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Single-Carrier Time-Domain Space-Time Equalization 

Algorithms for the SDMA Uplink 

by Andreas Wolfgang 

In this treatise I explore different detection algorithms for the employment in multiple-antenna aided wire

less mobile communication systems. More explicitly, I explore the issue of detecting spatially-multiplexed 

information-carrying signals. 

Specifically, in Chapter 2 I discuss several detection schemes, namely the linear Minimum Mean Squared 

Error (MMSE), the linear Minimum Bit Error Rate (MBER), the Bayesian as well as a novel Optimized 

Hierarchical Recursive Search Algorithm (OHRSA)-based detector, when operating in a narrowband com

munication environment. Furthermore, both the computational complexity and the achievable turbo-coded 

Bit Error Rate (BER) performance are characterized. The achievable BER performance is compared to the 

theoretical channel capacity limit and it was observed that the optimum Bayesian detector as well as the 

OHRSA-aided detector operate approximately 5 dB from the channel capacity limit. 

In Chapter 3 I extend the narrowband detection strategies discussed in Chapter 2 to Space-Time Equalization 

(STE) algorithms, which also may benefit from Decision Feedback (DF). In addition to DF a further com

plexity reduction scheme is proposed for the OHRSA-aided STE, which exploits the specific characteristics 

of both the wideband channel and the proposed DF-STE. In comparison to the full Maximum Likelihood 

(ML) STE, the proposed detector is capable of achieving a complexity reduction, which is several orders of 

magnitude. The achievable turbo-coded BER performance is again compared to the channel capacity limit 

and it was observed that the distance with respect to the capacity bound is of the same order of magnitude 

as the distances observed for the narrowband system of Chapter 2, at the cost of an increased computational 

complexity. 

In Chapter 4 I extend the detectors of Chapter 2 to Soft-Input Soft-Output (SIS0) detection algorithms 
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and employ them in multiple-stage concatenated iterative systems. In order to analyze the behaviour of 

these multi-stage systems I introduce a new 3-Dimensional (3D) EXtrinsic Information Transfer (EXIT) 

chart analysis, The proposed iterative Bayesian detector as well as the novel Reduced-complexity Max-Log 

(RML) detector approach the channel capacity limit within the range of 1 dB, while the considered iterative 

MMSE detector is only capable of approaching the channel capacity limit, if the specific system considered 

is not rank-deficient. 

Based on the derivations of Chapter 4 for narrowband MIMO systems I further evolve the SISO STEs 

of Chapter 3 to S1S0 STEs. In addition, the SISO STEs introduced may benefit from a novel soft-DF 

scheme, Owing to the increased search-space dimensions associated with STE the practical applicability of 

the Bayesian and the RML aided iterative STE is limited. Therefore a novel Markov Chain Monte Carlo 

(MCMC) aided STE is introduced, which is capable of exploring the increased search-space efficiently and 

which approaches the theoretical channel capacity limit within less than 2 dB also for high-dimensional 

search-spaces associated with higher-order modulation schemes. 

iv 



Acknowledgment 

I would like to take this opportunity to express my sincere gratitude to Professor Lajos Hanzo and Professor 

Sheng Chen. Their exceptional supervision and encouragement made this work possible; especially their 

generous investment of time and energy deserve my utmost acknowledgment. 

I would like also to thank staff members and colleagues in the Communications Research Group, namely 

Dr. Lie Liang Yang, Dr. Soon X Ng, the group secretary DeniseHarvey and many others, too numerous to 

mention here. My special thanks also goes to Dr. Hubert Dietl, Dr. Jos Akhtman, Ronald Tee and Seung H 

Won for the fruitful discussions as well as for their friendship. 

Finally, my personal thanks are due to many precious friends both here as well as in Germany, my dear 

parents and my sister. Last but not least I want to thank my wonderful girlfriend Annika, who has supported 

me exceptionally well during the last three years and sacrificed much of her own career to be with me in 

England. I also want to thank my son Emil for making me laugh a thousand times a day. 

v 



List of Publications 

[1] A. Wolfgang, S. Chen, and L. Hanzo, "Parallel interference cancellation based turbo space-time equalization in 

the SDMA uplink," IEEE Transactions on Wireless Communications, vol. 6, pp. 609-616,2007. 

[2] J. Akhtman, A. Wolfgang, S. Chen, and L. Hanzo, "An optimized-hierarchy-aided approximate Log-MAP de

tector for MIMO systems." IEEE Transactions on Wireless Communications., vol. 6, pp. 1900-1909,2007. 

[3] A. Wolfgang, 1. Akhtman, S. Chen, and L. Hanzo, "Reduced complexity near maximum-likelihood uplink de

tection for decision feedback assisted space-time equalization." To appear in IEEE Transactions on Wireless 

Communications. 

[4] A. Wolfgang, J. Akhtman, S. Chen, and L. Hanzo, "Iterative MIMO detection for rank-deficient systems," IEEE 

Signal Processing Letters, vol. 13, pp. 699-702, Nov. 2006. 

[5] S. Chen, L. Hanzo, and A. Wolfgang, "Kernel-based nonlinear beamforming construction using orthogonal 

forward selection with Fisher ratio class separability measure.," IEEE Signal Processing Letters, vol. 11, pp. 478-

481,2004. 

[6] S. Chen, L. Hanzo, N. Ahmad, and A. Wolfgang, "Adaptive minimum bit error rate beamforming assisted re

ceiver for QPSK wireless communication," Digital Signal Processing, vol. 15, pp. 545-567,2004. 

[7] A. Wolfgang, S. Chen, and L. Hanzo, "Radial basis function network assisted space-time equalisation for disper

sive fading environments," lEE Electronics Letters, vol. 40, no. 16, pp. 1006-1007,2004. 

[8] A. Wolfgang, N. Ahmad, S. Chen, and L. Hanzo, "Genetic algorithm assisted error probability optimisation for 

beamforming," lEE Electronics Letters, vol. 40, no. 5, pp. 320-322,2004. 

[9] S. Chen, L. Hanzo, and A. Wolfgang, "Nonlinear multiantenna detection methods," EURASIP J. Applied Signal 

Processing" vol. 2004, no. 9, pp. 1225-1237,2004. Special Issue on Advances in Smart Antennas 2. 

[10] S. Chen, A. Wolfgang, C.J. Harris and L. Hanzo, "Adaptive nonlinear least bit error rate detection for symmetric 

REF beamforming," invited submission to Special Issue of Neural Networks, 2007. 

[11] S. Chen, A. Wolfgang, C.J. Harris and L. Hanzo, "Symmetric REF classifier for nonlinear dGtection in multiple

antenna aided systems," IEEE Transactions on Neural Networks, accepted for publication, 2007. 

[12] S. Chen, A. Wolfgang and L. Hanzo, "Constant modulus algorithm aided soft decision directed scheme for blind 

space-time equalisation of SIMO channels," Signal Processing, to appear,2007. 

[13] J. Wang, S. X. Ng, A. Wolfgang, L. L. Yang, S. Chen, and L. Hanzo, "Near-capacity three-stage MMSE turbo 

equalization using irregular convolutional codes," in Proceedings of the 4th International Symposium on Turbo 

Codes, April 2006, Electronic Publication 

[14] S. Chen, A. Wolfgang, S. Benedetto, P. Dubamet, and L. Hanzo, "Symmetric radial basis function network 

equaliser," in Proceedings of NEWCOM-ACoRN Joint Workshop, (Vienna, Austria), 2006. 

vi 



[15] A. Wolfgang, J. Akhtman, S. Chen, and L. Hanzo, "Reduced complexity single-carrier maximum-likelihood 

detection for decision feedback assisted space-time equalization," in Proceedings of IEEE WCNC'06, Las Vegas, 

Nevada, USA., vol. 1, pp. 142-146,2006. 

[16] A. Wolfgang, S. Chen, and L. Hanzo, "Decision feedback aided Bayesian turbo space-time equalizer for par

aIlel interference cancellation in SDMA systems," in Proceedings of IEEE Vehicular Technology Conference, 

Stockholm, 30 May-l June 2005, vol. 4, pp. 2112-2116,2005. 

[17] A. Wolfgang, S. Chen, and L. Hanzo, "Radial basis function aided space-time equalization in dispersive fading 

uplink environments," in Proceedings of IEEE Vehicular Technology Conference, Stockholm, 30 May-l June 

2005,vo1.3,pp.1552-1556,2005. 

[18] S. Chen, A. Wolfgang, and L. Hanzo, "A robust nonlinear beamforming assisted receiver for BPSK signalling," 

in Proceedings of IEEE Vehicular Technology Conference, DaIlas, 26-28 of Sept. 2005, vol. 3, pp. 1921-1925, 

2005. 

[19] A. Wolfgang, S. Chen, and L. Hanzo, "Radial basis function network assisted wide-band beamforming," in 

Proceedings of IEEE Vehicular Technology Conference, Los Angeles, USA, 26-29 Sept., pp. 266-270, Sept. 

2004. 

[20] S. Chen, L. Hanzo, N. Ahmad, and A. Wolfgang, "Adaptive minimum bit error rate beam forming assisted 

QPSK receiver," in Proceedings of IEEE International Conference on Communications, Paris, May 2004, vol. 6, 

pp.3389-3393,2004. 

[21] S. Chen, A. Wolfgang, and L. Hanzo, "Constant modulus algorithm aided soft decision-directed blind space-time 

equalization for SIMO channels," in Proceedings of IEEE Vehicular Technology Conference, Los Angeles, USA, 

26-29 Sept., vol. 3, pp. 1718-1722,2004. 

[22] S. Chen, A. Wolfgang, Y. Shi and L. Hanzo, "Space-time decision feedback equalization using a minimum bit 

error rate design for single-input multi-output channels," lET Communications, to appear, 2007. 

[23] S. Chen, A. Wolfgang, c.J. Harris and L. Hanzo, "Symmetric kernel detector for multiple-antenna aided beam

forming systems," to be presented at International Joint Conference on Neural Networks (Orlando, Florida), 

Aug.12-17,2007. 

[24] M. Abuthinien, S. Chen, A. Wolfgang and L. Hanzo, '~Joint maximum likelihood channel estimation and data 

detection for MIMO systems," to be presented at International Conference on Communications (Glasgow, Scot

land, UK), June 24-28, 2007. 

vii 



Contents 

Abstract 

Acknowledgements 

Notations 

List of symbols 

1 Introduction 

1.1 State-of-the-art and Trends 

1.2 Detection Techniques . . . 

1.2.1 Narrowband Single-Carrier and Multi-Carrier Detection 

1.2.2 Single-Carrier Wideband Detection 

1.3 Outline and Novelty. . . . . 

1.4 System and Channel Model . 

2 Narrowband Single-Carrier Multiple-Input Multiple-Output Detection 

2.1 Introduction...... 

2.1.1 System Model 

2.1.1.1 Complex-Valued Vector Model 

2.1.1.2 Real-Valued Binary Vector Model. 

2.1.2 Problem Definition . . . . . . . . . . . . . . 

2.2 Benchmarking - Channel Capacity and Information Rates . 

2.2.1 Gaussian Input Signal 

2.2.2 Discrete Input Signal 

2.2.3 Results ...... . 

2.3 Multiple-Input Multiple-Output Detection Algorithms. 

2.3.1 Minimum Mean Squared Error Detection . . . 

viii 

iii 

v 

xiii 

xiv 

1 

2 

3 

8 

8 

11 

13 

13 

14 

15 

15 

17 

19 

20 

21 

21 

26 

26 



2.3.1.1 Computational Complexity of the Real-Valued MMSE Detector. . . 

2.3.1.2 Performance of the MMSE Detector 

2.3.2 Minimum Bit Error Rate Detection ..... . 

2.3.2.1 MBER Detection of BPSK Modulated Signals 

2.3.2.2 MBER Detection of 4QAM Signals ..... . 

2.3.2.3 MBER Detection for the Real-Valued Binary System Model. 

2.3 .2.4 Computational Complexity of the Real-Valued MBER Detector . . 

2.3.2.5 Performance of the MBER Detector 

2.3.3 Bayesian Detection .............. . 

2.3.3.1 Bayesian Detection of BPSK Modulated Signals 

2.3.3.2 Bayesian Detection for 4QAM Signals ..... . 

2.3.3.3 Bayesian Detection for the Real-Valued Binary System Model ... 

2.3.3.4 Interpretation of the Bayesian Detector as Radial-Basis-Function Network 

2.3.3.5 Computational Complexity of the Real-Valued Bayesian Detector. 

2.3.3.6 Performance of the Bayesian Detector ... 

2.3.4 Reduced Complexity Maximum Likelihood Detection 

2.3.4.1 Computational Complexity of the OHRSA Detector 

2.3.4.2 Performance of the OHRSA Detector . . . . . 

2.3.5 MIMO Detector Complexity versus Channel Condition. 

2.3.5.1 Complexity Under Block-Fading Conditions 

2.3.5.2 Complexity Under Slow Fading Conditions. 

2.3.5.3 Complexity Under Rapidly Fading Conditions 

2.3.5.4 MIMO Detector Complexity Summary. 

2.3.6 Turbo-Coded Performance ofMIMO Detectors .. 

2.3.6.1 Performance of MIMO Detectors for Block-Fading Channels 

2.3.6.2 Performance of MIMO Detectors for Uncorrelated Fading Channels 

2.3.7 Conclusion .............. . 

2.4 Channel Estimation for Narrowband Channels. 

2.4.1 Detector Performance Using Estimated Channel State Information . 

2.5 Conclusion ., . . . . . . . . . . . . . . . . 

3 Space-Time Equalization for the SDMA Uplink 

3.1 System Model ... 

3.2 Problem Definition 

3.3 Benchmarking - Channel Capacity and Information Rates . 

3.3.1 Gaussian Input Signal ............. ,. 

ix 

29 

31 

31 

32 

36 

38 

40 

41 

42 

43 

44 

45 

46 

46 

48 

48 

55 

57 

59 

59 

60 

60 

60 

60 

61 

63 

65 

65 

67 

69 

72 

72 

74 

77 

78 



3.3.2 Discrete Input Signal . 

3.3.3 Results ....... . 

3.4 Finite Length Space-Time Equalizers .. 

3.4.1 Minimum Mean Squared Error STE 

3.4.1.1 Computational Complexity of the Real-Valued MMSE STE . 

3.4.1.2 Performance of the MMSE STE . 

3.4.2 Minimum Bit Error Rate STE ...... . 

3.4.2.1 Computational Complexity of the Real-Valued MBER STE 

3.4.2.2 Performance of the MBER STE . 

3.4.3 Bayesian STE ............... . 

3.4.3.1 Computational Complexity of the Bayesian STE . 

3.4.3.2 Performance of the Bayesian STE ... 

3.4.4 Reduced Complexity Maximum Likelihood STE 

3.4.4.1 Computational Complexity of the OHRSA Detector 

3.4.4.2 Performance of the OHRSA STE 

3.4.5 Turbo-Coded Performance of STEs 

3.4.6 Conclusion.........,... 

3.5 Decision Feedback Assisted Finite-Length STE 

3.5.1 Minimum Mean Squared Error Decision-Feedback STE 

3.5.2 Minimum Bit Error Rate Decision-Feedback STE . 

3.5.3 Bayesian Decision-Feedback Sill ...... , .. 

3.5.4 Reduced Complexity Maximum Likelihood Decision-Feedback STE 

3.5.5 Turbo-Coded Performance ...... . 

3.6 Channel Estimation for Dispersive Channels .. 

3.6.1 Results Using Estimated Channel State Information. 

3.7 Conclusion ................. , ... , ... . 

4 Iterative Narrowband Single-Carrier Multiple-Input Multiple Output Detection 

4.1 Introduction.. 

4.2 System Model . 

4.3 Extrinsic Information Transfer Chart Analysis of SISO Components 

4.3,1 1\vo Concatenated Components . 

4.3.2 Three Concatenated Components 

4.4 Soft-Input Soft-Output MIMO Detection. 

4.4.1 MMSE S1SO Detection . 

4.4.2 Bayesian SISO Detection. 

x 

78 

79 

82 

83 

85 

86 

88 

90 

92 

93 

94 

95 

96 

104 

106 

107 

108 

109 

111 

112 

116 

119 

123 

128 

128 

129 

132 

132 

133 

134 

135 

136 

139 

139 

144 



6 

4.4.3 Reduced-Complexity Max-Log Detection ... 

4.4.4 MBER SISO Detection 0 • • • • 0 • • • • 0 • • 

4.4.5 Iterative MIMO Detection Simulation Results . 

4.5 Training Aided Iterative Channel Estimation . . . . 

4.6 Conclusion .,. . . . . . . . . . . . . . . . . 

5 Soft-Input Soft-Output Space-Time Equalization 

5.1 System Model and Decision Feedback Methods 

5.1.1 Using No Decision Feedback .. 

5.1.2 Hard Decision Feedback 

5.1.3 Soft Decision Feedback 

5.2 Conventional Soft-Input Soft-Output STE 

5.2.1 Minimum Mean Squared Error STE 

5.2.2 Bayesian STE .... 0 ••••••• 

5.2.3 Reduced Complexity Max-Log STE . 

5.2.4 Notes on Rank-Deficiency 

5.2.5 Concluding Remarks . . . 

5.3 Markov Chain Monte Carlo Aided Detection. 

5.3.1 Introduction ...... . 

5.3.2 Monte Carlo Integration 

5.3.2.1 Empirical Average Calculation 

5.4 

5.3.2.2 Integration Based on Importance Sampling. 

5.3.2.3 Summary................. 

5.3.3 Markov Chain Representation and Gibbs-Sampler 

5.3.4 Simulation Results for Narrowband MIMO Channels. 

5.3.5 Computational Cost ........... . 

5.3.6 Simulation Results for Wideband Channels 

Conclusion ., . . . . . 

Conclusion and Future Work 

6.1 Chapter Summaries . 

6.1.1 Chapter 1 

6.1.2 Chapter 2 

6.1.3 Chapter 3 

6.1.4 Chapter 4 

6.1.5 Chapter 5 •••• G 0 

Xl 

. . ~ . . . . . 148 

154 

155 

160 

162 

164 

164 

167 

167 

168 

169 

169 

171 

173 

177 

178 

178 

179 

181 

184 

185 

187 

190 

196 

199 

202 

205 

208 

208 

208 

208 

211 

215 

216 



6.2 Future Work . . . . . . . , . 

6.2.1 Non-Binary OHRSA 

Non-Binary Gibbs-Sampler .. 6.2.2 

6.2.3 

6.2.4 

6.2.5 

Joint Detection and Channel Estimation 

EXIT Charts for Short Interleaver-Depth 

Cyclic Prefix Aided Space-Time Equalization . . 

Appendices 

A BER Gradient 

B Simplified Conjugate Gradient Algorithm 

C Maximum A Posteriori Probability STE 

Glossary 

Index 

Bibliography 

Author Index 

xii 

218 

218 

219 

219 

219 

220 

221 

221 

223 

224 

226 

229 

232 

240 



Notations 

General 
x Scalar variable 

x Indicates a hypothetical solution to an optimization problem 

x Estimated variable 

.f Hypothetically estimated variable 

i Sliced (hard) estimate of a variable 

i Soft-estimate of a symbol 

p( e) Probability density function of a random variable 

P( e ) Probability of a random variable 

Vectors 
x Column vector of scalars 

xi ith scalar element of the vector x 

x Column super-vector (vector of vectors) 

Xi ith vector element of the super-vector x 

Matrices 
X Matrix of scalars 

Xij (i, j) th scalar element of the matrix X 

X Super-matrix (Matrix of matrices) 

Xij (i, j) th matrix element of the super-matrix X 

Xi Vector equals the ith column of the matrix X 

Xi Super-vector equals the ith column of the super-matrix X 

Operators 

* 
T 

H 

@ 

vee (e) 

trace (e) 

sign (e) 

diag (e) 

R (e) 

8' (e) 

Conjugate complex 

Transpose of a vector or matrix 

Hermitian (conjugate transpose) of a vector or matrix 

Kronecker product 

Column wise vector operator 

Trace of a matrix 

Signum function 

Diagonal elements of a matrix 

Real part of a variable 

Imaginary part of a variable 

xiii 



List of symbols 

k 

M 

R 

L 

M 

m 

N 

n 

y 

y 

h 

H 

f 
F 

x 

x 

w 

w 

Q 

Discrete time index 

Modulation index 

Number of bits transmitted per channel use 

Code-rate 

Throughput 

(i x i)-dimensional identity matrix 

Total transmit power of a mobile station 

Standard deviation of the Additive White Gaussian Noise (AWGN) 

Length of the Channel Impulse Response (CIR) 

Index associated with a particular CIR path 

Number of transmit Antenna Elements (AEs) per Mobile Station (MS) 

Transmit AE index 

Number of receive AEs at the Base Station (BS) 

Receive AE index 

Channel output 

Channel output vector 

Channel coefficient 

Channel matrix 

Frequency Domain (FD) channel coefficient 

FD channel matrix 

Transmitted symbol 

Transmitted symbol vector 

Filter weight matrix 

Filter weight vector 

Number of MSs (Users) 

xiv 



q 

9Jl 

m 

A 

1] 

y 

X 

X 

MS index 

Total number of transmit AEs in the system (9Jt = Q . M) 

Index associated with 9Jl 

Log Likelihood Ratio 

AWGN 

Set of legitimate channel output states 

Set of legitimate transmitted symbols 

Set of legitimate detector output states 

xv 



C::-l 
Introduction 

1.1 State-of-the-art and Trends 

The increasing demand for the higher data rates to be supported by future wireless systems [1] inevitably 

comes at the cost of an increased bandwidth requirement, since the bandwidth is proportional to the symbol 

rate of the transmitted signal. In order to efficiently exploit the limited bandwidth available, advanced com

munication systems consider the employment of multiple transmit and receive antennas for the transmission 

of independent bit-streams. The employment of these Multiple-Input Multiple-Output (MIMO) [2] systems 

for spatial multiplexing has been motivated by the work of Foschini and Gans, who demonstrated [3] that 

under idealized assumptions the capacity of the wireless channel increases linearly with the minimum of 

the number of transmit and receive antennas. Their work constitutes a logical evolution of the channel 

capacity analysis provided by Shannon in [4-6]. In order to exploit this potential increase in channel ca

pacity and the associated increase of the theoretically achievable data throughput, MIMO transceivers are 

expected to become an integral part of wireless communication systems, as outlined for example in [7-9]. 

Further work on the capacity of MIMO channels has been provided for example in [10] by Marzetta and 

Hochwald, in [11, 12] by Goldsmith et. al. as well as by Shamai and Marzetta in [13], who have contributed 

an extensive tutorial overview in partnership with Biglieri et. al. in [14]. 

However, even with the advent of MIMO transceivers and higher order modulation schemes, the bandwidth 

occupied by the transmitted signal is often significantly higher than the coherence bandwidth [15] of the 

wireless channel and will therefore result in mUlti-path propagation of the transmitted signal. The multi

path channels result in a frequency selective wireless propagation medium, which are also often referred to 

as wideband channels. 

As an example, we will now briefly outline how the 3rd Generation Partnership Project (3GPP) and its 

Long-Term Evolution (LTE) [7,16] task-force attempt to solve the problems associated with the high signal 
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bandwidth of future wireless mobile communication systems l . 

First of all, one has to distinguish between the bit-rate demand on the downlink also referred to as the 

forward link and the uplink often referred to as the reverse link. The two main differences are: 

• The traffic is expected to be asymmetric, where the downlink typically has to support higher data rates 

than the uplink. 

• The power consumption as well as the hardware cost imposes a less problematic constraint on the 

Base-Station (BS) than it does for the Mobile-Station (MS). 

Given these characteristics, Orthogonal Frequency-Division Multiplexing (OFDM) [17] is considered to be 

the most potent transmission scheme in the 3GPP LTE drafts. The OFDM scheme, which belongs to the 

family of Multi-Carrier (MC) [18] transmission schemes is capable of supporting high data-rates, while 

the detection of the signal at the MS can be achieved at a relatively low computational cost. The problem 

of a high Peak-to-Average Power Ratio (PAPR) [17] can be solved by employing a more linear and hence 

less power-efficient amplifier at the BS transmitter's Radio Frequency (RF) front-end or the PAPR reduction 

techniques of [17,19,20] may be employed. 

However, since mobile operators want to keep the cost and the power consumption of MSs low, OFDM is 

less attractive for employment in the uplink of the communication system. For this reason and owing to the 

lower PAPR, it was proposed in [7,16] to consider Single-Carrier (SC) transmission for the reverse link as 

part of the 3GPP LTE. 

The 3GPP LTE initiative was used as an example here, but the above-mentioned arguments in favour of SC 

transmissions in the uplink also hold for other wireless communication systems. Against this background, 

the performance of different SC STE approaches is discussed in this treatise. In Table 1.1 a list of selected 

publications discussing the LTE' of the 3GPP system is provided. 

1.2 Detection Techniques 

In this treatise we will refer to a MIMO system, when the transmitter as well as receiver employ multiple 

antennas. Since we mainly consider reverse link or uplink communications, we also may use the term MS 

instead of the term transmitter and equivalently use the term BS rather than receiver. If not stated otherwise, 

we will assume that independent data streams are transmitted over the different transmit Antenna Elements 

(AEs) and thus the system considered is an uplink Space Division Multiplexing (SDM) [17] system. By 

contrast, when considering multiple MSs, which mayor may not employ multiple transmit AEs, the system 

I The exact proposal has not been finalized at the time of writing. 



1.2.1. Narrowband Single-Carrier and Multi-Carrier Detection 

Table 1.1: Papers discussing the trade-off between MC systems and SC transmissions in the context of the 
3GPPLTE 
[21] Zhou et. al. Discusses different downlink multiple-access techniques for 3G and beyond 

with a special focus on the Chinese system proposals. 

[22] Zhang et. al. Presents an OFDM-based Time Division Duplex (TDD) system. 

[23] Jamalipour et. ai. Compares different multiple-access architectures and comes to the conclusion 
that only a combination of existing multiple-access techniques is suitable for 
future wireless systems. 

[7] Ekstrom et. al. Introduces the evolution of the current system defined in the 3GPP propos-
als [16] in order to meet future user expectations. Multiple-access schemes 
as well as the physical layer architecture are discussed. For the uplink a SC 
system architecture is proposed. 

[16] 3GPP Presents different proposals for the physical layer of the 3GPP LTE. The pro-
posals discussed are - among others - the employment of SC transmission in 
the reverse link as well as OFDM signals in the forward link. Other schemes 
discussed are for example MC - Code Division Multiple Access (CDMA). A 
finalized proposal is expected to appear in September 2007. 

3 

is referred to as a Space Division Multiple Access (SDMA) [17J system. Both SDM and SDMA systems 

aim for maximizing the throughput or multiplexing gain [24] of the system. Rather than maximizing the 

mUltiplexing gain, the other option is to maximize the diversity gain (25] of a system, which may be achieved 

by transmitting the same or related data over several transmit antennas, which renders communications more 

reliable. Naturally, there is a trade-off between the achievable mUltiplexing gain and diversity gain, which 

has been discussed for example by Tse et. al. in [25J or in (26J. 

The algorithms used for detecting signals in SDM and SDMA systems are in principle similar. The dif

ference is that in a SDM system the transmitter might employ Space-Time Coding (STC) (27] and that the 

entries of the channel matrix might be constructed differently. Since the detection strategies are similar for 

SDM and SDMA, we do not explicitly distinguish between them when discussing the existing literature rel

evant for this treatise. Furthermore, since Me systems divide the wideband channel into numerous parallel 

narrowband channels, we assume that they both employ the same detection strategies. 

1.2.1 Narrowband Single. Carrier and Multi-Carrier Detection 

In Figure 1.1 the family of different MIMO detection approaches are classified. Firstly, we distinguish be

tween linear and non-linear detectors. The most well known linear MIMO detectors are the Minimum Mean 

Squared Error (MMSE) detector as well as the Least Square (LS) detector, which are discussed in detail in 

numerous text-books, such as [17, 28J. In (29] Wang and Poor have extended the conventional MMSE de

tector to a Soft-Input Soft-Output (SISO) detector suitable for iterative detection. In Section 2.3.1 we derive 

the MMSE SDM detector for our specific system model, which is introduced in Section 2.1.1 and discuss the 

impact of choosing the MSE as our optimization criterion. Furthermore, both the computational complexity 

and the achievable Bit Error Rate (BER) performance are portrayed in Section 23.1.1 and Section 2.3.1.2, 
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MSER 

ML 

Bayesian 

SIC 

PIC 

SD 

OHRSA 

Figure 1.1: Classification ofMIMO detection algorithms. 

respectively. The corresponding extension to S1S0 MMSE detection is provided in Section 4.4.1. 

4 

The MMSE detection approach is optimum in terms of minimizing the Mean Squared Error (MSE) of 

a linear detector. However, a linear detector designed for achieving the lowest Bit Error Rate (BER) is 

optimum in terms of minimizing the BER. Hence, the set of linear detectors, which achieve the minimum 

BER are referred to as Minimum Bit Error Rate (MBER) detectors. They have for example been studied 

in [30,31] by Chen et al .. A simplified MBER detector has been proposed for example by Gesbert in [32] 

on the basis of a closed-form expression for certain channel conditions. At the time of writing MBER 

detectors have mainly been proposed for Binary Phase Shift Keying (BPSK) signals [33] as well as 4-

level Quadrature-Amplitude Modulation (QAM) signals [34]. Since MBER detectors are challenging to 

derive for higher-order QAM, in [35] Yeh and Barry have proposed an approximate Minimum Symbol 

Error Rate (MSER) detector for higher order QAM, while in [36] Chen et. ai. have derived an exact MSER 

detector for higher order QAM. In this treatise we consider the MBER detector designed for BPSK as well 

as 4QAM signals, as discussed in Section 2.3.2. In Section 2.3.2.3 we propose a novel way of calculating 

the MBER solution for 4QAM signals, which relies on a real-valued binary representation of the complex

valued system modeL The complexity of the MBER MIMO detector is discussed in Section 2.3.2.4, while 

the achievable performance is investigated in Section 2.3.2.5. Furthermore, we highlight in Section 4.4.4 

why it may be unattractive to use iterative MBER detection. Further applications of the MBER approach 

include multi-user detection discussed by Li et. at. in [37] as well as MBER power allocation introduced by 

Wang and Blostein in [38]. 

In systems, where the number of transmit Antenna Elements (ABs) is higher than the number of receive ABs 
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the linear detectors of Figure 1,1 are often incapable of correctly detecting the desired signal and hence the 

family of non-linear detectors has to be employed. In Figure 1.1 we make a distinction between non-linear 

detectors, which are constructed in a systematic way and algorithms, which rely on guided random search 

strategies. 

The classic non-linear detectors are the Maximum Likelihood (ML) [39] and the Bayesian [39] detector. 

The philosophical difference between these two approaches is discussed in Sections 2.3.3 and 2.3.4. It was 

shown for example in [39] that the Bayesian detector achieves the lowest possible BER of all non-linear 

detectors. In Section 2.3.3 the Bayesian detector is discussed and it is shown using a simple example, how 

it constructs a non-linear decision boundary. The SISO Bayesian detector is discussed in Section 4.4.2 

Calculating the exact ML detector with 'brute force' imposes a high computational complexity on the re

ceiver. Therefore, inspired by the Sphere Decoding (SD) algorithm introduced by Porst and Finke [40], 

Vitelko and Boutros have opened up a whole new research area with their work presented in [41], where 

they applied the original SD algorithm to communication systems. Many of the earlier publication on SD, 

such as [42] by Brunei and Boutros or [43] by Hassibi and Vikalo consider systems, where the number of 

transmit and receive antennas is identical. 

Damen et. al. [44] have extended the classical SD to the so called Generalized Sphere Decoder (GSD), 

which is capable of operating in systems, where the number of transmit AEs is higher than the number of 

receiver AEs. These systems are often also referred to as rank-deficient 2 systems. Further SDs, which were 

designed for rank-deficient systems have been proposed by Pham et. al. [45], by Yang et. ai. [46] as well 

as by Guo and Nilsson [47]. Note that none of the SD algorithms mentioned in this paragraph is guaranteed 

to find the ML solution, neither are they capable of processing soft-inputs, which is essential for efficient 

iterative detection. 

Hochwald and ten Brink were among the first researchers to extend SD to Soft-Input Soft-Outpout (SISO) 

output algorithms, which resulted in the List Sphere Decoder (LSD) portrayed in [48]. Furthermore, also 

Vitalko et. al. [49] as well as Wang and Gianakis [50] have presented an iterative SD, which is capable 

of operating close to the channel's capacity. Pauli et. at. have proposed a SD [51], which is capable 

of detecting Differential Binary Phase Shift Keying (DPSK) modulated signals employed in a MC- Code 

Division Multiple Access (CDMA) system. 

In contrast to the above-mentioned SD, the Optimized Hierarchy Reduced Search Algorithm (OHRSA) 

presented in [60,61] and to be discussed in Section 2.3.4, has the capability of efficiently operating in 

so-called rank-deficient systems and is guaranteed to find the ML solution. In Section 4.4.3 the OHRSA 

algorithm is extended to accommodate soft information in the context of iterative receivers. 

2 A system is referred to as rank-deficient if the number of linearly independent columns of the associated system matrix is 
higher than the number of linearly independent rows. 
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Table 1.2: Selection of narrowband MIMO detection papers. 

[52] Thoen et. al. A LS MIMO detector is introduced and its performance is investigated when 
applied in a SDMA OFDM system. 

[29] Wang and Poor In this paper conventional MMSE detection is extended to SISO MMSE detec-
tion, which may be employed in iterative receivers. 

[31] Chen et. at. Presents aMBER beamformer designed for BPSK and 4QAM signals as well 
as for static channel conditions. 

[32] Gesbert The author presents a robust MBER MIMO detector, which can be constructed 
using a closed-form expression, provided that certain channel conditions are 
fulfilled. 

[53] Foschini The first low complexity V-BLAST receiver designed for MIMO based systems 
is proposed. 

[54] Lee et. al. The original V-BLAST technique is extended to a SISO algorithm and is em-
ployed in an OFDM system. For the scenarios considered the proposed V-
BLAST detector achieves the ML performance. 

[41] Viterbo and Boutros First paper, which applied the SD proposed in [40] to the detection of received 
signals. This contribution inspired a whole new research area. 

[44] Damen et. at. In this paper the original SD is extended to a GSD, which is capable of operat-
ing in rank-deficient systems. 

[48] Hochwald and ten Brink The authors propose a List Sphere Decoder (LSD), which is capable of pro-
cessing soft information and compare the attainable performance of their LSD 
to the channel capacity bound, which is also derived in the paper. 

[49] VikaJo et. al. A SISO SD is proposed, which is employed in an iterative system using dif-
ferent convolutional codes as well as Low-Density Parity-Check (LDPC) [55] 
codes. 

[46] Yang et. al. An improved generalized hard-output SD is introduced, which is designed for 
rank-deficient MIMO systems. The high-complexity detection process is di-
vided into two detection stages, which with significantly reduced the complex-
ity. 

[51] Pauli et. al. A SD is proposed in order to reduce the high computational complexity asso-
ciated with the SISO detection of DPSK signals. 

[47] Guo and Nilsson A SD algorithm based on K-best Schnorr-Euchner (KSE) decoding is pro-
posed, which is capable of providing both hard as well as soft outputs. Fur-
thermore, hardware based performance results are presented. 

[50] Wang and Giannakis The original SD algorithm is extended to an exact Max-Log detector, which is 
employed in an iterative system. 

[56] Santiago Mozos and Extends the SD using real-valued signals to a SD considering complex-valued 

Fernandez-Getino Garcia signals, which is capable of detecting arbitrary modulation constellations. The 
performance of the proposed SD is investigated in the context of MC CDMA 

[57] Zhu et. al. In this paper MCMC aided MIMO detection is proposed and the performance 
is compared to SD algorithms. The results suggest that MCMC aided detection 
is capable of outperforming SD at a similar computational cost. 

[58] Farhang-Boroujeny et. at. MCMC based MIMO detection is discussed and the effects of different meth-
ods used for generating soft-information are presented. These methods include 
taking the empirical average as well as using importance sampling. 

[59] Aggarwal and Wang Presents a MCMC based detector optimized for MIMO systems employing 
higher-order QAM signals. In order to reduce the computational complexity 
of the proposed system, the received signal space is partitioned into subspaces, 
each of which is optimized independently. 
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A set of detectors, which exhibits a low computational complexity is constituted by the family of interference 

cancellation based algorithms [62J. The Vertical Bell LAbs Layered Space Time (V-BLAST) technique 

introduced by Foschini [53J, which is based on Serial Interference Cancellation (SIC) has inspired a spate 

of papers [54,63, 64J investigating MIMO detection algorithms. More specifically, Zanella et al. [63J has 

provided a comparative study of MMSE and V-BLAST detection, while Lee et al. [54J as well as Kim and 

Kim [64J have recently extended the original V-BLAST algorithm to a more powerful SISO detector. In 

contrast to SIC, Parallel Interference Cancellation (PIC) has been discussed in [17,65-68]. 

All SD algorithms are known to impose a low computational complexity on the receiver, if the channel 

Signal to Noise Ratio (SNR) is sufficiently high. By contrast, at low SNR values the complexity of SD al

gorithms dramatically increases, if no specific precautions are taken. Researchers have therefore considered 

the employment of guided random detection strategies, such as for example Markov Chain Monte Carlo 

(MCMC) methods [57,58, 69J as well as Genetic Algorithms (GAs) [70J. MCMC techniques nave been 

shown to exhibit a lower computational complexity than classic SD algorithms, especially in the low-SNR 

region [57J. 

In Table 1.2 we have provided a number of relevant references for MIMO detection, including their short 

description. The MMSE, LS as well as ML MIMO detectors can be found in numerous textbooks such as 

for example in [17,28, 39J and they are therefore not included in Table 1.2. Non-linear detection algorithms, 

such as for example those introduced in [71, 72J by Chen et al., which do not rely on knowing the channel 

at the receiver, are not included in Table 1.2, either. 
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1.2.2 Single-Carrier Wideband Detection 

In addition to the classification of the different detection algorithms featuring in Figure 1.1, SC STEs might 

be further classified according to Figure 1.2. The first distinction is made between Time-Domain (TD) and 

Frequency-Domain (FD) STEs. While most detection algorithms listed in Figure 1.1 might be extended 

to finite-length STEs or Decision Feedback (DF) assisted finite-length STEs, the FD-STE has mainly been 

investigated in the context MMSE and LS detection. 

Again, linear finite-length TD STEs can be directly constructed from narrowband detectors. The MMSE 

STE as well as the DF aided MMSE STE has been discussed for example in [73-75]. In this treatise, we 

will discuss the MMSE STE in Section 3.4.1, while its extension to DF-aided MMSE STE will be provided 

in Section 3.5.1. The first SISO MMSE STE has been proposed by Abe and Matsumoto in [76], while the 

extension from narrowband MBER detection to MBER aided STE has been published in [77] by Chen et al.. 

In Section 3.4.2 and Section 3.5.2, respectively, we will introduce a novel representation of both the MBER 

and the DF-aided MBER STE, while novel Bayesian as well as OHRSA aided STEs will be discussed in 

Sections 3.4.3, 3.4.4 as well as in Section 3.5.3 and in Section 3.5.4. A detailed complexity evaluation will 

be provided for each of the algorithms and their performance is studied in Section 3.5.5. 

In addition to finite-length filtering-based equalizers, trellis-based sequence-estimation aided STEs may be 

constructed, which aim for detecting a whole sequence of transmitted data rather than performing a bit-by

bit based detection. The Maximum A Posteriori (MAP) STE has for example been discussed by ToneIIo 

in [78], while in [79] Vitelko et al. have introduced a hybrid detection scheme combining SD and the classic 

Viterbi [80,81] algorithm. 

Let us now first discuss the fundamental difference between TD and FD STEs. For channels having severe 

delay spread and hence requiring a high-order TD equalizer, FD equalization - as in OFDM - is compu

tationally more advantageous than using high-order TD equalization. When comparing FD equalization 

aided classic serial modems and OFDM systems, it was pointed out in [82] by Falconer et al. that SC FD 

equalization has the capability of achieving a better BER performance than OFDM systems. A comparison 

of their achievable throughput has recently been provided by Louveaux et al. in [83]. In [84] a SD based 

cyclic-prefix aided STE was proposed, for short transmission block lengths typically on the order of 32 bits. 

In Table 1.3 a selection of papers discussing different STE approaches is provided. 

1.3 Outline and Novelty 

Against the background discussed in Section 1.2, in Chapter 2 we first explore the performance of dif

ferent narrowband MIMO detection techniques under diverse channel conditions. The differences between 
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Table 1.3: Selection of STE papers. 

[73] Al-Dhahir and Sayed A theoretical analysis of DF-aided MMSE STE is provided, including its di-
versity analysis. 

[75] Tidestav et. at. A MMSE DF STE is discussed in the context of a SDMA system and particular 
emphasis is dedicated to the near-far effects. 

[85] Tiichler et. al. In this paper BPSK SISO equalization is extended to higher-order modulation 
schemes. 

[76] Abe and Matsumoto The authors extend the MMSE SISO detector introduced in [29] to a STE em-
ployed in a SDMA system in conjunction with simple iterative channel estima-
tion. 

[77] Chen et. al. AMBER STE is designed for BPSK modulated signals transmitted over a 
time-invariant eIR. The design is closely related to MBER beamforming and 
MBER single-user equalization. 

[79] Vikalo et. at. TD STE based on the Viterbi algorithm, which employs sphere decoding for 
complexity reduction. 

[86] Dong and Wang SISO STE based on the MCMC method 

[87] Dietl and Utschick The authors propose a linear TD STE based on the Wiener filter. In order to 
reduce the associated complexity, reduced-rank subspaces are considered for 
detection. Furthermore, the performance of the proposed scheme in iterative 
systems is investigated. 

[88] Kwan and Kok TD STE in precoded MIMO systems. 

[89] Duan et. at. TD wideband beamforming using Infinite Impulse Response (IIR) rather than 
Finite Impulse Response (FIR) filters. The paper proposed different methods 
for combating the stability problems of the proposed IIR filter structures. 

[90] Li and Wong SISO TD turbo equalizer based on the Kalman algorithm. The weights of 
the SISO equalizer are updated directly rather than by considering channel 
estimation and equalization as two separate blocks. 

[91] Roy et. at. SISO TD STE based on Kalman filtering. The STE weights are calculated 
directly without estimating the channel first. 

[82] Falconer et. at. MMSE FD-STE is compared to multi-carrier systems such as OFDM and the 
associated system differences are highlighted. 

[83] Louveaux et. at. Another paper comparing OFDM and SC FD DF-STE. 

[84] Li et. al. The authors propose a FD SD based STE for short block-length. 

[92] Benvenuto et. at. A set of different receiver architectures for DF STE are proposed. While the 
feed-forward filter is implemented in the FD, different feedback-filter imple-
mentations are proposed both in the frequency and the time-domain. 

[93] Ng et. al. Linear S1S0 FD STE using soft-decision feedback. Also iterative channel es-
timation is considered. 
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the various detection strategies considered, namely the MMSE, the MBER [94-96], the Bayesian as well 

as the novel OHRSA aided detector [97] are highlighted using a simple example. Furthermore, we derive 

channel capacity bounds for the system considered and benchmark the performance of the detection algo

rithms against this theoretical bound. In addition, the effects of using estimated rather than perfect CSI is 

investigated. The aim of Chapter 2 is to provide the theoretical basis of the detection strategies using the 

same underlying system model and to discuss the complexity associated with the different algorithms. 

In Chapter 3 we extend the narrowband detection strategies discussed in Chapter 2 to STE algorithms, 

which additionally may benefit from DF. Chapter 3 contains the following novel contributions 

• A MBER and DF-MBER STE is proposed for both BPSK and 4QAM signals [98]; 

• A non-recursive Bayesian as well as DF aided Bayesian STE is designed [98-100]; 

• An OHRSA STE as well as a DF-aided OHRSA STE is contrived [101, 102]. 

Furthermore, we provide a detailed discussion on how the DF structure may be interpreted physically. Fi

nally, the achievable performance is compared to the theoretical channel capacity bound and a detailed 

complexity discussion is provided. 

In Chapter 4 we extend the detectors of Chapter 2 to SISO detection algorithms and employ them in 

multiple-stage concatenated iterative systems. In order to analyze the behaviour of these multi-stage systems 

we introduce a new 3-Dimensional (3D) EXtrinsic Information Transfer (EXIT) chart analysis. We show 

that with the aid of a Reduced complexity Max-Log (RML) detector we are capable of operating within 

2 dB of the channel's capacity bound. The main novel contributions of Chapter 4 are 

• A 3D-EXIT chart, which is reduced to a 2-Dimensional (2D) EXIT chart using projection tech

niques [103]; 

• A novel reduced complexity Max-Log detector, which is based on the OHRSA [104]. 

It will be shown in Chapter 5 that simply extending the SISO MIMO detection algorithm of Chapter 4 to 

iterative MIMO STE results in both a severe performance degradation due to error-propagation as well as a 

significantly increased computational cost. In order to address these difficulties we therefore introduce: 

• A novel soft-decision technique in Section 5.1.3 in order to combat error-propagation; 

• A MCMC aided STE is designed in Section 5.3 in order to perform non-linear detection in the in

creased search-space. 

Our conclusions provided in Chapter 6 establish the logical connection between the different chapters and 

highlight general performance as well as complexity trends of the systems considered. 
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Transmitter Transmitter Receiver 

Figure 1.3: Equivalent baseband channel model. 

1.4 System and Channel Model 

In order to allow a simple mathematical representation of the communication systems considered in this 

treatise we will employ the so-called equivalent baseband channel model. 

Transmitter: In Figure 1.3 we have illustrated a communication system composed of two transmitters 

and a single receiver, where it can be seen that the output of the MIMO transmitters, which is in general 

a complex-valued time-domain signal also referred to as the baseband signal, is oversampled and passed 

through a pulse-shaping filter. The resultant band-limited signal is then Digital-to-Analog (D/A) converted 

and passed on to the RF-frontend, where it is up-converted to the RF band. 

Physical Channel: The RF signal is transmitted over a wireless channel having a given Channel Impulse 

Response (CIR). If the bandwidth of the transmitted signal is wider than the coherence bandwidth of the 

channel, then the signal will be subject to multi-path propagation. Multi-path channels are typically char

acterized by their Power Delay Profile (PDP), which describes the time-averaged CIR as illustrated in Fig

ure 1.4. Realistic PDPs proposed in the various standard bodies are typically not symbol spaced. 

Most of the recent channel models represent the multi-path channel as a set of about six scattering clus

ters [105], each corresponding to one propagation path. If there exists no Line-of-Sight (LOS) paths between 

the transmitter and the receiver, then each multi-path component hi (t) is typically modeled as a Wide Sense 

Stationary (WSS) complex Gaussian process. The time-varying behaviour, i.e. the correlation between the 

complex-valued channel gain hi at time tl and time t2 may be written as 

(1.1) 

The TD correlation of a specific path is characterized by the TD auto-correlation function, while the corre-
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Figure 1.4: Communication environment and corresponding PDP. 

sponding FD characterization is given by the Power Spectral Density (PSD), which is the Fourier transform 

of the TD auto-correlation function. The PSD is mainly characterized by the Doppler frequency ID , where 

we have 

PSD(f) = 0 if If I > fD • (1.2) 

The most popular PSD is the V-shaped Jakes spectrum [15] . Its auto-correlation function is described by 

the zero-order Bessel function as [15] 

(1.3) 

Receiver: At the receiver, the signal is down-converted again to the baseband and Analog-to-Digital (AID) 

converted. The receiver then estimates the optimum timing-delay, applies the receive filter and down

samples the signal again. Throughout this treatise we assume that the baseband signal is sampled at the 

symbol rate, resulting in a symbol-spaced equivalent baseband CIR. In other words, the combination of 

transmit filter, physical channel and receive filter is sampled at symbol rate resulting in the equivalent base

band CIR. 



~~------------------------------~ 
Narrowband Single-Carrier Multiple-Input 

Multiple-Output Detection 

This chapter commences with an introduction to the basic system model and continues with an illustration 

of the challenges a Multiple-Input Multiple-Output (MIMO) detector faces, when operating in a single

carrier narrowband environment. In the second section of this chapter theoretical channel capacity limits 

are presented for the system model considered, which serve as benchmark schemes throughout this trea

tise. In Section 2.3 a set of different MIMO detectors, namely the Minimum Mean Squared Error (MMSE), 

the Minimum Bit Error Rate (MBER), the Bayesian detector as well as a reduced complexity Maximum 

Likelihood (ML) detector are derived. At the end of Section 2.3 the achievable performance of the various 

methods is evaluated under the assumption of having perfect channel know ledge at the receiver. This as

sumption is relaxed in Section 2.4, where a set of different MIMO channel estimators are introduced and 

the performance of the proposed MIMO detectors is investigated using the estimated, rather than the perfect 

Channel State Information (CSI). 

2.1 Introduction 

The aim of this overview section is to first introduce the system model and then to present our assumptions 

stipulated for the communication scenario considered. Based on this system model it will be illustrated with 

the aid of a simple example, how MIMO detectors operate. 
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The system considered consists of a single Mobile-Station (MS) employing an M-element transmit antenna 

array and a Base-Station (BS) receiver, which has N number of Antenna Elements (AEs). The MS's trans

mitter channel encodes the input bit-stream at a code-rate Re, pass the coded bits through an interleaver, 

modulate the signals and map them to the M different transmit AEs, as illustrated in Figure 2.1. The mod

ulated symbols are transmitted to the BS over a narrowband fading channel characterized by the channel 

coefficients hnm, as illustrated in Figure 2.1. 

The channel coefficient hnm represents the complex-valued channel coefficient between transmit AE m and 

the nth BS receiver AE. Given the transmitted symbol Xm (k), which is associated with transmit AE m, the 

output signal of the nth AE of the BS receiver at time instant k can be written as 

M 

Yn(k) = L hnmsm(k) + Yfn(k), (2.l) 
m=l 

where Yf(k) is the complex-valued Additive White Gaussian Noise (AWGN) having a variance ofE [IYfn (k) 12] = 

2CT~. 

Assuming that the MS transmits the modulated symbols to the BS over a narrowband channel at a power 

CTfx' the resultant Signal to Noise Ratio (SNR) is given as 

(2.2) 

For a given modulation scheme having M number of modulation levels and a channel code with code-rate 



2.1.1. System Model 15 

Rc the associated energy per information bit to noise ratio of Eb / No can be written as 

Eb _ CTfx ~=1 L~=1 E [Ihnm 1
2J 

No Rc log2 (M) MN2CT~ 
(2.3) 

The number of bits per transmitted symbol is denoted as Nbit = log2(M). 

2.1.1.1 Complex-Valued Vector Model 

Under the assumption of perfect synchronization, the signal transmitted by the MS's AEs and the channel's 

output is described by a (N x M)-dimensional matrix H, where the (n, m) th element of the matrix is given 

by hnm . The channel's output vector y(k) can now be expressed as 

y(k) = H(k)x(k) + '1(k), (2.4) 

where the column vector x(k) = [Xl (k),. 00, xM(k)f contains the symbols transmitted by the MS's AEs 

and the associated AWGN is given by '1(k) = ['11 (k), ... ,1JN (k) f. 

2.1.1.2 Real-Valued Binary Vector Model 

For the derivation of bit-based detection algorithms and for the evaluation of the computational complexity 

imposed by different detection algorithms, it is often desirable to characterize the system using purely real

valued channel matrices and binary input symbols. Many detection strategies referred to as lattice J based 

detectors consider a search space of hypothetical, discrete solutions to an optimization problem. This family 

of detectors [42,43,49, 107J can be derived on the basis of a real-valued binary system representation, 

as outlined for example in [49]. In order to arrive at a real-valued binary system representation when 

encountering complex-valued eIR matrices combined with higher order modulation schemes, the system 

may also be represented in a binary form. Therefore the transformation matrix Q is introduced, which is 

defined as 

(2.5) 

where ® denotes the Kronecker product and 1M is the (M x M)-dimensional identity matrix. The choice 

of the row-vector q depends on the specific modulation scheme and is defined to ensure that a sequence of 

Nbit binary input symbols, which can assume a value of ±1 is transformed into a complex-valued symbol 

of the specific modulation scheme used. For example, in case of BPSK we have q = [1] and for 4QAM we 

1 The term lattice refers to a discrete subgroup of the Euclidean space [106]. Lattice based detectors are therefore based on a 
discrete model of the observation space rather than a continuous space model. 
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(a) 4QAM consteliation. (b) 16QAM constellation. 

Figure 2.2: Phasor constellation obtained using Equation (2.6) and the binary symbols,I as given in the 
graphs. 

Table 2.1: Transformation vector for higher-order modulation schemes. The quantization vectors for higher
order QAM constellation do not use Gray mapping but rather natural enumerate. 

Modulation scheme Transformation vector 

BPSK [1) 

4QAM 1/V2· [1 - i) 

16QAM II JIO . [2 1 - 2j - Ij] 

employ q = [Jz - Jzj]. More specifically, the modulator is represented by a matrix operation as follows 

(2.6) 

where,! is a vector of length Nbit = log2 (M), whose elements may assume the values of ±1. In Table 2.1 

the transformation vector values q are summarized for the modulation schemes considered in this treatise. 

In Figure 2.2a the phasor constellation for a 4QAM constellation obtained with the aid of Equation (2.6) 

is illustrated, where the transformation vector q can be found in Table 2.1 and the binary symbol vector ,! 

is given below each phasor point. Similarly, the phasor constellation for the considered 16QAM scheme 

is illustrated in Figure 2.2a where it can be observed that the 16QAM constellation is a hierarchical exten

sion of the 4QAM constellation, i.e in each quadrant of the complex plane the phasor points are a 4QAM 

constellation. 
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Equation (2.4) can now be re-written as 

[ 

~ (y(k)) ] 

~ (y(k)) [ 
~ (H(k)Q) ] 

~ (H(k)Q) 
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(2.7) 

where ~ (.) and ~ (.) indicate the real and the complex part of a complex-valued variable, respectively, 

the index of .!i+(m-l)M indicates the ith binary symbol of the complex-valued symbol Xm and '1(k) = 

[(~(l1(k)))T (~(l1(k)))TV is the real-valued AWGN having a variance of u;. Note that Jar the real

valued binary system model the antenna index m ranges Jrom 1 to M log( M) 

Applying the transformation described by Equation (2.7) to Equation (2.4) transforms the system having 

complex-valued input symbols into a bit-based real-valued system having log2(M)-times the number of 

real-valued input symbols. For BPSK modulated signals the matrix Q degenerates to the identity matrix. 

For the remainder of this treatise the 'underlined' variables are real-valued. If the transformation described 

by Equation (2.7) is applied to Equation (2.4), the following real-valued binary system is generated 

(2.8) 

2.1.2 Problem Definition 

A major problem in MIMO based communication systems is the Co-Channel Interference (CCI), which is 

caused by several interfering transmit AEs communicating over the same channel as the desired transmit 

AE. Different techniques of combating the CCl have been proposed and a very effective one is constituted 

by the employment of multiple receive AEs, where the spatial characteristics of the channel constituted by 

the unique antenna-specific CIRs are exploited to distinguish between the different transmit AEs' signals. 

Provided that the CIRs are sufficiently accurately estimated, unique CIRs experienced by each transmit

ter may be viewed as a unique signature of the transmitters' signals similarly to the unique user-specific 

spreading sequences used in the operational Code Division Multiple Access (CDMA) systems. 

Example 2.1: MIMO Detection Problem 

Let us now consider a three-element transmit and a two-element receive antenna array as well 

as BPSK modulated signals transmitted over a narrowband channel characterized by the CIR 

matrix 

[ 

-0.50 0.75 
H= 

-0.25 -0.85 

0.55 J I 
0.70 

(2.9) 
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where the non-dispersive eIR taps of the three AEs transmitting to the first receive AE are given 

by the first row, while those with respect to the second one are given by the second row of the 

erR matrix, 

Then in the absence of noise constituted by all the legitimate combinations of the three bits of 

the three transmit AEs, the legitimate channel output states y (k) = [91 (k), Y2 (k) 1 T assume 

Ns = 2M = 8 (2.10) 

number of different values, which are associated with the Ns number of legitimate transmit

ted symbol sequences, All the Ns = 8 legitimate transmitted symbol sequences are listed in 

Table 2.2 together with the associated noise-free channel output states. 

In Figure 2.3 the channel output Yl (k) of array element one is plotted versus the output Y2 (k) 

of array element two. Assuming that the detector aims for detecting the signal transmitted by 

AE m, it has to separate the two subsets of channel output states defined as 

y;;; (2.11) 

depending on the binary value of the desired transmitter's hypothetically transmitted signal 

xm (k). Again, the detector which performs the processing in the spatial domain has to detect 

the transmitted signals by separating the two binary subsets of Y;;; and Y;;;, The two subsets 

indicated by the legends + and 0 shown in Figure 2.3a, which are associated with m = 1 

cannot be separated by a straight-line or linear decision boundary, which might be realized using 

a linear filter. By contrast, the so-called Bayesian decision boundary indicated by the dotted 

line is capable of separating the two binary subsets, hence correctly detecting the transmitted 

signal, provided that the noise power is sufficiently low. For the detection problem posed by 

Figure 2,3a and assuming equiprobable transmitted bits a linear detector would encounter an 

error probability of 

P
e 

= No. falsely classified states = ~ = 0.25. 
Total No. states 8 

(2.12) 

The separation problem associated with the detection of the m = 2nd and the m = 3rd transmit 

AE illustrated in Figure 2.3b and Figure 2.3c, respectively, is linearly separable but the optimal 

Bayesian decision boundary is again non-linear. A range of linear detectors realizing the deci

sion boundaries considered can be found in [l08], Non-linear detection has for example been 

18 



2.2. Benchmarking - Channel Capacity and Information Rates 

2 

+ 

, . 
.. [J , , 

+ .. , 
<a-" -.. .. .... ., .... .. '"' .. ', .... "', 

"c:J " \. , , , . , , 
'. I' + ',. 
'''·''~t'''''''·''.''''''':'' 

[J . 
[J 

, 

o ",-" 
[J # ••• -

I 
I 

,. '" '" '" . 
: +. 

[J . , 
+ . 

"" ~ <II> # , . 

.' ...... 

o 

.......... 

+ 
+ 
.. ,.. ...... -" . 

[J . . . . , 
I . + 
.. OJ .. OJ ...... 

19 

. 

+ 

........ 
-1 . 

• 
.. [J 

. 
,," 
. 

+ [J " 
", 

-2 

-2 

+ 

-1 0 

y](k) 

. 
• , , 

(a) Transmit AE m = 1 

2 

. . . 
" . . 
-2 

. 
+ [J 

, 

-1 0 2 -2 -1 0 2 

y](k) y](k) 

(b) Transmit AE m = 2 (c) Transmit AE m = 3 

Figure 2.3: Decision-space encountered by the detector for a narrowband MIMO system characterized by 
M = 3 transmit AEs, N = 2 receive AEs and the channel matrix defined in Equation (2.9). 

Table 2.2: Legitimate transmitted symbol sequences and the corresponding channel output states in the 
absence of noise for a narrowband MIMO system characterized by M = 3 transmit AEs, N = 2 receive 
AEs and the channel matrix defined in Equation (2.9). 

Xl X2 X3 ih(k) ih(k) 

+1 +1 +1 +0.80 -0.35 

+1 +1 -1 -0.30 -1.75 

+1 -1 +1 -0.70 +1.25 

+1 -1 -1 -1.80 -0.15 

-1 +1 +1 +1.80 0.15 

-1 +1 -1 +0.70 -1.25 

-1 -1 +1 +0.30 -1.75 

-1 -1 -1 -0.80 0.35 

discussed in [71]. 

All the algorithms, which are presented in this chapter constitute manifestations of different linear and non

linear detectors, all of which aim for separating the two binary subsets according to a given cost-function. 

Their exact behaviour will be analyzed using the same system model as considered in Example 2.1 and in 

addition by considering Rayleigh fading channels. 

2.2 Benchmarking - Channel Capacity and Information Rates 

The capacity of narrowband single-user MIMO channels was quantified in [3]. When comparing different 

antenna-array configurations, the total transmitted power of a MS is kept constant, regardless of the number 

M of transmit antennas, as defined in Equation (2.2). 
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In this section we consider the specific case of a MS having no knowledge of the CIR, which therefore 

uniformly distributes the transmit power over all transmit AEs. The infonnation rate I (x,y) supported 

by a channel is obtained through the mutual information between a transmitted signal vector x and the 

corresponding received signal vector y, for a given CIR realization H(k) under the assumption of having a 

noise vector 1], which is uncorrelated both with the CIR as well as with the transmitted symbols [109] . It is 

defined as 

I(x,y) H(y) - H(Ylx) 

- H(y) - H(1]), (2.13) 

where H represents the entropy of a random variable defined as H(·) = -10g2 (p(.)). with p(.) denoting 

the Probability Density Function (PDF). 

Given the Equation (2.13), the capacity of a complex-valued non-dispersive MIMO channel contaminated 

by AWGN is given as [3] 

C(k) E [max I (x,y)] , (2.14) 

2.2.1 Gaussian Input Signal 

Although in practice the Nbit = 10g2 M -bit signal to be transmitted has M discrete values, it is computa

tionally appealing to quantify the MIMO channel's capacity under idealized conditions. More specifically, 

it can be shown [4-6] that if the values assumed by the input signal Xm are Gaussian distributed, the mutual 

information I(x,y) quantified in Equation (2.13) is maximized. The associated channel capacity for a given 

MIMO CIR realization H(k) can then be written as [l1OJ 

(2.15) 

where the expectation value is taken with respect to different realizations of the noise, which is taken into 

account through the SNR defined in Equation (2.2), The channel capacity C of a Rayleigh fading channel, 

rather than that associated with a single time-invariant CIR realization may be obtained on the basis of 

Equation (2.15) by taking the expectation value with respect to the CIR matrix H (k), yielding 

C = E [C(k)], (2.16) 

which may be evaluated using Monte Carlo simulation. 
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2.2.2 Discrete Input Signal 

In contrast to the previous section, if the input signal of the channel is a discrete valued signal, which 

can assume M different signal values depending on the specific modulation scheme used, no closed form 

solution exists for the frequency flat MIMO channel [111]. 

In order to obtain the capacity of a narrowband MIMO channel for non-Gaussian input signals, we briefly 

return to the definition of the transmission rate supported by the channel in Equation (2.13). The entropy 

H(tj) of the noise required in Equation (2.13) can readily be calculated as [110] 

H(tj) logz (det (ne2~IN)) 

logz (Nne2~) . 

The entropy of the received signal vector can be calculated as [11 OJ 

(2.17) 

(2.18) 

where X is the set of all hypothetically transmitted symbol vectors xU) and 1 .::; i .::; MM. The expectation 

value in Equation (2.18) is taken with respect to different MIMO CIR realizations and to the noise. For a 

moderate number of transmit AEs Equation (2.18) can be evaluated using Monte-Carlo simulations. For 

higher-order modulation schemes and for a high number of transmit AEs, approximate formulae might be 

applied [112]. 

For the remainder of this treatise we stipulate the following assumptions. The 'channel capacity' C quan

tifies the maximally achievable throughput of the MIMO channel assuming a Gaussian distributed input 

signal. By contrast, the term 'achievable information rate' or 'achievable throughput' I is used when we 

refer to the theoretically possible maximal throughput, which can be achieved for a given MIMO channel 

under the constraint of the specific M-array modulation scheme used. 

2.2.3 Results 

Let us first assume encountering an ergodic Rayleigh-distributed channel, where the time average over the 

channel is equal to the corresponding ensemble average. In other words, the random fluctuation of the 

channel gain can be averaged out over time. Furthermore, the signal transmitted by the different transmit 

AEs and received by the different AEs is assumed to be independently faded. For this specific scenario 

error-free transmission is theoretically possible, if the overall transmission rate R of all transmitters, also 

referred to as the throughput is lower than or equal to the channel capacity C or the achievable throughput 
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I, respectively. 

Figure 2,4 shows both the capacity and the achievable information rate for a system using M number of 

transmit AEs and having a erR matrix having independently faded Rayleigh components. The receiver was 

assumed to employ N number of receive AEs. 

When comparing the channel capacity of Equations (2.15) and (2.16) for different array configurations in 

Figure 2,4a, it can be observed how the channel capacity increases with the number of receive as well as 

transmit AEs. 

The achievable information rate for BPSK modulated signals, when considering the same system configu

ration is illustrated in Figure 2,4b. It can be seen that for M = 2 and M = 4 the achievable information 

rate approaches IBPsK(M = 2) = 2 Wand IBPsK(M = 4) = 4 W, respectively, when assuming perfect 

Nyquist filtration associated with an excess bandwidth of zero which corresponds to the maximum possible 

Shannonian signaling rate of 2 BaudIHz 

The achievable information rate for 4QAM modulated signals considering the same system configuration is 

illustrated in Figure 2,4c, where it can be observed that for M = 2 and M = 4 the achievable information 

rate approaches IBPsK(M = 2) = 4 Wand IBPsK(M = 4) = 8 W, respectively. 

Example 2.2: Channel Capacity 

From the graphs plotted in Figure 2,4 the channel capacity might be obtained as follows. For 

example, a (N x M) = (4 x 2)-dimensional MIMO system transmitting 4QAM signals and 

using a half-rate channel code Rc = 1/2 results in a transmission rate R = Rc .log2(M) . 

M=2. Then the channel capacity bound evaluated from Equation (2.15) becomes SNRq4,2) = 

-2.5 dB and the SNR bound associated with the information rate of Equation (2.13) is given as 

SNRI4QAM (4,2) = -2.1 dB. According to the findings of Shannon [110], error-free transmission 

for the considered system becomes possible for SNR ~ SNRI4QAM (4,2) = -2.1 dB. 

The ergodic channel capacity is only suitable as a theoretical performance bound. In realistic propagation 

environments the ergodicity of the channel is often not satisfied. Therefore a performance measure called 

the outage capacity, which is more practically motivated, has been introduced [3]. The general definition of 

the outage probability for a single-user system is given as 

Pout = P(C < R) = i: pc ae, (2.19) 

where pc is the PDF of the channel capacity C. Pout is the probability with which the capacity of the 

channel C is smaller than a given target transmission rate R. In these cases when outage occurs, error-free 

transmission is not possible. Assuming the channel is constant over one transmitted codeword, the outage 
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Figure 2.4: Channel capacity and achievable information rates for different MIMO system configurations 
evaluated from Equations (2.15) and (2.13), respectively. 
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(a) Outage probability for a trans
mission rate R = 1 bpslHz . 

(b) Outage capacity associated with an outage probability 
Pout = 0.1. 

Figure 2.5: Outage probability and outage capacity evaluated as outlined in Section 2.2.3, for a system 
using M = 2 transmit AEs and a variable number N of receive AEs. 

probability is a lower bound for the codeword error rate. 

Let us now focus our attention on evaluating the associated outage probability, which was defined in Equa

tion (2.19). The outage probability recorded at a given SNR is obtained by invoking a sufficiently high 

number of channel realizations H(k) and by determining the channel capacity or the achievable information 

rate for each of these realizations according to Equation (2.15) and Equation (2.13), respectively. The outage 

probability is then given as 

p. _ No. channel realizations obeying C < R 
out - Total No. channel realizations 

The outage probability is always defined for a given target transmission throughput R. 

Example 2.3: Outage Capacity 

If we consider for example a system supporting M = 4 transmit AEs, 4QAM signals and 

a channel code having code-rate Rc = 1/2, the target throughput used when evaluating the 

outage probability is given as R = 4 ·log2(4) ·1/2 = 4 bpslHz. The outage probability 

recorded for this scenario is defined as the probability that the capacity of the channel is lower 

than 4 bpslHz. Assume for example that the channel capacity has been recorded for 10 000 eIR 

realizations at a given SNR and 300 out of the 10 000 erR realizations have a channel capacity 

below 4 bps/Hz. Then the outage probability is given as Pout = 300/10 000 = 3%. 

(2.20) 

In Figure 2.5 both the outage probability and the outage capacity are plotted for a system employing M = 2 

transmit AEs and a variable number N of receive AEs. The outage probability recorded for a transmission 

rate of R = 1 bpslHz is shown in Figure 2.5a, where it can be observed that as expected the outage probabil-
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Figure 2.6: CDF for BPSK modulated input signals, for M = 2 transmit AEs and N = 2 receive AEs at 
different SNR. 
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ity decreases upon increasing the number of receive AEs. For a higher number of receive AEs we observed 

that the increased spatial diversity of the channel was capable of reducing the probability of outages. Fur

thermore, observe in Figure 2.5a that there is a significant gap between the outage probability recorded for 

the Gaussian and the BPSK modulated inputs, as represented by the continuous and dashed lines. 

In order to characterize the outage probability, the transmission rate was fixed and the probability of an 

outage event was plotted as a function of SNR. In certain circumstances, the metric of interest might not be 

the outage probability but rather the outage capacity. The outage capacity is always defined for a given target 

outage probability Pout. If we consider the same scenario as before but we now fix the outage probability 

for example to Pout = 3%, the associated outage capacity is now defined as the throughput supported by the 

channel, while ensuring the target outage probability is not exceeded. 

In order to arrive at the outage capacity curves, shown in Figure 2.5b we evaluate the capacity C and the 

information rate I according to Equations (2.15) and (2.13), respectively, for a sufficiently high number 

of channel realizations. We then gradually increase the transmission rate, until the corresponding outage 

probability becomes Pout = 0.1. The specific transmission rate resulting in a given outage probability Pout 

is denoted as the outage capacity. 

When comparing the outage results of Figure 2.5 to the ergodic capacity plotted in Figure 2.4 for the same 

setting, it can be observed that the SNR gain achieved by having a higher number of receive AEs is higher 

when the transmitted signal experiences a non-ergodic channel where outage events occur. 

The third statistically pertinent way of illustrating the outage capacity is in the form of its Cumulative 

Distribution Function (CDF) shown in Figure 2.6 for different SNRs. Note that Figure 2.5a, Figure 2.5b and 

Figure 2.6 all represent the same channel and user scenario but for each figure a different variable was fixed, 

namely the transmission rate R, the outage probability Pout and the SNR, respectively. 
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In the remainder of this Chapter, we aim for introducing different MIMO detection algorithms with the 

ultimate goal of approaching the channel capacity limits introduced. 

2.3 Multiple-Input Multiple-Output Detection Algorithms 

In this section different MIMO detectors, namely the MMSE, the MBER, the Bayesian and a reduced com

plexity ML MIMO detector will be presented. All the algorithms presented in this section are derived on the 

basis of both the complex-valued and the real-valued binary system model described in Section 2.1.1 and 

their characteristic behaviour is analyzed using the simple Example 2.1. At the end of this section simulation 

results are presented for the different algorithms both for block-fading channels, where the channel's enve

lope is kept constant for a specific number of transmitted bits, as well as for uncorrelated fading channels. 

The Frame Error Rate (FER) results obtained for the block-fading channel are benchmarked against the 

outage capacity results of Figure 2.5, while the BER results generated for the uncorrelated fading channel 

are benchmarked against the capacity limits. 

2.3.1 Minimum Mean Squared Error Detection 

The design of angularly selective linear filters based on the MMSE criterion has its origin in the design of 

classic frequency-selective filters, for example channel equalizers. In the context of MIMO detection, the 

maximization of the SNR or the Signal to Interference plus Noise Ratio (SINR) has been carried out by 

minimizing the Mean Squared Error (MSE) between the received and the transmitted reference sequence at 

the output of the linear MIMO detection filter. Owing to its convenient optimization characteristics, i.e due 

to having a single minimum, the MMSE design approach has been popular in digital receiver design [28]. 

In the subsequent discussions, the time index k is dropped for notational convenience. 

The output of a linear MIMO detector can be written as [113] 

A wH 
X = y, (2.21) 

where W is the (N x M)-dimensional complex-valued MIMO receiver's weight matrix. The different 

columns of W denoted as Wm are associated with the different transmitters' symbols and x is the (M x 1)

dimensional filter output vector generated for the sake of detecting the associated transmitted signal vector 

x. The corresponding real-valued filter output is given as 

(2.22) 
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Figure 2.7: MSE as a function of the array weights associated with the third transmit AE for the example 
system of Section 2.1.2 at SNR=17 dB. 

where W is the (2N x NbitM)-dimensional real-valued weight matrix. Again, the different columns of 

W denoted as ~m are associated with the different transmitters' binary symbols, ~ is the (NbitM x 1) 

dimensional filter output vector generated for the detection of the associated binary transmitted signal vector 

The squared error at the filter output can then be written as 

Ilx - WHyW = IIx _xll2 

11,r - WH~112 = 11,r _~112. 

The MMSE optimization problem is now defined as 

or 

respectively. 

The MSE can now be expressed as 

trace ((x- WHy)(x- WHy)H) 

trace ((,r - WT~) (,r - wT~f) . 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

Figure 2.7 shows the MSE surface for user three of Example 2.1 introduced in Section 2.1.2 at SNR= 17 dB 
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as a function of the MIMO array weight W13 and weight W23. We can see the typical quadratic shape of the 

cost-function, which may be minimized by taking the derivative of Equation (2.27) and setting it to zero. 

The derivative of Equation (2.27) can be expressed as 

Setting Equation (2.28) equals zero yields 

E [-2(WHy-x)yH] 0 

_WHE~yH]+E[XyH] _ 0 

W E ~yH] -1 E ~xH] 

w 

where the cross-correlation matrix Ryx is given as the channel matrix H since we can write 

Ryx E ~xH] 

E [HxxH] + E [l1XH] 

= E[HJE [xxH] +0 

H 

(2.28) 

(2.29) 

(2.30) 

if the symbols are uncorrelated from the noise as well as the channel matrix and E [xxH] = 1M. The 

correlation matrix Ryy can be written as 

Ryy E ~yH] 

E [(Hx + l1)(Hx + l1)H] 

- HHH + 20;/Nf 

where it again was assumed that E [xxH] = 1M. 

The corresponding weight vector for the corresponding real-valued binary system is given as 

(2.31) 

(2.32) 

Note, that the noise variance considered in the context of the real-valued binary system is only (J'~ rather 

than 2(J'~ as considered in the context of the complex-valued MMSE detector. 
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For BPSK modulated transmitters, the detected symbol vector is given as2 

x = sign ( ~ ( WHy)) = ~ = sign ( WT~) (2.33) 

and for 4QAM modulated sources the corresponding detected symbol is given by 

(2.34) 

which is identical to 

(2.35) 

The filter weights given in Equation (2.29) and in Equation (2.32) are optimal in the MMSE sense and this 

solution is often also referred to as the Wiener filter [28]. Under the previously stipulated assumptions no 

other linear filter is capable of achieving a higher SNR at the receiver's output. The implementation of the 

Wiener solution is in practice relatively simple, since the MSE is a quadratic function associated with a single 

minimum, which corresponds to the MMSE solution. For the adaptive realization of the algorithm numerous 

examples can be found in the literature [28]. The most common ones are the Least Mean Square (LMS) 

and the Recursive Least Squares (RLS) algorithm, which update the MIMO array's weights according to a 

certain step-size and forgetting factor, respectively. 

For BPSK and 4QAM signals, the BER at the output of the MMSE detector may be calculated directly 

as a function of the MSE, if the conditional PDF of the filter output can be assumed to be Gaussian dis

tributed. If this approximation holds, minimizing the MSE error is equivalent to minimizing the BER and 

thus optimality is achieved in terms of both MSE and BER. 

2.3.1.1 Computational Complexity of the Realm Valued MMSE Detector 

For the evaluation of the computational complexity associated with the MMSE detector, the real-valued 

system model is considered. This will facilitate its fair comparison to other algorithms, since in the case 

of real-valued operations the complexity imposed by a multiplication and an addition might be considered 

equivalent. 

The complexity evaluation of any linear detector may be divided into two parts, namely the calculation of 

the MIMO array's weight vector and the detection of the symbol itself. Upon introducing the variables 

A = NbitM as well as B = 2N, and assuming that the weight vector is calculated using direct matrix 

2Note, that the optimal MMSE receiver designed for BPSK modulated signals would only minimize the MSE between the 
transmitted signal and the real part of the received signal. However, there exists no closed form solution for this problem and we 
will therefore employ the complex-value MMSE detector also for BPSK modulated signals. The performance of the real-valued 
and complex-valued solutions was studied for example in [114]. 
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Table 2.3: The normalized computational complexity (real-valued additions and multiplications) of the 
MMSE detector when considering the detection of a single transmitted bit. 
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Figure 2.8: The normalized computational complexity required for evaluating the MMSE array weights as 
a function of the number of transmit AEs for different modulation schemes and a different number of MIMO 
array weights, when considering the detection of a single transmitted bit calculated according to Table 2.3. 
The proportionality factor of the matrix inversion was chosen to be 3. 
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inversion rather than an iterative algorithm and assuming that the channel matrix is known to the receiver, 

the associated complexity is given as follows: 

• The calculation of the (B x A)-dimensional correlation matrix of Equation (2.29) invokes (2A -

1) B2 additions and multiplications for the channel correlation matrix plus B further additions are 

required to take into account the AWGN. 

• The matrix inversion of Equation (2.32) might be carried out at a computational cost, which is pro

portional to 0 ( B3). 

• The matrix multiplication required for the calculation of the weight matrix in Equation (2.32) can be 

performed at a cost of (2B -l)BA number of operations. 

The total number of operations constituted by the number of multiplications plus the number of additions 

can be obtained by substituting A as well as B. The complexity imposed by the detection of a transmitted 

bit involves B multiplications and (B - 1) additions. The total complexity is summarized in Table 2.3. 

In Figure 2.8 the normalized computational complexity defined as the number of real-valued additions plus 

multiplications required for the evaluation of the MMSE weight vector plotted from Table 2.3 as a function 

of the number of transmit AEs M for BPSK modulated as well as 4QAM signals, when considering N = 2,4 

and 6 receive AEs. 
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The MIMO system considered employs M = 2 transmit AEs and different number of receive AEs N. The 

channel was assumed to be an independent, uncorrelated Rayleigh fading channel between all antenna links 

with E [Ihnm 1
2J = 1. Perfect channel knowledge is assumed by the receiver. Figure 2.9 shows the BER 

versus Eb / No performance for the uncoded system. It can be observed that as the number of receive AEs 

is increased, the increased diversity gain results in an improved BER performance. Furthermore, it can be 

observed, that the BER versus Eb/No performance of the BPSK modulated and the 4QAM signal is very 

similar. 

2.3.2 Minimum Bit Error Rate Detection 

As it was pointed out in Section 2.3.1, the MMSE receiver design is optimum in terms of the achievable BER 

only if the Gaussian assumption on the detector's output holds. This however is not necessarily guaranteed 

in a communication system, as it was shown in [31J in the context of channel equalization and in [33] for 

conventional narrowband beamforming. In practice the so-called near-far effect results in a non-Gaussian 

distribution and this observation motivated the employment of other optimization criteria, such as the direct 

optimization of the BER. 

More explicitly, it is a more judicious option to minimize directly the BER rather than minimizing the MSE. 

Minimizing the BER directly will often result in a lower BER than the MMSE approach and will become 

equivalent to the MMSE approach, if the filter's output is Gaussian distributed. The MBER solution may be 
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defined as 

where 

A WH 
X = y, 

W = arg min Pe(W) 
WECNxM 

or equivalently 

A WT 
;£ = - ~, 

where 
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(2.36) 

(2.37) 

(2.38) 

(2.39) 

The first step in the derivation of the filter weights, which minimize the Bit Error Probability (BEP) is to 

find an expression for the BEP at the output of a linear receiver, which is typically achieved by integrating 

the conditional PDF of the filter output over its dynamic range. Assuming a MIMO system, which employs 

M jointly detected transmit AEs, the transmitted symbol vector may assume Ns = M M different values, 

where M is the number of modulated phasor points [115]. This Ns number of possible transmitted symbol 

vectors x form the set 

(2.40) 

The set of possible channel output vectors associated with the set X may be defined as 

(2.41) 

2.3.2.1 MBER Detection of BPSK Modulated Signals 

As already illustrated in the example of Section 2.1.2, this set can be partitioned into two subsets depending 

on the value of xm, yielding 

(2.42) 

In a similar manner, the noise-free part of the detector's output signal is limited to values of the set 

x = {iU) = wHyv(i) 1 < i < N. } m m m 1 __ Sl (2.43) 

where Wm is the mth column of the MIMO array's weight matrix W. Again, this set can be partitioned into 

two subsets defined as 

(2.44) 
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2 

Let us now define xR,m(k) = ~(xm(k)) and i~:m = ~ U~)). Then the conditional PDF of xR,m(k) 

derived for BPSK modulated sources can be expressed as the superposition of Nsb = l¥ Gaussian PDFs 

positioned at the legitimate noiseless output states and averaged over the Nsb equiprobable states: 

(2.45) 

where Nsb = l¥ is the number of legitimate noise-less filter output states in the set X:. The variance of 

the noise after filtering with the MBER detector's weights is given by 2(},~w~wm since the noise is filtered 

by the same detector's weights as the received signal. 

In Figure 2.11 the conditional PDF of the channel output associated with the m = 3rd transmit AE is plotted 

for the scenario already considered in Example 2.1 of Section 2.1.2 at SNR=17 dB. The PDFs associated 

with both the MMSE and the MBER detectors' weights were plotted using Equation (2.45). It can be 

seen that the filter output is not Gaussian distributed regardless whether the MMSE solution or the MBER 

solution is considered. It can also be observed that the minimum distance between the possible filter output 

states indicated as small crosses and the decision boundary found at XR,3 = 0 is slightly larger for the MBER 

solution. This will result in a lower BER associated with the MBER-aided MIMO detector. 

The BER can now be obtained by integrating the conditional PDF p(xR,mlxm = +1) over the negative 
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half-plane, namely over the range, where erroneous decision are carried out, as seen below: 

(2.46) 

(2.47) 

yielding 

(2.48) 

where we have 

(2.49) 

and the Gaussian Q-function given as [28] 

Q(z) = 100 

~exp (_;2) oy. (2.50) 

Equation (2.48) may be employed to calculate the BER performance of any linear detector characterized by 

the weight vector W m, enabling us to avoid a Monte Carlo simulation for Gaussian channels. 

In Figure 2.12 the BER surface is plotted as a function of the weight coefficients for the system already 

considered in Example 2.1 of Section 2.1.2 at SNR=lO dB. It can be seen in Figure 2. 12a, which shows the 

BER surface associated with the m = 3rd transmit AE, that in contrast to the MSE surface of Figure 2.7 

plotted for the same scenario, the MBER surface has a very distinct minimum, which is restricted to a small 

array weight region. Hence, a slight variation of the weights will cause large BER variations, when operating 

close to the MBER solution. The different location of the MMSE and the MBER solution is indicated by 

the arrows. The corresponding BERs are distinctly different The specific shape of the BER surface makes 

it difficult to find the optimum solution to Equation (2.37) and Equation (2.39), respectively. As already 

mentioned above, the solution to this problem can be found by taking the derivative of Equation (2.48) and 

setting it to zero. The derivative of Equation (2.48) is given as (Appendix A) 

(2.51) 

where we have 

c= 1 
2Nsb v2mT~wMwm . 

(2.52) 

The weight values where we have Fe (w m ) = a might be found by using a simplified conjugate gradient 

algorithm, as given in Appendix B. 
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Figure 2.12: BER as a function of the array weights for the (2 x 3)-dimensional MIMO example used in 
Section 2.1.2 at SNR=lO dB. 
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In Figure 2.12b the BER surface is shown as a function of the weights associated with the m = 1st , transmit 

AB, which corresponds to the linearly non-separable detection problem outlined in Figure 2.3a. It can 

be seen that the MBER surface now becomes irregular, exhibiting numerous local extrema even for this 

low-dimensional detection problem. Finding the minimum of this surface is not a trivial task and hence the 

search algorithm has to be carefully initialized. Employing a conjugate gradient algorithm has in some cases 

shown to be suboptimal, since it does not always converge to the MBER solution, it may even converge to 

a weight vector associated with a BER performance worse than that of the MMSE algorithm. In scenarios 

where convergence of the algorithm is difficult to achieve, it is more advisable to consider the employment 

of the steepest decent algorithm, which is more likely to find the minimum of the BER surface at the cost of 

an increased number of iterations, Le. increased complexity. In order to circumvent convergence problems 

other optimization algorithms [94,95] such as for example Genetic Algorithms (GAs) [116] have also been 

proposed, which are more robust in the presence of local minima occurring in the BER cost-function. 

2.3.2.2 MBER Detection of 4QAM Signals 

Before commencing with the derivation of the 4QAM weights, we reformulate the output of a linear filter 

given by Equation (2.21) under the absence of AWGN as 

Cx. 

(2.53) 

(2.54) 

We refer to the (i, j)th element of the combined impulse response matrix Cas Cij' The output of the MBER 

detector associated with the desired transmit antenna m can now be expressed by 

Xm = CmmXm + L CmiXi , 

i:j:m 

(2.55) 

where the first term is the desired signal and the sum represents the residual interference term. Under the 

assumption that Cmm is real-valued and positive, the optimal decision rule for 4QAM is given by 

(2.56) 

It is, however, not guaranteed that Cmm is real-valued and positive, and therefore a complex-valued coeffi

cient Cmm might rotate the transmitted symbol constellation according to Equation (2.55). In order to remove 

this phase rotation, the detector has to rotate its weight vector according to 

C~m 
Wrot,m = -, --I Wm· 

Cmm 
(2.57) 
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Without this rotation the MBER algorithm still might produce a perfect 4QAM constellation at the MBER 

filter's output, but may introduce a phase shift similar to that often imposed by the Constant Modulus 

Algorithm (CMA) [115, 117]. Note that for the MMSE algorithm this weight rotation is not required since 

for the MMSE weight vector we have Cmm ~ 1. 

Having introduced the weight rotation of Equation (2.57), the derivation of the 4QAM MBER solution 

closely follows the derivation of the BPSK MBER weights. Depending on the hypothetically transmitted 

symbol Xm, the set of possible channel output states Y for a given weight vector W m, introduced in Equa

tion (2.41) can be partitioned into four subsets given as 

Y~'± = {y(i) E Y I xm = ±1 ±j}. (2.58) 

In the same way, the set of noise-free detector outputs X generated for a given weight vector Wm, which was 

defined in Equation (2.43) can be partitioned into four subsets according to 

(2.59) 

The conditional PDF of xm derived for 4QAM sources can now be expressed as 

(2.60) 

where Nsb = ~ is the number of legitimate noiseless filter output states in the set y~/+. Here we have 

chosen the symbol Xm = + 1 + j for the derivation of the BER expression. Choosing any other symbol for 

our derivation, would yield the same result. 

The resultant BER can now be calculated as 

1 
Pe = 2" (Pe,R + Pe,l) , (2.61) 

where following the derivation of the BPSK weights, Pe,R and Pe,l can be expressed as 

(2.62) 

and 

(2.63) 
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where we have 

(2.64) 

and 

(2.65) 

while ir~ = ~ (i~») and i~:m = ~ ( i~»). The gradient of the BER given in Equation (2.61) can now be 

calculated as 

(2.66) 

where we have 

(2.67) 

and 

(2.68) 

while 

c= 1 
2Nsb v'27rcr~w!Jwm 

(2.69) 

The MBER weights, again, can be found using the simplified conjugate gradient algorithm, where the 

weights have to be rotated after each iteration using Equation (2.57). 

2.3.2.3 MBER Detection for the Real-Valued Binary System Model 

In contrast to the complex-valued representation of the MBER algorithm found in the literature, a real

valued representation is independent of the modulation scheme and resembles the MBER solution derived 

for BPSK modulated signals. Let us denote 

(2.70) 

where,!. is a hypothetically transmitted binary symbol associated with the real-valued binary system de

scribed by Equation (2.8). Associated with the set X, the set of legitimate real-valued channel output 

vectors may be defined as 

(2.71) 
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which can be partitioned according to 

(2.72) 

In a similar manner, the noise-free part of the linear MIMO detector's output signal only may assume discrete 

values of the set 

(2.73) 

where!f.m is the mth column of the weight matrix W. Note, that for the real-valued binary system model the 

index m ranges from 1 to MNbit. This set again can be partitioned into two subsets defined as 

(2.74) 

Following the derivation of the complex-valued MBER detector derived for BPSK modulation, the BEP can 

be shown to be 

(2.75) 

in conjunction with 

(2.76) 

The derivative of Equation (2.75) is given as 

(2.77) 

where we have 
1 

c= J 2 T 2Nsb 27TO'n!f.m!f.m 
(2.78) 

Assuming a normalized weight vector, where !f.~!f.111 = 1, this further simplifies to 

where 

c- 1 
- 2Nsb V27T0'~ . 

(2.79) 

If the MBER solution is expressed with the aid of the binary real-valued system representation of this sec

tion, the phase rotation of Equation (2.57) required for the complex-valued 4QAM MBER solution becomes 
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Table 2.4: The normalized computational complexity (real-valued additions and mUltiplications) of the 
MBER detector when considering the detection of a single transmitted bit. 

Weight vector calculation NgradNsb(2 + 16N)+ 
N eN(2MNbit-12) 

s MNbit 

Detection 4N-l 

unnecessary. 

2.3.2.4 Computational Complexity of the Real-Valued MBER Detector 
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The computational cost associated with the MBER algorithm is evaluated on the basis of the real-valued 

binary system model and under the assumption that the channel matrix is known to the receiver. The as

sociated computational cost can again be divided into two parts similarly to the complexity evaluation of 

the MMSE algorithm. The computational complexity required for the calculation of the MBER weights is 

difficult to quantify and depends strongly on the initial weights chosen for the conjugate gradient algorithms 

as well as the shape of the BER surface. 

Let us first quantify the computational complexity imposed by the evaluation of the BEP gradient of Equa

tion (2.79) for a normalized weight vector. The evaluation of the expression in the sum of Equation (2.79) 

requires 3 + 3 . 2 . N = 3 + 6N number of real-valued multiplications and additions as well as one evalua

tion of the exp function. Each term in the sum of Equation (2.79) has to be evaluated Nsb times and summed 

up, which requires further Nsb - 1 additions. The normalization of the weight vector of Equation (2.79) 

contributes 2· N + (2. N -1) + 2· N = 6N - 1 real-valued operations. The computational complexity 

difference between the detection of BPSK and 4QAM signals is included in the factor Nsb. Additionally 

the receiver has to evaluate the legitimate channel output states, which requires Ns (2N (2MNbit - 1)) real

valued additions and multiplications. The evaluation of a hypothetical detector output state associated with 

a given channel output state requires (4N - 1) real-valued additions and multiplications. 

When considering the complexity of the conjugate gradient algorithm presented in Appendix B, it can be 

seen that the computational complexity associated with the evaluation of the gradient constitutes the main 

contribution. We therefore approximate the complexity required for the calculation of the weight vector 

associated with a single transmitted bit as NgradC'VPe, where Ngrad is the number of iterations used by the 

conjugate gradient algorithm and 

C'VPe ~ Nsb(3+6N +6N -1 +4N -1 + 1) = Nsb (16N +2) (2.80) 

is the computational complexity required for the calculation of the BEP gradient of Equation (2.79) for a 

given weight vector. The total normalized complexity required for carrying out the detection of a single bit 
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Figure 2.13: The normalized computational complexity required for evaluating the MBER array weights as 
a function of the number of transmit AEs for different modulation schemes and a different number of MIMO 
array weights, when considering the detection of a single transmitted bit calculated according to Table 2.4. 
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is summarized in Table 2.4, where the evaluation of the exp function has been neglected. 
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In Figure 2.13 the normalized computational complexity defined as the number of real-valued additions 

plus multiplications required for the evaluation of the MBER weight vector - as summarized in Table 2.4 

- is plotted as a function of the number of transmit AEs M for BPSK modulated as well as 4QAM signals 

when considering N = 2,4 and 6 receive AEs. In contrast to the computational complexity imposed by the 

MMSE detector, which was illustrated in Figure 2.8, it can be observed that the complexity associated with 

the calculation of the MBER weights increases exponentially with the number of transmit AEs M and the 

bits per transmitted symbol Nbit = 10g2(M). Note that the number of iterations required by the simplified 

conjugate gradient algorithm for the evaluation of the MBER weights might be very high and thus further 

increases the associated complexity. Once the weight vector has been evaluated, the detection of the symbol 

itself can be achieved at a computational cost, which is identical to that imposed by the MMSE detector, 

which is linear in M, as it can be seen from Tables 2.4 and 2.3, respectively. 

2.3.2.5 Performance of the MBER Detector 

The single-user MIMO system considered is identical to the scenario used in Section 2.3.1.2, which is 

characterized by M = 2 transmit AEs at the MS and a BS employing N = 2,3 and 4 receive antennas. 

The channel was assumed to be Rayleigh faded with E [lhnm I
2 ] = 1. Figure 2.14 shows the BER versus 

Eb / No performance of the uncoded system. For BPSK modulated signals, the MBER detector clearly 

outperforms the MMSE detector of Figure 2.9. This is mainly due-to the fact that the MBER detector only 

optimizes the real-part of the filter output, whereas the MMSE algorithm minimizes the MSE composed 

of both the real and the imaginary part of the filter output. It was shown in [114] that the real-valued 
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Figure 2.14: BER versus Eb / No performance for a MIMO system employing M = 2 transmit AEs and 
N = 2, 3 as well as 4 receive AEs. BPSK and 4QAM modulated signals as well as having perfect channel 
knowledge were considered. 
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MMSE detector performs similarly to the MBER detector in the context of BPSK modulated signals. If 

4QAM signals are considered, the MMSE and the MBER algorithm perform similarly for N = 2 receive 

antennas, since for a low number of receive AEs the linearly non-separable channel-output constellation 

points degrade the BER. If the number of receive AEs is increased to N = 3 and N = 4, respectively, the 

MBER detector outperforms the MMSE algorithm in the high-SNR region. This performance difference 

indicates that the MMSE algorithm is incapable of optimally separating two linearly separable data sets 

owing to its MSE-based optimization function, whereas the MBER algorithm achieves this goal. We note, 

that both the MBER and the MMSE algorithm have to perform the same classification task by constructing 

a linear decision boundary defined by the filter weights. In general the MBER algorithm is more likely to 

outperform the MMSE algorithm in the high-SNR region, since the PDF is then mainly determined by the 

non-Gaussian interference, rather than by the Gaussian noise. 

2.3.3 Bayesian Detection 

Both the presented MMSE and MBER algorithms presented in Section 2.3.1 and Section 2.3.2, respec

tively, constitute linear receivers. The optimal receiver designed for a given channel model however can 

only be realized by a non-linear structure designed for implementing the decision boundaries indicated in 

Section 2.1.2. 

For the derivation of the Bayesian detector let us assume that the transmitted signal is BPSK modulated. 

The probability of making an erroneous decision Pe is then defined as 

Pe = P(xm = +llxm = -l)P(xm = -1) + P(xm = -llxm = +l)P(xm = +1). (2.81 ) 
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It was proved for example in [39] that Equation (2.81) is minimized when the detector decides for the 

hypothesis xm = ± 1 if 

P(Ylxm = ±l) > P(Ylxm = =f1) (2.82) 

assuming that all hypothesis are equally likely. This implies that we decide for the hypothesis of xm, which 

maximizes the conditional likelihood. We may now write the decision rule as 

Xm = arg max P(Ylxm). 
xmE{ +1,-1} 

(2.83) 

In decision theory most of the time the conditional probability density P (y I Xm = ± 1) is known or can 

be estimated. It becomes clear when considering the Bayes theorem, which enables us to express the a 

posteriori probability as 

P(Xm = ±liY) = P(Ylxm = ±l)P(xm = ±l) 
p(y) 

(2.84) 

that maximizing the conditional likelihood, is identical to maximizing the a posteriori probability if the 

hypothesis are equally likely. The Bayes' theorem assists in transforming the conditional probability density 

function p(Ylxm = ±1) in order to obtain the conditional a posteriori probability P(xm = ±lly). 

The probabilities given in Equation (2.84) can now be directly used to perform a Maximum A Posteriori 

(MAP) decision based on the soft output of the Bayesian detector. The corresponding decision rule can be 

written as 

+1 if P(xm = +l)p(Ylxm = +1) - P(xm = -l)p(Ylxm = -1) > 0; 

-1 if P(xm = +l)p(ylxm = +1) - P(xm = -l)p(Ylxm = -1) < O. 
(2.85) 

It is noted that the MBER detector introduced in Section 2.3.2 may be viewed as the linear detector achieving 

the lowest possible miss-classification error, whereas the Bayesian detector characterized by Equation (2.85) 

realizes the optimum non-linear detector attaining the lowest possible miss-classification error. 

2.3.3.1 Bayesian Detection of BPSK Modulated Signals 

Equation (2.85) can be directly used to design the Bayesian detector for BPSK modulated signals. All 

that needs to be done to construct a Bayesian detector, is to find an expression for the two conditional 

probabilities p(Ylxm = +1) and P(Ylxm = -1). This can be done in analogy to the derivation of the 

MBER detector presented in Section 2.3.2. Again, the partitioning of the legitimate noise-free channel 

output states into the two subsets y± is considered, which has been defined in Equation (2.42). Let us now 
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rewrite the decision function of Equation (2.85) as 

fm = sigo(fB,m(r)) = { 
+1 if /B,m (y) 2: 0 

-1 if /B,m (y) < 0 
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(2.86) 

where the optimal Bayesian decision function [118] /B,m (-) based on the difference of the associated con

ditional PDFs is given as 

/B,m (y) P (ylxm = +1) - P (ylxm = -1) 

L P (Ylx~'+)) - . L P (Ylx~'-)) 
X~'+)EX';; X~'-)EX';;-

(2.87) 

where we havey~'±) E Y;;. It is shown in Figure 2.15 how the Bayesian detector formulates an optimum 

non-linear decision boundary. The surface illustrates the values of the Bayesian decision function as a 

function of the channel-output for the specific channel setup used in Example 2.1 of Section 2.1.2 when 

considering the detection of the signal associated with the m = 3rd transmit AE. Figure 2.15 corresponds 

to Figure 2.3c of Example 2.1 of Section 2.1.2 of this chapter. The non-linear decision boundary is placed 

exactly where the decision function of Equation (2.87) is equal to zero, which is illustrated at the bottom of 

the graph as a dotted line. 

2.3.3.2 Bayesian Detection for 4QAM Signals 

In the context of 4QAM a symbol Xm is associated with the two binary bits ~2m-l and ~2m' The Bayesian 

detector makes a decision for each of this sets separately according to 

where we have 

~2m-1+i = { +1 
-1 

if f~:~ (y) 2: 0 

if f~:~ (y) < 0 
for i = 0,1, 

fJ~~ (y) - P (y I ~2m-1+i = +1) + P (y I ~2m-1+i = -1) 

. L . P (Ylx~'+)) - . L . P (Ylx~'-)) 
x~'+)EX';;" x~'-)EX';;-" 

(2.88) 

(2.89) 
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Figure 2.15: Difference of the conditional probabilities as a function of the channel output associated with 

the m = 3rd transmit AE for the example used in Section 2.1.2 at SNR= 1 0 dB. 

with 

where X~,± have been defined in the context of Equation (2.58). 

2.3.3.3 Bayesian Detection for the Real-Valued Binary System Model 
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In analogy to the MBER detector also the Bayesian detector can readily be derived for the real-valued system 

model presented in Equation (2.7). Given the set of legitimate real-valued channel output states Y~ defined 

in Equation (2.72), then the Bayesian decision function /B,m (.) may be expressed as 

p (~I ~m = +1) - P ~ I ~m = -1) 

. L P (~I!~/+)) - . L P (~I!~'-)) 
£,:,+ ) E~ £,:.-l E!r;;; 

(2.90) 
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Table 2.5: The normalized computational complexity (real-valued additions and multiplications) of the 
Bayesian detector when considering the detection of a single transmitted bit. 

Calculation of the legitimate Ns(2N(2MNlli!-1)) 

channel output states MNbit 

Detection of a single bit 
Ns6N -1 plus 

Ns exp function evaluations 

Again, the notation used for the real-valued binary interpretation of the Bayesian detector is independent 

of the modulation scheme and only real-valued operations have to be performed at the receiver. Note, that 

the factor (27r~~)N does not change compared to that of the complex-valued Bayesian detector even so the 

noise is now real-valued or one-dimensional. The exponent N of the factor remains unchanged, since the 

square root factor which would be introduced due to the 'real-valued' noise is canceled out by the fact that 

the channel-output states have 2N real-valued dimensions. 

2.3.3.4 Interpretation of the Bayesian Detector as RadiaI-Basis-Function Network 

The Bayesian detector can be realized using a so-called Radial Basis Function Network (RBFN) [119, 120] 

positioning a Gaussian kernel function of the form seen in Equation (2.92) at the legitimate channel output 

states. The response of such a RBFN, if BPSK modulation is considered, is given as 

Nc 

JRBF (y) = 1.:2 WicjJ(y,c(i)) 
i=l 

with the Gaussian kernel function given by 

cjJ(y(k), c(i)) = exp _"Y -; II , 
(

(i) 2) 

(2.91) 

(2.92) 

where the RBF centers c(i) are set to the legitimate noise-free channel output states determined by the CIR, 

the radius p is chosen to be 20'~, the RBF weights Wi are set to +1, if we have c(i) E Y;;; and to -1 if 

c(i) E Y;;;, and the number of RBFN centers Nc is set to the number of noise-free channel output states Ns. 

2.3.3.5 Computational Complexity of the Real-Valued Bayesian Detector 

Similar to both the linear MMSE and the MBER detectors discussed in Section 2.3.1 and Section 2.3.2, 

respectively, the computational complexity imposed by the Bayesian MIMO detector can be separated into 

two parts, namely the calculation of the legitimate channel output states and the detection of the transmitted 

bits. 
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Figure 2.16: The normalized computational complexity imposed by the Bayesian detector for the detection 
of a single transmitted bit as a function of the number of transmit AEs, evaluated for different modulation 
schemes and a different number of MIMO array elements. The values were calculated according to Table 2.5. 

6 

According to Equation (2.71) the computation of the possible channel output states requires Ns(2N(2MNbit-

1)) number of real-valued additions plus multiplications as derived in Section 2.3.2.4. For binary signals, 

the detection of a single bit requires Ns6N - 1 real-valued additions plus multiplications as well as Ns 

evaluations of the exp function. The total complexity is summarized in Table 2.5. 

In Figure 2.16a the normalized computational complexity defined as the number of real-valued additions 

plus multiplications required for the calculation of the legitimate noiseless channel output states is illus

trated as a function of the number of transmit AEs M for BPSK modulated as well as 4QAM signals, when 

considering N = 2,4 and 6 receive AEs. Similar to the computational complexity associated with the eval

uation of the BER surface gradient illustrated in Figure 2.13, the complexity associated with the evaluation 

of the legitimate channel output states is exponential in the number of transmit AEs M, as well as in the 

number of bits per symbol Nbit . 

However, once the MBER detector has evaluated the associated weight vector, it can carry out the detection 

at a linearly increasing cost as it can be seen from Table 2.4. By contrast, once the legitimate channel output 

states have been evaluated the complexity imposed by the Bayesian detector when detecting a single bit 

increases exponentially with the number of transmit AEs M, as well as with the number of bits per symbol 

Nbit . This exponential increase of computational cost required for the detection of a single bit is illustrated 

in Figure 2.16 as a function of the number of transmit AEs M for BPSK modulated as well as 4QAM 

signals, when considering N = 2,4 and 6 receive AEs. The computational cost associated with the linear 



2.3.4. Reduced Complexity Maximum Likelihood Detection 

10° 

10-1 

10-2 

et: 
UJ 
III 

10-3 

10-4 

10-5 

0 5 10 

Et/NO[dB] 

4QAM • 
BPSK • 
N=2-
N=3 ----
N=4 .....•... 

15 20 

Figure 2.17: BER versus Eb/NO performance for a MIMO system employing M = 2 transmit AEs and 
N = 2,3 as well as 4 receive AEs. BPSK and 4QAM modulated signals as well as having perfect channel 
knowledge were considered. 

MMSE and MBER detector denoted by the label 'Lin. det.' are shown as a reference. 

2.3.3.6 Performance of the Bayesian Detector 
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The system considered is identical to the system used in Section 2.3.1.2, which is characterized by M = 

2 transmit AEs at the MS and a BS employing N = 2 receive antennas while considering independent 

uncorrelated Rayleigh fading channels with E [Ihnm 12] = 1. It can be observed in Figure 2.17 that the 

receiver exhibits a significantly better performance, than the two linear detectors, namely the MMSE and 

the MBER detector. This performance gain however is achieved at a significantly increased computational 

cost imposed by the Bayesian detection algorithm. In the next subsection we therefore introduce a low

complexity algorithm, which approaches the performance of the Bayesian detector. 

2.3.4 Reduced Complexity Maximum Likelihood Detection 

Let us define the ML solution for the transmitted symbol vector, which is given as 

x = argmax p(ylx), 
.rEX 

where X is the set of potentially transmitted symbol vectors x. Equation (2.93) may be re-written as 

(2.93) 

(2.94) 

When comparing the optimization performed by the Bayesian detector given in Equation (2.83) and Equa

tion (2.93), which defines the ML solution for the reduced complexity ML detector it can be observed that 
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there is a fundamental philosophical difference between the two. While the Bayesian detector attempts to 

maximize the conditional probability for each symbol separately, the reduced complexity ML detector aims 

for maximizing the conditional probability of a complete symbol vector. 

Let us assume for the derivation of the algorithm that the CIR matrix H as well as the noise are real-valued . 

and that the transmitted signal is Binary Phase Shift Keying (BPSK) modulated. It was shown in [60] that 

the solution to the problem defined by Equation (2.94) is identical to solving 

x = arg~~ IIU(x - XMMSE)11 2
, (2.95) 

where the upper triangular matrix U is defined by 

(2.96) 

while 

(2.97) 

The MMSE solution presented in Equation (2.97) appears different from the one introduced in Section 2.3.1 

but in fact both yield the same weight vector. The two different MMSE solutions are also referred to as the 

left- and the right-handed MMSE solution [17]. 

Let us now first define Nb = M log2 (M) = MNbit as the number of symbols in x considered by the 

detector. Exploiting the fact that the matrix U has an upper triangular structure, it can be shown that the 

objective function used for the detection of the transmitted symbol vector x may be written as [61] 

J(x) IIU(x -XMMSE)11 2 

(x -XMMSE)HUHU(x -XMMSE) 
Nb Nb 

L I LUij(Xj - XMMSE,j) 12 
i=l j=i 

Nb 

- L C/Ji(Xi), 
i=l 

where Uij is the (i, nth element of U, Xi = [XiI'" I xNbJT and C/Ji(Xi) may be expressed as [61] 

Nb 

+ L Uij(Xj - XMMSE,j) 12, 
j=i+1 
,------~v~-------

ai 

(2.98) 

(2.99) 

(2.100) 

(2.1 01) 

(2.102) 

and where the second term ai of Equation (2.102) is independent of the specific symbol's value of Xi. The 
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cost-function given in Equation (2.101) may now be re-written in a recursive manner as 

(2.103) 

where we have INJxNb) = IUNbNJxNb - XMMSE,Nb) 12. The cost-function has the essential property 

that [61J 

(2.104) 

Due to the fact that the cost-function li(Xi) only depends on {Xi, ... , XNb}' we introduce the notation 

(2.105) 

This property facilitates the creation ofa low-complexity search technique, which is outlined in detail in [61] 

and is also referred to as the Optimized Hierarchical Recursive Search Algorithm (OHRSA). 

To ensure that the algorithm operates efficiently, it is advisable to reorder the columns of the CIR matrix first 

in increasing order according to the norm of the columns. This will result in a 'best-first' detection strategy, 

as outlined in [17]. The columns of the CIR matrix H are therefore re-arranged such that the reordered CIR 

matrix H(o) satisfies 

(2.106) 

where II (H(o))d 12 indicates the energy or squared norm of the ith column of H(o). 

In the following subsections we will first present the conventional search tree based optimization algorithm, 

which allows to find the ML solution in a recursive manner. This recursive search algorithm has been 

proposed in [60J. We then propose an alternative, novel search method referred to as the 'Min-Path' search 

strategy, which is computationally more efficient. 

Example 2.4: Conventional Search-tree Based Optimization 

Consider a simple real-valued candidate system employingM = 3 transmit AEs and N = 2 

receive AEs, resulting in a (N x M) = (2 x 3)-dimensional channel matrix. The N-element 

channel output y is given as the product of the CIR matrix H and the transmitted symbol vector 

x plus the AWGN. The characteristic quantities of such a system are given for example as 

+1 
[ 0.29 ]- H = [ 0.50 

0.75 0.55 ] , y= and x= +1 (2.107) 
-0.55 0.25 0.95 0.70 

+1 

which were recorded at No = 1.50. 
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Figure 2.18: Example of a search tree formed by the OHRSA based detector in a scenario employing BPSK 
modulation, N = 2 receive AEs and M = 2 transmit AEs at No = 1.5. The exact received signal vector 
y, the channel matrix H and the transmitted sequence x are given in Equation (2.107). The values in the 
ellipses indicate the cost-function values computed from Equation (2.103), while the node index is given in 
brackets. 

As mentioned earlier, the convergence of the algorithm can be improved by reordering the 

columns of the CIR matrix H, so that the columns of the reordered CIR matrix have a monotonously 

increasing ordered norm [17, 61]. Commencing the algorithm now by reordering the channel 

matrix of Equation (2.107) yields H(o), where the superscript (0) stands for ordered 

H(O) = [0.50 0.55 0.75]. 

0.25 0.70 0.95 
(2.108) 

It may be readily shown that the corresponding upper triangular decomposition of H( 0 ) into the 

upper triangular matrix U(o) and the MMSE solution for the ordered system are given as 

1.01 -0.39 -0.15 

U(o) = 0 1.14 -0.16 (2.109) 

0 0 1.32 

and 

X~SE = [-0.002 - 0.12 + 0.33] T I (2.110) 

respectively. Note that since both the system matrix of Equation (2.107) and the transmitted 

signal are real-valued, the imaginary part of the received sequence may be omitted and the 

resultant MMSE solution also becomes real-valued. 

The algorithm commences at node 0 of Figure 2.18 by evaluating the cost function of the hypo

thetical solutions xt: = x~o) associated with the ordered channel matrix of Equation (2.108), 
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according to Equation (2.103), which yields 

h([x~o)]) = lu~~)(x~o) - x~sE,3)12 

h([x~o)l = +1) = 11.32· (+1- 0.33)1 2 = 0.77 

h([x~o) = -1]) = 11.32· (-1- 0.33)1 2 = 3.09. 

The corresponding two values of h(x~o») can be seen at the second hierarchical level of Fig

ure 2.18 as nodes 2 and 9 together with the associated hypothetical BPSK solutions indicated 

along the branches. Based on the two cost-function values seen within node 2 and 9 we select 

node 2, since it has a value of h (x~o) = + 1) = 0.77, which is the lower cost-function value. 

The associated symbol value is x~o) = +1. In the next step of the algorithm we proceed from 

node 2 of Figure 2.18 by calculating the cost function of Equation (2.103) for the next two 

potential values of x~o) = ±1 as follows: 

h([x~o) - IF) 

h([+l + IF) 

12([-1 + IF) 

t"""3 (0) (v(o) A(O) ) 
L.;j=3 u 2j . Xj - XMMSE,j 

-0.16· (+1- 0.33) = -0.11 

J+I (o)(V A(O) )1 2 
1 a2 + U22 X2 - XMMSE2 , 

0.77 + 1 - 0.11 + 1.14 . (+ 1 + 0.12) 12 = 2.11 

0.77 + 1 - 0.11 + 1.14· (-1 + 0.12) 12 = 2.01. 

The resultant two values of 12 (x~o») are associated with node 3 and 6, respectively, which are 

seen at the third hierarchical level of Figure 2.18. The node from which the algorithm is further 

evolving is node 3, where the associated symbol is x~o) = -1, which has a lower cost-function 

value than node 6. 

The value of x~o) = [-1 + 1 J T is now used for the calculation of the cost-function values of 

Equation (2.103) associated with xio). The cost-function values h (xio») are illustrated at the 

forth hierarchical level of Figure 2.18 within nodes 4 and 5. 

Upon arriving at h (x~o») at the bottom of the graph, we have calculated the first potential 

solution of our optimization problem described by Equation (2.93), which is constituted by the 

left-most branch of the search tree illustrated in Figure 2.18. This potential solution is given by 

x(o) = [-1 -1 +IF. 

The recursive optimization continues from the bottom (node 4) to the top of the tree in Fig

ure 2.18 with the objective of finding the specific branch terminating at the bottom ofthe search 

tree (hierarchical level 4), while having the minimum cost-function value. The symbol vector 

x associated with this branch constitutes the ML solution. Considering now the flipping of 
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symbol xio
) at hierarchical level 3 is not beneficial, since the cost-function associated with this 

change would result in a higher value of 3.59 than the cost function value of 2.6 at node 4. 

When the bottom-to-top recursive process initiated at node 4 arrives at node 3, however, it can 

be seen that changing the value of x~ 0 ) from -1 to + 1 results in a cost function value of 2.11 

at node 6, which is lower than the cost-function value of 2.6 recorded at node 4. Pursuing now 

the path from node 6 further down, this results in two new branches tenninating at fi 0 ) in node 

7 and 8, which constitute additional potential solutions for x(o). Pursuing this path from node 

7 and 8 backwards, returning to the left-most branch and moving recursively up to node 0 will 

result in no further branches terminating at the bottom of the tree. Hence node 4 has the lowest 

cost-function value of 2.35. 

The desired solution is described by the specific branch terminating at the bottom of the search 

tree that has the iowest cost-function vaiue. Again, the associated symboi sequence is given by 

itO) = fro) = [+1 + 1 + 1f, 

which can be obtained by tracing the branch back from node 7 to node 1. By contrast, the 

identically ordered MMSE solution is given by 

_(0) _. (A(O) ) - [ 1 -1 + l]T. xMMSE - s~gn xMMSE - -

The final step of obtaining the desired ML solution is to reverse the ordering of the f(o). This 

yields 

i=f [+1 +1 +lV 
[-1 + 1 -lV, 

which highlights the decision errors made by the MMSE detector. In order to apply this scheme 

for detecting 4QAM signals, the real-valued binary system model of Section 2.1.1.2 has to be 

employed. The algorithm can be applied as outlined in the previous section. 
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The search strategy outlined in Example 2.4 has the advantage that when implementing the algorithm, only 

the minimum cost-function value of all branches terminating at the bottom has to be stored in the memory 

and is used during the optimization-process as the reference value, when carrying out a decision as to 

whether particular nodes of the search tree are or are not used for a further evaluation of the search tree. 

More explicitly, if the first path terminating at the bottom of the search tree has been evaluated, then any 

node which is discarded owing to its higher cost-function value will never be re-visited. This property of 

avoiding re-visiting the nodes in the search tree and the fact that only one cost-function value has to be 
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stored in the memory as reference value renders the implementation of the algorithm particularly attractive. 

In the next example, we will discuss a different search-strategy, which is implementationally more complex, 

but may be more efficient in terms of reducing the number of visited nodes. 

In addition to Example 2.4 discussing the conventional tree-search based optimization [61], an alternative 

search tree algorithm, which will be referred to as the Min-Path based optimization is proposed in this 

paragraph. Let us refer to the set of nodes whose children have not been evaluated as the 'search-front' T. 

Then the new search strategy follows the simple principle of always pursuing the evaluation of the search 

tree according to Equation (2.103) from that particular node of the search-front, which is associated with 

the lowest cost-function value - hence the terminology Min-Path search. The search is terminated, once 

there is no node left belonging to the search-front, which has a lower cost-function value than the minimum 

cost-function value of the branches terminating at the bottom. This search-strategy is summarized in terms 

of pseudo-code in Algorithm 2.1. 

Algorithm 2.1: Min-Path Tree-Search 

Initialize: 

F = {x~) = [+ljT,x~) = [-ljT}; 

calculate lJ) = lNb (XNb = X~)), l~) = lNb (XNb = X~)) using Equation (2.103); 

find index i of node with min. cost - function value: lmin = min(J~)); 

while 1 do 

end 

x(a) = [+1 (x~)TjT, x(b) = [-1 (x~)TjT, NJ = Nb -length(x(a)); 

evaluate la = IN/(XN/ = x(a)), Ib = IN/(XN/ = x(b)); 

remove X~ from F; 

add x(a) and x(b) to F; 

find index i of node with min. cost - function value: lmin = min(J~)); 
if (length(x(i)) == Nb) 

x(o) = xU) 

break 

end 

Example 2.5: Min-Path Tree-Search Based Optimization 

The initial stages of the algorithm, including the Cholesky factorization of Equation (2.95) as 

well as the re-ordering of the columns of the CrR matrix is identical to that in Example 2.4. 
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Then, we commence again by evaluating the cost-function value of the first nodes of Fig

ure 2.18, resulting in the cost-function value of node 2 as well as node 9. These two nodes 

now form the search-front F = {2,9}. 

The search continues from the node associated with the lower of the cost-function values, i.e 

node 2, resulting in the cost-function of node 3 as well as node 6 of Figure 2.18. The new 

search-front is given by the nodes F = {3,6,9}. 

The specific node, which is considered as a starting point for evaluating the search tree further 

is node 3 of Figure 2.18, since it is associated with the lowest cost-function. This results in the 

evaluation of nodes 4 and 5, yielding F = {4,5,6,9}. 

In the next step the search continues from node 6, which has the lowest cost-function value, 

yielding F = {4,5, 7, 8, 9}. The search-process is concluded when a specific branch is found, 

which terminates at the bottom level of the search tree and has a lower cost-function value than 

all the other nodes in the search-front F. In our example this requirement is satisfied for node 7. 

Note that for this specific example both tree-search algorithms result in visiting and evaluating 

the same nodes in the search tree. This is however not necessarily the case for different channel 

conditions, as it will be seen in Sections 2.3.4.1 and 3.4.4. 
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The novel Min-Path tree-search algorithm potentially requires a larger amount of memory, since the com

plete search-front of the search tree has to be stored and its size increases steadily, as the search-process 

evolves. The exact effect of the two different search strategies will be illustrated in the next section, where 

the computational complexity imposed by the OHRSA is discussed. It may be stated in conclusion that 

the conventional search strategy of Example 2.4 first evaluates a single branch from the top to the bottom 

of the search tree, which is then used as a reference, when deciding whether it is worth continuing the 

search process from any given node or not. By contrast, the Min-Path search strategy of Algorithm 2.1 

always continues the search process from the node associated with the lowest cost-function, regardless of 

its hierarchical level. 

2.3.4.1 Computational Complexity of the OHRSA Detector 

The computational complexity of the OHRSA can again be divided into two contributions, namely the cost 

imposed by the calculation of the MMSE solution of Equation (2.97) and the factorization of the covari

ance matrix of Equation (2.96) into an upper triangular matrix as well as the evaluation of the search tree 

according to Equation (2.103), 

The calculation of the MMSE solution of Equation (2.97) is composed of N; (4N - 1) + Nb number of 

real-valued addition plus mUltiplications required for the evaluation of the covariance matrix plus O(N6) 
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Table 2.6: The normalized computational complexity (real-valued additions and multiplications) of the 
OHRSA detector, when considering the detection of a single transmitted bit. 

MMSE Solution and factorization 

of Equation (2.97) and Equation (2.96) 

Tree evaluation of Equation (2.102) and 

Equation (2.103) at hierarchical level i 

16QAM --
4QAM ----

M=6 .. 
M=4 • 
M=2 • 

101 - - ... - - ... - -. - -. - - .. - - .. -- .. - - .... - --11--

SNNb + 2N - Nb + O(N~) 

3(Nb - i) + 1 
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(a) Conventional tree-search (b) Min-Path tree-search 

Figure 2.19: The normalized computational complexity required for evaluating the search tree as a function 
of the SNR for a different number of transmit AEs as well as for different modulation schemes when con
sidering the detection of a single transmitted bit calculated according to Table 2.6. The number of receive 
AEs was set to N = 4. 
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number of real-valued operations required for the calculation of its inverse. For the final calculation of 

the weight matrix in Equation (2.97) an additional (2Nb - 1)Nb2N number of real-valued additions plus 

multiplications are required for the multiplication of the inverse of the covariance matrix with the cross

correlation matrix. The multiplication of the MMSE weight matrix with the received signal contributes a 

further (4N -l)Nb operations. The Cholesky decomposition of the covariance matrix requires typically 

O(N~) number of real-valued operations. 

In addition to the calculation of the MMSE solution of Equation (2.97) and the Cholesky factorization of 

Equation (2.96) , the complexity of the OHRSA is determined by the number of operations required for 

the evaluation of Equation (2.103) associated with the search tree cTree . Assume, the search tree operates 

at the hierarchical level i, the number of real-valued additions and multiplications for the evaluation of 

Equation (2.103) as well as Equation (2.102) is given as 3· (Nb - i -1) + 4 = 3· (Nb - i) + 1. The exact 

computational complexity imposed by the search tree algorithm has to be evaluated through simulations. 

The complexity of the OHRSA algorithm is summarized in Table 2.6, normalized by the number of bits Nb. 

The normalized computational complexity defined as the number of real-valued additions plus multiplica

tions required for the evaluation of the search tree is illustrated in Figure 2.19 as a function of the SNR for 
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both 4QAM and 16QAM signals, when considering M = 2,4 and 6 transmit AEs, while employing N = 4 

receive AEs. It can be observed that in contrast to the MMSE detector of Section 2.3.1, to the MBER de

tector of Section 2.3.2 as well as to the Bayesian detector of Section 2.3.3, the complexity associated with 

the evaluation of the OHRSA search tree is dependent on both the SNR as well as on the ratio between the 

number of transmit AEs and the number of receive AEs. When considering a rank-deficient system, the 

complexity imposed at low SNR values was increased. The terminology rank-deficient in this context im

plies that the (2N x NbitM)-dimensional real-valued channel matrix H has more columns than rows. It is 

referred to as rank-deficient, since the channel's covariance matrix does not have full rank. When comparing 

Figure 2.19a, which shows the complexity associated with the conventional tree-search discussed in both 

Example 2.4 and in Figure 2.19b, which shows the complexity associated with the novel Min-Path search 

strategy proposed in Algorithm 2.1, it can be observed that if the system is not particularly rank-deficient, 

both search strategies impose a similar computational cost. However, for highly rank-deficient systems 

operating at high SNRs, when transmitting for example 16QAM signals used in conjunction with a (4 x 6)

antenna MIMO system, the Min-Path algorithm of Example 2.5 clearly imposes a lower computational cost 

than the conventional search of Example 2.4. 

Figure 2.20 shows the normalized complexity required for the evaluation of the search tree as a function of 

the number of transmit AEs M for both BPSK modulated as well as for 4QAM and 16QAM signals, when 

considering N = 2,4 and 6 receive AEs at SNR=20 dB. Considering the case of N = 2 receive antennas, 

the system becomes rank-deficient when we have M > 4 for BPSK modulated signals, M > 2 for 4QAM 

signals as well as in case of M > 1 for 16QAM signals. It is exactly for these cases, when the complexity 

starts to increase quite considerably compared to a low number of transmit AEs M, as it can be seen from 

Figure 2.20. 

In Figure 2.19 and 2.20 we only considered the complexity associated with the evaluation of the search tree. 

By contrast, in Figure 2.21 the computational complexity is illustrated under the assumption that the MMSE 

solution and the Cholesky decomposition of Equation (2.97) and Equation (2.96), respectively, have to be 

evaluated for each received signal vector. The proportionality factor of Table 2.6 was set to 3. It can be seen 

from Figure 2.21 that the complexity contribution associated with the calculation of the MMSE solution as 

well as with the Cholesky decomposition, has a dominant effect only for a low number of transmitters. As 

the number of transmitters increases and the system becomes more rank-deficient, the complexity of the 

OHRSA detector is dominated by the associated tree-search. 

2.3.4.2 Performance of the OHRSA Detector 

The MIMO system considered is identical to the system used in Section 2.3.1.2, which is characterized 

by M = 2 transmit AEs at the MS and a BS employing a N receive antennas. A block-fading channel 
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Figure 2.20: The normalized computational complexity required for evaluating the search tree as a function 
of the number of transmit AEs for different modulation schemes and a different number of MIMO array 
weights, when considering the detection of a single transmitted bit calculated according to Table 2.6 at 
SNR=20dB. 
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Figure 2.21: The normalized computational complexity required for evaluating the search tree plus the eval
uation of the MMSE solution as a function of the number of transmit AEs for different modulation schemes 
and a different number of MIMO array weights, when considering the detection of a single transmitted bit 
calculated according to Table 2.6 at SNR=20 dB. The proportionality factor associated with the MMSE 
solution was set to 3. 
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knowledge were considered. 
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with E [Ihnm 12] = 1 was assumed between all antenna links, which was perfectly known by the receiver. 

Figure 2.22 shows the BER versus Eb I No performance for the uncoded system using the OHRSA MIMO 

detector and transmitting both BPSK and 4QAM signals. It can be observed that the performance of the 

OHRSA algorithm is only marginally inferior compared to that of the Bayesian detector discussed in Sec

tion 2.3.3. 

2.3.5 MIMO Detector Complexity versus Channel Condition 

Before studying the performance of the algorithms introduced in this section, let us briefly consider their 

suitability for different channel conditions. The suitability of the algorithms under three different channel 

conditions will be evaluated. 

2.3.5.1 Complexity Under Block-Fading Conditions 

The first channel model considered is the block-fading channel. Under the corresponding very slow-fading 

conditions, both the linear MMSE and the liner MBER detector exhibit a relatively low computational 

complexity since once the array weight matrix has been calculated, the detection procedure imposes a low 

computational cost as shown in Table 2.3 and in Table 2.4 for the MMSE and the MBER algorithm, re

spectively. The reduced complexity ML algorithm introduced in Section 2.3.4 is also attractive, since the 

calculation of the MMSE solution and the Cholesky decomposition of the covariance matrix only have to 

be carried out once. The detection complexity is then only determined by the complexity required for the 

evaluation of the cost-function throughout the detection tree. The Bayesian detector appears less attractive, 

since many Euclidean distance calculations are necessary in order to detect each bit. 
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2.3.5.2 Complexity Under Slow Fading Conditions 

If the channel is slowly time-varying, so that the MBER and the MMSE array weights can be adjusted 

adaptively using the LMS [113] or the LBER [96] algorithm, respectively, the complexity of the linear algo

rithms remains low and both algorithms retain their benefits. Under slowly time-varying channel conditions 

the Cholesky decomposition of the covariance matrix can be directly tracked rather than being regularly 

recomputed and thus also the OHRSA is attractive under such channel conditions. The computational com

plexity of the Bayesian detector still remains high compared to the previously mentioned algorithms. 

2.3.5.3 Complexity Under Rapidly Fading Conditions 

If the channel experienced by the transmitted signal is varying rapidly it may have to be tracked using a 

complex channel estimator such as for example a Kalman estimator. Then the MMSE detector requires 

a matrix inversion for each detected symbol. Similarly the MBER algorithm would have to calculate the 

MBER array weights for each symbol to be detected. Compared to the MBER algorithm, the MMSE 

algorithm still retains a relatively low computational complexity. The MBER algorithm becomes unsuitable 

for such channel conditions, since its complexity may exceed the complexity of the Bayesian detector as 

it can be seen by comparing Table 2.4 and Table 2.5. Similarly to the MMSE algorithm, the complexity 

of the OHRSA increases moderately for rapidly time-varying channels, since the MMSE array weights 

and the Cholesky decomposition have to be calculated for each symbol as it can be seen when comparing 

Figure 2.20 and Figure 2.21. Generally the complexity associated with the reduced complexity ML detector 

of Section 2.3.4 remains far lower than that associated with the Bayesian detector of Section 2.3.3. 

2.3.5.4 MIMO Detector Complexity Summary 

In Table 2.7 the computational complexity associated with the different algorithms is summarized. It can be 

observed that for slowly time-varying channels the linear MMSE and MBER detector have a clear advantage 

over the Bayesian and the OHRSA aided MIMO detector. For rapidly time-varying channels the advantage 

of the MBER MIMO receiver over the Bayesian detector diminishes, since the computational complexity 

associated with both detectors increases exponentially with the total number of bits NbitM to be detected. 

2.3.6 Turbo-Coded Performance of MIMO Detectors 

In this subsection the performance of the different algorithms is compared for a SDM system supporting 

M transmit AEs and a receiver employing a different number of receive AEs N. The transmitter employs 

Forward Error Correction (FEC) coding to improve the achievable performance. The channel code is a 
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Table 2.7: Summary of the normalized computational complexity associated with the MMSE, the MBER, 
the Bayesian and the OHRSA MIMO detector under different channel conditions 

MMSE MBER Bayesian OHRSA 

of Table 2.3 of Table 2.4 of Table 2.5 of Table 2.6 

Block Fading Channel O(N) O(N) o (2NbitM) O(N) < • < O(2NbitM) 

Slowly Fading Channel O(N) O(N) O(2NbitM) O(N) < • < O(2NbitM) 

Rapidly Fading Channel o ( N3 ,) 
NbitM 

o (2NbitM) o (2NbitM) o (N~3M) < • < O(2N
bitM) 
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R = 1/2 rate punctured turbo code using Recursive Systematic Convolutional (RSC) component codes 

described by the polynomial g = [75] [28], which was fed with the hard-decision estimates of the MIMO 

detector. 

2.3.6.1 Performance of lVl..!MO Detectors for Block-Fading Channels 

In this first study we compare the achievable performance of the two linear detectors, namely that of the 

MMSE detector discussed in Section 2.3.1 and that of the MBER detector of Section 2.3.2. 

For a first comparison we assume the fading envelope to be constant over an entire transmission burst 

equivalent to 1000 information bits, where the channel was assumed to be perfectly known by the receiver. 

Since we consider a half-rate code for our simulations, the interleaver employed by the turbo code had a 

length of 1000 bits and the channel interleaver of Figure 2.1 was of length 2000 bits. A total of 10 000 bursts 

were transmitted in order to acquire sufficiently reliable fading statistics and a reliable FER estimate. Note 

that since we are considering block-fading channels, the performance measure is not the BER but rather the 

FER, which in this specific setting is equivalent to the codeword error-rate. 

In Figure 2.23 the achievable FER versus EblNo performance is shown for a system employing BPSK 

modulated signals and N = 3 receive AEs as well as M = 2,3,4,5 and 6 transmit AEs. It can be observed 

that the MBER detector achieves a significantly lower FER, especially when the number of transmit AEs is 

higher than the number of receive AEs, as it can be seen by comparing Figure 2.23a and Figure 2.23b, where 

the FER versus Eb/No performance is illustrated for the MMSE and the MBER detector, respectively. To 

understand this phenomenon, we consider the real-valued binary system model of Section 2.1.1.2, where the 

channel matrix dimensions are 2N x 10g2(M)M. Hence a system considering BPSK modulated signals 

and using M = 6 transmit AEs as well as N = 3 receive AEs is described by a (6 x 6)-dimensional 

channel matrix. Since the number of channel matrix columns and the number of receivers in this system 

is identical, it is referred to as afully-loaded system. If the number of columns of the real-valued channel 

matrix is larger than the number of rows, we refer to the system as rank-deficient, which may also be termed 

as an over-loaded system. As already mentioned in Section 2.3.3, the performance difference between the 
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Figure 2.23: FER versus Eb / No performance for a scenario of N = 3 receive AEs as well as a transmitter 
employing M = 2,3,4,5 and 6 AEs and benefiting from perfect channel knowledge. The system employed 
a R = 1/2-rate punctured turbo-code and BPSK modulated signals were considered. The channel was 
assumed to be constant over one codeword determined by the length of the 2000 bit channel interleaver. 
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Figure 2.24: FER versus Eb / No performance for a scenario of N = 3 receive AEs as well as a transmitter 
employing M = 2,3 and 4 AEs and benefiting from perfect channel knowledge. The system employed a 
R = 1/2-rate punctured turbo-code and 4QAM signals were considered.The channel was assumed to be 
constant over one codeword determined by the length of the 2000 bit channel interleaver. 
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MBER and the MMSE algorithm recorded for BPSK modulated signals is mainly imposed by the fact that 

the MMSE algorithm attempts to minimize the MSE associated with the real- and the imaginary-part of the 

detector output, whereas the MBER detector only optimizes the relevant real-part. Since the MMSE detector 

aims for minimizing the MSE composed by the real- and the imaginary-part of the filter output, it looses out 

in terms of the associated degree of freedom and hence the MMSE detector may become over-loaded for 

M > N even when the signal is transmitted using the lowest-throughput BPSK modulation. 

The achievable FER performance recorded for 4QAM signals considering the same scenario is illustrated in 

Figure 2.24. For this system a moderate number of M = 3 transmit AEs yield a (6 x 6)-dimensional real-
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valued system matrix associated with a fully loaded system. It can be observed, that for M = 2 and 3 both 

the MBER and the MMSE algorithm exhibit a similar FER performance. If the system is rank-deficient, 

however, for example when using M = 4 transmit AEs, the MBER detector exhibits a significantly lower 

error-floor than the MMSE detector. 

The fact that the MBER detector fails to outperform the MMSE detector more significantly has the following 

two reasons 

• The MBER and the MMSE algorithm perform similarly for BERs higher than 0.01 in the context 

of the uncoded system. Since it was observed that for BERs below 0.04 the powerful turbo-code 

employed by the system is capable of correcting the majority of errors, only a marginal performance 

difference is visible between the considered MMSE and MBER detector; 

• In the context of Rayieigh fading channels the FER is detennined by a low number of error events. 

It appears from the simulations that when a severe fade is encountered, which may induce linearly 

non-separable channel output states, neither the MBER nor the MMSE detector is capable of reliably 

detecting the received signals. 

Let us now consider a scenario, which is characterized by BPSK modulated signals, M = 2 transmit AEs 

and N = 2 as well as 4 receive AEs. Figure 2.25 shows the FER exhibited by the different detectors 

together with the outage probability discussed in Section 2.3. The outage-probability is recorded for this 

system for a transmission rate of R = ReM 10g2 M = !. 2 . 1 = 1 and constitutes the lower bound 

for the codeword error-rate. It can be observed that for a low number of receive AEs, such as N = 2, 

the performance difference between the different detectors is more significant than for a higher number of 

receive AEs, namely for N = 4. For N = 2 receive AEs and a FER of 10-2 both the Bayesian and the 

OHRSA detector operate with an EblNo discrepancy of approximately 5 dB with respect to the channel 

capacity limit. 

2.3.6.2 Performance of MIMO Detectors for Uncorrelated Fading Channels 

In Section 2.3.5 where the computational complexity imposed by the different MIMO detectors was dis

cussed it was emphasized that the computational cost associated with the linear MBER detector exceeds the 

computational cost associated with the optimum Bayesian detector for uncorrelated fading channels as it 

can be seen from Table 2.7. Therefore the MBER detector in not considered in this subsection, where the 

achievable detector performance is discussed when operating in a fast-fading environment. 

The BER performance results recorded for the same system configuration as that used for generating the 

results shown in Figure 2.25 but assuming an uncorrelated fading channel and 4QAM modulated signals 
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are illustrated in Figure 2.26 together with the achievable information rate bounds, which were obtained 

as outlined in Example 2.2. It can be observed that for N = 4 receive AEs the algorithms operate at 

approximately 4-5 dB away from capacity. As the detection task becomes more challenging, i.e a lower 

number of receiver AEs is employed by the BS, it can be observed that the difference between the capacity 

bound and the performance of the detection algorithms increases. Furthermore, the performance difference 

between the MMSE and OHRSA detector increases as the number of receive AEs decreases. 

2.3.7 Conclusion 

In this section we have provided a set of linear and non-linear MIMO detection algorithms. Their perfor

mance was compared using a simple channel setting and the differences were highlighted. It was shown that 

even the more sophisticated algorithms are still far from approaching the lower capacity bound. Further

more, the computational complexity of the different detection strategies was analyzed considering different 

channel conditions. In the next section the performance of two of the algorithms, namely the linear MMSE 

receiver and the non-linear OHRSA detector is investigated under the influence of imperfect, i.e estimated 

CSI. 

2.4 Channel Estimation for Narrowband Channels 

In Figure 2.27 we have depicted how a training based channel estimator can be combined with a MIMO 

detector. The initial channel estimate can be obtained by using a sequence of training symbols, which are 

known by the receiver and can by employed by the channel estimator. If the detector operates at a relatively 

low BER and the channel is time-varying and hence requires channel tracking, decision directed channel 

estimation indicated by the dotted line can be used. In decision directed channel estimation, the symbols 

returned by the detector are assumed to be correct and fed back to the channel estimator for updating the 

channel estimate. If the channel estimate needs to be refined further, the detected and decoded transmission 

burst can be encoded and re-modulated again for re-estimating the channel. The improved channel estimate 

is then employed for detecting the received symbols again. 

Most estimation algorithms discussed in the literature are designed for estimating a single stochastic variable 

or a vector of stochastic parameters rather than a matrix, as it would be required in the context of MIMO 

channel estimation. Therefore we first introduce an alternative form of the system model provided in Equa

tion (2.4) representing the channel matrix as a vector. On this basis different channel estimation algorithms 

known from the literature may be directly applied to MIMO channel estimation. Let us define the channel 
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Figure 2.27: MIMO channel estimation. 

determining the detector's input signal in form of a (NM)-element vector, which is given as 

h(k) vee (H(k)) 

[hll (k), . .. ,hNl (k), . .. ,hlM(k), ... , hNM(k) f, 
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(2.111) 

(2.112) 

where vee () represents the column-wise vector operator concatenating all columns of H(k). To form the 

desired system equation, the transmitted symbol vector influencing the channel output is· expressed as a 

matrix, given as 

X(k) = x(k) T ® IN, (2.113) 

where ® is the Kronecker product. The system matrix given in Equation (2.4) can now be re-written as 

y(k) = X(k)h(k) + '1(k). (2.114) 

Before discussing channel estimation algorithms for the system described by Equation (2.112) it is necessary 

to understand the time variant behaviour of the channel to be estimated. The rate of channel variations over 

time depends on the normalized Doppler frequency, which is defined as [28] 

- vIc 
loTs = 10 = -Ts, c 

(2.115) 

where v is the velocity of the MS traveling in direction perpendicular to the signal propagation path, Ie 
is the carrier frequency, c is the speed of light and Ts is the symbol period. Considering for example a 

SDMA system operating at Ie = 2 GHz at a symbol rate of 2 MB:ud, a normalized Doppler frequency of 

fo i=::i 1.10-4 corresponds to a vehicular velocity of v = lOOk:. This simple example illustrates that 

in single carrier systems f D = 1· 10-4 corresponds to a high velocity of the mobile user. The channel 
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estimation algorithms applied in the next subsection, aim for tracking and estimating channels having a 

normalized Doppler frequency of this order of magnitude. 

Based on Equation (2.114) standard channel estimation algorithm might be applied as outlined in [28]. 

In this section we consider the RLS channel estimation algorithm [28,113, 121], which is characterized 

by the forgetting factor A and the Kalman channel estimator of [122], which is characterized by the or

der P [123]. The training sequences were chosen randomly and have not been optimized as for example 

proposed in [123]. 

2.4.1 Detector Performance Using Estimated Channel State Information 

To evaluate the effect of channel estimation errors on the different MIMO detection algorithms introduced 

earlier, a system consisting of M = 2 transmit AEs and a BS using N = 2 receive AEs is considered. The 

normalized Doppler frequency was assumed to be 1 D = 0.0001. The training sequences were randomly 

generated BPSK modulated signals for each transmit antenna and consisted of 150 symbols. The 'payload' 

per transmit antenna was chosen to be 1050 data symbols. The forgetting factor of the RLS was set to 

A = 0.98 and a P = 1st and P = 2nd order Kalman channel estimator were considered. 

If Decision Directed Channel Estimation (DDCE) was used, the channel estimate was updated with a delay 

of one symbol assuming that the decision made by the detector was correct. In other words, when operating 

in decision directed mode it was assumed by both the detector and the channel estimator that we had h(k) = 

h(k -1). 

In Figure 2.28 the performance of the MMSE algorithm using the estimated rater than perfect CSI is illus-
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trated. The label 'No Tracking' indicates that the channel envelope was assumed to be constant over the 

whole transmission frame and the channel gain value was updated at the end of the training sequence. It can 

be seen that if no channel tracking is used, both the MMSE and OHRSA detectors exhibit a relatively high 

BER. The BER of the OHRSA aided detector operating without channel tracking however is significantly 

lower than that of the MMSE detector also refraining form channel tracking. 

If DDCE is used for the OHRSA assisted detector, it can be observed that the performance of the system 

using RLS and first-order Kalman channel estimators is identical and is only marginally worse than that as

sociated with the second-order Kalman filter. Compared to the' genie-aided' detector using perfect CSI, the 

associated performance degradation is negligible. It can be observed that in the high SNR region, the per

formance of the first-order Kalman filter and that of the RLS channel estimator aided detector degrades with 

respect to the detector using perfect CSI. This is due to the fact that at higher SNRs the MSE of the channel 

estimator may exceed the noise-level and thus contributes to the performance degradation. Considering the 

performance of the MMSE detector, it can be observed that at the same BER, its performance is significantly 

more degraded than that of the OHRSA-based detector, when considering realistically estimated CSI. 

Let us now extend the MIMO system to having M = 4 transmit AEs, N = 4 receive AEs and 4QAM 

signals. The normalized Doppler frequency J D was assumed to be J 0 = 0.0001 and a half-rate punctured 

turbo code was employed in the system considered. The number of training symbols per transmit AE was 

chosen to be 150 and the payload per transmit AE was set to 1350 symbols. It can be seen from Figure 2.29, 

that the performance degradation due to channel estimation errors is now considerably higher since the 

training overhead is only about 11%. Similar to Figure 2.28 it can be seen that the ML detection based 

OHRSA assisted MIMOreceiver is more robust against channel estimation errors. 

In Figure 2.30 the MSE of the channel estimator is plotted as a function of the symbol index at different 
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Figure 2.30: Channel estimation MSE versus symbol index for an OHRSA aided MIMO detector employing 
M transmit AEs and a BS using N number of AEs. The normalized Doppler frequency was assumed to be 
7D = 0.0001. 

SNRs for the two systems considered in Figure 2.28 and Figure 2.29, respectively. It can be observed how 

the RLS and the first-order Kalman filter converge considerably faster at the cost of an increased steady-state 

MSE. The lower steady-state MSE associated with the second-order Kalman estimator explains its superior 

performance at a low BER. 

In order to benefit from the rapid convergence of the first order Kalman filter and from the low steady

state error of the second-order filter, one might consider reconfigurable channel estimators, while using the 

estimate of the first-order filter at the beginning and switching to the second-order filter, once it has reached 

its steady-state. 

2.5 Conclusion 

In this chapter different MIMO detection algorithms, namely the MMSE algorithm of Section 2.3.1, the 

MBER algorithm of Section 2.3.2, the Bayesian detector of Section 2.3.3 as well as the OHRSA detector 

of Section 2.3.4 have been introduced. Their different optimization functions as well as their associated 

complexity were characterized in terms of the number of real-valued multiplications plus additions and are 

summarized in Table 2.8. 

As detailed in Section 2.3.5 and as it becomes clear from Table 2.8, the MMSE algorithm retains its low 

computational complexity over both slowly as well as rapidly fading channels. The MBER algorithm how

ever has a low computational complexity for slowly fading channels, whereas in rapidly fading environments 

its computational cost increases exponentially with the number of transmit AEs as well as with the number 

of bits per symbol. For slowly fading channels the MBER algorithm has the capability of outperforming the 
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MMSE detector, especially when the number of transmitters is higher than the number of receive AEs, as 

shown in both Figure 2.23 as well as Figure 2.24. 

The nonlinear Bayesian detector of Section 2.3.3 constitutes the optimum minimum error-rate non-linear 

receiver, which significantly outperforms the linear MMSE and MBER algorithm. The associated computa

tional cost however increases exponentially with the number of transmit AEs as well as with the number of 

bits per symbol for all kinds of channel conditions, as shown in Table 2.8. We have therefore introduced a 

reduced complexity ML detector in Section 2.3.4, which achieves the performance of the Bayesian detector 

at a reduced computational cost, as shown in Table 2.8. 

When quantitatively comparing the different detectors' performance, we investigate their performance in 

terms of the distance in dB with respect to the theoretical channel capacity limits discussed in Section 2.2. 

Under the assumption of block-fading channels the distances ~PoutiPout=O.02 [dB] measured from the outage 

probability bound and given in Table 2.8 were obtained for an outage probability of Pout = 2% from 

Figure 2.25. Under the assumption of un correlated fading channels the distances ~IIBER=lO-4 [dB] from the 

channel capacity limit given in Table 2.8 were obtained for a BER of 10-4 from Figure 2.26. The values 

of ~PoutlPout=O.02 and ~I1BER=lO-4 ,respectively, show that the performance difference between the non-linear 

and the linear detectors is more pronounced when the ratio between the number of transmit and receive 

AEs is large. The smaller this ratio becomes the more modest the performance advantage of the non-linear 

detector over the linear MMSE and MBER receiver. 

Furthermore, different MIMO channel estimators have been employed in order to investigate the detectors' 

performance using imperfect CSI. It was shown that for slowly time-varying channels the OHRSA detector 

experiences only marginal performance degradation, which is on the order of 1 dB for a (2 x 2)-dimensional 

system and on the order of 2 dB for a (4 x 4)-dimensional system as it can be seen from Figure 2.28 and 

Figure 2.29, respectively. 

Throughout this chapter it was assumed that the channel is a frequency-flat fading channel. In the next 

chapter the channel will be extended to a single-carrier wideband channel and the previously introduced 

detectors as well as channel estimators are applied to the resultant dispersive communication environment. 

They are also appropriately modified in order to limit the complexity of the algorithms. 



Table 2.8: Summary of the MIMO detectors studied in Chapter 2. 
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Space-Time Equalization for the SDMA 

Uplink 

This chapter commences with the evolution of the narrowband system model presented in Chapter 2 in order 

to accommodate wideband channel conditions. Furthermore, we highlight the challenges which a Space

Time Equalizer (STE) faces in a single-carrier uplink Space Division Multiple Access (SOMA) scenario. 

In contrast to Chapter 2, multiple MIMO users communicating in a dispersive fading environment are con

sidered. In Section 3.3 of this chapter the theoretical channel capacity limits are presented for the system 

model considered, which constitute an extension of the narrowband capacity limits presented in Section 2.2. 

In Section 3.4 a set of different finite length STEs, namely the Minimum Mean Squared Error (MMSE), the 

Minimum Bit Error Rate (MBER) and the Bayesian STE as well as an approximate Maximum Likelihood 

(ML) STE are introduced. All the algorithms constitute a logical evolution of the narrowband detection 

algorithms discussed in Section 2.3. In Section 3.5 the STEs considered are extended to Decision Feedback 

(OF) assisted STEs. At the end of Section 3.6 the achievable performance of the various methods is evalu

ated both when assuming the availability of perfect channel knowledge as well as when using the estimated 

Channel State Information (CSI). 

3.1 System Model 

The system considered in this chapter consists of Q number of perfectly synchronized Mobile-Stations 

(MSs), each employing an M-element transmit antenna array and a Base-Station (BS) receiver, which has 

N number of Antenna Elements (AEs). The MSs' transmitters channel encode the input bit-stream at a code

rate Re, interleave the encoded bits, modulate the signals and map them to the M different transmit AEs, 

as illustrated in Figure 3.1. The modulated symbols are transmitted to the BS over a frequency-selective 
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Figure 3.1: Baseband system model. 

fading channel having a symbol-spaced Channel Impulse Response (CIR) characterized by the channel 

coefficients h~~,1 as illustrated in Figure 3.1. The channel coefficient h~~,1 represents the complex-valued 

channel coefficient of the [th multipath component of the channel between the qth MS's AE m and the nth 

BS receiver AB. Given the transmitted symbol x~) (k), which is associated with the qth MS's transmit AB 

m, the output signal of the nth AE of the BS receiver at time instant k can be written as 

Q M L-1 

Yn(k) = L L L h~~,l(k)x~)(k -I) + 1Jn(k). (3.1) 
q=l m=11=O 

Furthermore, L is the number of symbol-spaced multipath components described by the CIR and 1Jn(k) is 

the complex-valued Additive White Gaussian Noise (AWGN) having a variance of E [11Jn (k) 12] = 2cr~. 

Assuming that a MS transmits the modulated symbols to the BS over a frequency-selective channel at a 

power crf.x,q' the resultant Signal to Noise Ratio (SNR) is given as 

(3.2) 

In many cases we will define the CIR and the powers of the different users so that we satisfy 

SNR = SNRq Yq. (3.3) 

For a given modulation scheme having M number of modulation levels, the associated energy per informa

tion bit to noise ratio Eb / No can be written as 

Eb _ crf.x,q Ei:= 1 [};;=lEf::01E [lh~~,/(k)12] 
No Rclog2(M)MN2cr~ 

(3.4) 

The number of bits per transmitted symbol is denoted as Nbit = log2(M). The Signal to Interference Ratio 
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(SIRq) is defined as 

(3.5) 

Under the assumption of perfectly synchronized transmitters the relation between the signal transmitted by 

the MSs' AEs and the channel's output for CIR tap 1 is described by a (N x QM)-dimensional matrix 

HI (k), where the (n, (q -l)M + m)th element of the matrix is given by h~~/I' The channel output vector 

y(k) can now be expressed as 

[ T T]T y(k) = [H1(k) ... HL{k)] x(k) , ... ,x(k-L-l) +1/(k), (3.6) 

() [ 
(1)( ) (1)( (Q)( ) (Q)]T . where the column vector x k = Xl k ""'XM k)""'X1 k ""'XM (k) contams the symbols 

transmitted by the Q MSs' AEs and 1/(k) = [1]l(k), ... ,1]N(k)( For the derivation of the algorithms 

presented in this chapter it is irrelevant whether the interference experienced by a signal is caused by an 

AE of the same user or by the signals transmitted by other users. In order to keep the notation simple, 

we introduce the index m = (q - l)M + m, which ranges from 1 to 9)1, where 9)1 = QM is the total 

number of AEs in the system. We can now rewrite the signal vector containing all the Xm (k) components as 

x(k) = [x1(k),. ",x9J1(k)f. 

3.2 Problem Definition 

In this section we provide a brief introduction to STEs designed for combating both Inter-Symbol Interfer

ence (lSI) as well as Co-Channel Interference (CCI). The scenario considered in this section is an evolution 

of the narrowband scenario discussed in Section 2.1.2, where only the effects of CCI were considered. The 

discussion of spatial and temporal processing provided in this section does not depend on the actual im

plementation of the receiver according to a specific cost-function, it rather treats the detection as a general 

classification problem. 

Ultimately, the detection of all transmitters' signals when considering a wideband channel, is substantially 

more complex than that under the narrowband channel conditions discussed in Section 2.1.2. In Section 2.3 

different receiver structures have been proposed in order to solve the narrowband detection problem. In 

order to solve the wideband detection problem, different receiver structures have been proposed [17]. Some 

of these structures treat the spatial and classic channel equalization as two separate, concatenated blocks. 

This two-stage system structure has the advantage of a relatively low complexity. However, when aiming for 

an optimum design, spatial and temporal equalization have to be performed in an amalgamated structure, as 

illustrated in Figure 3.2, where NF is the feed-forward order of the STE and ~ is the decision delay at which 
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Figure 3.2: STE having a feed-forward order of NF and employing N receive antennas. 

the STE operates. However, the complexity of the detection problem becomes higher, since the number of 

possible channel output states is given by 

N, - (1 (M))QM(L+NF-l) - N,QM(L+NF-l) 
s - og2 - bit • 

Example 3.1: Space-Time Equalization 

In order to illustrate the complexity associated with joint temporal and spatial equalization, 

we consider the scenario of two MSs communicating over a dispersive two-tap channel using a 

two-AE receiver at the BS. The CIRs of the users were chosen to be 

User 1: hW (z) = V0.20 + VO.80z-1 and 

hg) (z) = VO.15 + VO.85z-1; 

User 2: hW (z) = O.5( VO.lO + VO.90z-1) and 

h~~) (z) = O.5( VO.35 + VO.65z-1), 

(3.8) 

implying that the signal of the second user is received at a 6 dB lower power than that of the 

first user. The legitimate channel output phasors can be calculated using Equation (3.1) taking 

into account all legitimate transmitted symbol sequences of length QM (L + NF - 1) = 6 and 

the CIRs given in Equation (3.8). 

The illustration of the channel's output phasor constellation is no longer possible in a single 

graph, since it would become four dimensional even in this basic channel and user scenario. 

More explicitly, the four dimensions would correspond to Yl (k) , Yl (k - 1), Y2 (k) and Y2 (k -

1). We have therefore projected the channel's output associated with user q = 1 into the 

two dimensional plane associated with AE n = 1 in Figure 3.3a, where the two coordinates 

are Yl(k) and Yl(k -1). Similarly, for the plane associated with AE n = 2 we plotted the 

channel's output in Figure 3.3b. Finally, the channel's output in the plane associated with the 

first STE tap of the first and second AE are portrayed in Figure 3.3c, which would correspond 

to a narrowband beamformer not benefiting from a tapped-delay-line. 

(3.7) 
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Figure 3.3: Projected channel output in the absence of noise (a-c) and the BER versus SNR performance (d) 
for BPSK modulated sources, where user q = 1 is assumed to be the desired user. The channel coefficients 
are given in Equation (3.8). The noise-free channel output is plotted for a decision delay 8 = 1, where 

the legend 0 corresponds to a transmitted symbol of xP)(k -8) = +1 and the legend + to a transmitted 

symbol ofXF) (k - 8) = -1. 
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3.3. Benchmarking· Channel Capacity and Information Rates 

In Figure 3.3a and Figure 3.3b all the Ns = 2Q(L+NF-l) = 64 number of different projected 

channel output states can be observed. It can be seen that the two subsets of the channel's 

output corresponding to a transmitted + 1 and -1 of user q = 1 recorded for b" = 1 is linearly 

non-separable in all graphs but can be readily separated by the Bayesian decision boundary 

shown. 

Note, that although that the channel output states shown in the projected planes are linearly 

non-separable, this does not imply non-separability in the higher-dimensiona1 decision space. 

What can be stated however, is that even a simple Bayesian channel equalizer, which is as

sociated with the decision boundary seen in Figure 3.3a and Figure 3.3b would be capable of 

detecting the signal of user 1. The same can be stated concerning the beamformer associated 

with Figure 3.3c, where the channel's output at the input of a hypothetical narrowband detector 

was portrayed. 

Finally, it becomes clear from Figure 3.3d, which illustrates the attainable Bit Error Rate (BER) 

of user q = 1 versus SNR performance that the non-linear receiver is capable of separating the 

two users at a significantly lower SNR than the linear MMSE scheme. Since the BER curve 

associated with the MMSE STE does not exhibit an error-floor, it can be concluded that even 

though the channel output states associated with a narrowband beamformer seen in Figure 3.3a 

and Figure 3.3b is linearly non-separable, the 4-dimensional decision space considered by the 

STE is linearly separable by a hyperplane. 
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In this section we have provided a brief introduction to spatio-temporal equalization from a classification 

problem perspective. It was shown for this simple example, how the detection problem might become 

linearly non-separable and thus requires the employment of a non-linear receiver structure. In the next 

section first an information-theoretic benchmark is derived for the system model considered, which will 

serve as our ultimate performance bound for all the STE algorithms discussed. 

3.3 Benchmarking - Channel Capacity and Information Rates 

When analyzing the channel capacity of dispersive multi-user MIMO systems, where no CSI is available 

at the transmitter, we will interpret the multi-user system as a single-user system having a large, combined 

antenna array. The channel capacity for all users can then be expressed as 

C(k) = E [maxI (x,y)], (3.9) 

where I is the mutual information between x and y, respectively, as it was discussed in Section 2.2. 
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3.3.1 Gaussian Input Signal 

If the MIMO system's input signals x~) are assumed to be Gaussian distributed, which is reasonable well 

approximated for example by higher-order QAM signals, then I (x,y) is maximized [110]. For a Gaussian 

distributed input signal x~) the channel capacity for dispersive MIMO channels can be calculated using 

the Discrete Fourier Transform (DFT), as proposed in [124]. Physically this can be justified based on the 

following two points: 

• The frequency-selective fading channel's impulse response is transformed into NDFI' number of para 1-

lei frequency-domain channels using the DFT, following a philosophy similar to that of multi-carrier 

based transceiver schemes [17]. The resultant channel may be viewed as a MIMO channel. 

• The Gaussian distributed time-domain input signal remains Gaussian distributed in the frequency

domain, since a linear system's Gaussian input results in a Gaussian output. Therefore the MIMO 

capacity formulae derived for narrowband channels can be applied for each frequency-domain bin of 

index i, where 1 ::; i ::; NDFI'. 

The channel capacity for a given Frequency-Domain Channel Transfer Function (FDCTF) F = [FI,'" ,FNDFfl T 

associated with the realization of the L-tap CIR [HI (k) ... H L (k) 1 can then be written as 

(3.10) 

where 

Fi = tHz(k) exp (-j ~7T i(l-l)). 
1=1 DFI' 

(3.11) 

The channel capacity C of a Rayleigh fading channel rather than that of a single unfaded channel realization 

may be obtained on the basis of Equation (3.10) by taking the expectation value with respect to the FDCTF 

F yielding 

C = E [C(k)] , (3.12) 

which may be evaluated using Monte Carlo simulations. 

3.3.2 Discrete Input Signal 

If the input signal of the channel is a discrete-valued signal, which can assume only a limited number of 

M different modulated signal values depending on the modulation scheme chosen, there exists no general 

closed form solutions for the achievable information rate for transmission over a frequency-selective MIMO 

channel. Extending the frequency-flat solution to the wideband case using the DFT based method described 
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in Section 3.3.1 cannot be accomplished in the same way, since for non-Gaussian signals of the channel 

input symbols the distribution will no longer be identical in the time-domain and in the frequency-domain. 

In other words, if the signal in the time-domain is BPSK modulated, the input signal of the sub-channels 

characterized by the FDCTF is generally not a real-valued binary wave-form but rather a complex-valued 

signal. 

In order to characterize the capacity of a frequency-selective MIMO channel for non-Gaussian input signals, 

we therefore have to return to the definition of the mutual information outlined in Equation (2.13). The 

entropy of the noise required in Equation (2.13) can readily be calculated as [110] 

(3.13) 

Considering an optimum detector which would take into account the total received symbol sequence for the 

detection of the desired symbols, the entropy of the received signal sequence y (K), ... , y (1) can be defined 

as 

H(y(K), ... ,Y(l)) =-lim K1E[logz(p(Y(K), ... ,Y(1)))]1 
K->oo 

(3.14) 

where p(y(K), ... ,y(l)) is the joint probability of the channel output, which may be calculated using the 

forward recursion of the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [125], as proposed in [126], The 

exact procedure for initializing the BCJR algorithm for the system model considered is discussed in detail 

in Appendix C. 

3.3.3 Results 

In our further discourse we consider the overall system-capacity, i.e when all users' transmit AEs form 

a single combined antenna array, where all users transmit at identical data rates and generally experience 

identical average channels. If different throughputs were to be considered, it would be necessary to introduce 

so-called capacity regions [12], which are beyond the scope of this treatise. 

Let us first assume the asymptotic case of an ergodic channel, where the time average of Equation (3.12) 

over different crR realization of the channel is equal to the corresponding ensemble average. In other words, 

the random effects of the CIR tap fluctuations can be averaged out over time. For this specific scenario error

free transmission is theoretically possible, if the overall data rate R of all transmitters is smaller than or equal 

to the channel capacity C. For our later discourse, we also adopt the definition of the achievable throughput 

I of a system introduced in Section 2.2 as the data-rate supported by the channel under the constraint of a 

specific modulation scheme considered. 

Figure 3.4 shows both the capacity and the achievable information rates of BPSK modulated signals for a 
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Figure 3A: Channel capacity and achievable information rate of an ergodic channel for BPSK modulated 
input signals for a different number of equal-power independently Rayleigh faded CIR taps L, N = 2 
receive AEs and a single user employing M = 2 transmit AEs. The curves associated with e (L = 2) and 
e(L = 3) are not visible since they are identical to the curve associated with e(L = 1). 
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system supporting a single user employing a two-element transmit antenna array. The capacity of this system 

may be expected to be identical to that of a two-user system employing single antennas shifted by 3 dB SNR. 

The CIR was assumed to be an equal-power L-tap channel response between all antenna links and the BS 

was assumed to employ two receive AEs. The illustrated achievable throughput was plotted with the aid of 

Equation (2.13) as well as Equation (3.13) and Equation (3.14), respectively. It can be observed that for an 

increased number of CIR taps L the achievable throughput increases, but it has a tendency to saturate as the 

number of CIR taps increases. Only a moderately increased achievable throughput can be observed, when 

increasing the number of channel taps from L = 2 to L = 3, whereas it increases more substantially, when 

the number of CIR taps is increased from L = 1 to L = 2. The unconstrained capacity of Equation (3.12), 

which was generated on the basis of having a Gaussian channel input, does not increase for an increased 

number of CIR taps. To understand this phenomenon characterized by Equation (3.12) in more detail, the 

frequency-selective ergodic channel is viewed as NDFr number of parallel ergodic narrowband channels. 

Since these sub-channels are ergodic, they are all associated with the same channel capacity and hence the 

expected value is. equal to the narrowband channel capacity. This duality of the time and frequency observed 

for ergodic Gaussian channels has also been discussed in [14]. 

In analogy to the narrowband MIMO channels discussed in Chapter 2, the channel capacity and the achiev

able throughput of wideband channels can be characterized using the outage probability defined in Equa

tion (2.19). In Figure 3.5a the outage probability is plotted as a function of the SNR for a different number 

of independently faded CIR taps L assuming a single-user MIMO system, M = 2 transmit AEs and N = 2 

receive AEs. The outage probability was calculated by assuming an information rate R = 1 as outlined in 

detail in Section 2.2. It can be seen in Figure 3.5a that the outage probability associated with both the un

constrained capacity and the achievable information rate substantially decreases for an increasing number of 
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15 

eIR taps. There is also a significant performance gap between the outage probability recorded for Gaussian 

and BPSK modulated inputs. 

By fixing the outage probability to Pout = 0.1 in Figure 3.5a we can obtain the outage capacity curves 

shown in Figure 3.5b again following the procedure outlined in Section 2.2. We sometimes refer to this 

value as the lO%-outage-capacity. When comparing the lO%-outage-capacity results of Figure 3.5b to the 

ergodic capacity plotted in Figure 3.4, it can be observed that the capacity gain provided by having a richer 

independently faded multipath channel is greater for the non-ergodic channeL Furthermore, the capacity of 

the non-ergodic channel increases for a larger number of channel taps, since the receiver benefits from the 

independently faded taps of the dispersive channel. 

A third way of characterizing the block-constant channel for the scenario considered is shown in Figure 3.6, 
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which shows its Cumulative Distribution Function (COF) for different SNRs when considering L = 2 CIR 

taps. The COF was obtained as outlined in Section 2.2. 

3.4 Finite Length Space-Time Equalizers 

In this section different finite length STEs, namely the MMSE, the MBER, the Bayesian STE and a novel 

reduced complexity ML STE will be presented. All the algorithms are derived on the basis of the system 

model in matrix notation, which is introduced in the following. 

Considering a finite-length STE having a feed-forward order of NF, the CIR super-matrix H, which rep

resents the total system is obtained by concatenating the (N x QM)=(N x DJ1)-dimensional matrices HI, 

which have been defined in the context of Equation (3.6), yielding: 

o 

H(k) = 

o o 

Let us denote the N-element channel output vector of the MIMO system as y(k). Then the channel output 

super-vector y(k) = [y(k)T, .. , ,y(k - NF + l)TjT can be expressed as 

[ T T] T y(k) = H(k) x(k) ,,,. ,x(k - L - NF + 2) 

+ [1J(k)T,,,,,1J(k-NF +l)Tr 

H(k)x(k) + 11 (k) 

y(k) + 11 (k), (3.15) 

where x(k) = [Xl (k)" .. , X9]t(k)f is a column vector containing the symbols transmitted by the 9J1 = QM 

number of AEs present in the system and 1J(k) = [1]1 (k),.;" 1]N(k)f is the complex-valued Additive White 

Gaussian Noise (AWGN) vector having a variance of E [11]n (k) 12] = 2(T~. 

Equivalently, the system may be described using the binary real-valued system representation introduced in 
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Section 2.1.1 which yields 

[ 

?R (y(k)) ] 

~ (y(k)) 

l(k) 

[ 

?R (H(k)Q) ] 

~ (H(k)Q) 

H(kh(k) + ~(k) 

t(k) + !J.(k), 

where the transformation matrix is given as 

~(k) 

~(k - L - NF + 2) 

Q = I DJ1(NFH-l) ® q 

'1(k) 

+ 
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(3.16) 

(3.17) 

(3.18) 

(3.19) 

and where the row-vector q, the column-vectors ~ as well as 11 have been defined in the context of Equa

tion (2.7). 

When referring to a delayed vector such as for example x(k - b.), this is indicated by xll+1. which suggests 

that Xll+l is the (b. + l)th sub-vector of the super-vector x(k) defined in Equation (3.15). The vector 

notation used may be summarized as folIows: 

• x(k) = x; 

• x(k - i) = xi+l which stands for the (i + 1 )th sub-vector of x; 

• x(k - i) = xi+l which stands for the (i + l)th element of x. 

For notational simplicity the time-index k will be dropped in the remainder of this chapter, where this is 

possible without ambiguity. 

3.4.1 Minimum Mean Squared Error STE 

The linear MMSE STE aims for equalizing the channel's phasor output states as for example iIlustrated in 

Figure 3.3, by multiplying the channel's output with a weight matrix W. Each column of the weight matrix 

describes a linear hyperplane, which is designed for separating the channel's output phasors according to 

their associated symbol value. In mathematical terms, this operation can be expressed as 

A wH x = y, (3.20) 

where W is the (NNp x 91l:)-dimensional complex-valued array weight matrix, where the different columns 

of Ware associated with the different transmitters' symbols and x is the (91l: xl) -dimensional filter output 
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vector generated for the detection of the associated transmitted 91t-symbol signal vector. The filter output of 

the corresponding corresponding real-valued system model of Equation (3.18) is given as 

(3.21) 

where W is the (2NNF x Nbit91t)-dimensional real-valued weight matrix, where the different columns of 

Ware associated with the different transmitters conveying BPSK symbols, while ~ is the (Nbit91t x 1)

dimensional filter output vector for the detection of the associated transmitted BPSK signal vector. 

Assuming that the STE operates with a decision lag of !!., which is often also referred to as the decision 

delay, the squared error at the filter's output can then be written as 

e2 
- IlxMI - WHyW = IIX;HI - xW 

II,!MI - WHrl12 = II'!;HI - ~W· 

The corresponding MMSE STE weight optimization problem is now defined as 

or 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

respectively. Following the derivation of the array weight vector for the narrowband channel, the MMSE 

receiver can be characterized as 

(3.26) 

where hi is a vector of scalars corresponding to the ith columns of the super-matrix H. The STE array 

weight vector for the corresponding real-valued BPSK system is given as 

(3.27) 

For BPSK modulated transmitters, the detected symbol vector is given as 

(3.28) 
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Table 3.1: The normalized computational complexity (real-valued additions and multiplications) of the 
MMSE STE when considering the detection of a single transmitted bit. 

(2Nbit9J1( Np + L - 1) - 1 )4N2 N~ / (Nbit9J1) 

Weight vector calculation of Equation (3.27) +2NNp/ (Nbit9J1) 

+ (4NNp -1)2NNp+ O(N3N~/(Nbit9J1)) 
Detection according to Equation (3.30) 4NNF -l 

and for 4QAM modulated sources, the detected symbol is given as 

(3.29) 

which is identical to 

(3.30) 

3.4.1.1 Computational Complexity of the Real-Valued MMSE STE 

For the evaluation of the computational complexity associated with the MMSE based STE, the real-valued 

system model of Equation (3.18) is considered similar to the complexity evaluation of the real-valued MMSE 

MIMO detector of Section 2.3.1.1. This will facilitate its fair comparison to other algorithms, since for real

valued operations, the complexity imposed by a multiplication and an addition can be considered identical. 

The complexity of a linear STE might be divided into two parts, namely the calculation of the weight 

vector and the detection of the symbol. Upon introducing the variables A = NbitW1· (NF + L - 1) and 

B = 2NNF, and assuming that the array weight vector is calculated using direct matrix inversion rather than 

an iterative algorithm, furthermore, assuming that the CIR matrix is known to the receiver, the associated 

complexity is calculated as follows: 

• The calculation of the covariance matrix according to Equation (3.27) invokes (2A - 1) B2 + B real

valued additions and multiplications. 

• The matrix inversion of Equation 3.27 may be carried out at a computational cost, which is propor

tional to the complexity order of O(B3). 

• The matrix multiplication seen in Equation (3.27) and required for the final calculation of the weight 

matrix can be preformed at a cost of (2B - l)BW1Nbit number of real-valued multiplications and 

additions. 

The total number of operations constituted by the number of multiplications plus the number of additions 

can be obtained by evaluating A as well as B. The resultant number of operations required for the calculation 
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Figure 3.7: The normalized computational complexity required for evaluating the MMSE array weights as 
a function of the feed-forward order NF for different modulation schemes and a different number of eIR 
taps L. when considering the detection of a single transmitted bit calculated according to Table 3.1. The 
proportionality factor was set to 3 and the total number of transmit AEs was chosen to be 9J1 = 2, while the 
number of receive AEs was N = 2. 

of the weight-matrix W in Equation (3.27) is given as 
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c = (2A -1)B2 + B + (2B -l)B9J1Nbit + O(B3) (3.31) 

The complexity imposed by the detection of a single transmitted bit only involves B number of multiplica

tions and (B -1) number of additions. In conclusion, the total complexity is summarized in Table 3.1. 

In Figure 3.7 the normalized computational complexity defined as the number of real-valued additions plus 

multiplications required for the evaluation of the MMSE weight vector as summarized in Table 3.1 is il

lustrated as a function of the feed-forward order NF for both BPSK modulated as well as 4QAM signals, 

when considering L = 2,4 and 6 eIR taps for a system characterized by N = 2 receive AEs as well as 

9J1 = 2 transmit AEs. The proportionality factor associated with the matrix inversion was set to 3. It can be 

seen in Figure 3.7 that the complexity associated with the MMSE STE designed for 4QAM signals is lower 

than that for BPSK signals. The same behaviour was observed in Section 2.3.1 for the narrowband MMSE 

detector. 

3.4.1.2 Performance of the MMSE STE 

Let us first consider a simple single-user SDM system, which is characterized by M = 2 transmit AEs at 

the MS, a BS employing N = 2 receive AEs with an equalizer characterized by the feed-forward order 

NF and a decision delay fl. The channel was assumed to be a symbol-spaced two-path equal-power block

fading channel between all antenna links and the signals were assumed to be BPSK modulated. All channel 

eIR components were assumed to be subject to independent Rayleigh fading. Figure 3.8a shows the BER 
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(b) Raw BER versus Eb/NO for feed-forward order 
NF = 8 and different decision delays f!. 

Figure 3.8: BER versus Eb / No performance of the MMSE STE for a scenario supporting Q = 1 user 
employing M = 2 transmit AEs, a two-path equal-power independent Rayleigh channel and having perfect 
channel knowledge. The BS employed a two-element antenna array. 
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versus Ebl No perfonnance for the uncoded system and for a set of different feed-forward orders NF as 

specified in the graph. The decision delay was chosen to be ~ = NF - 1 . It can be seen that for a larger 

STE feed-forward order NF, the error floor is reduced which may be explained as follows: By increasing 

the feed-forward order of the STE the dimensionality of the decision space is increased. In the higher

dimensional decision space, phasor constellations which have been linearly non-separable in the lower

dimensional decision space associated with a small feed-forward order might become linearly separable 

in the higher-dimensional decision space as demonstrated in [118] for classic channel equalization. The 

linear separability is defined with respect to the hyper-plane described by the MMSE weights. Hyperplanes 

obtained on the basis of other criteria than the MMSE might be capable of achieving a better separability. 

However, the beneficial effect of increasing the feed-forward order of the STE saturates and increasing the 

order beyond NF = 6 hardly gives any further improvement. 1 

If, however, the decision delay ~ is chosen differently and the feed-forward order is fixed to NF = 8, it 

can be seen in Figure 3.8b that the BER floor is reduced further, provided that the decision delay is chosen 

appropriately. In our system these appropriate decision delays would be ~ = 3,4 or 5. For a larger or a 

smaller decision delay, the perfonnance is degraded. The beneficial effect of optimally choosing the decision 

delay was also discussed in [128], where a specific algorithm was proposed for finding the optimal decision 

delay. However, the discussions of [128] only considered the conventional single-user, single-antenna based 

channel equalization case and did not take into account Rayleigh fading channels. It is plausible. however, 

that in the case of a static channel an optimally chosen decision delay results in a better perfonnance than 

1 Note that in [127] a set of algorithms was discussed, which allow the adaptive choice of the feed-forward order depending on 
the channel. 
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all the other delays. It is interesting that in the case of the independent Rayleigh fading channel considered 

in Figure 3.8 a similar effect can be seen. Again, that certain delay choices result in a better average BER 

performance than others. For block-fading independent Rayleigh CIRs, one might consider the choice of 

an adaptive decision delay based on the method proposed in [128]. The complexity imposed by finding the 

optimum decision delay can however hardly be justified, because in Section 3.5.1 we will extend the MMSE 

algorithm by a decision feedback structure which solves the problem of choosing the correct decision delay 

as a by-product. 

3.4.2 Minimum Bit Error Rate STE 

Rather than considering the MSE as the optimization criterion for the determination of the STE's weights, 

we aim in this section for minimizing the BER directly in analogy to Section 2.3.2, where the direct min

imization of the BER was considered for narrowband MIMO systems. Directly minimizing the BER will 

always result in a lower or identical BER than the MMSE approach. More specifically the two approaches 

become equivalent, if the conditional PDF of the linear STE is Gaussian distributed irrespective of the 

weights. The MBER solution may be defined as 

W = arg min Pe (W) 
WECNNFxVR 

(3.32) 

or equivalently as 

(3.33) 

The first step to derive the STE weights, which minimize the BER, is again to find an expression for the 

BER at the output of a linear receiver by integrating over the conditional PDF of the STE's output. For a 

STE of feed-forward order NF, a CIR of length L and a system employing a total of 9Jl transmit AEs the 

transmitted symbol vector may assume Ns = M9Jt(L+NF-l) different values, where M is the number of 

modulated phasor constellation points. 

In the remainder of this section, we will discuss the MBER STE only on the basis of the real-valued binary 

system model of Equation (3.18). The complex-valued MBER STE for 4QAM modulated signals can 

readily be obtained by following the procedure outlined in Section 2.3.2.2 for the complex-valued MBER 

MIMO detector discussed in the context of narrowband channels. 

The Ns number of legitimate transmitted symbol vectors ~ form the set 

(3.34) 
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Figure 3.9: Conditional PDF of the filter out
put of the MMSE-based STE for the example 
of Section 3.2 for user two at SNR=34 dB 

Figure 3.10: Conditional PDF of the filter 
output of the MBER-based STE for the exam
ple of Section 3.2 for user two at SNR=34 dB 

The set of legitimate channel output vectors associated with the set X may be defined as 

(3.35) 

which can be partitioned into the two subsets corresponding to the transmitted symbols by: 

y± = {yV (i) E Y I xU) = ±1}. 
-m _ - -9J1l1+m (3.36) 

In a similar manner, the noise-free part of the STE's output signal may assume only values of the set 

x = {fU) = wTyv(i) 1 < i < N. } -m = -m_ I _ _ S I (3.37) 

where wm is the mth column of the STE's weight matrix W. This set, again, can be partitioned into two 

subsets defined as 

(3.38) 

The conditional PDF of .:Im(k), given 2fmCk - D.) = 2f9J1l1+m can now be expressed as 

(3.39) 

where Nsb = ~ is the number of possible filter output states without noise in the set X~. It can be seen, 

that the conditional PDF of the filter output is the weighted sum of the Gaussian functions over all STE 
. -()+ 

output sates In £1.m. 
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Example 3.2: STE MBER Conditional PDF 

In Figure 3.10 the conditional PDF ofthe STE's output given by Equation (3.39) is plotted for 

the second user of Example 3.1 considered in Section 3.2 at SNR=34 dB. It can be seen from 

Figure 3.9 and Figure 3.10 that the filter output is not Gaussian distributed regardless whether 

the MMSE solution or the MBER solution is considered. It also can be observed by comparing 

Figure 3.9 and Figure 3.10 that the minimum distance between the legitimate STE output states 

indicated as small crosses and the decision boundary at K2 = 0 is slightly larger for the MBER 

solution. This will result in a lower BER for the MBER solution. 
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Following the derivations of Section 2.3.2, the gradient of the BER associated with the real-valued binary 

system model is given as 

(3.40) 

where we have 

(3.41) 

Assuming a normalized weight vector, where !r~!rm = 1 this is further simplified to 

where we have 
1 c= . 

NsbV2ml~ 
(3.42) 

The MBER weights again can be found using the simplified conjugate gradient algorithm of Appendix B 

in order to calculate the optimum point of \1 Fe (!rm) = 0 commencing for example from the MMSE STE 

weight solution. 

3.4.2.1 Computational Complexity of the Real-Valued MBER STE 

The computational cost of the MBER algorithm evaluated on the basis of the real-valued binary system 

model and under the assumption that the eIR matrix is known to the receiver can again be divided into two 

parts similarly to the complexity evaluation of the MMSE algorithm provided in Section 3.4.1.1 . 

Let us first quantify the computational complexity required for the evaluation of the gradient of the BER 

surface for a normalized weight vector. The evaluation of the expression in the sum of Equation (3.42) 
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Table 3.2: The normalized computational complexity (real-valued additions and multiplications) of the 
MBER STE when considering the detection of a single transmitted bit. 

Weight vector calculation 
NgradNsb(2 + 16NNF)+ 

(2NsbNFN(2Nbitm(NF + L -1) -l))/(mNbit) 

Detection 4NNF-1 
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requires 3 + 3 . 2NNF = 3 + 6NNF number of operations and one evaluation of the exp function. This 

expression has to be evaluated Nsb times and summed up, which requires further (Nsb - 1) additions. The 

normalization of the weight vector contributes 2NNF + (2NNF - 1) + 2NNF = 6NNF - 1 number of 

operations. Additionally, the receiver has to determine the legitimate channel output states defined Equa

tion (3.36), which requires 2NsbNFN(2Nbit!m(NF + L - 1) - 1). The evaluation of the legitimate filter 

outputs imposes Nsb (4N - 1). The computational complexity difference between the detection of BPSK 

and 4QAM signals is associated with the factor Nsb operations. 

When considering the complexity of the conjugate gradient algorithm presented in Equation (B.l) in Ap

pendix B, then it can be seen that the computational complexity associated with the evaluation with the 

calculation of the gradient compromises the main contribution. We therefore approximate the complexity 

required for the calculation of the weight vector associated with a single bit as NgradCV'Pe where Ngrad is 

the number of iterations of the conjugate gradient algorithm and 

(3.43) 

is the computational complexity required for the calculation of the BER surface gradient for a given weight 

vector. The total complexity required for the detection of one bit is summarized in Table 3.2 where the 

evaluation of the exp function has been neglected. 

In Figure 3.11 the normalized computational complexity defined as the number of real-valued additions 

plus multiplications required for the evaluation of the MBER weight vector as summarized in Table 3.2 is 

illustrated as a function of the feed-forward order NF for both BPSK modulated as well as 4QAM signals, 

when considering L = 2,4 and 6 eIR taps for a system characterized by N = 2 receive AEs as well as 

!m = 2 transmit AEs. It can be observed in Figure 3.11 that in contrast to the computational complexity 

imposed by the MMSE detector illustrated in Figure 3.7, the complexity required for determining the MBER 

STE weights is substantially higher. The high computationally complexity associated with determining the 

MBER STE weights is owing to the fact that the number of legitimate channel output states is proportional 

to O(Nsb) and thus grows exponentially with the number of transmitters, with the length of the eIR and 

with the feed-forward order of the STE. However, once the array weight matrix has been determined, the 

MMSE and the MBER STE impose the same complexity when detecting a single bit. 
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Figure 3.12: BER versus Eb / No performance of the MMSE and the MBER STE for different user constel
lations each experiencing a two-path equal-power independent Rayleigh channel between all antenna links 
and having perfect channel knowledge. The BS employed a two-element antenna array. 

3.4.2.2 Performance of the MBER STE 
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25 

The SDM system considered is identical to the system used in Section 3.3.2, which is characterized by 

M = 2 transmit AEs at the MS, a BS employing N = 2 receive antennas associated with an equalizer 

characterized by the feed-forward order NF and a decision delay b.. The channel was assumed to be a 

symbol-spaced two-path equal-power block-fading independent Rayleigh channel between all antenna links 

and the transmitted signals were assumed to be BPSK modulated. Figure 3.12a shows the BER versus 

Eb / No performance for the uncoded system employing aMBER STE using a feed-forward order of NF = 2 
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and a decision delay of /). = 1. As a reference, the BER curve for the MMSE STE is also plotted for 

identical system parameters, as well as for the optimized parameters of NF = 8 associated with a delay of 

/). = 1. It can be observed in Figure 3.12a that for identical parameters, the MBER algorithm outperforms 

the MMSE algorithm. This indicates that the MMSE algorithm is incapable of confidently separating two 

linearly separable data sets owing to its MSE-based optimization function, whereas the MBER algorithm 

achieves this goal. Note in Figure 3.12a that for identical STE parameters, both the MBER and the MMSE 

algorithm have to perform the same classification task by constructing a linear hyperplane defined by the 

STE weights. The MMSE algorithm however constructs the hyperplane by minimizing the MSE of the 

points from the decision boundary and hence certain ph as or points are always falsely classified, yielding a 

BER floor. Only in the higher-dimensional space, i.e for NF = 8 it is capable of correctly separating the 

two data sets associated with a transmitted + 1 and a -1. 

It was indicated at the beginning of this section that a particular advantage of the MBER algorithm is that 

it does not rely on the assumption of having a Gaussian distributed conditional PDF of the STE's output. 

In Rayleigh fading channels, where the powers of the eIR taps vary and the number of transmitters in the 

system as well as the number of channel path is moderately low, the Gaussian STE output assumption has 

limited validity, yielding the performance difference between the MBER and the MMSE algorithm observed 

in Figure 3.12a. This effect can be further explained by considering a system constellation consisting of two 

MSs, each employing a single transmit AE, which corresponds to a low-dimensional SDMA system. The 

channel was, again, assumed to be an equal-power two-path block-fading independent Rayleigh channel 

between all antenna links and a STE associated with N = 2, NF = 2 and /). = 1 was considered. The 

signals of the two users were assumed to be received by the BS at a different power, as defined by the SIR. 

In Figure 3.12b the uncoded BER performance of user two versus Eb/NO is shown, where it was assumed 

that the second user was received at a lower average power in order to characterize the 'near-far' behaviour 

of the system. It can be observed that the BER performance of user two detected with the aid of the MBER 

detector is hardly degraded as the interferer's power is increased, whereas the MMSE algorithm suffers from 

a severe BER performance degradation. 

3.4.3 Bayesian STE 

As seen from Equation (3.20), the MMSE and MBER algorithms presented in Section 3.4.1 and Sec

tion 3.4.2, respectively, both constitute so-called linear receivers. The optimum receiver however is not 

defined by a linear hyperplane obtained with the aid of the MMSE or the MBER criterion, but by a non

linear structure associated with non-linear decision boundaries as indicated in Section 3.2. The receiver 

realizing the non-linear MBER detector [39] is the Bayesian receiver. 

For the derivation of a non-linear STE we will commence from the ML decision for single bit XmL'1+m of a 
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BPSK modulated signal, which is defined as 

X!JRLHm = arg max p(yIX!JRLHm)' 
X!UlMmE{ +1,-1} 

(3.44) 

where the vector X!JRL'i+m is a scalar element of the super-vector x depending on the specific decision delay 

/1, as defined in Equation (3.15). 

In analogy to the MBER STE also the Bayesian STE may readily be derived for the real-valued system model 

presented in Equation (3.18). Again, the complex-valued Bayesian STE may be obtained following the 

derivation of the complex-valued narrowband MIMO detector of Section 2.3.3. Given the set of legitimate 

real-valued channel output states Y; defined in Equation (3.36), the Bayesian decision function /B,m (.) 
may be expressed as 

(3.45) 

Again, the introduced notation for the presented real-valued binary interpretation of the Bayesian STE is 

independent of the modulation scheme and only real-valued operations have to be performed at the receiver. 

3.4.3.1 Computational Complexity of the Bayesian STE 

Similar to the linear MMSE and MBER STE discussed in Section 3.4.1 and Section 3.4.2 respectively, 

the computational complexity required by the Bayesian STE can be separated into two parts, namely the 

calculation of the possible channel output states and the detection of the transmitted bits. 

The computation of the possible channel output states requires 2NsNFN(2Nbit9Jt(NF + L - 1) - 1) real

valued operations. The detection of one binary symbol requires Ns (6NNF + 1) operations plus Ns evalu

ations of the exp function. The total complexity is summarized in Table 3.3 and plotted in Figure 3.13 for 

both the block-constant fading channel as well as for the time-varying fading channel. It can be seen from 

Figure 3.13 that the computational complexity associated with the Bayesian STE is exponentially increasing 

with the number of eIR taps as well as the feed-forward order. This relationship can be observed for both the 

time-varying as well as for the block-fading channel in Figure 3.13a and Figure 3.13b, respectively. When 

comparing the complexity of the Bayesian STE and that associated with a linear STE for the block-fading 

channels illustrated in Figure 3.13b, it can be observed that the Bayesian STE exhibits a significantly higher 



3.4.3. Bayesian STE 

~ 
.~ 
!S.. 
0 
c;i 
Z 

Table 3.3: The normalized computational complexity (real-valued additions and multiplications) of the 
Bayesian STE when considering the detection of a single transmitted bit 

Calculation of the legitimate 
2NsNFN(2NbitWl:(NF + L -1) - 1) /NbitlWl: 

channel output states 

Detection of a single bit 
Ns (6NNF + 1) plus 

Ns exp function evaluations 

JOIO .- JOIO 
",'" ",'" "," ",,,'" ....... ";" '" '" '" .'" .II'" ... ",,,,,,, 

'" 
.- ,., 

"," 
J08 '" J08 '" "' ... '" ,., '" '" '" '" .. '" "," '" '" ",'" 

",'" " 
~ '" " 

... 
J06 106 '" ,,--",,,,,,, .. '" 'I 

0 .- ",'" 
4QAM --

104 c;i 104 '" ..., '" BPSK -Z Lin. det. _ .. 
4QAM --

10
2 BPSK -

L=6 
L=4 
L=2 

10° 
1 2 3 4 5 

Feed-forward order NF 

(a) Number of real-valued additions plus multiplica
tions required for the calculation of the legitimate 
channel output states plus the the real-valued opera
tions required for the detection of a single bit. 

.. 
• 
• 

6 

L=6 

102 L=4 
L=2 

.-"-
.. ___ .. -.- .. --------.-a-.-·--

10° 
1 2 3 4 5 

Feed-forward order NF 
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tation of the weight vector according to Table 3.1. 

Figure 3.13: The normalized computational complexity imposed by the Bayesian STE for the detection of a 
single transmitted bit as a function of the number of feed-forward order NF evaluated for different numbers 
of eIR taps L as well as different modulation schemes. The number of transmit AEs was WI: = 2 and the 
number of receive AEs was chosen to be N = 2. The values were calculated according to Table 3.3. 
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The SDM system considered in this section is identical to that used in Section 3.4.1.2, which is characterized 

by M = 2 transmit AEs at the MS, a BS employing N = 2 receive antennas with a STE characterized by 

the feed-forward order NF and a decision delay 11. The channel was assumed to be a symbol-spaced two

path equal-power block-fading independent Rayleigh channel between all antenna links and the signals were 

assumed to be BPSK modulated. Figure 3.14a shows the BER versus EblNo performance recorded for the 

uncoded MBER STE using a feed-forward order NF = 2 and a decision delay of 11 = 1. It can be observed 

that the non-linear detection strategy constituted by the Bayesian detector outperforms the optimum linear 

detector represented by the MBER algorithm by more than 5 dB at a BER of 10-4 . 

When considering the low-dimensional reference SDMA system employed for the creation of Figure'3.12b, 
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(a) BER versus Eb / No performance for a scenario sup
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Figure 3.14: BER versus Eb / No performance of the MMSE, the MBER and the Bayesian STE for different 
user constellations each experiencing a two-path equal-power independent Rayleigh channel between all 
antenna links and having perfect channel knowledge. The BS employed a two-element antenna array and a 
STE characterized by Np = 2 and !l = 1. 
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where two users each employing one transmit AE were considered, we parametrized the average power of 

the signals received by the BS from the two MSs. The channel was assumed to be an equal-power two-path 

block-fading independent Rayleigh channel between all antenna links and the STE parameters were set to 

N = 2, Np = 2 and I:!:. = 1. It can be seen from Figure 3.14b that the uncoded BER versus Eb/NO 

performance of the lower-power user is only marginally degraded by the near-far problem imposed by the 

higher-power user. 

3.4.4 Reduced Complexity Maximum Likelihood STE 

Due to the structure of the presented algorithm, let us formulate the ML detection of the complete transmitted 

signal vector given in Equation (3.15) as 

x = argmax p(ylx), 
XEX 

(3.46) 

where X is the set of potentially transmitted symbol vectors x. Note that in this formulation the super-vector 

x is detected, rather than only the sub-vector of interest, namely Xil+1' Equation (3.46) may be re-written as 

x = argmin{lly - HxI12}. 
xEX 

(3.47) 

Let us assume for the derivation of the algorithm that the eIR matrix H as well as the noise are real-valued 

and that the transmitted signal is Binary Phase Shift Keying (BPSK) modulated. It was shown in [17] that 



3.4.4. Reduced Complexity Maximum Likelihood STE 97 

the solution to the problem defined by Equation (3.47) is identical to solving 

(3.48) 

where the upper triangular matrix U is defined by 

(3.49) 

while 

(3.50) 

Let us now first define Nb = 9J1( Np + L - 1) as the number of symbols in x considered by the OHRSA. 

Exploiting the fact that the matrix U has an upper triangular structure, it can be shown that the objective 

function used for the detection of the transmitted symbol vector x may be written as [61] 

lex) IIV(x - XMMSE)112 

(x - XMMSE)HUHU(x - XMMSE) 
Nb Nb 

- E 1 EUij(Xj - XMMSE,j)12 
i=l j=i 

EcfJi(Xi), 
i=l 

where Uij is the (i, j)th element of U, Xi = [Xi,"" XNbF and cfJi(Xi) may be expressed as [61] 

Nb 
+ E Uij(Xj - XMMSE,j) 1

2
, 

j=i+l 
~~-------v~-------~ 

ai 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

and where the second term ai of Equation (3.55) is independent of the specific symbol's value of Xi. The 

cost-function given in Equation (3.54) may now be re-written in a recursive manner as 

(3.56) 

where we have INb (XNb) = IUNbNb (XNb - XMMSENb) 12. The cost-function has the essential property 

that [61] 

(3.57) 
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Due to the fact that the cost-function h(Xi) only depends on {XiI" 'I XNb}' we introduce the notation 

(3.58) 

Similarly to the narrowband MIMO detector of Section 2.3.4 we may now employ a tree-search algorithm 

for finding the ML solution, which are discussed in the following example. 

Example 3.3: Reduced Complexity ML STE 

Consider a simple real-valued candidate system supporting Q = 2 MSs, each employing M = 

1 AE, a L = 2-path channel and a BS configuration given as NF = 2, /),. = 1 and N = 2. This 

system configuration results in a (NNF x QM(NF + L -1)) = (4 x 6)-dimensional channel 

matrix constructed as outlined in the context of Equation (3.15). The QM(NF + L -1) = 6-

element signal vector contains NF + L - 1 = 3 number of consecutively transmitted vectors 

x, each hosting QM = 2 number of elements. The (NFN)-element channel output y is given 

as the product of the CIR matrix H and the transmitted symbol vector x plus the AWGN. The 

characteristic quantities of such a system are given for example as 

0.45 0.16 0.89 0.47 0 0 

0.39 0.30 0.92 0.40 0 0 
H= 

0 0 0.45 0.16 0,89 0.47 

0 0 0.39 0.30 0.92 0.40 

+1 
(3.59) 

-1.37 -1 

-1.20 -1 
y= and X= 

0.04 +1 

0.44 +1 

-1 

which were recorded at Eb/NO = 12 dB. This corresponds to a scenario, where the first MS's 

signal is received at 6 dB higher power than the signal of the second MS. 

As mentioned earlier, the convergence of the algorithm can be improved by reordering the 

columns of the CIR matrix H, so that the columns of the reordered CIR matrix have a monotonously 

increasing ordered norm [17. 61]. Commencing the algorithm now by reordering the channel 
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matrix of Equation (3.59) yields H(o), where the superscript (0) stands for ordered 

0.16 0.45 0 0.47 0 0.89 

H(o) = 
0.30 0.39 0 0.40 0 0.92 

(3.60) 
0 0 0.47 0.16 0.89 0.45 

0 0 0.40 0.30 0.92 0.39 

It may be readily shown that the corresponding upper triangular decomposition of H(o) into 

U(o) and the required MMSE solution for the ordered system are given as 

0.42 0.44 0 0.46 0 0.99 

0 0.47 0 0.35 0 0.69 

U(o) = 0 0 0.67 0.29 1.19 0.55 
(3.61) 

0 0 0 0.38 0.19 0.33 

0 0 0 0 0.52 0.06 

0 0 0 0 0 0.45 

and 

X~SE = [-0.11 - 0.610.10 - 0.12 0.69 -1.01f I (3.62) 

respectively. 

Conventional Search: Note that since both the system matrix and the transmitted signal are 

real-valued, the imaginary part of the received sequence may be omitted and the MMSE solution 

is also real-valued. The conventional search algorithm commences at node 0 of Figure 3.15 

by evaluating the cost-function of the hypothetical solutions x~~ = x~o) associated with the 

ordered channel matrix of Equation (3.60), according to Equation (3.56), which yields 

T (v(o)) _ I (0) (v(o) _ ~(o) ) 12 
J6 X6 - U66 X6 XMMSE,j 

J6(X~o) = +1) = 1.45· (+1 + 1.01)12 = 0.79 

!6(x~o) = -1) = 1.45· (-1 + 1.01)12 = 0.00. 

The corresponding two values of !6(x~o)) can be seen at the second hierarchical level of Fig

ure 3.15 as nodes 1 and 20 together with the associated hypothetical BPSK solutions indicated 

along the branches. Based on the two cost-function values seen within node 1 and 20 we select 

node 1, since it has a value of !6 (x~o) = -1) = 0.0, which is the lower cost-function value. The 

associated symbol value is x~o) = -1. In the next step of the algorithm we proceed from node 

99 
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Figure 3.15: Example of a search tree formed by the OHRSA based STE in a scenario employing BPSK 
modulation, N = 2,Np = 2, ty" = 1, L = 2, Q = 2 and M = 1 and encountering Eb/No = 12 dB. 
The exact received signal vector y, the channel matrix H and the transmitted sequence x are given in Equa
tion (3.59). The labels indicate the search node index, while the value of the cost-function of Equation (3.56) 
is given in brackets. 
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1 of Figure 3.15 by calculating the cost function of Equation (3.56) for the next two potential 

values of x~o) = ±1 as follows: 

= ~6 (0) (v(o) ~(o) ) 
as L."j=6 USj . Xj - xj,MMSE 

- 0.85· (-1 + 1.01) = 0.00 

JS([x~O) -lV) 

Js([+l -lV) 

Js([-l -lV) -

I + (o)(V ~(o) )1 2 as Uss Xs - XMMSE,S 

10.00 + .52 . (+ 1 - .68) 12 = 0.02 

10.00 + .52 . ( -1 - .68) 12 = 0.77. 

The resultant two values for Js(x~o)) are associated with node 2 and 19, respectively, which are 

seen at the third hierarchical level of Figure 3.15. The node from which the algorithm is further 

evolving is node 2, where the associated symbol is x~o) = +1, which has a lower cost-function 

value than node 19. 

The value of x~o) = [+1 -lV is now used for the calculation of the cost-function values of 

Equation (3.56) associated with x~o). The cost-function values J4(X~0)) are illustrated at the 

fourth hierarchical level of Figure 3.15 within node 3 and 12. Repeating this procedure will 

result in the calculation of the cost-function value of h (x~o)) provided within node 4 and 9 at 

the fifth hierarchical level of Figure 3.15, the calculation of h(x~o)) given in node 5 and 8 at the 

sixth hierarchical level of Figure 3.15 and finally h (xio)) given in node 6 and 7 at the seventh 

and last hierarchical level of Figure 3.15. 

Upon arriving at h (xlo)) at the bottom of the graph, we have calculated the first potential 

solution of our optimization problem described by Equation (3.46), which is constituted by the 

left-most branch of the search tree illustrated in Figure 3.15. This potential solution is given by 

x(o) = [-1 +1 -1 -1 +1 -lV. 

The recursive optimization continues from the bottom (node 6) to the top of the tree of Fig

ure 3.15 with the objective of finding the specific branch terminating at the bottom of the search 

tree (hierarchical level 6) while having the minimum cost-function value. The symbol vector x 

associated with this branch constitutes the ML solution. Considering now the flipping of sym

bol xio) or x~o) at hierarchical level 5 or 6 is not beneficial, since the cost-function associated 

with these changes would result in a higher value, namely 1.28 and 0.71, than the cost function 

of 0.68 at node 6. Hence, if these tentative branches would be pursued to the bottom of the tree, 

it would ultimately result in an increased cost-function value as a consequence of the ordering 

property outlined in Equation (3.57). 

When the bottom-to-top recursive process initiated at node 6 arrives at node 3, however, it can 
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be seen that changing the value of xiv) from -1 to + 1 results in a cost function value of 0.62 at 

node 9, which is lower than the cost-function value of 0.68 recorded at node 6. Pursuing now 

the path from node 9 further down the tree will however again result in a cost function value 

that is higher than that of node 6. The corresponding branch is therefore not pursued further. 

Returning to the left-most branch of Figure 3.15 and changing the value of xiv) at the hierar

chical level 3 from -1 to + 1, results in a cost-function value of 0.26, which is lower than that 

of node 6 and the corresponding path is therefore pursued further down through nodes 13 and 

14. Ultimately, this results in two new branches through nodes 12, 13, 14 and 15 as well as 12, 

13,14 and 16, terminating atxlo), which constitute additional potential solutions for x(o). Pur

suing this path from node 15 and 16 backwards, returning to the most-left branch and moving 

recursively up to node 0 will result in no further branches terminating at the bottom of the tree. 

Hence node 15 has the lowest cost-function value of 0.3. 

The desired solution is described by the specific branch terminating at the bottom of the search 

tree that has the lowest cost-function value. Again, the associated symbol sequence is given by 

xJo) = [-1 -1 -1 +1 +1 -1f, 

which can be obtained by tracing the branch back from node 15 to node O. By contrast, the 

identically ordered MMSE solution is given by 

sign ( X~SE) = [-1 - 1 + 1 - 1 + 1 - 1 V. 

The final step to obtain the desired ML solution is to reverse the ordering of the obtained ,,(0) 

solution and to choose the desired sub-vector Xll+l according to the decision delay. This yields 

" [-1 -1 -1 +1 +1 -1F 
'---v--" 

sign (XMMSE) 

XLl+l 

[-1 -1 -1 -1 +1 + 1F 
'---v--" 

XLI+l 

which highlights the decision errors made by the MMSE detector. 

Min-Path Search: In Example 2.5 and Algorithm 2.1, the recursive search algorithm of Ex

ample 2.18 was further developed to the Min-Path strategy. The same principle may also be 

applied in the context of STE, which results in the following search strategy for the example 

considered. 

Again, the search-process commences from node 0 of Figure 3.15 by evaluating the cost-
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function value of nodes 1 and 20 in Figure 3.15 according to Equation (3.56) in analogy to 

the above-mentioned conventional search process. The nodes associated with the search-front 

F are now node 1 with a cost-function value of 0 and node 20 with a cost-function value of 

0.79. The search-front is written as F = {1, 20}. 

According to the Min-Path search strategy, the search process continues from that specific node 

of the search-front, which has the lowest cost-function value. In our case this yields the eval

uation of the 'children' of node 1 in Figure 3.15, which are given as nodes 2 and 19. Their 

cost-function can be evaluated according to Equation (3.56). These nodes, namely nodes 2 and 

19, are now added to the search-front, while node 1 is removed. The new search-front is then 

represented by F = {20, 2, 19}. 

Of all the nodes in the search-front, node 2 has now the lowest cost-function value, as seen in 

Figure 3.15 and is therefore considered for the continuation of the optimization process. Adding 

the children of node 2 of Figure 3.15 given as nodes 3 and 12 and removing node 2 from the 

search-front results in F = {20, 19, 3, 12}. 

When the search process is evolved further following this principle, i.e. by always continuing 

the evaluation of the search-process from that specific node, which is associated with the lowest 

cost-function, the following sequence of search-fronts is obtained: 

F = {20, 19, 12, 4, 9} ==? continue from node 12 

F = {20, 19, 4, 9, 13, 18} ==? continue from node 13 

F = {20, 19, 4, 9, 18, 14, 17} ==? continue from node 14 

F = {20, 19, 4, 9, 18, 17, 15, 16}. 

When arriving at node 15, the search process is terminated, since that particular node, which 

has the lowest cost-function value of all nodes forming the search-front is a node terminating at 

the bottom of the search tree in Figure 3.15, i.e. node 15. The ML solution associated with node 

15 of Figure 3.15 can now be obtained in analogy to the conventional tree-search discussed in 

the previous paragraph of this example. 

When comparing the conventional and the Min-Path search strategy, it can be observed that for 

this particular example the Min-Path search is associated with a lower computational cost, since 

it does not visit nodes {5, 10,8, 11, 6, 7} of Figure 3.15. 
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Despite the fact that the Min-Path algorithm requires a lower number of additions and multiplications for 

finding the ML solution, we opted for using the conventional tree-search in our simulations. This decision 

was motivated by the fact that for most scenarios considered in this treatise tracking the search-front of the 

Min-Path approach requires an excessive number of memory allocation and deallocation operations, which 

resulted in a longer run-time of the algorithm compared to that of the conventional tree-search. 
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Table 3.4: The normalized computational complexity (real-valued additions and multiplications) of the 
OHRSA sm, when considering the detection of a single transmitted bit 

MMSE Solution and factorization (8NfNNp + Nb - Nf - 2NbNNp) / (9J1Nbit) 

of Equation (3.50) and Equation (3.49) +Nb(4NNp -1)/ (9J1Nbit) + O(Ng!(9J1Nbit)) 

Tree evaluation of Equation (3.55) and 
3(Nb - i) + 1 

Equation (3.56) at hierarchical level i 

The fact, that only a subset of the detector outputs is actually of interest, namely the sub-vector X/HI of x is 

a major difference between the OHRSA applied to the non-dispersive OFDM sub-channels in [61] and the 

wideband scenarios considered in this subsection. 

In order to apply this scheme for detecting 4-level Quadrature Amplitude Modulated (4QAM) signals the 

real-valued binary system model of Equation (3.18) has to be employed. 

3.4.4.1 Computational Complexity of the OHRSA Detector 

The computational complexity of the OHRSA STE can again be divided into two contributions, namely the 

cost associated with the calculation of the MMSE solution and the factorization of the covariance matrix 

of Equation (3.49) into an upper triangular matrix as well as the evaluation of the cost-function along the 

search tree. Let us first define B = 2NNp. 

The calculation of the MMSE solution is constituted by N~ (2B - 1) + Nb number of operations imposed 

by the evaluation of the covariance matrix of Equation (3.49), plus 0 (N~) number of operations associated 

with the calculation of its inverse. For the final calculation of the weight vector, an additional (2Nb -l)NbB 

number of operations are required for carrying out the multiplication of the inverse of the covariance matrix 

of Equation (3.50) with the cross-correlation matrix, as suggested by Equation (3.50). The multiplication 

of the MMSE weight matrix with the received signal contributes a further (2B - l)Nb operations. The 

Cholesky decomposition of the covariance matrix typically requires O(N~) number of operations. In ad

dition to the MMSE solution of Equation (3.50) and the Cholesky factorization of Equation (3.49), the 

complexity of the OHRSA STE is determined by the number of operations required for the evaluation of the 

cost-function along the search tree. At hierarchical level i, the evaluation of the cost-function characterized 

by Equation (3.56) as well as Equation (3.55) requires 3· (Nb - i-I) +4 = 3(Nb - i) + 1 operations. In 

Table 3.4 the complexity normalized by the number of bits 9J1Nbib which have to be detected is summarized. 

Figure 3.16 shows the normalized complexity required for the evaluation of the search tree as a function of 

the feed-forward order Np for both BPSK as well as 4QAM, when considering L = 2,4 and 6 CIR taps at 

SNR=20 dB for 9J1 = 2 and N = 2. The complexity associated with the search tree evaluation increases 

only moderately with the feed-forward order Np. This specific behaviour is mainly due to the fact that 
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Figure 3.16: The normalized computational complexity required for evaluating the search tree as a function 
of the number of transmit AEs for different modulation schemes and a different number of MIMO array 
weights, when considering the detection of a single transmitted bit calculated according to Table 3.4 at 
SNR=20dB. 
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Figure 3.17: The normalized computational complexity required for evaluating the search tree plus the eval
uation of the MMSE solution as a function of the number of transmit AEs for different modulation schemes 
and a different number of MIMO array weights, when considering the detection of a single transmitted bit 
calculated according to Table 3.4 at SNR=20 dB. The proportionality factor associated with the MMSE 
solution was set to 3. 
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(a) Raw BER versus Eb / No for a scenario supporting 
Q = 1 user employing M = 2 transmit AEs. 
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(b) Raw BER of one MS versus Eb / No . The scenario 
considered supported Q = 2 users, each employing 
M = 1 transmit AE. 

Figure 3.18: BER versus Eb / No performance of the MMSE, the MBER and the Bayesian STE for different 
user constellations each experiencing a two-path equal-power independent Rayleigh channel between all 
antenna links and having perfect channel knowledge. The BS employed a two-element antenna array. 

20 

even though the search-space increases upon increasing the feed-forward order, the problem of finding the 

ML solution generally becomes less difficult, i.e less branches of the search tree have to be evaluated. If in 

addition to the search tree-evaluation also the computation of the MMSE solution is taken into account, it can 

be observed from Figure 3.17 that the computational complexity associated with the OHRSA STE increases 

only moderately upon increasing the feed-forward order Np. Finally, the computational cost associated with 

the OHRSA STE illustrated in Figure 3.16 and Figure 3.17 is significantly lower than that of the Bayesian 

STE characterized in Figure 3.13a and Figure 3.13b, respectively. 

3.4.4.2 Performance of the OHRSA STE 

The SDM system considered is identical to that used in Section 3.4.1.2 which is characterized by M = 

2 transmit AEs at the MS, a BS employing N = 2 receive antennas in conjunction with an equalizer 

characterized by the feed-forward order Np and a decision delay 1:::.. The channel was assumed to be a 

symbol-spaced two-path equal-power block-fading independent Rayleigh channel between all antenna links 

and the transmitted signals were assumed to be BPSK modulated. Figure 3.12a portrays the BER versus 

Eb/NO curve for the uncoded MBER, MMSE, Bayesian and OHRSA STE using a feed-forward order of 

NF = 2 and a decision delay of I:::. = 1. It can be observed that the BER performance of the OHRSA 

algorithm is identical to that of the Bayesian detector. The same agreement between the performance of the 

OHRSA and the Bayesian detector can also be observed in Figure 3.18b, which shows the uncoded BER 

versus Eb / No performance for a SDMA system, where the channel was again assumed to be an equal-power 

two-path block-fading independent Rayleigh channel between all antenna links and a STE associated with 
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Figure 3.19: FER versus Eb / No performance of the MMSE, MBER, Bayesian and OHRSA STE for a 
scenario supporting Q = 1 user employing M = 2 transmit AEs, a two-path equal-power independent 
block-fading Rayleigh channel, a BS associated with N = 2, NF = 2, tJ. = 1 and having perfect channel 
knowledge. Tne system employed a R = 1/2-rate punctured turbo-code. 
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N = 2, Np = 2 and fj, = 1 was considered. The different users' signals were received at a different power 

at the BS. The BER is shown for the specific user, whose signal was received at a lower power. 

3.4.5 Turbo-Coded Performance of STEs 

In this subsection the performance of the different algorithms is compared for a SDM system supporting 

Q = 1 user, which employs M = 2 transmit AEs2. The user communicates with the BS over a dispersive 

equal-power two-tap independent Rayleigh channel and the BS is equipped with N = 2 AEs and a STE 

with feed-forward order Np = 2 using a decision delay fj, = 1. In order to render the transmitter more 

realistic, we use Forward Error Correction (FEC) to improve its achievable performance. The channel code 

used is a R = 1/2-rate punctured turbo-code having Recursive Systematic Convolutional (RSC) component 

codes described by the generator polynomial g = [7 5], which was fed with the hard-decision estimates of 

the STE. For a first comparison we assume the fading envelope to be constant over one transmission burst 

equivalent to 1000 information bits and the channel envelope was assumed to be perfectly known by the 

receiver. In total 5000 bursts were transmitted in order to acquire sufficient fading statistics and a reliable 

BER and FER estimate. 

Since for a block-fading channel the most pertinent performance measure is the code-word error rate, which 

is identical to the FER in our case, Figure 3.19 shows the FER versus Eb/NO performance for the different 

algorithms introduced in this chapter. As a reference the outage probability for an information rate of R = 1 

for BPSK modulated signals and of R = 2 for 4QAM modulated signals is also given in Figure 3.19, which 

2 If no channel coding is used, there is no difference between a Q user SDMA system having a single AE and a single-user SDM 
system employing Q antennas, except for their difference in transmit power. 
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Figure 3.20: BER versus Ebl No performance of the MMSE, Bayesian and OHRSA STE for a scenario 
supporting Q = 1 user employing M = 2 transmit AEs, a two-path equal-power independent uncorrelated 
Rayleigh channel, a BS associated with N = 2, NF = 2, b. = 1 and having perfect channel knowledge. 
The system employed a R = 1 /2-rate punctured turbo-code. 

was calculated in Section 3.3 as a performance bound for all algorithms. 
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When comparing the achievable performance of the MBER and the MMSE algorithm for BPSK modulated 

signals, a substantial performance difference can be observed, Compared to the optimum non-linear de

tectors, namely to the Bayesian and the OHRSA STE, the MBER algorithm exhibits a relatively moderate 

performance degradation, which increased with an increasing SNR. For 4QAM signals only the performance 

of the MMSE and the OHRSA assisted STE is depicted, since the complexity imposed by the Bayesian as 

well as the MBER STE was considerably high, i.e the number of legitimate channel output states to be 

considered was Ns = 42.(2+2-1) = 46, 

In Figure 3,20 the achievable BER versus Ebl No performance is illustrated for the same system but assum

ing an uncorrelated rather than a block-fading channel. The performance associated with both the MBER 

as well as the Bayesian STE designed for 4QAM signals is not included owing to their excessive compu

tational cost. Similarly to the achievable performance for the block-fading channel shown in Figure 3.19, 

it can be seen in Figure 3.20 that the MMSE detector performs considerably worse than the Bayesian and 

the OHRSA STE also for the uncorrelated fading channel scenario, Furthermore, it can be observed that 

even the ML STEs benefiting from turbo-coding operate at a distance of more than 4 dB from the channel 

capacity, 

3.4.6 Conclusion 

In this section, we have introduced different approaches for implementing STE algorithms. Their perfor

mance was compared in Figure 3.19 as well as Figure 3.18 using a very simple channel and interferer 
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Figure 3.21: Space-time equalizer with feed-forward order NF and feedback order NB employing N receive 
antennas. 

setting and the differences were highlighted. It was shown that even the more sophisticated algorithms are 

far from approaching the lower capacity bound. Furthermore, the computational complexity of the different 

detection strategies has to be reduced in order to apply them in larger-scale systems. These two topics are 

addressed in the next section by introducing the decision feedback structure, which aims for tackling both 

above-mentioned problems. 

3.5 Decision Feedback Assisted Finite-Length STE 

The performance of both linear and non-linear equalizers can be enhanced by incorporating a decision 

feedback structure [118] in the receiver, as shown in Figure 3.21. In addition to the feed-forward order NF 

and the decision delay parameter 6. we introduce the decision feedback order NB• Note, that the oldest 

symbol vector, which still influences the detected symbol Xil+l is XNF+L. Furthermore, the oldest feedback 

symbol vector is Xil+NB+l. Without loss of generality we therefore chose NB = NF + L - 2 - 6. for the 

derivation of the proposed decision feedback aided STEs. In order to describe the feedback structure, we 

first divide the system matrix H into two sub-matrices [118] 

(3.63) 

where HI hosts the first 9J1(6. + 1) columns of Hand H2 represents the last SJJtNB columns in H. The array 

output can then be written as 

Y - Yl +Y2 

h +:5'2 +11 

(3.64) 
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Figure 3.22: STE complexity reduction by space-translation for the DF-aided STE depicted in Figure 3.21. 
Its counterpart using no DF was characterized in Figure 3.3a. 

110 

where Xl = [x(k)T ... x(k-~)T]T = [xf, .. XI+I]T indicates the symbols in the feed-forward shift 

register and X2 = [x(k - ~ - 1)Y ... x(k - ~ - NB) Tf = [XI+2'" xI+NB+1 r denotes the symbols in 

the feedback register. The complexity reduction achieved by the decision feedback is due to the fact that the 

previously received symbols of all transmitters have already been decided upon and hence their ambiguity 

imposed on the constellation may be eliminated. 

Equation (3.65) can be interpreted as a space translation [129], where a received signal vector y is translated 

into the new observation space r by subtracting the product of the decision feedback sequence X2 and the 

channel matrix H2. The space translation is given as 

r = y - H2X2. (3.65) 

For the given choice of NB the space translation can be implemented as shown in [129]. This implementation 

has the advantage that for a feedback assisted STE still only the feed-forward filter has to be designed and the 

space-translation due to the fed back symbols only requires the knowledge of the feedback channel matrices. 

The design of the feed-forward filter now has to be done in the translated space r rather than in the channel 

output space y. Compared to the computational complexity of the detection algorithms, the computational 

complexity associated with the space-translation employed to implement the decision feedback is negligible 

since it is linear in all variables. 

Example 3.4: Space-Translation Approach to DF aided STE 

In Figure 3.22 the translated decision space is illustrated for the system considered in Exam

ple 3.1 in Section 3.2 and for a feedback order of NB = 1. In contrast to its counterpart char

acterized in Figure 3.3a, which does not benefit from having decision feedback, Figure 3.22 
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Table 3.5: The normalized computational complexity (real-valued additions and mUltiplications) of the 
MMSE DF-STE when considering the detection of a single transmitted bit. The decision delay was chosen 
to be 11 = NF - 1. 

(2Nbit9J1(11 + 1) -1)4N2N~/(Nbit9J1) 

Weight Vector Calculation +2NNFI (Nbit9J1) 

+ (4NNF -1)2NNF + O(N3N~/(Nbit9J1)) 
Detection 4NNF-1 

illustrates a lower-dimensional, linearly separable decision space. In the following sections we 

will characterize the algorithms discussed in Section 3.3 in the context of the new observation 

space r of Equation (3.65), 
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Under the assumption that the detected feedback sequence ;(2 is correct, the output of a linear filter designed 

for a system incorporating feedback for supporting space translation can be written as 

(3.66) 

where W is again the STE's array weight matrix, where the columns are associated with the different trans

mitters, x is the associated filter output and ;(2 are the detected feedback symbols. The squared error vector 

at the filter output can then be written as 

(3.67) 

In analogy to the derivation of the MMSE weights for the STE operating without decision feedback, the 

weights minimizing the MSE at the detector's output can be shown to obey 

(3.68) 

The cross-correlation matrix Ryx is given as the columns ranging from the (m~ + 1) th to the (m (/). + 1) ) th 

column of the channel matrix HI. It can be shown that this solution is identical to the MMSE solution 

presented in [75], which realizes the DF-STE using a linear feed-forward and feedback filter. 

Following the evaluation of the computational complexity of the MMSE STE dispensing with feedback 

given in Section 3.4.1, it can be shown that the computational complexity of the DF-aided STE is as given in 

Table 3.5. The operations required for performing the space-translation are neglected. Comparing Table 3.1 
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Figure 3.23: The normalized computational complexity required for evaluating the MMSE array weights 
as a function of the number of feed-forward order for different modulation schemes and a different number 
of eIR taps, when considering the detection of a single transmitted bit calculated according to Table 3.5. 
The proportionality factor was set to 1 and the total number of transmit AEs was chosen to be QM = 
9Jt = 2, while the number of receive AEs was N = 2. The curves associated with L = 2,4 and 6 are 
indistinguishable. 
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and Table 3.5 it can be seen that the DF structure removes the dependency of the complexity on the length 

of the erR L and substituting it by the chosen decision delay. 

In Figure 3.23 we illustrated the computational complexity imposed by the DF-MMSE detector according 

to Table 3.5 as a function of the feed-forward order of the STE considering 9J1: = 2 transmit AEs, N = 2 

receive AEs as well as L = 2,4 and 6 eIR taps. The modulation schemes considered were BPSK as well 

as 4QAM and the decision delay was chosen to be NF - 1. When comparing the complexity illustrated 

in Figure 3.23 to that of Figure 3.7, which is associated with a STE dispensing with DF, then it can be 

observed that the employment of DF reduced the computationally cost imposed by the MMSE STE for all 

the different scenarios considered. 

Furthermore, it can be seen in Figure 3.24, which shows the BER versus Eb/NO performance for a simple 

SDM system as given in the caption that with the advent of DF, the error-floor compared to the STE not 

benefiting from DF is removed. Increasing the feed-forward order to NF = 4 increases the performance 

further at the cost of an increased complexity. Making the feed-forward order even larger is not beneficial as 

it can be seen from Figure 3.24. The difference between the curve associated with detected feedback and the 

curve assuming that the symbols which are fed back are correctly detected is in the order of approximately 

2 dB at a BER of 10-3, 

3.5.2 Minimum Bit Error Rate Decision-Feedback STE 

The derivation of the MBER DF-STE is based on the knowledge of the legitimate noise-free channel output 

states in the translated space r. For the DF-assisted receiver the noise-free channel output states observed in 
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Figure 3.24: BER versus Eb / No performance of the MMSE STE for a scenario supporting Q = 1 user 
employing M = 2 transmit AEs, a two-path equal-power independent Rayleigh channel and having perfect 
channel knowledge. The BS employed a two-element antenna array. The label NF indicates that no feedback 
was used and the label CF represents correct feedback. BPSK modulated signal were considered_ 

the translated observation space are given as 

R = {f(i) = HIXU) 1 < i < No } 1 I _ _ S I (3.69) 

where in the case of BPSK modulated sources Ns is given as 

(3.70) 

For each transmitter m the legitimate channel output set R is partitioned into two subsets, depending on the 

value of Xm (k - /j.) yielding 

R± = {f(i) E R I xU) - ±1} m !JJ1~+m - . (3.71) 

Following the derivation of the MBER STE operating without DF, the noise-free part of the linear STE's 

output is limited to have values from the set 

x, = {iU) = wHf(i) 1 < i < No } m m m 1 __ SI (3.72) 

which again can be partitioned into two subsets defined as 

(3.73) 
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Table 3.6: The normalized computational complexity (real-valued additions and multiplications) of the 
MBER DF-STE when considering the detection of a single transmitted bit. The decision delay was chosen 
to be A = NF - 1. 

NgradNsb(2 + 16NNF)+ 
Weight Vector Calculation 

2NsbNFN(2Nbitwt(A + 1) -1)/(wtNbit) 

Detection 4NNF-1 

The conditional POF of the OF-aided STE's output real part denoted as XR,m 

expressed as 

~ (XR,m) can now be 

(3.74) 

where we have f~:m = ~ U~)) and Nsb = l¥ is the number of legitimate channel output states recorded 

in the absence of noise in the set X:. Following the discussion of Section 3.4.2, the BER can now be 

obtained by integrating each of the conditional POF terms seen in Equation (3.74) in order generate the 

error probability expression of 

(3.75) 

where we have 

(3.76) 

The MBER OF-STE solution is now defined as 

(3.77) 

As outlined in Section 3.3.2, the solution of problem can be found by taking the derivative of Equation (3.77) 

which may be calculated following the derivation of the BER gradient for the STE operating without OF, as 

presented in Section 3.3.2. The corresponding 4QAM MBER OF-STE formulae may be obtained following 

the derivation provided in Section 3.3.2 and applying it to the translated signal space, as illustrated for the 

BPSK case. The minimization of the BER cost-function can again be carried out using a suitable algorithm 

such as the conjugate gradient algorithm of Appendix B or a genetic algorithm of [130]. 

The computational complexity imposed by the detection of a single transmitted binary symbol according to 

Equation (3.77) is summarized in Table 3.6. The values have been obtained following the method employed 

in order to obtain the values summarized in Table 3.2, but assuming the reduced matrix dimensions facili

tated by the OF. Similar to the complexity reduction achieved for the MMSE algorithm, the dependency of 
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Figure 3.25: The normalized computational complexity required for evaluating the DF-STE MBER array 
weights as a function of the number of feed-forward order for different modulation schemes and a different 
number of eIR taps, when considering the detection of a single transmitted bit calculated according to 
Table 3.1. The proportionality factor was set to 1 and the total number of transmit AEs was chosen to be 
9J1 = 2 while the number of receive AEs was N = 2. The curves associated wiL~ L = 2,4 and 6 are 
indistinguishable. 
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the MBER STE's complexity on both the length of the eIR and the feed-forward order has been replaced by 

that on the decision delay /).. This becomes particularly important, since the number Nsb of the STE's out

put states not benefiting from OF depends exponentially on the factor (L + NF -1), whereas that operating 

with the advent of OF exponentially depends on the lower factor of (/). + 1) . 

The reduced complexity of the OF-aided MBER STE suggested by Table 3.6 can be seen more explicitly in 

Figure 3.25, which shows the number of real-valued additions and multiplications required for determining 

the MBER OF-STE's weight matrix as a function of the feed-forward order NF. The system considered 

for generating Figure 3.25 according to Table 3.6 supported 9J1 = 2 transmit AEs, N = 2 receive AEs as 

well as L = 2,4 and 6 eIR taps. The decision delay was chosen to be /). = NF - 1. When comparing 

the complexity imposed by the OF-aided STE to that of the STE dispensing with DF in Figure 3.11, it can 

seen that the DF-STE requires significantly less operations for the evaluation of the STE's weight matrix. 

Furthermore, it can be observed from Figure 3.25 that with the advent of DF, the complexity is no longer a 

function of the number of eIR taps L, since it is unambiguously determined by the feed-forward order of 

the STE. 

Figure 3.26 shows the BER versus Ebl No performance of our simple SDM system as characterized in the 

caption. It can be observed that the OF structure considerably improves the BER performance, but not as 

dramatically as for the MMSE algorithm of Figure 3.26. The difference between the curve associated with 

realistically detected error-prone feedback and the curve assuming that all the symbols which are fed back 

are correctly detected, decreases upon increasing the SNR. In fact, there is no discernible difference between 

the two curves at high SNRs, i.e at low BERs, which is a characteristic of the DF assisted MBER STE. A 
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Figure 3.26: BER versus Eb/No performance of the MBER DF-SlE for a scenario supporting Q = 1 
user employing M = 2 transmit AEs, a two-path equal-power independent Rayleigh channel and having 
perfect channel knowledge. The BS employed a two-element antenna array. The label NF indicates that no 
feedback was used while the label CF represents correct feedback. 
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similar robustness against error-propagation has also been observed for classic DF-aided MBER channel 

equalization [129]. 

3.5.3 Bayesian Decision-Feedback STE 

In this subsection two different interpretations of the Bayesian DF aided STE based on the noise-free channel 

output states are presented in the context of the translated observation space r of Equation (3.65). Both the 

proposed space-translation approach and the sub-center [118] selection approach realize the same STE. To 

elaborate a little further, the sub-center selection technique is defined as follows: Depending on the feedback 

symbols sequence, the detector chooses a subset of M!m(6+1) of the total M!m(NF+6-1) legitimate output 

states of the STE for the detection of the desired bits. 

In the context of the space translation approach we proceed as already outlined in Section 3.5.2 for the 

MBER algorithm. Under the assumption of having a correct feedback vector X2, the Bayesian decision 

function given in Equation (3.45) transforms to 

p (r 1 X!m6+m = +1) - P (r 1 X!m6+m = -1) 

, 1 ( Ilr- f~'+)W) (1,+) ex ,L p (2rw:2)NNF p - 20:2 
.(I'+)E-n+ n n 
rq '''-m 

'_ 1 ( Ilr-f~'-)W) (I, ) ex-L P (27To:2)NNF P 20:2 . 
r~'-)En;;; n n 

(3.78) 

Another way of interpreting the DF structure is to view it as a subset selection procedure. The binary subsets 

Y~ and Y; given in Equation (335) for the STE operating without DF can be further partitioned into Ns,fb 
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Figure 3.27: Sub-center selection 

subsets Z~+ and Z~- according to the Ns,fb possible feedback states X~;~, 1 ::; j :::; Nsb of the feedback 

shift register, where we have 

N - MrotNB s,fb - . (3.79) 

The union of all the Ns,fb feedback states associated with the two legitimate binary symbols transmitted by 

user m can then be written as 

Y±-
m- u (3.80) 

where Z~± is the set of legitimate values of the noise-free channel output vectors y associated with the 

delayed transmitted symbol xrotLHm of the desired transmitter m and with the feedback symbol sequence X2. 

This yields 

(3.81) 

In this case, the receiver's feedback structure is used for selecting a reduced-size subset of legitimate channel 

output states for a given feedback vector X2 on the basis of the already decided symbols, since this allows 

us to reduce the detector's complexity. Explicitly, if the feedback vector is X2 = x¥), then the reduced-
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Table 3.7: The normalized computational complexity (real-valued additions and multiplications) of the 
DF-aided Bayesian STE when considering the detection of a single transmitted bit. 

Calculation of the legitimate 
2NsNFN(2!)Jt(ll + 1) -l)/Nbitl!)Jt 

channel output states 

Detection of a single bit 
Ns(6NNF + 1) plus 

Ns exp function evaluations 
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dimensional noiseless channel output vectors r~'±) E Z~± are selected as hypothetical channel output 

states for the detection of the desired symbol vector. 

Example 3.5: Sub-center Selection DF aided STE 

The space translation and the sub-center selection technique constitute different interpretations 

of the same Bayesian DF-STE. In Figure 3.22 the noise-free channel outputs of a DF assisted 

STE are illustrated for the rudimentary example used in Section 3.2. This phasor-diagram 

corresponds to Figure 3.3a recorded for the STE operating without DE The space translation 

approach suggests that each received signal vector is transformed to the new observation space 

r before detection is performed. The hypothetical channel output states remain unchanged 

and each received signal vector is transformed depending on the specific feedback sequence 

already detected. The translated space r illustrated in Figure 3.22 has a reduced number of 

Ns = 2m(LH-l) = 16 legitimate states. 

By contrast, the sub-center selection based interpretation of the decision feedback divides the 

channel output space Y recorded in the absence of noise into MSJJtNB = 4 subsets, where 

Z1 corresponds to a previously detected feedback sequence Xl = [+ 1 + IV, Zl to X2 = 
[+1 -IV, Zf corresponds to X2 = [-1 + IV and zt to X2 = [-1 - IV, as indicated in 

Figure 3.27. We can see that both interpretations of the decision feedback structure yield the 

same decision space to be considered by the STE. 

The computational complexity associated with the DF aided Bayesian STE is summarized in Table 3.7, 

which was obtained on the basis of the complexity evaluation of the Bayesian STE dispensing with DF, 

as discussed in Section 3.4.3. Similarly to the DF assisted MBER STE, the most significant change in 

computational cost imposed by the detection is that the number of channel output states no longer depends 

exponentially on L + NF - 1, but rather on (b. + 1). In Figure 3.28a the computational cost associated with a 

system as described in the caption is illustrated as a function of the feed-forward order NF. When comparing 

Figure 3.28a to Figure 3.13, which illustrates the complexity associated with a system not benefiting from 

DF, then it can be observed that the computational cost is reduced dramatically. However, the cost for 

detecting a single bit remains considerable higher than that of the linear detector as it can be seen from 
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Figure 3.28: The normalized computational complexity imposed by the Bayesian DF-STE for the detection 
of a single transmitted bit as a function of the number of feed-forward order NF evaluated for different 
numbers of eIR taps L as well as different modulation schemes. The values were calculated according to 
Table 3.7 and the scenario considered supported QM = 9J1 = 2 transmit as well as N = 2 receive AEs. 
The curves associated with L = 2,4 and 6 are indistinguishable. 

Figure 3.28b. 

Considering the same SDM system it can be observed in Figure 3.26 characterizing the achievable BER 

versus Eb / No performance that the feedback structure improves the BER performance only slightly. The 

difference between the curve associated with realistically detected feedback and the curve assuming that all 

the symbols which are fed back are correctly detected is almost negligible. 

3.5.4 Reduced Complexity Maximum Likelihood Decision-Feedback STE 

The reduced complexity ML DF-STE concerned may be defined using two different approaches similar 

to the Bayesian STE, which we refer to as the space-translation based and the tree-based DF structure. 

The space-translation based DF-aided OHRSA STE may readily be implemented by applying the OHRSA 

algorithm to the translated decision space r. 

A second way of incorporating DF in the proposed receiver structure is to include the symbols, which have 

already been decided upon in the top section of the search tree of Figure 3.15 on a bit-by-bit basis. The 

binary real-valued system incorporating DF may be characterized as 

(3.82) 
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employing M = 2 transmit AEs, a two-path equal-power independent Rayleigh channel and having perfect 
channel knowledge. The BS employed a two-element antenna array. The label NF indicates that no feedback 
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10° 
OHRSANF 
OHRSAST 
OHRSATB 

10-1 Bayesian 
OHRSA ST CF - -t--

~ OHRSA TB CF --+--

c.: 10-2 
~~ 

Ul t~ IJ:i 

~ 
10-3 

~ , 
10-4 " , 

0 5 10 15 20 
EJlNo[dB] 

Figure 3.30: BER versus Eb / No performance of the OHRSA DF-STE for a scenario supporting Q = 1 
user employing M = 2 transmit AEs, a two-path equal-power independent Rayleigh channel and having 
perfect channel knowledge. The BS employed a two-element antenna array. The label NF indicates that no 
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It can now be seen from Equation (3.82) that allocating the feedback symbols to the top section of the search 

tree may be ensured by invoking the bit-wise CIR sub-matrix HI for carrying out the reordering according 

to the squared norm of the columns and leaving the bit-wise CIR matrix associated with the feedback bits 

H2 unchanged of its columns yielding H(o) = [Hio) H2]' 

When evaluating the OHRSA outlined in Section 3.4.4, the last log2(M)NB!m number of symbols of the 

hypothetical solution x are set to the bit-wise feedback sequence ~2' The feedback reduces the size of the 

search space and thus reduces the computational cost imposed by searching through the entire detection 

space. 

Figure 3.30 shows the BER versus Eb / No for a SDM system characterized in the caption. It can be seen that 
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the feedback structure improves the achievable BER performance only slightly, as also experienced for the 

Bayesian detector. It can also be observed that there is no performance difference between the two possible 

ways of incorporating feedback into the OHRSA, namely between the space-translation and the tree-based 

methods. Both methods perform identically and both exhibit the same robustness against DF-induced error

propagation. 

Figure 3.32 shows the computational cost associated with the DF-aided OHRSA STE as a function of the 

feed-forward order NF for a system described in the caption. Similar to the other DF-aided STEs discussed 

in Section 3.5.1-3.5.3 also the OHRSA STE imposes a reduced computational cost, if DF is employed. 

Again, the computational cost is no longer a function of the number of channel taps L and the resultant 
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complexity imposed by the OHRSA DF-STE is significantly lower than that associated with the DF-aided 

Bayesian STE of Figure 3.28. 

In contrast to the application of the OHRSA for the detection of narrowband OFDM sub-carriers as in 

Chapter II of [60], the detection of all symbols hosted by the vector x is not required in the context of 

wideband systems, since we mentioned earlier that we are only interested in the detection of the desired 

sub-vector X~+l of Equation (3.46). 

An attractive way of exploiting this potential complexity reduction technique to arrange the columns of 

the eIR matrix H not only according to the ascending order of received signal energy of the columns as 

suggested in [61], but also by ensuring that the columns of specific interest appear at the end of the ordered 

eIR matrix H(o). In other words, we aim for ensuring that the bits associated with ~~+l appear at the top of 

the search tree and are therefore detected first. 3 

Let us assume that in order to incorporate a DF structure in the receiver, the space-translation approach is 

considered. The new eIR matrix re-ordering scheme invoked for beneficially arranging the eIR matrix Hl 

can then be divided into two steps as follows: 

. 1. Reorder the last 9J110g2(M) number of columns of the bit-wise feed-forward eIR matrix given by 

according to their energy in ascending order. This ensures that the symbols of interest contained by 

the desired sub-vector X~+l are detected first according to the energy of the associated columns. The 

associated symbols appear in the top section of the search tree of Figure 3.15. 

2. Reorder the remaining columns of the eIR matrix according to the ascending energy order of the 

columns. 

From a physical point of view, the eIR matrix columns having a very low energy may contribute little 

to the final cost-function value. Hence, the search tree of Figure 3.15 is subject to further branching at its 

bottom levels due to the low-power, high-delay eIR taps, which has little influence on the final cost-function 

value. This imposes a substantial increase in required computational complexity since the cost-function 

contribution of each of these branches has to be evaluated. Due to the fact that the desired symbols appear 

now in the top section of the search tree, a certain number of search tree levels at the bottom might be 

neglected, in order to avoid the evaluation of the cost function associated with the tree-branches induced by 

the high-delay, low-power eIR taps. 

3If the tree-based feedback method is employed, the desired but yet undetected symbols are arranged so that they appear directly 
after the feedback symbols. 
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The recursive cost-function of Equation (3.56) can then be rewritten as 

(3.83) 

where N trunc indicates the number of layers of the search tree that have been discarded. Note however 

that this tree-truncation will always result in a controllable performance degradation, because even though 

we are not interested in the final decision concerning some of the lSI induced symbols, they still mildly 

influence the channel's output vector y and the corresponding cost-function, as it becomes explicit from 

Equation (3.48). Under certain circumstances, however, when the power associated with these symbols is 

very low (i.e. the associated column of the channel matrix exhibits a low energy), their influence becomes 

marginal and hence they might be judiciously neglected. 

Let us now define the number of columns of the ordered bit-wise eIR matrix satisfying the condition of 

(3.84) 

as Ny, where we have 

(3.85) 

and I' is a BER versus complexity control factor. The number of levels in the search tree, which are neglected 

is then given as 

(3.86) 
otherwise 

where Nmax has to be chosen for ensuring that the specific levels of the search tree, which are associated 

with the desired symbols are not truncated, yielding Nmax = Nb - log2 (M) 9J1. 

3.5.5 Turbo-Coded Performance 

For the evaluation of the DF-assisted receiver we consider the same parameter setting, as in Section 3.4.5, 

where the different algorithms were compared without DF for Q = 1, M = 2, N = 2, Np = 2, tl = 1 and 

for an equal-power two-tap independent Rayleigh channel. Additionally, we opted now for the feedback 

order of NB = 1. 

The FER ofBPSK modulated signals is illustrated in Figure 3.33 for all the different algorithms considered, 

including the performance bound constituted by the outage probability. It can be observed that the BER 

curves of the OHRSA as well as the Bayesian DF assisted STE are approximately 5 dB from the theoretical 

limit. The MBER algorithm experiences an additional 2 dB performance loss. Finally, the MMSE based 
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Figure 3.33: FER versus Ebl No performance of the MMSE, MBER, Bayesian and OHRSA DF-STE for 
a scenario supporting Q = 1 user employing M = 2 transmit AEs, a two-path equal-power independent 
block-fading Rayleigh channel, a BS associated with N = 2, Np = 2, t:,. = 1 and having perfect channel 
knowledge. The system employed a R = 1 12-rate punctured turbo-code. 

detector operates approximately 9 dB away from the outage capacity at a code-word error rate of 10-2• 

124 

When considering 4QAM, it can be observed in Figure 3.33, that the difference between the MBER and the 

MMSE algorithm is only marginal. Furthermore, it was observed during our simulations that the MBER 

algorithm had to be carefully initialized and even then may have experienced convergence problems under 

certain channel conditions. The FER performance of the MBER DF-STE recorded for 4QAM signals in 

Figure 3.33 was obtained using a genetic algorithm [130] rather than the simplified conjugate gradient 

algorithm of Appendix B. 

Let us now change the assumption of experiencing slow or block-fading, where the fading amplitude was 

constant over an entire transmission burst to the other extreme choice, namely to that of encountering un

correlated fading. The corresponding results shown in Figure 3.34 were obtained for a frame-length of 1000 

bits and the same SDM settings as used for the evaluation of the block-constant fading were considered. 

The employment of the MBER algorithm was not considered for this rapidly time-varying scenario owing to 

its high computational complexity. For the other algorithms a similar Ebl No discrepancy can be observed 

with respect to the theoretical capacity bound as that recorded for the block-fading a scenario of Figure 3.33. 

Again, the discrepancy observed in Figure 3.34 with respect to the capacity bound is smaller for BPSK 

modulated signals than for 4QAM. 

All STEs discussed so far have been based on using a finite observation interval for the received signal 

vector. It is well documented however, that the longer the observation interval and the decision delay, the 

better the STEs perform, resulting in the optimum detector setting, when considering an infinite observation 

interval. 
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Figure 3.35: BER versus Ebl No performance of the Bayesian and the OHRSA DF-S1E as well as the 
MAP S1E for a scenario supporting Q = 1 user employing M = 2 transmit AEs, a two-path equal-power 
independent Rayleigh channel and having perfect channel knowledge. The BS employed a two-element 
antenna array. The Bayesian and the OHRSA DF-S1E used NF = 2, fj, = 1, NB = 1. 

125 

In Figure 3.35 the BER versus Ebl No performance of the MAP STE using an observation interval spanning 

over the complete data-frame is illustrated for the same scenario as used in Section 3.4.5 for BPSK mod

ulated signals. The trellis associated with the MAP STE was constructed as outlined in Appendix C. The 

performance of both the Bayesian and the OHRSA DF-STE are plotted as a reference. It can be seen that 

the MAP based STE slightly outperforms both finite length STEs slightly at the cost of a potentially more 

complex block processing of the received symbols sequence. 

The systems considered above were of moderate complexity in order to allow us to compare the different 

algorithms. In the remainder of this subsection we will investigate the performances of the OHRSA and the 

MMSE DF-STE, when considering higher throughput communication scenarios. 
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Figure 3.36: A scenario supporting Q = 1 user employing M = 2 uplink transmit AEs, a four-path equal
power ergodic independent fading channel, a BS equipped,with N = 2, NF = 4, t::. = 3 and benefiting from 
perfect channel knowledge. 4QAM modulation was considered. 
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Let us now consider a propagation scenario having four equal-power paths and a DF-STE associated with 

NF = 4, !::. = 3, NB = 3 and N = 2 receive antennas. Uncorrelated fast fading was assumed for the 

simulations. A single MS Q = 1 employing M = 2 transmit AEs and 4QAM was considered. For this 

modest-size system the full ML detector would have to consider Ns = 42-4 = 65536 states for the detection 

of each bit. 

Figure 3.36a shows the average BER versus Eb / No performance of the system for different values of 'Y. It 

can be observed that the reduced-complexity OHRSA using tree-truncation outperforms the MMSE based 

detector and exhibits only a modest performance degradation in comparison to the full-complexity OHRSA. 

Let us now quantify the computational complexity of the detector, which is defined as the number of real

valued operations required for the evaluation of Equation (3.56) normalized by the 9.J110g2 (M) number of 

binary symbols detected4 . The computational complexity associated with the BER performance curves of 

Figure 3.36a is shown in Figure 3.36b. It can be seen that especially at low Signal to Noise Ratio (SNR) 

values, the complexity of the full OHRSA algorithm is substantially lower than that of the full ML detector, 

but nonetheless, it becomes excessive. With the advent of truncation we are however capable of eliminating 

the large complexity variations as a function of the SNR. It can also be seen that the number of operations 

imposed is dramatically reduced, when applying tree truncation. 

The associated high number of operations required for the conventional OHRSA assisted DF-STE at low 

SNR values is due to the fact that the low power associated with some columns of the eIR matrix results 

in numerous extra branches at the bottom of the search tree, all of which have to be considered by the 

algorithm. It is exactly this set of low-power tree branches, which can be truncated without any significant 

4The complexity associated with the decomposition of the covariance matrix in not considered. 
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Figure 3.37: A scenario supporting Q = 2 user employing M = 2 uplink transmit AEs, a four-path equal
power ergodic independent fading channel, a BS equipped with N = 3, NF = 4, t::. = 3 and benefiting from 
perfect channel knowledge. 4QAIvf modulation was considered. 

loss of performance. 

If detection is performed with the aid of the truncated OHRSA, rank-deficient systems may also be consid

ered. Adding another MS and an additional receive AE at the BS to the above-mentioned system results in a 

propagation scenario having four equal-power paths and a DF-STE associated with Q = 2, Np = 4, b.. = 3, 

NB = 3 and N = 3 receive AEs as well as 4QAM. For the joint detection of all MSs' signals, the full ML 

or Bayesian DF aided STE would have to consider Ns = 44.4 = 4 294 967 296 states. Assuming, that the 

full ML detector's complexity is proportional to the number of states Ns , the proposed detector is capable 

of achieving a complexity reduction, which is several orders of magnitude. 

In Figure 3.37a the BER versus Eb/NO performance of the OHRSA as well as of the MMSE based DF-STE 

is shown for different values of 'Y. It can be seen that the MMSE based STE fails, whereas the OHRSA 

aided detector is capable of identifying all MSs' signals. The complexity reduction owing to truncation of 

the search tree is considerable, as it becomes clear from Figure 3.37b, which shows the number of numerical 

operations required for the detection of a single bit. Again, at low SNRs the truncation of the search tree 

assists in preventing the detector from becoming excessively complex. At higher SNRs this complexity 

reduction however imposes a modest performance degradation. 

So far the performance of different STE algorithms was only investigated under the assumption of perfect 

channel knowledge. In the next section a set of different channel estimation algorithms will be employed, 

which will assist in investigating the effect of channel estimation errors on the attainable performance of the 

discussed STEs. 
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3.6 Channel Estimation for Dispersive Channels 

Let us commence with an alternative form of the system Equation (3.6) representing the channel matrix as 

a vector, on which basis different channel estimation algorithms are introduced. Let us define the channel 

determining the STE input signal in form of a (NfmL) -element vector, which is given as 

h vee ([Bl .. . Bd) (3.87) 

(3.88) 

where vee (.) represents the column-wise vector operator. To form the desired system equation, the symbol 

vector influencing the channel output is expressed as a matrix given as 

(3.89) 

where ® is the Kronecker product. The system matrix given in Equation (3.6) can now be re-written as 

y(k) = X(k)h(k) + '1(k). (3.90) 

The channel estimation algorithms discussed in the context of narrowband systems of Section 2.4 can now 

be applied directly to STE as depicted in Figure 2.27. 

3.6.1 Results Using Estimated Channel State Information 

To evaluate the effect of channel estimation errors on the different DF aided STE algorithms introduced 

earlier, a system consisting of Q number of MSs, each employing M = 2 number of transmit AEs and a 

BS using N = 2 number of receive AEs was considered. The DF assisted STE employed by the BS was 

characterized by NF = 2, /j. = 1 and NF = 1. The channel was assumed to be have two equal power 

path and its variation over time was characterized by a normalized Doppler frequency I D = 0.0001. The 

training length per transmit AE was chosen to be 150 symbols and the payload per transmit antenna was 

chosen to be 900 symbols. If Decision Directed Channel Estimation (DDCE) was used, the channel estimate 

was updated with a delay /j. assuming the decision made by the DF aided STE was correct. In other words, 

when operating in decision directed mode, is was assumed by the STE that h(k) = h(k - /j. -1). 

In Figure 3.38 the performance of the MMSE algorithm under consideration of estimated CSI is illustrated. 

It can be seen that if no channel tracking is used the algorithm is unable to operate adequately. 

If however DDCE is switched on, it can be observed that the performance using RLS and first order Kalman 
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channel estimators is slightly worse than that of a STE benefiting form a second order Kalman channel 

estimator. Compared to the genie aided STE using perfected CSI, the error-floor of the receiver is increased 

significantly. This is due to the fact that at high SNR the variance of the channel estimation error exceeds 

the noise-variance and thus results in a degraded BER performance. 

In contrast to the relatively large performance degradation experienced by the MMSE algorithm, the BER 

performance associated with the OHRSA aided STE is relatively little degraded by channel estimation errors 

as it can be seen in Figure 3.38. Especially at higher SNR the second order Kalman channel estimator 

outperforms the first order Kalman and the RLS channel estimator aided STE. If no DDCE is used the 

OHRSA based STE can not detect the transmitted signal correctly. 

3.7 Conclusion 

In this chapter the narrowband detection strategies discussed in Chapter 2 have been further developed to 

STE algorithms resulting in the MMSE STE of Section 3.4.1, the MBER STE of Section 3.4.2, the Bayesian 

STE of Section 3.4.3 as well as the OHRSA aided STE of Section 3.4.4. In order to improve the achievable 

performance and to reduce the computational complexity associated with the different STEs a DF structure 

has been introduced in Section 3.5. The different optimization functions associated with the STEs discussed 

as well as their associated complexity expressed as the number of real-valued multiplications pus additions 

is given in Table 3.8. 

As it becomes clear from Table 3.8, the MMSE algorithm retains its low computational complexity over both 
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slow as well as rapid fading channels. The MBER algorithm however has a low computational complexity 

for slowly fading channels, whereas in rapid fading environments its computational cost increases exponen

tially with the number of erR taps, with the number of bits per symbol as well as with the feed-forward 

order. For slow fading channels the MBER algorithm has the capability of outperforming the MMSE STE, 

as shown in Table 3.8. 

The nonlinear Bayesian detector of Section 3.4.3 constitutes the optimum minimum error-rate non-linear 

receiver, which significantly outperforms the linear MMSE and MBER STE. The associated computational 

cost however increases exponentially with the number of eIR taps as well as with the number of bits per 

symbol and with the number of transmit AEs 9J1 for all the channel conditions considered in Table 3.8. We 

have therefore introduced a reduced complexity ML detector in Section 3.4.4, which achieves the perfor

mance of the Bayesian STE at a reduced computational cost, as evidenced by Table 3.8. 

When quantitatively comparing the different detectors' performance, we investigated their performance in 

terms of their distance expressed in terms of dB with respect to the theoretical channel capacity limits 

discussed in Section 3.3. Under the assumption of block-fading channels the distances ~Pout!Pout=O.02 [dB] 

from the outage probability bound given in Table 3.8 were obtained for an outage probability of Pout = 2% 

from Figure 3.19 as well as Figure 3.33. 

Under the assumption of uncorrelated fading channels the distance from the channel capacity limit in 

~IIBER=10-4 [dB] given in Table 3.8 were obtained for a BER of 10-4 from Figure 3.20 as well as Fig

ure 3.34. The values of ~PoutIPout=O.02 and ~IIBER=10-4 , respectively, show that the performance difference 

between the non-linear and the linear STEs is more pronounced, when no DF is employed. 

It can also be seen from Table 3.8 that when employing DF, the achievable performance of the MMSE STE 

is improved and its complexity is also reduced marginally. The MBER, the Bayesian as well as the OHRSA 

aided STE exhibit a significantly lower performance improvement with the advent of the DF structure. 

However, their complexity was reduced more substantially than for the MMSE STE. 

Furthermore, different channel estimators have been employed in order to investigate the STEs performance 

using imperfect eSI. It was shown that for slowly time-varying channels the OHRSA detector experiences 

only a slight performance degradation, which is on the order of 1.5 dB for a (2 x 2) system, as it can be 

seen from Figure 3.38. 
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Iterative Narrowband Single-Carrier 

Multiple ... Input Multiple Output Detection 

4.1 Introduction 

Iterative processing was introduced by Berrou in [131, 132] in the context of iteratively decoding two paral

lel concatenated convolutional codes referred to as a turbo-code. His work has later been extended to serially 

concatenated codes [133] and then found its way gradually into iterative detector designs, such as for exam

ple iterative equalizers [134] or iterative multi-user detectors [135]. Strictly speaking the term 'turbo' refers 

to the detection of parallel concatenated convolutional codes. All other schemes are referred to as iterative 

schemes. This definition is also adopted in this treatise. In the literature, however, the term 'turbo' is often 

also used in the context of diverse iterative detector or decoding schemes [118], 

In this chapter we will investigate the performance of a single-user narrowband MIMO system employing 

iterative detection. The remainder of this chapter is organized as follows. In Section 4.2 the system model 

including the iterative detector is introduced and the information flow during the iterative detection process 

is outlined. In Section 4.3 EXtrinsic Information Transfer-function (EXIT) Charts are introduced, which 

are employed throughout the chapter for analyzing the characteristic behaviour of different Soft-Input Soft

Output (SISO) detectors. The algorithms introduced in Chapter 2 for non-iterative MIMO detection are 

extended in Section 4.4 to iterative SISO detectors and their performance is analyzed using EXIT charts. 
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Figure 4.1: Baseband MIMO system model for iterative detection. 
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The transmitter of the iterative system is identical to that used in Chapter 2 for the non-iterative MIMO 

system where a single MS employing an M-element transmit antenna array and a BS receiver, which has 

N number of AEs was considered. The MS's transmitter channel encodes the input bit-stream at a code

rate Re, passes the encoded bits through an interleaver, modulates the signal and maps the symbols to the 

M different transmit AEs, as illustrated in Figure 4. L The modulated symbols are transmitted to the BS 

over a narrowband independent Rayleigh fading channel characterized by the channel coefficients hnm, as 

illustrated in Figure 4.1. 

The joint iterative detection scheme employed by the BS is depicted in Figure 4.1. In the context of iterative 

detection the information generated by the different receiver components is exchanged between them in the 

form of Log Likelihood Ratios (LLRs), which are defined as [136] 

( P(~m(k) = +llY(k))) 
Am(k) = A(~m(k)I~(k)) = log P(~m(k) = -ll[(k)) , (4.1) 

where ~m (k) and y(k) are the transmitted and received signal vector, respectively, when considering the 

real-valued binary system model of Section 2.1.1.1 given as 

~(k) = H(k);!(k) + 1J..(k). (4.2) 

The transmitted symbol index m ranges from 1 to MNbib where M is the number of transmit AEs and Nbit 

is the number of bits per symbol, as discussed in Section 2.1.1.1. 
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Let us now denote a vector of LLR values as 

(4.3) 

as well as the superscript det and dee indicating that the LLR value is associated with the detector and the 

channel decoder, respectively. In our further discussions the explicit conditioning on the channel output as 

well as the time index k are neglected for notational simplicity and accordingly we define 

(4.4) 

Considering now the joint detection of all M AEs' signals, the detector first performs a soft detection of the 

transmitted signal vector x (k) on the basis of the received signal y (k) and returns the a posteriori LLR of the 

interleaved channel coded bits i\.~et, as seen in Figure 4.1, where the superscript det represents the detector. 

The a priori LLR i\. 1,et generated from the extrinsic LLR i\.~ee by the interleaver I1 of Figure 4.1 is then 

removed from the a posteriori LLR i\.~et, resulting in the extrinsic information i\.~et, which is passed through 

the deinterleaver denoted by I1-1 in Figure 4.1 to the channel decoder. The channel decoder carries out a soft 

decision using the de interleaved extrinsic information provided by the detector as a priori information i\. 1,ee, 

where the superscript dee denotes the channel decoder. After convolutional decoding the decoder calculates 

the a posteriori LLR i\. 1,ee of the coded symbols and subtracts the a priori LLR i\. 1,ee in order to obtain the 

extrinsic information i\.~ee, as seen in Figure 4.1. The extrinsic information of the decoder is interleaved 

again and used by the detector as a priori information i\.1et for the next iteration. In the first iteration the 

detector assumes identical a priori probabilities for all bits, yielding i\. 1,et = a for all transmitters. For a 

more detailed description of iterative detection the interested readers are referred to [118]. 

4.3 Extrinsic Information Transfer Chart Analysis of SISO Components 

In order to analyze the characteristic behaviour of SISO detectors we highlight the concept of EXIT charts, 

which were first introduced by ten Brink in [137] for the analysis of turbo codes. EXIT charts depict the 

mutual information IE at the output of a SISO component as a function of the mutual information associated 

with the a priori information h at the input of the SISO component. Let us therefore introduce the mutual 

information between a transmitted binary symbol x and the associated a priori information as [137] 

_ 1 ~ 100 
_ 2PA(SIX = x) 

h - 2 t...,; _ PA(sIX - x) ·!og2 (siX = -1) + (siX = 1) aSI 
XE{+l,-l} 00 PA . PA 

(4.5) 
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Figure 4.2: EXIT chart example for an iterative detector. 
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where PAis the PDF of the a priori LLRs. The mutual information associated with the extrinsic LLR values 

at the output of the SISO component is similarly defined as [137] 

1 100 2pE(S'IX = x) 
IE = 2: L PE(S'IX = x) ·log2 (S'IX = -1) + (siX = 1) as, 

XE{+l,-l} -00 PE PE 
(4.6) 

where PE is the PDF of the extrinsic LLR values. The integration required for the calculation of the mutual 

information in Equation (4.5) and Equation (4.6) can be carried out numerically and the required distribution 

of the LLR values can be obtained using one of the following two methods [137] : 

• Generate a histogram based approximation of PA(S'IX = x); 

• Approximate the distribution of the LLR values using a single-parameter Gaussian distribution. 

Note that EXIT charts are based on the assumption that the components exchanging extrinsic information 

have independent information. Furthermore, the statistics of all random variables are sufficiently accurately 

modeled. This implies that if the EXIT chart of a detector is recorded, it has to be ensured that fading 

statistics are accurately modeled. This unfortunately renders the classical EXIT chart analysis unsuitable 

for frame-invariant fading channels. 

4.3.1 Two Concatenated Components 

The simplest way of concatenating two SISO components is to use serial concatenation, as illustrated in Fig

ure 4.1, where the superscript indicates the index of the component and the subscript indicates, whether the 

mutual information is associated with the a priori or the extrinsic information, as defined in Equation (4.5) 
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and Equation (4.6), respectively. In order to discuss the nature of EXIT charts, we consider a serially con

catenated system consisting of a SISO detector and a SISO decoder associated with a Recursive Systematic 

Convolutional (RSC) code. 

The exchange of information between the two system components is completely described by the evolution 

of the mutual information at the output of the SISO components as a function of the mutual infonnation 

associated with the a priori LLRs. In order to illustrate this evolution, the EXIT chart transfer function of 

both receiver components is plotted in a joint graph using the output of one component as the input to the 

other component. In other words, the EXIT chart function of the second component is mirrored with respect 

to the first-quarter diagonal of the EXIT chart by swapping the two axis, as illustrated in Figure 4.2, where 

the label RSC [7 5J indicates the EXIT function of the RSC code using the octally represented generator 

polynomials g = [7 5J, for swapped axes. 

The iterative process commences with an initial detection without any available a priori information, where 

we have A i et = 0 V m and therefore I~et = I~ec = O. In the second step, the 11ec = I~et is provided as 

the input of the channel decoder. The decoder output is then fed back to the detector and so forth. This 

procedure is illustrated in Figure 4.2. The solid line resembling a stair case in Figure 4.2 illustrates the 

iterative decoding process. If the mutual information at the output of the decoder is one, the receiver is 

capable of operating at a BER approaching zero. Hence, it has to be the ultimate goal of iterative detector 

design to enable the trajectory to approach this point in the EXIT chart. 

4.3.2 Three Concatenated Components 

In many applications not only two, but rather three SISO blocks are concatenated, for example when a 

soft detector operating in conjunction with two serially concatenated codes is employed, as illustrated in 
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Figure 4.3. It can be seen that decoder 1 of Figure 4.3 takes two inputs, namely the a priori information 

associated with the information bits as well as the a priori information associated with the coded bits. 

Thus, in order to analyze the behaviour of such components, while aiming for their joint optimization, 

3-Dimensional (3D) EXIT charts [138] would have to be employed. 3D-EXIT charts however have the 

drawback that they are often difficult to portray graphically and hence it is difficult to characterize the 

iterative behaviour of the detector. 

Assuming however a specific iteration pattern, one might group two of the three SISO components of the 

detector into a joint component and represent its EXIT characteristic by a more readily interpreted two

dimensional function. In our specific case we are interested in characterizing the behaviour of different SISO 

detectors when employed in iterative receiver structures. Let us assume that the channel code employed by 

the detector is composed of two serially concatenated convolutional codes. For a complete characterization 

of the convergence behaviour a 3D-EXIT chart would have to be considered, as illustrated in Figure 4.4a, 

which shows a 3D-EXIT chart for the two serially concatenated convolutional codes specified in Table 4.1. 

The subscript info indicates that the mutual information is associated with the information bits, while the 

SUbscript cod indicates that the mutual information is associated with the coded bits. Furthermore, the mesh 

of rectangles indicated the EXIT-plane of decoder 1 and the mesh of crosses that of the outer-most decoder. 

The former appears parallel to the Iget axis and hence is independent of this value. Decoder 2 is not directly 

linked to the detector of Figure 4.3 and hence the EXIT chart of channel code two (e2) only depends on 

IAdec2d = IEd~c1f ' since no a priori information is available about the source bits. To elaborate a little further, ,co ,In 0 

it can be observed in Figure 4.4a that the EXIT characteristic of decoder 1 in the middle of Figure 4.3 

depends on both the a priori information Iti~fo = Ig,~~d provided by the outer-most decoder and on the a 

priori information It~~d = Iget provided by the detector. 

The relation between the 3D-EXIT charts and their conventional two-dimensional representations can also 

be understood by considering Figure 4.4b and Figure 4.4c, which illustrates the 2D projections of the 3D

EXIT chart The side-view shown in Figure 4 4c portrays slices of the Id~c1 = Idec2 versus Ide.c1 = Jdec2 . . E,mfo A,cod A,mfo E,cod 

surface for different values of Iget. It can be observed that for Iget < 0.6 the EXIT functions of the two codes 

intersect and hence only a moderate iteration gain can be achieved. For Iget > 0.6, however, convergence 

to the Ig1~~o = 1 point becomes possible and as a result error-free transmissions are supported. Note again 

that only the first intersection of the two EXIT functions is relevant, since it determines how Iowa BER can 

Table 4.1: Channel code parameters. 

Encoder 2 eC2) RSC Code with generator polynomial g = [6 5] 

Encoder I (CI) Generator polynomial 1/(1 +D) 

Overall Code-Rate 0.5 
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be achieved. In Figure 4.4c it can be observed that the curve associated with I~et = 0.5 and labeled Cl (0.5) 

intersects twice with the curve C2. This second intersection results in an overlap between the two 3D EXIT 

charts. In the 2D projection the 3D EXIT chart shown in Figure 4.4b we have illustrated the projection of 

the first intersection between the two 3D-EXIT curves. 

Since we are interested in generating a two-dimensional EXIT function, which is independent of I~,~~2d' we 

consider the special case when, I~~~2d has converged to its maximum value for a given I~et value. This 

assumption implies that the iterations between the two decoders of Figure 4.3 are continued, until no further 

performance improvements can be achieved by further iterating. In the 3D-EXIT chart of Figure 4.4a this 

condition is represented by the first intersection of the two 3D-EXIT functions, where It~~~d = It~~}o' which 

is marked by the bold curve. The area of Figure 4.4a, which is located left of the bold line and associated 

with the EXIT plane of code 1 represents the second intersection between the two 3D-EXIT planes. 

In order to obtain the corresponding 2D-EXIT chart, we consider the first intersection trajectol"j of the two 

3D-EXIT planes when commencing iterations from the point I~~~d = 0 for a given I~et at the bottom of 

Figure 4.4a. This intersection is projected to the plane spanned by the coordinate I~~}o and It~Jd' The 2D

EXIT function is then obtained by interpolating the values of I~~~ld for this projected intersection values. 

This interpolated 2D-EXIT function is illustrated in Figure 4.4b as the dashed line. 

The 2D-views of Figure 4.4a seen in Figures 4.4c and 4.4b can be connected using the standard projection 

technique inherited from 3D blue-prints used in mechanical engineering. In order to interpret the classic 2D 

EXIT chart further, if, for example, the intersection between the two EXIT curves of Figure 4.4c associated 

with I~et = 0.3 is projected into Figure 4.4b, it can be observed that the intersection between the projection 

line and the projected EXIT curve occurs at exactly I~et = 0.3. 

4.4 Soft-Input Soft-Output MIMO Detection 

In this section the algorithms introduced in Section 2.3 for hard-decision outputs are extended to SISO 

detectors. All algorithms are presented for the real-valued binary system model of Section 2.1.1.1. 

4.4.1 MMSE SISO Detection 

The iterative MMSE detector has first been proposed in [29] for CDMA multi-user detection and BPSK 

modulated signals. The proposed scheme in-fact is not a classical SISO detector in the sense that it carries 

out a Maximum A Posteriori (MAP) decision, but rather uses the soft information provided by the channel 

decoder in order to perform soft interference cancellation. The soft-output of the MMSE detector is then 

produced upon stipulating the assumption that the output of the MMSE detector is Gaussian distributed. 
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The original iterative MMSE multi-user detector has in [85, 139] later been applied to channel equalization. 

Furthermore, the soft-interference cancellation scheme was extended to higher-order modulation schemes. 

The MMSE SISO MIMO detector for the real-valued binary symbol ~m might be derived as follows. As

suming a given a priori probability soft estimate in the form of [136] 

X = tanh A,m (
Adet) 

-m 2 (4.7) 

and defining the vector 

(4.8) 

we can write the received signal vector cleaned with the aid of soft interference cancellation as 

lm l-Hum 

l - HX + Xml1m' (4.9) 

where we have;! = [Xl"" ,XMNbitF. The optimization criterion used for determining the weight vector 

can now be expressed as 

(4.10) 

which in physical terms means that the MSE is minimized for the signal after soft-canceling all the interfer

ing signals. Let us now define the output of the MMSE detector as 

Km l£;;;'m 

1f~ (y - HX + Xml1m), (4.11) 

then following the derivations in [29], the MMSE weight vector can be obtained as 

(4.12) 

Assuming furthermore that Km obeys a Gaussian distribution with mean fiMMSE,m, and variance (T~SE m , 
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Table 4.2: The normalized computational complexity (real-valued additions and multiplications) of the 
SISO MMSE detector when considering the detection of a single transmitted bit 

Weight vector calculation of Equation (4.12) 4NMNbit + BN2MNbit + 2N + O(2N3) 

Detection according to Equation (4.13) 14N + 4N NbitM + 3 

105r-----~----~------~----~----~ 

104 

~ 
.12 
~ 

103 
1S.. 
0 

ci 
Z 

102 

101 

---~------~------~-----~-~~~~ 
-....---
~----- ------

-----~----- --- ---
---

2 3 4 

No. transmit AEs M 

4QAM -
BPSK -

N=6 ... 
N=4 • 
N=2 • 

5 6 

Figure 4.5: The normalized computational complexity required for evaluating the SISO MMSE array 
weights as a function of the number of transmit AEs for different modulation schemes and a different num
ber of MIMO array weights, when considering the detection of a single transmitted bit calculated according 
to Table 4.2. The proportionality factor was set to 3. 

the desired LLR value may be expressed as [29] 

,.\det(x) = E -m 
(gm - f/MMSE,m)2 (gm + f/MMSE,m)2 

2 2 
O"MMSE,m O"MMSE,m 
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4!1!.H (y - !IX + Kml!m) 

l-l!~!I!.m 
(4.13) 

When evaluating the computational complexity associated with the MMSE detector, we have to distinguish 

between the first and all subsequent iterations. During the first iteration the computational complexity 

imposed by iterative the MMSE detector is identical to that associated with the classic non-iterative MMSE 

detector dispensing with a priori information as discussed in Section 2.3.1. 

The number of real-valued multiplications plus additions required for the evaluation of the weight vector 

according to Equation (4.12) can be shown to be 4NMNbit + SN2MNbit + 2N + O(2N3 ), where the 

assumption was made that we have (2A - 1) ~ 2A. Once the weight vector is calculated according to 

Equation (4.12), the calculation of the LLR value in Equation (4.13) requires 14N + 4NNbitM + 3 real

valued additions plus multiplications. 

In Figure 4.5 we have illustrated the computational complexity versus the number of transmit AEs imposed 

by the MMSE detector benefiting from soft-information for a different number of receive AEs as well as for 

BPSK and 4QAM signals. It can be seen in Figure 4.5 that in contrast to the MMSE detector dispensing with 
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a priori infonnation and only providing hard outputs, which was discussed in Section 2.3.1, the complexity 

of the SISO detector is slightly higher. Furthennore, the nonnalized computational complexity imposed 

by the SISO detector increases for 4QAM signals compared to BPSK modulated signals. This is owing to 

the fact that when using the real-valued binary system model of Section 2.1.1.2, calculating the soft-output 

for a given soft-input involves the matrix inversion of Equation (4.12) for each bit to be detected. The 

complexity illustrated in Figure 4.5 and summarized in Table 4.2 is only an upper bound. When taking into 

consideration the specific structure of the covariance matrix of Equation (4.12) its inversion can be carried 

out at a lower complexity using the matrix inversion lemma discussed in [29]. 

Furthennore, the complexity associated with the first iteration is lower than that of the subsequent iterations, 

since only one matrix inversion has to be performed for the detection of all bits, as it becomes clear, when 

setting the a priori soft infonnation xm of Equation (4.12) for all transmit AEs to zero. The weight vector 

for the first iteration is identical to the weight vector of the hard-output MMSE detector of Section 2.3.1. 

In Figure 4.6 the EXIT functions of an MMSE MIMO detector supporting different number of transmit AEs 

M, while employing N = 2 receive AEs are plotted. The modulation scheme considered was 4QAM and 

the channel was assumed to be an uncorrelated, independent Rayleigh fading channel with E [Ihnm 12 = 1] . 
Additionally, the EXIT function of a RSC code having an octally represented generator polynomial of 

g = [7 5J is also illustrated. It can be seen from Figure 4.6a that for this non-overloaded system the EXIT 

function of the MMSE detector is rather flat and its starting point at A i et = 0 increases upon increasing 

the SNR. The EXIT characteristic associated with four transmit AEs shown in Figure 4.6b has a similar 

behaviour as the two transmit AE assisted system only with a slightly increased slope of the EXIT func

tion. Naturally a higher SNR is required to create a tunnel between the detector's and the decoder's EXIT 

function for allowing the detector to iterate. However, if the number of transmitters is increased to M = 6 

transmit AEs as illustrated in Figure 4.6c, the starting point of the EXIT function at A ~et = 0 only increases 

marginally upon increasing the SNR. This clearly indicates that the MMSE system is interference limited 

for strongly rank-deficient systems. The detector is incapable of creating an open EXIT function tunnel 

and thus convergence to an infinitesimally low BER becomes impossible. Hence, the receiver exhibits an 

error-floor. 

The BER versus Eb / No perfonnance for the same system as considered for generating Figure 4.6 is shown 

in Figure 4.7 for different numbers of iterations. It can be observed that for the case of M = 2 transmit 

AEs no further BER perfonnance improvement is achieved after a few iterations. For four transmit AEs the 

number of iterations required for attaining convergence .is increased, but convergence is still possible. The 

shape of the BER curve associated with four transmit AEs after Niter = 7 iterations can be explained by 

considering the EXIT chart of Figure 4.6b. In the region of Eb / No = 5 dB initial convergence is limited by 

the absence of an open EXIT tunnel. Around Eb / No = 8 dB a small increase in SNR suddenly opens up a 
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Figure 4.7: BER versus Eb / No performance of a MMSE detector for a system using M number of transmit 
AEs and N = 2 receive AEs. 4QAM and an interleaver length of 10 000 bits were considered. 

tunnel resulting in a large BER improvement in exchange for a relatively small Eb / No increase. At about 

Eb / No = 10 dB the achievable iteration gain is reduced again. Considering the case of M = 6 number 

of transmit AEs, it can be seen that the detector is incapable of detecting the transmitted signal, since the 

system is interference limited. 

4.4.2 Bayesian SISO Detection 

The Bayesian SISO detector is a manifestation of the exact MAP solution of the MIMO detection problem 

considered. Recalling the definition of the set of legitimate transmitted symbol vectors 

and the associated legitimate channel output states 

of Section 2.3.2, the LLR associated with the mth bit can be expressed as 

Apdet(~m) = 10 (P(~m = +l IY (k))) 
g P (~m = -1 I Y (k) ) 

LyU'+)EY+ p exp - 20:2 

( 

(i,+) (1/y(k)_~'+)W)) 

(4.14) 

(4.15) 

(4.16) 
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Table 4.3: The normalized computational complexity (real-valued additions and multiplications) of the 
SISO Bayesian detector when considering the detection of a single transmitted bit 

Evaluation of the legitimate channel output states 
2NsN (2MNbit - 1) / (MNbit) 

of Equation (4.15) 

Euclidean distance calculation in Equation (4.16) N s6N / (MNbit) 

Legitimate output states a priori information of Equation (4.18) (5MNbit -l)Ns/(MNbit) 

LLR calculation without Euclidean distance calculation 
2Ns-l 

according to Equation (4.16) 

where y~,± E ym,± and p(i,+) as well as p(i,-) are the a-priori probabilities of y(i,+) and y(i,-), respec-
_I -m -m 

tively. Assuming that the symbols in the sequence ,I are statistically independent of each other, the a priori 

probability of the channel state .f(i) can be obtained from the a priori bit LLRs as follows: 

P(,!(i) ) (4.17) 

N M (ldet( (i))/2) 
bit exp I~A bn (v(i) det (i) ) IT ((i) ) exp J.m AA (bt )/2 , 

m=l 1 + exp Aiet(J.m) 
(4.18) 

where Aiet(~)) is the a priori LLR of the binary symbol associated with the mth AE. Equation (4.16) 

weights each possible channel output state with its a priori probability. 

The computational complexity imposed by the Bayesian detector, which is capable of processing soft

information may be divided into four steps: 

1. The calculation of the legitimate channel output states according to Equation (4.15). 

2. The calculation of the a priori information of each state according to Equation (4.18). 

3. The Euclidean distance evaluation of Equation (4.16). 

4. The calculation of the LLR values according to Equation (4.16). 

The calculation of the legitimate channel output states according to Equation (4.15) has been discussed in 

Section 2.3.3 and requires 2NsN(2MNbit - 1) real-valued additions plus multiplications. The calculation 

of the legitimate output states' a priori information according to Equation (4.18) requires (SMNbit -l)Ns 

number of real-valued additions plus multiplications. Finally, the Euclidean distance evaluations of Equa

tion (4.16), including the division by the noise power, require Ns6N number of real-valued operations. A 

further (2Ns -1) number of operations are required in order to evaluate the desired LLR value according to 

Equation (4.16). 

Note that the number of exp and log function evaluations have not been considered, since in practice Equa

tion (4.16) as well as Equation (4.18) are evaluated in the logarithmic domain using the Jacobian approxima-
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6 

tion [136]. Hence, no exp evaluations are required. Furthermore, the evaluation of the legitimate channel 

output states as well as the Euclidean distance calculations are only necessary during the first iteration 

and then can be stored for subsequent iterations, which suggests that the total computational complexity 

is dominated by the contribution of the first iteration. In Table 4.3 we have summarized the normalized 

computational complexity imposed by the Bayesian detector. 

In Figure 4.8 we have illustrated the computational complexity imposed by the Bayesian SISO detector, 

versus the number of transmit AEs for BPSK and 4QAM signals as well as for a different number of receive 

AEs. It can be observed that only the evaluation of the legitimate channel output states as well as the 

calculation of the Euclidean distances is dependent on the number of receive AEs. These operations only 

have to be performed during the first iteration. In all subsequent iterations the computational complexity 

is independent of the number of receive AEs, as it becomes clear from Figure 4.8b. Furthermore, it can 

be observed that for a low number of transmit AEs the Bayesian detector exhibits a lower computational 

complexity than the MMSE SISO detector of Section 4.4.1. However, the complexity associated with the 

Bayesian detector remains exponentially proportional to the number of transmit AEs. 

In Figure 4.9 the EXIT functions plotted for a Bayesian MIMO detector using a different number of transmit 

AEs M and employing N = 2 receive AEs is shown. The modulation scheme considered was 4QAM and 

the channel was assumed to be an uncorrelated independent Rayleigh fading channel. It can be observed 

that the general behaviour of an increased starting point of the detector EXIT function at it ~et = 0 for 

an increased SNR is identical to that of the MMSE detector's EXIT charts of Figure 4.6. The difference 
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however is that at an identical SNR the Bayesian detector's EXIT function emerges from a higher point and 

thus requires less iterations in order to converge. Furthermore, it is important to note that both detectors 

EXIT charts' terminate at the same point. This means that for a priori LLRs associated with the mutual 

input information of A i et = 1 both detectors achieve the same BER performance. It does however not mean 

that both detectors exhibit an identical BER performance. Their BER will only be identical, if there exists 

an open EXIT tunnel between the detector's and the decoder's EXIT function, allowing the iterative process 

to converge. 

The BER versus Eb/NO performance associated with the parameters used for generating Figure 4.9 are 

shown in Figure 4.10. It can be observed that the BER performance achieved by the iterative Bayesian 

detector is identical to that of the MMSE detector at a lower number of iterations. The results recorded for 

M = 6 transmit AEs are not shown here, since the complexity exhibited by the detector was excessive. 

4.4.3 Reduced-Complexity Max-Log Detection 

In this section a Reduced-complexity Max-Log (RML) algorithm designed for the detection of the transmit

ted signal is highlighted [61]. The Max-Log approximation of the desired LLRs required for the detection 

of the transmitted signal outlined in the context of Equation (4.1) can be formulated as 

(4.19) 

where X± is the set of potentially transmitted vectors,t 1 ::; m ::; MNbit associated with!m = ±1 

and P(~) is the a priori probability of the given hypothetical signal vector being considered, which may 

be obtained from the a priori bit LLRs Aiec(xm) as outlined in [48] upon assuming independence of the 

individual bits. Equation (4.19) may now be re-written as 

(4.20) 

where J represents the cost-function to be optimized and Jmin (!i = j) denotes the minimum cost-function 

value under the constraint of !i = j. The algorithm presented in this section has the capability of solving 

the optimization problem associated with Jmin(!m = ±1) at a moderate computational cost. Based on the 

derivations of Section 2.3.4 it can be seen that the solution to the problem defined by Equation (4.20) is 
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identical to solving 

where the upper triangular matrix U is defined by 

(4.22) 

while 

(4.23) 

where INb is the (Nb x Nb)-dimensional identity matrix. The constant C is identical for both Jmin(J.m = 

+ 1) as well as J min (J.m = -1) and hence it can be dropped from the evaluation of the a posteriori LLRs 

given in Equation (4.19). 

Exploiting the fact that the matrix U has an upper triangular structure, it can be shown that the objective 

function used for the detection of the transmitted symbol vector x may be written as [61] 

where 

J(~) = IIU(~-2!~SE)W -log(P(~)) 
n 

(~-~MMSEl~:U(~ -~MMSE) -log(P(~)) 
(Tn 

Nb 1 \,J:I!.u"(x. - X ')1 2 - r; /...JJ=1 lJ -~(T~ -MMSE,J -log(P(,&)) 

Nb 

- L CPi(~i)' 
i=l 

Nb 

ai = L Uij(J.j - KMMSE,j)' 
j=i+l 

(4.24) 

(4.25) 

(4.26) 

The term ai of Equation (4.25) is independent of the specific symbol's value of J.i' The cost-function given 

in Equation (4.24) may now be re-written in a recursive manner as 

(4.27) 
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that 

(4.28) 

Based on Equations (4.24)-(4.28) a low-complexity tree-search algorithm may be employed, which is out

lined in Section 2.3.4. A further property of the recursive cost-function imposed by the a priori information 

available is that we have 

i+1 
INb(~) > h(~J - Lmax{log(P(a:j = -1)), log(P(a:j = +1))}, 

j=l 

which might be exploited by the tree-search algorithm in order to improve its convergence rate. 

(4.29) 

The tree-search algorithm is guaranteed to find the ML solution XML satisfying the cost-function value 

IML = min(Jmin). This constitutes an effective way of calculating the 2Nb cost-function values required 

for obtaining the desired Nb number of LLRs. The proposed method is summarized in Algorithm 4.1, where 

Imin (if = j) is the minimum cost-function value under the constraint of if = j. 

Algorithm 4.1: Max-Log Metric calculation 

Ini tialize : 

IML = 1010 (Value higher than true IMd 

. Imin(ii = ±1) := a constraint> IML for 1 ~ i ~ M 

calculate IML and XML evaluating search tree 

for p = 1 to M do 

Imin(ip = iML,p) = IML 

end 

for i = 1 to M do 

for j E {-I, I} do 

if Imin (ii = j) > IML then 

calculate Imin (if = j) evaluating search tree 

end 

i++ 

end 

The proposed algorithm requires (Nb + 1) search tree passes for the calculation of the 2Nb cost-function 

values. The algorithm exploits the fact that the cost-function value IML associated with the ML solution is the 

lowest possible cost-function value and therefore already provides the first Nb values Imin (ii = XML,i) = 



4.4.3. Reduced-Complexity Max-Log Detection 151 

fML. The algorithm may also readily be used for the detection of higher order modulation schemes by 

representing a complex-valued symbol as a string of independent bits, as outlined in [61]. The algorithm 

presented in this section extends the original hard-output OHRSA of [61] to a SISO algorithm, which may 

be employed in iterative systems for calculating the required 2Nb cost-function values. 

The computational complexity associated with the RML detector may be divided into two contributions, 

namely the calculation of the MMSE solution and the Cholesky factorization, both of which have been dis

cussed in Section 2.3.4 plus the additional complexity imposed by the search-tree evaluation of the RML 

detector. In Figure 4.11, the computational complexity imposed by the search-tree evaluation, when embed

ded in Algorithm 4.1 is illustrated as a function of the number of transmit AEs for four receive AEs. The 

computational complexity is illustrated for different values of the mutual information, associated with the a 

priori LLRs available at the detector. The system considered employed 4QAM signals. 

It can be seen from Figure 4,11 a that as the number of transmit AEs increases, the computational complexity 

is reduced for a higher mutual information, which suggests that the a priori LLRs assist beneficially in the 

search-tree evaluation. However, when the SNR increases, this effect becomes less pronounced, as it can be 

seen from Figure 4.11 b. When the SNR is increased even further, the benefit of having a priori information 

becomes even less beneficial in terms of the associated computational complexity reduction, as it can be seen 

from Figure 4.11c. This phenomenon indicates that at lower SNRs the a priori LLR becomes the dominant 

factor for the search-tree evaluation, when considering a high a priori mutual information. By contrast, 

at higher SNRs the available a priori information appears to have a more modest conductive effect, since 

the evaluation of the cost-function of Equation (4.25) is dominated by the detector's contribution. When 

the complexity is compared to that of the Bayesian detector of Section 4.4.2 it can be observed that the 

complexity of the RML detector is almost two magnitudes lower for M = 6 transmit AEs. 

In Figure 4.12 the EXIT charts of the RML detector are illustrated for M = 2,4 and 6 transmit AEs, while 

employing N = 2 receive AEs and considering 4QAM signals. It can be observed from Figure 4.12a and 

Figure 4.12b that for M = 2 and M = 4 the RML detector has a similar EXIT function characteristic, as 

the Bayesian detector illustrated in Figure 4.9. It appears that the Max-Log approximation has a relatively 

modest effect on the shape of the EXIT function. When considering M = 6 transmit AEs, it can be observed 

from Figure 4.12c that in contrast to the SISO MMSE detector of Figure 4.6c the performance of the RML 

detector is not interference limited. In fact, for this rank-deficient scenario, which is associated with a 

relatively steep exit characteristic a high iteration gain can be achieved. 

The same phenomenon can be observed in Figure 4.13, where the achievable BER versus EINo perfor

mance is illustrated for the same scenario. The steep EXIT characteristic associated with M = 6 AEs results 

in a water-fall shape BER characteristic. For a lower number of transmit AEs, the RML, the Bayesian and 

the MMSE SISO detector exhibit a similar BER performance in the context of the system considered. 
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Figure 4.11: The normalized computational complexity imposed by the search-tree evaluation of the RML 
detector when detecting a single transmitted bit as a function of the number of transmit AEs, evaluated for 
N = 4 receive AEs and 4QAM signals. Different values of mutual information associated with the a priori 
LLRs were considered. 
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Figure 4.13: BER versus Eb / No performance of a RML detector for a system using M number of transmit 
AEs and N = 2 receive AEs. 4QAM and an interleaver length of 10 000 bits were considered. 

4.4.4 MBER SISO Detection 

Simply applying the iterative detection principle to the MBER algorithm may not be very attractive, since its 

complexity exceeds that of the optimum Bayesian detector. Let us consider the case of a block-constant fad

ing channel. It was argued in Chapter 2 for this scenario that the computational complexity associated with 

the calculation of the MBER weights may be justified, because once the weight-vector has been evaluated, 

the detection itself can be achieved at a low computational cost. 

Following the approach presented in Section 2.3.2, the BER at the detector output may be expressed as 

(4.30) 

where X~ is the set of hypothetically transmitted symbols associated with!m = +1 and 

MNbit 

P(~?) = IT P(£:?) (4.31) 
j=l 

is the a priori probability of the hypothetical solution considered, assuming that the transmitted bits are 

independent. Similarly to Equation (2.68), the BER gradient can be expressed as 

(4.32) 
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where we have 

(4.33) 

It can be seen from Equation (4.32) that during the first iteration when no a priori information is available at 

the detector, the SISO MBER solution is equivalent to the MBER algorithm not benefiting from soft input, 

which was discussed in Section 2.3.3. Assuming, that the channel is constant over one transmission burst, 

the weight vector for each transmit AE only has to be calculated once for the whole transmission burst. 

If, however, a priori information is available for the MBER detector, the BER surface and thus the BER

gradient is changed for each symbol differently according to the associated a priori information. Thus a 

BER-gradient based algorithm would have to be run for each symbol to be detected. The complexity of this 

scheme would be several orders of magnitudes higher than that of the full Bayesian detector. Furthermore, 

applying the conjugate gradient algorithm for each symbol conflicts with the philosophy of MBER detection 

since Fe is a statisticai measure. As a resuit of these probiems, the iterative MBER S1SO detector is not 

considered in the remainder of this chapter. 

4.4.5 Iterative MIMO Detection Simulation Results 

The system considered employed two serially concatenated channel codes and used M = 2 transmit AEs as 

well as N = 2 receive AEs, where 4QAM signals and an interleaver length of 64 000 bits was considered. 

All channel code parameters are summarized in Table 4.1. In order to be able to employ EXIT chart analysis 

for the proposed detector, we consider independent and uncorrelated fading channels for all antenna links. 

Since the system consists of three concatenated SISO components, a projected EXIT chart discussed in 

Section 4.3 is considered. In the derivation of the 2D-projected 3D-EXIT chart it was assumed that the two 

codes iterate to the point of convergence. We therefore consider Ninner = 10 iterations between the two 

channel codes after each detection by the RML detector. 

In Figure 4.14a the B ER is shown as a function of Eb I No after a different number of RML-aided detection 

stages together with the theoretically achievable information rate obtained as outlined in Section 2.2.3. It 

can be observed that the BER curve follows waterfall shape typical for iterative detectors and comes as close 

as 0.8 dB to the theoretically achievable information rate bound. It can also be observed that during the first 

and second iteration the gain is high and the incremental gains decreased upon increasing the iteration index. 

This behaviour can be explained by considering the EXIT chart of the system recoded at Ebl No = 2.6 dB, 

which shows a wide-open EXIT tunnel for low I~et values, before the tunnel narrows. It also becomes 

evident from the good agreement between the recoded decoding trajectory and the 2D-projected EXIT 

function that projected 3D-EXIT describe the system accurately, given a sufficiently long interleaver. 

For the same system we have also illustrated the Ebl No versus iteration index in Figure 4.15, required 
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in order to achieve a target BER of 10-3 for different interleaver lengths. It can be clearly observed in 

Figure 4.15 that there exists a trade-off between the complexity associated with a given iteration index and 

the delay associated with a given interleaver length. For a relatively short interleaver a higher number of 

iterations has to be performed, in order to achieve an identical performance. 

The performance of the RML detector has been evaluated considering both 4QAM as well as 16QAM 

signals and a receiver employing N = 2 antennas for receiving from M number of transmit AEs at different 

Eb / No values. The random bit interleaver employed had a length of 216 bits and the fading process imposed 

by the channel was assumed to be uncorrelated and independent between the different AEs. 

In Figure 4.16 the proposed RML detector is characterized with the aid of EXIT charts [137] for both M = 2 

as well as M = 4 transmit AEs. It can be observed that for 4QAM signals as weII as for the (2 x 2)-antenna 

aided 16QAM scenario considered, the EXIT function is almost horizontal 1 • As a benefit, in conjunction 

with a well-designed channel code, which matches this EXIT characteristic with the aid of a near-parallel 

EXIT function the iterative detector has a low complexity, since it needs only a few detection iterations in 

order to converge. By contrast, the EXIT function associated with the (2 x 4)-antenna based rank-deficient 

16QAM scenario shows a higher gradient, which implies that an open EXIT tunnel can be readily created in 

conjunction with an appropriately designed channel code EXIT function, but iterating through this steeper 

tunnel may involve numerous detection iterations and thus a high computational complexity. Furthermore, 

it can be observed in Figure 4.16 that the rank-deficient (4 x 2)-antenna 4QAM scheme and the fully-loaded 

(2 x 2)-antenna 16QAM arrangement have similar EXIT-functions and they both support identical system 

throughputs of 4 . 2 = 2 ·4 = 8MIMJ>~ymbol' The fully-loaded 16QAM system however has a 2 dB Eb / No 

I In contrast to the typical turbo channel code EXIT characteristics, the EXIT functions of iterative detectors generally do not 
reach the point of perfect convergence at (I1et, I~et) = (1, 1). 
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Figure 4.17: BER versus Eb/NO for a MIMO system having M = 2 or 4 transmit antennas and N = 2 
receive antennas and using 4QAM or 16QAM. The channel codes employed are the various serially con
catenated codes of Table 4.4. 

advantage in comparison to the rank-deficient 4QAM system. 
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In order to achieve a performance close to the channel capacity bound, in most cases it is insufficient to 

consider an iteratively detected serially concatenated RSC code and a SISO detector. In order to support 

communication close to the channel capacity we therefore consider a channel code consisting of two serially 

concatenated codes, which are separated by an interleaver in order to facilitate iterative channel decoding. In 

our simulations, these two codes were considered to be a single code, where the number of inner iterations 

between the two codes was chosen to be Ninner = 10. The exact code parameters are provided in Table 4.4. 

In Figure 4.17 the achievable BER versus Eb / No performance of the RML detector benefiting from iterative 

detection is illustrated together with the associated capacity bounds represented by the vertical lines. It can 

be observed that the performance of all scenarios is less than 2 dB away from the channel capacity, except 

for the (2 x 4)-antenna 16QAM scenario. This can be explained by the fact that for this specific scenario 

the code's EXIT function and the RML detector's EXIT function match poorly and thus the detector fails 

to approach the capacity limit. Communication closer to the capacity limit could be supported using for 
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example irregular codes specifically designed to match the shape of the EXIT functions [103], although this 

is achieved at the cost of a higher number of detector iterations. 

In Figure 4.18 we consider the same system as that used for generating the results of Figure 4.17, but now 

consider additionally the Bayesian and the MMSE detector. It can be observed from Figure 4.18 that for the 

system supporting only M = 2 transmit AEs, there is only a marginal performance difference between the 

three algorithms. If, however, the number of transit AEs is increased to M = 4, then the Bayesian as well 

as the RML detector perform significantly better than the MMSE aided iterative detector. 

It was observed in Figure 4.18 that for certain channel conditions, both the MMSE and the RML detector 

exhibit a similarly BER versus Eb / No performance, despite having different EXIT functions. In this respect 

it might be more practical to compare different detection algorithms not only according to their BER perfor

mance, but also according to the area under their EXIT function. If different detectors are compared using 

the BER versus Eb / No performance, the achievable performance depends on how well the EXIT function 

of the detector matches that of the decoder. A different approach would be to compare the various detectors 

according to the area under their EXIT functions, which allows their comparison, regardless of the specific 

channel code used. To elaborate a little further, it has to be emphasized that one minus the area under the 

EXIT function of the channel code corresponds to its code rate [140]. This was only proved for the AWGN 

and the Binary Erasure Channel (BEC), but observations in the literature suggest that it also approximately 

holds for Rayleigh fading channels. As a result, it follows that if we assume having a channel code EXIT 

function, which is perfectly matched to the EXIT function of the detector, a detector having a larger area 

under its EXIT function is capable of converging in conjunction with a higher rate code. Comparing the 

EXIT functions of the different detectors shown in Figure 4.6, Figure 4.9 and Figure 4.12, respectively, it 
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can be observed that even though there is no direct difference in achievable BER performance for some 

of the systems considered, the potentially achievable performance determined by the area under the EXIT 

function is always higher for both the Bayesian and the RML aided detector than for the MMSE based 

detector. In other words, the Bayesian and the RML detector are capable of supporting a higher effective 

data-rate at the same SNR. 

In line with the classic lessons of Shannon, all the observations made in this section lead to a single bold 

conclusion. Explicitly, the closer we want to approach the capacity bound, the higher the complexity and 

the delay. 

4.5 Training Aided Iterative Channel Estimation 

In this section we will discuss joint iterative channel estimation using a simple first -order Kalman chan

nel estimator. The channel estimator considered in this section is a Kalman channel estimator introduced 

in [141], which can readily be used for iterative detection and channel estimation as depicted in Figure 4.19. 

The channel estimator depicted in Figure 4.19 might operate in three different modes: 

1. Training based channel estimation; 

2. Decision directed channel estimation; 

3. SISO channel estimation using the decoder's LLR values. 

The training based as well as the decision directed channel estimation schemes used are identical to the non

iterative channel estimator discussed in Section 2.4. If the channel is varying rapidly, it might be required 

that during the first detection stage the channel estimator tracks the channel in a decision directed mode. By 

contrast, if the channel is slowly time-varying, it might acceptable to assume the channel to be constant for 
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Figure 4.20: A system using M = 4 transmit AEs and N = 4 receive AEs was considered and the 

normalized Doppler frequency was assumed to be fD = 0,0001. The modulation scheme employed was 
4QAM, 

the first detection stage and to dispense with decision directed channel estimation, During all subsequent 

detection stages the channel estimator updates the estimated eIR entirely based on the decoder's extrinsic 

information, 

As it becomes clear from Figure 4.19, the channel estimator has to have the capability of estimating the 

channel using soft-information and return the channel estimation error in form of an estimation error vari

ance (T;. The detector then considers not only the Gaussian noise for the detection but also the estimation 

error provided by the channel estimator. The total noise variance considered by the detector is then given as 

2 . 2 
(Tn + (Te' 

In order to highlight the performance gains that can be achieved by iterative channel estimation, we consider 

a system supporting M = 4 transmit AEs and N = 4 receive AEs. The normalized Doppler frequency 

was chosen to be J = 0.0001 and 4QAM signals were considered. The detector used was a RML aided 

detector and the channel code considered was a half-rate RSe code having a octalIy represented generator 

polynomial g = [7 5]. The number of training symbols per transmit AE was set to 100 and the useful 

payload per transmit AE was chosen to be 900 symbols. After the first training stage the channel estimator 

operated in decision directed mode. For the subsequent iterations the soft information provided by the 

channel decoder was used for estimating the channel. 

It can be seen from Figure 4.20a that the BER performance difference for the considered system is less 

than 1 dB compared to the system benefiting from perfect channel knowledge although this is achieved at 

the cost of a higher number of iterations. Figure 4.20b shows the MSE recorded at Eb/NO = 10 dB as a 

function of the symbol index. It can be observed how the MSE is reduced gradually for an increased number 

of iterations, which allows the use of relatively short training sequences. 
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4.6 Conclusion 

In this chapter we have discussed different SISO detection algorithms, namely the MMSE technique of 

Section 4.4.1, the Bayesian solution of Section 4.4.2 as well as the novel RML detector of Section 4.4.3. 

All algorithms have been characterized using EXIT charts and the complexity imposed by the different 

algorithms has been discussed. In order to enable us to characterize concatenated systems consisting of 

three serially cascaded SISO components, we have introduced a novel 2D-projected EXIT chart. This 2D

projected EXIT function enabled us to analyze systems consisting of three SISQ blocks with the aid of a 

single 2D EXIT chart. 

Furthermore, it was discussed in Section 4.4.4 why simply extending the MBER algorithm of Section 2.3.3 

to a SISO algorithm is not practical, since it results in a computational cost associated with the SISO MBER 

detector, which exceeds that of the optimum Bayesian detector. 

In Table 4.5 we have summarized the optimization criteria of the various algorithms discussed and have 

portrayed the computational complexity associated with the SISO detection strategies considered. It can be 

observed that the MMSE SISO detector exhibits the lowest computational complexity during the first iter

ation, while the Bayesian detector exhibits a lower computational complexity during subsequent iterations. 

The complexity of the RML detector depends on the SNR, but decreases slightly for subsequent iterations, 

as it can be seen from Figure 4.11. For large systems, the complexity of the RML detector is between that 

of the MMSE and that of the Bayesian detector. 

When quantitatively comparing the different detectors' performance, we investigate their performance in 

terms of the distance expressed in dB from the theoretical channel capacity limits discussed in Section 4.2. 

Under the assumption of uncorrelated fading channels the distance ~IIBER=10-4 from the channel capacity 

limit in [dB] is given in Table 4.5. The values were obtained from Figure 4.18 for a BER of 10-4 . It can 

be observed that the MMSE detector performs almost as well as the Bayesian detector, when the (2 x 2)

antenna system is considered. If, however, the number of transmit AEs is increased to four, resulting in 

a (2 x 4)-antenna system, the MMSE detector's performance is significantly degraded. By contrast, the 

RML detector approaches the performance of the Bayesian detector also for the rank-deficient system. The 

performance difference between the RML and the Bayesian detector is a consequence of using the Max-Log 

approximation for the RML detector. 

Finally, in Section 4.5 we have discussed the performance of the RML detector, when performing joint 

channel estimation and detection using a SISO Kalman channel estimator. It was shown that with the aid 

of SISO channel estimation, the performance degradation of the system considered owing to using the 

estimated rather than perfect CSI is less than 1 dB as shown in Figure 4.16. 
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Soft-Input Soft-Output Space-Time 

Equalization 

This chapter commences with the evolution of the narrowband Soft-Input Soft-Output (SISO) detection al

gorithms discussed in Chapter 4 in order to facilitate their employment to Single-Carrier (SC) Space-Time 

Equalization (STE). In contrast to Chapter 4, where a single-user narrowband Multiple-Input Multiple Out

put (MIMO) system was considered for iterative detection, the focus of this chapter is on a system supporting 

multiple MIMO users, who are communicating over a frequency-selective Rayleigh fading channel with the 

Base-Station (BS). In Sections 5.1 and 5.2 a recipe is provided for extending the narrowband MIMO detec

tion algorithms of Chapter 3 to STE algorithms. These principles are essentially based on the derivations 

presented in Chapter 3 as well as on the fonnulation of the Minimum Mean Squared Error (MMSE) tech

nique and the Bayesian as well as the Reduced complexity Max-Log (RML) algorithm of Chapter 4. In 

addition to the Decision Feedback (DF) methods discussed in Section 3.5 in the specific context of hard 

DF, here a more sophisticated soft DF method will be introduced. In order to circumvent the deficiencies 

observed in the context of the algorithms discussed in Section 5.2, a novel scheme referred to as the Markov 

Chain Monte Carlo (MCMC) aided detector will be introduced in Section 5.3. 

5.1 System Model and Decision Feedback Methods 

The multi-user system model considered in this chapter is illustrated in Figure 5.1, where Q number of 

perfectly synchronized Mobile-Stations (MSs), each employing an M-element transmit antenna array, for 

communicating over a frequency-selective channel to a BS receiver, which has N number of Antenna El

ements (AEs) are considered. Each MS's transmitter channel encodes the input bit-stream at a code-rate 

Re, interleaves the encoded bits, maps them to the M transmit AEs and modulates the signals as seen in 
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vector hosting the a posteriori Log Likelihood Ratio (LLR) values of the qth user's signal can be written as 

1 det,q _ [1 (q) 1 (q) 1 (q) 1 (q) ] T 
I\.p - 1~11/",,1~1 u.I",II~Ml/""I~MU' , 

I ,H'blt I ,..LVblt 
(5.2) 

where A~~ is the a posteriori LLR of the ph symbol transmitted from the mth transmit AE of the qth MS. 

The subscript p as well as the superscript det have been omitted from the scalar elements of Equation (5.2) 

for the sake of notational simplicity. 

For the reader's convenience we will now repeat the required system equations discussed in more detail 

in Section 3.4 in order to show how the LLRs required for iterative detection fit into this model. When 

considering a STE with feed-forward order Np in addition to the eIR as part of the system model, the 

super-vector representing the new channel output can be written as 

(5.3) 

where 

withyJk) = [Yl(k-i+1), ... ,YN(k-i+1)F, 

with1Ji(k) = [1Jl(k-i+1), ... ,1]N(k-i+1)F and 

with xi(k) = [Xl (k - i + 1)" .. , xMQ(k - i + l)F. The exact structure of H(k) has been defined in the 

context of Equation (3.15). The vector hosting the a priori LLR values provided for the detector by all 

users' channel decoders - which is associated with the super-vector x(k) of the transmitted symbols - can be 

written as 

1 det [( 1 det) T ( 1 det ) TJ T 
I\.A = I\.A,l , .• " I\.A,L+NF-l , (5.4) 

where Aiej is the QMNbit-element a priori LLR vector associated with the symbol vector Xi. which is , 

defined in analogy to the a posteriori information of Equation (5.2). The LLR vectors associated with the 

extrinsic information and the a priori information can be obtained by substituting the subscript p with A and 

E, respectively. The iterative detection process exchanging extrinsic information between the SISO STE and 

the channel decoders associated with the different users is carried out in analogy to the narrowband iterative 

detector discussed in Section 4.1. 
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Based on this system model, different DF methods might be employed within the STE. The first two design 

options are identical to the STE having no DF and to the hard DF aided STE discussed in Sections 3.4 

and 3.5, respectively. These options will be discussed in the context of SISO STE in Sections 5.1.1 and 5.1.2, 

respectively. The above-mentioned novel soft DF approach is introduced in Section 5.1.3. 

5.1.1 Using No Decision Feedback 

If no DF is considered, the SISO algorithms discussed in Chapter 3 may readily be converted to SISO STE 

algorithms in analogy to the modifications performed in Chapter 4, when evolving from hard output MIMO 

schemes designed for non-dispersive channels to hard output STE algorithms contrived for dispersive envi

ronments. The corresponding conversion of the SISO single-user narrowband MIMO detectors of Chapter 4 

to SISO STEs can be summarized as follows: 

• The narrowband channel matrix H of Equation (4.2) is substituted by the system matrix H of Equa

tion (5.3). 

• The transmitted symbol vector x of Equation (4.2) is substituted by the super-vector x consisting of 

multiple delayed transmitted signal vectors as defined in Equation (5.3). 

• The signal vector y of Equation (4.2) received over a narrowband channel is substituted by the super

vector y, which constitutes the input to the STE as defined in Equation (5.3). 

• The a priori information "-iet of Equation (4.2) is substituted by the super-vector "-iet of Equa

tion (5.4). 

SISO STE may now be readily implemented by using the SISO algorithms discussed in Sections 4.4.1-4.4.3 

and applying them in the context of the new system model. 

5.1.2 Hard Decision Feedback 

Let us now contrast the hard DF aided STE to the procedure outlined in Section 5.1.1, while following the 

same principles: 

• The narrowband channel matrix H of Equation (4.2) is substituted by the feed-forward channel matrix 

Hl, which hosts the first 9J1(~ + 1) columns of the system matrix H seen in Equation (5.3), where ~ 

is the decision delay at which the STE operates . 

• The transmitted symbol vector x of Equation (4.2) is substituted by the super-vector Xl, which consists 

of the first 9J1 (~ + 1) elements of x. Again, x consists of multiple delayed transmitted signal vectors 

as defined in Equation (5.3). 
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CD The signal vector y of Equation (4.2) received over a narrowband channel is substituted by the super

vector r = y - H2X2, where H2 as weII as X2 represent the feedback matrix and the feedback symbol, 

respectively, which have been defined in Equation (3.64). 

CD The a priori information "-iet of Equation (4.2), which was generated in the narrowband scenario 

is substituted by the super-vector Aiet,DF = [Ati ... Ati+lF associated with the symbols in the 

feed-forward shift register of the SISO STE. 

The benefit of hard DF is the reduction of the search space by removing the ambiguity of the already decided 

symbols, as discussed in Section 3.5. It was shown in Table 3.8 that for the MMSE STE of Section 3.5.1 

hard DF yields a significant performance improvement, while for the classification based algorithms of 

Sections 3.5.3 and 3.5.4, such as the Bayesian and the RML detection algorithms, the associated complexity 

is reduced significantly. 

5.1.3 Soft Decision Feedback 

Since in the context of iterative detection soft information is provided by the detector, soft DF becomes pos

sible. The soft information gleaned from the symbols, which have already been decided upon is exploited 

by incorporating the additional knowledge provided by the a priori information available at the STE. As

sume that the a priori information provided by the channel decoder for the STE not benefiting from soft 

DF is given as Aiet = [("-~~nT, ... , (A~~i+NF-l)TF. The a priori information used by the iterative STE 

incorporating soft DF can then be written as 

ldet,SDF [(ldec)T (ldec)T (ldet + 1 dec )T (ldet 1 dec )T]T (5 5) 
I\.A = I\.E,l , ... , I\.E,L\+l ,I\.E,L\+2 I\.E,L\+2 , ... , I\.E,L+NF-l + I\.E,L+NF-l· .. 

In the proposed soft DF scheme, the extrinsic information obtained by the SISO STE for bits associated with 

the symbols of the different antennas at time k are directly used as a priori information for the detection of 

the symbols at time k + 1. Let us now briefly contrast the soft DF STE procedure to the procedures outlined 

in Sections 5.1.1 and 5.1.2: 

CD The narrowband channel matrix H of Equation (4.2) is substituted by the system matrix H of Equa

tion (5.3). 

CD The transmitted symbol vector x of Equation (4.2) is substituted by the super-vector x consisting of 

mUltiple delayed transmitted signal vectors as defined in Equation (5.3). 

CD The signal vector y of Equation (4.2) received over a narrowband channel is substituted by the super

vector y of Equation (5.3). 
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Table 5.1: Extension of SISO MIMO detection algorithms to STE algorithms, when considering different 
DFmethods. 

hard DF I soft DF I 
Channel matrix H H HI H 

Received signal y y r = y-H2x2 y 

Transmitted signal x x Xl X 

A priori LLR Ai
et 

Ai
et A det,DF 

A 
A det,SDF 

A 

CD The a priori information Aiet of Equation (4.2), which was valid for the narrowband scenario is 

substituted by the super-vector Aiet,SDF. 

In Table 5.1 the three different DF approaches of Sections 5.1.1-5.1.3 have been summarized. When com

paring soft and hard DF, it can be observed that as a benefit of the smaller system matrix generated after 

the symbol decision of hard DF, the dimensionality of the search space is reduced at the cost of a potential 

error propagation. By contrast, soft DF does not offer this complexity reduction, but as a benefit of taking 

into account the reliability of the previously detected symbols, further performance gains are expected when 

compared to both the STE dispensing with DF as well as over the hard DF aided STE. 

5.2 Conventional Soft-Input Soft-Output STE 

In this section the performance of classic detection methods, namely the MMSE, the Bayesian as well 

as the RML algorithms discussed earlier in the context of narrowband MIMO detection in Chapter 4, are 

investigated in iterative STEs using EXIT charts. Furthermore, the computational cost imposed by the 

different SISO STEs is discussed. The evolution from narrowband SISO MIMO detectors to MMSE SISO 

STEs operating in dispersive environments, has already been proposed for iterative MMSE detectors in [76] 

using no DF. 

5.2.1 Minimum Mean Squared Error STE 

The computational complexity of the MMSE STE during the first iteration is identical to that of the hard 

output STE dispensing with a priori information, which was quantified in Table 3.1. For all subsequent 

iterations, the complexity imposed can be evaluated by substituting NNF for Nand QM(NF + L - 1) for 

M in Table 4.2, when refraining from the employment ofDF. Similarly, we have to substitute NNF for Nand 

QM(~ + 1) for M for the STE of Section 5.1.2 benefiting from hard DF in order to appropriately adopt the 
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complexity evaluation of the iterative narrowband MMSE MIMO detector of Section 4.4.1. Quantitatively, 

for the STE using no DF and for the soft DF aided detector of Sections 5.1.1 and 5.1.3 , this yields a 

computational cost imposed by the MMSE detector expressed as: 

in terms of the number of real-valued additions and multiplications, which are imposed by the evaluation 

of the MMSE weight vector in Equation (4.12) under consideration of the new system model. Note that in 

our complexity evaluations the real-valued binary STE system model corresponding to the complex-valued 

system model of Equation (5.3) was considered, which was evolved from the context of Equation (4.12). 

Similarly, for hard DF we obtain 

which, again, was derived form Table 4.2. Taking into account that the feed-forward order NF is generally 

chosen to be the same as the length of the eIR L, it can be seen from Equations (5.6) and (5.7) that the 

complexity of all feedback aided approaches depends cubically on the length of the CIR. 
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Figure 5.2: MMSE EXIT function at Eb / No = 4 dB for a system using M = 2 transmit AEs and N = 2 
receive AEs. 4QAM was considered. A random interleaver having a length of 10 000 bits was used. 

1 

In Figure S.2a the EXIT function of the MMSE detector is shown for a single-user (2 x 2) MIMO system 

communicating over a two-path equal-power channel CIR characterizing all antenna links. The STE was 

operating with a feed-forward order of NF = 2 and a decision delay of!!, = 1. The feedback order for 
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both the hard as well as soft DF STE was chosen to be NB = 1. It can be observed that for the scenario 

considered, soft-feedback offers the best performance, while the employment of hard DF as well as no DF 

result in a slightly lower mutual information at the STE's output. It can also be observed that for I~et = a 
the utilization of hard DF results in a lower mutual information at the output of the detector than in the 

scenario where the STE refrains from using DE 

The EXIT functions illustrated in Figure 5.2b have been recorded for the same system as in Figure 5.2a using 

soft DF and a varying number of equal-power CIR taps. The STE parameters were chosen to be Np = L, 

t:,. = L - 1 and NB = Np - 1. It can be observed that if the number of paths is increased from one to two, 

the area under the EXIT transfer function becomes larger and thus the system becomes capable of supporting 

a higher throughput. Furthermore, a steeper EXIT function slope can be observed. If the number of paths is 

increased to three, the theoretically achievable throughput increases only marginally. This behaviour seems 

to follow the channel capacity trends observed in Figure 3.4 for the same system, where it was found that 

the channel capacity increases more substantially upon increasing the number of paths from one to two, 

than it does when increasing the number of paths from two to three. The steeper EXIT function of the 

detector recorded for an increased number of paths implies that a higher number of iterations is required 

for reaching the point of convergence in the EXIT chart. Consequently, as expected, a higher complexity 

is imposed, when communicating at the highest possible data-rate supported by the detector. In addition to 

the detector's EXIT function, the projected EXIT function of a Serially Concatenated Convolutional (SCC) 

code, consisting of a rate-l12 RSC code using the octally represented generators of g = [65] and and a 

unity-rate code having the octal generators g = [3 1 J using Ninner = 10 inner iterations, is also shown 

in Figure 5.2b. It can be seen that the trajectory recorded for the soft DF STE at Eb/NO = 4 dB and at 

an interleaver length of 10 000 bits follows the performance trends predicted by the EXIT curves closely. 

Recall from Figure 4.4 that for the observed scenario, the system would operate at an infinitesimally low 

BER owing to the beneficial characteristics of the SCC code considered, as discussed earlier in Section 4.3. 

5.2.2 Bayesian STE 

The structure of the Bayesian SISO detector is identical to that of the Bayesian STE discussed in Sec

tion 3.4.3, which was returning hard outputs, with the only difference being that in this section soft values 

are generated. Rather than calculating a hard estimate of the transmitted symbol on the basis of Equa

tion (3.44), the Bayesian SISO STE calculates the output LLR values, as demonstrated in Equation (4.16) 

for the narrowband Bayesian SISO detector. For convenience here we repeat the complexity formulae of 

Tables 3.3 and Table 3.7 derived in Section 3.4.3.1. Explicitly, the calculation of the legitimate channel out

put states of Equation (3.36) imposes a computational cost expressed in terms of real-valued multiplications 
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and additions formulated as 

for the STE either using no DF or considering soft DF, where 9J1 = QM. By contrast, the number of 

real-valued additions and multiplications in Equation (3.65) is reduced to 

(5.9) 

when using hard DF. Additionally, the evaluation of the LLR values formulated in Equation (4.16) requires 

(5.10) 

number of real-valued additions and multiplications for the STE not benefiting from DF or considering soft 

DFand 

(5.11) 

for the hard DF STE. Note that the calculation of the a priori probability of each legitimate channel state 

has not been considered in these complexity evaluations. 

It can be seen from Equation (5.8) as well as Equation (5.9) that the complexity of the Bayesian SISO STE 

is exponentially proportional to both the length of the CIR as well as to the number of bits per symbol and 

to the number of transmit antennas in the system. Therefore the resultant complexity becomes excessive 

for relatively low values of the above-mentioned parameters. Consider for example a single-user (2 x 2)

antenna MIMO system employing 4QAM for transmission over a three-path channel. For this system the 

Bayesian STE would have to consider Ns = 22.2(3+3-1) = 1 048 576 legitimate channel output states, 

which exceeds any realistic practical limitations at the current state-of-the-art. 

The system considered for generating the EXIT functions of Figure 5.3 was therefore a (2 x 2)-antenna 

single-user MIMO system employing a STE characterized by NF = 2, /). = 1 and NB = 1, when DF was 

considered. The channel was assumed to be a two-path equal-power independently fading Rayleigh channel. 

It can be seen in Figure 5.3 that the EXIT functions of the Bayesian STE have a higher starting point for 

I~et = 0 than the MMSE STE even for this full-rank system. Furthermore, it can be observed that the 

Bayesian detector appears to be more robust against DF errors induced by hard DF, when compared to the 

MMSE based STE. Similar to the MMSE STE, the Bayesian STE exhibits its best performance when soft 

DF is employed. In addition to the Bayesian STE's EXIT functions, Figure 5.3 shows the EXIT function of 

a SCC code consisting of a rate-I12 RSC code employing the octaIly represented generators of g = [65J 

and a unity-rate code with octal generators of g = [3 1 J using Ninner = 10 inner iterations. The trajectory 
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Figure 5.3: Bayesian EXIT function at Eb / No = 4 dB for a system using M = 2 transmit AEs and N = 2 
receive AEs. 4QAM was considered. A two-path equal-power independent Rayleigh fading channel and a 
STE characterized by NF = 2, !1 = 1 as well as NB = 1 were considered for the feedback-aided scenarios. 
The interieaver-depth was chosen to be 10 000 bits. 
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recorded at Ebl No = 4 dB for an interieaver length of 10 000 bits shows a good agreement with the 

predicted performance. 

5.2.3 Reduced Complexity Max-Log STE 

The RML STE's structure is also based on that of the narrowband MIMO detector introduced in Section 4.4.3 

and its complexity is, again, quantified in terms of the number of real-valued multiplications and additions 

required for the detection of a single bit. Note that in the scenario the truncation scheme discussed in 

Section 3.5.4 has not been considered. 

Figure 5.4a shows the number of real-valued operations required for the evaluation of the soft-information of 

a single bit for a single-user (2 x 2 )-antenna MIMO system at Eb I No = 4 dB and an a priori information at 

the STE associated with Jtet = 0.5 recorded as a function of the number of eIR path L. The STE parameters 

were chosen to be NF = Land fj. = L -1. When DF was considered, the feedback order was set to NB = 

L - 1. It can be observed in Figure 5.4a that in contrast to the hard-detection based STE of Sections 3.5.3 

and 3.5.4, the complexity of the iterative STE increases exponentially as a function of the number of eIR 

taps, i.e. with the channel-induced dispersion, which has two main reasons. Firstly, the hard-output STE 

evaluates the ML search tree only once, while the RML based STE has to evaluate the search tree (Nbit9J't + 
1) number of times in order to generate the soft information based on the Max-Log approximation [118]. 

Secondly, in the context of the iterative STE the receiver operates at a relatively low SNR, where we have 

observed in Sections 3.4.4 and 2.3.4 that the tree-search imposes a higher computational cost than that 

imposed at higher SNR values. Furthermore, it can be seen in Figure 5.4a that upon using soft DF the 
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Figure 5.4: Computational complexity in terms of real-valued additions plus multiplications imposed by 
the RML detector, which was recorded during simulations according to Table 3.4 for a single-user (2 x 2)
antenna MIMO system operating at Eb / No = 4 dB and for a STE characterized by NF = L, b. = L - 1 
and NB = L - 1 when feedback-aided detection was considered. 

associated computational cost is reduced compared to the STE dispensing with DF, although both algorithms 

have to explore identical search spaces. 

The graphs seen in Figure 5.4b quantify the complexity imposed by the RML STE as a function of the a 

priori information available at the detector, which was plotted for a single-user (2 x 2)-antenna MIMO 

system at EblNo = 4 dB, when communicating over a three-path equal-power MIMO channel and using a 

STE characterized by NF = 3, tJ. = 2 as well as NB = 2. Additionally, the complexity of the corresponding 

single-user (2 x 2)-antenna narrowband MIMO system is also illustrated. It can be observed that in contrast 

to the narrowband system, where the complexity is little influenced by the mutual information at the input 

of the detector, the complexity imposed by the RML aided SISO STE decreases upon increasing the mutual 

information associated with the a priori LLRs at the input of the STE. 

The performance of the RML-aided SISO STE is, again, evaluated using EXIT chart analysis, as already 

seen in Figures 5.2 and 5.3 for the MMSE and for the Bayesian SISO STE, respectively. In Figure 5.5a 

we have illustrated the EXIT function of a (2 x 2)-antenna single-user MIMO system using 16QAM. The 

channel was assumed to be a two-path equal-power transmission medium and the STE was characterized by 

Np = 2, tJ. = 1 as well as NB = 1. As a reference, the EXIT function associated with the corresponding 

narrowband system was also plotted. It can be observed that owing the effects of the frequency-selective 

channel, the EXIT function of the narrowband scenario is further tilted, which results in a higher number 

of iterations required for approaching the maximum achievable data-throughput that may be supported by 
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Figure 5.5: RML EXIT function for N = 2 receive AEs.Two-path equal-power independent Rayleigh 
fading and a STE characterized by NF = 2, /)" = 1 and NB = 1 when feedback-aided detection was 
considered. 

the detector. Furthermore, it can be observed that even though the multi path channel has a higher channel 

capacity, the RML detector is unable to exploit this fact. Quite the contrary, it actually supports a lower 

effective throughput, since the area under the EXIT function is decreased for transmission over a frequency

selective channel. 

The effects of rendering the system rank-deficient have been investigated in Figure 5.5b, where the EXIT 

function is shown for the same system as the one that was considered for Figure 5.5a, but now employing 

M = 4 and 4QAM. It can be observed that in this rank-deficient system, both the MMSE and the RML 

aided STE using soft OF perform similarly. Interestingly, the RML-aided detector performs worse than the 

MMSE STE for liet = 0, which is owing to the employment of the Max-Log approximation invoked by the 

RML detector. This phenomenon will be discussed in more detail in the next paragraph. It can also be seen 

that if hard OF rather than soft OF is used, the performance of the RML detector is substantially reduced 

and in fact, it becomes inferior to that of the MMSE STE. This observation highlights again the sensitivity 

of the hard OF-aided SISO STEs to error-propagation. 

It was mentioned in the previous paragraph that using the Max-Log approximation in the context of iterative 

STEs is associated with a significant performance degradation at low SNR. This performance degradation 

becomes more pronounced for channels, which are subject to a higher degree of dispersion. The reason 

for this becomes clear when recalling the assumption made for deriving the Max-Log detection scheme. 

When neglecting the influence of the a priori information and assuming Binary Phase Shift Keying (BPSK) 

modulation, it transpires from the Max-Log principle introduced in Equation (4.19) that the following ap-
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proximations are made: 

P(Xm = ±1Iy) L P(xU)ly) 
x(i)EX~ 

(5.12) 

where X~ is the set of hypothetically transmitted symbol vectors xU), with xm = ± 1 and the symbol ex: 

indicates 'proportional to'. An approximation of the a posteriori probability based on considering only 

the dominant hypothetical channel output states will hold only, if the effect of all other states becomes 

negligible, which is indeed the case at high SNR values. By contrast, at low SNR values the Max-Log ap-

proximation of Equation (5.12) will always be sub-optimum, since the a posteriori probabilities of all states 

are likely to be of the same order of magnitude. When moving from a narrowband scenario to a wideband 

scenario, the number of dispersed multi-user MIMO constellation points in the search-space increases and 

hence the hypothetical channel output states are less well separated, although the same noise power is ob

served. The Max-Log approximation therefore discards a higher number of points from the channel output 

space, namely those which lay close to the specific state associated with the maximum a posteriori proba

bility and thus is more likely to return exaggeratedly high, but potentially flawed LLR values. By contrast, 

even though the MMSE algorithm uses only a linear filter, it always takes into account the complete set of 

hypothetical channel output states. 

If we assume that similarly to all our previous examples, all transmit AEs are associated with identical 

transmit powers and the number of super-imposed MIMO signals is sufficiently high, the MMSE STE's 

output may accurately be approximated by the Gaussian distribution. If, however, not all transmit AEs 

belong to the same user, i.e. a multi-user scenario is considered, the power of the signals received form the 

different mobile transmitters might substantially differ. In this case the output of the MMSE detector may 

no longer be accurately approximated as being Gaussian [31]. 

In Figure 5.6 we therefore consider a two-user MIMO system, each user having two transmit AEs. The 

received power of user one was fixed to Ebl No = 4 dB, while the second users' power was varied from 4 to 

19 dB. The receiver also used a two-element antenna array, resulting in a rank -deficient scenario associated 

with a total of 9Jl: = 4 transmit AEs and N = 2 receive AEs. When the channel had two paths and was 

hence frequency-selective, the STE parameters were chosen to be Np = L -I,!::" = L -1 and NB = L-1. 

Soft DF was employed. Figure 5.6 shows the extrinsic information at the output of the STE computed on 

the basis of the LLR values of both users as a function of the higher-power user's received signal strength. 

Observe in Figure 5.6 that at a low received power the MMSE detector outperforms the RML detector. 
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When the power of the high-power user is increased, however, the RML detector substantially outperforms 

the MMSE based STE. When comparing the single-path RML STE scenario to the two-path RML STE, it 

can be seen that for the dispersive channel the RML aided STE gradually approaches the performance of the 

corresponding narrowband scenario. By contrast the MMSE STE is incapable of exploiting the additional 

diversity provided by the dispersive channel for a high power of the stronger user. 

5.2.4 Notes on Rank-Deficiency 

From our observations in Chapter 4 as well as from the results presented in this section, we surmise that the 

slope of the EXIT transfer function is closely related to the rank-deficiency of the system. In this context 

we refer to the system as being rank-deficient, if the number of rows in the channel matrix is smaller than 

the number of linearly independent columns, where the ratio of columns and rows is denoted as 

f=9Jt(L+Np-l) 
NNp . (5.13) 

From the slopes of the EXIT functions seen in Figure 5.5 and Figure 4.12 it might be concluded that in

creasing the number of bits per symbol also increases the slope of the EXIT chart. This however is only 

valid for the specific symbol mapping used for the hierarchical 16QAM constellation considered. Other 

mapping schemes such as Gray mapping may result in almost horizontal EXIT functions, as it will be 

shown in Section 5.3.4. Therefore the number of bits per symbol has not been included in the definition of 

rank-deficiency, despite the fact that when considering a real-valued binary-system the associated grade of 
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rank-deficiency would be increased. 

It can be observed from Equation (5.13) that when choosing the feed-forward order of the STE to be equal 

to the number of CIR taps: NF = L, then the grade of rank-deficiency of the system matrix is increased for 

an increasing number of CIR taps. When opting for NF = L, we can re-write Equation (5.13) as 

r _ 9J1 , 2L -1 
- N L' (5.14) 

which approaches 2ti for a high number of channel taps L. It can be seen from Equation (5.14) that by 

encountering a higher number of CIR taps, the system becomes more rank..;deficient and therefore renders 

the detection more challenging. 

5.2.5 Concluding Remarks 

In this section it was shown that the MMSE SISO equalizer constitutes a powerful iterative STE, while the 

Bayesian STE's practical applicability is limited by its complexity. The RML STE succeeds in outperform

ing the MMSE detector for the 4QAM cases considered only in near-far scenarios. The employment of the 

MMSE SISO detector in its present form is limited to 4QAM signals, while higher-order QAM can only be 

detected with the aid of the RML detector, which is however limited to employment in hierarchical 16QAM. 

Furthermore, we have seen that the RML algorithm has its limitations owing to the Max-Log approximation. 

It is therefore desirable to employ specifically designed algorithms for iterative STE, which allow us to 

approximate the Maximum A Posteriori (MAP) solution and do not rely on the Max-Log approximation, 

while remaining capable of detecting arbitrary QAM constellations for the sake of supporting different 

mapping schemes. Furthermore a desirable algorithm should have the capability of operating efficiently in 

large search spaces. An attractive set of such detection algorithms is constituted by the family of Markov 

Chain Monte Carlo based algorithms discussed in the next section. 

5.3 Markov Chain Monte Carlo Aided Detection 

In the previous section we have seen that the full Bayesian STE, as well as the RML aided STE impose a 

computational cost on the receiver, which may limit their employment in practical systems at the time of 

writing. In this section we therefore introduce a novel scheme referred to as the Markov Chain Monte Carlo 

(MCMC) aided detector, which is known for its capability of exploring large search spaces at a moderate 

computational cost. Ideally, the specific fraction of the ML search-space that will be explored should still 

contain the most likely set of solutions. 
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MCMC detection combines two different techniques. Firstly, it uses the technique of Monte Carlo inte

gration [69] in order to evaluate integrals over high-dimensional spaces. More explicitly, Monte Carlo 

integration aims for solving an integral over a high-dimensional space X on the basis of generating random 

samples oX of X and then approximating the integral of interest using these random samples. This method 

will be discussed in detail in Section 5.3.2. Originally, Monte Carlo integration was introduced in nuclear 

physics [142], where it was used in the early 1950s for calculating the properties of the newly discovered 

neutrons. Later it has found its way into signal-processing algorithms and since the early 1990s it has also 

been applied to wireless communications [69], 

The second term 'Markov chain' refers to the way the random samples oX necessary for applying Monte 

Carlo integration are generated. The main idea is to represent the observed process, in our case the detection 

of a symbol vector, as a Markov chain which in turn is used to draw samples from the space of interest [143]. 

Markov chain representation of detection processes will be discussed In Section 5.3.3. 

Over the last few years MCMC detection has been applied in several different communication problems, 

such as for example in [144], where a MCMC aided blind OFDM detector was proposed. In [145] MCMC

aided detection was considered in the context of Multi-Carrier CDMA. These seminal solutions have been 

further developed in [58,69], where MCMC has been applied to both MIMO systems as well as CDMA 

MUDs. Other applications include for example wideband beamforming [146]. In [57] MCMC-detectors 

were compared to other detection methods, such as Sphere Decoding (SD). The convergence behaviour of 

MCMC aided detection has been analyzed in [147]. 

5.3.1 Introduction 

In this section we will first introduce our basic system model and then discuss the underlying relationships 

between the different variables observed from a detection theory perspective. For notational simplicity we 

will consider only the detection o/narrowband MIMO systems in this section. The extension o/this solution 

to the STE system model may be analogously achieved as outlined in Section 5.1 for the MMSE, the Bayesian 

as well as the RML aided detectors. 

Under the assumption of perfect synchronization, the relation between the signal transmitted by the MS's 

AEs and the channel's output is described by an (N x M)-dimensional matrix H, where the (n, m )th el

ement of the matrix is given by hnm , while Nand M represent the number of receive and transmit AEs, 

respectively. The channel's output vector y(k) can now be expressed as 

y(k) = H(k)x(k) + 1](k), (5.15) 

where the column vector x(k) = [Xl (k)" .,' xM(k)f contains the symbols transmitted by the MS's AEs 
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and the associated AWGN is given by 1'/(k) = [1'/1 (k), ... ,1]N(k)f. In our forthcoming discourse the time 

index k is neglected, where this is possible without ambiguity. 

When detecting the transmitted signal x using an iterative receiver structure, the quantity required for gener

ating soft-information is the a posteriori probability of the transmitted symbol P(xlY, i\,iet) , conditioned on 

the received symbol vector of Equation (5.15) and the a priori LLR provided by the channel decoder given 

as i\, i et = [i\, i~i, . , . , i\, i~kNbitF. Let us now assume that the legitimate values of the transmitted symbol Xm 

are ±1. 

By using Bayes' theorem the a posteriori probability of the transmitted symbol vector x defined in the 

context of Equation (5.15) can be written as 

p (y lx, i\,iet) P (Xli\, i et) 

p (y I i\, iet) 

p (ylx) P (xli\,iet) 

p(y) 
(5.16) 

where the second line follows from the fact that the channel output y and the a priori LLRs A i et are inde

pendent random variables. The PDF of the channel output can be obtained with the aid of integration or 

summation: 

p(y) = L p(ylx(i)) = const, 
i(i)EX 

(5.17) 

where X represents the set of all hypothetically transmitted MIMO symbol vectors x(i) with 1 :::; i :::; 2M, 

given the 2M -ary composite signal of the M transmit AEs. Since p(y) is constant and does not depend on 

the transmitted symbol vector x, we can rewrite Equation (5.16) as 

where ex represents 'proportional to'. Finding an expression for the a posteriori probability of Equa

tion (5.16) was only the first step. In order to generate soft-information, the marginalization of P(xlY, i\,iet) 

given as P (xm = ± lly, i\, iet) is required. More explicitly, the marginalization of the MIMO symbol vector 

probability is defined as the integration over all legitimate MIMO symbol vectors, which can be expressed 

with the aid of their sums as 

P(Xm = ±l!y,Aiet) ex L p (ylx(i)) P (x (i) I Aiet) I 

i(i)EX,;; 

(5.18) 

where X~ is the set of all hypothetically transmitted symbol vectors x(i), where the rnth symbol is equal 
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±1. Alternatively, Equation (5.18) can also be written as 

P(Xm = ±1!y, A~et) ex 0 L p (ylXm = ±l,x~~) P (Xm = ±l/x~~IA~et) , (5.19) 
i(I)EX-m 

h (i) [v(i) v(i) v (i) v(i)J T ' ., II b I C h th b I w erex_m = xl ""'Xm-l'Xm+l""'XM Isavectorcontammga sym oS,exceptlort em sym 0 

and X-m is the set of hypothetically possible transmitted symbol vectors x~~. 

Finally, the quantities required in all equations given above, namely the conditional PDF of the received 

signal and the a priori probability can be written as 

(5.20) 

and 

TI P(x~) I;\~et) (5.21) 

(
11 det ) 

, • v I det exp Z/\.Am ( ( (0)) 1 ) TI 1 + exp(;\~~:n) exp s~gn Xm 2:;\A,m , 
(5.22) 

respectively. 

Upon careful reflection it may be observed that all equations given in this section correspond to a different 

notation of the Bayesian detector, which has already been discussed in Section 2.3.3. It can be seen that the 

computational cost associated with the calculation of the conditional probabilities is proportional the size of 

X-m, In the next subsection, we will show how the marginalization, which is in-fact, again, an integration 

over all possible MIMO symbol sequences relates to classic Monte Carlo integration. 

5.3.2 Monte Carlo Integration 

Calculating the a posteriori probability of a symbol according to Equation (5.19) might become computa

tionally costly, when the number of dimensions of X determined by the number of transmit AEs M is high, 

as seen in Section 2.3.3 for the full Bayesian detector. It is therefore desirable to calculate the a posteri

ori probability of a symbol based on a set of hypothetically transmitted symbols XMc, which has a lower 

number of elements than the full set X. 
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Example 5.1: Monte Carlo Integration 

For the sake of illustration, let us consider the hypothetically transmitted symbol vectors of 

a transmitter employing M = 3 AEs and using 8-level Pulse-Amplitude-Modulation (PAM) 

signals. The set of legitimate transmitted symbol sequences X is illustrated in Figure 5.7a, 

which has 23.3 = 512 elements. The full a posteriori or Bayesian detector has to evaluate the 

objective function of Equation (5.19) for all the 512 points seen in Figure 5.7a. By contrast 

rather than solving the objective function of Equation (5.19) for all these points, the rationale of 

Monte Carlo integration is to use only a small subset of these points defined as XMC , which is 

illustrated in Figure 5.7b and will be calculated using the so-called Gibbs-Sampler to be derived 

in Section 5.3.3. 

Assume now further that the legitimate MIMO symbols are transmitted over a real-valued ran

dom channel to a receiver employing N = 3 receive AEs, which results in the observation 

space illustrated in Figure 5.8a. For each of the transmitted bits, the full Bayesian detector 

would group these points into two subsets corresponding to a transmitted plus one indicated as 

squares as well as minus one indicated by triangles and calculate the a posteriori probability 

according to Equation (5.19). 

By contrast, a sphere decoding aided detector would search the received signal space around 

a noisy received symbol vector indicated by the cross in Figure 5.8a and attempt to find the 

channel output states associated with the transmitted symbol, which is marked by the box. It 

now becomes clear that Bayesian detection considers the distribution of all legitimate channel 

output states for calculating the a posteriori probability, while in its nature sphere decoding 

algorithms are designed to find the ML solution associated with a single constellation point. 

They are therefore particularly suited for generating hard-output. Only by modifying sphere 

decoding algorithms such as discussed in Section 4.4.3, they can be adapted to return soft

information. 

The MCMC aided detector only considers a subset of received channel output states illustrated 

in Figure 5.8b, which are associated with a subset of legitimate transmitted symbol vectors 

XMC' These samples naturally should be distributed around the specific channel output state, 

which is associated with the transmitted symbol indicated by the box. 

To elaborate a little further, Genetic Algorithms (GAs) are in this sense reminiscent of sphere 

decoding algorithms since they also aim for finding the ML solution and have to be specifically 

modified in order to produce soft-output [148]. 
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We will now introduce two different methods of determining the a posteriori probabilities of Equation (5.18) 

without considering all the 2M possible transmitted symbol vectors in X. 
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5.3.2.1 Empirical Average Calculation 

Let us commence by formulating a simple mathematical portrayal of the problem, which will then be related 

to our detection problem in the next section. A problem often considered in the context of Monte Carlo 

integration is the evaluation of the weighted mean of a function g(x) of the random variable x, given the 

weighting function f(x), which is formulated as [69] 

E [g(X)lf(x) = ixg(x)f(x)ax. (5.23) 

According to classic Monte Carlo integration [142] an estimate ofE [g(X) If(x) may be obtained by gradually 

constructing the empirical average 
1 

E [g(X)] ~ -N Lg(x), 
MC 

where NMC, is the number of random samples considered for the integration. 

Example 5.2: Monte Carlo Integration 

Consider the simple case, where for the weighting function we have f (x) = 1, while the func

tion to be integrated is g(x) = x and we would like to calculate the integral of g(x) weighted 

by f (x) = 1 and integrated between zero and one. According to Monte Carlo integration this 

can be carried out by generating random samples of g( x) = x and averaging them. For this 

example we would have to generate independent, uniformly distributed samples of g(x) = x 

between 0 as well as 1 and then average them. In a randomized trial, where we generated 100 

samples, we obtained: Jxg(x)f(x)ax = 0.50466, which is close to the true expected or aver

age value of 0.5. As anticipated, the more samples are used for approximating the integral, the 

more accurate the result becomes. 

(5.24) 

The problem of finding the integral or expected value of a given distribution can now be related to our MIMO 

detection problem, where we would like to calculate the a posteriori probability of the desired symbol Xm 

associated with transmit AE m. Let us first assume that we are able to generate NMC samples xU) from the 

distribution P(x/y, Aiet
) , where the samples form the set XMC. The samples in this set are not necessarily 

distinct. From the set X MC we can now construct the subset XMC,-m, which contains all NMc,-m elements 

x (i) , where the subscript -m indicates that the mth symbol associated with the mth transmit AE was removed. 

Furthermore, we may also construct the two subsets XJ"C,m and XMC,m' which contain all elements of XMC , 

where we have x~) = +1 and x~) = -1. More explicitly, these two subsets correspond to the mth transmit 

antennas bit being + 1 or -1. 
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By substituting P (XmIX~~'YIAiet) for g(x) as well as P (x~~ly,Aiet) for f(x) in Equation (5.23) we 

arrive at 

(5.25) 

(5.26) 

The desired probability P (xm = + lly, A iet) may then be approximated as follows 

(5.27) 

where 

P( 11 (i) 1 det) Xm = + X_m,Y,/l-A = (_ .(i) IA det) (Yl _ .(i) ) • 
1 + P Xm--l,x_m A P xm--l,x_m 

P(Xm=+ l,x~~ IA~et)p(YIXm =+ l,x~~) 

1 
(5.28) 

Equation (5.27) follows directly from Equation (5.26) by substituting Xm = +1 for Xm. Depending on 

the accuracy required for the a posteriori probability P(xm = +llx~~,y,Aiet) Equation (5.27) might be 

further simplified to 

(5.29) 

where 6 represents the delta-Dirac function [110]. The approach of Equation (5.27) averages the a posteriori 

probabilities conditioned on each sample of the set XMC,-m, while the approach of Equation (5.29) evaluates 

the desired a posteriori probability by counting how many symbol vectors in XMC are associated with 

x~) = + 1, which is computationally more attractiye. A graphical illustration of the two approaches will 

be presented in Example 5.3. Calculating the a posteriori probability according to Equation (5.27) was 

originally proposed in [58], while the approach of statistical inference represented by Equation (5.29) has 

been considered for example in [58,69,145]. 

5.3.2.2 Integration Based on Importance Sampling 

A different approach to the approximation used in Equation (5.27) and Equation (5.29) for Monte Carlo 

integration is to use importance sampling [69] in order to calculate the desired integral over a function g(x) 

given the weighting function f(x) as defined in Equation (5.23). In importance sampling each sample x 

drawn from the space X in order to calculate the desired integral is weighted with an importance weight 

fa (x). For a discrete space such as the legitimate combinations of the 2M -ary signals of the M transmit AEs 



5.3.2. Monte Carlo Integration 186 

this yields [S8] 

'" 1 f(x) 
E [g(X)]!(x) '" NMc L fa(x)g(x). (S.30) 

In the specific case, when fa (x) is equal to f(x), Monte Carlo integration based on importance sampling 

and integration based on the empirical averaging method become identical, as it can be seen by comparing 

Equation (S.24) and Equation (5.30). The calculation of the optimum importance weight function fa is 

challenging to calculate and involves itself an integration over the complete decision space [S8]. Therefore 

often a more practical approximation is used [S8] 

\' f(x) ( ) 
l..J fa(x)g x 

E [g(X)]f(x) ~ I: M 
fa(x) 

If the weighting function fa is assumed to obey a uniform distribution, we arrive at [S8] 

E [g(X)] '" I:f(x)g(x) 
f(x) "-' I:f(x) 

(S.31) 

(S.32) 

When applied to our MIMO detection problem, where we want to weight the samples x(i) E XMc, a uniform 

weighting function fa (x(i)) implies that the vectors x(i), which make a significant contribution to the a 

posteriori probability have a discrete uniform distribution over the space X. The consideration of a uniform 

distribution has been proposed in [58], where it was proposed furthermore that all duplicate l entries from 

the set XMc should be removed before evaluating the a posteriori information. Removing double entries 

will ensure that the samples remain approximately uniformly distributed over X. It will become clear in 

Section 5.3.2.3 that this assumption yields an importance sampling based integration whose formulation is 

identical to that of the full Bayesian detector discussed in Section 2.3.3, where the set of all hypothetically 

transmitted 2M -ary symbol vectors X is replaced by the reduced-size sampled set XMc. 

When applied to our detection problem, the assumption of an underlying discrete uniform distribution yields 

\' P( _ Ilv(i) ldet)p(v(i) I ldet) 
l..J.(i) EX Xm - + X_m,Y,fl.A X_mY,fl.A 

P(x = + 1'" A det) ~ x_m MC,-m . 
m If' A v (I) det ' 

I:.(i) EX P(X-mlY,AA) 
x_m MC,-m 

(S.33) 

where P(xm = +llx~~/y, Aiet
) is a posteriori probability conditioned on the sample x~~, i.e. g(x) of 

Equation (S.32) and P(x~~IYI Aiet) is the weighting function associated with x~~, i.e. f(x) of Equa

tion (5.32). 

1 So far we have not stated how the set XMC is generated. Depending on the particular method chosen for generating XMC 
duplicate entries might occur as it will be shown in Section 5.3.3. 



5.3.2. Monte Carlo Integration 187 

5.3.2.3 Summary 

In Section 5.3.2.1 as well as Section 5.3.2.2 we have discussed three different ways of calculating the a 

posteriori probability of an M-antenna transmitted symbol, given a set of samples XMc and therefore three 

different ways of calculating the desired LLR values. These may be summarized as follows. 

• Using the empirical average according to Equation (5.29) yields 

(5.34) 

• Using the empirical average calculation approach described by Equation (5.27) leads to 

(5.35) 

• Uniform sampling based on Equation (5.33) leads to 

d t 
(

LXMC_ P(xm = +llx~~'Y'Aiet)p(x~~IY'Aiet)) A e = log __ ~,~m~ ________ ~ ________ ~~ ____ _ 

P,m \' P(x = -llx(i) Y Adet)P(x(i) I" Adet) . 
L..tXMC,-m m -m' ,A -m if' A 

(5.36) 

When taking into account that we can write2 

(v(i) IA det) P(v(i) IA det) (Ylv(i) A det) 
P(x(i) I" A det) = P X_m,Y A = X-m A P X_m' A (5.37) 

-mif' A p(YIAiet) p(YIAiet ) 

and relating the Bayes' theorem of Equation (5.16) to the transmission of ±l, we have 

Finally, Equation (5.36) may be expressed as 

(5.39) 

This formulation is identical to the full Bayesian detector of Equation (4.16), with the only differ

ence that the M-ary set X of the Bayesian detector, which contains all possible transmitted symbol 

sequences of the M transmit AEs, has been replaced by the set XMc. 

2Note that we can write p(alb) = p(a, b)/p(b). 
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Figure 5.9: Illustration of the empirical average and the importance sampling approach to LLR value cal
culation on the basis of a given set of samples XMC . The graphs illustrated calculated the summation terms 
on the basis of the same set of samples XMC • which was recoded during a simulation of a (4 x 4)-antenna 
narrowband MIMO system employing 16QAM signals and operating at Eb / No = 6 dB. 

188 



5.3.2. Monte Carlo Integration 

Example 5.3: LLR Calculation Methods 

In order to illustrate the characteristics of the three different methods of evaluating the a poste

riori LLR values, we consider a (4 x 4)-antenna-aided narrowband MIMO system transmitting 

16QAM signals and operating at Eb/NO = 6 dB. During a randomized run a set XMC was 

generated, which was then used for evaluating the sums seen in Equations (S.34)-(S.39). The 

numerator and the denominator of Equation (S.34) are illustrated in Figure S.9a for the exam

ple considered. The different shades in the stacked bar graph correspond to a specific term of 

Equation (S.34) or equivalently to a single sample of XMC . It can be observed from Figure S.9a 

that each sample of XMc is given the same weight, i.e all fields in the bar graph have the same 

area. Using the values of Figure 5.9a, the LLR value of the associated transmitted bit can be 

calculated using Equation (S.34) as 

ldet 1 (0.67) I~P,m = og 0.33 = 0.71. (S.40) 

If the weighted averaging method of Equation (S.3S) rather than Equation (S.34) is considered, 

then it can be seen from Figure S.9b that the samples of XMC no longer occupy the same area 

since each of them was assigned a different weight. When calculating the LLR value according 

to Equation (S.3S), while using the values of Figure S.9b results in 

ldet 1 (0.62) I~P,m = og 0.38 = 0.49. (S.41) 

The corresponding graph recorded when considering the importance sampling method of Equa

tion (S.39) is illustrated in Figure S.9c. It can be seen that in contrast to the averaging approaches 

of Figures S.9a and S.9b, the different samples are weighted even stronger according to their 

importance. Calculating the LLR value according to Equation (S.39) while using the values of 

Figure S.9c results in 

1 det 1 (0.59) I~p,m = og 0.41 = 0.36. (S.42) 

It can be seen from this simple randomized run how differently the three approaches weight the 

different samples provided, in order to obtain the resultant LLR values. The exact effect of the 

different weighting techniques on the achievable performance will be studied in Section 5.3.4. 
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Given a set XMC and Equations (5.34)-(5.39), we are now ready to obtain the LLR values. In the next 

section, it will be shown how the desired set XMC can be generated. 
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$0 : [+1 +1 +1]T 
$1 : [+1 +1 -IF 
$2 : [+1 -1 +1]T 
$3 : [+1 -1 -IF 
$4 : [-1 +1 +IF 
$5 : [-1 +1 -IF 
$6 : [-1 -1 +1]T 
$7 : [--1 - 1 - I]T 

Figure 5.10: Markov chain describing a detection process, when a single bit can be changed. 

5.3.3 Markov Chain Representation and Gibbs-Sampler 

In this section we will show how the detection of a 2M -ary MIMO signal can be represented with the aid 

of a Markov chain and how this property can be exploited by the receiver in order to generate a set of 

samples XMC,-m defined in the context of Equation (5.19), which asymptotically represents the distribution 

p (XmIX~~,y,Aiet). 

It is important to note that the Markov chain is not used for representing the evolution of the signal vector x 

over time. In other words, the Markov chain is not employed for the sake of modeling the relation between 

a symbol vector x(k) transmitted at time k and the symbol vector x(k + 1) transmitted at time k + 1. It is 

rather used for generating the legitimate hypothetical solutions x(i) for a specific transmitted symbol vector 

x(k) at a specific sampling instant k. Generating the legitimate hypothetically transmitted samples with the 

aid of a Markov chain must not therefore be interpreted as an evolution in time, but rather as efficiently 

exploring the search space of interest X and generating a reduced-size subspace XMC approximating the 

full-size search-space appropriately. 

Let us now first consider a simple (N x M) = (3 x 3)-antenna aided narrowband MIMO system and 

BPSK modulated signals. For this system the legitimate hypothetically transmitted symbol vector x may 

assume Ns = 23 = 8 different values, which represent the 8 states of our Markov chain. Furthermore, in 

order to keep the algorithm simple we assume that only one symbol xm of a hypothetical transmitted symbol 

vector x can be changed at a time.3 Then the Markov chain describing our detection problem is portrayed in 

Figure 5.10, where 4 different transitions are emerging from each state. 

The Markov chain shown in Figure 5.10 has the following properties: 

• Since the transition probabilities between different states are jointly determined by the channel matrix 

H of the system as well as the received signal vector and since we assume the channel matrix to be 

3In this treatise we assume that only one bit is changed at a time, which imposes the lowest computational cost. 
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time-invariant over a least one symbol interval, the state transition probabilities do not change during 

a single symbol interval either . 

., There is a non-zero probability that at some time in the future the Markov chain will be in state j, 

given that the Markov chain originally emerged from state i. In other words, it is possible to reach 

any state of the Markov chain from any state . 

., Aperiodicity: A Markov chain is referred to as aperiodic, if it is possible to return to state i in any 

number of steps. If it would be possible to return to a state i only in multiples of k, then the state 

would be referred to as being periodic with a period of k. 

Since the Markov chain representing the MIMO detection problem satisfies the above three properties, 

it converges to a stationary distribution [145]. The word 'stationary' in this context iIPplies that when 

generating samples using the above Markov chain model, the resultant hypothetical solutions to the detection 

problem, which are represented by the states of the Markov chain are distributed according to a stationary 

distribution. This property will be made more explicit in the context of Example 5.4 of this section. 

Having discussed the structure of the Markov chain, we now have to quantify the transition probabilities for 

the sake of its complete characterization. Let us therefore denote the probability of encountering state i of 

the Markov chain corresponding to a legitimate transmit symbol vector as 

(5.43) 

which is conditioned on both the channel outputy as well as on the a priori LLR ,liet . Similarly, the Markov 

chain transition probability between state i and j or, equivalently, between the corresponding MIMO symbols 

can then be expressed as 

(5.44) 

where the proportionality factor can be obtained by using the fact that Lj 'TCij = 1. 

By comparing Equation (5.44) and Equation (5.43), it may be readily seen that we can write 

(5.45) 

A Markov chain obeying this property may be referred to as a reversible Markov chain [149]. It was 

shown for example in [149] that the reversible distribution Pi is also the stationary distribution of state 

i. In the following example, we will show why it is important that the Markov chain converges to its 

stationary distribution. Again, evolving one state of the Markov chain to another implies exploring the 

legitimate transmit symbol combinations of the search-space rather than an evolution in time from the kth to 
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the (k + l)th MIMO symbol. 

Example 5.4: Stationary Distribution of a Markov Chain 

Consider a real-valued (N x M) = (3 x 3) MIMO system operating at a noise level charac

terized by 2(T~ = 1 and having a system equation given as 

y 

[ 

-0.97] 
+0.18 
-0.69 

[ 

-0.43 
+0.22 
-0.39 

H 

-0.65 
-0.69 
-0.61 

+0.48] 
-0.61 
+0.87 

x + '1 

+ [ 

+0.39] 
-0.25 . 
+0.10 

(5.46) 

Since the M-bit MIMO symbols are assumed to be independent, the probability of each Markov 

chain state for the observed system can be directly calculated using Equations (5.19)-(5.23), by 

considering all eight legitimate hypothetically transmitted M-bit symbol sequences x(i) as well 

as the parameters provided in Equation (5.46). Let us assume that this yields the eight states' 

stationary distributions of 

po Pl P2 P3 P4 ps P6 P7 
(5.47) 

~O.O ~O.O ~ 0.0 0.69 ~ 0.0 ~ 0.0 ~ 0.0 0.31 

It is worth noting that all states have a non-zero probability, but some of them may be poten-

tially infinitesimally low at the current noise variance of 2(T~ = 1 and the observed system of 

Equation (5.46). If we now calculate the Markov chains transition matrix for the same example 

according to Equation (5.44) for 2(T~ = 1, we arrive at 

0.50 0.06 0.44 0.0 0.0 0.0 0.0 0.0 
0.77 0.08 0.0 0.0 0.0 0.14 0.0 0.0 
0.01 0.0 0.0 0.99 0.0 0.0 0.0 0.0 

I1= 
0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.31 

(5.48) 
0.01 0.0 0.0 0.99 0.0 0.01 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.01. 0.0 0.99 
0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.99 
0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.31 

For a reversible Markov Chain, the resultant stationary distribution may also be obtained as [149] 

(5.49) 

where lNs is a column vector containing Ns number of unity values and 7T is a row vector 

hosting the stationary distributions. When calculating I110 for z = 10, i.e after the 10th Markov 
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chain state transition obeying the matrix of Equation (5.48), we arrive at 

0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.31 

0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.31 

0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.31 

rrlD = 
0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.31 

(5.50) 
0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.31 

0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.31 
0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.31 
0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.31 

where we can see that the rows of rrlD approach the stationary distribution rr. For this example 

the Markov chain's state transitions converges rapidly to the true stationary distribution and the 

corresponding Markov state-machine has already forgotten its initial state after z = 10 Markov 

chain transitions carried out according to the state-transition matrix of Equation (5.48). 

Recall that our final goal is that of generating a reduced set of potentially transmitted MIMO symbols, 

which are considered to be samples from a high-dimensional MIMO decision space obeying the distribu

tion P (xm IY, A iet) in order to enable us to perform Monte Carlo integration. We aim for generating these 

reduced number of samples representing the potentially transmitted MIMO symbols based on a stationary 

Markov chain. If we generate our samples or MIMO symbols according to the stationary Markov chain, 

the samples obtained after a sufficiently high number of Markov chain transitions will ultimately be those 

of the stationary distribution, regardless of the initial value of Xinit. The most popular algorithm, which is 

based on generating a reduced set of samples according to stationary Markov Chain is the so-called Gibbs

Sampler [69], which may be viewed as a simplified version of the Metropolis-Hastings algorithm [69] and 

has become popular owing to its implementational simplicity [150]. The algorithm can be summarized with 

the aid of its pseudo code as follows [69]. 

Algorithm 5.1: Gibbs-Sampler [69] 

Initialize x-Nburn randomly 

for i = -Nbum to N MC do 

draw sample from P(xIIX~l1),y,Aiet); 

draw sample from P(x IX (i) y Adet). 2 -·2" A , 

draw sample from P(xMlx~L,y,Aiet); 

if i > a add sample x(i) to XMC ; 

i++ 

end, 

where Nbum is the so-called burn-in period and NMc is the number of Markov chain samples generated, 
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which in our context correspond to the reduced subset of MIMO symbols to be considered by the detector. 

Note that in order to generate a single sample xU), M Markov chain transitions are required each of which 

is associated with a single bit change and finally yields an M-ary MIMO symbol. The employment of a 

bum-in period is generally required, since the first samples of the Markov chain will depend on the initial 

state of the corresponding state-machine of Figure 5.10 and therefore they will be less characteristic of the 

desired stationary distribution. In the following example, we will show with the aid of a simple example 

how the Gibbs-Sampler may be employed for MIMO detection. 

Example 5.5: Gibbs-Sampler 

Let us consider the same system as in Example 5.4, where - again - it was assumed that no a 

priori information is available at the detector and therefore all bits are equiprobable. Using the 

Gibbs-Sampler of Algorithm c5.1 we are able to generate the desired samples as follows: 

1. Initialize x randomly: Xinit = [-1 -1 + IF according to line 1 of Algorithm 5.1; 

2. Generate new sample according to the loop in Algorithm 5.1 

p(yjx = [+1 -1 + IF) 0: exp (_llv-H[+1 -;1 +WW) = 2.35 .10-3 
2ern 

p(yjx = [-1 -1 + IF) 0: exp (_llv-H[-;~l +1PW) = 0.07.10-7 

P(X1 = +lj[x2 X3] = [-1 + l],y,Ai
et

) = l+ P(YIX=I!l -1 +1JT) = 0.99; 
p(Ylx=I+1 -1 +1JT 

Generate a random variable S, which is uniformly distributed within [O,lJ: S = 0.78. 

Since S = 0.78 < P(XI = +lj[x2 X3J = [-1 + 1]) = 0.99, set Xl = +1 . 

• Draw X2 from P(X2jx_2,y,Aiet ) = P(X2j[X1 X3] = [+1 + l],y,Aiet
): 

p(yjx = [+1 + 1 + IF) = 2.36 .10-3 

p(yjx = [+1 -1 + IF) = 2.02 .10-3 

P(X2 = +lj[X1 X3J = [+1 + 1J,y,Aiet
) = 0.54 

Generate a random variable S, which is uniformly distributed within [O,lJ: S = 0.11. 

Since S = 0.11 < P(X2 = +lj[X1 X3] = [+1 + l],y,Aiet
) = 0.54, set X2 = +1. 

• Draw Sample from P(X3jx_3,y,Aiet ) = P(X3j[Xl X2] = [+1 + l],y,Aiet
) 

p(yjx = [+1 + 1 + IF) = 2.35.10-3 

p(yjx = [+1 + 1 -IF) = 2.58.10-4 

P(X3 = +lj[X1 X2J = [+1 + 1J,y,Aiet
) = 0.90 
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Generate a random variable~, which is uniformly distributed within [0, IJ: ~ = 0.30. 

Since ~ = 0.30 < P(X3 = +11[x1 X2J = [+1 + IJ,y,A.iet
) = 0.90, set X3 = +1. 

3. Add sample x = [+1 + 1 + IV to XMC 

4. Goto 2 and generate new sample 

Running the Gibbs-Sampler of Algorithm 5.1 through several state-transitions of the Markov 

chain of Figure 5.10 the following sequence of states is obtained 

-1 

-1 

+1 

+1 

+1 

+1 

.50 

+1 

+1 

+1 

+1 

-1 

-1 

+1 

-1 

-1 

+1 

-1 

-1 

-1 

-1 

-1 

+1 

-1 

-1 

+1 

-1 

-1 

where each column corresponds to a single run through the loop of Algorithm 5.1 and each 

arrow 1 to a single state-transition of the Gibbs-Sampler. A new iteration of the Gibbs sampler 

is indicated by the horizontal arrows. The first state .56, indicates the initial state as used above, 

while the states in the last row within the boxes are the states of the Markov chain at the end of 

each iteration of the Gibbs-Sampler. Furthermore, the 3-bit symbol sequences given below the 

state transitions correspond to the boxed states of the Markov chain of Figure 5.10. 

Starting from the initial state .56 of Figure 5.10, the Gibbs-Sampler of Algorithm 5.1 changes 

the first symbol to + 1 and therefore moves to state .52. The second bit is also changed, resulting 

in state .50, while the third remains unchanged during the first iteration of the Gibbs-Sampler. 

Therefore we obtain the first sample, which is x(l) = [+1 + 1 + 1 J associated with state 

.50. During the second iteration, the Gibbs-Sampler remains in state .50, while during the third 

iteration, only the first bit remains unchanged. The Markov chain then traverses through the 

state .52 to state .53, which is the state of the chain at the end of the third iteration of the Gibbs

Sampler. From there onwards, it can be observed that the Gibbs-Sampler only moves between 

state .53 and .57. These are exactly the two states associated with the highest probability, as 

already shown in Example 5.4. Based on the samples obtained with the aid of the Gibbs

Sampler of Algorithm 5.1, the a posteriori LLRs might be calculated choosing any of the three 
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methods summarized in Equations (5.34)-(5.34) of Section 5.3.2.3. 

A common problem when using a Gibbs-Sampler, which is generally observed at high SNR, is that it might 

converge prematurely to a state having a high probability P(Si), where it might get trapped without ex

ploring the entire solution space of interest. In order to avoid this problem, which is often also referred to 

as 'stalling " different methods have been proposed [69,147]. The most powerful ones were shown to be 

the so-called parallel Gibbs-Samplers [69]. When using parallel Gibbs-Samplers [69], all samples obtained 

from the different parallel samplers are used for evaluating the a posteriori probability. Other methods 

which might be considered are for example simulated annealing [69], which can be implemented by consid

ering an increased noise variance at the beginning of the sampling process in order to render the transition 

probabilities to distant solutions more similar to those of the more close solutions. The noise variance is 

then gradually reduced to the true noise variance, which might be viewed 'as cooling' down the system 

employing simulated annealing. 

In the above examples and derivations only BPSK modulated signals were considered. The extension to 

complex-valued signals might readily be achieved in two different ways: 

• If the mapping of the bits to the modulated symbols can be represented as a linear operation, such as 

for example used in the construction of 4QAM or hierarchical 16QAM, the real-valued binary system 

model introduced in Section 2.1.1.2 may be employed. 

• If the above-mentioned mapping cannot be represented as a linear operation, the extension to higher

order modulation schemes can be achieved in analogy to the full Bayesian detector discussed in Sec

tion 2.3.3. 

5.3.4 Simulation Results for Narrowband :MIMO Channels 

First we compare the three different methods of calculating the a posteriori LLRs at the output of the detec

tor, namely the empirical averaging method of Equation (5.34), the averaging method of Equation (5.35) as 

well as the uniform sampling approach of Equation (5.36), as detailed in Section 5.3.2.3. 

The system's schematic was depicted in Figure 4.1. The mutual information provided at the detector's output 

will be plotted as a function of the number of samples NMC for different bum-in periods. For the results 

shown in Figure 5.11 an (8 x 8) MIMO system using 4QAM signals and operating at Eb/NO = 4 dB was 

considered. The narrowband channel was assumed to obey independent, uncorrelated Rayleigh fading and 

was perfectly known by the receiver. 

The mutual information at the input of the detector was I~ec = O. When considering the empirical averaging 

method of Equation (5.34), it can be seen that there is no further improvement, when increasing the initial 
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Figure 5.11: Mutual information provided at the detector's output for I~ec = 0 as a function of the num
ber of samples NMc for different burn-in periods and for the three different approaches discussed in Sec
tion 5.3.2.3 for calculating the a posteriori LLRs. The system considered was a (8 x 8)-antenna MIMO 
system using 4QAM modulation operating at Eb I No = 4 dB and the channel was assumed to be indepen
dently, uncorrelated Rayleigh fading. A single Markov chain was used for drawing the samples from the 
target distribution. 

burn-in period from 5 to 10 samples. The same can be observed for the uniform sampling method of 

Equation (5.36) as well as for the averaging method of Equation (5.35). When comparing the three different 

methods, it can be seen that uniform sampling results in the highest mutual information at the output of 

the MCMC detector, but all three techniques appear to reach a steady state after 50 state-transitions of the 

Gibbs-Sampler of Algorithm 5.1. 

In the context of the same system, we performed simulations also for the MMSE SISO detector, which 

achieved a mutual information of I~ec = 0.54 at the output of the detector. Similarly, the RML detector 

of Section 4.4.3 exhibits I~ec = 0.57. Note that the mutual information of the MCMC based detector 

was recorded, when considering only 50 samples or legitimate symbols carefully selected from the total of 

Ns = 48 = 65 . 536 samples in the ML search-space. The MCMC detector performs as well as the RML 

detector and outperforms the MMSE based detector by exhibiting a mutual information of I~ec = 0.57, 

when the uniform sampling approach of Equation (5.39) is considered. 

Let us now consider a (4 x 4) narrowband MIMO system and 16-QAM signals as well as independent 

uncorrelated fading channels. The detector employed was a MCMC aided scheme, which evaluated the a 

posteriori LLRs based on the uniform sampling approach of Equation (5.39), The bum-in period was set to 

zero, while the number of parallel Gibbs-Samplers employed was 10. Each Gibbs-Sampler was initialized 

randomly and each generated 10 samples. Thus a total of 100 hypothetically transmitted MIMO symbols 

were used for evaluating the a posteriori LLR. This is only a small fraction of the ML search-space hosting 
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Figure 5.12: EXIT chart of a (4 x 4) MIMO system using a MCMC detector based on uniform sampling 
with 10 parallel Markov chains each running 10 iterations. The results were obtained for hierarchical and 
Gray mapped 16-QAM modulated signals at Eb/NO = 6 dB. 

a total of Ns = 164 = 65 536 legitimate hypothetically transmitted MIMO symbols. 
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In Figure 5.12 the resultant EXIT characteristic is shown for both hierarchical 16 QAM of Figure 2.2b as 

well as for Gray mapping based 16QAM [115,151] at Ebl No = 6 dB. It can be observed in Figure 5.12 that 

the area under both curves is identical and therefore both mapping schemes support the same throughput. 

However, the EXIT function associated with Gray mapping is significantly more flat and thus it is potentially 

expected to attain a more substantial BER improvement for a given number of iterations between the detector 

and a channel code as illustrated in Figure 4.1. The EXIT curve of the hierarchically mapped 16-QAM 

system is identical to that using the Max-Log detector of Figure 4.18. 

In Figure 5.13 the achievable BER versus Eb I No performance is illustrated for the same system using Gray 

mapping as well as a SCC Code using a rate-l convolutional component code characterized by the octally 

represented generator g = [3 1] and a RSC code with a generator polynomial of g = [6 5]. The SCC 

code used Ninner = 10 inner iterations. Additionally, the achievable capacity bound is also provided in 

Figure 5.12. It can be observed that after Niter = 6 iterations between the SCC Code and the MCMC aided 

detector, the attainable performance approaches the channel capacity within less than 2 dB. 

In conclusion of this subsection, we have shown that a MCMC aided detector is capable of efficiently 

detecting MIMO signals by searching the ML search-space to a small fraction of it. In the next section its 

applicability to SC STE will be investigated and its detailed complexity analysis is provided. 
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Figure 5.13: BER versus Eb/NO performance of a (4 x 4) MIMO system for a different number of it
erations Nit using a MCMC detector based on importance sampling with 10 parallel Markov chains each 
running generating 10 samples. The channel code employed was a serial concatenation of a rate-l code with 
polynomial g = [31 J and a RSC code with a generator polynomial in octal form g = [65]. The serially 
concatenated convolutional code used 10 inner iterations. 
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Similar to the RML algorithm of Section 5.2.3, where we have characterized the computational cost imposed 

in terms of the real-valued operations required for the evaluation of the search tree, here we will characterize 

the complexity imposed by the MCMC-aided detector quantified by the number of operations required 

for the set of candidates XMC picked by the MCMC-aided detector from the entire search-space X. For 

this evaluation we directly consider the multi-user STE system model of Equation (5.3), rather than the 

narrowband MIMO model of Equation (5.15) used for the derivation of the MCMC detector. Again, the 

extension from narrowband to wideband detection maybe achieved by appropriately replacing the system 

parameters of Table 5.1, which were applied for the MMSE, the Bayesian as well as the RML detectors in 

Section 5.2. 

Gibbs-Sampler Initialization: When initializing a single chain of the parallel Gibbs-Sampler, we have to 

calculate 

(5.51) 

During our complexity evaluation to be discussed in the forthcoming paragraphs only the operations in

volving non-zero elements are considered. In total, the super-matrix H of Equation (5.3) hosts NFNV:m 

complex-valued elements. 

The initialization of the Gibbs-Sampler commences with the calculation of the channel output Yinit associ

ated with the first randomly generated hypothetically transmitted signal vector Xinit. which requires a total of 

NFNV:m complex-valued multiplications as well as NNF(!mL -1) complex-valued additions. Addition

ally, the squared Euclidean distance of the initial hypothetical channel output state Yinit with respect to the 
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received channel output state y additionally imposes a cost of (2NFN -1) complex-valued additions and 

NFN complex-valued multiplications. The resultant computational cost associated with the initialization of 

the Gibbs-Sampler is therefore given as: 

• Multiplications: NFNLfm + NFN ~ NNFLfm; 

• Additions: NNF(Lfm -1) + 2NFN -1 ~ NNFLfm. 

This corresponds to approximately 9 NNF Lfm number of real-valued operations. 

A Single Gibbs-Sampler Iteration: When employing the Gibbs-Sampler of Algorithm 5.2, a single bit of 

a given hypothetically transmitted MIMO symbol vector xa is changed in order to obtain a new vector Xb. 

Let us assume that the zth bit, which is mapped to the lh symbol xa" is considered for change and results in 

a new hypothetical MIMO symbol vector xb. The operation of calculating the hypothetical channel output 

state Yb can then be expressed as 

9Jt(NF+L-l) 

L hmXb,m 
m=l 

9Jt(NF+L-l) 

h,Xb" + L hmXb,m 
m=l,m~, 

Ya - h,xa" +h,Xb", 
'-v-" 
known 

(5.52) 

where Ya is the channel output state associated with xa. The third line follows from the fact that only the lh 

symbol of xa is modified. When considering the fact that h, has a maximum of NL non-zero elements, the 

complexity associated with updating the hypothetical channel output states is given by NL complex-valued 

multiplications as well 3NL complex-valued additions. Let us now define the set, which contains all the 

indices of the non-zero elements of h, as I, which has a maximum cardinality of NL and furthermore, 

Ya,] = h;xa,] = [Ya,l,"" Ya,NFN]T. The squared Euclidean distance calculation can then be expressed as 

NNF 

L !Yi -Yb,d2 

i=l 
NNF 

L !Yi - Ya,il2 - L !Yi - Ya,i!2 + L !Yi _. Yb,i!2, 
i=l iEZ'---v---" iEZ 

, 'V' ' known 

(5.53) 

known 

which imposes a computational cost of 3NL + 1 complex-valued additions as well as NL complex-valued 

multiplications. 

Given the squared Euclidean distances, the probability required for generating a new sample in Algo-
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rithm 5.1 is given as 

(5.54) 

which imposes a further three real-valued operations plus one Jacobian logarithmic [118] or jaclog4 as well 

one exp operation. This cost will be neglected in our further discussion since it is negligible compared 

to the other operations. Finally, according to Equations (5.52) and (5.53), updating a single bit imposes a 

computational cost of 

• Multiplications: 2NL; 

• Additions: 6NL. 

Since during the course of a single iteration of the Gibbs-Sampler a total of A = Nbit9J1 (Np + L - 1) bits 

have to be updated, the computational cost imposed by iterating the Gibbs-Sampler once is given as: 

• Multiplications: 2NLNbit9J1(Np + L - 1); 

• Additions: 6NLNbit9J1(Np + L -1). 

Translating this into real-valued operations by considering one complex-valued addition being equal two 

real-valued additions and one complex-valued mUltiplication being equal seven real-valued additions plus 

multiplications, one iteration of the Gibbs-Sampler imposes a cost of 26NLNbit9J1:(Np + L -1) real-valued 

operations. 

Note that the complexity imposed by the calculation of the a priori probability of a single sample only 

involves a low number of operations and contributes little to the total computational cost associated with the 

Gibbs-Sampler. It has therefore not been included in the presented complexity evaluation. 

Total Computational Cost: Considering an MCMC aided detector, which uses Np parallel Gibbs-Samplers, 

each generating NMc samples, the computational cost expressed in terms of real-valued additions and mul

tiplications, including the initialization of the Gibbs-Sampler, can be summarized as 

(5.55) 

It can be seen that the only component that does not contribute linearly to the complexity is the channel 

dispersion, which results in a squared contribution to the computational complexity. 
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Figure 5.14: BER versus Eb / No performance after 10 turbo iterations between the STE and the SCC code 
for 4QA~v1 modulated which were transmitted over independently fading Rayleigh channels characterized 
by an L-path equal-power CIR. The STE was characterized by N = 2, NF = L - 1 and soft DF. The 
interleaver-Iength was chosen to 32 000 bits and the number of samples drawn by one Markov chain of the 
detector was set to NMC = 10. The channel code used for L = 1 was SCC Code 1 of Table 4.4, while for 
L = 2 we employed SCC Code 2 of Table 4.4. The number of inner iterations was set to 10. 
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The first system considered in Figure 5.14 transmitted 4QAM signals over uncorrelated Rayleigh fading 

channels characterized by an L-path equal-power CIR. The STE was characterized by NF = L - 1 and 

benefited from soft DF. The number of infonnation bits was chosen to be 32000 bits and the number of 

samples drawn by a single Markov chain of the detector was set to NMc = 10. The channel code used for 

L = 1 was the SCC Code 1 of Table 4.4, while for L = 2 we employed the SCC Code 2 of Table 4.4. The 

number of inner iterations of the SCC Code was set to Ninner = 10. 

The BER versus Eb / No perfonnance of this system, when considering a single-user MIMO system having 

M = 4 transmit and N = 4 receive AEs is depicted in Figure 5.14a. If the channel is assumed to be 

frequency fiat, it can be seen that the MCMC detector outperfonns the MMSE detector by approximately 

0.4 dB. For an equal-power two-path channel this gap narrows to approximately 0.2 dB. 

A similar trend can be observed, if the system is rendered rank-deficient. We have therefore plotted in 

Figure 5.14b the average BER versus Eb/NO perfonnance for a two-user system, where both users' signals 

were received at an identical average power. The BS employed N = 2 receive AEs. It can be seen from 

Figure 5.14b that for the narrowband system the MCMC detector clearly outperfonns the MMSE-aided 

STE, while for the dispersive channel the corresponding gap narrows again to approximately 0.2 dB. 

It becomes clear from Figure 5.14 that for 4QAM signals the additional complexity invested in the detection 

4jaclog(a,b) = log(exp(a) +exp(b)) 
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Figure 5.15: BER versus Ebl No performance for a MIMO system employing M = 4 transmit AEs and 
N = 4 receive AEs. The signals were 16QAM modulated using Gray mapping and transmitted over L-path 
equal power independent Rayleigh fading channels. If the channel was dispersive the BS employed a STE 
characterized by NF = L, D. = L - 1 and NB = L - 1 while benefiting from soft DE The illustrated 
BER performance was obtained for an interleaver length of 48 000 bits, after 10 turbo iterations between a 
half-rate turbo code and the MCMC detector. The exact channel code parameters for SCC 1 as well as SCC 
2 can be found in Table 4.4. The MCMC detector employed Np=lO parallel Markov chains. 
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of the MIMO signals by using a MCMC aided rather than a MMSE aided detector, might yield only marginal 

performance improvements. However, in contrast to the proposed MMSE detector, the MCMC detector 

discussed is readily capable of detecting higher-order QAM signals. 

In Figure 5.15 we have illustrated the BER versus Eb/NO performance for a single-user MIMO system 

employing M = 4 transmit AEs and N = 4 receive AEs. Gray-coded 16QAM signals were transmitted 

over L-path equal-power independent Rayleigh fading channels. When the channel was dispersive, the BS 

employed a STE characterized by NF = L, /). = L - 1 and NB = L - 1, while benefiting from soft DF. 

The illustrated BER performance was obtained for a interleaver length determined by 32 000 information, 

i.e 64 000 encoded bits, after Niter = 10 turbo iterations between a half-rate turbo code and the MCMC 

detector. The exact channel code parameters for SCC 1 as well as SCC 2, each of which employed Ninner = 

10 inner iterations, can be found in Table 4.4. The MCMC detector employed Np = 10 parallel Markov 

chains, each generating NMC samples. For the evaluation of the a posteriori LLR values, the importance 

sampling approach of Section 5.3.2.2 was considered. Additionally, the theoretically achievable information 

rate bound is provided as a reference. It can be observed in Figure 5.15, that the MCMC detector is capable 

of detecting the signals at an infinitesimally low BER within less than 2 dB of the theoretical capacity limit 

of the narrowband channel, while for the wideband channels considered the distance to capacity was slightly 

increased owing to the residual lSI. 

In Table 5.2 we have provided the number of MIMO-symbol candidates used by the MCMC aided STE 

as well as the complexity imposed by the Gibbs-Sampler of the MCMC algorithm in terms of real-valued 

multiplications and additions, calculated according to Equation (5.55). The results provided in Table 5.2 
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Table 5.2: Computational complexity associated with the BER performance curves provided in Figure 5.15. 
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Figure 5.16: Distance to the channel capacity bound for a single-user (4 x 4)-antenna MIMO system as 
a function of the number of parallel Markov chains Np employed by the STE. The signals were 16QAM 
modulated using Gray mapping and transmitted over a L-path equal power independent Rayleigh fading 
channels. If the channel was dispersive the BS employed a STE characterized by NF = L, D. = L - 1 and 
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clearly illustrate that the number of candidates considered by the MCMC detector is only a modest fraction 

of the entire ML search-space. Furthermore, it can also be observed that the actual number of real-valued 

operations increased at a significantly slower rate than the size of the ML search-space. 

In order to illustrate the effect of the number of candidates considered by the MCMC detector on the at

tainable performance, in Figure 5.16 we have plotted the distance L\h6QAM from the theoretically achievable 

information rate as a function of the number of parallel Markov chains considered by the STE. The system 

considered was identical to that used for generating the results of Figure 5.15, but we varied the number of 

parallel chains Np . The distance from the theoretical limit was calculated for a BER of 10-5. It can be seen 

in Figure 5.16 that for the narrowband channel associated with L = 1, at least two parallel chains have to 

be considered in order to achieve steady-state operation, but that increasing the number of parallel chains 

to more than six may not result in any further substantial performance improvements. For the equal-power 

two-path channel at least three chains are required, while using more than eight parallel chains does not 

result in a further performance improvement. 
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5.4 Conclusion 

In this chapter we have first introduced a set of SISO STE algorithms, which constitute an evolution of 

the narrowband single-user MIMO systems discussed in Chapter 4. The classic SISO STE algorithms 

discussed were the SISO MMSE technique of Section 5.2.1, the Bayesian solution of Section 5.2.2 as well 

as the novel RML STE of Section 5.2.3. These three different algorithms were also compared in terms of 

the computational cost they impose, as well as with respect to the achievable performance. It was observed, 

that while the Bayesian as well as the RML aided detector offer potential performance gains over the SISO 

MMSE based STE, the complexity imposed by both the RML as well as the Bayesian STE was in excess of 

state-of-the-art practical complexity limitations at the time of writing. When comparing the MMSE scheme 

as well as the RML aided SISO STE, it was observed in Section 5.2.3 that in certain scenarios where the STE 

operates at low SNR values, the MMSE outperforms the RML det~ctor, since the Max-Log approximation 

is no longer valid. 

Therefore, a novel MCMC based detection algorithm was introduced in Section 5.3 in order to cope with 

the increased search-space dimensions but still being able to perform non-linear, approximate Log-Map 

detection. Furthermore, it allows the detection of higher-order modulation schemes and supports all types 

of bit mappings. 

In Table 5.3 we have summarized the optimization criteria of the various algorithms discussed and have 

portrayed the computational complexity associated with the SISO STE strategies considered. Again, as 

already observed for the narrowband SISO MIMO detection strategies, it can be observed that the MMSE 

based SISO detector exhibits the lowest computational complexity, while the Bayesian STE exhibits the 

highest complexity. The complexity of the RML SISO STE depends on the SNR, but on average it is 

substantially higher than that of the MMSE-aided SISO STE. In fact, it was observed in Figure 5.4 that 

the complexity tends to grow exponentially with the number of CIR paths. The complexity associated with 

the novel MCMC aided STE depends on the specific number of candidate samples considered, but it was 

shown in Equation (5.55) that the complexity of the Gibbs-Sampler used by the MCMC aided detector only 

increases quadratically with the number of eIR taps. Nevertheless, since for an increased search-space the 

number of candidates has to be increased, the complexity imposed by the MCMC aided STE is higher than 

that of the MMSE aided STE, but lower than that of the RML aided STE. 

In order to put the performance of the MCMC aided detector into context, the performance measured as 

the distance from the channel capacity limit, has been included in Table 5.3. It can be observed that for 

all systems associated with L = 1 the MCMC aided detector approaches the performance of the Bayesian 

detector and slightly exceeds that of the Max-Log based RML SISO detector. When increasing the number 

of CIR paths to L = 2, it can be observed form Table 5.3 that the performance discrepancy between the 
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non-linear detectors and the MMSE based SISO STE narrows. This effect is even more pronounced when 

considering rank-deficient systems, as illustrated in Figure 5.14b. However, the MMSE aided SISO STE in 

its current form did not support the detection of higher-order QAM constellations, while the MCMC aided 

STE was shown to be capable of detecting 16QAM signals on the basis of a small number of candidates. 

The performance degradation compared to the narrowband system is approximately 0.5 dB, as it can be seen 

from Table 5.3. 
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Conclusion and Future Work 

The conclusions provided in this chapter constitute an amalgam of our previously drawn conclusions pro

vided at the end of Chapters 2-5 and establishes their logical connection. Our suggestions for future research 

are outlined thereafter. 

6.1 Chapter Summaries 

6.1.1 Chapter 1 

In Chapter 1 the state-of-the-art and background knowledge of this treatise was discussed. More specifically, 

in Section 1.1 we have discussed the benefits of Single-Carrier (SC) systems and highlighted their benefits 

on the basis of the 3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) proposals [7]. 

Furthermore, in Section 1.2 we have provided a discussion and classified the different detection techniques 

designed both for single as well as multi-carrier systems, which was accompanied by an overview of the 

open literature on the different detection approaches. In Section 1.3 the novel contributions of this treatise 

were highlighted and an outline of the following chapters was provided. Finally, in Section 1.4 the basic 

channel and system model was introduced. 

6.1.2 Chapter 2 

In Chapter 2 we have provided a comprehensive overview of state-of-the-art Multiple-Input Multiple-Output 

(MIMO) detection strategies. The novel contributions of this chapter include our discussion of the Minimum 

Bit Error Rate (MBER) MIMO detector of Section 2.3.2, where we provided novel insights concerning 4-

Quadrature Amplitude Modulated (4QAM) signals based on the real-valued binary system model. Further

more, we have highlighted the difference between the Bayesian detector of Section 2.3.3, which optimizes 
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the error-probability of each single transmitted bit and the classic Maximum Likelihood (ML) detector of 

Section 2.3.4 aiming for finding the most likely transmitted MIMO symbol vector. Owing to the high com

putational cost imposed by the full-complexity ML detector, a novel reduced-complexity ML detector was 

discussed in Section 2.3.4, which is referred to as the Optimized Hierarchical Recursive Search Algorithm 

(OHRSA). In addition to the original OHRSA of [97] and Section 2.3.4, we have also provided an alterna

tive search technique, referred to as the Min-Path search algorithm, which imposed a lower computational 

complexity than the original OHRSA, especially in rank-deficient systems employing higher-order QAM as 

seen in Figure 2.19. 

All the algorithms discussed in Section 2.3, namely the Minimum Mean Squared Error (MMSE), the MBER, 

the Bayesian as well as the OHRSA aided detector, have been compared with respect to their specific 

optimization philosophy, their computational complexity summarized in Section 2.3.5 as well as their BER 

versus EblNo performance in Figures 2.23-2.25. In Table 6.1 we have summarized the EblNo-distance 

expressed in dB and associated with a specific algorithm, measured from the theoretical capacity limits 

derived in Section 2.2. Explicitly, for the independent Rayleigh block-fading channels we have considered 

the distance ~PoutIPout=O.02 [dB] between the outage probability curve discussed in Section 2.2.3 and the Frame 

Error Rate (FER) performance of the specific detector at an outage probability of Pout = 0.02. By contrast 

for the uncorrelated independent Rayleigh fading channel we considered the distance ~IIBER=10-4 [dB] 

between the BER performance curve of the detector and the theoretical channel capacity limit derived in 

Section 2.2.3 at a BER of 10-4. Furthermore, it can be observed in Figures 2.24 and 2.25 that both the 

Bayesian as well as the OHRSA aided detector exhibit an almost identical performance. 

For the different (N x M)-antenna systems considering Binary Phase-Shift Keying (BPSK) modulated 

signals as well as half-rate turbo-coding, which was fed with the hard-output of the detector, it can be 

observed in Table 6.1 that all algorithms operate at a considerable margin from the theoretical capacity 

limit. However, when comparing the linear MMSE scheme to the linear MBER detector, it can be observed 

from Table 6.1 that for N = 2 receive AEs the MBER detector outperforms the MMSE detector by more 

than 4 dB. Notice in Table 6.1 that this performance difference decreases upon increasing the number of 

receive AEs. When employing the optimum non-linear Bayesian detector or the low complexity OHRSA 

aided detector, it can be observed in Table 6.1 that a further 2 dB performance gain can be achieved. Again, 

for a higher number of receive AEs the performance difference between the algorithms decreases as a benefit 

of achieving an increased receive diversity gain. It can also be observed that even the more sophisticated 

algorithms of Table 6.1 are far from approaching the theoretical channel capacity limit. If an entry in 

Table 6.1 is marked as 'not evaluated' then either the algorithm imposed an excessive complexity or it was 

unable to reach the target integrity with the aid of the specific modulation scheme considered. A detailed 

overview of these performance trends may be found in Table 2.8. 
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Table 6.1: Summary of the achievable performance of different detection algorithms studied in this treatise. 

I MMSE I MBER I Bayesian I OHRSAIRML I MCMC 
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not eva!. b not eval b 2.4 
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The performance figures provided in Table 6.1 have been obtained for relatively low-dimensional systems, 

which allowed us to consider more sophisticated but naturally more complex detection algorithms. For these 

low-dimensional systems the four algorithms considered, namely the MMSE, the MBER, the Bayesian and 

the OHRSA aided detector impose a computational complexity which is of a similar order of magnitude. In 

this summary chapter, we are however less interested in the complexity imposed by low-throughput, low

dimensional systems, but rather in identifying the general computational complexity trends when increasing 

the throughput of the system. 

When considering the computational cost associated with the different MIMO detection algorithms, which 

was detailed in Section 2.3.5, it was observed for independent Rayleigh block-fading channels that both 

the MMSE as well as the MBER algorithm exhibit a moderate detection complexity, which is linearly 

proportional to the number of receive AEs. This trend can also be observed in Figure 6.1a, where we 

have plotted the normalized detection complexity of a single bit for the specific algorithms as a function of 

the number of transmit AEs M. The number of receive AEs was chosen to be N = 2 and the modulation 

scheme considered was 4QAM. In contrast to the linear MMSE and MBER MIMO schemes, the complexity 

associated with the Bayesian detector is an exponentially increasing function of the number of transmit 

AEs, while that of the OHRSA-aided detector is slightly higher than that of the linear MMSE and MBER 

detectors. 

The computational complexity associated with the preprocessing carried out by each algorithm before the 

bits can be detected is illustrated in Figure 6.1b based on Tables 2.3, 2.4, 2.5 and 2.6, where the graphs 

were obtained from Figures 2.8, 2.13, 2.16 and 2.19-2.21 of Section 2.3. For the MMSE as well as the 

MBER algorithm the preprocessing complexity is constituted by the evaluation of the weight vectors, while 

that of the Bayesian detector is determined by the evaluation of the legitimate channel output states. The 

preprocessing invoked by the OHRSA algorithm is mainly determined by that of the Cholesky factorization 

required, as discussed in Section 2.3.4. It can be observed from Figure 6.1 b that while the Bayesian as well 

as the MBER detector exhibit a substantial preprocessing complexity, which is exponentially proportional 

to the number of transmit AEs, the MMSE as well as the OHRSA-aided MIMO detector's computational 

complexity increases only moderately upon increasing the number of transmit AEs. 

6.1.3 Chapter 3 

The algorithms discussed in Chapter 2 in the context of non-dispersive channels have been extended to 

Space-Time Equalization (STE) algorithms applied in dispersive scenarios in Chapter 3, which additionally 

may benefit from employing Decision Feedback (DF). In order to physically interpret the rationale of using 

DF, we have introduced a general space-translation structure in Section 3.5 and have provided further inter

pretations of using DF as a subset selection approach in Section 3.5.3 as well as a tree-based DF structure in 
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Figure 6.1: Normalized computational complexity defined as the number of real-valued multiplications plus 
additions required for the detection of a single bit which were expressed in Tables 2.3,2.4,2.5 and 2.6 and 
extracted from Figures 2.8, 2.13, 2.16 and 2.19-2.21 of Section 2.3. All proportionality factors were chosen 
to be unity and the modulation scheme considered was 4QAM. The receiver was assumed to employ N = 2 
receive AEs and the computational complexity imposed by the OHRSA was recorded at Ebl No=20 dB. 
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Section 3.5.4. The novel contribution of Chapter 3 was the introduction of the MBER, the Bayesian as well 

as the OHRSA aided STE. More specifically the OHRSA aided SC STE of Section 3.4.4 was improved with 

the aid of a tree-truncation scheme, which allowed us to control the complexity imposed by the tree-search at 

a moderate performance degradation. Furthermore, we have provided Example 3.3 for highlighting the dif

ference between the conventional tree-search algorithm associated with the OHRSA and the novel Min-Path 

tree-search. 

The extension of the narrowband MIMO detection schemes of Chapter 2 to the more realistic wideband 

scenario of Chapter 3 has been beneficial for all four detection algorithms' performances, which were found 

to be marginally closer to the channel's capacity limit, as it can be observed by comparing rows 1 and 6 as 

well as rows 3 and 7 of Table 6.1. Naturally, the wideband schemes exhibit a higher complexity than the 

corresponding narrowband scenarios. The relative performance difference between the specific algorithms 

appears to be approximately the same. Again for the OHRSA we proposed an alternative to the classic 

space-translation based interpretation of the DF, since we advocated in Section 3.5.4 an amalgamation of 

the DF directly into the tree-search. 

It was observed that while DF resulted in a significant performance improvement for the MMSE-based 

STE, it only marginally improved the performance of the MBER scheme, of the Bayesian as well as of the 

OHRSA-aided detector, as it can be seen from Table 6.1. 

The normalized computational cost imposed by the different STE algorithms is summarized in Figure 6.2a 

and Figure 6.2b, where we have portrayed the detection complexity and the preprocessing complexity, re

spectively obtained according to Tables 3.1-3.4 as well as Tables 3.5-3.7. The system considered was as

sumed to employ N = 2 receive AEs, while using M = 2 transmit AEs and 4QAM signals. The channel 

was assumed to have an equal-power two-tap CIR. It can be seen from Figure 6.2a that the detection com

plexity of the linear MMSE and MBER STE does not depend on whether DF is considered or not. By 

contrast, the detection complexity of the Bayesian as well as that of the OHRSA aided STE decreased, 

when DF was employed. Note that if DF is employed, the computational complexity imposed by the detec

tors is more-or-less independent of the number of channel taps and only depends on the feed-forward order 

chosen, while that of the STE dispensing with DF depends largely on the number of CIR taps, as discussed 

throughout Chapter 3. 

Similar to the narrowband MIMO detectors considered, the preprocessing complexity of the MBER scheme 

as well as that of the Bayesian detector is exponentially proportional to the feed-forward-order, while that 

of OHRSA arrangement as well as that of the MMSE detector increases only moderately upon increasing 

the feed-forward order. 

Furthermore, it is concluded that while DF has improved the performance of the MMSE detector, it only 
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moderately reduced the complexity. By contrast, the employment of DF more substantially reduced the 

computational cost associated with the non-linear detectors, although it only resulted in a moderate per

formance improvement. Finally, we have introduced a novel reduced-complexity ML STE based on the 

OHRSA, which was further enhanced by a novel tree-truncation procedure in order to control the algo

rithm's computational cost. A detailed summary of Chapter 3 can be found in Table 3.8, where the different 

algorithms' performances as well as the complexity they impose are portrayed. 

6.1.4 Chapter 4 

Since the narrowband detection algorithms discussed in Chapter 2 were incapable of approaching the chan

nel capacity bound, we have improved the algorithms further in order to be able to process soft-information. 

Hence, in Section 4.4.3 we proposed a novel Max-Log SISO detector based on the OHRSA algorithm, 

which was referred to as the Reduced complexity Max-Log (RML) detector. Furthermore, a discussion was 

provided in Section 4.4.4 as to why iterative MBER detection might not be attractive. In order to analyze 

the proposed SISO detectors, in Section 4.3 we invoke their EXIT chart analysis and proposed a novel pro

jection based approach, which facilitates the two-dimensional EXIT chart analysis of systems consisting 

of three serially concatenated SISO components, namely the detector and two concatenated channel codes. 

The resultant two-dimensional EXIT chart was plotted in Figure 4.4. The two channel codes may also be 

interpreted as a single serially concatenated turbo-code. 

It can be observed from Table 6.1 that with the advent of iterative MIMO detection, the MMSE detector of 

Section 4.4.1, the novel RML detector of Section 4.4.2 as well as the Bayesian detector of Section 4.4.3 are 

capable of approaching the channel capacity limit, provided that the system has full rank. If, however, the 

system becomes rank-deficient, the MMSE detector fails to approach the channel capacity limit, while the 

RML as well as the Bayesian detector still remain capable of approaching the capacity limit within about 

1.3 dB. Furthermore, it can be seen from Table 6.1 that the RML detector is capable of operating within 

1.2 dB of the information theoretic limit even for 4QAM signals. 

In Figure 6.3 we have extracted the results form Figures 4.14-4.18 as well as Figures 5.13-5.15 and plotted 

the SNR required in order to achieve a BER of 10-5 as a function of the number of transmit AEs for 4QAM 

modulated signals and for a different number of receive AEs. For N 2:: M the system used the SCC Code 

1 of Table 4.4 as a channel code, otherwise SCC Code 2 of Table 4.4 was employed. The SCC code used 

10 inner iterations. For missing points additional simulations were performed. For complexity reasons, no 

results are included for the SISO Bayesian detector. From the graphs seen in Figure 6.3 it appears that the 

SNR required by a certain system configuration, as well as the relative performance of the different SISO 

algorithms is scalable. For example, when considering a (4 x 4) and a (2 x 2) -antenna system, both require 

the same SNR in order to achieve a BER of 10-5 and even the performance difference between the three 
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algorithms considered is similar. The same trends can be observed, when considering the rank-deficient 

(2 x 4) and (4 x 8)-antenna systems. As already seen from Table 6.1, the performance difference between 

the MMSE and the RML detector becomes more pronounced for rank-deficient systems. 

The computational complexity associated with the different iterative MIMO detection algorithms was ex

tracted from Figures 4.5,4.8 and 4.11 and is summarized in Figure 6.2b, where a system employing M = 2 

transmit AEs and 4QAM signals was considered. Firstly, it can be observed that while the computational 

cost associated with the MMSE detector is lower for the first iteration than for all subsequent iterations, that 

of the Bayesian as well as of the RML detector is lower for all subsequent iterations than it is for the first 

iteration. 

6.1.5 Chapter 5 

In Chapter 5 we have provided a frame work for extending the SISO narrowband MIMO detectors of Chap

ter 4 to SISO STE algorithms. In addition to the DF methods of Chapter 3 employed for non-iterative 

STE, we have also introduced a novel soft-DF method. The novel soft-DF method did not offer the same 

complexity reduction as the hard DF technique of Chapter 3, but by contrast it did not suffer from error

propagation and hence remained capable of delivering a performance gain. This behaviour was observed for 
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all the three considered SISO algorithms, namely the MMSE SISO STE of Section 5.2.1, the RML SISO 

STE of Section 5.2.2 as well as the Bayesian SISO STE of Section 5.2.3. 

When comparing the RML aided and the MMSE aided STE of Sections 5.2.1 and 5.2.3, respectively, it 

was observed that the RML algorithm was only capable of providing a performance gain over the MMSE 

STE for near-far scenarios, as seen from Figure 5.6. In certain cases it was even observed that the Max

Log approximation employed by the RML algorithm resulted in a performance loss in comparison to the 

low-complexity MMSE algorithm as illustrated in Figure 5.5. 

In order to mitigate the above-mentioned deficiencies of the RML aided STE in Section 5.2.3, we proposed 

a novel Markov-Chain Monte-Carlo (MCMC) aided STE in Section 5.3, which did not rely on the Max-Log 

approximation and was capable of exploring large search-spaces at a moderate computational cost. As a 

further benefit the MCMC STE facilitated the detection of arbitrary modulation schemes and bit-to-symbol 

mappings. 

In Figure 6.5 we have illustrated the SNR required for achieving a BER of 10-5 as a function of the num

ber of CIR taps for a (4 x 4)-antenna single-user MIMO system, while considering different modulation 

schemes as well as different detection algorithms. It can been from Figure 6.5 that if 4QAM signals are 

considered, the performance difference between the three algorithms considered decreases upon increasing 

the number of CIR taps L. 

It also can be observed from Figure 6.5, that in conjunction with the channel code considered, 16QAM 

using hierarchical and Gray mapping perform similarly in a narrowband scenario. If the number of CIR 

taps is increased, the system using 16QAM in conjunction with Gray mapping only experiences a moderate 

performance degradation. By contrast, the system considering 16QAM combined with hierarchical mapping 
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exhibits a substantial performance degradation, as also seen from lines 12 and 15 of Table 6.1. 
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The computational complexity of the SISO MMSE, Bayesian as well as RML STE was analyzed in Sec

tion 5.2, where it was found that the Bayesian as well as the RML aided SISO STE exhibit an exponentially 

increasing computational cost upon increasing the number of CIR taps. By contrast, the complexity imposed 

by the MMSE detector is cubic in the number CIR path. The complexity imposed by the novel MCMC aided 

STE depends on the number of parallel Markov Chains considered as well as on the number of samples gen

erated by the Gibbs sampler. It was however observed in Table 5.2 as well as in the parameter-list of the 

MCMC aided STE of Figure 6.5 that the complexity imposed by the MCMC detector increased significantly 

slower than the exponentially growing size of the search-space. 

6.2 Future Work 

6.2.1 Non-Binary OHRSA 

It was observed in Section 5.3.4 that the convergence of iterative MIMO receivers can be influenced by 

modifying the bit-mapping of the considered modulation scheme, many of which can not be expressed 

using the real-valued binary system model of Section 2.1.1.2. It may therefore be interesting to construct a 
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non-binary OHRSA algorithm, which is capable of detecting signals with arbitrary bit-to-symbol mappings. 

For a narrowband MIMO detector this results in a search tree with M rather than M logz (M) hierarchical 

levels. The number of branches leaving each node would then be increased from two to logz (M) and 

therefore a higher computational cost would be imposed by the evaluation of a single node. Despite the 

fact that the evaluation of the search tree on each hierarchical level would become more complex, the 

convergence of the algorithm would be improved since a higher number of hypothetical solutions to the 

detection problem are considered jointly. 

6.2.2 Non-Binary Gibbs-Sampler 

In analogy to the non-binary OHRSA also the Gibbs-Sampler of Section 5.3.3 may be extended to a non

binary algorithm. When introducing the Gibbs-Sampler in Section 5.3.3 we allowed only a single bit of the 

hypothetical solution to be changed during one evolution of the Gibbs-Sampler. It is however be possible 

to change an arbitrary number of bits jointly in order to support a faster convergence [69]. Again, similarly 

to the non-binary OHRSA proposed in Section 6.2.1, the complexity associated with each evaluation step 

of the Gibbs-Sampler is increased but its convergence rate will be improved and the MCMC aided detector 

becomes more robust against stalling. Interpreting the non-binary Gibbs-Sampler form a Markov chain 

perspective, a non-binary Gibbs-Sampler results in a higher number of transitions between the nodes and 

therefore allows to move more rapidly through the search-space. 

6.2.3 Joint Detection and Channel Estimation 

In Section 5.3 we have shown that MCMC detection can be efficiently employed in the context of MIMO 

systems. It was however purely employed for detection purposes. One strength of the MCMC aided detector 

is that it can be evolved to perform joint channel estimation and data detection as for example outlined 

in [69]. When considering MIMO systems for joint detection and channel estimation special care has to be 

taken in order to resolve the inherent ambiguity. 

6.2.4 EXIT Charts for Short Interleaver-Depth 

The iterative detectors of Chapter 4 and Chapter 5 were only discussed in the context of ergodic Rayleigh 

fading channels in conjunction with long interleaver length in order to be capable of performing EXIT chart 

analysis of the system. A scenario of more practical interest would however be to consider slowly fading 

or block-fading channels in conjunction with short interleavers. For the design and the analysis of such 

systems a new type of EXIT charts would have to be developed. 
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6.2.5 Cyclic Prefix Aided Space-Time Equalization 

A further focus of our future work should be on cyclic prefix aided STEs. Attaching a cyclic prefix to the 

transmitted signal renders the transmitted signal to appear periodic to the receiver and therefore facilitates 

Frequency-Domain (FD) processing. The most commonly used FD STE is the MMSE equalizer. Especially 

in highly frequency-selective fading channels FD processing is preferable to Time-Domain (TD) STE, which 

would require a complex high-order filter. However, to the best of our knowledge, FD STE has so far only 

been considered in the context linear detectors, since the decision space in the FD may appear to be excessive 

for non-linear detection. We have seen from our previous results that the MMSE equalizer's performance 

becomes poor when it comes to rank-deficient systems. It may therefore be of interest to investigate the 

performance of non-linear detectors such as the MCMC aided detector in the context of cyclic-prefix-aided 

STE. 
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BER Gradient 

The BER at the detector's output for a given weight vector Wm can be written as 

(AI) 

with 

sign (x(i) ) yv(i) 
R,m Rm 

= (A2) 
CTnvw!;fWm 

= 
sign (x~:m) iR ( w{;iy~)) 

(A3) 

The gradient of Pe(wm) can be calculated make use of the following integration rule 

~ l;t~) f(y)dy = f (c(t)) d~~) - f (a(t)) d~~t). (A4) 

This yields 

(A5) 

(A6) 
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where 

(A.7) 

(A. 8) 

(A.9) 

The gradient of the BER can now be expressed as 

(A. 10) 

where 

(A.ll) 
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and the number of transitions per trellis state can be written as 

(C.2) 

In Figure C.l a trellis segment corresponding to a two-path channel and either two BPSK modulated trans

mitters or a single 4QAM transmitter is shown. Furthermore, assume we aim evaluating the a posteriori 

probabilities of the transmitted symbols based on a sequence Y of received channel output vectors y(k) 

defined in Equation (3.6). Assuming further, that we are interested in evaluating the a posteriori probability 

associated with the symbol vector associated with the channel outputy(k), the sequence Y may be split into 

three sections: Yk which is the channel output state associated with transition at time k, Y <k associated with 

the priori received channel output vectors as well as Y>k associated with the received channel output states 

after the present transition k. 

The joint probability may now be written as [118] 

p(s', s, Y) p(s', Y<k) . P(YkI sis') . p(Y>k1 s') 

- IXk-l(S') 'lk(S,S) . (3k(S), (C.3) 

where the probability that the trellis is in state s' at time k is given as [118] 

IXk(S) = r: Ik(S', S)lXk-l (s'), (C.4) 
all s' 

while the probability that the trellis is in state S given the future received sequence is given as [118] 

(3k-l(S') = r: Ik(S',S){3k(S) (C.S) 
all s 

and finally [118] 

Ik(S',S) = p(Ykls',s)P(sls'). (C.6) 

Furthermore, p(Ykls', s) may be written as 

, 1 ( lIy(k) - Y1I2) 
p(Yls ,s) = (27T(T~)N exp - 2(T~ , (C.7) 

where y is the noiseless channel output associated with the transition from state s' to s. Assuming that no 

a priori knowledge is available, all transitions are equally likely, hence resulting in P(y(k) Is(i) Is(j)) = ~t' 

By marginalizing the joint probability, one may readily obtain a posteriori bit estimates [118]. 
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