations C,

a cost function f : C -7 lR and a neighbourhood function N : C -7 2c. We take

each partition to be a set of configurations, and label them PI to Pn . A complete

partitioning is assumed, so that every configuration is a member of one, and only

one, partition.

We wish to model the connective relationships between the different partitions un­

der the neighbourhood relation. We do this as a probability distribution for each

partition. For each partition, the distribution gives the probability that a randomly

chosen neighbour will be in each partition. To do this we make two approximations,

• Search algorithms choose neighbours randomly; they have no information about

a neighbour before picking it and evaluating its cost.

• The neighbours of every configuration are as likely to be chosen as the neigh­

bours of any other configuration within that partition; every configuration is as

likely to be visited by a search algorithm as any other configuration within the

partition.

By making these approximations we can calculate the connectivity between different

partitions as being the proportion of neighbours of the configurations in one partition

that are in another partition. This proportion gives us a probability that a neighbour

picked at random is in the other partition.

We represent these probabilities in a matrix T, where Tij gives the probability that

picking a neighbour of a configuration in partition Pi is in partition Pj; each row of

the matrix is a separate probability distribution. These distributions are calculated

ChapteT 6 BaTTieT Based Pwblem Models 64

as a summation of the probabilities of a neighbour being in each partition across

all the configurations within the partition. More precisely if we define a matrix of

neighbour counts, N

Nij = L IN(c) n Pjl,
CEFi

then matrix we use in our nlOdel can be expressed as

n

LNil
l=l

A matrix like this can be seen as a transition matrix, the basis of most Markov chain

analysis. We will describe some calculations that can be performed on Markov chains

in section 6.3.

It is also useful to have some fixed probability distribution. Almost all search algo­

rithms start by choosing configurations at random. Assum.ing this is the case we can

calculate the probability distribution at this time t = 1 exactly as

6.2.1 Modelling Simple Descent

Simple descent is the most basic type of heuristic search algorithm. Here we demon­

strate how it can be represented on a Barrier model in a form which is easy to

analyse.

If we take the probabilities of our model, calculated above, as transition probabilities

(i.e. a probability that we have a change in state from one partition to another),

then the model can be seen as modelling a randorn walk. Neighbours are chosen at

random and accepted. Simple descent is very similar, with the only difference being

that moves to higher cost states are rejected. Therefore, to model descent, all that

is needed is to reduce transition probabilities from lower cost states to higher cost

states to 0, and increase the the probability of staying in the same state (Tii) by the

same amount. Formally, we define this descent transition matrix, 0 as

D _ { Tij[j(Pj) :S !(Pi)J6 if i -# j

tJ - Tij + "£;~1 Tid!(Pz) > !(Pi)J6 if i = j

Chapter 6 BalTier Based Problem Models

where [pred.] is notation for

1 {1 [pred·]o = 0
if pred. is true

if pred. is false.

65

If we take the starting distribution, p(l), to be simply proportional to the size of

each partition, as described above, our model predicts the distribution at time t as

being

p(t)T = p(t - 1fD = p(lfDt-l.

This can be seen by expanding the matrix multiplication; this is the basic Markov

chain calculation.

6.2.2 Partitioning

The partitioning used obviously has a large effect on the behaviour and accuracy of

the model. It is possible to choose almost any partitioning, and it is by no means clear

what properties are desired. vVe have explored the use of two different partitionings,

both of which come from our work on Barrier Trees: level-accessible sets and level­

connected sets (chapter 4).

Level-connected sets are perhaps the most obvious partitioning to use. Connected

configurations of equal cost are partitioned and approximated at being equal. The

number and cost of local minima are maintained, and the connectivity between dif­

ferent minilTla and parts of the landscape are not disrupted by the partitioning.

\;\Thile level-connected sets may have a very close relationship to the original land­

scape, the number of level-connected sets in a landscape can be very large, leading

to a model that is impracticable to analyse as a Markov chain. For this reason, we

have also used level-accessible sets as a partitioning scheme. These share many of the

useful properties of level-connected sets (e.g. the local minima remain unchanged)

but often result in dramatically fewer partitions. For example, in a typical 20 variable

Max-SAT problem, around 100 level-accessible sets partition the landscape, com. pared

to around 300 level-connected states. An extreme example is Ones-counting, where

each level-connected set contains only one configuration, leading to 2N states, but is

partitioned completely by only N level-accessible sets. However, level-accessible sets

are not necessarily connected, and it is therefore possible that modelling them as a

single state within our model will allow search heuristics to make 'jumps' between

different parts of the landscape that are not possible on the original problem. An

empirical comparison of the accuracy of the two different m.odels is made in chapter

7.

Chapter 6 BaTTier Based Problem Models 66

With both these partitionings, every partition contains configurations with only one

cost. This is useful for the problem classes we have examined, which have many

configurations with an equal cost. Since most search heuristics do not distinguish

between configurations of an equal cost, the behaviour within a single partition should

be a random walle If different cost configurations exist within a partition, for most

algorithms the behaviour becomes far more complex within that partition. It also

becomes more difficult to model the transitions between partitions without a definite

cost; consider the model of descent described above, where transition probabilities

are derived from a comparison of cost. If each partition does not have a uniform cost,

it becomes far more difficult to make that comparison. However, for problem classes

with a huge range of costs such as the Travelling Salesman Problem, having only a

single cost in each partition will result in far too many states. How to partition these

classes of problems is an open problem.

6.3 Markov Chains

A Markov chain (Kemeny and Snell, 1960) is a stochastic process with discrete time­

steps where the probability of being in any state is influenced only by the previous

state. They are consequently a useful tool for studying combinatorial search al­

gorithms (e.g. Hoffmann and Salamon (1990)). This section describes the basic

definitions and concepts of Markov chains. It then proceeds to the derivations of the

calculations we plan to use. These calculations are a small part of a well established

framework, and the derivations are included here only for completeness.

6.3.1 Definitions

We take a Markov chain as consisting of a set of states, and transition probabilities

from each state to any other. The transition probability between states i and j is the

probability that the system will be in state j at time t + 1 if it was in state i at time

t. The transition probabilities are conveniently arranged in a matrix, M, such that

]\.IIij is the probability of a transition from i to j in a single time step. A row from

this matrix sums to 1.

~When performing Markov chain calculations, we are normally interested in the prob­

ability distribution over the states at some time t. We represent this as a vector p(t).

Note that the matrix of transition probabilities has been defined so that

Chapter 6 Barrier Based Problem Models 67

It is often useful to have a fixed probability distribution, which we take to be at t = 1

instead of the more usual t = o. Defining our start point at t = 1 means that for

most algorithms t is also a count of function evaluations.

Markov chains are described as having certain properties. A Markov chain is irre­

ducible if every state can be reached from every other state; that is, there is a chain of

non-zero probability steps from every state to every other state. A process is periodic

if there is some state to which the process will continually return with some fixed

time period greater than 1. The return time of a state is the time taken to return

to the state after leaving it. A Markov chain is ergodic if it is irreducible and the

expected return time for every state is finite. An ergodic Markov chain has a single

stationary distribution, a probability distribution that remains unchanged after any

number of time steps.

Stationary Probability Distribution

If a Markov chain is ergodic, then it is known that it has one stationary probability

distribution, that does not change after further time steps. In this section, we show

how the stationary distribution can be derived numerically, and derive a measure of

how fast probability distributions tend to the stationary distribution as t tends to

infinity.

The probability distribution at any time t can be expressed as

vVe define the eigenvectors of M so that the left and right handed eigenvectors are Vi

and Ui respectively, such that

v™ ~ AiVT,

MUi AiUi,

T
Vi Uj [. .]1

Z = J o·

Every left handed eigenvector is linearly independent, and provided M is not defective

there are at least n of them, so any vector p can be written as a sum of multiples of

v. We therefore write p(l) as
n

p(l) = L CZVz

Z=l

Chapter 6 Barrier Based Problem Models 68

It follows that our expression for p(t) for any time t can be written as

n

pT(t) = L CzvTMt.
Z=1

From the definition of eigenvectors this can be written as

n

pT(t) = L Cz(Az)tvT
1=1

If the Markov chain is ergodic, there will be only one pair of eigenvectors with a

corresponding eigenvalue of 1, and all others will be smaller. Assuming this is the

case, we label these eigenvectors so that Al = 1, and label the other eigenvector pairs

in descending order of eigenvalue magnitude. The above expression can be rewritten

as
n

pT(t) = CzvT + L cI(Adv[.
1=2

The stationary distribution can be found by considering what happens as t tends

to infinity. If ergodic, for all l > 1, lAd < 1, therefore as t tends to infinity, the

summation tends to O. Therefore,

The stationary distribution is proportional to the left-handed eigenvector correspond­

ing to an eigenvalue of 1.

From the above equations, it can be seen that the second largest eigenvalue, A2,

is an indicator of how quickly any probability distribution tends to the stationary

distribution. If this is small then (AI)t tends to 0 quickly for all l > 1. We use this

to measure the rate of convergence, or mixing rate. At time t, the A2 component of

the probability distribution can be expressed as

As A2 < 1, this is an exponential decay. vVe take the mixing time, 7;n, to be the time

it takes for this component to reduce by multiple of e-1 . Therefore

Note that we take the magnitude of A2, as it may be a complex number.

Chapter 6 Barrier Based Problem Models 69

Mean First-Passage Time

The mean first-passage time is the average time until a state is visited for the first

time. The calculations shown here to calculate the mean first-passage time efficiently

from some starting distribution are taken directly from Priigel-Bennett (2004b), with

only minor adjustments.

We take the set g to be the set of target states for which we are calculating the

mean-first passage time. vVe consider the modified transition matrix M,

A {Mi j if i tf- g
Mij = 0 otherwise

The target states have become an absorbing boundary. The eigenvalues of this matrix

are all strictly less than 1 as probability is not maintained. For convenience we define

a vector (j,

6i = {I if i E g
o otherwise

If pT (t) = pT (1) Mt~ 1 , then (jT p(t) is the probability a target state is reached for the

first time at time t, and IT p(t) (i.e. the sum of the elements in p(t)) is the probability

that none of the goal states have been reached before time t. The mean first-passage

time is equal to

To simplify the calculation, we first derive an identity. vVe use the closed form

expression for the geometric series

N

L Mt~l = (I - M)~l(1 - MN).

t=l

This holds for any matrix provided (I - M) is non-singular, which can be shown by

pre-multiplying both sides by (I - M). Since the magnitudes of the eigenvalues M
are all less than 1,

thus

L Mt~l = (I M)~l.

t20

Chapter 6 BaTTier Based Problem Models 70

Since eventually an absorbing state will be reached

Since this holds for any p(l) for which pT (1) 1 = 1 we can deduce the identity

(I - M)-18 = 1.

Returning to the mean first-passage time

Tfpt (L:tPT (1)M t
-

1
) 8

t21

pT(l) (~ L: Mt) 8
8M t21

pT(l) (8~ ((I M)-l - 1)) 8
pT(l)(1 _ M)-l(1 - M)-18

pT (1)(1 _ M)-11

where we used the identity (I - M)-18 = 1. Thus the mean first-passage tim.e can

be calculated by inverting the matrix 1 - M.

Chapter 7

Accuracy of Barrier Based

Models

In this chapter Barrier Based models of problem instances are compared to the orig­

inal problem instances. Descent is used as the basis for this comparison, because its

simplicity makes it easier to analyse. This comparison is followed by an examina­

tion of the model's behaviour, including some techniques that attempt to improve

accuracy.

7.1 Simple Descent

Simple descent, described in section 3.1.1, is probably the simplest heuristic search

algorithm. This simplicity makes descent useful as a test bed for assessing Barrier

Based Models. A Markov model of descent can be easily derived (see previous chap­

ter) and is very powerful. Many search algorithms are similar to descent, so we would

expect that many of the characteristics of descent on the model problems also apply

to these similar algorithms.

We make an empirical comparison between descent on model problem instances and

the original problem instances. To evaluate the results it is necessary to measure

some quantity that can be easily averaged across many runs of a descent algorithm.

Cost at a particular time is the obvious measure, and this is what is used in the form

of average cost charts. Each of these plots compares the average cost at time t as

calculated from the Markov model to an average of the costs gathered from many

descents on the original problem instance. The average costs of descent on the original

problem are calculated from an average over 10000 separate descent runs. The first

71

Chapter 7 Accuracy of Barrier Based Models 72

500 iterations are compared, as after this time the vast majority of descents have

reached a local minimum and can make no further progress. These are cornpared

to Barrier Based models of the same problem instances, using level-accessible sets

to partition the landscape (level-connected sets will be evaluated in section 7.1.1).

From the model of descent defined in chapter 6.2.1, the average cost at time t, can

be calculated as

where e is a vector containing the costs of each partition.

The results of these comparisons is shown for Max-3-SAT problems in figure 7.1 and

for fully connected Spin-glasses in 7.2. It can be seen that in every case descent

is faster on the lTlodel problems and almost always reaches lower local minima, on

average, compared to descent on the original problem instances. The models of Spin­

glass problems appear to match the original problem instances better, however this is

explained by the smaller range of costs that the local minima of Spin-glass problems

lie over; since most of the Spin-glass instances local minima vary over only a few cost

levels, the differences between the descents on the model and the descents on the

original instances have less effect on the cost than they do on Max-SAT problems

where the minima are spread over a greater range of costs.

The differences in the end cost seem to be systematic. Examining a sample of 50

instances of 20 variable Max-3-SAT problems, in every case the descent on the model

instances had a lower average cost after 1000 iterations than on the original problem

instances. After 1000 iterations only a tiny fraction (under 1 %) of descents have not

reached local minima. Figure 7.3 shows the differences in end costs in the form of a

histogram.

7.1.1 Level-Connected Set Partitioning

So far only level-accessible sets have been used as the partitioning for our model. As

discussed in section 6.2.2, another easily applied partitioning is to use level-connected

sets. Level-accessible sets are not necessarily connected, so the model may connect

parts of the landscape which are disconnected in the original problelTl instance. Par­

titioning the entire landscape using level-connected sets results in a huge number of

states, so as a compromise measure, the landscape with a cost lower than the highest

cost saddle point is partitioned using level-connected sets, and at this cost and above

level-accessible sets are used. Very little time is spent above this cost, and it results

in a massive reduction in states, since above the highest cost saddle point there is one

level-accessible set per cost level. This makes a Markov chain analysis practicable.

Chapter 7 Accuracy of Barrier Based Models 73

6 10
Original problem Original problem

Model problem 9 Model problem ---- -
5

8 -

4
7 -

6
1il

3
1il

5 0 0
0 0

4 "J
2 \

\ 3 \
I \

l
2 \

\
"-

'- ---
0 0

----,---
0 100 200 300 400 500 0 100 200 300 400 500

Iteration Iteration

(a) 50 clauses (b) 80 clauses

11 14

10
Original problem Original problem

Model problem
12

Model problem

9

8 10

7
8

1il
6

1il
0 0

0 0
6 \

5 -~ \
\

4 \ \
\ 4 \

3
\ \
\ \
\ 2 "-

2 " - '- ---------'- ------------

0
0 100 200 300 400 500 0 100 200 300 400 500

Iteration Iteration

(c) 100 clauses (d) 120 clauses

FIGURE 7.1: Average costs graphs of 20 variable MAX-3-SAT problems

Chapter 7 Accuracy of Barrier Based Models 74

27 I 52
Original problem Original problem

26 Model problem 50 f-
Model problem -

25 48
24

46

u:; 23 u:;
0 0 44
0 22 0

42
21

20 40 ~

\'-
- \

\

19 38 \
\

"-
18 36 ~I-

0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration

(a) 11 variables (b) 15 variables

68 85
Original problem Original problem

66 Model problem Model problem

64 80

62

60 75
u:;

58
u:;

0 0
0 0

56 70

54 \
\

52 I - 65 \ -
\

\ \
50 f- \ "-

\ '-
'-

48 60
0 100 200 300 400 500 0 100 200 300 400 500

Iteration Iteration

(c) 17 variables (d) 19 variables

FIGURE 7.2: Average cost graphs of fully connected Spin-Glass problems

ChapteT 7 Accuracy of BaTTieT Based 1\1odels

C
::J
o
o

10

8

6

4

2

o I
o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2

Cost Difference (Actual descent-Markov Prediction)

FIGURE 7.3: Histogram of the average difference in cost between model instances
and the original instances after 1000 iterations of descent. Sample of fifty 20 variable

Max-3-SAT instances.

75

The results using a level-connected set partitioning are shown in figure 7.4. As can

be seen, the results using level-connected sets are more accurate. This comes at the

cost of a large increase in the number of states however; there are 166 states in level­

connected set partitioning compared to 35 in the level-accessible set partitioning. In

this small example this causes no problem, but in larger problems such an increase

could easily make the Markov chain numerically difficult to analyse. For such a large

increase in states, the improved accuracy of level-connected sets is disappointing.

7.1.2 Picking model of Descent

An obvious deficiency of our model is that it does not distinguish between moves

to higher cost neighbours and moves to configurations of equal cost. In descent on

the real problems, picking a higher cost neighbour means that the algorithm stays

in exactly the same configuration, with the same selection of neighbours, while if a

neighbour with the same cost is picked the algorithm moves to that configuration and

chooses from a different selection of neighbours on the next iteration. This could have

a significant affect if the configuration is a 'plateau' configuration, with no lower cost

neighbours; many iterations could be spent trying to find an equal cost neighbour to

Chapter 7 ACCUTacy of Barrier Based Models 76

16 ,---,----,----,------,-------, 16 ,---,--,----,---,----,

Ul
0

0

14

12

10

8

Original Problem
Model, Accessible sets
Model, Connected sets

~

~-
2 L-___ ~~-~_-~~~-=-~--~~-~-~-=-~-~~,-~-~--~-~--~-~--~-

o 200 400 600 800 1 000

14

12

10

8

6

4

2
o

\
\
\

\
\

Original Problem
Model, Accessible sets
Model, Connected sets

~ ,,-,,--- ---..: -

100 200
- - --= -=- -=---=

300

(a) Max-SAT 20 variables, 80 clauses

85 ,---,--,---,--,----, 85
Original problem Original problem

Model, Accessible sets Model, Accessible sets
80 Model, Connected sets - 80 Model, Connected sets

75 75

70 Ul
0 70

\
0

65 \ 65 \
\ \
\ '\ ,-

60 '-<-- 60 -'"'=-.---=- - "'--- --

55 55
0 100 200 300 400 500 0 200 400 600

Iteration Iteration

(b) Spinglass 19 variables

400

- - - -

I

800

FIGURE 7.4: Average cost predicted by the model using accessible sets and con­
nected sets (LCS), on a Max-SAT and Spin-glass instances. First 500 iterations

displayed separately for greater clarity.

500

-

1000

Chapter 7 Accuracy of Barrier Based Models 77

move to without any chance of moving to a lower cost configuration. In our model

of descent, the algorithm always gets to choose from all the neighbours of all the

configurations in the partition, so there is a probability of moving to a lower cost

state in every iteration (assuming the state is not a local lTlinimum).

To reduce this error, and to try gain some measure of its importance, a modified

model is tried. We call this the Picking model, and it is described in listing 7.1.

Instead of picking neighbours directly based on the probabilities in our connectivity

matrix, the probabilities are used to pick members of a 'neighbour list'. Neighbours

are then selected from this neighbour list with a uniform probability. The neighbour

list is only updated when neighbours with an equal or lower cost are picked; if a

higher cost neighbour is selected, the neighbour list does not change. One effect of

this is it allows descent to become trapped in a plateau state, as described above.

Pseudo code for the picking model is given in listing 7.1. The function select() returns

a number chosen at random with a probability distribution described by the vector

passed to it. To introduce some of the cost of moving across a partition, we create

a list of neighbours. Each member of this list is picked with a probability from T.

There is one restriction upon this list; at least one member must have an equal or

lower cost than the current state. This prevents the creation of false local minima.

This is achieved by placing the current state as the first member in the list, and the

first time it is subsequently picked at random is ignored, and a state is picked again.

Neighbours are now picked with equal probability from this list, and the list only

gets changed if a neighbour with an equal or lower cost is chosen. This is an iterative

model, so is considerably less useful than the simple Markov chain model. Its use is

more to try and measure how much of an effect this error in the model has.

Figure 7.5 shows the results of the picking model. The Picking model does have a

slightly slower descent than the descent model, but is still faster than descent on the

original problem. Only the speed of descent is changed; the proportion that each run

finishes in each local minimum is the same.

7.2 Coarse Graining

The predictive accuracy of Barrier Based models is not critically important to their

use as a study tool. However, it is important that the reasons why and how the

model differs from the original problem instances are understood. One of the main

advantages of these models over other model problems used to study combinatorial

optimisation is that Barrier Based models have a direct analysable relationship to

problems representative of those faced by practitioners. In this section we examine

Chapter 7 Accuracy of Barrier Based Models

s+- select (p(l)) ;
N+-make_neighbours(s, M);

while unfinished()

Ilpick from list with uniform distribution
new=pickFromList (N);

iff (new) < f (s) the n
s+-new;
N +- make_neighbours (s, M);

else if f(new) = f(s) then
N+-make_neighbours(s); Ilchange list

endif
end

function make_neighbours(s, P)

ret +- {s}; II 9 u a ran tee s z s zn lis t
guard+- true;
for i=l to n Ilmaking n neighbours

w+-select(Ps); Iiselecting from single row
if w == s!\ guard then

Ilhave forced s into list, so first time
II picked at random re-choose
guard +- false;
w+- select (Ps) ;

endif
ret+- insert (ret, w);

endfor
return ret

LISTING 7.1: Picking model of descent

78

Chapter 7 Accuracy of Barrier Based Models 79

U5
0
()

U5
0
()

10
Real de~cent

16
Real descent

9 Descent model Descent model
Picking model 14 Picking model

8

7 12

6
10

5
U5
0
()

4 8

3
I \
\ 6 I' 1

~ 2 \, ~, \, 4 '-, \,
'-"- - '-,
-~- - ,-'-

-'" "---:....---=-"4 =--"----=j' ~"----= ----..::
0 2

0 100 200 300 400 500 0 100 200 300 400

Iteration Iteration

(a) Max-SAT, 20 variables, 80 clauses (b) Ivlax-SAT, 20 variables, 120 clauses

70 I 85 I

Real descent Real descent
Descent model Descent model

65
Picking model

80
Picking model

60 75
U5
0
()

55 70

\
\ \

50 I 65
I

\ \
\\ \'
\ , ,-' ,
" " '-.::... - - -

45 ----~-- - ---; ---j- 60
0 100 200 300 400 500 0 100 200 300 400

Iteration Iteration

(c) Spin-glass, 17 variables (d) Spin-glass, 19 variables

FIGURE 7.5: Average cost of Descent, with the Descent model and the Picking
Model, for various problem instances.

500

500

Chapter 7 Accuracy of Barrier Based Models 80

how descent differs on the model problems compared to the original problems. Since

many algorithms are very similar to descent (e.g. simulated annealing), it is expected

that these results are important to many other types of algorithm as well.

Descent can be seen as a Markov chain on the original problem landscape, with

every configuration being a different state. Descent on the Barrier Based models can

therefore be seen as a form of coarse graining, where a number of states are collected

together as an approximation. The most questionable assumption made in doing this

is the assumption that the neighbours of every configuration are as likely to be picked

as the neighbours of any other configuration. This is only true if in descent, every

configuration within a partition is visited with equal frequency.

This can be easily measured. A count is taken of how many iterations are spent in

each configuration of one level-connected set over 10000 runs of descent, each run

lasting for 1000 iterations. A 20 variable Max-3-SAT problem is used, and the level­

connected set is part of a saddle-point, as the behaviour within local minima has no

influence on the outcome. As it is part of a saddle-point, it has a relatively low cost (a

cost of 5 when the global optimum is 3 unsatisfied constraints). If the logarithm of the

frequency each configuration is visited is taken, the distribution is approximately a

normal distribution, as shown in figure 7.6. Table 7.1 shows an analysis of the visiting

distributions of three level connected sets from three different problem instances. The

distributions were calculated as described above. The Anderson-Darling (Moore,

1986; Stephens, 1974) test compares two distributions and calculates a coefficient

that is higher the greater the similarity between the distributions. This coefficient is

then compared to the results of distributions produced by a Monte-Carlo procedure,

resulting in a p-value. The p-value is the probability, given that the distributions do

match, that the coefficient would be lower than the observed coefficient. Therefore, a

low p-value rejects the hypothesis that the distributions are equal. As can be seen, the

p-values for these level connected sets are all over 0.05, indicating that the hypothesis

that these distributions are log normal cannot be rejected on this basis. A log normal

distribution indicates that some configurations are visited n:tany orders of magnitude

more frequently than others. This is a surprising result, considering the very random

nature of descent.

This result is more surprising if descent within each level-connected set is considered

as a Markov chain of a closed system, so that descent cannot leave to lower cost

configurations. In this case the probabilities are balanced, so that the probability of

any transition is equal to the reverse transition; the transition matrix is symmetric

(see figure 7.7). In this special case, the stationary distribution is uniform. So to

obtain such a significantly non-uniform distribution as a log nonnal distribution, two

criteria must be met for the level-connected set:

Chapter 7 Accuracy of Barrier Based Models

C
:J
0
0
-;R
0

100

90

80

70

60

50

40

30

20

10

0
-2.5 -2

/
/

-1.5

/

/
/

/

I

/
I

I

-1

"­

"
\

\
\

\
\

-0.5
log(%frequency)

Configuration Visit Frequency C==:J
Normal distribution ~ ~ ~ -

o 0.5

FIGURE 7.6: Log (base 10) frequency that individual configurations within one
level-connected set are visited averaged over 10000 descent runs, with a normal

distribution with the same mean and variance drawn for comparison.

Problem instance LCS size A-D coefficient p-value
Max-SAT, N=20, 90 clauses 14 0.4235 0.3193
Max-SAT, N=20, 90 clauses 26 0.5257 0.1803

Spin-glass, N=17 5 0.1972 0.8883

TABLE 7.1: Anderson-Darling tests on the distribution that each configuration
within a level-connected are visited by a descent algorithm. The p-values for each
distribution are all above a significance level of 5%, meaning that our hypothesis

that the distribution is log normal should not be rejected.

81

1. The starting distribution, that is the configurations at which descent enters a

level-connected set, must be non-uniform.

2. Descent must leave each level-connected set before significant mixing can occur.

While the second point may not seem very likely, the level-connected sets we are

looking at are low cost, so exits to lower cost configurations are rare, and leaving

does take some time. In addition, very little mixing would be enough to disrupt the

log normal distribution observed.

It is possible to directly calculate a measure of the mixing time for each level­

connected set, as described in section 6.3.1. It is also possible to calculate the mean

exit time, by collecting all lower cost configurations that neighbour the state into

a single absorbing exit state (see figure 7.8), and then calculating the mean first

passage time to that state, as described in section 6.3.1. The mean first passage

time calculation requires a starting distribution; we use a uniform distribution, and

a distribution calculated empirically from many descent runs. The values for several

Chapter 7 ACCUTacy of Barrier Based Models

FIG URE 7.7: Representation of a (simplified) partition as a Markov chain. The white
circles represent configurations within the partition, the grey circles configurations
with a higher cost and the black circles configurations with a lower cost. In this
case we are treating the partition as 'closed', so the process cannot enter lower
costs states as well as not being able to enter higher cost states. In this case, the
probability of entering a state is equal to the probability of leaving a state, so the

probabilities are balanced and the steady-state distribution is uniform.

82

level-connected sets from a 20 variable Max-3-SAT problem with 120 clauses are pre­

sented in table 7.2. Only the larger level-connected sets from the joining nodes of the

t ree are shown (i.e. not local minima). The Barrier Tree of the instance from which

these level-connected sets are taken from is shown in figure 7.9; the internal nodes

are labelled so that it can be seen from which part of the tree each level-connected

set comes.

The exit times cannot be compared directly to the value given for the mixing time;

the mixing time is only a measure, and the actual time to mix depends on other

factors which are not taken into account. However it can be seen that t he mixing

time is often one or two orders of magnitude larger t han the exit times , especially with

the larger level-connected sets AI, B1 and Cl. This indicates that very little mixing

is occurring. It can also be seen that the mean exit time is almost always longer for

the empirical data than the uniform distribution. The only exception to this is the

level connected set El. Descent 's distribut ion of entry into a level-connected set is

Chapter 7 Accuracy of Barrier Based Models

FIGURE 7.8: The same Markov model as in figure 7.7, except the lower cost con­
figurations, in black, are considered to be a single absorbing exit state. The two

separate groups, while unconnected, are represented by the same Markov state.

Connected set Cost Size Mixing Exit (Uniform) Exit (Empirical)
A1 7 4493 2303 11.87 15.966
A2 7 21 212.0 7.473 8.3886
A3 7 19 209.9 148.4 291.89
B1 6 1642 2562 19.21 27.364
B2 6 14 48.92 18.06 18.310
C1 5 341 2480 40.09 50.731
C2 5 11 47.03 246.7 263.47
D1 5 5 21.62 22.32 22.682
E1 4 14 236.1 70.48 66.829

TABLE 7.2: The mixing and exit times for the larger level-connected sets that are
part of the saddle-points of a Max-3-SAT problem with 20 variables and 120 clauses.

83

Chapter 7 Accuracy of Barrier Based Models

C

8

7

6

5

4

3

.. A
•

.oil B

.'"

.. C
• 4tD

4 .E

FIGURE 7.9: Barrier Tree of a 20 variable Max-3-SAT problem with 120 clauses.

84

skewed so that most entries are a greater than average distance from the exit. It is

an open question as to why this should be the case.

As a final demonstration of the effect mixing has on descent and our models, a special

version of descent acting on the original problem instance can be run. This version

of descent is modified to guarantee proper mixing; after a move which lowers cost,

the algorithm performs a random walk for 5000 attempted steps, where it is not

allowed to move to configurations with a lower cost as well as to higher costs. The

random walk is therefore constrained to be within a single level-connected set, and

thus mixes within that level-connected set, creating a uniforIn visiting distribution.

The results of such a descent can be seen in figure 7.10, and it can be seen it matches

the model descent with a level-connected set partitioning very closely. This is also

useful verification that the tools used to build the models are working correctly.

ChapteI' 7 Accuracy of BarrieI' Based Models 85

85 85
Normal descent Normal descent

Model, Connected sets Model, Connected sets
80 Random walk descent 80 Random walk descent

75 75

(j)
70

(j)
70 0 0

0 0
\

65 \ 65
\
\

\ \
\ \
\ "-

60 60 '-"--- ------
55 55

0 200 400 600 800 1000 0 100 200 300 400

(j)
0
0

Iteration Iteration

(a) Spin-glass, 19 variables

10 10
Normal descent Normal descent

9 Model, Connected sets 9 Model, Connected sets
Random walk descent Random walk descent

8 8

7 7

6 (j) 6
0

5 0 5

4 4

3 I 3
\

2
\
\ 2
\

'---
0 200 400 600 800 1000 0 100 200 300 400

Iteration Iteration

(b) Max-3-SAT, 20 variables, 80 clauses

FIGCRE 7.10: Average cost of a descent algorithm with a random walk, restricted
to configurations of the same cost and a length of 5000 attempted moves, for an
instance of a Spin-glass and a Max-3-SAT problem. The line for the model descent
and for the random walk descent are on top of each other; the model using connected

sets matches the descent with random walk very closely

-

500

500

Chapter 7 Accuracy of BaTTier Based Models 86

We have provided a breakdown of the cause for the difference between descent on the

model and on the original problem, at least in the case of the Max-3-SAT problem.

It has been shown that the difference is caused by the assumption that descent visits

every configuration within a level-connected set equally frequently, which would be

the case if descent entered level-connected sets with a uniform distribution or spent

long enough in each level-connected set to mix thoroughly. ·While we have shown

that neither of these is the case, the question of why configurations within a level­

connected set are visited with a log normal distribution is unanswered. It also raises

the question of how the models could be altered to provide a better fit to the true

problems, something that is touched on in the next chapter.

Chapter 8

Limitations and Improvements

to Barrier Based Models

Barrier Based models can be applied to a wide range of problem classes and are a

powerful analytic tool. This chapter looks at some of the limitations of the models,

and some possible methods of pushing back these limits. Firstly, ways of further

partitioning the landscape to improve the accuracy of modelled descent are explored.

Secondly, the difficulty in using the model with complex search operators that do

not have a simple neighbourhood is looked at, and a specific method of modelling

crossover is described and evaluated. Thirdly, the limits of size and complexity of

problem instances that can be modelled are discussed, and it is shown how sampling

can be used to model far larger problem instances.

8.1 Mixing Problem and Accuracy

As shown in chapter 7, descent on Barrier based models differs from descent on the

original problem instance. This inaccuracy arises because of the uneven frequency

with which configurations within the partitions are visited. While this inaccuracy

does not invalidate the use of the model as an analytical tool, greater predictive

accuracy would provide greater confidence in the model.

One approach to improve the accuracy is to try and devise a way of calculating the

transition matrix so that it is more accurate, such as generating the probabilities

empirically from descent. However, such a transition matrix would apply only to

descent, and could not be adapted to other search heuristics easily. A different way

of improving the accuracy is to change the partitioning. This has the advantage that

87

Chapter 8 Limitations and Improvements to Barrier Based l\!Iodels 88

it does not change the fundamental model, and it is clear that some partitionings

must be more accurate than others; if a partitioning with one configuration in each

state is used, the model of descent is exact. Introducing more states into the model

comes at the cost of a larger model that is more difficult to analyse; however for the

smaller problem instances looked at so far, the models have been small enough that

the number of states could be increased by an order of magnitude and still have a

useful model.

The approach considered in this section is to further partition level-connected sets into

edge and plateau sets. The edge set of a partition consists of all the configurations that

have a lower cost neighbour. The edge configurations are important, since descent

algorithms must pass through these configurations to reach lower cost configurations.

One example of the inaccuracies related to these edge states is that with our normal

level-connected set partitioning, descent can exit a partition on the first iteration after

entering that state. In the original problem, a descent algorithm will often have to

pass through several states before it can reach a lower cost configuration. Separating

out the edge partitions ensures that descent must spend at least one iteration moving

to a configuration with lower cost neighbours, and the expected time to descend to

a lower cost state is increased to sonlething closer to the original problem. Another

advantage of splitting level connected sets in this fashion is that it increases the

number of states by a limited amount; one extra state per connected-set that isn't a

local minimum is created.

The results of using this partitioning are shown in figure 8.1. Descent on the model

using the edge partitions is slightly slower and therefore slightly closer to descent on

the original problem. The improvement is small, and the average end cost is almost

unchanged. The increase in the number of states is also small; 112 with the edge

splitting compared to 90 without, in the case of the Max-3-SAT problem.

Finally, another adjustment is made to this partitioning. In the above partitioning,

all configurations with lower cost neighbours were put in an edge state, no matter

where those lower cost configurations are in the landscape. As a further partitioning,

the edge partitions are split depending on the lower cost level connected set in which

they have neighbours. A single state is created for all the configurations within a level

connected set that have lower cost neighbours in several different level-connected sets.

The results of this partitioning are shown in figure 8.2. It can be seen that this offers

only a very small improvement over not splitting the edge states. This partitioning

also creates a large number of extra states; 274 states compared to 112 just splitting

the edges and partitions in the case of the Max-3-SAT problem shown. Such a small

improvement for so many more states makes this partitioning less useful.

Chapter 8 Limitations and Improvements to Barrier Based]\1ode1s 89

85 85
Normal descent Normal descent

Model, Connected sets Model, Connected sets
80 Model, Edge/Plateau split 80 Model, Edge/Plateau split

75 75

en
70

en
70 0 0

0 0

65 \ 65
\
\

\ \

\ \,
\,

,-,
60 '~-..-... 60 '''''--:......-

55 55
0 200 400 600 800 1000 0 100 200 300 400 500

Iteration Iteration

(a) Spin-glass, 19 variables

16 16
Normal descent Normal descent

14
Model, Connected sets

14
Model, Connected sets

Model, Edge/Plateau split Model, Edge/Plateau split

12 12

10 10 en
(f)

0 0
0

8
0

8

6 6
\

4 \ 4
"-',-----.. --- ---2 - -..--....---=-- --~-=-- 2

0 200 400 600 800 1000 0 100 200 300 400

Iteration Iteration

(b) Max-3-SAT, 20 variables, 120 clauses

FIGURE 8.1: Comparison of models using a level-connected set partitioning, and
a level-connected set partitioning with each partition further split into edge and

partition sets.

500

Chapter 8 Limitations and Improvements to BaTTier Based Models 90

U5
0
U

U5
0

U

85 85
Normal descent -- Normal descent

Model, edge/plateau split Model, edge/plateau split
80 Model, further split - - - - _ 80 Model, further split

75 75 -

70 U5
70 0 u

65 \ - 65
1
\

\ \

~'-- \"
60 60 ""--

55 ~--~----~--~----~--~ 55 L-_--'-__ .L-_--'-__ -'--_--'

16

14

12

10

8

6

4

2

o 200 400 600 800 1000
Iteration

o

(a) Spin-glass, 19 variables

16
Normal descent --

100 200 300 400 500
Iteration

Normal descent
Model, edge/plateau split

14
Model, edge/plateau split

Model, further split - - - - Model, further split

12

10
U5
0 u

8
-\

\ 6 \
\
\

\ - 4 '\
" "-
',-- --"'---~----r--.--- 2

-- -~--- -~--r ---

0 200 400 600 800 1000 0 100 200 300 400 500

Iteration Iteration

(b) lVIax-3-SAT, 20 variables, 120 clauses

FIGURE 8.2: Comparison of descent on model problems using a plateau/edge parti­
tioning and further partitioning the edge states into which level connected set they

lead to.

Chapter 8 Limitations and Improvements to BaTTier Based Models 91

8.2 Limits of the Neighbourhood Model and Crossover

Complex search operators such as crossover do not have a simple neighbourhood, as

discussed in chapter 3. So far, Barrier based models have assumed a simple neigh­

bourhood, so crossover and other complex operators cannot be easily represented. In

this section one way of representing a particular type of crossover is explored.

It should be realised that the difficulty of representing crossover is only one of the

challenges of modelling Genetic algorithms in this framework. The use of a population

creates an immediate difficulty in any Markov model, as the number of states neces­

sary rises exponentially in the size of the population. There are some well established

techniques for dealing with some of these problems, such as the infinite population

model (e.g. Vose (1999)). This section should be seen more as how the challenge

of modelling complex operators can be approached in this framework, rather than a

practical guide to modelling a Genetic algorithm.

The type of crossover looked at in this section is uniform crossover between two binary

strings. This is one of the most popular forms of crossover. This cannot be repre­

sented directly by our connectivity matrix, because the the key information used in

crossover, the binary string representation of configurations, is removed in the model.

Our connectivity matrix assumes a simple neighbourhood, and creating a connectiv­

ity matrix that reflects the neighbourhood of uniform crossover is challenging (for

example, see Stadler and Wagner (1998)). Instead, we look at a method of mod­

elling uniform crossover using the basic connectivity matrix based on the Hamming

neighbour hood.

To do this, it is necessary to introduce some additional inforl11.ation about the original

problem instance into the model. The information added in the model of crossover

presented here is the average Hamming distance between the different partitions.

This can be efficiently calculated from the correlation, which is described in section

5.2.

Crossover is modelled in the following way. The connectivity matrix allows the result

of any number of random. bit flips to be predicted. The number of bit flips between

the result of uniform crossover and one of its parents is dependent on how many bits

are different between the two parents (i.e. the Hamming distance). If two parents

differ at z sites then the probability of a child differing from one of the parents at n

sites is given by a binomial distribution (at each of the z sites there is a probability

of one half that the child inherits the allele from that parent). Formally, given two

states Pa and Pb, with an average Hamming distance z then the probability of the

Chapter 8 Limitations and Improvements to Barrier Based Models

Rank Real Crossover % Predicted % for same state
1 20.4 1.58
2 14.4 4.31
3 12.5 28.2
4 12.4 1.58
5 11.8 19.3
6 11.3 24.5
7 7.98 13.1
8 4.69 5.2
9 2.26 1.68

10 1.05 0.426

TABLE 8.1: The top 10 most frequent results of crossover performed, compared to
the prediction from our crossover model. The parents of the crossover were chosen

from the states at rank 1 and rank 4.

child ending up in state Pc is taken to be

Xc(a, b) = 1 t(Z) P(cJa,n)P(cJb,z-n)
2z

n=O n 2.:~=1 P(c'Ja, n) P(c'Jb, z - n)

92

where P(cJa, n) is the probability of moving to state Pc from state Pa in n steps.

That is,

where Oa is the unit vector with 1 in the state Pa.

8.2.1 Results

To evaluate this model of crossover, two level-connected sets from a single instance of

a 20 variable Max-3-SAT with 100 clauses are used. The two level-connected sets were

chosen at random with the restrictions that they contain more than 20 configurations

but less than 100.

Table 8.1 shows the top 10 most frequent states for the result of crossover to end up

in, and compares them to the prediction from our simple model. The states that the

parents were randomly chosen from are at rank 1 and rank 4. As can be seen, our

model's predictions are poor.

In conclusion, it has been shown that a plausible model can be derived for a com­

plex search operator such as uniform crossover using the sim.ple connectivity matrix

based upon the Hamming neighbourhood. While this model performs very poorly in

accurately predicting the result of crossover, it should be rernembered that this is a

simple adaptation of the model designed for the simple Han:nning neighbourhood. A

Chapter 8 Limitations and Improvements to Barrier Based Models 93

more sophisticated adaptation, or a more appropriate connectivity matrix should be

able to produce a more accurate prediction.

8.3 Size Limitations and Larger Models

The problems that can be represented as Barrier Based models are "real" problems in

the sense that they come from problem classes that are exempla of the hard problems

faced by practitioners. The actual instances that can be n1.odelled are so small that

finding the solution is computationally trivial; although the models themselves are

still interesting. There are two main limits on the complexity of problems that can

be modelled.

Firstly, the size of the cost landscape. To get the full structure of the Barrier Tree, we

need to evaluate the cost of all configurations beneath the highest cost saddle point,

and to calculate transition probabilities for the higher cost states, we need to evaluate

a significant proportion of configurations at each cost. So far, we have assumed that

the entire landscape has been evaluated, which limits us to problems with around

8 million configurations, or 23 binary variables. Using sampling techniques, it is no

longer necessary to completely evaluate the entire cost landscape, and this allows far

larger problem instances to be modelled. This will be described in this section.

The second limit on the complexity of problems that can be handled is the size of

the resulting model. If there are too many partitions, performing Markov chain cal­

culations becomes impracticable. This is a somewhat flexible limit, as it depends

largely on what calculations are desired. The number of sets required to partition

the landscape is influenced by several factors, including the probleln class, size and

complexity. The main variable in the cost landscape that affects the number of states

in the model is the number of local minima; each local minimum corresponds to one

extra state in the model. This varies between problem classes and the parameters

controlling the problem instance generation. For example, Binary perceptron prob­

lems tend to have a large number of local minima, so many that this is the main

limit on the size of instance we can model. vVith Max-SAT, the number of clauses

per variable increases the number of local minima, and also increases the range of

costs in the landscape, both of which increase the number of states required by our

model.

A related issue is the range of cost values in the problem instance. So far, only

problems with highly degenerate landscapes have been looked at. Other problems,

such as the Travelling Salesman problem, have a far greater range of costs, so much

larger that every configuration may have a unique cost. The partitionings that have

Chapter 8 Limitations and Improvements to Barrier Based Nlodels 94

been looked at always separate configurations with different costs. For problems

with a large range of cost values, this will lead to a correspondingly large number

of partitions. In practice, a different partitioning will need to be devised to make

modelling problems with a large range of costs practicable.

Sampling

Previously, it has been assumed that the entire landscape has been exhaustively

enumerated. This allows the size and neighbourhood connections of each partition to

be counted exactly. As previously described, the Barrier Tree of the landscape has a

trivial structure for all of the landscape above the lowest cost saddle point, and there is

no need to evaluate the configurations with a higher cost to calculate the Barrier Tree

(see 4.3). In a similar fashion, it is not necessary to enumerate these configurations

to calculate a Barrier Based model. The low cost configurations can be enumerated

and the model calculated exactly for them. For the higher cost configurations, the

landscape can be randomly sampled to generate a good approximation of the higher

cost partitions. This approach relies on the fact that most search algorithms spend

very little time in the higher cost parts of the landscape, so inaccuracies introduced

by the sampling process have little effect on the model.

The limit to the size of problems that can be modelled with this technique is difficult

to define exactly. As the size of the problem instances gets larger, the landscape can't

be sampled as well, leading to greater inaccuracy in this process. It also becomes

more difficult to evaluate the lower cost portions of the landscape. Perhaps a less

obvious difficulty is that as problems become larger it can become difficult to find a

suitable cost boundary at which to cut; with large problen'ls a single cost level can

contain many millions of configurations, which can limit the fully evaluated section

of the landscape to only a small proportion of what would otherwise be possible.

The Inethod for using sampling to create the model is quite simple. The Barrier

tree of the problem instance is calculated, as described in section 4.3. The transition

matrix for the partitions below the cut off cost can then be calculated as normal.

For the states above the cut off point, it is assumed that they are above the highest

cost saddle point, so that every configuration with an equal cost is in the same level­

accessible set, and therefore in the same partition. Random samples are then taken,

and the neighbours of each sample looked at. The number of samples at each cost level

gives an approximation of the proportion of configurations at each cost level, and the

neighbours of each sample can be used to approximate the transition probabilities.

Chapter 8 Limitations and Improvements to Barrier Based 1vlodels

C

4

3

2

FIGURE 8.3: Barrier Tree of 40 variable Max-3-SAT problem.

8.3.1 Results

95

vVe demonstrate these techniques on a 40 variable MAX-3-SAT problem with 160

clauses. The Barrier tree of this instance is shown in figure 8.3. This has a cost

landscape of a non-trivial size, having approximately 1012 configurations. The cost

bound was set so that configurations with a cost greater than 4 are not evaluated,

which in this instance gives us 3 million states in the completely evaluated part of the

landscape. The rest of the landscape was sampled 1 million times. To evaluate the

error introduced by using sampling instead of a complete evaluation of the landscape,

we repeat this sampling 3 times so that the results can be compared. The models

produced each had 65 states.

Figure 8.4 shows the results, compared to real descents. Only one of the three sampled

runs is shown; the three runs were almost identical, with the greatest standard devi­

ation between the cost predicted by any of the models at any iteration being 0.0178.

The results compare favourably with smaller, completely enumerated landscapes.

The main risk of not evaluating the whole landscape is that there will be local m.inima

above the root of the tree which will not be part of our model, and as such, our n1.odel

will not predict descent runs ever getting trapped at a level above the bound. In our

example, we ran 1 million descent runs on the original problem, and none of them

ended in a local minimum above the root, so any local minima above the root that

do exist must be of little significant to descent.

Chapter 8 Limitations and Improvements to Barrier Based Models 96

1ii
0
0

20

18

16

14

12

10

8

6

4

2

0
0

I
\
\
\
\
\

'\

"-
"

100 200

Real Descent -­
Sampled Model - - -

300 400
Iteration

(a) Descent to end state

500

1ii o
o

14

12

10

8

6

4

2

, , , , , , , , , , , , , , , , , , ,

",

Real Descent -­
Sampled Model ------

......................... -

20 40 60 80 100 120 140 160 180 200
Iteration

(b) Initial Descent

FIGCRE 8.4: Comparison of a sampled 40 variable MAX-3-SAT problem to real
descent.

Chapter 9

Conclusions and Future Work

Barrier trees and Barrier based models are tools to study heuristic search on Com­

binatorial optimisation problems. However, the focus of nly PhD has been the de­

velopment of the tools, and no time has been spent using them to actually study

Combinatorial optimisation. This has been due to lack of time and to a lack of

computing resources. The potential of Barrier Trees and Barrier based models to

further our understanding of Combinatorial optimisation and heuristic search should

be clear. Barrier Trees provide an insight into the form taken by the cost landscapes

of challenging problem classes. The characteristics of these landscapes are hugely im­

portant to search algorithm design, but are complex and difficult to work with, so are

poorly understood. Barrier based models allow search heuristics to be numerically

analysed on model problems that are far more interesting than the toy problems typ­

ically used for this purpose, and hopefully have a direct relationship to the original

problems.

There are already some examples of the usefulness of the tools. Will Benfold has

used Barrier based models that I have generated to calculate simulated annealing

cooling schedules (Benfold et al., 2005a, b). A gradient descent method is used to

optimise the cooling schedule of a Markov chain representation of simulated annealing

on Barrier based model problems. The optimised annealing schedule can then be

used on the original problem and other problems of the same class. The annealing

schedules optimised on individual instances perform relatively poorly, but optimising

the schedule across models of several instances does produce a schedule that performs

well (see figure 9.1). This suggests that while the Barrier based models may not be

very accurate, they can capture characteristics of the problem class that are important

to heuristic search algorithms.

97

Chapter 9 Conclusions and Future Work

OJ
:;
~
OJ
Q.

E
2

0.45 .----,----,------,--~--~--~--~--~---.---

0.4

0.35

0.3

0.25

0.2

0.15

~, I :. \

!:': ~ \.
f: \ \
~ ~

~: \ t: i

~! t (.. i
~ i
~ i
~ .

T=100 -­
T =200 -------
T=300
T=400
T =500 •.•.•.•.

0.1 , ,l~i I !

2~'~~!]! i.,.
0.05 I --- \ ••••• ---_ •••••. '" .. ,., .•.•.•.•.•.•

o 50 1 00 1 50 200 250 300 350 400 450 500

FIGURE 9.1: Optimal annealing schedules calculated using Barrier-based models by
Will Benfold. Each line is the schedule for an algorithm lasting Titerations. The
schedules are optimised for "where you are" , the cost at the finish of the algorithm,
as opposed to "best seen" , the best solution seen by the algorithm. These schedules

are optimised for an instance of Max-SAT.

98

The usefulness of Barrier Trees to study Combinatorial optinlisation had already been

independently recognised by other researchers, for example Stadler et a1. (2003). It

is hoped that the work of this thesis will bring Barrier Trees to the attention of a

larger number of researchers in the field. The innovation we introduce of partitioning

the entire cost landscape so that every configuration is mapped to the tree greatly

increases the power of Barrier Trees. The Barrier Tree can now reveal not just the

depth of a basin surrounding a local minimum, but the number of configurations in

that basin. Perhaps more interestingly, it also allows the shape of these structures

to be studied. This could be very useful; for example, knowing the general shapes

of plateaux in the cost landscapes of a particular problem class could allow a Tabu

algorithm to be designed that could escape from those plateaux quicker.

One observation that we have already made using these mappings is the observation

in chapter 7 that certain configurations within plateaus are visited many orders of

magnitude more frequently than others, even by a random descent algorithm. The

observation that simple search seems to be channelled into a surprisingly small chan­

nel of exploration is one that could be very difficult to observe on larger problem

instances, but could be very important to the performance of heuristic search algo­

rithms.

Chapter 9 Conclusions and Future Work 99

The main weakness of Barrier Trees and Barrier based models as tools is the need for

some sort of scaling analysis. It is not known whether the small instances that these

tools can be used on share any important characteristics with the large problems

that are challenging to modern computers and heuristic search algorithms. Ideally,

a scaling analysis would allow Barrier Trees and Barrier based models to be gener­

ated with the characteristics of problem instances far too large to generate the trees

directly. The fact that Barrier Trees can be generated for cost landscapes varying

over many orders of magnitude, from instances with 10 binary variables (approx.

1000 configurations) to 50 variables (approx 1015 configurations) should help make a

scaling analysis practicable.

Several possible improvements for Barrier Trees have already been given at the end

of chapter 5. There are also several improvements that could be made to the Barrier

based models. With the breakdown of why the models are inaccurate given in chapter

7, it should be possible to design a partitioning that results in greater accuracy. This

idea is touched on in section 8.1 splitting the edges from the plateaux, but with more

work it seems likely that a better solution could be found.

Barrier Trees and Barrier based models are well developed tools. The most important

future work for them is that they are used and applied to study cost landscapes.

They have a great deal of potential, but it is not possible to judge their strengths

and weaknesses until they are used to study some real questions.

Bibliography

J. E. Baker. Reducing Bias and Inefficiency in the Selection Algorithm. In J. J.

Grefenstette, editor, Pmc. of the 2nd Intl Conf on GA, pages 14-2l. Lawrence

Erlbaum Associates, Inc. Mahwah, NJ, USA, 1987. ISBN 0-8058-0158-8.

O. M. Becker and M. Karplus. The topology of multidimensional potential energy

surfaces: Theory and application to peptide structure and kinetics. The Journal

of Chemical Physics, 106, 1997.

W. Benfold, A. Priigel-Bennett, and J. Hallam. Optimal Paral11.eters for Search Using

a Barrier Tree Markov Model. Theoretical Computer Science, 2005a. Submitted.

W. Benfold, A. Priigel-Bennett, and J. Hallam. Optimisation of Annealing Schedules

for Large Problems. In IEEE Congress on Evolutionary Computation, pages 1119-

1126. IEEE, September 2005b. ISBN 0-7803-9363-5.

B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and weighted

MAX-SAT problems. Journal of Combinatorial Optimization, 2:299-306, 1999.

C. Bridges and D. E. Goldberg. An analysis of reproduction and crossover in a binary­

coding Genetic Alogorithm. In J. Grefenstette, editor, Pmc. 2nd Inernational

Conference on Genetic Algorithms and Their Applications, 1987.

S. A. Cook. The Complexity of Theorem-Proving Procedures. In Pmc. Third Ann.

ACM Symp. Theor. Comput., pages 151-158. ACM Press, 1971.

G. Dantzig, R. Fulkerson, and S. Johnson. Solutions of a large-scale traveling­

salesman problem. Operations Research, 2:393-410, 1954.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.

Communications of the ACM, 5(7):394-397, July 1962.

M. Davis and H. Putnam. A computing procedure for quantification theory. Journal

of the ACM, 7(3):201-215, July 1960.

100

BIBLIOGRAPHY 101

K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.

PhD thesis, University of Michigan, Ann Arbor, 1995. Dissertation Abstracts

International 36(10), 5140B; UMI 76-9381.

C. Flamm, W. Fontana, 1. L. Hofacker, and P. Schuster. RNA Folding at Elementary

Step Resolution. RNA, 6:325~338, 2000.

C. Flamm, 1. L. Hofacker, P. F. Stadler, and M. T. Wolfinger. Barrier Trees of

Degenerate Landscapes. Z. Phys. Chem., 216:155~173, 2002.

M. R. Garey and D. S. Johnson. Computers and Intractability ~ A Guide to the

Theory of NP-Completeness. Freeman, San Francisco, 1979.

P. Garstecki, T. X. Hoang, and M. Cieplak. Energy landscapes, supergraphs, and

"folding funnels" in spin systems. Physical Review E, 60:3219, 1999.

F. Glover. Tabu search:part i. ORSA Jounal of Computing, l:190~206, 1989.

F. Glover. Tabu search:part ii. ORSA Jounal of Computing, 2:4~32, 1990.

D. E. Goldberg. Simple genetic algorithms and the minimal, deceptive problem. In

Lawrence Davis, editor, Genetic Algorithms and Simulated Annealing, pages 74~88.

Morgan Kaufmann Publishers, 1987.

D. E. Goldberg and P. Segrest. Finite markov chain analysis of genetic algorithms.

In Proceedings of the 2nd International Conference on Genetic Algorithms, pages

1 ~8. Cambridge, 1987.

J. Hallam and A. Prugel-Bennett. Barrier trees for search analysis. In E. Cantu-Paz,

editor, Genetic and Evolutionary Computation ~ GECCO-200B, volume 2724 of

LNCS, pages 1586~ 1587, Chicago, 12-16 July 2003. Springer-Verlag. ISBN 3-540-

40603-4.

J. Hallam and A. Prugel-Bennett. Barrier Based Models of Hard Problems and

Crossover. In IEEE Congress on Evol7dionary Computation, pages 1661 ~ 1666.

IEEE, September 2005a. ISBN 0-7803-9363-5.

J. Hallam and A. Priigel-Bennett. Constructing Model Problems Based on Hard

Optimisation Problems. Theoretical Computer Science, 2005b. Submitted.

J. Hallam and A. Prugel-Bennett. Large Barrier Trees for Studying Search. IEEE

Transactions on Evolutionary Computation, 9(4) :385~397, 2005c.

K. H Hoffmann and P. Salamon. The Optimal Simulated Annealing Schedule for a

Simple Model. Journal of Physics A, 23:3511~3523, 1990.

BIBLIOGRAPHY 102

J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan

Press (Ann Arbor), 1975.

T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,

University of New Mexico, March 1995.

Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller and

J. W. Thatcher, editors, Complexity of Computer Computations, pages 85-103.

Plenum Press, 1972.

J.G. Kemeny and J.L. Snell. Finite Markov Chains. Van Nostrand, Princeton, NJ,

1960.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchio Optimization by Simulated Annealing.

Science, 220:671-680, 1983.

S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random

Boolean expressions. Science, 264(5163):1297-1301, 27lVIay 1994.

T. Klotz and S. Kobe. Exact low-energy landscape and relaxation phenomena in

Ising spin glasses. Acta Physica Slovaca, 44:325-338, 1994a.

T. Klotz and S. Kobe. "valley structures" in the phase space of a finite 3D Ising spin

glass with ±i interactions. J. Physics A, 27:95-100, 1994b.

vv. Krauth and M. Mezard. Storage capacity of memory networks with binary cou­

plings". J. de Physique, 50:3057-3066, 1989.

A. Land and A. Doig. An automatic method of solving discrete programming prob­

lems. Econometrika, 28(3):497-520, 1960.

D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT prob­

lems. In Proceedings of the Tenth National Conference on Artificial Intelligence,

pages 459-465, 1992a.

M. Mitchell, S. Forrest, and J. H. Holland. The Royal Road for Genetic Algorithms:

Fitness Landscapes and GA performance. In F. J. Varela and P. Bourgine, ed­

itors, Proc. of the First European Conference on Artificial Life, pages 245-254,

Cambridge, MA, 1992b. MIT Press.

R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Determining

computational complexity from characteristic "phase transisitions". Nature, 400:

133-137, 1999.

D. S. Moore. Goodness-of-Fit Techniques. Marcel Dekker, New York and Basel, 1986.

BIBLIOGRAPHY 103

A. E. Nix and M. D. Vose. Modelling genetic algorithms with markov chains. Genetic

Algorithms in Artificial Intelligence, 5, 1992.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and

Complexity. Dover Publications, 1998.

A. Priigel-Bennett. Symmetry Breaking in Population Based Optimisation. IEEE

Transactions on Evolutionary Computing, 8(1):63-79, February 2004a.

A. Priigel-Bennett. "When a genetic algorithm outperforms hill-climbing. Journal of

Theoretical Computer Science, C, 320(1):135-153, 2004b.

M. Rattray. Modelling the Dynamics of Genetic Alogirithms using Stastical Mechan­

zcs. PhD thesis, University of Manchester, 1996.

C. R. Reeves and A. V. Eremeev. Statistical analysis of local search landscapes.

Journal of the Operational Research Society, 55(7):687-693, 2004.

J. E. Rowe. Population fixed-points for functions of unitation. In C. Reeves and

W. Banzhaf, editors, Foundations of Genetic Algorithms, volume 5. Morgan Kauf­

mann, San Fl'ancisco, 1998.

J. E. Rowe and C. C. J. Moey. Population aggragation based on fitness. Natural

Computing, 3(1):5-19, 2004.

VV. M. Spears. A compression algorithm for probability transition matrices. SIAM

Matrix Analysis and Applications, 20(1):60-77, 1998.

W. M. Spears and K. de Jong. Analyzing GAs using markov models with sernantically

ordered and lumped states. In Foundations of Genetic Algorithms, pages 85-100.

Morgan Kaufman, San Francisco, 1996.

P. F. Stadler, VV. Hordijk, and J. F. Fontanari. Phase transition and landscape

statistics of the number partitioning problem. Phys. Rev. E, 67:056701,1-6, 2003.

P. F. Stadler and G. P. Wagner. The Algebraic Theory of Recombination Spaces.

Evolutionary Computation, 5:241-275, 1998.

Peter F. Stadler. Fitness landscapes arising from the sequence-structure maps of

biopolymers. J. Mol. Struct. (THEOCHEM), 463:7-19, 1999. Santa Fe Institute

Preprint 97-11-082.

M. A. Stephens. EDF statistics for goodness-of-fit and some comparisons. Journal

of the American Statistical Association, 69:730-737, 1974.

BIBLIOGRAPHY 104

E. van Nimwegen, J. P. Crutchfield, and M. Mitchell. Statistical Dynamics of the

Royal Road Genetic Algorithm. Theoretical Computer Science, 229(1-2) :41-102,

1999.

M. Vose and G. Liepins. Punctuated Equilibria in Genetic Search. Complex Systems,

5:31-44, 1991.

Michael D. Vose. The Simple Genetic Algorithm: Foundations and Theory. Complex

Adaptative Systems. Bradford Books, 1999.

R. A. Watson. Analysis of recombinative algorithms on a non-separable building­

block problem. In K. de .long, R. Poliand, and J. E. Rowe, editors, Foundations of

Genetic Algorithms, pages 69-89. Morgan Kaufman, San Francisco, 2001.

D. Whitley. An Executable Model of a Simple Genetic Algorithm. In D. Whitley,

editor, Foundations of Genetic Algorithms 2. Morgan Kaufman, San Francisco,

1993.

D. H. ~Wolpert and vv. G. Macready. No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1):67-82, 1997.

D. H. Wolpert and W.G. Macready. No free lunch theorems for search. Technical

Report SFI-TR-95-02-010, The Santa Fe Institute, Santa Fe, NM, 1995.

W. Zhang and R. E. Korf. A study of complexity transitions on the asymmetric

traveling salesman problem. Artificial Intelligence, 81:223-239, 1996.

