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Breast cancer is the second most common cancer in the UK. Early detection and 
treatment are key to halting disease progression and the ultimate survival of the 
patient. Mammography screening can detect breast tumours before symptoms occur, 
making screening for breast cancer an effective intervention to help to reduce 
mortality from the disease. 
Simulation has been used for many years to evaluate the outcomes from medical 
interventions, and much research has focussed upon breast cancer screening policies. 
However in practice a screening policy can only be successful if people attend for the 
invited screen. This thesis discusses some of the issues involved in incorporating 
human factors in a simulation model of screening for breast cancer in a UK setting. 
Four different methods for approximating attendance at mammography screening 
were compared including one method derived from a psychological theory that was 
designed to predict human behaviour. 
The research also uses the simulation model to compare the differences brought about 
by making different assumptions regarding the patterns and rates of breast tumour 
growth on the simulation outcomes. 
Results indicate that different approaches to approximating attendance behaviour 
and cancer growth do produce significantly different simulation outcomes. However, 
the relative change in outcomes across different screening strategies remained roughly 
constant across the various approaches. Whilst this relative change was consistent, 
the changes in approach did lead to changes in the significance of differences between 
outcomes under different screening strategies. In light of these results caution is 
advised when interpreting simulation outcomes and emphasises the importance of 
comparing relative as opposed to actual simulation outcomes. 
The benefit of incorporating a psychological model into the simulation came from 
enhanced simulation functionality and the ability to provide further insight into the 
effects of attitude changes on screening policies. 



Contents 

1 Introduction 

1.1 Background 

1.2 Operational Research Models for Breast Cancer Screening 

1.3 Research Objectives. . . . . 

1.3.1 Objectives Summary 

1 

1 

3 

4 

6 

1.4 Thesis Layout . . . . . . . . 6 

2 Psychological Theory for the Modelling and Prediction of Health Re-
lated Behaviours 7 

2.1 Introduction. 

2.2 Traditional Models 

2.2.1 Introduction. 

2.2.2 Health Belief Model. 

2.2.2.1 Introduction to the Health Belief Model 

2.2.2.2 The HBM structure ... 

2.2.2.3 Research using the HBM . 

2.2.2.4 Discussion... 

2.2.3 Health Locus of Control 

7 

8 

8 

9 

9 

9 

11 

12 

12 

2.2.3.1 Introduction . 12 

2.2.3.2 The Multidimensional Health Locus of Control Model 13 

2.2.3.3 Research using Health Locus of Control 14 

2.2.3.4 Discussion...... 14 

2.2.4 Protection Motivation Theory 

2.2.4.1 Background ..... 

15 

15 



2.2.4.2 

2.2.4.3 

2.2.4.4 

The Protection Motivation Theory 

Research Using PMT . 

Discussion . . . . . . . 

2.2.5 The Theory of Planned Behaviour . 

2.2.5.1 Background .... 

2.2.5.2 

2.2.5.3 

2.2.5.4 

Model Description 

Research Using the TPB . 

Discussion . . . . . . . . . 

2.2.6 Social Cognitive Theory and Self Efficacy Theory 

2.2.6.1 Background ......... . 

2.2.6.2 

2.2.6.3 

2.2.6.4 

The Social Cognitive Theory 

Research Using SCT 

Discussion . 

2.2.7 Motivational Models: Summary 

2.3 Enaction Models .. 

2.3.1 Introduction. 

15 

17 

17 

18 

18 

18 

21 

21 

22 

22 

22 

23 

24 

24 

24 

24 

2.3.2 Gollwitzer's Implementation Intentions 25 

2.3.2.1 Research using Gollwitzer's Implementation Intentions 25 

2.3.3 Bagozzi's Goal Theory . . . . . . . . . . . . . . 25 

2.3.3.1 Research Using Bagozzi's Goal Theory 27 

2.3.4 Enaction Models: Summary 27 

2.4 Integrative Theories . 

2.4.1 Introduction. 

2.4.2 Major Theorists Model 

2.4.2.1 Background. 

2.4.2.2 Model Proposal. 

2.4.3 Integrative Models: Summary 

2.5 Stage Theories 

2.5.1 Introduction. 

2.5.2 Health Action Process Approach 

ii 

27 

27 

28 

28 

28 

29 

30 

30 

30 



2.5.3 Heckhausen's Rubicon Model 

2.5.4 Kuhl's Action Control Theory 

2.5.5 The Transtheoretical Model . 

31 

32 

32 

2.5.5.1 Structure of the Transtheoretical Stages of Change 33 

2.5.5.2 Research Using the Transtheoretical Model 35 

2.5.5.3 Discussion............ 

2.5.6 The Precaution Adoption Process Model 

2.5.6.1 The PAPM structure .... 

2.5.6.2 Research Using the PAPM . 

2.5.6.3 Discussion ... 

2.5.7 Stage Models: Summary 

2.6 And the Rest ......... . 

2.6.1 Other Models of Health Behaviour 

2.7 Summary ....... . 

3 Breast Cancer Behaviour 

3.1 Introduction....... 

35 

36 

36 

37 

37 

37 

38 

39 

39 

42 

42 

3.2 Overviews and Reviews. 42 

3.2.1 Systematic Review of the determinants of screening uptake 43 

3.2.2 Factors Affecting Population-based Screening in Sweden 

3.2.3 Inequalities of Access to Cancer Screening 

3.3 Individual Studies ..... . 

3.3.1 Screening Behaviour 

3.3.2 Breast Self-Examination Behaviour 

3.3.3 Delay Seeking Help . . . . . . . . . 

3.3.4 Genetic Testing and Miscellaneous 

3.4 Summary ................. . 

4 Modelling approaches to breast cancer screening 

4.1 Analytical Models. 

4.2 Simulation models 

111 

44 

45 

46 

46 

49 

53 

54 

55 

56 

57 

58 



4.3 Modelling psychology . . . . . 63 

4.4 A chosen modelling approach 67 

5 A Discrete Event Simulation of Breast Cancer 69 

5.1 The Three Phase Approach 69 

5.2 Model Structure. . . . . . . 70 

5.3 Model Inputs, Outputs, and Interface 72 

5.3.1 Run Options 73 

5.3.2 Cancer Options 73 

5.3.3 Behaviour Options 74 

5.3.4 Screening Options . 74 

5.3.5 Self Detection Options 74 

5.3.6 Outputs 75 

5.4 User Interface . 76 

6 Populating the Simulation Model Parameters 78 

6.1 Mortality Analysis ..... 78 

6.1.1 Mortality Summary . 81 

6.2 Tumour Growth. 85 

6.2.1 Summary 89 

6.3 Age of Cancer Onset 93 

6.4 Tumour Detection. . 96 

6.4.1 Mammography Sensitivity 97 

6.4.2 Detection by other means 99 

6.4.3 Tumour Detection Summary . 102 

6.5 Survival .......... 102 

6.5.1 Survival Summary 108 

6.6 Behavioural Data . . . . . 110 

6.6.1 The Theory of Planned Behaviour . 110 

6.6.2 Baker and Atherill's Compliance Model Data 116 

6.7 Model Verification ................... 117 

iv 



6.8 Model Validation ......... . 

6.8.1 Conceptual Model Validity. 

6.8.2 Operational Validity 

6.8.3 Age of presentation . 

6.8.4 Proportion of screen-detected cancers 

6.9 Experimental Set-Up 

7 Results 

7.1 Introduction. 

7.2 Experimental Design 

7.2.1 Mammography screening scenarios 

7.2.2 Tumour Growth and Attendance Behaviour Options. 

7.2.3 Output statistics ... 

7.3 Tumour Growth Assumptions 

118 

118 

119 

119 

121 

122 

126 

126 

127 

127 

128 

128 

129 

7.3.1 Numbers of cancers detected. 129 

7.3.2 Detection statistics 133 

7.3.3 Life years saved . . 138 

7.3.4 Summary of the screening scenario results and the effect of dif-
ferent assumptions of tumour growth 140 

7.4 Attendance Behaviour Modelling 141 

7.4.1 Number of cancers detected 142 

7.4.2 Detection statistics 144 

7.4.3 Life years saved . . 148 

7.4.4 Attendance at invited breast screens 150 

7.4.5 Summary of the effect of behavioural assumptions upon the sim-
ulation results . 152 

7.5 TPB Sensitivities ... 

7.5.1 Summary of the TPB sensitivity results. 

7.6 TPB Increase vs Lowering the Age of First Screen. 

7.6.1 Experimentation Summary . 

8 Discussion 

v 

153 

159 

160 

161 

163 



8.1 Evaluation of Research Objectives. 163 

8.2 Limitations of the Research 166 

8.3 Further Work 167 

8.4 Conclusion . 167 

A Model Code 168 

B The Theory of Planned Behaviour Data 176 

C Results of Screening Scenarios Across Assumptions of Attendance 
Behaviour 179 

D Results of Screening Scenarios Across Different Assumptions of Tu-
mour Growth 185 

E Results of Sensitivity Analysis Performed on the Theory of Planned 
Behaviour Variables 191 

F TPB Experimentation Results 193 

References 211 

vi 



List of Tables 

1 Table of Thesis Abbreviations . . . . . . . . . . . . . . . . . . . . . .. XVI 

2.1 Reviews of HBM Studies, (Janz and Becker (1984); Harrison et al. (1992)) 11 

2.2 Major Theorists involved in the workshop (Conner and Norman, 1995) 28 

2.3 Variables Influencing Progression Through the PAPM (Weinstein et al., 
1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

2.4 Other Theories and Models Applied to Health Behaviour 39 

4.1 Parameter values for Sn in Baker and Atherill (2002) 

5.1 The B activities . . . . . . . . . . . . . . . . . . . . . 

6.1 Definitions and derivations of basic life table functions 

6.2 Fit of E(x) to D(X20) and D(X20 + n20) ........ . 

6.3 Life table for women, based on death from all causes, 2002 

6.4 Breast Cancer Eliminated Life Table Based on Data From 2002 

6.5 Estimated parameters for the modified Gompertz model of tumour growth, 

65 

70 

79 

81 

83 

84 

Speer et al. (1984) ............................. 89 

6.6 Percentage distribution of tumour size for the control group in the 
Swedish Two County Trial, Tabar et al. (2002) . . . . . . . . . . . . . . 100 

6.7 Cured fraction of patients given tumour progression, mean range and 
95% CI range over ages in brackets . . . . . . . . . . 107 

6.8 Summary of variable values used within the simulation 109 

6.9 The fitted (3 values from maximum likelihood calculations, and their 
confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 

6.10 Percent detected by screening for each growth model under the assump
tion of local percentage attendance at 75%, (estimated from runs using 
85% local attendance) ........................... 122 

Vll 



6.11 Percent detected by screening for each behaviour model under the as
sumption of exponential growth . . . . . . . . . . . . . . . . . . . . .. 122 

6.12 Percent deviations of the confidence intervals from their mean outputs 
after 300 iterations for each behaviour model simulation (exponential 
growth, screening 51-69 every 3 years). . . . . . . . . . . . . . . . . . . 125 

6.13 Percent deviations of the confidence intervals from their mean outputs 
after 300 iterations for each growth model simulation (local attendance, 
screening 51-69 every 3 years). . . . . . . . . . . . . . . . . . . . . . . . 125 

7.1 Start and end ages and interval frequency of screening invitations for 
each screening scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 

7.2 Comparison of Three Key Simulation Outputs Between the 75% Base-
line TPB Run (Screening 45-69/3yrs) and Increasing the TPB Variables 
to Approximate 95% Attendance (Screening 51-69/3yrs). Where CI= 
Confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 

B.l Case Summary of data provided from Rutter (2000) for TPB variables 176 

B.2 Summary statistics for dataset from Rutter (2000). . . . . . . . . 177 

B.3 Spearman's Rho correlation statistics for data from Rutter (2000) 178 

C.l Results from screening age 51 to age 63 every 3 years, by attendance 
behaviour option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 

C.2 Results from screening age 51 to age 69 every 3 years, by attendance 
behaviour option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 

C.3 Results from screening age 51 to age 63 every 2 years, by attendance 
behaviour option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 

C.4 Results from screening age 51 to age 69 every 2 years, by attendance 
behaviour option . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 183 

C.5 Results from screening age 45 to age 69 every 3 years, by attendance 
behaviour option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 

D.1 Results for screening ages 51 to 63 every 3 years, by tumour growth 
pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 

D.2 Results for screening ages 51 to 69 every 3 years, by tumour growth 
pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 

D.3 Results for screening ages 51 to 63 every 2 years, by tumour growth 
pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 

D.4 Results for screening ages 51 to 69 every 2 years, by tumour growth 
pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 

viii 



Do5 Results for screening ages 45 to 69 every 3 years, by tumour growth 
pattern 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 190 

Eo1 TPB Sensitivity Results 

Fo1 Table of TPB experiment results to find the equivalent TPB values re
quired to acheive similar results with todays screening programme as 

192 

screening from age 45 would acheive 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 194 

ix 



List of Figures 

2.1 The Health Belief Model . . . 10 

2.2 Protection Motivation Theory 16 

2.3 The TPB Structure . . . . . . 18 

2.4 Gollwitzer's Implementation Intentions 25 

2.5 Bagozzi's Goal Theory ......... 26 

5.1 Model Structure . . . . 70 

5.2 User Interface for Inputs 76 

5.3 User Interface at Run Time 77 

5.4 User Interface Results 77 

6.1 Cumulative Density Function of Mortality as Estimated From the Cause 
Eliminated Life Table. . . . . . . . . . . . . . . . . . . . . . . . . . .. 82 

6.2 Mean growth pattern produced under each growth model with associated 
assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ., 90 

6.3 Mean and percentile range of growth patterns modelled with the expo-
nential tumour growth assumption .................... 90 

6.4 Mean and percentile range of growth patterns modelled with the Gom-
pertz tumour growth assumption . . . . . . . . . . . . . . . . . . . .. 91 

6.5 Mean and percentile range of growth patterns modelled with the logistic 
tumour growth assumption. . . . . . . . . . . . . . . . . . . . . . . .. 91 

6.6 Mean and percentile range of growth patterns modelled with the stochas-
tic modified Gompertzian tumour growth assumption . . . . . . . . .. 92 

6.7 Cumulative distribution of age of breast cancer presentation in England 
in 2002 (ONS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

6.8 Derived Cumulative Age of Onset Distributions by Growth Pattern 97 

6.9 Efficiency of mammographic detection by tumour size, Michaelson et al. 
(2003a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99 

x 



6.10 Fit of the Erlang(3,0.85) distribution to the Swedish Two County Trial 
Control data of breast cancer detection sizes Tabar et al. (2002) . . . . 101 

6.11 Fit of the Erlang(3,0.6) distribution to the non screen detected cancers 
at Massachussetts General Hospital, Michaelson et al. (2003a) . . . . . 101 

6.12 Selected distributions of self detection and mammography detection 
given tumour size . . . . . . . . . . . . . . . 102 

6.13 Tumour Progression as Modelled in the Simulation 106 

6.14 Range of (3 values observed in bootstrapping, where bi is Pi for i = 1,2,3,4.113 

6.15 Plots of the Subjective Norm (X2 ) scores against the PBC (X3 ) scores 
given attendance for groups of low (1), medium (2), and high (3) scores 
for Attitude Xl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 

6.16 Difference in Hi empirical distribution function for observed at tenders 
and non attenders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

6.17 Cumulative distribution for age of breast cancer detection in the UK 
in 2002 in comparison with simulation age of detection under each of 
the tumour growth assumptions and equivalent screening strategy, with 
assumed local' 75% attendance. . . . . . . . . . . . . . . . . . . . . . . 120 

6.18 Cumulative distribution for the age of detection of breast cancer in the 
UK in 2002 in comparison to simulated output for each of the behaviour 
models and under equivalent screening strategies, with the assumption 
of 75% attendance where appropriate and exponential tumour growth.. 121 

6.19 Means confidence intervals deviation from the mean with the number of 
iterations 124 

7.1 The number of screen-detected breast cancers under different screening 
scenarios and tumour growth assumptions . . . . . . . . . . . . . . . . 130 

7.2 Percent of detected tumours that were detected by mammography screen-
ing under different screening scenarios and tumour growth assumptions 130 

7.3 Numbers of women invited to a screen while they have cancer ., . . . 131 

7.4 Relative difference between screening scenarios for the numbers of screen
detected cancers, under different assumptions of tumour growth . . . . 132 

7.5 Average tumour diameters (mm) at detection under different screening 
and tumour growth assumptions . . . . . . . . . . . . . . . . . . . . . . 133 

7.6 Relative difference of tumour size at detection between the screening 
scenarios for different tumour growth assumptions . . . . . . . . . . . . 134 

7.7 Difference in tumour diameter (mm) at detection between screening sce-
narios for different tumour growth assumptions ............. 134 

Xl 



7.8 Average time until tumour detection (for all detected tumours) by tu-
mour growth option and screening scenario. ............... 136 

7.9 Significant findings between screening scenarios for the time to tumour 
detection (X = non significance) . . . . . . . . . . . . . . . . . . . . . . 136 

7.10 Years earlier screen-detected tumours are detected relative to unscreened 
detection, by screening scenario and tumour growth pattern .. . . . . 137 

7.11 Average ofthe total number of life-years saved by each screening scenario 
by assumption of tumour growth pattern (per 1,000 women) . . . 138 

7.12 Relative change in life-years saved in comparison to the current UK 
policy, by tumour growth pattern . . . . . . . . . . . . . . . . . . 139 

7.13 Average number of screen-detected tumours for different screening sce
narios and assumptions of attendance behaviour . . . . . . . . . . . . . 142 

7.14 Percent of detected tumours that were screen-detected for different screen-
ing policies and assumptions of attendance behaviour . . . . . . . . . . 143 

7.15 Average tumour diameter (mm) at presentation of all detected tumours, 
over screening scenario and behavioural attendance option . . . . . . . 145 

7.16 Average time (years) from tumour onset until detection by screening 
scenario and assumption of attendance behaviour . . . . . . . . . . . . 146 

7.17 Average number of years earlier that a tumour was detected by screen-
ing than it would have presented otherwise, by screening scenario and 
assumption of attendance behaviour. . . . . . . . . . . . . . . . . . . . 147 

7.18 Relative increase and decrease in the average years earlier a tumour 
is detected by screening than would have naturally arisen, in compari-
son to the current UK policy, by attendance behaviour assumption and 
screening policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 

7.19 Average and 90% confidence intervals for the number of life-years saved 
over different screening scenarios and assumptions of attendance behaviour 149 

7.20 The average number of women, per 1,000, who attended screening at 
least once across all screening scenarios by attendance behaviour as
sumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 

7.21 Average number of attendances at screening of women who attended at 
least once, by screening scenario and attendance behaviour assumption 151 

7.22 Relative number of attendances of women who attended screening invi
tations in comparison to the current UK screening policy by attendance 
behaviour assumption and screening scenario. . . . . . . . . . . . . . . 151 

7.23 The change in the percent of tumours detected by mammography screen-
ing for 10% changes in the TPB variables. . . . . . . . . . . . . . . . . 155 

7.24 Relative change in the percent of screen-detected tumours for 10% changes 
in the TPB variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 

xii 



7.25 Relative change in the number of simulated women who attended mam
mography screening at least once for a 10% change in the TPB constructs 156 

7.26 Relative change in the average number of attendances at breast screen-
ing for women who attended screening with a 10% change in the TPB 
constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 

7.27 Relative change in tumour diameter for a 10% change in each of the 
TPB constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 

7.28 Change in the number of life-years saved for a 10% change in the TPB 
constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 

7.29 Relative change in the number of life-years saved for a 10% change in 
the TPB constructs in comparison to baseline . . . . . . . . . . . . . . 159 

A.1 Simulation Modules (continued over the page) 170 

A.2 Simulation Modules Continued. . . . . . . . 171 

A.3 Simulation Classes (continued over the page) 172 

A.4 Simulation Classes Continued . . . . . . . . 173 

A.5 Simulation Collection Classes (continued over the page) 174 

A.6 Simulation Collection Classes Continued . . . . . . . . 175 

xiii 



Acknowledgements 

First and foremost I would like to thank my supervisors Paul Harper and Sally 

Brailsford for their help, support and advice throughout the research. Other people 

who deserve recognition include Professor Derek Rutter from the University of Kent 

for kindly sharing with me the results of his analysis without which the TPB 

modelling in this thesis would not have been possible, and Dr Joan Austoker from the 

University of Oxford whose advise and information regarding the psychology of 

screening uptake was invaluable. A big thank-you also goes out to the Southampton 

mammography screening unit personnel who were so helpful, open, and honest when 

providing me with information as to how breast screening is conducted at a local and 

national level in the UK, and representatives from the Oncology Department at 

Southampton University Hospitals NHS Trust whose feedback and advise regarding 

my epidemiological model of breast cancer was extremely useful. 

I would also like to thank all of my friends, family, and colleagues for their continued 

support and advice, including amongst others Laurie, Emily, Katie, Helen, Christine, 

Lee, Mum and Dad. 

Thank you all. 

xiv 



Abbreviations 

Table 1 below provides a list of abbreviations and definitions used within this thesis. 

Term Definition 
75% baseline The baseline scenario for the further experimen-

tation such that cancer growth was exponential, 
screening was from age 45 to 69 tri-annually, and 
TPB constructs had been manipulated to imply 
75% overall attendance rates. 

Attendance behaviour Whether or not an individual attends a breast 
screening unit 

Baseline The scenario compared against such that cancer 
growth is exponential and behaviour is modelled 
using 75% local attendance. 

BC Breast cancer 
BSE Breast self examination 
CI Confidence interval 
DES Discrete event simulation 
Equation model 

Baker and Atherill's equation model for the pre-
diction of attendance at UK breast screening 
units 

HBM Health Belief Model 
Mod Gompertz The modified Gomptertzian growth equation 
ONS UK Office of National Statistics 
PBC Perceived behavioural control construct 
Scenario See screening scenario 
Screening scenario A particular screening policy evaluated, for ex-

ample the current UK strategy of screening from 
around age 51 to 69 every 3 years 

SN Subjective norm construct 
TPB Theory of Planned Behaviour 
UKBCSP The UK Breast Cancer Screening Programme 
yrs Years 

Table 1: Table of TheSIS AbbreViatIOns 

XVI 



Chapter 1 

Introduction 

Operational Research (OR) techniques have been widely applied to the area of health 

care and health research. However, the expected outcomes of interventions, plans, or 

structural changes suggested by these models often differ from those observed in 

reality. In the real world, health care policy decisions, as well as operational decisions 

in health care planning, are made on the basis of Operational Research models. 

Therefore, it is important that these models reliably capture all aspects of the 

real-world system, as they can have great impact in practice. 

The actions of people playa vital role in health care systems, resources, and disease 

progression. For example, when considering different, and/or, optimal disease 

interventions the participation of the patient, or potential patients, in the 

intervention must be considered. For the majority of models of health care systems 

the behaviour of the people involved in those systems is described by a single 

variable, e.g. the percentage of patients who comply with the regime or suggestion. 

It is suggested that the observed gap between modelled expected outcomes and real 

outcomes may be in part due to the human behavioural aspects of the health care 

systems which are currently omitted from OR models. To this end it is intended to 

try to incorporate some psychological model(s) of health care behaviour, (or an 

amalgamation of several), into an OR model in an attempt to begin to bridge the gap 

between modelled and observed systems and increase the functionality and realism of 

the modelling work. It is believed that this will be one of the first serious attempts to 

incorporate behaviour at an individual level into a health care simulation model. 

1.1 Background 

Breast cancer and screening strategies for breast cancer were chosen as the 

application of the research, and there were a number of reasons for the choice. 

1 



Firstly, Southampton University have previous experience of modelling for the early 

detection of breast cancer. Secondly, breast cancer can be fatal and is the second 

most common cancer in the UK (see below), but with earlier detection and treatment 

prognosis can be significantly improved. Therefore, with an optimal strategy for a 

population, mammography screening may prevent premature death. Lastly, having 

perused the health behaviour literature, it became clear that attendance at cancer 

screening (and breast cancer screening) was an area that had been considered by a 

wealth of literature, many of which applied recognised psychological models to 

explain attendance behaviour, see Chapter 3 for more information. 

Breast cancer is the second most common cancer in the UK with around 41,000 new 

cases diagnosed each year. Potential risk factors for the disease include age, a family 

history, previous breast cancer, early menarche and late menopause (Cancer Research 

UK, 2006). 

Once diagnosed, treatment for breast cancer depends on factors such as the patient's 

age, and the type, size, and spread of the tumour, however, most patients will, at a 

minimum, undergo surgery to remove the tumour. This may be followed by 

radiotherapy, and/or chemotherapy. Many women will also receive hormonal therapy 

using drugs such as Tamoxifin or Arimidex. 

Screening can be a useful tool to identify disease at an earlier stage in the natural 

history. The UK National Screening Committee define screening as follows. 

"Screening is a public health service in which members of a defined 

population, who do not necessarily perceive they are at risk of, or are 

already affected by a disease or its complications, are asked a question or 

offered a test, to identify those individuals who are more likely to be 

helped than harmed by further tests or treatment to reduce the risk of a 

disease or its complications." 

(UK National Screening Committee, 2006) 

The Committee set out criteria for appraising the viability of national screening 

programmes that include criteria to ensure that the condition is serious enough to 

justify the intervention, that there should be an effective and safe screening test 

available, that the test should identify people at an earlier stage of the disease, that 

there is a suitable treatment for this stage of disease, and that the test is acceptable 

to the proposed screening population, (UK National Screening Committee, 2003). 

As a life threatening disease that mammography screening may detect before 

symptoms occur, and with lllore effective treatments in the early stages, breast cancer 

satisfies the majority of the criteria laid out for a screening programme. The UK 

breast screening programme was introduced in 1988. Initially, mammography was 
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offered every three years to all women aged between 50 and 64, and to women aged 

65 and over on request. From 2001 this was extended to women in England aged 65 

to 70, and to women over 70 on request. In 2003-04, three quarters of women aged 

50-64 invited for screening in England underwent screening for breast cancer, and 

over 1.4 million women are screened each year. Earlier detection and improved 

treatment has meant that survival rates have risen with the five-year survival rate up 

to 80 per cent for women diagnosed in 1998-2001 in England, (UK Office of National 

Statistics). Screening for breast cancer may help to identify tumours earlier and 

reduce the treatment required for the patient as well as improving overall prognosis. 

1.2 Operational Research Models for Breast Cancer 

Screening 

Analytical and simulation models are useful tools to aid decisions about which age 

groups to screen and how frequently. Traditionally, the clinical effectiveness of a new 

treatment or intervention has always been evaluated through a randomized controlled 

trial (RCT). In an RCT the test population is divided randomly whereby some 

patients receive the new treatment, and others receive either a placebo or the current 

best available treatment. A full scale trial, however, has considerable disadvantages in 

terms of cost and time. Simulation modelling can replicate the effects of the 

intervention in the trial population in a fraction of the time needed for a full scale 

RCT, and can then be used to conduct experiments which would be unethical or 

impractical to carry out in practice. 

Simulation has been used to study optimal screening strategies for disease since as far 

back as the 1970's; Knox (1973) produced one of the earliest yet very comprehensive 

simulation models. Since that time many simulation models have considered 

screening strategies for breast cancer including more recent research using a 

simulation model called MISCAN in the Netherlands (Boer et al., 1998). 

Even optimal screening programmes will only be successful, however, if screening 

uptake rates are sufficiently high within the target population. The majority of 

simulation models considering screening strategies for breast cancer treat screening 

uptake as a single global stand-alone variable. It may be the case, however, that 

comparisons between screening strategies alter when the behaviour of the patient is 

considered in more detail. It has been shown, for example, that screening uptake rates 

may be dependent upon, amongst others, factors such as patient age, attendance at 

previous screening tests, the method and type of invitation, and receiving a 

recommendation for attendance from a health professional, (Jepson et al., 2000). 

A literature review was undertaken to investigate psychological theories applied to 
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breast cancer screening attendance and based upon these results it was decided that 

the Theory of Planned Behaviour could be used within an operational Research 

model of breast cancer screening. The Theory was chosen over other theories 

available since it is very well structured and clearly defined, and UK research has 

been undertaken using the theory that applied rigorous research methods and found 

positive predictive results regarding attendance at breast screening clinics, (Rutter, 

2000). Other research has focussed purely on previous attendance and age (as 

opposed to psychological attributes) in order to predict breast cancer screening 

attendance in the UK (Baker and Atherill, 2002). It was decided that it might be 

interesting to investigate the differences that these two approaches may produce when 

modelling breast cancer screening strategies in the UK, and compare and contrast 

any differences against assumptions of standard percentage attendance at breast 

screening. 

With this in mind, the primary objective of this research was to investigate the 

effects of different methods for modelling attendance at breast cancer screening units, 

and the effect that different assumptions of attendance would have upon results 

between simulations of different screening strategies for breast cancer within the UK. 

1.3 Research Objectives 

It was hoped that this research would form the first step towards answering key 

questions relating to, not only how best to incorporate human behaviour modelling 

into more traditional OR modelling and simulation, but also more fundamental 

questions such as can we even model human behaviour effectively, and if so, what 

effects different assumptions of behaviour make to modelled outcomes? While it is 

accepted that human behaviour is somewhat impossible to ever completely model and 

predict to a degree of absolute certainty, psychologists have been working for many 

years studying human behaviour and have identified factors significantly associated 

with behaviour and behaviour change. 

How different assumptions of attendance behaviour effects simulated outcomes over 

different model runs (screening scenarios in this case), and how any differences 

between behavioural assumptions compare with differences brought about by other 

modelled variables (for example screening frequency or cancer growth pattern), was 

also a key research question. If different assumptions and models of human behaviour 

only produce small changes in the modelled outcomes, and/or, these changes are 

consistent over different model runs then the additional time and effort of researching' 

and including further behavioural attributes in a simulation may not bring any 

additional value to the model. The results could be particularly interesting if different 

modelling approaches to attendance at breast screening produce differences in 
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modelled outcomes to such a degree that the preferred rank of screening age or 

frequency is changed. It is believed that this is one of the first pieces of research to 

specifically address these research questions, which could have far reaching 

implications for not only simulation within healthcare but all applications that 

require human input and behaviour as a primary driver to the outcome considered. 

A discrete event simulation of breast cancer natural history, modelling women and 

breast cancer over time, requires the ability to model the progression and growth of 

the cancer. Exactly how human cancer growth progresses is understandably difficult 

to ascertain due to the ethics of following detected tumours progression without 

treatment. However, over the years a number of approaches have been developed 

with varying complexity, including assumptions of exponential, Gompertzian, and 

logistic growth. These approaches have been hypothesised based upon observations of 

tumour doubling times over time, however it has been difficult to ascertain the exact 

nature of tumour growth due to the wide variations observed that could fit a number 

of growth patterns. A popular decision when simulating the natural history of breast 

cancer is to assume exponential growth of the tumour (presumably due to the simple 

nature of the exponential assumptions), however the impact of this assumption is 

rarely investigated. As a secondary objective, therefore, this thesis reports upon the 

differences in results from a simulation model of breast cancer and screening for 

breast cancer, under four different assumptions of tumour growth, and over several 

different screening strategies. 

To fulfil these two objectives, a discrete event simulation model of breast cancer was 

built in Microsoft Visual Basic, that modelled women over time. Each woman in the 

simulation mayor may not develop breast cancer, and be invited for and attend 

screening for breast cancer. Breast cancer progression within the simulation is 

modelled using one of four different assumptions of tumour growth over time labelled 

exponential, logistic, Gompertz and modified Gompertz (a stochastic tumour growth 

pattern). Screening for breast cancer is carried out at ages that are specified by the 

user of the model and attendance at breast screening is modelled in one of four ways. 

Attendance behaviour is approximated by either assuming a local percentage 

attendance (every woman has an x% chance of attending at each invitation, sampled 

at each invitation), agIo bal percentage attendance (every woman has an x% chance 

of attending every screen and a 100-x% chance of attending no screens at all, sampled 

once at the first invitation and then fixed for the remainder), a probability for 

attendance (deduced on the basis of previous attendance rates and age of the 

individual and based on work done by Baker and Atherill (2002)), and lastly a 

probability based upon a psychological theory, the Theory of Planned Behaviour, 

(TPB). 
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1.3.1 Objectives Summary 

To summarise, the objectives of this research are: 

l. To investigate the effects of different methods of modelling attendance for breast 

cancer screening, using a model from the psychological literature on 

health-related behaviour (the Theory of Planned Behaviour) as well as a 

statistical model derived to predict attendance at UK screening clinics (Baker 

and Atherill (2002)), and two methods commonly used in OR models based on 

percentage attendance, for different screening policies. 

2. To investigate the effects of using different models of tumour growth, (logistic, 

exponential, Gompertzian, and modified Gompertzian), for different screening 

policies. 

3. To compare the effects of changes in behaviour with changes in screening policy. 

1.4 Thesis Layout 

The next Chapter introduces the reader to some of the psychological theories for the 

prediction of health behaviour, including the Theory of Planned Behaviour that has 

been incorporated within the simulation model reported in this thesis. Chapter 3 

then discusses how these theories and ideas have been applied to the study of breast 

cancer and behaviours surrounding breast cancer. Chapter 4 introduces the methods 

and approaches others have used to model and analyse breast cancer progression and 

mammography screening strategies for the early detection of breast cancer. Chapters 

5 and 6 go on to describe the structure of the simulation reported within this thesis, 

and how the parameters of the simulation model were populated respectively. The 

work to validate and verify the model and the experimental design are also described 

in Chapter 6, before presenting the results of the experimentation in Chapter 7. 

Lastly, discussion of the results and conclusions can be found in Chapter 8. 
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Chapter 2 

Psychological Theory for the 

Modelling and Prediction of Health 

Related Behaviours 

2.1 Introduction 

The following sections discuss some of the cognitive psychological models and theories 

that exist for the prediction of health behaviour. 

Each theory within psychology tends to have some supporting research or foundation, 

however, it is also often the case that there will be criticisms of the ideas and 

sometimes even conflicting research. This is due to the nature of psychological models 

and theories such that by their nature they cannot be 'proved' but only backed up, 

(or not), by research. This is because psychology is about understanding the human 

mind and personality and therefore it is difficult to ascertain sure facts. 

This Chapter aims to talk about some of the more popular theories and models 

surrounding the prediction of health behaviour within the field of psychology, and it 

is hoped that due to their sustained popularity in literature these are the theories 

with some grounding. 

Social cognition approaches (how individuals make sense of social situations) to 

predictive health related behaviour tend to take the form of a cost benefit analysis of 

outcomes. For example subjective expected utility theory (SED, Savage (1954)), and 

expectancy value theory. 

SED theory (Savage, 1954) considers decisions as a function of the probability of an 

outcome and the expected utility of that outcome, summed over all possible outcomes 
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for each behaviour considered: 

i=m 

SEUj = L Pij • Uij 

i=l 

Where SEUj is the subjective expected utility of behaviour j, Pij is the perceived 

probability of outcome i given action j, and Uij is the subjective utility of outcome i 

given action j. 

Behaviours that have a high probability of producing valued outcomes will be chosen 

over other less desirable behaviours. In this way social cognitive models regard health 

behaviours to be predicted as the end result of a rational decision making process 

based upon deliberate processing of available information. 

However, SED theory does not provide much in the way of an explanation of the 

decision process, and more recent social cognition models elaborate on these ideas in 

order to try to explain, as well as predict, human behaviour (including health 

behaviour) . 

The following sections discuss some of the more popular social cognitive models 

(SCMs) of health behaviour and describe how they conceptualise the variables 

important in determining behaviour as well as the behaviour outcomes. Section 2.2 

discusses five of the more traditional models for the prediction of health behaviour, 

while sections 2.3 and 2.4 introduce behavioural enaction and integrative models for 

health behaviour respectively. Section 2.5 discusses and describes stage models of 

behaviour, and Section 2.6 briefly mentions further theories of health behaviour that 

were uncovered in the literature but that, due to time and space constraints, are not 

discussed in detail here. Lastly, Section 2.7 summarises the theory discussed within 

the Chapter. 

2.2 Traditional Motivational Cognitive Models 

2.2.1 Introduction 

This Section aims to discuss popular social cognition models (SCMs) of health 

behaviour. These models appear to be the more traditional and popular models of 

health behaviour that are discussed in psychological literature when considering the 
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prediction of health related behaviour. 

Five models are discussed, the Health Belief Model (HBM), the Health Locus of 

Control (HLOC), Protection Motivation Theory (PMT), the Theory of Planned 

Behaviour (TPB), and Social Cognitive Theory (SCT). 

These traditional theories and ideas form the basis for many of more recent ideas and 

theories and are still very popular in the field of behavioural health psychology, and 

so each is discussed in detail. The information and references within this Section are 

taken from the book "Predicting Health Behaviour" edited by Mark Conner and Paul 

Norman (Conner and Norman, 1995). 

2.2.2 Health Belief Model 

2.2.2.1 Introduction to the Health Belief Model 

The Health Belief Model, (HBM), was one of the earliest models of health behaviour 

to be developed. It was created due to the requirement to find factors that influence 

health behaviour that may be changed or influenced, (unlike demographic variables 

shown to correlate with health behaviour), (Hockbaum, 1958; Rosenstock, 1966). 

The Health Belief Model was therefore constructed under the assumption that a 

persons health beliefs would influence their health behaviour and it would be possible 

to influence or alter these health beliefs in order to change the health behaviour. By 

the 1970s a series of studies had suggested that key health beliefs could aid the 

understanding of individual differences in health behaviour and interventions, 

(Sheeran and Abraham, 1995). 

2.2.2.2 The HBM structure 

Figure 2.1 illustrates the concept of the HBM. The idea is that there are two main 

constructs that influence health behaviour and these are threat perception and 

behavioural evaluation. 

Threat perception is itself made up from two concepts, perceived susceptibility to a 

threat and the perceived severity of the threat in question. The threat is not the 

actual threat, but that perceived by the individual, and the perceived susceptibility 

to, and severity of, the threat combine to produce the threat perception. If the HBM 

were to be used in a mathematical model the method of combining the two constructs 
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Figure 2.1: The Health Belief Model (Sheeran and Abraham, 1995) 

would require consideration. Research into multiplying the two constructs in order to 

find a threat perception SCOre has produced mixed results. One relationship found to 

be supported by literature is as follows, 

threat = susceptibility + (susceptibility x severity), 

while others suggest that severity must reach a threshold level first but once achieved, 

threat is a function of susceptibility alone, see Sheeran and Abraham (1995) for 

details. 

Behavioural evaluation is also made up of two parts, the perceived benefits of 

carrying out the (preventative) behaviour and the perceived barriers to carrying out 

the behaviour (including psychological, physical, and monetary barriers or costs). 

The overall contribution of behavioural evaluation is usually found by subtracting the 

barriers from the benefits. However, in doing so important information may be lost. 

For example two people may have different scores for barriers and benefits, but when 

subtracted from one another their overall behavioural evaluation score may be the 

same, thus masking their individual differences. 

In addition to threat perception and behavioural evaluation there are two further 

constructs thought to influence health behaviour within the HBM, and these are 

health motivation, and cues to action (triggers to considering action such as 

symptoms or campaigns). 

As can be seen, (Figure 2.1), a disadvantage of the HBM is that there are no clear 

relationships defined between and within the constructs of the theory. The 
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relationships between the six constructs are not clearly explained and the constructs 

themselves left vague and open to interpretation. The lack of precise definitions of 

the constructs is important since changes in wording of questions can influence the 

response given, (Tversky and Kahneman, 1981). These attributes make the HBM 

difficult to interpret in terms of a mathematical model. It is not clear, for example, 

how health motivation affects the other constructs, or how 

psychologicalj demographic characteristics influence the beliefs that may be held. 

2.2.2.3 Research using the HBM 

The HBM has been applied to a wide spectrum of health behavioural questions which 

fall into roughly three broad areas, preventative behaviour, sick role behaviour 

(including compliance to medical regimes), and clinic use (e.g. visiting CPs), 

(Sheeran and Abraham, 1995). The majority of the studies used self reported 

measures of the six constructs, and some also include physiological, observational, or 

medical records. Longitudinal, (prospective), and retrospective designs have been 

implemented. However, it is worth noting that cross sectional studies are difficult to 

interpret as it is possible that behaviour could give rise to belief rather than vice 

versa, (Sheeran and Abraham, 1995). 

Harrison et al. (1992) cited in Sheeran and Abraham (1995), conducted a meta 

analysis of HBM studies converting their results into a common effect size (Pearsons 

r). Of the 234 papers that Harrison et al. considered, only 16 were used since the 

remainder either did not measure all four constructs or did not show adequate 

controls for reliability and/or validity, thus highlighting again the problems of the 

vague model structure and definition. Harrison et al found that, overall, all of the 

HBM constructs were significantly correlated with health behaviour but that the 

correlates were low (see Table 2.1) and only accounted for between 0.5% and 4% of 

the variance in health behaviour observed. 

Measure Susceptibility Severity Benefits Barriers 
% of time construct is 81 65 78 89 
significant 
Overall Correlation 0.15 0.08 0.13 -0.21 

Table 2.1: ReVIeWS of HBM StudIeS, (Janz and Becker (1984); Hamson et a1. (1992)) 

It would appear that the four main constructs of the HBM are reliably correlated 

with health behaviour but that their effect is small. This may be due to important 

factors missing from the theory, a symptom of the vague definitions within the model, 

or due to the fact that the relations between the constructs are not considered but 

instead the constructs are considered as separate predictors of health behaviour. 

Furthermore it would appear that cues to action and health motivation constructs 

have been given less attention in research, (Sheeran and Abraham, 1995), perhaps 
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again due to the vague definitions they have been given that have been left to 

situational interpretation. 

2.2.2.4 Discussion 

The health belief model (HBM) is one of the more widely applied models for 

predicting health behaviour in cognitive psychology. However, for the purposes of 

quantitative modelling, it may not be an appropriate model due to the lack of precise 

definitions of constructs and their relations to one another. The HBM also fails to 

consider cognitions that have been shown to be good predictors of health behaviour 

such as intention formation, social norms, and locus of control, (see sections 2.2.3, 

2.2.4, and 2.2.5 to follow). Given the lack of structure to the model, the HBM really 

remains little more than a list of six potentially important factors which may 

influence health behaviour. 

2.2.3 Health Locus of Control 

2.2.3.1 Introduction 

The principle behind the Health Locus of Control (HLOC) model is that those who 

believe that they have more control over their health, through their actions, will be 

more likely to participate in healthy behaviour. The idea stemmed from Rotter's 

Social Learning theory (Rotter, 1954), which defines behaviour as a function of the 

expectancy that the behaviour will lead to an outcome, and the desirability (value) of 

the outcome in comparison to other outcomes. 

From social learning theory Rotter developed the principle of locus of control (LaC) 

as a measure of the general expectancy that actions will lead to outcomes, (Rotter, 

1966). People are said to have an external LaC if they believe that they do not have 

control over what happens to them in life, and an internal locus of control if they 

believe that their life is under their control and that they can shape their own future. 

This is measured using Rotter's internal-external scale, (Rotter, 1966). 

Research has shown that people with internal locus of control may be more likely to 

expend effort in order to control their environment, take more responsibility for their 

actions, be more likely to seek out information, and take part in more autonomous 

decision making than those with an external locus of control e.g. (Strickland, 1978). 

Today, the general LaC scale is widely applied as a measure of individual differences, 

but Rotter notes that when people have prior experience with a situation then 

specific expectancies of the situation have more predictive ability than general 
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expectancies, (Rotter, 1954). 

It was theorised that, if people have an internal health locus of control (HLOC), then 

they would be more likely to take control of their health and participate in healthy 

behaviours. Since the general LOC scale failed to take account of the majority of the 

variance in health behaviours specific HLOC scales were developed. The most widely 

applied model today is called the Multidimensional Health Locus of Control, (MHLC) 

and this is described below. 

2.2.3.2 The Multidimensional Health Locus of Control Model 

Unlike the uni-dimensional general LOC scale the MHLC measures expectancy beliefs 

along three dimensions, internal HLC, powerful others HLC, and chance (fate) HLC. 

Here, internal and external HLC are not considered to be two extremes of one 

dimension but as orthogonal to one another with external HLC split into two distinct 

dimensions in itself, powerful others (the extent of belief that other people have 

control over life events), and chance or fate (the extent of belief that life is down to 

chance and not under the control of any person(s)). 

The idea is that those with a high internal HLC will again be more likely to 

participate in health promoting behaviour, in comparison to those with high chance 

HLC who will be less likely to participate in healthy behaviours. Those who score 

highly on the powerful others HLC scale may be more likely to carry out activities 

that have been recommended by a professional or to attend clinics/follow regimes. 

However, no matter how strong the belief of control over their own health, no action 

will be taken if a person does not actually value their health (as per social learning 

theory, see Subsection 2.2.3.1). 

Each of the three orientations are measured on a separate six point Likert scale 

collated from numerous responses on a questionnaire which has been successfully 

tested for reliability and validity. Further scales and variations to the theme have 

been developed but were not found to be as internally consistent as the MHLC 

developed by Wallston et al. (1978), see Conner and Norman (1995). 

Health value tends to measured in one of two ways, either by finding an absolute 

value of health from the average of answers on a six point Likert scale, or by ranking 

health values amongst other values in order to gain a relative value of health, see 

Conner and Norman (1995). 
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2.2.3.3 Research using Health Locus of Control 

The ideas of HLOC have been applied to many areas of health behaviour, the 

majority focussing upon specific preventative health behaviours such as exercise 

(Slemker et al., 1985), alcohol (Dean, 1991), condom use among the HIV positive 

(Kelley et al., 1990), breast examination (Redeker, 1989), smoking cessation (Shipley, 

1982), and weight loss (Schifter and Ajzen, 1985). 

Research has produced mixed results for supporting the HLOC model as a predictive 

model of health behaviour. Some results back the models ideas, while others find no 

evidence to support the theory, (Norman and Bennett, 1995). However, there have 

been criticisms of the research. Firstly the majority of research studies have failed to 

consider health value at all, or have considered it as an additive effect to expectancy 

beliefs rather than a moderator between expectancy beliefs and health behaviour, 

(Norman and Bennett, 1995). Secondly, the majority of the studies concentrate upon 

health behaviours which are familiar to the participants, and if measuring a specific 

behaviour correlation then a specific scale may be more appropriate than the general 

MHLC as a predictor of the behaviour (as social learning theory would suggest). It 

may be the case, for example, that different expectancy beliefs are held about 

different health situations, the subtleties of which are missed in the general scale. The 

studies that take these two ideas on board have been generally more successful in 

finding significant correlates with health behaviour, including general health and 

health values Weiss and Larsen (1990), and smoking cessation Georgiou and Bradley 

(1992), cited in (Norman and Bennett, 1995), but this is not always the case as found 

in an investigation into behaviour specific efficacy beliefs by Norman (1995), cited in 

(Norman and Bennett, 1995). 

2.2.3.4 Discussion 

Overall it would appear that the health locus of control theory, although sensible' on 

the surface, does not appear to be a strong predictor of health behaviour. Perhaps 

the idea is too simple and narrow to adequately explain the complexities associated 

with health behaviour, or perhaps further important variables also require inclusion 

(see further chapters). 

Whatever the reason, it could be suggested that the HLOC/MHLOC model may not 

reliable enough to convert to a mathematical model of health behaviour at this time. 
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2.2.4 Protection Motivation Theory 

2.2.4.1 Background 

Protection Motivation Theory (PMT) was borne out of the study of fear arousing 

communication, considering whether such communication can directly or indirectly 

influence behaviour, and the cognitive processes involved in mediating behaviour 

change. 

Two models formed the basis of PMT, the fear drive model, (Hovland et al., 1953), 

and the parallel response model, (Leventhal, 1970), both cited in Boer and Seydel 

(1995). 

The fear drive model, (Hovland et al., 1953), states that fear acts to drive behaviour 

through increasing motivation. Upon the receipt of a fear arousing message, the 

motivation to follow the behaviour suggested in the message will increase in relation 

to the level of fear induced in order to reduce the unpleasant emotional response to 

the message. If following the behavioural advice succeeds in lowering the levels of fear 

then the behaviour will be reinforced and continued, else maladaptive behaviours may 

be undertaken to cope with the situation (e.g. denial of the threat, or avoidance of 

the message). Such maladaptive responses lead to unhealthy and risky behaviour 

such as smoking, failing to attend cancer screening etc. 

The Parallel Response model, (Leventhal, 1970), considers the choice of maladaptive 

or adaptive responses to fear arousal as two control options, danger control (actions 

taken to reduce the physical threat to health), and fear control (actions taken to 

reduce the emotional threat). In contrast to the fear drive model, in this case it is 

considered to be the cognitive reaction of the individual to the message which governs 

the coping strategy they undertake. 

Since research had found evidence to suggest a correlation between the level of fear 

arousal, and the perceived eflectiveness of the advised action, with the adoption of 

advised behaviour, the effectiveness of different communications at increasing healthy 

behaviours appeared worthwhile considering. 

2.2.4.2 The Protection Motivation Theory 

Originally developed by Rogers in 1975, the PMT is illustrated in Figure 2.2. Upon 

the receipt of a threat response two appraisals are carried out, threat appraisal and 

coping appraisal. During threat appraisal the advantages of adopting a maladaptive 

response are considered alongside the perceived degree of threat, that is, the 

perceived vulnerability to, and severity of, the health problem. Fear arousal is 
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Figure 2.2: Protection Motivation Theory (Boer and Seydel, 1995) 

assumed to indirectly relate to health behaviour by increasing the perceived 

vulnerability to, and severity of, the health issue. 

The coping appraisal evaluates the response efficacy, the expectation that the 

behavioural response will reduce the threat, and self efficacy, the perceived ability to 

complete the behavioural intervention effectively. The efficacies of the behaviour are 

weighed up against the costs incurred to carry out the behaviour in order to produce 

the resulting coping appraisal of the situation. Adaptive responses are brought about 

by high perceptions of threat and a belief that the behaviour is possible, as well as 

effective, in reducing the threat placed against them without too much cost. 

Protection motivation (PM) is a result of both threat and coping appraisal, and 

facilitates adaptive responses. As motivation to carry out (or not) an action, PM is 

best measured by intentions. 

As pictured in Figure 2.2 the design of the PMT is well structured, with clear 

relations between constructs, perhaps making it more suitable to be applied in 

mathematical modelling than those considered in sections 2.2.2 and 2.2.3. 
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2.2.4.3 Research Using PMT 

Research designed to study and test the PMT most often takes the form of presenting 

differing literature material to groups of subjects informing them of a health risk (real 

or fictional), and then inviting their reactions. Participants are asked to give their 

views of the severity, and personal vulnerability to the illness, their perceived self and 

response efficacy, and the degree of intention to engage in a suggested behaviour, on a 

Likert scale response sheet. The content of the messages presented to participants is 

varied in so far as how severe the illness is to be interpreted (by manipulation of the 

description of the problems that lack of action will lead to), the vulnerability of a 

typical person to the health risk in question (by emphasis on the low risks involved or 

high proportion of people who will be at risk), the response efficacy of the treatment 

suggested, and the self efficacy of completing the treatment (either explaining its 

good points and how simple it is to do, or focussing on the flaws of treatment and the 

difficulties involved in participation of the behaviour). 

The PMT has been most often applied to health education campaigns in order to 

influence health behaviour. Some of the more popular areas of research include, for 

example, reducing alcohol intake (Stainback and Rogers, 1988), encouraging healthy 

lifestyles (Stanley and Maddux, 1986), diagnostic behaviour (Rippetoe and Rogers, 

1987), and the prevention of disease (Tanner et al., 1991). Much of the research has 

found positive relations between the constructs and intentions to perform health 

behaviours. However, it would appear that only when new threats emerge does threat 

appraisal playa role in the adoption of health behaviour, e.g. (Brouwers and 

Sorrentino, 1993). 

2.2.4.4 Discussion 

Although in principle the PMT is little different from the Health Belief Model, 

sharing as it does three of the four major constructs severity, vulnerability and self 

efficacy, the PMT has been shown to be a "fruitful model for the prediction of 

intention to engage in preventative health behaviour", (Boer and Seydel, 1995). 

Perhaps its success in comparison to the troubles of the Health Belief Model lies in 

the inclusion of self efficacy, the variation of which has been shown to be important in 

predicting preventative health behaviour, see chapters 2.2.5 and 2.2.6. The clear 

layout of the PMT and preciseness of relations between its constructs, together with 

the research backing, may make this model more applicable to the introduction of 

mathematical modelling than those discussed in previous chapters. However, while 

research has shown an association with intention to perform behaviours, more 

research is required to demonstrate a strong link to behaviour (as opposed to just 

intention). The PMT is a strong model for the prediction of health behaviour OIl 
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paper, but with a few exceptions, it has received very little research attention so it is 

difficult to ascertain if the model would predict behaviour in practise. In order to use 

the PMT in a simulation model, it would be necessary to identify a successful piece of 

research applying the theory that was well structured and measured behaviour rather 

than intention. The results from this research could then be used to populate the 

simulation model parameters. The alternative would be to carry out the PMT 

research oneself which would be very costly both in terms of time and resources and 

would fall out of the scope and expertise of this research. 

2.2.5 The Theory of Planned Behaviour 

2.2.5.1 Background 

The Theory of Planned Behaviour (TPB), is an elaboration of a previous model, the 

Theory of Reasoned Action (TRA), (Ajzen, 1988). Both models suggest that people 

make decisions based upon careful consideration of available information. The 

theories arose from the belief that our cognitive attitudes form a causal role in 

determining behaviour (when the attitudes are at the same level of consideration as 

the behaviour) and are described in turn below. 

2.2.5.2 Model Description 

Behaviour 

t 
I 

Behavioural Intentions 
I 

i i i 
Attitude Towar ds 

Subjective Norms 
Perceived Behavioural 

Behaviour Control 

i 1 i 
Perceived likelih DO d of 

Belief abo ut outcomes Normative beli efs occurrence 
X X X 

Evaluation of outcomes Motivatio n to comply Perceived facilitating I 
inhibiting power 

Figure 2.3: Structure of the Theory of Planned Behaviour (Conner and Sparks, 1995) 

The idea of the TRA is that a persons attitudes shape his/her intentions to perform 

behaviour and these intentions (motivations to perform behaviours) themselves lead 

on to actions. Taking this idea a step further the TPB also considers perceptions of 

18 



control in order to extend the scope of the applicability of the theory by including 

more complex goals and tasks than only those easily performed. Figure 2.3 illustrates 

the idea behind the TPB. 

The TPB examines behaviour as a linear regression function of behavioural intentions 

and perceived behavioural control, such that 

where B is behaviour, BI is behavioural intention, P BG is perceived behavioural 

control, and WI and W2 are the regression weights. 

The suggestion is that we will be more likely to participate in behaviours that we 

intend to carry out and that are under our control and we perceive them to be under 

our control, while we are prevented from carrying out behaviours that are not within 

our control. It is assumed that we will put more effort into desirable behaviours that 

we can control rather than behaviours we have little or no control over or which they 

do not wish to take part in, (Ajzen, 1988). 

Intentions 

The TPB considers three predictors of intentions to perform behaviours. 1. The 

attitude toward the behaviour, 2. Subjective norms relating to the behaviour, and 3. 

Perceived behavioural control. Attitude toward the behaviour refers to the overall 

evaluations of the behaviour by the individual. Subjective norms consist of a perSOllS 

beliefs about whether significant others would approve of their participation in the 

behaviour, where significant other(s) are person(s) whose views in this domain are 

important to the individual. Perceived behavioural control is the extent to which the 

individual believes the behaviour in question is under his/her control, and draws 

parallels with the concept of self efficacy, see Subsection 2.2.6. Behavioural intention 

is itself then viewed as a regression function of these three variables, 

where BI stands for behavioural intention, A is the individuals attitude to the 

behaviour B, SN the evaluated subjective norms relating to behaviour B, PBG the 

perceived behavioural control of the individual related to behaviour B, while W3 to W5 

represent the relative weights assigned to the variables. The PBC variable has 

therefore a part to play in both the behavioural components and the intention 

components. Without PBC, equation for behavioural intention would represent the 

TRA. 

19 



Attitudes 

The attitude component is considered as a function of the individuals salient beliefs 

representing the perceived consequences of the behaviour in question. The TPB 

regards consequences as expectancy value products (see Section 2.1), such that they 

are regarded as multiples of the expectancy that performance of the behaviour will 

bring about an outcome, and the desirability of this outcome, 

i=l 

AB = 2.: biei 
i=l 

Where AB is the attitude to behaviour B, bi the belief that performing the behaviour 

B will lead to some consequence i, ei the evaluation of the consequence i, and l the 

number of salient consequences. 

It is not suggested that this calculation takes place for every decision made but that 

it is possible to store the information in memory for retrieval when required. 

Subjective Norms 

Subjective norms represent the perceptions of the views of others about whether or 

not the individual should participate in the particular behaviour. In the model this is 

quantified for each significant other by the multiple of, the significant others' view 

whether they should participate in the behaviour or not, with the individual's 

willingness to comply with this view. 

j=m 

SNB = 2.: nbj'lncj 

j=l 

Where SN is the subjective norm, nbj the normative belief that significant other j 

approves of the behaviour, mCj is the motivation to comply with significant other .7, 
while m is the number of significant others considered for the behaviour. 

Perceived Behavioural Control 

Perceived behavioural control (PBC) is a measure of the individuals belief that they 

have the ability to complete the behaviour, and whether or not they really do. 

According to the TPB, PBC can be thought of as considering whether one has access, 

and control over, the necessary factors (resources etc) to perform the behaviour, 

whether or not they believe they have access to the resources, and how influential 

these factors are in facilitating completion of the behaviour. Influential factors may 

be either internal/personal such as psychological qualities and emotions, or external 

such as money, opportunities, or a dependence upon others, 
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k=n 

P BeB = 2:: CkPk 

k=l 

where Ck is the perceived likelihood of factor k, Pk is the perceived influential 

(facilitating or inhibiting) effect of factor k, and n is the number of factors considered 

relevant to the behaviour B. 

2.2.5.3 Research Using the TPB 

The TRA/TPB have been applied to the study of a range of health behaviours 

including sexual behaviour (Nucifora et al., 1993), health screening attendance 

(Norman, 1995), exercise (Goden et al., 1993), food choice (Towler and Shepherd, 

1992), and breast self examination (McCaul et al., 1993). 

Ajzen (1991) (cited in Conner and Sparks (1995)) wrote a review of studies using the 

TPB which were generally found to be supportive of the theory. The multiple 

correlations between behavioural intention, attitude, and subjective norms were 

found to be 0.71 over 16 different studies with the mean R between intention and 

behaviour as 0.51. Similarly Godin and Kok (1996) performed a literature review 

that identified 56 studies using the TPB to predict future behaviour. Their analysis 

also found a positive overall association between the TPB and behaviour, with the 

constructs of the TPB explaining 41% of the variance in intention, and 11.5% of the 

variance in behaviour above that explained by inention. 

Over the years the TPB has grown in popularity and research has continued to 

support the theory for example more recently the TPB has also been successfully 

applied to the study of condom use (Sheeran and Taylor, 1999), and to diet (Conner 

et al., 2003). 

2.2.5.4 Discussion 

The Theory of Planned Behaviour is considered as a " . .leading theoretical model..." 

(Rhodes and Courneya, 2003) and is perhaps one of the more promising predictive 

models of health behaviour for the future, (Conner and Sparks, 1995). The design 

and construction of the model is clear and well defined with a causational structure 

based upon equations. 

Overall, the TPB is considered to be and has been found to be a significant predictor 

of both intention and behaviour, (Conner and Sparks, 1995; Ajzen, 1991; Godin and 

Kok, 1996). The attributes listed above may well make the TPB a prime candidate 

for the basis of a mathematical model of behaviour. Of the theoretical models 

discussed so far the TPB is both well defined, structured, and well researched with 
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positive findings. 

However, there have been criticisms of the model urging caution to the assumptions 

of the validity of the model, not least that there is little evidence that 

communications can actually alter attitudes, and if so the effect that they have 

(Conner and Sparks, 1995). The inherent difficulty in measuring the constructs 

themselves reliably, (such as attitude and subjective norms), has also been pointed 

out (Conner and Sparks, 1995). 

2.2.6 Social Cognitive Theory and Self Efficacy Theory 

2.2.6.1 Background 

Self Efficacy (SE) first appeared as a factor of behavioural modification in Bandura's 

Social Cognitive Theory (SCT) (Bandura, 1977). 

Perceived self efficacy is the belief in the ability to excerpt control over ones 

environment. SE is not the same as unrealistic optimism, in so far as it is based upon 

experience, and leads to adventurous and challenging behaviour that is within reach 

of the individual. 

The idea is that SE makes a difference to the whole process of how we think, feel, and 

how we act. The higher perceived SE a person possesses, the better their health and 

the higher their achievements, and they tend to be more socially integrated, 

(Bandura, 1977). In contrast, low perceived SE is thought to be associated with 

depression, anxiety and dependency, (Schwarzer and Fuchs, 1995). 

2.2.6.2 The Social Cognitive Theory 

Social Cognitive Theory (SCT) stipulates that all human action is due to forethought 

involving the following three factors. 

1. Situation-Outcome Expectancies. These are the expectancies that outcomes will 

occur due to the environment and the situation rather than actions taken by the 

individual, i.e. the extent of belief that the world changes without personal 

engagement. 

2. Action-Outcome Expectancies. These are the outcome expectancies relating to 

personal action. 

3. Perceived Self Efficacy. This is the perceived degree of control over the actions 

required for the desirable outcome. 
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Under the first idea it is possible for beliefs to change in order to form defensive 

coping strategies in threatening situations, for example denial of the threat of a 

disease or vulnerability to it, while the last two include the option to cope with 

situations by providing the option to change the outcome through action. 

Under SeT the likelihood of a health behaviour change will be affected by these three 

cognitions, (the expectancy of risk, the expectancy that behavioural change will 

reduce that risk, and the expectancy that the individual is capable of the behaviour 

change). 

Self Efficacy is considered vital within this process, even more so than outcome 

expectancies since these are only considered during the formation of intentions 

alongside self efficacy (no intentions will be formed to change actions if it is not 

believed possible to see the actions through), whereas self efficacy is also a necessary 

controlling influence over the process leading to attempting and sustaining action. 

The measurement of these variables should be situation specific wherever possible in 

order to increase the predictive ability of the theory (as before), and when 

considering addictive behaviour it has been suggested that SE be broken down into 

five categories, two concerning the prevention of undertaking addictive behaviours, 

and 3 addressing self efficacy issues relating to self change and relapse prevention. 

2.2.6.3 Research Using SeT 

The majority of research using SeT assesses the theory's ability to influence 

behaviour change. The theory has been applied in areas such as sexual risk behaviour 

(Kasen et al., 1992), physical exercise (Shaw et al., 1992), and weight control, 

(Bagozzi and Warshaw, 1990). In addition to this the SeT has been widely applied 

to areas of addiction and relapse, with success in coping in high stress situations 

linked to perceived control over the necessity to engage in the unwanted behaviour, 

(Schwarzer and Fuchs, 1995). 

In most cases research has proved very supportive of the theory, and in some cases 

the further variables of the TRA were found to be non significant predictors of 

behaviour once the influence of SE had been taken account of, (Dzewaltowski, 1989; 

Beck and Lund, 1981). 

Further to this in one study, after the receipt of cognitive behavioural treatment 

based upon the ideas of SeT, a group of patients suffering from rheumatoid arthritis 

reported less pain and joint inflammation (proposed to be due to enhanced coping 

strategies), and greater psychosocial functioning (O'Leary et al., 1988). 
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2.2.6.4 Discussion 

Since it first appeared in Bandura's Social Cognitive Theory, self efficacy has bccn 

incorporated into other cognitive models of health behaviour, (see sections 2.2.4 and 

2.2.5), so that social cognitive theory is now less of a standalone theory. 

Its inclusion in modern theories of cognitive health processes outlines how effective 

self efficacy is in predicting health behaviour and accounting for its variance. Rather 

than concentrating on communicating risks and dangers, the idea here would suggest 

that emphasis should be placed upon increasing awareness of what (and how) people 

can change themselves, and pointing out what is to be gained by this in order to 

support and aid self efficacy beliefs. 

2.2.7 Motivational Models: Summary 

This Section has aimed to provide an introduction to some of the more traditional 

cognitive models used in psychology for the prediction of health behaviour. The 

information presented in this Chapter is taken from the book "Predicting Health 

Behaviour" edited by Conner and Norman (1995). 

Although the theories and models do vary in their assumptions and structure, some 

parallels do exist and the core constructs are similar within the more popular models, 

such as self belief and self efficacy, benefits of the behaviour, barriers to the 

behaviour, and the severity of the illness/importance of the behaviour. 

All the models have received a significant amount of attention in research and some 

papers have attempted to compare the predictive ability of each with that of the 

others. 

The models and ideas that are more clearly defined and structured may be more 

suitable for the application of mathematical modelling or simulation. For this reason, 

perhaps the two more suitable models for inclusion in the currently reported research 

would be Protection Motivation Theory, and the Theory of Planned Behaviour. 

2.3 Behavioural Enaction Models 

2.3.1 Introduction 

Behavioural enact ion models build upon motivational models of health behaviour 

with an aim to bridging the gap between intentions to perform a behaviour and 

behavioural performance. Two behavioural enaction models are discussed in turn 
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below. These are Gollwitzer's Implementation Intentions and Bagozzi's Goal Theory. 

2.3.2 Gollwitzer's Implementation Intentions 

I Behaviour I 
i 

I Intention I 
1 J 

Goal Implementation 
Intentions Intentions 

Figure 2.4: Gollwitzer's Implementation Intentions (cited in Conner and Norman (1995)) 

Gollwitzer's theory breaks the intention construct into two parts, goal intentions and 

implementation intentions, (see Figure 2.4). 

Goal intentions are defined as the intentions to achieve a goal, while implementation 

intentions refer to plans as to how, when, and where, this goal will be translated into 

action. 

Implementation intentions will lead on to performance when the conditions in the 

plans are met. This means that when the conditions of the plan are met, the 

individual is committed to action, almost handing control over to the environmental 

conditions once the intentions are formed. 

2.3.2.1 Research using Gollwitzer's Implementation Intentions 

Evidence has been found by Gollwitzer himself that forming plans and timetables for 

action increases the likelihood of performance of the action, (Gollwitzer, 1954), thus 

providing support for the idea of implementation intentions helping to predict 

performance. Initial findings by other researchers have also produced positive results 

including in areas such as breast self examination (Orbell et al., 1997) and exercise 

adoption and adherence (Kendierski, 1990). 

However, despite the positive research findings where it has been studied, the model 

has not been widely researched, perhaps undeservedly. 

2.3.3 Bagozzi's Goal Theory 

Bagozzi introduced his Goal Theory in the early 1990's, (Bagozzi, 1992). He 

considered intentions as split into three categories, present oriented intentions 
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Figure 2.5: Bagozzi's Goal Theory, (Bagozzi, 1992) 
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(intentions to act immediately), future oriented intentions (intentions made at time 

point tl to act at time t 2), and goal oriented intentions. 

Bagozzi argues that while traditional attitude theories, (e.g. the Theory of Planned 

Behaviour and the Theory of Reasoned Action), may apply to the first two categories 

of intention, problems arise for the theories when one intends to pursue a goal or 

target outcome. 

Bagozzi's Goal Theory examines how and when intentions are translated into the 

achievement of a goal or target, and distinguishes between the intention to act and 

the intention to pursue a goal. Figure 2.5 depicts the theories account of the 

underlying processes from intention to action. 

Once a goal intention is formed, the method a person chooses in order to pursue the 

goal will be influenced by his/her self confidence, the likelihood of goal attainment via 

the method, and his/her perception or the degree of pleasantness of the method. 

According to Bagozzi (1992) goal intentions are brought about by desire, where 

desires are driven by attitudes, subjective norms, and goal efficacy. 

Bagozzi argues that instrumental acts and motivational processes lie between 

intentions and goal achievement. Once the intention to perform an action is made, 

then this sets off implementation processes in order to decide how to achieve the goal. 

Plans are formulated in order to achieve the target, monitoring occurs to ensure that 

the acts are carried out effectively (and on time), with guidance and control required 

to change behaviours if monitoring suggests this is necessary. 
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It is motivational processes that Bagozzi suggests are the important driver to 

eventually achieving the goal(s) set out. Motivation is considered along two 

dimensions, psychological commitment, and effort. Commitment is taken to refer to 

" .. the binding of the individual to 1) the decision to try to achieve the goal or 

perform a behaviour, and 2) the decision to use a particular means.", (Bagozzi 

(1992), p199). Bagozzi also recognises that goal achievement is not only influenced by 

the individual but may be influenced by the goal environment too, see Figure 2.5. 

2.3.3.1 Research Using Bagozzi's Goal Theory 

Bagozzi's goal theory has not been widely researched within health psychology, but 

the few studies that do exist may offer some support to the theory. Bagozzi and 

Edwards (1998) cited in Armitage and Conner (2000), for example found goal 

intentions had an effect upon the degree of effort and this in turn influenced the 

initiation of behaviour that determined the level of goal attainment. 

2.3.4 Enaction Models: Summary 

Behavioural enaction models help to bridge the gap between motivational models of 

behaviour and the implementation of the behaviour, with the achievement of a target. 

Since both of the models discussed concentrate on implementation intentions it has 

been suggested that this may be a valid construct that is certainly worth further 

consideration in research, (Armitage and Conner, 2000). 

2.4 Integrative Models and Theories 

2.4.1 Introduction 

Over the years attempts have been made to integrate the various models of predictive 

and descriptive health psychology into one large umbrella model/theory. 

Wallston and Wallston (1984), cited in (Schmidt et al., 1990), compared four major 

theories of health psychology and came to the conclusion that there are 6 variables 

that an integrative health model should include. These were attitude, 

vulnerability /threat, norms, motivation, habit, and facilitating conditions. 

Other attempts at designing an integrative model of health psychology include the 

'Integrative Conceptual Framework', (Moos, 1979), the 

'Person-environment-interaction systems model', (Kar, 1986), and more recently the 

'Major theorists model', (Fishbein et al., 2001), which is discussed below. 
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2.4.2 Major Theorists Model 

2.4.2.1 Background 

As the AIDS epidemic continued to unfold the National Institute of Mental Health 

(NIMH) brought together proponents of five of the more popular theories of health 

psychology in order to try to formulate a uniform approach to designing interventions 

primarily focussing upon safe sex and the use of condoms, (Fishbein et al., 2001). 

The theorists involved in the 3 day discussions are shown in Table 2.2. 

Theorist Theory or Model 
A. Bandura Social Cognitive Theory 
M. Becker Health Belief Model 
F. Kanfer Se1£-Regulation/Self control 
M.Fishbein Theory of Reasoned Action 

Table 2.2: Major Theonsts ll1volved 111 the workshop (Conner and Norman, 1995) 

2.4.2.2 Model Proposal 

The theorists agreed upon 8 variables that account for health behaviour and these are 

listed below. 

1. Intention 

2. Environmental Constraints 

3. Skills 

4. Attitude 

5. Norms 

6. Self Standards 

7. Emotion 

8. Self Efficacy 

The general assumptions were that a person will behave as he/she was previously 

until some stimulus, (either internal or external), alters his/her thoughts and affects 

one or more of the listed variables, and then his/her behaviour may change. 

Intention was agreed to have the most influence upon behaviour, with the first three 

variables required in order for behaviour to take place. The last five variables then 
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influence, strengthen, and decide the direction of intention as well as occasionally 

affecting behaviour directly themselves. 

Therefore, the theorists agreed that, in order to carry out a health behaviour it is 

first and foremost necessary to intend to carry it out, possess the relevant skills in 

order to carry out the behaviour, and there must be no obstacles preventing the 

behaviour from taking place. The final five variables play their part either directly or 

by affecting the intentions to carry out the behaviour in the following way. Intention 

will be strengthened if: 

• the positive expected outcomes and attitudes outweigh the negative, 

• more social pressure is felt to carry out the behaviour than not to, 

• the behaviour is consistent with the person's self image, 

• the behaviour elicits more positive than negative emotions in the individual 

• the individual possesses self efficacy relating to the behaviour. 

No consensus was found between the theorists as to the causal linking of the 8 

variables, or the strength of their relation and inter-relationships. What was agreed 

was that the relative importance of each variable will vary, not only with the 

situation in question, but also with the population being considered. Therefore, it 

was felt appropriate to design interventions based upon research assessing the levels 

of each variable in order to gauge the areas that require enforcing or replacing. For 

example, if it was found that if intentions were low it would be appropriate to enforce 

intentions as the first step, but if intentions were already high it would be necessary 

to find out whether it was environmental constraints or lack of skills preventing the 

behaviour performance and then alter these as necessary. 

2.4.3 Integrative Models: Summary 

The idea of an integrative cognitive model for the prediction of health behaviour is a 

very appealing one. However, it would appear that to date no such model has become 

popular and therefore little research has been carried out in order to test/validate 

them, or indeed in order to populate a mathematical version with data. 

Perhaps the reason for the apparent lack of popularity and research into this area is 

due to the difficulty in reaching a consensus of opinion across the disciplines in 

psychology as to how such health cognitions occur, and in forming the relationships 

between the constructs in any proposed model itself, (as is the case with the Major 

Theorists Model discussed above). That is not to say, however, that an integrative 

29 



model of health behaviour is not the way forward. Since many of the traditional 

models for the prediction of health behaviour do contain similar if not the same 

constructs, it is not inconceivable that a singular model or theorem could be designed 

to encapsulate the ideas from each without loosing the original concept. 

When considering using an existing integrative model as the basis of a mathematical 

model of health behaviour it is suggested that at this time there may not be enough 

research finding support for the theories, or to populate the model with, and in the 

case of the more recent Major Theorists Model, structure is lacking for 

implementation. It would be possible to undertake new research to investigate how 

such models faired at predicting health behaviour and attendance at breast screening, 

however it was felt that this would be a huge undertaking requiring too much time 

and distract from the primary research objectives. 

2.5 Stage Theories 

2.5.1 Introduction 

Stage theories consider health behaviour as made up of a number of discrete stages. 

The idea is that a person may reside in anyone stage at a time and people within 

each stage will behave in qualitatively different ways and require different information 

and motivations to progress to the next stages on the way toward action itself. 

According to Armitage and Conner (2000) the most prominent stage theories of 

behaviour suggested in psychology to date are the Health Action Process Approach 

(HAPA), Heckhausen's Rubicon Model, Kuhl's Action Control Theory, the 

Transtheoretical Model of Change, and the Precaution Adoption Process. These are 

discussed in turn below with more emphasis on the latter two models since they 

appear to be the two more popular theories. 

There are also stage models of behaviour that are specific to a particular issue or 

behaviour, Weinstein et al. (1998) talk of stage theories addressing behaviours such as 

the delay in seeking medical care e.g. (Anderson et al., 1995), and AIDS risk 

reduction e.g. (Catania et al., 1990). 

2.5.2 Health Action Process Approach 

Schwarzer's Health Action Process Approach (HAPA) model comprises of two phases, 

the motivational phase and the volitional phase, (Schwarzer (1992) cited in Armitage 

and Conner (2000)). 
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The motivational phase is roughly equivalent to the ideas of SCT and TPB as 

described in sections 2.2.6 and 2.2.5, but with a few adjustments. Outcome 

expectancies only affect self efficacy if the individual in question has previous 

experience with the behaviour, otherwise their only impact is upon intentions. In 

addition, the threat construct, (from HBM in Subsection 2.2.2), is considered only as 

a more distal predictor of expectancies. 

The volitional phase in HAPA comprises of three overlapping stages, planning, 

action, and maintenance of behaviour. Once a person has an intention to perform a 

behaviour they will begin to plan the related actions by imagining scenarios under 

which they will perform the behaviour. Movement into the action stage represents 

successful planning and is kept up if movement continues to the third volitional stage, 

that of maintenance. 

The HAPA model brings together the two groups of theory discussed so far, the 

motivational models of health behaviour, describing how intentions are believed to be 

formed, and the behavioural enaction models, that attempt to describe how these 

intentions lead to behaviour. The model has, though, incurred criticism for its 

vagueness in describing the role social cognitive variables play at each stage in the 

volitional phase, (Armitage and Conner, 2000), and more clarity would be required in 

this area before the model could be fully tested, put into operation, or used in a 

simulation model. 

2.5.3 Heckhausen's Rubicon Model 

The model proposed by Heckhausen (1991), cited in Armitage and Conner (2000), is 

very similar to that of the HAP A model. 

The Rubicon Model consists of four distinct stages, 

1. Intention Formation, (selecting the appropriate behaviour by considering 

expected outcomes and then intend to perform the behaviour) 

2. Post Decision, (Planning and preparation stage) 

3. Action 

4. Evaluation 

The main difference between the Rubicon Model and HAPA is the inclusion of the 

evaluation stage containing attributes of causality and evaluation of the outcomes. 

The Rubicon Model is also more clearly structured with more closely defined discrete 

stages than those of the HAPA, rendering it more suitable to modelling and research. 
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However, despite its clearer definitions and attributes the Rubicon Model has received 

little research attention, (Armitage and Conner, 2000). 

2.5.4 Kuhl's Action Control Theory 

Kuhl (1981, 1985), cited in Bagozzi (1992); Armitage and Conner (2000), put forward 

two processes that aid the implementation of intentions, action control and 

implementation control. Action control is concerned with the successful 

implementation of the whole action, whereas implementation control is concerned 

with the implementation of step by step courses of behaviour leading to the end 

action. 

Kuhl suggests seven intermediary control strategies that facilitate the successful 

completion of action including emotion control, motivation control and coping with 

failure. The mediating control strategies are influenced by self regulatory 

mechanisms. People with low self regulatory control capacity are said to be state 

oriented, and tend to engage in high amounts of planning and consideration related 

to past, present, and future, states before acting. Conversely those with high self 

regulatory control are said to be action oriented, and are more likely to act faster or 

immediately with little planning or deliberation. 

Kuhl (1985) developed scales to measure action control, and these scales have been 

used in research to demonstrate that action oriented people show more likelihood to 

base their decisions on attitudes, whereas those high in state orientation based their 

decisions more upon social norms, (Bagozzi et al. (1992) cited in Bagozzi (1992)). 

Action orientation has also been shown to be influential in the successful 

implementation of intentions (Armitage and Conner, 2000). 

Kuhls Action Control Theory looks promising on face value but requires clarification 

and more precise constructs before progress may be made through its application. 

2.5.5 The Transtheoretical Model 

The Transtheoretical Model suggests five stages of change, two principles of change, 

and ten processes of change governing movement through the stages. 

The model was first conceptualised in the early 1980s, (Prochaska and DiClemente, 

1983), when it was noticed that behavioural change appeared to unfold in stages. Ten 

processes of change, and two principles of change, emerged from an amalgamation of 

hundreds of theories of psychotherapy and behaviour change. These processes of 

change were reported to be used at different times during behaviour change by 

participants questioned about their efforts in giving up smoking, (Prochaskc'L (1984), 
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cited in Prochaska et al. (1997)). 

From initial studies in psychiatry and therapy, the Transtheoretical model went on to 

be applied to a broad range of health psychology and is now one of the leading stage 

theories in use. 

2.5.5.1 Structure of the Transtheoretical Stages of Change 

The core constructs of the transtheoretical model are five stages of change, ten 

processes of change, decisional balance, and self efficacy. 

Stages of Change 

Five stages of change are implied by the model, and are listed in the discussion that 

follows. 

A linear progression through the stages is suggested, but at any stage a relapse may 

occur to a previous stage, leading to cyclic progression. Three revolutions has been 

suggested as common before stability returns, (Armitage and Conner, 2000). The 

rate of progression through the states is variable and it is possible for an individual to 

remain in one state and progress no further. 

The distribution of people in each stage is said to vary with the situation considered, 

(Salovey et al., 1998). 

The stages of the Transtheoretical Model are discussed in turn below. 

Precontemplation People have no intention to change in the next 6 months. This 

may be due to their absence of knowledge or awareness of the threat or 

behaviour, or their perceived inability to carry out the behaviour. 

Contemplation In this stage people are considering change within the next 6 

months. They are aware of the benefits of the behaviour but also considering 

the disadvantages and barriers to the action. 

Preparation Here an individual is actively committed to change within the next 

month. They may have attempted the behaviour (or change) in the past year 

but been unsuccessful, and have made plans and preparations in order to aid 

their behaviour. 

Action This is the stage whereby people are actively engaged in the behaviour which 

requires effort and energy exertion by the individual. In order to qualify for 

membership of this stage, the behaviour alone may not be enough, but must 

reach the levels experts agree that will reduce the health risks. People may 

remain in this stage for any period from 1 day to 6 months. 
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Maintenance Typically after 6 months of action people enter the maintenance stage 

where they work to prevent a relapse to unhealthy behaviour. Individuals in 

this stage apply change processes less frequently than those in the action stage 

and are more confident that they will not relapse. Maintenance is estimated to 

last for any period from 6 months to 5 years (Prochaska et al., 1997). 

Some behaviours also require a sixth stage which is called 'Termination', and this is 

applicable to addictions and repetitive behaviour. When in this final stage people are 

no longer tempted to stray from their healthy behaviour and self efficacy relating to 

the behaviour is strong. 

Processes of change 

The processes of change are the processes that people use in order to progress 

through the stages. There are 10 processes that were found to appear most often in 

the theories and received most empirical support and these are listed below, 

(Prochaska et al., 1997). 

1. Consciousness raising 

2. Dramatic relief 

3. Self re-evaluation 

4. Environmental re-evaluation 

5. Self-liberation 

6. Helping relationships 

7. Counter-conditioning 

8. Contingency management 

9. Stimulus control 

10. Social-liberation 

The processes are not described in detail here, but the reader may wish to read more 

about them in Prochaska et al. (1997). 

Decisional Balance 

Decisional balance reflects an individual's appraisal of the situation, and the 

behaviour. The relative number of positive and negative beliefs about a behaviour is 

considered important for movement between stages. As progression takes place up 

the stages, the number of positive beliefs are said to increase and the negative beliefs 
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decrease. The idea has received empirical backing from a wide spectrum of health 

psychology and mathematical relations have been found between the positive and 

negative beliefs of change, and progression between some of the stages, (Prochaska 

et a1., 1997). 

S elf-Efficacy 

The construct of self efficacy has two parts, confidence and temptation. Confidence is 

derived from Bandura's Self Efficacy Theory, (Bandura, 1977), and refers to self 

efficacy, as has been discussed throughout this document. In addition, the 

Transtheoretical model also considers temptation as a minor part of self efficacy and 

here the intensity of urges to engage in habitual behaviour when in a difficult 

situation is addressed. 

2.5.5.2 Research Using the Transtheoretical Model 

Having been originally designed to study addictive behaviours, the Tl'anstheoretical 

Model is now more widely applied in Health Psychology including in areas such as 

exercise, weight control, mammography utilisation, and safer sex, (Salovey et al., 

1998). Empirical research has largely focussed upon the stages of change, with some 

support found for the model. 

However, criticisms of the model have been made, some of which are discussed below. 

The majority of research testing the model has been cross-sectional in design thus 

making it even more difficult than usual to imply causation. It has been suggested 

that it may be more appropriate to find support for changes in the decisional balance, 

and processes of change, predicting movement across the suggested stages, (Salovey 

et a1., 1998). Armitage and Conner (2000) criticise the model for the lack of clarity 

concerning the role of other variables in progression through, and within, each stage, 

and its lack of application in social cognitive terms. They also argue that there is 

little information provided as to why some people will be successful in achieving 

behaviour change and why others will not. 

2.5.5.3 Discussion 

The Transtheoretical Model was developed from practise and so has a very intuitive 

feel and is one of the more widely and commonly applied stage theories of health 

behaviour. Due to the stage based nature of the model, it lends itself to 

mathematical modelling quite neatly, however, the relations other variables have 

upon the movement through stages would need to be clarified if it were to be possible 

to quantify the model. 
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2.5.6 The Precaution Adoption Process Model 

The Precaution Adoption Process Model (PAPM) was first conceptualised by 

Weinstein and Sandman (1992) and was later built upon by Weinstein et al. (1998). 

The model suggests seven stages of change until precautionary behaviour is adopted. 

The idea behind and structure of the PAPM is similar to that of the Transtheoretical 

model, (see Subsection 2.5.5.1), but the PAPM distinguishes between people who are 

unaware of a health issue, or risk, and those who are aware of the issue but have not 

applied much thought to it. A distinction is also drawn between people who have 

made the decision not to adopt the behaviour and those who have not yet considered 

adopting the behaviour. 

2.5.6.1 The Precaution Adoption Process Model Structure 

The model puts forward 7 stages through which people are thought to pass in their 

journey to adopting healthy behaviours, the stages are listed, and then described in 

turn, below. 

1. Unaware of health issue 

2. Aware of health issue 

3. Contemplation 

4. Planning 

5. Action 

6. Maintenance 

7. Maintained 

At an initial point in time it is presumed that the health issue or concern will not be 

known to the individual (stage one), once they have been made aware of the issue 

they have moved on to the second stage but may not be engaged in the issue, 

contemplation of the health issue and the risks/benefits of the behaviour is the third 

stage. After considering the issue people may make the decision not to take part in 

the recommended behaviour for now, (stage four), or to go forward and plan to carry 

out the behaviour, (stage five). When the planned behaviour( s) begin to take place 

then stage six is reached and, where relevant, a seventh stage may be reached once 

the behaviour is maintained. 

The PAPM also idelltifies the factors relevant for, and against, transition between the 

stages, and these are both simpler and clearer than those of the Transtheoretical 

Model. These transition variables are summarised in Table 2.5.6.1. 
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Stage Transition Variable 
1-2 Knowledge 
2-3 Perceptions of personal vulnerability 
3-4 Beliefs about severity, susceptibility, and self efficacy 
4-5 Pressures, situational constraints and obstacles 

Table 2.3: Vanables Infiuencll1g ProgreSSIOn Through the PAPM (WCll1stCll1 et a1., 1998) 

Stage classification is most often decided via questioning, for example asking if a 

person has heard of the health risk, and if so whether they have ever considered acting 

to reduce the risk etc. Unlike the Transtheoretical Model the PAPM does not take 

account of past behaviours, or time frames, when classifying people into each stage. 

2.5.6.2 Research Using the PAPM 

The PAPM has not been as widely applied as the Transtheoretical model, however 

studies have shown some support for the structure, although they do tend to be 

cross-sectional in design. The PAPM was originally applied to home radon testing 

(e.g.Weinstein and Sandman (1992)), but has also been applied to areas such as 

osteoporosis, (Blalock et a1. (1996) cited in Weinstein et a1. (1998)), and vaccinations, 

(Hammer (1997) cited in Weinstein et a1. (1998)). 

2.5.6.3 Discussion 

The Precaution Adoption Process Model, although less popular than the 

Transtheoretical Stages of Change, does appear to be intuitive and natural in design, 

and offers a clearer idea of the factors of importance at each stage. However, it has 

been criticised, along with the Transtheoretical model, for not stating clearly the 

social cognitive variables being manipulated at each stage, (Armitage and Conner, 

2000), and for the majority of the supporting research applying cross sectional 

designs, (Salovey et a1., 1998). 

2.5.7 Stage Models: Summary 

Stage models of behaviour suggest that social cognitive influences on behaviour may 

be different at different stages of the behaviour change process. Each theory suggests 

a diflerent number of stages but all agree that a separation exists between 

motivational processes and volitional processes. Armitage and Conner (2000) suggest 

that exactly what happens in the volitional stages of the behaviour process appear to 

be less clear in stage than in behavioural enact ion models, (see Chapter 2.3), and 
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that the research studying them, although supportive, tends to be cross-sectional in 

nature, and can lack validity. 

Weinstein et a1. (1998) criticise the over tendency to use cross sectional designs in 

order to show support for the idea that behaviour change requires the movement 

through stages, arguing that differences between stages could also be due to pseudo 

stages (a continuum split into stages). Weinstein et a1. instead ask for research to 

focus upon interventions that, according to the theories, should produce different 

effects at different stages in order to test the ideas. 

By their nature, Stage theories of health behaviour may lend themselves quite nicely 

to mathematical modelling, especially to simulation modelling. Therefore, it is 

certainly worth considering applying the ideas within the more popular stage 

theories, (e.g. PAPM and the Transtheoretical Model), to simulation models 

involving health behaviour. Difficulties may arise, however, where there is less clarity 

as to how movement between the stages is negotiated, or indeed, as to whether the 

stages are really just different points along a continuum of change. 

2.6 And the Rest 

It would appear that the number of models of behaviour that may be, and have been, 

applied to health in the social sciences is ever growing, not to mention the suggested 

improvements and additions to each one, and the models specific to one hehavionr or 

area. This is understandable since human behaviour can be regarded as nothing but 

complex and it would be difficult to find one model or theory that adequately 

identified all constructs in all situations. 

Another issue is that the models and theories are just that, and in the social sciences 

the idea of 'proof' is somewhat impossible, therefore for each of the ideas there will 

be research to support them, and equally there will be criticisms and perhaps 

conflicting research. Of course some ideas are more widely accepted than others, and 

it is hoped that the more recognised and highly regarded models have been discussed 

in this Chapter. 

Many more ideas and models were uncovered during the research for this Chapter and 

this Section aims to mention some of these, although will not discuss them in detail, 

in order to make the reader aware of their existence. It is also worth noting that this 

list will not be exhaustive and that many more theorems and models of health 

behaviour, or that may be applied to health behaviour, will exist in the literature. 
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Name Comment or Description Ref. Cited in 
Conflict Theory of Decisional Similar to HBM and PMT, emphasising the role of 

Velicer et al. (1985) Carmody (1997) Balance expected outcomes and belief in health behaviour 
and decisions 

Attribution Theory Describing rules by which it is believed people use 
Heider (1958) Salovey et al. in order to draw logical cause and effect inferences 

about themselves and their environment. Has ap- (1998) 

plications in health promotion and the causes of 
illness. 

The Theory of Achievement Similar theory to Kuhl's Action Control Theory. 
Sorrentino al. 

N/A 
Motivation and uncertainty The model has recently been assigned a mathe- et 

orientation matical reformulation which links individual differ- (1985) 

ences in information processing to individual dif-
ferences in motivation 

Social Comparison Theory Used to appraise how people cope with their own 
Festinger (1954) Salovey et al. and others illness and judge how people appraise 

health information they receive. Assumes people (1998) 

draw perceptions by comparing themselves to oth-
ers and seeking contact with people in similar sit-
uations 

Langlie's Social Network Based upon the HBM and includes a social support 
Langlie (1977) Schmidt al. Model dimension et. 

(1990) 
The Preventative Behaviour Based upon the HBM and assessed by the 'Pre-

Beck and Lund Schmidt al. Model vention Index' et 
(1981) (1990) 

The Theory of Social Be- Designed to predict both specific and alternative 
Triandis (1977) Schmidt al. haviour behaviours. Includes physiological arousal and fa- et 

cilitating conditions as model parameters (1990) 

Social Cognitive Health Be- Considers cognitive, emotional, and motivational 
Fuchs et al. (1989) Schmidt al. haviour Theory conditions for maintaining health behaviour in so- et. 

cial conditions. (1990) 

PRECEDE (Predisposing, Reinforcing and Enabling Forces in 
Lazes et al. (1986) Schmidt al. Educational Diagnosis and Evaluation). A health et 

promotion and planning model. (1990) 

Health Educationf Promotion Based upon the HBM this model is again for the 
Dignan and Carr Schmidt et al. Planing Model planning or health promotion and education. It 

has seven steps to be targeted at an individual or (1987) (1990) 

group. 

Table 2.4: Other Theories and Models Applied to Health Behaviour 

2.6.1 Other Models of Health Behaviour 

2.7 Summary 

This Chapter has aimed to provide an introduction to some of the popular and 

traditional cognitive models used in psychology for the prediction and study of health 

behaviour. 

The Chapter began by discussing five traditional motivational models of health 

behaviour research, those of the Health Belief Model, Health Locus of Control, 

Protection Motivation Theory, The Theory of Planned Behaviour, and Social 

Cognitive Theory. A number of key constructs and ideas are repeated in several of 

the theories (e.g. self efficacy, intention formation, and benefits and barriers to the 

behaviour), each with slightly different ideas as to how they link together and which 

constructs are more infl. uential. 

All the models have received a significant amount of attention in research, with 
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varying degrees of success, and some papers have attempted to compare the 

predictive ability of each, with that of the others. However a tendency has been 

observed for research to be cross-sectional in design making a link with causation 

difficult to ascertain, and some of the theories lack a clearly defined structure between 

and within the variable constructs. 

The models and ideas that are more clearly defined and structured may be more 

suitable for the application of mathematical modelling or simulation. For this reason, 

perhaps the two more suitable models for inclusion in the currently reported research 

would be Protection Motivation Theory, and the Theory of Planned Behaviour. 

However the Protection motivation Theory has received less research attention and 

the research that has been identified was not well designed such that it could not be 

used to fully approximate the theory in a simulation model. The Theory of Planned 

Behaviour has, however, been the subject of a large body of research considering 

health behaviours, and several well designed studies have applied the theory with 

success in a number of areas including attendance at breast cancer screening in the 

UK, (Rutter, 2000). 

Behavioural enaction models help to bridge the gap between motivational models of 

behaviour, the implementation of the behaviour, and the achievement of a target. 

Two models were discussed, Gollwitzers Implementation Intentions and Bagozzi's 

Goal Theory. Since both of the models concentrate on implementation intentions (as 

a primary construct to behavioural enaction) it has been suggested that this may be 

a valid construct that is certainly worth further consideration in research, (Armitage 

and Conner, 2000). However, overall it was felt that there would not be enough well 

designed research available in order to incorporate integrative models into a 

simulation model, and that perhaps enaction models were more focussed upon 

predicting adherence to behavioural plans and goals than to general health 

behaviours. 

Attempts have been made to integrate some of the more popular theories into one 

large umbrella theory. The idea of an integrative cognitive model for the prediction of 

health behaviour is a very appealing one. However, it would appear that to date no 

such model has become dominant nor widely applied, and therefore, little research 

has been carried out in order to test/validate such a model, or indeed in order to 

populate a mathematical version with data. 

Perhaps the reason for the apparent lack of popularity and research into this area is 

due to the difficulty in reaching a consensus of opinion across the disciplines in 

psychology as to how such health cognitions occur, and in forming the relationships 

between the constructs in any proposed model itself, (as is the case with the Major 

Theorists Model). 
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That is not to say, however, that an integrative model of health behaviour is not the 

way forward. Since many of the traditional models for the prediction of health 

behaviour do contain similar if not the same constructs, it is not inconceivable that a 

singular model or theory could be designed to encapsulate the ideas from each 

without loosing the original concept. 

When considering using an existing integrative model as the basis of a mathematical 

model of health behaviour it is suggested that at this time there may not be enough 

research finding support for the theories, or to populate the model with, and in the 

case of the more recent Major Theorists Model, structure is lacking for 

implementation. 

Stage models of behaviour suggest that social cognitive influences on behaviour may 

be different at different stages of the behaviour change process. Each theory suggests 

a different number of stages but all agree that a separation exists between 

motivational processes and volitional processes. Armitage and Conner (2000) suggest 

that exactly what happens in the volitional stages of the behaviour process appear to 

be less clear in stage theories than in behavioural enaction models, (see Section 2.3), 

and that the research studying them, although supportive, tends to be cross-sectional 

in nature and can lack validity. 

Weinstein et al. (1998) calls for research to focus upon interventions that, according 

to the theories, should produce different effects at different stages in order to test the 

ideas further. 

By their nature Stage theories of health behaviour may lend themselves quite nicely 

to mathematical modelling, especially to simulation modelling. Therefore, it is 

certainly worth considering applying the ideas within the more popular stage 

theories, (e.g. PAPM and the Transtheoretical Model), to simulation models 

involving health behaviours. Difficulties may arise, however, where there is less clarity 

as to how movement between the stages is negotiated, or indeed, as to whether the 

stages are really just different points along a continuum of change. It was also felt 

that perhaps stage theories were more suitable to the study of behaviour change and 

help with monitoring addictive behaviours and change to combat destructive 

behaviours than to the uptake of general health behaviours. 
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Chapter 3 

Breast Cancer Behaviour 

3.1 Introduction 

This Chapter summarises the research identified in literature review that considered 

the literature relating to behavioural issues surrounding breast cancer and breast 

cancer screening uptake. Within this Chapter the expression 'breast cancer 

behaviour' refers to any behaviour that may be associated with the prevention of, or 

the treatment of, breast cancer such as breast self examination, attendance and 

re-attendance at offered screening sessions, adherence to recall or recommended 

treatments, or the speed of seeking help for any identified change in the breast. 

A small scale literature search was undertaken to find work citing behavioural issues 

surrounding such breast cancer behaviours, i.e. screening attendance, or breast self 

examination behaviour. Papers that considered these issues were identified and 

reviewed with an aim to advising any behavioural aspects to be added to a 

traditional OR model of breast cancer epidemiology. 

This Chapter and its contents are not intended to be a full representation of all 

research into breast cancer behaviour, rather it is hoped to provide a summary of the 

more recent and predominant studies, reviews, and opinions. 

The next Section (3.2) describes some of the reviews of the psychological literature 

relating to breast cancer behaviour, and Section 3.3 then discusses some of the 

individual studies found to be of relevance in more detail. 

3.2 Overviews and Reviews 

Three comprehensive papers were identified that summarised and reviewed the 

research concerning human factors relating to breast cancer with a focus upon 
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attendance at screening sessions. The first of these was a systematic review of the 

determinants of screening uptake in general, including breast cancer screening, and 

includes research conducted up to the end of 1998, (Jepson et al., 2000). The second 

is a Swedish paper which discusses five pieces of research examining factors affecting 

attendance at the population based mammography screening in Sweden, (Lagerlund, 

2003). The paper also includes a summary of work conducted in other Countries with 

population based screening programmes for breast cancer, (including the UK). The 

most recent review considered inequalities in cancer screening and includes a 

discussion of 55 papers which examine factors affecting access to cancer screening 

among minority groups, (Chiu, 2003). This final review includes research published 

up to the end of 2002. 

The information contained in each of these three reviews is summarised in turn below. 

3.2.1 Systematic Review of the determinants of screening uptake 

Jepson et a1. (2000) published the systematic review with an aim to examining 

factors associated with the uptake of all screening regimes, including mammography 

screening for breast cancer. The paper also reviews and summarises literature 

relating to factors pertaining to the effectiveness of interventions for screening 

programmes, however the content of this part of the review is not discussed here. 

Research was included in the review if it was published before the year 1999 and all 

factors thought to influence screening uptake were considered including demographic, 

sociological, psychological and economic factors. The review considered randomised 

control trials, quasi randomised control trials, cohort studies and case control studies. 

In order to ensure some level of quality in the included research, studies were 

excluded if they measured determinants after screening had taken place rather than 

before, related to breast self-examination rather than mammography screening, the 

dependent variable was intention to attend rather than actual attendance, the design 

of the study was cross-sectional in nature, or if no multivariate analysis had been 

carried out upon the results. Sixty five papers met the criteria for the review, and of 

these, thirty four related specifically to factors affecting attendance at mammography 

screening. 

It was hoped that a meta-analysis of the results of the research studies would be 

possible, however, statistical pooling of the information turned out to be 

inappropriate due to the heterogeneity of the study designs and data, and the lack of 

inclusion/publication within the multivariate analysis of determinants found to be 

insignificant in univariate analysis. Instead, a determinant was judged by the authors 

to be 'important' if it was investigated by more than three studies, and found to be a 
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significant predictor of attendance in more than half of those. 

Of the papers considering breast cancer screening specifically, over 25 factors were 

investigated by at least 3 studies. Of these, the factors that appeared 'important' 

included insurance status, (not relevant in a UK setting), previous mammography 

behaviour, intention to attend, and receiving a recommendation from a doctor. The 

finding that intention was a significant predictor in more than half of the studies 

which examined it, supports the Theory of Planned Behaviour, (TPB), which 

stipulates that intention to act is the primary predictor of behaviour. However, across 

and within screening tests there was little other evidence to suggest that other 

constructs of the TPB, or other health behaviour models, are significant predictors of 

screening attendance, since attitudes, perceptions, and beliefs about screening did not 

consistently predict screening behaviour. 

Based on the results it was concluded that it was worthwhile conccntrating efforts on 

maximising attendance at the first screen since re-attendance rates are high given 

first attendance, and that personal recommendations for attendance from health 

professionals may be a way to accomplish this. The authors point out that although 

the inclusion criteria were tight, studies still varied in methodological quality, and 

generalisability, and they call for further well designed studies relating knowledge, 

attitudes, and beliefs, to screening attendance behaviour in the UK. 

3.2.2 Factors Affecting Population-based Screening in Sweden 

Lagerlund (2003) begins by discussing studies from outside Sweden that analyse 

factors affecting mammography screening attendance rates, and focuses in upon those 

within countries where mammography is offered as part of a national population 

based screening programme, such as the UK, since this is the system in Sweden. 

The authors point out that differing results have been achieved within, and between, 

such studies with factors inconsistently being associated with attendance at breast 

cancer screening, and sometimes the direction of association has also been 

changeable. Consistent predictive factors that were highlighted in the discussion were 

marital status, (married women were generally more likely to attend screening 

sessions), and positive health behaviours, (such as regular dental check-ups). 

It is suggested that some benefit can be gain cd by considering behavioural models 

such as the Health Belief Model, (HBM), since three of the four main constructs of 

the HBM have been shown to be predictive of screening attendance behaviour fairly 

consistently, with the relationship to susceptibility particularly strong. However, 

severity has rarely been found to be a significant predictor of screening behaviour, or 

indeed health behaviour in general. 
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Further factors believed to be predictive from the research discussed, included self 

efficacy, (which could offer some support for the Theory of Planned Behaviour), and 

once again recommendations from a health practitioner. 

The main body of the overview paper describes five studies conducted in the Uppsala 

region of Sweden, aiming together to investigate factors associated with the uptake 

rate of mammography screening in Sweden, (currently fairly high at around 80% in 

Uppsala). The methodology of the studies varied with three of the five invoking a 

case control design, one a cohort design, and the last a focus group discussion. The 

results of the studies showed that employment status and home ownership were the 

only social economic variables to have a significant relationship to attendance in 

multivariate analysis of the case control studies. Other factors found to be related to 

attendance included alcohol consumption, recommendations from professionals, 

previous breast problems (both of the individual and those close to the individual), 

barriers to attendance, benefits of attendance, worry, nationality, cues to action, 

knowledge, and trust in the health care provider. 

3.2.3 Inequalities of Access to Cancer Screening 

In a literature review of inequalities of access to cancer screening, Chiu (2003) 

reviews 55 (of 129 papers due to time constraints) studies identified as relating to 

cancer screening up-take rates among minority groups published between 1998 and 

2003. Five of the studies related specifically to the screening for breast cancer alld 

factors affecting attendance at mammography screening. Designs and results of the 

studies varied, and determinant factors were sometimes contradictory. Of the 

non-psychological factors affecting up-take rates of cancer screening factors commonly 

found to be significantly associated with minority attendance were education, age, 

and physicians recommendations. 

Five of the fifty five studies that were considered addressed beliefs in relation to 

minority attendance at cancer screening, four of which explicitly employed a 

theoretical framework (TPB/HBM). The author criticises the papers for theoretical 

inference and methodological failings. It is pointed out that the papers applied the 

models inconsistently and that results interpreted linear relationships of the variables 

to behaviour that are not suggested by theory. 

The research did, though, highlight potential reasons for low attendance rates within 

minority groups, such as cultural values, (e.g. shyness), and traditional health beliefs, 

which could be barriers to attending cancer screening. 

The review concludes by pointing out that, all too often, changes are sought in the 

individual rather than the system, and that disadvantaged groups may lack not just 

45 



income to attend screening, but also knowledge, prestige, and social 

support/communication. A call is made for more research into the low attendance at 

cancer screening by minority groups, and for ethnic monitoring in order to back up 

research. 

3.3 Individual Studies 

The majority of results that were found in the literature search related to breast 

cancer (BC) screening behaviour and focused on attendance at screening sessions, or 

breast self examination behaviour initiation or maintenance. Those studies identified 

which considered breast cancer screening behaviours are discussed in the next 

Section, followed by a summary of the breast self examination (BSE) papers, then a 

short Section addresses research which examines delay in help seeking associated with 

breast cancer, and lastly adherence to genetic testing for breast cancer is discussed. 

3.3.1 Screening Behaviour 

Of particular interest were studies that had attempted to relate current psychological 

models of behaviour to the health area of breast cancer and breast cancer screening. 

Yarbrough and Braden (2000) mention many theories as having been applied to 

breast cancer (BC) screening behaviours and these include social support theory, the 

cognitive transactional model, the multi-attribute utility model, the multiple health 

locus of control model, and a theory of care seeking behaviour. They found, though, 

that the psychological model most frequently applied (in America) was the Health 

Belief Model (HBM) and conducted a review of this research to assess the utility of 

the HBM as 'a guide for explaining or predicting breast cancer screening behaviours'. 

Yarbrough and Braden found that the HBM was far from uniformly applied in the 16 

studies that they reviewed. This is not surprising given the vague definitions and 

ambiguous constructs and relationships within the HBM itself. What is more, few of 

the studies measured all of the constructs, and none found, or considered, the relevallt 

interactions between constructs. Although most of the research did find relationships 

between the measured constructs of the HBM and outcome measure (intention to 

attend mammography screening or the action of attending), Yarbrough and Braden 

were critical of the low proportion of variance in the outcome measure explained by 

the HBM constructs, as well as of the design, and generalisability of the studies. 

Indeed, of the studies that were identified for this review, those that applied the HBM 

to adherence to mammography screening recommendations were either cross-sectional 

in design (Champion, 1994), or, as Calnan (1984) found in his review of prospective 

studies, that although HBM variables were significant predictors of BC screening 
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attendance behaviour, the variance in behaviour explained by the HBM was low. 

The Theory of Planned Behaviour (TPB) and its predecessor, the Theory of 

Reasoned Action (TRA) , have also been used to study womens' attitudes to 

attendance at breast screening appointments. In contrast to Yarbrough and Braden 

(2000) this literature search found more papers applying the TRA/TPB to breast 

screening attendance than the HBM. All studies found some support for the TPBs 

ability to predict attendance (or intention to attend) at invited screening sessions, 

although again some had not used prospective designs and/or measured intention 

rather than behaviour, (Steele and Porche, 2005; Tolma et al., 2003; Braithwaite 

et al., 2002), and the ability to predict repeat attendance remains unclear, (Rutter, 

2000; Drossaert et al., 2003). 

In what appears to be a very comprehensive and robustly designed study Rutter 

tested the TPB's predictive power applied to attendance and re-attendance for Be 

screening, (Rutter, 2000). Rutter found that the TPB constructs, (attitude, perceived 

behavioural control, and subjective norms), could accurately predict attenders from 

non attenders for Be screening, as well as intention to attend, and could also 

distinguish between inclined/disinclined attenders/abstainers. What is more, attitude 

and subjective norms were found to predict behaviour independently of intention, 

supporting discussions for the TPB predicting the volitional as well as motivational 

stage of health behaviour. When considering re-attendance for breast screening three 

years later, however, the only significant predictor was attendance at the first 

screening session. 

Braithwaite et al. (2002) have also applied the TPB to the prediction of attendance 

at breast screening. The study found that the TPB constructs of attitude and 

subjective norm did significantly predict intention to attend screening, as well as 

another proposed construct' attitude to uncertainty'. However, having found that the 

TPB construct of perceived behavioural control did not significantly predict 

intention, the authors decided that the TPB was no better at predicting genetic Be 

screening intention than its predecessor the TRA, (differing only by its exclusion of 

perceived behavioural control as a construct). It is worth pointing out though, that 

the study questionnaire suffered from low internal validity for the questions relating 

to perceived behavioural control, was cross sectional in design, and proposed a 

theoretical situation to participants. 

Montano and Taplin (1991) applied the TRA to 946 female attendees at subsequent 

screening units in Seattle. The prospective study found that the TRA could predict 

attendance, explaining 20% of the variance in behaviour. 

More recently, Drossaert et al. (2003) used the TPB in a large prospective study 

considering attendance at organised mammography screening programmes in the 
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Netherlands. Questionnaires measuring TPB constructs were sent out to women who 

had been invited to a regular screening round and whose appointment date had 

passed. These measures were then used in order to try to predict re-attendance at the 

next two screening rounds (where individuals are invited biennially for screening as 

part of a national screening programme). It was found that the TPB was predictive 

of attendance behaviour, although much better at predicting initiation of behaviour 

(distinguishing between those who had refused the invitation before the study began 

and then attended at subsequent rounds and those who consistently non attended), 

than behaviour maintenance, (distinguishing between consistent attenders and those 

who dropped out having initially attended). Again the authors found that the 

variable most predictive of repeat attendance was past attendance. Drossaert et al. 

suggest from their results that interventions based upon the TPB should concentrate 

on improving the uptake of screening among those invited for the first time. 

In an update to their research Drossaert et al. (2005) sent the same sample the 

questionnaire again, before and after the second and third screening invites were sent. 

The intention was to study whether or not the TPB could explain the drop out rate 

over time observed in many national screening programmes. They found, though, 

that the TPB variables remained constant over time, re-affirming their first result 

that the TPB may not be the best model to explain screening behaviour 

maintenance, although the drop out rate observed in their study was low and there 

was some evidence of selective attrition in study participation. 

A further paper that applied the TPB to attendance behaviour at screening roullds 

for breast cancer, considered whether the believed importance of each measure for the 

constructs of the TPB affected the measures prediction of attendance behaviour, 

(Steadman and Rutter, 2005). Participants were sent questionnaires measuring the 

main constructs of the theory and asked to rank the sub measures for each construct 

as to which were the most important to them. They found that the top three rated 

measures for each construct (for each woman) performed just as well, and 

significantly, at predicting attendance as the full measures. All TPB constructs 

correlated with attendance behaviour, but only intention to attend significantly 

predicted behaviour in regression analysis (in contrast to Rutter (2000) where 

attitude and subjective norms were also significant predictors). Steadman and Rutter 

conclude that interventions may wish to concentrate upon a few of these most 

common 'important' issues, including the belief of having partner support, the ability 

to overcome access and transport issues, and the belief that mammography will allay 

fears or discover problems early. 

Two studies were identified which investigated the transtheoretical stages of change 

and mammography attendance compliance, (Champion, 1994; Lipkus et al., 1996). 

Champion found in their cross-sectional home interview study that HBM variables 
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changed significantly across self reported stage of mammography uptake, 

(precontemplation, contemplation, and action/maintenance), and Lipkus et al. found 

that subjective risk of breast cancer significantly changed with stage of screening 

behaviour change, (women who perceived themselves to be of higher risk were more 

likely to be in later stages of change). 

Self efficacy has also been associated with attendance at breast screening invitations, 

(Tolma et al., 2003). When questioning women who had no previous experience of 

mammography Tolma et 11,1. found that self-efficacy W<1S the best predictor of 

intention to be screened for breast cancer, accounting for more of the variance ill 

intention than constructs of the TPB. 

Using the Precaution Adoption Process Model and demographic variables Clemow 

et al. (2000) distinguished between interviewees who were either definitely planlling, 

thinking about, or not planning to attend breast screening in a group of 2,507 women 

identified as under-utilisers of mammography in the US. Again, however the study 

measured reported intention to attend and not attendance behaviour itself. 

Other studies that were identified considered socio-economic and general health 

status variables that may also explain the uptake of BC screening invitations. Some 

of the studies produced surprising results, for example alcohol consumption was 

found to be negatively related to the attendance at BC screening, (Harris et al., 

2002), so that women who drank more were actually more likely to attend, indicating 

that perhaps drinking is not a good parameter by which to measure attitudes to 

health. However, the more robust studies that tested the psychological frameworks 

found socio-economic variables were no longer significant predictors of 

behaviour/intention once the model variables were accounted for, e.g. (Rutter, 2(00). 

3.3.2 Breast Self-Examination Behaviour 

Around half of the identified papers applying psychological constructs to BC 

behaviour considered behaviours associated with breast self-examination (BSE). In 
the past it has been recommended that BSE be undertaken monthly as an alternative 

to, and in addition to, breast cancer screening, especially for younger women for 

whom mammography screening is not offered as routine. This is still the advice of 

some, including BreastCancer.org (BreastCancer.org) and the National Breast Cancer 

Foundation Inc, (National Breast Cancer Foundation, Inc), whereas the US 

preventative service task force (USPSTF) neither recommend nor discourage BSE 

performance, (US Preventative Services Task Force, 2(02). There have been calls for 

BSE promotion to be abandoned altogether in favour of promoting general breast 

awareness in the UK (Austoker, 2(03). Cancer Research UK now simply promote 

breast awareness rather than recommending regular BSE in light of research findings 
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that BSE may not offer any benefit in terms of identifying tumours at an earlier 

stage, (Cancer Research UK). 

The majority of studies that were identified were studies assessing attitudes towards 

BSE outside the UK, so their generalisability to the UK setting may be called into 

question. 

The majority of identified papers considering BSE applied the health belief model, 

(HBM), to the prediction of BSE performance or frequency. The review of the HBM 

by Yarbrough and Braden (2000) was quite critical of it's application to BC 

behaviour, (see Section 3.3.1), and included BSE research within its scope. 

In one cross-sectional study, Lee et a1. (2004) assessed the differences between the 

BSE health beliefs of Korean and Korean American women using the HBJ'v1 variables. 

Using the Health Belief Model scale the authors sent 189 Korean and 146 American 

Korean women questionnaires that measured their attitudes and beliefs in relation to 

BSE. They found that Korean American women were significantly more likely to 

perform BSE, and their scores for perceived benefits, confidence, and motivation were 

also higher than those of Korean women. A further result showed that the two 

variables of perceived barriers and confidence in BSE, significantly explained BSE 

performance of Korean American and Korean women together. 

A further paper tested the ability of the HBM to predict regular BSE in Thai 

migrants living in Brisbane Australia, (Jirojwong and Maclennan, 2002). The study 

found support for the use of the HBM although it suffers from many of the 

methodological issues described by Yarbrough and Braden (2000) in their review. 

In a well designed study, Norman and Brain (2005) used the HBM to distinguish 

between low, medium, and high BSE performance by 567 UK women with a family 

history of breast cancer. BSE frequency was reported via a questionnaire nine months 

after the measurement of HBM variables. The measurement of the HBM included an 

expanded version of the perceived barriers construct that took into account self 

efficacy barriers, and the authors also collected information on past BSE 

performance. Analysis of the results revealed two groups of women in their sample, 

the infrequent BSE group, and the excessive BSE group. Those in the infrequent 

group were found to be significantly lower performers of BSE at time 1, to have 

higher self efficacy and emotional barriers, and score lower for beliefs relating to BSE 

benefits than those in medium or high/excessive BSE groups. In contrast those in the 

excessive BSE group, were found to have significantly lower self efficacy barriers 

relating to BSE, rate themselves as more worried about breast cancer, and believe 

breast cancer to be more severe than those in the other two groups. Here, results 

suggested that barriers to BSE performance, benefits of BSE performance, and 

worries about, and perceived severity of, breast cancer can all discriminate between 
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levels of BSE performance therefore lending support to the HBTvl. Norman and Brain 

note that severity is rarely found a predictor of BSE performance, and suggest that 

perhaps rather than predict the performance in the first place, the construct instead 

determines/distinguishes excessive performance of BSE. In light of their results the 

authors suggest that in order to increase the prevalence of BSE performance, 

interventions should focus upon increasing confidence and self efficacy relating to 

BSE performance, raise awareness of the appropriate frequency for performance and 

inform women about their real risk of BC. 

Umeh and Rogan-Gibson (2001) tested their hypothesis that threat perceptions would 

be a more powerful predictor of BSE performance than the other HBrd constructs ill 

younger people, since younger people were at less risk of breast cancer and the HAPA 

model implies that a given level of risk is required before a preventative behaviour is 

evaluated. Umeh and Rogan-Gibson sent a questionnaire to 178 women aged 18 to 35 

which asked questions measuring the HBM constructs and whether or not BSE was 

performed regularly. The results revealed that severity and barriers were signi1i.cctnt 

predictors of BSE performance (with barriers the most powerful predictor), although 

perceived benefits were found to correlate with reported regular BSE, and the authors 

comment that the results provide "qualified support for the HBM" . 

In a second study applying the HBM to the performance of BSE specifically in YOUllg 

women, Chouliara et al. (2004) assessed the differences in the performance of BSE in 

18-26 year oids living in Greece and the UK. The study compared young Scottish 

beliefs and behaviours relating to BSE with those of young women in Greece since 

the two countries have different health care systems, different rates of BC (lower rates 

in Greece), and different levels of BSE and BC publicity (recent awareness campaigns 

in Scotland). The study measured all HBM constructs, and controlled for other 

factors such as family history of BC, marital status, etc. Chouliara et al. found that 

while the reported rates of BSE were similar between the two countries, the HBM 

scores did differ significantly. Scottish women in the study showed more knowledge of 

BSE performance, perceived more benefits to BSE, and demonstrated higher levels of 

internal HLOC. On the other hand the Greek women in the study were likely to rate 

their health as more valuable, perceive themselves to be more susceptible to BSE 

(even though they were less susceptible in reality), and have higher chance HLOC 

scores, than Scottish women in the study. The results suggest that while both sets of 

women were equally likely to perform BSE, they demonstrated different health beliefs 

relating to BSE, and so interventions and requirements to improve BSE and BC 

awareness may be culturally specific. 

Overall, studies applying the HBM to BSE tended to find support for the theory, 

although in some cases this support was limited as not all of the HBM constructs 

significantly predicted behaviour. As noted by Yarbrough and Braden (2000), some 
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studies were not well designed. However, it is pleasing to note that more recent 

papers identified for this thesis did incorporate more appropriate designs and took 

account of confounding variables. 

The HBM was not the only psychological model of behaviour identified as having 

been applied to the study of breast self examination behaviours, other models 

included HAPA, self efficacy, the transtheoretical stages of change, and PMT. 

Luszczynska and Schwarzer (2003) used the HAPA model to study BSE behaviour 

since they argue that most other research and models concentrate upon behavioural 

intentions whereas HAPA suggests planning, and maintenance are both important 

throughout the behaviour change process. Using this idea the authors argue that risk 

perceptions relating to breast cancer may be less important to the volitional stage of 

maintenance. The aim of the work was to test phase specific constructs of HAPA 

that had not previously been given much attention. In a two step trial Luszczynska 

and Schwarzer first tested the motivational phase of BSE in their 418 student 

participants, and informed the group about BSE practice and nse. They then 

measured the self regulatory phase and behaviour change itself 12-15 weeks later. At 

each stage Participants intentions, planning, outcome expectancies, motivations and 

self efficacy were measured. The authors found that the reported rates of BSE 

increased between the two stages of the trial, and put forward their own model for 

inter-relationships between psychological constructs based upon the regression 

coefficient results. Overall, the strongest effect upon increasing BSE behaviour was 

associated with planning for the behaviour, and other significant effects were also 

found relating to intentions, and self efficacy. Evidence was also identified for 

different types of self efficacy relating to different stages of behaviour change. 

Lechner et a1. (2004) also found support for psychological constructs predicting BSE 

behaviours. In their longitudinal trial 364 women were questioned at three points in 

time, with results revealing that psychological constructs of intention, attitude, social 

influence and self efficacy explained 51% of the variance in BSE behaviour six months 

later. 

Others have studied psychological theories applied to interventions to increase the 

uptake of BSE. Fry and Prentice-Dunn (2005) evaluated the effects of information 

sessions discussing and informing about breast cancer threats, survival rates, BSE 

techniques, effectiveness, and issues relating to BSE self efficacy, using the P}VIT. 

Participants were divided into two groups, a control group where they attended two 

sessions about general health and fitness, and an intervention group that received two 

sessions informing about breast cancer and BSE. PMT construct variables and BSE 

behaviours were measured before and after the sessions. The study found that the 

groups did not differ in their beliefs or BSE behaviours before the interventions, but 

that after the interventions the control group had significantly higher control and 
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threat appraisal scores in relation to breast cancer and BSE. Some three months after 

the trial, however, while the intervention group did still show higher levels of 

confidence in performing BSE, there was no measurable difference in BSE behaviour 

between the two groups. 

In contrast, studying the effects of a BSE information video on a sample of 130 

premenopausal women, Janda et al. (2002) found that while both the intervention 

and control group increased their performance of BSE over the trial period, the group 

shown the BSE video performed BSE more frequently than the control group at 

follow up three months later. Of the psychological predictors, having a social role 

model was shown to explain the greatest amount of variance in behaviour (although 

still low at 13%). 

Lastly, Luszczynska (2004) also found that a breast self examination intervention was 

successful at increasing rates of BSE. Their results showed that phase specific 

(HAPA) self efficacy was a significant predictor of intention, planning, and behaviour 

in the intervention group, while results were less significant or non significant in the 

control group. 

3.3.3 Delay Seeking Help 

A third issue of interest identified in research was why women may delay in seeking 

help for BC symptoms. BSE is of limited assistance to speedy diagnosis and 

treatment if a woman identifies a change but docs not seek assistance for several 

months. 

Bish et al. (2005) reviewed literature with an aim of better understanding factors 

affecting delays in seeking help for breast symptoms. In the course of their review 

they found evidence that between 20-30% of women delay seeking help for breast 

symptoms by more than 3 months, and this can considerably affect their survival 

chances, reducing the average 5 year survival rate by as much as 12% (in comparison 

to those with shorter delays). As a result of their literature search considering the 

psychosocial factors affecting such delay in help seeking behaviour, Bish et al. have 

put forward their own proposed model of help seeking behaviour. This model 

proposes that intention is the foremost requirement for the behaviour itself, and 

forming intentions are attitudes to help seeking, and disclosure of symptoms which 

both require a knowledge of BC symptoms. The authors note that knowledge of 

symptoms of breast cancer and symptom appraisal my be affected by a person's age, 

ethnicity, access to medical care, and other sociodemographic factors. 

Two further studies in the current search highlighted the importance of a womans 

knowledge of breast cancer symptoms. In the first, the most common reason given by 
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women for not seeking help sooner was that they considered the symptoms harmless, 

(Arndt et al., 2002), and in the other correctly identifying breast symptoms was the 

only variable to significantly predict intended help seeking behaviour across all age 

groups (Grunfield et al., 2003). 

3.3.4 Genetic Testing and Miscellaneous 

The uptake of genetic testing has also been a subject for psychological research. 

Helmes (2002) found that women with higher external locus of control, less 

knowledge of breast cancer genetic testing, and less education, were more likely to 

leave the decision regarding genetic testing to the medical providers. Jacobsen et al. 

(1997) used the transtheoretical stages of change model to measure 74 women's 

readiness to undergo genetic testing for breast cancer risk, and they found that, as 

expected, those with a positive decisional balance (pros of testing outweighing cons) 

were more likely to show greater readiness to proceed with testing. 

Helmes et al. (2002) applies the full PMT model to test the motivation of women at 

mid-low risk of genetically linked BC to undergo genetic testing. Here, high 

protection motivation should lead to a choice not to undergo testing since the risk of 

breast cancer is low. The cross-sectional study measured protection motivation as the 

outcome rather than behaviour. Results failed to find significant predictors of 

protection motivation from the PMT constructs, but the author suggests a small 

change in the model which produced a better fit, explaining 50% of the variance ill 

protection motivation. The new model suggested that vulnerability, fear, response 

efficacy and response costs are the important variables for predicting protection 

motivation for women at a low risk of developing genetically linked breast cancer. It 

is concluded that women should be better informed about the real risks of developing 

breast cancer in order to lower the high risk perceptions and worries surrounding the 

disease, and that women should also be educated as to the advantages and 

disadvantages of not undergoing genetic testing for breast cancer. 

Psychological theories, principles and research have not been limited to the areas of 

breast cancer behaviour mentioned above, but have been applied to a wide range of 

issues surrounding and addressing breast cancer behaviours and attitudes. One 

further area of interest has been how women cope with breast cancer diagnosis, 

treatment, and survival. For example the effects of health locus of control and 

anxiety were investigated while considering depression in 109 breast cancer 

survivors/sufferers in Heuston, with the finding that anxiety mediated the effects of 

breast cancer LOC on depression (N aus et al., 2005). In addition two studies applied 

the TPB to investigate how the theory may influence a woman's decision whether or 

not to abide by recommendations of exercise during treatment for breast cancer, 
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(Jones et al., 2005; Courneya and Friedenreich, 1999). 

3.4 Summary 

This Chapter has provided an introduction to some of the work that has been carried 

out in order to study and help to understand behaviour relating to breast cancer. 

The majority of the studies considered focussed upon attendance behaviour at breast 

cancer screening and a variety of psychological theories have been applied in the 

literature in an attempt to predict attendance based upon psychological beliefs and 

feelings. Two of the more commonly applied theories were the Theory of Planned 

Behaviour, and the Health Belief :Model, both applied with varying success at 

predicting attendance behaviour. Much of the variation in the success of the studies 

may well lie in the study design, with many measuring intention to attend rather 

than the action of attendance directly, and/or using cross-sectional designs from 

which causality is even more difficult to infer than usual. Overall, however the 

Theory of Planned Behaviour appeared to be the more consistently successful model 

for the prediction of attendance at breast cancer screening, although the ability to 

predict subsequent screening attendance is still unproven (Rutter, 2000; Drossaert 

et al., 2003). 

Other studies considered the psychological predictors and influences upon brea.st self 

examination behaviour. The majority of studies that were identified. applied. the 

Health Belief Model (HBM). The HBM is a vague model and as such its application 

and interpretation in the different studies varied, along with the quality of the design 

of the studies, producing inconsistent results. In two of the more successful studies, 

however, Norman and Brain (2005) suggest that rather than predicting the 

occurrence of BSE the HBM may be more useful to distinguish between regular and 

non regular performers, and Chouliara et al. (2004) found significantly different 

health beliefs between Scottish and Greek women. 

Psychological research has been applied to many areas of breast cancer behaviour 

including breast self examination and screening attendance behaviour. A variety of 

psychological theories and approaches have been used to aid such research with 

varying success, however it is pleasing to see that some of the more recent and well 

designed studies have been more successful, and pooling results together our 

understanding of behaviour relating to breast cancer is gradually improving. 
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Chapter 4 

Modelling approaches to breast 
• cancer screenIng 

Evidence for decision making in respect to cancer screening may come from 

randomised control trials or from estimated outcomes derived from computer and 

statistical models. Due to the costs and ethical considerations involved in conducting 

large scale randomised control trials, modelling may be more suitable for 

investigating the effects of different strategies and policies relating to the planning 

and evaluating of population based screening programmes. It seems logical, therefore, 

that the paper based research into cancer screening, and predictions, pre-date the 

first randomised controlled trials of the 1970's. 

One of the first modelling approaches was by Zelen and Fciulcib (1969), who 

modelled cancer screening using a Markov model assuming three states of cancer 

progression, from no disease, to a pre-clinical state (no clinical symptoms of disease), 

and lastly the state of clinical disease. The time a patient spent in each state was 

assumed to be exponential, and screening strategies were compared by considering 

the lead time, (the time from cancer onset to diagnosis). 

Over the years a number of models were based on and around this early work, see 

(Duff yet al., 2001), and today numerous methods exist for the estimation of the 

impact of new policies and evaluation of current procedures. Bross et al. (1968) 

categorised screening models into two types, surface models and deep models. Surface 

models are those that consider the high level observable data such as incidence and 

mortality and estimate the effects of screening upon these trends using statistical 

analysis of available data. Surface models are useful for the evaluation of existing 

screening programmes and trials. Deep models by contrast consider the underlying 

process of the disease in the population that generate the high level trends, and are 

useful for assessing the impact of different scenarios that have not been investigated 

in clinical trials. It is these deep models that are necessary for the modelling work 
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required in this thesis, since we aim to investigate the effects of different screening 

policies given different levels of compliance to the programme. Deep models can then 

be further classified into analytical and computer simulation models, (Stevenson, 

1995). Analytical models use direct estimates of a disease to produce estimated 

outcomes, whereas simulation models estimate the course of the disease in a 

hypothetical population both with and without screening in order to compare the 

scenarios. These two different methodologies are discussed in more detail in turn 

below. 

4.1 Analytical Models 

Most analytical models of cancer screening follow the framework of a Markov chain. 

These models typically assume disease progression as split up into a number of states, 

only one of which can be occupied by anyone person at a time. For example states 

for breast cancer could include healthy, pre-clinical breast cancer (not clinically 

apparent), clinical breast cancer, and death from breast cancer. Transition to the 

next state is governed by the transition probabilities, which are not dependent on 

previous states but only upon the current state, and, when considering variations 

upon the basic model, possibly other factors such as time and age. 

The first stochastic model of a disease process was developed by Fix and Newman 

(1951). Their model comprised two illness states (living a healthy life and being 

under treatment for cancer), and two death states, (death from cancer, and death 

from other causes or lost to observation). The first models to incorporate screening 

strategies for early cancer detection were developed in the 1960's e.g. Zelen and 

Feinleib (1969), (as above). 

Among other such early work was that by Shahani and Crease (1977), who analysed 

two models to compare periodic with aperiodic screening strategies for the early 

detection of disease. The first model was a simple two state model taking each person 

from state So, no disease, to 51, disease, with a transition time distribution, f(t), 
that followed the Weibull distribution. Screening for disease took place at time :Ci 
with intervals di . Three screening strategies were compared on the basis of the 

number of screens until diagnosis, the number of false positives, the delay in disease 

detection and the ratio C1 : C2 , where C1 is the cost of screening and C2 is the cost of 

the delay in diagnosis. The three screening strategies compared were, X A : periodic 

screening intervals, X B : geometric screening intervals, and Xp: generated from the 

equation that follows: 
F(:Ci) - F(:Ci-d 

1 - F(:Ci-1) 
=p 

where p E (0,1). This last screening strategy matches the screening intervals to the 
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behaviour of the hazard rate r(t), (the probability of getting the disease each year), 

represented by 
F(t) 

r(t) = 1- F(t)' 

The analysis of this base model indicated that the last screening strategy, Xp was the 

most effective at detecting the disease under the assumptions of the model. 

A second model then built on this first simple model, and this time assumed three 

states, no disease, disease, and death. Death is presumed to occur from either of the 

other two states, and progression from no disease to disease takes place in the 

absence of death. It was assumed that death and disease process were independent of 

each other. The results from this model were similar. 

These basic models have a number of limitations however, for example most diseases, 

including breast cancer, tend to reach a symptomatic stage after a period of time 

when the patient would self refer, and it is also not appropriate to assume cancer and 

mortality are independent, since cancer can lead to early death particularly if left 

untreated. 

4.2 Simulation models 

Computer simulation models may also, and often do, follow a progressive state 

Markovian structure but tend to be more flexible and incorporate more detail in the 

modelling process than analytical models. In general, simulation models are capable 

of modelling more complex scenarios with more flexible assumptions than analytical 

models, but this does mean that the extra complexity requires more detailed data to 

inform the model, (Stevenson, 1995). 

Simulation models themselves can vary in their approach from global modelling of 

flows of people through states dependent on a small number of factors alone s11ch as 

age, (macrosimulation/systems dynamics), to the modelling of individuals through 

their life histories and cancer progression dependent upon previous events and 

individual characteristics, (microsimulation/ discrete event simulation). Both methods 

offer the ability to demonstrate the relationships between variables and explore the 

effects of different scenarios and interventions. However, microsimulation may be 

more suitable for the modelling of cancer screening than macrosimulation, 

(Stevenson, 1995), since macrosimulation assumes a single homogeneous population 

which is unrealistic in todays society, and secondly it may be of use to investigate 

characteristics other than age to select groups for screening, (e.g. at risk groups). 

Even when working to model the same trends, different choices of methodology can 

produce large differences in modelled outcomes. Boer et al. (2004) discuss the 
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differences in methodology employed by seven groups all considering the impact of 

screening and adjuvant therapy in the US between 1975 and 2000. They found that 

while six of the seven models were life history models, the assumptions and 

parameter estimation varied between them, and these variations led to large impacts 

on the surveillance of population trends considered. 

Kamon (2003) recently compared the methodologies of Markov modelling and 

discrete event simulation (DES) for the economic evaluation of adjuvant therapies as 

treatments to help prolong relapse after primary breast cancer. The comparison of 

two models that were built as far as possible with the same structure and similar 

assumptions, was based upon the models ability to be flexible and the amount of 

analytical input required to run and evaluate the models. The discrete event 

simulation took three days to run, in comparison to the Nlarkov model which only 

required an hour, and the former was also more difficult and time consuming to 

evaluate. When the outcomes of the models were compared, although there was 

variation between the two models, these differellces were cOllsistently in the same 

direction. When overall results were compared these results balanced each other out 

to produce extremely similar cost-effectiveness curves. Kamon concluded that while 

DES is more flexible, the Markov model was easier to develop and test, and produced 

similar results, so it was only useful to apply DES in special circumstances. One of 

these circumstances is when the areas of increased flexibility in DES apply to large 

proportions of the model, e.g. a large number of states with state-entry dependent 

probabilities. 

Knox (1973) produced one of the earliest yet very comprehensive simulation models, 

which he later revised to include fewer states due to the complexity of information 

required to populate the model. According to Stevenson (1995) it was Parkin (1985) 

who proposed the idea of microsimulation for the modelling of cancer screening, in 

this case cervical cancer screening, and much work has subsequently focused on such 

an approach. This includes a working group at Erasmus University ill the 

Netherlands who have developed a general framework for the microsimulation 

modelling of cancer screening named MISCAN (MIcrosimulation SCreening 

ANalysis), (Boer et al., 1998). This model has been applied to many areas of cancer 

screening over the years, including considering the Co:::;t efi"ectiveness of shortening the 

screening interval of the NBS breast screening programme, (Boer et al., 1998). 

MIS CAN simulates the life histories of women both with and without different 

screening policies to compare the effects. The course of breast cancer is simulated as 

a Markov progression from no disease, through five pre-clinical states, and on to 

clinical disease. The pre-clinical states included an in-situ state and four invasive 

states according to the size of the tumour. It was assumed that if the cancer was not 

diagnosed then progression would take place to the next state. The two sink states in 
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the model were death from breast cancer and death from other causes, as is typical in 

such simulations. The time in pre-clinical states was assumed to be exponential, and 

the rates of progression to clinical disease were inferred from UK data. The 

sensitivity (the proportion of true positives detected within the subset of positive 

patients in the population that were tested) of mammography tests was assumed to 

be constant within each pre-clinical stage but increased with progression through the 

states from 0.4 to 0.95. lVlortality and cost information were estimated based upon 

UK data sources, and attendance was modelled by assuming a percentage compliance 

reducing with age from 74.2% to 67.9%. Two scenarios were considered, shortening 

the screening interval of the UK screening programme from three to two years, and 

extending the age of final screening from 64 to 69 as standard. The main outcome 

measures of the model were the number of deaths prevented, the number of life years 

gained, and the cost of the screening scenario (per life years saved and per death 

prevented). The results suggested that while both scenarios would increase the 

number of deaths prevented (and the costs), expanding the age group eligible for 

screening would be the most cost effective policy. 

A group of researchers in New Zealand produced a very similar model to the 

MIS CAN model which used some of the same inputs and structure, in order to 

consider the benefits of population screening for breast cancer in New Zealand which 

has a similar cancer burden to the UK, (Szeto and Devlin, 1996). The model which 

was named MICROLIFE, simulates the same female population twice, with and 

without screening, and compares the cost effectiveness to the health service of 

treatment per discounted life saved. Again, the model splits the progression of cancer 

into different pre-clinical stages, with deaths from other causes informed from life 

tables, this time based upon the population of New Zealand with deaths from breast 

cancer removed. Attendance at the screening programmes was assumed to be 75%. 

When researching the costs of treatment, the authors found evidence of a wide rallge 

of treatments for breast cancer even within similar clinical groupings, which brought 

out the variability introduced by patient choice and physician preferences. This 

variation made the costs of treatment difficult to estimate and simulate. Their results 

revealed that, according to the model, screening women aged 50-64 every 3 years 

would be the most cost effective policy for New Zealand. Interestingly, this is the 

same policy that was standard across the UK until the upper age for screening was 

increased to 69 in recent years. Although screening every 3 years was the most cost 

effective policy considered with the modelling work, screening more frequently 

(biannually) was shown to save more lives. 

An example of a Monte Carlo simulation to study breast cancer screening is work by 

Jansen and Zoeteleif (1997). This simulation was built with the aim of examining the 

benefits of various screening policies versus the risks associated with screening, and 

used real data from a study in Sweden (the chosen country for the application of the 
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research). The simulation took flows of women through time, and calculated the 

difference in tumour diameter between the spontaneously presented cancer 

populations and screening discovered populations in order to infer the differences in 

survival. Risks associated with breast screening were estimated using additive and 

multiplicative models informed from a study of TB re-weighted to apply to breast 

cancer, and other relevant input distributions were derived from literature that 

analysed the results of the Swedish two county trial of breast cancer. 

The model was run for a group of one million women ten times, (and for mortality 

calculations was run for 133,000 women thirty times). The results showed that the 

optimal screening strategy was age dependent, with smaller screening intervals for 

younger women. Sensitivity analysis revealed little difference between additive or 

multiplicative assumptions of radiation risk in mammography screening, and 

assumptions regarding the tumour growth rates, age of tumour onset, age dependent 

survival, and the sizes of tumour detection, could alter the simulated lifetimes gained 

by screening by as much as 12, 10, 8, and 17% respectively. Screening was found to 

be optimal (overall) for women between the ages of 40 and 75, (screening older 

women lowered the net benefits by uncovering more dormant tumours that would not 

develop into clinical breast cancer, while screening younger women would increase the 

number of breast cancer cases due to screening exposure). Jansen and Zoeteleif 

conclude that it is more effective to screen the whole population (for breast cancer) 

less often than to screen a fraction of the population more frequently, thus it is 

important to have a high level of attendance at screening sessions. 

Parmigiani (1998) used a stochastic compartmental equation elifferellC.:e moelel to 

study cost effective breast cancer screening strategies in the USA. The model took 

women through states of no cancer, detectable asymptomatic (pre-clinical) cancer, 

symptomatic (clinical) cancer, and death. Death can be reacheel from any of the 

other states, but progression through the cancer states was assumed to be in oreler. 

Transitions and sojourn times were estimated from a range of clinical trial anel 

population registry data, and since times in and transitions to, the pre-clinical stage 

are unknown, these were estimated based on three different assumptions from 

previous research. Prognostic factors considered by the model were the size of the 

tumour, the number of observed metastases in the lymph nodes, and oestrogen 

receptor status (positive or negative). A range of assumptions were considereel for the 

survival transitions and for mammogram efficiency, and QALYS were used to 

evaluate health outcomes and associated costs. Parmigiani found, in line with work 

discussed above, that it is most appropriate to screen more frequently at lower ages. 

The models reported above all simulate breast cancer, and screening for breast cancer 

using clinically relevant stages of breast cancer and estimating parameters based 

upon a range of results from clinical trials and practitioner informed assumptions. A 
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second approach is to produce a statistical numerical model of breast cancer natural 

history and how screening would interrupt the progression and then to estimate the 

parameters of this model through fitting the input variables to observed datasets. 

This was the approach taken in early work by Schwartz (1978) who used a numerical 

simulation model to analyse the effects of screening interventions upon the disease 

burden from breast cancer. Screening took the form of a mammogram, clinical breast 

examination, and/or self examination. Progression through the no cancer (healthy), 

pre-clinical, and clinically surfaced states through to either death from cancer or 

death from other cases was described by a series of numerical equations. Tumours 

were assumed to grow exponentially, with one of two doubling time distributions (one 

assuming a higher proportion of slower growing tumours than the other). Two 

assumptions were also tested relating to the independence or dependence of 

mammogram sensitivity (the proportion of true positives detected within the subset 

of positive patients in the population that were tested) upon the result of the 

previous screen. All parameters of the model were fitted to observed data relating to 

clinical surfacing times and lymph node involvement using a pattern search 

procedure. The results revealed that the choice of growth rate distribution affected 

the results of the implied screening sensitivity by size of the tumour, especially for 

small tumours (less than one centimetre diameter), both for mammography screening 

and clinical breast examination sensitivity. When comparing different screening 

strategies the work implied that screening should be carried out as often as possible 

(to save the most lives), with clinical examinations starting at age 40, and adding 

mammography screening from age 50 through to age 70. 

More recently Baker (1998) used a similar approach to fit their suggested statistical 

model of breast cancer screening to five datasets. The aim of their work was to find a 

cost effective screening strategy while minimizing life years lost to breast cancer. The 

model assumed Gompertzian tumour growth, with detection and self presentation 

both related to the size of the tumour. Cancer survival was first fitted to one of the 

datasets, since other model parameters relied upon it, and the resultant distribution 

was found to be dependant upon tumour size and growth rate. Using maximum 

likelihood estimation, the remaining model parameters were then fitted to the other 4 

datasets. The results found that, amongst other findings, tumour detection was not a 

function of patient age (for the age group 50-64 they considered), and the model 

validated well against previous research and published findings. Of the screening 

policies considered under the fitted model, the authors concluded that the most cost 

effective population based screening strategy for the UK would be screening from age 

48 to 61.5 with four screens in between spaced more frequently at lower ages. In 

conclusion the authors note that this optimal policy follows very closely what was the 

national screening policy in the UK at the time (screening at ages 50-64 at 3 yearly 

intervals), and that if given a choice whether to screen once more at a higher or lower 
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age, it would be most cost-effective to screen at the lower age (47-64 years). Their 

results agree with previously reported findings that screening is more effective at lower 

ages if conducted more frequently (Baker, 1998; Parmigiani, 1998). However their 

results differ from those of Boer et al. (1998) who recommended increasing the ages of 

screening up to 69 rather than decreasing the screening interval, although they did 

not report having analysed the effects of reducing the first invited age for screening. 

4.3 Psychological modelling approaches 

Using modelling in the social sciences is a relatively new advance, with its widespread 

use not taking hold until the 1990's, (Gilbert and Troitzch, 1999). Due to its ability 

to model individual variation, simulation is more relevant in order to investigate how 

individual characteristics affect the behaviour of the whole population, and to better 

understand interactions between individuals. Models have been built with the 

purpose of simulating choices of partner, demography changes over time, and the 

simulation of decisions and diagnosis. Arguably the most common use of simulation 

in the social sciences, however, is to test out different theories of human interaction 

and behaviour in a modelled society in order to evaluate the emergellt dfects Oll the 

population as a whole. 

Whilst the early work in the social sciences used techniques such as game theory, 

cellular automata, and system dynamics, these early attempts were not popular since 

they were simulating predictions, whereas psychologists and social scientists tend to 

be more interested in the understanding and explanation of social phenomena, 

especially since in some cases a prediction may well affect the outcome in question. 

Since then a number of techniques have been llsed to fulfil this criteria including 

microsimulation in the 1980's, multi-level models and multi-agent models in the 

1990's for the analysis of social interactions, and more recently learning and 

evolutionary models for the exploration of language development and altruistic 

behaviour. Multi-level models and agent based models have proved particularly 

useful for the modelling of health risk-taking behaviours due to their ability to 

contain both a fixed element unchanging across communities (e.g. an average 

correlation) and a random part (2nd level), containing variances across different 

communities or individuals, see eho et al. (1999) for more detail. For more 

information about the various methods employed in the social sciences for the 

modelling of different social behaviours and interactions the reader is referred to a 

book entitled 'Simulation for the Social Scientist' by Gilbert and Troitzch (1999). 

Little work has been identified that includes the modelling of behaviour in standard 

Operational Research models (such as cancer screening models) at more than a global 
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level, i.e. the percentage of patients who attend each screen. 

As part of their work to devise optimal scheduling techniques for breast cancer 

screening Baker and Atherill (2002) produced a model to estimate compliance of the 

public based upon data on 17,709 patients' attendance histories for up to five 

consecutive screens. The data were provided by the Centre for Cancer Epidemiology 

in Manchester. The model was based upon initial observations of the dataset that 

revealed previous attendance made current attendance more likely, with the fir:;t 

choice being particularly influential, and this influence being reduced with successive 

invitations. Their proposed model then gave extra weight to the first attendance/noll 

attendance for each woman, and geometrically down-weighted the effects of previous 

attendance upon the calculation of the probability of current attendance. Age was 

also observed to have a small negative correlation with attendance, so age was also 

included as a parameter in the model. Baker and Atherill's final proposed model is 

outlined below. 

The random variable X denotes attendance such that Xi = 1, if attendance takes 

place at the ith screen, and Xi = 0 otherwise. The model was then proposed for the 

logit of the nth screen, Sn, of the probability of attendance at the nth screen, Pn, 

such that for n > 0, 

So = a + "( + 'fIa 

and 
1 

Pn = ----:-
1 +Sn 

where a is the age of the woman and a, (3, p, 'fI, ,,(, q and c are constant parameters. 

The constant parameters were found from the data using the maximum likelihood 

method, and these values are given in Table 4.1. The model is an interesting concept 

and provides a nice bridge between the simple assumptions of percentage attendance 

usually applied in simulation models for cancer screening, and psychological models 

for the prediction of behaviour. The work reported in this thesis, therefore, decided 

to incorporate this equation for the prediction of attendance at breast screening as a 

method for modelling individual attendance (as opposed to assuming percentage 

probability attendance) but without the added work necessary to incorporate a 

psychology theory and supporting research. 

Another notable exception is recent work by Brailsford and Schmidt (2003), who 

incorporated behaviour of the patient into an existing model for the examination of 

screening for diabetic retinopathy. The motivation behind the work was the finding 

that screening policies were highly sensitive to assumptions about compliance, 

64 



Model Parameter Value 
a 2.0010 
{3 -1.1740 
q 0.454 

I 0.4297 
c 0.3960 

TJ -0.0263 
p 0.7158 

Table 4.1: Parameter values for Sn in Baker and Atherill (2002) 

(Davies et al., 2000). Each time an individual was invited for screening their 

compliance probability was calculated as, 

compliance = v x m x p 

where m is the motivation to comply, sampled as either low (0.6), medium (0.9) or 

high (1.0), the parameter v represents a scalar to deal with the history of compliance 
such that v = 1- (O.l)no.o fpreviousvisits, and p the approximated output of an agent 

based model named PEeS. PEes is an architecture developed by Schmidt (2000) for 

the individual modelling of human behaviour. PEeS incorporates four classes of state 

variables, physical, emotional, cognitive, and social status. Two different modes of 

behaviour can be modelled, named 'reactive' and 'deliberate', where the former is the 

intrinsic low level behaviour assumed to be modelled by a set of rules or equations, 

and the latter refers to deliberate behaviour involving the conscious pursuit of goals. 

In Brailsford and Schmidt (2003) the equations and relations chosen were arbitrary 

and the aim of the work was to investigate the effects of deeper modelling of human 

behaviour within a discrete event simulation, rather than to produce a model that 

would necessarily accurately represent attendance behaviour. The results 

demonstrated variability in the outcome (years of sight saved), with different 

behavioural parameter assumptions, and importantly, variation when compared to an 

assumption of a fixed percentage attendance. 

While it has been pointed out that system dynamics approaches are less useful to the 

study of breast cancer screening strategies, (Stevenson, 1995), the method has been 

applied to breast cancer screening in an interesting study that considers the 

interactions between the capacity of a screening unit, the number of regular 

mammograms performed by a radiographer, the quality of a mammogram, the 

location of screening units and the participation of the public (Gunes et al., 2004). 

The idea is that if a radiographer performs more mammograms more regularly their 

performance increases, thus leading to the detection of more cancers and saving more 

lives. However, if a particular radiographer is very busy then this implies that the 

screening unit is at capacity which could lead to queues and delays in the system 
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leading to fewer lives saved, and this could be further compounded by less 

participation from the invited individuals. Gunes et a1. (2004) also consider the 

interactions between the location of the screening units, and ease of 

access/participation for eligible women (local versus central screening policies). Three 

sets of analysis were performed upon the model to assess the effects of improving the 

detection of breast cancers through mammography and the interaction between high 

quality readings and high waiting times alongside service decentralisation which could 

lead to more access but potentially at a lower quality. Their results revealed that au 

increase in population participation would only be beneficial if the system has enough 

capacity to cope with the increase in demand, this would aid the accurate reading of 

mammograms and the speedy diagnosis of further tests, as well as encouraging future 

participation. Decentralisation of screening units was only found to be beneficial if 

the quality of the readings could be maintained so as not to produce too many false 

positives and negatives that would both cost either lives or facilities and money. 

Lastly, Wu et a1. (2004) used a computer model of breast cancer to analyse the cost 

effectiveness of interventions to increase up-take among non compliant women in the 

USA. During their review of literature concerning interventions to increase 

mammography uptake published between 1999 and 2002, the authors identified six 

papers that studied the US population. They then grouped the interventions into 3 

types, telephone counselling, physician based interventions, and clinic based 

interventions. Tailored telephone counselling involved qualified personnel using 

techniques based upon psychological theory, such as the Health Belief Model and the 

transtheoretical model, to help women overcome their barriers to mammography 

screening. Clinic based or physician based interventions involved more training for 

physicians to improve their counselling and interpersonal skills, and reminder calls 

from the clinic that an appointment is imminent. 

Wu et a1. took the mean pre and post compliance rates of the studies and any 

estimates of associated costs of the interventions, and used this analysis to compute 

inputs to a model of breast cancer control programmes named CAN*TROL. 

CAN*TROL is a computer simulation model which simulates the cost effectiveness of 

cancer control programmes. It moves a hypothetical population of women through 

one of 109 states and requires inputs relating to population statistics and cancer 

information such as incidence, prevalence, stage distribution, and treatment costs. 

The model predicts averages and not individual differences, and thus compliance with 

screening strategies is not modelled directly, the effects are instead inferred by the 

differences in stage proportions input to the model as implied by any change in 

compliance. 

Results revealed that the most cost effective policy to introduce in order to target 

non-attenders on a large scale would be telephone counselling, however clinic based 
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interventions, while costing more, saved more lives (reducing breast cancer related 

mortality by 10.7% in comparison to a 6.5% reduction associated with telephone 

counselling interventions). When conducting a one way sensitivity analysis using the 

range of compliance and cost information, unsurprisingly, the most sensitive 

parameter to the cost effectiveness was the post intervention compliance rate (the 

interventions will only be cost effective if they produce an increase in compliance). 

The papers analysed by Wu et al. varied considerably in their success at increasing 

compliance rates in the intervention groups with increases on baseline compliance 

rates of as little as 2% above the rate observed in the control group in one study, up 

to 27% in another. 

4.4 A chosen modelling approach 

The aim of the research reported in this thesis was to investigate the cff"ects of 

different assumptions of attendance behaviour at invited mammography screening in 

the UK, and compare the magnitude of any difference arising through different 

assumptions with those found by other modelling assumptions such as the tumour 

growth pattern. 

In order to investigate this research aim we decided to build a discrete event 

simulation (DES) model of breast cancer and mammography screening for breast 

cancer. This simulation method was chosen due to the need to model women at an 

individual level if behaviour of each woman is to be included, and also clue to the 

flexibility that it would provide for this purpose. DES is also a common tool for the 

Operational Researcher, and one of the aims of the research is to investigate 

methodologies for incorporating the modelling of human behaviour into everyday 

models and existing popular methodologies within this discipline. 

Behaviour within the simulation is controlled by individual attributes sampled for 

each woman, and the values of these attributes then influence her choice behaviour 

such as whether or not to attend for screening in a way suggested by psychological 

theory (see Section 2). The chosen psychological theory to be considered was the 

Theory of Planned Behaviour (please see Chapters 2 and 3 for a description ancl 

explanation as to why the TPB was thought to be most appropriate). A second 

model, (Baker and Atherill's compliance model as described above), that used past 

behaviour to predict attendance at mammography screening, was also made available 

as an alternative behaviour model to use within the simulation. These two methods 

are compared with and contrasted against two methods for assuming percentage 

attendance named 'global' and 'local' percentage attendance (please see Chapter 6 for 

a full description and definition). 
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Modelling behaviour in this way was deemed as most appropriate since it models a.t 

an individual level as required, and also since the method is simple, and does not 

require knowledge outside DES. Furthermore, due to the psychological theories 

considered at this time there was no necessity to model interactions between women, 

but instead the simulation treats each individual separately as is the case in DES. 

The next Chapter (Chapter 5) describes the structure of the simulation that was 

built to investigate the research aims, and this is followed by Chapter 6 which goes on 

to explain how the simulation variables and parameters were populated. 
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Chapter 5 

A Discrete Event Simulation of 

Breast Cancer 

A three phase discrete event simulation (DES) model has been built to model breast 

cancer and breast cancer screening policies, and it is this model that has been 

enhanced in order to include behavioural characteristics of the patients considered. 

The model is built in Microsoft Visual Basic 6.0 (SP5). 

A discrete event simulation was chosen above other methods of modelling and 

simulation due to the need to model individual women with many attributes that 

affect their flow through the system. For further discussion of other modelling 

techniques please see Chapter 4. 

5.1 The Three Phase Approach 

The DES simulation runs using the three phase approach. This approach is so called 

as the simulation is run, (repeatedly until the end of the simulation), in three 

consecutive phases labelled A,B, and C, respectively. 

When the simulation is run, the A phase is begun first. In this phase, also known as 

the time scan, a search is made of all events which are scheduled and finds the next 

event(s) that are due, makes a note of them, and moves the simulation clock forward 

to this point in time. An event is an action upon an entity (in this case a woman) in 

the simulation that has been scheduled, e.g. cancer onset, or an invitation to 

screening. For example, the next scheduled event may be that a woman is due for 

screening at time 35 and so the A phase would make a note of this as the next event 

to take place, and move the clock to time 35. 

Once the next event(s) due in the simulation have been identified, the B phase 
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begins. In this phase of the simulation the 'B activities' that are due are then 

executed. B activities are operations that have a start or finishing time that can be 

predicted in advance, in this example invitation to a screening session at a particular 

age. Table 5.1 shows the B activities for the current breast cancer simulation model. 

Activity 
1 Develop cancer 
2 Be invited to a mammography screening session 
3 Self detect the tumour 
4 Die from breast cancer 
5 Die from other causes 

Table 5.1: The B activities 

Finally, conditional activities, labelled 'C activities', whose conditions have been met, 

are executed in the simulation. These are activities that may be conditional on factors 

other than the simulation clock. C activities may be dependent upon parameters such 

as other events having occurred or resources that are available. At present, however, 

there are no C activities within the breast cancer simulation model. Instead, if 

conditions are satisfied, the dependent events are then scheduled. For example, death 

from breast cancer is scheduled upon completion of the activity 'develop cancer'. 

Once all B and then all C activities that were due have been executed, the simulation 

then begins again at the A phase. This process is repeated continually, unless the 

system clock has reached the end of the specified simulation length, (default 100 

years), or no more activities are scheduled. 

5.2 Model Structure 

No ---. Death 
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- r--
From Other 

Cancer (/) 
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Figure 5.1: Model Structure 

Figure 5.1 outlines the structure of the model. Each woman is taken through time 

from birth until death. During the course of her simulated life she may, or may not, 
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develop breast cancer, be invited to mammography screening, or attend a screening 

session. 

If breast cancer develops then it could be detected either by mammography screening 

or by self detection, (through breast self examination, or through the development of 

clinical symptoms), both methods of detection may lead to 'cure' of the disease, or 

subsequent death from breast cancer, (unless natural death is scheduled to precede 

this). Whether a patient can ever be completely cured of breast cancer is difficult to 

determine since metastasis and death have been shown to appear up to 25 yea.rs after 

treatment for the primary tumour, and it is not until after this time that death rates 

from breast cancer patients begin to mirror that of the rest of the population, 

(Yakovlevet al., 1999), for more information please refer to Section 6.5. 

At the beginning of the simulation each simulated woman is provided with a natural 

age of death, this is taken from UK life tables with deaths from breast cancer 

removed. Death for each woman then occurs at this age unless breast cancer 

develops, is not cured, and shortens her life span. Death from other causes can occur 

when the woman is in any other state of the model. 

Screening for breast cancer occurs at ages specified by the user of the simulation 

model. The start age, end age, and intervals for screening are set by the user and the 

first screen is scheduled for all women in the simulation at the start of the model run. 

The probability of tumour detection at the screening session is based upon the si7:e of 

the tumour at that point in time. The probability density curve of detection at 

different sizes is estimated from literature, please see Section 6.4 for details. 

Each time a woman is called for screening, whether or not she attends is a functioll of 

her behavioural attributes. These attributes are stored in a class variable labellecl 

'behaviour'. The behaviour class stores each woman's behavioural attributes which 

include the five base elements of the Theory of Planned Behaviour, (see Section 2.2.5 

for an explanation), and the seven parameters of Baker and Atherill's Compliance 

model, (see Section 4.3). 

If the Theory of Planned Behaviour (TPB) is selected as the behavioural model, then 

for each simulated woman the value of three of the base elements of the TPB combine 

to predict the intention to attend for screening, and then the behaviour for 

attendance, in a manner suggested by literature, (Rutter, 2000). Otherwise, if Baker 

and Atherill (2002)'s compliance model is selected, then once invited for screening the 

model will calculate a probability of attendance dependent upon her previous 

attendance and the parameters of the compliance model, please see Section 6.6 for 

more information. 

Two further options for the modelling of attendance behaviour are provided, and 

these are based upon more traditional percentage attendance assumptions. If either 
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option is selected then the user is invited to specify the percentage attendance that 

they wish to assume. The first option is that of 'local' percentage attendance, and the 

second a 'global' percentage attendance assumption. Local percentage attendance 

sets the probability of attendance at each invitation, so, for example if 70% 

attendance has been requested by the user, then at each screen a random number will 

be sampled and if less than or equal to 0.7 then the simulation will assume 

attendance. Global percentage attendance on the other hand sets the probability of 

attendance at each screen for each simulated woman at a global level, such that the 

random variable remains constant for each woman throughout the simulation. 

Therefore, although both percentage attendance options may ultimately lead to the 

same percentage attendance, in the case of global percentage attendance it is always 

the same simulated women who attend or do not attend at invited mammography 

screening, whereas for local percentage attendance a different subset of women may 

attend at each screen. 

If a woman develops cancer then, if it is not detected by mammography screening, it 

will present naturally. The time of natural presentation is determined by the time it 

takes her individual tumour to reach a sampled diameter, and is scheduled at the 

start of the simulation. The sizes of natural presentation of breast cancers are taken 

from published literature before mammography screening was commonplace, see 

Section 6.4. 

VB classes are used to manage the scheduling of tasks and facilitate the search for 

the next event. Classes are also used to store entity characteristics, for example 

growth parameters, behavioural attributes, and run statistics are all managed with 

separate classes. For a complete description of model code, and how the classes fit 

together, please see Appendix A. 

5.3 Model Inputs, Outputs, and Interface 

The user can select different options with which to run the model, and all major 

variables within the model may be adjusted by the user. A progress bar is provided 

as to how far along the simulation is, and once finished the user can select whether or 

not to view the summary results of the simulation. 

When first run, the model presents the user with a number of input options, each of 

which have a default value. The options are separated into 5 groups each displayed 

on different tabs, labelled 'run options', 'cancer options', 'behaviour', 'screen', and 

'self detection' respectively. These five groups are described in turn below. 
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5.3.1 Run Options 

The first set of options available relate to the run options that may be set. Here it is 

possible to specify the number of iterations that the user wishes to run in order to 

gain average results. If more than one iteration is requested then the results that are 

presented are an average of the iterations that have been carried out. The default 

value is set at 300 since in validation trials it was found that around 250 iterations 

led to reasonable convergence of output statistics, see Section 6.9. It is also possible 

to change the number of women who are simulated in each of the iterations specified, 

this enables the opportunity to conduct one large iteration with more women instead 

of averaging over several iterations with fewer women, should this be required (due to 

computing constraints etc). 

A user can also select where they would like outputs of the simulation to be recorded 

by selecting the folder where they would like the text file of summary statistics that 

are produced to be written. This summary text file is a COlllma separated file that 

displays all of the key statistics from each iteration of the simulation. An option 

button can also be found on this tab in order to request detailed results to be 

collected. Here, a text file will be produced for each iteration that stores information 

regarding the progress of each entity at different time steps in the model, as well as 

their key attributes such as age of cancer onset, cancer growth parameter, time from 

onset to detection, screen or natural presentation etc. These more detailed comma 

separated text files are useful for the verification and validation of the model. 

5.3.2 Cancer Options 

The next tab along contains user options relating to breast cancer itself, its 

prevalence and growth rate. Here the user can select the proportion of the simulated 

population that will be scheduled to have breast cancer. The default proportion is 1 

since this maximises the efficiency of the model by comparing screening strategies 

within the breast cancer sub population rather than the larger population as a whole, 

due to requiring less computing power and time. 

This is also where the user may select which type of tumour growth model they would 

like to assume for breast cancers. Four patterns of growth are available, exponential, 

Gompertzian, logistic, and a modified Gompertzian that allows stochastic growth 

rate rather than a fixed growth parameter (multiple) from onset. All four growth 

models allow individual variability regarding growth rates. For more details regarding 

the differences between the growth patterns and parameters please see Chapter 6. 
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5.3.3 Behaviour Options 

The third tab provides the choice of behavioural theory to be used in order to 

determine compliance with the screening strategy to be modelled. The user may 

select one of four options, the Theory of Planned Behaviour (TPB), Baker and 

Atherill's compliance model, or percentage attendance as specified (either local or 

global). 

The TPB is described in full in Chapter 2. Here the user may select to use this 

theory to model the attendance of individuals in the simulation at their invited 

screening appointments. For information as to how the TPB is approximated within 

the simulation please see Chapter 6. 

Baker and Averill's compliance model and its inputs are described in Section 4.3. The 

model is based upon a statistical analysis of attendance probability at UK screening 

units with the primary predictors being age and previous attendance patterns. 

Two options are provided for in order to model attendance as a percentage and these 

are labelled as 'local' and 'global' attendance as described above. 

5.3.4 Screening Options 

The screening tab presents the user with options for the screening scenario to be 

modelled. The user can select the start and end ages for screening and the desired 

screening interval (in years). It is assumed that all required screening strategies will 

consider fixed screening intervals. 

The user may also alter the assumed detection probability of a tumour by the size of 

the tumour. This may be done by entering different values for the cumulative Weibull 

distribution than those that appear as default. 

5.3.5 Self Detection Options 

Under the last tab the user may select to run the simulation with a higher probability 

of self detection/natural detection than is run as default. The default distribution 

(labelled 'Tabar data') for the size of natural presentation is taken from size 

distributions before screening for breast cancer was commonplace. A second option is 

provided for the user to select a distribution of sizes based upon more recent analysis 

by Michaelson et al. (2003a) which assumes a higher probability of smaller tumours 

than the default distribution, this change is thought to be due to the skew in the size 

distributions introduced by analysing a screened population. For more information 

and precise parameters please refer to Chapter 6. 
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5.3.6 Outputs 

The following statistics are recorded for each iteration of the simulation model. 

• The number of women who developed cancer 

• The number of women who did not develop cancer 

• The number and proportion of women whose cancers were screen-detected 

• The number of women whose cancers presented naturally 

• The number of tumours that remained undetected 

• The number of women who were invited to screening while they had breast 

cancer 

• The number of women who were not invited to screening while they had cancer 

• The number of women who attended screening at least once 

• Of those who attended, the average number of times they attended screening 

• The average diameter in millimetres of all cancers, screen-detected cancers, and 

self detected cancers, at presentation 

• The average time from cancer onset to detection of all cancers, screen-detected 

cancers, and self detected cancers 

• Of screen-detected cancers, the average number of years earlier the tumour was 

detected than the scheduled self detection date. 

• Of screen-detected cancers, the sum of the life-years gained through earlier 

detection. 

The above statistics and counts are collected for each iteration of a simulation and if 

multiple iterations are requested then the results window at the end of the simulation 

displays the averages across the iterations alongside the 95% confidence interval for 

this mean. Figure 5.4 provides a screenshot of the results window. 

If required, the individual iteration results are also available as a comma separated 

text file written to the results folder of the directory that the user specified at the 

start of the simulation. This file will be named 'SummaryResults.txt'. If detailed 

outputs were requested by the user then a comma separated file is produced for each 

of the iterations that were run. These files will be written to the same directory and 

will be named 'ResultsX.txt', where X is the iteration number. These files provide 

information about each of the women within the simulation, such as her scheduled 
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cancer onset time, sampled cancer growth rate, whether t hey were screen-detected or 

not , and the time from tumour onset to detection. The files also provide output aft l' 

each pass through of t he three phase procedure, giving the clock time and the state of 

each woman in the simulation at that time (no cancer, undetected cancer , 

screen-detected cancer, other detected cancer, dead from natural causes or dead from 

breast cancer). 

5 .4 User Interface 

A limited user interface is provided to the model operator. Upon starting the program 

executable an options screen is presented for choosing the various run options 

described in Section 5.3.1. Figure 5.2 below provides a snapshot of this screen. 

Once the model is run via the menu commands, the run-time screen displays the 

progress of the simulation. A bar tells the operator how far along the run is within 

the current iteration, and a counter enables the user to know how many of the run 

iterations requested remain. Figure 5.3 provides a snapshot of this screen. 

The last screen available to the user is the summary results screen. This provides the 

user with an overview of the simulation results, with t he average outcomes over the 

iterations requested together with 95% confidence intervals for the individual means. 

An example of this summary result screen can be found in Figure 5.4 . 

.c~~",~~,~ •. ' " v' •... ~,. .•. - ••• ". - , .~ . -.;;-~~-" .. ~,-.,.~ 

i~,!Ie.UJ~~m:!~~;~~~~~;;':~~~~~~..wI~I£liW;~ ~"',{::~j ~§LRl 
Fde Options 

["l..~JJEti...?nSl1 Cancer Options I Behaviour I Screening I SeU Detection I 

Iterations 

Number of Women 

Run Duration (Years) 

Save Outputs to 
C:\ 

Output-------, 

r Each Runs Detail and 
summary stats 

r. S ummafY statistics of 
each run only 

eil Documents and Settings 
Sien 
S Desktop 
eilAprilO6Dup[,cateRuns 
Q\ Aprd06DupilcateRuns 
t;;J CancerModel.NET ~ 

Figure 5.2: User Interface for Inputs 
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Run Progress I •••••• 

Run No. 3/4 

Figure 5.3: User Interface at Run Time 

,j:~~~l!~g~~ .. ~l:;1i·;"I='1",:~)\$~~~~~rk~·.~~~~q~l6~t.\ ,. "\ .' ,~! 1. 
'X 

Counts Average lower Upper 
bound bound 

Cancer 90 88.04 91 .96 

~4.~l: 
Se,een Detected (19.52:29.33) 18.5 13.6 23.4 

Sell Detected 57 57 57 

Un·Detected 14.5 11 .56 17.44 

Se,een invited while hod eonee' 46 38.16 53.84 

Nol lnvited 44 38.12 49.88 

Sc,een Attended (eve,.II) 72.5 59.76 85.24 

A,~~~~~tend.nces (0/ 5.03 4.68 5.37 

No Cancer 10 8.04 11 .96 

Tumour statistics 
(of detected) Average Size Average Time 

. (mm) cYrs) 

Average (All) 
21 .60 14.82 
(21.37:21 .84) (14.58:15.05) 

Screen 12.39 15.90 

Detected (10.04:14.75) (15.38:16.43) 

Self Detected 
24.19 14.39 
(23.23:25.15) (13.72:15.07) 

Life Years (of screen detected) 

Years Earlier 3.73 (2.57:4.89) 

Detected IC ___ ~~ ____ ] I 
Life Years 16.85 

Saved (15 .04:18.67) 

Figure 5.4: User Interface Results 
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Chapter 6 

Populating the Simulation Model 

Parameters 

This chapter aims to outline the research reviewed in order to populate the variables 

(epidemiological and psychological) within the breast cancer discrete event simulation 

model. 

The input variables for the model are split into four groups, those relating to the 

growth patterns of cancer, the detection of breast cancer, survival probabilities from 

breast cancer, mortality analysis, and psychological variables. These are discussed in 

turn below. 

6.1 Mortality Analysis 

In order to estimate any difference in life-years lost through different screenin§!; 

strategies, or modelling strategies, it was necessary to estimate the age of natural 

death (without breast cancer) for each woman in the simulation. 

Two life tables were constructed based upon the figures provided by the Office of 

National Statistics (ONS) for deaths by age band in England and Wales. Basic life 

table functions were calculated, the definitions of which can be found in Table 6.1. 

For a detailed explanation as to how a life table is constructed please see Siegel and 

Swanson (2004). 

The first life table was constructed based upon death from all causes in England and 

Wales. The data provided by the ONS was split into 20 age bands of roughly 5 years 

(see 6.1.1 for details). The width of the last age interval (n20, ages 90+), was 

estimated using the interval specific death rate Mgo+, and the fraction of the interval 
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it is assumed those who die in the interval live for, ago+, such that, 

This produced a maximum upper age of death of 117. This is in line with predictions 

of highest attained age for a cohort born in England and Wales in 1966 which is 

expected to fall in the range 116-123, (Thatcher, Summer 1999). 

Variable Definition Construction 
Xi The lower bound of the ith age interval in question (in N/A 

years) 

ni Width of the ith age interval in question (in years) N/A 
a Xi Fraction of the age interval lived by those in the cohort 0.5 

population who die in the age interval 

POPXi Estimated population in the age interval i ONS figures 
deaths xi Observed number of deaths in the age interval i ONS figures 

MXi Age specific death rate in interval i aeatns"'j 
pop",_ 

qXi Conditional probability that an individual who has niJHxi 

survived to start of the age interval i will die in the 
l+ni(l-aXi)Mx _i 

age interval. 

PXi Conditional probability that an individual entering 1- qXi 

age interval i will survive the age interval i. 

lXi Life table cohort population at the beginning of age P(Xi_l)l(Xi_ll 

interval i. 
d Xi Number of life table deaths in the ith age interval lXi - liTi±I) 

LXi Number of years lived during age interval i n (lXi -1 + aJ:idx ;) 

TXi Cumulative number of years lived by the cohort pop- T(J:i_l_ll + LXi 

ulation in the age interval and all subsequent age in-
tervals 

e Xi Life expectancy at the beginning of the age interval. l.xi 
7;;-

.. 
Table 6.1: DefimtlOns and denvatlOns of baSIC Me table flll1ctlOns 

In order to remove the probability of death from breast cancer from the life table a 

cause elimination life table was then constructed. Siegel and Swanson (2004) provide 

an explanation as to how to construct such a table and discuss the uses and pitfalls of 

the methodology. It is worth pointing out that cause elimination life tables may 

produce unrealistic results since by their nature they assume that eliminating the risk 

of breast cancer has no effect upon the risk of death from other causes. 

The basic life table functions were then recalculated as follows, (the same notation is 

used as can be found in Table 6.1, however when referring to the function for the 

eliminated table, superscript of "-be" will be used). 
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-be 
PXi 

-be 
qXi 

Z
-be o -

z-be 
Xi 

1 deathsxj ,be 
deathsxi 

PXi 

1 -be - PXi 

100,000 
-be z-be 

P(Xi-ni) (Xi-ni) 

z;;te 
(ni - fxJ + fxJ(x~~ni) 

where deaihsxi,be are the number of deaths in the interval i from breast cancer alone, 

and 

In order to construct a cumulative probability distribution to sample age of death 

from within the simulation, the following calculations were performed using 

information from this breast cancer eliminated life table. Since Zx provides the 

estimate of the number of survivors at the start of interval i, the cumulative 

probability of survival S(Xi + ni) to the end of interval i for the cohort can be found 

by, 

S(Xi) = l(Xi) . 

lo 

The cumulative probability of dying at the end of interval i, DXi, can then be found 

by 

The distribution is then sampled in the simulation by generating a random number 

between zero and one, (denoted by U), and approximating the value for D(U) using 

interpolation and assuming linear relationship as follows. 

If D(Xi) ::; U ::; D(Xi + ni), then, 

for i = 1,2,3 ... 19; U ::; D(X20). 

For the last interval a linear relation does not appear to be a reasonable assumption, 

(see Figure 6.1). Therefore Microsoft Excel was used to fit a modified exponential, 

E(x), to the last two data points, (at ages 90 and 117). In order to help ensure 

continuity, the gradient of E(x) at x = 90, (E'(X90)), and the gradient of D(x) 
between x = 85 and x = 90, were set to be as close as possible. E(x) and E' (x) took 

the following form, 

E(x) 

E'(x) 
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The method of least squares was used to fit E(x) to the data points provided by the 

life table for x = 90 and x = 117, and the gradient difference at x = 90 was included 

in the least squares error with a weight of 10. Microsoft Excel's solver found the 

minimum error solution, and therefore D(x), for x > 90, is approximated in the 

model as follows 

b(x) = 1.050 - 204.625e-o.071x for x > 90. 

Table 6.2 provides the resulting comparisons between values provided by the life table 

and those produced by E(x), and Figure 6.1 illustrates the curve produced by the 

modified exponential. 

This leads to an approximation of x (age) at U > D(X20) of 

b-1(u) = _In [(U - a) /)3] 
'Y 

for U > D(X20). 

6.1.1 Mortality Summary 

The age of natural death, (x), is sampled for each entity in the simulation as follows, 

1. Generate U that follows Uniform(O, 1) 

2. If U :::; D(X20), then x = D(xi+n~~-D(x;) (U - D(xi)ni), 
D(Xi) :::; U :::; D(Xi + ni)' 

3. Else if U > D(X20), then x = _In[(U-a)/,6J. 
'Y 

for i = 1,2,3 ... 19; 

Variables E(x) Objective Error squared 
x=1l7 1.000010 1.000000 9.283E-ll 
x=90 0.707525 0.707520 2.837E-ll 
Gradient at x=90 0.024350 0.024371 4.398E-09 
Sum of errors squared 4.519E-09 

Table 6.2: Fit of E(x) to D(X20) and D(X20 + n2o) 

81 



R 0.9 
c 
.<: 0.8 
OJ .g 0.7 

'0 0.6 

~ 0.5 
<= 
<II 
'C 0.4 
<II 

~ 0.3 
'" ~ 0.2 

.3 0.1 . .• . 
.. ' 

.... .' 
•• 

~. 

./ .... 

............... ... 
O~~~~~~~~~~~------,---------r--------.--------~ 

a 20 40 60 80 100 120 

,--____________________ --, Age. x 

I .. · .. .. Life Table --Exponential 1 

F igure 6.1: Cumulative Density Function of Mortality as Estimated From the Cause Elimi
nated Life Table 
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(X) 
w 

Age interval 
<1 
1-4 
5-9 
10-14 
15-19 
20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 
80-85 
85-90 
90+ 

x 
0 
1 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

n ax 
1 0.1 
4 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 

26 0.5 

pOPx deathsx Mx qx Px lx dx Lx Tx ex 
286578 590 0.002059 0.002055 0.997945 100000 205.4969 998.05 8100715 81.00715 

1190935 315 0.000264 0.001057 0.998943 99794.5 105.526 398967 8000900 80.17376 
1589671 197 0.000124 0.000619 0.999381 99688.98 61.75066 498290.5 7601933 76.25651 
1682098 280 0.000166 0.000832 0.999168 99627.23 82.88465 497928.9 7103643 71.30222 
1605366 833 0.000519 0.002591 0.997409 99544.34 257.9256 497076.9 6605714 66.35951 
1604841 1243 0.000775 0.003865 0.996135 99286.42 383.7592 495472.7 6108637 61.5254 
1675878 1442 0.00086 0.004293 0.995707 98902.66 424.5879 493451.8 5613164 56.75443 
2008254 2028 0.00101 0.005036 0.994964 98478.07 495.9796 491150.4 5119712 51.98835 
2095368 2649 0.001264 0.006301 0.993699 97982.09 617.4018 488366.9 4628562 47.23886 
1900649 3549 0.001867 0.009293 0.990707 97364.69 904.8007 484561.4 4140195 42.52255 
1687178 5066 0.003003 0.014901 0.985099 96459.89 1437.385 478706 3655634 37.89797 
1722995 7849 0.004555 0.022521 0.977479 95022.5 2139.975 469762.6 3176928 33.43343 
1640427 11921 0.007267 0.035687 0.964313 92882.53 3314.672 456126 2707165 29.14612 
1299609 15800 0.012158 0.058994 0.941006 89567.85 5284.006 434629.3 2251039 25.13222 
1199502 22884 0.019078 0.091047 0.908953 84283.85 7673.801 402234.7 1816410 21.5511 
1125490 33374 0.029653 0.138032 0.861968 76610.05 10574.62 356613.7 1414175 18.4594 

998878 43961 0.04401 0.19824 0.80176 66035.43 13090.88 297449.9 1057561 16.01506 
785717 44343 0.056436 0.247291 0.752709 52944.55 13092.72 231990.9 760111.5 14.35675 
458664 32790 0.07149 0.303252 0.696748 39851.82 12085.16 169046.2 528120.6 13.25211 
269073 20807 0.077328 1 0 27766.67 27766.67 359074.4 359074.4 12.93185 

- ~~-

Table 6.3: Life table for women, based on death from all causes, 2002 



(Xl 
~ 

Age interval 
<1 
1-4 
5-9 
10-14 
15-19 
20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 
80-85 
85-90 

JlQ±- ----

x 
0 
1 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

-

n a -Oe x 
1 0.1 
4 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 
5 0.5 

27 0.5 
-- '----

deathsx,all deathsx,be poPx-be M -be qx- be -be l -be ix-be L -be T -be -be 
x Px x x x ex 

590 286,578 0.002059 0.002055 0.997945 100000 0.90 99815 8183092 81.83 
315 1,190,935 0.000264 0.001057 0.998943 99795 2.00 398967 8083277 81.00 
197 1,589,671 0.000124 0.000619 0.999381 99689 2.50 498291 7684310 77.08 
280 1,682,098 0.000166 0.000832 0.999168 99627 2.50 497929 7186020 72.13 
833 1,605,366 0.000519 0.002591 0.997409 99544 2.50 497077 6688091 67.19 

1,243 1 1,604,841 0.000774 0.003862 0.996138 99286 2.50 495473 6191014 62.36 
1,442 17 1,675,878 0.000850 0.004242 0.995758 98903 2.50 493466 5695540 57.59 
2,028 96 2,008,254 0.000962 0.004799 0.995201 98483 2.50 491235 5202075 52.82 
2,649 229 2,095,368 0.001155 0.005758 0.994242 98011 2.50 488643 4710839 48.06 
3,549 363 1,900,649 0.001676 0.008346 0.991654 97446 2.50 485199 4222196 43.33 
5,066 552 1,687,178 0.002675 0.013289 0.986711 96633 2.50 479955 3736997 38.67 
7,849 820 1,722,995 0.004080 0.020192 0.979808 95349 2.50 471932 3257042 34.16 

11,921 1051 1,640,427 0.006626 0.032.592 0.967408 93424 2.50 459506 2785110 29.81 
15,800 983 1,299,609 0.011401 0.055428 0.944572 90379 2.50 439370 2325604 25.73 
22,884 1044 1,199,502 0.018208 0.087080 0.912920 85369 2.50 408262 1886233 22.09 
33,374 1215 1,125,490 0.028573 0.133358 0.866642 77935 2.50 363694 1477971 18.96 
43,961 1444 998,878 0.042565 0.192400 0.807600 67542 2.50 305223 1114278 16.50 
44,343 1422 785,717 0.054627 0.240403 0.759597 54547 2.50 239952 809055 14.83 
32,790 1184 458,664 0.068909 0.294102 0.705898 41434 2.50 176704 569104 13.74 
20,807 1055 269,073 0.073408 1.000000 0.000000 29248 12.93 392399 392399 13.42 

Table 6.4: Breast Cancer Eliminated Life Table Based on Data FrOID 2002 



6.2 Tumour Growth 

The epidemiological model of breast cancer requires information about the growth 

rate and pattern of breast cancer in women. This growth rate is used to increase the 

tumour size over time, as appropriate, in order to alter both the chances of detection 

and prognosis information. 

Exactly how best to model human cancer growth is understandably difficult to 

ascertain due to the ethics of following a detected tumour's progression without 

treatment. However, over the years a number of approaches of varying complexity 

have been developed. 

Outlined below are a few of the classical growth patterns found to approximate 

tumour growth in the literature. While other more sophisticated models exist that 

include the simulation of chemicals and treatment on the growth of the tumour, (e.g. 

Jiang et al. (2004); Sachs et al. (2001)), we believed that the simple classical models 

would be adequate for the simulation model described in this thesis. 

The rate of tumour growth can be represented by a differential equation of the form: 

dN = f(N) 
dt 

where N is the number of cells in a tumour, t represents the time, and f some 

differentiable function. In order to calculate the volume and diameter of the tumour 

at anyone time it is assumed that tumour growth is spherical, see formula 6.2, and 

that the volume of one cell is 1O-6mm3 as assumed by Spratt et al. (1993b). 

Therefore, the volume and diameter of a tumour can be calculated at any time such 

that, 

V(t) 

D(t) 

10-6 . N(t) 

213V(t) 
47f 

where V(t), and D(t) are the volume and diameter of the tumour at time t 

respectively, (in millimetres). 

(6.1) 

(6.2) 

A popular simplistic approach to the mathematical modelling of tumour growth has 

been to assume exponential growth, and this has been shown to be adequate when 

allowances are made for large individual variations in growth rate, (Atkinson et al., 

1983). Here f(N) = KN where K is a constant of growth that does not vary with 

time. 

Under this model the number of cells, N(t), within the tumour increase at a constant 
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doubling time, a, with time, t, such that, 

t·ln(2) 
N(t) = N(O) . e-a- (6.3) 

In their review article of the growth rates of tumours Friberg and Mattson (1997) 

identify five large studies of the doubling times of untreated breast cancers (as 

estimated from serial mammograms) and report their findings. The results cover more 

than 800 patients and show considerable variation in doubling times from 30 days to 

infinity, with an estimated median across the studies of approximately 180 days. 

Previous research has found that the distribution of variation in breast cancer tumour 

growth rates across populations can be described by a Lognormal. Therefore, 

Microsoft Excel's solver was used to find a Lognormal distribution such that the 

mean was 180 days and the probability of 30 days or less was chosen as 0.01. These 

assumptions led to the doubling times under the Exponential option in the breast 

cancer model following a Lognormal distribution. The log doubling times were 

therefore assumed to be normally distributed with mean 5.19 and standard deviation 

0.77. Since the simulation model described in this thesis works in years as units of 

time rather than days, the input time to the equation was multiplied by 365 days 

before the calculation of tumour volume at that time was performed. 

However, as Wolf points out the exponential assumption of tumour growth is a 

' .. mathematical projection of cells in virtual circumstances', (Wolf, 2001). That is, in 

reality a tumour is inhibited in growth at first by the supply of nutrients and in later 

stages by the neovascularisation (the process of vascularisation of a tissue involving 

the development of new capillary blood vessels; vascularisation of tumours is usually 

a prelude to more rapid growth and often to metastasis) in the tumour tissue, 

whereas the exponential model assumes sufficient nutrients and space for growth. 

The assumption of a constant growth rate has also been disputed by clinical data, for 

example Spratt et al. (1993a) found evidence of doubling times as low as 7051 days 

which under exponential growth assumptions would lead to a tumour life of 578 

years. For these reasons it has been suggested that the exponential growth law should 

be ruled out as a viable model for the natural history of breast cancer, (Clare et al., 

2000). 

A second and popular model is the Gompertzian population growth model. The 

Gompertzian model considers the increase in the number of cells in a tumour as a 

function of the number of cells present and satisfies the differential equation: 

dN 
- = -(3. N ·Zn(N/K) 
dt 

Here, (3 is the exponential decay rate of growth, and K the limiting size of the 

tumour, (carrying capacity). 
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The Gompertz model not only fits well with theory but has been shown to fit well to 

both in vivo studies of breast tumour growth, (Norton et al., 1976), and to published 

serial mammography data, (Norton and Simon, 1977; Norton, 1988; Spratt et al., 

1993b). Norton (1988) for example found the following solution best approximated 

observed breast cancer growth patterns, 

(6.4) 

where, ift is in months then N(O) = 1, N(oo) = 3.1 * 1012 , and b is Lognormally 

distributed with the log mean -2.9, and standard deviation 0.71. Since the simulation 

model described in this thesis uses years as unit time, the input time was multiplied 

by 12 before a calculation of tumour size was performed for this equation. 

A third simple model for tumour growth is the generalised logistic growth population 

model. Forms of Logistic equation have been shown to provide the best fit to tllmom 

growth observed via mammograms when compared to the exponential and 

Gompertzian growth models, while the exponential growth equation provided the 

least good fit, (Spratt et al., 1993a,b). The logistic model assumes density dependent 

growth and its differential equation is as follows, 

where N, K, and t are as before (in days), b is the intrinsic growth rate, and c is the 

generalising factor. Note that if c = 1 then the standard logistic is produced and as c 

tends to infinity an exponential is approximated. The model has the solution for 

c> 0 as follows, 
1 

N(t) = N(oo) [1 + e-c(bt+d)r c (6.5) 

where 

d = _ (~) In [ ( :(~) ) c _ 1] 
The model that best fit the data was found from the records of 113 patients who had 

three serial mammograms with evidence of tumour size over time. It was assumed 

tumour volume began at 1O-6mm3 at t = 0, and N(oo) was set to 240 cells. Results 

found that the best fit came from setting c = 0.25 and d = -27.72, (where t is in 

days). 

The individual variation in the intrinsic growth rate, b, was then investigated by 

considering the records of 448 patients with at least 2 size recordings from serial 

mammograms. The intrinsic growth rate was found to be approximately Lognormally 

distributed, although the fit was not statistically significant. Spratt et al. cite other 

evidence that the variation in breast cancer growth has been shown to be 

Lognormally distributed, and therefore, for the purpose of this analysis, a Lognormal 
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distribution was fitted to the percentage points provided by Spratt et al.. This was 

done using Palisade's BestFit add on for MS Excel which produced a Lognormal fit 

to the data with the log variable having mean -5.84 and standard deviation 1.04. The 

simulation model described in this thesis works in years rather than days, so all times 

were multiplied by 365 before tumour volume calculations were performed. 

In their comparison of different models of tumour sizes, Hart et al. (1998) found that 

data from the first screen of the Swedish Two County mammography trial were 

inconsistent with the exponential, logistic, and Gompertz laws. Instead they found 

that the best tumour growth model that fit to the data was a parabolic growth 

function, (Power Law). The Power Law is a broad family of growth rates and includes 

the exponential. The Power Law differential equation takes the following form: 

where). indicates the mode of tumour growth, (linear at zero to exponential at one), 

and k is a constant of growth. 

The value of ). found to fit the trial data the best was approximately 0.5 indicating 

Parabolic growth, a rate that declines with the square root of the tumour mass. This 

rate of growth is slower than the exponential which has a constant decline in growth, 

but appears to be more significant in the clinical size ranges than the Logistic and 

Gompertz size specific rate reductions, (Hart et al., 1998). The differential equation 

evaluates as follows, 
1 

N(t) = (kt(l - {3) + c) 1-(3 

However, due to the methods employed in the paper by Hart et al. (1998), no values 

or ranges were supplied for c and so this pattern of tumour growth has not been 

included as a growth model within the scope of this thesis. 

Demicheli (2001) argues that continuous growth models cannot explain the long 

lasting recurrence risks associated with breast cancer, and that cancer growth may 

undergo periods of dormancy. Demicheli goes on to present results that support his 

theory. In order to explain similar observations of plateaux in tumour growth, Speer 

et al. (1984) produced a stochastic modification to the basic Gompertz model 

whereby the intrinsic growth rate is varied with time producing stepwise growth 

patterns. The Speer et al. model builds on the original Gompertzian model and 

simulates tumour growth by changing ex with a probability A4 every 5 days as 

described in equation 6.6, where A3 and A4 are random numbers between 0 and 1. 

ex 
ex=-----

1 + Rnd· A3 
(6.6) 

Speer et al. then demonstrated how their model fit to three different breast cancer 
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data sets and in doing so produced estimates for the values of the variables within 

their modified Gompertzian model of breast cancer growth, see Table 6.5. 

Variable Estimate 
Ao 0.4 (jday) 
A3 0.3 
A4 0.008 
ao 0.03(jday) 

Table 6.5: Estimated parameters for the modified Gompertz model of tumour growth, Spccr 
et al. (1984) 

Further support for the notion of periods of non growth in breast cancer tumours was 

found in a review conducted by Retsky et al. (1990), who point out that taking 

averages of tumour growth doubling times or omitting slower growing tumours from 

the analysis smooths out individual variation. They conclude that considering 

irregular kinetics and stochastic growth patterns may be more appropriate when 

modelling individual breast cancers (as opposed to modelling populations). 

Since the idea of non continuous growth has some support, the modified Gompertzian 

model as suggested by Speer et al. has been included as a growth pattern for breast 

cancer within the reported simulation model. To limit the calculations, the times of 

change for alpha, and the new alpha values are taken from a set of paired values that 

have been previously sampled from the distributions suggested. For a full description 

of the methodology, please refer to Section 6.3. 

6.2.1 Summary 

Four patterns of tumour growth are available to choose from within the model. Only 

one pattern can be used for anyone analysis at one time, and the selection is made 

via the input options screen from the user interface. 

It is assumed that breast tumours grow spherically, (see equation (6.2)), and where 

equations provide density rather than volume, it is assumed that a single cell has 
volume 1O-6mm3. 

The four growth options to choose from are to assume exponential growth over time, 

equation (6.3), Gompertzian growth, equation (6.4), a generalised Logistic (6.5), or a 

stochastic variation upon Gompertzian growth such that the growth rate changes 

over time with probabilities and values as defined in equation (6.6) and Table 6.5. 

Figure 6.2 plots the difference between the mean growth pattern over time produced 

by each of the different models. Here, the growth pattern is produced using the 

overall mean of the growth parameter distribution (not the mean once logged), and 

the modified Gompertzian distribution is calculated with the mean time to next a 
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change (624 days) set constant each time, and using the median change in a such 

that Rnd2 = 0.5. 

Figures 6.3 through 6.6 provide an indication as to t he range of growth patterns 

produced within each model by illustrating the mean pattern produced as above, but 

also the patterns produced by the 10th, 50th, and 90th percentiles of the growth 

distributions. The modified Gompertzian distribution in Figure 6.6 illustrates the 

given percentiles of the distribution for the next change, while the change in a is kept 

constant at the median (Rnd2 = 0.5) . 
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Figure 6.2: Mean growth pattern produced under each growth model with associa ted as
sumptions 
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Figure 6.3: Mean and percentile range of growth patterns modelled with the exponential 
tumour growth assumption 
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Figure 6.4: Mean and percentile range of growth patterns modelled with the Gompertz 
tumour growth assumption 
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Figure 6.5: Mean and percentile range of growth patterns modelled with the logistic tumour 
growth assumption 
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Figure 6.6: Mean and percentile range of growth patterns modelled with the stochastic 
modified Gompertzian tumour growth assumption 
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6.3 Age of Cancer Onset 

At the beginning of the simulation it is necessary to sample the age of tumour onset 

for each woman in order to make it possible to schedule tumour onset. 

Data were obtained from the South West Cancer Intelligence Unit in England who 

record details of all breast cancers in the South \Vest of England. The database 

contains all recorded patients between 1981 and 2000, and provides, among other 

statistics, the patients age at diagnosis (in years), and the recorded diameter of the 

tumour (in millimetres). 

The dataset was sorted and any entries removed for which the tumour width was zero 

or missing, or the age of the patient not provided. This left a database of 26,298 

patients with an average age of 61.45 and tumour diameter of 24.4mm. However, 

when comparing the age distribution of observed ages in the dataset with the reported 

incidence of breast cancer per 5 year age group (as published on the cancer research 

UK website (Cancer Research UK, b)), the South West dataset demonstrated a lower 

proportion of over 85 year olds. This was confirmed as a significant difference at the 

5% level by a chi square test (teststatistic = 8.84E - 168, 13dJ). Data relating to the 

observed size distribution of UK breast cancers diagnosed was not available for the 

whole population (only the subset detected by mammography screening producing a 

bias sample). To estimate the age of onset for breast cancer in the UK it was decided 

to sample age from the observed national distribution, and size of tumour from the 

dataset provided by the South West Cancer Intelligence Unit. 

Therefore, the age of onset distribution was estimated by sampling age from the 

national distribution of age at presentation, and tumour size was sampled from the 

distribution observed in the South West dataset at random, before back-calculating to 

find the age of the tumour (given its size) for each of the four tumour growth theories 

in turn, and subtracting this age from the patient age to estimate age of onset. 

The national distribution of age at breast cancer presentation was estimated from 

Office of National Statistics records of incidences of breast cancer by 5 year age bands 

per 100,000 population in England in 2002, see Figure 6.7. Linear interpolation was 

used to provide the probability of presentation between two cumulative points at the 

maximum of an age band, however this did not appear appropriate for the final age 

band. Figure 6.7 shows the result of a function (J(x) as below), fitted to the last age 

band with the gradient at age (x) 85 included in the least squares fitted with a weight 

of 10. The upper age limit of the last age band was set at 101, as this was the highest 

age observed in the South West dataset. The function f(x) that was fitted to the last 

band was as follows, 
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where Q = 1.01 , f3 = - 72221.87, and f = 0.16 to 2dp. 
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Figure 6.7: Cumulative distribution of age of breast cancer presentation in England in 2002 
(ONS) 

The size of tumour, for the given age band, was randomly sampled (with replacement) 

from the relevant age band subset of the South West dataset, and a back-calculation 

was performed to find the age of the tumour, and therefore the age of the individual 

at the time of tumour onset, given growth parameters appropriately sampled. 

The exponential, logistic, and Gompertz functions could all be re-arranged to 

approximate the age of the tumour, t in years, as follows. 

Logistic 

1 [( -1) (( N(D) )-C ) 1 t= 365b -z- In N(oo) -l-d 

Exponential 

= (~) In(~) 
t 365 In(2) 

Gompertz 

1 [ (109(N(D)))] 
t = -12b 1 - log(N(oo)) 
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where N(D) is the number of cells at detection, estimated by calculating the volume 

of the tumour based upon the assumption of spherical growth and dividing this by 

the assumed volume of a single cell (10- 6mm3 ). All other variables are as before and 

the values and distributions used are as quoted in Section 6.2. 

This back-calculation process was performed using lookup Tables in MS Excel for 

100,000 iterations for each of the growth laws, using Monte Carlo sampling 

techniques to sample both growth rates for the tumour, and database entries each 

time, via VBA code within MS Excel. One spreadsheet per growth model was built 

to avoid confusion and to accommodate the different growth parameters and 

patterns. It was assumed that breast cancer cannot develop before puberty, and 

therefore, if the indicated age of breast cancer onset was less than 15 years, a new 

growth parameter was sampled. This process was repeated until the age of onset 

indicated a figure above 15 years old. 

The resulting age of onset, and the sampled growth parameter which led to the age 

derivation were both recorded for each iteration. At the start of the simulation model 

described in this thesis, the model reads in paired values for the age of cancer onset 

and growth parameters from text files appropriate to the chosen pattern of tumour 

growth. This methodology of using paired samples as inputs to the simulation model 

was chosen above the possibility of randomly assigning new growth variables and age 

of onsets to individuals within the simulation sampled from independent distributions. 

This decision was made to try to control for the large variations in tumour growth 

rates assumed (see Section 6.2), and to ensure that the tumours would reach a 

detectable size at appropriate ages. To save computing time and resources, the values 

were read in in order, but start at a random place within the data (txt) file(s). 

Due to the more complex nature of the stochastic modified Gompertzian model of 

tumour growth, it was not possible to back-calculate the age of the tumour based 

upon size via one simple formula. Instead, in this case, the time the tumour had been 

growing to reach the sampled size was estimated within each iteration as follows. 

Since the modified Gompertzian growth model assumes that the growth parameter a 

of the basic Gompertz equation may change every 5 days with probability 

A4 = 0.008, it was assumed that this probability of change was uniform across the 5 

day period and so the probability of change in anyone day was calculated as 

C1 = A4/5 = 0.0016. The time until the next change in a can then be compared to 

the number of Bernoulli trials required until a success is observed, with the 

probability of success in anyone trial equal to C1 . The time to the next change in ct 

was then measured as a sample from a geometric distribution with parameter 

C1 = 0.0016. 

A spreadsheet model was built in MS Excel which provided up to ten new times for a 
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change in CY, (each a random sample from the geometric distribution with C1 the 

probability of success), plus the time of the previous change(s), and a sampled size 

and age at detection as before. This approach assumed a maximum of 10 steps in the 

growth pattern over the life time of the tumour which appeared to be a reasonable 

assumption given the original research measured around 5 changes per tumour on 

average, and limiting the number of possible changes helped to reduce required 

computing power and memory. 

Alongside these times of a change, a new value for a at this time was calculated, 

using the formula provided by the modified Gompertzian model. It was then possible 

to use lookup Tables to ascertain the volume of a tumour under the sampled values, 

in steps of 5 day intervals. This was calculated in 5 day intervals for 40 years. It was 

assumed that by 40 years, a tumour would have reached a detectable size. 

The back-calculation of time from tumour onset until a sampled size could then be 

estimated (with an accuracy of a few days). The times and values of the sampled as, 

as well as the time of tumour onset, were all recorded for each of the 100,000 

iterations of the back-calculation. These parameters are then read into the simulation 

model as paired values of tumour onset and growth parameters in order to ensure 

that the tumour reaches a detectable size at an appropriate age, and in an attempt to 

control some of the variation within the model. 

Figure 6.8 shows the resulting distributions found for the age of cancer onset under 

the different tumour growth assumptions. It can be seen that the differing 

assumptions of the models lead to a large (up to 20 year) difference in assumed 

growth times for breast tumours until detection, with the Gompertzian model 

providing the shortest growth times, and the logistic model the longer growth times. 

6.4 Tumour Detection 

This Section aims to describe the methods used to model the probability of tumour 

detection (by mammography screening or otherwise) within the simulation model, 

and to explain the reasons for the chosen approach. 

Since cost effectiveness of screening programmes is not a prime objective of the 

current research, mammogram specificity (the probability of a true negative being 

correctly identified) has not been included in the simulation model. If cost 

effectiveness of mammography screening was of interest then the specificity of the 

screens would be an important variable to measure as it would provide the rate of 

over-diagnosis (false positives) at the screening unit which would lead to a cost in 

terms of follow-up appointments and tests. The next Section introduces literature 

pertaining to the probability of tumour detection via mammography screening, and 
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Figure 6.8: Derived Cumulative Age of Onset Distribut ions by Growth Pattern 

presents the chosen method of approximation within the breast cancer simulation 

model. This is followed by an explanation of how detection by other means (self 

detection via breast self examination or presentation of symptoms) is handled within 

the discrete event simulation model. 

6.4.1 Mammography Sensitivity 

The sensitivity S of a test is usually defined as the proportion of true positives found 

in the proportion of the population that was tested, such that in the case of cancer 

screening 

where S is the screening test sensitivity, Ds the number of true positive screening 

results, and N+ the underlying number of people screened who did have cancer. 

Ideally, a test would be 100% sensit ive and always find a cancer should it exist, 

however this would be extremely difficult in the case of breast cancer given the 

differences in breast tissue and breast tumours themselves . 

The underlying numbers of women who have breast cancer in a population is difficult 

to determine (since tests cannot be 100% sensit ive), and so estimates of mammogram 

sensitivity have varied. Two methods of reporting mammography sensit ivity have 

been observed in the literature, the 'detection' method and the ' incidence' method 

97 



(Fletcher et al., 1993). Firstly, the detection method considers the proportion of 

cancers detected at a screening session in comparison to those and other interval 

cancers (cancers diagnosed between screening attendances) detected within a year of 

the screening session. 

Where Ds is the number of cancers detected at screening, and Di is the number of 

interval cancers detected within a year of the screening session. 

A more accurate method preferred by the International Agency for Research on 

Cancer (IARC) is the incidence method, (IARC, 2002). This method expresses 

sensitivity as one minus the incidence of interval cancers expressed as a proportion of 

the estimated underlying incidence of breast cancer in the considered population, 

such that 
s = 1- Di 

I 

where Di is the number of interval cancers within a year of screening, and I is the 

estimated underlying incidence in the population. 

Numerous attempts have been made to estimate the sensitivity of mammography 

based on data from controlled trials, quasi trials, and from population-based 

screening programmes. The IARC Breast Cancer Screening Handbook cites several of 

these with results ranging from 68% up to around 90% for the detection method. The 

quoted results from the incidence method produced lower estimates ranging betweell 

52% and 82%. 

Mammography sensitivity has been shown to vary with age, (the younger the patient 

the less sensitive the procedure). This may be in part due to the density of the breast 

which is thought to have a negative association with mammographic sensitivity, 

(Michaelson et al., 2003b). Other factors that can affect the variability of the 

mammograms sensitivity and quality include the optical density of the machine itself, 

the quality of the processing, the examination technique (position and compression of 

the breast), and the performance of the radiologist reading the film, (rARe, 2002). 

The size of the tumour would appear to be an obvious factor for determining the 

likelihood of a mammogram detecting the tumour, however little research has been 

identified addressing this issue. The only paper found to date to estimate the 

efficiency of mammography given the size of the tumour is also believed by the 

authors to be the first of its kind. Michaelson et al. (2003a) produced estimates for 

the sizes at which breast cancers become detectable by screening. Data from 810 

invasive carcinoma diagnosed at Massachusetts General Hospital between 1990 and 

1999 were used to estimate mammography efficiency by two methods. Firstly, the 
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sizes of tumours at previous mammography screens were estimated by 

back-calculating from the size at discovery (absolute efficiency method) , and s condly 

a comparison was made between the efficiency at and around the mid-point of the 

size of detected tumours and from this estimated efficiency at other sizes, (relativ 

efficiency method) . 

Both methods produced similar results, and F igure 6.9 shows the estimated 

distribution of detection sizes for screened cancers as produced by Michaelson et al. 

via the absolute efficiency method. 
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Figure 6.9: Efficiency of mammographic detection by tumour size, Michaelson et al. (2003a) 

A distribution was fitted to this data using Palisades ' BestFit for Windows version 

2.0d. Although t he statistical best fit to the data was produced by a PearsonIV, no 

closed form exists for the cumulative PearsonIV for sampling, so instead a Weibull 

was used. The data were found to fit the cumulative Weibull(1.2 ,l.03) with a 

confidence of 95% by the chi-squared method, and Figure 6.9 demonstrates the fit , 

Each time a woman attends screening in the model, a calculation is then made based 

upon this Weibull distribution as to the probability of detection p(x), such that 

( '" ) 1. 2 p(x) = 1 - e- 1.03 

where x is the size (diameter) of the tumour in cm at the time of screening. 

6 .4.2 D et ection by other m ean s 

In order to compare the efficiency of mammography regimes it is necessary to estimate 

t he t imes at which the tumour would have corne to light by other means rather than 
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having been detected by mammography as part of a screening programme. 

Tabar et al. (2002) report on the results of the Swedish Two County Trial which was 

a randomised control trial of invitation to breast cancer screening conducted in 

Sweden in the 1970s. Included in the analysis is a breakdown of the sizes of tumours 

presenting in the passive study population (the control group not invited to 

screening). The size frequencies of tumours from this population are provided in 

Table 6.6. 

TUmour Size (em) Percent 
0.1-0.9 7.1 
1-1.4 15.4 

1.5-1.9 19.7 
2.0-2.9 29.0 
3.0-4.9 20.0 
5.0+ 8.8 

Table 6.6: Percentage distribution of tumour size for the control group in the Swedish Two 
County Trial, Tabar et al. (2002) 

From the percentages shown in Table 6.6, a cumulative distribution of the sizes at 

which breast cancers may come to light in the absence of screening (by self detection 

or by other means) was derived using the upper bounds of the size groupings. The 

last category, for sizes greater than 5cm was given with an upper bound of 7.5cm 

since this is the maximum observed in other research, (Michaelson et aI., 2003a). 

Palisades' BestFit for windows version 6.0d was then used to fit a distribution to the 

cumulative data. The data followed the Erlang(3,0.85) distribution with a confidence 

level of greater than 95% by the chi-squared statistic. Figure 6.10 shows the fit to the 

cumulative data. 

When a breast cancer initiation is scheduled in the simulation model, a natural time 

of discovery is also scheduled. This natural discovery time is calculated from the size 

of discovery which is set to follow Erlang(3,0.85). 

More recently Michaelson et al. (2003a) also produced estimates of the distributions 

of breast cancers detected without screening. Their data may be a slight 

underestimate since the sample is taken from the same population (Massachussetts 

General Hospital) as discussed in Section 6.4.1, therefore the distribution of 'other 

detected' cancers may be skewed as some breast cancers that could otherwise have 

been detected at larger sizes may have been found via mammography screening at a 

smaller size. Indeed, the median of Michaelson et al.'s 'other detected' distribution is 

1.5cm rather than approximately 2cm as suggested by Tabar et al.'s data. It may be 

the case, however, that self detection sizes have reduced due to increased awareness, 

and for this reason an option to use the distribution suggested by Michaelson's data 

has been included within the simulation model. 
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Figure 6.10: Fit of the Erlang(3,O.85) distribution to the Swedish Two County Trial Control 
data of breast cancer detection sizes Tabar et al. (2002) 

As above, Palisades' BestFit for Windows was used to fit a distribution to the 

cumulative probabilities provided by Michaelson et al. 's results. The best fit was 

given by an Erlang(3 ,1.7) which provided a significant fit at the 95% confidence level 

by the chi-squared statistic. Figure 6. 11 demonstrates the fit to the data . 
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Figure 6.11: Fit of the Erlang(3,O.6) distribution to the non screen detected cancers at 
Massachussetts General Hospital, Michaelson et al. (2003a) 

During a simulation model run, a time for self detection is scheduled for each woman. 

A size of self detection will first be calculated using the appropriate generator and 

then the time-to-discovery derived as appropriate, based upon the individuals tumour 

growth characteristics (sampled appropriately as previously discussed in Section 6.2) . 
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6.4.3 Tumour Detection Summary 

Figure 6.12 compares the probability distribut ions select ed as representing 

mammography detection and other detection. It can be seen that mammography has 

the ability to det ect tumours at a much smaller size than t hey usually present 

otherwise. The probability of mammography detection is modelled based upon the 

size of the tumour at the time of the screen, and this probability is approximated 

with a Weibull distribution with parameters (1.2 ,1.03). The size at which detection 

by other means occurs is sampled from an Erlang distribut ion wit h parameters 

(0 .85 ,3), and the corresponding time of detection in t he simulation is calculated bas d 

upon the individuals t umour growth charact eristics and time of t umour onset . 
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Figure 6.12: Selected distributions of self detection and mammography detection given tu
mour size 

6.5 Survival 

A patient 's prognosis once diagnosed with breast cancer is dependent upon a number 

of factors , the most recognised of which are list ed below, (BMJ Publishing Group 

(2004) , and The Breast Clinic (1997)) . 

1. The 'stage J of the cancer, see discussion that follows. 

2. Tumour size. As tumour size increases the expected survival rates decrease. 

3. Lymph node involvem ent. The presence of cancer cells in t he axillary lymph 

glands of a patient indicates that the tumour has spread at least as far as the 

lymph nodes, with the chances of dist al spread (metastasis spread to other 

regions) more likely the more nodes affected. 

4. Hormonal status. Whether the tumour is sensitive to oestrogens, inferring 

oestrogen is required to aid tumour growth. This helps t o indicate how well t he 

102 



tumour will respond to post operative chemotherapy. 

5. Tumour grade. Tumour grade (measured as 3 grades) is a measure of tumour 

cell characteristics, and how close they are to breast cells. The higher the grade, 

the more abnormal the cells, and the lower the survival rates of patients, (The 

Breast Clinic, 1997). 

6. Tumour pathology. Tumour pathology relates to the type of tumour which may 

be non malignant (ductal carcinoma in situ, DCIS), malignant (ductal cancer), 

or of an unusual type. DCIS has the best survival probability as it is non 

malignant and confined to the breast so removal should approximate a cure if 

diagnosed correctly. Ductal cancer on the other hand has a worse prognosis 

than other types of malignant cancer, (The Breast Clinic, 1997). 

7. Age of the patient. When diagnosed in younger women, breast cancer has a 

tendency to be more aggressive than in older women, and therefore age can 

influence the survival probability of the patient, (Jimor et a1., 2002). 

The relation between these factors and breast cancer survival has been much 

researched (e.g. Koscielny et a1. (1988); Carter et a1. (1989); Sunderland and 

McGuire (1990); Eskelinen et a1. (1992) and Meyer and Province (1994)). 

The 'stage' of cancer refers to the The International Union Against Cancer's 

classification system used to group similar cancers together, and is based on a TNM 

(Tumour Node Metastasis) classification. The measures the classification system 

considers are, the size of the tumour, lymph node involvement (local spread), and 

whether metastasis is apparent (distal spread). Five stages describe the cancer 

progression, varying from a non-malignant cancer in situ, with no lymph node 

involvement or metastasis, (stage 0), to a tumour with both nodal involvement and 

metastatic spread, (stage IV). As the stage of breast cancer increases, the expected 

survival rates decrease, (BMJ Publishing Group, 2004). 

Survival statistics for breast cancer are most often given in terms of the proportioll of 

patients who would be expected to survive for a period of time after treatment. Due 

to the nature of the statistics the results are often not up to date. Statistics 

considering the impact of new advances in treatment and prevention, or survival 

given no treatment, are understandably rare. The good news is, though, that modern 

treatments and earlier interventions do appear to be leading to improving survival 

rates for breast cancer, with one study results even indicating a 1% reduction in risk 

for patients with recurrent breast cancer, with each increasing year, (Giordano et a1., 

2004). 

As previously discussed, a patients probability of survival will be dependent upon a 

number of variables, some of which may be unknown at the time of diagnosis, and 

others which may still be unknown to scientists. Therefore, modelling approaches for 
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the prediction of patient outcomes can take many forms ranging from complicated 

approaches with many input variables and stochastic analysis, to more basic and 

broad approaches giving less precise estimates of survival. 

An example of the more comprehensive approach is that by Pittman et al. (2004) 

who consider including genetic information as well as the usual clinical information, 

as inputs for the prediction of breast cancer recurrence. Their approach uses 

statistical classification and decision tree modelling to evaluate the inclusion of 

genetic information to the modelled recurrence probability. Results indicated a 

significant increase in predictive power by including the genetic information, with the 

capacity for up to 90% sensitivity and specificity for the individual prediction of 

disease recurrence. Of the clinical inputs, lymph node involvement, (and the number 

of nodes involved), was the most significant risk factor for recurrence, and they 

concluded that traditional tree models for the prediction of disease outcomes can be 

improved by the inclusion of genomic data. 

Useful to health professionals are prognostic scoring tools that combine several 

different clinical indicators for prognosis, to produce one overall score. Such scores 

and techniques are useful in order to combine the different information into one scale 

and to group patients by risk status. A well used example of such a tool is the 

Nottingham Prognostic Index (NPI). The NPI considers three prognostic indicators, 

tumour size, lymph node stage, and histological grade, and computes a prognostic 

score as follows, 

N P I = 0.2S + 17 + 'Y 

where S is the tumour size in centimetres, 'Y is the histological grade of the tmnour 

(1= good, 2= moderate, 3= poor), and 17 is the lymph node stage (1= node negative, 

2=less then three metastatic nodes, 3 = four or more metastatic lymph nodes), The 

Breast Clinic (1997). 

The NPI is commonly used to group patients into one of three prognostic groups, 

good' (NPl < 3.5), moderate' (3.5:S: NPl:S: 5.4), and poor' (NPl > 5.4). The 

three groups of patients have very different prognoses, with the good' category 

relating to about 85% survival after five years, reducing to 70% for the moderate' 

group, and 50% for the 'poor' category, (The Breast Clinic, 1997). The Index has 

been validated and applied frequently e.g. Galea et al. (1992). It has been pointed 

out, though, that with the change in presentation of breast cancer due to national 

screening programmes, the statistical weighting and cut-off points in the index may 

have changed since it was formulated in the 1980's, (Anderson). 

Modelling for the prediction of survival 

The breast cancer simulation model described in this thesis takes women through 

time, and advances the cancer by increasing the size of the tumour. Therefore, other 
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information such as histological grade and lymph node stage would require estimation 

from the size of the tumour. It may be simpler and less costly (in terms of simulation 

run time and size as well as an increase in variability so perhaps error), to estimate 

prognosis on the basis of tumour size alone. Publicly available survival statistics for 

breast cancer are rarely available by size of the tumour. The yearly audit of screen 

detected cancers contains survival analysis by each of the major prognostic indicators 

including size of the tumour, (Programme and of Breast Surgery at BASO, 2002). 

However, these statistics are calculated from screen detected cancers alone, a.nd it 

may be the case that survival distributions from interval detected cancers, or other 

non screen detected cancers, differ from those of screen detected cancers. 

Published survival rates from breast cancer are also available based upon follow up 

studies from the Swedish two county trials. Here survival statistics are broken down 

by size, nodal status and histological type, but it is not clear whether the statistics 

refer only to the study population (i.e. those invited to screening) or include the 

passive study population (those not invited for screening until after the trial), (Laslo 

et al., 2000). 

Michaelson et al. (2003b) produce an equation for relating tumour diameter to 

survival for breast cancer, based upon three groups of previously published survival 

rates. Michaelson et al. approximate the survival of a fraction of women (F) from 

breast cancer for approximately 15 years, by 

where D is the diameter of the tumour and Q,Z are constants. 

When compared to previously published survival data, their model was shown to be a 

strong predictor, and Q and Z were found to be roughly 0.006 and 1.3 respectively. 

Michaelson et al. show that their model is consistent with biological mechanisms 

leading to lethal metastasis, with probabilities based upon the number of tumour 

cells or tumour cell days. Their model therefore takes account of metastasis without 

specifically considering its presence in an individual, but instead calculates an overall 

probability of 15 year survival (F) for a given population. 

While this relation can tell us the probability of survival to 15 years, it cannot 

provide an estimate of when death may occur in the time interval. In order to 

approximate a time to any death from breast cancer (as the simulation model 

requires) two percentage points could be used to estimate the parameters of a Weibull 

distribution. The tumour size equation suggested by Michaelson et al. (2003b) 

provides a percentage point at roughly 15 years, and while other work hal') attempted 

to consider relations between tumour size and subsequent survival, they have grouped 

tumour size into large bands, and/or excluded cases whereby metastasis was already 
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present therefore skewing the results, (Verschraegen et a1. (2005); Engel et a1. (2003); 

Carter et a1. (1989)). 

The ultimate cause of death from breast cancer is believed to be from tumour 

metastasis, and survival has been shown to be unrelated to tumour size once 

metastasis has occurred, Engel et a1. (2003). The association between breast cancer 

size and survival is, under this hypothesis, due to the association between the 

probability of, and lifetime of, metastasis with tumour size. Thus if it is possible to 

simulate the time at which metastasis occurs then it should also be possible to 

simulate life expectancy. Figure 6.13 provides a schematic illustration of this idea, 

where to is the initial time of tumour onset, t1 the time of tumour metastasis, t2 the 

time that this metastasis is diagnosed, Co, C1 and C2 are the probability of cure givell 

the time of diagnosis A, and D1 and D2 the time of natural death from breast cancer 

and death from breast cancer if treated, respectively. 

The time at which tumours metastasise has been studied by many authors, (Kendal, 

2001; Engel et a1., 2003; Heimann and Hellman, 2000). Koscienly et a1. (1984) 

produced estimates of the size of the primary tumour when metastasis is inevitable, 

by considering the distribution of metastasis and recurrence upon follow-up given the 

size of the primary tumour at diagnosis. This distribution of primary tumour size 

forms the basis for the threshold value t1 in the model, and was found to be 

Lognormally distributed with the log values taking mean 3.16ml and standard 

deviation 2.62m1. The time the tumour takes to grow to this volume is calculated by 

considering that tumour growth is spherical according to the appropriate growth 

model (see Section 6.2). 
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Figure 6.13: Tumour Progression as Modelled in the Simulation 
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From Figure 6.13, A is the time of tumour diagnosis (regardless of the type of 

detection). Under this hypothesis, if detection of the tumour occurs before 

metastasis, ie (t1 > A), then the patient should not die from breast cancer or suffer 

any recurrences once the primary tumour has been removed, (assuming that the 

operation is 100% successful in removing the whole tumour). Therefore the 

probability of cure before metastatic spread is inevitable is 1, ie C1 = 1. 

If, on the other hand detection of the primary tumour occurs after the occurrence of 

metastasis then at some point this metastasis will become troublesome and may 

ultimately lead to death at time D2, (if natural death does not precede this time). 

Whether a patient can ever be completely cured of breast cancer is difficult to 

determine since metastasis and death have been shown to appear up to 25 years after 

treatment for the primary tumour, and it is not until after this time that death rates 

from breast cancer patients begin to mirror that of the rest of the population, 

(Yakovlevet al., 1999). Estimates of the cured fraction of breast cancer patients 

given the stage of the primary tumour at diagnosis have been made, (Myasnikova 

et al., 2000; Yakovlev et al., 1999). Since stage three refers to the diagnosis of distant 

metastasis, this can give an idea of the likelihood of cure for patients once metastasis 

is at a stage to be diagnosed (t > t2), and results for grade two can provide a rough 

estimation of the cure rate for patients with early metastasis (t1 < t > t2). Table 6.7 

provides a summary of the findings by Yakovlev et al. and the corresponding values 

used within the simulation for calculating the probability of cure from breast cancer. 

These probabilities are derived as the mean of the means across the age groups 

studied (not weighted by the numbers in each group since this information was not 

provided). The probability of cure before metastasis was taken to be 1 as indicated 

previously. 

Stage Yakovlev et al. (1999) DES Simulation Parameter 
1 - Local 0.7-0.75(0.65-0.79) 
2 - Regional 0.37-0.42(0.28-0.48) C1 = 0.39 
3 - Distant 0.09-0.15(0.01-0.23) C2 = 0.125 

Table 6.7: Cured fractlOn of patlents gIven tumour progresslOn, mean range and 95% CI 
range over ages in brackets 

If the cancer is not considered as cured then the patient will be scheduled to die from 

breast cancer. The time to death from breast cancer once metastasis has been 

diagnosed and treated has been shown to be roughly 2 years, regardless of primary 

tumour size at diagnosis, (Carter et al., 2003; Engel et al., 2003). 

The time from the initiation of metastasis until the primary tumour reaches a 

detectable size has been estimated to be on average 45 months or just under 4 years, 

(Koscienly et al. (1985), 18 doubling times multiplied by the median doubling time 

for metastasis of 2.5 months). In this paper the time-to-diagnosis of metastasis was 
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considered to be fixed in terms of the doubling time of the tumour in question, at 18 

doubling times. The variation in the time-to-detection is then associated with the 

achieved variation in metastasis doubling time modelled. The variation interval 

assumed for the metastasis doubling time was between 0.49 and 13.1 months, 

corresponding to a time range until discovery of 8.82 months to 19.65 years. The 

standard deviation used to estimate the metastasis doubling time (assumed to follow 

a Lognormal distribution) in the paper is 2.316 months. 

In this simulation, time-to-diagnosis of the metastasis is considered to be 18 times the 

sampled metastasis doubling time. Metastasis doubling time is taken to follow the 

same distribution as assumed in Koscienly et al. 's work which is Lognormally 

distributed with logged values taking mean 0.92 months and standard deviation 0.8/1 

months. Death (D2 ) is scheduled to follow 2 years later. This approach assumes that 

metastasis doubling times are unrelated to the doubling times of the primary tumour. 

It may also be the case that the breast cancer goes undiagnosed, and that death 

occurs before treatment can take effect. Data concerning untreated breast callcers are 

understandably rare, however not unheard of. Bloom et al. (1962) considered the 

natural history of 356 patients who died in Middlesex hospital between 1805 and 1933 

(untreated due to a lack of treatment for cancers at that time). They found that the 

time from symptom onset (as reported by the patient) until death ranged from 2 

months to 219 months (or just over 18 years), with a mean of 2.9 years. The 

cumulative survival rates provided in the paper were fitted to a Gamma(1.53,2.20) 

distribution by BestFit v2.0d and it is this distribution that is used to determille the 

time from the onset of symptoms until death (in years) if the breast cancer is llot 

treated. The time to the onset of symptoms is modelled as the time of self or other 

detection, see Section 6.4.2. 

However, since it is presently assumed that all tumours will eventually self detect if 

not detected by screening, and upon self detection a woman will seek medical advice, 

this functionality is not currently utilised by the model. The theory is left within the 

code, however, so that future work may investigate the effects of delay in seeking help. 

6.5.1 Survival Summary 

The discrete event simulation reported in this thesis assumes that metastasis is the 

ultimate cause of death from breast cancer, and that detection before metastasis 

occurs will lead to effective treatment and the prevention of death from the disease. 

The time of metastasis is derived from a distribution of sizes for the primary tumour 

when metastasis is inevitable. It is then assumed that, if the primary tumour is 

detected before the metastasis is detectable, then the patient has a higher chance of 
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Variable Value Note 
t1 
t2 
CO 
C1 
C3 
D1 
D2 

to + time to size(exp(normal(3.16ml,2.62ml))) Size in volume ml 
t1 + (18/12)*exp(normal(0.92,0.84)) years 
1 
0.39 
0.125 
time to symptoms + 12*Gamma(1.53,2.20) Time to symptoms = self detection 
t2 + 2 years 

Table 6.8: Summary of vanable values used wlthm the sll11UlatlOn 

effective treatment, than if the tumour becomes apparent after this time. The time 

until the metastasis becomes detectable is sampled appropriately for each individual. 

Table 6.5.1 summarises the distributions used within the model for the various 

time-scales and probabilities as depicted in Figure 6.13. 
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6.6 Behavioural Data 

As previously discussed, the simulation model assigns behavioural attributes to each 

simulated woman which then control her behaviour within the model. Behaviour 

modelling is restricted to considering attendance at each invited screening session for 

each woman modelled. The particular behavioural variables of relevance, and the way 

that they combine to affect the simulated pathway for each woman, is governed by 

the chosen psychological theory. The user has the option of modelling the attendance 

at invited mammography screening sessions using either local or global percentage 

attendance, the Theory of Planned Behaviour (TPB, see chapter 2), or Baker and 

Atherill's compliance model, (Baker and Atherill, 2002), as discussed in Section 4.3. 

The options for local and global percentage attendance are described in detail in 

Chapter 5, and require no further data input/analysis beyond the user input of the 

percentage of people who attend screening. As such these two options are not 

described here. Instead, the modelling for the Theory of Planned Behaviour (TPB) 

and the equation option for approximating attendance at breast screening are 

described in the sections that follow. 

6.6.1 The Theory of Planned Behaviour 

This Section aims to describe the method by which the Theory of Planned Behaviour 

(TPB) was implemented within the breast cancer discrete event simulation. For a full 

description of the Theory of Planned Behaviour, please refer to Chapter 2. 

The Theory of Planned Behaviour outlines three main constructs of attitude, 

subjective norms, and perceived behavioural control (PBC), relating to a behaviour, 

that influence intention and the action of the behaviour, (please see Section 2.2.5 for 

a full description of the model). In order to use this theory within the simulation 

model it was necessary to have a quantitative measure of the models constructs and 

relations. This required estimates of the distributions and correlations between the 

three main constructs, as well as their interactions, and regression weights, to predict 

both intention to perform the behaviour, and the behaviour itself. Research was 

identified that had tested the Theory of Planned Behaviour for predicting attendance 

at breast cancer screening (see Chapter 3). An author of a recent such piece of 

research within the UK, (Rutter from Rutter (2000) discussed in Chapter 3), was 

contacted and kindly agreed to share the data that had been collected for the study. 

The dataset is in an SPSS data file, and records the responses of 2058 randomly 

sampled women from three health authorities in the UK. The questionnaire comprises 

demographic and socio-economic information, as well as recognised measures for the 
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qualitative constructs in the Theory of Planned Behaviour. The questionnaire was 

sent out to the random sample of women before they were invited for their screening 

session. Answers to the majority of questions were requested on an ordinal rating 

scale, and the final calculated measures of attitude to mammography, subjective 

norms relating to mammography screening, and PBe in relation to screening 

attendance, are all scale variables calculated from the rating scale responses. Tables 

B.1 and B.2, (in Appendix B), provide summary statistics for these three variables as 

well as for the ordinal variable intention to attend, (measured on a 5 point ordillal 

scale ranging from definitely yes to definitely no). 

The dataset also includes the attendance/non-attendance information for each 

woman at the subsequent screening session, as well as the next screening session three 

years later, collected from the relevant mammographic screening clinics. 

Analysis of Data 

eases for which values for any of the three predictor variables were missing (attitude, 

subjective norms, or PBe), or for whom attendance information was missing, were 

removed from the analysis. This left a sample of 1846 cases, 1586 of whom attended 

their invited screening session, and 283 who did not. 

Under the Theory of Planned Behaviour the three variables, attitude, perceived 

behavioural control, and subjective norms, combine in a linear regression equation to 

predict intention to attend. Intention to attend and PBe then go on to predict the 

behaviour itself with their own regression weights. If this is the case then it should 

also be possible to model attendance as a direct function of the three predictor 

variables (attitude, subjective norms, and PBC), and effectively skip the intermediate 

variable of intention, as shown below. 

Intention 

Attendance 

"((Attitude, SubjectiveN arms, P BO) 

6(P BO, Intention) 

6 (P BO, ,,((Attitude, SubjectiveN arms, P BO)) 

1]( P Be, Attitude, SubjectiveN arms) 

for some linear functions "(, 6, and rl. 

Since attendance (y) is a binary response variable, (either the person attended or 

they did not), the probability of attendance, 1f, can be considered as the result of a 

Bernoulli trial with probability 1f of success. The probability 1f can then be modelled 

as a linear function of the inputs attitude, subjective norms, and PBe, denoted 

Xl, X 2 and X3 respectively. In order to ensure 1f lies between 0 and 1, a logistic 
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transformation is performed such that 

or 
7r (X (3) = exp (f31 + f32 X 1 + f33 X 2 + f34 X 3) 

-, - 1 + exp (f31 + f32 X 1 + f33 X 2 + f34X3) 

where X = (Xl, X 2, x3f, and Ii = (f31, f32, f33, f34f· 

The parameters f3i for i = 1,2,3,4 were calculated using the method of maximum 

likelihood. The log of the likelihood was minimised, where 

j:y;=l j:Yi=O 

For j = 1,2 .. 1846. 

The minimum was found using the NeIder-Mead optimisation algorithm with a 

confidence level of 0.05. 

Table 6.9 shows the resulting values of (3i for i = 1,2,3,4. For more information 

regarding logistic regression with Binomial response variables, the reader is referred 

to Krzanowski (1996). 

Parameters Estimates Lower 95% Upper 95% BootStrap BootStrap 
Limit Limit Lower CI Upper CI 

Limit Limit 
/31 -1.34546742 -2.13826322 -0.552671 -2.12407139 -0.5139070 

fh 0.008027605 -0.001097429 0.01715264 -0.00112037 0.017595029 

/33 0.014644905 0.008482051 0.02080776 0.008865912 0.020940595 

/34 0.155316327 0.092143516 0.21848914 0.091814396 0.21792617 
Table 6.9: The fitted /3 values from maxImum lIkelIhood calculatIOns, and theIr conficlmlce mt(:rvCl]s 

Confidence limits for Ii were obtained using bootstrapping methodology as follows. 

The sample of observed values, Xj for j = 1,2 ... 1846, were used as the basis of a 

population from which new samples of the same size were created. Each time, the 

minimum log-likelihood vales for Ii was found for the particular new sample in 

question. This re-sampling was conducted 1,000 times and the 95% confidence limits 

for f3 taken to be the SOOth and 1500th values of the ranked ranges observed for each 

f3i, (i = 1,2,3,4). Table 6.9 provides the results. For more information about 

bootstrapping, its application and uses, please see Davidson and Hinkley (1997). 

When the range of the values for Ii were plotted in scatter plots across the 

re-sampling runs, li
j

, it could be seen that the behaviour of the X j were not 

particularly skewed and that assumptions of normality would not be unreasonable 

(for j = 1,2 ... 1846), see Figure 6.14. The asymptotic confidence limits were then also 
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calculated for comparison, see Table 6.9 for results. 
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Figure 6.14: Range of (3 values observed in bootstrapping, where bi is (3i for i = 1,2,3,4. 

The lower confidence interval for f32 crosses zero, indicating that Xl (attitude to 

mammography screening), may not be a significant predictor within this sample. 

Figure 6.15 helps to demonstrate the effects of X upon attendance, y. As the least 

significant variable, the data were first grouped by ranking Xl and dividing the data 

into three sections, where Xl was low (group 1), medium (group 2) , and high (group 

3). Scatter plots were then created comparing the relationship between subjective 

norm scores (X2 ), and PBC scores (X3 ), given attendance, for each observed case 

from the sample. As can be seen, while the attitude scores may not be statistically 

significant, they appear to have a nonlinear effect upon the probability of high PBC 

scores in the sample of non-attendees. 

The fit of the logistic model to the prediction of 7f can be seen from the range of the 

confidence limits around the f3/s (Table 6.9) . Figure 6.16 demonstrates the logistic 

models effect upon the probability of attendance, by plotting the empirical 

distribution function of the 7fj for the observed sample j = 1,2 ... 1846, given actual 
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Figure 6.16: Difference in 1fi empirical distribution function for observed attenders and non 
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Sampling in the Simulation 

When the simulation of breast cancer is first run, each woman in the simulation is 

provided with a score for attitude, subjective norms and PBe. Since these variables 

were found to be significantly correlated, (Rutter , 2000) , it was felt that t hese three 

values should be sampled at once from a single distribution. Rather than create a 

multivariate distribution, it was felt that it would not be inappropriat e to sample the 

values from the original dataset since it provided such a large sample. Each simulated 

woman is provided with a set of three values corresponding to each of the three 

variables, by selecting a case from the original dat a set , at random. It is not ed , 

however, that in the future it may be worth considering developing a multivariate 

distribution from which to sample the three variables since their behaviour does not 

rule out a normality assumption, (see discussion above). 

When a woman is called for screening, her individual probability of attendance, 1f, is 

calculated such that , as above, 

1f (X , (3) = exp ((31 + (32X 1 + (33 X 2 + (34 X 3) . 
- 1 + exp ((31 + (32 X 1 + (33 X 2 + (34 X 3) 

where the (3i's (for i = 1, 2,3, 4) t ake the values given in Table 6.9 . If a random 

number between zero and one is greater than this calculated 1f then the woman will 

not attend this particular screening session, and if it is less than or equal to 1f then 

they will attend. 
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6.6.2 Baker and Atherill's Compliance Model Data 

Baker and Atherill's Compliance Model generates probabilities of attendance based 

upon previous attendance, with previous attendance weighted geometrically so that 

the most recent attendance/non attendance has the most influence, (Baker and 

Atherill, 2002). Extra weight is assigned to the first attendance/non attendance, and 

the age of the woman invited for breast screening is also taken into account. 

The equation and further information about Baker and Atherill's Compliance Model 

can be found in Chapter 4 and Section 4.3. The approach is based upon observations 

of attendance patterns at breast screening in Manchester, and the variable values 

from the equation were estimated by the authors using maximum likelihood. These 

values are given in Table 4.1 (in Section 4.3), and it is these values and the equation 

described in the same Section, that are used within the breast cancer simulation 

model. 
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6.7 Model Verification 

It is important that any simulation code is adequately verified in order to ensure that 

the code accurately represents the conceptual design of the simulation. The following 

methods were employed in order to ensure that the model code for the simulation 

reported within this thesis was reliable and valid. 

Major class modules to the simulation were first built as standalone modules outside 

of the main simulation. This was done in Visual Basic for Applications for MS Excel, 

and inputs, relevant workings, and outputs were fed to worksheets to enable visibility 

of processes within the code. Sampled values were also recorded in order to compare 

with the expected distributions. This was done for each of the growth pattern 

assumptions in the model, as well as for the equation and TPB behaviour models, 

cancer onset, mortality, survival from breast cancer, and tumour detection. 

A combination of interactive debugging (stopping the code when specific routines are 

called or values change, and setting values to force an event), and running the code 

under simplified conditions (for example with only a few individuals, or iterations, 

and/or forcing all women to attend screening), helped to ensure that the code 

modules interacted well with one another and that events were being scheduled and 

managed as they should be. 

Tracing was performed throughout the build of the simulation, and several times 

before the results were run. This involved stepping through the code one step at a 

time, and noting down values assigned to ensure consistency within the code. In this 

way, once complete, it was possible to follow' individual women (entities) through the 

simulation over time, and ensure that they were screened, self detected, and died at 

the appropriately sampled times, and that the tumour grew at appropriate rates. 

Although the individual pieces of code had been verified as above, this tracing helped 

ensure that the code worked as a package and that consistency was maintained. This 

was carried out at least once for each of the growth patterns and behaviour options 

within the model in turn, as well as once for each of the screening programmes 

investigated, (under exponential growth and local percentage attendance 

assumptions) . 
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6.8 Model Validation 

"Validation is the process of determining whether a simulation model is an 

accurate representation of the system, for the particular objectives of the 

study" 

Law and McComas (2001) 

It was important that not only did the code that made up the simulation model 

accurately represent the models concepts, but also that the concepts themselves were 

fit for modelling the different breast cancer screening strategies considered within this 

study. 

Sargent (1991) discuss two aspects of model validity, conceptual model validation, 

and operational validity. The following two sections discuss each of these validation 

concepts in relation to the discrete event simulation described in this thesis. 

6.8.1 Conceptual Model Validity 

Conceptual model validity refers to the face validity of the models theories and 

assumptions. In this case, does the simulation model described in this thesis simulate 

the effects of screening mammography in the UK accurately enough such that the 

effects of different behavioural assumptions within the model may be compared? It is 

hoped that the answer to this question is "yes", and we now describe how this was 

achieved. 

The modelled theory of the natural history of breast cancer was put together after 

substantial consideration of the literature pertaining on breast cancer simulation 

models (see Chapter 4 for details), and the structure of this simulation model is 

comparable to many of the simulations, and current theories of breast cancer 

development. While the natural history of breast cancer is not modelled at its most 

detailed level (for example no explicit account is taken of tumour grade or stage, 

rather tumour size governs prognosis within the model) it was felt that making such 

simplifications did not have a detrimental impact upon the aim of the modelling work 

which was to explore the effects of different behavioural modelling, upon the 

simulation outcomes. 

Since the literature revealed that there was no consensus as to the pattern of tumour 

growth, four of the most prevalent widely used patterns of tumour growth were 

included within the analysis for comparison. This decision was made as it was not 

clear what effect making assumptions of tumour growth pattern may have upon the 

outcome of the behaviour analysis, and it was felt important to ensure that no single 
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assumption of tumour growth was made that could lead to skewed or misleading 

results. 

The theory of planned behaviour (TPB) was chosen as the psychological theory to 

include in the simulation model. This decision was again taken on the basis of a 

literature review of predictive behavioural theories regarding health behaviours (see 

Chapter 2). The TPB was found to be a popular model, and was also regarded as 

more formally structured therefore lending itself more easily to being tested, 

measured, and modelled. 

In addition to consulting the literature, experts in the field were contacted and their 

opinions sought regarding both the natural history of breast cancer and how this is 

approximated within the model, and also the choice of psychological model and the 

method(s) by which behaviour should be modelled within the simulation. 

6.8.2 Operational Validity 

Operational validity refers to whether or not the outputs of a simulation model are 

accurate enough for the purpose of the analysis. The most appropriate method by 

which to ensure the breast cancer simulation model produced appropriate results 

appeared to be to compare the outcomes of the simulation with observations under 

the UK national screening policy. 

6.8.3 Age of presentation 

The Cancer Research UK website documented the number of newly diagnosed cases 

(and rates) of breast cancer by age group within the UK during 2002, (Cancer 

Research UK, b). At this time the UK screening policy was to screen women frorn 

age 50 every 3 years up until age 64, and in 2002 a 75% attendance rate at invited 

screens was achieved. Therefore the simulation model was run, for each of the growth 

and behaviour modelling assumptions in turn, with a screening policy of starting to 

screen at age 51 and ending invitations at age 63, with invitations every 3 years 

within this period. 5 iterations of the simulation were completed under each setting, 

each time simulating 1000 women over 100 years, with detailed results collected. The 

results were then used to generate samples of simulated individuals who had their 

breast cancer detected either via mammography screening or by self detection, and 

the age at which they were detected. This led to a sample of well over 900 cases for 

each simulation setting. The empirical distribution function of this age at detection 

was then compared to the cumulative distribution function of the distribution of new 

cases diagnosed in the UK during 2002. 
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Figures 6.17 and 6.18 demonstrate t he results from this analysis, and show that the 

simulat ed distribut ions of t he age of detection of breast cancer follow t he observed 

spread of ages very well. No formal tests have been carried out to assess whether or 

not the simulat ed age of detection distribut ions follow t he same distribut ion as 

o bserved in 2002 since a hypothesis test would assume that t he two scenarios are the 

same, however in this case we are simulating rather than replicating a system and so 

this assumption may not be valid (Law and McComas, 2001). 
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Figure 6.17: Cumulative distribut ion for age of breast cancer detection in the UK in 2002 in 
comparison with simulation age of detection under each of t he t umour growth assumptions 
and equivalent screening strategy, with assumed local' 75% attendance. 

It can be seen that the simulated age of breast cancer detections followed a similar 

distribut ion to that observed in the UK in 2002. Noticeable jumps in the probabilities 

are apparent at the screening ages for t he simulated output, but not from the national 

dat aset . This is due to the simulation modelling invit ing all individuals for screening 

at the same age, whereas in practise t he UK breast screening rounds invite women by 

area in 3 year cycles so not all women will attend screening at t he same ages. 

Figures 6.17 and 6.18 help t o validate a number of the simulation model assumptions. 

Firstly, the age of onset of breast cancer was back-calculated from a sampled age of 

breast cancer detection. This sample came from t he same age dataset, however, the 

figures for rates per population of breast cancer incidence versus age were used to 

calculat e the distribut ion. Therefore, the result that the distribution of the absolute 

numbers of new cases of breast cancer in 2002 matches t he age distribut ion of 

detected cancers in the simulations helps to validate that not only are breast cancers 

simulated to reach a detectable size at an appropriate age, but that they are t hen 

detect ed at t he appropriat e age, and in addit ion to this, t hat death occurs at 
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Figure 6.18: Cumulative distribution for the age of detection of breast cancer in the UK 
in 2002 in comparison to simulated output for each of the behaviour models and under 
equivalent screening strategies, with the assumption of 75% attendance where appropriate 
and exponential tumour growth. 

approximately the correct age. If this were not the case t he number of detected cases 

in the simulation would instead follow the age distribution for t he incidence rates . 

6.8.4 Proportion of screen-detected cancers 

At the end of the financial year , an audit of the UK breast screening programme is 

carried out, and key results from the year published in bulletins for each Country. 

Among the results published are the number of breast cancers that were detected by 

the mammography rounds within the period. The 2002-03 bulletin for England 

report gave a breakdown, by age group , of all screen detected cancers during the year, 

(Programme, 2004). These figures included non invasive tumours, so to provide an 

estimate of the number of invasive tumours detected it was assumed that 20% of 

detected tumours were non-invasive as supported by the literature, (Sloane Proj ect, 

2002). From this it was possible to calculate the approximate proportion of newly 

detected breast cancers that were detected via the breast cancer screening 

programme in 2002, and compare this with the percent detected by screening output 

from the simulation model when run with screening policy to start at age 51 every 3 

years until age 63. 

The results from the full model runs (300 iterations, 1000 women, 100 years) were 

used as comparisons to allow for convergence of the outputs. The proportion of all 

reported screen detected breast cancers by the breast screening programme in 2002 
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was then calculated as 22.96%. In 2002, the overall acceptance rate of screening 

invitations was 75% and so a full simulation, (for 300 iterations each with 1000 

women for 100 years), was run assuming exponential tumour growth and a local 

attendance rate of 75%. The outcome led to an average proportion of screen detected 

cancers of 22.73%, very close to the calculated proportion for 2002. 

In order to estimate the validity of the other behaviour and growth options within 

the model, and since the full simulation runs were carried out with the assumption of 

approximately 85% attendance, the calculated percentage for 2002 was proportionally 

increased to expect simulated results in the order of 25.90%. Results can be found in 

Tables 6.10 and 6.11 below. 

Growth Pattern Percent detected by screening 
Modified Gompertz 20.39 
Logistic 29.93 
Gompertz 9.20 
Exponential 25.26 

Table 6.10: Percent detected by screenmg for each growth model under the assumption of 
local percentage attendance at 75%, (estimated from runs using 85% local attendance) 

Behaviour Model Percent detected by screening 
Equation 20.78021323 
Local 25.26140433 
Global 23.9442253 
TPB 25.06105864 

Table 6.11: Percent detected by screenmg for each behavIOur model under the assumption of 
exponential growth 

As can be seen in Tables 6.10 and 6.11, with the exception of Gompertzian growth 

assumptions, all other results indicate that between 20% and 30% of cancers that 

were detected in the simulation runs were detected by screening. This falls in line 

with the expected 25%, therefore adding confidence that the modelling assumptions 

are suitable, with the possible exception of the assumptions surrounding Gompertzian 

growth (see the results in Chapter 7 for a discussion). 

6.9 Experimental Set-Up 

Due to the stochastic nature of the simulation, each iteration of the model will 

produce very slightly different results, with the variation in summary statistics and 

confidence intervals reducing as the number of women simulated in the iteration 

increases. A choice therefore existed as to whether to fix the number of women 

simulated, or the number of iterations, and then optimise the other such that the 

results of the simulation converged. It was decided to fix the number of women who 

are simulated during each iteration at 1,000 women. This choice was made on the 
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basis of computing power and simulation run time. As the number of women 

simulated increases, the simulation takes longer to run due to the increase in 

complexity and array sizes required. However, as some of the model parameters are 

read in from input files at the start of each iteration, this also takes time. Having 

experimented with the model, it appeared that simulating 1,000 women was best to 

satisfy this speed trade off. 

To insure that enough iterations of the model were run such that the results were 

reliable, an experiment was run for 1,000 iterations under exponential growth 

assumptions with a 75% local attendance rate at screening which was conducted from 

age 51 to 69 every 3 years. The outputs of these iterations were then analysed to find 

the number of iterations required for convergence using the confidence interval 

method as described in Robinson (2004). This method involved calculating the mean 

of the outputs up to the current iteration, and the confidence interval for this mean 

(using the student t distribution). The point at which the deviation of the confidence 

interval from the mean reaches an acceptable level provides the number of iterations 

required for the modelling purposes. In this case there are 18 outputs from the 

simulation model (see Chapter 5), and as pointed out in Law and Kelton (1991), the 

Bonferroni inequality demonstrates that if a significance level (0:) of 5% (i.e. 95% 

confidence interval) is used to calculate confidence intervals for 20 outputs, then the 

probability of all the intervals containing their means is O. Therefore, the 5% 

significance level was divided by 18 before use in the interval calculations such that 

0.05 
0:=-

n 
(6.10) 

where n is the number of outputs, in this case 18 (n = 18, 0: = 0.05/18 = 0.0028). 

A percentage deviation from the mean of 5% was considered sufficiently small, and 

Figure 6.19 shows how the deviations reduced for the output variables as the number 

of iterations increased. 

As can be seen from Figure 6.19, by 250 iterations, all of the output variables' 

confidence intervals were below 5% deviation from their means. The output variable 

seen to be the last to converge to this level was that for the number of life-years saved 

by the screening policy. This is logical since the output depends on many other 

outputs, and therefore has greater variance than the others (for example it requires 

screen-detection to have taken place, together with early detection to have delayed 

death from breast cancer beyond the time of natural death for the individual). 

On the basis of these results, it was decided that 300 iterations would be sufficient as 

a default number with which to run the results. Once the result runs were completed, 

the analysis was repeated with the outputs from all the simulation runs with screening 

from 51 to 69 years every 3 years, to check that suitable output convergence had 
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Figure 6.19: Means confidence intervals deviation from the mean with the number of iterations 

indeed taken place. Tables 6.12 and 6.13 display the resulting percent deviation of 

the confidence intervals from their mean outputs after the 300 iterations in each case. 

As Tables 6.12 and 6.12 show, in the vast majority of cases, t he percent deviation 

from their means of the confidence interval fo r the outputs (over the 300 iterations) 

remains at less than 5%, and in all cases is less than 7%. These results helped to 

provide reassurance to the author that the mean results used for the analysis of the 

different scenario results reported in this thesis, had converged to an acceptable level 

for the desired purpose. 
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Percent deviation Equation Local Global TPB 
Number screen-detected 1.05% 0.91% 0.98% 0.94% 
Number self detected 0.51% 0.54% 0.52% 0.54% 
Number with cancer 0.17% 0.18% 0.19% 0.18% 
Screen invited while had cancer 0.56% 0.51% 0.50% 0.50% 
Number undetected 1.30% 1.35% 1.34% 1.18% 
Not screen invited while had cancer 0.73% 0.73% 0.75% 0.67% 
Number with no cancer 1.48% 1.55% 1.66% 1.52% 
Number who attended screening 0.35% 0.26% 0.34% 0.27% 
Percent Detected by screening 1.00% 0.85% 0.91% 0.90% 
Tumour size 0.43% 0.47% 0.48% 0.47% 
Time-to-detection 0.37% 0.36% 0.36% 0.37% 
Self detected tumour size 0.39% 0.38% 0.41% 0.44% 
Self detected time-to-detection 0.43% 0.41% 0.43% 0.42% 
Screen-detected tumour size 0.45% 0.48% 0.53% 0.51% 
Screen-detected time-to-detection 0.28% 0.29% 0.27% 0.26% 
Life-years saved (of saved) 4.63% 3.86% 4.07% 4.12% 
Years earlier detected (of screen found) 1.31% 1.09% 1.17% 1.16% 
Average number of attendances (of attended) 0.36% 0.23% 0.26% 0.28% 

Table 6.12: Percent devIatlOns of the confidence mtervals from thelr mean outputs after 300 
iterations for each behaviour model simulation (exponential growth, screening 51-69 every 3 
years). 

Percent deviation Mod Logistic Gomp- Expon-
Gompertz ertz ential 

Number screen-detected 1.10% 0.82% 1.71% 0.91% 
N umber self detected 0.51% 0.58% 0.40% 0.54% 
Number with cancer 0.26% 0.17% 0.30% 0.18% 
Screen invited while had cancer 0.63% 0.46% 0.68% 0.51% 
Number undetected 1.61% 1.34% 2.79% 1.35% 
Not screen invited while had cancer 0.73% 0.71% 0.63% 0.73% 
Number with no cancer 1.24% 1.61% 1.02% 1. 55 'Xl 
Number who attended screening 0.29% 0.28% 0.28% 0.26% 
Percent detected by screening 1.05% 0.75% 1.65% 0.85% 
Tumour size 0.49% 0.47% 0.37% 0.47% 
Time-to-detection 0.37% 0.39% 0.52% 0.36% 
Self detected tumour size 0.41% 0.41% 0.36% 0.38% 
Self detected time-to-detection 0.38% 0.51% 0.52% 0.41% 
Screen-detected tumour size 0.46% 0.49% 0.49% 0.48% 
Screen-detected time-to-detection 0.30% 0.31% 0.35% 0.29% 
Life-years saved (of saved) 4.59% 4.05% 6.24% 3.86% 
Years earlier detected (of screen found) 1.17% 1.03% 2.36% 1.09% 
Average number of attendances (of attended) 0.28% 0.28% 0.26% 0.23% 

Table 6.13: Percent devIatlOns of the confidence ll1tervals from theIr mean outputs after 300 
iterations for each growth model simulation (local attendance, screening 51-69 every 3 years). 
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Chapter 7 

Results 

7.1 Introduction 

This Chapter aims to describe the effects and differences brought about by using each 

of the available behavioural options within the model. It will also explain the 

differences observed in the simulation results by using each of the four tumour growth 

patterns. 

For each of the tumour growth options (Gompertz, Exponential, Logistic, and 

Modified Gompertz) and behavioural options (Theory of Planned behaviour - TPB, 

Local and global percentage, and Baker and Atherill's equation model) outlined 

previously, a full simulation (1000 women simulated over 100 years for 300 iterations) 

has been run once for each of four different screening policies. The idea was to 

compare any differences that may exist between the modelling options that may 

affect the effects brought about by screening more often, or for longer, than current 

policy dictates. 

The next Section describes the experimental design used to create the results 

reported in this Chapter, and this is followed in Section 7.3 by the results comparing 

each of the four tumour growth patterns over the different screening strategies. 

Section 7.4 then demonstrates the effects of the four different modelling approaches 

to attendance behaviour that are available within the simulation, and goes on to 

focus upon the sensitivities of the Theory of Planned Behaviour variable inputs on 

the results of simulation runs using this theory. Finally, Section 7.6 reports results 

from experiments to find approximate increases in the UK populations TPB 

constructs that would bring about the same increase in attendance and screening 

benefits as lowering the current age of first screen to age 45. 
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7.2 Experimental Design 

7.2.1 Mammography screening scenarios 

The discrete event simulation model of breast cancer and screening for breast cancer 

allows the user to choose the age at which mammography population screening 

should be simulated to begin and end, as well as the frequency of the screening 

intervals within these years. It was infeasible to run all possible combinations of 

start, end, and interval ages for screening, and therefore, a few carefully selected 

screening scenarios were chosen as these represented realistic extensions to the 

current mammography screening programme in the UK. 

The current UK policy is to screen women from around age 50 until approximately 

age 70 at 3 year intervals. Since the simulation model invites women for screening at 

exactly the same age (unlike the reality of the UK Breast Cancer Screening 

Programme-UKBCSP), this scenario was converted to a policy of screening between 

the ages of 51 and 69, every 3 years. This is then used as the baseline simulation 

screening scenario to which all other screening policies are compared. 

Until 2002 the UK Breast screening programme only screened up to age 64 as 

standard, and therefore a natural choice of screening scenario was to reduce the upper 

age of screening. The second scenario considered in this Chapter was therefore 

screening from 51 to 63 every 3 years, in order to compare the simulated 

improvement in results from extended screening. 

It was also of interest to investigate the effects of screening more frequently than 

every 3 years, and so two more screening scenarios take the start and end ages for 

screening in the above screening scenarios, but instead of screening every 3 years, 

simulate screening every 2 years. These scenarios will help to compare the difference 

between adding screening at a later age (as the UKBCSP have chosen to do) or 

screening more frequently, and/or both together. 

As well as increasing the maximum age of screening, the last scenario lowers the 

standard age for inviting women to be screened to 45. Here, women are invited to 

screening every 3 years from age 45 until age 69. This last scenario will aid the 

trade-off between altering the current UK national screening policy by either inviting 

younger women for screening or by decreasing the screening interval of those 

currently invited to 2 years rather than 3. 

Table 7.1 summarises the five screening scenarios considered in this Chapter. 
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Scenario Start Age End Age Frequency 
1 51 69 3 years 
2 51 63 3 years 
3 51 69 2 years 
4 51 63 2 years 
5 45 69 3 years 

Table 7.1: Start and end ages and mterval frequency of screenmg mVltations for each screening 
scenario 

7.2.2 Tumour Growth and Attendance Behaviour Options 

The aim of the experimentation was to assess the differences in model output under 

different behavioural and cancer growth assumptions. A baseline setting of local 

attendance and exponential tumour growth pattern was chosen. These two options 

were considered appropriate markers for comparison, since they have been observed 

as popular assumptions when modelling the natural history of breast cancer and 

tumour screening interventions (see Chapter 4). The percentage attendance chosen 

for the baseline local (and global) percentage attendance was set at 84.664% since 

this falls in line with the average attendance rate brought about by the model's 

interpretation of the Theory of Planned Behaviour (TPB). 

The effects of varying the behavioural and tumour growth assumptions within the 

simulation model were then modelled by selecting each option in turn and evaluating 

each screening scenario, comparing results with one another. For consistency, when 

measuring the effect of the behavioural assumptions within the simulation, the 

baseline assumption of exponential tumour growth was chosen, and when considering 

the different growth patterns, the baseline assumption of local attendance was chosen. 

For each of the 7 resulting combinations of attendance and tumour growth options, 

the model was run 5 times, once for each of the screening scenarios discussed in 

Section 7.2.1 above. Every simulation was run for 100 years, with 1000 women and 

repeated for 300 iterations. 

Results of the attendance behaviour assumptions can be found in Section 7.4, and 

growth patterns in Section 7.3. 

7.2.3 Output statistics 

The results presented in this Chapter and in Appendixes C and D are, for each 

output, the average of the results over the 300 iterations run within each simulation. 

Standard deviations of the 300 values for each output were also calculated in order to 

derive confidence intervals for the means. To reduce error upon comparisons, the 

significance level Ct used to derive the confidence interval (using the student t 
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distribution), was divided by the total number of outputs to be compared (18 

outputs, for five screening scenarios, and each of 4 either tumour growth or 

behavioural assumptions led to a result of 360). A 90% confidence interval was 

constructed such that 
(J 

Interval = x ± tn-II-a r.:; 
, yn 

where a was the significance level such that a = 0.05/360, n = 300 was the number of 

iterations the average was taken over, and (J the standard deviation of the selected 

output. 

7.3 Tumour Growth Assumptions 

The following discussion summarises the effects of varying the assumed pattern of 

tumour growth within the simulation model. For full results and statistics the reader 

is referred to Appendix D. Four patterns of tumour growth are considered, labelled 

exponential, logistic, Gompertz, and modified Gompertz (or mod Gompertz for 

short) respectively. For details as to the nature of each growth pattern and how the 

parameters were assigned, please refer to Chapter 6. 

7.3.1 Numbers of cancers detected 

The aim of any national screening programme is to detect the disease at an earlier 

stage than it would have naturally presented, and to do so consistently. Therefore, 

both the number and proportion of screen-detected cancers found in each simulations 

were of particular interest. 

Figure 7.1 shows the average number of screen-detected cancers found from each 

simulation run, along with their 90% confidence intervals. Figure 7.2 shows the 

percentage of detected cancers that were screen-detected under each screening 

scenario and tumour growth pattern. The results show that the least number of 

screen-detected cancers occurred when the simulations were screening from age 51-63 

every 3 years. This was the old UK national policy, and the result was expected as 

this scenario covers the least range of ages, providing less opportunity to detect the 

cancer. Screening the same age ranges every 2 years can, however, be seen to 

significantly increase the number of screen-detected cancers. 

It appears that the current UK policy may do better still though, as the simulated 

number of screen-detected cancers increases further under the scenario where 

screening starts at age 51 and continues every 3 years until age 69 (akin to the 

current UK practice). This result is statistically significantly higher than the numbers 
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simulated when screening within ages 51 to 63 every 2 years for all tumour growth 

options bar t he Gompertzian pattern of tumour growth, where no significant 

difference is found between the two screening scenarios. 

The screening strategy that consistently comes out the most effective with th 

highest number of screen-detected cancers is screening from age 51 to 69 every 2 

years. This is closely followed by, although significantly greater than (under all 

growth assumptions), the number of screen-detected cancers when screening begins at 

age 45 and screens every 3 years unt il age 69. This result is echoed when considering 

the number of women who were invited to a screening session in the simulation while 

they had breast cancer, see Figure 7.3. As Figure 7.3 shows, increasing the age range 

of the UK screening policy to begin at age 45, increases the proportion of women 

invited to screening while they have breast cancer by around 15%. A smaller increase 

is seen by screening the same age range more frequently, but as noted above, in terms 

of the numbers of cancers detected, this screening policy is still very competative as it 

has more chances to detect the breast cancer. 

25% 

- ........,. 

-

-

_ Gom 

~ 
~ 
JJ' 

:..>: '--

-30% 

,..,...... 

["'""i 
.--

. 

---, ---, 

ertz lIogis, ~ mpetz ~ one 

~ \;: 
J.i ~ ~ =~ ~ 

.,", 
1,.:·1 

I;'.~ 
~'--

Tumour Growth Pattorn 

Cl Screening 45:69 8\ery 3 years. mScreenlng 51:63 ewry 2 years. o Screening 51 :63 e~ry 3 years. 

o Screening 51 :69 ewry 2 years .• Screening 51 :69 every 3 years. 

--, 
lal 

Figure 7.3: Numbers of women invited to a screen while they have cancer 

When considering the number of screen-detected cancers, the order of the screening 

scenarios remains constant across the different assumptions of tumour growth. Figure 

7.4 shows the percentage difference in the number of screen-detected cancers 

simulated in comparison to the current UK policy screening scenario (51-69 every 3 

years). This Figure demonstrates that the proportional changes in the number of 

screen-detected cancers remains comparatively stable across the different tumour 

growth assumptions, with the possible exception of the Gompertzian growth pattern. 
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Figure 7.4: Relative difference between screening scenarios for the numbers of screen-detected 
cancers, under different assumptions of tumour growth 

The Gompertzian growth pattern appears to favour screening every 2 years rather 

than every 3 years, compared with the other assumptions of tumour growth. 

Although the rank order of screening scenarios remains constant across the 

assumptions of tumour growth, the different growth patterns have produced 

statistically significant differences in the expected numbers of screen-detected cancers. 

Figure 7.1 shows this difference and demonstrates t hat under Gompertzian growth 

assumptions the smallest number of breast cancers were screen-detected in the 

simulations, followed by the modified Gompertzian growth pattern, the exponential 

pattern, and lastly, the greatest numbers detected by screening came under t he 

assumptions of Logistic tumour growth. This effect is again observed in Figure 7.2 

which shows the percentage of detected breast cancers that were detected by 

screening. 

As discussed in Chapter 6, the approximate percentage of screen-det ected cancers in 

the UK in 2002, (screening from age 50 to 64 every 3 years), was around 23%. The 

results for the percent screen-detected when screening between ages 51 and 63 every 3 

years found that screen-detected cancers accounted for around 9%, 20%, 25%, and 

30% of all detected cancers given Gompertzian, modified Gompertzian, exponential, 

and logistic growth assumptions respectively. Therefore, it may be that the 

assumptions made surrounding Gompertzian growth are questionable. 
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7.3.2 Detection statistics 

Not only does mammography screening aim to detect breast t umours, but also to 

detect them at an earlier st age of progression than they would have naturally 

surfaced. The simulation described in this t hesis models progression as a function of 

tumour size, and figures 7.5 and 7.6 demonstrate t he differences of average t umour 

size at detection observed between the simulations. 
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Figure 7.5: Average tumour diameters (mm) at detection under different screening and tu
mour growth assumptions 

Figures 7.5 and 7.7 reveal that , as could be expected as screening is increased (eit her 

in frequency or in length of years screened) the average size of all detected t umours is 

decreased. This is due to an increase in the numbers of tumours detect ed by 

screening, as reported above, and screening det ecting smaller tumours t han t hose 

that arose naturally. 

With the exception of the Gompertzian assumptions of t umour growt h, all differences 

in screening scenario produced statistically significant differences within the t umour 

diameters at det ection. Figure 7.7 provides a picture as to the degree of t his 

difference relative to the screening scenario corresponding to t he present UK policy. 

The results indicat e that the change in UK policy to screen up to age 70 rather than 

age 64 reduces t he average t umour diameter more than decreasing the screening 

interval from two to three years within the previous age range (50-63), (with the 

except ion of the Gompertzian growth model results which showed no significant 

difference between the two scenarios). These results are in line with results by Boer 
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et al. (1998), whose simulation analysis recommended that the UK's old policy be 

extended by increasing the maximum age of screening rather then decreasing the 

screening interval, and help to further validate the simulation model. The results also 

suggest that in order to further reduce the average tumour size at detection, it would 

be beneficial either to increase the age range of the population invited to screening to 

start at age 45, or better still to screen the current age range biennially, therefore 

detecting a greater proportion of interval cancers than before. Ignoring the 

Gompertzian growth pattern results, decreasing the screening interval to two years 

could decrease the average tumour size at detection by as much as 1mm in diameter. 

Each of the different assumptions of tumour growth pattern led to statistically 

significant differences compared with one another in the simulated average tUlllOur 

diameter at detection. This is believed to be due to the differences in the numbers 

and proportions of screen-detected cancers between the growth assumptions, since the 

criteria for detection remain constant across the different growth options. 

Figure 7.6 presents the relative difference in tumour size for the different screening 

scenarios in comparison to the current UK policy of screening from age 50 to age 69. 

It can be seen that, with the exception of Gompertzian growth assumptions, the 

degree of tumour diameter change remains approximately constant across the 

remaining three tumour growth patterns considered. 

A further factor that influences the probability of tumour progression is the age of 

the breast tumour before diagnosis. Figure 7.8 demonstrates the results found in each 

of the different simulations. It can be seen that the same pattern of screening is 

revealed, with more screening leading to significantly shorter simulated 

times-to-detection. Not all differences were significant, however, and this is thought 

to be due to the small changes observed for the differences in times to discovery 

between the different screening scenarios (within each tumour growth assumption). 

Only the assumption of modified Gompertzian (stochastic) tumour growth led to 

significantly different times-to-detection between all screening scenarios, and the 

assumption of Gompertzian tumour growth led to the least number of significant 

differences between the screening scenarios. 

Figure 7.9 provides an overview of the significant and non significant relationships 

between the screening scenarios for each of the assumed tumour growth patterns for 

the output time to tumour detection. It can be seen that when considering reducing 

the time-to-discovery of the average tumour, in three out of the four cases according 

to the simulation model, it would make no significant difference to the 

time-to-detection if the screening policy in the UK was changed to screening fewer 

age groups but more often (51 to 63 years biennially). There was also a non 

significant difference found (again in three of the four growth assumptions) between 

screening the current age groups more frequently (51 to 69 biennially) and increasing 
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the age range of screening down to a start age of 45 (45 to 69 t riennially). 

While the results did not always indicat e significant differences for time-to-detection 

within the growth patterns, a significant difference can be clearly seen between th 

tumour growth patterns (see Figure 7.8) . This is believed to be due to t he 

assumptions made regarding the populating of the growth pattern equations and 

their parameters. As can be seen, the logistic and exponential assumptions produce 

the highest estimations of the time-to-detection of around 16 years, whereas the 

modified Gompertz and Gompertz growth patterns provide times-to-det ection closer 

to 6 and 3 years respectively. 
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Figure 7.10: Years earlier screen-detected tumours are detected relative to unscreened detec
tion, by screening scenario and tumour growth pattern 

When considering only screen-detected tumours, it can be seen (Figure 7.10) that the 

simulations suggest screen-detected tumours are detected between 1 and 6 years 

earlier than they would have arisen naturally, depending on the assumption of 

tumour growth used within the model. In line with the time-to-discovery, the least 

benefit of screening is brought about by the Gompertzian pattern of tumour growth , 

and the largest benefit by the logistic pattern. 

However, in contrast to the results of the average time to tumour detection, here a 

tumour is det ected sooner than it would have otherwise have been if screening was 

more frequent (i .e. every two years rather than every three years). This makes sense 

as biennial screening has the potential to find the tumours that are screen-detected 

one year earlier than triennial screening. The biennial screening scenarios produce 

significantly higher results than the triennial screening scenarios in all cases, (for the 
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average years a screen-detected tumour is detected earlier t han if screening had not 

taken place) , with the exception of those within the Gompertz tumour grmvth 

pattern. 

7.3.3 Life years saved 

The ultimate aim of screening for breast cancer is to reduce breast cancer related 

mortality. If a screening policy does not save lives then it could be argued that it is 

not effective as it may simply increase the number of years a patient is aware of the 

disease and the time undergoing treatment. One output of the simulation model is 

the average of the total number of life-years saved within each iteration (simulating 

1000 women each time) . Figure 7.11 presents the results for this output across the 

different screening scenarios and different assumptions of tumour growt h . 
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Figure 7.11: Average of the total number of life-years saved by each screening scenario by 
assumption of tumour growth pattern (per 1,000 women) 

It can be seen in Figure 7.11 that in all cases but the Gompertzian assumption of 

tumour growth, screening a larger age range produced the highest numbers of lives 

saved (screening 45 to 69 triennially). The number of life-years saved by this 

screening scenario produced significantly higher results than screening from age 51 to 

69 every 2 years in all cases except the Gompertzian assumption of t umour growth. 

Although the number of tumours detected was lower when extending the age group of 

screening, than screening more frequently, (since the additional tumours that are 

detected are in younger women) , this leads to more life-years saved when a life is 
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saved in the simulation. 

Screening from age 51 to age 69 every two years rather than every 3 years (as t he 

current UK policy) produces the second highest number of life-years saved, wit h 

significantly higher results in all but the Gompertzian tumour growth screening 

scenarios. Figure 7.12 indicates that if the UK policy were extended to screen from 

age 45, then the number of life-years saved in the UK could be increased by around 

30%. Alternatively, screening the same age groups, but every two years rather than 

three years could increase the number of life-years saved by around 20%. This is an 

important finding, and cost not withstanding, if the aim of the UK screening policy is 

to save lives then it may well be worth decreasing the screening interval to two years, 

or to lower the age for the first invited screen to age 45. In order to understand the 

full cost-benefit (both in t erms of the increase in costs due to t he extra number of 

mammograms required , and the increase in treatment and overdiagnosis) a full cost 

model would be required. 

The previous UK policy (up to 2002) of screening from age 51 to 63 every 3 years 

consistently led to significantly fewer life-years saved than all other screening scenario 

policies analysed. 
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Figure 7. 12: Relative change in life-years saved in comparison to the current UK policy, by 
tumour growth pattern 

From Figure 7.11 it can be seen that a significant difference is obtained between 

life-years saved across the different assumptions of t umour growth. This result could 

be very important if decisions regarding strategy that takes account of cost per life 

years saved are made upon the basis of a simulation model. The logistic and 
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exponential tumour growth patterns provide the most optimistic estimate of the 

numbers of life-years that screening strategies may save (per 1000 women with breast 

cancer), while the assumption of Gompertzian growth produces the most pessimistic 

results. However, it can be seen from Figure 7.12 that the relative change in 

simulated life-years saved remains fairly constant across tumour growth assumptions, 

with the possible exception of Gompertzian growth which can be seen to favour the 

biennial screening scenarios. 

7.3.4 Summary of the screening scenario results and the effect of 

different assumptions of tumour growth 

The results presented so far in this Chapter have compared the effects of different 

assumptions of tumour growth within the simulation model across five different 

screening scenarios. This Section summarises the findings so far by first discussing 

the overall ranking of screening scenario by outcome, followed by the differences 

brought about by different assumptions of tumour growth. 

The screening scenario which consistently led to the least desirable results across all 

simulation outputs was that of screening from age 51 to 63 every 3 years. This result 

is unsurprising as it is the scenario that represents the least number of screening 

invitations. Screening the same age ranges but every 2 years rather than every 3 

years led to significant improvements in results in terms of the numbers and 

proportions detected, the time to tumour detection, and life-years saved. The current 

UK policy mirrors the simulated policy of screening ages 51 to 69 every 3 years, <I,nd 

when considering the numbers of screen-detected cancers, this was found to perform 

better than screening ages 51 to 63 every 3 years. However, no significant difrerenc(~s 

between the two policies were found when considering the time to tumour detection, 

or numbers of life-years saved. 

Considering whether the current UK policy should be extended by screening more 

frequently or by decreasing the lower age limit for screening to age 45, the results are 

inconclusive and depend upon the outcome in question. If the sole aim is to detect 

more cancers, then screening every 2 years would be the preferred option (and would 

increase the life-years saved by 20%). However, if the objective is to increase the 

years earlier that tumours are detected than they would naturally occur, or to 

increase the total number of life-years saved (by 30%), then the choice of screening 

from age 45 to 69 but every 3 years would be preferred. 

Overall, the choice of tumour growth model made little difference to the T'elative 

increase or decrease in output brought about by each different screening scenario. 

However, the assumptions surrounding the Gompertzian model of tumour growth 

displayed less significant differences between screening scenarios and demonstrated a 
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bias toward biennial screening in comparison to the other assumptions of tumour 

growth. This bias and difference in results is thought to be due to the very short 

doubling times assumed within the growth pattern, since the tumour grows very 

quickly and so there is less time to detect it by screening and thus biennial screening 

will be more likely to detect more cancers in comparison to triennial screening. 

The different assumptions of tumour growth did however, int.erest.ingly, lead t.o 

significantly different actual (as opposed to relat.ive) outcomes. The most. desirable 

outcomes were modelled using the logistic pattern of tumour growth followed by the 

exponential, modified Gompertzian, and lastly the least desirable outcomes overall 

were associated with simulations run using the Gompertzian pattern of t.umour 

growt.h. Of particular note is the large difference brought about by t.he different 

assumptions of tumour growt.h upon the simulated numbers of life years saved. This 

result is of particular importance since decisions with regard to screening strategies 

are often made upon the cost per life years saved, and even though cost is not. 

included in this model it is not unreasonable to assume that a diff'erence in the 

numbers of life years saved may also lead to a difference in cost per life years saved. 

The observed difference in absolute results across assumption of tumour growth is 

important, and helps to demonstrate that when simulating breast cancer (or indeed 

any cancer) screening policies in this way, it is best to compare relative rather than 

absolute outcomes between different screening scenarios even if the baseline model 

validates well. 

7.4 Attendance Behaviour Modelling 

Four options are provided within t.he simulation model for the approximation of 

attendance behaviour at invited screening sessions. These behavioural options are, 

local and global percentage attendance, the Theory of Planned Behaviour (TPB) and 

Baker and Averills' attendance equation (abbreviated to 'equation' from now on). 

Each method of approximating attendance was described in detail in Chapter 5. 

This Section outlines the results of using each of the four behavioural models in turn 

to approximate attendance at invited mammography screening sessions, and 

compares and contrasts the differences produced between the methods. The same five 

screening scenarios are considered as used to compare assumptions of tumour growth, 

and these were outlined in Section 7.2.1. In all cases an assumption of exponential 

tumour growth has been made, and where appropriate the percentage attendance set 

to 84.66%. The results presented are a summary of the full results, and for detailed 

results over all scenarios and outputs the reader is referred to Appendix C. 
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7.4.1 Number of cancers detected 

The primary aim of screening for a disease is to diagnose the disease at an earlier 

time in the natural history of the disease, and to do so for a large enough proportion 

of the screened population that the costs and efforts involved in the process are 

outweighed by the gain in reducing the severity of the disease burden. 

One measure of effectiveness of a screening policy for breast cancer is therefore the 

number (and proportion) of screen-detected cancers over the life of the policy. This 

Section first of all discusses the differences in the numbers and proportions of 

screen-detected cancers brought about by the different screening policies, before 

reviewing how these differences are affected by the different methods for modelling 

attendance at the breast screening clinics. 
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Figure 7.13: Average number of screen-detected tumours for different screening scenarios and 
assumptions of &~t.endance behaviour 

\ . 

Figures 7.13 and 7.14 demonstrate the average numbers and proportions of 

screen-detected cancers (and their 90% confidence intervals) for each of the screening 

scenarios, and over each of the four assumptions of attendance behaviour. It can be 

seen that, in all cases, the lowest number and proportions of screen-detected cancers 

from the simulation are brought about by screening from age 51 until age 63, every 3 

years. This was the screening scenario designed to match the previous UK national 

screening policy, and the results indicate that a significant increase in numbers and 

proportions of breast cancers detected should have been achieved by increasing the 

upper age limit of screening to 70 (and under these modelling conditions this brings 
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Figure 7.14: Percent of detected tumours that were screen-detected for different screening 
policies and assumptions of attendance behaviour 

about significantly more tumour diagnosis than screening t he old age groups but more 

frequently, i.e. every 2 years) . Figures 7.13 and 7.14 also show t hat if t he screening 

policy were to be further modified, then either screening more frequent ly (every 2 

years) , or decreasing the lower age limit for screening t o 45, would both significantly 

increase the proportion and numbers of screen-det ected cancers diagnosed. 

Overall, the different options for modelling behaviour have produced similar results 

regarding the rank of the screening policies. However, when it comes to t he decision 

whether or not to extend the current UK screening policy by screening t he same ages 

every 2 years , or extending the lower age limit for screening down to 45 from 50, 

differences appear. These differences can be seen in Figure 7.14, which shows that 

when using the equation method to predict attendance, or when using t he global 

percentage attendance option, no significant differences are apparent between the two 

screening scenarios (when considering the out put of the numbers of breast cancers 

diagnosed by screening) . However , if the simulation is run using eit her t he local 

percentage or the TPB assumptions of attendance behaviour then t he favoured policy 

to increase the proportion of screen-detect ed cancers is to screen the same age group 

as at present (51:69) but more frequent ly (biennially). This result is not entirely 

unexpect ed since both local percent and the TPB modelling methods lead to 

individual probabilities of attendance at each invitation. 

When considering the global percentage opt ion in the model however, the logic for 

this option dictates that alt hough the same percentage of individuals will attend each 

143 



screen, the subset who attend each time will remain constant. Therefore, in the case 

of the global percentage option, screening more frequently may not be as eHective 

since some individuals will still not attend and their tumours will not be detected. 

Indeed, it can be seen that, overall, the global percentage attendance assumption 

produces lower proportions of screen-detected cancers than those observed in both 

the local percentage and the TPB options for attendance behaviour, who stand more 

chance of screening the population as a whole as the number of invited screens 

increases. 

The overall percentage attendance that the equation model infers is lower than the 

84.66% assumption produced by other three options, and this explains why the 

proportions and number of screen-detected cancers are lower for this assumption 

across the screening scenarios, in comparison to the other assumptions of attendance. 

The lower number and proportion of cancers detected by screening may also explain 

the lack of a significant difference between screening ages 51 to 69 biennially and 

screening ages 45 to 69 triennially in the case of the equation attendance option. If 

the difference in the numbers detected between the screening scenarios is small, then 

a large sample would be required to produce significance, (and results from the other 

behavioural assumptions demonstrate that the difference may well be small), and 

since a lower proportion attend each screen under the equation option, a smaller 

sample of screen-detected cancers would be expected. The result is interesting, 

however, since the equation attendance behaviour option was derived from empirical 

data from a UK breast screening unit, it follows that the attendance proportion 

reflected should be realistic at least at the relevant local area level, and hence, there 

may be no difference between lowering the screening interval and decreasing the lower 

age limit for screening within the current UK policy unless a higher percentage 

attendance can be achieved. 

7.4.2 Detection statistics 

As well as detecting tumours via mammography screening, the aim of screening for 

breast cancer is also to detect these tumours at an earlier stage in their natural 

history than they would have been detected naturally, therefore potentially leading to 

more successful, less invasive treatment and fewer deaths from breast cancer. 

This Section describes the differences between, and across, the different methods of 

attendance behaviour modelling considered, and the different screening scenarios, 

when considering the average tumour time-to-detection, the average number of years 

earlier screen-detected tumours were simulated to be detected than they would have 

naturally arisen, and the average size of a detected tumour at diagnosis. 

Figure 7.15 demonstrates how the average tumour size, and confidence intel'val for 
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Figure 7.15: Average tumour diameter (mm) at presentation of all detected tumours, over 
screening scenario and behavioural attendance option 

the average, changes with the different screening scenarios considered, and over the 

different options for attendance behaviour. It can be seen that, once again, the 

screening policy that leads to the largest tumour diameters on average is the old UK 

national policy of screening from age 51 to age 63 every 3 years . Increasing the upper 

limit for screening to 69 (as the UK has done) significantly reduces the size of the 

average tumour at presentation by around a millimetre in diameter. Reducing the 

size of tumour at diagnosis is beneficial since the size of tumour is one indication of 

the tumours progression through its natural life cycle (please refer to Chapter 6 for 

more detail) . 

Again, in all cases, the current UK policy leads to smaller tumours than the 

simulation predicts would have been the case had the UK kept the screening ages to 

between 51 and 63 but screened every two years rather than every three. However, as 

for the case of the number of tumours detected by screening, when it comes to 

assessing whether it would be best to extend the current UK policy by screening 

more frequently or by screening a larger age range, the difference in the diameter of 

the tumours at presentation is not always statistically significant. No significant 

difference is found between the two screening scenarios when the behavioural options 

of global percent, and the equation model are run. When the simulation is run using 

the TPB or local percent attendance, however , the results indicate that the preferred 

screening scenario in order to reduce the tumour size the most would be to decrease 

the current screening interval from three years to two. 
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The behavioural options produce the same ranking for the screening policies if t he 

aim is to reduce tumour diameter , (although not always with significant differences 

between screening scenarios). Figure 7.15 also shows that the choice of behavioural 

attendance option has little effect upon the degree of change in the average tumour 

diameter between the different screening strategies considered. 

It is also important to detect the tumour early enough in its life cycle so that it has 

less time to progress to metastatic disease. Figure 7.16 shows the average 

time-to-detection for all detected tumours (screen-detected or detected via other 

means) for the different assumptions of attendance behaviour and screening scenarios 

(along with their respective 90% confidence intervals). 
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Figure 7.16: Average time (years) from tumour onset until detection by screening scenario 
and assumption of attendance behaviour 

As can be seen from Figure 7.16, as the number of screens an individual is invited to 

increases , the average age of her tumour before detection is decreased. However, the 

difference in average time-to-detection brought about by screening policy is not 

always significant. Not surprisingly the policy that produced the longest average 

times-to-detection was screening from age 51 to age 63 every 3 years (the previous 

UK policy) but when using the equation and the TPB options for behavioural 

modelling, this policy did not produce significantly longer times-to-detection than 

increasing the upper age limit to 69 (as in the current policy). Here, across the 

behavioural options, no significant difference was found between the simulated 

times-to-detection of detected tumours when screening ages 51 to 69 every 3 years 

and screening ages 51 to 63 every 2 years. This result is in contrast to the findings 
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reported previously that in order to increase the number of screen-detected tumours 

it was better to screen up to age 69 every three years than to lower the maximum age 

limit to 63 but screen biennially rather than triennially. 

The screening policies that produced t he lowest times-to-detection (consistently 

across behavioural assumptions) were again, screening the current age ranges more 

frequently (51 to 69 every 2 years), and increasing the age range for screening (45 to 

69 every 3 years), although no significant difference in average time-to-detection was 

found between the two screening strategies. 

Although, as noted above, the choice of behavioural option did affect whether two of 

the screening scenarios produced different t imes-to-detection or not, with the 

exception of the equation attendance option, the remaining behavioural models 

produced estimated times-to-detection that were not significantly different from each 

other across the same screening strategies (see Figure 7.16). In some cases, however, 

the average time-to-detection produced by the equation model of attendance was 

significantly higher than that for at least one of the other behavioural models, under 

the same screening scenario. This is again thought to be due to the lower proportion 

of attendance implied by the equation model than the 85% overall assumed from the 

other three options for attendance behaviour. 
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Figure 7.17 shows the average number of years earlier that screen-detected tumours 

in the simulations were detected than they would have been detected naturally 
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(wit hout screening), along with the 90% confidence intervals for t he means. Screening 

biennially as opposed to triennially produces the only significant result, reducing the 

average years a screen-detected tumour is diagnosed t han would have naturally arisen 

by around 0.3 years (4 months) . Figures 7. 17 and 7. 18 also demonstrate t hat, once 

again, there is no significant difference produced by using the different assumptions of 

att endance behaviour across the same screening strategy, and they each produce 

similar relative increases and decreases in the years earlier screen-detected cancers 

were detected t han they would occur naturally, between screening scenarios. 

7.4.3 Life years saved 

The ultimat e aim of screening for breast cancer is to reduce the mortality rate from 

the disease. A popular method of comparing different interventions in healthcare is to 

compare the difference in projected life-years saved by each intervention. This Section 

out lines t he results of the simulation runs, across t he different screening scenarios 

considered, and the four attendance behaviour options within the simulation, with 

regards t o the estimated life-years saved in each run. 

Figure 7.19 out lines the results for the change in life-years saved over the different 

screening scenarios considered within this thesis. It can be clearly seen that, so far as 

the assumpt ions made within t his simulation model are concerned, the screening 
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scenario that would lead to the highest number of life-years saved is to screen from 

age 45 to age 69, every 3 years. This agrees with the findings across tumour growth 

assumptions (see Section 7.3) and would make sense since it is the only policy that 

screens from ages 45 to 50, and the younger the person is when a cancer is det ected, 

the greater the potential number of life-years saved should the tumour be detect ed 

early enough to save a life. 

The old UK national policy of screening from age 51 to 63 every 3 years can be seen 

to provide the lowest average number of life-years saved (although in two of the 

attendance behaviour assumptions, TPB and global percentage, the difference 

between this and the current policy of screening up to age 69 was insignificant) . 

Interestingly, when considering the number of life-years saved, over all methods of 

attendance behaviour modelling, there was no significant difference found between 

screening from age 51 to 63 every 2 years, and the current UK national policy of 

screening from roughly age 51 to age 69, every 3 years. 

As has been seen across all results in this Section, little variation exists across the 

different methods of modelling attendance behaviour at screening invitations, and 

Figure 7.19 also depicts that the local percentage, global percentage, and TPB 

options all produced results that were not significantly different from each other 

across the same screening scenarios. The equation option for modelling attendance 

behaviour produced lower estimates for the average number of life-years saved than 

did the other three methods, and some of these differences were significant. Again, 
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this difference is thought to be brought about by the lower overall attendance rate 

implied by the equation models logic than the 84.7% implied across the other three 

models of tumour growth. Figure 7.19 also shows, however, that the rank of the 

screening scenarios when the equation method of attendance behaviour is chosen, 

remains the same as for the other three options for modeling attendance at invited 

breast screening. 

7.4.4 Attendance at invited breast screens 

Since this part of the thesis deals with any differences brought about by the 

simulation models chosen approach to modelling attendance behaviour at screening 

invitations, it was also interesting to explore t he attendance results produced by each 

of the different methods. 
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Figure 7.20: The average number of women, per 1,000, who attended screening at least once 
across all screening scenarios by attendance behaviour assumption 

For each behaviour model, the number of women who attended at least once did not 

vary greatly according to the screening scenario. However, Figure 7.20 shows that 

there were significant differences brought about by the different behavioural 

assumptions. It can be seen that the TPB assumptions and local percentage 

attendance options produced very similar results regarding the numbers of women 

who attended the simulated screening units at least once during the iteration, 

whereas the numbers implied by the global percentage option and the equation were 

lower by around 100 women (out of the 1,000 women simulated in each iteration). 

150 



° .c 
~ 
c .. 
E 
~ 6 +------------.---r------------------,---~----------------~ 
.!!. 
Ol 
c 
1i i 5 +------------1 
.. c 

~i '" .. 
~ ~ 4 
c " '" .. " " c c .... 
"'''' '" '" 
.. 
.c 
E 
" c .. 
Ol 
~ 

~ 

Average of Equation A\<!rage of l ocal A wrage of Global A wrage of TP B 

Behaviour Mode l 

I!J Screening 51:63 e\<!ry 3 years , I!] Screening 51:69 e\<!ry 3 years, O Screening 51:63 ewry 2 years, 

o Screening 51:69 e\<!ry 2 years , • Screening 45:69 ewry 3 years , 

Figure 7,21 : Average number of attendances at screening of women who attended at least 
once, by screening scenario and attendance behaviour assumption 

8% 

7% ,.. 
:. u 
c.= 
~ 8. 

6% u ~ 

iii'" " .. c.c 

" -'" E 5% 
~,g 
;0) 
.c u 
E § 4% 

" -c on 

'" " .. Ol -

E Cti 3% 

!l! " '" .. ,," .c c 
2% ~~ 

" ° u.c 
c ~ 
l!! :J: 1% 

,g! 
° '5 = ,,-

Ol O 0% ",-

E c .. ° l: ~ .. .. 
0.. c. -1% 

- ,.-----

-
~ ,.-----

-

~ 
-

I 
l-

I- ~F\ 
I- ~[~ -

f '>" 
I- 1"(;'1 l-

e "i] r l :,," 

Screeni ~ '~:~~' Screening 51:63 ewry 2 years , Screening 51 :69 ewry 2 years , Screening 45:69 ewry 3 years , 

L:.J 

-2% 

Scree ning sce nario 

o Equalion IJ l oeal o Global O TPB 

Figure 7,22: Relat ive number of attendances of women who attended screening invitations 
in comparison to t he current UK screening policy by attendance behaviour assumption and 
screening scenario 

151 



Figures 7.21 and 7.22 depict the differences brought about by the different 

behavioural assumptions between the average number of attendances at breast 

screening among those who did attend at least once. In contrast to the number of 

women who attended at least once, the average number of attendances are higher 

when the global percentage attendance assumption of attendance behaviour is made, 

with the remaining three options producing very similar results. 

Figure 7.22 demonstrates that the relative increase and decrease in attendance over 

the different screening scenarios in comparison to the current UK policy, is affected 

by the choice of attendance behaviour modelling method. Here again, the equatioll 

and global percentage options provide different proportionate increases and decreases, 

with higher proportionate increases in average attendance when biennial screening 

takes place as opposed to triennial screening. This result may be partly due to the 

smaller numbers of attendees within the equation and global attendance modelling 

assumptions in the first place. Lower absolute starting conditions could have led to 

the observed proportionate increases when similar absolute increases are introduced. 

7.4.5 Summary of the effect of behavioural assumptions upon the 

simulation results 

The results presented above indicate that overall, the different behavioural 

attendance modelling available within the simulation model lead to approximately 

similar ranks for the different screening scenarios. 

As observed in Section 7.3, the results demonstrate that screening from age 51 to age 

69 every 2 years would produce the most desirable results in terms of the numbers of 

cancers detected and the reduction obtained in the size of the average cancer. 

However, screening from age 45 to 69 every 3 years was shown to be more beneficial 

in regards to reducing times-to-detection of the cancer or increasing the total number 

of life-years saved. 

Using the global or equation methods of modelling attendance at invited screening 

sessions led to less favourable results than the use of the other two methods. The 

equation model leads to a lower percentage of attendees than assumed in the other 

three models of attendance, thus explaining the proportionately lower results. 

However, the finding that assuming global percentage attendance produced 

significantly different outcomes to those of the local percentage suggest that the 

method by which a simulation model chooses to model attendance is important to the 

modelled outcome. Although the rank of the different screening policies was the same 

irrespective of which attendance model was used, the global percentage assumptions 

led to lower numbers of screen-detected cancers, and in some cases these lower counts 

produced insignificant differences between the screening scenarios (under the global 
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attendance assumptions), that were significant under different assumptions of 

attendance. 

Modelling that assumed local percentage or TPB attendance, however, produced 

more desirable results (with an increase in the number of detected tumours of around 

7% over global percentage assumptions). The two methods were shown to produce 

very similar proportional and actual results across the different model outputs and 

through different screening scenarios. In two cases, however, the TPB led to 

insignificant differences between outputs from screening ages 51 to 63 every 3 years, 

and increasing the upper age limit to 69 (still screening triennially). The differences 

between the same outputs under the same screening scenarios were signiJicC1ut uuuer 

local attendance behaviour assumptions. The differences between the two approaches 

to behaviour modelling may be due to the more structured approach of the TPB, 

which may assign very low probabilities of attendance to some individuals who may 

never attend, whereas the local percentage assumptions imply that all women in the 

simulation have an equal chance of attending each screen. As has been seen from the 

results of the global percentage attendance, assuming that the same women attend 

each time at screening produces less desirable results. Since the TPB provides values 

to psychological variables for each simulated individual that do not change during the 

simulation and go on to predict likelihood of attendance, the TPB assumptions in 

this thesis can lead to the same individual repeatedly attending or non-attending 

(although not necessarily all of the time as with the global percentage option). 

Therefore, the added structure for the probability of attendance brought about by the 

assumptions within the TPB method of attendance modelling (as opposed to the local 

percentage attendance option) may explain the slight reduction in desirable results. 

7.5 TPB Sensitivities 

The results in Section 7.4 have helped to verify that using the Theory of Planned 

Behaviour (TPB) to model attendance behaviour at breast screening units produces 

very similar results to the assumptions of local percentage attendance. The advantage 

of the TPB, however, is that it can provide additional insight into the impact of 

psychological changes in a population upon the attendance at, and therefore overall 

performance of, screening for breast cancer. 

This Section outlines the results of a small scale sensitivity analysis involving the 

three main variables of the TPB that were included in this analysis, those of attitude, 

subjective norm, and perceived behavioural control (PBe). The analysis considers 

the simulated effects of population changes in the three psychological constructs. 

Attitude toward the behaviour refers to the overall evaluations of the behaviour by 
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the individual. Attitude toward a behaviour may be changed by a number of external 

factors such as advertising campaigns (promoting breast awareness or the severity 

and importance of early detection for breast cancer), or negative press (for example 

press attention to research findings that population mammography screening is not 

effective). Subjective norms consist of a persons beliefs about whether significant 

others would approve of their participation in the behaviour, where a significant 

other(s) are person(s) whose views in this domain are important to the individual. 

Subjective norms may be altered by a shift in general opinion in society due to an 

overall shift in attitudes, or by direct communications with the individuals concerned. 

Perceived behavioural control is the extent to which the individual believes the 

behaviour in question is under his/her control, and draws parallels with the concept 

of self efficacy. An individuals PBC can again be affected by a number of internal and 

external factors including confidence, depression, self efficacy, and the real ability to 

travel to the screening unit (in turn affected by distance from home, transport, time, 

and expense). 

Jepson et al. (2000) summarise and evaluate literature relating to factors pertaining 

to the effectiveness of interventions for screening programmes, including breast 

screening programmes. Their results revealed a mix of success by interventions to 

increase scores relating to psychological constructs (such as those in the TPB), and 

studied interventions such as telephone reminders before appointments, telephone and 

face to face counselling (covering the reasons behind and importance of screening as 

well as what is involved in the screening process), personal advice from a GP, 

mail-shots and informative videos. 

The next paragraph outlines the methodology used in the sensitivity analysis that 

focused upon the TPB variables, followed by a description of the results from this 

methodology. 

When the simulation is run with the TPB, at the beginning of a simulation each 

woman in the model is provided with a sampled value for each of the three TPB 

variables considered, taken from a background population. The populations used for 

the constructs were derived from literature (please refer to Chapter 6 for details). To 

analyse how sensitive the results of the simulation are to each of these three variables, 

the background distributions of the variables were individually increased and then 

decreased by 10% in turn before running the simulation, and then they were 

simultaneously increased and decreased by 10% to view the collective impact. This 

analysis was carried out with the baseline settings reported in Section 7.2 such that 

screening took place from age 51 to 69 every 3 years, and an assumption of 

exponential tumour growth was made. 

This Section outlines the main effects of the sensitivity changes and how the results 

of the simulation altered with these small changes in the TPBs behavioural 
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constructs. Appendix E contains the full results for all outputs and all changes. 
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Figure 7.23: The change in the percent of tumours detected by mammography screening for 
10% changes in the TPB variables 

Figures 7.23 and 7.24 provide the absolute and relative change in the percent of 

breast t umours that were screen-detected with t he 10% change in each of the TPB 

constructs . The results show t hat , as expected from the analysis in Chapter 6 and 

the weights of the logistic regression (the smallest weight associat ed with the attitude 

construct, and t he largest with PBC), the construct that has the largest effect upon 

the outcome is perceived behavioural control (PBC), followed by subjective norms, 

and lastly, attitude. It appears t hat the change in attit ude construct did not have a 

significant effect upon t he percent of screen-detected cancers since a rise in the 

proport ion of screen-detected cancers is observed even when the value of t he 

construct is reduced, (modelling the effect of a 10% negative swing in attit udes to 

mammography screening). This is thought to be due to the insignificant effect of 

Attit ude in the study from which the data for the TPB approximat ion in the 

simulat ion were derived, and confidence limits would be expected to cross zero (see 

Chapter 6 for details) . The effect of PBC and subject ive norms however, appears 

roughly linear, with an approximate 3% and 2% change respect ively in the percent of 

tumours detected by mammography screening for each 10% change in the construct. 

The relationship between the TPB constructs and t he number of women who attend 

for screening at least once is less clear as Figure 7.25 depicts. Here it can be seen t hat 

while t he constructs of subj ective norm and PBC appear to have an effect upon the 

number of women who attend at least once, the effect is much smaller (of the order of 
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Figure 7.26: Relative change in the average number of attendances at breast screening for 
women who attended screening with a 10% change in the TPB constructs 

less than half a percent for a 10% change in each construct respectively) . In contrast 

to this, however , Figure 7.26 reveals that the average number of attendances for those 

who did attend screening does show a consistent change with each 10% alteration in 

the TPB constructs . In this case the constructs of subjective norm and PBC appear 

to lead to an approximate 1% and 2.5% change in the average number of attendances 

per person who attends at least once, while increasing all constructs together leads to 

an approximate additive effect of around 3 to 4% change in the average number of 

attendances. 

Although only a small effect can be seen in the change in tumour diameter with a 

10% change in the TPB constructs (with only a 1% increase and decrease observed 

when all three constructs were increased and decreased together, see Figure 7.27) , the 

effect upon predicted life-years saved is more noticeable. Figure 7.28 provides the 

observed increase and decrease in the number of life-years saved with the change in 

value of the sampled TPB constructs, and Figure 7.29 demonstrates the associated 

relative change from the baseline that t hese differences represent. The results show 

that while the construct of subjective norm now has a lower effect upon the outcome 

than before (due to the introduction of greater variability within the outcome), PBC 

can still be seen to influence the simulation output of life-years saved. Figure 7.29 

shows that even a 10% increase in PBC could potentially lead to a 2% increase in the 

number of life-years saved, and if all constructs were increased together then this 

Figure could rise to as much as 4%. 
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Figure 7.29: Relative change in the number of life-years saved for a 10% change in the TPB 
constructs in comparison to baseline 

7.5 .1 Summary of the TPB sensitivity results 

The results of the simulation sensitivity results reveal that (in line with the make-up 

of the linear regression function modelling), the rank effect of the TPB constructs on 

the measured outcomes from high to low were perceived behavioural control, 

subjective norms, and finally, attitude, which had little effect by itself. 

Increasing the construct of PBC by 10% produced a 2-3% increase in the number of 

screen-detected tumours, brought about by a 2.5% increase in the average number of 

attendances among those who attended screening. 

Increasing subjective norm values by 10% had a smaller, but still beneficial impact on 

the results, with around a 2% increase in the number of screen-detected cancers, and 

approximately 1 % increase in the average number of attendances per attendee in the 

simulations. 

Increasing or decreasing all three constructs together led to an additive increase or 

decrease in the results (due to the linear regression function methodology). An 

increase of all constructs by 10% produced around a 4% increase in the number of 

screen-detected breast t umours, around a 1 % decrease in the overall average diameter 

of tumours at detection, and an approximate 4% increase in t he total number of 

life-years saved by screening. This is roughly the increase in life-years saved modelled 

by increasing the maximum age of screening from 63 to 69 (screening every 3 years in 

both scenarios) as implemented in the UK policy. 
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Section 7.4 reveals that the simulation suggests that the UK would see approximately 

15% more screen-detected tumours if the lower age for screening invitations was 

reduced to age 45 (adding two more invitations per individual). The results of this 

sensitivity analysis reveal that around a 4% increase can be achieved simply by 

increasing the TPB values of the population by 10% and not altering the screening 

regime at all. 

7.6 TPB Increase vs Lowering the Age of First Screen 

As has been reported above, a 4% increase in life-years saved can be brought about 

(according to the simulation model) by simply increasing womens beliefs regarding 

breast screening, and their ability to attend, by around 10%. This Section reports 

analysis carried out in order to try to identify the level of increase in the TPB 

constructs in the UK population that would be required in order to produce the extra 

benefits from screening that lowering the current first age of invited screening from 50 

to 45 would bring (as predicted by the simulation model). 

Current attendance at invited screening in UK breast screening units stands at 

around 75%, whereas the baseline approximation of the TPB in the reported 

simulation model provides on average around 85% attendance. Therefore, to estimate 

a baseline approximation of the UK populations TPB characteristics, the sampled 

values for each of the TPB constructs in each simulation were reduced by 17%, 

providing (on average) a 75% attendance result. This method makes the simplistic 

assumption that the relationship between TPB constructs remain stable as the values 

of the constructs changes, which mayor may not be the case, and also assumes that 

the subset of results in the experiment by Rutter (2000) may be generalised to the 

UK population, and so results should be treated with appropriate caution. 

A simulation run was then made using these TPB populations to sample from, which 

simulated 1,000 women, 300 times, under the extension to the current UK screenillg 

policy of screening from age 45 to age 69 every 3 years. This run will be named the 

75% baseline run in this thesis, in order to avoid confusion with the previous baseline 

runs. The results of this 75% baseline run can be found in Appendix F. 

Experimentation was then carried out in order to find the required proportional 

increases in the TPB constructs in order to produce similar benefits (to those 

observed by lowering the age of invited screening to 45), but using the current UK 

screening policy (screening from age 51 to 69 triennially). In other words, by how 

much would the population TPB construct values need to increase in order to 

produce similar benefits as lowering the age of screening to age 45 from age 51? 

Three of the simulation outputs were used in order to compare the results of the 
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TPB implied atten- 75% Baseline 95% Attendance 
dance 
Screen scenario 45-69/3yrs 50-69/3yrs 
Statistic Mean Upper Lower Mean Upper Lower 

90% CI 90% CI 90% CI 90% CI 
Number of cancers screen 268.07 270.46 265.69 265.80 267.98 263.62 
detected 
Percent of detected can- 36.17 36.47 35.88 35.81 36.09 35.53 
cers detected by screen-
ing 
Life years saved 389.20 403.77 374.62 345.09 357.36 332.81 

Table 7.2: Companson of Three Key SllnulatlOn Outputs Between the 75% Basclme TPB Run 
(Screening 45-69/3yrs) and Increasing the TPB Variables to Approximate 95% Attendance 
(Screening 51-69/3yrs). Where CI= Confidence interval. 

experimentation, and these were: the number of screen-detected cancers, the 

proportion of screen-detected cancers, and the life-years saved by the screening 

strategy. The results found that in order to find similar numbers, and proportiolls, of 

breast cancers as by lowering the age of screening, the TPB constructs needed to be 

increased by 74.77% on the 75% baseline result, (around 45% increase on the 

population data provided by Rutter (2000)), leading to an attendance rate at 

screening units of around 95%. Full results of this run can be found in Appendix F. 

Table 7.2 presents the results from this final experimentation, as well as the results of 

the 75% Baseline run for comparison. 90% confidence limits are displayed anel frolll 

these it can be seen that no significant difference was found between the numbers or 

proportions of screen-detected cancers were found between the two runs. However, 

Table 7.2 also shows that, despite finding similar proportions of tumours, a significant 

difference was observed between the numbers of life-years saved predicted by the 

model, with significantly lower numbers of life-years saved associated with the rull 

that increased the TPB variables above the 75% baseline rates, but screened at the 

current UK policy ages. This result is not entirely unexpected, as screening lower 

ages (as in the 75% baseline run) will detect tumours in younger women who have the 

potential to live longer than older women (on average) and so overall, the number of 

life-years saved by this earlier detection will be greater. 

7.6.1 Experimentation Summary 

This Section reported the results of experimentation to find the required increase in 

the UK populations current TPB variables that would be required to produce similar 

screening benefits as keeping the population TPB variables constant but starting to 

screen at a lower age (age 45 as opposed to 51). 

It was estimated that an increase of around 75% in the UK TPB variables associated 
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with breast cancer screening could lead to similar numbers and proportions of 

screen-detected breast cancers as would be observed if the screening policy was 

changed to reduce the age of invited screening down to age 45. 

However, although similar numbers of cancers would be detected, reducing the age of 

screening would lead to a higher number of life-years saved through screening, by 

detecting breast cancers in younger individuals. 
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Chapter 8 

Discussion 

Operational Research (OR) techniques have been widely applied to the area of health 

care and health research. However, the expected outcomes of interventions, plans, or 

structural changes suggested by these models often differ from those observed in 

reality. 

The actions of people playa vital role in health care systems, resources, and disease 

progression. For example, when considering different and or optimal disease 

interventions the participation of the patient, or potential patients, in the 

intervention must be considered. For the majority of models of health care systems, 

the behaviour of the people involved in those systems is described by a single 

variable, e.g. the percentage of patients who comply with the regime or procedure. 

It is suggested that the observed gap between modelled expected outcomes and real 

outcomes may be in part due to the human behavioural aspects of the health care 

systems which are currently omitted from OR models. To this end this thesis 

attempts to begin to incorporate psychological theory of health care behaviour into 

an OR model in order to start to bridge the gap between modelled and observed 

systems and increase the functionality and realism of the simulation model. 

It is believed that this thesis describes one of the first serious attempts to incorporate 

behaviour at an individual level into a health care simulation model. The aim of the 

research was to investigate the benefits and differences that this approach brings 

against the extra time required for the building and researching of the model as well 

as the running time of the simulation. 

8.1 Evaluation of Research Objectives 

The research objectives for the work reported in this thesis are provided in Chapter 

1, Section 1.3. This Section discusses the findings from considering each of the three 
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objectives in turn. 

1. To investigate the effects of different methods of modelling attendance 

for breast cancer screening, using a model from the psychological 
literature on health-related behaviour (the Theory of Planned 
Behaviour) as well as a statistical model derived to predict 

attendance at UK screening clinics (Baker and Atherill (2002)), and 
two methods commonly used in OR models based on percentage 
attendance, for different screening policies. 

To answer this research question a discrete event simulation of breast cancer and 

screening policies for breast cancer was built and populated with data from literature 

as appropriate. The model contained four different options for the approximation of 

attendance behaviour at the invited screening sessions. The results have found that 

different approaches to attendance behaviour did produce significantly different 

modelled outcomes. However, although the actual outcomes across the difi"erellt 

attendance models differed, the relative effects of changing screening scenario were 

found to be stable across the four chosen methods for approximating attendance 

behaviour. In some cases the differences between the four approaches to attendance 

behaviour led to differences as to whether or not two different screening policies 

produced significantly different results. This finding is important and emphasises the 

need to treat simulation results with caution and not be too quick to assume a policy 

has, or does not have, additional benefit without taking into account the assumptions 

implicit in the simulation design. 

One of the four attendance behaviour models was based upon a psychological theory 

of behaviour (the Theory of Planned Behaviour), designed to predict an individuals 

behaviour based upon their subjective beliefs surrounding the behaviour, (including 

the outcomes associated with the behaviour, and what others will think about the 

behaviour in question). The results of the work reported in this thesis found that 

using an approximation of this psychological model in the simulation in order to 

predict attendance at breast cancer screening, provided similar results to an 

assumption of percentage attendance. This could mean that in some cases it would 

not be worthwhile incorporating the additional behavioural detail into a simulation. 

However, the added information provided by the psychological theory could aid the 

evaluation of different psychological changes in the population, (through interventions 

to increase the uptake of screening, or by negative press associated with the benefits 

of process of screening), against changes in screening policy. The research therefore 

finds that the question as to whether or not the additional time and effort required to 

incorporate a psychological theory is worthwhile depends on the aim of the research 

in question. 
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2. To investigate the effects of using different models of tumour growth for 

different screening policies. 

Four cancer growth patterns were considered in the simulation model, those of 

Gompertzian, Logistic, modified Gompertzian, and Exponential. Assumptions of 

Gompertzian growth produced some outcomes that were not validated and indicated 

that the short doubling times that were used to populate the Gompertzian 

distribution may not be appropriate. Results from the remaining three methods, and 

associated doubling times, all validated well, and the results found no reason to 

further accept nor reject any of the remaining three assumptions. 

The results of the experimentation found that each of four different assllmptions of 

tumour growth, and their associated parameters, led to significantly different 

modelled outcomes, with an especially notable difference brought about for the 

number of life years saved simulated. This outcome is of particular importance since 

screening decisions may be made on the basis of the simulated number and cost of 

lives saved and this outcome has been shown to vary with assumptions of tumour 

growth. However, again the rank order of the different screening strategies considered 

remained constant regardless of the assumption of tumour growth within the 

simulation. This outcome helps to re-enforce the importance of comparing relative 

outcomes as opposed to actual outcomes in all simulation models of real life systems. 

3. To compare the effects of changes in behaviour with changes in 

screening policy. 

Results comparing screening scenarios revealed that the simulation model suggestecl 

the UK could see approximately 15% more screen-detected tumours if the lower age 

for screening invitations was reduced to age 45 (adding two more invitations per 

individual). The results of this sensitivity analysis demonstrated that around a 4% 

increase in the number of screen-detected cancers could be achieved simply by 

altering psychological attitudes of the population by 10% (and therefore increasing 

the attendance rate at screening units) and not altering the screening regime at all. 

Moreover, further analysis estimated that if the Theory of Planned Behaviour 

constructs in the UK population could be increased by 75%, (a 45% increase on the 

baseline figures reported in the work by Rutter (2000) and as used in the analysis in 

this thesis), then similar numbers and proportions of breast cancers could be 

diagnosed via screening as by changing the current screening regime to screen from 

age 45 (as opposed to age 50 as is standard today). 
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8.2 Limitations of the Research 

This is not a cost-effectiveness analysis. The work has not attempted to attach 

financial costs to mammography or treatment. Therefore no conclusions can be 

drawn about the real-life applicability of the results since it would be necessary to 

take into account the relative costs of different screening programmes to evaluate the 

cost per life year saved. In practice, health policy makers would need to trade this off 

against other potential use of the money and take into account the savings in terms 

of life years (or Quality Adjusted Life Years) saved. A cost-effectiveness analysis 

would also need to take into account the rates of over-diagnosis at screening, another 

factor that is not addressed in the research described here. 

Data for the Theory of Planned Behaviour model was limited to the women in the 

Rutter study. The work was not able to generalise to a UK population. Moreover, it 

did not fit (and sample from) a multivariate distribution function, thus restricting the 

simulated population to the empirical observed data. It was also assumed that the 

relation between the constructs of the variables of the TPB would remain stable if the 

values of the individual constructs were to change. In addition no consideration was 

made as to how the TPB variables might be changed in practice, in order to achieve 

the 10% increase or decrease discussed in Chapter 7, (via improving psychological 

constructs associated with mammography screening through telephone counseling, 

advertising campaigns, and GP advice, or by reducing the barriers to screening snch 

as travel distance and transport costs), nor the cost implications associated with such 

a change. 

The author has not modelled behaviours associated with breast self examination in 

any of the four options for approximating behaviour within the simulation model. 

Nor has the research considered any possible correlation between the practise of self' 

examination and attendance at breast screening or the values of psychological 

constructs in the Theory of Planned Behaviour. Furthermore the Theory of Planned 

Behaviour was the only psychological theory that was used in order to attempt to 

incorporate into the analysis, and it is possible that different results may have been 

achieved if an alternative psychological framework had been the focus. 

The simulation model that was built to study the research questions makes a number 

of assumptions regarding breast cancer and screening for breast cancer. Firstly, the 

model assumes that breast cancers grow spherically. Secondly, the model links 

survival from breast cancer directly to the size of the tumour and does not take into 

account further prognostic indicators as discussed in Section 6.5. The simulation 

model also assumes that women are invited to screening at exact and specific ages as 

opposed to practise in the UK population whereby women are screened in regional 

patterns and invited if they have not been invited for three years or if they have now, 
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or are about to, pass their 50th Birthday. 

8.3 Further Work 

The first step would be to attach costs as described in Section 8.2, in order to carry 

out a full cost-effectiveness analysis and compare screening policies in terms of cost 

per life year saved. 

It would be very interesting (but time-consuming) to carry out a larger empirical 

study to collect data for the TPB model (or alternatively one of the umbrella models 

discussed in Chapter 2), and perform the necessary statistical analysis to in order to 

develop a multivariate distribution from which to sample. It might be possible to 

work with marketing researchers, either to carry out an empirical study or to do 

secondary data collection from the literature, in order to quantify the effects of health 

education campaigns, and other interventions designed to affect health-related 

behaviour. 

It would be interesting to incorporate some of the other psychological models 

discussed in Chapter 2, in particular the more recent integrative models of health 

behaviour. 

It would of course be possible to develop behavioural models for screening for other 

diseases. An obvious candidate is diabetic retinopathy where there is a large 

literature on screening (see for example Brailsford and Schmidt (2003)). Models for 

screening for other cancers (cervical, prostate, testicular, and bowel cancers) could 

also potentially benefit from this approach. 

8.4 Conclusion 

This was believed to be the first serious attempt to model health-related behaviour in 

a detailed, individual way using psychological variables. There was a significant data 

collection and modelling effort and it remains unclear from this study whether the 

benefits of modelling in such detail will always outweigh the cost of this effort. 

However, the potential impact of including behavioural variables in simulation models 

goes far beyond healthcare. Any human activity system depends ultimately on the 

role played by the people within that system. These ideas could carryover into 

manufacturing industry, defence and every other arena where simulation plays a key 

role. 
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Appendix A 

Model Code 

The discrete event simulation model is built in Microsoft Visual Basic 6.0 and makes 

use of the three phase discrete event simulation methodology. Chapter 5 provides an 

overview of the models schema, and this Chapter attempts to describe the models' 

code structure in more detail, however it is not the intention to provide full code 

documentation. 

The main body of the code is split into two modules, named 'BreastCancer' and 

'Executive' respectively. The Executive module contains subroutines and procedures 

that govern the three phase procedure and access routines for other classes and 

modules within the simulation to gain information about the state of the system such 

as the current clock time. The BreastCancer module contains routines and 

procedures that are specific to the breast cancer scenario, including the code relating 

to the specific B-Phase events of the three phase methodology such as code governing 

screening for breast cancer, and entity parameter initialisation. 

Figures A.l and A.2 provide an overview of the main routines and procedures 

contained within these two modules and how they interact with each other, the list is 

not exhaustive but is intended to inform a high level picture of how the simulation 

works. Here it can be seen that the user runs the model by selecting 'Model' then 

'Run' from the models' menu bar, which calls, for each iteration of the simulation, 

the initialisation routine in the BreastCancer module followed by the Simulate 

routine within the Executive. 

Statistics and parameters relating to particular entities (women) within the 

simulation are stored and accessed via user defined collection classes containing 

objects which bring together parameters and functions grouped into topics 

appropriately. For example, the collection object Growth contains many Growth 

objects, one for each entity in the simulation which is scheduled to have, or already 

has breast cancer. Each Growth object stores, for that individual, their growth 

parameters, and the 'TumourSizeNow' method of the object allows the calculation of 
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the entities tumour diameter (in millimetres) at any point in time by using the other 

growth properties within the object, (and the current simulation clock time as passed 

to the function). 

There are 23 class modules within the simulation code, 9 of which are collection 

classes. The main class objects and collections of class objects are detailed in Figures 

A.3 and A.4 and are colour coded. All collection classes are shown with blue 

headings, and all class objects with orange headings. Figures A.5 and A.6 give an 

indication of how the classes are used within the module level code to search for and 

alter an entities properties throughout the simulation. Here, an argument is shaded 

in blue if its code directly refers to a collection class object, and orange if it refers to 

a class object. 
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I::inpu, 
Proct durt Name 
Desc ription 

Arguments 

Procedure Name 

Desc ription 
Argum ents 

ProccdureNRmt 

Description 
Argumcnts 

Procedure Name 

Description 

Arguments 

Procedure Name 
Description 

Arguments 

Procedurt Name 

Dcsc ription 
Arguments 

Form: Runtime 

Modd:Run 
call mnuRun 

mnuRun 
For eac h itemtion, initiulises the classes nnd \'nrinbles, then nans the simulat ion 

For integcr :c: ) 10 number or ilcrntions 

Next iteration 

Call BreaslCMccr:lnitialise 

Call Executi\'e:Simulatc 

Cn lculate summnry results, 

Mod ule: Executive 

NcwEntih' 

Adds a new entity to the classes or Growth and Women 

Growth,Add 

Entit)" Add 

ScheduleCancerOnSl.' l , ScheduleSl'IIDc:teetion, SchetiultDt·uth. Sch('duleScrl'tn 

Adds il. new object (orlhe type spec ified) to the scheduler, 

ScheduIc.Object.Add. where object is the relevanl acivity to be scheduled , 

Simulate 
Calls the three phase procedures A.B. and C in tum until the end or lhe itemtiOIlS run IcnGth 

Do while Clock < ilem!ion dumtion 

Aphase 

Loop 

Coli Finished. 

Aph". 

Bphosc 

Update progress bar 

Do events 

Searches for the next scheduled eve nt in the scheduler 

NextE\·en! - rundurDtion + 100 

Find the next scheduled event in the scheduler by searching lhroullh Schedule,Cnnccr, 
schedule. Screen. Schedule. Death, Schedule .C:lnecrDeath 

Record the time of the nC1<l event (NextE, 'enl). ond the unique lOs of the entities wi th these 
timecells (mslrEntityToAetionQ) as wcll os the cvent thc), nrc due for in thcir women elatos 

Clock :: NextEvcnt 

UpdOIC cntity ngcs . 

B)h:ue 
Corry out thc ac tions duc at this timestep 

For intcger - I to numbe r of entities scheduled with (111 e\'ellt I1t this clock lilli e 

Seleeli.he action they nre due for (Womon(ID),Ne:o<ITronsilion) 

Case Die from natural causes 

Call Breas lCuncer:BDic 

Casc GctCnncer 

Co li BGctCnncer 

Cose GoToScrccn 

-

IfBeha\!iour(l DlAltcnd - truc thcn Cull 
BreastCanccr:BGctSc recl1cd, ond add nn attendance to their bchoviou 

Next integer. 

class 

Else schedule next screen, nnd chanuc Beha\~ou r(JD) , J·rc \·iou5Altend 

- rnlse 

Case SclIDcteeting 

Call BreastCancer:BSelIDetect 

Case Cnnce rDying 

Ca ll Breas!Cancer:8DicFromCancer 

End Select 

Figure A.l: Simulation Modules (continued over the page) 
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Module: BreastCa ncer 

Procedure Name Initial ise 
Description Initialises the classes and variab les for each entity (woman), scheduling cancer onset, first screens, and nntuml 

death. 

Arguments Reset nil global counts to zero 

For integer = I to number of entities 

Assign an identifier (W & integer) 

Add entity to the Behaviour class collection 

If they get cancer then 

Add entity to OnsetEntity class collection 

Call Executive: NcwEntity to add basic entity tmributes 

Call Executive: ScheduleCancerOnsct, SchedulcSelfDetectioll , ScheduleDenth. 

Else 

Add entity to OnsetEntity c lass collection without onset and growth attributes 

Call Executive: SchedulcDeath to schedule natural death 

End if 

Call Executive: ScheduleScreen to schedule the first sc reen 

Next integer. 

Procedure Name BDie -Description Moves an entity to the state of natural death and de-schedules nll events for that entity 

Arguments Move the entity from the stale they are in to the natural death state and update counts of women in each state 

appropriately. 

De-schedule all events fo r the entity . 

Proced ure Name BGetC olicer 

Description Moves an entity form the state of no cancer to cancer 

Arguments Alters the state of the entity to 'cancer' and updates the counts of entities in eoch state to refl ect the change. 

I~hedu l e cancer onset for the entity 

Call Executive:ScheduleDeath to schedule thei r death from cancer. 

Pro(,edure Name BGetSrreened 
Description Finds out if the tumour would be detected by sc reening at this time and if so moves the state o f the entity to 

screen found. re-schedul ing CancerDeath as appropriate . 

Arguments De-schedule this screen 

If the entity currently has cancer then 

Find the current size of the tumour (using Growth class) 

If the probab il ity of detection at that size is greater than a random number then the tumour is detected 

Move the state of the entity to screen found 

De-schedule self discovery of the tumour 

Re-schedule death from cancer based on current tumour size 

Else Schedule the next sc reen 

Else schedule the next sc reen. 

Procedure Name BSelIDetcct 

Description Moves the entity from the cancer state to self fou nd/other detected stnte and update fi gures appropriately . 

Arguments Dc-schedule this rime of se lf discovery 

De-schedule any screening scheduled 

Re-schedule cancer death 

Update counts in each state appropriately. 

Procedure Name BDieFromCanccr 

Description Remove the entity form their current state to that of dead from breast cancer. 

Arguments De-schedule this death and natural death 

De-schedule any other activities scheduled for the entity 

Update counts of the numbers of ent ities in each state appropriately. 

Figure A.2: Simulation Modules Continued 
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Class Objects 

Object Class: Bduwiour Ob 'ect 
Description 

AllnOUICS 

Methods 

A group ofbch.1"iournl. attributes belonging 10 n p..'U1icuLu entit), 

Name 
10 

Altit\ldc 

SubNonn 

PSC 

PrcviousAttcnd 

AUcndCounl 

AllcncianccO 

GlobalAllend 

Indtations 

Name 
Anend 

AddAuelLd:mee 

Description 
Unique identifying key 
Individuals score for attitude conSlmCI of TIle 
Individuals score for suhjective nonn co nstruct ofTPB 

Individunls score for perce ived behavioural cOl\lral conSlmcl ofTPB 

Boolean vuriable describes whether or n01 individlUll ullclldcd the prc\'!ous 
screening invitnliOil 

Count oC lhe indh'idunls attendances at brcnst screening. 
Army ofbyles describing the ancnd:.mcc p:lllcm for the indiddunl, where i slnllds 
for the ilh ill\' il<llion. and I indicates nUll llcnd:mcc. 0 n nOll nttendance. 

The probability of at1clldnncc for the individual for the 't lobal' perce lltnge 
allendnnce scenario 
The number of in\' itatiol1s to screening thnt the enti ty has rct'e i\'ed. 

Purposc 
Pul ls together the individuals beNlViollral allributcs to calculate l\ probability of 
attendance. and then uses Monte Cmlo S:lIllpli llg to detennine if mtend:mce mkes 
place or nolo 

Adds to the count of allelld:mccs for the illdividual 

Ob'e<:t Clau: CancerOnSCI Ob'eC1 
Description 

Anributes 

A time of cancer onset for an indh·idunl 

Na me 
ID 
TimeCell 

Description 
Un.iquc identifying key 
The clock lime for the p:u1 icularelltities' caucc r onset 

Object Class: SCrctD Oh 'ecl 
Description 

Attributes 

The time of the next 
screen due for:lu 
individual 

Namc 
ID 
TimeCell 

Description 
Unique idelltifyi ng key 
The clock time fo r the particularelltitics' mammography screen 

Object Cla.'~: Dcnlh Object 
Description 
Attributes 

The time of death for un individunl 
Name 
ID 
TimeCell 

Descript ion 
Uuique idelLlifying kcy 
The clock time fo r the partieulnr entities' scheduled denth from auy cnuses 

Object Class: SclfDctect Ob 'eel 

Description 

Attributes 

The time of self or other detection for all individual 

Name 
ID 
TimcCeli 

Desc ription 
Unique idcntifying key 
The clock time for the p:lnielllnr entities' time to sc lf dctcelthe tUILlOur, 

Objeet Clll5!1: Growth Obj(.'Ct 

Description 

Attributes 

FUllctions 

Mcthods 

A group of parameters describing the growth and si7..c of all indh'iduals tumour at a part icular point in tin lc 

Name 
10 

TimeOuset 
GrowthVariable 

Growt hTypc 

Description 
Unique idcll tifyi nG key 
Tillle of IUlIlour ollset 
The growt h ,'ariablcs sampled for the indi"idunl when the object wns added to 
the collect ion 

The growth pallcm sele<: ted for the current simulation 
TimeFromMetOnsctToDe The s.ullplcd time from metastasis onsetulltil metastasis dcteclioll 5.1mplcd llpo n 
t object creation 
TimcToMetastasis 

Si7..cWhenMctastasis 
Namc 
TUlllourVolumeNow 

Dnr.ltiOIl 

TumourSi7.cNow 

nLC time it takes from onset to metastasis givc n the individual gron th auributes, 
Calculated using MetOctecliOIlTime, and TimeOnscl , 

Stores the si1lllplcd sizc of primary tumour wllcn metastasis occurs, 
Description 
Calculates the volumc of the spherical tumour 1.11 a givcn lime acco rding to the 
chosen growth pattern. Uses thc Dunnion function. 

Provides the time the tu mour has been growinS based upon the clock time and 
time of onset 

Calcul:Ltes the tUlilour diamet er (inUlin) li t thc clock time fromthc tUlllour 
volullle assllming the tUlIIour is spherical, Uscs the Dumtion. and 
TUlllourVolullleNol\' fUllctions, 

TimeFromStanToSize C .. Jcul,,'es how long. from onsct, a tUlllour wit h the growth chmactcristics of the 
object would take to reach a given diameter (in 01111), 

IVlctDctectionTime Ca lculates aud returns the time of mctastasis for the indiddu .. 1, bascd llpon the 
size ofthc tumour at Illetnstasis as snmpled upon addition to the collection. the 
growth , 'nri .. ble. and us ing the function Ti meFromStanToSi7.c. 

F igure A.3: Simulat ion Classes (continued over the page) 
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Object Class: Scbeduler 

Description 

Attributes 

An object containing the collection classes of all scheduled activi ties 

Name Description 

Screen Is a Screen collection class 
CancerDeath Is a Death co llection class 

NaturalDeath 

SelfDetect ion 

Cancer 

Is a Death co llection class 

Is a SelfDetect co llection class 

Is a Cancer co llection class 

Object Class: Statistics Object 

Descri ption 

Attributes 

An object containing an individuals cancer statist ics for use in calculating summAry stati stics nnd for OlitpUls 
to detai led text files . 

Name 

ID 
SizeAtDet 

TypeDet 

AgeAtDet 

TimeSelfDied 

TimeCaughtEarlier 

TimeDied 

Description 

Unique identifying key relati ng to a particular emilY 
The size of the tumour at detection 

A usertype providing the type of deleetion. screen detected or olher. 

Age al detection 

The time of cancer death scheduled based upon survival at the t ime nnd tumour 

size at natura l detection 

If screen detected, the time difference between scheduled self detection nnd time 

of screen detect ion is recorded. 

The actual time of death of the individual 

Object Class: Woman Object 

Description 

Att ributes 

An object conta ining the key attributes of each entity 

Name 

ID 
State 

NextTransition 

Age 

FoundState 

TimeDies 

Descript ion 

Unique identify ing key re lating to a particular ent ity 

The current cancer state of the ent ity. e.g. no cancer, sc reen detected, dend ctc . 

The next event scheduled for the entity 

Current age of the entity 

\-Vhether cancer was screen detected or not 

T ime of ent ity death 

Figure A.4: Simulation Classes Continued 
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Collection Class Objects 

Collection Class: Behaviour Collection 
Description 

Methods 

Functions 

A collection of class objects Behaviour 

Name 

Add 

Count 

Item 
NewEnum 

Remove 

Name 

Initiali se 

Purpose 

Adds a Behaviour object for an entity to the coll ection. 

Provides them with relevant behavioural attributes sampled as necessary. 

Provides 3 count of the number of elements in the coll ection at nny one time 

Allows retrieval from the behaviour class by key identifier 

Enables For .. Next loops through the coll ection 

Removes an entiti es Behavio ur object from the behaviour collection 

Purpose 

If the theory of planned behaviour is selected then the routine rends in the sel ofbchnvio ur parameters from 

th e rel evan t file for each entities random selecti on when added to the collection. 

Collection Class: Cancer Collection 

Description 

Methods 

A collection of class objects Cancer. to schedul e cancer onset 

Name Purpose 

Add Adds a CancerOnset object for an entity to the coll ection. 

COWlt 

Item 

NewEnum 

Remove 

Provides each entity added with a cancer onset time to be searched through by the scheduler 

Provides a count of the number of elements in the coll ecti on at nny one time 

Allows retrieval from the Cancer class by key identifier 

Enables For .. Next loops through the coll ection 

Removes an entities CancerOnset object from the Cancer collection, therefore de-scheduling cancer onset. 

Collection Class! Death Collection 

Description 

Methods 

A coll ection of class objects Death, to schedule natural death. 

Name 

Add 

Count 

Item 

NewEnum 

Remove 

Purpose 

Adds a Death object for an entity to the collection. 

Provides each entity added with a time of natural death to be searched through by the scheduler 

Provides a count of the number of elements in the collection at anyone lime 

Allows retrieval from the Death class by key identifi er 

Enables For.. Next loops through the collection 

Removes an entities Death object from the Death collection, therefore de-scheduling naturnl death. 

Collection Class: Screen Collection 

Description 

Methods 

A collection of class objects Screen, to schedule the next screen for that entity. 

Name Purpose 

Add Adds a Screen object for an entity to the collection. 

Count 

Item 

NewEnum 

Remove 

Provides each entity added with a time of next sc reen invi tation to be searched through by the scheduler 

Provides a count of the number of elements in the collection at anyone time 

Allows retrieval from th e Screen class by key identifier 

Enables For..Next loops through the coll ection 

Removes an en tities Screen object frolll the Screen coll ection. therefore de-scheduling their next screen, 

Collection Class: SclIDetcct Collection 

Description 

Methods 

A coll ection of class objects SelIDetect, to schedu le the self detection fo r that entity. 

Name 

Add 

Count 

Item 

NcwEnum 

Remove 

Purpose 

Adds a SelfDetect object for an entity to the coll ection. 

Provides each entity added with a lime to self detcctto be searched through by the schedu ler 

Provides a count of the number of elements in the co ll ection at anyone time 

Allows retrieval from th e SelfDetect class by key identifier 

Enables For .. Next loops through tbe coll ection 

Removes an entiti es SelIDetect object from th e SelfDetect coll ection, therefore dc-scheduling their time 10 

self detect. 

Figure A.5: Simulation Collection Classes (continued over the page) 
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Collection Class: St.a tistics Collection 

Description 

Methods 

A collection of class objects Statistics. to store stat istics relating to that entity from the iteration 

Name Purpose 

Add Adds a Statist ics object fo r an enti ty to the collection. 

Count 

Item 

NewEnum 

Remove 

Prov ides each entity added with key statistics useful fo r result calculations 

Provides a count of the number of elements in the collection at anyone ti me 

Allows retrieval from the Statistics class by key identifier 

Enables For .. Next loops through the collection 

Removes an entities Statistics object from the Statistics collection. 

Collection Class: Entity Collection 
Description A collection of class objects Entity, to store key information about each entity (woman) 

Methods Nanle Purpose 

Add 

Count 

Item 

NewEnum 

Remove 

Adds a Entity object fo r an ent ity to the co llcction. 

Provides each entity added with key info rmation such as their current age and cancer state. 

Provides a count of the number of elements in the collection at anyone time 

Allows retrieval from the Entity class by key identifier 

Enables For .. Next loops through the collection 

Removes an entities Entity object from the Ent ity collec tion, and therefore from the simulation. 

Collection Class: Growth Collection 

Description 

Methods 

Functions 

A collection of class objects Growth, to store infomlat ion relati ng to the cancer gro\\1h of an cnt ity . 

Name Purpose 

Add 

Count 

Item 

NewEnum 

Remove 

Name 

Adds a Growth object fo r an enti ty to the co llection. 

Provides each Growth added with kcy infonnation such as growth rate, and size when metastas is occurs etc. 

Provides a count of the number of elements in the collection at anyone time 

Allows retri eval from the Growth class by key identifier 

Enables For .. Next loops through the co ll ection 

Removes an entiti es Growth object from the Growth co llection. 

Purpose 

SizeWhenMetasta Calculates the a size of cancer when metastas is could occur based upon the distribution proposed by Koscienl y 

sis (1 984) 

Read in 

ReadinStoc 

Reads in the selected subset of growth parameters from the re levant fi le fo r each en tities lise within the 

iterat ion. 

When the modified gompertz (stochastic) growth func tion is se lected, this function reads in the se lec ted subset 

of growth parameters and timings for those parameters from the relevant fi le for each entit ies use within the 

iteration. 

Collection Class: Onsct Collection 
Description 

Methods 

Functions 

A collection of class objects CancerOnset, to find and return the time of cancer onset fo r each ent ity . 

Nanle 

Add 

Count 

Item 

NewEnum 

Remove 

Name 

Readin 

Purpose 

Adds an Onset object for an entity to the co llect ion. 

Provides each entity added with a sampled age of inset read in from the relevant input file . 

Provides a count of the number of elements in the co llection at anyone time 

Allows retrieval from the Onset class by key identifi er 

Enables For.. Next loops through the collection 

Removes an entities CancerOnset object fro l11 the Onset co llection. 

Purpose 

Reads in the selected subset of age of cancer onse ts from the relevant fil e for each ent ities use with in the 

iterat ion. 

Figure A.6: Simulation Collection Classes Cont inued 
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Appendix B 

The Theory of Planned Behaviour 

Data 

Rutter kindly made available data relating to a study of the Theory of Planned 

Behaviour (TPB) and how well the theory predicted attendance at three UK 

screening units over two rounds of invitations, (Rutter, 2000). The study is described 

in Chapter 3 and the dataset and analysis of the dataset in Chapter 6. Tables B.1 

and B.2 provide summary statistics relating to the TPB constructs within the dataset 

and Table B.3 shows the correlations observed between the measured TPB variables. 

Construct Screening Cases 
ofTPB attendance Valid I Missing I Total 

N Percent N Percent N Percent 
Intention to attend did not attend 278 84.0% 53 16.0% 331 100.0% 

attended 1,559 90.3% 168 9.7% 1,727 100.0% 
Attitude did not attend 278 84.0% 53 16.0% 331 100.0% 

attended 1,559 90.3% 168 9.7% 1,727 100.0% 
Subjective Norms did not attend 278 84.0% 53 16.0% 331 100.0% 

attended 1,559 90.3% 168 9.7% 1,727 100.0% 
PBC did not attend 278 84.0% 53 16.0% 331 100.0% 

attended 1,559 90.3% 168 9.7% 1,727 100.0% 
Table B.1: Case Summary of data provided from Rutter (2000) for TPB variables 
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Construct ~creenmg atten- ~tatlstlc Value 
dance 

Intention to at- did not attend Mean 3.79 
tend 

95% Confidence Interval for Mean I Lower Bound 3.66 
Upper Bound 3.92 

Median 4.00 
Std. Deviation 1.11 

Minimum 1.00 
Maximum 5.00 

attended Mean 4.52 
95% Confidence Interval for Mean 

I 
Lower Bound 4.49 
Upper Bound 4.55 

Median 5.00 
Std. Deviation 0.G5 

Minimum 1.00 
Maximum 5.00 

Attitude did not attend Mean 24.23 
95% Confidence Interval for Mean 

I 
Lower Bound 22.10 
Upper Bound 26.36 

Median 22.00 
Std. Deviation 18.0:3 

Minimum -:33.00 
Maximum 70.00 

attended Mean 29.66 
95% Confidence Interval for Mean 

I 
Lower Bound 28.91 
Upper Bound 30.42 

Median 29.00 
Std. Deviation 15.23 

Minimum -21.00 
Maximum 76.00 

Subjective did not attend Mean 54.25 
Norms 

95% Confidence Interval for Mean 

I 
Lower Bound 51.19 
Upper Bound 57.:31 

Median 50.50 
Std. Deviation 25.93 

Minimum 1.00 
Maximum 125.00 

attended Mean 65.05 
95% Confidence Interval for Mean 

I 
Lower Bound G3.87 
Upper Bound 66.2:3 

Median 65.00 
Std. Deviation 2:3.71 

Minimum 4.00 
Maximum 125.00 

Perceived Be- did not attend Meall 12.22 
havioural Con-
trol 

95% Confidence Interval for Mean 

I 
Lower Bound 11.92 
Upper Bound 12.51 

Median 1:3.00 
Std. Deviation 2.17 

Minimum 5.00 
Maximum 15.00 

attended Mean 13.06 
95% Confidence Interval for Mean 

I 
Lower Bound 12.97 
Upper Bound 13.15 

Median 13.00 
Std. Deviation 1.76 

Minimum 5.00 
Maximum 15.00 

Table B.2: Summary statIstIcs for dataset from Rutter (2000). 
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Construct Attitude Subjective Norm PBC 
Attitude Correlation Coefficient 1.000 0.398 0.298 

Sig. (2-tailed) 0.000 0.000 
N 2,029 1,868 2,001 

Subjective Norm Correlation Coefficient 0.398 1.000 0.210 
Sig. (2-tailed) 0.000 0.000 

N 1,868 1,881 1,858 
PBC Correlation Coefficient 0.298 0.210 1.000 

Sig. (2-tailed) 0.000 0.000 
N 2,001 1,858 2,024 

Table B.3: Spearman's Rho correlation statistics for data from Rutter (2000) 
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Appendix C 

Results of Screening Scenarios 

Across Assumptions of Attendance 

Behaviour 

This Appendix provides the detailed results from all of the outputs from the 

simulation runs reported in Section 7.4 that consider the effect of tumour growth 

assumptions upon simulated outcomes. The Tables that follow provide the mean and 

90% confidence intervals for the mean, of all of the simulation outcomes for each run. 

The 90% confidence intervals are generated via methodology described in Section 7.2. 

Where Global = global percentage attendance, local = local percentage attendance, 

TPB = the Theory of Planned Behaviour, and equation = the equation option for 

modelling attendance behaviour. 
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Output Variable 
Average 90% Confidence interval for the av-

erage (mean plus and minus result) 
Equation Local Global TPB Equation Local Global TPB 

Number of cancers screen detected 151.550 184.777 175.260 183.480 2.596 2.723 2.547 2.631 
Number detected by other means 577.780 546.657 556.760 548.710 3.591 3.412 3.567 3.592 
Number of women who got cancer 896.023 895.687 896.120 896.170 2.093 2.292 2.255 2.091 
Number of women screen invited while had cancer 464.733 468.047 467.277 467.703 3.432 3.277 3.501 3.730 
Number of cancers that were not detected 166.693 164.253 164.100 163.980 2.600 2.399 2.427 2.524 
Number of women not screen invited while had cancer 431.290 427.640 428.843 428.467 3.413 3.145 3.373 3.547 
N umber of women who did not get cancer 103.977 104.313 103.880 103.830 2.093 2.292 2.255 2.091 
Number of women who attended screening at least once 678.310 802.820 689.300 801.297 3.423 2.560 2.994 2.806 
Percent of detected cancers detected by screening 20.780 25.261 23.944 25.061 0.346 0.354 0.340 0.350 
Average tumour diameter (mm) at registration 21.094 20.258 20.470 20.309 0.110 0.110 0.120 0.109 
Average time (years) to detection 15.934 15.829 15.867 15.804 0.073 0.079 0.083 0.075 
Average diameter (mm) of tumour at detection if detected by other means 24.054 23.741 23.873 23.748 0.120 0.119 0.122 0.114 
Average time (years) to detection if detected by other means 15.302 14.952 15.142 14.936 0.084 0.086 0.084 0.078 
Average diameter (mm) of tumour if screen detected 9.922 9.987 9.687 10.018 0.056 0.061 0.054 0.060 
Average time to detection (years) if screen detected 18.355 18.544 18.186 18.347 0.014 0.025 0.012 0.013 
Life years saved 230.855 274.372 272.120 277.888 14.642 15.155 14.932 16.548 
Years earlier detected if screen detected 4.557 4.493 4.569 4.509 0.089 0.078 0.083 0.080 
Average number of attendances (of ~h0SE! WllO attended at least once) 3.492 3.519 4.068 3.511 0.013 0.010 0.011 0.010 

Table C.1: Results from screening age 51 to age 63 every 3 years, by attendance behaviour optIOn 
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Output Variable 
Average 90% Confidence interval for the av-

erage (mean plus and minus result) 
Equation Local Global TPB Equation Local Global TPB 

N umber of cancers screen detected 203.950 247.000 235.260 244.297 2.731 2.892 2.952 2.937 
Number detected by other means 532.353 493.397 503.940 495.923 3.493 3.382 3.353 3.425 
Number of women who got cancer 895.583 895.853 895.603 896.177 1.982 2.070 2.224 2.014 
Number of women screen invited while had cancer 529.697 533.303 532.070 531.680 3.766 3.501 3.428 3.434 
N umber of cancers that were not detected 159.280 155.457 156.403 155.957 2.653 2.678 2.682 2.349 
Number of women not screen invited while had cancer 365.887 362 .. 550 363.533 364.497 3.424 3.373 3.473 3.128 
Number of women who did not get cancer 104.417 104.147 104.397 103.823 1.982 2.070 2.224 2.014 
Number of women who attended screening at least once 679.390 801.337 689.790 799.743 3.081 2.687 3.002 2.775 
Percent of detected cancers detected by screening 27.700 33.360 31.825 33.004 0.354 0.362 0.372 0.379 
Average tumour diameter (mm) at registration 19.796 18.751 18.984 18.828 0.108 0.114 0.116 0.113 
Average time (years) to detection 15.862 15.652 15.693 15.689 0.076 0.073 0.073 0.074 
Average diameter (mm) of tumour at detection if detected by other means 23.570 23.162 23.353 23.188 0.117 0.112 0.124 0.130 
Average time (years) to detection if detected by other means 14.862 14.147 14.446 14.190 0.082 0.075 0.079 0.076 
Average diameter (mm) of tumour if screen detected 9.776 9.898 9.610 9.905 0.057 0.061 0.065 0.064 
Average time to detection (years) if screen detected 18.494 18.679 18.315 18.766 0.013 0.017 0.015 0.029 
Life years saved 268.607 315.157 297.359 308.093 15.900 15.585 15.488 16.227 
Years earlier detected if screen detected 4.528 4.545 4.591 4.541 0.076 0.063 0.069 0.067 
Average number of atteIldaIlce~JofJ;hose who attended at least once) 4.299 4.351 5.024 4.346 0.020 0.013 0.017 0.016 

Table C.2: Results from screening age 51 to age 69 every 3 years, by attendance behaviour optIOn 
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Output Variable 
Average 90% Confidence interval for the av-

erage (mean plus and minus result) 
Equation Local Global TPB Equation Local Global TPB 

Number of cancers screen detected 181.543 218.290 204.793 218.067 2.707 2.680 2.636 2.756 
Number detected by other means 550.203 516.680 530.410 516.793 3.740 3.768 3.198 3.360 
Number of women who got cancer 896.150 896.307 896.467 895.223 2.106 2.291 2.064 2.214 
Number of women screen invited while had cancer 467.087 470.793 469.720 470.613 3.399 3.372 3.421 3.529 
N umber of cancers that were not detected 164.403 161.337 161.263 160.363 2.757 2.706 2.534 2.508 
Numbcr of women not screen invited while had cancer 429.063 425 .. 513 426.747 424.610 3.427 3.540 3.407 3.407 
Number of women who did not get cancer 103.850 103.693 103.533 104.777 2.106 2.291 2.064 2.214 
Numbcr of womcn who attended screening at least once 684.320 804.747 690.993 805.207 3.470 2.684 3.254 2.756 
Percent of detected cancers detected by screening 24.813 29.706 27.854 29.675 0.367 0.362 0.337 0.358 
Avcragc tumour diameter (mm) at registration 20.283 19.295 19.623 19.325 0.122 0.122 0.113 0.119 
A verage time (years) to detection 15.810 15.644 15.672 15.637 0.080 0.077 0.079 0.073 
A verage diameter (mm) of tumour at detection if detected by other means 24.007 23.603 23.859 23.687 0.133 0.125 0.122 0.127 
Average time (years) to detection if detected by other means 15.214 14.763 14.984 14.753 0.088 0.078 0.085 0.080 
Average diameter (mm) of tumour if screen detected 8.929 9.090 8.662 9.022 0.047 0.056 0.055 0.057 
Average time to detection (years) if screen detected 17.685 17.673 17.415 17.702 0.008 0.025 0.022 0.014 
Life years saved 271.758 336.155 310.306 325.953 15.234 15.563 16.080 17.488 
Years earlier detected if screen detected 4.788 4.739 4.852 4.750 0.085 0.079 0.082 0.080 
Average number of attendances (of those who attended at least once) 4.764 4.812 5.587 4.802 0.020 0.015 0.016 0.015 

Table C.3: Results from screening age 51 to age 63 every 2 years, by attendance behaviour optIOn 
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Output Variable 
Average 90% Confidence interval for the av-

erage (mean plus and minus result) 
Equation Local Global TPB Equation Local Global TPB 

Number of cancers screen detected 243.310 296.553 274.807 295.260 3.018 3.121 3.137 3.234 
Number detected by other means 497.317 449.883 468.473 450.720 3.667 3.256 3.676 3.493 
Number of women who got cancer 895.543 896.787 896.277 894.900 2.215 2.238 2.161 2.198 
Number of women screen invited while had cancer 534.307 540.237 535.237 540.240 3.509 3.760 3.586 3.529 
Number of cancers that were not detected 154.917 150.350 152.997 148.920 2.594 2.647 2.642 2.583 
N umber of women not screen invited while had cancer 361.237 356.550 361.040 354.660 3.272 3.565 3.323 3.271 
Number of women who did not get cancer 104.457 103.213 103.723 105.100 2.215 2.238 2.161 2.198 
Number of women who attended screening at least once 686.293 806.150 688.897 804.590 3.312 2.740 3.210 2.714 
Percent of detected cancers detected by screening 32.853 39.727 36.974 39.580 0.387 0.373 0.402 0.400 
Average tumour diameter (mm) at registration 18.720 17.433 17.871 17.444 0.113 0.116 0.119 0.104 
A verage time (years) to detection 15.595 15.424 15.443 15.423 0.077 0.073 0.074 0.072 
Average diameter (mm) of tumour at detection if detected by other means 23.601 23.065 23.369 23.017 0.117 0.122 0.125 0.115 
Average time (years) to detection if detected by other means 14.594 13.921 14.329 13.902 0.077 0.079 0.080 0.080 
Average diameter (mm) of tumour if screen detected 8.671 8.902 8.486 8.911 0.045 0.051 0.058 0.060 
Average time to detectioIl (years) if screen detected 17.645 17.630 17.332 17.774 0.009 0.020 0.020 0.016 
Life years saved 316.024 377.109 350.160 369.401 16.322 16.862 17.209 17.874 
Years earlier detected if screen detected 4.829 4.765 4.894 4.765 0.072 0.066 0.072 0.061 
Average _Ilumber of attendances (of those who attended at least once) 6.005 6.057 7.013 6.034 0.028 0.020 0.027 0.022 

Table C.4: Results from screening age 51 to age 69 every 2 years, by attendance behaviour optIOn 
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u pu ana e . 
erage (mean plus and mmus result) 

Equation Local Global TPB Equation Local Global TPB 
Number of cancers screen detected 246.763 283.480 270.513 283.210 3.058 3.164 2.982 3.127 
Number detected by other means 493.027 458.683 468.847 458.000 3.439 3.525 3.658 3.690 
Number of women who got cancer 896.280 895.580 895.393 896.087 2.180 2.234 2.250 2.102 
Number of women screen invited while had cancer 602.643 604.550 602.107 603.427 3.441 3.505 3.436 3.419 
Number of cancers that were not detected 156.490 153.417 156.033 154.877 2.285 2.583 2.644 2.535 
Number of women not screen invited while had cancer 293.637 291.030 293.287 292.660 3.135 3.329 3.301 3.153 
Number of women who did not get cancer 103.720 104.420 104.607 103.913 2.180 2.234 2.250 2.102 
Number of women who attended screening at least once 779.443 888.870 761.273 888.880 3.063 1.989 2.923 2.165 
Percent of detected cancers detected by screening 33.355 38.197 36.591 38.212 0.388 0.397 0.390 0.408 
Average tumour diameter (mm) at registration 18.744 17.810 18.079 17.810 0.122 0.111 0.117 0.108 
Average time (years) to detection 15.615 15.470 15.457 15.428 0.076 0.075 0.073 0.068 
Average diameter (mm) of tumour at detection if detected by other means 23.372 22.846 23.176 22.928 0.126 0.140 0.125 0.125 
Average time (years) to detection if detected by other means 14.543 13.941 14.242 13.828 0.082 0.078 0.087 0.074 
Average diameter (mm) of tumour if screen detected 9.473 9.609 9.284 9.638 0.069 0.058 0.063 0.062 
Average time to detection (years) if screen detected 17.781 17.957 17.488 17.966 0.027 0.012 0.008 0.015 
Life years saved 372.338 417.927 403.376 420.791 17.724 21.208 19.951 18.849 
Years earlier detected if screen detected 4.594 4.578 4.626 4.573 0.069 0.069 0.062 0.065 
~verag~ numlJer of ~ttendancesJ9fthose who_attended at least once) 5.592 5.555 6.449 5.546 0.024_,---0.0~ 0 . .2.21 , .. 0.018 

Table C.5: Results from screening age 45 to age 69 every 3 years, by attendance behaviour optIOn 



Appendix D 

Results of Screening Scenarios 

Across Different Assumptions of 

Tumour Growth 

This Appendix provides the detailed results from all of the outputs from the 

simulation runs reported in Section 7.3 that consider the effect of tumour growth 

assumptions upon simulated outcomes. The Tables that follow provide the mean and 

90% confidence intervals for the mean, of all of the simulation outcomes for each run. 

The 90% confidence intervals are generated via methodology described in Section 7.2. 

Where Mod Gom = Modified Gompertzian tumour growth assumption. 
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Output Variable 
Average 90% Confidence interval for the average 

(mean plus and minus result) 
Mod Gom Logistic Gompertz Exponential Mod Gom Logistic Gompertz Exponential 

Number of cancers screen detected 147.363 220.227 67.190 184.777 2.632 2.797 1.796 2.723 
Number detected by other means 575.267 515.620 663.340 546.657 3.161 3.326 3.420 3.412 
Number of women who got cancer 828.393 906.370 770.603 895.687 2.736 2.134 3.073 2.292 
Number of women screen invited while had cancer 344.277 486.150 274.880 468.047 3.443 3.449 3.082 3.277 
N umber of cancers that were not detected 105.763 170.523 40.073 164.253 2.160 2.754 1.446 2.399 
N umber of women not screen invited while had cancer 484.117 420.220 495.723 427.640 3.652 3.:360 3.275 3.145 
Number of women who did not get cancer 171.607 93.630 229.397 104.313 2.736 2.134 3.073 2.292 
Number of women who attended screening at least once 789.143 800.833 799.867 802.820 2.759 3.091 3.013 2.560 
Percent of detected cancers detected by screening 20.388 29.927 9.197 25.261 0.341 0.351 0.242 0.354 
Average tumour diameter (nun) at registration 21.268 19.050 23.801 20.258 0.119 0.111 0.111 0.110 
Average time (years) to detection 6.807 17.118 2.882 15.829 0.0:32 0.087 0.020 0.079 
Average diameter (lIlIn) of tumour at detection if detected by other means 24.089 22.972 24.628 23.741 0.122 0.117 0.118 0.119 
Average timo (years) to detection if detected by other means 7.067 15.725 2.790 14.9.52 0.032 0.100 0.020 0.086 
Average diameter (mm) of tumour if screen detected 10.306 9.921 15.643 9.987 0.002 0.013 0.002 0.009 
Average time to detection (years) if screen detected 5.806 20.486 3.757 18.544 0.020 0.069 0.020 0.077 
Life years saved 222.966 326.475 107.644 274.372 14.226 16.754 9.970 15.155 
Years earlier detected if screen detected 3.654 6.142 1.259 4.493 0.067 0.101 0.043 0.078 
Average number of attendances (of tll<Jse WllO attended at least once) 3.561 3.448 3.606 3.519 0.010 0.010 0.010_"- 0.010 

----

Table D.l: Results for screening ages 51 to 63 every 3 years, by tUIDOur growth pattern 
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Output Variable 
Average 90% Confidence interval for the average 

(mean plus and minus result) 
Mod Gom Logistic Gompertz Exponential Mod Gom Logistic Gompertz Exponential 

Number of cancers screen detected 202.513 294.377 91.627 247.000 2.846 3.080 2.008 2.892 
Number detected by other means 526.830 455.200 639.777 493.397 3.463 3.386 3.266 3.382 
Number of women who got cancer 828.550 905.683 771.157 895.853 2.713 1.947 2.979 2.070 
Number of women screen invited while had cancer 439.903 550.580 373.093 533.303 3.542 3.260 3.2.56 3.501 
N umber of cancers that were not detected 99.207 156.107 39.753 155.457 2.046 2.671 1.422 2.678 
Number of women not screen invited while had cancer 388.647 355.103 398.063 362.550 3.650 3.220 3.217 :3.:37:3 
Number of women who did not get cancer 171.450 94.317 228.843 104.147 2.713 1.947 2.979 2.070 
Number of women who attended screening at least once 789.160 802.207 799.650 80l.337 2.890 2.918 2.829 2.687 
Percent of detected cancers detected by screening 27.766 39.272 12.526 33.360 0.372 0.376 0.264 0.362 
Average tumour diameter (mm) at registration 19.930 17.499 23.226 18.751 0.124 0.104 0.109 0.114 
Average time (years) to detection 0.582 16.96:3 2.847 15.052 o.o:n 0.084 0.019 o.on 
Average diameter (1Il1ll) of tumour at detection if detected by other means 23.680 22.442 24.273 23.162 0.125 0.119 0.111 0.112 
A veral\e time (years) to detection if detected by other means 6.90l 14.547 2.713 14.147 0.034 0.095 0.Q18 0.075 
Average diameter (mm) of tumour if screen detected 10.207 9.867 15.829 9.898 0.005 0.020 0.004 0.009 
Average time to detection (years) if screen detected 5.747 20.734 3.733 18.679 0.022 0.083 0.017 0.069 
Life years saved 255.678 369.338 131.571 315.157 15.027 19.148 10.507 15.585 
Years earlier detected if screen detected 3.671 6.091 1.253 4.545 0.055 0.080 0.038 0.063 
Average number of attendances (of those who attende~at least once_) _ 4.438 4.236 4.506 4.351 0.016 0.015 0.01~ 0.013 

~-

Table D.2: Results for screening ages 51 to 69 every 3 years, by tUIDOur growth pattern 
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Output Variable Average 90% Confidence interval for the average 
(mean plus and minus result) 

Mod Gom Logistic Gompertz Exponential Mod Gom Logistic Gompertz Exponential 
Number of cancers screen detected 177.807 255.997 89.203 218.290 2.737 2.761 2.140 2.680 
N umber detected by other means 546.800 483.493 640.810 516.680 3.532 3.337 3.358 3.768 
Number of women who got cancer 829.553 905.890 770.993 896.307 2.763 2.083 3.121 2.291 
Number of women screen invited while had cancer 346.697 490.660 275.560 470.793 3.551 3.387 3.389 3.372 
N umber of cancers that were not detected 104.947 166.400 40.980 161.337 2.220 2.797 1.297 2.706 
Number of women not screen invited while had cancer 482.857 415.230 495.433 425.513 3.273 3.18:3 :3.621 :3.540 
Number of women who did not get cancer 170.447 94.110 229.007 103.693 2.763 2.083 3.121 2.291 
Number of women who attended screening at least once 792.743 804.533 805.657 804.747 2.714 3.116 2.804 2.684 
Percent of detected cancers detected by screening 24.536 34.619 12.216 29.706 0.350 0.346 0.281 0.362 
Average tumour diameter (nun) at registration 20.419 18.151 23.224 19.295 0.113 0.113 0.120 0.122 
Average time (years) to detection 6.648 16.895 2.840 15.644 0.0:30 0.095 0.D18 0.077 
Average diameter (rnm) of tumour at detection if detected by other means 23.972 22.989 24.395 23.603 0.123 0.125 0.120 0.125 
Average time (years) to detection if detected by other means 7.041 15.366 2.752 14.763 0.031 0.103 0.018 0.078 
Average diameter (mm) of tumour if screen detected 9.454 8.999 14.828 9.090 0.002 0.008 0.004 0.006 
A verage time to detection (years) if screen detected 5.486 19.725 3.487 17.673 0.027 0.075 0.020 0.067 
Life years saved 265.524 383.608 154.898 336.155 15.453 18.952 12.373 1.5.56:3 
Years earlier detected if screen detected 3.790 6.468 1.250 4.739 0.057 0.099 0.038 0.079 
A~erage .number of attendances (of those who attended at least once) 4.899 4.684 5.025 4.812 0.015 0.016 0.015 0.015 

Table D.3: Results for screening ages 51 to 63 every 2 years, by tumour growth pattern 
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Output Variable 
Average 90% Confidence interval for the average 

(mean plus and minus result) 
Mod Gom Logistic Gompertz Exponential Mod Gom Logistic Gompertz Exponential 

N umber of cancers screen detected 245.640 340.913 124.350 296.553 3.206 3.079 2.457 3.121 
Number detected by other means 487.330 414.203 607.383 449.883 3.499 3.337 3.314 3.256 
Number of women who got cancer 829.317 906.200 771.107 896.787 2.610 2.156 2.800 2.238 
Number of women screen invited while had cancer 442.403 555.710 375.960 540.237 3.568 3.686 3.396 3.760 
N umber of cancers that were not detected 96.347 151.083 39.373 150.350 2.051 2.427 1.388 2.647 
Number of women not screen invited while had cancer 386.913 350.490 395.147 356.550 3.513 3.340 3.555 :3.56.5 
Number of women who did not get cancer 170.683 93.800 228.893 103.213 2.610 2.156 2.800 2.2:38 
Number of women who attended screening at least once 791.830 804.663 804.833 806.150 2.896 3.102 2.715 2.740 
Percent of detected cancers detected by screening 33.512 45.148 16.992 39.727 0.412 0.374 0.325 0.373 
Average tumour diameter (mm) at registration 18.726 16.232 22.402 17.433 0.108 0.104 0.110 0.116 
A wrage time (years) to detection 6.342 16.595 2.803 15.424 o.o:n 0.092 0.019 0.07:1 
A verage diameter (lllIll) of tumour at detection if detected by other means 23.491 22.379 23.95.5 23.065 0.123 0.115 0.114 0.122 
Averagc timc (years) to detection if detected by other means 6.802 14.040 2.666 13.921 0.032 0.089 0.019 0.079 
Average diameter (mm) of tumour if screen detected 9.301 8.805 14.890 8.902 0.003 0.016 0.002 0.014 
Average time to detection (years) if screen detected 5.417 19.636 3.440 17.630 0.025 0.084 0.017 0.062 
Life years saved 315.567 427.638 180.599 377.109 16.877 18.489 13.029 16.862 
Years earlier detected if screen detected 3.801 6.419 1.237 4.765 0.047 0.080 0.031 0.066 
Average number of attendances (of those who attended at least once) 6.204 5.837 6.398 6.057 0.024 0.022 0.023 0.020 

Table D.4: Results for screening ages 51 to 69 every 2 years, by tumour growth pattern 
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Output Variable 
Average 90% Confidence interval for the average 

(mean plus and minus result) 
Mod Gom Logistic Gompertz Exponential Mod Gom Logistic Gompertz Exponential 

N umber of cancers screen detected 238.640 333.383 106.670 283.480 3.182 3.285 2.224 3.164 
Number detected by other means 492.757 417.823 623.883 458.683 3.686 3.456 3.347 3.525 
Number of women who got cancer 829.093 906.397 770.087 895.580 2.633 2.155 2.939 2.234 
Number of women screen invited while had cancer 513.373 619.360 444.337 604.550 3.493 3.522 3.505 3.505 
N umber of cancers that were not detected 97.697 155.190 39.533 153.417 1.989 2.535 1.278 2.583 
Number of women not screen invited while had cancer 315.720 287.037 325.750 291.030 3.183 3.220 3.420 :3.:l29 
Number of women who did not get cancer 170.907 93.603 229.913 104.420 2.633 2.155 2.9:l9 2.2:l4 
Number of women who attended screening at least once 878.413 887.943 890.6.53 888.870 2.523 2.285 2.328 1.989 
Percent of detected cancers detected by screening 32.629 44.380 14.600 38.197 0.416 0.398 0.294 0.397 
Average tumour diameter (nun) at registration 18.998 16.430 22.912 17.810 0.118 0.106 0.117 0.111 
Average time (years) to detection 6.409 16.668 2.822 15.470 0.029 0.091 0.Ql7 0.07.5 
Average diameter (mIll) of tumour at detection if detected by other means 23.385 21.975 24.183 22.846 0.123 0.113 O.ll8 0.140 
Average time (years) to cletection if detected by other means 6.817 14.182 2.671 13.941 0.032 0.096 0.017 0.078 
Average diameter (mm) of tumour if screen detected 9.983 9.475 15.441 9.609 0.002 0.014 0.002 0.011 
A verage time to detection (years) if screen detected 5.591 19.736 3.682 17.957 0.024 0.075 0.021 0.069 
Life years saved 356.622 488.427 172.710 417.927 18.473 20.861 13.506 21.208 
Years earlier detected if screen detected 3.672 6.197 1.268 4.578 0.045 0.076 0.035 0.069 
Average number of attendances (of those who attended at least once) 5.630_ L- 5.442 _ _5.729 

-'-----
5.555 

--
0.019 0.019 0.018 0.018 

Table D.5: Results for screening ages 45 to 69 every 3 years, by tumour growth pattern 



Appendix E 

Results of Sensitivity Analysis 

Performed on the Theory of 

Planned Behaviour Variables 

Table E.1 provides the means from the 300 iterations run for each of the sensitivity 

simulations performed as described in Chapter 7. Each of the three constructs of the 

Theory of Planned Behaviour (TPB) were increased, and then decreased (by 10%) 

relative to their baseline values discussed in Chapter 6. 

Where SN= Subjective norm, PBC= Perceived behavioural control as before. 
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Direction change/ Variable change Up 10% Baseline Down 10% 
Attitude SN PBe All Attitude SN PBe All Attitude SN PBe All 

N umber of cancers screen detected 246.13 248.27 249.97 252.70 244.30 244.30 244.30 244.30 244.91 242.51 240.19 236.41 
Number detected by other means 495.24 492.62 491.92 487.69 495.92 495.92 495.92 495.92 494.17 498.47 499.96 502.99 
Number of women who got cancer 896.83 897.05 896.35 895.35 896.18 896.18 896.18 896.18 895.35 896.66 896.37 896.11 
Number of women screen invited while had cancer 534.09 533.95 535.17 534.19 531.68 531.68 531.68 531.68 532.99 533.76 533.13 533.73 
N umber of cancers that were not detected 155.45 156.16 154.46 154.96 155.96 155.96 155.96 155.96 156.27 155.68 156.22 156.71 
Number of women not screen invited while had 362.74 363.10 361.19 361.16 364.50 364.50 364.50 364.50 362.36 362.90 363.25 362.38 
cancer 
Number of women who did not get cancer 103.17 102.95 103.65 104.65 103.82 103.82 103.82 103.82 104.6·5 103.34 103.63 103.89 
Number of women who attended screening at least 800.92 801.85 803.02 803.68 799.74 799.74 799.74 799.74 799.77 799.36 797.65 797.86 
once 
Percent of detected cancers detected by screening 33.20 33.51 33.70 34.13 33.00 33.00 33.00 33.00 33.14 32.73 32.46 31.98 
Average tumour diameter (mm) at registration 18.84 18.79 18.70 18.61 18.83 18.83 18.83 18.83 18.84 18.94 18.92 19.07 
Average time (years) to detection 15.69 15.66 15.67 15.61 15.69 15.69 15.69 15.69 15.67 15.68 15.69 15.73 
Average diameter (mm) of tumour at detection if 23.25 23.24 23.20 23.15 23.19 23.19 23.19 23.19 23.25 23.28 23.23 23.32 
detected by other means 
Average time (years) to detection if detected by 14.20 14.16 14.19 14.10 14.20 14.20 14.20 14.20 14.20 14.20 14.22 14.29 
other means 
Average diameter (mm) of tumour if screen de- 9.94 9.91 9.84 9.86 9.90 9.90 9.90 9.90 9.97 9.98 9.95 10.04 
tected 
A verage time to detection (years) if screen de- 18.68 18.68 18.65 18.47 18.76 18.76 18.76 18.76 18.61 18.70 18.68 18.74 
tected 
Life years saved 308.56 309.81 314.18 320.96 307.86 307.86 307.86 307.86 314.39 311.12 303.05 293.07 
Years earlier detected if screen detected 4.55 4.52 4.52 4.53 4.54 4.54 4.·54 4.54 4 .. 54 4.53 4.55 4.52 
Average number of attendances (of those who at- 4.36 4.39 4.45 4.49 4.34 4.34 4.34 4.34 4.33 4.29 4.22 4.17 
tended at least once) 

- ~- - - .. - -----~- ~--.--~------ --- -- ~- - --

Table E.l: Sensitivity results from screening age 51 to age 69 every 3 years, for baseline TPB values and increasing or decreasing the TPB 
parameter values by 10% in turn (exponential growth assumed) 



Appendix F 

TPB Experimentation Results 

This Appendix provides the detailed results from all of the outputs from the two nms 

reported in Section 7.6 that estimated the increase in TPB values required in the UK 

population in order to provide as much benefit with todays' screening strategy as 

would be expected by lowering the first invited age of screening to 45. Table F.I 

provides the mean and 90% confidence intervals for the mean, of all of the simulation 

outcomes for both the reported 75% baseline, and TPB run with equivalent 95% 

attendance (for a discussion of the terms, please see Section 7.6). 

The 90% confidence intervals are generated via methodology described in Section 7.2. 
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TPB implied attendance 75% Baseline 95% Attendance 
Screening scenario 45-69/3yrs 50-69/3yrs 
Statistic Mean Upper Lower Mean Upper Lower 

90% CI 90% CI 90% CI 90% CI 
Number of cancers screen de- 268.07 270.46 265.69 265.80 267.98 263.62 
tected 
Number detected by other 472.94 475.39 470.49 476.54 479.09 473.99 
means 
Number of women who got 896.77 898.34 895.20 895.33 896.90 893.77 
cancer 
Number of women screen in- 602.94 605.50 600.38 535.99 538.61 533.38 
vited while had cancer 
Number of cancers that were 155.76 157.55 153.97 152.99 154.89 151.10 
not detected 
Number of women not screen 293.83 296.16 291.50 359.34 361.90 356.78 
invited while had cancer 
Number of women who did 103.23 104.80 101.66 104.67 106.23 103.10 
not get cancer 
Number of women who at- 882.94 884.50 881.38 809.02 810.89 807.16 
tended screening at least once 
Percent of detected cancers 36.17 36.47 35.88 35.81 36.09 35.53 
detected by screening 
Average tumour diameter 18.23 18.31 18.15 18.27 18.36 18.18 
(mm) at registration 
Average time (years) to detec- 15.53 15.59 15.48 15.55 15.60 15.49 
tion 
Average diameter (mm) of tu- 22.99 23.08 22.90 23.08 23.17 22.99 
mour at detection if detected 
by other means 
Average time (years) to de- 14.06 14.12 14.00 13.95 14.01 13.90 
tection if detected by other 
means 
Average diameter (mm) of tu- 9.75 9.80 9.70 9.70 9.75 9.65 
mour if screen detected 
Average time to detection 18.09 18.14 18.04 18.37 18.42 18.31 
(years) if screen detected 
Life years saved 389.20 403.77 374.62 345.09 357.36 3:32.81 
Years earlier detected if screen 4.56 4.61 4.52 4.57 4.62 4.52 
detected 
Average number of atten- 5.10 5.ll 5.09 4.80 4.81 4.79 
dances (of those who attended 
at least once) 

Table F.1: Table of TPB expenment results to find the eqUIvalent TPB values reqUIred to 
acheive similar results with todays screening programme as screening from age 45 would 
acheive 
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