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Abstract

In this work torsion-free normal subgroups of the Lannér groups I'; are studied. All
torsion-free normal subgroups of the orientation-preserving subgroups F;r whose factor
groups have the form Lo(q), where ¢ = p™ and p is a prine, are classified. In the case of
each group, some examples of manifolds are constructed and their homology is computed.

Miuimal index torsion free subgroups of each Lannér group are also constructed.

Computational techniques are developed to construct complete lists of conjugacy
classes of subgroups of low index in these groups. These lists are then used to test the
theoretical results proved in this thesis and also to search [or specific subgroups. Compu-
tational techniques are also developed to calculate the action of the isometries of these
manifolds M on their homology groups. This gives H; (M) the structure of an Isom(M)-
module, which allows for the construction of arbitrarily large manifolds exhibiting a high

degree of symmetry.

The computational techniques developed in this work are applied to the 4-dimensional
Coxeter group [5, 3, 3, 3] and a detailed study of the low index subgroups of this group has
been implemented. The existence of torsion free subgroups of index 115200 is established
and a possible approach towards determining the minimal index torsion-free subgroups

of this group is outlined.
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Chapter

Introduction

1.1 Introduction

The classification and characterisation of topological 3-manifolds has had a pow-
erful influence on mathematical research over the past hundred years. Starting
with the work of Henri Poincaré [Po| and continuing up to the present-day work of
Williamn Thurston [Thi], Richard Hamilton [Ha] and Grigory Perelman [Pel] [Pe2],
the question of classilying all compact 3-dimensional manifolds has yielded many

fruitful avenues of research.

In 1982, Thurston proposed his Geometrization conjecture. In the case of closed

oriented 3-manifolds, the conjecture can be stated as [ollows:

GEOMETRIZATION CONJECTURE [Thi]

Let M be a closed, oriented, 3-manifold. Then there is a finite collection of
disjoint, embedded tori T? in M, and o finite collection of disjoint, embedded
spheres S? in M, such that each component of the complement (M\ | S?)\ UT?
admils « geomelric structure, i.e., a complete, locally homogeneous Riemannian

metric.

There are a total of eight 3-dimensional model geometries and they are listed as

18



1.1. Introduction 19

follows:

1) Spherical geometry S*, with constant positive curvature +1.

2) Luclidean geometry R®, with constant curvature 0.

3) Hyperbolic geometry H?, with constant negative curvature —1.

4) The geometry of §? x R.

5) The geometry of H? x R.

6) The geometry of the universal cover SLy(R) of the Lie group SLs(R).

7) Nil geometry - a left invariant metric on the Heisenberg group

1l =z y
{101 =z 2.y, 2 € R}
00 1

8) Sol geometry - the split extension R x (R x R).

Six of these eight geometries ( 1. 2, 4, 5, 6 and 7 ) are now well understood -
geometric manifolds modelled on these geometries are Seifert fibered. Geometric
manifolds modelled on Sol geometry are torus fibered over the circle. Since most
J-manifolds do not adimit such fibrations, it is reasonable to say that "most" 3-

manifolds are hyperbolic [An2|.

In this work, one particular class of hyperbolic manifolds will be investigated
in detail. These are the manifolds that arise as covers of the hyperbolic orbifolds
associated to the Lannér groups. A Lannér group is a Coxeter group acting on H?
whose fundamental region is a compact simplex. The manifolds constructed have
many interesting and useful geometric properties and can often be constructed so
as to admit a high degree of symmetry. Furthermore, the manifolds inherit several
possible tessellations derived from the original group. These tessellations can be

used to provide explicit combinatorial constructions for the manifolds.
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1.2 Aims of this work

This thesis aims to investigate simplicial Coxeter groups, in particular the Lannér
groups. All maps from these groups to the classical family of simple groups La(q)
are classified and a comprehensive study of the low index subgroups of some of
these groups is provided. Results on some simplicial Coxeter groups acting on H*

are presented as well.

As a consequence of Selberg’s Lemma, since Coxeter groups I' admit faithful

) for a suitable value of n, they contain finite

representations into GL(n,C) ([HW,
index torsion free subgroups. Let £(T") be the least common multiple of the orders
of all the finite subgroups of I'. Then a minimal index torsion free subgroup of I'
must have index divisible by £(T') [CFJR]. Jones and Reid have shown in [JR] that
for any k there exist Kleinian groups whose minimal index torsion free subgroups
has index greater than k x £(T"). It will be shown in this thesis that Lannér groups,

by contrast, contain a torsion free subgroup of index £(I") or 2 x L(T).

Using techniques from group theory and the classification of finite siinple groups,
this work aims to provide a construction for families of manifolds exhibiting a high
degree of symmetry. In some interesting cases, further results will be deduced by

considering the action of the isometry group of the manifold on the first homology.

Additionally, in the last ten years advances in computational resources have
enabled an explosion in the computational-aided research of low index subgroups
of discrete groups acting on spaces. This, coupled with a resurgent interest in
Coxeter groups, has led to several interesting publications and significant progress
in the classification of interesting families of Coxeter groups (|[CM], [E2], [ERT]).
A computing cluster was designed in this work and sophisticated algorithms were
used to classify all subgroups of the Lannér groups, up to a given index. A swnmary
of these results is also provided in this thesis. This adds significantly to the previous

work carried out by B. Everitt ([EMc|, [E1], [E2]).
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1.3 Structure of this Thesis

Chapter 2 introduces definitions and previously known results important for this
thesis. Abstract properties of Coxeter groups are introduced. Key properties of
these groups, including the structure of conjugacy classes of torsion elements in
the Lannér groups and the discrete extensions of these groups in Isom(H?), as
classified in [DM2], are introduced. The computational methods used in this thesis

are also discussed in this chapter.

Chapter 3 focuses on the construction of a family of torsion free normal sub-
groups of the orientation preserving subgroup of the [5, 3, 5] Coxeter group whose
factor groups are projective special linear groups Ly(g) over a field of ¢ = p”
elements. The extensions of these results to the full Coxeter group are also char-
acterised. In particular, the case where p = 5 is discussed due to the fact that it

yields a chiral pair of Seifert - Weber manifolds.

Chapter 4 analyses the other Lannér groups nsing the same techniques as used
in Chapter 3. The case I' = [3. 5, 3] is omitted since it has already been studied by
Anna Torstensson in her PhD thesis [To|. In each case all normal subgroups N of
the orientation preserving subgroup I't of I' with I'" /N = Ly(q) are classified.

Chapter 5 investigates some of the manifolds arising from the maps constructed
in chapter 3. A chiral pair of Seifert-Weber manifolds are investigated and all
synnmetric abelian covers (covering manifolds whose deck transformations form an
abelian group and on which the factor group acts by automorphisms) are charac-

terised. Other manifolds whose isometry group is L,(19) are also constructed.

In Chapter 6, some of the manifolds arising from the epimorphisms described
in chapter 4 are constructed and their properties are investigated. In a few special
cases, the action of the isometries on homology is characterised. This work unifies
and extends many previously known constructions, such as Zimmerman’s mani-

folds, as described in [Z], as well as creating many new and interesting examples.

Generalizing to higher dimensions, Chapter 7 focuses on the [5, 3,3, 3] Coxeter
group. This is a simplicial Coxeter group acting on H*. The construction of a

torsion-free subgroup of index 14400 in this group will provide an example of a
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smallest volume hyperbolic 4-manifold. Subgroups of index 8 x 14400 are con-
structed using a combination of computational and group theoretic techniques.

Some interesting results on the existence of subgroups of this group are proved.

In chapter 8 the main results of this work are restated, some additional conclud-
ing remarks are provided and futher avenues of study are suggested. A summary

of the low index subgroups of the Lannér groups is provided in Appendix A.



e 2

Chapter

Background

This chapter introduces the relevant background material required for this thesis.
Coxeter groups are introduced in hoth an algebraic and a geometric setting and
the equivalence of the definitions is shown. Special properties of Coxeter groups are
delined, as well as some general terminology to be used throughout the thesis. The
classification theorem for finite Coxeter groups is stated [Hu| and the conjugacy
classes of elements in certain finite Coxeter groups are listed. The classification of
all finite extensions in Isom(H?) of certain hyperbolic Coxeter grbups (the Lannér
groups), due to Derevnin and Mednykh |[DM2], is stated. A general overview of
some special computational techniques in determining conjugacy classes ol sub-

groups in given finitely presented groups is also discussed in this chapter.

2.1 Introduction to Coxeter groups

Definition 2.1 A Cozeter group I is o group with generating set S = {s1,....5,},
together with a set of defining relators (s;5;)™ where my; = 1, my; > 2 if 1 # j

and m;; = mj; for all i # j.
Associated with such a group is a graph called the Cozeter graph or Cozeter
scheme for the group. It consists of a set of vertices v; (one for each generator

si € S), connected by (labeled) edges under the following conditions:

23
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e For i # j, if m;; > 3 then v; is connected to v; by an edge labeled by m;;
e Lor i # j, it m;; = 3 then v; is connected to v; by an unlabeled edge
e If : = j or m;; = 2 then no edge is drawn.

Definition 2.2 A Coxeter group T with a connected Coxeler scheme is called

irreducible.

For any subset S’ C S, the special subgroup of T' generated by the s € 5 is
also a Coxeter group with Coxeter scheme obtained from that of T' by deleting
the vertices whose corresponding generators lie in S\.S’. If a Coxeter scheme is
disconnected, then T = I} x ... x I'y, where each I'; is an irreducible Coxeter

group.

Definition 2.3 Let I' be a Cozeler group with generating set S. Then a maximal

special subgroup is a subgroup generated by S" = S\{s} for any s € S.

In order to determine the torsion elements in a Coxeter group, some information
is needed on the finite Coxeter groups. The finite irreducible Coxeter groups are
the Weyl groups of simple Lie algebras over C, the dihedral groups, the group of
symmetries of a regular dodecahedron and the group of symmetries of the 120-cell.
In the Killing-Cartan notation, these are the three infinite classical families, A,
with n > 1, B, with n > 2 and D, with n > 4, as well as the five exceptional
groups Gy = I,(6), Fy, Eg, Er and Es. The non-Weyl groups are the dihedral
groups [>(n) for n > 3, the symmetry group of the dodecahedron //5 and the
symmetry group of the 120-cell, H,. The Coxeter scheme for any finite Coxeter
group is a disjoint union of the connected Coxeter schemes listed in Table 2.1. In
the cases of A,, B, and D,, the subscript n is the number of generators of the

group.

The irreducible parabolic Coxeter groups (affine groups) are listed in Table 2.2.
These are the affine Weyl groups and they form four infinite families and five
exceptional groups. In the Killing-Cartan notation, the four infinite families are

AN,, with n > 1, ]§:, with n > 3, 6’; with n > 3 and f);, with n > 4. The fAve
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exceptional groups are Ga, Iy, Eg, E7 and Eg. A Coxeter group is parabolic if and
only if it is the direct product of finite and parabolic irreducible Coxeter groups.

In the cases of 2; ,]37,,, (/Nn and ,2)7.,/, the number of generators of the group is n—+ 1.

4
e S ) F,
5
——eo—o Hy
5
*—o —o o H,
n
¢—0 Iy(n)

Table 2.1: Finite irreducible Coxeter groups
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By

C’n

Table 2.2: Parabolic irreducible Coxeter groups
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A convex polytope P in H" is the intersection NyegH, of closed halfspaces
bounded by hyperplanes H,. A Coxeter group is hyperbolic of dimension n if and
only if there is sonie polyhedron P € H" such that, assigning each s; € S to the
reflection in the hyperplane H,,, an isomorphism is induced between I' and the
group generated by reflections in the faces of P. P is called a fundamental region

for T.

The Gram matrix G(I') for a Coxeter group I' is a matrix with entries g;; =

—cos(——), where the mi; are as above. The signalure of a symmetric matrix is a
”

pair (p,q) where p is the number of negative eigenvalues and ¢ is the number of

positive eigenvalues. The following theorem is due to Vinberg [V2]

Theorem 2.1 Let G(I') be an indecomposable symmetric malriz of signature
(n,1) with 1's along the diagonal and non-positive entries off it. Then there is
a convex polytope: P in H™ whose Gram malrixz is . The polytope s uniquely

determined up Lo a motion wn H™.

Let I" be a hyperbolic Coxeter group. Then I' is co-compact if it has a compact
fundamental polyhedron P. Otherwise I' is non-co-compact. I is co-finite if it has

a finite volume fundamental polyhedron P.

Let I be the collection of finite subgroups of I' generated by subsets " C S.
Partially order & by inclusion. Similarly, let F be the partially ordered collection
of finite subgroups or parabolic subgroups of I" generated by subsets $' € .S. Then

the [ollowing result is due to Vinberg [V2]

Proposition 2.1.1 An n-dimensional hyperbolic Cozeter group I" is co-compact
(co-finite) if and only if F (F) is isomorphic as a partially ordered set to the posel

of some n-dimensional abstract polytope.

In particular, if I' is a hyperbolic Coxeter group, then T" is co-compact if and
only if every maximal special subgroup is finite, and I" is co-finite if and only if|
for every maximal special subgroup, every factor is either finite or is an irreducible

parabolic Coxeter group.



2.2. Conjugacy classes in finite Coxeter groups 28

2.2 Conjugacy classes in finite Coxeter groups

The main focus of this thesis is on the nine co-compact simplicial hyperbolic Cox-

eter groups, first described by Lannér [La| and listed here in Table 2.3:

5 5] 5 5
e . . ®

Iy =7[2,2,33,52] I's=1T42,

2,52,
4 4

° 050 °
o

I =T5[2,2,3;2,53] Ts=75[23324,3 Ts=Ts24,325,3]

5 4
° ® . ' 4 5

F3 = T3[2, 24 2, 3, 5} F(; = Tb[Q,B,'—l, 2, 3,4} Pg -—= Tg[Q 3, 5, 2, 35]

Table 2.3: The nine Lannér groups

These nine groups form a complete list of all Coxeter groups which have a 3-
dimensional compact hyperbolic simplex as a fundamental region. Each group is
described by a 6-tuple [A1, Aa, A3; f11, i, 23], of numbers, where 7/\; are the angles
between a chosen base face and the other three faces of 7', and 7 /pu; is the dihedral

angle of the edge opposite that labelled with 7/A;.

The finite Coxeter groups play a key role in the construction of manifolds arising
as the covers of the fundamental regions of the simplicial Coxeter groups. If I' is
a Coxeter group acting discretely on H?® with the natural action and if M is an
orbifold of the form M = H?*/H, for some [ < I, then M is a manifold precisely
when H is torsion free. It remains to determine all representatives for torsion
elements in I". The following theorem is well known. It is exercise V.4.2 in [B], and

is proved in [BH].

Theorem 2.2 Let T be a Cozeter group wilh generating set S. Then any element
of finite order in I' is conjugate to an element of a finile subgroup generaled by

some S C S.

The maximal special subgroups of the Lannér groups are all of types A4, x A; x
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Al, Al X /’12 = /11 X ]2(3)/ /’137 /*11 X BQ = /’11 X ]2(4), 1‘11 = ]2(5) B3 or Hd HQHCG,
to understand the torsion elements in each of the Lannér groups, the conjugacy

classes of torsion elements in each of these finite groups are needed. A Coxeter

scheme and presentation for each of these seven groups is provided in Table 2.4

Group Coxeter Scheme Presentation
v / a b ¢ a2 12— 22— (B2 — (ae)2 — (Be)2 —
A x Ay x A e x e X @ (a,byc|a® =0 = c? = (ab)? = (ac)* = (be)* = 1)
a b ¢ ., ) ) ) .
Ay x 15(3) e x e—o | (abc|la®=0=c?=(ab)?=(ac)?=(be)’=1)
) N a bgcC a2 — B2 = 2 e (B2 — ()2 = (b}t =
Ay x Iy(4) * X e—o {a,b,c|a® =V = c* = (ab)? = (ac)® = (be)* = 1)
a b 5 ¢ . . .
Ay x 15(5) e x oo {a,byc|a* =V =c? = (ab)? = (ac)? = (be)® = 1)
a I C . . . o .
As « o o (a,b,c|a® =12 = c? = (ab)® = (ac)? = (bc)® = 1)
a4b < a2 e b2 — 22— (VA — ()2 — (B3 —
B; o——eo e | (abcla®=V=c"=(ab)* = (ac)*= (be)’=1)
7. 050 ¢ 22 2 (Y — ()2 — (be)3 —
Hy 9 o {(a,byc|a* =1 = = (ab)’ = (ac)* = (bc)* = 1)

Table 2.4: Finite Coxeter groups whose conjugacy

2.2.1

The Coxeter group A; X

(ab)? = (ac)® = (bc)? = 1)

/11 X /'ll

class structure is required

Conjugacy classes in A; x A x A4

has presentation {(a. b, ¢ | «* = b = ¢?
1 ; Uy

= (9 x Cy x (9. The orientation preserving subgroup

(A) x A; x A})" has presentation (o, 3 | o® = 5% = (a3)*

and # = bc and is isomorphic to the Klein 4-group Vj. Representatives for the

), where o = ab

conjugacy classes of non-identity elements of 4; x A; x Ay and (A x A; x Ay)*

are given in Table 2.5:

/‘11 X Al X /’11

(/11 X /11 X 141)+

Order 2:

a, b, ¢, ab

Order 2:

, ac, be o, 3, ad

Table 2.5: Conjugacy classes in Ay x 4; x A; and (4; x A1 x Al)+
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2.2.2 Conjugacy classes in A; x [5(3)

The Coxeter group A; x A, has presentation (a,b,¢ | a? = 0> = 2 = (ab)? =
(ac)? = (be)® = 1) 2 Cy x Dj3. The orientation preserving subgroup (C x f2(3))"
has presentation (o, 3 | o? = 3% = (af)? = 1), where o« = ab and g = bc and is
isomorphic to the symmetric group S;. Representatives for the conjugacy classes

of non-identity elements of Ay x I5(3) and (A; x [,(3))* are given in Table 2.6:

Ay x I(3) (Ay x L,(3))*
Order 2: | a, b, ab | Order 2: | o
Order 3: | bc Order 3: | 3
Order 6: | abe

Table 2.6: Conjugacy classes in Ay x I5(3) and (A; x I(3))*

2.2.3 Conjugacy classes in A; X 15(4)

The Coxeter group A; x I5(4) has presentation (a,b,¢ | a? = b? = ¢ = (ab)* =
(ac)? = (be)® = 1) =2 5 x Dy. The orientation preserving subgroup (Cp x Io(4))"
has presentation (o, 3 | o? = 3% = (of3)? = 1), where o = ab and 3 = bc
and is isomorphic to the dihedral group Dy of order 8. Representatives for the
conjugacy classes of non-identity elements of A; X [5(4) and (A4; x [(4))" are

given in Table 2.7:

/11 X [2(4) (Al X [2(4))+
Order 2: | a, b, ¢, ab, ac, (bc)? | Order 2: | «, af, 3?
Order 4: | be, abe Order 4:; | 3

Table 2.7: Conjugacy classes in A; x I5(4) and (A; x [y(4))*

2.2.4 Conjugacy classes in A; x 15(5)

The Coxeter group A; x [3(5) has presentation {(a,b,c | a? = b* = ¢* = (ab)? =
(ac)? = (bc)® = 1) = Oy x Djs. The orientation preserving subgroup (Cy x [o(5))"

has presentation (o, 3 | o = ' = (a3)? = 1), where o = ab and 3 = b
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and is isomorphic to the dihedral group Ds of order 10. Representatives for the
conjugacy classes of non-identity elements of Ay x [5(5) and (A; x 15(5))* are given

in Table 2.8:

Ay x Ir(5) (A x I2(5))*
Order 2. | a, b, ac Order 2: | af
Order 5: | be, (be)? Order 5: | 3, 37
Order 10: | abe, a(be)?

Table 2.8: Conjugacy classes in 41 x I5(3) and (A; x I5(3))*"

2.2.5 Conjugacy classes in Aj

The Coxeter group Az has presentation (a,b,cla* = b? = ¢ = (ab)® = (be)* =
(ac)* = 1). That this is a presentation for the symmetric group Symg can be
shown by the identifications: a < (1,2), b < (2,3) and ¢ « (3,4). The orientation

o =3 = (af)? = 1), with @ = ab

preserving subgroup A3 has presentation {(«, 3
and 7 = be, and is isomorphic to the alternating group Alt4. Representatives for the

conjugacy classes of non-identity elements of A3 and Af are as shown in Table 2.9:

A AY
Order 2: | a, ac | Order 2: | of3
Order 3: | be Order 3: | 3, 51
Order 4: | abc

Table 2.9: Conjugacy classes in A3 and A;’

2.2.6 Conjugacy classes in By

Bj has presentation (a,b,cla* = b? = ¢ = (ab)* = (be)® = (ac)? = 1) = G4 x Cy.
The orientation preserving subgroup By has presentation («, 8la* = 33 = (af)? =
1), where o = ab and 3 = be, and is isomorphic to S,. Representatives for the

conjugacy classes of non-identity elements of By and B are as shown in Table 2.10:
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B B
Order 2: | a, ¢, ac, (ab)?, (abc)® | Order 2: | a?, af3
Order 3: | be Order 3: | ¢
Order 4: | ab, c(ab)? Order 4: | «
Order 6: | abe

Table 2.10: Conjugacy classes in By and B;
2.2.7 Conjugacy classes in Hj

Hj has presentation (a, b, cla? = 0? = ¢® = (ab)’ = (be)® = (ac)? = 1) = Alts x Cs.
The orientation preserving subgroup ;" has presentation (o, 8la® = 3% = (af)* =
1), where o = ab and J = b¢, and is isomorphic to the alternating group Alts.
Then representatives for the conjugacy classes of non-identity elements of /3 and

H;“ are as shown in Table 2.11:

1, 1
Order 2: | a, ac, (abc)® | Order 2: | o3
Order 3: | be Order 3. | 3
Order 5: | ab, (ab)? Order 5: | a, o?
Order 6: | c(ab)?
Order 10: | abe, (abe)?

Table 2.11: Conjugacy classes in Hg and _7];r

2.3 Discrete extensions of the 3-dimensional sim-

plicial Coxeter groups

In [La| Lamnér listed all the tetrahedra in H® whose dihedral angles are of the
form 7 /n, lor some integer n. Associated with these tetrahedra are the reflection
groups generated by reflections in the faces of the tetrahedra and referred to either
as Coxeter groups or as Lannér groups. The angle between any pair of faces is an
integer submultiple of 7, hence the group generated by reflections across the faces

of the tetrahedron forms a discrete subgroup of Tsom(H?).
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Much of this thesis is devoted to the classification of torsion free normal sub-
groups N ol the orientation preserving subgroup I'; of the Lannér groups I';, as
listed in Table 2.3. In particular a complete classification of all N < T} satisfying
/N = Ls(p™), where p is a prime, is given. Hyperbolic manifolds with a large
number of symmetries are also constructed. A manifold M is said to have a large
number of symmetries if vol(M /Isom(M)) is small. Let T'; = Nsomss) (I';) be the
normalizer of T'; in [som(IH?) and M = H3/K, where K is a torsion free subgroup
of I";. Then Isom(M) is the normalizer Ny () of K in I';. Hence it is important
to know the normaliser N Isom(Hg)(Fl) of I'; in Isom(H?®). In [DM2] Derevnin and

Mednykh classified all extensions of the Lannér groups:

Theorem 2.3 ( [DM2]) Let T'; be a one of the nine Lannér groups listed in Ta-
ble 2.3 and let T be the orientation preserving subgroup of Uy, [f T is a subgroup

of a discrete group G C Isom(H?*), then I} is normal in G.

As a consequence of this theorem, Nigo e, (T;) can be identified with Aut(I']")
(since the T/ have trivial center) and Inn(I}") = T'}". The outer automorphism

group of T is then one of the following types:

If i € {6,9}, then Aut(I'])/Inn(T}) = Zy x Zy x Zo.
Ifs € {1,2,4,5,7,8}, then Aut(I';")/Inn(T}") = Zy X Zs.

If4 = 3, then '3 is the unique non-trivial discrete extension of I'y in Tsom(H")
and Aut(I'7)/Inn(T']) = Z,.

The outer automorphisms of T'; can also be considered as the graph automor-
phisms of the Coxeter scheme for I';, acting on the generators s; corresponding to
the vertices v;. This induces an action on '}, and together with conjugation by
elements of I';\I']" they generate the outer automorphism group described in the

remarks following the statement of Theorem 2.3.
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2.4 Determining low index subgroups of finitely

presented groups

As is mentioned in the previous section, much of this thesis is spent character-
izing families of normal subgroups of the Lannér groups. To better understand
these groups, computer-aided constructions were employed to classify all conju-
gacy classes of low index subgroups. In order to construct complete lists of low
index subgroups of GG the program Lowx [Lx| was used. All conjugacy classes of
subgroups up to index 60 were computed for I'y, I'y, I's and T'y. All conjugacy
classes of subgroups up to index 20 were computed for I'5, I'g, I'; and I's, while all

conjugacy classes of subgroups up to index 24 were computed for T'y.

Using this data, further subgroups could then be determined by letting a Lannér
group I']” act on the cosets of a representative H of a conjugacy class. The action
induces a permutation representation ¢ : I — S, of T; in some symmetric group
Sy, where n is the index of H in I';. The core of a representative, K(H), is the
kernel of this representation. In many cases, provided that n is not too big, it is
possible to determine a presentation for K (H ). Various invariants of the associated
manifold, M, = H?/K(H), such as its fundamental group and its homology, can

then be determined.

Given a permutation representation ¢(I;), the combinatorial structure of the
associated manifold can then be deduced by careful analysis of the group structure.
As a result, a complete combinatorial description of the manifold My, the action
of the isometry group on My, a presentation for its flundamental group, a complete

description of its homology and its volume can all be provided.

The method of determining all conjugacy classes of subgroups up to a given
index is a modification of the coset enumeration algorithm ( [HEB], [Ne|). The basic
coset enumeration algorithm constructs, for a given finitely generated subgroup H
of a finitely presented group (i, a coset table for H in . One of the most important
facts about the algorithm is that, for any finitely presented G and H of finite index

in (G, the algorithm will eventually terminate.

The low index search algorithm works as follows: In order to find all subgroups
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of index < N in a group G. the algorithm starts with the trivial group and proceeds
to emumnerate cosets of it using the Todd-Coxeter (TC) algorithm. The number of
cosets allowed is bounded by some function f(N). It is generally assumed that
N < f(N) < 2N. The TC algorithm then either returns the statement that G
has some order < f(N) or halts with an incomplete coset table. If G has order
less than f(NV) then its coset table (modulo the unit subgroup) is printed as a
first table. If, however, (G has order bigger than f(N), the TC algorithm stops
with an incomplete coset table. In this case, pairs of forced coincidences (i, )
are then systematically introduced between the incomplete coset rows 4; and i
in the table. After applying a coincidence, the TC procedure is then restarted on
the modified coset table. In theory this procedure will continue until there are
no further incomplete tables. In practise, however, if the initial bound N is even

moderately large, the procedure is limited by machine constraints.

The above algorithm describes a method for finding all subgroups H of index
less than N in (. In general it is more efficient to find conjugacy class repre-
sentatives of subgroups. This is how the algorithm is implemented in both GAP
and Lowx. Furthermore, the TC algorithm does not provide a generating set for
each representative. There are a number of methods available to compute a pre-
sentation for H. One such method is to nse the completed coset table for H in
G to construct a set of Schreier generators for H( [HEB] §2.5 ). Once a set of
generators for H has been constructed, a modified Todd-Coxeter procedure can be
used to find a presentation for H as an abstract group. The resulting presentation
is generally rather cumbersome and can be shinplified using a sequence of Tietze

transformations.



Chapter

Epimorphic images of the [5, 3,5

Coxeter group

3.1 The Coxeter group [5,3, 5]

Let T Dbe a tetrahedron in H® with vertices A, B, C, D, and with dihedral angles
7[5, w/3, w/5, ©/2, w/2 and 7 /2 along its edges CD, AD, AB, BD, BC', AC, as
shown in Figure 3.1. The standard generators a, b, ¢ and d of the Coxeter group

I' =[5, 3, 5] are the reflections of H? in the sides of 7" opposite 4, B, ' and D.

Figure 3.1: A hyperbolic tetrahedron 7°

36
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Thus I is a discrete group of isometries of H®, and this space carries a tessellation
T by the images of T, permuted regularly by I'. The normaliser  of I' in Isom H?
is a semidirect product of I' by a cyclic group of order 2, generated by a half-turn
r of H? about an axis through the mid-points of the edges AD and BC of T’ this
preserves the tessellation 77, and acts by conjugationon I"asa” =d, V" =¢, " =b

and d" = a.

The subgroup I'y = (a,b,¢) of T is the [5, 3] Coxeter group. This group is the
isometry group of a dodecahedron and is isomorphic to As x 5. The 120 images
of T under I'y form a hyperbolic dodecahedron D, with dihedral angles 27 /5, and
the images of D under I' form a dodecahedral tessellation D of H?; there are five
dodecahedra around every edge, so the vertex figure of D is an icosahedron. The
isometry group of D is I', while  sends D to its dual tessellation D*, which is

isomorphic to but distinet from D.
The orientation-preserving subgroup I't of I" has a presentation
- 5 _ ; Y2 )2 2 _
[ = (0, 8,70 =3 =+ =(ap)? = (affy)? = (B7)? = 1),

where a = ab, § = be and v = cd are rotations of H? through 27 /5, 27/3 and 27/5
about the edges C'D; AD and AB of T. It has an associated fundaniental region

T =T nNa(T) formed by doubling T" across the face BC'D.

Lemma 3.1.1 The torsion elements of 'V are the conjugates in ' of the powers
of a, B, v and «f3.

Proof: Any isometry g of H? of finite order has a fixed point p € H3. Let g € I'" be
an element of finite order. Then, since 7" is a fundamental region for I, conjugating
g by a suitable element of I, it may be assumed that p € T". Suppose that ¢ # 1,
so p is in the boundary &1 of T'. If p is in the interior of an edge or face of 91" then
g fixes that entire edge or face, including any incident vertices; it can therefore be

assumed that p is a vertex of 7.

The stabiliser in I' of the vertex D of T"is the rank three Coxeter group I'y =
(a,b,¢), so if ¢ fixes D then g lies in the orientation-preserving subgroup I'y =
(5,37 = (o, F) = Ay of T'y; the non-identity elements of this group, of orders 2, 3

-
i

or 5, are conjugate to the powers of af, § or a respectively, as required. Similarly
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if g fixes A then it lies in the orientation-preserving subgroup I'f = (4.v) = As
of I'y = (b, ¢, d), and is conjugate to a power of O, 8 or . If ¢ fixes C then it lies
in the orientation-preserving subgroup (o, Bv) = Ds of (a,b,d) = D5 x Cy, and is
therefore conjugate to a power of « or Fv; similarly if ¢ fixes B it is conjugate in
(af3,7) = Dy to a power of v or #y. The involution a3+ is conjugate in (af,7) to

o3, and in (&, B7) to v, so these three involutions are all conjugate in I't. H

Note: Lemma 3.1.1 can be extended to determine all the conjugacy classes of

torsion elements of (2.

Corollary 3.1.1 Each proper normal subgroup of 't is torsion-free.

Proof: It follows easily from the presentation of I'" that if any non-identity power
of v, 4, v or af3 is mapped to the identity then the group collapses to the trivial
group. Thus the only normal subgroup containing non-identity torsion elements is
I+, [ |

Hence, if NV is a proper normal subgroup of I'", then the corresponding quotient
space H®/N of H? is a manifold, and it is compact if and only if N has finite index
in I'*. The presentation given above shows that I'" is perfect, so its maximal
normal subgroups have nonabelian simple groups as quotients. The family Ly(g)
of finite simple groups will be considered as possible quotients since in a certain
sense "most” nonabelian finite simple groups have the form L(g). For technical
reasons 1t 13 necessary to deal first with quotients isornorphic to the alternating

group A; = Ly(4) = Ly(5).

3.2 Quotients of '™ isomorphic to A;

Lemma 3.2.1

~

(1) There are two normal subgroups Ny and Ny of T with TT/N; &2 As, namely

the kernels of the epimorphisms 6, : TV — Ag (i = 1,2) given by

a — (13524), B (123), v — (14352) or (13425).
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(ii) Ny and Ny are conjugate in T.

(iii) Fach N; is normal in the orientation preserving subgroup Q% of Q, with QT /N;

tsomorphic to the symmetric group Ss.

Proof: (i) The normal subgroups with quotient A; are the kernels of epimorphisms
't — As. Two epimorphisms have the same kernel if and only if they differ by an
automorphism of As. Any epimorphism # must map o and 3 to elements of order 5
and 3 in As and any pair of elements of this type generate As. By composing 6 with
a unique automorphism of Ajz, it may be assumed that # maps « and 3 to (13524)
and (123), since their product is an involution. It remains to find all possible images
of v in Aj, preserving the relations of T'" involving ~. It is easily seen that the
only possibilities are (14352) and (13425), both of which are conjugate to o. This

gives two inequivalent epimorphisms #; and #,. Define N; = ker 6; for = 1, 2.

(i) Since T" normalises 't its action by conjugation permutes the normal sub-
groups of It with a given quotient, so N; and N, must be either normal in I' or
conjugate in I'. If either N; were normal in I, then b would induce an automorphism
of TT/N; = As imitating the effect it has by conjugation on I't. This automor-
phism must invert the images (13524) and (123) of o and /3, and the only element
of Aut A5 = S5 doing this is the permutation (13)(45). Mapping b to (13)(45), then
¢ = bF is mapped to (23)(45). Then d = ¢y is mapped to (14253) or (13524) for
1 = 1,2, which is clearly not to an involution in either case. Thus the subgroups
N; are not normal in I, so they are conjugate to each other. (Alternatively, note
that the element (abc)® of T, which represents the antipodal involution in the do-
decahedral group I'y = Ay x Cy and hence commutes with o and 8, transposes #;
and 0,.)
(iii) The action of r by conjugation on I'* is to transpose « and v~! and to invert
3, and for ¢ = 1, 2 the permutations (23) and (13) in S5 respectively have the same
effect on the images of these generators under é;; this shows that each f; extends to
an epimorphism Q" = (I'", r) — S;, so each N; is normal in Q1 with Q1 /N; = S;.
B
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The quotient manifolds H?/N; form a chiral pair of Seifert-Weber spaces, so
it is useful to obtain presentations for their fundamental groups N;. These were
obtained by using GAP to implement the Reidemeister-Schreier process. The epi-
morphism 6 sends abed to (13524)(14352) = (15)(23). Adjoining the relation
(abed)? = 1 to the presentation for I'" gives a presentation for A;. Hence N is the
normal closure of (abed)? in TV ([C1, pp 23-33]). Using GAP a presentation for N,

as an abstract group was found. This presentation is given in Table 3.1.

(Pr Foy By, Iy | PRI A R P P T B P = 1,
F R B N T R R P R R =,
TR DY Sl D OV AR DY SRR DR A Skl S SN
R FS BT R FC U B R R =1)

Table 3.1: A presentation for Ny as an abstract grou
1 < p

The generators for Ny as a subgroup of I'" can be described by writing F; as
follows: I\ = abacbded, Fy = ababacbdcdba, F;l]ﬂ = acbadcdh and F, 4_1[71_1[’3 =
bebabdedea. Rewriting these gives I = o? 3292, Iy = a(ay)?a™?, I3 = ay?edF and
Fy = a®y*43. Similarly the epimorphism #, sends abed to (13524)(13425) = (143).
Adjoining the relation (abed)® =1 to the presentation for I't gives a presentation
for As, so N, is the normal closure of (abed)? in T (|C1, pp 23-33]). Using GAP
a presentation for N; as an abstract group was found. This presentation is given

in Table 3.2.

(Fi, Fo, F3, Fy | FiF P FUA R FT R P Ry =1,
R T R Fy Fy R Py Yy T R, =1,
F2F4_]E%F1_]F2F371F1F:;1F2_]F4_]F1 =1,

I F Py I I R R P T By = 1)

Table 3.2: A presentation for Ny as an abstract group

The generators for Ny as a subgroup of I'" can be described by writing Fj

as [ollows: Fy = abadcdbe, EgF’;lFlE{]ﬂ = babcbededa, E;FQ*IFlE{lFAIF{] =
ababacbededd and FyFyT = ababadedbeba. Rewriting these gives Fy = (ay™)?%,

[y = (o792, F3 = af%ay® and Fy = (ay)*y(Ba~Ba)? [y, Gla=t.
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3.3 Some facts about the simple groups Ls(q)

In order to study normal subgroups of I" or I'* with quotients isomorphic to Lz(g),
some useful facts about these groups will now be presented. A more extensive

treatment can be found in [D], Chapter XII.

The groups Lo(¢g) are simple for all prime powers ¢ = p", with the exception of
grouy q p 1 I | =P
L9(2) = S3 and Ly(3) = A4. They are mutually non-isomorphic, with the exception

of Ly(4) and L(5), both of which are isomorphic to As.

By Corollary 3.1.1, any nontrivial homomorphism I't — L,(¢) must send the
non-identity torsion elements of I'", as classified in Lemma 3.1.1, to elements of
order 2,3 or 5, so it is useful to be able to identify the elements of these orders in
Ly(q). Regarding an element of Lo(q) = SLs(q)/{x£[} as a pair £A of matrices in
SLa(q), then its trace is well-defined up to multiplication by —1. For each ¢ the
elements of order 2 form a single conjugacy class, consisting of the non-identity
elements of trace 0. The elements of order 3 also form a single class, and these are
the non-identity elements of trace £1. There are elements of order 5 in Ls(q) if and
only if p =5 or ¢ = +1 (mod 5), in which case they form two conjugacy classes,
each inverse-closed and consisting of the squares of the elements of the other class;
these classes consist of the non-identity elements of traces +(—1 4 +/5)/2, where

V5 lies in a field F, iff p 2 41 mod 5 or else g = p°.

Since I'* is perlect, the image of any nontrivial homomorphism I't — Ly(q)
must be a perfect subgroup of Ly(q). These are all isomorphic to As (icosahedral
subgroups) or to La(q’) where Iy is a subfield of F,, so that ¢ = p™ for some m
dividing n. If p = 2 there is a'single conjugacy class of icosahedral subgroups when
n is even, and there are none when n is odd. If p = 5 there are two classes of such
subgroups if n is even, or one class il n is odd. For odd ¢ = £1 (mod 5) there are
two conjugacy classes, merging to form a single class in G Lo(q), whereas for odd

g = +2 (mod 5) there are none.
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3.4 Quotients of ['" isomorphic to Ls(q), p € {2, 5}

Let I, be the algebraic closure of the field F}, of order p, where p is prime. This is
the union of the finite fields F, for all powers ¢ of p, with the natural inclusions,
so the group L = Lo(I,) is the union of the corresponding groups Lq(F,) =
Ls(q), with the induced inclusions. It follows that any epimorphism I't — Ly(q)
can be regarded as a homomorphism I't — T, by composition with the natural
embedding Ly(q) — L. Conversely, since I't is finitely generated, the image of any
homomorphism 't — L is contained in a subgroup Ls(K) for some finite subfield
K of F,; since 't is perfect, the image (if nontrivial) must be isomorphic to As
or to La(q) for some power ¢ of p. Thus we can find all quotients of I'" isomorphic
to Lo(q) by considering all nontrivial homomorphisms T't — L, and excluding
those with image isomorphic to A; if ¢ # 4, 5. For technical reasons, it is assumed
here that p #£ 2 or 5. These exceptional primes will be considered in § 3.5 of this

chapter.

3.4.1 The restriction to I'J

If  : It — L is any nontrivial homomorphism, then its restriction ¢ to I'j =
(v, B) &2 A5 must be an isomorphism with a subgroup (¢ = Ay of L. There is a single
conjugacy class of such subgroups (¢ in L. This is because, being finite, any pair of
such subgroups are both contained in a subgroup Lo(K') for some finite subfield K
of I,; now Ly( K') has two conjugacy classes of such subgroups (as previously shown
in § 3.3), and these are all conjugate in the subgroup PG Ly(K) < Ly(K) < T,
where K is the quadratic extension of K in F,. Let us define two embeddings

& — L to be equivalent if they differ by an inner automorphism of L. Given any
pair of embeddings ¢; (i = 1,2), the conjugacy of their images implies that 1, is
equivalent to an embedding 4% with the same image as v, so v} differs from ¢,
Out Aj

two equivalence classes of embeddings. Indeed, since the outer automorphisms

= 2 1t follows that there are at most

by an automorphismn of As. Since

of As transpose its two conjugacy classes of elements of order 5, and these are
distinguished by the traces (—1 £ +/5)/2 of their images in L, which are invariant

under conjugation, it follows that there are exactly two equivalence classes of
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embeddings 'y — L.

Representatives of these two classes can be constructed as follows. Define F' = F,
or F,z, depending on whether p = £1 or £2 mod (5), so F is the smallest subfield
of Fp containing a square root of 5, or equivalently for which L := Ly(F) contains
elements of order 5. A simple counting argument shows that in any finite field,
each element is a sum of two squares, so for each t = t; = (=1 4+ /5)/2 (i = 1,2)
in I, elements e, f € I (depending on 7) can be chosen such that e+ f2-+3 = 2,

or equivalently
e+ f+t+2=0 (3.1)

since ¢ = 1 — t. For instance, if —3 is a square in F, then taking ¢ = /=3 and
/= —t (or vice versa), Equation 3.1 is satisfied. The case e = f = 0 can not
happen, since this gives t = —2 and so 4 = t* = 1 — ¢ = 3, which is impossible;
thus, without loss of generality, it can be assumed that e # 0. Now define 9; :

Iy — L <L, fori=1,2, by taking { = {; and sending

t—f e+1 L e+l t4+7) |
a:—>1 et ?/BF—%E e / (3.2)
2\ e—1 t+f 2\ f—t 1l-e

01
-10

follows that each 1/; is & homomorphism and hence an embedding by the simplicity

so af ( ) Since «, § and «fF are sent to elements with traces 4=¢, =1 and 0 it
of Ty . Since the image of « under ; has trace =t;, the embeddings v, and v, are

not equivalent, so every embedding is equivalent to precisely one of them.

3.4.2 Extension to I'"

A mapping

w xr —
b el
y oz

with wz —zy = 1 extends ¥; to a homomorphism I't — L if and only if it preserves
the relations v° = (#v)? = (afv)? = 1. Multiplying the above matrix by —1 if
necessary, the first condition can be rewritten as © = w + z = t; or {o. The second
and third conditions are equivalent to (¢ + 1)w+ (t+ )y + (f —t)a+ (1 —¢e)z =

y—x =0, giving y = z and 2ew + 2fz + (1 — e)u = 0, that is:

2ew = (e — 1u—2fx (3.3)
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and so 2ez = 2eu — (e — N)u + 2fx = (e + 1)u + 2fx. The equation wz — a2y =1

then gives:

de? = 2ew.2ez — delpy
= ((e—Du-—2fz)((e+Du+2fx) — de*s”

= *ul — (u+ 2']”;5)2 — 4e222,

de® + A2 +dfur +4e* — (2 - Du? = 0 (3.4)

This is a quadratic equation for z, and extensions ' — I of 1; are in one-to-one
correspondence with its solutions in Fp. Thus, for each possible choice of the pair
{t and u from {{1, 13}, there are at most two such homomorphisms. We will denote
such an extension of ¢; by 0;; if t = ¢, and u = ¢;. From § 3.2 it is known that any
isomorphism ¢ : I'f — Aj has two extensions to epimorphisms 6 : 't — A, with
the image of v in each case conjugate in Aj to that of . It follows that if 7 # j
then the extensions f; : Tt — L of ¥; have images isomorphic to As, and hence

not isomorphic to Ly(q) for any power ¢ of p, since p # 2, 5.

From now on it will be assumed that ¢ = j. Thus t = u, so Equation 3.4 can be

rewritten as:
2 2.2 p 2 1., 2 =
(e + [+ fle + e — I(e -1t = 0 (3.5)
a quadratic equation with discriminant

D = A4+ (e = 1)1* — 4e?)
= (E+1+2)(t—1) = (t+2)((2—1)(1 - t) — 4¢?)
= -+ U+ -1+ (=D +2)(t—1)+4e*(t +2)
= ¢t —1)+ et +2)(t — 1) +4de(t +2)
= ¢&*(5t +6). (3.6)

Now ¢ # 0, so D is a square in F' if and only if 5¢ + 6 is. If 1D is a square, then
provided DD # 0 there are two solutions for z in F, giving two homomorphisms
0 : I'" — L < L. Since ¢ = u their images cannot be isomorphic to As, so

these must be epimorphisms onto L. The exceptional case [) = 0 corresponds to
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t = —6/5; then 36/25 = t* = 1 —1¢ = 1+6/5, that is, 36 = 25 4+ 30 = 53, so
p = 19 and ¢ = —5; in this case, there are two epimorphisms I'" — L = Ly(19)

for L = u = 4 (since 5/ + 6 = 8?),

3

and one for ¢t = v = —5 corresponding to the
unique solution v of Equation 3.5. For the moient, let us assume that p # 19, so

that D # 0.

For t = u =t; (i = 1,2), with corresponding values e = ¢;, the discriminants
D; = e2(51; + 6) = e2(7 =+ 5v/5)/2 satisly D1Dy = —19(eqe;)?. Suppose first that
Fl=9p* orp=+1

—19 is a square in I; equivalently, either p = 2 mod (5), so
mod (5) andp = 1,4,5,6,7,9, 11,16 or 17 mod (19). Then either both or neither of
Dy, Dy are squares, giving four epimorphisms onto L or none respectively. Suppose
first that D) and Dy are both squares, so that there are four epimorphisms; since
PGLy(F) preser\}es traces, and only its identity element centralises an As in L, it
acts trivially on these four epimorphisms. It follows that when p = +1 mod (5), so
|F'| = p and hence Aut L = PG Ly(F), there are four normal subgroups in I'" with
quotient L = Ly(p); when p = 2 mod (5), however, so that [F| = p?, the Galois
group of the field I transposes ¢; and 5. In this case Aut L = PT'Ly(F) has two
orbits on the four epimorphisms-and hence there are just two normal subgroups
with quotient L = Lo(p?). If neither D; nor Dy is a square, so that there are no
epimorphisms onto £, then, since D) and D, are both squares in the quadratic
extension K of F of order |F|?, four epimorphisms onto Ly(K) are obtained. If
p = 41 mod (5), so that |F| = p, then the Galois group Gal {/F of this extension
transposes the two epimorphisms corresponding to each discriminant, so there
are two distinct normal subgroups with quotient Lo(K) = La(p?). If, however,
|F| = p* then Gal F/F, transposes {; and f,, while Gal K/F transposes the two
epimorphisms corresponding to each ¢;, so a unique normal subgroup with quotient

Lo(K) = Ly(p*) is obtained.

Now suppose that —19 is not a square in F, that is, p = +1 mod (5), so

[} = p, and p = 2,3.8,10,12,13,14. 15 or 18 mod (19). In this case, exactly

one D; is a square in F, giving two epimorphisms onto L = Ly(p) with distinct
kernels; by adjoining the square root of the other diseriminant two epimorphisms

onto Ly(K) = Ly(p*) are obtained, and they are equivalent under Gal I(/F.

Similar arguments show that when p = 19 three normal subgroups with quotient

L5(19) are obtained: two of these correspond to epimorphisms with / = « = 4 and
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D = 1, and one to an epimorphism with ¢t = v = —5 and D = 0. These three
subgroups, and their associated manifolds, will be considered in more detail in

§ 5.11 of Chapter 5.

3.5 Thecasesp=2and p=>5

This section studies the exceptional primes p € {2,5} as specified in section § 3.4.

3.5.1 p=5>

L has a single conjugacy class of icosahedral subgroups, since any two such sub-
groups of Ly(g) are conjugate in La(q?). Take Ly(5) as a representative of these
subgroups. Now the normalizer of /,(5) in 1 is PGLy(5) = S5 = Aut(A;), so it
follows that in this case there is a single equivalence class of embeddings I'g — L.
Representatives for « and 7 are given by:

1/ t—f e+l 1[{e+1 t+f

= 7/8'_>T
2\ e—1 t+f 2\ f—t 1—e¢

(3.7)

with t =2, e =1 and f = 0. Then, arguing as in § 3.4.2 there are two choices for
0 2 . .

v, namely v +— (,, ﬂ). Hence there are two normal subgroups with quotient L (5),

namely Ny and Ny, and none with quotient Ly (5") for n > 1.

3.5.2 p=2

If p = 2 then Ly(2") has a subgroup G = As if and only if n is even, in which case
all such subgroups are conjugate to L9(2?). Thus I has a single conjugacy class of

such subgroups.

As discussed in § 3.4.1, there are two equivalence classes of embeddings I'§ — L,
distinguished by the traces of the images of a. These are the elements t; € Fy\ Iy,
that is, the primitive cube roots of 1. Define ¢, : I'f — L < L, for i = 1,2, by

taking £ = {; and sending
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tt+1 t+1 0 01
o= , B , S0 ol .
t 0 3 L 10
w x
¥ -
( yoou A+ w >

where u = {; for some j = 1,2 then the relations (3v)? = (ady)* = 1 give
(U+NDw+ile+ilu+w)=y+a =0 % w=I{zr+u) and y = x. Thus
1 =wlu+w)—ay=tlx+u)(ut+t(z+u))+a? =+ 1)z? + tur + tu(u+tu) =

ta® + tuz + 1, so ta? + tux +uw = 0, that is, 2% + ux +wt? = 0. If u = ¢ this gives

It

2?2 + tx + 1 = 0, which is irreducible over Fy so it has two roots in Fig for each
value of #; the Galois group Gal Fy/Fy transposes the two possible values 1, {3 of ¢,
and for each ¢ the Galois group Gal Fyg/Fy transposes the two roots z, so all four
roots z are conjugate under Gal(Fjg/F,) and hence one normal subgroup of I'*
with quotient Lo(2*) is obtained. If u # ¢ then 2% + uz + u? = 0 with roots x = 1
and x = u? = ¢, yielding four epimorphisms I'* — L,(22); these four choices of
the pair ¢, z form two orbits under Gal Fy/F;,, with z = 1 and @ = ¢ respectively,
so there are two normal subgroups of I'* with quotient Ly(22). Since Lo(22) is
isomorphic to both Ly(5) and As, this is consistent with the earlier results on

these two quotients.

3.6 The main result

The results obtained in § 3.4 and § 3.5 can be summarised in the following theorem:

Theorem 3.1 I'" has only the following normal subgroups with quotient isomor-

phic to La(q) where q is a power of a prime p:

a) for p =2 there are lwo normal subgroups with quotient Lo(4), and one with

quotient Lo(16);

b) for p=>5 there are two normal subgroups with quotient Lo(5), namely those

with quotient Lg(4) appearing in (a);

¢) for p =19 there are three normal subgroups with quotient L4(19);
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d) for each p = £1 mod (5) with p = 2,3,8,10,12,13,14,15 or 18 mod (19)

there are two normal subgroups with quotient La(p) and one with quotient
Lo(p®);

e) for each p = £1 mod (5) withp =1,4,5,6,7,9,11,16 or 17 mod (19), there
are either four normal subgroups with quotient Lo(p) or two with quotient

Lo(p?), as (74 5V5)/2 are both squares or both non-squares in I,

f) Jor each odd p = £2 mod (5) there are either two normal subgroups wilh
quotient Lo(p®) or one with quotient Ly(p*), as (7= 5v/5)/2 are both squares

or both non-squares in F,(v/5) = Fj.

3.7 Extending to I’

Recall that we have

1({t—f e+1 ) 1{ e+l t+f w o
o = ;o Bz ;oY
2\ e—-1 t+f 2\ f—t 1—e x l—-w

and equations ¢ + f2 +3 =2 =1—¢, 2ew = (e — 1)t — 2fz (since tr(afv) = 0)
and 4(e* + [H)z* + 4 fux + de* — (e* — 1)u? = 0 (since det(y) = 1). Now consider

. S . , Ty X2
extending a surjection ¢, : I't — La(q) to ¢ : I' = Lo(g). Let g = ( be
Iy X4

the image of @ under ¢. Note first that, since the subgroup < a,b,d | a* = b? =
d* = (ab)® = (ad)* = (bd)* = 1 > must map faithfully under such a ¢, we require
20 | q(¢* — 1). Since the order of g is 2, we have 24, = —z, while ¢(aad) = ¢(c)

forces xy = 13. Next,

wrlt— 1)+ za(e— 1) . )

dlaa) = ¢(b) = ( N xale+ 1) — 1 (t+ f)

so tr(ae) = 2exy — 2fxy =0 and so g = v /e , while
fei/e —x

* fo,(t —w)/e+ax

Q/)(G(I;S'y) = Q/)(d) _ ( TT — U}fl.l/e . )
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so a1 (2ze — 2wf + ft) = tr(acfdy) = 0. Since we cannot have z; = 0 (since then

0 a ‘
. g 2w—t Al . .
g = }, this forces x = ”0“4;) Finally, det(g) = 1 yields the equation
0 -
g " b . 2 . o . .
—rie® — [Pl = ¢® so 7} = 5. To summarise, we have four equations in four

unknowns:
M) e?+f*+3=1—1t
(IT) 2ew = (e — 1)t = 2fx
(IlI) = = f(2+;_f)

(TV) 4(e? + f2)a? + A fur +4e* — (e — Du? =0

Now (II) and (I1T) gives (¢? + [?)(L — 2w) — el = 0. From (I) we get the equation

w = H2EE Hence we can write z = z(zf—if) (I1a). Next, (1), (IIT) and (IV) combine

to give % +4e? — (e = )P = 0,50 (1 — )2+ (T+ 4t)e? + (4 = 3) = 0 (V).
Then (V) and (1) gives €* = 5785 so [? = =2=T and o} = {5

Theorem 3.2 A map ¢, : 't — La(q) can be extended to a map ¢ : T — La(q)

L t—f e+1 o1 e+1 i+
- g
2\ e—1 1+ f 2\ f—t 1—e

Y, (1+e)t+1 ft . 1 e f
L4402t It (1—e)t+1 L V2T S —e

provided there exists f,e € F, with [ +¢e? +3 =12 and (1 —1)f% + (7 +4t)e* +

(4L —=3) = 0. If such a solulion does not exist in F,, then one exists in F 2 and our

with

representation 18 given by

pla)=g 5 ¢b)=ga ; dlc)=gal ; ¢(d)=gaby



Chapter

Further maps to linear groups

In chapter 3, all torsion free normal subgroups of the orientation preserving sub-
group I't of the the simplicial Coxeter group I' = [5,3, 5] (the Lannér group Ty)
whose factor group is of the form Ls(q) were classified. As a result, a family of
hyperbolic manifolds with a "large" isometry group was constructed. This aim of
this chapter is to extend this classification to the other 8 simplicial co-compact
Coxeter groups acting on HP. For ease of exposition, the notation developed by

Lannér [La] is used.

The complete list of compact simplicial hyperbolic Coxeter groups in dimension
3 was enumerated by Lannér [La| and is described in detail in § 2.2 of Chapter 2.

The nine groups are listed here in Table 4.1.

T1[2,2,3:3,5,2), Tu[2,2.5;2,3,5]. 7:12,3,3:2,5,3],
Ty[2,2,3;2,5,3], T:[2,3,3;2,4,3], Ts[2,4,3:2,5,3],
T4(2,2,4;2,3,5), Ts[2,3,4:2,3,4], Tpl2,3,5:2,3,5].

(7

Table 4.1: The nine Lannér groups

Each group is described by a 6-tuple [\, A2, As; p,l, g, pi3), of numbers, where
7/ A; are the angles between a chosen base face and the other three faces of T, and
7/ is the dihedral angle of the edge opposite that labeled with 7/);. Recall that
these groups can be described as [ollows: Ty is the [5, [3]?] Coxeter group whose

Coxeter scheme has one vertex of valence three connected to the three vertices of
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valence one, one edge with label 5 and the other two edges unlabeled. 15, 73 and
Ty have linear Coxeter schemes. In this case the labeling for these schemes can be
described as a list. The Coxeter scheme for 75 has edge labels 3, 5, 3. The Coxeter
scheme for Ty has edge labels 4,3,5. The Coxeter scheme for Ts has edge labels
5,3,5. The remaining five Lannér diagrams correspond to Coxeter groups whose
Coxeter scheme is a square: Tx is the Coxeter scheme one of whose edges is labeled
4, Ty is the Coxeter scheme with two opposite edges labeled 4, T7 is the Coxeter
scheme one ol whose edges is labeled 5, Ty has one edge labeled 4 and the opposite

edge labeled 5 and Ty has two opposite edges labeled 5.

4.1 Preliminaries

For each Lannér group T;, the torsion free normal subgroups of 7; whose factor
group has the form Ls(q) will be determined in the same way as done for T} in
chapter 3. All of the groups 7; contain one of the following two Coxeter schemes

as a sub-diagram:

a 5 b C a 4 b C
. oo —o oo o
5,3 4, 3]
To classify all torsion-free normal subgroups N of T, = I'" that satisfy

I't/N = Ly(q), representations of [5,3]" and [4,3]F in La(q) are constructed.
These representations are then extended to full epimorphisms I'" — Ly(¢) by de-
termining the conditions under which a suitable image for v = ¢d can map to
g € Lo(q) satisfying the relations in the presentation for I't. In all of the Lan-
uér groups, ensuring that all defining relators are mapped faithfully to Ly(q) is

sufficient to ensure that the kernel of the map is torsion free.

4.1.1 Coxeter schemes containing [5, 3]

First suppose that the group contains the scheme [5,3]. Then write I’y = [5, 3] =
As x Co, and T = [5,3]F = (o, 8] a® = 3 = (a3)? = 1) & A5. Working as i

—

1



4.1. Preliminaries 52

§ 3.4.1, take ¢, : I — Aj to be defined by

1 iL—f e+1 1{e+1l t+f
= = and S— - |
2\ ~l1+e t+/ 2N S —t 1—e

where ¢2 + [+ 3 =1%t = %ﬁ o = ab and 5 = be. Then

, 0 1
od
-1 0

Note that if ¢; = M, then #1,; = —1 — t;, where the subscripts are taken

mod 2. Let

with determinant wz — xy = 1. Then ; can be extended to a homomorphism
I't — [ if and only if it preserves the relations v*1 = (3v)"2 = (a3+)* = 1, where
the v; € {2,3,4,5}. Recall that, from quadratic reciprocity, V5 € F if p = +1

mod 5 or |F| = p?.

4.1.2 Coxeter schemes containing [4, 3

Suppose instead that I’ contains the special subgroup Iy = [4, 3] & Sy x Cy. Let F,,
be the algebraic closure of the field IF,, of order p, where p is prime. This is the union

of the finite fields F, for all powers q of p, with the natural inclusions, so the group

L := Ly(IF,) is the union of the corresponding groups Lo (IF;) = La(q), with the
induced inclusions. It follows that any epimorphism I'" — L4(g) can be regarded as
a homomorphism I'* — L, by composition with the natural embedding La(q) — L.
Conversely, since I'" is finitely generated, the image of any homomorphism I't — L
is contained in a subgroup L.(/{) for some finite subfield K of Tp; from Dickson,
if p = £1 mod 8, then the group Sy is in Lo(p). If p = +3 mod 8§, then Sy is in
PG Ly(p) and hence lies in Loy(p?).

If : 't — L is any nontrivial homomorphism, then its restriction v to I'j =
(v, #) = Sy must be an isomorphism with a subgroup ¢ 22 Sy of L. There is a single
conjugacy class of such subgroups ¢ in L. This is because, being finite, any pair

of such subgroups are both contained in a subgroup Ly(K') for some finite subfield
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K of F,; now Ly(K') has two conjugacy classes of such subgroups, and these are
all conjugate in the subgroup PGLy(K) < Lg(f( ) < T, where K is the quadratic
extension of & in I7,. Let us define two embeddings I'f — L to be equivalent if they
differ by an imer automorphism of L. Given any pair of embeddings v (i = 1,2),
the conjugacy of their images implies that i is equivalent to an embedding
with the same image as ¢, so ¥4 differs from ¢1 by an automorphism of S4. Since

|Out Sy| = 1 it follows that there is one equivalence classes of embeddings.

A representative for this class can be constructed as {ollows: Elements of Lo(q)
of order 4 form a single conjugacy class and have trace +v/2. Let Ly ={a, 7| at =

3% = (af)? = 1) 2 Sy, and then take

t— >+ 1 1 e+ 1 ¢
S oe and [ — ¢ i

—l+e 4/ 2\ f—t 1—e

[NRIE

where ¢2 + f2 = —1, t = +v/2, o = ab and 3 = be. Then, again,

) 0 1
o
-1 0

has order 2, as required. Letting

wox -
¥ €L,
y oz

again with determinant wz — zy = 1, then the map v; can be extended to a
homomorphism I'" — L if and only if it preserves the relations v%1 = (f+)2 =

(aBv)* = 1. Gauss’ lemma for quadratic residues gives v/2 € F il and only if

p=+1mod 8, orif |F| = p?.

4.1.3 Extending I'* — Ly(q) to T' — Lo(q)

Suppose now that there exists a normal subgroup N of T with T /N = Ly(g). A
natural question is to ask under what conditions does the map I'* /N extend to a

map ['/N with T/N = Ly(q) and N < N. Let

T1 To
a t— .
Ty T4
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Then |a| = 2 gives x4 = —x; and ¢ = acf with |¢| = 2 gives x4 = 23. Also

1z t—f e+1
b=axr— —
2\ xg —1+e¢ t+f

with trace $(z1(t — f) + z2(e = 1) + as(e + 1) + ay4(t + f)) = 0. 24 = —21 and
Ty = 13 gives —a) f+10e = 0. Assuming that e # 0, then xo = “L. Now det(a) = 1
gives —af(e* + [?) = e* If the Coxet@r scheme coutains the %ubschem@ [5,3] then
e’ + f2=—-2—tand so 2] = £ H If the Coxeter scheme contains the subscheme
[4,3] then €* + f? = —1 and so 25 = ¢?. Finally,
z1(1 x(z — £
d=oaafy = 1y jf ) o ") (4.1)
vi(w+ L) 2y (z+ L)
and this has trace z1 (v +y + /”T“’) = 0. Assuming that x; = 0 give a as the zero

matrix, a contradiction. Consequently the equation

ecr+ey+ fz—fuw = 0 (4.2)

must hold. Equation (4.2) can then be combined with the conditions derived for
the entries in the matrices «, 7 and ~ to solve for ¢ and [ explicitly. If such a
solution exists, then the associated normal subgroup N < I satisfics the subgroup

- diagram given in Table 4.2

N=Nx (‘ Las)

/\/

Table 4.2: Subgroup structure in I

4.1.4 A note on the order of elements in L,(2"):

Let L2(2™)) be the subgroup of Ly(2") fixing oo and let Sy[ém) be the Sylow

2-subgroup of L,(27)) so Syléoo) = {(g) ‘f)} where i € Fyn. Then from chapter
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12 of Dickson |Di| the following three results can be obtained:

Lemma 4.1.1 FEvery nonidentity element of Sylém) has order 2. If Ly(2M)® is
the subgroup of Lo(2") fizing any other element k € Fon | J{oo}, then its Sylow 2-
subgroup S ylék) is conjugate in Lo(2™) to S ylgm). These groups have trivial pairwise

intersection and logether contain all elements of L2(2") of order 2.

Lemma 4.1.2 Ly(2") contains 2" (2" + 1) cyclic groups of order 2* — 1. These
groups are all conjugate in Lo(2™) and together contain 2™~ 1(2" +1)(2" — 2) non-

trivial elements of order dividing 2™ — 1.

Lemma 4.1.3 L,(2") contains 2" (2" — 1) cyclic groups of order 2™ + 1. These
groups are all conjugate in Ly(2") and together contain 227"=1(2" — 1) nontrivial

elements of order dwiding 2" + 1.

This forms a complete list of all non-trivial elements of Lo(2"). As a result, the

following results can be stated:

Theorem 4.1 Let n be any positive integer. Then Lo(2™) contains no element of
order 4. Therefore the groups T32.2,4;2,3,5], T5[2.3,3:2,4,3], T5]2,3,4;2,3,4]
and Ty[2,4,3;2,5,3] contain no torsion free normal subgroup whose factor group

is isomorphic Lo Lo(2").

42 T =T223;3,5,72]

4.2.1 T to Ly(q)

Let v; =2, vy = 3 and v3 = 2, s0 v* = (J7)* = (afy)? = 1. Then
w+ z =0 (1), while |#y] = 3 and |afy| = 2 give (¢ + DNw + (i + fly+ (f —
He+ (1 —e)z ==21 (2) and y — 2 = 0 (3), respectively. Since det(y) = 1, then

~
/

= 2 gives

w? + 2 + 1 = 0. substituting conditions (1) and (3) back into condition (2) gives
2¢ew = (u—2fx), where uw = +1. Using this and the equation from the determinant

gives the quadratic expression:

4(c + [#)a? — dfuxr + (4 +1) = 0. (4.3)
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This has discriminant D = 16 f2 — 16(e* + f2)(1+4e*) = ... = (74 4t)(4e)?, which

is a square in I7 when (7 + 4¢) is a square.

Write D; = (7+4¢;)(4e;)?. Then Dy Dy = 5(16e1e9)? which is a square in F if 5 is
Ia ~1+v5
2 ]

then either both or neither 1) and D, are squares in /. First suppose that they

= p?. Because tr(a) =

asquare. 5 is a square mod p if p = £1 mod 5 or if

both are. Then if p = £1 mod 5, for each (t;, u;), where i,7 € {1,2}, two
epimorphisms onto La(p) are obtained, giving a total of 8 epimorphisms. If p = £2
1;'7

t1 and [q, giving 4 distinct non-conjugate epimorphisms.

= p?, and the Galois automorphism ¢ €Gal(#/F,) interchanges

mod 5, then

Now suppose that neither D, is a square in I, If p = 4=1 mod 5, then adjoining
Vv/D, to F, 8 epimorphisms are obtained. Now the non-trivial Galois antomorphism
¢ € Gal(F,(v/D1)/F,) swaps /Dy and —/Dy, so for any pair (¢;,u;), where 4,7 €
{1,2}, ¢ swaps the two solutions for z. Hence 4 distinct epimorphisms I' — Ly(p?)
are obtained. If p = +2 mod 5, then adjoining +/D; to IFffj, 4 epimorphisms are
obtained, and again the Galois automorphism swaps /D, and —+/Dy, so 2 distinct

epimorphisms I' — Ly (p*) are obtained.

Now the exceptional cases correspond to the discriminant D = (7 + 4t)4e? = 0.
Because it was assumed that e # 0, then either 4 =0, so p = 2, or (7 +4t) =0,
in which case 44 = 0, so p € {2,11}. Now T" is an index two subgroup of the
5,3, 4] group studied in § 4.4.1. Because [5, 3,4] has a unique conjugacy class of
subgroups of index 2, I' must be isomorphic to [5,3,4]" therefore by § 4.4.1 a
torsion Iree epimorphism I'" — L5(2™) cannot be constructed. There remains the
case p = 11. In this case, for cach set of values ¢;, u;, where 7, j € {1, 2}, a unique

map I'" — Ly(11) is constructed.

Theorem 4.2 Let I' = 17 and let D; = (4e;)?(7 + 44;) be the discriminant of
equation 4.5. Then I'" has torsion free normal subgroups N with U7 /N = La(q)

under the following condilions:

1) If p = £1 mod 5 then either both discriminants DD; are squares in ¥, or
neither are. If they are both squares then T'" has 8 distinct Lorsion-free normal

subgroups N with factor group I'V/N = Ly(p). If neither discriminant is a
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square then T has 4 distinct torsion-free normal subgroups N with factor

group TT /N =2 Ly(p*).

2) If p = £2 mod § then either both discriminants D; are squares in Fp or
neither are. If they are both squares then Ut has J distinct torsion-free normal
subgroups N with factor group TT /N = Lo(p?). If neither discriminant is a

square then I't has 2 distinct torsion-free normal subgroups N with factor

group 'V /N =2 Ly(p?).

4.2.2 Extending to ' — Ly(q)

Let ¢ + f2 = —2 — ¢, where t = '—%’-\@and e#0,y=x, w=—zand u = =1
be as in the previous section. Suppose that T'" has a normal subgroup N with

I't /N = Ly(q). From equation 4.2 in § 4.1.3 the condition
ex+ey+ fz—fw = 0 (4.4)

is obtained. From the results obtained in the previous section, the two equations

2ew = u-—2fx (4.5)
and
4e® + [Na® — 4fur+ (4e* +1) = 0 (4.6)
are obtained. Since y = x and w = —z, equation 4.4 becomes z = fT“ Substituting
this into equation 4.5 gives w = —2%’1?) Substituting in for z and w in equation 4.6
gives ‘
PP (144 (2+1) =0
Since € 4 f? = ~2 — ¢, this can be rewritten to give

(T+41)e* =0

Since it is assumed that e # 0, 7+ 41 = 5+ 2V/5 = 0. Solving give 5 = 0, so the
only possible case with T/N 22 L,(q) is for ¢ = 5.

Theorem 4.3 There exists a normal subgroup N < T with F/_N~" = Ls(q) and
I+ /TF NN 2 Ly(q) if and only if p = 5.
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43 T'=1T502,232753

This group has been already extensively studied in the work of [JM]. The classifica-
tion of all torsion-free normal subgroups N of I't whose factor group I'/N = Lo(q)
has been done by Anna Torstensson in her PhD thesis [To], [CMT]. The statement

is for completeness sake.

Theorem 4.4 For any prime p lhere exisls a positive integer k such thal either

La(q) or PGLs(q) is a quotient of T by some torsion-free normal subgroup.

4.4 T =T3[2,2,4;2,3,5]

4.4.1 T to Ly(q)

Following the notation of section § 4.1.1, let v; = 4, 19 = 2 and v3 = 2, 0
v = (37)? = (aBv)? = 1. Then |y| = 4 gives u = +v/2 = w + 2. || = 2 and
lady| =2 give (e+ Dw+ (t+ fly+(f—t)z+ (1 —e)z = y —x = 0, respectively,
giving y = z and 2ew + 2 fx + (1 — e¢)u = 0, that is, 2ew = (e — 1)u — 2fx and so
2ez =2eu— (e — N)u+2fx = (e+1)u+2fx. The determinant wz — 2y = 1 then

gives
de? = 2ew.2ez — 4exy
= ((c —1u—2/r) ((c +u+2fz) - 4e??
= e*u’ — (u+2fx)? — 4622,
SO

2(e + fHa? + 2fur + (2 +1) = 0. (4.7)

Equation 4.7 is a quadratic equation for x, and extensions I't — Ly(F) < L of
1; are in one-to-one correspondence with its sclutions in ?p; therefore for each
possible choice of the pair ¢ from {¢1,¢2} and v from {4+/2} there are at most two
such homomorphisms. Such an extension of ¢; will be denoted by 6;; if ¢ = 1, and
u = u;. Now equation (4.7) has discriminant D = 4f2u? — 8(e? + f2)(e* + 1) =

8/% —8(e* + /) (e + 1) = 4¢2(2L + 2). Since ¢ # 0, this is a square if and only if
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2t+2 = 1+ /5 is a square. If D is a square, then for a choice u; (provided D # 0)
there are two solutions for x in I, giving two homomorphisms ¢; : T — Lyo(F) <
Ly(I), so a total of two epimorphisms is obtained. The exceptional case D = 0

corresponds to p = 2 which has already been excluded in § 4.1.4.

For ¢t = t; the discriminants D; = 4e?(2t; + 2) satisfy DyDy = —(Begeq)?. It
F

Do are squares in F'. First suppose that they are both squares. Then there exists

= p?, then either both or neither of D; and

-1 € F,sop=1mod4or

four epimorphisms I'" — L. Now PG Ly(F) preserves traces and B € PG Ly(I)
centralises A5 = (a, §| ... )i B=1d Let p=1mod8. If p = £1 mod 5,
then |F| = p and Aut(7) =PGLy(F"), so there exists 8 distinct epimorphisms. If,
however, p = +2 mod 5 then there exists four epimorphisms ¢ : 't — Ly(F"),
where F' is a degree two extension of F', forming four conjugacy classes of size two

under the action of the Galois automorphism, giving two distinct automorphisms.

Now let p = —3 mod 8. If p = +1 mod 5, then there are four epimorphisms
¢ : I'™ — Lo (I7) forming two conjugacy classes of size two under the action of the
Galois automorphism, giving two distinct automorphisms. If p = £2 mod 5 then
there exists w € I, such that V2 = w5, As a result the Galois automorphism
sinultaneously swaps the traces ¢y, to and the traces u;, ug, giving two distinct

epimorphisms.

Now suppose that neither D), nor Dy are squares in /7. Then they are squares

in the extension '(v/D;). There are several cases to consider:

I

of the extension transposes the two epimorphisms corresponding to each

= p, then the Galois group

a) Il p = +1 mod 5 and p = 1 mod 8, so

diseriminant, so up to conjugacy there exists two epimorphisms onto L(p?).

b) If p=+11mod 5 and p = = —3 mod § then I = IF(\/§) and the Galois group
of the extension /{ = F(Dy) transposes the two epimorphisms corresponding
to each discriminant, while the Galois group of /7/F transposes the traces u;

and us, so up to conjugacy there exists a unique epimorphism onto Ly(p*).

¢) If p= £2 mod 5 and p = £1 mod 8, then, arguing as in b) above, there

exists, up to conjugacy, two distinct epimorphisms onto La(p?).
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d) If p=£2 mod 5 and p = —3 mod 8 write ' = F,(1/5). Then /2 = /5 for

some V' € F, and up to conjugacy there exists a unique epimorphism onto

La(p*).

If /=1 ¢ F, then precisely one of D) or Dy is a square in Ly(F). Now, /=1 ¢ F
if and only if /= F, and p = —1 mod 4. Without loss of generality it can be
assumed that D; is a square. As a result, p = 1 mod 5. Now p = —1 mod
4 so either p = —1 mod 8 or p = 3 mod 8 If p = 3 mod 8 then there are
no epimorphisms onto Ls(p), while if p = —1 mod & then, up to conjugation
by an automorphism of Ls(g), there are 4 distinct epimorphisms. Adjoining the
square root of the other discriminant gives four epimorphisms onto Lo(K) (where
K = F(y/D,)), forming two conjugacy classes of epimorphisms. The exceptional
cage where the discriminant equals zero can only happen if p = 2, which is excluded

in§4.14.
The results obtained can be summarised in the following theorem:

Theorem 4.5 Let I't = T3 and lel D; be a discriminant for equation 4.7. Then

1) If p==+1 mod 5 p =1 mod 8, then either 'V has four distinct normal
subgroups N with Ut /N = Lay(p) or it has none. In the second case it has

two distinct distinct normal subgroups N with I'V /N 22 Ly(p?)
2) Ifp=1 mod 4 and

e p==2 mod 5 and p=1 mod 8, or
e p==1 mod 5 and p=—3 mod 8, or
e p=22 mod 5 and p=—3 mod 8
then either T admits two distinet distinct normal subgroups N with TT /N =

La(p?) or mone. If there are no such normal subgroups N, then there is a

unique normal subgroup N with I'" /N 2 Ly(p*).

3) If p=—~1mod 4, p==+1 mod 5 and p = —1 mod 8 then there are two dis-
tinct normal subgroups N with I'V /N = Lo(p) and there is a uniequ normal

subgroup N with T /N 22 Ly(p?)
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4.4.2 Extending to I' = Ly(q)

Let e + f? = -2 — ¢, where { = #S-and eZ0,y=uw, z=u—wand u= +4/2
be as in the previous section. Suppose that I'" has a normal subgroup N with

't /N = Ly(q). From equation 4.2 in § 4.1.3 the condition
ex+ey+ fz—fw = 0 (4.8)

is obtained. From the results obtained in the previous section, the two equations

2ew = eu—u-—2fx (4.9)

and
2(e° + [H)2® + 2fur + (2 +1) = 0 (4.10)
are obtained. Since y = 2 and z = u — w, equation 4.8 becomes & = 51—“2—:—&

Substituting this into equation 4.9 gives w = 1—'%)1’)”’ Substituting in for 2 and

w in equation 4.10 gives
2/ + (2 +4+2e*) P+ 5+ 57+ 3% + 3L =0
Since ¢? + [ = —2 — {, this can be rewritten to give
1+e =0

so e = v/—1 and hence either p = 1 mod 4 or ¢ = p?*. Assume then that p =1
mod 4 or ¢ = p*". Writing €2 = —1 gives f2 = —1 — ¢, 50 [ = +/—1 —¢. If
= :H;—‘/; then —1 —1{ = %} Since v/2 is already assumed to be in any field

with T'" = Ly(q), f is a square if and only if V/—1++/5 is.

Theorem 4.6 Supposc there exists a normal subgroup N <t T'T with factor group
I't/N = Ly(q) and let L be the trace of the image of o in the quotient group. Then
there exists an extension N of N with T/ N = La(q) if and only if ¢ = 1 mod 4

and /=1 —1 lies in TF,.

45 I'=17,[2,2,52.3,5]

IEpimorphic images of this group have heen extensively studied in Chapter 3.
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4.6 T =Ts23,3:2,4,3]

In this case t = £v/2 and e* + 2 = 1.

4.6.1 Maps from I't to Ly(g)

Following the notation of section § 4.1.2, let v1 = 3, vo = 2 and vz = 3, s0
¥ = (Bv)? = (afv)® = 1. Then |y] = 3 gives tr(v) = £1 = u, while |#7] = 2 and
|3 = 3 become the conditions tr(3v) = 0 and tr(ady) = £1 = k, respectively.

tr(y) = w forces z = u — w and tr(afy) = k gives y = x + k. Section § 4.1.4

precludes the exceptional prime p = 2. Write

w z
v
r+k u—w

The condition tr(fy) = 0 gives (2ew+2fr+tk+ fk+u—eu) = 0 while det(y) = 1
gives wu — w® — 2% — rk = 1. Rewriting det(y) = 1 as 4e?det(y) = 4¢?, and letting

2ew = eu —u — fk —tk —2fz, the following quadratic expression is obtained for

X

42 + (—4fkt — dfu+ 4k)x + (=2ft + 2f% — 2fuk — 2utk) = 0 (4.11)
Equation 4.11 has discriminant 16(1 + f2)(1 + 2utk) = —16e*(1 + 2utk). Write
D; = —16e7(1 + 2;). Then DDy = —7(16e1e2)?. Now this is a square if V7 lies

F

reciprocity, p = 1, 2,4 or 4 mod 7. Since k,u € {£1}, there are two cases to

= p? (equivalence of field extensions of F,), or, by quadratic

in I, so either

consider: £k = v and k£ = —u.

Case I: k=u

Equation 4.11 becomes du? + 4k(1 — f — (f)a + (=2f1 + 2/? — 2 — 2¢) with
discriminant D = —16¢(1 + 2t). If p = 1,2 or 4 mod 7 or if |F
cither both D; are squares in F* or neither are. Suppose first that they both are.
Then it follows that the choice of t will not affect ;. WLOG choose ¢ = 2
and write D = —16¢?(1 + 2v/2). Then for each value 41 of u = k there are two

= p?, then
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solutions for 2 and these solutions are equivalent. This can be seen by writing
r=8(/+tf—1) % §&/-1-20 and 2ew = ek — k — fk — tk — 2fr becomes
w=E,(1+e+el)+ %f\/ —1 — 2t). Then clearly the solution for v does not depend

on the value of k. So there are 4 distinct normal subgroups in total.

If neither D; is a square in F, then they both are in /(v/D). Now, if p & +1
mod 8, then F(v/D) = F.. Let @, 3 and 7 be the images of «, 3 and ~ under the
epimorphism constructed. The maximal subgroups of Ly(p?) containing (@, ) = Sy
are Lo(p) or PG Ly(p). Since I'" contains no subgroup of index 2, and since the
image of v must lie in Ly(p®)\La(p), it cannot be PG'Ls(p) and so, for each value
u = %1 and each 1J;, a unique epimorphism 't — Ls(p?) is constructed, giving a

total of two distinct normal subgroups with factor group Lo (p?).

If p & £3 mod 8, then S, is not a subgroup of Ls(p), but Sy < PGLy(p) <
Ly(p?). The subgroup (@, #) of T then embeds into PG Ly(p) < Lo(p?). From
Dickson, |Di, §255], PG Ly(p) is maximal in Lo(p?), so adjoining 7 to (@, ), gen-
erates the full group Lo(p?) provided v ¢ (@, ). Since neither D; is a square in
F,e it follows that v € Lo(p*)\La(p?), so (@, 3, 7) = La(p*). The non-trivial Galois
automorphism of [F,z swaps V2 and —v/2 while ¢ € Gal(Fp/F,2) swaps D and

Ds. Hence, up to conjugacy, there is a unique epimorphism I't — L, (p?).

If p £ 3,5 or 6 mod 7, then precisely one of D,, D, is a square in F,. By
changing labels if necessary, assume that it is /);. Then arguing as above, there
are two distinct normal subgroups of ' whose factor group is Ly(p). Adjoining
VD3 to F gives a map into Ly(p?), and again, by the arguments similar to those

above, this map is onto.

Case I1: k= —u

In this case Equation 4.11 becomes 422 +4k(1+ [ —t [z + (=2t +2f2+2f +21),
an equation with discriminant D = —16e*(1 — 2{). The analysis of the solutions of

this equation is identical to that for the previous case &k = w..

Finally, there remains to check when the solutions obtained for £ = u and for

k = —u coincide. If p = %3 mod 8 then, under the action of Gal(l"/F,), the
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solutions for u = k and u = —k coincide.

Theorem 4.7 Let I' be the Lannér group Ts(2,3,3;2.4, 3] and let T be the ori-

entalion preserving subgroup.

If p = &1 mod 8 and if p = 1, 2 or 4 mod 7, then either both or neither
of the discriminants D; are squares in F. If they both are then, up to aulo-
morphisms, there are 4 distinct normal subgroups with factor group Lo(p).
If neither are then there are 2 distinct normal subgroups with factor group

Lo(p?).

If p = +£3 mod 8 then either both or neither of the discriminants D; are
squares in F. If they both are then there are 2 distincl normal subgroups with

factor group Lo(p?). If neither are then there is a unique normal subgroup

with factor group Ly(ph).

Ifp=+1mod 8 andif p= 3,5 or6 mod 17, then there are 2 distinct normal
subgroups with factor group Lo(p) and a unigue normal subgroup with factor

group Ly (p?).

4.6.2 The exceptional case p =7

In the case p = 7, write D = ¢?(1 + 2utk). In F;, /2 = 43. Now if £ = 3 then
D =0 mod 17 if u = k, while if t = =3 then D = 0 if v = —k. Choose t = 3. If
D # 0 mod 7, then v = —k and D = —16e*(1 + 2ukt) = e x 5. Since 5 is not a
square in [y, there are no epimorphisms I' — Lo(7) for D # 0. However, there
exists an epimorphism I'" — 1,(49), corresponding to the quotient I/ K, where
K is the unique normal subgroup with this quotient. We now look at the two cases
where D =0 mod 7:

Equation 4.11 becomes 42? = (), so = = 0. Since —1 = 6 mod 7 is not a square in
Fr, choose e = V4 and f = 2. Then e?+f2 = —1, while 2ew = eu—u— fk—tk—2fx
gives 2cw = —3u = 4n mod 7, or w = 2u/3 = 3u mod 7. Then substituting in the

values for e, f and ¢ into «, 3 and ~+ gives

4 2 ) 2 3 4 3
o 3+ Y=k
1 6 6 6 2 4



4.6. 7 = T5[2,3,3;2,4,3] 65

Since k& = #1 and the image 7, of  lies in Ly(7) both maps are equivalent.

Theorem 4.8 In the exceptional case where p =7 and D; = 0 a unique epimor-

phism I't — Ly(7) is recovered.

4.6.3 Extending to I' — Ls(q)

Let €2 + f2 = —1, where t = V2and e # 0,y = x + k where k£ = £1 and

z = u — w where u = £1 be as in the previous section. Suppose that I't has a

L

normal subgroup N with I't /N = L5(q). From equation 4.2 in § 4.1.3 the condition
er+ey+ fr—fw = 0 (4.12)

is obtained. From the results obtained in the previous section, the two equations

2ew = eu—u— [k—1lk-2]u (4.13)

and
da® + (—Afkt — dfu+ 4k)w + (=2f1 + 2f* = 2fuk — 2utk) = 0 (4.14)
are obtained. Since y = + 4k and z = u—w, equation 4.12 becomes z = W

Substituting this into equation 4.13 gives w = W Substituting in for = and

w in equation 4.14 gives
(1+ 2tuk) f> + 1+ tuk =0

implying that f? = —1 and consequently e? = 0, a contradiction, or 1 + tuk = 0.
If 14 tuk =0, then 1 = 4¢*0%*k* =8 and so 7 = 0, so p = 7. In this case there
Is a unique normal subgroup K of I with factor group 1Lo(7). Using GAP, it was
shown that [ is not torsion free - it contains the two conjugacy classes C((abc)?)

and C((bad)?) of elements of order 2.

Theorem 4.9 Suppose there exists a normal subgroup N < T with factor group
/N =2 Ly(q). Then there can exist an extension N of N with I'/N = Lo(q) if

and only if p = "T. The subgroup N is nol torsion free.
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4.7 T =Tg2,3,4,2,3,4]

The orientation preserving subgroup of I has the following presentation:
p 4 o 4 NG B 9 A NE
[t = (o, B,9]0" = 3 = 7" = (af)* = (8(7)° = (afy)’ = 1)

The subgroup I'* is not perfect: It N = ((/J)) is the normal closure in I'* of the
subgroup (#|#° = 1), then the factor group I'*/N is isomorphic to the dihedral

group Ds. Consequently, 't has an index two subgroup.

4.7.1 Normal subgroups with quotient Sy

Lemma 4.7.1 There are precisely two distinct normal subgroups of U'™ whose fac-

tor group 18 wsomorphic to Sy.

Proof: The proof amounts to constructing two non-conjugate epimorphisms
It - Sy Let a — @ = (1,3,2,4) and 3 — J3 = (1,2,3). Then for 7 €
{(1,3,2,4).(1,3,4.2)} we get |v] = 4, |#v] = 2 and |aB~| = 3. This proves
existence of the two maps. If v — ¥ = (1,3,2,4) then &y = &@° has order 2, while
if v — % = (1,3.4,2) then &y = (1,4,3) has order 3. Hence the maps are not

conjugate. Finally it is useful to note that (1,3,4,2) = (1, 3,2,4)?% = 3—]62 [

Write @ and 3 as in section 4.1.2. Then €? + f? = —1 and ¢ = +v/2. Let

w r
0 g .
( y o= )

Then |y| = 4, |#7] = 2 and |3~| = 3 become the conditions tr(y) = £v/2 = u,
tr(8y) = 0 and tr(afy) = £1 = k, respectively. tr(y) = u gives z = u — w while

tr(afy) =k gives y = x + k. Again, by § 4.1.4, the case p = 2 is excluded. So

W T
Y .
c+hk u—w
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Now tr(dy) = 0 gives L(2ew + 2fx + th + fk +u — eu) = 0 while det(y) = 1
gives wu — w? — r? — zk = 1. Rewriting det(y) = 1 as 4e?det(y) = 4e?, and letting

2ew = eu —u — [k — Utk —2[x, then z satisfies the quadratic equation

4x? 4+ (= fth — dfu+4k)a + (=2 + f2 = 2ft — 2ufk — 2utk) = 0(4.15)

This quadratic has determinant D = —16¢%(3 + 2utk), with ¢,k € {£v2}. If
sign(u) =sign(l) and k = —1 or if sign(u) = —sign(/) and k = 1 then D = (4e)*.
Let sign(u) =sign(t) and £ = —1. Then z satisfies the quadratic equation

da? —dr+2+ =0

and D = (4e)?. Hence z = 3= = J(1£¢). If x = 3(1 + ¢) then w = 3(t — f) and

__1ft=f 1+e _
nm=3 =
2\ e—-1 t+f
while if z = 1(1 —¢), then w = 3(f + ) and ~ has the form

_ 1 j +t 1—e¢ 5-1_—
H = — - L X
JEE P f / '

so we recover the two epimorphisms I'" — S, constructed in the previous section.

v can be written ag

If sign(u) = —sign(¢) and £ = 1 then the same result is obtained.
Now suppose that sign(u) =sign(t) and & = 1, so x satisfies the quadratic
equation

da? + (=8tf +4)r — e —4tf -7
This has discriminant D = —7(4e)?. Write D; = —16e?(3 + 2ukt;). If p = 1,2 or
4 mod 7, then either both or neither D; are squares in F,,. Since one discriminant
D = (4e)* is always a square, it follows that they both are. Hence for p = &1 mod
8and p = 1,2 or 4 mod 7, there are two distinct normal subgroups whose factor
group is Lo(p). If, however, p = £1 mod 8 and p = 3.5 or 6 mod 7, then precisely
one discriminant, ) = (4e)?, is a square in F,. The second one, D = —7(4e)?, is
a square in the quadratic extension F,: of F,, and so the induced map sends I'*
onto a subgroup of La(p*). Since I't has a subgroup of index 2, it is possible that

the image is PG Ly(p).

Elements of PGLy(p)\L2(p) have non-square determinant. Since it has been

assumed that p = 3,5 or 6 mod 7, it follows [rom quadratic reciprocity that 7 is
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not a square in the field F,. To characterize maps I'" — PG Ly(p), it is sufficient to
consider the images 7 of v whose determinant is 7. The set. of equations det(¥) = 7,
trace(afy) = %1, trace(3y) = 0 and trace(¥) = ++/2 together yield the following

quadratic equation for z:
42 4+ (—dfu — 4 fth +4k)r 4+ (=25€* — 2ft — 3 — 2utk — 2fuk) =0

This equation has discriminant D = 16e?(21 — 2utk). Since it is assumed that
sign(u) =sign(t) and that k£ = 1 (since otherwise epimorphisms onto .Sy are recov-
ered), then D = 17(4e)?. Then D is a square if and only if p = 1,2,4,8,9,13,15
or 16 mod 17, and in this case two distinct normal subgroups with factor group

PG La(p) are recovered.

Hence, it p = £1 mod 8, p=3,50r 6 mod 7 and p = 1,2.4,8,9,13,15 or 16
mod 17, then two distinct there are two distinct normal subgroups whose factor
group is PG Ly(p). Otherwise there is a unique normal subgroup with factor group

La(p?).

Now suppose that p = £3 mod 8. Then Sy ¢ Lo(p), but Sy © PULy(p) C
Lo(p*). Since PG Lo(p) is maximal in Ly(p?) and Sy is maximal in PG Ly(p), there
are two cases to consider: either I'* has a normal subgroup whose factor group is
PG Ly(p), or it has a normal subgroup with factor group Ly(p?). By construction,
the image of v is a matrix with square determinant and so lies in Ly(p) or in
La(p*)\PGLy(p). If the image of ~ lies in Lo(p) then I't maps to PG Ly(p), while
if If the image of 7 lies in Lo(p?)\PGLa(p), then 't maps to Ly(p?).

Theorem 4.10 Lel I' = T5[2,3.4;2,3,4] and let D be the discriminant of Equa-
tion 4.15. Let t be the trace of «, u be the trace of v and k be the trace of af~.

Then

1) Suppose that sign(t) = sign(u) and k = =1, or sign(t) = —sign(u) and k = 1.

Then two distinct epimorphisms Tt — Sy are recovered.

2) Suppose that sign(l) = sign(u) and k = 1, or sign(t) = —sign(u) and k =
1. Ifp=1,2 0r 4 mod 7 and p = £1 mod 8 then there are 4 dislinct
eptmorphisms I'V — Lay(p). If p = +3 mod 8 or p = 3,5 or 6 mod 7 then

there are 2 distinct epimorphisms T — Ly(p?).
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4.7.3 Extending to I" — Ly(q)

Let e2+ f2= —1, where t =2 and e £ 0,y = r+k where h =+l and z =u—w
where © = £v/2 be as in the previous section. Suppose that I't has a normal

subgroup N with TV /N = Ly(g). From equation 4.2 in § 4.1.3 the condition
ex+ey+ fz—fw = 0 (4.16)

is obtained. From the results obtained in the previous section, the two equations

2ew = eu—u— fk—th—2fx (4.17)

and
42 + (—4fth — dfu+ 4Kz + (=2 + f2 = 2f1 — 2ufk — 2uik) = 0(4.18)
are obtained. Since y = x+k and z = u—w, equation 4.16 becomes z = W

Substituting this into equation 4.17 gives w = ““‘é—*wk Substituting in for z and
w in equation 4.18 gives

(3+2tuk)[? +3+2tuk = 0 (4.19)
implying that f? = —1 and consequently e? = 0, a contradiction, or 3 + 2tuk = 0.
If 3+ 2tuk = 0, then 9 = 4¢*u?k* = 16 and so 7 = 0, so p = 7. In this case there
is a unique normal subgroup K of I' with factor group L.(7). Using GAP, it was
shown that K is not torsion free - it contains the four conjugacy classes C((dab)?),
C((abe)3), C((bed)?) and C((cda)?®) of elements of order 2.
Theorem 4.11 Suppose there exists a normal subgroup N <1V with factor group
/N = Ly(q). Then there can exist an extension N of N with /N = La(q) if

and only if p = 7. The subgroup N is not torsion free.

4.8 T'=T42,3,3:2,5,3]

4.8.1 It — Ly(q)

As defined in section 4.1.1, let vy = vy = 3and vy = 2,50 v* = (87)? = (afy)* = 1.

Then || = 3 gives z = u — w, v = +1, while |afv| = 3 gives y = 2 + k, with
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k==l So

w x _
v = c L’
z+k uw—w

and |3v| = 2 gives 2ew + 2fx + th + [k +u—eu= 0. det(v) = 1 gives wu — w* —

x? — vk = 1. Writing this as 4e2det(ry) = 4¢?, the following equality
(2ew)2u — (2ew)” — (2ex)? — (2ex)(2ek) = 4e? (4.20)
can be obtained. Substituting in for 2ew gives

—(8 + 4t)x® + (4fthk + 4fu — 8k — dtk)x+
(—4 — 4t — 2f% + 2f1 + 2 fuk + 2utk) =0 (4.21)

a polynomial with discriminant D = 16e2(2 -+ 3t — 2ukt). Let D; = 16e2(2 + 3t; —

2kut;), where t;, = w as usual. Since k,u € {£1}, the two cases k = u and
k = —u are considered separately.
Case Il k& = u:

Then D; = 16e(2 + t;) and D, Dy = (16e1e5)? and either both or neither D; are
squares in I, giving 8 maps I'" +— Ls(¢) or none, respectively. If ¢ = p there are
8 distinct maps, while if ¢ = p? then the 8 images form two conjugacy classes, so
4 distinct maps 't — Lo(p?) are recovered. If neither D; is a root, then adjoining
VDi to I gives maps IV w— Lo(F(/Dy)). f F = F,, K = F,(v/D) then the
Galois automorphism ¢ €Gal(K/F) swaps the two solutions a + bv/Dy, a — by/Dy
so 4 distinct maps I'" +— Ly(F(v/D1)) are constructed. If 7 = F,es0 K = F(/Dy),
2 epimorphisms I'" + Ly(F(y/D1)) are constructed.

Case Il I = —u:

Then D; = 16e#(2 + 5¢;) and D1Dy = —31(16e1e5)?, so both Dy and D, are
squares in [ if both 5 and —31 are squares in F. Now —31 is a square in F il
either |Fl=p?orif p=1,2,4,5,7,8,9,10, 14, 16. 18,19, 20, 25 or 28 mod 31, and
5 is a square in F if p = £1 mod 5 or |F| = p?. First suppose that p = +1 mod 5

andp=1,2,4,5,7,8,9,10,14,16,18,19,20,25 or 28 mod 31. Then there are either
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zero or 8 epimorphisins I't — Ly (p), depending on whether or not D; are squares
or not in F. If they are not, then adjoining, say, v/D; to F' gives pairs of conjugate
maps 't +— Ly(F(+/Dy)), giving four distinct epimorphisms I't — Ly(p?). If,
however, | I
are constructed. If the D; are not squares, then adjoining, say, /D) to I’ gives

maps I'" — Lo(F(v/D1)), giving two epimorphisms I't v L, (p?).

= p?, then il the D; are squares in F' [our epimorphisms 't — La(p?)

Now suppose that -31 is not a square in /', so p = +£1 mod 5 and p =
3,6,11,12,13,15,17,21,22,23,24, 26, 27,29, 30 mod 31. Then precisely one of Dy,
Dy is a root in I (without loss of generality say ;) and 4 distinct maps
"+ La(p) are recovered. Adjoining the square root /Dy & F gives 4 epimor-
phisms 't +— Ly(p?) forming two conjugacy classes of maps under the action of
the Galois automorphism Gal(K/F), where K = F(v/D3)

The following theorems have thus been proved:

Theorem 4.12 Let k = w. Then either both or neither of the discriminants D; are
squares in I, If they both are, then if p = +1 mod § gives 8 distinct epimorphisms
't — Lo(p), while if p = £2 mod 5 then 4 distinct epimorphisms Tt — La(p*) are
obtained. If neither D; are squares in F, then they both are in F'(\/D;). If p= +1
mod 5 then there are 4 distinet epimorphisms 'V — Lo (p?), while if p = +2 mod

5 there are 2 distinct epimorphisms T — Ly(p*).

Theorem 4.13 Let k= —u. Let ) = {1,2,4,5,7.8,9,10, 14,16, 18, 19, 20, 25, 28}

be the squares in Fsy. Then the following cases hold:

1) If p = £1 mod 5 and p = @ mod 31, where i € §2, then either both dis-
criminants or neither lie in F. If they both do there are 8 epimorphisms

% — La(p), while if they do not then there are 4 epimorphisms T — Lo(p?).

2) If p = £1 mod 5 then either both discriminants or neither lie in F w2 If they
both do then there are 4 epimorphisms Tt — Lo(p), while if they do not then

there are 2 epimorphisms T — Ly (p?).

3) If p = %1 mod 5 and p = ¢ mod 31, where i € F4\S2. Then precisely one
discriminant is a square in F, and there are J epimorphisms Tt — Ly(p).
Adjoining the square root of the other discriminant gives £ epimorphisms

T+ = Lo(p).
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4.8.2 Case p=2

As specified in § 3.5 « and 3 can be written as

t t+1 t+1 0 ) 01
o , G , S0 afr .
L 0 t t 1 0

where ¢ € F,2/F, is a primitive cube root of 1. Writing

w X
i
y z

and noting that |y| = 3 and |a/3y| = 3 gives

U T
v
14+2 14w

Gy| = 2 gives t+w+tz = 0,50 w = tz+1. Now det(v) = (w+1)?+(z+1)2 =1

while

and so Equation 4.22 is recovered:
lr+t+t22° + 2+ +22 =1 (4.22)

Since (* = 1 4 ¢ Equation 4.22 can be rewritten as {a + ta2 + 2 =0, so © = 0 or

tr=t+1=t*’sox ="t

t 0 1 ¢
T=0 — 77— r=1t = vy~ (4.23)
1 1+¢ 1+¢ 0

Consequently, there is no map I't — 1,,(2") for n > 2.

Theorem 4.14 There exists no epimorphism I't —» Ly (2") forn > 2. Forn = 2,

there are two distinct epimorphisms.

4.8.3 Extending to I" — Ly(q)

Let e + f?2 = =2 — ¢, where t = —‘%‘FJ and e # 0, y = x + k where k = £1 and
z =u —w where u = 1 be as in the previous section, and p > 2. Suppose that
I'* has a normal subgroup N with I'"/N = [,(q). From equation 4.2 in § 4.1.3

the condition

ex+ey+ fz—[fw = 0 (4.24)
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is obtained. From the results obtained in the previous section, the two equations

2ewy = eu—u— fh—th-2fx (4.25)
and
—(8 + dt)z? + (4fth + 4fu — 8k — 4tk)z+
(—4 — 4L —2f*+ 2fL + 2fuk + 2utk) =0 (4.26) -
are obtained. Since y = x+k and z = u—w, equation 4.24 becomes x = M}:“—“
Substituting this into equation 4.25 gives w = %%M Substituting in for

and w in equation 4.26 gives
(=2 — 3t +2utk) f? — 7 — 5t + 2uk + 2utk = 0 (4.27)

o TEBE—2uk—2ulk AT eI aiie to o S der the 4w aena o ) — o ,
so f= R syt It now remains to consider the two cases, sign(u) = sign(k)

and —sign(u) = sign(k).
Sign(u) =Sign(k): Write v = k. Then [* = ~32 and hence * = —2—(— [* =
0, contradicting the assumption that e # 0, unless f? = 0. Now f2 = 0 if and only

f54+3t=5+ 3%—\5 = 0. Solving 5+ 3t = 0 gives 4 = 0. So for all primes p > 2,
if sign(u) = sign(k) then there is no normal subgroup N of T with [actor group

La(q).

Sign(u) = —Sign(k): Write v = —k. Then [* = —ZEE and hence ¢* = 0,

contradicting the assumption that e # 0, unless f? = 0. Now /? = 0 if and only if
947t = 0. Solving this gives 124 = 0 so p = 2 (a contradiction) or p = 31. If p = 31
there is a unique normal subgroup A of I" whose factor group I'/ K = L»(31). Since
I" contains conjugacy classes C(abc), C((abc)?), C(dab) and C((dab)?) of elements of

order 10 and since L,(31) has no elements of order 10, /' cannot be torsion free.

Theorem 4.15 Suppose there exists a normal subgroup N <{TT with factor group
Ut/N 2 Ly(q). Then there exists an extension N of N with ry/ N = Ly(q) if
and only +f p = 31. In this case there is a unique normal subgroup N in T with

F/;&’; >~ [,(31) and N is not torsion free.
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4.9 T =132,4,3:2,5,3

Write o and /3 as they are defined in section § 4.1. Then e? + f2+ 2+t =0 and

w T
ol
y oz

Then |v| = 4, |8v] = 2 and |a3y| = 3 become the conditions tr(v) = +v2 = u,

l:%‘/j Let

tr(4y) = 0 and tr(afy) = £1 = k, respectively. tr(y) = u forces z = u — w and

tr(afy) = k gives y = x + k. Again we cannot have p = 2. So

w €
v
z+k u—w

Now tr(8y) = 0 gives 1(2ew + 2fz + tk + [k + u — eu) = 0 while det(y) = 1
gives wu —w? — * — zk = 1. Rewriting det(y) = 1 as 4e?det(y) = 4e?, and letting

2ew = eu —u — fk —th —2fx gives the following quadratic expression for x:

(@)t up ks = (8 +40)w® + (4 fu— 4Lk + 4Lk + 8k)x

. (4.28)
+(1+3t+ f2 = 2thu —2Lf —2[ku) = 0.

This has discriminant D = 16[(1 — 2 + 2ukt) f? + (—{ + 2ku + 2kiw)]. Write

e = -2 —t¢— f?in D. Simplifying the resulting expression gives
D = 16e*(2t — 1 — 2ktu).

Let D; = 16e*[(2t — 1) — 2ktu,]. Then D;D, = —3(16e%)? and this is a square in
J ¥l 1472

I if and only if —3 is is a square in F'. (note that this number still depends on ¢,

since 7 is expressed in terms of e and f). By Gauss’ lemma for quadratic residues,

vV—3 € F, if and only if p = 1 mod 6.

First suppose that both D, and Dy are squares in /7. Then cither p = 1 mod 6

F

or

o [fp=41mod5, p==41mod&and p=1mod G, then there are 16 distinct

epimorphisms I't — Ly(p).
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e If p=+1mod 5 and p = £3 mod §, then there are 8§ distinct epimorphisins
It — Ly(p?).

e If p =22 mod 5 and p = £1 mod 8, then there are 8 distinct epimorphisms
F+ - L’2 (piZ)

o Il p=+2mod 5 and p = £3 mod &, then there are 8§ distinct epimorphisins
It — Lo(p?).

Now suppose that neither [J); nor Dy are squares in /. Then they both are
in F(D;) and the nontrivial Galois automorphism of F'(1;)/F swaps \/D; with
—+/Dj, so the Galois automorphism swaps the two solutions to the polynomial

P(2)4,u;.k,» for each i, s in {0, 1}. Then one of the following cases holds:
e Il p=+1mod 5, p=+41mod 8 and p =1 mod 6, then there are 8 distinct
epimorphisms I'" — Ly(p?)
e If p =1 mod 6, and suppose one of the following cases holds:

p=+1 mod 5 and p = £3 mod 8, or
p==2mod 5 and p= =41 mod 8§, or
p=x2mod 5 and p = £3 mod 8

Then there are 4 distinct epimorphisms I' — Ly(p?)

Finally, suppose that precisely one of Dy, Dy is a square in /. Then p = +1
mod 5, p = £1 mod 8 and p Z 1 mod 6. Without loss of generality suppose that
Dy is a square in /7 = F,,. Then there are precisely 8 epimorphisms I't — Ly (p).
Adjoining /D to F to get ' = F(v/D;) gives 4 distinct epimorphisms, one for
each pair t;, ks, for i,s € {0,1}.

Theorem 4.16 Let p(x); ;s be as above and lel D; = 16e*(21 — 1 — 2ktu;).

1) Suppose that

F| =p. Then for p = £1 mod 5, p = £1 mod 8 and p = 1
mod 6, either both or neither D; are squares in I'. If they both are then for
each triple (i, j, ) two solulions are oblained for Equation 4.28 giving a tolal
of 16 epimorphisms T'" — Ly(p). If neither D; is a square in F, then they

bolh are in I'(v/Dy) and there are 8 distinct epimorphisms I't — Lo(p?).
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2) Suppose that |F| = p*. Then either both or neither D; are squares in I
If they both are then for each lriple (i,j,s) there is one solution for Equa-
tion 4.28 giving a total of 8 epimorphisms 't — Lo(p?). If neither D; is a
square in F, then they both are in F(\/Dy) and there are J distinct epimor-

phisms It — Ly(p?).

3) Finally, suppose p = £1 mod 5, p = £1 mod & and p £ 1 mod 6. Then
precisely one of Dy, Dy 1s a square in F. In this case there are 8 epimorphisms
It — Ly(p). Adjoining v D to I, where [ is the non-square discriminant

qives 4 epimorphisms It — Lo (p?).

4.9.2 Extending to I' — Ly(q)

Let e + 2 = —2 — [, where [ = ‘—1:25/—:’ and ¢ # 0, y = x + k where k = £1
and z = u — w where u = 4++/2 be as in the previous section. Suppose that I't
has a normal subgroup N with I' /N = L,(¢). From equation 4.2 in § 4.1.3 the

co}ndition
ex+ey+fz—fw = 0 (4.29)
is obtained. From the results obtained in the previous section, the two equations
2ew = eu—u— [k—1tk—2fx (4.30)
and

(8 +4t)a” + (—dfu — 4t fk + 4tk + 8k)x

(14 3L+ [ = 2tku — 2] —2[ku) = 0 (4.31)
are obtained. Since y = x+k and z = u—w, equation 4.29 becomes z = W

(2+t)uteuttek

sarg - Substituting in for z

Substituting this into equation 4.30 gives w =

and w in equation 4.31 gives

(=142t — 2tuk) [ — 2uk — 2tuk +1 = 0 (4.32)

. 2 _ 2uk+2tuk—t 2 9 g2 o 1t gt e .
so f© =215t Then ¢ = -2 —t — f* = 0, contradicting the assumption

that e # 0, unless /? = 0. Now /% = 0 if and only if 2uk + 2luk — [ = 0. Write
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t = 2uk(1+1¢). Then ? = 4u?k?(1+t)* so 1 —t = 16+48¢, giving 17 = —9¢. Solving
this gives 44 = 0, so p = 2 or p = 11. By the previous section p # 2 and since
11 = 3 mod 8, Ly(11) contains no element of order 4. Hence there is no torsion

free normal subgroup N of I't whose factor group is Lo(11).

Theorem 4.17 Suppose there exists a normal subgroup N <I't with factor group
Pl grou} .

T+ /N 2 Ly(q). Then there exist no extensions N of N with T/N = Ly(q).

4.10 T =13[2,3,5,2,3,5

Let a, 7 and 7 be as defined in § 4.1.1. Then |y| =5 and |af~y| = 3 givey = 2+ k
and z = «w —w, where k = £1 and u = # Byl = 2 gives 2ew 4 2fx + th 4
Jk+u—eu=0. From det(y) = 1, wu — w? — 2? — 2k = 1. Multiplying this by

4e? gives

(2ew)(2eu) — (2ew)? — de®2? — devk — 4e? =0 (4.33)
Substituting for 2ew = eu — u — fk — tk — 2fx in Equation 4.33 and simplifying
gives the quadratic equation

(8 + dt)a? + (—4fth — 4 fu+ 8k + 4ik)x+

4.34
44 3u+4t+tu+2f* +uf? — 2fuk — 2tuk — 2ft =0 (4:34)

which has the rather unwieldy discriminant D = 16e*(2 + 31 + tu — 2luk + 3u).
There are two cases: either both « and v have the same trace, in which case u = ¢,

or they have different traces, in which case u = —1 — ¢.

Casel u=t:

Then Equation 4.34 becomes

(8 4 dt)a? + (—4fth — Aft + 8k 4 4tk)z+
=2ft+ fAt+5+6t+2f% - 2kft — 2k + 2kt =0
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and this has discriminant
D =16 (5 + 2k)L + 3 — 2k)
Writing D; = 16¢2 (5 + 2k)t; + 3 — 2k) gives DDy = (16ejey)?(—27 — 28k), so

DD . —‘55(166162)2, ifk =1
e (16e1e9)?, if k= —1

Notice that, if £ = —1, then Equation 4.36 is recovered

(40 + 8)a? — (A +8)a + (T+ 4+ 2/*+ %) =0 (4.36)
This can be written as

(41 + 8)72 — (41 + 8)z + 3(415 )B4+ ) =0 (4.37)
Substituting in for ¢? in Equation 4.37 a,nd dividing by (4¢ + 8) gives

R 3(1 _ ) =0 (4.38)

a quadratic with discriminant D = e?. Hence = = % and so, for each value of
t € {t;}7_, there are two solutions, since ¢ # 0. As a result, if & = —1 there are 4

epimorphisms 't —» Lo(p), if p = 41 mod 5, or 2 epimorphisms 't — Ly(p?), if
p =2 mod 5. If k =1 then for —55 a square in F', either both or neither D) and
Dy are squares in F. If they both are and if p = £1 mod 5 and p = 1, 3,4.5,9 mod
11, then 4 distinct epimorphisms I'" — Ly(p) are constructed. If p = +2 mod 5
or p=2,6,7,8,10 mod 11, then there are 2 distinct epimorphisms I't — Ly(p?).
If neither discriminant is a square in F, then if p = +1 mod 5 and p=1,3,4,5,9
mod 11, then there are 2 distinct epimorphisms I'" — Ly (p?) while if p = £2 mod
5or p=2,6,7,810 mod 11 then there is a unique epimorphism I't — Ly(p*). If
p==1moddand p=2,6,7,8,10 mod 11, then precisely one of the discriminants
is a square in /7 and the other is not. In this case p = 41 mod 5, p = 2,6.7,8,10
mod 11 and there are 2 distinct epimorphisms I't — L (p). Adjoining the square
root of the non-square discriminant to F gives a unique epimorphism I't — Ly(p?).

These results are summarised as follows:
Theorem 4.18 Let tr(a) =tr(y).
1) Suppose that ir(af~y) = —1. Then if p = £1 mod 5 lhere are 4 distincl

eptmorphisms I't — Lo(p). If p = £2 mod 5 then lhere are 2 dislincl epi-

morphisms IV — Lo(p?).
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2) Suppose that tr(a3v) = 1. Then if =55 is a square in F, either either both
or neither Dy, Dy are squares in . If they both are squares in I, then
Ifp= 41 mod 5 and p =1,3,4,5,9 mod 11 then there are 4 distinct
epimorphisms I't — La(p).
Ifp=42mod 5 orp=2,6,7,810 mod 11, then there are 2 distinct

epimorphisms T — Ly(p?).

If neither are squares in F, then
If p =41 mod 5 and p = 1,3,4,5,9 mod 11 then there are 2 distincl
epimorphisms T — La(p?).

If p =22 mod 5 orp = 1,3,4,5,9 mod 11 then there is a unique

epimorphism I't — Ly(p?)

3) If p==1 mod 5 and p=2,6,7,8,10 mod 11 then precisely one of Dy, Do is
a square i I, In this case there are 2 distinct epimorphisms I'" — La(p).
Adjoining the square root of the non-square discriminant to F', gives a unique

epimorphism I'T — Ly(p?).

Case IT v = -1 —¢:

Then 4.34 becomes

(8 + 41)22 + (—dkfl + Af1 + Af + 8k + 4tk)o+

‘ (4.39)
2k —2ft+2fk+ i+ f2— fA+2kft =0
and this has discriminant D = 32e?(k — 1) and so
Jifk=1
D - 0,1 ,
—(8e)?, il k= —1
So if £ =1 there is a unique epimorphism. Now, letting & = —1, if p = 41 mod 5

then there are 2 distinct epimorphisms onto Ly(p) if p = 1 mod 4. Otherwise there

is a unique epimorphism I'" — Ly(p?).

Theorem 4.19 Suppose that ir{c) #tr(v). Then
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1) Suppose that tr(afy) = 1. Then if p = £1 mod 5 there are two epimorphisms

It = Ly(p). If p= 42 mod § there is a unique epirnorphism Tt — La(p?).
2) Suppose that tr(efy) = —=1. If p = £1 mod 5 and p = 1 mod 4 then there
are 2 epimorphisms I'" — Ls(p). Otherwise there is a unique epimorphism

onto La(p*).

4.10.2 Exceptional cases

In the previous section, the discriminant D = 16€* ((5 + 2k)t + 3 — 2k) if u; = ¢4,
while D = 32e*(k— 1) if u; = ¢;. Inthe case u =t D = 0 if (5+2k)t+3—-2k=0.
If £ = 1 then solving this gives 220 = 0 mod p, or p € {2,5,11}. If £ = —1 then
D =0if and only if p = 2. If u; = t; then D = 0 if and only if k = 1, giving one

unique solution for each value of #;.

4.10.3 Extending to I' — Ls(q)

Let ¢2+ [ = —2 — {, where ¢ = # and e # 0, y = « + k where k = +£1

and z = u — w where u = ‘15‘/5 be as in the previous section. Suppose that ['"
has a normal subgroup N with I'" /N = L,(¢). From equation 4.2 in § 4.1.3 the

condition
ex+ey+ fz—fw = 0 (4.40)

is obtained. From the results obtained in the previous section, the two equations

2ew = eu—u— [fk—1tk—2fx (4.41)
and
(8 + 4t)a” + (—4ftk — 4fu+ 8k + Atk)x +
4+ 3u+ 4t + tu+ 2f* +uf? — 2fuk — 2tuk — 2ft =0 (4.42)
are obtained. Since y = x+k and z = u—w, equation 4.40 becomes r = —zﬁ“_—zf(“;“ﬁ
Substituting this into equation 4.41 gives w = (H%’%“k Substituting in for x

and w in equation 4.42 gives

(20 ~ 20wk +u) f* — 2uk — 2uk +1 = 0O (4.43)
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- 2 2uk42uk—t 0] 52 o 4 F£2 _ t+2ud24ut
S0 f T 2t—2tuk+tu Hld e = 2 t f T 2t—2tuk+tu

Case It u; = t;, 1 € {1,2}

G2 2kt ] a2 _—(2043) L2 2A+3 o1 2 142t
Then [* = 550 and e = 550 If £ =1 then e = 575 and f T
while if £ = —1 then ¢ = —1 —t and f? = —

Case II: u; = ;, i £

9% - . w .
Then f? = 2L and e = o If k=1 then ¢’ = 1 and f* = =3 — ¢ while
if k= —1 then ¢* = 2} and f? = &1

Theorem 4.20 Suppose there cxists a normal subgroup N <1I'" with factor group
I't/N = Ly(q). Then there exists an extension N of N with T/N = Ly(q) if and

only if the following conditions hold:

1w =1 w=—1—1
k=1|k=-— k=1 b= —1

2 2t+3 t+1
: ol B S O B 3
2 142¢ t4d4d
Poolgz] o1 -3 e

4.11 Conclusion

In this chapter, all torsion free normal subgroups N of the orientation preserv-
ing subgroups I't of the Lannér groups I', whose factor group is a simple group
Lo(q), are classified. These subgroups are constructed by classifying the equivalence
classes of epimorphisms I'" — Ly(g). For each such subgroup N < I'*, necessary
and sufficient conditions under which the result extends to torsion free normal

subgroups N of I are investigated.



Chapter

Manifolds from the [5,3,5] group

5.1 Introduction

In this chapter, various manifolds arising from the action of torsion-free subgroups
of the [5,3,5] Coxeter group will be studied. Several invariants (homology, fun-
damental group, combinatorial structure) of the manifolds will be constructed to

distinguish between them.

5.2 The quotient manifolds A;.

Recall that in Chapter 3 § 3.1 a tetrahedron 7" in HP with vertices A, B, C, DD, and
with dihedral angles 7/5, 7/3, 7/5, 7/2, 7/2 and 7/2 along its edges CD, AD, AB,
BD, BC, AC was introduced. The natural action of I" on this tetrahedron equipped
H? with a tessellation 7 by tetrahedra. Recall further the subgroup I'y = (a,b,c)
of I'. This group is the isometry group of a dodecahedron, isomorphic to As x Cs.
The 120 images of T under I'q form a hyperbolic dodecahedron D, with dihedral
angles 27 /5, and the images of D under I form a dodecahedral tessellation D of

3,

A flag ¢ = (v,e, f,¢) of D, and its associated tetrahedron 7 in 7, is right-

or left-handed if moving away from the vertex v along the edge e while rotating

82



5.2. The quotient manifolds M. 83

around e from the face f into the interior of the cell ¢ represents a right- or left-
handed screw motion, that is, a clockwise or anticlockwise rotation when viewed
from v. Identify a right-handed flag with 1 € I'. Then the right- and left-handed
flags ¢, and tetrahedra Ty correspond to the even and odd elements g of I, forming

the two cosets I'" and D\ T'T of I'" in T

In Lemma 3.2.1 in Chapter 3 it was shown that there are two distinct normal

subgroups N; and Ny of 't whose factor group is As.

‘Theorem 5.1 The quotient manifolds M; = H*/N; (i = 1,2) are a chiral pair
of Weber-Seifert spaces, formed by idenlifying opposite faces of a hyperbolic do-
decahedron after rotating them through 3m/5 in the positive and negative senses
respectively.

Proof: Since I'j is mapped isomorphically onto As by each 6;, we have I't =
NTE = TgN; with Tf NN, = 1,50 I' = NIy = [yN; with I, N N; = 1. Since
the dodecahedron D consists of the 120 tetrahedra in 7 forming an orbit of
I'g, this shows that [, is a fundamental region for the action of each N; on H?.
Each M; can be formed from [y by identifying pairs of boundary points which
are equivalent under N;. Elements of N; can be regarded as automorphisms, not
monodromy permutations. As a result flags ¢, and ¢, in D are identified if and only
if N;g = N;h, a condition which implies that g and A are both even or both odd.
If g and h are even then they normalise N;, so N;g = g/N; and N;h = hN;, which
means that we nay equivalently use the condition gN; = hN; (which identifies
the right-handed flags ¢, and ¢, under the monodromy action). Using this action
has the advantage that if g is a word ¢y ...g, in the generators g; € {a,b,c,d}
of T', then successive images ¢, ¢g1,...,¢091...g, = ¢g of a flag ¢ correspond to
adjacent tetrahedra in 77; this makes it easier to determine the action of ¢ as
a monodromy permutation than as an automorphism, where successive images
could be increasingly far apart. However, if ¢ and h are odd, then N;g = gN/ =
gNy, where i/ = 3 — 4, and similarly for N;h. Therefore, in constructing M; the
monodromy action of this conjugate subgroup N, rather than N;, needs to be
used to identify left-handed flags ¢, and ¢;. Fortunately, in order to determine
the identifications of faces which result in A, it is sufficient to restrict attention

to right-handed flags ¢, and ¢, which are identified if and only if g and A have
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the samne image under #;.

The element (abc)® of T represents the antipodal involution in I'y, so as a mon-
odromy permutation it sends the flag ¢ of Dy to its antipodal flag —¢;. 1t fol-
lows that the element g = (abc)’d = (e e 18)%ay of I't sends ¢, to the flag

¢y = (—1)d in the adjacent dodecahedron, sharing the saine vertex, edge and face

as —¢;. Under 0, and 0, this element g has the same image in A5 as h = o ! and
« respectively, so the flags ¢, and ¢, are identified in M, and M,. Now a~ ! and
« rotate right-handed flags through 27 /5 around their faces in the positive and
negative directions (when viewing D) from outside). Hence, in M) and Ms, the flag
¢4 is obtained from ¢, by applying a screw motion with a rotation in the positive
sense through 7 — 27/5 = 37/5 or through 7 + 27/5 = 7w /5 = —37/5 mod (27)
respectively. Figures 5.1 shows a dodecahedron with one pair of antipodal faces
identified by a —i—i;i identification. Since '™ acts transitively (by automorphisms)
on the right-handed flags of D, the same identification applies to every such flag
¢n. Consequently, each face of Dy is identified with its opposite face after a rotation
through 37/5 or —3n/5. This is the rule for constructing the two Weber-Seifert

spaces.

The subgroups N; and N, are conjugate in €2, so the manifolds M; and M,
are isometric. However, the only conjugating elements are orientation-reversing

elements of 2\ O, hence each M; is the mirror-image of the other. B

Note that in the above proof, the monodromy permutations o' and « rotate
left-handed flags in the opposite direction to right-handed flags; however, the ear-
lier remarks imply that in constructing each A; the roles of §; and ¢, must be
transposed when considering left-handed flags, so all flags are rotated through the

sanie angle.

IZach manifold M; has isometry group Iso M; = Nq(N;)/N; = QY /N; = S5,
consisting entirely of orientation-preserving elements. The subgroup I't /N; = As
of index 2 preserves the tessellation D//V;, acting as the rotation group of the single
dodecahedral cell, while r sends D/N; to its dual tessellation D*/N; = D/N,. It
can be verified, either by hand or by using GAP [GAP], that Ny and N, are the
normal closures in I't of the elements (abed)' = (ay)* for ¢ = 2 and 3. Hence D/N,

and D/N, are examples {5,3,5}2 and {5,3,5}3 of Coxeter’s twisted honeycombs
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Figure 5.1: Identification of two faces of a dodecahedron

{p,q, 7} ([C1], pp. 32-33 and Fig. 23).

The tessellation D/N; consists of one vertex, six edges e; (all loops), six pen-
tagonal faces, and one dodecahedral cell. Figure 5.2 illustrates the edges in D;.
Taking the single vertex as base-point, the six loops corresponding to the e; can be
treated as generators of the fundamental group 7 (M;) = N;. The abelianisation
Ny /N, where N7 is the commutator subgroup of Ny, is the first integer homology
group H1(My). Let fi be the face of Dy incident with ¢, and let the edges of fi,
cyclically ordered and directed in the positive orientation, be ey, ..., es. The sixth
edge eg appears in the ‘equatorial’ Petrie polygon of D;, disjoint from f; and its
antipodal face — f1: after identifications of faces, this polygon becomes the dotted
path e}, eq, €9, €4, €3, €6, €4, €4, €5, €5, as shown in Figure 5.2. (The Petrie polygons
of a dodecahedron have length 10, and each edge is identified with four others in

the right-left Petrie polygon containing it).

The face f; gives rise to the homology relation ¢; + - - - 4+ e5 = 0. [ts neighbour
across e is the face adjacent to f) containing the edge e,. Reading the edges of
this second face in the positive orientation gives —e; — €9 + e5 + e + e3 = 0.
The other four neighbours of [, across the edges ey, €3, eq4 and e5 give relations

formed from (1) by cyclically permuting e, .. ., es; the relations obtained from the

remaining six faces of D are simply the negatives of the relations constructed, so



5.2. The quotient manifolds M,. 86

Figure 5.2 +3% identification with Petrie polygon marked

(dashed line)

they can be ignored. Eliminating es (= e; + 2e2 + 3e3), €5 (= 3e; + 2e5 + e3) and
eg (= 3e1 —eqa+3e3) gives H (M) generated by ey, e; and e3 with defining relations
S5e; = beg = beg = 0. Hence Hy(M,) = Zs & Zs & Zs (see the comment at the end
of [WS]). A presentation for the fundamental group of My has been computed by
Lorimer |Lo|, and abelianising it confirms this result. The fundamental groups are

also computed in Chapter 3 § 3.2 where the presentations are described in detail.

Conjugating by an element of D'\ I'" transposes Ny and Ny, so My and its tessel-
lation D/Ns are obtained as the mirror images of M, and D/N;. Petrie polygons
on D) can be used to illustrate the chirality of these two tessellations: in each case
these closed paths all have length 10, with one of the six edges appearing five times
and the other five edges once each (as previously shown in Figure 5.2). Figure 5.2
shows a view of M| = D/N; with the outside face in [ront. In M; the repeated
edge of the Petrie path is always followed by a right turn, while in M, it is always

followed by a left turn. Figures 5.3 and 5.4 illustrate the
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Figure 5.3: Right-handed petrie path Figure 5.4: Left-handed petrie path

5.3 The tessellations D/N! by 125 dodecahedra

The group I'"/N; = A; of symmetries of D/N| is generated by a rotation through
27/5 about the center of the face fi, induced by «, and a rotation through 27 /3
about the vertex uy, induced by [J; their product is a rotation through # about
the mid-point of the edge ¢;. These rotations act on Hy(M;), regarded as a 3-

dimensional vector space over the field GF(5), as the matrices

010 0 0 1 -1 0 0
a=100 1. 8=|=1 0 0 and o= |0 —=1 0
1 2 3 0 -1 0 3 02 1

with respect to the basis {eq, ey, ¢3}. It is easily seen from this that Hy(M;) is an
irreducible module for I'* /Ny, hence also for the full isometry group Q7 /N; = S; of
M. This module is, up to isomorphism, the unique 3-dirnensional irreducible mod-
ule for S5 over GF'(5): it can be identified with the unique nonprincipal irreducible
constituent of the natural permutation module for S5 over this field, or equiva-
lently with the natural module for the special orthogonal group SO3z(5) == S5 (this
last equivalence can he read off [rom the Atlas of Finite Groups [Atlas], or equiva-
lently by considering the natural representation of S5 over the field of five elements.
Since 5 divides the order of S5, the representation splits as two I-dimensional rep-

resentations and an irreducible 3-dimensional representation). As distussed in the
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previous section, conjugating by an element of I' \ I'T gives the same conclusion

for []l (A[Q)

Since Hy(M;) is irreducible as an Isom(A1;)—module, the only nontrivial regular
abelian covering of M; is the manifold A/ = H?/N!. This has a tessellation D/N]
consisting of 125 dodecahedra, in one-to-one correspondence with the elements
of H(M;). The symmetry group G = T'F/N! of this tessellation is a semidirect
product of an elementary abelian normal subgroup T' = N;/N! = H,(M;) by a
complement [1 = I'J N//N] = Aj stabilising a dodecahedron. Similarly, as will be
shown later, the full isometry group Q% /N of M! is a semidirect product of T' by

S5, with the odd permutations in S5 transposing the tessellation and its dual.

Proposition 5.3.1 The subgroup H of G stabilising a dodecahedron of D/N| has

two orbits each of lengths 12, 20 and 30 on the remaining dodecahedra.

Proof: As in the proof of Theorem 5.1, the right-handed flags of D/N/ can be
identified with the elements of (7, and the dodecahedral cells with the cosets g/
of its subgroup . As coset representatives for /1 in G choose the elements ¢ € T'
and write 1), for the dodecahedron corresponding to (//. Each element ¢ € (i has
a unique factorisation g = th, where ¢t € T and h € H, and the corresponding
flag ¢, lies in the dodecahedron D;. In particular, the flag ¢, corresponding to
the identity element of G lies in the dodecahedron D corresponding to the coset
tH = H with ¢ = 0 (here it is convenient to use additive notation for the abelian
group T, and to write Dy rather than D) for the dodecahedral cell incident with

®1)-

Each element g € GG acts as an automorphism of D/N; by left multiplication,
sending a coset {/f to g~'t/f, and hence acting on dodecahedra by D; — D -1,.
The stabiliser of Dy is /1, and its elements & act on cosets by tH — h™1H = "1,
so its action on dodecahedra is equivalent to its action by conjugation on 7', as
a group of linear transformations of this vector space over GF(5). It fixes 0, and
by a routine calculation involving eigenspaces and the orbit-stabiliser theorem it
is found that H has two orbits each of lengths 12, 20 and 30 on the remaining
elements of 77 (since the eigenspaces of o and 3 are one-dimensional while that of

«f3 is two-dimensional), so the same applies to its action on dodecahedra. |
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If t # 0 in T then, arguing as in Proposition 5.3.1, it can be shown that ¢ and
—t are in the same orbit of /, while the elements +2{ are in the other orbit of
the same length. The actions of H on its orbits in 7" of lengths 12, 20 and 30 are
equivalent to its actions on the faces, vertices and edges of Dy, since the stabilisers

are the sane in each case.

In the action of H on dodecahedra, one orbit of length 12 consists of the dodec-
ahedra Dy meeting Dy across a common face [ (where, from Proposition 5.3.1, f
corresponds as above to some element of 7'); the other orbit consists of dodecahe-
dra Dyy meeting Dy across its face antipodal to f. Continuing like this ‘bracelets’
Do, Dy, Dag, Dyy = D_gp, Dyy = D_j of five dodecahedra are obtained, with —f
denoting the face of Dy antipodal to f: each dodecahedron meets its two neigh-
bours across a pair of antipodal faces. After five steps any walk through these
dodecahedra, passing through the shared faces, returns to Ds; = Dy with a twist

through .

The vertex figure at a vertex v of Dy is an icosahiedron {3, 5}, with each of its 20
faces corresponding to a corner of a dodecahedron incident with v. These corners
come in antipodal pairs, so there is a dodecahedron D, meeting DDy antipodaly
at v. Such dodecahedra D, form an orbit of H of length 20, and the other orbit
of this length consists of dodecahedra D,, meeting D, antipodaly at its vertex
antipodal to v. Continuing in this fashion, ‘necklaces’ Do, D.,, Doy, D3, = D_s,,
Dy, = D_, of five dodecahedra, where —v is the vertex of Dy antipodal to v,
arc obtained: each dodecahedron meets its two neighbours antipodaly at a pair
of antipodal vertices. A geodesic traveling through a pair of antipodal vertices in
Dy will meet four other dodecahedra, and the five dodecahedra join up to form a
nccklace of five dodecahedra cach fixed sctwisc by an order three rotation fixing

the geodesic.

If e is any edge of Dy, then a geodesic from the center of Dy to the midpoint of
e continues across a face separating two dodecahedra (since there are five dodec-
ahedra about any edge, such a configuration is possible), then passes through the
vertex of this face opposite e, and continues across another face, passes through the
midpoint of an edge, entering a dodecahedron D,. Continuing along this geodesic,
a ‘galaxy’ Do, De, Dye, D3, = D_s,, Dy, = D_, of five dodecahedra is obtained,

where —e¢ is the edge of Dy antipodal to e: each dodecahedron is separated from
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its two neighbours by a pair of faces as above, and after five steps the path returns
to Dg, = Dy. The orbits of H of length 30 consist of the dodecahedra D, and Ds.,

where e ranges over the edges of Dy.

This accounts for all 124 dodecahedra D # Dy in D/N], but does not account
for all of their incidences with Dy: there are two dodecahedra meeting Dy along
each edge e, in addition to the dodecahedra Dy and Dy corresponding to the faces
f and [’ of Dy incident with e, and there are nine incidences with Dy at each

vertex v, in addition to those already described.

Proposition 5.3.2 7 has two orbils each of lengths 20 and 30 on the vertices of

D/N., one orbit of length 10 and one orbit of length 15.

Proof: There are 125 vertices in D/N]. The vertices v of Dy form an orbit of
length 20, as do those joining dodecahedra D, and Ds, in necklaces containing
Dy. The galaxies provide two orbits of length 30, consisting of vertices between
Dy and D,, and between D, and Ds.. This leaves 25 vertices to be accounted for.
Since each axis of 5-fold rotation of Dy is contained in a bracelet and therefore
passes through no vertices, there cannot be any orbits of length dividing 12. Hence
the only possible lengths (not exceeding 25) are 5, 10, 15 and 20. The vertex
joining Do, and [J_s, in a necklace is invariant under the subgroup of order 6 in /7
preserving the pair of vertices v, so it lies in an orbit of length dividing 10. This
orbit, together with the two of length 20, accounts for all the vertices invariant
under a 3-fold rotation of Dy. As a result there can be no other orbits of length
dividing 20. Similarly, the vertex between Dy, and D_,, in a galaxy is invariant
under the subgroup of order 4 in H preserving the pair of edges +e, so it lies in
an orbit of length dividing 15, and there are no other orbits of length dividing 30.

It follows that these two orbits have lengths 10 and 15. [ |

Since D/N! is isomorphic to its dual, the stabiliser in (7 of a vertex, isomorphic
to As, permutes the vertices and dodecahedra in the same way as H permutes
the dodecahedra and vertices. In fact the first cohomology group H'(As, T) is a
I-dimensional vector space over G'F(5) ([CPS], Theorem 4.2(c)), so there are five
conjugacy classes of complements for 7" in (&, two of which consist of the stabilisers
of dodecahedra and ol vertices. Arguments similar to those in Proposition 5.3.2

show that the complements in the other three classes have orbits of lengths 10, 15,
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20, 20, 30 and 30 on the vertices and on the dodecahedra. The half-turn r € QP\T'F
transposes the stabilisers of vertices and of dodecahedra, and also transposes two
other classes of complements, leaving the fifth class invariant. Therefore the groups
in this last class are contained in complements for 7" in Q* / N/ = Iso M/, isomorphic

tO 135.

5.4 The tessellation D/N by 60 dodecahedra

Since N7 and N, are norial subgroups of Q% so is their intersection N = Ny N Na.
Further, as N; and Ny are conjugate by elements of Q\ Q7 N is normal in .
Since N, and N, are distinct maximal normal subgroups of I't, NyN, = I'*, and
therefore N; /N = I't /N; & Aj for each i. This shows that the manifold M = H3/N
is a 60-sheeted regular unbranched covering of each M;, with covering group As.
There is a tessellation D/N of A by 60 dodecahedra; this has symmetry group I'/N
isomorphic to the wreath product As Cy, with the base group I't /N = N} /N x
Ny /N 2 A5 x As as the orientation-preserving subgroup and TgN/N =2 A5 x Oy
as the subgroup stabilising a dodecahedron. The isometry r transforms D/N to
its dual tessellation D*/N = D/N. The normaliser of N in Iso H? is 2, so M has
isometry group Q/N; this is isomorphic to the subgroup of index 2 in the wreath
product Sy ¢ Cy generated by the complement Cy and the subgroup of the base

group S5 X S5 consisting of pairs of permutations with equal parity.

Since Ny and N, are the normal closures in I'" of the elements (abed)! = (ary)!

for ¢ = 2 and 3, their intersection N contains the normal closure in I't of (abed)®.
Indeed, being normal in T', N contains the normal closure of (abed)® in T, and this
is also the normal closure in I'" of (abed)? and its conjugate (beda)® = (bacd)®. A
computer calculation ( [C1], p. 45) shows that NV contains the normal closure of
(abed)b in T with index 2%, so {{(abed)®)) has index 1843200 in . By contrast,
it should be noted that the normal closure of (abed)® in T'F has index 58, 982, 400.
Thus D/N has a 2%-sheeted covering by Coxeter’s tessellation {5,3,5}¢6 ( [C1],
p. 45); this is formed from D by identifving flags which are equivalent under the

monodromy permutations (abed)® or (bacd)®.
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5.5 Subgroups of direct squares

In order to understand the structure of D/N and its symmetry group, some general
facts about certain subgroups ol direct squares of groups, such as As x Aj, are

required. The following results are all easily verified.

Let S be any group, and let S? denote its direct square S x .S. For each v € Aut .S
there is a subgroup S, = {(s,sa) | s € S} of S? which projects isomorphically
onto both direct factors; conversely every such subgroup has this form for some
automorphism ¢, so the number of such subgroups is |[Aut .S|. Two such subgroups
S, and Sy are conjugate in S? if and only if '3 € Inn S, therefore each conjugacy
class contains |Inn S S Z(8)| subgroups, where Z(.S) is the center of .S, and
Out S| = JAut S : Inn S
] = @Inn S of Inn S in Out S. Each conjugacy class of subgroups S, is the set
S| of $2. The kernel of
z € Z(S)}, the induced pernwtation group

conjugacy classes of them, one for each coset

there are

of point stabilisers in a transitive representation of degree

this representation is Z, = {(z, za)
is S?/Z, (a central product of two copies of 5), and the direct factors of 5% act
as commuting regular normal subgroups, which can be identified with the regular
representations of S on itself by left and right multiplication. In particular, if « is
taken to be the identity automorphism then the corresponding permutation group
is the holomorph Hol S of S| a semidirect product of a regular normal subgroup S
by the diagonal subgroup S, = {(s,s) | s € S}, acting by conjugation on S as the

stabiliser of the identity element.

5.6 The structure of the tessellation D/N

Consider again the tessellation D/N. The epimorphism § = (6;,0,) : Tt — Asx As

given by
a— ((13524), (13524)), 04— ((123),(123)), -~ ((14352),(13425))

has kernel N, and this can be used to identify the orientation-preserving symmetry

group G :=T71/N of D/N with As x As.

Proposition 5.6.1 The subgroup H of (¢ stabilising a dodecahedron of D/N has



5.6. The structure of the tessellation D/N 93

two orbits of length 12, and one orbit each of length 15 and 20 on the remaining

dodecahedra.

Proof: By taking S = As in the previous section, so that Aut S = S5 and Z(S) =
1, it can be seen that in (G there are |Out As| = 2 conjugacy classes each consisting

= 60 non-normal subgroups isomorphic to As; these are the stabilisers

of [Inn Ag
in (¢ of dodecahedral cells and of vertices in D/N, represented by the images
under 0 of Iy = (o, 3) and of '} = (3,~), where T’y = (b,¢,d). In particular,
since 0, and 05 agree on « and 73, it follows that the stabiliser of the dodecahedron
D, is the diagonal subgroup H = {(g,¢9) | ¢ € As}. The direct factors of ¢ =
As x A; commute, and act regularly on the 60 dodecahedra, which can therelore
be labeled with elements of As so that the two factors act as the left and right
regular representations of As. It follows that /7 acts by conjugation, so its orbits
on dodecahedra correspond to the conjugacy classes of As. The dodecahedron
Dy corresponds to the class C,, which consists of the identity element, and the
other orbits have lengths 15 (corresponding to the class Cy of involutions), 20
(corresponding to the class C3 of 3-cycles), 12 and 12 (corresponding to the two

classes Cs and C. ol 5-cycles, containing (12345) and its square). [ |

The above five orbits will be denoted by Oy, Oz, O5, O5 and Oy respectively. The
subgroups of H stabilising dodecahedra in these orbits are the centralisers of the
corresponding elements of As, isomorphic to As, Vi, Cs, C5 and C5 respectively.
This will help to determine how D; (and, by regularity, every dodecahedron in
D/N) is related geometrically to the 59 others. By self-duality, similar conclusions

will apply to the vertices.

The flags of D and the tetrahedra of 7 are labeled with the elements of I,
with this group acting regularly by right or left multiplication as a group of mon-
odromy permutations or automorphisms. The flags of D/N and tetrahedra of 7 /N
can therefore be labeled with the elements of I'/N; here either action of N can be
used since this is a normal subgroup of I'. As a consequence the technical diffi-
culties encountered earlier with the non-normal subgroups N; can be avoided. In
particular, the right-handed flags and tetrahedra can be identified with the ele-
ments of (7, through its isomorphism with I'* /N induced by #. Those in a given

dodecahedral cell form a coset gH of the diagonal subgroup H in G, so the cells
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of D/N can be identified with these cosets of 4 in G. As coset representatives the
elements (g, 1) with g € As are chosen, since there are 60 of these, all in different
cosets; then write D, for the corresponding dodecahedral cell of D/N. A general
element (g1.¢s) € G then lies in the coset containing (g1, 92) (g5, 95 1) = (195", 1),
represented by (g,1) where g = g1g;' € As, so the flag ¢ = (g1, g2) lies in the cor-
responding cell D,. In particular, the flag ¢, = (1, 1) corresponding to the identity
element of ¢ lies in the cell Dy corresponding to the coset gH = H. Let vy, e; and

[1 denote the vertex, edge and face of D incident with ¢, .

Proposition 5.6.2 Dodecahedra D, and Dy, in D/N meel across a common face
if and only if g=h € Cs. In these circumstances, this face is unique, and across its

anlipodal face D, meets the dodecahedron Dy satisfying g~ *h' = (¢~ th)™" € Cs.

Proof: The element v, acting as a monodromy permutation, rotates flags of D
around their incident edges, so its image v = ((14352), (13425)) € G has this
effect on the flags of D/N. Applying the powers of this element to ¢, the flags
((14352)7,(13425)") are obtained for i = 1,...,4, and these lie in the dodecahedra
D, for g = (14352)7(13425) ¢ = (13254), (152), (134), (15432) respectively. These
cells are those that meet D; around e;. In particular, the last of these cells meets
Dy across f1, and the first meets D across the other face of D) incident with
e;. Applying an arbitrary element (b, h) € H as an automorphism preserving Dy,
it can be seen that the flags ¢, = (h~1(14352)", h=1(13425)") are all obtained by
rotating the flag (A=, A71) of Dy around its incident edge; these fags ¢y lie in the
dodecahedra D, for g = (13254)" (152)", (134)", (15432)". Thus D, meets these
dodecahedra D, around their common cdge in the same way as it meets the first
four dodecahedra, indexed by (14352)%(13425)7%, around ¢;. In particular, it meets
a dodecahedron D, across a face if and only if g is in the conjugacy class Cs of
As containing (15432), or equivalently its inverse (12345). There are 12 faces of
Dy, and 12 elements g € Cs, both permuted transitively by H, so each D, indexed
by g € Cs meets Dy across a single [ace. These 12 dodecahedra D, form the orbit
Os of H on cells. More generally, given any pair of dodecahedra D, and D), by
applying an automorphism sending D, to Dy, it can be seen that [, and D), meet

across a common face (which is unique) if and only if g=th € Cs.
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The monodromy permutation (abc)®, representing the central involution in Tg,
sends ¢, to its antipodal flag —¢1 in Dy, so (abc)d sends ¢ to the adjacent flag
(—¢1)d in the dodecahedron L), meeting [, across its face — [} opposite fi. Since
6 maps (abc)’d to ((13524)71 (13524)), it follows that g = (13524)72 = (12345).
This is the inverse of the element (15432) of C5 labeling the dodecahedron meeting
Dy across fi. It follows that a general dodecahedron 1D, meets neighbours Dy
and Dy across opposite faces if and only if g7'h and ¢='// are mutunally inverse

elements of Cs. B

This result shows that the dnal graph of D/N is isomorphic to the Cayley graph
for A; with respect to its generating set Cs, and by self-duality the same applies

to the 1-skeleton of D/N.

D1325.4)
|

5 Dadecahedra stacked about an edge stabilised by y*

l P Dusasy

&
=
T
S
&

Figure 5.5: Local adjacency about v Figure 5.6: Partial schematic at v

As seen in the proof of Proposition 5.6.2, D; meets D(15432) across fi, so this
is the dodecahedron Dy, in the notation of § 5.3; it is contained in the orbit of
H consisting of the 12 dodecahedra Dy where f is a face of D;. Since (15432) is
in the conjugacy class Cs this is the orbit Os. At the face opposite f1, Dy, meets
D14953) where (14253) = (15432)? is a member of the other class C} of 5-cycles; this
lies in a second orbit OF, consisting of 12 dodecahedra, denoted Ds; in the earlier
notation. By iterating this argument bracelets of five dodecahedra are obtained,
each meeting its two neighbours across a pair of opposite faces; starting with D,

these dodecahedra lie in the orbits Oy, O;, OL, O and Os of H.



5.6. The structure of the tessellation D/N 96

Proposition 5.6.3 Dodecahedra D, and Dy, in D/N meet antipodaly at a common
vertex if and only if g~ 'h € Cs. In these circumstances, this vertex is unique, and

at its antipodal vertex D, meets Dy antipodaly with g~ 'h' = (¢~ )~ € Cs.

Proof: The subgroup I'y = (b, ¢, d), in its monodroniy action, preserves the set of
flags incident with v;. Tts central involution (bed)® sends ¢ to the antipodal flag
at vy, incident with the dodecahedron /1), antipodal to [); at vy, so the element
(bed)®b of T also sends ¢ to a flag in D,,. Now 6 maps (bed)*b = v~ (vGy71571)?
to ((23)(45), (12)(45)), and (23)(45)((12)(45))~! = (123) € C3, s0 D,, = Dss).
Dy has 20 vertices, which is the number of elements in C3, so the dodecahedra D,
meeting D; antipodaly across a common vertex v form an orbit Oz of 7, each
meeting 1)) at a unique vertex. As in the case of adjacency across faces, it can be
seen , by applying automorphisms, that a pair of dodecahedra D, and D), meet
antipodaly across a single vertex if and only if g~'h € Cs. Tn this case D, meets
Dy, antipodaly across the antipodal vertex of Dy if and only if g~ and g~ A’ are

mutually inverse elements of Cs. B

By iterating this result, it follows that dodecahedra in D/N form necklaces of
length 3, each dodecahedron meeting its two neighbours antipodaly at an antipodal
pair of its vertices. These dodecahedra and incidences can be represented as the

vertices and edges of the Cayley graph of A; with respect to its generating set Cs.

As seen in the proof of Proposition 5.6.2, the dodecahedra D(159) and D134) meet
Dy along its edge ¢, and therefore the dodecahedra in @3 all meet Dy across an
edge, and more generally D), meets D, across an edge if and only if g7'h € Cs. Now
Dy has 30 edges, each corresponding to two such dodecahedra Dj. Consequently,

it has 60 such incidences. Since |Cs| = 20, it follows that each of these dodecahedra

Dy, meets D, three times along edges, in addition to its antipodal incidence at a
vertex v of Dg. Let 7 be the vertex in D, that is antipodal to v. For any vertex v
in a dodecahedron D, the edges opposite v are defined as follows: take a geodesic
from v through the center of the face containing v. Then this arc cuts an edge
e across from v. Call this edge the edge opposite v. Calculations similar to those
above show that these three edges are opposite v. Of the two dodecahedra which

meet 1), along such an edge, D, is the nearer to v.
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The vertex figure of D/N at vy is an icosahedron {3,5}, its 20 faces correspond-
ing to the 20 corners of dodecahedra meeting at v;. So far 11 of these dodecahedra
have been accounted for: there is D itself, three dodecahedra Diy5430), D(13254) and
D542y in Os meeting D across faces incident with vy, six dodecahedra D52,
Dsay, Diessy, Danys Dssy and Diagsy in Oz meeting it along edges incident with
vy, and D3y € Oz meeting [); antipodaly at v;. Calculations with monodronmy
permutations show that, of the remaining nine dodecahedra meeting Dy at vy,
three of them, Dysasay, Di1assey and Dyysausy in Of, meet 1123y across a face, while
the remaining six dodecahedra, D15)23), Dusyes), Dazesys Dazyeey, Dasyes and
Daayes) in Oz, meet D3 along an edge. Figures 5.7, 5.8 and 5.9 Illustrate the
geometrical structure at v. More generally, as described above, two dodecahedra
D, and D), meet at a common vertex if and only if g~ 1h is one of the correspond-
ing permutations listed here. Since any meeting between two dodecahedra must be
across a common face, along a common edge, or at a common vertex, all nieetings

between pairs of dodecahedra in D/N have been accounted for.

Das32)

v
)

(-

v

Figure 5.7: Vertex structure at v: 1 Figure 5.8: Vertex structure at v: 11
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Figure 5.9: Vertex structure at v: III

5.7 The Poincaré dodecahedral spaces

The chirality exhibited by the Webher-Seifert space also arises in connection with
Poincaré’s dodecahedral space, where antipodal pairs of faces of a dodecaliedron
in S3, with dihedral angles 27/3, are identified after a twist through +7/5 to
produce a compact 3-manifold, Poincaré’s homology sphere. As before, the two
possible directions of twisting yield a chiral pair of oriented manifolds P, and
F,, each having only orientation-preserving isometries, and each manifold is the
nirror-image of the other. The details of the construction are rather better-known
than in the hyperbolic case (|Cox RP, Ch. VIII], [Mon, §3.13], [ST, §62| and [Thu,
§1.4.4]), so they will just be outlined here.

Stereographic projection, which allows rotations of .52 to be represented as
Mobius transformations of the Riemann sphere C U {oc}, gives an isomorphism
SO(3) = PSU(2). The natural projection SU(2) — PSU(2) provides a double
covering of SO(3) by

SU(2) = lu,ve C, vt +v7 =1
By taking real and imaginary parts of u and v as coordinates, SU(2) can be iden-

tified with the 3-sphere S* C R*, and hence with the multiplicative group () of
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unit quaternions. The actions of this group on itself by left and by right multi-
plication give two subgroups @, Qg = ¢ in the orientation-preserving isometry
group SO(4) of S3; these commute with each other, intersect in their common
center of order 2, and generate SO(4), so that SO(4) is the central product QrQr
of Qp and @, isomorphic to the quotient of Q) x @ = SU(2) x SU(2) obtained
by identifying each element of () x () with its negative. The full isometry group
O(4) of S* is an extension of SO(4) by an orientation-reversing involution induced
by conjugation of quaternions, sending (1, x2, 23, 24) to (21, —&9, —x3, —24); this

inverts each element of @, so it transposes the two subgroups @7 and Qg of SO(4).

There is a single conjugacy class of icosahedral (or dodecahedral) rotation
groups [ = Ay = Ly(5) in SO(3), each I lifting in SU(2) to a binary icosahedral
group | = A; = SLy(5), an extension of I by a center of order 2. The resulting
embedding of [ in Q yields a pair of subgroups I polp =1 of @1 and Qp, which
generate their central product /17x of order 120?/2 = 7200 in SO(4); extending
this by conjugation of quaternions, which transposes I and ] R, gives a subgroup
A of order 14400 in O(4). This is the Coxeter group [5, 3, 3], the symmetry group
of the 120-cell {5, 3,3}, a tessellation £ of S? by 120 dodecahedra with dihedral

angles 27 /3; the orientation-preserving subgroup A* = [5, 3, 3]* of A is Il

One can construct € as the Dirichlet (or Voronoi) tessellation of $® correspond-
ing to its discrete subgroup /. For each ¢ € [ define the Dirichlet region [, to be
the set of points in S which have ¢ as a nearest element of /. These 120 sets are
permuted regularly by I, and [, with the diagonal subgroup H = A; of the cen-
tral product AT = /7 stabilising [} and permuting the sets £, in the same way
as it acts by inner automorphisms on the elements ¢ € I; the antipodal involution

stabilising F; acts on these sets by inverting their labels g.
In order to determine the shape of each set [y, it is convenient to choose the

subgroup I of SO(3) to contain the rotation z + e?™/%z of the Riemann sphere,

which lifts to the pair of elements

71/5

e 0 -

. ( | ) e
0 e—m/s

in SU(2) corresponding to the points £(cos 7/5,sin7/5,0,0) € S3. The elements

of I closest to the identity (1,0,0,0) are those maximising their first coordinate,
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and with this choice of I these are the 12 members of the conjugacy class of I
containing the element (cos=/5,sin7/5,0,0). It follows that each F, is a regular
dodecahedron centered at g, meeting Ej, across a face if and only if g7*h is con-
jugate to (cosm/5,sin7/5,0,0). These 120 dodecahedra F, have dihedral angles
27/3, and are the cells of a tessellation £ of S with Schléfli symbol {5, 3,3} and
isometry group A. This tessellation has 600 vertices, 1200 edges and 720 faces, and
its dual is the 600-cell {3, 3, 5}. The barycentric subdivision of £ is a tessellation of
S3 by 14400 tetrahedra, each having as its vertices a vertex of £ and the midpoints
of an edge, face and cell of £, all mutually incident. The reflections a, b, ¢ and d
of S* in the sides ol a tetrahedron opposite these vertices generate A, giving a

presentation

A= <QQ7LC{ | (LQ :Qz — 2 :d2 _ 17
VP = (cd)® = (ac)? = (ad)? = (bd)? = 1)

~
|®
<
~
o
Il
~
5

of A as a Coxeter group. Setting o = ab, J = bc and 7 = ¢d as before, the elements
a, /3 and v generate the index 2 subgroup A+ of A. Let Iz =<< (abed)® >>ax
and I, =<< (abed)® >>a+. Then In and I generate AT as a central product

and I and I r have order 120.

The quotients P, and P, of S? by I r and I, are obtained by identifying equiv-
alent pairs of faces of the dodecahedron £, using right multiplication by the
conjugates h of (cosm/5,sin7/5,0,0) or left multiplication by h~!; these identily
antipodal pairs of faces of F| by means of left- or right-handed screw motions with
angle 7/5, so each P, is a Poincaré dodecahedral space. In each case, the isometry
group of P, induced by the action of the other copy of / on $3, is isomorphic to
[ and contains only orientation-preserving elements. The involution which trans-
poses I r and ] 1 induces an orientation-reversing isometry between P, and P;, so
these two spaces form a chiral pair, as noted by Montesinos [Mon, Ch. 3|. Since
I and I, both act freely on the simply connected space S3, it follows that P, and
P have fundamental groups isomorphic to [; this is a perfect group, so their first
(and, by duality, second) homology groups are trivial, that is, they are homology

spheres.

' lients of £ by [; and are a chiral pair of tessellations of P} and P,
The quotients of € by I, and [, a chiral pair of tessellations of P, and P
each consisting of five vertices, ten edges, six faces and one cell. These are Coxeter’s

twisted honeycombs {5,3,3}; for L = 5 and { = 3 respectively, corresponding to the
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fact that /5 and Iy are the normal closures in A* of (abed)® and (abed)? (|Cox TH,

Fig. 22, [Mon, Fig 29]). The identification {5, 3, 3}3 is illustrated in Figure 5.10

Figure 5.10: Coxeter’s {5,3,3}3

5.8 The structure of the 120-cell

The structure of &£, the 120-cell, can be studied in the same way as were the
tessellations D/N/! and D/N, by identifying the flags with the elements of A and
the dodecahedral cells with the cosets of Ay = (a,b,¢) = [ x (' in A, or more
conveniently of Af 2 7 in A*. The dodecahedra F, are labeled by the elements
g of I, =1, acting as coset representatives of Ay in A*, so that the orientation-
preserving stabiliser Al of D permutes them in the same way as it acts as inner
automorphisms on I.In particular, the orbits of Aj on dodecahedra correspond to
the conjugacy classes of /. Each conjugacy class C = Cy, Cs, Cs or Ci of elements of
odd order n =1, 3 or 5 in / lifts to two classes C and —C in /, each inverse-closed

C|, containing elements of order n and 2n respectively. On the other

and of size
hand, the class Cy in / containing the 15 involutions lifts to two mutually inverse
classes of 15 elements of order 4 in /. The antipodal involution (@)5 in Ag '\ ASL
acts by inverting the labels of the dodecahedra, so the orbits of Ag on dodecahedra
are the same as those of Af, except that the two orbits of A7 of length 15 labeled

by the elements of order 4 form a single orbit of Aq of length 30.
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Proceeding as in § 5.3 and § 5.6, it is shown that bracelets of dodecahedra in

& have length 10, each bracelet through ) being labeled with successive powers

9,9%. ...,g" = 1 of an element g € —C}, lying in the classes —Cj, Cs, —C;, C}, —C,
2, —=Cs, C5, —C5 and Cy.

Every element of 7 whose order divides 10 appears as a label of such a dodeca-
hedron, and in particular the antipodal dodecahedron £/_; appears opposite [/ in
each of the six bracelets containing F;. Necklaces have length 3, the labels of those
through £, accounting for the elements of order 3, while their antipodal necklaces
each consist of F_; and two dodecahedra labeled by mutnally inverse elements of

order 6.

The element abed of A has order 30, with the involution (abed)'® corresponding
to (=1,0,0,0) € S? and generating the center I.Nip = Cyof A [C1, §11].
The antipodal quotient of &€, by this center, is a tessellation {5,3,3}15 of SO(3),
or equivalently of real projective 3-space P?*(R), by 60 dodecahedra; it can be
constructed as the Dirichlet tessellation of SO(3) corresponding to its discrete
subgroup /. In this case each bracelet of dodecahedra has length 5, lifting to a
bracelet of length 10 in &, while each necklace has length 3, lifting to an antipodal

pair of necklaces of length 3 in &£.

5.9 The 120-cell and D/N.

There is a connection between the spherical tessellation £ = {5,3,3} and the
hyperbolic tessellation D/N = {5,3,5}/N studied earlier. As shown by Lorimer
[Lor|, the Coxeter group A = [5,3,3] is generated by its elements a, b, ¢ and

e = d(abc)®d(abc)®d; these satisfy the relations

<

W=l == = (0 = ()" = () = (00) = (ae)? = (be)? = 1,

which correspond to the standard defining relations of I" with a, b, ¢ and e replacing
a, b, ¢ and d, so there is an epimorphism ¢ : I' — A given by a — a, b — b, c— ¢

and d — e. (Actually, this is the dual of Lorimer’s epimorphism I' — A* = [3, 3, 5].)

To study all possible rewritings of the presentation of [5,3,3], the following

geometric description of the 120-cell is considered. In [C1, §9| the 120-cell is de-
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conposed into two linked tori each consisting of 60 dodecahedra. Cutting one of

these tori along a meridinal curve (as illustrated in Figure 5.11) gives a tower of

Figure 5.11: two linked tori with meridian path of one marked

dodecahedra, with a core tower of 10 stacked dodecahedra. Adjacent dodecahedra
share a horizontal pentagonal face, and at each edge of this face a further dodec-
ahedron is attached. The outer surface of the tower consists of the 200 free faces
of the 50 dodecahedra wrapped around the central tower. Let A and B be planes
in S* through the horizontal face of D; reprcsenting the reflecting planes for a
and b, and consider how a plane representing d could be constructed. Such a plane
must be orthogonal to both A and B in S and so projects (under orthogonal
projection) to either a horizontal plane in R3 or to a sphere in R? orthogonal to
both A and B. By looking in the 120-cell it can be seen that any reflection » whose
plane R is orthogonal to A and B is going to be a symmetry of the meridian curve
illustrated in Figure 5.12. The stabiliser of this curve is Dayg (in fact the stabiliser
of this curve will act transitively on the dodecahedra of the core of the second
torus and so it is the stabiliser of a stalk), so there are 11 possible involutions
{w;} whose product with a and b have the required properties. A quick computer
check of these elements reveals that the product cw; has order 2 (three of these),
3 (two of these), 5 (two of these), 6 (two of these) or 10 (two of these). Of the 11
w;, eight of them (those with cw; of order 3, 5 or 6 and two of those with cw; of
order 2) form a generating set [a,b, ¢, w;] for A. This also proves the existence of

an epimorphism @ : [5,3.6] — [5,3. 3].

To find a more useful description of ¢ , its restriction to A* is first constructed.

This group is the central product /;/g of two copies of [ 22 SL,(5), that is, the
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Figure 5.12: Two hundred faces of {5, 3, 3} forming the bound-
ary torus of a dodecahedral tower. Meridian path bounded by

dotted lines

quotient of SLy(5) x SLo(5) obtained by identifying each pair of matrices with
its negative. The center of this group is generated by the involution +(/y, —13),
where /5 is the identity matrix in SLy(5), and the central quotient, obtained by
identifying each matrix with its negative, is Lo(5) X Lg(5) = Ay x As. Define

ot T — AT by
a— (A A), - E£(BB), v £(C,Cy)
where

1 1 -1 -1 0 =2 0
A= ., B= , C1 = and (= .
01 1 0 -2 2 2

are elements of SL,(5). It is routine to check that these images of a, § and v

o

bo

generate AT and satisfy the delining relations of I'", so " is an epimorphism.
Moreover, the epimorphism S7Ls(5) — As given by A — (13524) and B — (123)
sends Cy = [B™YAB, A]* to (14352) and Cy = BC, B! to (13425), so ¢ is a lifting
of the epimorphism 6 : I't — As x A5 considered in § 5.7. Now A is an extension of
A* by the involution +(My, My) +— £(Ms, M;) which interchanges the two copies
of SLy(5). Therefore ot : 't — A7 can be extended to an epimorphism ¢ : I' — A

by sending (abc)?, an involution which commutes with o and 3 and conjugates v to
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o=t A2ay 1B~ a8, ]2, to this involution, since a calculation shows that

this has the corresponding effect on the images of «, 7 and ~ in A™.

Theorem 5.2 The kernel K = ker is the unique normal subgroup of I' with

/K =2 A. It is a subgroup of index 2 in N.

Proof: Since ¢ : I' — A is an epimorphism, the first isomorphism theorem gives
I'/K = A. Since I'" is perfect and A is not, any normal subgroup L with I'/L = A
must be contained in I'", and hence in N since it follows from Lemma 3.2.1 that
N is the only normal subgroup of I'™ with quotient As x As. This implies that the
epimorphism 6 : I'" — ' /N 2 A5 x A5 must lift to an epimorphism f:T+ — AT
with kernel L. Now any element g of odd order n in A5 = Lo(5) = [ lifts to two
elements § and —g of orders n and 2n in /L >~ SLa(5) = I , 80 any element (g, 1) of
odd order n in A5 x Aj lifts to two elements #(g, h) and (g, —4) of orders n and
2n in A", Since I'" is generated by its elements o, # and v of odd orders n =5, 3
and 5, any lifting g of 8 must send these generators to the unique elements of the
same orders n covering their images in A; x As. This shows that # has only one

lift #, namely ¢, so L = K, a subgroup of index 2 in V. ]

Using GAP, a presentation was obtained for N. It has a presentation on 53
generators and 57 relations. The abelianisation N/N’ = Z4! ¢ Z1? shows that N

cannot be presented with fewer generators.

In the action of I" as a monodromy group on the flags of any quotient of D, one
can regard the first three generators a, b and ¢ as describing how flags fit together
to form dodecahedral cells, and d as describing how these cells meet across faces;
there is a similar interpretation for the generators @, ..., d of A, acting on quotients
of £. Now the epimorphism ¢ : I' — A sends the first three generators of I" to those
of A, so that under the induced isomorphism I'/ K — A, dodecahedra of D/K are
matched up with dodecahedra of £; however, ¢ sends d to ¢ rather than d, so that
adjacency of dodecahedra in D/ K corresponds to the effect of e in identifying faces

of dodecahedra in &.

Now consider the action of the element e of A as a monodromy permutation on
a flag ¢ = (v.e, f, £) incident with a face f on a dodecahedron £ of the 120-cell

€. Reading ¢ = d(abe)®d(abe)’d from left to right, it can be seen that d sends ¢ to
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the adjacent flag (v, e, f, £;) in the dodecahedron Ey which meets £ across their
common lace [; then (abc)® sends this to the antipodal flag of Fy, on the face
J"of Iy antipodal to f; applying d again, the adjacent Hag in the dodecahedron
Eyp which meets 5 across [’ is obtained; then applying (abc)® the antipodal flag
of Iy, on the face [” of Iy antipodal to [ is obtained; finally applying d the
adjacent flag in the dodecahedron Fsy which meets Iy across f” is recovered. This
means that, if d is replaced with e as a monodromy permutation and leaving a, b
and ¢ unchanged, then the 120 dodecahedra /2 of £ can be reassembled with this
new rule for adjacency: each face f of F is identified, not with the corresponding
face f of Ey, but with the face f” of Fjy, three steps rather than one around a
bracelet [, Ey, Eof, 155, ..., IF_;. Combinatorially, this is possible, but since ce
has order 5 these new identifications would require each edge to be surrounded by
five dodecahedra, rather than three. Therefore spherical dodecahedra I in £ need
to be replaced with hyperbolic dodecahedra D, so that they can have dihedral
angles 27 /5. Doing this, and making the corresponding identifications of each face
J of D with the face f” of Dy, the tessellation D/K of H®/ K by 120 dodecahedra
corresponding to the normal subgroup K of T' is obtained. This has symimetry
group I'/K = A, and its quotient by the center N/K = (U5 is the tessellation
D/N studied earlier. Alternatively, D/N can be obtained directly by applying the
above reassembling process to the 60 dodecahedra in the antipodal quotient of £
discussed in the preceding section. (This reassembling process can be seen as a
3-dimensional analogue of the operations on maps considered in dimension 2 by

).

Wilson [Wil] and Jones and Thornton [JT

5.10 The tessellation D/K

The tessellation D /I is an unbranched double covering of D/N, each dodecahe-
dral cell in the latter lifting to two in the former. The local properties of these two
tessellations are similar, but globally they differ. As in the case of D/N, but with
SLa(5) and AT replacing As and As x As, the right-handed flags and the dodec-
ahedra of D/K can be labeled with the elements of AT and SLy(5) respectively,
so that a flag £(M;, My) is in the dodecahedron labeled with the (well-defined)
element My M, of SLy(5). As in the case of &, the diagonal subgroup H = As
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of the central product AT stabilises a dodecahedron Dy, and its action on the
120 dodecahedra corresponds to the action of InnSLy(5) = Ly(5) = A on the
elements of SL,(5). In particular, the orbits of / on the dodecahedra correspond
to the conjugacy classes of SLo(5), as described in § 5.9. It follows that each orbit
O of H on dodecahedra in D/N lifts to two orbits of size |O| on dodecahedra in
D/K, and that the labeling of these dodecahedra is compatible with the lifting of

elements of A5 to SLs(5).

By considering monodromy permutations of flags, as in the case of D/N, the pos-
sible adjacencies between pairs of dodecahedra Dp and Do labeled with matrices
P,Q € SLy(5) can be determined: starting with the neighbours of the dodecahe-
dron g labeled with the identity matrix / = /5, apply automorphisms to consider
general dodecahedra. For instance, the element v~ ! of I't has image j:(@ g), (23 g))

in AT, so Dy meets D,s across a common face where

~1
2 2 2 3

M= = A% € SLy(5),
20 3 0

and it follows from this that Dp meets Dy across a common face if and only if
P~1Q is in the conjugacy class —Cs of SL,(5) containing —A?. In fact, whereas the
clement (abc)®d of T'F, which sends flags one step around a bracelet of dodecahedra,
has an image of order 5 in A; x Ajs, its image +(—A~!, A) in AT has order 10:
its fifth power is mapped to the central involution +(—7,, /5), which is not in the
image of T'yg, so each bracelet of five dodecahedra in D/N lifts to a bracelet of
ten dodecahedra in D/K. (This is obtained, as in the preceding section, from a
bracelet of ten dodecahedra in £, with dodecahedra three steps apart in £ giving
rise to adjacent dodecahedra in D/N.) On the other hand, the element (bed)®(abc)?
of T+, which sends flags one step around a necklace of dodecahedra, has an image
+(B~t, B) of order 3 in A™; it follows [rom this that Dp and Dg meet antipodaly
across a vertex if and only if P~'Q € C3, and that each necklace of length 3 in
D/N lifts to a pair of necklaces of length 3 in D/K. The dodecahedron D3
in D/N meets Dy antipodaly at v; and also along three edges; this lifts to two
dodecahedra in D/K, namely Dg meeting D; antipodaly at a vertex, and D_p
meeting it along three edges. Thus Dp and Dy meet along an edge if and only if
PQ e —CA3, so it is no longer possible in D/K for a pair of dodecahedra to meet

in both ways, as happened in D/N.
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5.11 Quotients of I'" isomorphic to L,(19)

After Ly(4) = Ly(5) = As, the next smallest epimorphic image of I'* is L,(19) ( in
Theorem 3.1 of § 3.6 it was shown that no epimorphisins onto Ly (7), L2(8), L2(9),
Ly(11), 15(13) or Lo(17)). As is shown in section § 3.4, there are three normal
subgroups with quotient L,(19). In this section, these three subgroups K; will be

considered in more detail, together with their associated tessellations H*/ K.

5.11.1 The three normal quotients and their extensions

Recall in § 3.4 of Chapter 3 that maps I't — Ls(g) were characterised by matrices
. . . . ‘ Ve —14+/5
with entries in terms of e, f,#,u.w and z, where 2 + f2 = —2 — ¢, u,t = =45,

When p =19take u = t, ¢ = 4 and f = —t, giving epimorphisms I'" — L = [5(19)

defined by
t12 ) 12 0 w oz
o = H /H — H A}'/ — )
( 11 0 ) ( —t 8 ) ( T )

wheret =t; =4, =5fori =12 Herey =2, w= ((e—1)u—2fz)/2e = (5z — 2)t,
u—w = (3—>5z)t and z is a root of (e* + [*)z* + flx +e* — 2(e? — 1)1* = 0,
that is, (¢ + 2)2? — (t — D)z + (¢ + 2) = 0 or equivalently z2+ (2 — 3¢t)z + 1 = 0.

When ¢ = —5 this quadratic equation becomes x* — 22 + 1 = 0, with a single root

e

x =1, so there is an epimorphism 6y : 't — [ defined by

4 1
")/l—) .
1 10

When ¢ = 4 we have 22 + 9z + 1 = 0, which has two roots x = —4, —5, so there

are epimorphisms 6,6, : T'" — L defined by

7 -4 6 —5
e or
—4 -3 5 —2

respectively. Therefore, there are three normal subgroups K; = kerf; of I't with

[/ K; 2 Ly(19) for i = 0,1, 2.

The epimorphism 0 : I'" — L can be extended to an epimorphism 6y : I' — L
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by sending

. 1 6 4 -7 —6 1 —4 4
a— . b . C , de—

5 =1 ) -3 -4 ) 1 6 -9 4
so the kernel is a normal subgroup Ny of " with I'/Ny = L. This shows that Ky =
N = No N I'F is normal in I', with I'/ Ky = L x C,. This is because N, contains
the conjugacy classes with representatives (abc)® and (bed)®. These representatives
are central in (a,b, ¢) and (b, ¢, d), respectively. The two epimorphisims #; and 6,
on the other hand, cannot be extended to I': when ¢ = 4 the only possible image
of bin PG 15(19), inverting the images of o and /3, is (i 1%‘)1 but then d = b3y does
not map to an involution; thus K and K3 are not normal in I'. Letting d act on

the generators «, 4 and vy, by conjugation,

If N is any normal subgroup of I" with quotient 7, then N7 is a normal subgroup
of T with I'/N* = L x (5 and I't/NT = L. This last isomorphism implies that
N+t = K, fori=0,1or 2, and since K, and K, are not normal in I, then N* = K.
Thus N contains /Ky with index 2, so it maps onto a normal subgroup of order 2 in
I'/I{s = L x Cy; the only such subgroup is the direct factor Ny/ Ky = Cs, so N is
its inverse image Ny in I'. Thus Ny is the only normal subgroup of I' with quotient
L. Using GAP, a presentation for Ny and K was recovered. The abelianisations
No/Nj = Z5" and Ko/ K}, = Z5% were also computed. These give the first homology
of the associated manifolds H? /Ny and H?/ Ky, respectively.

9 8
9 10

the images of o and d, and also those of b and ¢, so /<y is normal in €2, with
/Ky = PGLy(19) x Cy. This is the isometry group of the manifold H?®/ K, with

orientation-preserving subgroup Q7 /Ky = PG Ly(19); the tessellation Ky = D/ K,

The involution (g 5) in PGLy(19)\ L induces an automorphism of L transposing

which it carries is reflexible and self-dual, with symmetry group I'/ Ky = L x (5 and
orientation-preserving subgroup I't /Ky & L. As already noted, the direct factor
(5 is generated by the common image of the involutions (abc)® and (bed)® in T\I',
which applies the antipodal symmetry to each dodecahedral cell; factoring this out,
it can be seen that the orbifold H®/Ny is tessellated by the antipodal quotients of

these dodecahedra.

The effect of the half-turn » € QF on I'T is to transpose « and v !, and to

invert . Conjugation by the element (170 1(?) € L has the same effect on the images
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of these elements under ¢4, so K, is normalised by r and is thus normal in 7 with
O /K, = L x Cy. This is the isometry group of the manifold H?/ K, consisting
entirely of orientation-preserving transformations. The subgroup I'"/K; = L is
the symmetry group ol the tessellation K, = D/Ky, which is chiral and self-dual.
The same conclusions apply to Ky and its quotient manifold and tessellation, with
the element (17 12) € [ imitating r in this case. Since K and K, are conjugate

under elements of I'\ I'", their corresponding quotient manifolds and tessellations

are mirror images of each other.

5.11.2 Factorisation in 71,(19)

The following method allows the structure of each of the three tessellations K;
associated with L = Ls(19) to be determined, by identifying which dodecahedron
contains the flag labeled by any given element of L. The 57 dodecahedra may be
identified with the cosets g in L of the subgroup (¢ = Aj, which is the stabiliser
of one dodecahedron D) in the monodromy representation of L on flags. Let B
denote a Borel subgroup of L, that is, the normaliser Cg : Cy of a Sylow 19-
subgroup of L. Then |B NG| divides ged(171,60) = 3, so B has an orbit of length
divisible by |B|/3 = 57 on the dodecahedra, and therefore acts transitively on

them. Thus L = BG and (0 := BN G = (5, so each element h € L has the

form i = bg where b € B and g € G. A second factorisation h = ¥¢g/, for ¥ € B
and ¢’ € G, exists if and only if ¥ = bc and ¢’ = ¢71g where ¢ € C. Therefore
the cosets bC of C in B can be used to represent the cosets oG of G in L, and
hence to represent the dodecahedra in K;. (Unfortunately, there is no subgroup
of L whicli acts regularly on the dodecahedra and whose elements could therefore

provide coset representatives for G in L.)

In order to locate flags within specific dodecahedra, the cosct bG of G which
contains a given element h € L needs to be determined. That is, i needs to be
factorised as a product h = bg where b € B and g € G. B can be assumed
to be the stabiliser of oo in the natural representation of L as a group of Mdbius
transformations of the projective line P?(19) = FigU{oo}, so that g maps oo to the
same point p € P1(19) as h does. A list of 20 elements g, € G, each sending oo to

a different point p, is constructed (these will be coset representatives for C' in G, so
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there are three arbitrary choices for each p). Given any h € L, write it as the image
under &; : '™ — L of a word w in the generators «, 7 and v of I'*, and compute the
image p of co under A by composing the Mébius transformations corresponding
to the generators appearing in w. Then take g to be the corresponding element
gy € G from the list, and write b = hg™' € B, so that h = bg as required, and the

flag corresponding to A lies in the dodecahedron corresponding to the coset bC'.

5.11.3 A note on the above method

Factorisation in L3(19) has no nice extension to a more general case Ly(q). For ¢ =
19 the subgroup B = Nj,19)(Chy), where Cyy is the abelian subgroup stabilising
the point oo in the action of L,(19) on the projective line IF19 U oo, was used. This
subgroup has index ¢+ 1 = 20 in Ly(19). For all but finitely many ¢, ¢+1 > |G| =

60, so the decomposition L = BG cannot arise for large ¢.

5.11.4 Structure of the quotient tessellations for L,(19)

In each of the cases ¢ = 0,1 or 2, the group L = L5(19) permutes the |L|/|As| = 57
dodecahedra in K; = D/K; transitively, with each dodecahedron stabilised by a
subgroup G = A;. In order to understand how these dodecahedra are joined to-
gether, more information is needed on how the stabiliser of one of the dodecahedra
permutes the others. Equivalently, the suborbits for the action of 1. on the cosets of
a subgroup G = Ay are needed. To do this, a result due to Jones and Zvonkin [JZ]

18 used:

Lemma 5.11.1 (Jones-Zvonkin) IfG and H are finite conjugacy classes of sub-
groups of a group S, then the number v of groups G € G containing a particular

H € H is given by
t .
~ 1
=|H:H § —
o= | im1 Tk

with H = Ng(H), and the subgroups H € H contained in G form t conjugacy
classes under the action of G = Ng(G), with the groups H in the i-th class satis-

fying |Ns(H) : H| = m,.
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The proof of the Lemma in [JZ] shows that the v groups G € G containing
H form t orbits of lengths |4 : H|/m; under the action of H. In particular,
if all subgroups [/ € H contained in (' are conjugate in (, then ¢t = 1 and
Nea(H) - H.

v =1|H: H|/m where m = m; =

This can be applied to find the suborbit-lengths for the action of S = L on the
cosets of a subgroup G = Aj;. There are two conjugacy classes of such subgroups,
which fuse in Aut G = PG Ly(19), so G can be taken to be either of these classes.
They are maximal subgroups, so G = G and the action of S can be identified
with its action by conjugation on G. This action, which is primitive, has degree

S G| = 2q(¢* — 1)/60 = 3420/60 = 57.

Let H to be an arbitrary subgroup of (. Then the number of points fixed by
H is the number of conjugates of ¢ in S that contain /. By comparing this with
the corresponding numbers for supergroups of // in &, the number of suborbits of

G with H as a point stabiliser can be determined.

1. If I = Ay then [T = I, t =1 and m; = 1, so the Lemma gives v = 1,
that is, /{ is contained in no other conjugate of (. Thus there is no suborbit
with Ay stabilisers. This argument applies for all ¢ = £3 mod (8); however,
if ¢ =41 mod (8) then H = S, with t = 1 and m, = 1 so v = 2 giving a

suborbit of length |G : H| = 5.

2. It H = Dy then H = Dig, t =1 and m; = 1, so the Lemma gives v = 2,
and hence there‘is one suborbit of length 6 with Dy stabilisers, G acting as
L»(5), or equivalently on antipodal pairs of faces of a dodecahedron. This
applies for all ¢ = +1 mod (20), since = Dyg; if ¢ = +11 mod (20) then

H = H so there are no such suborbits.

3.1 H = Dy then H = H,t =1 and my = 1, so the Lemma gives v = 1,
that is, there is no suborbit with stabiliser D3. This applies for all ¢ = 45
mod (12), since I = H; if ¢ = +1 mod (12) then H = D giving v = 2, 50
there is a suborbit of length 10 with [Dj stabilisers.

4. 1f H = C5 then H = Dy, t = 1 and my = 2 since Na(H) = Neg(H) = Ds,

so v = 2. The two conjugates of (G containing H also contain its supergroup

Dy, as shown in (2), so there is no suborbit with Cj stabilisers.
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[has
—
—

If H~V,;then H 2> A, t =1 and m, = 3 since Na(H) = Ng(H) = Ay, 50

(W1

v =1 and there is no suborbit with Vj stabilisers. More generally, if ¢ = £1
mod 8 then Ng(H) = Sy so v = 2, so there is get 1 suborbit of length 15. If

g = 3 mod 8 then Ng(H) = A4 and v = 1, there is no suborbit.

6. If H= () then H 2 Dy, I = 1 and my = 2 since N o(H) = Ng(H) = Ds,
so v = 3. The two conjugates other than G itself are not fixed by any
supergroup of H in (7, so there is one suborbit of length 20 with Cj5 stabilisers;
(7 acts as on the vertices of a dodecahedron, each stabiliser fixing two points.
More generally, H = D,z1 depending on whether ¢ = £1 mod 3. Also,
Ng(H) = Ne(H) = D3, t =150 my = 2. Then v = %2 If ¢ = 45 mod 12
then there is one suborbit of length 2 with C'5 stabilizers. If ¢ = 1 mod 12

then there are two suborbits of length 10 with Dj stabilizers.

If H 2y then H Dyg, t = 1 and my = 2 since Ng(H) = Ne(H) =V,

so v = 5, giving four conjugates other than G fixed by H. Now there are

I

15 subgroups H = (5 in G, each fixing four points other than G, giving
15x4 = 60 fixed points. There are six subgroups Ds in (7, each containing five
subgroups (s, so there are 6 x 5 = 30 pairs D5 > (Uy; since the 15 subgroups
Cy are all conjugate in G, each is contained in 30/15 = 2 subgroups Dj of
G. Tt follows that H fixes two points in the orbit of length 6 given in (2), so
it has 4 — 2 = 2 points other than G outside that orbit. There are no other
supergroups of f{ in (G which can arise as stabilisers for these points, so ¢
has an orbit of length |7 : II| = 30 with [ acting as the stabiliser of two

points; this is equivalent to the action of G on edges of a dodecahedron.

8. There cannot be I/ = 1 since then |7 : II| = 60 > 57, so (¢ could not have

a suborbit of length 60.

5.11.5 The three tessellations

To suminarise, it was shown that & splits G into orbits of lengths 1,6,20 and 30
with stabilisers (7, D5, C'y and (5. Since 14+6+20+30 = 57 is the number of cells in
the tessellations, this forms a complete list. This will now be interpreted in terms

of the tessellations £ = K; = D/I; for i = 0,1,2. General features common to
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all three tessellations will be described. More detailed features which distinguish
between the three tessellations require a more precise examination of how L is

generated as a quotient of I'™ in each case.

If Dy is a dodecahedral cell in K, then there are at most 12 dodecahedra which
meet Dy across common faces; this set of dodecahedra must be invariant under
the stabiliser G = Ay of Dy in L, so it is a union of orbits of G. None of these
dodecahedra can be equal to Dy, otherwise regularity and connectedness would
imply that all dodecahedra in K would be equal to each other. Since there is only
one orbit of G of length between 1 and 20, it follows that these dodecahedra form
the orbit of length 6, each meeting 1y twice; since this pair of comimon faces must
be invariant under the stabiliser D5 of the neighbouring dodecahedron, they must
be an antipodal pair £ f. Denoting this neighbour by D} ¢, and applying the same
argument to it, it can be seen that [y meets 1)y across its faces £/, so these two
dodecahedra form a bracelet of length 2. Note that this gives a 37/5 "twist" to

the tessellation.

The tessellation from 0,

For a dodecahedron Dy, let e and —e be a pair of antipodal edges stabilized setwise
by an element of {« , ) of order two. Let ¢ be a flag in Dy sharing an edge with
e, and let v be the vertex common to them both. Under the epimorphism &, the
antipodal flag at the vertex v, ¢pv23%v23%~3?, is also the flag po®Ba*Ba? at the
antipodal vertex —v of Dy. So the dodecahedron antipodal to Dy across v is Dy

and v coincides with —v wuder the identification, as illustrated in Figure 5.13.

If D;, D; meet Dy only along an edge of Dy, then they also meet Dy across
the edge —e as shown in Figure 5.14. This contributes 30 dodecahedra to the
tessellation, forming a single orbit of G with C; stabilizers. So far 37 dodecahedra
have been counted, leaving 20 as yet unaccounted for. These form a single orbit of
dodecahedra disjoint from Dy. These 20 dodecahedra come in ten pairs {D,, D_,},
each pair fixed setwise by a rotation of order 3 fixing two antipodal vertices of Dy.
Let v, —v be such a pair of vertices in Dy, and let Dy meet Dy along a face
containing v. Then D; has two additional faces f; and f, which also contain v.

These faces are not shared with Dy. Let ey, be the edge in f; opposite v. Then D,
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Figure 5.13: Vertex identification for

My Figure 5.14: Edge pairings for My

meets one of these edges and D_, meets the other. Of the 6 dodecahedra meeting
D, across a face, three of them are dodecahedra sharing an edge with Dy and three
are vertex dodecahedra disjoint from [Jy. Since the automorphisms [ preserves the
properties of the tessellation, this forces the three vertex dodecahedra to share a

common vertex with D,.

The tessellations from ¢, and 8,

For the epimorphisms #; and 6, Dy meets another dodecahedron D, at v so that
Dy and D, correspond to antipodal faces of the icosahedral vertex figure / = {3,5}
at v. Since Dy has 20 vertices v these dodecahedra D, form an orbit of G of length
20, with D, and D_, having the same stabiliser C3 where —v denotes the vertex
ol Dy antipodal to v. Since there are no further orbits with this stabiliser, D, and
D_, meet at a common vertex, antipodal in each to v and —wv respectively, so that

Dqy, D, and D, form a necklace of length 3.

This accounts for 1+ 6 4+ 20 = 27 of the 57 dodecahedra, so 30 dodecahedra
remain, forming a single orbit of G with Cj stabilisers. Now Dy has 30 edges e,
each surrounded by five dodecahedra; one of these is Dy, and two are of the form
Dy for the two faces f of Dy incident with e, so two others meet Dy along e. This
gives 30 x 2 = 60 such incidences, two for each edge, so each of the 30 remaining

dodecahedra meets [Jy along a pair of edges, which must be invariant under the
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stabiliser /1 = (. These incidences can be used to distinguish between the two
tessellations: if p is a Petrie path on Dy containing both e and —e, and let D,, and
D, be the two dodecahedra incident with e. Then the D, meet Dy along the edges
adjacent to —e in p. In the case of 0y, p is a right-left-right Petrie path; in the case
of 05, p is a left-right-left Petrie path. Figure 5.15 shows the edge identification for

the manifold M, associated with the kernel of the map 5 : '™ — Ly(19).

This accounts for all the dodecahedra, although not all incidences with Dy:
at each of the 20 vertices v, the vertex figure is an icosahedron whose 20 faces
represent the corners of dodecahedra meeting Dy at v: one of these dodecahedra
is Dy, three further dodecahedra have the form IJ; for faces [ incident with v,
while six dodecahedra meet Dy along the three edges incident with v. A further
dodecahedron is D,. There are nine remaining dodecahedra unaccounted for. Of
these nine, six are antipodal dodecahedra, three of which are antipodal to the
vertices bounding the edges containing v. Figure 5.16 illustrates this. The three
dodecahedra meeting D, across a face and which are not antipodal to Dy meet Dy
across three of the six edges left after deleting all edges bounding a face containing
v or —v. The other three edges meet dodecahedra which are face adjacent to D_,.

The three edges are also permuted regularly by the automorphism action of /.

Edge pairing for M.

e,

€

Figure 5.15: Edge pairings for Mo
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Figure 5.16: Vertex identification for M,



Chapter

Manifolds from the other groups

In this chapter minimal index torsion free normal subgroups and minimal index
torsion free subgroups of the eight Lannér groups 71, To, 713, Ts, T, 17, Ty and Ty,
introduced in Table 2.3 of § 2.2, will be constructed. Manifolds arising from the
group 75 have been extensively studied by Jones and Mednykh [JM]. Their main
results are included here for completeness only. The group Ty is studied extensively

in Chapter 5.

Let £(G) be the lowest common multiple of the orders of all finite subgroups
of an arbitrary group G and let M(G) be the minimum index of a torsion-free
subgroup of G. L(G) will divide M(G) since, for any torsion free subgroup H of
G, the action of a representative g of a conjugacy class C(g) of torsion elements
on the cosets of // in (7 fails to fix any coset. Hence |g| divides the index of /] in
G'. It is known that, for Fuchsian groups G, M(G)/L(G) is either 1 or 2 ( |[EEK]).
Jones and Reid [JR] have demonstrated that, for Kleinian groups ' there is no
global bound on the ratio M(G) /L(G) by constructing a sequence of groups I'y
with M(T')/L(Ty) > k, for any & € N. It is interesting to note that, by contrast,
several of the orientation preserving subgroups I'" of the Lannér groups I' have a

minimal index torsion free normal subgroup with index equal to L(T'").

118
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6.1 ['=T[2233,52]

Recall that T1(2,2,3;3,5,2] is the Coxeter group with Coxeter diagram

where a, b, ¢ and d are Coxeter generators of I'. Let o = ab, 3 = bec and v = «d.

Then the orientation preserving subgroup I't has the following presentation:

M = (o fy] o’ = B = = (aB)? = (37)° = (afy)’ = 1)

6.1.1 Torsion in I" and in I'"

Conjugacy classes of torsion clements in I' are listed in Table 6.1. The restriction

of Table 6.1 to representatives of conjugacy classes lying in I't is given in Table 6.2

Order Representative
Order 2 | a,ac,ad, cd, acd, (abc)®, (abd)®
Order 3 | be
Order 4 | chd
Order 5 | ab, (ab)?
Order 6 | ¢(ab)?, d(ab)?
Order 10 | abe, (abe)?, abd, (abd)?

Table 6.1: Conjugacy class representatives for elements of finite order in T

Order Representative

Order 2 | ac, ad, cd
Order 3 | be
Order 5 | ab, (ab)*

Table 6.2: Conjugacy class representatives for elements of finite order in I't
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6.1.2 Minimal index torsion free subgroups

Lemma 6.1.1 I't has a unique normal subgroup K with It /K = As. The kernel

of the map contains the conjugacy class C(v) of torsion elements of I'T.

Proof: Adjoining the relation v = 1 to the presentation for I't gives a group
with presentation (o, 8,7 | «® = 8% = (¢0)? = 1), so T /{({(y))r+ = A5. Let
a— (1,3,5.2,4) =@and g — (1,2,3) = 3. Since A; contains no elements g of
order 2 which satisfy the conditions (8g)* = 1 and (@fy)? = 1, this completes the

proof. |

Corollary 6.1.1 There exists a minimal index torsion free subgroup of I'F of index

120.

Proof: This result was obtained computationally. The unique normal subgroup K
of index 60 in I'" has 2047 conjugacy classes of subgroups of index 2. 1024 of the

class representatives avoid the conjugacy class C(7y). [ ]

The representatives of subgroups avoiding C(v) can be further partitioned hy
their abelian invariants - this partitions the set of representatives into 10 classes,
four of which have positive first Betti number. The normalisers of the subgroups
of K have indices in {6,10,12,15,20,30,60}. Of the 1024 conjugacy class repre-

sentatives avoliding C(v), 8 have normalizer of index 6 in I'T.

Lemma 6.1.2 There are no normal subgroups N of T with 't /N = Ag

Proof: Let (o, ) «— A5 C Ag be an embedding of A5 in Ag. Up to automorphisins
of Ag, this embedding is unique. Let o — (1,3,5,2,4), 8 — (1,2,3) and v — g¢,
so that o and [ generate As < Ag. Ag has 45 elements ¢g of order 2, 30 of which
lie in Ag\As. Of these 30 elements, only (1,2)(3,6), (1,3)(2,6) and (1,6)(2,3)
satisly [(1,2,3)g| = 3. However, |af5(1,2)(3,6)] = 3, |aB((1,3)(2,6)] = 3 and

la3(1,6)(2,3)] = 4. So lafg| # 2, and the proof is complete. [ |
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Lemma 6.1.3
1) There are precisely lwo torsion free normal subgroups Ky, Ky whose factor
group T'T/K; = Lo(11).
2) These are the smallest index torsion free normal subgroups.
3) Their inlersection has index 660% in It and is normal in Q = (T',1), the
order 2 extension of I in Isom(H?).

Proof:

1) In chapter 4 sections § 4.1.1 and § 4.2 it was shown that homomorphisms

I't — Ly(11) can be characterised by maps of the form

1 L—f e+1 ) 1 e+1 t+f wox
o = L3 = and v —
2\ —1+e t+f 2\ f—1 1-e T —w

where { = 1%—‘/—3, 2+ f2 = -2t and ew = u — fx, where u = +1
and V5 =4. If t = ——l%‘[é then ¢ = 7 mod 11, so —2 —t = —9 = 2 mod
11. Setting ¢ = [ = 1 gives ¢ + f? = 2, as required. Then z satisfies the

quadratic equation
21 —2ur +2 = 0 (6.1)

which has discriminant D = 4e?(1 +t) = 4(8) = (4v/2)%. Now V2 & Fyy,

so equation 6.1 has no solution over Fq;. Letting ¢ = i;—‘/—g, gives t = 3, so
—2—1—=-5=06mod 11. Writinge =4, f =1, s0¢?2 =5, f2=1 and
e? + [? = 6, x satisfies the polynomial

62° —2ur +6=0 (6.2)

which has discriminant D = 4.5(1 + 3) = 5 mod 11. Solving equation 6.2
gives £ = 2u £ 5, So for each value of u two solutions for z are obtained,

giving four solutions in total.

Casel:u=1.Thenz=2+5=70or -3=8mod 11l and dw=1—=z

e [fo=7Tthendw=1—7=-6sow=4mod 11.
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e [fz=8thendw=1-8=—-7s0w=11mod 11.

Therelore
~ 4 7 1 8
Yy & )
7 —4 8 —1
Casell: u=—-1: Thena=-2x5=30or—-7=4dmod1llanddw=—-1-x
e If x=3then 4w =—-1—-3=—4s0weget w= —1mod 11.

e If x =4 thendw =—-1—-4= -5 s0 we get w = 7 mod 11.

()]

Observe that the solutions in the case © = —1 are simply those from v =

Therefore

1 multiplied by —1 and so are equivalent in Ly(11). Now Aut(L,(11)) =
PG Ly(11). The action of the outer automorphism on L,(11) conjugates the
two conjugacy classes of Az in Ly(11). Since As is maximal in Ly(g), there is
1o automorphism of Ly(11) which fixes A5 and conjugates the two solutions
of 7. Thus there are two distinct kernels /{y and Ky, corresponding to the

distinet epimorphisms 61,8y : Tt — Ly(11), as required.

Since I'" is perfect, it suffices to consider only non-abelian simple quotients.
The factor group of any torsion-free normal subgroup must contain faith-
ful images of the special subgroups As = («,3) and S; = (4,v). From
lemma 6.1.1 it has already been shown that there are no torsion free normal
subgroups whose factor group is As. Neither is there a torsion free normal
subgroup whose factor group is Lo(7) or Lo(8), since neither Ly(7) nor Lo(8)
contain elements of order 5. Lemma 6.1.2 proves that there is no map to

Ag, and the result follows.

Take the product map 0 = (61,02) : I'" — La(11) x Lg(11). Then letting
ker(0) = K, T1/K = Ly(11)x Ly(11) and K1NK, < K. By composition with
the projections onto each factor, it is clear that K < K. Thus K < K1 N Ko,
so I{ = K1 N Ks. The K; are not normal in I': If they were then there would
exist some element g € Lo(11) of order 2 such that go, gad and ga/fy all
have order 2. Referring back to section § 4.2.2 of Chapter 4, this becomes

the condition e? = ‘Tl and f?= 4 —t,or e? = 8 and f2 = 9. Since 8 is not
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a square in iy, the K; are not normal in I'. So for any element g € T\['"
K¢ # K;. Since K; and K, are the unique normal subgroups of I'" with
factor group Lo(11), K? = K, for {¢,j} € {1,2} and g € I'\I'". Then
Ky N K5 is normal in T

Write Q = (T, ), where 7 is the graph automorphism of the Coxeter diagram
for I" that fixes the generators a and b and transposes the generators ¢ and
d. Since I'" is normal in €2, and K is the unique normal subgroup of I't with
factor group La(11) x Lo(11), K is characteristic in I'" and hence normal in

Q.

6.2 I'=17522325,3

The small manifolds arising {rom this group are studied in detail by Jones and
Mednykh in [JM]. Their conclusions are stated in this section for completeness only.
Let 't be the orientation preserving subgroup of I' and let €2 be the normalizer of
I" in Isom (H3). Then € is a split extension of I by a cyclic group of order 2. () has
an orientation preserving subgroup Q*. Both results rely on the conjecture that
the minimal volume hyperbolic 3-orbifold is H3/§2, where Q = (I, 7) is an index
two extension of T,. Work done by Gehring and Martin [GMI1], [GM2| suggests

that this group is the Kleinian group with smallest co-volume.

Theorem 6.1 There is a unique torsion-free normal subgroup Ky of Q of least
index (= 2640) in Q. This is a subgroup of I'", with TV /Ky = Ly(11) and
Q/Ky = PGLy(11) x Cy. The corresponding manifold My = H*/K, is the
smallest hyperbolic 3-manifold with a large isometry group. It is orientable, with
Iso My =2 PGLy(11) x Cy, and is tessellated by 11 hyperbolic icosahedra, each
meeling the 10 others across lwo antipodal faces. The isomeltries preserving this
tessellation form a subgroup T/ Ky = Ly(11) x Cy of index 2 in Iso My, while
the remaining isometries transform the tlessellation to its dual. The first integer

homology group Hi(My) of My is isomorphic to Z'°.

Theorem 6.2 There are two torsion-free normal subgroups Ky and Ky of QT of
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least indez (= 720) in Q*. They are subgroups of 't which are conjugate in Q, with
[H/K, = [s(9) = Ag and QT /K; = PGL,(9) fort = 1, 2. The manifolds M; =
H3/K; are the smallest orientable 3-manifolds with large orientation-preserving
isometry groups. They form a chiral pair, with Iso M; = Iso™ M, & PG L2(9), and
they are tessellated by sixz hyperbolic icosahedra, each meeting the other five across
a set of four faces with tetrahedral symmetry. The isomelries preserving this tessel-
lation form a subgroup I't/K; = L+(9) of index 2 in Iso M, while the remaining
isometries transform the tessellation to its dual. The first integer homology group

Hi(M;) of M; is isomorphic to Z.

6.3 I'=T32,2,4:2 3,5

In this section minimal index torsion free normal subgroups and minimal index
torsion free subgroups of I't will be constructed. Some details on the construction
of the associated manifolds will be included. The famous tessellation of H? by right-
angled dodecahedra is a consequence of this group. Figure 6.1, from the archives
of the Geometry Center [Geom)|, illustrates the structure of this tessellation. This
figure clearly demonstrates the octahedral vertex figurce as well as the dodecahedral
cells. It will be shown that the smallest manifold arising from the action of I'* on
H? is tessellated by 2 such dodecahedral cells, while the smallest manifold with

maximal symmetry is tessellated by 22 dodecahedra.

Figure 6.1: Tessellation of H? by right-angled dodecahedra

Recall that T3(2,2,4;2,3,5] is the Coxeter group with Coxeter diagram
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o
e

=Y
~@
®
®

where a, b, ¢ and d are Coxeter generators of I'. Let a = ab, § = bc and v = cd.

Then the orientation preserving subgroup I'* has the following presentation:

I =(a,3,7| " =8 =+*=(af)? = (57)* = (afy)? = 1)

6.3.1 Torsion in [" and in I'"

Representatives of the conjugacy classes of torsion elements in I' are given in
Table 6.3 The restriction of Table 6.3 to representatives of classes lying in I't is

given in Table 6.4.

Order Representative
Order 2 | a,d, ac,ad, (cd)?, a(cd)?, (bed)3, (abe)®
Order 3 | bc

Order 4 | cd, b(cd)?

Order 5 | ab, (ah)?

Order 6 | c¢(ab)?, bed

Order 10 | abe, (abc)?, abd, (ab)*d

Table 6.3: Conjugacy class representatives for elements of finite order in I’

Order | Representative
Order 2 | ac, ad, (cd)?
Order 3 | be
Order 4 | cd
Order 5 | ab, (ab)?

Table 6.4: Conjugacy class representatives for elements of finite order in '

' has 647 conjugacy classes of subgroups of index less than or equal to 60.
A representative for each class was determined using the program Lowx |Lx|. For
each representative, the action of I'" on its cosets was calculated and the results
are listed in Appendix A.3. Among the 647 induced permutation groups, 20 of the

induced actions have kernels which fail to avoid torsion:
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e The induced action on the representative with index 2.

e The induced action on the representative with index 5 which yields an epi-

morphism onto As.

e The induced action on the representative with index 6 which yields an epi-

morphism onto As.

e Both actions induced by the representatives with index 10 which yield an

epimorphisin onto As.

e Three of the actions induced by the nine conjugacy classes of subgroups of
index 12. These correspond to the induced permutation representations As

and As x Cy as listed in Appendix A.3

e The induced action on the representative with index 15 which yields an

epimorphism onto As.

e Three of the actions induced by the thirteen conjugacy classes of subgroups
of index 20. These corresponud to the induced permutation representations
As and A5 x Oy as listed in Appendix A.3.

e One of the actions induced by the twenty four conjugacy classes of subgroups
of index 24. This correspouds to the induced permutation representation

Az x Cy listed in Appendix A.3.

e Three of the actions induced by the nineteen conjugacy class of subgroups of
index 30. These correspond to the induced permutation representations Ag
and As x Cy as listed in Appendix A.3.

e One of the actions induced by the forty eight conjugacy class of subgroups

of index 40, giving A5 x C,

e Three of the actions induced by the three hundred and twenty three conju-

gacy class of subgroups of index 30.

6.3.2 Minimal index torsion free subgroups

Lemma 6.3.1 'Y has no torsion free normal subgroup N whose faclor group

I /N is isomorphic to Lo(T) or La(8).
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Proof: The proof is immediate since neither Ly(7) nor L4(8) contain elements of

order 5. B

Lemma 6.3.2 T't has no torsion free normal subgroup N whose factor group I N

s isomorphic to As or Ss.

Proof: The case for As is trivial, as As; contalns no elements of order 4. Sup-
pose I'" — Ss. Let o« = ab, § = bc and v = cd. Since {«, ) = A;, we
can let a — (1,3,5,2,4) and 0 — (1,2,3) and suppose that v — g¢. Now
Hg € S5 9] = 4} = 30. Of these elements, six of them satisfy |Fv] = 2:
These are (1,3,4,2), (1.3,5,2), (1,3,2.4), (1.5,3,2), (1,3,2,5) and (1,4,3,2).
Then for ¢ € {(1,3.4,2),(1,3,5,2),(1,3,2,4),(1,5,3,2) }, |afg| = 4 while if
g€ {(1,3,2,5),(1,4,3.2)} then |afyg| = 6. [ |

Lemma 6.3.3 Let '™ be the orientation preserving subgroup of T =

T3(2,2,4;2,3,5]. Then

1) T has a unique normal subgroup K with factor group TV /K = As which
has 2 classes of torsion free subgroups H; of index 120 in T'. These are
the minimal index torsion free subgroups of I'" and they have abelianisation

H;J[H, H] >~ 7 & 73

2) For each minimal index torsion free subgroup H; of T'", the associated man-
ifold M;(K, 1) = H?/H; is a 2-fold branched cover of H3/ K. Further, there
ezist manifolds M;(K,n) tessellated by 2n right-angled dodecahedra for any
n € N.

Proof: 1): Write oo — (1,3,5,2,4) and 4 +— (1,2,3). Let v — g where g is some
element of A; such that the order of ¢ divides 4. Since A5 contains no elements of
order 4, then |g| € {1,2}. If v — (), the identity element of Ay, then |3v| = 2 forces

B8 = (), a contradiction. So |g| = 2. There is a unique element in (2,4)(3,5) € A;

satistying |3¢g| = 2 and |adg| = 2. Let 6 : Tt — A5 be the induced map constructed
and write K = Ker(#). Then by construction /{ contains the conjugacy class C(v?)
of 2-torsion in I't. GAP was used to investigate index 2 subgroups of K. There
are 7 classes of subgroups in K, {H;|l <1 < 7} of index 2, 5 of which avoid

the conjugacy class C(+?) of torsion. Taking the abelianisation of each of these 5
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subgroups vields 2 subgroups, H; and Hs, with positive first Betti number. Their
abelianization, H;/[H;, H;], was calculated using GAP and in each case this was
found to be Z < Z3. The fact that I'" is not perfect (it maps onto Cs) means
that it remains to consider the possibility that I'* maps onto some small solvable
group with torsion free kernel. Now, in any homomorphism from I' or I'T to a
solvable group, « and § must go to the identity since they generate a perfect As.
Setting & = J = 1 in the presentation of I'" gives (5. Hence the derived series
terminates with a subgroup of index 2 in I'". So, any quotient of I'* with torsion
free kernel has the form H : Oy or H, where H is perfect, Hence, in looking for
small index normal subgroups is it sufficient to consider simple groups H or groups
H : (C,, Since it has already been established that T'" has no torsion free kernel

with quotient As, the result follows.

2): Let M,(K,1) = H?/II; be the manifold associated to each f/;. Then, by
construction, each M;(K, 1) is a 2-fold branched cover of the orbifold H?/K . Since
H? carries a tessellation by right angled dodecahedra, it follows that M (K, 1) is
tessellated by 2 right angled dodecahedra. By composing with the map Z — Z/nZ,
characteristic subgroups K, of index n in each H; can be obtained. The associated
manifold M; (I, n)is a regular n-fold cover of the manifold M; = H*/H,;. Hence
the manifolds M;(I(, n) are tessclated by 2n right angled dodecahedra. [ |

6.3.3 Minimal index torsion free normal subgroups

Lemma 6.3.4 T'" has no torsion free normal subgroups N with TT/N = Ag or

Si.

Proof: Suppose there exists a torsion free normal subgroup. Ag = Lo(9) has 2 con-
jugacy classes of subgroups isomorphic to A;. Representatives for each class are
((1,3,5,2,4),(1,2,3)) and ((1,2,3,4,6),(1,5,6)(2,4,3)). In the first case (when
(a, 8y — ((1,3,5,2,4), (1,2, 3))) there are nine elements g of order 4 in Ag satis-

Bg| = 2, listed below:

{(1,3,4,2)(5,6),(1,3,5,2)(4,6),(1,3,6,2)(4,5),
(1,3,2,4)(5,6),(1,3,2,5)(4,06),(1,3,2,6)(4,5),
6) (4,6)

1,3 4,6
(1,4,3,2)(5,6),(1,5,3,2)(4,6),(1.6,3,2)(4,5)}
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For each ¢ in the above list, the word o8¢ has order 5,5, 3,5,4,4,4, 5, 4, respec-
tively. In the second case, when (o, #) — ((1,2,3,4,6), (1, 5,6)(2,4, 3)), again there

are nine elements ¢ of order 4 in Ag satisfying |7g| = 2. They are:

g E{(l 2)(3,4,6,5),(1,2.3.5)(4,06),(1,3) .A4),
2

6, (2,
(1,3.4,5)(2,6), (1,4)(2,3,6,5), (1,4,2,5)(3, )
(1,6.4,2)(3,5). (1,6,2,3)(4,5), (1,6,3,4)(2, 5)}

For each g in the above list, the word «fg has order 5,4,5,4,3,5,4, 4,5, respec-
tively. Therefore there are no torsion free normal subgroups N whose factor group

't /N = Ag. The case for I't 4 Sg is similar. B

Lemma 6.3.5 I'" has precisely two distinct torsion free normal subgroups Ny and

Ny with T+ /N; & PGLs(11).

Proof: From Chapter 4, § 4.4.1, t = l%—\—/j and VE=4in Fyy. If t = #3 then
t=7 andif t = ig——\/g then t = 3.

CaseI: t=7:Then e’ + f?= -2-7=-9=2 mod 11, giving

3 1 1 4 ) a b
o= , and 4 +— . Write v +— .
0 4 -3 0 ¢ d

Next, |«0v| = 2 gives the identity

2 —ad cd—bd
()2 | © " T C e PG Ly(11)
ab —ac b? —ad

and this forces b = ¢. Then

(59)? (0 +4b)2 + 8a(b+4d)  (b+ 4d)(a +b)
' 8ala + b) 062 + 8a(b + 5d)

gives the equations 8a(a +b) = 0 and (b + 4d)(a+ b) = 0. If @ = 0 then either

b =0, in which case « is the zero matrix, or b = —4d, giving
30
(BY)? — d
01
as the identity matrix in PG Lo(11), a contradiction. If a # 0, then b = —a and so

—b b
v =
b d
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Then

. 8b* + 412 + 1 —8)t — 8K — 4 —
—
—8b — 8 —d— & S+ 127+ 9+ L+ 4

Writing 8b* = —8b% — 4 — b% gives

Y AT 0
0
’ 0 W5+ 5+ A

Since these must be equal for this to be an element of P(GLy(11), b must satisfy
the equation

89 + 8 +4b* +1=0
Solving for 8z° + 822 + 42 + 1 = 0 give & a cube root of unity, so b is a sixth root
of unity. Since 6 does not divide 10 = 11 — 1, there are no maps I'" —» PG Ly(11)

with trace(a) = 7.

Case II: t = 3: Then e? + /2 = —5 = 6 mod 11, and set

-2 1 ) 1 5 . a b
o and §— . Write v +— .
0 5 2 0 ¢ d

‘ 2 —ad cd— be
(af)? — ( cTa e C) = Id e PGLy(11)

ab —ac b —ad

Then

forces b = c¢. Then

(B7)? (a+5b)* + 2a(b+ 5d) (b + 5d)(a + 7b)
i —
o 2@(@ + 7b) 402 + 2@((9 + 5(,})

This gives 2a{a + 7b) = 0 and (b + 5d)(a + 7b) = 0. If a = 0 then either b = 0,

forcing ~ to be the zero matrix, or b = —5d, and this gives
, {4 0
(67)° = v°
0 3
which cannot be the identity matrix in PG Ly(11). So a # 0. Thus « = —70, giving

(87)% — 4b(3b — d) ( (1) 0 )

Thus
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subject to v* = Id € PGLy(11). Now

8b* + 8db?® + d*b? 66 + 7db3 + 4d?b? + b
Y g= ) .
: 6b% + Tdb® + 4d20% + d3b 6b* + 8db® 4 3d2h? + d*

50 O(60® + 7db* + 4d*b + d3) = 0. Since b cannot be 0, then 60 4 7db* + 4d*b +
d® = 0. This cubic equation has three solutions, b € {5d, 6d,8d}. If b = 8d then
det(g) = d?, so writing d = 1 gives g € PSLy(11). For b = 5d, det(g) = 6d* and
for b = 6d, det(g) = 10d*. Because neither 6 nor 10 are squares in [Fy;, neither
matrix lies in SZLy(11). They must then lie in PG Ly(11). The images of a and
generate an Ay subgroup of PG Ls(11). Now Aj is not maximal in PG Ly(11) - it is
contained in a maximal L,(11) subgroup. However, Az is maximal in Ls(11), and
the images of v are, by construction, not contained in Ly(11). The group elements in
PG Ly(11)\Lo(11) acts by interchanging the two conjugacy classes of Az in Ly(11),
so they do not fix any given As. Since PG Ly(11) has no outer automorphisms, the
two maps ['t — PG Ly(11) constructed are inequivalent, and their kernels are two

distinct normal subgroups I{; and K in I't. [ ]

Since I'* is not perfect, it is still possible that I'" maps onto a small solvable
group. However, in any map from I'* to a solvable group, ov and # must map to the
identity, since they generate a perfect group. Then I't /{«, 3} = C4, so the derived
series terminates with a subgroup of index 2 in I't. Hence any quotient of I't has
the form G < (', where (& is a perfect group. Hence for small index subgroups, it
suffices to consider cither G simple or extensions of G by a cyclic group of order
2. If the extension has the form G x s, then it follows that I't also maps onto G.

Hence the following result is obtained:

Theorem 6.3 The smallest index torsion free normal subgroups of T't arise from
epimorphisms 't — PG Ly(11). There are two such maps 6,,0; : 'V — PGLy(11)

corresponding to two distinct normal subgroups K and Ky in ',

Using Lowx and GAP, gencrating sets for K, and K, were found. Both sub-
groups arise from the action of I'" on conjugacy classes of subgroups of index 12
and they are conjugate in I'. The abelianisation of each I;, K;/[I$;, K;] = Z° @73,
and their intersection is a normal subgroup of I't of index 660 % 1320. The elements

generating K and K, as subgroups of I't are listed in Table 6.5
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Elements of the generating

set for K

Elements of the generating
set for K

bebdebabedcbdabedcba
cbabedcbabdedcbabedb
cdcbabedcbdabedbebab
acbdcbabededbabedcbaba
adcbabedcbadbedebabeba
babachubadchbdabedababeda
babacdcbabededbabedbeaba
babdcbabadcbdabedababeba
bacbabadcbabdedababedaba
bacbabedebabdedcbabedbab

bacbadcbabadcdbabedbabea

bedebabededbabedbeba
cbdebabededbabedcbab
debabedcbadbedcbabeb
acbabedcbabdedebabedba
acdchabedcbdabedbebaba
babachdcbabededbabedeaba
babadcbabadedbabedababea
babcbabadchbadbedababedba
bacbabdcbabadcdbabedabea
badcbabadcbadbedababeaba

badcbabedebadbedcebabebab

bacdcbabedebdabedbeababa | bebabadcbabadcedbabedbaba

bdcbabadcbabdedababcbaba

Table 6.5: The generating sets for K7 and Ky in Theorem 6.3

6.3.4 Manifold structure

From the previous section, a, & and ~ have torsion-free representations in

-2 1 ~ 15
PGLy(11) given by o« — & = O 3= v and v — ¥ €
0 5 20

-2 5 2 6 . . .
{ ( - ) , ( 6 1 )} Corresponding to the two subgroups K; and K, are
5

two hyperbolic manifolds M; = H3/I{;. The structure of these manifolds can be
determined using the group structure of PGLy(11). In PGLa(11), <(3:’,.§) > As,
and there exists a complementary dihedral subgroup D;; of order 22 which can be

used to index the cosets of A; in PG Ly(11). Write

ox((52)(32))

The following method can be used to determine the structure of each of the two
tessellations KC; associated with L = PG Ly(11), by identifying which dodecahedron
containus the flag labeled by any given element of L. The 22 dodecahedra may be

identified with the cosets gG in L of the subgroup ¢ = Aj, which is the stabiliser



6.4. 1" = 14]2,2,5;2,3,5] 135

of one dodecahedron Dy in the monodromy representation of L on flags. Let B
be the Borel subgroup of L, that is, a subgroup of the normaliser Cy; : Cyo of a
Sylow 11-subgroup of L. Let B C B denote the unique subgroup Dy; of B. Then
BN G| = 1so B has an orbit of length 22 on the dodecahedra and therefore
acts transitively on them. As a result L = BG and each element h € L has a
unique form h = bg, where’b € B and g € (. The flag corresponding to h lies in
the dodecahedron corresponding to the coset bG, and position of the flag in the

dodecahedron is determined by g.

6.3.5 Other manifolds and minimal index torsion free sub-

groups

The next smallest index torsion free normal subgroup arises {rom the action of
I'* on a subgroup of index 20. This group was found by studying the induced
actions of I' on low index subgroups. Table A.3 of Appendix A summarises the
induced actions. The induced permutation representation is G = As x H, where
I is elementary abelian of order 32. The resulting manifold is tessellated by 32
dodecahedra and the fundamental group in this case has abelianisation Z° & Z2.
As a consequence a tower of manifolds with maximal isometry group is recovered.
Fach manifold in this tower consists of 32n% dodecahedra and is a regular n5-fold
cover of the manifold H?/G. Additionally, GAP was used to verify that G has
subgroups H of index 120 in G whose preimages correspond to subgroups of index

120 in T'* that avoid all conjugacy classes of torsion.

6.4 T =1T42,2523,5

The manifolds arising from torsion free subgroups and torsion free normal sub-

groups of the group 73 have already been studied in detail in chapter 5.
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6.5 ['=T572,3,324,3

Recall that 75[2, 3, 3;2,4, 3] is the Coxeter group with Coxeter diagram

where a, b, ¢ and d are Coxeter generators of I'. Let o« = ab, § = bc and v = cd.

Then the orientation preserving subgroup I' has the following presentation:

D = (o, ,7] 0t = 6 =7 = (B = (57)* = ()’ = )

6.5.1 Torsion in I" and in I'"

Representations of the conjugacy classes of torsion elements in I' are given in
Table 6.6 The restriction of this list to representatives of classes lying in I't is

given in Table 6.7

Order Representative

Order 2 | a, ac, bd, (ab)?, (abc)?, (bad)?
Order 3 | bc

Order 4 | ab, c(ab)?, d(ab)?, adc, bed
Order 6 | abe

Table 6.6: Conjugacy class representatives for elements of finite order in T’

Order | Representative
Order 2 | ac, bd, (ab)?
Order 3 | be
Order 4 | ab

Table 6.7: Conjugacy class representatives for elements of finite order in I'"
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Lemma 6.5.1. There are no torsion free normal subgroups of Tt whose factor

group is Sy or S.

Proof: Any torsion free normal subgroup of I'" must contain (o, ) = 5. First,
suppose that there is such a subgroup N with I't /N ~ S;. Then it can be assumed
that o — (1,2, 3,4). Therefore 3 € {(1,3,2),(1,4,2),(1,4, 3),(2,4,3)} and o3 €
{(3,4),(2,3),(1,2),(1,4)} . Now |v| = 3 and |afy| = 3 can therefore both be
written as a product of an even number of transpositions. But «/4 has an odd
number of transpositions, a contradiction! Since S5 has a unique conjugacy class

of elements of order 4, the result extends to Ss. B

In particular, since As has no element of order 4, the following result is imme-

diate:

Proposition 6.5.1 T'" has no torsion free normal subgroup whose factor group is

tsomorphic to As.

In Theorem 4.8 in chapter 4 it was shown that there is a unique normal subgroup
K in T whose factor group is Ly(7). Since it is unique, it is characteristic. I't is

normal in the normalizer Q of I". Consequently X is normal in 2

Note: In Table A.5 of Appendix A it can be seen that there are two conjugacy
classes of subgroups of index 8 in I'". Calculating their cores gives the same normal

subgroup K of I'" in each case, verifying Theorem 4.8.

The group T'™ is perlect: Abelianizing the presentation for T'", the identities
A== =1(af)=2F =1, (37)?=p%"*=1and (af7)* =’ =1 are
obtained. Hence o = 1, s0 3% = #* = 1. Therefore § =1, s0 v* =+ = 1, and s0
I'* is a perfect group. Combining the above results, the following theorem can be

stated:

Theorem 6.4 Let K be a smallest index torsion free normal subgroup of Tt. Then
K is unique, K has index 168 in I'T and 'Y /K =2 Ly(7). Furthermore, K is normal

in Q, the normalizer of T in Isom(H?).
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Using GAP, a presentation for K was obtained. K is the fundamental group
of the associated hyperbolic manifold M = H*/K. A presentation for m (M) is
given here:

m (M) = (Fy, Fy, F3, Fy, F5, F |
I R ORI N DR DY 0N Dl e AR
FO R R T R R FsFy F VR =1,
2N D DR DU O Y Dty e ) D D AU O
S P T Ry P P S P R P R Ty = 1
Fr R R B Py s Fy by F s Py PRy P Py =
P R By Py P ey o P B B s Yy P T T = 1)

The mnianifold constructed differs from the manifolds constructed using the
groups 11, T, T3 and Tj. Those manifolds had as fundamental regions hyper-
bolic dodecahedra, and the manifolds had a straightforward decomposition into
dodecahedra identified across faces. The manifolds arising from the groups 75 to
Ty have a more complicated structure. The associated fundamental regions are
pleated (or creased or pinched) across their faces. Figures 6.2 and 6.3 illustrate the

difference between a standard cube and a pleated cube:

O

3
B
E
&
%
¥

®
-
W
-
=

Figure 6.2: Standard hyperbolic cube Figure 6.3: Pinched hyperbolic cube

The added creases across faces of a cube give a "pinched point" at the midpoint of
each edge. Visualization of the resulting manifolds is correspondingly harder. For

example, the group stabilizing the vertex C in the center of a face is, in the case

of Ts, an octahedral group! The abelianisation of K = m;(M) is free abelian on



6.5. ' = 13[2,3,3;2.4, 3] 137

six generators: m (M)/[m(M), Too(M)] = Z8, and as a result an infinite tower

of covers of M by manifolds M,, consisting of 7n cubical cells can be constructed.

Note: The group 71 (M) is not the torsion free subgroup of smallest index in I'T.
There are 5 conjugacy classes of such groups of index 24 in I'*. There are four
distinet normal subgroups whose factor group is L»(23). In each case the preimage
under the induced epimorphism I't — Ly(11) of Cys x Chy < Ly(11) is a torsion
free subgroup of index 24. Since Cyy X (41 is maximal in [,(23), each preimage
has trivial normalizer in I'", so the associated hyperbolic manifolds have very little
symmetry. The Sylow 7-subgroup C7 of Ly(7) has index 24 and its preimage is also
a torsion [ree subgroup. The normalizer of C7 in Ly(7) has index 8 in Ly(7) and
pulls back to an index 8 normalizer of // in I'". Since there are no futher conjugacy

classes of subgroups of index 24 that are torsion free, this completes the list.

Let H be a Sylow 7-subgroup of Ly(7). The elements of H can be used to index
the 7 cosets of Sy in Lo(7), where Sy stabilizes a cubical cell in the tessellation of
M. Letting the cosets correspond to cubical cells in the decomposition of M, the

manifold can then be reconstructed combinatorially as in the previous sections.

6.5.2 The action of Ly(7) on H{(M)

The subgroup I'M/N; 2 1,(7) of isometries of the manifold M = H?/K is gen-
erated by a rotation through 7/2 about the center of a square face fi, induced
by «, a rotation through 27/3 about a vertex v; adjacent to f;, induced by /3
and a rotation through 27/3 about an edge adjacent to v,. These rotations act on

Hy(My), regarded as a 6-dimensional module over Z, as the matrices

1 00 1 0 0 0 0o 0 -1 1
0 -1 0 -1 -1 -1 0 1 0 0 —1
1 01 10 0 1 o ¢ 0 1
o 08—
-2 00 -1 0 0 0 o 0 1 -1
1 1o 1 1 90 0 —1 0 -1 1
1 10 1 o0 0 -1 -1 -1 1
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/\/}_)

—
o
(e
—
—
O O =k OO

0o 0 -1 -1 -1

According to the Atlas of Finite Groups [Atlas], there are 6 irreducible characters
for Ly(7), with degrees, 1, 3, 3, 6, 7, and 8. The values of the characters of an
element of order 2 are 1, —1, —1, 2, —1 and 0, respectively. Since the element a3
is an element of order 2 and has trace —2, the representation cannot be primitive,
so the character splits as a sum of two irreducible characters: either as x» + x5
or as 2y,. Since the trace of o is 2 and the trace ol 3 is 0, the action splits as
2x2. So there exists a covering manifold M, of M whose covering transformations
(deck transformations) form an abelian group, and over which the isometry group

extends to the group Ly(7) x ZY.

6.5.3 Computational results

I't has 62 conjugacy classes of subgroups of index less than or equal to twenty.
Letting T't act on the cosets of a representative of cach conjugacy class induces a
representation I't — (, where (7 is some finite permutation group. Unless G = As,
the induced map faithfully carries all conjugacy classes of torsion elements of T'F.
The smallest torsion-free normal subgroup is, as previously observed, the kernel K
of a map I = kerf) : I't — L,(7). It is interesting to note that, after As, the next
two smallest alternating groups that arise as the quotient of I't by some torsion

free normal subgroup are Ay and Agg.
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6.6 I =7Ty2,3,4:2 3, 4]

Recall that 742, 3. 4; 2,4, 3] is the Coxeter group with Coxeter diagram

where «, b, ¢ and d are Coxeter generators of I'. Let o« = ab, § = be and v = cd.

Then the orientation preserving subgroup I't has the following presentation:

I = (o, 8,7 o' =p5=~"=(af)* = (B7)* = (a37)’ = 1)

6.6.1 Torsion in I and in I'"

Representations of the conjugacy classes of torsion elements in I' are given in
Table 6.8 The restriction of Table 6.8 to representatives of classes lying in I'" is

given in Table 6.9

Order Representative

Order 2 | a, b, ac, bd, (ab)?, (cd)?, (abc)®, (dab)?, (cda)?, (bed)?.
Order 3 | be, ad.

Order 4 | ab, cd, c(ab)?, d(ab)?, a(cd)?, b(cd)?.

Order 6 | abe, dab, acd, bed.

Table 6.8: Conjugacy class representatives for elements of finite order in T

Order Representative
Order 2 | ac, bd, {(ab)?, (cd)?.
Order 3 | be, ad.

Order 4 | ab, cd.

Table 6.9: Conjugacy class representatives for elements of finite order in T'F
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6.6.2 Maps to 5y

Lemma 6.6.1 There are precisely two distinct lorsion free normal subgroups of

't whose factor group is isomorphic to Sy.

Proof: The proof amounts to constructing two non-conjugate epimorphisms I'™ —
Sy. Let oo (1,3,2,4) and 3 — (1,2,3). Then for v € {(1,3,2,4),(1,3,4,2)} we
vl =4, |fy] = 2 and

If v+ (1,3,2,4) then the common image of cy and of «? has order 2, while if

aFv| = 3. This proves existence of the two maps.

get

v+ (1,3,4,2) then av — (1,4,3) has order 3. Hence the maps are not conjugate.
[ |

As can be seen in Table A.6 in Appendix A, there are six conjugacy classes of
subgroups of index 4 in I't. Letting I'" act on the cosets of a representative in
each case gives the following results:

e 2 kernels K, Ky such that I't /K, & S, with K;/[K;, K| = Zy © Zy & 72

o 4 kernels Ky, Ky, K5, K¢ with IV /I¢; 2 Sy and K, /[Ky, K] 2 75 Zs.

The four kernels with abelianisation Z35 @ Zs contain either the conjugacy class
C(ab)? or the conjugacy class C(cd)?, while the two kernels with abelianisation Z, &
Z3 7% avoid the conjugacy classes of torsion elements and are distinct. Therefore
they are the kernels of the maps constructed in Lemma 6.6.1. Their intersection
is a normal subgroup of T'" of index 288. Both of these kernels, {; and K,, have
three conjugacy classes of subgroups of index 4 whose abelianisation has positive
first Betti number. Consequently an infinite family of manifolds M (K;, 4n) can be
constructed as 4n—fold covers of M(K;) = H?/I;. These manifolds are tessellated
by 4n cubical cells. If the associated fundamental groups, 1 (M (I, 4n)) < ' are
normal in I'"", then the manifolds M (K, 4n) will exhibit a high degree of symmetry.

Presentations for the two kernels are given in Table 6.10 and Table 6.11:

Ky = (F, By, By
TR D D NS e o L D A Y O e ¢
Bl B PP T S I R R =
FflEst?F‘z;lFJ_IF;;]FJ_IFZF:_;_2F1_1F2F3_1F1_1F22F371F1_1F2 =1)

Table 6.10: Presentation for K,
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As a subgroup of I'f, Ky has generators {bdca. dcba, bedbab}. In the presenta-

tion given in Table 6.10, Fy = bdca, Fy = dcba and Fy = bedbab.

Ko = (F\. Iy, Fy)
Bl By B R T R RE =1,
F F{lFl Fy -sz—lFs—JFl 1Fz I.Fl—le; 11;~J 1F:s 2 _ 1,
O A 2 R Y S SR O S 2 S 2Y S e Y N N )

Table 6.11: Presentation for K-

As a subgroup of ['", K, has generators {cbda. dach, abcbdaba}. In the presen-

tation given in Table 6.11. [ = cbda, I = dach and F3 = abcbdaba.

6.6.3 Geometrical description of the two manifolds

From Lemma 6.6.1 there are two distinct epimorphisms I't —» Sy with torsion-free
kernel. Letting S; act on the right as a monodromy action on flags, manifolds
M= H? /K, can be constructed by identifications on faces of a pinched cube.
Letting o, v — (1.3,2,4) gives identifications as shown in Figure 6.4. Letting
v (1.3,4.2) (the image of 373 under the maps constructed in Lemma 6.6.1)
gives identifications as shown in Figure 6.5. Two of the identifications. red square
to red square and blue square to blue square, are illustrated in these diagrams. The
vertex shared by two blue squares and a red square in Figure 6.4 is the "pinched
point" introduced in § 6.5.1. Sinularly for the vertex shared by two red squares

and a blue square in Figure 6.4.

Figure 6.4: Identifications for + = Figure 6.5 ldentifications for ~r =

1,3,2.4) (1,3.4,2)
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6.6.4 Maps to Ly(7)

Further small index torsion {ree normal subgroups can be constructed by pulling
back images of normal subgroups in I't /K, N Ky &2 5y x Sy. It is also interesting
to study the small non-abelian simple groups which arise as quotients of I't by
some torsion-{ree normal subgroup. The smallest such group is Ly(7). There are
two conjugacy classes of subgroups of index 7 in I'*. Their cores have index 168
in ' and they are contained in each other, so there is a unique normal subgroup
Ky satisfying I'"/ K3 = Ly(7). The resulting manifold has <& = 7 pinched cubical
cells. Since K3 is the unique normal subgroup of I'T with quotient Ly(7), it is
characteristic in T and hence it is normal in €2, the normalizer of I' in Isom(H?).
A presentation for /(3 is given in Table 6.12. The generators of Ky as a subgroup

of I'* are given in Table 6.13. The abelianization of I(s, IK3/[K3, K3, is Z13.

K= <F1~/ Fo, Iy, Fy, Fs, F6, 7, Fy, Fy, I1g, Iy, Iy, F137w|
Pyl Pyl P T P I = 1 Bt R P I e P Iy Iy =11
Pt PR P s Py sy = 1, FloF By ' FR R T el = 1
FyF L PPy Iy Yy PP =1, Pt Py g By Y Fy PR Fs = 1,
FoFig Py FU Py R P TR = 1, w = By By FuFisFs,
Fy P PG Py FoFs g P Fis Fs e Tt =1,
Py I S P Py g PR P R R F = 1,
FsFigFsFoFg 'Fy Vg VP g Fy Yy Fy = 1,
R B B VR P R P P s s = 1,
FioF P s s Fy oy g By PR G F = 1
P Ry s e P Py Ry F VR PR P PR Ey i =1,
F7F§1FQ_]]’12 F1:3E3F1([77_1[?5_]]‘115] F:z_ll‘b&ﬂ_l)w =1)

Table 6.12: Presentation for /(3

I = badcbabeda Fy = bedabadcba Iy = bedebadceda

Fi = cdabadcbab Fs = cdebadedab Fe = dabadcbabe

Fr = debabedaba I3 = acdcbadedaba Fy = bacbadedbeda
o = chadedbedaba | Fy = babedacdeadebdedbedaba | Fis = acbadedbedab

Fis = abedabadcacbadedbdabeabachaded

Table 6.13; Generators for K3 in '™
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Thinking of Ly(7) as the factor group SLy(7)/{£l}, the induced map I'* —
Ly(7) obtained by the composition I'" — T'" /K = Ly(7) can be expressed as an

epimorphism 0 : I't — Lo(7) defined by the following identifications:

[ [0 e (2 7)

6.6.5 Maps to Ag = Ly(9)

There are 18 conjugacy classes of subgroups of index 6 in I't. Letting 't act
on them induces epimorphisms onto Dg, Sy and Ag. There are two conjugacy
classes of subgroups of index 6 whose cores have index 360 in I'*, and these cores
coincide. This unique core K, is torsion free. The map I't — I't /K, = Ag can
be characterized by o — (1,3,4,2)(5,6), 8 — (1,4,3) and v — (1,6,3,4)(2,5).
The group Ag can be written as the quotient group SL4(9)/{£/}. As equivalence

classes of matrices, the map I't — Ly(9) can be expressed as

L 0 1 - 0 2+ 2¢/2
“ 2 V2 ! 2422 1

2+ 22 1
and v +—
0 14+ 2v2

Since K is the unique normal subgroup of I't with quotient Ag, it is characteristic
in I'" and hence it is normal in Q, the normalizer of I in Isom(H?®). The following

lemma summarizes these results:

Lemma 6.6.2 There is a unique torsion free normal subgroup Ky of I't whose

Jactor group is Ag = Ly(9). Furthermore, K is normal in Q.
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6.7 I'=17%02,3,3:2,5,3

Recall that 7%[2,3.3;2,5,3] is the Coxeter group with Coxeter diagram

where a, b, ¢ and d are Coxeter generators of I'. Let @« = ab, g = bc and v = cd.

Then the orientation preserving subgroup I'" has the following presentation:

I* = (0, 3,7 | o = § = ¥ = (@) = (87)? = (aB)* = 1)

6.7.1 Torsion in I" and in T'"

Representatives of the conjugacy classes of torsion elements in I' are given in
Table 6.14. The restriction of this list to representatives of classes lying in I'" is

given in Table 6.15.

Order Representative
Order 2 | a, ac, bd, (abc)® and (dab)®
Order 3 | bc

Order 4 | ade and bed

Order 5 | ab and (ab)®

Order 6 | c(ab)? and d(ab)?

Order 10 | abe, (abe)?, dab and (dab)?

Table 6.14: Conjugacy class representatives for elements of finite order in I'

Order | Representative
Order 2 | ac and bd
Order 3 | bc
Order 5 | ab and (ab)®

Table 6.15: Conjugacy class representatives for elements of finite order in I'"

Lemma 6.7.1 Proper normal subgroups of I't are torsion free
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Proof: The proof is essentially the same as Corollary 3.1.1 for the group Ty =

[5,3, 5] in chapter 3. [

6.7.2 Maps to As

Lemma 6.7.2

i) It has two distinct normals subgroups Ky, Ka whose factor groups are As.

i) Ky and Ky are conjugate in I

i1t) The intersection Ky N Ky is normal in ), the full isometry group of I', and

F+/](1 N Ky = /’15 X /15.

Proof:

i)

ii)

iii)

Let o (1,3,5,2,4), 0 — (1,2,3) be defined as in Chapter 3, Lenmma 3.2.1.
Then for v € {(2,3,4),(2,3,5)}, the remaining conditions |y| = 3, |3v] =
2 and |agy| = 3 are satisfied. Since (1,3,5,2,4)(2,3,4) = (1,4)(3,5) and

(1,3,5,2,4)(2,3,5) = (1,5,3,2,4), it is clear that the two normal subgroups

K; and K, induce inequivalent epimorphisms and hence are distinct.

Let d € T\T'" act by conjugation on {ea,3,v}. Then at = [(a™1)%7,
B = (5717 and v¢ = v~1. Therefore, conjugating by d induce the outer auto-
morphism {(1,3.5,2,4),(1,2,3),(2,3,4)} — {(1,3,2,4,5),(1,4, 3), (2,4, 3)}.
Conjugating {(1,3,2,4,5),(1,4,3),(2.4,3)} by g = (2,4,5) = §%a?3? gives
{(1,3,5,2,4),(1,2,3),(2,3,5)}, hence the K; are conjugate in I,

The intersection of I{; and A is clearly normal in I'": Since the effect of
d € I'\I'" is to transpose K, with K, then it fixes the intersection, and as a
result Ky N K5 is normal in T'. Finally, the effect of the outer automorphism
7 € Q\I' is to transpose the generators a and d with & and ¢. The equivalent
action on the generators of I't is to send o to o™}, A to a3~ and v to vy~ 1. For
a=1(1,3,5,2,4), 3= (1,2,3) and v = (2, 3,4) the element g = (1,5)(2,4) €
As has the desired action, while for o = (1,3,5,2,4), § = (1,2,3) and
v = (2,3,5) the element ¢ = (1,4)(2,3) € A; has the required action.
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Consequently, the index 2 orientation preserving subgroup QF = (I'*, 7) of
Q has two normal subgroups K, and K, of index 60, each of whose factor
group is As. The groups K; arise as index two subgroups of the K; , and the
factor groups Q7 /K; = Ag x Cs. Since both /; are normal in QF, K; N K>
ig also normal in Q7. Hence K1 N K, is normal in Q. It remains to show that

IT/K NKy ™= Ay x As. Let ¢ : I'T — Ag x As be defined by the maps

o — ((1,3,5,2.4), (1,3,52,4))
B ((1,2,3), (1,2,3))
v = ((2,3,4), (2,3,5))

Then, by composition with the restriction to each direct product, Ker(¢) is
a normal subgroup of both K; and K5, and Ker(¢) € K} N Ks. Since Ker(¢)
has index 60 in both K and K5, Ker(¢) = K, N K.

6.7.3 Presentations for K

A generating  set for K, as a  subgroup of I'T is
{babdabea, (beda)? d(abc)?a,(dabe)?,a(cdab)?a}. More formally, K, can be given

the abstract presentation listed in Table 6.16.

](] = <F17Z72:F3;F4;F5

Fl—l F4_ 1 F5 F2—1 FB— 1 F4—1 FQ_ 1 Fl FQ—— 1 FS Fl F3_1 Ff 1 Fz — l
By R By BT R R T R R F =

By s Py I F Py I L Py A e =1

IO Ol O R Dy O O Ay DR O Dl D AT DRSO ek

Fy T B P P By R By R By R =

By P e P T P Ry Py R A T R PO R P P R R = 1)

Table 6.16: Presentation for the group K of Lemma 6.7.2
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Table 6.17 describes each generator of K as given in Table 6.16 in terms of the

generators of I'T.

Generator | Representative
of K, inI't
F babdabea
Iy bdabcaba
Fy (cba)*dbea
Fy abadbe(babe)?
Fs ad(ach)?ab

‘able 6.17: Representating the generators of K7 as elements of T

A generating set for Ky as a  subgroup of It  is
{bacbadba,cbabdaba,(cdab)? dabacbab,(dcba)? a(dabc)?a}.  More  formally, Ko

can be given the abstract presentation in Table 6.18.

](l = <FlaF2>F31F4eE5
Py Ry Py Py Ny PRyl Ry P =1,
ol R i B P T R T R R R =1
F By F R R Py s Py s Fy P = 1,
Y R R DY D DAY O AU D Dl DY R Gl Y D O S
PP F B RSy B Py B Py I B U R By Py =1
FsF S s by VB By s Py I P s By Py Y R s oy Y s Py = 1)

Table 6.18: Presentation for the group Ky of Lemma 6.7.2

Table 6.19 describes each generator of K5 as given in Table 6.18 in terms of the

generators of I'*
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Generator | Representative
of I{; in 't
Fi bacbadba
F, chabdaba
F3 (cdab)?
Fy dabachab
Fy acbacdabab

Table 6.19: Representing the generators of Ky as elements of I'™

Both K, and K, have abelianization Z, ® Z3. Both groups have 15 conjugacy
classes of subgroups of index 2 whose abelianization has positive first Betti number,
none of which is normal in I'*. Their intersection /{; N K, has abelianisation

¥ & 13

6.8 I'=173[2,4,3:2,5,3

Recall that Tg[2,4, 3;2, 5, 3] is the Coxeter group with Coxeter diagram

where «, U, ¢ and d are Coxeter generators of I'. Let o = ab, § = bc and vy = cd.

Then the orientation preserving subgroup I't has the following presentation:

't ={(a,3,7]|a"=p3*=+"=(af8)’ = (B7)* = (af7)* = 1)

6.8.1 Torsion in [ and in I'"

Representatives of the conjugacy classes of torsion elements in I' are given in
Table 6.20. The restriction of this list to representatives of classes lying in ' is

given in Table 6.21.



6.8. T = Tx[2,4,3;2.5,3] 149

Order Representative
Order 2 | a, ac, bd, (cd)?, (adc)?, (bed)?, (abe)®, (dab)®
Order 3 | be, ad
Order 4 | ed, a(cd)?, b(cd)?
Order 5 | ab, (ab)?
Order 6 | ade, bed, clab)?, d(ab)?
Order 10 | abe, (abe)?

Table 6.20: Conjugacy class representatives for elements of finite order in T’

Order | Representative
Order 2 | ac, bd, (cd)?
Order 3 | be, ad
Order 4 | cd
Order 5 | ab, (ab)?

Ot

Table 6.21: Conjugacy class representatives for elements of finite order in I'"

6.8.2 Maps to finite groups
Lemma 6.8.1 I'" contains no normal subgroups whose factor group is As.

Proof: Suppose that there exists some K < I't whose factor group I'' /I = A,
Let 8 : " — Ay be the induced permutation representation. Adding v =1 to the
presentation for I't gives the trivial group, so v +& 1. Write a — (1,3,5,2,4) and
3 (1,2,3). Since A5 contains no elements of order 4, let v map to some element
of order 2. A quick check reveals that no element of order 2 in Aj satisfies the

required conditions. ]

Lemma 6.8.2 T'" contains no normal subgroups whose factor group is Ly(7).

Proof: Suppose that there exists some K <T'" whose factor group I'" /K = Ly(7).
Let @ : T" — Lo(7) be the induced permutation representation. Since 7 = 42
mod 5, Ly(7) contains no element of order 5, so the conjugacy class C(«) lies in
K. Adding the relation « = 1 to the presentation fof I'* gives the trivial group.

So K cannot, exist. B
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Lemma 6.8.3 There cxists a unique torsion free normal subgroup K of T whose

factor group TH/K =2 Ag = Ly(9)

Proof: Write

1/ t—f e+1 1 e+1 t+/
= = ] and f— .
2\ —1+e t+f 2\ f~—t 1—e

where e? + [2 = =2 — ¢, t = # Then

w z
o s
r+k u—w

where u = £1/2, k = +1, and « satisfies the quadratic equation

(8 +4t)z* + (—4fu — 4ftk + 4tk + 8k)a+

6.3
(14 3t+ f? = 2uth —2ft - 2fuk) = 0. (6:3)

Taking everything mod 3, ¢ = 2(2 + v/2), since v/5 = v2 mod 3.

Case I
Suppose first that t = —(2+ V2) =1+ 2v/2. Then letting ¢ = 1+2v/2 and f = 0,
¢? + f? = /2= -2t and equation 6.3 becomes

V222 + 2V2kx + (1 + uk + 2v/2uk) = 0 (6.4)

which has discriminant D = V2 + 2 + uk + V2uk. Now v = +v/2 and k = £1.
Then D € Fy if and only if /2 + v2uk = 0 if and only if sign(u) =sign(k) and this
forces D = 0. Otherwise [) = \/24+2+2++/2 = 1+2/2. For this to be a square in
F3(+/2) there must exist a,b € Fy with (a+bv2)? = a? + 2% +2ab /2 =1+ 22,
s0 a®+2b* =1 (1) and 2ab = 2 (2). (2) forces a,b € Fy = {1,2}. Then o = b* = 1,

and hence a* + 2b? = 0 mod 3. Thus D is not a square.

1) Lettingu =+v2and k = ~1 gives 2 as a solution to the quadratic 222 +r+2 =
0. By the previous.paragraph I = 0 so there exists a unique solution, v = 2.
Since 2ew = eu — u — tk (chapter 4 § 4.9), substituting in for e, u, ¢ and k
gives 2(1+2v2)w = 2-+2+/2. Multiplying both sides by (2++v2) ' = 1++/2

gives w = /2. Consequently
V2 2
N
1 0
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2) Letting u = —v2 and k = 1 gives x as a solution to the quadratic z?+z+1 =
0. Again it is required that D = 0 so there is a unique solution for x, z = 1.
In this case 2ew = ecu — u — Lk becomes 2(1 +2v/2)w = 1+ /2. Multiplying
both sides by (24 v/2)7t = 1+ /2 gives w = 2v/2. Consequently

2v2 1
-
2 0

Since the value of v in both solutions differs only by +1, both solutions are equiv-

alent.

Case I1
Now let L = —(2—v/2) = 14++/2. Then letting ¢ = 1+v2 and [ = 0, 2+ [2+3 = /2

mod 3 and equation 6.3 becomes
V222 +V2kx + (1 + uk + V2uk) = 0 (6.5)

which has discriminant D = 2 + 2v/2 + uk + 2v/2uk. Then D € Fy if and only if
2v/24++/2uk = 0, forcing sign(u) =sign(k). If sign(u) #£sign (k) then D = 1+/2. If
there is a + bv/2 = w € Fy(v/2) with a,b € Fy such that w? = D then o? +2b? = 1
and 2ab = 1. 2ab = 1 forces a,b # 0 so a*> = b = 1 and 0 = 1, a contradiction.

Hence sign(u) =sign(k) and D = 0.

1) Letting u = v/2 and k = 1 gives z as a solution to the quadratic z2+2z+ = 0.
By the previous paragraph D = 0 so there exists a unique solution, = = 2.
Since 2ew = eu — u — tk (chapter 4 § 4.9), substituting in for e, «, { and k

gives 2(1++v/2)w = 14+2+/2. Multiplying both sides by (24+2v2)™ = 1422

gives w = v/2. Consequently
V2 1
v
2 0

2) Lettingu = —v/2 and k = —1 gives z as a solution to the quadratic 2?+z+ =
0. D = 0 gives a unique solution z = 1. Again, using 2ew = eu — u — tk,
2(1 +v2)w = 2 + /2. Multiplying both sides by (2 + 2v2)~! = 1+ 22

gives w = 2v/2 and as a result

V2 2
ol
1 0
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Since the value of ~ in both solutions differs only by £1, both solutions are equiv-
alent. Finally, there is an automorphism of Ag that transposes the two epimor-

phisms, so there is a unique such kernel. B

Note: The above proof is included as a demonstration ol theory provided in Chap-
ter 4. A more elementary proof would go as follows: Since both conjugacy classes of
As in Ag are conjugate under the outer automorphism of Sy, it suffices to consider
only A; = ((1, 3,

5,2,4),(1,2,3)). Then there exists a unique element g of order 5
in Ag satisfying |(1,2,3

Jg| =2 and |(2,4,3,5)g| = 3.

The group I'" is perfect: Abelianizing the presentation for I'", the identities o* =
=t =1 (af)? =8 =1, (87)? = §%? =1 and (afv)® = a®y® = 1 are
obtained. Squaring 3?42 gives 3 = 1. Hence a = 1,s0v* =~+* =1, andso ' is a

perfect group. Combining the above results, the following theorem can be stated:

Theorem 6.5 There exists a unique torsion free normal subgroup K of 't with
factor group Ag. Furthermore, this subgroup K is the smallest index torsion free

normal subgroup of I'".

Theorem 6.5 describes the smallest index torsion free normal subgroup, but this
is not the smallest index torsion free subgroup of I't. There is a unique normal
subgroup N whose [actor group is Lz(11). The conjugacy class C(+v?) of elements
of order 2 lies in K. Let # be the induced map I't — Ly(11). Then the preimage
K.Cyq of the subgroup Ciy of Ly(11) of order 11 under the map # is an index 60
subgroup which avoids all conjugacy classes of torsion, excepting the class C(+?)
of elements of order 2. Using GAP, torsion free subgroups of K.Cy, of of index 2

were found.
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6.9 I =14[2,3,52,3,5

Recall that 74[2,5,3:2,5,3] is the Coxeter group with Coxeter diagram
O

¢ d
where a, b, ¢ and d are Coxeter generators of I'. Let & = ab, § = bc and v = cd.

Then the orientation preserving subgroup I'" has the following presentation:

I = (0,8,7] 0 = 6% = 4° = () = (B7)? = (aB7)* = 1)

6.9.1 Torsion in " and in I'*

Representatives of the conjugacy classes of torsion elements in I' are given in
Table 6.22. The restriction of this list to representatives of classes lying in I't is

given in Table 6.23.

Order Representative
Order 2 | a, ac, bd
Order 3 | be, ad
Order 5 | ab, (ab)?, cd, (cd)?
Order 6 | c(ab)?, d(ab)?, a(dc)?, b(cd)?
Order 10 | abe, bad, cda, bed, (abe)?, (bad)?, (cda)?, (bed)?

Table 6.22: Conjugacy class representatives for elements of finite order in I'

Order Representative
Order 2 | ac, bd

Order 3 | be, ad

Order 5 | ab, cd, (ab)?, (cd)?

Table 6.23: Conjugacy class representatives or elements of finite order in I't
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6.9.2 Maps to Ly(5) = A;

Lemma 6.9.1 There are three distinct torsion free normal subgroups Iy, Ko and

K3 of T with factor group As.

Proof: Let o — @ = (1,3,5.2,4) and 8 +— 3 = (1,2,3). Then, for ¥ €
{(1,3,5,2,4),(1,5,3,4,2),(1.5.3,2,4)}, the conditions [¥| = 5, |F7] = 2 and
ad7| = 3 arc satisficd. Hence there are three torsion-free normal subgroups whose
factor group is As. The elements (1,3,5,2,4) and (1,5, 3, 4, 2) lie in the same con-

jugacy class, while (1,5, 3,4, 2) lies in the other conjugacy class of elements of order

5 in As. To prove that these groups are distinct, it suffices to consider the image

of the word «~y under the three maps.

Setting ¥ = (1,5, 3,4,2) gives |a7y| = 5, letting 7 = (1, 5, 3,4, 2) gives |ay| = 3
and letting ¥ = (1,5, 3,2,4) gives [a7] = 2. Consequently, the epimorphisms are
inequivalent and so there are precisely three distinct normal subgroups, as desired.

2]

I

The above lemma gives three values for ~ satisfying the presentation of I'F.

Some facts are known about the manifolds in each case:

Case I: a — (1,3.5,2,4), 8 — (1,2,3) so a8 = (2,4)(3,5). Then let v —
(1,3,5,2,4) (iey = @), so oy — (1,5,2,3,4). The kernel of this map, A7, contains
the subgroup ({(@v)®))r+ (this subgroup has infinite index in I'") and /(| has

abelianisation Zy © Z3 & Z; & Z3.

Case II: o — (1,3,5,2,4), — (1,2,3)s0 ooff = (2,4)(3,5). Il v— (1,5,3,4,2)
is conjugate to o and «y — (1,4,5). The kernel of this map, K, contains the
subgroup {({(ay)*))r+ with finite index (this subgroup has index 622,080,000 in

I'*) and /<, has abelianisation Z, © Z4 ¢ Z3 & Z3.

Case III: o — (1,3,5,2,4), 8 — (1,2,3) so af = (2,4)(3,5). Then let v —
(1,5,3,2,4), so v % a in Az, but is in 55, and ay — (1,2)(4,5). The kernel of
this map, A7, is the subgroup K = {{(av)?))p+ and K3 has abelianisation Z'.
Consequently there exists a k-celled manifold arising from this Coxeter group for

every k € N. The associated manifold M, = H?/ K3 is Zimmermann’s manifold |Z].
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The group K3 is generated by the words shown in Table 6.24

(beda)?, (edab)?, (dabe)?, (deba)?, acdabedaba, (dabe)?)?, babacdcdca,
babebabada, babededcba, badababeba, bebabadaba, cbdacdcadb

Table 6.24: A generating set for K

As an abstract group, K3 has a presentation as given in Table 6.25. The rela-
tionship between the generators of K3 as a subgroup of I'* and the generators of

K3 as an abstract group is summarised in Table 6.26

](3 = <[«‘1 [412‘/ F13*- ]:le [4‘5: Ff57 1;‘77 [;8’ [;9-, ];1107 [1111 ‘
Fo R Fy R P By VB Ry = L R Ry R Ry Py I P R s =1,
Fo gy VB Py Fy P R L =1,
Fyy B Py Py Iy Py LR R Ry = 1,
FIB]‘FS_lFS)i]F—’lF’{;]F9F1_1F7F10F1F4_1E5 = l
Folg sl VI VR Ry T = 1,
Fo B Py Y P Py Fig Py P P R = 1,
Fe By Fs P Fr By VB VP s B = 1,
P I I Iy S T B P I Ry R Ry =
Fio Fe L F R R F Vo Fs Fy Fr Fy VR = 1,
Fn B g R F F s Py B By By oy gy = 1,
D B N D Y L 2 N 3 Y Y e !
FoFy 'y Fy "y Py P By s P U sy Py P E T = 1)

Table 6.25: A presentation for Iy
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Generator in I’ Image in K3

(dcba)? Fy

babacdedca 13

babcbabada Fy

babedcedcba Fy

badababcba Fy

bebabadaba Fy
(cdab)? FtF3 Y R Ry R !

acdabedaba FrF VP Ry F R,
(beda)? ) ey DY S O
(cdab)? 2 S DRl O DR OF Sl 2 Qe

({dabc)?)® S P R F P Fyo Fy
cbdacdeadh FrFn Py Vs Py FroFy P Fg Ey !

Table 6.26: The images of the generators of K3 as a subgroup of I'" in H

As has been previously observed, H,/[Hy, H;] = Z'. The induced action of
As = TV/H, on Hy/[Hy, Hy] = Z" equips Z' with a module structure 6 : 45 —
G L11(Z). The injection 6 is defined by the two maps:

1 00 0 0 0 0 0 O 0
1 00 1 1 0 0 0 O ~1
o 0 1 0 0 1 0 —10 -1 0
O 00 0 0 0 1 0 1 0 O
o 00 0 0 0 O0 0 0 —1 1
a—| 0 0 0 0 -10 0 1 0 1
-1 0 0 -1 0 0 -1 0 0 1
0O 0 0 0 —-10 0 0 0 0
0 -1 0 0 0 0 —-10 —1
0 0 1 0 00 0 0 -1 1
0O 0 0 O 00 0 0 0 1
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and
0 0

=1 -1 -1 -1 -1 -1 =1 =1 0 -1

0
-1 0 -1 -1 0 -1 -1 0 —1 1 0
0

According to the Atlas of Finite Groups [Atlas|, there are 5 irreducible characters
for As, with degrees, 1, 3, 3, 4, and 5, so this representation cannot be primitive.
Hence the character splits as a sum of irreducible characters. The traces of the
conjugacy class representatives of Ay in this representation are given as follows:
tr(a) = 1, tr(e?) = 1, tr(8) = —1 and tr(e) = —1. A calculation involving
characters of representatives of the conjugacy classes of elements of A5 gives this
module as a sum of the 3-, 3- and 5-dimensional irreducible modules of As. So,
for any positive integer n, there exists a covering manifold M_(n) of M, whose
covering transformations (deck transformations) form an abelian group, and over

which the isometry group extends to the group As x Z.

6.9.3 Further interesting subgroups

Lemma 6.9.2 There are two distinct normal subgroups Ky and Ks of Tt whose

factor group is Ag = L5(9).

Proof: There are two conjugacy classes of A5 in Ag. Letting o — a; = (13524)
and 3 +— 3 = (123), we can have v € {(14326), (16325)} satisfying |v| = 5,
|G| =2 and |y 3171] = 3. Note that o? is conjugate to ~y; in each case. Letting
o > g = (13542) and § +— Gy = (143) we get v2 € {(14326), (16325)}. Notice
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that conjugating by (24) € Sg\ Ag will transpose ay, 1 and v, with ag, Js and 5o
[ |

Lemma 6.9.3 There is a unique normal subgroup K of TV whose factor group

is Lo(11).

Proof: Let ¢ : 't — Ly(11) be a map from I'" to La(11) as constructed in § 4.10,

and K = Ker(#) be the kernel of the map. There are two cases to consider: the

trace(e) =trace() and trace(@) #trace(7y).

Case 1 - trace(a) = trace(7):

Suppose first that trace(@) = trace(¥) = t. Then t = (—1 ++/5)/2 = 7 or 3. If

3 1 — 1 4
== and Jw— 3=
0 4 8 0

Suppose first that trace(@3y) = 1: then there is no solution for v +— ¢ € Ly(11).

trace(a) = 7 then

If trace(@F7) = —1 then two distinct solutions for v:

4 0 vl 31
Vg = = (o) and y— gy = =
1 (_13) (@) T g (04)

Hence two epimorphisms 6y, 6, : I'T — Aj are constructed. The kernels Kjp,, Ko,
of these maps are distinct torsion free normal subgroups of I'™ whose factor group

I/ Ky, is an Az subgroup of L,(11). If trace(@) = 3 then

10 3 — 3 4
o= o= and f— 3=
2 4 19

Assume first that trace(@575) = 1. Then, solving the equations in § 4.10, a unique

108
TTET 9 4

is recovered. Since the order of gy is six, gz & As < Lo(11), 80 g3 & As. As As is

maximal in Ly(11), it follows that the images @, 3 and g3 generate Ly(11). Hence

solution

the kernel of the map, Ky, is a distinct torsion free normal subgroup of I't whose
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factor group T't /Ky, isomorphic to Ly(11). Next, assuming that trace(@37y) = —1

then, solving the equations in § 4.10, two distinct solutions

10 3 . 1 4 9 (—)E
S ‘(]/ = = & and "/ — 5 = = (
7 2 4 ! 8 10

are recovered. The kernels Ky,, Ky, of these niaps are distinct torsion free normal

subgroups of I't whose factor group I't / Ky, is an As subgroup ol Lo(11).

Case 2 - trace(w) # trace(y):

Now suppose that trace(@) # trace(¥). As in the previous case, t = (—1+£/5)/2 =
7 or 3. If trace(a@) = 7 then

31 — 1 4
o= = and f— 0=
0 4 8 0

Suppose first, that 1;1'&%(@57) = 1: then a unique solution
10 8 _9 Z}a 1
— Qg = = [¢¥
g 9e ( 9 4 ) ( )

is recovered, and the image of «v, # and v generate an Az subgroup of Ly(11). If

trace(@F7) = 1: then there is no solution for v — g € Ly(11). If trace(@) = 3 then

- 10 3 P— 3 4
o= o= and J+— J =
2 4 19

Assume first that trace(@/??) = 1. Then, solving the equations in § 4.10, a unique

VHW:(3m>:@¥T

0 4

for v is recovered, and the image of «, # and ~ generate an Az subgroup of Ly(11).

solution

If trace(@d¥) = 1: then there is no solution for v ~— g € Ly(11).

Hence there is a unique map 63 : I'" — Ly(11). The kernel of the map Ky, is a
unique torsion free subgroup of I'" whose factor group is Ly(11). The epimorphism

is characterised by the matrices

10 3 3 4 10 8
o O v
2 4 19 9 4

Computer calculations with GAP ylelded K/K’ = Z*. B
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Lemma 6.9.4 There are two distinct normal subgroups K5 and Ky of Tt whose

factor group is L2(19).

Proof: Proceeding as in the previous lemma, two non-conjugate maps 0,0y :

't — Lo(19) were constructed, one for each case t = t), u =1, and { = ty, u = u;:
0 8 ) 8 14 17
o — b v
7 14 0 12 6 7
0 13 , 8 1 5 11
O = ,L/j — ”)’ —
16 5 0 12 4 9

The kernels of the maps are distinct non-conjugate torsion free normal sub-

|

18, 0 73
i) & 4?7 & Zig L

6.9.4 Maps to M

I'* has a natural description as the quotient of a [ree product with amalgamation.

Write
As = (o, 3]0 =3 =(af)* =1)

AL = (B =0%=@y)? =1)
and consider the free product with amalgamation, As *(5=p1 A5. This is a group

with presentation
(0,8, 7| =3 =~"=(ap)? = (By)* = 1)
Then T'F can be written as the quotient group As *(f=p) Ay {(afy )d}

If I'" has a subgroup /1 of index 7, then, using the action of I'" on the cosets
of H, a permutation group ¢ with permutation representation on n points can be
constructed. The kernel of the induced map I't — G is the core of H in I'". If G
has a minimal value ng of n for which it has a faithful permutation representation
on n points, then no action of T'" on subgroups of index less than ngy can generate

an induced map I'™ — G.



6.9. I' = Ty[2,3,5; 2,3, 5] 161

The group As has transitive permutation representations on 5, 6, 10 and 12
points, corresponding to right coset actions on subgroups Ay, Djy, Ds and Cs.
In each case the action is unique. Choose generators x, y of A; so that a? =
y® = (2y?)® = 1. Diagrams representing the actions of A5 on n points (Higman
diagrams), for n = 5,6,10,12, can be constructed as shown in Figure 6.6 and
Figure 6.7. In these diagrams, heavy dots represent points fixed by the action of
y; triangles represent vertices permuted in an anti-clockwise direction by y and
any two vertices interchanged by 2 are joined by a dotted line. As well as these

transitive actions, A5 has a trivial action on one vertex.

Actions of A5 on 5, 6 and 10 points

Figure 6.6

: Higman diagrams for A5 acting onn 5, 6 and 10 points.

Action of As on 12 points

Figure 6.7: Higman diagram for As acting on 12 points.

Recall that I'" has presentation

M =(a,8,7a"=0"=+"=(aff)* = (B7)" = 1)

/

G and z = v, the presentation for I'" can be rewritten

i

By writing z = af, y =

as
MY = (vy 2| =y =2"=1,(2y°)° = (v%2)° = (2y%2)* = 1)
(vy, 2l @t =yP =22 =1 (2y?)° = (y°2)° = 1)/{(zy*2)°}

= sy A/ {(2P2)")
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? =P = (zy?)? =1) and Ay, = (/2 | y° = 2% = (y*2)° = 1)

where A; = (z.y
Permutation representations for I'" on n points can then be constructed by amal-
gamating Higman diagrams for A5 on n points and adding the additional condition
that (zy°2)® = 1. The process goes as [ollows: suppose that a permutation rep-
resentation of T't on n points, for some integer n, is required. Take two Higman
diagrams D and 5, each describing the action of A5 on n points. Let A5 act on
Dy and AL act on Dy. These two diagrams are now amalgamated by identilying
the triangles in [); with those in Dsy. The resulting amalgamated diagram satisfies
the relations of the free product with amalgamation, As* 1 Ay. The remaining
vertices of [J; not already identified with those of Dy are then paired so that the

final diagram satisfies the additional condition (zy*z)® = 1.

It is instructive at this point to consider an example. Suppose that all possible
permutation representations of I'* on § points are desired. Take two copies, D,
and Ds, of the diagram representing the action of A5 on 5 points. Let [ describe
the action of A5 and Dy describe the action of AL. Since I't can be expressed as
the quotient of the free product As #(,—yy As, the two diagrams D; and D, can be
amalgamated by identifying triangles. There are three possible ways of doing this,
giving diagrams D 1 I.N)Q and Dd For each diagram [N'),‘,7 the condition (xy%2)% =1
in the presentation of I'" is then used to figure out all admissible actions of z on
the 5 points. Figure 6.8 illustrates all these admissible diagrams, which represent
three distinct non-conjugate epimorphisms {rom I'" to Ay, corresponding to three
distinet normal subgroups of I'" whose factor groups are all isomorphic to As.
This verifies the results of Lemma 6.9.1, where it was shown that there are three

distinet normal subgroups with factor group As.

The Mathieu group A, is the automorphism group of the S(5,6,12) Steiner
systeni. The smallest index subgroup of M, is the Mathieu group My, the auto-
morphisin group of the S(4,5,11) Steiner system. There are two conjugacy classes
of maximal subgroups Ay in AMjs: one is the natural subgroup My acting on
11 points. A representative of the second class has a transitive representation on
12 points. The action by right multiplication of My on the 12 cosets of an M,
subgroup induces a permutation representation for My, on 12 points. This is the
smallest permutation representation for Mis. The rest of this section is devoted

to proving that I'" has two distinct normal subgroups N, and N, whose factor
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Three distinct actions of I'" on 5 points

Figure 6.8: Representation of the maps I'* — Aj constructed
in Lemma 6.9.1. Black dotted lines correspond to the action
of = on points, and red dotted lines correspond to the action

of = on points.

group is M;,. Higman diagrams for the action of A; on 12 points will be combined
as described above and GAP will be used to classify the resulting permutation

groups.

Theorem 6.6 There are two distinct normal subgroups Ko and Ky of 'Y whose
factor group is M.

Proof: Assume that [" = Aj x,-, Af/{(2y?2)*}, where A5 = (r.y | 2? = y® =
(ry?)® = 1) and A, = (y'.z | ¥ = 2% = (y*2)°> = 1). Permutation representations
of A; (and Aj) on 12 points are in 1-1 correspondence with partitions of 12 into

orbits of Ag of size 1, 5. 6. 10 and 12. Admissible partitions are
{1,1,1,1.1,1.1,1,1,1.1,1}.{5.1,1,1,1, 1. 1.1},

£6,1.1.1,1.1.1},{5.5.1,1}.{5.6.1}, {6, 6}, {10, 1,1}, {12}

The proof now proceeds by listing all combinations of pairs of these partitions
which yield transitive representations of As #,-,, Ag on 12 points and :1mposi11g the
condition that (y*z)® = 1. The resulting permutation representation will describe
a transitive permutation representation of I'* on 12 points. In general, if a partition
involves 7, orbits of length ¢, for i = 1,5.6,10, 12, then y has ny + 2n5 + n,q fixed
points, since it fixes 1, 2, 0, 1 or 0 points in each orbit of length 1, 5, 6, 10 or 12
points, respectively. Then the partition can only be combined with one where y'

has the same number of fixed points.



6.9. I' = Ty[2,3,5;2,3, 5] 164

There are a total of 49 possible pairs of partitions. The proof is divided into

seven cases: in each case it is assumed that the partition induced by the action of

As is fixed. The only restriction on the second partition (the partition induced by

Ap) is that the action of 3’ fixes the same number of points as y does.

1)

One of the partitions is {5,1,1,1,1,1,1,1}: In this case there are 9 points
fixed by the action of y. Hence the second partition must also be of type
{5,1,1,1,1,1,1, 1} and there is no way of amalgamating these two diagrams
to obtain a transitive representation on 12 points. So no transitive permuta-
tion diagram of an action of I'* on 12 points can be constructed by amalga-
mating two Ay actions with one of the actions being the {5,1,1,1,1,.1,1,1}

permutation representation of Az on 12 points.

One of the partitions is {6,1,1,1,1,1,1}: Since this contains 6 points
stabilized by y, this partition can only be combined with partitions of type
{5,5,1,1} or type {6,1,1,1,1,1,1}. Clearly any amalgamation of two copies
of {6,1,1,1,1,1,1} will result in an intransitive permutation representa-
tion with 6 fixed points, while any amalgamation of {6,1,1,1,1,1,1} with
{5,5,1,1} will have 2 fixed points. So no transitive permutation diagram
of an action of I'" on 12 points can be constructed by amalgamating two
As actions with one of the actions being the {6,1,1,1,1,1,1} permutation

representation of A5 on 12 points.

One of the partitions is {5,5,1,1}: Since this contains 6 points stabi-
lized by y, then by the result of 2) this action can only be combined with
{5,5,1,1}. Let s; and s be the two points fixed by the action of As. Tran-
sitivity forces the points s; and s, to be transposed by the action of z € A
with points not fixed by y. Similarly, x must transpose the points v; and vy
fixed by 3/ and z. Then the only to construct a transitive diagram must be

to construct a diagram similar to that of Figure 6.9
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Figure 6.9: A possible transitive action of '™ on 12 points

It only remains to find all such diagrams: Starting with a permutation rep-
resentation of A5 on 5 points, let .S be a point permuted by the action of i
and action of y. Let ¢ and z fix a vertex s,. Since the final diagram must
he transitive on 12 points, this vertex must be transposed by the action of
x. Diagrams a) and ¢) in Figure 6.10 illustrate the two possible positions of
s7. The choice of S is dependent on the choice of s;. For a fixed choice of
the position of s; (and consequently a fixed choice of the position of §), the
image of S under the action of (a:y?z)? is investigated. Write V = (y?2)%(S).

There are 4 possible configurations and they are illustrated in Figure 6.10:

NN N, /N
S : S ) R : S V:—):S
' . . !]’) I i H '

O : o) ’ : ) : &
Sy 'S b Sy S5

Figure 6.10: Images of S under the action of (zy?z2)?

Connectivity excludes the cases a) and c¢), since in those cases it'is impossible
to adjoin an action of xy? such that 2y°z(V) = S. In cases b) and d), the
action of z fixes V, so xy?z(V) = 5 if and only if the action of z transposes
two points permuted by y, which is impossible. So no transitive permutation
diagram of an action of I'™ on 12 points can be constructed by amalgamating
two A; actions with one of the actions being the {5.5,1,1} permutation

representation of A; on 12 points.
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4) One of the partitions is {5,6.1}: Since this contains 3 points stabilized
by . this partition can only be combined with partitions of fype {5.6,1}
or {10.1,1}. Suppose first that two diagrams of the form {5.6,1} are used.
Then transitivity forces a diagram containing the subscheme illustrated in
Figure 6.11, with triangle 4 amalgamated either with triangle 2 or with tri-

angle 3. However, no amalgamation of triangles 2 and 3 or triangles 2 and

S 0

Figure 6.11: Partial subscheme containing the {5,6, 1} Higman diagram

4 satisfies the condition (24%2)%(s) = s. Consequently all resulting permuta-
tion diagrams will fail to satisfy (xy?z)® = 1. Suppose now that diagrams of
the form {5,6,1} and {10.1,1} are used. Then the two vertices representing
trivial actions of ¢ and z inust be swapped by an action of &, while the vertex
representing the trivial action of 22 and y must be swapped by an action of
z. So a diagram as illustrated in Figure 6.12 is recovered, where triangle 4 is

superimposed on one of triangles 1, 2 or 3.

Figure 6.12: Partial subscheme containing the {5,6, 1} Higman diagram

Now, the action of (2y?z)? seuds s to z(vy). If 2 fixes vy, then (ay®z)3(s) =
2(1a) # s, while if 2 swaps 11, then a transitive permutation representation
on 12 points must contain a subdiagram as shown in Figure 6.13, which is

impossible.
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Figure 6.13: Diagram 3

So no transitive permutation diagram of an action of I'" on 12 points can be
constructed by amalgamating two As actions with one of the actions being

the {5.6, 1} permutation representation of A5 on 12 points.

One of the partitions is {6,6}: Since this contains no points stabilized by
y, this diagram can only be combined with a diagram of the form {6, 6} or a
diagram of the form {12}. Suppose first that two diagrams of the form {6, 6}
are used. Let Figure 6.14 represent the action of A5 on 12 points. Then the
action of AL on 12 points is similar. To find all amalgamated diagrams D
satisfying the relations As*g,—, A5 and the condition (xy?z)® = 1, it suffices
to consider all ways of adding the action of z to the diagram D in Figure 6.14

so that, for any vertex V in D, (21/%2)3(V) = V.

Figure 6.14: Diagram D: A; action of type {6,6} on 12 points

Suppose first that the action of z is to swap $; with some vertex v,. If it
assumed that z also swaps sy and s3, then (:ry?z)? sends s4 to 2(s). If 2 fixes
s6, then (ry?z)® sends s4 to 2(ss). Hence (xy°2)®(s4) = 2(s5) and this is s,
if and only if z swaps s4 with s5. Since the diagram for the action of y and
z is of type {6.6}, this forces 2 to swap s with some v;, contradicting the
assumption that it fixes sg. So z swaps s¢ with some ;. But then (ry?z)(s4) =
z(ss) = vy, for some j and it is impossible for .wry?z(v;) = s4. So 2z cannot
swap S and Sj3.

2

Let 2 fix sy and s3. Then (2922)%(s4) = s3. 50 (xy?2)3(s4) = s4 if and only if

vy 2(s3) = z(ss) = s4. Hence z swaps s; and sg. This forces z(s5) = v, for
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»

some 1. But then (zy%2)%(s5) = v; and 2y z(v;) = s5 forces z(s5) = 1. Then
(2122)* (1) = 1y if and only if z swaps vq with ug. Consequently z swaps s,
and 5. The resulting group action is illustrated in Figure 6.15 and describes

the group As x (5 x Cy x Oy x ()

Figure 6.15: Action of ['" on 12 points

By syminetry arguments, there is also only one solution if it is assumed that
z swaps $9 with some v;. The last case is if 2 swaps s3 with some ;. Suppose
then that z swaps $; and so. Then (xy?z)?(s)) = z(s3), a contradiction, since
there is no way of satisfying wy*2z(1;) = s, for any i. So z fixes s; and s5. Then
2y*2(s9) = 2(s3), and since xy®z(s4) = $3, 2 must swap 54 with some v;. Now
suppose that z swaps s5 and sg. Then (ry?z)?(s3) = 2(s4), or 29y%2(2(s4)) =
s3. Similarly, (xy?2)%(s4) = 2(s3), or wy?2(2(s3)) = s4. Combining these re-
sults, we get sy2zy?z = $3 and s322y°2 = $4. 0 s9227°2%Ty’z = s4. Since
t=af =ac,y =3 = bcand z = 3y = bd, the identity zay’2%ry’z = 1
becomes zry*ay2z = bdachebeacbebebd = bdababbd = ()7 = 1, a contra-
diction. So z does not swap s5 and sg. Then (ry?2)%(ss) = 2(s4), again a

contradiction.

»

Instead let the second partition be of type {12}. Let Figure 6.16 represent
the action of A; on 12 points and Figure 6.14 represent the action of Af.

Suppose first that z fixes s; and $5, as shown in Figure 6.16:

52

Figure 6.16: Diagram 5

If z fixes vy, then (2:y?2)(1)) = $2, so z must transpose sy and s5. Conse-

quently, (ry?2)?(s3) = 2(s3). If 2 fixes s3 then (ay?2)3(sy) = vy # 9, 50 2
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cannot fix s3. Since (2y®2)(z(s3)) = $3, 2 must transpose 1, and, s3. But then
(21°2)3(03) = 14 # 3. So 1 cannot be fixed by z. Then there are only 3

possible partial diagrams with ¢; transposed by z, shown in Figure 6.17:

]q>§) <[JJO>L‘ _____ 1<[ \
1) - e, %o

1 vy .7 )

J>'S:‘--- ”<[ [> <[

I11)

Figure 6.17: Possible diagrams

In 1), (xy?2)* (1) = 2(vy). If 2(v3) = vs, then (2922)%(vs) = ay?2z(u3) = 33 #
. 50 2z(13) = vy, But then (2y?z)*(1s) = 1y # 5. In a similar manner,
diagram 1II) fails (since (ry*2)?(v3) = v3) and diagram IIT) fails (there is no
way to complete the diagram so that (xy?z)%(ss) = s¢). Hence z cannot fix
$7 and sa.

Now suppose that z transposes ¢ and $o. Then there are two diagrams,

illustrated in Figure 6.18, inn which all conditions are met:

Figure 6.18: Admissible diagrains

Diagram IV) describes an action of Ag; x (Cy x Ty x Oy x Cy x Cy) on 12
points, and diagram V) describes an action of A5 on 12 points.
The remaining case is when z fixes one of 51 or $5. By symmetry arguments,

it suffices to consider when z fixes s and transposes s; with some other
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point. Calculations similar to those above show that there are two admissible
diagrams, both yielding an action of ['* on 12 points. In each case the kernel
in I'* of this action is a normal subgroup whose factor group is As x ((Cy X

(/‘-3 X (”2 X (}2 X (‘-"2).

One of the partitions is {10,1.1}: Since this contains 3 points stabilized
by y, this partition can only be combined with partitions of type {5, 6,2} or
of type {10,1.1}. By 4) above, it suffices to consider only the case {10,1.1}.
Since there are two points with trivial action and only one point fixed by
the action of y but permuted by x or z, it is clear that there is no way of

combining these diagrams to get a transitive representation on 12 points.

One of the partitions is {12}: The only remaining case is to combine this
with {12}. Calculations similar to those done in the previous sections give 6

possible diagrams:

Figure 6.19: Transitive action of A; on 12 points with generators x, y and z

J g I - 1 ,- » - - > - 5 A,
. 4 ’ IR ’ .
, \
) \ y T af * \
D - 273 - -- '
' . \ L ’ ‘ \ L a
N s \ g 8 - - . ’ 12
A - - - -

Figure 6.20: Transitive action of A5 on 12 points with generators z, y and z

(LA

Figure 6.21: Transitive action of As on 12 points with generators z, y and z
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Figure 6.22: Transitive action of Ly(11) on 12 points with generators z, y and =

Figure 6.23: Transitive action of Ay on 12 points with generators x, y and =

. ’ % 2 g

. ’ * - . \

| ZA ———— '

' T, PR S AR RS P b

\ % R PR

‘~ Y . M al
N -~ . . i

Figure 6.24: Transitive action of M) on 12 points with generators x, y and =z

The first three diagrams, Figures 6.19. 6.20 and 6.21, correspond to tran-
sitive actions of As on 12 points and arvise from the three maps 't — A;
constructed in Lemma 6.9.1. The fourth diagram, Figure 6.22, corresponds
to a transitive action of L,(11) on 12 points. The associated épimorphism,
[T — Ly(11), was constructed in Lemma 6.9.3. The final two diagramns.
Figures 6.23 and 6.24, correspond to transitive actions of A4}, on 12 points.
the last two diagrams describe different epinorphisms, since the element
v’y = (ay?)*y?z has order 4 for the representation described in Figure 6.23,

and order 6 in the representation described in Figure 6.24.

As a corollary, from the representation described in diagram V), the following

result 1s inumediate:

Corollary 6.9.1 The group I'" has a unique normal subgroup with factor group
A
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6.10 Concluding remarks

In this chapter, examples of manifolds arising from torsion-free subgroups of the
9 Lannér groups were constructed. Using the isometry groups of these manifolds,
combinatorial descriptions of several of the manifolds were given, taking advantage
of the size of the isometry groups. In some interesting cases, the induced action of
these isometries on the first homology was computed. This additional information
was then used to investigate the construction of arbitrarily large manifolds whose

isometry group is also large.

For each group, a minimal index torsion free subgroup was determined. The ori-
entation preserving subgroups of the groups Ty, Ty, T3, T5 and Ty have non-normal
minimal index torsion-free subgroups, while orientation preserving subgroups of

the groups Ty, T, T and Ty all have minimal index torsion-free normal subgroups.



Chapter

The 4-dimensional compact

simplicial Coxeter groups

7.1 Motivation

In 1985, Mike Davis constructed his celebrated "Davis manifold" [Da], provid-
ing the first explicit construction of a four-dimensional hyperbolic manifold. This
manifold arose from the existence of a torsion free subgroup of index 14400 in the
group I'y = [5, 3, 3, 5], shown in Table 7.1. The manifold has Euler characteristic
26. By the Gauss-Bonnet theorem [KZ|, the volume of a complete finite volume
hyperbolic 4-manifold M is given by Vol(M) = %x(/\/l ): thus the volume of the

. . . -2
Davis Manifold is 26 x 4%

Since then, an outstanding question has been whether or not I'; has a minimal
index torsion free subgroup K. Since the least comimon multiple of the orders
of conjugacy classes of maximal finite subgroups of I'y is 14400, K must have
index 14400. If such a subgroup does exist, then the associated manifold will have
Euler characteristic 1 and therefore it would be an example of a smallest volume
compact hyperbolic 4-manifold. This chapter will study the subgroup structure of
I'y and seek to outline a possible approach to the construction of a smallest volume

compact hyperbolic 4-manifold.

173
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The five co-compact four-dimensional hyperbolic simplicial Coxeter groups are

listed in Table 7.1.

5 5 4 5} 5
«—o—+» ® N *—9 ® o —¢— 6 —0—9
a b C d e a b C d ca h C d e

I = [573,3,3} Iy =[5,3,3.4] Iy =153,3,5

Table 7.1: The 5 co-compact simplicial Coxeter groups with a hyperbolic 4-simplex as a

fundamental region

The groups I'y and T’y deserve particular attention. In his paper, Davis [Da]
constructed an explicit epimorphism from I'y onto the [5, 3, 3] Coxeter group. This
group is the full syinmetry group of the 120-cell, first introduced in § 5.8. The
Davis manifold has Euler characteristic 26. In his concluding remarks, Dayvis notes
that I'y and I'; have rational Euler characteristic j 4i00 and 2%00, respectively,
and speculates as to the existence of torsion free subgroups of indices 14400 and
28000 in these groups. Such subgroups would vield compact hyperbolic manifolds
of Euler characteristic 1 and 17, respectively. The analogous problem for non-
compact manifolds has been solved by John Rateliffe and Steven Tschantz in [RT1].
The manifolds they constructed arise from torsion-free subgroups of index 16 x

120 of the Coxeter group shown in Table 7.2. More recently, using computational

4
. . °

Table 7.2: Simplicial Coxeter group with Non-co-compact simplex A4 in H*

methods, Marston Conder and Colin Maclachlan [CM] constructed a torsion free
subgroup of index 8 x 14400 in I';. This corresponds to the sinallest volume co-

compact hyperbolic 4-manifold currently known.

In this chapter a different approach is used to construct subgroups of I'y of

index 8 x 14400. The subgroups constructed are different to those of Conder and
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Maclachlan. Additionally, some obstructions to finding a torsion free subgroup
of index 14400 are presented. The method applied combines computational tech-
niques with classical group theory, and in particular makes use of the classification
of the finite simple groups. Furthermore, it provides a method to answer the ques-

tion whether I'y has a torsion free subgroup of index 14400.

7.2 Conjugacy class representatives

Any attempt to construct a manifold from the action of a subgroup of I'; on H*
requires information on the conjugacy classes of torsion elements: namely what
they are and how they are avoided. Representatives of the conjugacy classes of

torsion elements in I'y are characterised using Theorem 2.2 in Chapter 2

This identifies the torsion elements, up to conjugacy. Therefore, for Ty, any
conjugacy class of elements of finite order lies in one of the following five special

subgroups listed in Table 7.3

. O 5 5
G, = e ® ® o Go= 6—9—0 X0 (G;= @ e X ® ®
a h c d a b C e a b d e

Table 7.3: Maximal finite subgroups of I’y

It suffices to consider only the conjugacy classes of clements of prime order.
The conjugacy classes for each maximal subgroup G1,Gs, G3, G4 and G5 are sum-

marised In Table 7.4, Table 7.6, Table 7.5, Table 7.7 and Table 7.8, respectively.
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Order of representative | Class representative
2 a
2 ac
2 (abc)®
2 (abed)'®
3 be
3 (abed)0
5! ab
5 (ab)?
5 (abed)®
5 (abed)?
5 (abed)!(abe) =2

Table 7.4: Conjugacy classes of elements of prime order in G; = [5, 3, 3]

Order of representative | Class representative
2 a
2 d
2 ad
3 de
! ab
5 (ab)?

Table 7.5: Conjugacy classes of elements of prime order in Gg = Dyg x Dg
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Order of representative

Class representative

2

RN NN N

CrWwoNo

[t

e
a
ae
ac
ace
(abc)®
e{abe)®
be

(ab)?

Table 7.6: Conjugacy classes of elements of prime order in G = [5, 3] x Cy = Az x Cy x Cy

Order of representative

Class representative

2

2
2
2
2
3

a
C
ce
ac
ace

cd

Table 7.7: Conjugacy classes of elements of prime order in Gy =2 Cy X Sy
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Order of representative | Class representative
2 b
2 bd
3 be
) bede

Table 7.8: Conjugacy classes of elements of prime order in G5 = Sy

The elements listed in the previous tables account for all conjugacy classes
of torsion of prime order in I'. However, in many cases the same class has been
counted more than once. For example, a and e represent different conjugacy
classes of elements of order 2 in G3. However, a is conjugate to b in () while
b is conjugate to e in Gs, so a and e represent the same conjugacy class in I
After removing multiple references for the same conjugacy class, representatives
of the conjugacy classes of torsion of prime order in I' are given by the following
elements:

Order 2: a, ac, ace, (abc)®, (abc)®e and (abed)'.
Order 3: bc and (abed)™.
Order 5: ab, (ab)?, bede, (abed)®, (abed)'? and (abed)'(abe) 2.

7.3 Subgroups of the [5, 3,3, 3] Coxeter group

As previously observed, torsion free subgroups of the [5, 3, 3,3] Coxeter group I’
correspond to hyperbolic 4-manifolds. If I were to contain a torsion free subgroup
of index 14400, then the associated hyperbolic 4-manifold would have Euler charac-
teristic 1, and would thus be an example of a smallest volume compact hyperbolic
d-manifold. In this section, examples of the smallest currently known manifolds are
constructed. It will be shown that these examples differ from those constructed

in [CM].
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7.3.1 Low index subgroups of I

Using Lowx [Lx[, a complete list of conjugacy class representatives of subgroups of
[5,3,3,3] of index at most 720 was obtained. The number of such subgroups and

their index in each case is summarised in Table 7.9

Index | # classes | Index | # classes | Index | # classes
2 1 385 1 595 6
85 2 420 1 600 17
120 2 425 2 624 4
136 2 436 1 625 1
156 2 445 1 640 2
170 4 480 18 641 1

240 10 505 1 650 7
255 3 510 21 660 1
272 6 021 1 675 2
300 1 o940 1 676 1
312 4 544 8 680 15
325 1 259 2 685 . 4
340 4 556 1 691 2
360 2 565 1 720 13

Table 7.9: Number of classes of subgroups of index <720 in T’

The data in Table 7.9 will be used to prove that if K is a torsion [ree normal
subgroup of T', then I'/ K contains no sporadic simple group, nor any extension of
one, among its cpimorphic images. This first result proves that the construction

used in Davis paper |Da| cannot be used for this group.

Proposition 7.3.1 There exists no epimorphism ¢ = T' — Ty := [5,3,3] with

torsion free kernel.

Proof: Suppose there exists such a map. Let a,b, ¢, d, e be the standard Coxeter
generators for I' = [5, 3,3, 3], and define ¢(a) := a, ¢(b) := b, p(c) := ¢, ¢(d) :=d.
Then a, b, ¢, d form a generating set for I’y which satisfies the Coxeter relations for
I'y, and so form a set of Coxeter generators for T'y. It remains to find an image

for e under ¢ such that ap(e), bp(e) and cple) all have order 2 and that dy(e)
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has order 3. Recalling the decomposition in § 5.9 of the 120-cell into two linked
tori consisting of 60 dodecahedra, one of these tori can be cut along a meridian
curve to recover a tower of dodecahedra, which contains a core tower of 10 stacked
dodecahedra. Adjacent dodecahedra share a horizontal pentagonal face, and at
each edge a further dodecahedron is attached. The outer face of the tower consists
of the 200 free faces of the 50 dodecahedra wrapped around the central tower. The

core tower is stabilised by the dihedral group Do generated by a and b. Hence

e must map to some element of order 2 with |agy| = |bg| = 2. In § 5.9 it has
been proved that any element ¢ of order 2 in I'y which satisfies |ag| = |bg] = 2

lies in a dihedral group Doy which stabilizes the meridian curve as illustrated in
Figure 5.12. There are 11 possible involutions w; lying in this subgroup. Three of
them, (ababc)®, d*, where w = (cbabed)?(abe)?abde and (abed)'®, satisly |cg| = 2.
However, their product with d has orders 10, 5 and 2, respectively. Since it was

required that de have order 3, this proves that no such map exists. |

Proposition 7.3.2 Let w = abede in T'. Then for i < 25, 4 # 17, the following

results hold:

1) {{wh)p =T if i is odd.
2) ({w)r =TT if i is even.

8) Fori =17, T/{{w'))r & S4(4), the {-dimensional simple symplectic group
over the field of 4 elements. ((w))r is the unique such subgroup with this
quotient. The kernel of the map T — I'/{{(w"))1 contains the conjugacy class

C((abed)'®) of torsion elements.

Proof: The first two results have been verified computationally. The third result
was obtained as follows: I' has two conjugacy classes of subgroups of index 85.
These were obtained by using the program Lowx. The induced action of I on the
cosets of a representative of one of these classes gives a permutation representation
0 : " — Sgs. The resulting group was found, using GAP, to be the simple group
Si(4). The Atlas of simple groups |Atlas| lists S4(4) as having two conjugacy
classes of maximal subgroups of index 85. These lift, under the inverse of ¢, to
representatives of the two conjugacy classes of subgroups of index 85 in I". Hence

the kernel of @ is unique. [
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7.3.2 Maps to S,(4)

Let T act on the cosets of a representative of either of the two conjugacy classes
of subgroups of index 85. This action induces a permutation representation 8 :
' — Sy(4). From the Atlas of Finite Groups [Atlas|, it can be seen that Si(4)
has two conjugacy classes of subgroups of index 85, so these subgroups lift to two
conjugacy classes of subgroups of index 85 in I'. Since I' has only two conjugacy
classes of subgroups of index 85, they must coincide with the lifted subgroups. Since
S4(4) is simple, the core must be the same in each case, giving the epimorphism
6: T —» Sy(4). Write K = ker(d). GAP [GAP] was used to study the actions of
cach conjugacy class of torsion elements of T on the cosets of a subgroup of index
85 in I'. Tt was discovered that the conjugacy class C((abed)'®) of elements of order
2 in T" acts with fixed points on the 85 cosets, and hence lies in K. The group S4(4)
contains conjugacy class of Sylow-17 groups Syly7 which have index 4 x 14400 in
Si(4). The normalizer Ng,4y(Syli7) = N(Syli7) has index 14400 in Sy(4) and is
an extension of Syl by a cyclic group of order 4. Any element of order 2 lying
in N(S17) acts faithfully by conjugation, since otherwise it would commute with
Syliy and hence S4(4) would have an element of order 34, a contradiction. GAP
was used to study the images of representatives of conjugacy classes of torsion
elements of I". It was found that elements of the conjugacy class represented by ac
act by inversions on Syly7, therefore the preimage N(.577)K contains elements of

the conjugacy class C(ac).

The preimage of the group Syly; under 8 clearly cannot contain any of the
torsion elements and is an extension of K by Syli7. This group was constructed
using GAP and the conjugacy classes of index 2 subgroups were determined. There
are fifteen such conjugacy classes of subgroups, 8 of which avoid the conjugacy class

C((abcd)'®). Their abelianisation is one of the three following types:

Zy &Ly ® Ly © Loy (7.1)
Zo B Ly G Ty & La S Ly @ Loy (7.2)
Zo DLy B Ly B Ly &Ly Ty (7.3)

These were found by constructing an explicit presentation for //, and hence for
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the index 2 subgroups.

(a) A subgroup with abelianisation Z3 & Z;;

Let H, < I be the subgroup generated by the following elements (these generators

were found using GAP):

cdebabacbdedcbabedabeababedebabe,
abacbabadedcbabacbabedecdbeababedbe,
bacbedcbabacbadcbabedchabedecababedbea,
abacbabachabedcbaedcbabedabeababededbea,
ababadcbabacbdcedcbabedeabedabeababedebed,

babacdcbabacbadedcbabacdebeababedcbabeababe

Then #; has index 8 x 14400 in I'. Letting I' act by right multiplication on the
cosets of Hy gives an induced permutation representation on 8 x 14400 points. Now
I, contains an element of a conjugacy class C(g) of I" if and only if the induced
permutation action of g fixes some points. Using GAP, the induced actions of
representatives of each of the conjugacy classes of I" were computed. Since no
representative of a conjugacy class in I' fixed a point, [/; avoids all conjugacy
classes of torsion elements. The resultant manifold has FEuler characteristic 8 and
therefore has volurme % The abelianisation of /1, H, /[, H,], is a finite group of
type Z3 € Z7. Since the second generator has odd length, so /1, is not a subgroup

of I'*.

(b) A subgroup with abelianisation Z3 & 73 & Z1,

Let H; < T" be the subgroup generated by the following elements (these generators

were found using GAP):

ababdchabecdcabab,
bebabachdcbabedcbabeababedecdbabe,
adcbaedcbabacbabdcbabacdedbeababedabeababeba,
bebabacdcbabachabedcbabecdcbabeababedebabedbea,

acbabedcbabacbadcedcbabacbdeababedebabedbabeababede
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Then H, has index 8 x 14400 in I'. Letting I act by right multiplication on the
cosets of [, gives an induced permutation representation on 8 x 14400 points. Now
H, contains an element of a conjugacy class C(g) of I' if and only if the induced
permutation action of g fixes some points. Using GAP, the induced actions of
representatives of each of the conjugacy classes of I' were computed. Since no
representative of a conjugacy class in I' fixed a point, H, avoids all conjugacy
classes of torsion elements. The resultant manifold has Fuler characteristic 8 and
therefore has volume # The abelianisation of /s, 15/ [y, 115], is a finite group
of type Z3 & Z2 & Zy;. Since the first generator has odd length, so f, is not a

subgroup of I'*.

(c) A subgroup with abelianisation Zj ¢ Z, & Zs & Z;

Let /15 < I' be the subgroup generated by the following elements (these generators

were found using GAP):

deababcbabedacbab,
bebaachdebabedcbabeababedecdbabe,
acbadcbedchabacbabedchbaedcbabedbabeababedecda.,
bebabdcbabacedcbabachabdecdbeababedebabecababe,
abebdebabachaedebabacbabdecdbeababedbabeababeaba,

chadcbabachadchaedcbabacbhdecababedcbabeababededcab

Then Hy has index 8 x 14400 in I'. Letting I" act by right multiplication on the
cosets of H3 gives an induced permutation representation on 8 x 14400 points. Now
Hj contains an element of a conjugacy class C(g) of I' if and only if the induced
permutation action of g fixes some points. Using GAP, the induced actions of
representatives of each of the conjugacy classes of I' were computed. Since no
representative of a conjugacy class in I' fixed a point, Hy avoids all conjugacy

classes of torsion elements. The resultant manifold has Euler characteristic 8 and

5.2 . . . . . .
therefore has volume 32: . The abelianisation of Hy, H3/[H3, H;], is a finite group
of type Z3 & 7y & Zs & Zy4. Since the first generator has odd length, so Hs is not

a subgroup of I'*.
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7.3.3 Maps to S4(5)

There are two conjugacy classes of subgroups of index 156 in I". Letting I act on
the cosets of a representative of either class produces a permutation representation
I' - Hy < Sis¢ into the symmetric group on 156 points. GAP was used to con-
struct the map, and the group Hy was discovered to be the group 94(5).2, a group
containing Sy(5) as a normal subgroup of index 2. Sy(5) is a simple symplectic
group of order 29.32.5%.13. The group S4(5).2 is its automorphism group and is

isomorphic to SOs(5)

Proposition 7.3.3 5,(5) contains no subgroup of index 7200.

Proof: A subgroup S of index 7200 would have order 650 = 2.5%.13, so Sylow’s
theorems imply that S has a unique and hence normal Sylow 13-subgroup C)s.
Since Cy3 has no automorphism of order 5, elements of order 5 and 13 in S must

commute, giving elements of order 65. But S4(5) has no elements of this order. B

7.4 Characterising maps to simple groups

Theorem 7.1 Let H < ' have index 14400 and suppose that H is torsion free.
Let K <T" be the core of H in T'. Then T'/K does not admit a map onto any of the

sporadic simple groups.

Proof: Suppose it did. Let 17 be the image of i in T = I'/K and suppose that
¢ : /K — G is a map from the factor group I' to some sporadic simple group G.
Then the image of /7 under  is a subgroup of index dividing 14400 in a sporadic
group and avoids the images of all the conjugacy classes of torsion. Using the list
of all conjugacy classes of subgroups of T" with index < 720 (Table 7.9), first look
at all sporadic simple groups S with maximal subgroups of index less than 720.
These are M;, 1 € {11,12,22,23,24}, Jo, J3, HS, McL and Coz. GAP was used to
compute the actions of " on representatives of the conjugacy classes in each case.
None of the above sporadic groups appeared in the resulting list of permutation

groups. Among the remaining groups, Coy, Fiys, Fib,, HN, Th, B, M O'N, Ly
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and J; contain no subgroup of index < 14400 (see chapter 5 of [W]), and are

therefore eliminated. The remaining groups are Suz, Cos, He, Fiay, Jy and Ru.

Swuz contains one class of maximal subgroups of index < 14400. A representa-
tive of this class has index 1782 in Suz. Therefore Suz contains no subgroup of
index 14400 since 1782 does not divide 14400. C'o, contains one class of maximal
subgroups of index < 14400. A representative of this class has index 2300 in C'og,
and as a result it also cannot, contain a subgroup of index 14400. He contéins two
classs of maximal subgroups of index < 14400: one class has index 2058 and has
representative Sy4(4) : 2, the other has index 8330 with representative 22.15(4).53.
Neither 2058 nor 8330 divide 14400. Therefore the respective subgroups cannot
contain A subgroup of index 14400. Fiy, contains three classes of maximal sub-
groups of index < 14400: two classes of type O(3) with index 14080 and one class
of type 2.Ug(2) with index 3510. Because 14080 and 3510 do not divide 14400,
Fi9s contains no subgroups of index 14400. Similarly, J3 has one class of maximal
subgroups of index less than 14400, and because this class has index 6156 in J3,
Jy has no subgroup of index 14400. Finally, Ru also has one class of maximal
subgroups of index less than 14400. This class has index 4060 in Ru, therefore Ru

also contains no subgroup of index 14400. [ |



Chapter

Conclusion and further work

8.1 Conclusion

In this work all torsion [ree normal subgroups of the index two orientation preserv-
ing subgroups of the Lannér groups whose [actor groups have the form PSLy(q),
where ¢ = p™ and p is a prime, are classified. In the case of each group, some
examples of manifolds were constructed and their homology computed. Minimal
index torsion free subgroups of each Lannér group are also constructed. The com-
putational techniques developed in this work were applied to the 4-dimensional

Coxeter group [5,3,3,3] to study minimal volume compact hyperbolic manifolds.

In chapter 3, subgroups of the orientation preserving subgroup I't of the Lannér
group I' = Ty = [5,3,5] are studied. All such subgroups whose factor group is
Lo(q) are classified. The conditions under which these subgroups are normal in
any extension of I'" in Isom(H?) is also investigated. The special case p = 5 yields
two normal subgroups N, and N, whose associated manifolds M, = H*/N; are a

chiral pair of Seifert-Weber manifolds.

Chapter 4 generalises the results of chapter 3 to the other 8 Lannér groups. The
classification of such subgroups, in the case of I' = T3, was previously described by
Anna Torstensson in her PhD thesis [To]. A statement of her results was included

for completeness. A classification of all torsion-free normal subgroups N <I't «l' =

186
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T;, of the remaining 7 Lannér groups T;, whose factor groups are of the form Lo(q),
is given. Some conditions are also provided under which such subgroups N remain

normal in an extension of I't in Isom(H?).

As well as the theoretical results of chapters 3 and 4, explicit examples of
some ol the manifolds were given. In chapter 5, several of the manifolds arising
[rom torsion-free subgroups N <I't = [5,3, 5]* were constructed. A combinatorial
description of these manifolds, using the group theoretic structure of their isometry
groups, was given. Interesting chiral pairs of manifolds were discovered, and their

chirality exhibited using the subgroup structure of I

In chapter 6, manifolds exhibiting a large degree of symmetry which arise from
the other 8 Lannér groups were investigated. The smallest manifolds with a large
degree of symmetry which were associated to the Lannér group I' = T, were
described in a paper of Jones and Mednykh [JM]. A statement of their main
results was included for completeness. For each of the remaining 7 Lannér groups,
a brief description of the associated manifolds M is given. In the case of hoth
the Lannér groups 75 and Ty, the smallest index torsion-free normal subgroup
N = m(M) has a free abelianisation N/[N,N] = H;(M). The action of the
isometry group Isom(M) on this free Z-ring is computed. As a result a construction

for an arbitrarily large hyperbolic 3-manifold with a large isometry group is given.

Computational techniques were developed to construct complete lists of conju-
gacy classes of subgroups of low index in these groups. A summary of these results
is provided in the Appendices. These lists were then used to test the theoretical
results proved in this thesis and also to search for specific normal subgroups whose

factor groups were of interest.

The computational techniques developed in this work were applied to the 4-
dimensional Coxeter group [5. 3,3, 3] and a study was done of the low index sub-
groups of this group. The existence of torsion free subgroups of index 115200
was established and a possible approach towards determining the minimal index

torsion-free subgroup of this group is outlined.
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8.2 Further work

Based on the work of this thesis, there are several interesting avenues of research
that can be pursued in the future. Chapter 6 includes only a selection of the results
obtained from the Lannér groups. It would be interesting to study more of these
manifolds, providing researchers in hyperbolic geometry and abstract polytopes
with a library of "ready-made" manifolds with which to test hypotheses. Using
the tables in Appendix A and the methods described in chapters 5 and 6, many

more interesting manifolds can be identified and constructed combinatorically.

The methods used in chapters 3 and 4 can also be applied to the 23 non-compact
simplicial Coxeter groups acting on H®. They are often referred to as "Quasi-Lannér
Groups". Vinberg has shown in [V1] that 6 of these are non-arithmetic, so torsion-
free subgroups of these groups can be used to construct non-arithmetic manifolds.
If, further, the subgroups are normal, then the manifolds will exhibit a high degree

of symimetry.

Generalising to higher dimensions, the combination of group theory and compu-
tational techniques used in chapter 7 can be extended to characterise examples of
cusped hyperbolic manifolds in dimensions 6 and 8. By combining computational
techniques and classical group theory, it becomes possible to construct explicit

subgroups avoiding torsion.

Additionally, it would be interesting to determine the full isometry group in
Isom(H") of each of these groups, and to determine subgroups of T" that are torsion
free whose associated manifolds M have maximal symmetry. Note that, in H* at

least, the isometry group of M is still finite.
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Tables of low index subgroups for

the simplicial groups

Al ['=T[2,2,3:3,5,72]

't has 3359 conjugacy classes of low index subgroups of index < 60. Their index,
the induced permutation group and, where possible, the abelianisation of the kernel

of the map are listed here.

Index | # classes | Induced action | Abelianization

5 1 As 73!

6 1 As Vs

10 1 A 71

11 4 PSLy(11) 730 & 73,
1= A Z3!
2= Ly(11) 730 = 73

12 9 2= As x H, 7Y e 74t
2= A; x H, 727
2= A; x H 73

15 1 As Z3

16 4 As X Ho 7Y% & 72

189
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¥ ndex | # classes | Induced action Abelianization

18 3 As x Hs not computed
1= As 7L
4= A5 x Hy 7 & 7
2 = As x H, 75 7t

20 29 2= A; x H 77
2= As x H, 73!
2= PSLo(19) | Z3F & 73,

16 = A; x Hy not computed

22 1 Aoy not computed
1= Ay x H, 7Y @7t
1= A; x I 737
1= Ay x [ 73!

24 22 4= Az x Hs 743
8= A; x Hy not computed
4= A x Hy not computed
3= As X Hoy not computed

26 1 15(25) 778

28 1 Se(2) not computed
1= A; 711
4= As x Hy .

. 4 = [,5(29) z°z;

30 41 . not computed
16 = As X Hy :
3= Ay H not computed
| Ay H not computed
4 = A5 x Hy 710 @ Zy14
4 = A5 x M, /il

32 22 4= Ay x Hy Vis
2 = Ly(31) not computed
8 = As x Hg not computed
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Index | # classes | Induced action Abelianizalion

34 3 Asy not computed
9= A; X Hoy not computed
1= 56(2) not computed
12 = A x Hy not computed
1= Ay x Hyg not computed
2 = Ay x Hyg not computed
12 = Ay X Hyy not computed

36 73 12 = Ay X Hos not computed
2= Ay X Hyy not computed
4 = Ay X Hog not computed
5= A x (x5, Ap) not computed
7= As x (Hy x (x5, 45)) not computed
2 = Ay x (x%, Ag) not computed
4 = As x (/11 x (x5 Ag)) not computed

38 2 Asg not computed
3= A x I 7" & Z;
2 = A x H, 7 7t
3= As x H) i
3= A5 x H,y 73
4= A; x Hs 7%

40 64 12 = A5 x Hy not computed
12 = Ay x HH; not computed
12 = As x Ho not computed
6 = Ay X [og not computed
2 = A5 x (x2_ As) not computed
4= Ay not computed
3= As x Hig not computed

4 0 4 = As x (x]_,As) | not computed
60 = A5 x (I} x (x8_,A7))) | not computed
3= Ay not computed
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Index | # classes | Induced action Abelianization
" 9 7T = Ao X Hiy not computed
2= Ayu not computed
45 1 As x Hig not computed
46 18 18 = Ay not computed
1 = 3840 not computed
18 = 122880 not computed
6 = 1399680 not computed
8 = 3932160 not computed
18 = 7864320 not computed
2 = 113374080 not computed
20 = 251658240 not. computed
9 = 5733089280 not computed
12 = 11466178560 not computed
24 = 16106127360 not computed
4 = 82649704320 not computed
13 339 4 = 5289581076480 not computed

2 = 23482733690880

4 = 46965467381760

3 = 1348984441405440

8 = 1502894956216320
16 = 3005789912432640
1 = 17118912860651520
2 = 34237825721303040
25 = 43167502124974080

18 = 1095610423081697280

8 = As x (x{_;Ag)

118 = 145 X (]J] X (x?:lAS))

1= /448

not computed
not computed
not computed
not computed
not computed
not computed
not computed
not computec
not computed
not computed
not computed

not computed
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Index | # classes | Induced action Abelianization
1= As x His not computed
3= As x (x12,A45) not computed

50 27 1= Ay x Hiy not computed
8 = Ay x 5 not computed
14 = Ay not computed
1 = Ly(25) VAL

52 24 6= Ly(25) x Hpy not computed
17 = Az not computed

H3 1 Ass not computed

54 403 {
4 = Lo(11) 7P & 73,

o " 4 = Az x Ly(11) | not computed
4= Ly(11) x (x31,45) not computed
2 = Ass not computed
1 = Sg(2) not computed

56 31 14 = Sg(2) x Hyg not computed
16 = Asq not computed

57 4 4 = Ly(19) 738 & 73,

58 78 78 = Asg not computed

59 1 1 = Axg not computed

There are also 2063 conjugacy classes of subgroups of index 60 in I'". No informa-

tion on the induced actions was computed.

1) H; is elementary abelian of order 32.

2) H, is elementary abelian of order 16.

3) Hs/[Hs, Hs) is elementary abelian of order 32, and [H3, H3) is elementary

abelian of order 729.

4) H, is elementary abelian of order 1024.

5) Hj is elementary abelian of order 64.
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6) He/[Hg, Hg) is elementary abelian of order 64, and [Hg, Hg] is elementary

abelian of order 32.
7) H7 is elementary abelian of order 2048.

8) Hs/[Hsg, Hg] is elementary abelian of order 32, and [Hg, Hy| is elementary

abelian of order 59.

9) Hg/|Hy, Ho] is clementary abelian of order 32, and [Hy, Hy) is elementary

abelian of order 3'9.
10) Hp is elementary abelian of order 22!,
11) Hy, is elementary abelian of order 2'3.

12) Hyy/[Hyz, Ho) is elementary abelian of order 32, and [Hy, H1o] is elementary

abelian of order 519,

13) His/[H13, Hi3] is elementary abelian of order 16, and [H3, Hi3) is elementary

abelian of order 5'3.

14) Hy4/[Hy4, Hi4) is elementary abelian of order 32, and [Hig, Hi4] is x12, As.

15) 1115 = X:?:1A10'

16) I1s/[H g, Hig) is clementary abelian of order 32, and [ g, [¢] is elementary
abelian of order 79.

17) Hy7/[Hy7, Hy7] is elementary abelian of order 21, and [H,7, H,7] is elementary
abelian of order 3.

18) His/[H,s, Hyg) is elementary abelian of order 2%, and [Hyg, Hg] is elementary
abelian of order 3'2.

19) Hg/[Hye, Hyo] is elementary abelian of order 2°, and [H g, Hy] is elementary
abelian of order 3'2.

20) Hao/[Hao, Haol 18 clementary abelian of order 2%, and [Hyg, Hyg) is elementary

abelian of order 3°.

21) Hyy/[Ha1, Hyy] is elementary abelian of order 25, and [Hy, Hy] is elementary

abelian of order 3°.
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22)

23)

24)

[\
fu2}
-

26)

Hao/[Hao, Hyo is elementary abelian of order 219, and [H,,, Hyy| is elementary

abelian of order 16.

Hog/[Hagz, Has) is elementary abelian of order 2!, and [Hyg, Hos) is elementary
abelian of order 16.

Hyy/[Hay, Hyy| is elementary abelian of order 2°. Write H}, = [Hog, Hod].
Then 115,/[1154, 115,] is elementary abelian of order 3% and [//y4, [124] is ele-

mentary abelian of order 22,

Hos[[Has, Hos] is elementary abelian of order 2°. Write Hby = [Has, Hag).
Then Hyy/[Hyy, Hys is elementary abelian of order 3% and [Has, Has] is ele-

mentary abelian of order 22,

Hog[[Has, Hag) is elementary abelian of order 2°. Write Hjy, = [Hag, Hog).
Then Hyg/[Hjg, Higl is elementary abelian of order 3% and [Hag, Hog] is ele-

mentary abelian of order 22,
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A2 T=T12723205,3]

'+ has 143 conjugacy classes of low index subgroups of index < 60. Their index,

the induced permutation group and, where possible, the abelianisation of the kernel

of the map are listed here.

Index | # classes | Induced action Abelianization

6 4 Ag VA

10 2 Ag VA

11 2 Ly(11) 710

12 1 Lo(11) 710

15 4 Ag 78

17 1 L,(16) 7} 3 78

20 1 { 2= A & .
2= [,(19) VASRCYAN

22 2 Ly(11) x H, not computed

26 1 Lo(25) VAR
4= 4 Z§

30 10 2 = 15(29) 738 S LP & Ly
4= Ag x H, not computed

33 2 2= L,(11) x Hy not computed
2= As VA

36 10 4 = Ag x Ag not computed
4 = Ag x (xY_;45) | not computed

40 6 { 2= Ag not computed
4= Ay not computed

42 2 2 = [o(41) VASROY/AN

45 2 2= Ag 78

50 4 = Ag ¥ H, not computed




A2. T =7T5[2,2,3;2,5,3 197

Index | # classes | Induced action Abelianization
- ) { 1= L,(16) 722 & 78
3= L»(16) x Hj not computed
- 5 { 1= L,(25) 751
2= L25) x Hg not computed
53 2 2 = Asy not computed
55 2 2= [y(11) 70
57 4 4 = [5(19) 739 & 73,
4= Ag 78
1= Ly(11) 710
2= [,(19) 70 & Ty
2 = [2(29) ZB TP ® Ly
2 = Ly(59) Z31 ¢ 2@
Z33 © L
- - 2 = L,(59) ng = Zje‘»}; |
72 7% o L3
4 = Ag x Ag not computed
36 = Ag X [/ not computed
6 = Lo(19) x Hg not computed
4 = Agx (x0_,A5) | not computed
4= Agx (x12,45) | not computed
4= Agx Hy not computed

The groups f;

1) H, is an elementary abelian group of order 1024.
2) ]{2 is X?:1‘45'

3) Hjs has commutator subgroup H’ elementary abelian of order 31 The factor

group H/H’ is also elementary abelian and has order 210,
4) [[4 = Xll-gl/llr;.
5) [ is elementary abelian of order 3'°.

6) /g is elementary abelian of order 2*%.
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7) H is elementary abelian of order 3°.
8) Hyg is elementary abelian of order 3'9.

9) Hyis a group of order 782757789696000000. Its structure is not known but is

possibly the semidirect product of 6 copies of A; with an elementary abelian

group of order 2% = 16777216.
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There are 647 conjugacy classes of subgroups of index < 60 in [+, Their index, the
induced permutation group and, where possible, the abelianisation of the kernel of
the map are listed here. Note that the subgroups arising from the representatives

of subgroups of index < 10 all contain the torsion representative 2. The kernel of

the map I't — PG Ly(11) is torsion free.

Index | # classes | Induced action Abelianizalion

2 1 Zs 0

5 1 As 7507,

6 1 As 75417,
1= As ViRCY/

10 2 T 2
1 :> [('15 X (/2 Zél
1 = /15 Zg @ Z-L
2= A; x C ZM\

12 9 co 2
2= PGLy(11) 7P & 7
4= M, x (A5 x Hy) VAR

15 1 As 7587,

18 1 (A5 x Cy) x Hs not computed
1= A; 75 & L,

20 13 4= A x Hs YARRSY/:
2= PGL(19) 78 & 73,

99 3 2= PGLy(11) 70 & 73,
1= 99 not computed
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Index | # classes | Induced action Abelianization
1= A; x Cy VA%
2 = PGLy(11) 7Y & 73,
2 = A x Hy ViARGY/iY
24 22 2 = A5 x Hy z*
6= A; x H, z3!
8 = (A5 x Cy) X Iy not computed
= (A5 x Cy) X Hy not computed
26 1 L2(25) 75 @ 737
28 1 Se(2) not computed
1= As VAR
2= Az x Oy Z3
8= A x Hy 755 o 72
30 19 4 = PGLy(29) not computed
1= (A5 x Cy) x Hy not computed
1= (A5 x Cy) X Hy not computed
1= (A5 x Cy) X Hy not computed
1= (A5 x Cy) X Hyg not computed
. ) { 2 = (As x Cy) x H, 75 & 72
2 = Ly(31) not computed
34 1 Az not computed
1= 56(2) not computed
7= (As x Cy) X Hy not computed
= (A5 x Cy) X Hyg not computed
36 22 8 = (A5 x Ca) x Hy; not computed
2= (A5 x Cy) X Hyy not computed
1= (A5 x Cy) x Hg not computed
1= (A5 x Cy) X Hy not computed
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Indez | # classes | Induced action Abelianization
2= Ay x Oy zZi!
7= A5 X Hy 7" & 72
2= A; x H, 7' @ 73
2= A x Hy il
10 = As x Hy VAl
40 48 2= PG Ly(19) 75 O 73,
8 = A; X Hyg not computed
8= Ay x 14 not computed
4 = A5 X Hys not cormputed
2= (A5 x Cy) X Hig not computed
2= Ay not computed
1= Ay x Hy? not computed
1 8 2= As X Hyg not computed
4 = (A5 x Cy) X Hig not computed
1= Ap not computed
" . { 1= 5% not computed
6 = Sos X Hop not computed
45 1 As x Hyp not computed
16 4 { 2= Ay not computed
2= S not computed
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Index | # classes | Induced action Abelianization
3= (A5 x Cy) x Hy not computed

4 = (A5 x Cy) x H; not computed

20 = (A5 x Cy) X Hoy not computed

8 = (A5 x Cy) X Hy not. computed

10 = (As x Cy) X Hag not. computed

16 = (As x Cq) X Hag not computed

7= (As x Cy) X Hyy not computed

48 89 2 = (A5 x Cq) X Hsz not computed
1= As x (X0, Ly(T)) not computed

2 = (A5 x Cy) X Hsg not computed

3= (A5 x Cy) X Hyy not, computed

2 = (As x Cy) x Hy not computed

2 = As x (X% As) not computed

8 = (A; x Cy) x (Hy x (xP_;Ag)) | not computed

1 = Ay not computed

1= A5 x Hy not computed

1= Ay x (X2, 4s5) not computed

50 5 1= As x (Hy x (%12, 45)) not computed
1= As not computed

1= S5 not computed

1 = Ls(25) not computed

2= 1,5(25) x Cy not computed

52 10 4 = Lo(25) x Has not computed
2 = As not computed

1= Sy not computed

53 1 1= As not computed
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Index | # classes | Induced action Abelianization
1= (As x Cy) X Hyr : not computed
1= (A X Co) X Hag not computed

= (A5 x () X [y not computed
= (A5 x C) X Hag not computed
54 27 7= Ay x (x5 Ag) not computed
4= (As x Cy) x (x5 Ag) not computed
7= (A5 x Co) X (Hy x (x%_, Ag)) | not computed
1= Asy not computgd
1= Sz not computed
55 4 4= PGLy(11) 7P e 73,
1= 86( ) not computed
- 9 2 = S6(2) x Cy not computed
4= S5(2) X Hag not computed
2 = Ssg not computed
5q g { 6 = Asg not computed
2 = Sk not computed
59 1 1= Sig not computed

There are also 323 conjugacy classes of subgroups of index 60 in I'*. No information

on the induced actions was computed.

1) H, is elementary abelian of order 64.
2) Hs is elementary abelian of order 32.

3) Hj is elementary abelian of order 729, and Hy/H) is elementary abelian of
order 32.

5) Hs/HY is elementary abelian of order 32. Now /' = H/ has an elementary de-
rived subgroup of order 2'# and the factor group K/ K’ is elementary abelian

of order 3°.
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6)

10)

11)

12)

18)
19)
20)

21)

H{ is elementary abelian of order 5¢ and Hg/H{ is clementary abelian of
order 32.

H! is elementary abelian of order 3! and I/’ is elementary abelian of

order 32.
Hy is the direct product of six copies of As.

Hj is the direct product of six copies of A5 and Hgy/ [} is elementary abelian

of order 32.

M}, is elementary abelian of order 3'? and Hig/H}, is elementary abelian of

order 32.

Hyy = Hyx (Hyx (H/H' x H')) where H' is elementary abelian of order 2!

and /{/H' is elementary abelian of order 729.

H}, is elementary abelian of order 3'* and Hyy/Hj, is elementary abelian of

order 211,

H1y is elementary abelian of order 16 and f13/H13' =73 & Z,
HY, is elementary abelian of order 32 and Hyy/H 14 = Z3 © Zy
His is elementary abelian of order 512 and Hyy/H14' =75 & Z,4
Hig = Ag x Ag x Ag x Ag x Ag

H{; is elementary abelian of order 7% and H7/H 17 is elementary abelian of

order 64.

Hig=A; x A- x A7 x 4> x A7 x A
Hig

1199 is elementary abelian of order 221

Hy; has an elementary abelian derived subgroup of order 3!'%. The factor

group Hs,y/H} is elementary abelian of order 2°.

Hyo/[Hay, Hy] is elementary abelian of order 2°. [Hyg, Hyy is elementary

abelian of order 217,
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23)

33)

34)

35)

Hoys/[Hay, Hys) is elementary abelian of order 25. [Hos, Has] is elementary

abelian of order 2.

o4 is elementary abelian of order 211,

Hys is elementary abelian of order 213,

Hag is elementary abelian of order 22,

Haz/[Haz, Hor is elementary abelian of order 2°. [Flyy, Hay] =2 x4, Cy.

Hag/[Hys, Hag] is elementary abelian of order 2°. [Hag, Hag] is elementary

abelian of order 3'2.

Hag/[Hag, Hag) is elementary abelian of order 2'*. [Hag, Hag| is elementary

abelian of order 3'2.

ITa/[ITag, II59] is elementary abelian of order 2'!. [I/yg, ITag] is elementary
abelian of order 3'2.

Hso/[Hsg, Hg) s elementary abelian of order 2°. [Hag, Hyp] is elementary

abelian of order 5.

Hgy /[Hsy, Hsy] is elementary abelian of order 219 Write Hi, = [Hasy, Hay.
Then Hj, /[HS,, 3] is elementary abelian of order 3'? and [Hz;, Hs1] is ele-

mentary abelian of order 224

Let H) = [HEY, HE™] be the it derived subgroup of Has, and K =
1Yy ]'/3(',?. Then the K@ are elementary abelian, |H®"| =25 |H®)| = 30,

|H®| =22 and HS is also elementary abelian of order 315,

Hss/[Hss, H3s) is clementary abelian of order 2. [Hay, Hss] is elementary

abelian of order 2!,

Hay/[Hgy, Hayl is elementary abelian of order 2°. Write Hj, = [Hza, Hz4).
Then 173,/[11},, 1T}, is elementary abelian of order 3% and [/134, [T54] is ele-

\ : )
mentary abelian of order 2'2.

Hss/[Hss, Hss) is elementary abelian of order 2° and [Has, Has] = x5 Lo(7).
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36) Hss/[Hss, Hyg) is clementary abelian of order 2°. Write Hiy = [Hsg, Hss).
Then Hig/[Hjs, Higl is elementary abelian of order 3'2 and [Hyg, Hsg| is ele-
mentary abelian of order 224,

37) Haz/[Hsz, Hys] is elementary abelian of order 2°. Write Hly = [Hsr, Haz).
Then Hi./[H};, Hi;] is elementary abelian of order 3% and [Hsy, Hy is ele-

mentary abelian of order 224,
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There are 147 conjugacy classes of subgroups of index < 60 in I'*t. Their index, the

induced permutation group and, where possible, the abelianisation of the kernel

of the map are listed here.

Index | # classes | Induced action Abelianization
5! 2 2= A; Z:
6 2 2= As 73
10 2 2= As Z:
12 2 2 = Aj Y/
15 2= Aj 73
17 1 L,(16) 7% & Ly
2= As Z:
20 5 1= Lo(19) 758
2= Ly(19) VASNCV A
’s - { 1= Asx As | ZY% @72
4 = Aoy not computed
2= As Z:
2= As x Aj 74 o 732
30 o5, 10= Asx Hy | ZP @78 & 7215,
2 = [5(29) not computed
2= A; X Hy not computed
7= Asg not. computed
32 2 2= Ly(31) not computed
34 1 Lo(16) x Hs not computed
56 ; { 1= Asx A5 | 24 & 78?2
2= As x Hy not, computed
42 2 2= Ly(41) not computed
46 2 2 = Ay not computed




Index | # classes | Induced action Abelianization
2= A; x A; 78 752
2= A; x H, 75 & 738 & L,
- T 2 = L5(49) not computed
1= (A5 x As) X Hj not computed
2= Aoy X Hy not computed
2= A; X H; not computed
1= Ly(16) 73 o 7
51 5 3= Lo(16) x Hg not computed
1= Ly(16) x H; not computed
65 4 { 2= As X Hg not computed
2 = Ass not computed
- ; { 2 = Ly(19) 7%
4 = L-(19) 738 & 73,
59 1 Asg not computed
2= A; Z3
2= Ly(19) 7Y & 73,
1 = L(19) 755
6 = Az x As 74 ¢ 732
10 = As X H, 7Y & 78 ¢ 713,
2= Ly(29) not computed
60 6 2= L2(59) not computed
4= Ay x (x50 45) not computed
3= Ly(19) x ( x19,C5) not computed
4= Ay x (x5 Ag) not computed
2 = A x (x2_ M) not computed
8 = Ag x (x2_, M) not computed
6 = Ay X Hy not computed
L 12 = Ago not computed

1) H, is elementary abelian of order 125.

2) H, is the direct product of six copies of As.

3) Hj is elementary abelian of size 2'°.

208
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Hy is elementary abelian of size 224,
Hy is the direct produet of six copies of Ayp.
Hg is elementary abelian of size 316,

H. is elementary abelian of size 3'7 and H/H’ is elementary abelian of size

216,
Hg is the direct product of six copies ol M;1.

Hy is elementary abelian of order 22,
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There are 62 conjugacy classes of subgroups of index < 20 in I+, Their index, the
induced permutation group and, where possible, the abelianisation of the kernel

of the map are listed here.

2= As X Hs

) ; { 2 = Ly(7)
4 = Ly(7) x Hy
15 1 As
” ; { 4= A5 Hy
2 = Ly(7) x Hy
18 2 Lo(17)
19 2 Arg
1= As
4= A5 x H,
20 27 4= As x I,

9 = As X Iy
16 = Ay x Hs

Index | # classes | Induced aclion Abelianization
5 ]. /’15 Zil
6 1 As VAR
7 2 Lo(7) 75
_ 1= 1/2(7) 75
8 D ,
4 = fl-;, x H 727
10 1 As 73}
11 1 A not computed
1= 145 Z%J
12 7 4 = As x Hy 700 70 e 7}

Z‘lf)@ 8

=)
ZS
Z27
11
ZQ
7' @ 25
Z193

2 o 716 gy T
Ly ® Zy & Zf7
not computed

rill .

'([)I::lZz

15 oy 72
Z i Z2

B 1 - “
720 e 70 ® 73

VIROW A

325 50 ~ 724 4 52
735 725 S 17 @ 73
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1) H, is elementary abelian of order 16.
2) M, is elementary abelian of order 32.
3) Hj is elementary abelian of order &.

4) Hy where |H/H'| = 64 is elementary abelian and H' is cyclic of order 2.

5) M3 is elementary abelian of order 1024.
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A6 T=Tg2,3,4:23,4]

There are 388 conjugacy classes of subgroups of index < 20 in I'". Their index, the
induced permutation group and, where possible, the abelianisation of the kernel

of the map are listed here.

Index | # classes | Induced aclion Abelianization
) 2= Ds Zsg
3 4
4 6 4 = 94 VARG
2= 54 ZQ &5 Zg &P Zg
2= ])5 Zg
2= Dy 73 s 1y
6 18 4= 5 ZS & s
2= 54 Zo & L3 &L
2= A 7° 13 L
7 2 2= Ly(7) Z'3
4= 5 75 ¢ ZLs
2= Cyx (H Zs & L3
8 25 2 X () o
1 = ]42(7) Z']'J
12 = Cy x Hy Ly & Ly O L3
4= L’_)(?) X ]{3 Vs
9 1 Dig 75
10 1 As VARV SRV
11 4 Sty not computed
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Index | # classes | Induced action Abelianizalion
12=25, 7y & 73
12 = Cy x (Hy) L5 & 7.2
6= Cyx Hy Zs & 73
16 = Cy x H, VR GYN
4= Cyx Hs 73 ® 73
19 08 12 = Cy x I Z? WA
2=y x Hs 70 & 75
2= Cy x Ag 7 & 78
24 = ('3 X Hg 725 (> 73
2 = PGL,y(11) M B 7 @ 70 @ Zs B LY,
4 = Ag x Hy Z¥ o I3 & 7
L 2= My, not computed
13 2 2 = Si3 not computed
2 = Ls(7) Y/
2= (Cy x Ly(7) 73 & 72
4= Lo(7) X Hy not computed
14 34 4= Cy x (Lo7) x Hy) 755 p I3 73
8 = Lo(7) x Hy 73t o 78
8 = Cy x (Lo(7) x Hg) | mnot computed
4= Ay not computed
2= As VARCY S AVA
15 8 2= (4 X Hy not computed
4= Cyx Hy not computed
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Index

# classes

Induced action

Abelianization W

16

18

19

20

46

93

2= Cox Hy

6= Cy % (Cy x Hyo)
2= (y x Hj

7= Cyx Hy

1= Ly(7) x Cy
8= Oy x (Cy x Hys)
8= Cy x (C3 x (C3x Hyg))
4= Cy x (Lo(7) % Hj)
4 = Ng x iy

4= Lo(7)  (Co x Hy)
4= A7

{ 28 = Asg

12 = Sig
6 = A
1 = Ag
2 = Ag x (%
8 = Ag X H7
4= Ag X Hyy
4= Syl A5
4= Hy50 As
12 = Sy

as above

Zs ® Ty & Lig
78S Ly

VAROY A

78 ¢ 73

75 & L3 ® Ly
7% & 73 o 73
72 @73 e 7§
not computed
not computed
not computed
not computed
not computed
7P 7278
ZIQ o) Zf;

not computed
not computed
not cormputed
not computed

not computed
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1) H{ is elementary abelian of order 16 and H/H' = Cj is cyclic.
2) Hy=Cyx (C2x C2xC4xC4).
3) Hj is elementary abelian of order 8.

4) Hj is elementary abelian of order 4 and H/H' is elementary abelian of order

9.

5) IT} is elementary abelian of order 16 and 1/’ is elementary abelian of order

9.

6) Hg = Cyx (Cyx ), where I’ is elementary abelian of order 8 and H/H’ is

elementary abelian of order 16.
7) H7 is elementary abelian of order 32.
8) Ilg is elementary abelian of order 64.
9) Hy= Csx (A5 x (A5 X As)).
10) Hyp = Cs x (Cy x (Cy x (A5 x (A5 x A5)))).
11) Hy, is elementary abelian of order 16.
12) Hi, = Cy and M9/ H{, is elementary abelian of order 16.

13) His is elementary abelian of order 4 and Hi3/H/, is elementary abelian of

order 16.
14) Hyy is elementary abelian of order 512.

15) lr’{lg = S4 X [’lrg
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A7 T =1523,325,3]

Index | # classes | Induced action Abelianization
5 2 2= Aj Ly ® L
6 2 2= A Zo 75
7 1 Az 759
{ 2= As Zy & 74
10 4
2= A not computed
11 4 4 = Lo(11) Zo & 73 & 73,
2= Ag Zy © 73
12 8 2 = Ly(11) Zo S ZY 73,
4= A; x H, 73 O 728 DTy O 7Y D Lo
14 3 3= A; x Hy not computed '
5 ) { 2 = As Zr% @74
2= A, 759
16 8 8= A; X Hj T &7y & 70D Lo
2= A Lo b7
2 ” S= Ay w My | Z¥ & Zy & 7Y @ L
4= A5 x H, 7' DL DLy ® Z @ Zsa
6= Ay x Hy not cbmputed

1) H; is elementary abelian of order 32.

2) I, is elementary abelian of order 64.

3) Hj is elementary abelian of order 16.

3) Hj is elementary abelian of order 512.
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A8 T =Ts2,4,325,3]

There are 103 conjugacy classes of subgroups of index < 20 in T'*. Their index, the
induced permutation group and, where possible, the abelianisation of the kernel

of the map are listed here.

Index | # classes | Induced action Abelianization
-
D
2 = Ag 720 & 72
, 3= Ag as above
10 7
4= Ay not computed
11 2 Lo(11) Zao & 230
1= Ly(11) as above
19 1 2= My not computed
6= Ag X H; not computed
2= A not. computed
_ 6 = Ag as above
15 12
6= A not computed
4= Ag x Hy YA @ Zg
5= A not computed
17 0 1 = L(16) VALY Y e
9= Ay not computed
2 = Ag X Oy 7,52
18 8 2= Ag x Hj not computed
4= A not computed
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Index | # classes | Induced action Abelianization
( 1= Ag Z72° 472
2 = Ag 75 & 78

2= Ly(19) Z57 a7 ¢ 73,

20 29 12 = Ag x H, not computed

6= Ag X Hy not computed

4= Ay x Hy not computed

2 = Ay not computed

1) My is elementary abelian of order 32.

2) H, is elementary abelian of order 16.

3) Hj is elementary abelian of order 729 and Hy/Hj.

4) Hy is elementary abelian of order 512. is elementary abelian of order 32.
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A9 T =7Ty23,52,3,5

I'+ has 457 conjugacy classes of low index subgroups of index < 24. Their index,
the induced permutation group and, where possible, the abelianisation of the kernel

of the map are listed here.

\ Index ~ # classes | Induced aclion Abelianization
- X {2:»&) Ty 74 @ 74 @ 73
1= A VAR
2= As VAXCYARSY ARV
6 7 1= As ZH
4= Ag Z7° o 7% ¢ Z§
2= A; Zo 2 S ZL; & L
10 S P e
2= A 70 & 738 ¢ Z§
2= A 1ot computed
. 0 { 2= Ly(11) Vi
8= A not computed
2 = As Ty, D7 L7
1= Aj VAR
1= Ly(11) VA
19 o0 4= Ay [, | Z¥ S Z5 @ Z & 2,5
ZERZP & LY © L
6= As x H, | Z'% ¢ 73
4 = My not computed
2= Ay not computed
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Index

# classes

Induced action

Abelianization

16

18

21

40

17

108

34

3= A4;
4 = Ag
6= /15 X Ho

3= A; x Hy
10 = Ays

4= A5 x Hj
8 = A5 x [

S = Ag X 13
20 = A
1= Asx Hy
4= As x Hs
8 = As x Hg
4 = Ag

3= 45

2= As

12 = As X H3
10 = A; x
2 = L5(19)

16 = As x H;
4 = Ag X Hyg
15 = As x Hy
| 8= Asg

10 = Ls(4)
{ 24 = Ay

computed above
computed above
Z9 ¢ 75 & L3

4 5 . 12
Zy® 73 012 © Ly

not computed
ZT]

7Y & Ly & 15
2 ® 73 ® L
7' o 755 & Z5 & Z)°
not computed
not computed
not computed
not computed
not computed
computed above
computed above
computed ahove
computed above
Zy® 75 @ L3
Z¥ © 738 o 73 ¢ 73,
not computed
not computed
not computed
not computed
not computed

not computed
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Index | # classes | Induced action Abelianization
6 = Ljy(4) x Hyp not computed
22 30 8= A X Hyp not computed
16 = Asg not computed
2= A; x Z8¥ T8 o 15 @ Ly
ZED TP B2 @ Lse
3= As x I, 7% ¢ 72
4= A5 x Hy 7Y o 732
4= As x Hys not computed
4= A5 x Hyy not computed
54 156 36 = As x Hiy not computed
1= Lo(11) X Hyg not computed
5= A x His not computed
12 = Ay x Hig not computed
4= My x Hyg not computed
40 = Ay x (Hy x Hyg) not computed
2= Ay x H; not computed
[ 38 = Ay not computed
1) H, is an elementary abelian group of order 32.
2) H, is an elementary abelian group of order 81.
3) Hj is an elementary abelian group of order 16.
4) Hy is an elementary abelian group of order 3°.
5) Hj is an elementary abelian group of order 3°.

8)

Hg is the semidirect product of two elementary abelian groups. Hy is ele-
mentary abelian of order 3% and the factor group is elementary abelian order

32.
H7 is an elementary abelian group of order 1024.

Hg is an elementary abelian group of order 512.



9)

10)

16)

Hy is the semidirect product of two elementary abelian groups. Hj is elemen-
tary abelian of order 2!Y and the factor group is elementary abelian order

3%

Hyy is an elementary abelian group of order 2.

Hy1 is an elementary abelian group of order 64.

Hio =Cy x Cy x Oy x Cy x Cl.

H,3 is an elementary abelian group of order 2! = 2048,

I14 has order 2048 and has elementary abelian derived subgroup of order

32. The factor group is also elementary abelian

Hy5 is the semidirect product of two elementary abelian groups. Hi; is ele-
mentary abelian of order 2'2 and the factor group is elementary abelian order
35

H s is the semidirect product of two elementary abelian groups. Hig is ele-
mentary abelian of order 2!? and the factor group is elementary abelian order

36
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