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Breast cancer is the second most common cancer in the UK. Early detection and
treatment are key to halting disease progression and the ultimate survival of the
patient. Mammography screening can detect breast tumours before symptoms occur,
making screening for breast cancer an effective intervention to help to reduce
mortality from the disease.

Simulation has been used for many years to evaluate the outcomes from medical
interventions, and much research has focussed upon breast cancer screening policies.
However in practice a screening policy can only be successful if people attend for the
invited screen. This thesis discusses some of the issues involved in incorporating
human factors in a simulation model of screening for breast cancer in a UK setting.
Four different methods for approximating attendance at mammography screening
were compared including one method derived from a psychological theory that was
designed to predict human behaviour.

The research also uses the simulation model to compare the differences brought about
by making different assumptions regarding the patterns and rates of breast tumour
growth on the simulation outcomes.

Results indicate that different approaches to approximating attendance behaviour
and cancer growth do produce significantly different simulation outcomes. However,
the relative change in outcomes across different screening strategies remained roughly
constant across the various approaches. Whilst this relative change was consistent,
the changes in approach did lead to changes in the significance of differences between
outcomes under different screening strategies. In light of these results caution is
advised when interpreting simulation outcomes and emphasises the importance of
comparing relative as opposed to actual simulation outcomes.

The benefit of incorporating a psychological model into the simulation came from
enhanced simulation functionality and the ability to provide further insight into the
effects of attitude changes on screening policies.
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ADbbreviations

Table 1 below provides a list of abbreviations and definitions used within this thesis.

Term

Definition

75% baseline

The baseline scenario for the further experimen-
tation such that cancer growth was exponential,
screening was from age 45 to 69 tri-annually, and
TPB constructs had been manipulated to imply
75% overall attendance rates.

Attendance behaviour

Whether or not an individual attends a breast
screening unit

Baseline The scenario compared against such that cancer
growth is exponential and behaviour is modelled
using 75% local attendance.

BC Breast cancer

BSE Breast self examination

CI Confidence interval

DES Discrete event simulation

Equation model

Baker and Atherill’s equation model for the pre-
diction of attendance at UK breast screcning
units

HBM Health Belief Model

Mod Gompertz The modified Gomptertzian growth equation
ONS UK Office of National Statistics

PBC Perceived behavioural control construct
Scenario See screening scenario

Screening scenario

A particular screening policy evaluated, for ex-
ample the current UK strategy of screening from
around age 51 to 69 every 3 years

SN Subjective norm construct

TPB Theory of Planned Behaviour

UKBCSP The UK Breast Cancer Screening Programme
yIs Years
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Chapter 1

Introduction

Operational Research (OR) techniques have been widely applied to the area of health
care and health research. However, the expected outcomes of interventions, plans, or
structural changes suggested by these models often differ from those observed in
reality. In the real world, health care policy decisions, as well as operational decisions
in health care planning, are made on the basis of Operational Research models.
Therefore, it is important that these models reliably capture all aspects of the
real-world system, as they can have great impact in practice.

The actions of people play a vital role in health care systems, resources, and disease
progression. For example, when considering different, and/or, optimal disease
interventions the participation of the patient, or potential patients, in the
intervention must be considered. For the majority of models of health care systems
the behaviour of the people involved in those systems is described by a single
variable, e.g. the percentage of patients who comply with the regime or suggestion.

It is suggested that the observed gap between modelled expected outcomes and real
outcomes may be in part due to the human behavioural aspects of the health care
systems which are currently omitted from OR models. To this end it is intended to
try to incorporate some psychological model(s) of health care behaviour, (or an
amalgamation of several), into an OR model in an attempt to begin to bridge the gap
between modelled and observed systems and increase the functionality and realism of
the modelling work. It is believed that this will be one of the first serious attempts to
incorporate behaviour at an individual level into a health care simulation model.

1.1 Background

Breast cancer and screening strategies for breast cancer were chosen as the
application of the research, and there were a number of reasons for the choice.



Firstly, Southampton University have previous experience of modelling for the early
detection of breast cancer. Secondly, breast cancer can be fatal and is the second
most common cancer in the UK (see below), but with earlier detection and treatment
prognosis can be significantly improved. Therefore, with an optimal strategy for a
population, mammography screening may prevent premature death. Lastly, having
perused the health behaviour literature, it became clear that attendance at cancer
screening (and breast cancer screening) was an area that had been considered by a
wealth of literature, many of which applied recognised psychological models to
explain attendance behaviour, see Chapter 3 for more information.

Breast cancer is the second most common cancer in the UK with around 41,000 new
cases diagnosed each year. Potential risk factors for the disease include age, a family

history, previous breast cancer, early menarche and late menopause (Cancer Research
UK, 2006).

Once diagnosed, treatment for breast cancer depends on factors such as the patient’s
age, and the type, size, and spread of the tumour, however, most patients will, at a
minimum, undergo surgery to remove the tumour. This may be followed by
radiotherapy, and/or chemotherapy. Many women will also receive hormonal therapy
using drugs such as Tamoxifin or Arimidex.

Screening can be a useful tool to identify disease at an earlier stage in the natural
history. The UK National Screening Committee define screening as follows.

“Screening is a public health service in which members of a defined
population, who do not necessarily perceive they are at risk of, or are
already affected by a disease or its complications, are asked a question or
offered a test, to identify those individuals who are more likely to be
helped than harmed by further tests or treatment to reduce the risk of a
disease or its complications.”

(UK National Screening Committee, 2006)

The Committee set out criteria for appraising the viability of national screening
programmes that include criteria to ensure that the condition is serious enough to
justify the intervention, that therc should be an cffective and safe screening test
available, that the test should identify people at an earlier stage of the disease, that
there is a suitable treatment for this stage of disease, and that the test is acceptable
to the proposed screening population, (UK National Screening Committee, 2003).

As a life threatening disease that mammography screening may detect before
symptoms occur, and with more effective treatinents in the early stages, breast cancer
satisfies the majority of the criteria laid out for a screening programme. The UK
breast screening programme was introduced in 1988. Initially, mammography was



offered every three years to all women aged between 50 and 64, and to women aged
65 and over on request. From 2001 this was extended to women in England aged 65
to 70, and to women over 70 on request. In 2003-04, three quarters of women aged
50-64 invited for screening in England underwent screening for breast cancer, and
over 1.4 million women are screened each year. Earlier detection and improved
treatment has meant that survival rates have risen with the five-year survival rate up
to 80 per cent for women diagnosed in 1998-2001 in England, (UK Office of National
Statistics). Screening for breast cancer may help to identify tumours earlier and
reduce the treatment required for the patient as well as improving overall prognosis.

1.2 Operational Research Models for Breast Cancer

Screening

Analytical and simulation models are useful tools to aid decisions about which age
groups to screen and how frequently. Traditionally, the clinical effectiveness of a new
treatment or intervention has always been evaluated through a randomized controlled
trial (RCT). In an RCT the test population is divided randomly whereby some
patients receive the new treatment, and others receive either a placebo or the current
best available treatment. A full scale trial, however, has considerable disadvantages in
terms of cost and time. Simulation modelling can replicate the effects of the
intervention in the trial population in a fraction of the time needed for a full scale
RCT, and can then be used to conduct experiments which would be unethical or
impractical to carry out in practice.

Simulation has been used to study optimal screening strategies for disease since as far
back as the 1970’s; Knox (1973) produced one of the earliest yet very comprehensive
simulation models. Since that time many simulation models have considered
screening strategies for breast cancer including more recent research using a
simulation model called MISCAN in the Netherlands (Boer et al., 1998).

Even optimal screening programmes will only be successful, however, if screening
uptake rates are sufficiently high within the target population. The majority of
simulation models considering screening strategies for breast cancer treat screening
uptake as a single global stand-alone variable. It may be the case, however, that
comparisons between screening strategies alter when the behaviour of the patient is
considered in more detail. It has been shown, for example, that screening uptake rates
may be dependent upon, amongst others, factors such as patient age, attendance at
previous screening tests, the method and type of invitation, and receiving a
recommendation for attendance from a health professional, (Jepson et al., 2000).

A literature review was undertaken to investigate psychological theories applied to



breast cancer screening attendance and based upon these results it was decided that
the Theory of Planned Behaviour could be used within an operational Research
model of breast cancer screening. The Theory was chosen over other theories
available since it is very well structured and clearly defined, and UK research has
been undertaken using the theory that applied rigorous research methods and found
positive predictive results regarding attendance at breast screening clinics, (Rutter,
2000). Other research has focussed purely on previous attendance and age (as
opposed to psychological attributes) in order to predict breast cancer screening
attendance in the UK (Baker and Atherill, 2002). It was decided that it might be
interesting to investigate the differences that these two approaches may produce when
modelling breast cancer screening strategies in the UK, and compare and contrast
any differences against assumptions of standard percentage attendance at breast

screening.

With this in mind, the primary objective of this research was to investigate the
effects of different methods for modelling attendance at breast cancer screening units,
and the effect that different assumptions of attendance would have upon results
between simulations of different screening strategies for breast cancer within the UK.

1.3 Research Objectives

It was hoped that this research would form the first step towards answering key
questions relating to, not only how best to incorporate human behaviour modelling
into more traditional OR modelling and simulation, but also more fundamental
questions such as can we even model human behaviour effectively, and if so, what
effects different assumptions of behaviour make to modelled outcomes? While it is
accepted that human behaviour is somewhat impossible to ever completely model and
predict to a degree of absolute certainty, psychologists have been working for many
years studying human behaviour and have identified factors significantly associated

with behaviour and behaviour change.

How different assumptions of attendance behaviour effects simulated outcomes over
different model runs (screening scenarios in this case), and how any differences
between behavioural assumptions compare with differences brought about by other
modelled variables (for example screening frequency or cancer growth pattern), was
also a key research question. If different assumptions and models of human behaviour
only produce small changes in the modelled outcomes, and/or, these changes are
consistent over different model runs then the additional time and effort of researching
and including further behavioural attributes in a simulation may not bring any
additional value to the model. The results could be particularly intcresting if different
modelling approaches to attendance at breast screening produce differences in



modelled outcomes to such a degree that the preferred rank of screening age or
frequency is changed. It is believed that this is one of the first pieces of research to
specifically address these research questions, which could have far reaching
implications for not only simulation within healthcare but all applications that
require human input and behaviour as a primary driver to the outcome considered.

A discrete event simulation of breast cancer natural history, modelling women and
breast cancer over time, requires the ability to model the progression and growth of
the cancer. Exactly how human cancer growth progresses is understandably difficult
to ascertain due to the ethics of following detected tumours progression without
treatment. However, over the years a number of approaches have been developed
with varying complexity, including assumptions of exponential, Gompertzian, and
logistic growth. These approaches have been hypothesised based upon observations of
tumour doubling times over time, however it has been difficult to ascertain the exact
nature of tumour growth due to the wide variations observed that could fit a number
of growth patterns. A popular decision when simulating the natural history of breast
cancer is to assume exponential growth of the tumour (presumably due to the simple
nature of the exponential assumptions), however the impact of this assumption is
rarely investigated. As a secondary objective, therefore, this thesis reports upon the
differences in results from a simulation model of breast cancer and screening for
breast cancer, under four different assumptions of tumour growth, and over several
different screening strategies.

To fulfil these two objectives, a discrete event simulation model of breast cancer was
built in Microsoft Visual Basic, that modelled women over time. Each woman in the
simulation may or may not develop breast cancer, and be invited for and attend
screening for breast cancer. Breast cancer progression within the simulation is
modelled using one of four different assumptions of tumour growth over time labelled
exponential, logistic, Gompertz and modified Gompertz (a stochastic twmour growth
pattern). Screening for breast cancer is carried out at ages that are specified by the
user of the model and attendance at breast screening is modelled in one of four ways.

Attendance behaviour is approximated by either assuming a local percentage
attendance (every woman has an x% chance of attending at each invitation, sampled
at each invitation), a global percentage attendance (every woman has an x% chance
of attending every screen and a 100-x% chance of attending no screens at all, sampled
once at the first invitation and then fixed for the remainder), a probability for
attendance (deduced on the basis of previous attendance rates and age of the
individual and based on work done by Baker and Atherill (2002)), and lastly a
probability based upon a psychological theory, the Theory of Planned Behaviour,
(TPB).



1.3.1 Objectives Summary
To summarise, the objectives of this research are:

1. To investigate the effects of different methods of modelling attendance for breast
cancer screening, using a model from the psychological literature on
health-related behaviour (the Theory of Planned Behaviour) as well as a
statistical model derived to predict attendance at UK screening clinics (Baker
and Atherill (2002)), and two methods commonly used in OR models based on
percentage attendance, for different screening policies.

2. To investigate the effects of using different models of tumour growth, (logistic,
exponential, Gompertzian, and modified Gompertzian), for different screening
policies.

3. To compare the effects of changes in behaviour with changes in screening policy.

1.4 Thesis Layout

The next Chapter introduces the reader to some of the psychological theories for the
prediction of health behaviour, including the Theory of Planned Behaviour that has
been incorporated within the simulation model reported in this thesis. Chapter 3
then discusses how these theories and ideas have been applied to the study of breast
cancer and behaviours surrounding breast cancer. Chapter 4 introduces the methods
and approaches others have used to model and analyse breast cancer progression and
mammography screening strategies for the early detection of breast cancer. Chapters
5 and 6 go on to describe the structure of the simulation reported within this thesis,
and how the parameters of the simulation model were populated respectively. The
work to validate and verify the model and the experimental design are also described
in Chapter 6, before presenting the results of the experimentation in Chapter 7.
Lastly, discussion of the results and conclusions can be found in Chapter 8.



Chapter 2

Psychological Theory for the
Modelling and Prediction of Health

Related Behaviours

2.1 Introduction

The following sections discuss some of the cognitive psychological models and theories
that exist for the prediction of health behaviour.

Each theory within psychology tends to have some supporting research or foundation,
however, it is also often the case that there will be criticisms of the ideas and
sometimes even conflicting research. This is due to the nature of psychological models
and theories such that by their nature they cannot be ‘proved’ but only backed up,
(or not), by research. This is because psychology is about understanding the human
mind and personality and therefore it is difficult to ascertain sure facts.

This Chapter aims to talk about some of the more popular theories and models
surrounding the prediction of health behaviour within the field of psychology, and it
is hoped that due to their sustained popularity in literature these are the theories
with some grounding.

Social cognition approaches (how individuals make sense of social situations) to
predictive health related behaviour tend to take the form of a cost benefit analysis of
outcomes. For example subjective expected utility theory (SEU, Savage (1954)), and
expectancy value theory:.

SEU theory (Savage, 1954) considers decisions as a function of the probability of an
outcome and the expected utility of that outcome, summed over all possible outcomes



for each behaviour considered:
SEUJ = ZPU [ ] Uij

=1

Where SEU; is the subjective expected utility of behaviour j, F;; is the perceived
probability of outcome i given action j, and Uj; is the subjective utility of outcome i
given action j.

Behaviours that have a high probability of producing valued outcomes will be chosen
over other less desirable behaviours. In this way social cognitive models regard health
behaviours to be predicted as the end result of a rational decision making process
based upon deliberate processing of available information.

However, SEU theory does not provide much in the way of an explanation of the
decision process, and more recent social cognition models elaborate on these ideas in
order to try to explain, as well as predict, human behaviour (including health
behaviour).

The following sections discuss some of the more popular social cognitive models
(SCMs) of health behaviour and describe how they conceptualise the variables
important in determining behaviour as well as the behaviour outcomes. Section 2.2
discusses five of the more traditional models for the prediction of health behaviour,
while sections 2.3 and 2.4 introduce behavioural enaction and integrative models for
health behaviour respectively. Section 2.5 discusses and describes stage models of
behaviour, and Section 2.6 briefly mentions further theories of health behaviour that
were uncovered in the literature but that, due to time and space constraints, are not
discussed in detail here. Lastly, Section 2.7 summarises the theory discussed within
the Chapter.

2.2 Traditional Motivational Cognitive Models

2.2.1 Introduction

This Section aims to discuss popular social cognition models (SCMs) of health
behaviour. These models appear to be the more traditional and popular models of
health behaviour that are discussed in psychological literature when considering the



prediction of health related behaviour.

Five models are discussed, the Health Belief Model (HBM), the Health Locus of
Control (HLOC), Protection Motivation Theory (PMT), the Theory of Planned
Behaviour (TPB), and Social Cognitive Theory (SCT).

These traditional theories and ideas form the basis for many of more recent ideas and
theories and are still very popular in the field of behavioural health psychology, and
so each is discussed in detail. The information and references within this Section are
taken from the book “Predicting Health Behaviour” edited by Mark Conner and Paul
Norman (Conner and Norman, 1995).

2.2.2 Health Belief Model
2.2.2.1 Introduction to the Health Belief Model

The Health Belief Model, (HBM), was one of the earliest models of health behaviour
to be developed. It was created due to the requirement to find factors that influence
health behaviour that may be changed or influenced, (unlike demographic variables
shown to correlate with health behaviour), (Hockbaum, 1958; Rosenstock, 1966).

The Health Belief Model was therefore constructed under the assumption that a
persons health beliefs would influence their health behaviour and it would be possible
to influence or alter these health beliefs in order to change the health behaviour. By
the 1970s a series of studies had suggested that key health beliefs could aid the
understanding of individual differences in health behaviour and interventions,

(Sheeran and Abraham, 1995).

2.2.2.2 The HBM structure

Figure 2.1 illustrates the concept of the HBM. The idea is that there are two main
constructs that influence health behaviour and these are threat perception and
behavioural evaluation.

Threat perception is itself made up from two concepts, perceived susceptibility to a
threat and the perceived severity of the threat in question. The threat is not the
actual threat, but that perceived by the individual, and the perceived susceptibility
to, and severity of, the threat combine to produce the threat perception. If the HBM
were to be used in a mathematical model the method of combining the two constructs
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Figure 2.1: The Health Belief Model (Sheeran and Abraham, 1995)

would require consideration. Research into multiplying the two constructs in order to
find a threat perception score has produced mixed results. One relationship found to
be supported by literature is as follows,

threat = susceptibility + (susceptibility x severity),
while others suggest that severity must reach a threshold level first but once achicved,
threat is a function of susceptibility alone, see Sheeran and Abraham (1995) for
details.

Behavioural evaluation is also made up of two parts, the perceived benefits of
carrying out the (preventative) behaviour and the perceived barriers to carrying out
the behaviour (including psychological, physical, and monetary barriers or costs).
The overall contribution of behavioural evaluation is usually found by subtracting the
barriers from the benefits. However, in doing so important information may be lost.
For example two people may have different scores for barriers and benefits, but when
subtracted from one another their overall behavioural evaluation score may be the
same, thus masking their individual differences.

In addition to threat perception and behavioural evaluation there are two further
constructs thought to influence health behaviour within the HBM, and these are
health motivation, and cues to action (triggers to considering action such as
symptoms or campaigns).

As can be seen, (Figure 2.1), a disadvantage of the HBM is that there are no clear
relationships defined between and within the constructs of the theory. The
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relationships between the six constructs are not clearly explained and the constructs
themselves left vague and open to interpretation. The lack of precise definitious of
the constructs is important since changes in wording of questions can influence the
response given, (Tversky and Kahneman, 1981). These attributes make the HBM
difficult to interpret in terms of a mathematical model. It is not clear, for example,
how health motivation affects the other constructs, or how

psychological /demographic characteristics influence the beliefs that may be held.

2.2.2.3 Research using the HBM

The HBM has been applied to a wide spectrum of health behavioural questions which
fall into roughly three broad areas, preventative behaviour, sick role behaviour
(including compliance to medical regimes), and clinic use (e.g. visiting GPs),
(Sheeran and Abraham, 1995). The majority of the studies used self reported
measures of the six constructs, and some also include physiological, observational, or
medical records. Longitudinal, (prospective), and retrospective designs have been
implemented. However, it is worth noting that cross sectional studics arc difficult to
interpret as it is possible that behaviour could give rise to belief rather than vice
versa, (Sheeran and Abraham, 1995).

Harrison et al. (1992) cited in Sheeran and Abraham (1995), conducted a meta
analysis of HBM studies converting their results into a common effect size (Pearsons
r). Of the 234 papers that Harrison et al. considered, only 16 were used since the
remainder either did not measure all four constructs or did not show adequate
controls for reliability and/or validity, thus highlighting again the problems of the
vague model structure and definition. Harrison et al found that, overall, all of the
HBM constructs were significantly correlated with liealth behaviour but that the
correlates were low (see Table 2.1) and only accounted for between 0.5% and 4% of
the variance in health behaviour observed.

Measure Susceptibility | Severity | Benefits | Barriers
% of time construct is 81 65 78 89
significant

Overall Correlation 0.15 0.08 0.13 -0.21

Table 2.1: Reviews of HBM Studies, (Janz and Becker (1984); Harrison ct al. (1992))

It would appear that the four main constructs of the HBM are reliably correlated
with health behaviour but that their effect is small. This may be due to important
factors missing from the theory, a symptom of the vague definitions within the model,
or due to the fact that the relations between the constructs are not considered but
instead the constructs are considered as separate predictors of health behaviour.
Furthermore it would appear that cues to action and health motivation constructs
have been given less attention in research, (Sheeran and Abraham, 1995), perhaps
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again due to the vague definitions they have been given that have been left to
situational interpretation.

2.2.2.4 Discussion

The health belief model (HBM) is one of the more widely applied models for
predicting health behaviour in cognitive psychology. However, for the purposes of
quantitative modelling, it may not be an appropriate model due to the lack of precise
definitions of constructs and their relations to one another. The HBM also fails to
consider cognitions that have been shown to be good predictors of health behaviour
such as intention formation, social norms, and locus of control, (see sections 2.2.3,
2.2.4, and 2.2.5 to follow). Given the lack of structure to the model, the HBM really
remains little more than a list of six potentially important factors which may
influence health behaviour.

2.2.3 Health Locus of Control
2.2.3.1 Introduction

The principle behind the Health Locus of Control (HLOC) model is that those who
believe that they have more control over their health, through their actions, will be
more likely to participate in healthy behaviour. The idea stemmed from Rotter’s
Social Learning theory (Rotter, 1954), which defines behaviour as a function of the
expectancy that the behaviour will lead to an outcome, and the desirability (value) of
the outcome in comparison to other outcomes.

From social learning theory Rotter developed the principle of locus of control (LOC)
as a measure of the general expectancy that actions will lead to outcomes, (Rotter,
1966). People are said to have an external LOC if they believe that they do not have
control over what happens to them in life, and an internal locus of control if they
believe that their life is under their control and that they can shape their own future.
This is measured using Rotter’s internal-external scale, (Rotter, 1966).

Research has shown that people with internal locus of control may be more likely to
expend effort in order to control their enviromment, take more responsibility for their
actions, be more likely to seek out information, and take part in more autonomous
decision making than those with an external locus of control e.g. (Strickland, 1978).

Today, the general LOC scale is widely applied as a measure of individual differences,
but Rotter notes that when people have prior experience with a situation then
specific expectancies of the situation have more predictive ability than general
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expectancies, (Rotter, 1954).

It was theorised that, if people have an internal health locus of control (HLOC), then
they would be more likely to take control of their health and participate in healthy
behaviours. Since the general LOC scale failed to take account of the majority of the
variance in health behaviours specific HLOC scales were developed. The most widely
applied model today is called the Multidimensional Health Locus of Control, (MHLC)
and this is described below.

2.2.3.2 The Multidimensional Health Locus of Control Model

Unlike the uni-dimensional general LOC scale the MHLC measures expectancy beliefs
along three dimensions, internal HLC, powerful others HLC, and chance (fate) HLC.
Here, internal and external HLC are not considered to be two extremes of one
dimension but as orthogonal to one another with external HLC split into two distinct
dimensions in itself, powerful others (the extent of belief that other people have
control over life events), and chance or fate (the extent of belief that life is down to
chance and not under the control of any person(s)).

The idea is that those with a high internal HLC will again be more likely to
participate in health promoting behaviour, in comparison to those with high chaice
HLC who will be less likely to participate in healthy behaviours. Those who score
highly on the powerful others HLC scale may be more likely to carry out activities
that have been recommended by a professional or to attend clinics/follow regimes.
However, no matter how strong the belief of control over their own health, no action
will be taken if a person does not actually value their health (as per social learning
theory, see Subsection 2.2.3.1).

Each of the three orientations are measured on a separate six point Likert scale
collated from numerous responses on a questionnaire which has been successfully
tested for reliability and validity. Further scales and variations to the theme have
been developed but were not found to be as internally consistent as the MHLC
developed by Wallston et al. (1978), see Conner and Norman (1995).

Health value tends to measured in one of two ways, either by finding an absolute
value of health from the average of answers on a six point Likert scale, or by ranking
health values amongst other values in order to gain a relative value of health, see
Conner and Norman (1995).

13



2.2.3.83 Research using Health Locus of Control

The ideas of HLOC have been applied to many areas of health behaviour, the
majority focussing upon specific preventative health behaviours such as exercise
(Slemker et al., 1985), alcohol (Dean, 1991), condom use among the HIV positive
(Kelley et al., 1990), breast examination (Redeker, 1989), smoking cessation (Shipley,
1982), and weight loss (Schifter and Ajzen, 1985).

Research has produced mixed results for supporting the HLOC model as a predictive
model of health behaviour. Some results back the models ideas, while others find no
evidence to support the theory, (Norman and Bennett, 1995). However, there have
been criticisms of the research. Firstly the majority of research studies have failed to
consider health value at all, or have considered it as an additive effect to expectancy
beliefs rather than a moderator between expectancy beliefs and health behaviour,
(Norman and Bennett, 1995). Secondly, the majority of the studies concentrate upon
health behaviours which are familiar to the participants, and if measuring a specific
behaviour correlation then a specific scale may be more appropriate than the general
MHLC as a predictor of the behaviour (as social learning theory would suggest). It
may be the case, for example, that different expectancy beliefs are held about
different health situations, the subtleties of which are missed in the general scale. The
studies that take these two ideas on board have been generally more successful in
finding significant correlates with health behaviour, including general health and
health values Weiss and Larsen (1990), and smoking cessation Georgiou and Bradley
(1992), cited in (Norman and Bennett, 1995), but this is not always the case as found
in an investigation into behaviour specific efficacy beliefs by Norman (1995), cited in
(Norman and Bennett, 1995).

2.2.3.4 Discussion

Overall it would appear that the health locus of control theory, although sensible’ on
the surface, does not appear to be a strong predictor of health behaviour. Perhaps
the idea is too simple and narrow to adequately explain the complexities associated
with health behaviour, or perhaps further important variables also require inclusion
(see further chapters).

Whatever the reason, it could be suggested that the HLOC/MHLOC model may not
reliable enough to convert to a mathematical model of health behaviour at this time.
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2.2.4 Protection Motivation Theory
2.2.4.1 Background

Protection Motivation Theory (PMT) was borne out of the study of fear arousing
communication, considering whether such communication can directly or indirectly
influence behaviour, and the cognitive processes involved in mediating behaviour
change.

Two models formed the basis of PMT, the fear drive model, (Hovland et al., 1953),
and the parallel response model, (Leventhal, 1970), both cited in Boer and Seydel
(1995).

The fear drive model, (Hovland et al., 1953), states that fear acts to drive behaviour
through increasing motivation. Upon the receipt of a fear arousing message, the
motivation to follow the behaviour suggested in the message will increase in relation
to the level of fear induced in order to reduce the unpleasant emotional response to
the message. If following the behavioural advice succeeds in lowering the levels of fear
then the behaviour will be reinforced and continued, else maladaptive behaviours may
be undertaken to cope with the situation (e.g. denial of the threat, or avoidance of
the message). Such maladaptive responses lead to unhealthy and risky behaviour
such as smoking, failing to attend cancer screening etc.

The Parallel Response model, (Leventhal, 1970), considers the choice of maladaptive
or adaptive responses to fear arousal as two control options, danger control (actions
taken to reduce the physical threat to health), and fear control (actions taken to
reduce the emotional threat). In contrast to the fear drive model, in this case it is
considered to be the cognitive reaction of the individual to the message which governs

the coping strategy they undertake.

Since research had found evidence to suggest a correlation between the level of fear
arousal, and the perceived effectiveness of the advised action, with the adoption of
advised behaviour, the effectiveness of different communications at increasing healthy
behaviours appeared worthwhile considering.

2.2.4.2 The Protection Motivation Theory

Originally developed by Rogers in 1975, the PMT is illustrated in Figure 2.2. Upon
the receipt of a threat response two appraisals are carried out, threat appraisal and
coping appraisal. During threat appraisal the advantages of adopting a maladaptive
response are considered alongside the perceived degree of threat, that is, the
perceived vulnerability to, and severity of, the health problem. Fear arousal is
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Figure 2.2: Protection Motivation Theory (Boer and Seydel, 1995)

assumed to indirectly relate to health behaviour by increasing the perceived
vulnerability to, and severity of, the health issue.

The coping appraisal evaluates the response efficacy, the expectation that the
behavioural response will reduce the threat, and self efficacy, the perceived ability to
complete the behavioural intervention effectively. The efficacies of the behaviour are
weighed up against the costs incurred to carry out the behaviour in order to produce
the resulting coping appraisal of the situation. Adaptive responses are brought about
by high perceptions of threat and a belief that the behaviour is possible, as well as
effective, in reducing the threat placed against them without too much cost.

Protection motivation (PM) is a result of both threat and coping appraisal, and
facilitates adaptive responses. As motivation to carry out (or not) an action, PM is
best measured by intentions.

As pictured in Figure 2.2 the design of the PMT is well structured, with clear
relations between constructs, perhaps making it more suitable to be applied in
mathematical modelling than those considered in sections 2.2.2 and 2.2.3.
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2.2.4.3 Research Using PMT

Research designed to study and test the PMT most often takes the form of presenting
differing literature material to groups of subjects informing them of a health risk (real
or fictional), and then inviting their reactions. Participants are asked to give their
views of the severity, and personal vulnerability to the illness, their perceived self and
response efficacy, and the degree of intention to cngage in a suggested behaviour, on a
Likert scale response sheet. The content of the messages presented to participants is
varied in so far as how severe the illness is to be interpreted (by manipulation of the
description of the problems that lack of action will lead to), the vulnerability of a
typical person to the health risk in question (by emphasis on the low risks involved or
high proportion of people who will be at risk), the response efficacy of the treatiment
suggested, and the self efficacy of completing the treatment (either explaining its
good points and how simple it is to do, or focussing on the flaws of treatment and the
difficulties involved in participation of the behaviour).

The PMT has been most often applied to health education campaigns in order to
influence health behaviour. Some of the more popular areas of research include, for
example, reducing alcohol intake (Stainback and Rogers, 1988), encouraging healthy
lifestyles (Stanley and Maddux, 1986), diagnostic behaviour (Rippetoe and Rogers,
1987), and the prevention of disease (Tanner et al., 1991). Much of the research has
found positive relations between the constructs and intentions to perform health
behaviours. However, it would appear that only when new threats emerge does threat
appraisal play a role in the adoption of health behaviour, e.g. (Brouwers and
Sorrentino, 1993).

2.2.4.4 Discussion

Although in principle the PMT is little different from the Health Belief Model,
sharing as it does three of the four major constructs severity, vulnerability and self
efficacy, the PMT has been shown to be a “fruitful model for the prediction of
intention to engage in preventative health behaviour”, (Boer and Seydel, 1995).
Perhaps its success in comparison to the troubles of the Health Belief Model lies in
the inclusion of self efficacy, the variation of which has been shown to be important in
predicting preventative health behaviour, see chapters 2.2.5 and 2.2.6. The clear
layout of the PMT and preciseness of relations between its constructs, together with
the research backing, may make this model more applicable to the introduction of
mathematical modelling than those discussed in previous chapters. However, while
research has shown an association with intention to perform behaviours, more
research is required to demonstrate a strong link to behaviour (as opposed to just
intention). The PMT is a strong model for the prediction of health behaviour on
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paper, but with a few exceptions, it has received very little research attention so it is
difficult to ascertain if the model would predict behaviour in practise. In order to use
the PMT in a simulation model, it would be necessary to identify a successful piece of
research applying the theory that was well structured and measured behaviour rather
than intention. The results from this research could then be used to populate the
simulation model parameters. The alternative would be to carry out the PMT
research oneself which would be very costly both in terms of time and resources and
would fall out of the scope and expertise of this research.

2.2.5 The Theory of Planned Behaviour
2.2.5.1 Background

The Theory of Planned Behaviour (TPB), is an elaboration of a previous model, the
Theory of Reasoned Action (TRA), (Ajzen, 1988). Both models suggest that people
make decisions based upon careful consideration of available information. The
theories arose from the belief that our cognitive attitudes form a causal role in
determining behaviour (when the attitudes are at the same level of consideration as
the behaviour) and are described in turn below.

2.2.5.2 Model Description
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Figure 2.3: Structure of the Theory of Plannced Behaviour (Conner and Sparks, 1995)

The idea of the TRA is that a persons attitudes shape his/her intentions to perform
behaviour and these intentions (motivations to perform behaviours) themselves lead
on to actions. Taking this idea a step further the TPB also considers perceptions of
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control in order to extend the scope of the applicability of the theory by including
more complex goals and tasks than only those easily performed. Figure 2.3 illustrates
the idea behind the TPB.

The TPB examines behaviour as a linear regression function of behavioural intentions
and perceived behavioural control, such that

B= U)lBI -+ U)QPBC

where B is behaviour, BI is behavioural intention, PBC' is perceived behavioural
control, and w; and wsy are the regression weights.

The suggestion is that we will be more likely to participate in behaviours that we
intend to carry out and that are under our control and we perceive them to be under
our control, while we are prevented from carrying out behaviours that are not within
our control. It is assumed that we will put more effort into desirable behaviours that
we can control rather than behaviours we have little or no control over or which they
do not wish to take part in, (Ajzen, 1988).

Intentions

The TPB considers three predictors of intentions to perform behaviours. 1. The
attitude toward the behaviour, 2. Subjective norms relating to the behaviour, and 3.
Perceived behavioural control. Attitude toward the behaviour refers to the overall
evaluations of the behaviour by the individual. Subjective norms consist of a persons
beliefs about whether significant others would approve of their participation in the
behaviour, where significant other(s) are person(s) whose views in this domain are
important to the individual. Perceived behavioural control is the extent to which the
individual believes the behaviour in question is under his/her control, and draws
parallels with the concept of self efficacy, see Subsection 2.2.6. Behavioural intention
is itself then viewed as a regression function of these three variables,

BIB = w3AB + w4SNB + w5PBC’B

where BI stands for behavioural intention, A is the individuals attitude to the
behaviour B, SN the evaluated subjective norms relating to behaviour B, PBC' the
perceived behavioural control of the individual related to behaviour B, while w3 to ws
represent the relative weights assigned to the variables. The PBC variable has
therefore a part to play in both the behavioural components and the intention

components. Without PBC, equation for behavioural intention would represent the
TRA.
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Attitudes

The attitude component is considered as a function of the individuals salient beliefs
representing the perceived consequences of the behaviour in question. The TPB
regards consequences as expectancy value products (see Section 2.1), such that they
are regarded as multiples of the expectancy that performance of the behaviour will
bring about an outcome, and the desirability of this outcome,

i=1
Ap =) b
i=l

Where Ap is the attitude to behaviour B, b; the belief that performing the behaviour
B will lead to some consequence i, e; the evaluation of the consequence ¢, and [ the
number of salient consequences.

It is not suggested that this calculation takes place for every decision made but that
it is possible to store the information in memory for retrieval when required.

Subjective Norms

Subjective norms represent the perceptions of the views of others about whether or
not the individual should participate in the particular behaviour. In the model this is
quantified for each significant other by the multiple of, the significant others’ view
whether they should participate in the behaviour or not, with the individual’s
willingness to comply with this view.

j=m

SNB = Z TLbj’I’I"LCj

J=1

Where SN is the subjective norm, nb; the normative belief that significant other j
approves of the behaviour, mc; is the motivation to comply with significant other 7,
while m is the number of significant others considered for the behaviour.

Percetved Behavioural Control

Perceived behavioural control (PBC) is a measure of the individuals belief that they
have the ability to complete the behaviour, and whether or not they really do.
According to the TPB, PBC can be thought of as considering whether one has access,
and control over, the necessary factors (resources etc) to perform the behaviour,
whether or not they believe they have access to the resources, and how influential
these factors are in facilitating completion of the behaviour. Influential factors may
be either internal/personal such as psychological qualities and emotions, or external
such as money, opportunities, or a dependence upon others,
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k=n

PBCg =) ckpx

k=1
where ¢ is the perceived likelihood of factor k, py is the perceived influential
(facilitating or inhibiting) effect of factor k, and n is the number of factors considered
relevant to the behaviour B.

2.2.5.3 Research Using the TPB

The TRA/TPB have been applied to the study of a range of health behaviours
including sexual behaviour (Nucifora et al., 1993), health screening attendance
(Norman, 1995), exercise (Goden et al., 1993), food choice (Towler and Shepherd,
1992), and breast self examination (McCaul et al., 1993).

Ajzen (1991) (cited in Conner and Sparks (1995)) wrote a review of studies using the
TPB which were generally found to be supportive of the theory. The multiple
correlations between behavioural intention, attitude, and subjective norms were
found to be 0.71 over 16 different studies with the mean R between intention and
behaviour as 0.51. Similarly Godin and Kok (1996) performed a literature review
that identified 56 studies using the TPB to predict future behaviour. Their analysis
also found a positive overall association between the TPB and behaviour, with the
constructs of the TPB explaining 41% of the variance in intention, and 11.5% of the
variance in behaviour above that explained by inention.

Over the years the TPB has grown in popularity and research has continued to
support the theory for example more recently the TPB has also been successfully
applied to the study of condom use (Sheeran and Taylor, 1999), and to diet (Conner
et al., 2003).

2.2.5.4 Discussion

The Theory of Planned Behaviour is considered as a “..leading theoretical model...”
(Rhodes and Courneya, 2003) and is perhaps one of the more promising predictive
models of health behaviour for the future, (Conner and Sparks, 1995). The design
and construction of the model is clear and well defined with a causational structure
based upon equations.

Overall, the TPB is considered to be and has been found to be a significant predictor
of both intention and behaviour, (Conner and Sparks, 1995; Ajzen, 1991; Godin and
Kok, 1996). The attributes listed above may well make the TPB a prime candidate
for the basis of a mathematical model of behaviour. Of the theoretical models
discussed so far the TPB is both well defined, structured, and well researched with
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positive findings.

However, there have been criticisms of the model urging caution to the assumptions
of the validity of the model, not least that there is little evidence that
communications can actually alter attitudes, and if so the effect that they have
(Conner and Sparks, 1995). The inherent difficulty in measuring the constructs
themselves reliably, (such as attitude and subjective norms), has also been pointed
out (Conner and Sparks, 1995).

2.2.6 Social Cognitive Theory and Self Efficacy Theory
2.2.6.1 Background

Self Efficacy (SE) first appeared as a factor of behavioural modification in Bandura’s
Social Cognitive Theory (SCT) (Bandura, 1977).

Perceived self efficacy is the belief in the ability to excerpt control over ones
environment. SE is not the same as unrealistic optimism, in so far as it is based upon
experience, and leads to adventurous and challenging behaviour that is within reach
of the individual.

The idea is that SE makes a difference to the whole process of how we think, feel, and
how we act. The higher perceived SE a person possesses, the better their health and
the higher their achievements, and they tend to be more socially integrated,
(Bandura, 1977). In contrast, low perceived SE is thought to be associated with
depression, anxiety and dependency, (Schwarzer and Fuchs, 1995).

2.2.6.2 The Social Cognitive Theory

Social Cognitive Theory (SCT) stipulates that all human action is due to forethought
involving the following three factors.

1. Situation-Outcome Expectancies. These are the expectancies that outcomes will
occur due to the environment and the situation rather than actions taken by the
individual, i.e. the extent of belief that the world changes without personal
engagement.

2. Action-Outcome Expectancies. These are the outcome expectancies relating to
personal action.

3. Perceived Self Efficacy. This is the perceived degree of control over the actions
required for the desirable outcome.

22



Under the first idea it is possible for beliefs to change in order to form defensive
coping strategies in threatening situations, for example denial of the threat of a
disease or vulnerability to it, while the last two include the option to cope with
situations by providing the option to change the outcome through action.

Under SCT the likelihood of a health behaviour change will be affected by these three
cognitions, (the expectancy of risk, the expectancy that behavioural change will
reduce that risk, and the expectancy that the individual is capable of the behaviour
change).

Self Efficacy is considered vital within this process, even nmiore so than outcome
expectancies since these are only considered during the formation of intentions
alongside self efficacy (no intentions will be formed to change actions if it is not
believed possible to see the actions through), whereas self efficacy is also a necessary
controlling influence over the process leading to attempting and sustaining action.

The measurement of these variables should be situation specific wherever possible in
order to increase the predictive ability of the theory (as before), and when
considering addictive behaviour it has been suggested that SE be broken down into
five categories, two concerning the prevention of undertaking addictive behaviours,
and 3 addressing self efficacy issues relating to self change and relapse prevention.

2.2.6.3 Research Using SCT

The majority of research using SCT assesses the theory’s ability to influence
behaviour change. The theory has been applied in areas such as sexual risk behaviour
(Kasen et al., 1992), physical exercise (Shaw et al., 1992), and weight control,
(Bagozzi and Warshaw, 1990). In addition to this the SCT has been widely applied
to areas of addiction and relapse, with success in coping in high stress situations
linked to perceived control over the necessity to engage in the unwanted behaviour,
(Schwarzer and Fuchs, 1995).

In most cases research has proved very supportive of the theory, and in some cases
the further variables of the TRA were found to be non significant predictors of
behaviour once the influence of SE had been taken account of, (Dzewaltowski, 1989;
Beck and Lund, 1981).

Further to this in one study, after the receipt of cognitive behavioural treatment
based upon the ideas of SCT, a group of patients suffering from rheumatoid arthritis
reported less pain and joint inflammation (proposed to be due to enhanced coping
strategies), and greater psychosocial functioning (O’Leary et al., 1988).
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2.2.6.4 Discussion

Since it first appeared in Bandura’s Social Cognitive Theory, self efficacy has been
incorporated into other cognitive models of health behaviour, (see sections 2.2.4 and
2.2.5), so that social cognitive theory is now less of a standalone theory.

Its inclusion in modern theories of cognitive health processes outlines how effective
self efficacy is in predicting health behaviour and accounting for its variance. Rather
than concentrating on communicating risks and dangers, the idea here would suggest
that emphasis should be placed upon increasing awareness of what (and how) people
can change themselves, and pointing out what is to be gained by this in order to
support and aid self efficacy beliefs.

2.2.7 Motivational Models: Summary

This Section has aimed to provide an introduction to some of the more traditional
cognitive models used in psychology for the prediction of health behaviour. The
information presented in this Chapter is taken from the book “Predicting Health
Behaviour” edited by Conner and Norman (1995).

Although the theories and models do vary in their assumptions and structure, some
parallels do exist and the core constructs are similar within the more popular models,
such as self belief and self efficacy, benefits of the behaviour, barriers to the
behaviour, and the severity of the illness/importance of the behaviour.

All the models have received a significant amount of attention in research and some
papers have attempted to compare the predictive ability of each with that of the
others.

The models and ideas that are more clearly defined and structured may be more
suitable for the application of mathematical modelling or simulation. For this reason,
perhaps the two more suitable models for inclusion in the currently reported research
would be Protection Motivation Theory, and the Theory of Planned Behaviour.

2.3 Behavioural Enaction Models

2.3.1 Introduction
Behavioural enaction models build upon motivational models of health behaviour

with an aim to bridging the gap between intentions to perform a behaviour and
behavioural performance. Two behavioural enaction models are discussed in turn
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below. These are Gollwitzer’s Implementation Intentions and Bagozzi’s Goal Theory.

2.3.2 Gollwitzer’s Implementation Intentions

Behaviour
T K
Intention
Goal Implementation
Intentions Intentions

Figure 2.4: Gollwitzer’s Implementation Intentions (cited in Conner and Norman (1995))

Gollwitzer’s theory breaks the intention construct into two parts, goal intentions and
implementation intentions, (see Figure 2.4).

Goal intentions are defined as the intentions to achieve a goal, while implementation
intentions refer to plans as to how, when, and where, this goal will be translated into

action.

Implementation intentions will lead on to performance when the conditions in the
plans are met. This means that when the conditions of the plan are met, the
individual is committed to action, almost handing control over to the environmental
conditions once the intentions are formed.

2.3.2.1 Research using Gollwitzer’s Implementation Intentions

Evidence has been found by Gollwitzer himself that forming plans and timetables for
action increases the likelihood of performance of the action, (Gollwitzer, 1954), thus
providing support for the idea of implementation intentions helping to predict
performance. Initial findings by other researchers have also produced positive results
including in areas such as breast self examination (Orbell et al., 1997) and exercise
adoption and adherence (Kendierski, 1990).

However, despite the positive research findings where it has been studied, the model
has not been widely researched, perhaps undeservedly.

2.3.3 Bagozzi’s Goal Theory

Bagozzi introduced his Goal Theory in the early 1990’s, (Bagozzi, 1992). He
considered intentions as split into three categories, present oriented intentions
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Figure 2.5: Bagozzi’s Goal Theory, (Bagozzi, 1992)

(intentions to act immediately), future oriented intentions (intentions made at time
point ¢; to act at time t;), and goal oriented intentions.

Bagozzi argues that while traditional attitude theories, (e.g. the Theory of Planned
Behaviour and the Theory of Reasoned Action), may apply to the first two categories
of intention, problems arise for the theories when one intends to pursue a goal or
target outcome.

Bagozzi’s Goal Theory examines how and when intentions are translated into the
achievement of a goal or target, and distinguishes between the intention to act and
the intention to pursue a goal. Figure 2.5 depicts the theories account of the
underlying processes from intention to action.

Once a goal intention is formed, the method a person chooses in order to pursue the
goal will be influenced by his/her self confidence, the likelihood of goal attainment via
the method, and his/her perception or the degree of pleasantness of the method.

According to Bagozzi (1992) goal intentions are brought about by desire, where
desires are driven by attitudes, subjective norms, and goal efficacy.

Bagozzi argues that instrumental acts and motivational processes lie between
intentions and goal achievement. Once the intention to perform an action is made,
then this sets off implementation processes in order to decide how to achieve the goal.
Plans are formulated in order to achieve the target, monitoring occurs to ensure that
the acts are carried out effectively (and on time), with guidance and control required
to change behaviours if monitoring suggests this is necessary.
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It is motivational processes that Bagozzi suggests are the important driver to
eventually achieving the goal(s) set out. Motivation is considered along two
dimensions, psychological commitment, and effort. Commitment is taken to refer to
“..the binding of the individual to 1) the decision to try to achieve the goal or
perform a behaviour, and 2) the decision to use a particular means.”, (Bagozzi
(1992), p199). Bagozzi also recognises that goal achievement is not only influenced by
the individual but may be influenced by the goal environment too, see Figure 2.5.

2.3.3.1 Research Using Bagozzi’s Goal Theory

Bagozzi’s goal theory has not been widely researched within health psychology, but
the few studies that do exist may offer some support to the theory. Bagozzi and
Edwards (1998) cited in Armitage and Conner (2000), for example found goal
intentions had an effect upon the degree of effort and this in turn influenced the
initiation of behaviour that determined the level of goal attainment.

2.3.4 Enaction Models: Summary

Behavioural enaction models help to bridge the gap between motivational models of
behaviour and the implementation of the behaviour, with the achievement of a target.
Since both of the models discussed concentrate on implementation intentions it has
been suggested that this may be a valid construct that is certainly worth further
consideration in research, (Armitage and Conner, 2000).

2.4 Integrative Models and Theories

2.4.1 Introduction

Over the years attempts have been made to integrate the various models of predictive
and descriptive health psychology into one large umbrella model/theory.

Wallston and Wallston (1984), cited in (Schmidt et al., 1990), compared four major
theories of health psychology and came to the conclusion that there are 6 variables
that an integrative health model should include. These were attitude,
vulnerability /threat, norms, motivation, habit, and facilitating conditions.

Other attempts at designing an integrative model of health psychology include the
‘Integrative Conceptual Framework’, (Moos, 1979), the
‘Person-environment-interaction systems model’, (Kar, 1986), and more recently the
‘Major theorists model’, (Fishbein et al., 2001), which is discussed below.
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2.4.2 Major Theorists Model
2.4.2.1 Background

As the AIDS epidemic continued to unfold the National Institute of Mental Health
(NIMH) brought together proponents of five of the more popular theories of health
psychology in order to try to formulate a uniform approach to designing interventions
primarily focussing upon safe sex and the use of condoms, (Fishbein et al., 2001).
The theorists involved in the 3 day discussions are shown in Table 2.2.

Theorist Theory or Model

A. Bandura Social Cognitive Theory

M. Becker Health Belief Model

F. Kanfer Self-Regulation/Self control
M.Fishbein Theory of Reasoned Action

Table 2.2: Major Theorists involved in the workshop (Conner and Norman, 1995)

2.4.2.2 Model Proposal

The theorists agreed upon 8 variables that account for health behaviour and these are
listed below.

1. Intention

2. Environmental Constraints

3. Skills

4. Attitude

5. Norms

6. Self Standards

7. Emotion

8. Self Efficacy
The general assumptions were that a person will behave as he/she was previously

until some stimulus, (either internal or external), alters his/her thoughts and affects
one or more of the listed variables, and then his/her behaviour may change.

Intention was agreed to have the most influence upon behaviour, with the first three
variables required in order for behaviour to take place. The last five variables then
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influence, strengthen, and decide the direction of intention as well as occasionally
affecting behaviour directly themselves.

Therefore, the theorists agreed that, in order to carry out a health behaviour it is
first and foremost necessary to intend to carry it out, possess the relevant skills in
order to carry out the behaviour, and there must be no obstacles preventing the
behaviour from taking place. The final five variables play their part either directly or
by affecting the intentions to carry out the behaviour in the following way. Intention
will be strengthened if:

the positive expected outcomes and attitudes outweigh the negative,

more social pressure is felt to carry out the behaviour than not to,

the behaviour is consistent with the person’s self image,

the behaviour elicits more positive than negative emotions in the individual

the individual possesses self efficacy relating to the behaviour.

No consensus was found between the theorists as to the causal linking of the 8
variables, or the strength of their relation and inter-relationships. What was agreed
was that the relative importance of each variable will vary, not only with the
situation in question, but also with the population being considered. Therefore, it
was felt appropriate to design interventions based upon research assessing the levels
of each variable in order to gauge the areas that require enforcing or replacing. For
example, if it was found that if intentions were low it would be appropriate to enforce
intentions as the first step, but if intentions were alrcady high it would be necessary
to find out whether it was environmental constraints or lack of skills preventing the
behaviour performance and then alter these as necessary.

2.4.3 Integrative Models: Summary

The idea of an integrative cognitive model for the prediction of health behaviour is a
very appealing one. However, it would appear that to date no such model has become
popular and therefore little research has been carried out in order to test/validate
them, or indeed in order to populate a mathematical version with data.

Perhaps the reason for the apparent lack of popularity and research into this area is
due to the difficulty in reaching a conscnsus of opinion across the disciplines in
psychology as to how such health cognitions occur, and in forming the relationships
between the constructs in any proposed model itself, (as is the case with the Major
Theorists Model discussed above). That is not to say, however, that an integrative
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model of health behaviour is not the way forward. Since many of the traditional
models for the prediction of health behaviour do contain similar if not the same
constructs, it is not inconceivable that a singular model or theorem could be designed
to encapsulate the ideas from each without loosing the original concept.

When considering using an existing integrative model as the basis of a mathematical
model of health behaviour it is suggested that at this time there may not be enough
research finding support for the theories, or to populate the model with, and in the
case of the more recent Major Theorists Model, structure is lacking for
implementation. It would be possible to undertake new research to investigate how
such models faired at predicting health behaviour and attendance at breast screening,
however it was felt that this would be a huge undertaking requiring too much time
and distract from the primary research objectives.

2.5 Stage Theories

2.5.1 Introduction

Stage theories consider health behaviour as made up of a number of discrete stages.
The idea is that a person may reside in any one stage at a time and people within
each stage will behave in qualitatively different ways and require different information
and motivations to progress to the next stages on the way toward action itself.

According to Armitage and Conner (2000) the most prominent stage theories of
behaviour suggested in psychology to date are the Health Action Process Approach
(HAPA), Heckhausen’s Rubicon Model, Kuhl’s Action Control Theory, the
Transtheoretical Model of Change, and the Precaution Adoption Process. These are
discussed in turn below with more emphasis on the latter two models since they
appear to be the two more popular theories.

There are also stage models of behaviour that are specific to a particular issue or
behaviour, Weinstein et al. (1998) talk of stage theories addressing behaviours such as
the delay in seeking medical care e.g. (Anderson et al., 1995), and AIDS risk
reduction e.g. (Catania et al., 1990).

2.5.2 Health Action Process Approach

Schwarzer’s Health Action Process Approach (HAPA) model comprises of two phases,
the motivational phase and the volitional phase, (Schwarzer (1992) cited in Armitage
and Conner (2000)).
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The motivational phase is roughly equivalent to the ideas of SCT and TPB as
described in sections 2.2.6 and 2.2.5, but with a few adjustments. Qutcome
expectancies only affect self efficacy if the individual in question has previous
experience with the behaviour, otherwise their only impact is upon intentions. In
addition, the threat construct, (from HBM in Subsection 2.2.2), is considered only as
a more distal predictor of expectancies.

The volitional phase in HAPA comprises of three overlapping stages, planning,
action, and maintenance of behaviour. Once a person has an intention to perform a
behaviour they will begin to plan the related actions by imagining scenarios under
which they will perform the behaviour. Movement into the action stage represents
successful planning and is kept up if movement continues to the third volitional stage,
that of maintenance.

The HAPA model brings together the two groups of theory discussed so far, the
motivational models of health behaviour, describing how intentions are believed to be
formed, and the behavioural enaction models, that attempt to describe how these
intentions lead to behaviour. The model has, though, incurred criticism for its
vagueness in describing the role social cognitive variables play at each stage in the
volitional phase, (Armitage and Conner, 2000), and more clarity would be required in
this area before the model could be fully tested, put into operation, or used in a
simulation model.

2.5.3 Heckhausen’s Rubicon Model

The model proposed by Heckhausen (1991), cited in Armitage and Conner (2000), is
very similar to that of the HAPA model.
The Rubicon Model consists of four distinct stages,

1. Intention Formation, (selecting the appropriate behaviour by considering

expected outcomes and then intend to perform the behaviour)

2. Post Decision, (Planning and preparation stage)

3. Action

4. Evaluation
The main difference between the Rubicon Model and HAPA is the inclusion of the
evaluation stage containing attributes of causality and evaluation of the outcomes.

The Rubicon Model is also more clearly structured with more closely defined discrete
stages than those of the HAPA, rendering it more suitable to modelling and research.
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However, despite its clearer definitions and attributes the Rubicon Model has received
little research attention, (Armitage and Conner, 2000).

2.5.4 Kuhl’s Action Control Theory

Kuhl (1981, 1985), cited in Bagozzi (1992); Armitage and Conner (2000), put forward
two processes that aid the implementation of intentions, action control and
implementation control. Action control is concerned with the successful
implementation of the whole action, whereas implementation control is concerned
with the implementation of step by step courses of behaviour leading to the end

action.

Kuhl suggests seven intermediary control strategies that facilitate the successful
completion of action including emotion control, motivation control and coping with
failure. The mediating control strategies are influenced by self regulatory
mechanisms. People with low self regulatory control capacity are said to be state
oriented, and tend to engage in high amounts of planning and consideration related
to past, present, and future, states before acting. Conversely those with high self
regulatory control are said to be action oriented, and are more likely to act faster or
immediately with little planning or deliberation.

Kuhl (1985) developed scales to measure action control, and these scales have been
used in research to demonstrate that action oriented people show more likelihood to
base their decisions on attitudes, whereas those high in state orientation based their
decisions more upon social norms, (Bagozzi et al. (1992) cited in Bagozzi (1992)).
Action orientation has also been shown to be influential in the successful

implementation of intentions (Armitage and Conner, 2000).

Kuhls Action Control Theory looks promising on face value but requires clarification
and more precise constructs before progress may be made through its application.

2.5.5 The Transtheoretical Model

The Transtheoretical Model suggests five stages of change, two principles of change,
and ten processes of change governing movement through the stages.

The model was first conceptualised in the early 1980s, (Prochaska and DiClemente,
1983), when it was noticed that behavioural change appeared to unfold in stages. Ten
processes of change, and two principles of change, emerged from an amalgamation of
hundreds of theories of psychotherapy and behaviour change. These processes of
change were reported to be used at different times during behaviour change by
participants questioned about their efforts in giving up smoking, (Prochaska (1984),
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cited in Prochaska et al. (1997)).

From initial studies in psychiatry and therapy, the Transtheoretical model went on to
be applied to a broad range of health psychology and is now one of the leading stage
theories in use.

2.5.5.1 Structure of the Transtheoretical Stages of Change

The core constructs of the transtheoretical model are five stages of change, ten
processes of change, decisional balance, and self efficacy.

Stages of Change

Five stages of change are implied by the model, and are listed in the discussion that
follows.

A linear progression through the stages is suggested, but at any stage a relapse may
occur to a previous stage, leading to cyclic progression. Three revolutions has been
suggested as common before stability returns, (Armitage and Conner, 2000). The
rate of progression through the states is variable and it is possible for an individual to
remain in one state and progress no further.

The distribution of people in each stage is said to vary with the situation considered,
(Salovey et al., 1998).

The stages of the Transtheoretical Model are discussed in turn below.

Precontemplation People have no intention to change in the next 6 months. This
may be due to their absence of knowledge or awareness of the threat or
behaviour, or their perceived inability to carry out the behaviour.

Contemplation In this stage people are considering change within the next 6
months. They are aware of the benefits of the behaviour but also considering
the disadvantages and barriers to the action.

Preparation Here an individual is actively committed to change within the next
month. They may have attempted the behaviour (or change) in the past year
but been unsuccessful, and have made plans and preparations in order to aid
their behaviour.

Action This is the stage whereby people are actively engaged in the behaviour which
requires effort and energy exertion by the individual. In order to qualify for
membership of this stage, the behaviour alone may not be enough, but must
reach the levels experts agree that will reduce the health risks. People may
remain in this stage for any period from 1 day to 6 months.
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Maintenance Typically after 6 months of action people enter the maintenance stage
where they work to prevent a relapse to unhealthy behaviour. Individuals in
this stage apply change processes less frequently than those in the action stage
and are more confident that they will not relapse. Maintenance is estimated to
last for any period from 6 months to 5 years (Prochaska et al., 1997).

Some behaviours also require a sixth stage which is called ‘Termination’, and this is
applicable to addictions and repetitive behaviour. When in this final stage people are
no longer tempted to stray from their healthy behaviour and self cefficacy relating to
the behaviour is strong.

Processes of change

The processes of change are the processes that people use in order to progress
through the stages. There are 10 processes that were found to appear most often in
the theories and received most empirical support and these are listed below,
(Prochaska et al., 1997).

1. Consciousness raising

2. Dramatic relief

3. Self re-evaluation

4. Environmental re-evaluation

5. Self-liberation

6. Helping relationships

7. Counter-conditioning

8. Contingency management

9. Stimulus control

10. Social-liberation
The processes are not described in detail here, but the reader may wish to read more
about them in Prochaska et al. (1997).

Decisional Balance

Decisional balance reflects an individual’s appraisal of the situation, and the
behaviour. The relative number of positive and negative beliefs about a behaviour is
considered important for movement between stages. As progression takes place up
the stages, the number of positive beliefs are said to increase and the negative beliefs
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decrease. The idea has received empirical backing from a wide spectrum of health

psychology and mathematical relations have been found between the positive and

negative beliefs of change, and progression between some of the stages, (Prochaska
et al., 1997).

Self-Efficacy

The construct of self efficacy has two parts, confidence and temptation. Confidence is
derived from Bandura’s Self Efficacy Theory, (Bandura, 1977), and refers to self
efficacy, as has been discussed throughout this document. In addition, the
Transtheoretical model also considers temptation as a minor part of self efficacy and
here the intensity of urges to engage in habitual behaviour when in a difficult
situation is addressed.

2.5.5.2 Research Using the Transtheoretical Model

Having been originally designed to study addictive behaviours, the Transtheoretical
Model is now more widely applied in Health Psychology including in areas such as
exercise, weight control, mammography utilisation, and safer sex, (Salovey et al.,
1998). Empirical research has largely focussed upon the stages of change, with some
support found for the model.

However, criticisms of the model have been made, some of which are discussed below.
The majority of research testing the model has been cross-sectional in design thus
making it even more difficult than usual to imply causation. It has been suggested
that it may be more appropriate to find support for changes in the decisional balance,
and processes of change, predicting movement across the suggested stages, (Salovey
et al., 1998). Armitage and Conner (2000) criticise the model for the lack of clarity
concerning the role of other variables in progression through, and within, each stage,
and its lack of application in social cognitive terms. They also argue that there is
little information provided as to why some people will be successful in achieving
behaviour change and why others will not.

2.5.5.3 Discussion

The Transtheoretical Model was developed from practise and so has a very intuitive
feel and is one of the more widely and commonly applied stage theories of health
behaviour. Due to the stage based nature of the model, it lends itself to
mathematical modelling quite neatly, however, the relations other variables have
upon the movement through stages would need to be clarified if it were to be possible
to quantify the model.
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2.5.6 The Precaution Adoption Process Model

The Precaution Adoption Process Model (PAPM) was first conceptualised by
Weinstein and Sandman (1992) and was later built upon by Weinstein et al. (1998).
The model suggests seven stages of change until precautionary behaviour is adopted.
The idea behind and structure of the PAPM is similar to that of the Transtheoretical
model, (see Subsection 2.5.5.1), but the PAPM distinguishes between people who are
unaware of a health issue, or risk, and those who are aware of the issue but have not
applied much thought to it. A distinction is also drawn between people who have
made the decision not to adopt the behaviour and those who have not yet considered
adopting the behaviour.

2.5.6.1 The Precaution Adoption Process Model Structure

The model puts forward 7 stages through which people are thought to pass in their
journey to adopting healthy behaviours, the stages are listed, and then described in
turn, below.

1. Unaware of health issue
2. Aware of health issue
3. Contemplation

4. Planning

5. Action

6. Maintenance

7. Maintained

At an initial point in time it is presumed that the health issue or concern will not be
known to the individual (stage one), once they have been made aware of the issue
they have moved on to the second stage but may not be engaged in the issue,
contemplation of the health issue and the risks/benefits of the behaviour is the third
stage. After considering the issue people may make the decision not to take part in
the recommended behaviour for now, (stage four), or to go forward and plan to carry
out the behaviour, (stage five). When the planned behaviour(s) begin to take place
then stage six is reached and, where relevant, a seventh stage may be reached once
the behaviour is maintained.

The PAPM also identifies the factors relevant for, and against, transition between the
stages, and these are both simpler and clearer than those of the Transtheoretical
Model. These transition variables are summarised in Table 2.5.6.1.
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Stage Transition | Variable

1-2 Knowledge

2-3 Perceptions of personal vulnerability

3-4 Beliefs about severity, susceptibility, and self efficacy
4-5 Pressures, situational constraints and obstacles

Table 2.3: Variables Influencing Progression Through the PAPM (Weinstein ct al., 1998)

Stage classification is most often decided via questioning, for example asking if a
person has heard of the health risk, and if so whether they have ever considered acting
to reduce the risk etc. Unlike the Transtheoretical Model the PAPM does not take
account of past behaviours, or time frames, when classifying people into each stage.

2.5.6.2 Research Using the PAPM

The PAPM has not been as widely applied as the Transtheoretical model, however
studies have shown some support for the structure, although they do tend to be
cross-sectional in design. The PAPM was originally applied to home radon testing
(e.g.Weinstein and Sandman (1992)), but has also been applied to areas such as
osteoporosis, (Blalock et al. (1996) cited in Weinstein et al. (1998)), and vaccinations,
(Hammer (1997) cited in Weinstein et al. (1998)).

2.5.6.3 Discussion

The Precaution Adoption Process Model, although less popular than the
Transtheoretical Stages of Change, does appear to be intuitive and natural in design,
and offers a clearer idea of the factors of importance at each stage. However, it has
been criticised, along with the Transtheoretical model, for not stating clearly the
social cognitive variables being manipulated at each stage, (Armitage and Conner,
2000), and for the majority of the supporting research applying cross sectional
designs, (Salovey et al., 1998).

2.5.7 Stage Models: Summary

Stage models of behaviour suggest that social cognitive influences on behaviour may
be different at different stages of the behaviour change process. Each theory suggests
a different number of stages but all agree that a scparation exists between
motivational processes and volitional processes. Armitage and Conner (2000) suggest
that exactly what happens in the volitional stages of the behaviour process appear to
be less clear in stage than in behavioural enaction models, (see Chapter 2.3), and
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that the research studying them, although supportive, tends to be cross-sectional in
nature, and can lack validity.

Weinstein et al. (1998) criticise the over tendency to use cross sectional designs in
order to show support for the idea that behaviour change requires the movement
through stages, arguing that differences between stages could also be due to pseudo
stages (a continuum split into stages). Weinstein et al. instead ask for research to
focus upon interventions that, according to the theories, should produce different
effects at different stages in order to test the ideas.

By their nature, Stage theories of health behaviour may lend themselves quite nicely
to mathematical modelling, especially to simulation modelling. Therefore, it is
certainly worth considering applying the ideas within the more popular stage
theories, (e.g. PAPM and the Transtheoretical Model), to simulation models
involving health behaviour. Difficulties may arise, however, where there is less clarity
as to how movement between the stages is negotiated, or indeed, as to whether the
stages are really just different points along a continuum of change.

2.6 And the Rest

It would appear that the number of models of behaviour that may be, and have been,
applied to health in the social sciences is ever growing, not to mention the suggested
improvements and additions to each one, and the models specific to onc hehaviour or
area. This is understandable since human behaviour can be regarded as nothing but
complex and it would be difficult to find one model or theory that adequately
identified all constructs in all situations.

Another issue is that the models and theories are just that, and in the social sciences
the idea of ‘proof’ is somewhat impossible, therefore for each of the ideas there will
be research to support them, and equally there will be criticisms and perhaps
conflicting research. Of course some ideas are more widely accepted than others, and
it is hoped that the more recognised and highly regarded models have been discussed
in this Chapter.

Many more ideas and models were uncovered during the research for this Chapter and
this Section aims to mention some of these, although will not discuss them in detail,
in order to make the reader aware of their existence. It is also worth noting that this
list will not be exhaustive and that many more theorems and models of health
behaviour, or that may be applied to health behaviour, will exist in the literature.

38



Name Comment or Description Ref. Cited in
Conflict Theory of Decisional | Similar to HBM and PMT, emphasising the role of .
Balance Y expected outcomes and belief Ii)n healtl% behaviour Velicer et al. (1985) | Carmody (1997)
and decisions
Attribution Theor Describing rules by which it is believed people use X
Y in order tg draw Ic?gical cause and effect?nf(}:rences Heider (1958) Salovey et al.
about themselves and their environment. Has ap- (1998)
plications in health promotion and the causes of
illness.
The Theory of Achievement | Similar theory to Kuhl's Action Control Theory. . N/A
Motivation and uncertainty | The model has recently been assigned a mathe- Sorrfntmo et al
orientation matical reformulation which links individual differ- (1985)
ences in information processing to individual dif-
ferences in motivation
Social Comparison Theor Used to appraise how people cope with their own K
Y and others illness and judP;e how people appraise Festinger (1954) Salovey et al.
health information they receive. Assumes people (1998)
draw perceptions by comparing themselves to oth-
ers and seeking contact with people in similar sit-
uations
Ih;[a()rlcigéie s  Social  Network ?ﬁiiigzsn the HBM and includes a social support Langlie (1977) Schmidt ot al.
(1990)
I\T/[};(zi elPreven’catlve Behaviour ‘]?eajteigllu%:)ntg; ;he HBM and assessed by the 'Pre- Beck and Lund | Schmidt et  al
(1981) (1990)
The Theory of Social Be- | Designed to predict both specific and alternative . . .
haviour beha%/iours. Includes physioliogical arousal and fa- | 1riandis (1977) Schmidt et al.
cilitating conditions as model parameters (1990)
Social Cognitive Health Be- | Considers cognitive, emotional, and motivational .
haviour Theory conditions for maintaining health behaviour in so- Fuchs et al. (1989) Schmidt et al.
cial conditions. (1990)
PRECEDE (Predisposing, Reinforcing and Enabling Forces in .
Educational Diagnosis and Evaluation). A health Lazes et al. (1986) Schmidt et al.
promotion and planning model. (1990)
Health Education/ Promotion | Based upon the HBM this model is again for the . ,
Planing Model planning or health promotion and education. It Dignan and Carr | Schmidt et al.
has seven steps to be targeted at an individual or (1987) (1990)
group.

Table 2.4: Other Theories and Models Applied to Health Behaviour

2.6.1 Other Models of Health Behaviour

2.7 Summary

This Chapter has aimed to provide an introduction to some of the popular and
traditional cognitive models used in psychology for the prediction and study of health
behaviour.

The Chapter began by discussing five traditional motivational models of health
behaviour research, those of the Health Belief Model, Health Locus of Control,
Protection Motivation Theory, The Theory of Planned Behaviour, and Social
Cognitive Theory. A number of key constructs and ideas are repeated in several of
the theories (e.g. self efficacy, intention formation, and benefits and barriers to the
behaviour), each with slightly different ideas as to how they link together and which
constructs are more influential.

All the models have received a significant amount of attention in research, with
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varying degrees of success, and some papers have attempted to compare the
predictive ability of each, with that of the others. However a tendency has been
observed for research to be cross-sectional in design making a link with causation
difficult to ascertain, and some of the theories lack a clearly defined structure between
and within the variable constructs.

The models and ideas that are more clearly defined and structured may be more
suitable for the application of mathematical modelling or simulation. For this reason,
perhaps the two more suitable models for inclusion in the currently reported researcli
would be Protection Motivation Theory, and the Theory of Planned Behaviour.
However the Protection motivation Theory has received less research attention and
the research that has been identified was not well designed such that it could not be
used to fully approximate the theory in a simulation model. The Theory of Planned
Behaviour has, however, been the subject of a large body of research considering
health behaviours, and several well designed studies have applied the theory with

success in a number of areas including attendance at breast cancer screening in the
UK, (Rutter, 2000).

Behavioural enaction models help to bridge the gap between motivational models of
behaviour, the implementation of the behaviour, and the achievement of a target.
Two models were discussed, Gollwitzers Implementation Intentions and Bagozzi’s
Goal Theory. Since both of the models concentrate on implementation intentions (as
a primary construct to behavioural enaction) it has been suggested that this may be
a valid construct that is certainly worth further consideration in research, (Armitage
and Conner, 2000). However, overall it was felt that there would not be enough well
designed research available in order to incorporate integrative models into a
simulation model, and that perhaps enaction models were more focussed upon
predicting adherence to behavioural plans and goals than to general health
behaviours.

Attempts have been made to integrate some of the more popular theories into one
large umbrella theory. The idea of an integrative cognitive model for the prediction of
health behaviour is a very appealing one. However, it would appear that to date no
such model has become dominant nor widely applied, and therefore, little research
has been carried out in order to test/validate such a model, or indeed in order to
populate a mathematical version with data.

Perhaps the reason for the apparent lack of popularity and research into this area is
due to the difficulty in reaching a consensus of opinion across the disciplines in
psychology as to how such health cognitions occur, and in forming the relationships
between the constructs in any proposed model itself, (as is the case with the Major
Theorists Model).
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That is not to say, however, that an integrative model of health behaviour is not the
way forward. Since many of the traditional models for the prediction of health
behaviour do contain similar if not the same constructs, it is not inconceivable that a
singular model or theory could be designed to encapsulate the ideas from each
without loosing the original concept.

When considering using an existing integrative model as the basis of a mathematical
model of health behaviour it is suggested that at this time there may not be enough
research finding support for the theories, or to populate the model with, and in the
case of the more recent Major Theorists Model, structure is lacking for

implementation.

Stage models of behaviour suggest that social cognitive influences on behaviour may
be different at different stages of the behaviour change process. Each theory suggests
a different number of stages but all agree that a separation exists between
motivational processes and volitional processes. Armitage and Conner (2000) suggest
that exactly what happens in the volitional stages of the behaviour process appear to
be less clear in stage theories than in behavioural enaction models, (see Section 2.3),
and that the research studying them, although supportive, tends to be cross-sectional
in nature and can lack validity.

Weinstein et al. (1998) calls for research to focus upon interventions that, according
to the theories, should produce different effects at different stages in order to test the
ideas further.

By their nature Stage theories of health behaviour may lend themselves quite nicely
to mathematical modelling, especially to simulation modelling. Therefore, it is
certainly worth considering applying the ideas within the more popular stage
theories, (e.g. PAPM and the Transtheoretical Model), to simulation models
involving health behaviours. Difficulties may arise, however, where there is less clarity
as to how movement between the stages is negotiated, or indeed, as to whether the
stages are really just different points along a continuum of change. It was also felt
that perhaps stage theories were more suitable to the study of behaviour change and
help with monitoring addictive behaviours and change to combat destructive
behaviours than to the uptake of general health behaviours.
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Chapter 3

Breast Cancer Behaviour

3.1 Introduction

This Chapter summarises the research identified in literature review that considered
the literature relating to behavioural issues surrounding breast cancer and breast
cancer screening uptake. Within this Chapter the expression ‘breast cancer
behaviour’ refers to any behaviour that may be associated with the prevention of, or
the treatment of, breast cancer such as breast self examination, attendance and
re-attendance at offered screening sessions, adherence to recall or recommended

treatments, or the speed of seeking help for any identified change in the breast.

A small scale literature search was undertaken to find work citing behavioural issues
surrounding such breast cancer behaviours, i.e. screening attendance, or breast self
examination behaviour. Papers that considered these issues were identified and
reviewed with an aim to advising any behavioural aspects to be added to a

traditional OR model of breast cancer epidemiology.

This Chapter and its contents are not intended to be a full representation of all
research into breast cancer behaviour, rather it is hoped to provide a summary of the

more recent and predominant studies, reviews, and opinions.

The next Section (3.2) describes some of the reviews of the psychological literature
relating to breast cancer behaviour, and Section 3.3 then discusses some of the
individual studies found to be of relevance in more detail.

3.2 Overviews and Reviews

Three comprehensive papers were identified that summarised and reviewed the
research concerning human factors relating to breast cancer with a focus upon
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attendance at screening sessions. The first of these was a systematic review of the
determinants of screening uptake in general, including breast cancer screening, and
includes research conducted up to the end of 1998, (Jepson et al., 2000). The second
is a Swedish paper which discusses five pieces of research examining factors affecting
attendance at the population based mammography screening in Sweden, (Lagerlund,
2003). The paper also includes a summary of work conducted in other Countries with
population based screening programmes for breast cancer, (including the UK). The
most recent review considered inequalities in cancer screening and includes a
discussion of 55 papers which examine factors affecting access to cancer screening
among minority groups, (Chiu, 2003). This final review includes research published
up to the end of 2002.

The information contained in each of these three reviews is summarised in turn below.

3.2.1 Systematic Review of the determinants of screening uptake

Jepson et al. (2000) published the systematic review with an aim to examining
factors associated with the uptake of all screening regimes, including mammography
screening for breast cancer. The paper also reviews and summarises literature
relating to factors pertaining to the effectiveness of interventions for screening
programmes, however the content of this part of the review is not discussed here.

Research was included in the review if it was published before the year 1999 and all
factors thought to influence screcning uptake were considered including demographic,
sociological, psychological and economic factors. The review considered randomised
control trials, quasi randomised control trials, cohort studies and case control studies.

In order to ensure some level of quality in the included research, studies were
excluded if they measured determinants after screening had taken place rather than
before, related to breast self-examination rather than mammography screening, the
dependent variable was intention to attend rather than actual attendance, the design
of the study was cross-sectional in nature, or if no multivariate analysis had been
carried out upon the results. Sixty five papers met the criteria for the review, and of
these, thirty four related specifically to factors affecting attendance at mammography
screening.

It was hoped that a meta-analysis of the results of the research studies would be
possible, however, statistical pooling of the information turned out to be
inappropriate due to the heterogeneity of the study designs and data, and the lack of
inclusion/publication within the multivariate analysis of determinants found to be
insignificant in univariate analysis. Instead, a determinant was judged by the authors

to be ‘important’ if it was investigated by more than three studies, and found to be a
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significant predictor of attendance in more than half of those.

Of the papers considering breast cancer screening specifically, over 25 factors were
investigated by at least 3 studies. Of these, the factors that appeared ‘important’
included insurance status, (not relevant in a UK setting), previous mammography
behaviour, intention to attend, and receiving a recommendation from a doctor. The
finding that intention was a significant predictor in more than half of the studies
which examined it, supports the Theory of Planned Behaviour, (TPB), which
stipulates that intention to act is the primary predictor of behaviour. However, across
and within screening tests there was little other evidence to suggest that other
constructs of the TPB, or other health behaviour models, are significant predictors of
screening attendance, since attitudes, perceptions, and beliefs about screening did not
consistently predict screening behaviour.

Based on the results it was concluded that it was worthwhile concentrating cfforts on
maximising attendance at the first screen since re-attendance rates are high given
first attendance, and that personal recommendations for attendance from health
professionals may be a way to accomplish this. The authors point out that although
the inclusion criteria were tight, studies still varied in methodological quality, and
generalisability, and they call for further well designed studies relating knowledge,
attitudes, and beliefs, to screening attendance behaviour in the UK.

3.2.2 VFactors Affecting Population-based Screening in Sweden

Lagerlund (2003) begins by discussing studies from outside Sweden that analyse
factors affecting mammography screening attendance rates, and focuses in upon those
within countries where mammography is offered as part of a national population

based screening programme, such as the UK, since this is the system in Sweden.

The authors point out that differing results have been achieved within, and hetween,
such studies with factors inconsistently being associated with attendance at breast
cancer screening, and sometimes the direction of association has also been
changeable. Consistent predictive factors that were highlighted in the discussion were
marital status, (married women were generally more likely to attend screening
sessions), and positive health behaviours, (such as regular dental check-ups).

It is suggested that some benefit can be gained by considering behavioural models
such as the Health Belief Model, (HBM), since three of the four main constructs of
the HBM have been shown to be predictive of screening attendance behaviour fairly
consistently, with the relationship to susceptibility particularly strong. However,
severity has rarely been found to be a significant predictor of screening behaviour, or
indeed health behaviour in general.
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Further factors believed to be predictive from the research discussed, included self
efficacy, (which could offer some support for the Theory of Planned Behaviour), and
once again recommendations from a health practitioner.

The main body of the overview paper describes five studies conducted in the Uppsala
region of Sweden, aiming together to investigate factors associated with the uptake
rate of mammography screening in Sweden, (currently fairly high at around 80% in
Uppsala). The methodology of the studies varied with three of the five invoking a
case control design, one a cohort design, and the last a focus group discussion. The
results of the studies showed that employment status and home ownership were the
only social economic variables to have a significant relationship to attendance in
multivariate analysis of the case control studies. Other factors found to be related to
attendance included alcohol consumption, recommendations from professionals,
previous breast problems (both of the individual and those close to the individual),
barriers to attendance, benefits of attendance, worry, nationality, cues to action,
knowledge, and trust in the health care provider.

3.2.3 Inequalities of Access to Cancer Screening

In a literature review of inequalities of access to cancer screening, Chiu (2003)
reviews 55 (of 129 papers due to time constraints) studies identified as relating to
cancer screening up-take rates among minority groups published between 1998 and
2003. Five of the studies related specifically to the screening for breast cancer and
factors affecting attendance at mammography screening. Designs and results of the
studies varied, and determinant factors were sometimes contradictory. Of the
non-psychological factors affecting up-take rates of cancer screening factors commonly
found to be significantly associated with minority attendance were education, age,
and physicians recommendations.

Five of the fifty five studies that were considered addressed beliefs in relation to
minority attendance at cancer screening, four of which explicitly employed a
theoretical framework (TPB/HBM). The author criticises the papers for theoretical
inference and methodological failings. It is pointed out that the papers applied the
models inconsistently and that results interpreted linear relationships of the variables
to behaviour that are not suggested by theory.

The research did, though, highlight potential reasons for low attendance rates within
minority groups, such as cultural values, (e.g. shyness), and traditional health beliefs,
which could be barriers to attending cancer screening.

The review concludes by pointing out that, all too often, changes are sought in the
individual rather than the system, and that disadvantaged groups may lack not just



income to attend screening, but also knowledge, prestige, and social
support/communication. A call is made for more research into the low attendance at
cancer screening by minority groups, and for ethnic monitoring in order to back up
research.

3.3 Individual Studies

The majority of results that were found in the literature search related to breast
cancer (BC) screening behaviour and focused on attendance at screening sessions, or
breast self examination behaviour initiation or maintenance. Those studies identified
which considered breast cancer screening behaviours are discussed in the next
Section, followed by a summary of the breast self examination (BSE) papers, then a
short Section addresses research which examines delay in help seeking associated with
breast cancer, and lastly adherence to genetic testing for breast cancer is discussed.

3.3.1 Screening Behaviour

Of particular interest were studies that had attempted to relate current psychological
models of behaviour to the health area of breast cancer and breast cancer screening.
Yarbrough and Braden (2000) mention many theories as having been applied to
breast cancer (BC) screening behaviours and these include social support theory, the
cognitive transactional model, the multi-attribute utility model, the multiple health
locus of control model, and a theory of care seeking behaviour. They found, though,
that the psychological model most frequently applied (in America) was the Health
Belief Model (HBM) and conducted a review of this research to assess the utility of
the HBM as ‘a guide for explaining or predicting breast cancer screening hehaviours’.

Yarbrough and Braden found that the HBM was far from uniformly applied in the 16
studies that they reviewed. This is not surprising given the vague definitions and
ambiguous constructs and relationships within the HBM itself. What is more, few of
the studies measured all of the constructs, and none found, or considered, the relevant
interactions between constructs. Although most of the research did find relationships
between the measured constructs of the HBM and outcome measure (intention to
attend mammography screening or the action of attending), Yarbrough and Braden
were critical of the low proportion of variance in the outcome measure explained by
the HBM constructs, as well as of the design, and generalisability of the studies.
Indeed, of the studies that were identified for this review, those that applied the HBM
to adherence to mammography screening recommendations were either cross-sectional
in design (Champion, 1994), or, as Calnan (1984) found in his review of prospective
studies, that although HBM variables were significant predictors of BC screening
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attendance behaviour, the variance in behaviour explained by the HBM was low.

The Theory of Planned Behaviour (TPB) and its predecessor, the Theory of
Reasoned Action (TRA), have also been used to study womens’ attitudes to
attendance at breast screening appointments. In contrast to Yarbrough and Braden
(2000) this literature search found more papers applying the TRA/TPB to breast
screening attendance than the HBM. All studies found some support for the TPBs
ability to predict attendance (or intention to attend) at invited screening sessions,
although again some had not used prospective designs and/or measured intention
rather than behaviour, (Steele and Porche, 2005; Tolma et al., 2003; Braithwaite

et al., 2002), and the ability to predict repeat attendance remains unclear, (Rutter,
2000; Drossaert et al., 2003).

In what appears to be a very comprehensive and robustly designed study Rutter
tested the TPB’s predictive power applied to attendance and re-attendance for BC
screening, (Rutter, 2000). Rutter found that the TPB constructs, (attitude, perceived
behavioural control, and subjective norms), could accurately predict attenders from
non attenders for BC screening, as well as intention to attend, and could also
distinguish between inclined /disinclined attenders/abstainers. What is more, attitude
and subjective norms were found to predict behaviour independently of intention,
supporting discussions for the TPB predicting the volitional as well as motivational
stage of health behaviour. When considering re-attendance for breast screening three
years later, however, the only significant predictor was attendance at the first

screening session.

Braithwaite et al. (2002) have also applied the TPB to the prediction of attendauce
at breast screening. The study found that the TPB constructs of attitude and
subjective norm did significantly predict intention to attend screening, as well as
another proposed construct ‘attitude to uncertainty’. However, having found that the
TPB construct of perceived behavioural control did not significantly predict
intention, the authors decided that the TPB was no better at predicting genetic BC
screening intention than its predecessor the TRA, (differing only by its exclusion of
perceived behavioural control as a construct). It is worth pointing out though, that
the study questionnaire suffered from low internal validity for the questions relating
to perceived behavioural control, was cross sectional in design, and proposed a
theoretical situation to participants.

Montano and Taplin (1991) applied the TRA to 946 female attendees at subsequent
screening units in Seattle. The prospective study found that the TRA could predict
attendance, explaining 20% of the variance in behaviour.

More recently, Drossaert et al. (2003) used the TPB in a large prospective study
considering attendance at organised mammography screening programmes in the
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Netherlands. Questionnaires measuring TPB constructs were sent out to women who
had been invited to a regular screening round and whose appointment date had
passed. These measures were then used in order to try to predict re-attendance at the
next two screening rounds (where individuals are invited biennially for screening as
part of a national screening programme). It was found that the TPB was predictive
of attendance behaviour, although much better at predicting initiation of behaviour
(distinguishing between those who had refused the invitation before the study began
and then attended at subsequent rounds and those who consistently non attended),
than behaviour maintenance, (distinguishing between consistent attenders and those
who dropped out having initially attended). Again the authors found that the
variable most predictive of repeat attendance was past attendance. Drossaert et al.
suggest from their results that interventions based upon the TPB should concentrate
on improving the uptake of screening among those invited for the first time.

In an update to their research Drossaert et al. (2005) sent the same sample the
questionnaire again, before and after the second and third screening invites were sent.
The intention was to study whether or not the TPB could explain the drop out rate
over time observed in many national screening programmes. They found, though,
that the TPB variables remained constant over time, re-affirming their first result
that the TPB may not be the best model to explain screening behaviour
maintenance, although the drop out rate observed in their study was low and there
was some evidence of selective attrition in study participation.

A further paper that applied the TPB to attendance behaviour at screening rounds
for breast cancer, considered whether the believed importance of each measure for the
constructs of the TPB affected the measures prediction of attendance behaviour,
(Steadman and Rutter, 2005). Participants were sent questionnaires measuring the
main constructs of the theory and asked to rank the sub measures for each construct
as to which were the most important to them. They found that the top three rated
measures for each construct (for each woman) performed just as well, and
significantly, at predicting attendance as the full measurcs. All TPB constructs
correlated with attendance behaviour, but only intention to attend significantly
predicted behaviour in regression analysis (in contrast to Rutter (2000) where
attitude and subjective norins were also significant predictors). Steadman and Rutter
conclude that interventions may wish to concentrate upon a few of these most
common ‘important’ issues, including the belief of having partner support, the ability
to overcome access and transport issues, and the belief that mammography will allay
fears or discover problems early.

Two studies were identified which investigated the transtheoretical stages of change
and mammography attendance compliance, (Champion, 1994; Lipkus et al., 1996).
Champion found in their cross-sectional home interview study that HBM variables
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changed significantly across self reported stage of mammography uptake,
(precontemplation, contemplation, and action/maintenance), and Lipkus et al. found
that subjective risk of breast cancer significantly changed with stage of screening
behaviour change, (women who perceived themselves to be of higher risk were more
likely to be in later stages of change).

Self efficacy has also been associated with attendance at breast screening invitations,
(Tolma et al., 2003). When questioning women who had no previous experience of
mammography Tolma et al. found that self-cfficacy was the best predictor of
intention to be screened for breast cancer, accounting for more of the variance in
intention than constructs of the TPB.

Using the Precaution Adoption Process Model and demographic variables Clemow

et al. (2000) distinguished between interviewees who were either definitely planning,
thinking about, or not planning to attend breast screening in a group of 2,507 wommen
identified as under-utilisers of mammography in the US. Again, however the study
measured reported intention to attend and not attendance behaviour itself.

Other studies that were identified considered socio-economic and general health
status variables that may also explain the uptake of BC screening invitations. Some
of the studies produced surprising results, for example alcohol consumption was
found to be negatively related to the attendance at BC screening, (Harris et al.,
2002), so that women who drank more were actually more likely to attend, indicating
that perhaps drinking is not a good parameter by which to measure attitudes to
health. However, the more robust studies that tested the psychological frameworks
found socio-economic variables were no longer significant predictors of
behaviour/intention once the model variables were accounted for, e.g. (Rutter, 2000).

3.3.2 Breast Self-Examination Behaviour

Around half of the identified papers applying psychological constructs to BC
behaviour considered behaviours associated with breast self-examination (BSE). In
the past it has been recommended that BSE be undertaken monthly as an alternative
to, and in addition to, breast cancer screening, especially for younger women for
whom mammography screening is not offercd as routine. This is still the advice of
some, including BreastCancer.org (BreastCancer.org) and the National Breast Cancer
Foundation Inc, (National Breast Cancer Foundation, Inc), whereas the US
preventative service task force (USPSTT') neither recommend nor discourage BSE
performance, (US Preventative Services Task Force, 2002). There have been calls for
BSE promotion to be abandoned altogether in favour of promoting general breast
awareness in the UK (Austoker, 2003). Cancer Research UK now simply promote
breast awareness rather than recommending regular BSE in light of rescarch Andings
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that BSE may not offer any benefit in terms of identifying tumours at an earlier
stage, (Cancer Research UK).

The majority of studies that were identified were studies assessing attitudes towards
BSE outside the UK, so their generalisability to the UK setting may be called into
question.

The majority of identified papers considering BSE applied the health belief model,
(HBM), to the prediction of BSE performance or frequency. The review of the HBM
by Yarbrough and Braden (2000) was quite critical of it’s application to BC
behaviour, (see Section 3.3.1), and included BSE research within its scope.

In one cross-sectional study, Lee et al. (2004) assessed the differences between the
BSE health beliefs of Korean and Korean American women using the HBM variables.
Using the Health Belief Model scale the authors sent 189 Korean and 146 American
Korean women questionnaires that measured their attitudes and beliefs in relation to
BSE. They found that Iorean American women were significantly more likely to
perform BSE, and their scores for perceived benefits, confidence, and motivation were
also higher than those of Korean women. A further result showed that the two
variables of perceived barriers and confidence in BSE, significantly explained BSE
performance of Korean American and Korean women together.

A further paper tested the ability of the HBM to predict regular BSE in Thai
migrants living in Brisbane Australia, (Jirojwong and Maclennan, 2002). The study
found support for the use of the HBM although it suffers from many of the
methodological issues described by Yarbrough and Braden (2000) in their review.

In a well designed study, Norman and Brain (2005) used the HBM to distinguish
between low, medium, and high BSE performance by 567 UK women with a family
history of breast cancer. BSE frequency was reported via a questionnaire nine months
after the measurement of HBM variables. The measurement of the HBM included an
expanded version of the perceived barriers construct that took into account self
efficacy barriers, and the authors also collected information on past BSE
performance. Analysis of the results revealed two groups of women in their sample,
the infrequent BSE group, and the excessive BSE group. Those in the infrequent
group were found to be significantly lower performers of BSE at time 1, to have
higher self efficacy and emotional barriers, and score lower for beliefs relating to BSE
benefits than those in mediumn or high/excessive BSE groups. In contrast those in the
excessive BSE group, were found to have significantly lower self efficacy barriers
relating to BSE, rate themselves as more worried about breast cancer, and believe
breast cancer to be more severe than those in the other two groups. Here, results
suggested that barriers to BSE performance, benefits of BSE performance, and
worries about, and perceived severity of, breast cancer can all discriminate between



levels of BSE performance therefore lending support to the HBM. Norman and Brain
note that severity is rarely found a predictor of BSE performance, and suggest that
perhaps rather than predict the performance in the first place, the construct instead
determines/distinguishes excessive performance of BSE. In light of their results the
authors suggest that in order to increase the prevalence of BSE performance,
interventions should focus upon increasing confidence and self efficacy relating to
BSE performance, raise awareness of the appropriate frequency for performance and
inform women about their real risk of BC.

Umeh and Rogan-Gibson (2001) tested their hypothesis that threat perceptions would
be a more powerful predictor of BSE performance than the other HBM constructs in
younger people, since younger people were at less risk of breast cancer and the HAPA
model implies that a given level of risk is required before a preventative behaviour is
evaluated. Umeh and Rogan-Gibson sent a questionnaire to 178 women aged 18 to 35
which asked questions measuring the HBM constructs and whether or not BSE was
performed regularly. The results revealed that severity and barriers were significant
predictors of BSE performance (with barriers the most powerful predictor), although
perceived benefits were found to correlate with reported regular BSE, and the authors
comment that the results provide “qualified support for the HBM”.

In a second study applying the HBM to the performance of BSE specifically in young
women, Chouliara et al. (2004) assessed the differences in the performance of BSE in
18-26 year olds living in Greece and the UK. The study compared young Scottish
beliefs and behaviours relating to BSE with those of young women in Greece since
the two countries have different health care systems, different rates of BC (lower rates
in Greece), and different levels of BSE and BC publicity (recent awareness campaigns
in Scotland). The study measured all HBM constructs, and controlled for other
factors such as family history of BC, marital status, etc. Chouliara et al. found that
while the reported rates of BSE were similar between the two countries, the HBM
scores did differ significantly. Scottish women in the study showed more knowledge of
BSE performance, perceived more bencfits to BSE, and demonstrated higher levels of
internal HLOC. On the other hand the Greek women in the study were likely to rate
their health as more valuable, perceive themselves to be more susceptible to BSE
(even though they were less susceptible in reality), and have higher chance HLOC
scores, than Scottish women in the study. The results suggest that while both sets of
women were equally likely to perform BSE, they demonstrated different health beliefs
relating to BSE, and so interventions and requirements to improve BSE and BC
awareness may be culturally specific.

Overall, studies applying the HBM to BSE tended to find support for the theory,
although in some cases this support was limited as not all of the HBM constructs
significantly predicted behaviour. As noted by Yarbrough and Braden (2000), some
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studies were not well designed. However, it is pleasing to note that more recent
papers identified for this thesis did incorporate more appropriate designs and took
account of confounding variables.

The HBM was not the only psychological model of behaviour identified as having
been applied to the study of breast self examination behaviours, other models
included HAPA, self efficacy, the transtheoretical stages of change, and PMT.
Luszczynska and Schwarzer (2003) used the HAPA model to study BSE behaviour
since they argue that most other research and models concentrate upon behavioural
intentions whereas HAPA suggests planning, and maintenance are both important
throughout the behaviour change process. Using this idea the authors argue that risk
perceptions relating to breast cancer may be less important to the volitional stage of
maintenance. The aim of the work was to test phase specific constructs of HAPA
that had not previously been given much attention. In a two step trial Luszczynska
and Schwarzer first tested the motivational phase of BSE in their 418 student
participants, and informed the group about BSE practice and use. They then
measured the self regulatory phase and behaviour change itself 12-15 weeks later. At
each stage Participants intentions, planning, outcome expectancies, motivations and
self efficacy were measured. The authors found that the reported rates of BSE
increased between the two stages of the trial, and put forward their own model for
inter-relationships between psychological constructs based upon the regression
coeflicient results. Overall, the strongest effect upon increasing BSE behaviour was
associated with planning for the behaviour, and other significant effects were also
found relating to intentions, and self efficacy. Evidence was also identified for

different types of self efficacy relating to different stages of behaviour change.

Lechner et al. (2004) also found support for psychological constructs predicting BSE
behaviours. In their longitudinal trial 364 women were questioned at three points in
time, with results revealing that psychological constructs of intention, attitude, social
influence and self efficacy explained 51% of the variance in BSE behaviour six months
later.

Others have studied psychological theories applied to interventions to increase the
uptake of BSE. Fry and Prentice-Dunn (2005) evaluated the effects of information
sessions discussing and informing about breast cancer threats, survival rates, BSE
techniques, effectiveness, and issues relating to BSE self efficacy, using the PMT.
Participants were divided into two groups, a control group where they attended two
sessions about general health and fitness, and an intervention group that received two
sessions informing about breast cancer and BSE. PMT construct variables and BSE
behaviours were measured before and after the sessions. The study found that the
groups did not differ in their beliefs or BSE behaviours before the interventions, but

that after the interventions the control group had significantly higher control and
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threat appraisal scores in relation to breast cancer and BSE. Some three months after
the trial, however, while the intervention group did still show higher levels of
confidence in performing BSE, there was no measurable difference in BSE behaviour
between the two groups.

In contrast, studying the effects of a BSE information video on a sample of 130
premenopausal women, Janda et al. (2002) found that while both the intervention
and control group increased their performance of BSE over the trial period, the group
shown the BSE video performed BSE more frequently than the control group at
follow up three months later. Of the psychological predictors, having a social role
model was shown to explain the greatest amount of variance in behaviour (although
still low at 13%).

Lastly, Luszczynska (2004) also found that a breast self examination intervention was
successful at increasing rates of BSE. Their results showed that phase specific
(HAPA) self efficacy was a significant predictor of intention, planning, and behaviour
in the intervention group, while results were less significant or non significant in the

control group.

3.3.3 Delay Seeking Help

A third issue of interest identified in research was why women may delay in seeking
help for BC symptoms. BSE is of limited assistance to speedy diagnosis and
treatment if a woman identifies a change but docs not seck assistance for several

months.

Bish et al. (2005) reviewed literature with an aim of better understanding factors
affecting delays in seeking help for breast symptoms. In the course of their review
they found evidence that between 20-30% of women delay seeking help for breast
symptoms by more than 3 months, and this can considerably affect their survival
chances, reducing the average 5 year survival rate by as much as 12% (in comparison
to those with shorter delays). As a result of their literature search considering the
psychosocial factors affecting such delay in help seeking behaviour, Bish et al. have
put forward their own proposed model of help seeking behaviour. This model
proposes that intention is the foremost requirement for the behaviour itself, and
forming intentions are attitudes to help seeking, and disclosure of symptoms which
both require a knowledge of BC symptoms. The authors note that knowledge of
symptoms of breast cancer and symptom appraisal my be affected by a person’s age,
ethnicity, access to medical care, and other sociodemographic factors.

Two further studies in the current search highlighted the importance of a womans

knowledge of breast cancer symptoms. In the first, the most common reason given by
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women for not seeking help sooner was that they considered the symptoms harmless,
(Arndt et al., 2002), and in the other correctly identifying breast symptoms was the
only variable to significantly predict intended help seeking behaviour across all age
groups (Grunfield et al., 2003).

3.3.4 Genetic Testing and Miscellaneous

The uptake of genetic testing has also been a subject for psychological research.
Helmes (2002) found that women with higher external locus of control, less
knowledge of breast cancer genetic testing, and less education, were more likely to
leave the decision regarding genetic testing to the medical providers. Jacobsen et al.
(1997) used the transtheoretical stages of change model to measure 74 women'’s
readiness to undergo genetic testing for breast cancer risk, and they found that, as
expected, those with a positive decisional balance (pros of testing outweighing cons)
were more likely to show greater readiness to proceed with testing.

Helmes et al. (2002) applies the full PMT model to test the motivation of women at
mid-low risk of genetically linked BC to undergo genetic testing. Here, high
protection motivation should lead to a choice not to undergo testing since the risk of
breast cancer is low. The cross-sectional study measured protection motivation as the
outcome rather than behaviour. Results failed to find significant predictors of
protection motivation from the PMT constructs, but the author suggests a small
change in the model which produced a better fit, explaining 50% of the variance in
protection motivation. The new model suggested that vulnerability, fear, response
efficacy and response costs are the important variables for predicting protection
motivation for women at a low risk of developing genetically linked breast cancer. It
is concluded that women should be better informed about the real risks of developing
breast cancer in order to lower the high risk perceptions and worries surrounding the
disease, and that women should also be educated as to the advantages and
disadvantages of not undergoing genetic testing for breast cancer.

Psychological theories, principles and research have not been limited to the areas of
breast cancer behaviour mentioned above, but have been applied to a wide range of
issues surrounding and addressing breast cancer behaviours and attitudes. One
further area of interest has been how women cope with breast cancer diagnosis,
treatment, and survival. For example the cffects of health locus of control and
anxiety were investigated while considering depression in 109 breast cancer
survivors/sufferers in Heuston, with the finding that anxiety mediated the effects of
breast cancer LOC on depression (Naus et al., 2005). In addition two studies applied
the TPB to investigatc how the theory may influence a woman’s decision whether or

not to abide by recommendations of exercise during treatment for breast cancer,
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(Jones et al., 2005; Courneya and Friedenreich, 1999).

3.4 Summary

This Chapter has provided an introduction to some of the work that has been carried
out in order to study and help to understand behaviour relating to breast cancer.

The majority of the studies considered focussed upon attendance behaviour at breast
cancer screening and a variety of psychological theories have been applied in the
literature in an attempt to predict attendance based upon psychological beliefs and
feelings. Two of the more commonly applied theories were the Theory of Planned
Behaviour, and the Health Belief Model, both applied with varying success at
predicting attendance behaviour. Much of the variation in the success of the studies
may well lie in the study design, with many measuring intention to attend rather
than the action of attendance directly, and/or using cross-sectional designs frowmn
which causality is even more difficult to infer than usual. Overall, however the
Theory of Planned Behaviour appeared to be the more consistently successful model
for the prediction of attendance at breast cancer screening, although the ability to
predict subsequent screening attendance is still unproven (Rutter, 2000; Drossaert
et al., 2003).

Other studies considered the psychological predictors and influences upon breast self
examination behaviour. The majority of studies that were identificd applicd the
Health Belief Model (HBM). The HBM is a vague model and as such its application
and interpretation in the different studies varied, along with the quality of the design
of the studies, producing inconsistent results. In two of the more successful studies,
however, Norman and Brain (2005) suggest that rather than predicting the
occurrence of BSE the HBM may be more useful to distinguish between regular and
non regular performers, and Chouliara et al. (2004) found significantly different
health beliefs between Scottish and Greek women.

Psychological research has been applied to many areas of breast cancer behaviour
including breast self examination and screening attendance behaviour. A variety of
psychological theories and approaches have been used to aid such research with
varying success, however it is pleasing to see that some of the more recent and well
designed studies have been more successful, and pooling results together our
understanding of behaviour relating to breast cancer is gradually improving.
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Chapter 4

Modelling approaches to breast

cancer screening

Evidence for decision making in respect to cancer screening may come from
randomised control trials or from estimated outcomes derived from computer and
statistical models. Due to the costs and ethical considerations involved in conducting
large scale randomised control trials, modelling may be more suitable for
investigating the effects of different strategies and policies relating to the planning
and evaluating of population based screening programmes. It seems logical, therefore,
that the paper based research into cancer screening, and predictions, pre-date the
first randomised controlled trials of the 1970’s.

One of the first modelling approaches was by Zelen and Feinleib (1969), who
modelled cancer screening using a Markov model assuming three states of cancer
progression, from no disease, to a pre-clinical state (no clinical symptoms of disease),
and lastly the state of clinical disease. The time a patient spent in each state was
assumed to be exponential, and screening strategies were compared by considering
the lead time, (the time from cancer onset to diagnosis).

Over the years a number of models were based on and around this early work, see
(Dufty et al., 2001), and today numerous methods exist for the estimation of the
impact of new policies and evaluation of current procedures. Bross et al. (1968)
categorised screening models into two types, surface models and deep models. Surface
models are those that consider the high level observable data such as incidence and
mortality and estimate the effects of screening upon these trends using statistical
analysis of available data. Surface models are useful for the evaluation of existing
screening programmes and trials. Deep models by contrast consider the underlying
process of the disease in the population that generate the high level trends, and are
useful for assessing the impact of different scenarios that have not been investigated
in clinical trials. It is these deep models that are necessary for the modelling work
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required in this thesis, since we aim to investigate the effects of different screening
policies given different levels of compliance to the programme. Deep models can then
be further classified into analytical and computer simulation models, (Stevenson,
1995). Analytical models use direct estimates of a disease to produce estimated
outcomes, whereas simulation models estimate the course of the disease in a
hypothetical population both with and without screening in order to compare the
scenarios. These two different methodologies are discussed in more detail in turn
below.

4.1 Analytical Models

Most analytical models of cancer screening follow the framework of a Markov chain.
These models typically assume disease progression as split up into a number of states,
only one of which can be occupied by any one person at a time. For example states
for breast cancer could include healthy, pre-clinical breast cancer {not clinically
apparent), clinical breast cancer, and death from breast cancer. Transition to the
next state is governed by the transition probabilities, which are not dependent on
previous states but only upon the current state, and, when considering variations
upon the basic model, possibly other factors such as time and age.

The first stochastic model of a disease process was developed by Fix and Newman
(1951). Their model comprised two illness states (living a healthy life and being
under treatment for cancer), and two death states, (death from cancer, and death
from other causes or lost to observation). The first models to incorporate screening
strategies for early cancer detection were developed in the 1960’s e.g. Zelen and
Feinleib (1969), (as above).

Among other such early work was that by Shahani and Crease (1977), who analysed
two models to compare periodic with aperiodic screening strategies for the early
detection of disease. The first model was a simple two state model taking each person
from state Sp, no disease, to S, disease, with a transition time distribution, f(t),
that followed the Weibull distribution. Screening for disease took place at time z;
with intervals d;. Three screening strategies were compared on the basis of the
number of screens until diagnosis, the number of false positives, the delay in disease
detection and the ratio C; : Cs, where C] is the cost of screening and Cj; is the cost of
the delay in diagnosis. The three screening strategies compared were, X 4: periodic
screening intervals, Xp: geometric screening intervals, and X,,: generated from the

equation that follows:
F(ﬂ?z) - F(ﬂ?i_l) _
1-— F(.’L’i_l)

where p € (0,1). This last screening strategy matches the screening intervals to the
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behaviour of the hazard rate r(t), (the probability of getting the disease each year),
represented by
r(t) = —F&
1 - F(t)
The analysis of this base model indicated that the last screening strategy, X, was the
most effective at detecting the disease under the assumptions of the model.

A second model then built on this first simple model, and this time assumed three
states, no disease, disease, and death. Death is presumed to occur from either of the
other two states, and progression from no disease to disease takes place in the
absence of death. It was assumed that death and disease process were independent of
each other. The results from this model were similar.

These basic models have a number of limitations however, for example most diseases,
including breast cancer, tend to reach a symptomatic stage after a period of time
when the patient would self refer, and it is also not appropriate to assume cancer and
mortality are independent, since cancer can lead to early death particularly if left
untreated.

4.2 Simulation models

Computer simulation models may also, and often do, follow a progressive state
Markovian structure but tend to be more flexible and incorporate more detail in the
modelling process than analytical models. In general, simulation models are capable
of modelling more complex scenarios with more flexible assumptions than analytical
models, but this does mean that the extra complexity requires more detailed data to
inform the model, (Stevenson, 1995).

Simulation models themselves can vary in their approach from global modelling of
flows of people through states dependent on a small number of factors alone such as
age, (macrosimulation/systems dynamics), to the modelling of individuals through
their life histories and cancer progression dependent upon previous events and
individual characteristics, (microsimulation/discrete event simulation). Both methods
offer the ability to demonstrate the relationships between variables and explore the
effects of different scenarios and interventions. However, microsimulation may be
more suitable for the modelling of cancer screening than macrosimulation,
(Stevenson, 1995), since macrosimulation assumes a single homogeneous population
which is unrealistic in todays society, and secondly it may be of use to investigate
characteristics other than age to select groups for screening, (e.g. at risk groups).

Even when working to model the same trends, different choices of methodology can
produce large differences in modelled outcomes. Boer et al. (2004) discuss the
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differences in methodology employed by seven groups all considering the impact of
screening and adjuvant therapy in the US between 1975 and 2000. They found that
while six of the seven models were life history models, the assumptions and
parameter estimation varied between them, and these variations led to large impacts
on the surveillance of population trends considered.

Karnon (2003) recently compared the methodologies of Markov modelling and
discrete event simulation (DES) for the economic evaluation of adjuvant therapies as
treatments to help prolong relapse after primary breast cancer. The comparison of
two models that were built as far as possible with the same structure and similar
assumptions, was based upon the models ability to be flexible and the amount of
analytical input required to run and evaluate the models. The discrete event
simulation took three days to run, in comparison to the Markov model which ouly
required an hour, and the former was also more difficult and time consuming to
evaluate. When the outcomes of the models were compared, although there was
variation between the two models, these differences were cousistently in the same
direction. When overall results were compared these results balanced each other out
to produce extremely similar cost-effectiveness curves. Karnon concluded that while
DES is more flexible, the Markov model was easier to develop and test, and produced
similar results, so it was only useful to apply DES in special circumstances. One of
these circumstances is when the areas of increased flexibility in DES apply to large
proportions of the model, e.g. a large number of states with state-entry dependent
probabilities.

Knox (1973) produced one of the earliest yet very comprehensive simulation models,
which he later revised to include fewer states due to the complexity of information
required to populate the model. According to Stevenson (1995) it was Parkin (1985)
who proposed the idea of microsimulation for the modelling of cancer screening, in
this case cervical cancer screening, and much work has subsequently focused on such
an approach. This includes a working group at Erasmus University in the
Netherlands who have developed a general framework for the microsimulation
modelling of cancer screening named MISCAN (MlIcrosimulation SCreening
ANalysis), (Boer et al., 1998). This model has been applied to many areas of cancer
screening over the years, including considering the cost effectiveness of shortening the

screening interval of the NHS breast screening programme, (Boer et al., 1998).

MISCAN simulates the life histories of women both with and without diffcrent
screening policies to compare the effects. The course of breast cancer is simulated as
a Markov progression from no disease, through five pre-clinical states, and on to
clinical disease. The pre-clinical states included an in-situ state and four invasive
states according to the size of the tumour. It was assumed that if the cancer was not
diagnosed then progression would take place to the next state. The two sink states in
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the model were death from breast cancer and death from other causes, as is typical in
such simulations. The time in pre-clinical states was assumed to be exponential, and
the rates of progression to clinical disease were inferred from UK data. The
sensitivity (the proportion of true positives detected within the subset of positive
patients in the population that were tested) of mammography tests was assumed to
be constant within each pre-clinical stage but increased with progression through the
states from 0.4 to 0.95. Mortality and cost information were estimated based upon
UK data sources, and attendance was modelled by assuming a percentage compliance
reducing with age from 74.2% to 67.9%. Two scenarios were considered, shortening
the screening interval of the UK screening programme from three to two years, and
extending the age of final screening from 64 to 69 as standard. The main outcome
measures of the model were the number of deaths prevented, the number of life years
gained, and the cost of the screening scenario (per life years saved and per death
prevented). The results suggested that while both scenarios would increase the
number of deaths prevented (and the costs), expanding the age group eligible for
screening would be the most cost effective policy.

A group of researchers in New Zealand produced a very similar model to the
MISCAN model which used some of the same inputs and structure, in order to
consider the benefits of population screening for breast cancer in New Zealand which
has a similar cancer burden to the UK, (Szeto and Devlin, 1996). The model which
was named MICROLIFE, simulates the same female population twice, with and
without screening, and compares the cost effectiveness to the health service of
treatment per discounted life saved. Again, the model splits the progression of cancer
into different pre-clinical stages, with deaths from other causes informed from life
tables, this time based upon the population of New Zealand with deaths from breast
cancer removed. Attendance at the screening programmes was assumed to be 75%.
When researching the costs of treatment, the authors found evidence of a wide range
of treatments for breast cancer even within similar clinical groupings, which brought
out the variability introduced by patient choice and physician preferences. This
variation made the costs of treatment difficult to estimate and simulate. Their results
revealed that, according to the model, screening women aged 50-64 every 3 years
would be the most cost effective policy for New Zealand. Interestingly, this is the
same policy that was standard across the UK until the upper age for screening was
increased to 69 in recent years. Although screening every 3 years was the most cost
effective policy considered with the modelling work, screening more frequently

(biannually) was shown to save more lives.

An example of a Monte Carlo simulation to study breast cancer screening is work by
Jansen and Zoeteleif (1997). This simulation was built with the aim of examining the
benefits of various screening policies versus the risks associated with screening, and

used real data from a study in Sweden (the chosen country for the application of the
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research). The simulation took flows of women through time, and calculated the
difference in tumour diameter between the spontaneously presented cancer
populations and screening discovered populations in order to infer the differences in
survival. Risks associated with breast screening were estimated using additive and
multiplicative models informed from a study of TB re-weighted to apply to breast
cancer, and other relevant input distributions were derived from literature that
analysed the results of the Swedish two county trial of breast cancer.

The model was run for a group of one million women ten times, (and for mortality
calculations was run for 133,000 women thirty times). The results showed that the
optimal screening strategy was age dependent, with smaller screening intervals for
younger women. Sensitivity analysis revealed little difference between additive or
multiplicative assumptions of radiation risk in mammography screening, and
assumptions regarding the tumour growth rates, age of tumour onset, age dependent
survival, and the sizes of tumour detection, could alter the simulated lifetimes gained
by screening by as much as 12, 10, 8, and 17% respectively. Screening was found to
be optimal (overall) for women between the ages of 40 and 75, (screening older
women lowered the net benefits by uncovering more dormant tumours that would not
develop into clinical breast cancer, while screening younger women would increase the
number of breast cancer cases due to screening exposure). Jansen and Zoeteleif
conclude that it is more effective to screen the whole population (for breast cancer)
less often than to screen a fraction of the population more frequently, thus it is
important to have a high level of attendance at screening sessions.

Parmigiani (1998) used a stochastic compartmental equation difference model to
study cost effective breast cancer screening strategies in the USA. The model took
women through states of no cancer, detectable asymptomatic (pre-clinical) cancer,
symptomatic (clinical) cancer, and death. Death can be reached from any of the
other states, but progression through the cancer states was assuined to be in order.
Transitions and sojourn times were estimated from a range of clinical trial and
population registry data, and since times in and transitions to, the pre-clinical stage
are unknown, these were estimated based on three different assumptions from
previous research. Prognostic factors considered by the model were the size of the
tumour, the number of observed metastases in the lymph nodes, and oestrogen
receptor status (positive or negative). A range of assumptions were considered for the
survival transitions and for mammogram efficiency, and QALYS were used to
evaluate health outcomes and associated costs. Parmigiani found, in line with work
discussed above, that it is most appropriate to screen more frequently at lower ages.

The models reported above all simulate breast cancer, and screening for breast cancer
using clinically relevant stages of breast cancer and estimating parameters based
upon a range of results from clinical trials and practitioner informed assumptions. A
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second approach is to produce a statistical numerical model of breast cancer natural
history and how screening would interrupt the progression and then to estimate the
parameters of this model through fitting the input variables to observed datasets.
This was the approach taken in early work by Schwartz (1978) who used a numerical
simulation model to analyse the effects of screening interventions upon the disease
burden from breast cancer. Screening took the form of a mammogram, clinical breast
examination, and/or self examination. Progression through the no cancer (healthy),
pre-clinical, and clinically surfaced states through to either death from cancer or
death from other cases was described by a series of numerical equations. Tumours
were assumed to grow exponentially, with one of two doubling time distributions (one
assuming a higher proportion of slower growing tumours than the other). Two
assumptions were also tested relating to the independence or dependence of
mamimogram sensitivity (the proportion of true positives detected within the subset
of positive patients in the population that were tested) upon the result of the
previous screen. All parameters of the model were fitted to observed data relating to
clinical surfacing times and lymph node involvement using a pattern search
procedure. The results revealed that the choice of growth rate distribution allected
the results of the implied screening sensitivity by size of the tumour, especially for
small tumours (less than one centimetre diameter), both for mammography screening
and clinical breast examination sensitivity. When comparing different screening
strategies the work implied that screening should be carried out as often as possible
(to save the most lives), with clinical examinations starting at age 40, and adding
mammography screening from age 50 through to age 70.

More recently Baker (1998) used a similar approach to fit their suggested statistical
model of breast cancer screening to five datasets. The aim of their work was to find a
cost effective screening strategy while minimizing life years lost to breast cancer. The
model assumed Gompertzian tumour growth, with detection and self presentation
both related to the size of the tumour. Cancer survival was first fitted to one of the
datasets, since other model parameters relied upon it, and the resultant distribution
was found to be dependant upon tumour size and growth rate. Using maximum
likelihood estimation, the remaining model parameters werc then fitted to the other 4
datasets. The results found that, amongst other findings, tumour detection was not a
function of patient age (for the age group 50-64 they considered), and the model
validated well against previous research and published findings. Of the screening
policies considered under the fitted model, the authors concluded that the most cost
effective population based screening strategy for the UK would be screening from age
48 to 61.5 with four screens in between spaced more frequently at lower ages. In
conclusion the authors note that this optimal policy follows very closely what was the
national screening policy in the UK at the time (screening at ages 50-64 at 3 yearly
intervals), and that if given a choice whether to screen once more at a higher or lower
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age, it would be most cost-effective to screen at the lower age (47-64 years). Their
results agree with previously reported findings that screening is more effective at lower
ages if conducted more frequently (Baker, 1998; Parmigiani, 1998). However their
results differ from those of Boer et al. (1998) who recommended increasing the ages of
screening up to 69 rather than decreasing the screening interval, although they did
not report having analysed the effects of reducing the first invited age for screening.

4.3 Psychological modelling approaches

Using modelling in the social sciences is a relatively new advance, with its widespread
use not taking hold until the 1990’s, (Gilbert and Troitzch, 1999). Due to its ability
to model individual variation, simulation is more relevant in order to investigate how
individual characteristics affect the behaviour of the whole population, and to better
understand interactions between individuals. Models have been built with the
purpose of simulating choices of partner, demography changes over time, and the
simulation of decisions and diagnosis. Arguably the most common use of simulation
in the social sciences, however, is to test out different theories of human interaction
and behaviour in a modelled society in order to evaluate the emecrgeut cffccts ou the
population as a whole.

Whilst the early work in the social sciences used techniques such as game theory,
cellular automata, and system dynainics, these early attempts were not popular since
they were simulating predictions, whereas psychologists and social scientists tend to
be more interested in the understanding and explanation of social phenomena,

especially since in some cases a prediction may well affect the outcome in question.

Since then a number of techniques have been used to fulfil this criteria including
microsimulation in the 1980’s, multi-level models and multi-agent models in the
1990’s for the analysis of social interactions, and more recently learning and
evolutionary models for the exploration of language development and altruistic
behaviour. Multi-level models and agent based models have proved particularly
useful for the modelling of health risk-taking behaviours due to their ability to
contain both a fixed element unchanging across communities (e.g. an average
correlation) and a random part (2nd level), containing variances across different
communities or individuals, see Cho et al. (1999) for more detail. For more
information about the various methods employed in the social sciences for the
modelling of different social behaviours and interactions the reader is referred to a
book entitled ‘Simulation for the Social Scientist’ by Gilbert and Troitzch (1999).

Little work has been identified that includes the modelling of behaviour in standard
Operational Research models (such as cancer screening models) at more than a global
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level, i.e. the percentage of patients who attend each screen.

As part of their work to devise optimal scheduling techniques for breast cancer
screening Baker and Atherill (2002) produced a model to estimate compliance of the
public based upon data on 17,709 patients’ attendance histories for up to five
consecutive screens. The data were provided by the Centre for Cancer Epidemiology
in Manchester. The model was based upon initial observations of the dataset that
revealed previous attendance made current attendance more likely, with the first
choice being particularly influential, and this influence being reduced with successive
invitations. Their proposed model then gave extra weight to the first attendance/non
attendance for each woman, and geometrically down-weighted the effects of previous
attendance upon the calculation of the probability of current attendance. Age was
also observed to have a small negative correlation with attendance, so age was also
included as a parameter in the model. Baker and Atherill’s final proposed model is
outlined below.

The random variable X denotes attendance such that X; = 1, if attendance takes
place at the ith screen, and X; = 0 otherwise. The model was then proposed for the
logit of the nth screen, S, of the probability of attendance at the nth screen, p,,
such that for n > 0,

n

Sn=a+ﬁ{2q”_i(1—(1+p)Xi)+c(1—(1+p)X1)}+77a

=1
So=a+v+na

and
1

1489,

where a is the age of the woman and «, 3, p,n, v, ¢ and ¢ are constant parameters.

Dn

The constant parameters were found from the data using the maximum likelihood
method, and these values are given in Table 4.1. The model is an interesting concept
and provides a nice bridge between the simple assumptions of percentage attendance
usually applied in simulation models for cancer screening, and psychological models
for the prediction of behaviour. The work reported in this thesis, therefore, decided
to incorporate this equation for the prediction of attendance at breast screening as a
method for modelling individual attendance (as opposed to assuming percentage
probability attendance) but without the added work necessary to incorporate a
psychology theory and supporting research.

Another notable exception is recent work by Brailsford and Schmidt (2003), who
incorporated behaviour of the patient into an existing model for the examination of
screening for diabetic retinopathy. The motivation behind the work was the finding
that screening policies were highly sensitive to assumptions about compliance,

64



Model Parameter Value
o 2.0010
Jé] -1.1740
q 0.454
¥ 0.4297
c 0.3960
7 -0.0263
p 0.7158

Table 4.1: Parameter values for S, in Baker and Atherill (2002)

(Davies et al., 2000). Each time an individual was invited for screening their
compliance probability was calculated as,

compliance =v X m X p

where m is the motivation to comply, sampled as either low (0.6), medium (0.9) or
high (1.0), the parameter v represents a scalar to deal with the history of compliance
such that v = 1 — (0.1)ne-ofpreviousvisits ' anq ¢ the approximated output of an agent
based model named PECS. PECS is an architecture developed by Schimidt (2000) for
the individual modelling of human behaviour. PECS incorporates four classes of state
variables, physical, emotional, cognitive, and social status. Two different modes of
behaviour can be modelled, named ‘reactive’ and ‘deliberate’, where the former is the
intrinsic low level behaviour assumed to be modelled by a set of rules or equations,
and the latter refers to deliberate behaviour involving the conscious pursuit of goals.

In Brailsford and Schmidt (2003) the equations and relations chosen were arbitrary
and the aim of the work was to investigate the cffects of decper modelling of human
behaviour within a discrete event simulation, rather than to produce a model that
would necessarily accurately represent attendance behaviour. The results
demonstrated variability in the outcome (years of sight saved), with different
behavioural parameter assumptions, and importantly, variation when compared to an
assumption of a fixed percentage attendance.

While it has been pointed out that system dynamics approaches are less useful to the
study of breast cancer screening strategies, (Stevenson, 1995), the method has been
applied to breast cancer screening in an interesting study that considers the
interactions between the capacity of a screening unit, the number of regular
mammograms performed by a radiographer, the quality of a mammogram, the
location of screening units and the participation of the public (Gunes et al., 2004).
The idea is that if a radiographer performs more mammograms more regularly their
performance increases, thus leading to the detection of more cancers and saving more
lives. However, if a particular radiographer is very busy then this implies that the
screening unit is at capacity which could lead to queues and delays in the system
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leading to fewer lives saved, and this could be further compounded by less
participation from the invited individuals. Gunes et al. (2004) also consider the
interactions between the location of the screening units, and ease of
access/participation for eligible women (local versus central screening policies). Three
sets of analysis were performed upon the model to assess the effects of improving the
detection of breast cancers through mammography and the interaction between high
quality readings and high waiting times alongside service decentralisation which could
lead to more access but potentially at a lower quality. Their results revealed that an
increase in population participation would only be beneficial if the system has enough
capacity to cope with the increase in demand, this would aid the accurate reading of
mammograms and the speedy diagnosis of further tests, as well as encouraging future
participation. Decentralisation of screening units was only found to be beneficial if
the quality of the readings could be maintained so as not to produce too many false
positives and negatives that would both cost either lives or facilities and money.

Lastly, Wu et al. (2004) used a computer model of breast cancer to analyse the cost
effectiveness of interventions to increase up-take among non compliant women in the
USA. During their review of literature concerning interventions to increase
mammography uptake published between 1999 and 2002, the authors identified six
papers that studied the US population. They then grouped the interventions into 3
types, telephone counselling, physician based interventions, and clinic based
interventions. Tailored telephone counselling involved qualified personnel using
techniques based upon psychological theory, such as the Health Belief Model and the
transtheoretical model, to help women overcome their barriers to mammograpliy
screening. Clinic based or physician based interventions involved more training for
physicians to improve their counselling and interpersonal skills, and reminder calls
from the clinic that an appointment is imminent.

Wu et al. took the mean pre and post compliance rates of the studies and any
estimates of associated costs of the interventions, and used this analysis to compute
inputs to a model of breast cancer control programmes named CAN*TROL.
CAN*TROL is a computer simulation model which simulates the cost effectiveness of
cancer control programmes. It moves a hypothetical population of women through
one of 109 states and requires inputs relating to population statistics and cancer
information such as incidence, prevalence, stage distribution, and treatment costs.
The model predicts averages and not individual differences, and thus compliance with
screening strategies is not modelled directly, the effects are instead inferred by the
differences in stage proportions input to the model as iinplied by any change in
compliance.

Results revealed that the most cost effective policy to introduce in order to target
non-attenders on a large scale would be telephone counselling, however clinic based
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interventions, while costing more, saved more lives (reducing breast cancer related
mortality by 10.7% in comparison to a 6.5% reduction associated with telephone
counselling interventions). When conducting a one way sensitivity analysis using the
range of compliance and cost information, unsurprisingly, the most sensitive
parameter to the cost effectiveness was the post intervention compliance rate (the
interventions will only be cost effective if they produce an increase in compliance).
The papers analysed by Wu et al. varied considerably in their success at increasing
compliance rates in the intervention groups with increases on baseline compliance
rates of as little as 2% above the rate observed in the control group in one study, up
to 27% in another.

4.4 A chosen modelling approach

The aim of the research reported in this thesis was to investigate the cffects of
different assumptions of attendance behaviour at invited mammography screening in
the UK, and compare the magnitude of any difference arising through different
assumptions with those found by other modelling assumptions such as the tumour
growth pattern.

In order to investigate this research aim we decided to build a discrete event
simulation (DES) model of breast cancer and mammography screening for breast
cancer. This simulation method was chosen due to the need to model women at an
individual level if behaviour of each woman is to be included, and also due to the
flexibility that it would provide for this purpose. DES is also a common tool for the
Operational Researcher, and one of the aims of the research is to investigate
methodologies for incorporating the modelling of human behaviour into everyday
models and existing popular methodologies within this discipline.

Behaviour within the simulation is controlled by individual attributes sampled for
each woman, and the values of these attributes then influence her choice hehaviour
such as whether or not to attend for screening in a way suggested by psychological
theory (see Section 2). The chosen psychological theory to be considered was the
Theory of Planned Behaviour (please see Chapters 2 and 3 for a description and
explanation as to why the TPB was thought to be most appropriate). A second
model, (Baker and Atherill’s compliance model as described above), that used past
behaviour to predict attendance at mammography screening, was also made available
as an alternative behaviour model to use within the simulation. These two methods
are compared with and contrasted against two methods for assuming percentage
attendance named ‘global’ and ‘local’ percentage attendance (please see Chapter 6 for
a full description and definition).
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Modelling behaviour in this way was deemed as most appropriate since it models at
an individual level as required, and also since the method is simple, and does not
require knowledge outside DES. Furthermore, due to the psychological theories
considered at this time there was no necessity to model interactions between women,
but instead the simulation treats each individual separately as is the case in DES.

The next Chapter (Chapter 5) describes the structure of the simulation that was
built to investigate the research aims, and this is followed by Chapter 6 which goes on
to explain how the simulation variables and parameters were populated.
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Chapter 5

A Discrete Event Simulation of

Breast Cancer

A three phase discrete event simulation (DES) model has been built to model breast
cancer and breast cancer screening policies, and it is this model that has been
enhanced in order to include behavioural characteristics of the patients considered.
The model is built in Microsoft Visual Basic 6.0 (SP5).

A discrete event simulation was chosen above other methods of modelling and
simulation due to the need to model individual women with many attributes that
affect their flow through the system. For further discussion of other modelling
techniques please see Chapter 4.

5.1 The Three Phase Approach

The DES simulation runs using the three phase approach. This approach is so called
as the simulation is run, (repeatedly until the end of the simulation), in three
consecutive phases labelled A,B, and C, respectively.

When the simulation is run, the A phase is begun first. In this phase, also known as
the time scan, a search is made of all events which are scheduled and finds the next
event(s) that are due, makes a note of them, and moves the simulation clock forward
to this point in time. An event is an action upon an entity (in this case a woman) in
the simulation that has been scheduled, e.g. cancer onset, or an invitation to
screening. For example, the next scheduled event may be that a woman is due for
screening at time 35 and so the A phase would make a note of this as the next event
to take place, and move the clock to time 35.

Once the next event(s) due in the simulation have been identified, the B phase
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begins. In this phase of the simulation the ‘B activities’ that are due are then
executed. B activities are operations that have a start or finishing time that can be
predicted in advance, in this example invitation to a screening session at a particular
age. Table 5.1 shows the B activities for the current breast cancer simulation model.

Activity

Develop cancer

Be invited to a mammography screening session
Self detect the tumour

Die from breast cancer

Die from other causes

[SAENTSGVEN S

Table 5.1: The B activitics

Finally, conditional activities, labelled ‘C activities’, whose conditions have been met,
are executed in the simulation. These are activities that may be conditional on factors
other than the simulation clock. C activities may be dependent upon parameters such
as other events having occurred or resources that are available. At present, however,
there are no C activities within the breast cancer simulation model. Instead, if
conditions are satisfied, the dependent events are then scheduled. For example, death
from breast cancer is scheduled upon completion of the activity ‘develop cancer’.

Once all B and then all C activities that were due have been executed, the simulation
then begins again at the A phase. This process is repeated continually, unless the
system clock has reached the end of the specified simulation length, (default 100
years), or no more activities are scheduled.

5.2 Model Structure

No —»  Death
Detectable From Other
Cancer > —»  Causes

(2]
% 7 Y Y
v w S
< 5 » @ Detection o
i =. ~ > Cure
Breast § v

Cancer Self Detect/

Other detection Death from
» Breast

- Cancer
Ladl

Figure 5.1: Model Structure

Figure 5.1 outlines the structure of the model. Each woman is taken through time
from birth until death. During the course of her simulated life she may, or may not,
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develop breast cancer, be invited to mammography screening, or attend a screening

session.

If breast cancer develops then it could be detected either by mammography screening
or by self detection, (through breast self examination, or through the development of
clinical symptoms), both methods of detection may lead to ‘cure’ of the disease, or
subsequent death from breast cancer, (unless natural death is scheduled to precede
this). Whether a patient can ever be completely cured of breast cancer is difficult to
determine since metastasis and death have been shown to appear up to 25 years after
treatment for the primary tumour, and it is not until after this time that death rates
from breast cancer patients begin to mirror that of the rest of the population,
(Yakovlev et al., 1999), for more information please refer to Section 6.5.

At the beginning of the simulation each simulated woman is provided with a natural
age of death, this is taken from UK life tables with deaths from breast cancer
removed. Death for each woman then occurs at this age unless breast cancer
develops, is not cured, and shortens her life span. Death from other causes can occur
when the woman is in any other state of the model.

Screening for breast cancer occurs at ages specified by the user of the simulation
model. The start age, end age, and intervals for screening are set by the user and the
first screen is scheduled for all women in the simulation at the start of the model run.
The probability of tumour detection at the screening session is based upon the size of
the tumour at that point in time. The probability density curve of detection at

different sizes is estimated from literature, pleasc sce Scction 6.4 for details.

FEach time a woman is called for screening, whether or not she attends is a function of
her behavioural attributes. These attributes are stored in a class variable labelled
‘behaviour’. The behaviour class stores each woman’s behavioural attributes which
include the five base elements of the Theory of Planned Behaviour, (see Section 2.2.5
for an explanation), and the seven parameters of Baker and Atherill’s Compliance
model, (see Section 4.3).

If the Theory of Planned Behaviour (TPB) is selected as the behavioural model, then
for each simulated woman the value of three of the base elements of the TPB combine
to predict the intention to attend for screening, and then the hehaviour for
attendance, in a manner suggested by literature, (Rutter, 2000). Otherwise, if Baker
and Atherill (2002)’s compliance model is selected, then once invited for screening the
model will calculate a probability of attendance dependent upon her previous
attendance and the parameters of the compliance model, please see Section 6.6 for

more information.

Two further options for the modelling of attendance behaviour are provided, and
these are based upon more traditional percentage attendance assumptions. If either
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option is selected then the user is invited to specify the percentage attendance that
they wish to assume. The first option is that of ‘local’ percentage attendance, and the
second a ‘global’ percentage attendance assumption. Local percentage attendance
sets the probability of attendance at each invitation, so, for example if 70%
attendance has been requested by the user, then at each screen a random munber will
be sampled and if less than or equal to 0.7 then the simulation will assume
attendance. Global percentage attendance on the other hand sets the probability of
attendance at each screen for each simulated woman at a global level, such that the
random variable remains constant for each woman throughout the simulation.
Therefore, although both percentage attendance options may ultimately lead to the
same percentage attendance, in the case of global percentage attendance it is always
the same simulated women who attend or do not attend at invited mamimograpliy
screening, whereas for local percentage attendance a different subset of women may
attend at each screen.

If a woman develops cancer then, if it is not detected by mammography screening, it
will present naturally. The time of natural presentation is determined by the time it
takes her individual tumour to reach a sampled diameter, and is scheduled at the
start of the simulation. The sizes of natural presentation of breast cancers are taken
from published literature before mammography screening was commonplace, see
Section 6.4.

VB classes are used to manage the scheduling of tasks and facilitate the search for
the next event. Classes are also used to store entity characteristics, for example
growth parameters, behavioural attributes, and run statistics are all managed with
separate classes. For a complete description of model code, and how the classes fit
together, please see Appendix A.

5.3 Model Inputs, Outputs, and Interface

The user can select different options with which to run the model, and all major
variables within the model may be adjusted by the user. A progress bar is provided
as to how far along the simulation is, and once finished the user can select whether or
not to view the summary results of the simulation.

When first run, the model presents the user with a number of input options, each of
which have a default value. The options are separated into 5 groups each displayed
on different tabs, labelled ‘run options’, ‘cancer options’, ‘behaviour’, ‘screen’, and
‘self detection’ respectively. These five groups are described in turn below.
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5.3.1 Run Options

The first set of options available relate to the run options that may be set. Here it is
possible to specify the number of iterations that the user wishes to run in order to
gain average results. If more than one iteration is requested then the results that are
presented are an average of the iterations that have been carried out. The default
value is set at 300 since in validation trials it was found that around 250 iterations
led to reasonable convergence of output statistics, see Section 6.9. It is also possible
to change the number of women who are simulated in each of the iterations specified,
this enables the opportunity to conduct one large iteration with more women instead
of averaging over several iterations with fewer women, should this be required (due to

computing constraints etc).

A user can also select where they would like outputs of the simulation to be recorded
by selecting the folder where they would like the text file of summary statistics that
are produced to be written. This summary text file is a conuna scparated file that
displays all of the key statistics from each iteration of the simulation. An option
button can also be found on this tab in order to request detailed results to be
collected. Here, a text file will be produced for each iteration that stores information
regarding the progress of each entity at different time steps in the model, as well as
their key attributes such as age of cancer onset, cancer growth parameter, time from
onset to detection, screen or natural presentation etc. These more detailed comma
separated text files are useful for the verification and validation of the model.

5.3.2 Cancer Options

The next tab along contains user options relating to breast cancer itself, its
prevalence and growth rate. Here the user can select the proportion of the simulated
population that will be scheduled to have breast cancer. The default proportion is 1
since this maximises the efficiency of the model by comparing screening strategies
within the breast cancer sub population rather than the larger population as a whole,
due to requiring less computing power and time.

This is also where the user may select which type of tumour growth model they would
like to assume for breast cancers. Four patterns of growth are available, exponential,
Gompertzian, logistic, and a modified Gompertzian that allows stochastic growth
rate rather than a fixed growth parameter (multiple) from onset. All four growth
models allow individual variability regarding growth rates. For more details regarding
the differences between the growth patterns and parameters please see Chapter 6.
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5.3.3 Behaviour Options

The third tab provides the choice of behavioural theory to be used in order to
determine compliance with the screening strategy to be modelled. The user may
select, one of four options, the Theory of Planned Behaviour (TPB), Baker and
Atherill’s compliance model, or percentage attendance as specified {either local or
global).

The TPB is described in full in Chapter 2. Here the user may select to use this
theory to model the attendance of individuals in the simulation at their invited
screening appointments. For information as to how the TPB is approximated within
the simulation please see Chapter 6.

Baker and Averill’s compliance model and its inputs are described in Section 4.3. The
model is based upon a statistical analysis of attendance probability at UK screening
units with the primary predictors being age and previous attendance patterns.

Two options are provided for in order to model attendance as a percentage and these
are labelled as ‘local’ and ‘global’ attendance as described above.

5.3.4 Screening Options

The screening tab presents the user with options for the screening scenario to be
modelled. The user can select the start and end ages for screening and the desired
screening interval (in years). It is assumed that all required screening strategies will
consider fixed screening intervals.

The user may also alter the assumed detection probability of a tumour by the size of
the tumour. This may be done by entering different values for the cumulative Weibull
distribution than those that appear as default.

5.3.5 Self Detection Options

Under the last tab the user may select to run the simulation with a higher probability
of self detection/natural detection than is run as default. The default distribution
(labelled ‘Tabar data’) for the size of natural presentation is taken from size
distributions before screening for breast cancer was commonplace. A second option is
provided for the user to select a distribution of sizes based upon more recent analysis
by Michaelson et al. (2003a) which assumes a higher probability of smaller tumours
than the default distribution, this change is thought to be due to the skew in the size
distributions introduced by analysing a screened population. For more information
and precise parameters please refer to Chapter 6.
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5.3.6 Outputs
The following statistics are recorded for each iteration of the simulation model.

e The number of women who developed cancer

e The number of women who did not develop cancer

e The number and proportion of women whose cancers were screen-detected
e The number of women whose cancers presented naturally

e The number of tumours that remained undetected

e The number of women who were invited to screening while they had breast

carncer
e The number of women who were not invited to screening while they had cancer
e The number of women who attended screening at least once
e Of those who attended, the average number of times they attended screening

e The average diameter in millimetres of all cancers, screen-detected cancers, and
self detected cancers, at presentation

e The average time from cancer onset to detection of all cancers, screen-detected
cancers, and self detected cancers

o Of screen-detected cancers, the average number of years earlier the tumour was
detected than the scheduled self detection date.

e Of screen-detected cancers, the sum of the life-years gained through earlier
detection.

The above statistics and counts are collected for each iteration of a simulation and if
multiple iterations are requested then the results window at the end of the simulation
displays the averages across the iterations alongside the 95% confidence interval for
this mean. Figure 5.4 provides a screenshot of the results window.

If required, the individual iteration results are also available as a comma separated
text file written to the results folder of the directory that the user specified at the
start of the simulation. This file will be named ‘SummaryResults.txt’. If detailed
outputs were requested by the user then a comma separated file is produced for each
of the iterations that were run. These files will be written to the same directory and
will be named ‘ResultsX.txt’, where X is the iteration number. These files provide
information about each of the women within the simulation, such as her scheduled
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cancer onset time, sampled cancer growth rate, whether they were screen-detected or
not, and the time from tumour onset to detection. The files also provide output after
each pass through of the three phase procedure, giving the clock time and the state of
each woman in the simulation at that time (no cancer, undetected cancer,
screen-detected cancer, other detected cancer, dead from natural causes or dead from
breast cancer).

5.4 User Interface

A limited user interface is provided to the model operator. Upon starting the program
executable an options screen is presented for choosing the various run options

described in Section 5.3.1. Figure 5.2 below provides a snapshot of this screen.

Once the model is run via the menu commands, the run-time screen displays the
progress of the simulation. A bar tells the operator how far along the run is within
the current iteration, and a counter enables the user to know how many of the run

iterations requested remain. Figure 5.3 provides a snapshot of this screen.

The last screen available to the user is the summary results screen. This provides the
user with an overview of the simulation results, with the average outcomes over the
iterations requested together with 95% confidence intervals for the individual means.

An example of this summary result screen can be found in Figure 5.4.
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Figure 5.2: User Interface for Inputs
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Figure 5.3: User Interface at Run Time
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Chapter 6

Populating the Simulation Model

Parameters

This chapter aims to outline the research reviewed in order to populate the variables
(epidemiological and psychological) within the breast cancer discrete event simulation
model.

The input variables for the model are split into four groups, those relating to the
growth patterns of cancer, the detection of breast cancer, survival probabilities from
breast cancer, mortality analysis, and psychological variables. These are discussed in
turn below.

6.1 Mortality Analysis

In order to estimate any difference in lifc-years lost through different screening
strategies, or modelling strategies, it was necessary to estimate the age of natural
death (without breast cancer) for each woman in the simulation.

Two life tables were constructed based upon the figures provided by the Office of
National Statistics (ONS) for deaths by age band in England and Wales. Basic life
table functions were calculated, the definitions of which can be found in Table 6.1.
For a detailed explanation as to how a life table is constructed please see Siegel and
Swanson (2004).

The first life table was constructed based upon death from all causes in England and
Wales. The data provided by the ONS was split into 20 age bands of roughly 5 years
(see 6.1.1 for details). The width of the last age interval (ng, ages 90+), was

estimated using the interval specific death rate Mgy, and the fraction of the interval
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it is assumed those who die in the interval live for, agoy, such that,

2

:-—M =
20 a 20 Moo

This produced a maximum upper age of death of 117. This is in line with predictions
of highest attained age for a cohort born in England and Wales in 1966 which is

expected to fall in the range 116-123, (Thatcher, Summer 1999).

Variable | Definition Construction
T The lower bound of the ith age interval in question (in | N/A
years)
n; Width of the ith age interval in question (in years) N/A
Az, Fraction of the age interval lived by those in the cohort | 0.5
population who die in the age interval
PODg; Estimated population in the age interval ¢ ONS figures
deathsy, | Observed number of deaths in the age intcrval ¢ ONS figures
M, Age specific death rate in interval ¢ %’-
qx; Conditional probability that an individual who has | 7 +n18{\i§1) M,
survived to start of the age interval ¢ will die in the B
age interval.
D, Conditional probability that an individual entering | 1 — @,
age interval i will survive the age interval <.
Iz Life table cohort population at the beginning of age | p(s,_;)l(e;_1)
interval .
dz; Number of life table deaths in the ith age interval by — lwin)
L, Number of years lived during age interval i ) (lm s am1,dm1,)
Tz, Cumulative number of years lived by the cohort pop- | T(y,, ) + La;
ulation in the age interval and all subsequent age in-
tervals
€z, Life expectancy at the beginning of the age interval. ;:’

Table 6.1: Definitions and derivations of basic life table functions

In order to remove the probability of death from breast cancer from the life table a
cause elimination life table was then constructed. Siegel and Swanson (2004) provide
an explanation as to how to construct such a table and discuss the uses and pitfalls of
the methodology. It is worth pointing out that cause elimination life tables may
produce unrealistic results since by their nature they assume that eliminating the risk
of breast cancer has no effect upon the risk of death from other causes.

The basic life table functions were then recalculated as follows, (the same notation is
used as can be found in Table 6.1, however when referring to the function for the
eliminated table, superscript of “—bc¢” will be used).
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deathsy. be

B =
q;ibc = 1— p;ibc

;% = 100,000

—-be __ —be —be
l»'Di - p(:c,-—ni) (:l:i-—‘n.i)

L;ibc = l;ibc (ni - f:l:l) + fzzl(_:nlit—:{-nl)

where deathsy, p. are the number of deaths in the interval ¢ from breast cancer alone,
and
nil:l:i - L:l:i

f-Ti =

l»'Di - l(zi—i-ni) .

In order to construct a cumulative probability distribution to sample age of death
from within the simulation, the following calculations were performed using
information from this breast cancer eliminated life table. Since [, provides the
estimate of the number of survivors at the start of interval 7, the cumulative
probability of survival S(z; + n;) to the end of interval ¢ for the cohort can be found

by,

Lz

The cumulative probability of dying at the end of interval ¢, Dz;, can then be found
by
D(z;) =1 - 5(z).

The distribution is then sampled in the simulation by generating a random number
between zero and one, (denoted by U), and approximating the value for D(U) using
interpolation and assuming linear relationship as follows.
If D(z;) <U < D(z; +n;), then,

~ ']’LZ

DY (U) = Dz & ) — D(@) (U — D(z;)ny) fori=1,2,3..19,U < D(zy).

For the last interval a linear relation does not appear to be a reasonable assumption,
(see Figure 6.1). Therefore Microsoft Excel was used to fit a modified exponential,
E(z), to the last two data points, (at ages 90 and 117). In order to help ensure
continuity, the gradient of E(z) at = 90, (E'(zg)), and the gradient of D(z)
between z = 85 and z = 90, were set to be as close as possible. E(z) and E'(z) took
the following form,

E(z) = a+pe™®
El(x) = —fye "
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The method of least squares was used to fit E(x) to the data points provided by the
life table for x = 90 and x = 117, and the gradient difference at z = 90 was included
in the least squares error with a weight of 10. Microsoft Excel’s solver found the
minimum error solution, and therefore D(z), for z > 90, is approximated in the
model as follows

D(z) = 1.050 — 204.625¢ 0071 for z > 90.

Table 6.2 provides the resulting comparisons between values provided by the life table
and those produced by F(z), and Figure 6.1 illustrates the curve produced by the
modified exponential.

This leads to an approximation of z (age) at U > D{zq) of

- (U —a) /5]

D_l(U) = 5 for U > D(Cl?go).

6.1.1 Mortality Summary
The age of natural death, (z), is sampled for each entity in the simulation as follows,

1. Generate U that follows Uniform(0, 1)

2. U S D(CEQO), then z = D—(z:—k—'r::?)TD_('a;)' (U — D(mz)n,), for i = 1, 2,3...19;

3. Else if U > D(zg), then z = _lU-2)/f]

Y

Variables E(x) Objective | Error squared
x=117 1.000010 | 1.000000 9.283E-11
x=90 0.707525 | 0.707520 2.837E-11
Gradient at x=90 0.024350 | 0.024371 4.398E-09
Sum of errors squared 4.519E-09

Table 6.2: Fit of E(z) to D(zg9) and D(zgg + nag)
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Figure 6.1: Cumulative Density Function of Mortality as Estimated From the Cause Ilimi-
nated Life Table
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Age interval | z | n | ag pop, | deaths, M, Qz Pz lz dy L, T es
<1 0| 1]0.1/| 286578 590 | 0.002059 | 0.002055 | 0.997945 100000 | 205.4969 998.05 | 8100715 | 81.00715
1-4 1| 4| 0.5 ] 1190935 315 | 0.000264 | 0.001057 | 0.998043 | 99794.5 | 105.526 398967 | 8000900 | 80.17376
5-9 5| 5105 1589671 197 | 0.000124 | 0.000619 | 0.999381 | 99688.98 | 61.75066 | 498290.5 | 7601933 | 76.25651
10-14 10| 5| 0.5 | 1682098 280 | 0.000166 | 0.000832 | 0.999168 | 99627.23 | 82.88465 | 497928.9 | 7103643 | 71.30222
15-19 15| 5] 0.5 | 1605366 833 | 0.000519 | 0.002591 | 0.997409 | 99544.34 | 257.9256 | 497076.9 | 6605714 | 66.35951
20-24 20| 5 0.5 | 1604841 1243 | 0.000775 | 0.003865 | 0.996135 | 99286.42 | 383.7592 | 495472.7 | 6108637 | 61.5254
25-29 25| 5] 0.5 | 1675878 1442 | 0.00086 | 0.004293 | 0.995707 | 98902.66 | 424.5879 | 493451.8 | 5613164 | 56.75443
30-34 30| 5| 0.5 2008254 2028 | 0.00101 | 0.005036 | 0.994964 | 98478.07 | 495.9796 | 491150.4 | 5119712 | 51.98835
35-39 35 51 0.5 | 2095368 2649 | 0.001264 | 0.006301 | 0.993699 | 97982.09 | 617.4018 | 488366.9 | 4628562 | 47.23886
40-44 40 | 5| 0.5 | 1900649 3549 | 0.001867 | 0.009293 | 0.990707 | 97364.69 | 904.8007 | 484561.4 | 4140195 | 42.52255
45-49 451 51 0.5 | 1687178 5066 | 0.003003 | 0.014901 | 0.985099 | 96459.89 | 1437.385 478706 | 3655634 | 37.89797
50-54 50| 51 0.5 1722995 7849 | 0.004555 | 0.022521 | 0.977479 | 95022.5 | 2139.975 | 469762.6 | 3176928 | 33.43343
55-59 55| 51 0.5 | 1640427 11921 | 0.007267 | 0.035687 | 0.964313 | 92882.53 | 3314.672 456126 | 2707165 | 29.14612
60-64 60| 5 0.5 1299609 15800 | 0.012158 | 0.058994 | 0.941006 | 89567.85 | 5284.006 | 434629.3 | 2251039 | 25.13222
65-69 65| 51 0.5 | 1199502 22884 | 0.019078 | 0.091047 | 0.908953 | 84283.85 | 7673.801 | 402234.7 | 1816410 | 21.5511
70-74 70| 51 0.5 1125490 33374 | 0.029653 | 0.138032 | 0.861968 | 76610.05 | 10574.62 | 356613.7 | 1414175 | 18.4594
75-79 751 5] 0.5| 998878 43961 | 0.04401 | 0.19824 | 0.80176 | 66035.43 | 13090.88 | 297449.9 | 1057561 | 16.01506
80-85 80| 5]0.5| 785717 44343 | 0.056436 | 0.247291 | 0.752709 | 52944.55 | 13092.72 | 231990.9 | 760111.5 | 14.35675
85-90 85 | 5|05 | 458664 32790 | 0.07149 | 0.303252 | 0.696748 | 39851.82 | 12085.16 | 169046.2 | 528120.6 | 13.25211
90+ 90 | 26 | 0.5 | 269073 20807 | 0.077328 1 0| 27766.67 | 27766.67 | 359074.4 | 359074.4 | 12.93185

Table 6.3: Life table for women, based on death from all causes, 2002
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Age interval | z | n| a;% | deathsy qy | deathsy pe pop; ¢ M q; P ¢ e £ L;% T b | egt
<1 0 1 0.1 590 286,578 | 0.002059 | 0.002055 | 0.997945 | 100000 0.90 99815 | 8183092 | 81.83
1-4 1 4 0.5 315 1,190,935 | 0.000264 | 0.001057 | 0.998943 99795 2.00 | 398967 | 8083277 | 81.00
5-9 5 5 0.5 197 1,589,671 | 0.000124 | 0.000619 | 0.999381 99689 2.50 | 498291 | 7684310 | 77.08
10-14 10 5 0.5 280 1,682,098 | 0.000166 | 0.000832 | 0.999168 99627 2.50 | 497929 | 7186020 | 72.13
15-19 15 5 0.5 833 1,605,366 | 0.000519 | 0.002591 | 0.997409 99544 2.50 | 497077 | 6688091 | 67.19
20-24 20 5 0.5 1,243 1| 1,604,841 | 0.000774 | 0.003862 | 0.996138 99286 2.50 | 495473 | 6191014 | 62.36
25-29 25 5 0.5 1,442 17 | 1,675,878 | 0.000850 | 0.004242 | 0.995758 98903 2.50 | 493466 | 5695540 | 57.59
30-34 30 ) 0.5 2,028 96 | 2,008,254 | 0.000962 | 0.004799 | 0.995201 98483 2.50 | 491235 | 5202075 | 52.82
35-39 35 ) 0.5 2,649 229 | 2,095,368 | 0.001155 | 0.005758 | 0.994242 98011 2.50 | 488643 | 4710839 | 48.06
40-44 40 ) 0.5 3,549 363 | 1,900,649 | 0.001676 | 0.008346 | 0.991654 97446 2.50 | 485199 | 4222196 | 43.33
45-49 45 ) 0.5 5,066 552 | 1,687,178 | 0.002675 | 0.013289 | 0.986711 96633 2.50 | 479955 | 3736997 | 38.67
50-54 50 ) 0.5 7,849 820 | 1,722,995 | 0.004080 | 0.020192 | 0.979808 95349 2.50 | 471932 | 3257042 | 34.16
55-59 55 ) 0.5 11,921 1051 | 1,640,427 | 0.006626 | 0.032592 | 0.967408 93424 2.50 | 459506 | 2785110 | 29.81
60-64 60 5 0.5 15,800 983 | 1,299,609 | 0.011401 | 0.055428 | 0.944572 90379 2.50 | 439370 | 2325604 | 25.73
65-69 65 ) 0.5 22,884 1044 | 1,199,502 | 0.018208 | 0.087080 | 0.912920 85369 2.50 | 408262 | 1886233 | 22.09
70-74 70 5 0.5 33,374 1215 | 1,125,490 | 0.028573 | 0.133358 | 0.866642 77935 2.50 | 363694 | 1477971 | 18.96
75-79 75 5 0.5 43,961 1444 998,878 | 0.042565 | 0.192400 | 0.807600 67542 2.50 t 305223 | 1114278 | 16.50
80-85 &0 ) 0.5 44,343 1422 785,717 | 0.054627 | 0.240403 | 0.759597 54547 2.50 | 239952 809055 | 14.83
85-90 85 5 0.5 32,790 1184 458,664 | 0.068909 | 0.294102 | 0.705898 41434 2.50 | 176704 569104 | 13.74
90+ 90 | 27 0.5 20,807 1055 269,073 | 0.073408 | 1.000000 | 0.000000 29248 | 12.93 | 392399 392399 | 13.42

Table 6.4: Breast Cancer Eliminated Life Table Based on Data From 2002




6.2 Tumour Growth

The epidemiological model of breast cancer requires information about the growth
rate and pattern of breast cancer in women. This growth rate is used to increase the
tumour size over time, as appropriate, in order to alter both the chances of detection
and prognosis information.

Exactly how best to model human cancer growth is understandably difficult to
ascertain due to the ethics of following a detected tumour’s progression without
treatment. However, over the years a number of approaches of varying complexity
have been developed.

Outlined below are a few of the classical growth patterns found to approximate
tumour growth in the literature. While other more sophisticated models exist that
include the simulation of chemicals and treatment on the growth of the tumour, (e.g.
Jiang et al. (2004); Sachs et al. (2001)), we believed that the simple classical models
would be adequate for the simulation model described in this thesis.

The rate of tumour growth can be represented by a differential equation of the form:

dN
S = 1)

where N is the number of cells in a tumour, ¢ represents the time, and f some
differentiable function. In order to calculate the volume and diameter of the tumour
at any one time it is assumed that tumour growth is spherical, see formula 6.2, and
that the volume of one cell is 10~®mm? as assumed by Spratt et al. (1993b).
Therefore, the volume and diameter of a tumour can be calculated at any time such
that,

V() = 107%- N(t) (6.1)
D) = 2% 3‘;(:) (6.2)

where V' (t), and D(t) are the volume and diameter of the tumour at time ¢
respectively, (in millimetres).

A popular simplistic approach to the mathematical modelling of tumour growth has
been to assume exponential growth, and this has been shown to be adequate when
allowances are made for large individual variations in growth rate, (Atkinson et al.,
1983). Here f(N) = KN where K is a constant of growth that does not vary with
time.

Under this model the number of cells, N(t), within the tumour increase at a constant

85



doubling time, ¢, with time, ¢, such that,

t-In(2)

N(t) = N(0) - =% (6.3)

In their review article of the growth rates of tumours Friberg and Mattson (1997)
identify five large studies of the doubling times of untreated breast cancers (as
estimated from serial mammograms) and report their findings. The results cover more
than 800 patients and show considerable variation in doubling times from 30 days to
infinity, with an estimated median across the studies of approximately 180 days.

Previous research has found that the distribution of variation in breast cancer tiuumour
growth rates across populations can be described by a Lognormal. Therefore,
Microsoft Excel’s solver was used to find a Lognormal distribution such that the
mean was 180 days and the probability of 30 days or less was chosen as 0.01. These
assumptions led to the doubling times under the Exponential option in the breast
cancer model following a Lognormal distribution. The log doubling times were
therefore assumed to be normally distributed with mean 5.19 and standard deviation
0.77. Since the simulation model described in this thesis works in years as units of
time rather than days, the input time to the equation was multiplied by 365 days
before the calculation of tumour volume at that time was performed.

However, as Wolf points out the exponential assumption of tumour growth is a

‘.. mathematical projection of cells in virtual circumstances’, (Wolf, 2001). That is, in
reality a tumour is inhibited in growth at first by the supply of nutrients and in later
stages by the neovascularisation (the process of vascularisation of a tissue involving
the development of new capillary blood vessels; vascularisation of tumours is usually
a prelude to more rapid growth and often to metastasis) in the tumour tissue,
whereas the exponential model assumes sufficient nutrients and space for growth.
The assumption of a constant growth rate has also been disputed by clinical data, for
example Spratt et al. (1993a) found evidence of doubling times as low as 7051 days
which under exponential growth assumptions would lead to a tumour life of 578
years. For these reasons it has been suggested that the exponential growth law should
be ruled out as a viable model for the natural history of breast cancer, (Clare et al.,
2000).

A second and popular model is the Gompertzian population growth model. The
Gompertzian model considers the increase in the number of cells in a tumour as a
function of the number of cells present and satisfies the differential equation:

dN
— =0 N -In(N/K)

Here, 3 is the exponential decay rate of growth, and K the limiting size of the
tumour, (carrying capacity).
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The Gompertz model not only fits well with theory but has been shown to fit well to
both in vivo studies of breast tumour growth, (Norton et al., 1976), and to published
serial mammography data, (Norton and Simon, 1977; Norton, 1988; Spratt et al.,
1993b). Norton (1988) for example found the following solution best approximated
observed breast cancer growth patterns,

N(t) = N(0)ello(¥F) (-7} (6.4)

where, if ¢ is in months then N(0) = 1, N(oc) = 3.1 * 10!, and b is Lognormally
distributed with the log mean -2.9, and standard deviation 0.71. Since the simulation
model described in this thesis uses years as unit time, the input time was multiplied
by 12 before a calculation of tumour size was performed for this equation.

A third simple model for tumour growth is the generalised logistic growth population
model. Forms of Logistic equation have been shown to provide the best fit to tumour
growth observed via mammograms when compared to the exponential and
Gompertzian growth models, while the exponential growth equation provided the
least good fit, (Spratt et al., 1993a,b). The logistic model assumes density dependent
growth and its differential equation is as follows,

dN N\°

—=b-N|1—-|—=

dt { (K ) ]
where N, K, and t are as before (in days), b is the intrinsic growth rate, and c is the
generalising factor. Note that if ¢ = 1 then the standard logistic is produced and as ¢

tends to infinity an exponential is approximated. The model has the solution for
¢ > 0 as follows,

N(t) = N(co) [L + e—0<bt+d>]‘% (6.5)

1 N(oo)\°
d=—-|-1]1 —2] -1
(6)=[(ve) -
The model that best fit the data was found from the records of 113 patients who had
three serial mammograms with evidence of tumour size over time. It was assumed

where

tumour volume began at 107%mm? at t = 0, and N(oc) was set to 240 cells. Results
found that the best fit came from setting ¢ = 0.25 and d = —27.72, (where t is in
days).

The individual variation in the intrinsic growth rate, b, was then investigated by
considering the records of 448 patients with at least 2 size recordings from serial
mammograms. The intrinsic growth rate was found to be approximately Lognormally
distributed, although the fit was not statistically significant. Spratt et al. cite other
evidence that the variation in breast cancer growth has been shown to be
Lognormally distributed, and therefore, for the purpose of this analysis, a Lognormal
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distribution was fitted to the percentage points provided by Spratt et al.. This was
done using Palisade’s BestFit add on for MS Excel which produced a Loguoriual fit
to the data with the log variable having mean -5.84 and standard deviation 1.04. The
simulation model described in this thesis works in years rather than days, so all times
were multiplied by 365 before tumour volume calculations were performed.

In their comparison of different models of tumour sizes, Hart et al. (1998) found that
data from the first screen of the Swedish Two County mammography trial were
inconsistent with the exponential, logistic, and Gompertz laws. Instead they found
that the best tumour growth model that fit to the data was a parabolic growth
function, (Power Law). The Power Law is a broad family of growth rates and includes
the exponential. The Power Law differential equation takes the following form:

= —k.N*

dt
where ) indicates the mode of tumour growth, (linear at zero to exponential at one),
and k is a constant of growth.

The value of A found to fit the trial data the best was approximately 0.5 indicating
Parabolic growth, a rate that declines with the square root of the tumour mass. This
rate of growth is slower than the exponential which has a constant decline in growth,
but appears to be more significant in the clinical size ranges than the Logistic and
Gompertz size specific rate reductions, (Hart et al., 1998). The differential equation
evaluates as follows,

N(t) = (kt(1 = B) + )77

However, due to the methods employed in the paper by Hart et al. (1998), no values
or ranges were supplied for ¢ and so this pattern of tumour growth has not been
included as a growth model within the scope of this thesis.

Demicheli (2001) argues that continuous growth models cannot explain the long
lasting recurrence risks associated with breast cancer, and that cancer growth may
undergo periods of dormancy. Demicheli goes on to present results that support his
theory. In order to explain similar observations of plateaux in tumour growth, Speer
et al. (1984) produced a stochastic modification to the basic Gompertz model
whereby the intrinsic growth rate is varied with time producing stepwise growth
patterns. The Speer et al. model builds on the original Gompertzian model and
simulates tumour growth by changing o with a probability A4 every 5 days as
described in equation 6.6, where As and A4 are random numbers between 0 and 1.

o

T 1Y Bnd A,

(6.6)

Speer et al. then demonstrated how their model fit to three different breast cancer
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data sets and in doing so produced estimates for the values of the variables within
their modified Gompertzian model of breast cancer growth, see Table 6.5.

Variable | Estimate
Ao 0.4 (/day)
Ag 0.3

Ay 0.008

Qg 0.03(/day)

Table 6.5: Estimated parameters for the modified Gompertz model of tumour growth, Spcer
et al. (1984)

Further support for the notion of periods of non growth in breast cancer tumours was
found in a review conducted by Retsky et al. (1990), who point out that taking
averages of tumour growth doubling times or omitting slower growing tumours from
the analysis smooths out individual variation. They conclude that considering
irregular kinetics and stochastic growth patterns may be more appropriate when
modelling individual breast cancers (as opposed to modelling populations).

Since the idea of non continuous growth has some support, the modified Gompertzian
model as suggested by Speer et al. has been included as a growth pattern for breast
cancer within the reported simulation model. To limit the calculations, the times of
change for alpha, and the new alpha values are taken from a set of paired values that
have been previously sampled from the distributions suggested. For a full description
of the methodology, please refer to Section 6.3.

6.2.1 Summary

Four patterns of tumour growth are available to choose from within the model. Only
one pattern can be used for any one analysis at one time, and the selection is made
via the input options screen from the user interface.

It is assumed that breast tumours grow spherically, (see equation (6.2)), and where
equations provide density rather than volume, it is assumed that a single cell has

volume 10~ %mm3.

The four growth options to choose from are to assume exponential growth over time,
equation (6.3), Gompertzian growth, equation (6.4), a generalised Logistic (6.5), or a
stochastic variation upon Gompertzian growth such that the growth rate changes
over time with probabilities and values as defined in equation (6.6) and Table 6.5.

Figure 6.2 plots the difference between the mean growth pattern over time produced
by each of the different models. Here, the growth pattern is produced using the
overall mean of the growth parameter distribution (not the mean once logged), and
the modified Gompertzian distribution is calculated with the mean time to next «o
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change (624 days) set constant each time, and using the median change in « such
that Rndy = 0.5.

Figures 6.3 through 6.6 provide an indication as to the range of growth patterns
produced within each model by illustrating the mean pattern produced as above, but
also the patterns produced by the 10th, 50th, and 90th percentiles of the growth
distributions. The modified Gompertzian distribution in Figure 6.6 illustrates the
given percentiles of the distribution for the next change, while the change in « is kept
constant at the median (Rnds = 0.5).

20 —

E L = =K — Gomperiz
510 g —— Exponentlal
g / Logistic
8oy ~—— Medilied gompertz
a |
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.‘I
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4 / 7
2 =
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Time {yoars)

Figure 6.2: Mecan growth pattern produced under each growth model with associated as-
sumptions
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Figure 6.3: Mecan and percentile range of growth patterns modelled with the exponential
tumour growth assumption
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Figure 6.4: Mean and percentile range of growth patterns modelled with the Gompertz
tumour growth assumption

Time (years)

Figure 6.5: Mean and percentile range of growth patterns modelled with the logistic tumour
growth assumption
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Figure 6.6: Mean and percentile range of growth patterns modelled with the stochastic
modified Gompertzian tumour growth assumption
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6.3 Age of Cancer Onset

At the beginning of the simulation it is necessary to sample the age of tumour onset
for each woman in order to make it possible to schedule tumour onset.

Data were obtained from the South West Cancer Intelligence Unit in England who
record details of all breast cancers in the South West of England. The database
contains all recorded patients between 1981 and 2000, and provides, among other
statistics, the patients age at diagnosis (in years), and the recorded diameter of the
tumour (in millimetres).

The dataset was sorted and any entries removed for which the tumour width was zero
or missing, or the age of the patient not provided. This left a database of 26,298
patients with an average age of 61.45 and tumour diameter of 24.4mm. However,
when comparing the age distribution of observed ages in the dataset with the reported
incidence of breast cancer per 5 year age group (as published on the cancer research
UK website (Cancer Research UK, b)), the South West dataset demonstrated a lower
proportion of over 85 year olds. This was confirmed as a significant difference at the
5% level by a chi square test (teststatistic = 8.84F — 168, 13df). Data relating to the
observed size distribution of UK breast cancers diagnosed was not available for the
whole population (only the subset detected by mammography screening producing a
bias sample). To estimate the age of onset for breast cancer in the UK it was decided
to sample age from the observed national distribution, and size of tumour fromn the
dataset provided by the South West Cancer Intelligence Unit.

Therefore, the age of onset distribution was estimated by sampling age from the
national distribution of age at presentation, and tumour size was sampled from the
distribution observed in the South West dataset at random, before back-calculating to
find the age of the tumour (given its size) for each of the four twmour growth theories
in turn, and subtracting this age from the patient age to estimate age of onset.

The national distribution of age at breast cancer presentation was estimated from
Office of National Statistics records of incidences of breast cancer by 5 year age bands
per 100,000 population in England in 2002, see Figure 6.7. Linear interpolation was
used to provide the probability of presentation between two cumulative points at the
maximum of an age band, however this did not appear appropriate for the final age
band. Figure 6.7 shows the result of a function (f(z) as below), fitted to the last age
band with the gradient at age (x) 85 included in the least squares fitted with a weight
of 10. The upper age limit of the last age band was set at 101, as this was the highest
age observed in the South West dataset. The function f(z) that was fitted to the last
band was as follows,

flz) =oa+pBe"
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where o« = 1.01, § = —72221.87, and v = 0.16 to 2dp.
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Figure 6.7: Cumulative distribution of age of breast cancer presentation in England in 2002

(ONS)

The size of tumour, for the given age band, was randomly sampled (with replacement)
from the relevant age band subset of the South West dataset, and a back-calculation

was performed to find the age of the tumour, and therefore the age of the individual

at the time of tumour onset, given growth parameters appropriately sampled.

The exponential, logistic, and Gompertz functions could all be re-arranged to
approximate the age of the tumour, ¢ in years, as follows.

Logistic
=0 | (2) e ((3Z) 1) - 67
Exponential
o\ InCRa)
t=(35) =) (65)
Gompertz
og(N(D)) .
=1z |~ (o) ©9
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where N (D) is the number of cells at detection, estimated by calculating the volume
of the tumour based upon the assumption of spherical growth and dividing this by
the assumed volume of a single cell (107%mm3). All other variables are as before and
the values and distributions used are as quoted in Section 6.2.

This back-calculation process was performed using lookup Tables in MS Excel for
100,000 iterations for each of the growth laws, using Monte Carlo sampling
techniques to sample both growth rates for the tumour, and database entries each
time, via VBA code within MS Excel. One spreadsheet per growth model was built
to avoid confusion and to accommodate the different growth parameters and
patterns. It was assumed that breast cancer cannot develop before puberty, and
therefore, if the indicated age of breast cancer onset was less than 15 years, a new
growth parameter was sampled. This process was repeated until the age of onset
indicated a figure above 15 years old.

The resulting age of onset, and the sampled growth parameter which led to the age
derivation were both recorded for each iteration. At the start of the simulation model
described in this thesis, the model reads in paired values for the age of cancer onset
and growth parameters from text files appropriate to the chosen pattern of tumour
growth. This methodology of using paired samples as inputs to the simulation model
was chosen above the possibility of randomly assigning new growth variables and age
of onsets to individuals within the simulation sampled from independent distributions.
This decision was made to try to control for the large variations in tumour growth
rates assumed (see Section 6.2), and to ensure that the tumouwrs would reach a
detectable size at appropriate ages. To save computing time and resources, the values
were read in in order, but start at a random place within the data (txt) file(s).

Due to the more complex nature of the stochastic modified Gowmpertzian model of
tumour growth, it was not possible to back-calculate the age of the tumour based
upon size via one simple formula. Instead, in this case, the time the tumour had been

growing to reach the sampled size was estimated within each iteration as follows.

Since the modified Gompertzian growth model assumes that the growth parameter a
of the basic Gompertz equation may change every 5 days with probability

Ay = 0.008, it was assumed that this probability of change was uniform across the 5
day period and so the probability of change in any one day was calculated as

C) = A4/5 =0.0016. The time until the next change in a can then be compared to
the number of Bernoulli trials required until a success is observed, with the
probability of success in any one trial equal to C;. The time to the next change in «
was then measured as a sample from a geometric distribution with parameter

C; = 0.0016.

A spreadsheet model was built in MS Excel which provided up to ten new times for a

95



change in «, (each a random sample from the geometric distribution with C; the
probability of success), plus the time of the previous change(s), and a sampled size
and age at detection as before. This approach assumed a maximum of 10 steps in the
growth pattern over the life time of the tumour which appeared to be a reasonable
assumption given the original research measured around 5 changes per tumour on
average, and limiting the number of possible changes helped to reduce required
computing power and memory.

Alongside these times of a change, a new value for a at this time was calculated,
using the formula provided by the modified Gompertzian model. It was then possible
to use lookup Tables to ascertain the volume of a tumour under the sampled values,
in steps of 5 day intervals. This was calculated in 5 day intervals for 40 years. It was
assumed that by 40 years, a tumour would have reached a detectable size.

The back-calculation of time from tumour onset until a sampled size could then be
estimated (with an accuracy of a few days). The times and values of the sampled as,
as well as the time of tumour onset, were all recorded for each of the 100,000
iterations of the back-calculation. These parameters are then read into the simulation
model as paired values of tumour onset and growth parameters in order to ensure
that the tumour reaches a detectable size at an appropriate age, and in an attempt to
control some of the variation within the model.

Figure 6.8 shows the resulting distributions found for the age of cancer onset under
the different tumour growth assumptions. It can be scen that the differing
assumptions of the models lead to a large (up to 20 year) difference in assumed
growth times for breast tumours until detection, with the Gompertzian model
providing the shortest growth times, and the logistic model the longer growth times.

6.4 Tumour Detection

This Section aims to describe the methods used to model the probability of tumour
detection (by mammography screening or otherwise) within the simulation model,
and to explain the reasons for the chosen approach.

Since cost effectiveness of screening programmes is not a prime objective of the
current research, mammogran: specificity (the probability of a true negative being
correctly identified) has not been included in the simulation model. If cost
effectiveness of mammography screening was of interest then the specificity of the
screens would be an important variable to measure as it would provide the rate of
over-diagnosis (false positives) at the screening unit which would lead to a cost in
terms of follow-up appointiments and tests. The next Section introduces literature
pertaining to the probability of tumour detection via mammography screening, and
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Figure 6.8: Derived Cumulative Age of Onset Distributions by Growth Pattern

presents the chosen method of approximation within the breast cancer simulation
model. This is followed by an explanation of how detection by other means (self
detection via breast self examination or presentation of symptoms) is handled within

the discrete event simulation model.

6.4.1 Mammography Sensitivity

The sensitivity S of a test is usually defined as the proportion of true positives found
in the proportion of the population that was tested, such that in the case of cancer

screening
D,

B=or

where S is the screening test sensitivity, D, the number of true positive screening
results, and N, the underlying number of people screened who did have cancer.
Ideally, a test would be 100% sensitive and always find a cancer should it exist,
however this would be extremely difficult in the case of breast cancer given the

differences in breast tissue and breast tumours themselves.

The underlying numbers of women who have breast cancer in a population is difficult
to determine (since tests cannot be 100% sensitive), and so estimates of mammogramn
sensitivity have varied. Two methods of reporting mammography sensitivity have

been observed in the literature, the ‘detection’ method and the ‘incidence’ method
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(Fletcher et al., 1993). Firstly, the detection method considers the proportion of
cancers detected at a screening session in comparison to those and other interval
cancers (cancers diagnosed between screening attendances) detected within a year of

the screening session.
D;

S=5 1D

Where D, is the number of cancers detected at screening, and D; is the number of
interval cancers detected within a year of the screening session.

A more accurate method preferred by the International Agency for Research on
Cancer (IARC) is the incidence method, (IARC, 2002). This method expresses
sensitivity as one minus the incidence of interval cancers expressed as a proportion of
the estimated underlying incidence of breast cancer in the considered population,
such that

o 1- Di

S <
I

where D; is the number of interval cancers within a year of screening, and I is the
estimated underlying incidence in the population.

Numerous attempts have been made to estimate the sensitivity of mammography
based on data from controlled trials, quasi trials, and from population-based
screening programmes. The IARC Breast Cancer Screening Handbook cites several of
these with results ranging from 68% up to around 90% for the detection method. The
quoted results from the incidence method produced lower estimates ranging between
52% and 82%.

Mammography sensitivity has been shown to vary with age, (the younger the patient
the less sensitive the procedure). This may be in part due to the density of the breast
which is thought to have a negative association with mammographic sensitivity,
(Michaelson et al., 2003b). Other factors that can affect the variability of the
mammograms sensitivity and quality include the optical density of the machine itself,
the quality of the processing, the examination technique (position and compression of
the breast), and the performance of the radiologist reading the film, (IARC, 2002).

The size of the tumour would appear to be an obvious factor for determining the
likelihood of a mammogram detecting the tumour, however little research has heen
identified addressing this issue. The only paper found to date to estimate the
efficiency of mammography given the size of the tumour is also believed by the
authors to be the first of its kind. Michaelson et al. (2003a) produced estimates for
the sizes at which breast cancers become detectable by screening. Data from 810
invasive carcinoma diagnosed at Massachusetts General Hospital between 1990 and
1999 were used to estimate mammography efficiency by two methods. Firstly, the
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sizes of tumours at previous mammography screens were estimated by
back-calculating from the size at discovery (absolute efficiency method), and secondly
a comparison was made between the efficiency at and around the mid-point of the
size of detected tumours and from this estimated efficiency at other sizes, (relative

efficiency method).

Both methods produced similar results, and Figure 6.9 shows the estimated
distribution of detection sizes for screened cancers as produced by Michaelson et al.
via the absolute efficiency method.
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Figure 6.9: Efficiency of mammographic detection by tumour size, Michaclson et al. (2003a)

A distribution was fitted to this data using Palisades’ BestFit for Windows version
2.0d. Although the statistical best fit to the data was produced by a PearsonlV, no
closed form exists for the cumulative PearsonIV for sampling, so instead a Weibull
was used. The data were found to fit the cumulative Weibull(1.2,1.03) with a
confidence of 95% by the chi-squared method, and Figure 6.9 demonstrates the fit.

Each time a woman attends screening in the model, a calculation is then made based
upon this Weibull distribution as to the probability of detection p(x), such that

pla) =1 - e ()"

where z is the size (diameter) of the tumour in cm at the time of screening.

6.4.2 Detection by other means

In order to compare the efficiency of mammography regimes it is necessary to estimate

the times at which the tumour would have come to light by other means rather than
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having been detected by mammography as part of a screening programme.

Tabar et al. (2002) report on the results of the Swedish Two County Trial which was
a randomised control trial of invitation to breast cancer screening conducted in
Sweden in the 1970s. Included in the analysis is a breakdown of the sizes of tumours
presenting in the passive study population (the control group not invited to
screening). The size frequencies of tumours from this population are provided in
Table 6.6.

Tumour Size (cm) | Percent
0.1-0.9 7.1
1-14 154
1.5-1.9 19.7
2.0-2.9 29.0
3.0-4.9 20.0
5.0+ 8.8

Table 6.6: Percentage distribution of tumour size for the control group in the Swedish Two
County Trial, Tabar et al. (2002)

From the percentages shown in Table 6.6, a cumulative distribution of the sizes at
which breast cancers may come to light in the absence of screening (by self detection
or by other means) was derived using the upper bounds of the size groupings. The
last category, for sizes greater than 5cm was given with an upper bound of 7.5cm
since this is the maximum observed in other research, (Michaelson et al., 2003a).
Palisades’ BestFit for windows version 6.0d was then used to fit a distribution to the
cumulative data. The data followed the Erlang(3,0.85) distribution with a confidence
level of greater than 95% by the chi-squared statistic. Figure 6.10 shows the fit to the
cumulative data.

When a breast cancer initiation is scheduled in the simulation model, a natural time
of discovery is also scheduled. This natural discovery time is calculated from the size
of discovery which is set to follow Erlang(3,0.85).

More recently Michaelson et al. (2003a) also produced estimates of the distributions
of breast cancers detected without screening. Their data may be a slight
underestimate since the sample is taken from the same population (Massachussetts
General Hospital) as discussed in Section 6.4.1, therefore the distribution of ‘other
detected’ cancers may be skewed as some breast cancers that could otherwise have
been detected at larger sizes may have been found via mammography screening at a
smaller size. Indeed, the median of Michaelson et al.’s ‘other detected’ distribution is
1.5cm rather than approximately 2cm as suggested by Tabar et al.’s data. It may be
the case, however, that self detection sizes have reduced due to increased awareness,
and for this reason an option to use the distribution suggested by Michaelson’s data
has been included within the simulation model.
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Figure 6.10: Fit of the Erlang(3,0.85) distribution to the Swedish Two County Trial Control
data of breast cancer detection sizes Tabar et al. (2002)

As above, Palisades’ BestFit for Windows was used to fit a distribution to the
cumulative probabilities provided by Michaelson et al.’s results. The best fit was
given by an Erlang(3,1.7) which provided a significant fit at the 95% confidence level
by the chi-squared statistic. Figure 6.11 demonstrates the fit to the data.
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Figure 6.11: Fit of the Erlang(3,0.6) distribution to the non screen detected cancers at
Massachussetts General Hospital, Michaclson ct al. (2003a)

During a simulation model run, a time for self detection is scheduled for each woman.
A size of self detection will first be calculated using the appropriate generator and
then the time-to-discovery derived as appropriate, based upon the individuals tumour

growth characteristics (sampled appropriately as previously discussed in Section 6.2).
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6.4.3 Tumour Detection Summary

Figure 6.12 compares the probability distributions selected as representing
mammography detection and other detection. It can be seen that maminography has
the ability to detect tumours at a much smaller size than they usually present
otherwise. The probability of mammography detection is modelled based upon the
size of the tumour at the time of the screen, and this probability is approximated
with a Weibull distribution with parameters (1.2,1.03). The size at which detection
by other means occurs is sampled from an Erlang distribution with parameters
(0.85,3), and the corresponding time of detection in the simulation is calculated based
upon the individuals tumour growth characteristics and time of tumour onset.

Probability
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[——Othor dotection (Ertangt0.35.3)) —— Mamsmonrapny detection twaibul(1.2.1.03)1 |

Figure 6.12: Selected distributions of self detection and mammography detection given tu-
mour size

6.5 Survival

A patient’s prognosis once diagnosed with breast cancer is dependent upon a number
of factors, the most recognised of which are listed below, (BMJ Publishing Group
(2004), and The Breast Clinic (1997)).

1. The ‘stage’ of the cancer, see discussion that follows.

2. Tumour size. As tumour size increases the expected survival rates decrease.

3. Lymph node involvement. The presence of cancer cells in the axillary lymph
glands of a patient indicates that the tumour has spread at least as far as the
lymph nodes, with the chances of distal spread (metastasis spread to other

regions) more likely the more nodes affected.

4. Hormonal status. Whether the tumour is sensitive to oestrogens, inferring
oestrogen is required to aid tumour growth. This helps to indicate how well the
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tumour will respond to post operative chemotherapy.

5. Tumour grade. Tumour grade (measured as 3 grades) is a measure of tumour
cell characteristics, and how close they are to breast cells. The higher the grade,
the more abnormal the cells, and the lower the survival rates of patients, (The
Breast Clinic, 1997).

6. Tumour pathology. Tumour pathology relates to the type of tumour which may
be non malignant (ductal carcinoma in situ, DCIS), malignant {ductal cancer),
or of an unusual type. DCIS has the best survival probability as it is non
malignant and confined to the breast so removal should approximate a cure if
diagnosed correctly. Ductal cancer on the other hand has a worse prognosis
than other types of malignant cancer, (The Breast Clinic, 1997).

7. Age of the patient. When diagnosed in younger women, breast cancer has a
tendency to be more aggressive than in older women, and therefore age can
influence the survival probability of the patient, (Jimor et al., 2002).

The relation between these factors and breast cancer survival has been much
researched (e.g. Koscielny et al. (1988); Carter et al. (1989); Sunderland and
McGuire (1990); Eskelinen et al. (1992) and Meyer and Province (1994)).

The ‘stage’ of cancer refers to the The International Union Against Cancer’s
classification system used to group similar cancers together, and is based on a TNM
(Tumour Node Metastasis) classification. The measures the classification system
considers are, the size of the tumour, lymph node involvement (local spread), and
whether metastasis is apparent (distal spread). Five stages describe the cancer
progression, varying from a non-malignant cancer in situ, with no lymph node
involvement or metastasis, (stage 0), to a tumour with both nodal involvement and
metastatic spread, (stage IV). As the stage of breast cancer increases, the expected
survival rates decrease, (BMJ Publishing Group, 2004).

Survival statistics for breast cancer are most often given in terms of the proportion of
patients who would be expected to survive for a period of time after treatment. Due
to the nature of the statistics the results are often not up to date. Statistics
considering the impact of new advances in treatment and prevention, or survival
given no treatment, are understandably rare. The good news is, though, that modern
treatments and earlier interventions do appear to be leading to improving survival
rates for breast cancer, with one study results even indicating a 1% reduction in risk
for patients with recurrent breast cancer, with each increasing year, (Giordano et al.,
2004).

As previously discussed, a patients probability of survival will be dependent upon a
number of variables, some of which may be unknown at the time of diagnosis, and
others which may still be unknown to scientists. Therefore, modelling approaches for
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the prediction of patient outcomes can take many forms ranging from complicated
approaches with many input variables and stochastic analysis, to more basic and
broad approaches giving less precise estimates of survival.

An example of the more comprehensive approach is that by Pittman et al. (2004)
who consider including genetic information as well as the usual clinical information,
as inputs for the prediction of breast cancer recturence. Their approach uses
statistical classification and decision tree modelling to evaluate the inclusion of
genetic information to the modelled recurrence probability. Results indicated a
significant increase in predictive power by including the genetic information, with the
capacity for up to 90% sensitivity and specificity for the individual prediction of
disease recurrence. Of the clinical inputs, lymph node involvement, (and the munber
of nodes involved), was the most significant risk factor for recurrence, and they
concluded that traditional tree models for the prediction of disease outcomes can be
improved by the inclusion of genomic data.

Useful to health professionals are prognostic scoring tools that combine several
different clinical indicators for prognosis, to produce one overall score. Such scores
and techniques are useful in order to combine the different information into one scale
and to group patients by risk status. A well used example of such a tool is the
Nottingham Prognostic Index (NPI). The NPI considers three prognostic indicators,
tumour size, lymph node stage, and histological grade, and computes a prognostic
score as follows,

NPI =02S4+n+~

where S is the tumour size in centimetres, 7 is the histological grade of the tunour
(1= good, 2= moderate, 3= poor), and 7 is the lymph node stage (1= node negative,
2=less then three metastatic nodes, 3 = four or more metastatic lymph nodes), The
Breast Clinic (1997).

The NPI is commonly used to group patients into one of three prognostic groups,
good’ (NPI < 3.5), moderate’ (3.5 < NPI < 5.4), and poor’ (NPI > 5.4). The
three groups of patients have very different prognoses, with the good’ category
relating to about 85% survival after five years, reducing to 70% for the moderate’
group, and 50% for the ’poor’ category, (The Breast Clinic, 1997). The Index has
been validated and applied frequently e.g. Galea et al. (1992). It has been pointed
out, though, that with the change in presentation of breast cancer due to national
screening programmes, the statistical weighting and cut-off points in the index may
have changed since it was formulated in the 1980’s, (Anderson).

Modelling for the prediction of survival
The breast cancer simulation model described in this thesis takes women through
time, and advances the cancer by increasing the size of the tumour. Therefore, other
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information such as histological grade and lymph node stage would require estimation
from the size of the tumour. It may be simpler and less costly (in terms of simulation
run time and size as well as an increase in variability so perhaps error), to estimate
prognosis on the basis of tumour size alone. Publicly available survival statistics for
breast cancer are rarely available by size of the tumour. The yearly audit of screen
detected cancers contains survival analysis by each of the major prognostic indicators
including size of the tumour, (Programme and of Breast Surgery at BASO, 2002).
However, these statistics are calculated from screen detected cancers alone, and it
may be the case that survival distributions from interval detected cancers, or other
non screen detected cancers, differ from those of screen detected cancers.

Published survival rates from breast cancer are also available based upon follow up
studies from the Swedish two county trials. Here survival statistics are broken down
by size, nodal status and histological type, but it is not clear whether the statistics
refer only to the study population (i.e. those invited to screening) or include the
passive study population (those not invited for screening until after the trial), (Laslo
et al., 2000).

Michaelson et al. (2003b) produce an equation for relating tumour diameter to
survival for breast cancer, based upon three groups of previously published survival
rates. Michaelson et al. approximate the survival of a fraction of women (F) from
breast cancer for approximately 15 years, by

F = e_QDZ

where D is the diameter of the tumour and Q,Z are constants.
When compared to previously published survival data, their model was shown to be a
strong predictor, and Q and Z were found to be roughly 0.006 and 1.3 respectively.

Michaelson et al. show that their model is consistent with biological mechanisms
leading to lethal metastasis, with probabilities based upon the number of tumour
cells or tumour cell days. Their model therefore takes account of metastasis without
specifically considering its presence in an individual, but instead calculates an overall
probability of 15 year survival (F) for a given population.

While this relation can tell us the probability of survival to 15 years, it cannot
provide an estimate of when death may occur in the time interval. In order to
approximate a time to any death from breast cancer (as the simulation model
requires) two percentage points could be used to estimate the parameters of a Weibull
distribution. The tumour size equation suggested by Michaelson et al. (2003h)
provides a percentage point at roughly 15 years, and while other work has attempted
to consider relations between tumour size and subsequent survival, they have grouped
tumour size into large bands, and/or excluded cases whereby metastasis was already
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present therefore skewing the results, (Verschraegen et al. (2005); Engel et al. (2003);
Carter et al. (1989)).

The ultimate cause of death from breast cancer is believed to be from tumour
metastasis, and survival has been shown to be unrelated to tumour size once
metastasis has occurred, Engel et al. (2003). The association between breast cancer
size and survival is, under this hypothesis, due to the association between the
probability of, and lifetime of, metastasis with tumour size. Thus if it is possible to
simulate the time at which metastasis occurs then it should also be possible to
simulate life expectancy. Figure 6.13 provides a schematic illustration of this idea,
where tg is the initial time of tumour onset, ¢, the time of tumour metastasis, t» the
time that this metastasis is diagnosed, Cp, C) and Cs are the probability of cure given
the time of diagnosis 4, and D1 and D2 the time of natural death from breast caucer
and death from breast cancer if treated, respectively.

The time at which tumours metastasise has been studied by many authors, (Kendal,
2001; Engel et al., 2003; Heimann and Hellman, 2000). Koscienly et al. (1984)
produced estimates of the size of the primary tumour when metastasis is inevitable,
by considering the distribution of metastasis and recurrence upon follow-up given the
size of the primary tumour at diagnosis. This distribution of primary tumour size
forms the basis for the threshold value £; in the model, and was found to be
Lognormally distributed with the log values taking mean 3.16ml and standard
deviation 2.62ml. The time the tumour takes to grow to this volume is calculated by
considering that tumour growth is spherical according to the appropriate growth
model (see Section 6.2).
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Figure 6.13: Tumour Progression as Modelled in the Simulation
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From Figure 6.13, A is the time of tumour diagnosis (regardless of the type of
detection). Under this hypothesis, if detection of the tumour occurs before
metastasis, ie (¢t; > A), then the patient should not die from breast cancer or suffer
any recurrences once the primary tumour has been removed, (assuming that the
operation is 100% successful in removing the whole tumour). Therefore the
probability of cure before metastatic spread is inevitable is 1, ie C; = 1.

If, on the other hand detection of the primary tumour occurs after the occurreuce of
metastasis then at some point this metastasis will become troublesome and may
ultimately lead to death at time D2, (if natural death does not precede this time).

Whether a patient can ever be completely cured of breast cancer is difficult to
determine since metastasis and death have been shown to appear up to 25 years after
treatment for the primary tumour, and it is not until after this time that death rates
from breast cancer patients begin to mirror that of the rest of the population,
(Yakovlev et al., 1999). Estimates of the cured fraction of breast cancer patients
given the stage of the primary tumour at diagnosis have been made, (Myasnikova

et al., 2000; Yakovlev et al., 1999). Since stage three refers to the diagnosis of distant
metastasis, this can give an idea of the likelihood of cure for patients once metastasis
is at a stage to be diagnosed (t > o), and results for grade two can provide a rough
estimation of the cure rate for patients with early metastasis (t; <t > t3). Table 6.7
provides a summary of the findings by Yakovlev et al. and the corresponding values
used within the simulation for calculating the probability of cure from breast cancer.
These probabilities are derived as the mean of the means across the age groups
studied (not weighted by the numbers in each group since this information was not
provided). The probability of cure before metastasis was taken to be 1 as indicated
previously.

Stage Yakovlev et al. (1999) | DES Simulation Parameter

1 - Local 0.7-0.75(0.65-0.79)

2 - Regional | 0.37-0.42(0.28-0.48) C1=0.39

3 - Distant | 0.09-0.15(0.01-0.23) Co =0.125
Table 6.7: Cured fraction of patients given tumour progression, mean range and 95% CI
range over ages in brackets

If the cancer is not considered as cured then the patient will be scheduled to die from
breast cancer. The time to death from breast cancer once metastasis has been
diagnosed and treated has been shown to be roughly 2 years, regardless of primary
tumour size at diagnosis, (Carter et al., 2003; Engel et al., 2003).

The time from the initiation of metastasis until the primary tumour reaches a
detectable size has been estimated to be on average 45 months or just under 4 years,
(Koscienly et al. (1985), 18 doubling times multiplied by the median doubling time
for metastasis of 2.5 months). In this paper the time-to-diagnosis of metastasis was

107



considered to be fixed in terms of the doubling time of the tumour in question, at 18
doubling times. The variation in the time-to-detection is then associated with the
achieved variation in metastasis doubling time modelled. The variation interval
assumed for the metastasis doubling time was between 0.49 and 13.1 months,
corresponding to a time range until discovery of 8.82 months to 19.65 years. The
standard deviation used to estimate the metastasis doubling time (assumed to follow
a Lognormal distribution) in the paper is 2.316 months.

In this simulation, time-to-diagnosis of the metastasis is considered to be 18 times the
sampled metastasis doubling time. Metastasis doubling time is taken to follow the
same distribution as assumed in Koscienly et al.’s work which is Lognormally
distributed with logged values taking mean 0.92 months and standard deviation 0.84
months. Death (D) is scheduled to follow 2 years later. This approach assumes that
metastasis doubling times are unrelated to the doubling times of the primary tuinour.

It may also be the case that the breast cancer goes undiagnosed, and that death
occurs before treatment can take effect. Data concerning untreated breast cancers are
understandably rare, however not unheard of. Bloom et al. (1962) considered the
natural history of 356 patients who died in Middlesex hospital between 1805 and 1933
(untreated due to a lack of treatment for cancers at that time). They found that the
time from symptom onset (as reported by the patient) until death ranged from 2
months to 219 months (or just over 18 years), with a mean of 2.9 years. The
cumulative survival rates provided in the paper were fitted to a Gamma(1.53,2.20)
distribution by BestFit v2.0d and it is this distribution that is used to determine the
time from the onset of symptoms until death (in years) if the breast cancer is not
treated. The time to the onset of symptoms is modelled as the time of self or other
detection, see Section 6.4.2.

However, since it is presently assumed that all tumours will eventually self detect if

not detected by screening, and upon self detection a woman will seek medical advice,
this functionality is not currently utilised by the model. The theory is left within the
code, however, so that future work may investigate the effects of delay in seeking help.

6.5.1 Survival Summary

The discrete event simulation reported in this thesis assumes that metastasis is the
ultimate cause of death from breast cancer, and that detection before metastasis
occurs will lead to effective treatment and the prevention of death from the disease.

The time of metastasis is derived from a distribution of sizes for the primary tumour
when metastasis is inevitable. It is then assumed that, if the primary tumour is
detected before the metastasis is detectable, then the patient has a higher chance of
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Variable | Value Note

t1 t0 + time to size(exp(normal(3.16ml,2.62ml))) | Size in volume ml

t2 t1 + (18/12)*exp(normal(0.92,0.84)) ycars

Co 1

C1 0.39

C3 0.125

D1 time to symptoms + 12*Gamma(1.53,2.20) Time to symptoms = self detection
D2 t2 + 2 years

Table 6.8: Summary of variable values used within the simulation

effective treatment, than if the tumour becomes apparent after this time. The time

until the metastasis becomes detectable is sampled appropriately for each individual.

Table 6.5.1 summarises the distributions used within the model for the various
time-scales and probabilities as depicted in Figure 6.13.
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6.6 Behavioural Data

As previously discussed, the simulation model assigns behavioural attributes to each
simulated woman which then control her behaviour within the model. Behaviour
modelling is restricted to considering attendance at each invited screening session for
each woman modelled. The particular behavioural variables of relevance, and the way
that they combine to affect the simulated pathway for each woman, is governed by
the chosen psychological theory. The user has the option of modelling the attendance
at invited mammography screening sessions using either local or global percentage
attendance, the Theory of Planned Behaviour (TPB, see chapter 2), or Baker and
Atherill’s compliance model, (Baker and Atherill, 2002), as discussed in Section 4.3.

The options for local and global percentage attendance are described in detail in
Chapter 5, and require no further data input/analysis beyond the user input of the
percentage of people who attend screening. As such these two options are not
described here. Instead, the modelling for the Theory of Planned Behaviour (TPB)
and the equation option for approximating attendance at breast screening are
described in the sections that follow.

6.6.1 The Theory of Planned Behaviour

This Section aims to describe the method by which the Theory of Planned Behaviour
(TPB) was implemented within the breast cancer discrete event simulation. For a full
description of the Theory of Planned Behaviour, please refer to Chapter 2.

The Theory of Planned Behaviour outlines three main constructs of attitude,
subjective norms, and perceived behavioural control (PBC), relating to a behaviour,
that influence intention and the action of the behaviour, (please see Section 2.2.5 for
a full description of the model). In order to use this theory within the simulation
model it was necessary to have a quantitative measure of the models constructs and
relations. This required estimates of the distributions and correlations between the
three main constructs, as well as their interactions, and regression weights, to predict
both intention to perform the behaviour, and the behaviour itself. Research was
identified that had tested the Theory of Planned Behaviour for predicting attendance
at breast cancer screening (see Chapter 3). An author of a recent such piece of
research within the UK, (Rutter from Rutter (2000) discussed in Chapter 3), was
contacted and kindly agreed to share the data that had been collected for the study.

The dataset is in an SPSS data file, and rccords the responses of 2058 randomly
sampled women from three health authorities in the UK. The questionnaire comprises

demographic and socio-economic information, as well as recognised measures for the
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qualitative constructs in the Theory of Planned Behaviour. The questionnaire was
sent out to the random sample of women before they were invited for their screening
session. Answers to the majority of questions were requested on an ordinal rating
scale, and the final calculated measures of attitude to mammography, subjective
norms relating to mammography screening, and PBC in relation to screening
attendance, are all scale variables calculated from the rating scale responses. Tables
B.1 and B.2, (in Appendix B), provide summary statistics for these three variables as
well as for the ordinal variable intention to attend, (measured on a 5 point ordinal
scale ranging from definitely yes to definitely no).

The dataset also includes the attendance/non-attendance information for each
woman at the subsequent screening session, as well as the next screening session threc
years later, collected from the relevant mammographic screening clinics.

Analysis of Data

Cases for which values for any of the three predictor variables were missing (attitude,
subjective norms, or PBC), or for whom attendance information was missing, were
removed from the analysis. This left a sample of 1846 cases, 1586 of whom attended
their invited screening session, and 283 who did not.

Under the Theory of Planned Behaviour the three variables, attitude, perceived
behavioural control, and subjective norms, combine in a linear regression equation to
predict intention to attend. Intention to attend and PBC then go on to predict the
behaviour itself with their own regression weights. If this is the case then it should
also be possible to model attendance as a direct function of the three predictor
variables (attitude, subjective norms, and PBC), and effectively skip the intermediate
variable of intention, as shown below.

Intention = -~y(Attitude, SubjectiveNorms, PBC)
Attendance = §(PBC, Intention)
= §(PBC,~y(Attitude, SubjectiveNorms, PBC))
= n(PBC, Attitude, SubjectiveN orms)

for some linear functions ~, ¢, and 7.

Since attendance (y) is a binary response variable, (either the person attended or
they did not), the probability of attendance, 7, can be considered as the result of a
Bernoulli trial with probability 7 of success. The probability 7 can then be modelled
as a linear function of the inputs attitude, subjective norms, and PBC, denoted

X1, X, and X3 respectively. In order to ensure 7 lies between 0 and 1, a logistic
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transformation is performed such that

m [T EE) — By + B2 X1 + BsXa + faX.
l-ﬂ'(&,g) 1 2% 1 32 433

or

_exp (B + BoXi + B3 Xo + B4 Xs)
T (&’ -ﬁ-) " l+exp(Br+ BoX1+ BaXo+ BaX3)

where X = (X1, Xs, X3)", and 8 = (B1, Ba, B, Ba)"-

The parameters f; for i = 1,2, 3,4 were calculated using the method of maximum
likelihood. The log of the likelihood was minimised, where

LogLikelihood = Y In (r(X,,0) + Y In(1-n(X,,B))
Jyi=1 Jyi=0
For j = 1,2..1846.

The minimum was found using the Nelder-Mead optimisation algorithm with a
confidence level of 0.05.

Table 6.9 shows the resulting values of §; for ¢ = 1, 2, 3, 4. For more information
regarding logistic regression with Binomial response variables, the reader is referred
to Krzanowski (1996).

Parameters | Estimates | Lower 95% | Upper 95% | BootStrap BootStrap
Limit Limit Lower CI | Upper CI
Limit Limit
51 -1.34546742 | -2.13826322 -0.552671 -2.12407139 -0.5139070
02 0.008027605 | -0.001097429 0.01715264 -0.00112037 0.017595029
s 0.014644905 | 0.008482051 0.02080776 0.008865912 0.020940595
04 0.155316327 | 0.092143516 0.21848914 0.091814396 0.21792617

Table 6.9: The fitted [ values from maximum likelihood calculations, and their confidence intervals

Confidence limits for 3 were obtained using bootstrapping methodology as follows.
The sample of observed values, X; for j = 1,2...1846, were used as the basis of a
population from which new samples of the same size were created. Each time, the
minimum log-likelihood vales for 8 was found for the particular new sample in
question. This re-sampling was conducted 1,000 times and the 95% confidence limits
for B taken to be the 500th and 1500th values of the ranked ranges observed for each
Bi, (i =1,2,3,4). Table 6.9 provides the results. For more information about
bootstrapping, its application and uses, please see Davidson and Hinkley (1997).

When the range of the values for § were plotted in scatter plots across the
re-sampling runs, éj, it could be seen that the behaviour of the X ; were not
particularly skewed and that assumptions of normality would not be unreasonable
(for j = 1,2...1846), see Figure 6.14. The asymptotic confidence limits were then also
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calculated for comparison, see Table 6.9 for results.

b1/b2 L b1/b3 .  bibd

b2/b3 b2/b4

0.0

0.0 0.0 0.0 0.0

Figure 6.14: Range of ( values observed in bootstrapping, where bi is g; for i = 1,2, 3, 4.

The lower confidence interval for B, crosses zero, indicating that X, (attitude to
mammograply screening), may not be a significant predictor within this sample.
Figure 6.15 helps to demonstrate the effects of X upon attendance, y. As the least
significant variable, the data were first grouped by ranking X, and dividing the data
into three sections, where X; was low (group 1), medium (group 2), and high (group
3). Scatter plots were then created comparing the relationship between subjective
norm scores (X»), and PBC scores (X3), given attendance, for each observed case
from the sample. As can be seen, while the attitude scores may not be statistically
significant, they appear to have a nonlinear effect upon the probability of high PBC
scores in the sample of non-attendees.

The fit of the logistic model to the prediction of 7 can be seen from the range of the
confidence limits around the F;’s (Table 6.9). Figure 6.16 demonstrates the logistic
models effect upon the probability of attendance, by plotting the empirical
distribution function of the ; for the observed sample j = 1,2...1846, given actual
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Figure 6.15: Plots of the Subjective Norm (X3) scores against the PBC (X3) scores given
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Sampling in the Simulation

When the simulation of breast cancer is first run, each woman in the simulation is
provided with a score for attitude, subjective norms and PBC. Since these variables
were found to be significantly correlated, (Rutter, 2000), it was felt that these three
values should be sampled at once from a single distribution. Rather than create a
multivariate distribution, it was felt that it would not be inappropriate to sample the
values from the original dataset since it provided such a large sample. Each simulated
woman is provided with a set of three values corresponding to each of the three
variables, by selecting a case from the original data set, at random. It is noted,
however, that in the future it may be worth considering developing a multivariate
distribution from which to sample the three variables since their behaviour does not

rule out a normality assumption, (see discussion above).

When a woman is called for screening, her individual probability of attendance, , is
calculated such that, as above,

exp (Br + X1 + B3 Xo + 1 X3)

X = '
m (—’ ﬁ) 1+exp (/31 + ﬂQ‘X—l + B3 Xo ﬂle-'})

where the g;’s (for i = 1,2, 3,4) take the values given in Table 6.9. If a random
number between zero and one is greater than this calculated n then the woman will
not attend this particular screening session, and if it is less than or equal to 7 then
they will attend.



6.6.2 Baker and Atherill’s Compliance Model Data

Baker and Atherill’s Compliance Model generates probabilities of attendance based
upon previous attendance, with previous attendance weighted geometrically so that
the most recent attendance/non attendance has the most influence, (Baker and
Atherill, 2002). Extra weight is assigned to the first attendance/non attendance, and
the age of the woman invited for breast screening is also taken into account.

The equation and further information about Baker and Atherill’s Compliance Model
can be found in Chapter 4 and Section 4.3. The approach is based upon observations
of attendance patterns at breast screening in Manchester, and the variable values
from the equation were estimated by the authors using maximum likelihood. These
values are given in Table 4.1 (in Section 4.3), and it is these values and the equation
described in the same Section, that are used within the breast cancer simulation
model.
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6.7 Model Verification

It is important that any simulation code is adequately verified in order to ensure that
the code accurately represents the conceptual design of the simulation. The following
methods were employed in order to ensure that the model code for the simulation
reported within this thesis was reliable and valid.

Major class modules to the simulation were first built as standalone modules outside
of the main simulation. This was done in Visual Basic for Applications for MS Excel,
and inputs, relevant workings, and outputs were fed to worksheets to enable visibility
of processes within the code. Sampled values were also recorded in order to compare
with the expected distributions. This was done for each of the growth pattern
assumptions in the model, as well as for the equation and TPB behaviour models,
cancer onset, mortality, survival from breast cancer, and tumour detection.

A combination of interactive debugging (stopping the code when specific routines are
called or values change, and setting values to force an event), and running the code
under simplified conditions (for example with only a few individuals, or iterations,
and/or forcing all women to attend screening), helped to ensure that the code
modules interacted well with one another and that events were being scheduled and
managed as they should be.

Tracing was performed throughout the build of the simulation, and several times
before the results were run. This involved stepping through the code one step at a
time, and noting down values assigned to ensure consistency within the code. In this
way, once complete, it was possible to follow’ individual women (entities) through the
simulation over time, and ensure that they were screened, self detected, and died at
the appropriately sampled times, and that the tumour grew at appropriate rates.
Although the individual pieces of code had been verified as above, this tracing helped
ensure that the code worked as a package and that consistency was maintained. This
was carried out at least once for each of the growth patterns and behaviour options
within the model in turn, as well as once for each of the screening programmes
investigated, (under exponential growth and local percentage attendance
assumptions).
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6.8 Model Validation

“Validation is the process of determining whether a simulation model is an
accurate representation of the system, for the particular objectives of the
study”

Law and McComas (2001)

It was important that not only did the code that made up the simulation model
accurately represent the models concepts, but also that the concepts themselves were
fit for modelling the different breast cancer screening strategies considered within this
study.

Sargent (1991) discuss two aspects of model validity, conceptual model validation,
and operational validity. The following two sections discuss each of these validation
concepts in relation to the discrete event simulation described in this thesis.

6.8.1 Conceptual Model Validity

Conceptual model validity refers to the face validity of the models theories and
assumptions. In this case, does the simulation model described in this thesis simulate
the effects of screening mammography in the UK accurately enough such that the
effects of different behavioural assumptions within the model may be compared? It is
hoped that the answer to this question is “yes”, and we now describe how this was
achieved.

The modelled theory of the natural history of breast cancer was put together after
substantial consideration of the literature pertaining on breast cancer simulation
models (see Chapter 4 for details), and the structure of this simulation model is
comparable to many of the simulations, and current theories of breast cancer
development. While the natural history of breast cancer is not modelled at its most
detailed level (for example no explicit account is taken of tumour grade or stage,
rather tumour size governs prognosis within the model) it was felt that making such
simplifications did not have a detrimental impact upon the aim of the modelling work
which was to explore the effects of different behavioural modelling, upon the
simulation outcomes.

Since the literature revealed that there was no consensus as to the pattern of tumour
growth, four of the most prevalent widely used patterns of tumour growth were
included within the analysis for comparison. This decision was made as it was not
clear what effect making assumptions of tumour growth pattern may have upon the

outcome of the behaviour analysis, and it was felt important to ensure that no single
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assumption of tumour growth was made that could lead to skewed or misleading
results.

The theory of planned behaviour (TPB) was chosen as the psychological theory to
include in the simulation model. This decision was again taken on the basis of a
literature review of predictive behavioural theories regarding health behaviours (see
Chapter 2). The TPB was found to be a popular model, and was also regarded as
more formally structured therefore lending itself more easily to being tested,
measured, and modelled.

In addition to consulting the literature, experts in the field were contacted and their
opinions sought regarding both the natural history of breast cancer and how this is
approximated within the model, and also the choice of psychological model and the
method(s) by which behaviour should be modelled within the simulation.

6.8.2 Operational Validity

Operational validity refers to whether or not the outputs of a simulation model are
accurate enough for the purpose of the analysis. The most appropriate method by
which to ensure the breast cancer simulation model produced appropriate results
appeared to be to compare the outcomes of the simulation with observations under
the UK national screening policy.

6.8.3 Age of presentation

The Cancer Research UK website documented the number of newly diagnosed cases
(and rates) of breast cancer by age group within the UK during 2002, (Cancer
Research UK, b). At this time the UK screening policy was to screen women from
age 50 every 3 years up until age 64, and in 2002 a 75% attendance rate at invited
screens was achieved. Therefore the simulation model was run, for each of the growth
and behaviour modelling assumptions in turn, with a screening policy of starting to
screen at age 51 and ending invitations at age 63, with invitations every 3 years
within this period. 5 iterations of the simulation were completed under each setting,
each time simulating 1000 women over 100 years, with detailed results collected. The
results were then used to generate samples of simulated individuals who had their
breast cancer detected either via mammography screening or by self detection, and
the age at which they were detected. This led to a sample of well over 900 cases for
each simulation setting. The empirical distribution function of this age at detection
was then compared to the cumulative distribution function of the distribution of new
cases diagnosed in the UK during 2002.
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Figures 6.17 and 6.18 demonstrate the results from this analysis, and show that the
simulated distributions of the age of detection of breast cancer follow the observed
spread of ages very well. No formal tests have been carried out to assess whether or
not the simulated age of detection distributions follow the same distribution as
observed in 2002 since a hypothesis test would assume that the two scenarios are the
same, however in this case we are simulating rather than replicating a system and so
this assumption may not be valid (Law and McComas, 2001).
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Figure 6.17: Cumulative distribution for age of breast cancer detection in the UK in 2002 in
comparison with simulation age of detection under each of the tumour growth assumptions
and equivalent screening strategy, with assumed local’ 75% attendance.

It can be seen that the simulated age of breast cancer detections followed a similar
distribution to that observed in the UK in 2002. Noticeable jumps in the probabilities
are apparent at the screening ages for the simulated output, but not from the national
dataset. This is due to the simulation modelling inviting all individuals for screening
at the same age, whereas in practise the UK breast screening rounds invite women by
area in 3 year cycles so not all women will attend screening at the same ages.

Figures 6.17 and 6.18 help to validate a number of the simulation model assumptions.
Firstly, the age of onset of breast cancer was back-calculated from a sampled age of
breast cancer detection. This sample came from the same age dataset, however, the
figures for rates per population of breast cancer incidence versus age were used to
calculate the distribution. Therefore, the result that the distribution of the absolute
numbers of new cases of breast cancer in 2002 matches the age distribution of
detected cancers in the simulations helps to validate that not only are breast cancers
simulated to reach a detectable size at an appropriate age, but that they are then
detected at the appropriate age, and in addition to this, that death occurs at
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Figure 6.18: Cumulative distribution for the age of detection of breast cancer in the UK
in 2002 in comparison to simulated output for each of the bchaviour models and under
equivalent screening strategies, with the assumption of 75% attendance where appropriate
and exponential tumour growth.

approximately the correct age. If this were not the case the number of detected cases
in the simulation would instead follow the age distribution for the incidence rates.

6.8.4 Proportion of screen-detected cancers

At the end of the financial year, an audit of the UK breast screening programime is
carried out, and key results from the year published in bulletins for each Country.
Among the results published are the number of breast cancers that were detected by
the mammography rounds within the period. The 2002-03 bulletin for England
report gave a breakdown, by age group, of all screen detected cancers during the year,
(Programme, 2004). These figures included non invasive tumours, so to provide an
estimate of the number of invasive tumours detected it was assumed that 20% of
detected tumours were non-invasive as supported by the literature, (Sloane Project,
2002). From this it was possible to calculate the approximate proportion of newly
detected breast cancers that were detected via the breast cancer screening
programme in 2002, and compare this with the percent detected by screening output
from the simulation model when run with screening policy to start at age 51 every 3
years until age 63.

The results from the full model runs (300 iterations, 1000 women, 100 years) were
used as comparisons to allow for convergence of the outputs. The proportion of all
reported screen detected breast cancers by the breast screening programme in 2002
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was then calculated as 22.96%. In 2002, the overall acceptance rate of screening
invitations was 75% and so a full simulation, (for 300 iterations each with 1000
women for 100 years), was run assuming exponential tumour growth and a local
attendance rate of 75%. The outcome led to an average proportion of screen detected
cancers of 22.73%, very close to the calculated proportion for 2002.

In order to estimate the validity of the other behaviour and growth options within
the model, and since the full simulation runs were carried out with the assumption of
approximately 85% attendance, the calculated percentage for 2002 was proportionally
increased to expect simulated results in the order of 25.90%. Results can be found in
Tables 6.10 and 6.11 below.

Growth Pattern Percent detected by screening
Modified Gompertz 20.39
Logistic 29.93
Gompertz 9.20
Exponential 25.26

Table 6.10: Percent detected by screening for each growth model under the assumption of
local percentage attendance at 75%, (estimated from runs using 85% local attendance)

Behaviour Model | Percent detected by screening
Equation 20.78021323
Local 25.26140433
Global 23.9442253
TPB 25.06105864

Table 6.11: Percent detected by screening for cach behaviour model under the assumption of
exponential growth

As can be seen in Tables 6.10 and 6.11, with the exception of Gompertzian growth
assumptions, all other results indicate that between 20% and 30% of cancers that
were detected in the simulation runs were detected by screening. This falls in line
with the expected 25%, therefore adding confidence that the modelling assumptions
are suitable, with the possible exception of the assumptions surrounding Gompertzian
growth (see the results in Chapter 7 for a discussion).

6.9 Experimental Set-Up

Due to the stochastic nature of the simulation, each iteration of the model will
produce very slightly different results, with the variation in summary statistics and
confidence intervals reducing as the number of women simulated in the iteration
increases. A choice therefore existed as to whether to fix the number of women
simulated, or the number of iterations, and then optimise the other such that the
results of the simulation converged. It was decided to fix the number of women who
are simulated during each iteration at 1,000 women. This choice was made on the
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basis of computing power and simulation run time. As the number of women
simulated increases, the simulation takes longer to run due to the increase in
complexity and array sizes required. However, as some of the model parameters are
read in from input files at the start of each iteration, this also takes time. Having
experimented with the model, it appeared that simulating 1,000 women was best to
satisfy this speed trade off.

To insure that enough iterations of the model were run such that the results were
reliable, an experiment was run for 1,000 iterations under exponential growth
assumptions with a 75% local attendance rate at screening which was conducted from
age 51 to 69 every 3 years. The outputs of these iterations were then analysed to find
the number of iterations required for convergence using the confidence interval
method as described in Robinson (2004). This method involved calculating the mean
of the outputs up to the current iteration, and the confidence interval for this mean
(using the student t distribution). The point at which the deviation of the confidence
interval from the mean reaches an acceptable level provides the number of iterations
required for the modelling purposes. In this case there are 18 outputs from the
simulation model (see Chapter 5), and as pointed out in Law and Kelton (1991), the
Bonferroni inequality demonstrates that if a significance level () of 5% (i.e. 95%
confidence interval) is used to calculate confidence intervals for 20 outputs, then the
probability of all the intervals containing their means is 0. Therefore, the 5%
significance level was divided by 18 before use in the interval calculations such that

_ 005

- (6.10)

07

where n is the number of outputs, in this case 18 (n = 18, a = 0.05/18 = 0.0028).

A percentage deviation from the mean of 5% was considered sufficiently small, and
Figure 6.19 shows how the deviations reduced for the output variables as the number
of iterations increased.

As can be seen from Figure 6.19, by 250 iterations, all of the output variables’
confidence intervals were below 5% deviation from their means. The output variable
seen to be the last to converge to this level was that for the number of life-years saved
by the screening policy. This is logical since the output depends on many other
outputs, and therefore has greater variance than the others (for example it requires
screen-detection to have taken place, together with early detection to have delayed
death from breast cancer beyond the time of natural death for the individual).

On the basis of these results, it was decided that 300 iterations would be sufficient as
a default number with which to run the results. Once the result runs were completed,
the analysis was repeated with the outputs from all the simulation runs with screening
from 51 to 69 years every 3 years, to check that suitable output convergence had
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Figure 6.19: Means confidence intervals deviation from the mean with the numboer of iterations

indeed taken place. Tables 6.12 and 6.13 display the resulting percent deviation of

the confidence intervals from their mean outputs after the 300 iterations in each case.

As Tables 6.12 and 6.12 show, in the vast majority of cases, the percent deviation
from their means of the confidence interval for the outputs (over the 300 iterations)
remains at less than 5%, and in all cases is less than 7%. These results helped to
provide reassurance to the author that the mean results used for the analysis of the
different scenario results reported in this thesis, had converged to an acceptable level
for the desired purpose.
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Percent deviation Equation | Local | Global | TPB
Number screen-detected 1.05% | 0.91% | 0.98% | 0.94%
Number self detected 0.51% | 0.54% | 0.52% | 0.54%
Number with cancer 0.17% | 0.18% | 0.19% | 0.18%
Screen invited while had cancer 0.56% | 0.51% | 0.50% | 0.50%
Number undetected 1.30% | 1.35% 1.34% | 1.18%
Not screen invited while had cancer 0.73% | 0.73% 0.75% | 0.67%
Number with no cancer 1.48% | 1.55% 1.66% | 1.52%
Number who attended screening 0.35% | 0.26% | 0.34% | 0.27%
Percent Detected by screening 1.00% | 0.85% | 0.91% | 0.90%
Tumour size 043% | 0.47% | 0.48% | 0.47%
Time-to-detection 0.37% | 0.36% 0.36% | 0.37%
Self detected tumour size 0.39% | 0.38% | 0.41% | 0.44%
Self detected time-to-detection 0.43% | 0.41% 0.43% | 0.42%
Screen-detected tumour size 0.45% | 0.48% | 0.53% | 0.51%
Screen-detected time-to-detection 0.28% | 0.29% 0.27% | 0.26%
Life-years saved (of saved) 4.63% | 3.86% | 4.07% | 4.12%
Years earlier detected (of screen found) 1.31% | 1.09% | 1.17% | 1.16%
Average number of attendances (of attended) 0.36% | 0.23% | 0.26% | 0.28%

Table 6.12: Percent deviations of the confidence intervals from their mean outputs after 300
iterations for each behaviour model simulation (exponential growth, screening 51-69 cvery 3

years).

Percent deviation Mod Logistic | Gomp- | Expon-
Gompertz ertz ential
Number screen-detected 1.10% 0.82% 1.71% 0.91%
Number self detected 0.51% 0.58% 0.40% 0.54%
Number with cancer 0.26% 0.17% 0.30% 0.18%
Screen invited while had cancer 0.63% 0.46% 0.68% 0.51%
Number undetected 1.61% 1.34% 2.79% 1.35%
Not screen invited while had cancer 0.73% 0.71% 0.63% 0.73%
Number with no cancer 1.24% 1.61% 1.02% 1.55%
Number who attended screening 0.29% 0.28% 0.28% 0.26%
Percent detected by screening 1.05% 0.75% 1.65% 0.85%
Tumour size 0.49% 0.47% 0.37% 0.47%
Time-to-detection 0.37% 0.39% 0.52% 0.36%
Self detected tumour size 0.41% 0.41% 0.36% 0.38%
Self detected time-to-detection 0.38% 0.51% 0.52% 0.41%
Screen-detected tumour size 0.46% 0.49% 0.49% 0.48%
Screen-detected time-to-detection 0.30% 0.31% 0.35% 0.29%
Life-years saved (of saved) 4.59% 4.05% 6.24% 3.86%
Years carlier detected (of screen found) 1.17% 1.03% 2.36% 1.09%
Average number of attendances (of attended) | 0.28% 0.28% 0.26% 0.23%

Table 6.13: Percent deviations of the confidence intervals from their mean outputs after 300
iterations for each growth model simulation (local attendance, screening 51-69 every 3 years).
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Chapter 7

Results

7.1 Introduction

This Chapter aims to describe the effects and differences brought about by using each
of the available behavioural options within the model. It will also explain the
differences observed in the simulation results by using each of the four tumour growth
patterns.

For each of the tumour growth options (Gompertz, Exponential, Logistic, and
Modified Gompertz) and behavioural options (Theory of Planned behaviour - TPB,
Local and global percentage, and Baker and Atherill’s equation model) outlined
previously, a full simulation (1000 women simulated over 100 years for 300 iterations)
has been run once for each of four different screening policies. The idea was to
compare any differences that may exist between the modelling options that may
affect the effects brought about by screening more often, or for longer, than current
policy dictates.

The next Section describes the experimental design used to create the results
reported in this Chapter, and this is followed in Section 7.3 by the results comparing
each of the four tumour growth patterns over the different screening strategies.
Section 7.4 then demonstrates the effects of the four different modelling approaches
to attendance behaviour that are available within the simulation, and goes on to
focus upon the sensitivities of the Theory of Planned Behaviour variable inputs on
the results of simulation runs using this theory. Finally, Section 7.6 reports results
from experiments to find approximate increases in the UK populations TPB
constructs that would bring about the same increase in attendance and screening
benefits as lowering the current age of first screen to age 45.
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7.2 Experimental Design

7.2.1 Mammography screening scenarios

The discrete event simulation model of breast cancer and screening for breast cancer
allows the user to choose the age at which mammography population screening
should be simulated to begin and end, as well as the frequency of the screening
intervals within these years. It was infeasible to run all possible combinations of
start, end, and interval ages for screening, and therefore, a few carefully selected
screening scenarios were chosen as these represented realistic extensions to the
current mammography screening programime in the UK.

The current UK policy is to screen women from around age 50 until approximately
age 70 at 3 year intervals. Since the simulation model invites women for screening at
exactly the same age (unlike the reality of the UK Breast Cancer Screening
Programme-UKBCSP), this scenario was converted to a policy of screening between
the ages of 51 and 69, every 3 years. This is then used as the baseline simulation
screening scenario to which all other screening policies are compared.

Until 2002 the UK Breast screening programme only screened up to age 64 as
standard, and therefore a natural choice of screening scenario was to reduce the upper
age of screening. The second scenario considered in this Chapter was therefore
screening from 51 to 63 every 3 years, in order to compare the simulated
improvement in results from extended screening.

It was also of interest to investigate the effects of screening more frequently than
every 3 years, and so two more screening scenarios take the start and end ages for
screening in the above screening scenarios, but instead of screening every 3 years,
simulate screening every 2 years. These scenarios will help to compare the difference
between adding screening at a later age (as the UKBCSP have chosen to do) or
screening more frequently, and /or both together.

As well as increasing the maximum age of screening, the last scenario lowers the
standard age for inviting women to be screened to 45. Here, women are invited to
screening every 3 years from age 45 until age 69. This last scenario will aid the
trade-off between altering the current UK national screening policy by either inviting
younger women for screening or by decreasing the screening interval of those
currently invited to 2 years rather than 3.

Table 7.1 summarises the five screening scenarios considered in this Chapter.
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Scenario Start Age End Age Frequency
1 51 69 3 years
2 51 63 3 years
3 51 69 2 years
4 51 63 2 years
5 45 69 3 years

Table 7.1: Start and end ages and interval frequency of screening invitations for each screening
scenario

7.2.2 Tumour Growth and Attendance Behaviour Options

The aim of the experimentation was to assess the differences in model output under
different behavioural and cancer growth assumptions. A baseline setting of local
attendance and exponential tumour growth pattern was chosen. These two options
were considered appropriate markers for comparison, since they have been observed
as popular assumptions when modelling the natural history of breast cancer and
tumour screening interventions (see Chapter 4). The percentage attendance chosen
for the baseline local (and global) percentage attendance was set at 84.664% since
this falls in line with the average attendance rate brought about by the model’s
interpretation of the Theory of Planned Behaviour (TPB).

The effects of varying the behavioural and tumour growth assumptions within the
simulation model were then modelled by selecting each option in turn and evaluating
each screening scenario, comparing results with one another. For consistency, when
measuring the effect of the behavioural assumptions within the simulation, the
baseline assumption of exponential tumour growth was chosen, and when considering
the different growth patterns, the baseline assumption of local attendance was chosen.

For each of the 7 resulting combinations of attendance and tumour growth options,
the model was run 5 times, once for each of the screening scenarios discussed in
Section 7.2.1 above. Every simulation was run for 100 years, with 1000 women and
repeated for 300 iterations.

Results of the attendance behaviour assumptions can be found in Section 7.4, and
growth patterns in Section 7.3.

7.2.3 Output statistics

The results presented in this Chapter and in Appendixes C and D are, for each
output, the average of the results over the 300 iterations run within each simulation.
Standard deviations of the 300 values for each output were also calculated in order to
derive confidence intervals for the means. To reduce error upon comparisons, the
significance level o used to derive the confidence interval (using the student t
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distribution), was divided by the total number of outputs to be compared (18
outputs, for five screening scenarios, and each of 4 either tumour growth or
behavioural assumptions led to a result of 360). A 90% confidence interval was
constructed such that

o
Interval =T £ th 1 1_a—=

vn
where o was the significance level such that o = 0.05/360, n = 300 was the number of

iterations the average was taken over, and o the standard deviation of the selected
output.

7.3 Tumour Growth Assumptions

The following discussion summarises the effects of varying the assumed pattern of
tumour growth within the simulation model. For full results and statistics the reader
is referred to Appendix D. Four patterns of tumour growth are considered, labelled
exponential, logistic, Gompertz, and modified Gompertz (or mod Gompertz for
short) respectively. For details as to the nature of each growth pattern and how the
parameters were assigned, please refer to Chapter 6.

7.3.1 Numbers of cancers detected

The aim of any national screening programine is to detect the disease at an earlier
stage than it would have naturally presented, and to do so consistently. Therefore,
both the number and proportion of screen-detected cancers found in each simulations
were of particular interest.

Figure 7.1 shows the average number of screen-detected cancers found from each
simulation run, along with their 90% confidence intervals. Figure 7.2 shows the
percentage of detected cancers that were screen-detected under each screening
scenario and tumour growth pattern. The results show that the least number of
screen-detected cancers occurred when the simulations were screening from age 51-63
every 3 years. This was the old UK national policy, and the result was expected as
this scenario covers the least range of ages, providing less opportunity to detect the
cancer. Screening the same age ranges every 2 years can, however, be seen to

significantly increase the number of screen-detected cancers.

It appears that the current UK policy may do better still though, as the simulated
number of screen-detected cancers increases further under the scenario where
screening starts at age 51 and continues every 3 years until age 69 (akin to the
current UK practice). This result is statistically significantly higher than the numbers
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Figure 7.1: The number of screen-detected breast cancers under different screening scenarios
and tumour growth assumptions
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Figure 7.2: Percent of detected tumours that were detected by mammography screening
under different screening scenarios and tumour growth assumptions

130



simulated when screening within ages 51 to 63 every 2 years for all tumour growth
options bar the Gompertzian pattern of tumour growth, where no significant

difference is found between the two screening scenarios.

The screening strategy that consistently comes out the most effective, with the
highest number of screen-detected cancers is screening from age 51 to 69 every 2
years. This is closely followed by, although significantly greater than (under all
growth assumptions), the number of screen-detected cancers when screening begins at
age 45 and screens every 3 years until age 69. This result is echoed when considering
the number of women who were invited to a screening session in the simulation while
they had breast cancer, see Figure 7.3. As Figure 7.3 shows, increasing the age range
of the UK screening policy to begin at age 45, increases the proportion of women
invited to screening while they have breast cancer by around 15%. A smaller increase
is seen by screening the same age range more frequently, but as noted above, in terms
of the numbers of cancers detected, this screening policy is still very competative as it
has more chances to detect the breast cancer.
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Figure 7.3: Numbers of women invited to a screen while they have cancer

When considering the number of screen-detected cancers, the order of the screening
scenarios remains constant across the different assumptions of tumour growth. Figure
7.4 shows the percentage difference in the number of screen-detected cancers
simulated in comparison to the current UK policy screening scenario (51-69 every 3
years). This Figure demonstrates that the proportional changes in the number of
screen-detected cancers remains comparatively stable across the different tumour
growth assumptions, with the possible exception of the Gompertzian growth pattern.
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Figure 7.4: Relative difference between screening scenarios for the numbers of screen-detected
cancers, under different assumptions of tumour growth

The Gompertzian growth pattern appears to favour screening every 2 years rather
than every 3 years, compared with the other assumptions of tumour growth.

Although the rank order of screening scenarios remains constant across the
assumptions of tumour growth, the different growth patterns have produced
statistically significant differences in the expected numbers of screen-detected cancers.
Figure 7.1 shows this difference and demonstrates that under Gompertzian growth
assumptions the smallest number of breast cancers were screen-detected in the
simulations, followed by the modified Gompertzian growth pattern, the exponential
pattern, and lastly, the greatest numbers detected by screening came under the
assumptions of Logistic tumour growth. This effect is again observed in Figure 7.2
which shows the percentage of detected breast cancers that were detected by

screening.

As discussed in Chapter 6, the approximate percentage of screen-detected cancers in
the UK in 2002, (screening from age 50 to 64 every 3 years), was around 23%. The
results for the percent screen-detected when screening between ages 51 and 63 every 3
years found that screen-detected cancers accounted for around 9%, 20%, 25%, and
30% of all detected cancers given Gompertzian, modified Gompertzian, exponential,
and logistic growth assumptions respectively. Therefore, it may be that the
assumptions made surrounding Gompertzian growth are questionable.

132



7.3.2 Detection statistics

Not only does mammography screening aim to detect breast tumours, but also to
detect them at an earlier stage of progression than they would have naturally
surfaced. The simulation described in this thesis models progression as a function of
tumour size, and figures 7.5 and 7.6 demonstrate the differences of average tumour
size at detection observed between the simulations.
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Figure 7.5: Average tumour diameters (mm) at detection under different screening and tu-
mour growth assumptions

Figures 7.5 and 7.7 reveal that, as could be expected as screening is increased (either
in frequency or in length of years screened) the average size of all detected tumours is
decreased. This is due to an increase in the numbers of tumours detected by
screening, as reported above, and screening detecting smaller tumours than those
that arose naturally.

With the exception of the Gompertzian assumptions of tumour growth, all differences
in screening scenario produced statistically significant differences within the tumour
diameters at detection. Figure 7.7 provides a picture as to the degree of this
difference relative to the screening scenario corresponding to the present UK policy.

The results indicate that the change in UK policy to screen up to age 70 rather than
age 64 reduces the average tumour diameter more than decreasing the screening
interval from two to three years within the previous age range (50-63), (with the
exception of the Gompertzian growth model results which showed no significant
difference between the two scenarios). These results are in line with results by Boer
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et al. (1998), whose simulation analysis recommended that the UK'’s old policy be
extended by increasing the maximum age of screening rather then decreasing the
screening interval, and help to further validate the simulation model. The results also
suggest that in order to further reduce the average tumour size at detection, it would
be beneficial either to increase the age range of the population invited to screening to
start at age 45, or better still to screen the current age range biennially, therefore
detecting a greater proportion of interval cancers than before. Ignoring the
Gompertzian growth pattern results, decreasing the screening interval to two years
could decrease the average tumour size at detection by as much as Imm in diameter.

Each of the different assumptions of tumour growth pattern led to statistically
significant differences compared with one another in the simulated average twmour
diameter at detection. This is believed to be due to the differences in the numbers
and proportions of screen-detected cancers between the growth assumptions, since the
criteria for detection remain constant across the different growth options.

Figure 7.6 presents the relative difference in tumour size for the different screening
scenarios in comparison to the current UK policy of screening from age 50 to age 69.
It can be seen that, with the exception of Gompertzian growth assumptions, the
degree of tumour diameter change remains approximately constant across the
remaining three tumour growth patterns considered.

A further factor that influences the probability of tumour progression is the age of
the breast tumour before diagnosis. Figure 7.8 demonstrates the results found in each
of the different simulations. It can be seen that the same pattern of screening is
revealed, with more screening leading to significantly shorter simulated
times-to-detection. Not all differences were significant, however, and this is thought
to be due to the small changes observed for the differences in times to discovery
between the different screening scenarios (within each tumour growth assumption).
Only the assumption of modified Gompertzian (stochastic) tuunour growth led to
significantly different times-to-detection between all screening scenarios, and the
assumption of Gompertzian tumour growth led to the least number of significant
differences between the screening scenarios.

Figure 7.9 provides an overview of the significant and non significant relationships
between the screening scenarios for each of the assumed tumour growth patterns for
the output time to tumour detection. It can be seen that when considering reducing
the time-to-discovery of the average tumour, in three out of the four cases according
to the simulation model, it would make no significant difference to the
time-to-detection if the screening policy in the UK was changed to screening fewer
age groups but more often (51 to 63 years biennially). There was also a non
significant difference found (again in three of the four growth assumptions) between
screening the current age groups more frequently (51 to 69 biennially) and increasing
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the age range of screening down to a start age of 45 (45 to 69 triennially).

While the results did not always indicate significant differences for time-to-detection
within the growth patterns, a significant difference can be clearly seen between the
tumour growth patterns (see Figure 7.8). This is believed to be due to the
assumptions made regarding the populating of the growth pattern equations and
their parameters. As can be seen, the logistic and exponential assumptions produce
the highest estimations of the time-to-detection of around 16 years, whereas the
modified Gompertz and Gompertz growth patterns provide times-to-detection closer
to 6 and 3 years respectively.
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Figure 7.10: Years earlier screen-detected tumours are detected relative to unscreencd detec-
tion, by screening scenario and tumour growth pattern

When considering only screen-detected tumours, it can be seen (Figure 7.10) that the
simulations suggest screen-detected tumours are detected between 1 and 6 years
earlier than they would have arisen naturally, depending on the assumption of
tumour growth used within the model. In line with the time-to-discovery, the least
benefit of screening is brought about by the Gompertzian pattern of tumour growth,
and the largest benefit by the logistic pattern.

However, in contrast to the results of the average time to tumour detection, here a
tumour is detected sooner than it would have otherwise have been if screening was
more frequent (i.e. every two years rather than every three years). This makes sense
as biennial screening has the potential to find the tumours that are screen-detected
one year earlier than triennial screening. The biennial screening scenarios produce

significantly higher results than the triennial screening scenarios in all cases, (for the
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average years a screen-detected tumour is detected earlier than if screening had not
taken place), with the exception of those within the Gompertz tumour growth
pattern.

7.3.3 Life years saved

The ultimate aim of screening for breast cancer is to reduce breast cancer related
mortality. If a screening policy does not save lives then it could be argued that it is
not effective as it may simply increase the number of years a patient is aware of the
disease and the time undergoing treatment. One output of the simulation model is
the average of the total number of life-years saved within each iteration (simulating
1000 women each time). Figure 7.11 presents the results for this output across the
different screening scenarios and different assumptions of tumour growth.
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Figure 7.11: Average of the total number of life-ycars saved by cach screening scenario by
assumption of tumour growth pattern (per 1,000 women)

It can be seen in Figure 7.11 that in all cases but the Gompertzian assumption of
tumour growth, screening a larger age range produced the highest numbers of lives
saved (screening 45 to 69 triennially). The number of life-years saved by this
screening scenario produced significantly higher results than screening from age 51 to
69 every 2 years in all cases except the Gompertzian assumption of tumour growth.
Although the number of tumours detected was lower when extending the age group of
screening, than screening more frequently, (since the additional tumours that are
detected are in younger women), this leads to more life-years saved when a life is
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saved in the simulation.

Screening from age 51 to age 69 every two years rather than every 3 years (as the
current UK policy) produces the second highest number of life-years saved, with
significantly higher results in all but the Gompertzian tumour growth screening
scenarios. Figure 7.12 indicates that if the UK policy were extended to screen from
age 45, then the number of life-years saved in the UK could be increased by around
30%. Alternatively, screening the same age groups, but every two years rather than
three years could increase the number of life-years saved by around 20%. This is an
important finding, and cost not withstanding, if the aim of the UK screening policy is
to save lives then it may well be worth decreasing the screening interval to two years,
or to lower the age for the first invited screen to age 45. In order to understand the
full cost-benefit (both in terms of the increase in costs due to the extra number of
mammograms required, and the increase in treatment and overdiagnosis) a full cost
model would be required.

The previous UK policy (up to 2002) of screening from age 51 to 63 every 3 years
consistently led to significantly fewer life-years saved than all other screening scenario
policies analysed.
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Figure 7.12: Relative change in life-years saved in comparison to the current UK policy, by
tumour growth pattern

From Figure 7.11 it can be seen that a significant difference is obtained between
life-years saved across the different assumptions of tumour growth. This result could
be very important if decisions regarding strategy that takes account of cost per life
years saved are made upon the basis of a simulation model. The logistic and
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exponential tumour growth patterns provide the most optimistic estimate of the
numbers of life-years that screening strategies may save (per 1000 women with breast
cancer), while the assumption of Gompertzian growth produces the most pessimistic
results. However, it can be seen from Figure 7.12 that the relative change in
simulated life-years saved remains fairly constant across tumour growth assumptions,
with the possible exception of Gompertzian growth which can be seen to favour the
biennial screening scenarios.

7.3.4 Summary of the screening scenario results and the effect of
different assumptions of tumour growth

The results presented so far in this Chapter have compared the effects of different
assumptions of tumour growth within the simulation model across five different
screening scenarios. This Section summarises the findings so far by first discussing
the overall ranking of screening scenario by outcome, followed by the differences
brought about by different assumptions of tumour growth.

The screening scenario which consistently led to the least desirable results across all
simulation outputs was that of screening from age 51 to 63 every 3 years. This result
is unsurprising as it is the scenario that represents the least number of screening
invitations. Screening the same age ranges but every 2 years rather than every 3
years led to significant improvements in results in terms of the numbers and
proportions detected, the time to tumour detection, and life-years saved. The current
UK policy mirrors the simulated policy of screening ages 51 to 69 every 3 years, and
when considering the numbers of screen-detected cancers, this was found to perform
better than screening ages 51 to 63 every 3 years. However, no significant differences
between the two policies were found when considering the time to tumour detection,

or numbers of life-years saved.

Considering whether the current UK policy should be extended by screening more
frequently or by decreasing the lower age limit for screening to age 45, the results are
inconclusive and depend upon the outcome in question. If the sole aim is to detect
more cancers, then screening every 2 years would be the preferred option (and would
increase the life-years saved by 20%). However, if the objective is to increase the
years earlier that tumours are detected than they would naturally occur, or to
increase the total number of life-years saved (by 30%), then the choice of screening
from age 45 to 69 but every 3 years would be preferred.

Overall, the choice of tumour growth model made little difference to the relative
increase or decrease in output brought about by each different screening scenario.
However, the assumptions surrounding the Gompertzian model of tumour growth
displayed less significant differences between screening scenarios and demonstrated a
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bias toward biennial screening in comparison to the other assumptions of tumour
growth. This bias and difference in results is thought to be due to the very short
doubling times assumed within the growth pattern, since the tumour grows very
quickly and so there is less time to detect it by screening and thus biennial screening
will be more likely to detect more cancers in comparison to triennial screening.

The different assumptions of tumour growth did however, interestingly, lead to
significantly different actual (as opposed to relative) outcomes. The most desirable
outcomes were modelled using the logistic pattern of tumour growth followed by the
exponential, modified Gompertzian, and lastly the least desirable outcomes overall
were associated with simulations run using the Gompertzian pattern of tumour
growth. Of particular note is the large difference brought about by the different
assumptions of tumour growth upon the simulated numbers of life years saved. This
result is of particular importance since decisions with regard to screening strategies
are often made upon the cost per life years saved, and even though cost is not
included in this model it is not unreasonable to assume that a difference in tle
numbers of life years saved may also lead to a difference in cost per life years saved.
The observed difference in absolute results across assumption of tumour growth is
important, and helps to demonstrate that when simulating breast cancer (or indeed
any cancer) screening policies in this way, it is best to compare relative rather than
absolute outcomes between different screening scenarios even if the baseline model
validates well.

7.4 Attendance Behaviour Modelling

Four options are provided within the simulation model for the approximation of
attendance behaviour at invited screening sessions. These behavioural options are,
local and global percentage attendance, the Theory of Planned Behaviour (TPB) and
Baker and Averills’ attendance equation (abbreviated to ‘equation’ from now on).
Each method of approximating attendance was described in detail in Chapter 5.

This Section outlines the results of using each of the four behavioural models in turn
to approximate attendance at invited mammography screening sessions, and
compares and contrasts the differences produced between the methods. The same five
screening scenarios are considered as used to compare assumptions of tumour growth,
and these were outlined in Section 7.2.1. In all cases an assumption of exponential
tumour growth has been made, and where appropriate the percentage attendance set
to 84.66%. The results presented are a summary of the full results, and for detailed
results over all scenarios and outputs the reader is referred to Appendix C.
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7.4.1 Number of cancers detected

The primary aim of screening for a disease is to diagnose the disease at an earlier
time in the natural history of the disease, and to do so for a large enough proportion
of the screened population that the costs and efforts involved in the process are
outweighed by the gain in reducing the severity of the disease burden.

One measure of effectiveness of a screening policy for breast cancer is therefore the
number (and proportion) of screen-detected cancers over the life of the policy. This
Section first of all discusses the differences in the numbers and proportions of
screen-detected cancers brought about by the different screening policies, before
reviewing how these differences are affected by the different methods for modelling
attendance at the breast screening clinics.
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Figure 7.13: Average number of screen-detceted tumours for different screening scenarios and
assumptions of a*tendance behaviour

Figures 7.13 and 7.14 demonstrate the average numbers and proportions of
screen-detected cancers (and their 90% confidence intervals) for each of the screening
scenarios, and over each of the four assumptions of attendance behaviour. It can be
seen that, in all cases, the lowest number and proportions of screen-detected cancers
from the simulation are brought about by screening from age 51 until age 63, every 3
years. This was the screening scenario designed to match the previous UK national
screening policy, and the results indicate that a significant increase in numbers and
proportions of breast cancers detected should have been achieved by increasing the
upper age limit of screening to 70 (and under these modelling conditions this brings
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Figure 7.14: Percent of detected tumours that were screen-detected for different screening
policies and assumptions of attendance behaviour

about significantly more tumour diagnosis than screening the old age groups but more
frequently, i.e. every 2 years). Figures 7.13 and 7.14 also show that if the screening
policy were to be further modified, then either screening more frequently (every 2
years), or decreasing the lower age limit for screening to 45, would both significantly
increase the proportion and numbers of screen-detected cancers diagnosed.

Overall, the different options for modelling behaviour have produced similar results
regarding the rank of the screening policies. However, when it comes to the decision
whether or not to extend the current UK screening policy by screening the same ages
every 2 years, or extending the lower age limit for screening down to 45 from 50,
differences appear. These differences can be seen in Figure 7.14, which shows that
when using the equation method to predict attendance, or when using the global
percentage attendance option, no significant differences are apparent between the two
screening scenarios (when considering the output of the numbers of breast cancers
diagnosed by screening). However, if the simulation is run using either the local
percentage or the TPB assumptions of attendance behaviour then the favoured policy
to increase the proportion of screen-detected cancers is to screen the same age group
as at present (51:69) but more frequently (biennially). This result is not entirely
unexpected since both local percent and the TPB modelling methods lead to
individual probabilities of attendance at each invitation.

When considering the global percentage option in the model however, the logic for
this option dictates that although the same percentage of individuals will attend each
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screen, the subset who attend each time will remain constant. Therefore, in the case
of the global percentage option, screening more frequently may 1ot be as effective
since some individuals will still not attend and their tumours will not be detected.
Indeed, it can be seen that, overall, the global percentage attendance assumption
produces lower proportions of screen-detected cancers than those observed in both
the local percentage and the TPB options for attendance behaviour, who stand more
chance of screening the population as a whole as the number of invited screens

increases.

The overall percentage attendance that the equation model infers is lower than the
84.66% assumption produced by other three options, and this explains why the
proportions and number of screen-detected cancers are lower for this assumption
across the screening scenarios, in comparison to the other assumptions of attendance.
The lower number and proportion of cancers detected by screening may also explain
the lack of a significant difference between screening ages 51 to 69 biennially and
screening ages 45 to 69 triennially in the case of the equation attendance option. If
the difference in the numbers detected between the screening scenarios is small, then
a large sample would be required to produce significance, (and results from the other
behavioural assumptions demonstrate that the difference may well be small), and
since a lower proportion attend each screen under the equation option, a smaller
sample of screen-detected cancers would be expected. The result is interesting,
however, since the equation attendance behaviour option was derived from empirical
data from a UK breast screening unit, it follows that the attendance proportion
reflected should be realistic at least at the relevant local area level, and hence, there
may be no difference between lowering the screening interval and decreasing the lower
age limit for screening within the current UK policy unless a higher percentage

attendance can be achieved.

7.4.2 Detection statistics

As well as detecting tumours via mammography screening, the aim of screening for
breast cancer is also to detect these tumours at an earlier stage in their natural
history than they would have been detected naturally, therefore potentially leading to
more successful, less invasive treatment and fewer deaths from breast cancer.

This Section describes the differences between, and across, the different methods of
attendance behaviour modelling considered, and the different screening scenarios,
when considering the average tumour time-to-detection, the average number of years
earlier screen-detected tumours were simulated to be detected than they would have
naturally arisen, and the average size of a detected tumour at diagnosis.

Figure 7.15 demonstrates how the average tumour size, and confidence interval for
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Figure 7.15: Average tumour diameter (mm) at presentation of all detected tumours, over
screening scenario and behavioural attendance option

the average, changes with the different screening scenarios considered, and over the
different options for attendance behaviour. It can be seen that, once again, the
screening policy that leads to the largest tumour diameters on average is the old UK
national policy of screening from age 51 to age 63 every 3 years. Increasing the upper
limit for screening to 69 (as the UK has done) significantly reduces the size of the
average tumour at presentation by around a millimetre in diameter. Reducing the
size of tumour at diagnosis is beneficial since the size of tumour is one indication of
the tumours progression through its natural life cycle (please refer to Chapter 6 for
more detail).

Again, in all cases, the current UK policy leads to smaller tumours than the
simulation predicts would have been the case had the UK kept the screening ages to
between 51 and 63 but screened every two years rather than every three. However, as
for the case of the number of tumours detected by screening, when it comes to
assessing whether it would be best to extend the current UK policy by screening
more frequently or by screening a larger age range, the difference in the diameter of
the tumours at presentation is not always statistically significant. No significant
difference is found between the two screening scenarios when the behavioural options
of global percent, and the equation model are run. When the simulation is run using
the TPB or local percent attendance, however, the results indicate that the preferred
screening scenario in order to reduce the tumour size the most would be to decrease
the current screening interval from three years to two.
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The behavioural options produce the same ranking for the screening policies if the

aim is to reduce tumour diameter, (although not always with significant differences
between screening scenarios). Figure 7.15 also shows that the choice of behavioural
attendance option has little effect upon the degree of change in the average tumour
diameter between the different screening strategies considered.

It is also important to detect the tumour early enough in its life cycle so that it has
less time to progress to metastatic disease. Figure 7.16 shows the average
time-to-detection for all detected tumours (screen-detected or detected via other
means) for the different assumptions of attendance behaviour and screening scenarios

(along with their respective 90% confidence intervals).
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Figure 7.16: Average time (years) from tumour onset until detection by screening scenario
and assumption of attendance behaviour

As can be seen from Figure 7.16, as the number of screens an individual is invited to
increases, the average age of her tumour before detection is decreased. However, the
difference in average time-to-detection brought about by screening policy is not,
always significant. Not surprisingly the policy that produced the longest average
times-to-detection was screening from age 51 to age 63 every 3 years (the previous
UK policy) but when using the equation and the TPB options for behavioural
modelling, this policy did not produce significantly longer times-to-detection than
increasing the upper age limit to 69 (as in the current policy). Here, across the
behavioural options, no significant difference was found between the simulated
times-to-detection of detected tumours when screening ages 51 to 69 every 3 years
and screening ages 51 to 63 every 2 years. This result is in contrast to the findings
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reported previously that in order to increase the number of screen-detected tumours
it was better to screen up to age 69 every three years than to lower the maximum age
limit to 63 but screen biennially rather than triennially.

The screening policies that produced the lowest times-to-detection (consistently
across behavioural assumptions) were again, screening the current age ranges more
frequently (51 to 69 every 2 years), and increasing the age range for screening (45 to
69 every 3 years), although no significant difference in average time-to-detection was
found between the two screening strategies.

Although, as noted above, the choice of behavioural option did affect whether two of
the screening scenarios produced different times-to-detection or not, with the
exception of the equation attendance option, the remaining behavioural models
produced estimated times-to-detection that were not significantly different from each
other across the same screening strategies (see Figure 7.16). In some cases, however,
the average time-to-detection produced by the equation model of attendance was
significantly higher than that for at least one of the other behavioural models, under
the same screening scenario. This is again thought to be due to the lower proportion
of attendance implied by the equation model than the 85% overall assumed from the
other three options for attendance behaviour.
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Figure 7.17: Average number of years earlier that a tumour was detected by screening than
it would have presented otherwise, by screening scenario and assumption of attendance be-
haviour

Figure 7.17 shows the average number of years earlier that screen-detected tumours
in the simulations were detected than they would have been detected naturally

147



8% _

7%

6%

5%

4%

3%

2%

from the current UK policy

1%

0% 1

_—

Screening 51:63 every 2 years. Screening 51:69 ewery 2 years. Screening 45:69 avery 3 years,

Percentage difference in the years earlier screening detects cancer

-1%

2% -=—==10 e s

Screening scenario

| EEquation  BLocal OGlobal QTPB |

Figure 7.18: Relative increase and decrease in the average years earlier a tumour is detected
by screening than would have naturally arisen, in comparison to the current UK policy, by
attendance behaviour assumption and screening policy.

(without screening), along with the 90% confidence intervals for the means. Screening
biennially as opposed to triennially produces the only significant result, reducing the
average years a screen-detected tumour is diagnosed than would have naturally arisen
by around 0.3 years (4 months). Figures 7.17 and 7.18 also demonstrate that, once
again, there is no significant difference produced by using the different assumptions of
attendance behaviour across the same screening strategy, and they each produce
similar relative increases and decreases in the years earlier screen-detected cancers
were detected than they would occur naturally, between screening scenarios.

7.4.3 Life years saved

The ultimate aim of screening for breast cancer is to reduce the mortality rate from
the disease. A popular imnethod of comparing different interventions in healthcare is to
compare the difference in projected life-years saved by each intervention. This Section
outlines the results of the simulation runs, across the different screening scenarios
considered, and the four attendance behaviour options within the simulation, with
regards to the estimated life-years saved in each run.

Figure 7.19 outlines the results for the change in life-years saved over the diflerent
screening scenarios considered within this thesis. It can be clearly seen that, so far as

the assumptions made within this simulation model are concerned, the screening
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Figure 7.19: Average and 90% confidence intervals for the number of life-years saved over
different screening scenarios and assumptions of attendance behaviour

scenario that would lead to the highest number of life-years saved is to screen from
age 45 to age 69, every 3 years. This agrees with the findings across tumour growth
assumptions (see Section 7.3) and would make sense since it is the only policy that
screens from ages 45 to 50, and the younger the person is when a cancer is detected,
the greater the potential number of life-years saved should the tumour be detected

early enough to save a life.

The old UK national policy of screening from age 51 to 63 every 3 years can be seen
to provide the lowest average number of life-years saved (although in two of the
attendance behaviour assumptions, TPB and global percentage, the difference
between this and the current policy of screening up to age 69 was insignificant).
Interestingly, when considering the number of life-years saved, over all methods of
attendance behaviour modelling, there was no significant difference found between
screening from age 51 to 63 every 2 years, and the current UK national policy of
screening from roughly age 51 to age 69, every 3 years.

As has been seen across all results in this Section, little variation exists across the
different methods of modelling attendance behaviour at screening invitations, and
Figure 7.19 also depicts that the local percentage, global percentage, and TPB
options all produced results that were not significantly different from each other
across the same screening scenarios. The equation option for modelling attendance
behaviour produced lower estimates for the average number of life-years saved than
did the other three methods, and some of these differences were significant. Again,
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this difference is thought to be brought about by the lower overall attendance rate
implied by the equation models logic than the 84.7% implied across the other three
models of tumour growth. Figure 7.19 also shows, however, that the rank of the
screening scenarios when the equation method of attendance behaviour is chosen,
remains the same as for the other three options for modeling attendance at invited
breast screening.

7.4.4 Attendance at invited breast screens

Since this part of the thesis deals with any differences brought about by the
simulation models chosen approach to modelling attendance behaviour at screening
invitations, it was also interesting to explore the attendance results produced by each
of the different methods.
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Figure 7.20: The average number of women, per 1,000, who attended screening at least once
across all screening scenarios by attendance behaviour assumption

For each behaviour model, the number of women who attended at least once did not
vary greatly according to the screening scenario. However, Figure 7.20 shows that
there were significant differences brought about by the different behavioural
assumptions. It can be seen that the TPB assumptions and local percentage
attendance options produced very similar results regarding the numbers of women
who attended the simulated screening units at least once during the iteration,
whereas the numbers implied by the global percentage option and the equation were
lower by around 100 women (out of the 1,000 women simulated in each iteration).
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Figures 7.21 and 7.22 depict the differences brought about by the different
behavioural assumptions between the average number of attendances at breast
screening among those who did attend at least once. In contrast to the number of
women who attended at least once, the average number of attendances are higher
when the global percentage attendance assumption of attendance behaviour is made,
with the remaining three options producing very similar results.

Figure 7.22 demonstrates that the relative increase and decrease in attendance over
the different screening scenarios in comparison to the current UK policy, is affected
by the choice of attendance behaviour modelling method. Here again, the equation
and global percentage options provide different proportionate increases and decreases,
with higher proportionate increases in average attendance when biennial screening
takes place as opposed to triennial screening. This result may be partly due to the
smaller numbers of attendees within the equation and global attendance modelling
assumptions in the first place. Lower absolute starting conditions could have led to
the observed proportionate increases when similar absolute increases are introduced.

7.4.5 Summary of the effect of behavioural assumptions upon the
simulation results

The results presented above indicate that overall, the different behavioural
attendance modelling available within the simulation model lead to approximately
similar ranks for the different screening scenarios.

As observed in Section 7.3, the results demonstrate that screening from age 51 to age
69 every 2 years would produce the most desirable results in terms of the numbers of
cancers detected and the reduction obtained in the size of the average cancer.
However, screening from age 45 to 69 every 3 years was shown to be more beneficial
in regards to reducing times-to-detection of the cancer or increasing the total number
of life-years saved.

Using the global or equation methods of modelling attendance at invited screening
sessions led to less favourable results than the use of the other two methods. The
equation model leads to a lower percentage of attendees than assumed in the other
three models of attendance, thus explaining the proportionately lower results.
However, the finding that assuming global percentage attendance produced
significantly different outcomes to those of the local percentage suggest that the
method by which a simulation model chooses to model attendance is important to the
modelled outcome. Although the rank of the different screening policies was the same
irrespective of which attendance model was used, the global percentage assumptions
led to lower numbers of screen-detected cancers, and in some cases these lower counts

produced insignificant differences between the screening scenarios (under the global
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attendance assumptions), that were significant under different assumptions of
attendance.

Modelling that assumed local percentage or TPB attendance, however, produced
more desirable results (with an increase in the number of detected tumours of around
7% over global percentage assumptions). The two methods were shown to produce
very similar proportional and actual results across the different model outputs and
through different screening scenarios. In two cases, however, the TPB led to
insignificant differences between outputs from screening ages 51 to 63 every 3 years,
and increasing the upper age limit to 69 (still screening triennially). The differences
between the same outputs under the same screening scenarios were significant under
local attendance behaviour assumptions. The differences between the two approaches
to behaviour modelling may be due to the more structured approach of the TPB,
which may assign very low probabilities of attendance to some individuals who may
never attend, whereas the local percentage assumptions imply that all women in the
simulation have an equal chance of attending each screen. As has been seen from the
results of the global percentage attendance, assuming that the same women attend
each time at screening produces less desirable results. Since the TPB provides values
to psychological variables for each simulated individual that do not change during the
simulation and go on to predict likelihood of attendance, the TPB assumptions in
this thesis can lead to the same individual repeatedly attending or non-attending
(although not necessarily all of the time as with the global percentage option).
Therefore, the added structure for the probability of attendance brought about by the
assumptions within the TPB method of attendance modelling (as opposed to the local
percentage attendance option) may explain the slight reduction in desirable results.

7.5 'TPB Sensitivities

The results in Section 7.4 have helped to verify that using the Theory of Planned
Behaviour (TPB) to model attendance behaviour at breast screening units produces
very similar results to the assumptions of local percentage attendance. The advantage
of the TPB, however, is that it can provide additional insight into the impact of
psychological changes in a population upon the attendance at, and therefore overall
performance of, screening for breast cancer.

This Section outlines the results of a small scale sensitivity analysis involving the
three main variables of the TPB that were included in this analysis, those of attitude,
subjective norm, and perceived behavioural control (PBC). The analysis considers
the simulated effects of population changes in the three psychological constructs.

Attitude toward the behaviour refers to the overall evaluations of the behaviour by
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the individual. Attitude toward a behaviour may be changed by a number of external
factors such as advertising campaigns (promoting breast awareness or the severity
and importance of early detection for breast cancer), or negative press (for example
press attention to research findings that population mammography screening is not
effective). Subjective norms consist of a persons beliefs about whether significant
others would approve of their participation in the behaviour, where a significant
other(s) are person(s) whose views in this domain are important to the individual.
Subjective norms may be altered by a shift in general opinion in society due to an
overall shift in attitudes, or by direct communications with the individuals concerned.
Perceived behavioural control is the extent to which the individual believes the
behaviour in question is under his/her control, and draws parallels with the concept
of self efficacy. An individuals PBC can again be affected by a number of internal and
external factors including confidence, depression, self efficacy, and the real ability to
travel to the screening unit (in turn affected by distance from home, transport, time,
and expense).

Jepson et al. (2000) summarise and evaluate literature relating to factors pertaining
to the effectiveness of interventions for screening programimes, including breast
screening programmes. Their results revealed a mix of success by interventions to
increase scores relating to psychological constructs (such as those in the TPB), aud
studied interventions such as telephone reminders before appointments, telephone and
face to face counselling (covering the reasons behind and importance of screening as
well as what is involved in the screening process), personal advice from a GP,

mail-shots and informative videos.

The next paragraph outlines the methodology used in the sensitivity analysis that
focused upon the TPB variables, followed by a description of the results from this
methodology.

When the simulation is run with the TPB, at the beginning of a simulation each
woman in the model is provided with a sampled value for each of the three TP
variables considered, taken from a background population. The populations used for
the constructs were derived from literature (please refer to Chapter 6 for details). To
analyse how sensitive the results of the simulation are to each of these three variables,
the background distributions of the variables were individually increased and then
decreased by 10% in turn before running the simulation, and then they were
simultaneously increased and decreased by 10% to view the collective impact. This
analysis was carried out with the baseline settings reported in Section 7.2 such that
screening took place from age 51 to 69 every 3 years, and an assumption of

exponential tumour growth was made.

This Section outlines the main effects of the sensitivity changes and how the results
of the simulation altered with these small changes in the TPBs behavioural
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constructs. Appendix E contains the full results for all outputs and all changes.
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Figure 7.23: The change in the percent of tumours detected by mammography screening for
10% changes in the TPB variablcs

Figures 7.23 and 7.24 provide the absolute and relative change in the percent of
breast tumours that were screen-detected with the 10% change in each of the TPB
constructs. The results show that, as expected from the analysis in Chapter 6 and
the weights of the logistic regression (the smallest weight associated with the attitude
construct, and the largest with PBC), the construct that has the largest effect upon
the outcome is perceived behavioural control (PBC), followed by subjective norms,
and lastly, attitude. It appears that the change in attitude construct did not have a
significant effect upon the percent of screen-detected cancers since a rise in the
proportion of screen-detected cancers is observed even when the value of the
construct is reduced, (modelling the effect of a 10% negative swing in attitudes to
mammography screening). This is thought to be due to the insignificant eflect of
Attitude in the study from which the data for the TPB approximation in the
simulation were derived, and confidence limits would be expected to cross zero (see
Chapter 6 for details). The cffect of PBC and subjective norms however, appears
roughly linear, with an approximate 3% and 2% change respectively in the percent of
tumours detected by mammography screening for each 10% change in the construct.

The relationship between the TP constructs and the number of women who attend
for screening at least once is less clear as Figure 7.25 depicts. Here it can be scen that
while the constructs of subjective norm and PBC appear to have an effect upon the

number of women who attend at least once, the effect is much smaller (of the order of
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Figure 7.26: Relative change in the average number of attendances at breast screening for
women who attended screening with a 10% change in the TPB constructs

less than half a percent for a 10% change in each construct respectively). In contrast
to this, however, Figure 7.26 reveals that the average number of attendances for those
who did attend screening does show a consistent change with each 10% alteration in
the TPB constructs. In this case the constructs of subjective norm and PBC appear
to lead to an approximate 1% and 2.5% change in the average number of attendances
per person who attends at least once, while increasing all constructs together leads to
an approximate additive effect of around 3 to 4% change in the average number of
attendances.

Although only a small effect can be seen in the change in tumour diameter with a
10% change in the TPB constructs (with only a 1% increase and decrease observed
when all three constructs were increased and decreased together, see Figure 7.27), the
effect upon predicted life-years saved is more noticeable. Figure 7.28 provides the
observed increase and decrease in the number of life-years saved with the change in
value of the sampled TPB constructs, and Figure 7.29 demonstrates the associated
relative change from the baseline that these differences represent. The results show
that while the construct of subjective norm now has a lower effect upon the outcome
than before (due to the introduction of greater variability within the outcome), PBC
can still be seen to influence the simulation output of life-years saved. Figure 7.29
shows that even a 10% increase in PBC could potentially lead to a 2% increase in the
number of life-years saved, and if all constructs were increased together then this
Figure could rise to as much as 4%.
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Figure 7.27: Relative change in tumour diameter for a 10% change in each of the TPB
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7.5.1 Summary of the TPB sensitivity results

The results of the simulation sensitivity results reveal that (in line with the make-up
of the linear regression function modelling), the rank effect of the TPB constructs on
the measured outcomes from high to low were perceived behavioural control,

subjective norms, and finally, attitude, which had little effect by itself.

Increasing the construct of PBC by 10% produced a 2-3% increase in the number of
screen-detected tumours, brought about by a 2.5% increase in the average number of

attendances among those who attended screening.

Increasing subjective norm values by 10% had a smaller, but still beneficial impact on
the results, with around a 2% increase in the number of screen-detected cancers, and
approximately 1% increase in the average number of attendances per attendee in the

simulations.

Increasing or decreasing all three constructs together led to an additive increase or
decrease in the results (due to the linear regression function methodology). An
increase of all constructs by 10% produced around a 4% increase in the number of
screen-detected breast tumours, around a 1% decrease in the overall average diameter
of tumours at detection, and an approximate 4% increase in the total number of
life-years saved by screening. This is roughly the increase in life-years saved modelled
by increasing the maximum age of screening from 63 to 69 (screening every 3 years in

both scenarios) as implemented in the UK policy.
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Section 7.4 reveals that the simulation suggests that the UK would see approximately
15% more screen-detected tumours if the lower age for screening invitations was
reduced to age 45 (adding two more invitations per individual). The results of this
sensitivity analysis reveal that around a 4% increase can be achieved simply by
increasing the TPB values of the population by 10% and not altering the screening
regime at all.

7.6 TPB Increase vs Lowering the Age of First Screen

As has been reported above, a 4% increase in life-years saved can be brought about
(according to the simulation model) by simply increasing womens beliefs regarding
breast screening, and their ability to attend, by around 10%. This Section reports
analysis carried out in order to try to identify the level of increase in the TPB
constructs in the UK population that would be required in order to produce the extra
benefits from screening that lowering the current first age of invited screening from 50

to 45 would bring (as predicted by the simulation model).

Current attendance at invited screening in UK breast screening units stands at
around 75%, whereas the baseline approximation of the TPB in the reported
simulation model provides on average around 85% attendance. Therefore, to estimate
a baseline approximation of the UK populations TPB characteristics, the sampled
values for each of the TPB constructs in each simulation were reduced by 17%,
providing (on average) a 75% attendance result. This method makes the shmplistic
assumption that the relationship between TPB constructs remain stable as the values
of the constructs changes, which may or may not be the case, and also assumes that
the subset of results in the experiment by Rutter (2000) may be generalised to the
UK population, and so results should be treated with appropriate caution.

A simulation run was then made using these TPB populations to sample from, which
simulated 1,000 women, 300 times, under the extension to the current UK screening
policy of screening from age 45 to age 69 every 3 years. This run will be named the
75% baseline run in this thesis, in order to avoid confusion with the previous baseline
runs. The results of this 75% baseline run can be found in Appendix F.

Experimentation was then carried out in order to find the required proportional
increases in the TPB constructs in order to produce similar benefits (to those
observed by lowering the age of invited screening to 45), but using the current UK
screening policy (screening from age 51 to 69 triennially). In other words, by how
much would the population TPB construct values need to increase in order to
produce similar benefits as lowering the age of screening to age 45 from age 517

Three of the simulation outputs were used in order to compare the results of the
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TPB implied atten- 75% Baseline 95% Attendance
dance

Screen scenario 45-69/3yrs 50-69/3yrs
Statistic Mean | Upper Lower Mean | Upper Lower
90% CI | 90% CI 90% CI | 90% CI

Number of cancers screen | 268.07 | 270.46 265.69 265.80 | 267.98 263.62
detected

Percent of detected can- | 36.17 | 36.47 35.88 35.81 36.09 35.53
cers detected by screen-

ing

Life years saved 389.20 | 403.77 374.62 345.09 | 357.36 332.81

Table 7.2; Comparison of Three Key Simulation Qutputs Between the 75% Bascline TPB Run
(Screening 45-69/3yrs) and Increasing the TPB Variables to Approximate 95% Atteudance
(Screening 51-69/3yrs). Where CI= Confidence interval.

experimentation, and these were: the number of screen-detected cancers, the
proportion of screen-detected cancers, and the life-years saved by the screening
strategy. The results found that in order to find similar numbers, and proportions, of
breast cancers as by lowering the age of screening, the TPB constructs needed to be
increased by 74.77% on the 75% baseline result, (around 45% increase on the
population data provided by Rutter (2000)), leading to an attendance rate at
screening units of around 95%. Full results of this run can be found in Appendix F.

Table 7.2 presents the results from this final experimentation, as well as the results of
the 75% Baseline run for comparison. 90% confidence limits are displayed and from
these it can be seen that no significant difference was found between the numbers or
proportions of screen-detected cancers were found between the two runs. However,
Table 7.2 also shows that, despite finding similar proportions of tumours, a significant
difference was observed between the numbers of life-years saved predicted by the
model, with significantly lower numbers of life-years saved associated with the run
that increased the TPB variables above the 75% baseline rates, but screened at the
current UK policy ages. This result is not entirely unexpected, as screening lower
ages (as in the 75% baseline run) will detect tumours in younger women who have the
potential to live longer than older women (on average) and so overall, the number of
life-years saved by this earlier detection will be greater.

7.6.1 Experimentation Summary

This Section reported the results of experimentation to find the required increase in
the UK populations current TPB variables that would be required to produce similar
screening benefits as keeping the population TPB variables constant but starting to
screen at a lower age (age 45 as opposed to 51).

It was estimated that an increase of around 75% in the UK TPB variables associated
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with breast cancer screening could lead to similar numbers and proportions of
screen-detected breast cancers as would be observed if the screening policy was
changed to reduce the age of invited screening down to age 45.

However, although similar numbers of cancers would be detected, reducing the age of
screening would lead to a higher number of life-years saved through screening, by
detecting breast cancers in younger individuals.
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Chapter 8

Discussion

Operational Research (OR) techniques have been widely applied to the area of health
care and health research. However, the expected outcomes of interventions, plans, or
structural changes suggested by these models often differ from those observed in
reality.

The actions of people play a vital role in health care systems, resources, and disease
progression. For example, when considering different and or optimal disease
interventions the participation of the patient, or potential patients, in the
intervention must be considered. For the majority of models of health care systemns,
the behaviour of the people involved in those systems is described by a single
variable, e.g. the percentage of patients who comply with the regime or procedure.

It is suggested that the observed gap between modelled expected outcomes and real
outcomes may be in part due to the human behavioural aspects of the health care
systems which are currently omitted from OR models. To this end this thesis
attempts to begin to incorporate psychological theory of health care behaviour into
an OR model in order to start to bridge the gap between modelled and observed
systems and increase the functionality and realism of the simulation model.

It is believed that this thesis describes one of the first serious attempts to incorporate
behaviour at an individual level into a health care simulation model. The aim of the
research was to investigate the benefits and differences that this approach brings
against the extra time required for the building and researching of the model as well
as the running time of the simulation.

8.1 Evaluation of Research Objectives

The research objectives for the work reported in this thesis are provided in Chapter
1, Section 1.3. This Section discusses the findings from considering each of the three

163



objectives in turn.

1. To investigate the effects of different methods of modelling attendance
for breast cancer screening, using a model from the psychological
literature on health-related behaviour (the Theory of Planned
Behaviour) as well as a statistical model derived to predict
attendance at UK screening clinics (Baker and Atherill (2002)), and
two methods commonly used in OR models based on percentage
attendance, for different screening policies.

To answer this research question a discrete event simulation of breast cancer and
screening policies for breast cancer was built and populated with data from literature
as appropriate. The model contained four different options for the approximation of
attendance behaviour at the invited screening sessions. The results have found that
different approaches to attendance behaviour did produce significantly different
modelled outcomes. However, although the actual outcomes across the different
attendance models differed, the relative effects of changing screening scenario were
found to be stable across the four chosen methods for approximating attendance
behaviour. In some cases the differences between the four approaches to attendaice
behaviour led to differences as to whether or not two different screening policies
produced significantly different results. This finding is important and emphasises the
need to treat simulation results with caution and not be too quick to assuine a policy
has, or does not have, additional benefit without taking into account the assumptions
implicit in the simulation design.

One of the four attendance behaviour models was based upon a psychological theory
of behaviour (the Theory of Planned Behaviour), designed to predict an individuals
behaviour based upon their subjective beliefs surrounding the behaviour, (including
the outcomes associated with the behaviour, and what others will think about the
behaviour in question). The results of the work reported in this thesis found that
using an approximation of this psychological model in the simulation in order to
predict attendance at breast cancer screening, provided similar results to an
assumption of percentage attendance. This could mean that in some cases it would
not be worthwhile incorporating the additional behavioural detail into a simulation.
However, the added information provided by the psychological theory could aid the
evaluation of different psychological changes in the population, (through interventions
to increase the uptake of screening, or by negative press associated with the benefits
of process of screening), against changes in screening policy. The research therefore
finds that the question as to whether or not the additional time and effort required to
incorporate a psychological theory is worthwhile depends on the aim of the research
in question.
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2. To investigate the effects of using different models of tumour growth for
different screening policies.

Four cancer growth patterns were considered in the simulation model, those of
Gompertzian, Logistic, modified Gompertzian, and Exponential. Assumptions of
Gompertzian growth produced some outcomes that were not validated and indicated
that the short doubling times that were used to populate the Gompertzian
distribution may not be appropriate. Results from the remaining three methods, and
associated doubling times, all validated well, and the results found no reason to
further accept nor reject any of the remaining three assumptions.

The results of the experimentation found that each of four different assumptions of
tumour growth, and their associated parameters, led to significantly different
modelled outcomes, with an especially notable difference brought about for the
number of life years saved simulated. This outcome is of particular importance since
screening decisions may be made on the basis of the simulated number and cost of
lives saved and this outcome has been shown to vary with assumptions of tumour
growth. However, again the rank order of the different screening strategies considered
remained constant regardless of the assumption of tumour growth within the
simulation. This outcome helps to re-enforce the importance of comparing relative
outcomes as opposed to actual outcomes in all simulation models of real life systems.

3. To compare the effects of changes in behaviour with changes in
screening policy.

Results comparing screening scenarios revealed that the simulation model suggested
the UK could see approximately 15% more screen-detected tumours if the lower age
for screening invitations was reduced to age 45 (adding two more invitations per
individual). The results of this sensitivity analysis demonstrated that around a 4%
increase in the number of screen-detected cancers could be achieved simply by
altering psychological attitudes of the population by 10% (and therefore increasing
the attendance rate at screening units) and not altering the screening regime at all.
Moreover, further analysis estimated that if the Theory of Planned Behaviour
constructs in the UK population could be increased by 75%, (a 45% increase on the
baseline figures reported in the work by Rutter (2000) and as used in the analysis in
this thesis), then similar numbers and proportions of breast cancers could be
diagnosed via screening as by changing the current screening regime to screen from
age 45 (as opposed to age 50 as is standard today).
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8.2 Limitations of the Research

This is not a cost-effectiveness analysis. The work has not attempted to attach
financial costs to mammography or treatment. Therefore no conclusions can be
drawn about the real-life applicability of the results since it would be necessary to
take into account the relative costs of different screening programmes to evaluate the
cost per life year saved. In practice, health policy makers would need to trade this off
against other potential use of the money and take into account the savings in terins
of life years (or Quality Adjusted Life Years) saved. A cost-effectiveness analysis
would also need to take into account the rates of over-diagnosis at screening, anotlier
factor that is not addressed in the research described here.

Data for the Theory of Planned Behaviour model was limited to the women in the
Rutter study. The work was not able to generalise to a UK population. Moreover, it
did not fit (and sample from) a multivariate distribution function, thus restricting the
simulated population to the empirical observed data. It was also assumed that the
relation between the constructs of the variables of the TPB would remain stable if the
values of the individual constructs were to change. In addition no consideration was
made as to how the TPB variables might be changed in practice, in order to achieve
the 10% increase or decrease discussed in Chapter 7, (via improving psychological
constructs associated with mammography screening through telephone counseling,
advertising campaigns, and GP advice, or by reducing the barriers to screening such
as travel distance and transport costs), nor the cost implications associated with such
a change.

The author has not modelled behaviours associated with breast self examination in
any of the four options for approximating behaviour within the simulation model.
Nor has the research considered any possible correlation between the practise of self
examination and attendance at breast screening or the values of psychological
constructs in the Theory of Planned Behaviour. Furthermore the Theory of Planned
Behaviour was the only psychological theory that was used in order to attempt to
incorporate into the analysis, and it is possible that different results may have been
achieved if an alternative psychological framework had been the focus.

The simulation model that was built to study the research questions makes a number
of assumptions regarding breast cancer and screening for breast cancer. Firstly, the
model assumes that breast cancers grow spherically. Secondly, the model links
survival from breast cancer directly to the size of the tumour and does not take into
account further prognostic indicators as discussed in Section 6.5. The simulation
model also assumes that women are invited to screening at exact and specific ages as
opposed to practise in the UK population whereby women are screened in regional
patterns and invited if they have not been invited for three years or if they have now,

166



or are about to, pass their 50th Birthday.

8.3 Further Work

The first step would be to attach costs as described in Section 8.2, in order to carry
out a full cost-effectiveness analysis and compare screening policies in terms of cost
per life year saved.

It would be very interesting (but time-consuming) to carry out a larger empirical
study to collect data for the TPB model (or alternatively one of the umbrella models
discussed in Chapter 2), and perform the necessary statistical analysis to in order to
develop a multivariate distribution from which to sample. It might be possible to
work with marketing researchers, either to carry out an empirical study or to do
secondary data collection from the literature, in order to quantify the effects of health
education campaigns, and other interventions designed to affect health-related
behaviour.

It would be interesting to incorporate some of the other psychological models
discussed in Chapter 2, in particular the more recent integrative models of health
behaviour.

It would of course be possible to develop behavioural models for screening for other
diseases. An obvious candidate is diabetic retinopathy where there is a large
literature on screening (see for example Brailsford and Schmidt (2003)). Models for
screening for other cancers (cervical, prostate, testicular, and bowel cancers) could
also potentially benefit from this approach.

8.4 Conclusion

This was believed to be the first serious attempt to model health-related behaviour in
a detailed, individual way using psychological variables. There was a significant data
collection and modelling effort and it remains unclear from this study whether the
benefits of modelling in such detail will always outweigh the cost of this effort.
However, the potential impact of including behavioural variables in simulation models
goes far beyond healthcare. Any human activity system depends ultimately on the
role played by the people within that system. These ideas could carry over into
manufacturing industry, defence and every other arena where simulation plays a key

role.
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Appendix A

Model Code

The discrete event simulation model is built in Microsoft Visual Basic 6.0 and makes
use of the three phase discrete event simulation methodology. Chapter 5 provides an
overview of the models schema, and this Chapter attempts to describe the models’
code structure in more detail, however it is not the intention to provide full code
documentation.

The main body of the code is split into two modules, named ‘BreastCancer’ and
‘Executive’ respectively. The Executive module contains subroutines and procedures
that govern the three phase procedure and access routines for other classes and
modules within the simulation to gain information about the state of the system such
as the current clock time. The BreastCancer module contains routines and
procedures that are specific to the breast cancer scenario, including the code relating
to the specific B-Phase events of the three phase methodology such as code governing
screening for breast cancer, and entity parameter initialisation.

Figures A.1 and A.2 provide an overview of the main routines and procedures
contained within these two modules and how they interact with each other, the list is
not exhaustive but is intended to inform a high level picture of how the simulation
works. Here it can be seen that the user runs the model by selecting ‘Model’ then
‘Run’ from the models’ menu bar, which calls, for each iteration of the simulation,
the initialisation routine in the BreastCancer module followed by the Simulate
routine within the Executive.

Statistics and parameters relating to particular entities (women) within the
simulation are stored and accessed via user defined collection classes containing
objects which bring together parameters and functions grouped into topics
appropriately. For example, the collection object Growth contains many Growth
objects, one for each entity in the simulation which is scheduled to have, or already
has breast cancer. Each Growth object stores, for that individual, their growth
parameters, and the ‘TumourSizeNow’ method of the object allows the calculation of
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the entities tumour diameter (in millimetres) at any point in time by using the other
growth properties within the object, (and the current simulation clock time as passed
to the function).

There are 23 class modules within the simulation code, 9 of which are collection
classes. The main class objects and collections of class objects are detailed in Figures
A3 and A.4 and are colour coded. All collection classes are shown with blue
headings, and all class objects with orange headings. Figures A.5 and A.6 give an
indication of how the classes are used within the module level code to search for and
alter an entities properties throughout the simulation. Here, an argument is shaded
in blue if its code directly refers to a collection class object, and orange if it refers to
a class object.
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Form: Runtime

Uscr input
Code

Model:Run )
call mnuRun

Procedure Name

Description

For cach iteration, initinlises the classes and variables, then runs the simulation

Argumenls

For intcger =1 to number of itcrations
Call BreastCancer:Initialise

Call Execulive:Simulate
Next iteration
Caleulate summary results.

Module: Executive

Procedure Name NewEntity
Description Adds a new entity 1o the classes of Growth and Women
Arguments Growih.Add

Entity. Add

Procedure Name

ScheduleCancerOnset, ScheduleSelfDetection, ScheduleDeath, ScheduleSercen

Description

Adds a new object {of the type specified) to the scheduler.

Arguments

Schedule,Object. Add. where object is the relevant acivity (o be scheduled.

Procedure Name

Description

Calls the three phase procedures A.B, and C in twm until the end of the iterations run length

Arguments

Do while Clock < iteration duration

Aphasc
Bphase
Update progress bar
Do cvents
Loop
Call Finished.

Procedure Name

Description

xt scheduled event in the scheduler

Arguments

NextEvent = unduration + 100
Find the next scheduled event in the scheduler by hing through Schedule Cancer,
schedule. Screen, Schedule. Death, Schedule CancerDeath

Record the time of the next event (NextEvent), and the unique IDs of the enfities with thesc
timecells (mstrEntity ToAction()) as well as the event they are due for in their women class

Clock = NextExvent
Updatce entily nges.

Procedure Name Bphase
Description Carry out the actions due at this limestcp
Arguments For integer = 1 to number of entities scheduled with an event at this clock time

Select the action they are due for (Woman(ID).NextTransition)

Casc Dic from natural cavscs
Call BreasiCancer:BDic
Case GetCancer
Call BGetCancer
Casc GoToScrcen
If Behnviour(ID). Auend = true then Call
BreastCancer:BGelSi d, and add an d to their behaviour]
class

Elsc schedule next screen, and change Behaviour(1D). PreviousAttend
= [nlse

Case SelfDetecting

Call BreastCancer:BSelfDetect
Casc CanccrDying

Call BreastCancer:BDicFromCancer
End Select

Next integer.

Figurc A.1: Simulation Modules (continued over the page)
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Module: BreastCancer

Procedure Name

Initialise

Description Initialises the classes and variables for each entity (woman), scheduling cancer onset, first screens, and nataral
death.
Arguments Reset all global counts to zero

For integer = 1 to number of entities
Assign an identifier (W & integer)
Add entity to the Behaviour class collection
If they get cancer then
Add entity to OnsetEntity class collection
Call Executive: NewEntity to add basic entity atributes
Call Executive: ScheduleCancerOnset, ScheduleSelfDetection, ScheduleDeath

Add entity to OnsetEntity class collection without onset and growth attributes
Call Executive: ScheduleDeath to schedule natural death
End if
Call Executive: ScheduleScreen to schedule the first screen
Next integer.

Procedure Name
Description

BDic
Moves an entity 1o the state of natural death and de-schedules all events for that entity

Arguments

Move the entity from the state they are in to the natural death siate and update counts of women n each state
appropriately.
De-schedule all events for the entity.

Procedure Name

BGetCnncer

Description

Moves an entity form the state of no cancer to cancer

Arguments

Alters the state of the entity to ‘cancer’ and updates 1he counts of entities in each state 1o reflect the change.

De-schedule cancer onset for the entity
Call Executive:ScheduleDeath to schedule their death from cancer.

Procedure Name

BGetScreened

Description Finds out if the tumour would be detected by screcning at this time and if so moves the state of the entily to
screen found, re-scheduling CancerDeath as appropriate.
Arguments De-schedule this screen

If the entity currently has cancer then
Find the current size of the tumour (using Growth class)
If the probability of detection at that size 1s greater than a random number then the tumour is detected
Move the state of the entity to screen found
De-schedule self discovery of the tumour
Re-schedule death from cancer based on current tumour size
Else  Schedule the next screen
Else schedule the next screen.

Procedure Name

BSclfDetect

Description

Moves the entity from the cancer state to self found/other detected state and update figures appropriately.

Arguments

De-schedule this time of self discovery
De-schedule any screening scheduled
Re-schedule cancer death

Update counts in each state appropriately.

Procedure Name

BDicFromCancer

Description

Remove the entity form their current state to that of dead rom breast cancer.

Arguments

De-schedule this death and patural death
De-schedule any other activities scheduled for the entity
Update counts of the numbers of entities in each state appropriately.

Figure A.2: Simulation Modules Continued
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Class Objects

Object Class: Behaviour Object

Description A group of behavioural attributes belonging to a panicular entity
Auribuies Name Description
1D Unique identifying key
Attitude Individuals score for atiitude construct of TPB
SubNorm Individuals score for subjective nonn consimet of TPB
PBC Indiv iduals score for perceis ed behavioural contral coustruct of TPB
PreviousAtiend Boolean variable describes whether or not individual attended the previous
screemng invitahon
AttendCount Count of the individuals antendances at breast screening.
Attendance() Armay of bytes describing ihe artendance pattem for ihe individual, where i stands|
for the ith invitation, and 1 indicates an attendance, 0 i non attendane.
GlobalAuend “The probability of attendance for the individual for the ‘global' pereentage
aendance scenario
Invitations The number of invitations to screening that the entily has received.
Methods Name Purposc
Attend Pulls together the individuals behavioural anributes te calcalate a probability of
attenlance, and then uses Monte Cilo y to deter ¢ il attendance tithes
place or not.
AddAltendance Adds 10 1he count of aitendances for the individual
Object Class: CancerOnset Object
Description A lime of cancer ouset for an individual
Auributes Name Description
1D Unigue idemifying key
TimeCell The clock timc for the particular entities’ cancer onset
Object Class: Screen Object
Description The time of the next
sereen due for an
individual
Autributes Namc Description
1D Unique identifyving key
TimeCell The clock time for the lar entities hy screen
Object Claxs: Death Object
Description The time of death for an individual
Attributes Numc Deseription
ID Unique identifying key
TimeCell The clock tine for the particulur entitics’ schoduled death from any canses
Object Class: SelfDetect Object
Description ‘The time of self or other detection for an individual
Autributes Name Duscription
D Unique identifving key
TimeCell The clock time for the particular entities' 1ime to self deteet the wmonr.

Object Class: Growth Object

Description

Antributes

Funciions

A group of paramelers deseribing the growth and size of an individuals tamour i a panicular point in tinie

Name Description

1D Unigue identilying key

TimeOnsel Time of tmmour onset

GrowthVariable The growth variables simpled for the individual when the object wus added 1o
the collection

GrowthType The growth pattern selecied for 1he current simulation

TimeFromMclOnseiToDe The sampled tine from onsel until detection sampled upon

t object creation

TimeToMctustusis The time it takes from onset to given the prowth

Caleulated using MetDeltcctionTime, and TimeOnset

SiveWhenMetastasis Stores the sumpled size of primary Wwmour wlien metastasis oceurs.
Nmme Description
TumourVolnmeNow Calculates the volume of the spherical lumour at a given lime according o (he

chosen growth pattern. Uses the Duration function.

Durition Provides the time the tumour has been growing based upon the clock tine and
time of onset

TumourSizeNow Calculites the mmour dizmeter (i tun) at the clock time from the tumonr
volome ussuming the tumeur is spherical. Uses the Duration, and
TumourVolumeNow functions.

TimcFromSlanToSize Calenlates how long, from onset, a mour with the growth characteristics of the
object wonld take 1o reach a given diameter (in mm).

MuDeicctionTime Calculates and remnis the tinie of mictastasis for the individual, based upon the
size of the tmour at metastasts as sampled upon addition 10 the collection, the
growth variable, and using the function TimeFromStuntToSize

Figure A.3: Simulation Classcs (continued over the page)
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Object Class: Scheduler

Description An object containing the collection classes of all scheduled activities
Attributes Name Description

Screen Is a Screen collection class

CancerDeath Is a Death collection class

NaturalDeath Is a Death collection class

SelfDetection Is a SelfDetect collection class

Cancer Is a Cancer collection class

Object Class: Statistics Object
Description An object containing an individuals cancer statistics for use in calculating summuary statistics and for outputs
to detailed text files.

Attributes Name Description
ID Unique identifying key relating to a particular entity
SizeAtDet The size of the tumour at detection
TypeDet A usertype providing the type of detection, screen detected or other.
AgeAtDel Age at detection
TimeSelfDied The time of cancer death scheduled based upon survival at the time and tumour

size at natural detection

TimeCaughtEarlier If screen detected, the time difference between scheduled sell’ detection and time
of screen detection is recorded.

TimeDied The actual time of death of the individual

Object Class: Woman Object

Description An object containing the key attributes of each entity
Atiributes Name Description
ID Unique identifying key relating 1o a particular entity
State The current cancer state of the entity, e g. no cancer, screen detected, dead etc
NextTransition The next event scheduled for the entity
Age Current age of the entity
FoundState Whether cancer was screen detected or not
TimeDies Time of entity death

Figure A.4: Simulation Classes Continued
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Collection Class Objects

Collection Class: Behaviour Collection

Description A collection of class objects Behaviour

Methods Name Purpose
Add Adds a Behaviour object for an entity to the collection.
Provides them with relevant behavioural auributes sampled as necessary.
Count Provides a count of the number of elements in the collection at any one ime
Item Allows retrieval from the behaviour class by key tdentifier
NewEnum Enables For..Next loops through the collection
Remove Removes an entities Behaviour object from the behaviour collection
Functions Name Purpose
Initialise If the theory of planned behaviour is selected then the routine reads in the set of behaviour parameters from

the relevant file for each entities random selection when added to the collection

Collection Class: Cancer Collection

Description A collection of class objects Cancer, to schedule cancer onset

Methods Name Purpose
Add Adds a CancerOnset object for an entity to the collection.
Provides each entity added with a cancer onset time to be searched through by the scheduler
Count Provides a count of the number of elements in the collection at any one time
Item Allows retrieval from the Cancer class by key identifier
NewEnum Enables For..Next loops through the collection
Remove Removes an entities CancerOnset object from the Cancer collection, therefore de-scheduling cancer onset.

Collection Class: Death Collection

Description A collection of class objects Death, to schedule natural death.
Methods Name Purpose
Add Adds a Death object for an entity to the collection.
Provides each entity added with a time of natural death 1o be searched through by the scheduler

Count Provides a count of the number of ¢lements in the collection at any one time

Item Allows retrieval from the Death class by key identifier

NewEnum Enables For..Next loops through the collection

Remove Removes an entities Death object from the Death collection, therefore de-scheduling natural death.

Collection Class: Screen Collection

Description A collection of class objects Screen, 10 schedule the next screen for that entity.
Methods Name Purpose
Add Adds a Screen object for an entity to the collection.
Provides each entity added with a time of next screen invitation 1o be searched 1hirough by the scheduler

Count Provides a count of the number of elements in the collection at any one time

Item Allows retrieval from the Screen class by key idenufier

NewEnum Euables For..Next loaps through the collection

Remove Removes an entities Screen object from the Screen collection, therelore de-scheduling their next sereen.

Collection Class: SelfDetect Collection

Description A collection of class objects SelfDetect, to schedule the self detection for that entity.

Methods Name Purpose

Add Adds a SelfDetect object for an entity to the collection.
Provides each entity added with a time to self detect to be scarched through by the scheduler

Count Provides a count of the number of elements in the collection at any one time

Item Allows retrieval from the SelfDetect class by key idenuiter

NewEnum Enables For..Next loops through the collection

Remove Removes an entities SelfDetect object irom the SelfDetect collection, therefore de-scheduling their time 10
self detect

Figure A.5: Simulation Collection Classes (continued over the page)
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Collection Class: Statistics Collection

Description
Methods

A collection of class objects Statistics, to store statistics relating to that entity from the iteration
Name Purpose
Add Adds a Statistics object for an entity to the collection.

Provides each entily added with key statistics useful for result caleulations

Count Provides a count of the number of clements in the collection at any one time
Item Allows retrieval from the Statistics class by key identitier

NewEnum Enables For..Next loops through the collection

Remove Removes an entities Statistics object from the Statistics collection,

Collection Class: Entity Collection

Description
Methods

A collection of class objects Entity, to store key information about cach entity (woman)

Name Purpose
Add Adds a Entity object for an entity to the collection.
Provides each entity added with key information such as their current age and cancer state
Count Provides a count of the number of elements in the collection al any one time
Item Allows retrieval from the Entity class by key identifier
NewEnum Enables For..Next loops through the collection
Remove Removes an entitics Entity object from the Entity collection, and therefore from the simulation,

Collection Class: Growth Collection

Description
Methods

Functions

A collection of class objects Growih, to store information relating to the cancer growth of an entity.

Nare Purpose
Add Adds a Growth object for an entity to the collection.

Provides each Growth added with key information such as growth rate, and size when metastasis occurs etc.

Count Provides a count of the number of ¢lements in the collection at any one lime
Item Allows retrieval from the Growth class by key tdentifier

NewEnum Enables For..Next loops through the collection

Remove Removes an entities Growth object from the Growth collection.

Name Purpose

SizeWhenMetasta Calculates the a size of cancer when metastasis could oceur based upon the distribution proposed by Koscienly

sis (1984)

Readin Reads in the sclected subset of growth parameters from the relevant file for each entities use within the
iteration,

ReadinStoc When the modified gompertz (stochastic) growth function is selected, this function reads in the selected subset
of arowth parameters and timings for those parameters from the relevant file for cach entities use within the
iteration.

Collection Class: Onset Collection

Description
Methods

Funclions

A collection of class objects CancerOnset, to find and return the time of cancer onset for each entity
Name Purpose

Add Adds an Onsel object for an entity to the collection.
Provides each cntity added with a sampled age of inset read in from the relevant input file

Count Provides a count of the number of elements in the colleetion at any one time

Item Allows retrieval from the Onset class by key identifier

NewEnum Enables For..Next loops through the collection

Remove Removes an entities CancerOnset object from the Onset collection

Name Purpose

Readin Reads in the selected subset of age of cancer onsets from the relevant file for cach entities use within the
iteration.

Figurc A.6: Simulation Collection Classes Continued
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Appendix B

The Theory of Planned Behaviour
Data

Rutter kindly made available data relating to a study of the Theory of Planned
Behaviour (TPB) and how well the theory predicted attendance at three UK
screening units over two rounds of invitations, (Rutter, 2000). The study is described
in Chapter 3 and the dataset and analysis of the dataset in Chapter 6. Tables B.1
and B.2 provide summary statistics relating to the TPB constructs within the dataset
and Table B.3 shows the correlations observed between the measured TPB variables.

Construct Screening Cases
of TPB attendance Valid | Missing Total

N Percent N Percent N Percent

Intention to attend | did not attend 278 84.0% 53 16.0% 331 100.0%
attended | 1,559 90.3% 168 9.7% 1,727 100.0%

Attitude did not attend 278 84.0% 53 16.0% 331 100.0%
attended | 1,559 90.3% 168 9.7% 1,727 100.0%

Subjective Norms | did not attend 278 84.0% 53 16.0% 331 100.0%
attended | 1,559 90.3% 168 9.7% 1,727 100.0%

PBC did not attend 278 84.0% 53 16.0% 331 100.0%
attended | 1,559 90.3% 168 9.7% 1,727 100.0%

Table B.1: Case Summary of data provided from Rutter (2000) for TPB variables
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Construct Screening atten- Statistic Value
dance
Intention to at- did not attend Mean | 3.79
tend
95% Confidence Interval for Mean | Lower Bound 3.66
| Upper Bound 3.92
Median | 4.00
Std. Deviation | 1.11
Minimum | 1.00
Maximum | 5.00
attended Mean | 4.52
95% Confidence Interval for Mean | Lower Bound 4.49
Upper Bound 4.55
Median | 5.00
Std. Deviation | 0.65
Minimum | 1.00
Maximum | 5.00
Attitude did not attend Mean | 24.23
95% Confidence Interval for Mean | Lower Bound 22.10
Upper Bound 26.36
Median | 22.00
Std. Deviation | 18.03
Minimum | -33.00
Maximum | 70.00
attended Mean | 29.66
95% Confidence Interval for Mean | Lower Bound 28.91
‘ Upper Bound 30.42
Median | 29.00
Std. Deviation | 15.23
Minimum | -24.00
Maximum | 76.00
Subjective did not attend Mean | 54.25
Norms
95% Confidence Interval for Mean | Lower Bound 51.19
| Upper Bound 57.31
Median | 50.50
Std. Deviation | 25.93
Minimum | 1.00
Maximum | 125.00
attended Mean | 65.05
95% Confidence Interval for Mean | Lower Bound 63.87
‘ Upper Bound 66.23
Median | 65.00
Std. Deviation | 23.71
Minimum | 4.00
Maximum | 125.00
Perceived Be- did not attend Mean | 12.22
havioural Con-
trol
95% Confidence Interval for Mean | Lower Bound 11.92
l Upper Bound 12.51
Median | 13.00
Std. Deviation | 2.47
Minimum | 5.00
Maximum | 15.00
attended Mean | 13.06
95% Confidence Interval for Mean | Lower Bound 12.97
Upper Bound 13.15
Median | 13.00
Std. Deviation | 1.76
Minimum | 5.00
Maximum | 15.00

Table B.2: Summary statistics for dataset from
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Construct Attitude | Subjective Norm | PBC

Attitude Correlation Coefficient 1.000 0.398 | 0.298

Sig. (2-tailed) 0.000 | 0.000

N 2,029 1,868 | 2,001

Subjective Norm | Correlation Coefficient 0.398 1.000 | 0.210

Sig. (2-tailed) 0.000 0.000

N 1,868 1,881 | 1,858

PBC Correlation Coefficient 0.298 0.210 | 1.000
Sig. (2-tailed) 0.000 0.000

N 2,001 1,858 | 2,024

Table B.3: Spearman’s Rho correlation statistics for data from Rutter (2000)
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Appendix C

Results of Screening Scenarios
Across Assumptions of Attendance

Behaviour

This Appendix provides the detailed results from all of the outputs from the
simulation runs reported in Section 7.4 that consider the effect of tumour growth
assumptions upon simulated outcomes. The Tables that follow provide the mean and
90% confidence intervals for the mean, of all of the simulation outcomes for each run.

The 90% confidence intervals are generated via methodology described in Section 7.2.

Where Global = global percentage attendance, local = local percentage attendance,
TPB = the Theory of Planned Behaviour, and equation = the equation option for
modelling attendance behaviour.
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Output Variable

Average

90% Confidence interval for the av-
erage (mean plus and minus result)

Equation | Local | Global | TPB Equation | Local | Global TPB
Number of cancers screen detected 151.550 184.777 | 175.260 | 183.480 2.596 2.723 2.547 2.631
Number detected by other means 577.780 546.657 | 556.760 | 548.710 3.591 3.412 3.567 3.592
Number of women who got cancer 896.023 895.687 | 896.120 | 896.170 2.093 2.292 2.255 2.091
Number of women screen invited while had cancer 464.733 468.047 | 467.277 | 467.703 3.432 3.277 3.501 3.730
Number of cancers that were not detected 166.693 164.253 | 164.100 | 163.980 2.600 2.399 2427 2.524
Number of women uot screen invited while had cancer 431.290 427.640 | 428.843 | 428.467 3.413 3.145 3.373 3.547
Number of women who did not get cancer 103.977 104.313 | 103.880 | 103.830 2.093 2.292 2.255 2.091
Number of women who attended screcning at least once 678.310 802.820 | 689.300 | 801.297 3.423 2.560 2.994 2.806
Percent of detected cancers detected by screening 20.780 25.261 23.944 25.061 0.346 0.354 0.340 0.350
Average tumour diameter (mm) at registration 21.094 20.258 20.470 20.309 0.110 0.110 0.120 0.109
Average time (years) to detection 15.934 15.829 15.867 15.804 0.073 0.079 0.083 0.075
Average diameter (mm) of tumour at detection if detected by other means 24.054 23.741 23.873 23.748 0.120 0.119 0.122 0.114
Average time (years) to detection if detected by other means 15.302 14.952 15.142 14.936 0.084 0.086 0.084 0.078
Average diameter (mm) of tumour if screen detected 9.922 9.987 9.687 10.018 0.056 0.061 0.054 0.060
Average time to detection (years) if screen detected 18.355 18.544 18.186 18.347 0.014 0.025 0.012 0.013
Life years saved 230.855 274.372 | 272.120 | 277.888 14.642 15.155 14.932 16.548
Years carlicr detected if screen detected 4.557 4.493 4.569 4.509 0.089 0.078 0.083 0.080
Average number of attendances (of those who attended at least once) 3.492 3.519 4.068 3.511 0.013 0.010 0.011 0.010

Table C.1: Results from screening age 51 to age 63 every 3 years, by attendance behaviour option
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Output Variable

Average

90% Confidence interval for the av-
erage (mean plus and minus result)

Equation | Local | Global | TPB | Equation | Local | Global TPB
Number of cancers screen detected 203.950 247.000 | 235.260 | 244.297 2.731 2.892 2.952 2.937
Number detected by other means 532.353 493.397 | 503.940 | 495.923 3.493 3.382 3.353 3.425
Number of women who got cancer 895.583 895.853 | 895.603 | 896.177 1.982 2.070 2.224 2.014
Number of women screen invited while had cancer 529.697 533.303 | 532.070 | 531.680 3.766 3.501 3.428 3.434
Number of cancers that were not detected 159.280 155.457 | 156.403 | 155.957 2.653 2.678 2.682 2.349
Number of women not screen invited while had cancer 365.887 362.550 | 363.533 | 364.497 3.424 3.373 3.473 3.128
Number of women who did not get cancer 104.417 104.147 | 104.397 | 103.823 1.982 2.070 2.224 2.014
Number of women who attended screening at least once 679.390 801.337 | 689.790 | 799.743 3.081 2.687 3.002 2.775
Percent of detected cancers detected by screening 27.700 33.360 31.825 33.004 0.354 0.362 0.372 0.379
Average tumour diameter (inm) at registration 19.796 18.751 18.984 18.828 0.108 0.114 0.116 0.113
Average time (years) to detection 15.862 15.652 15.693 15.689 0.076 0.073 0.073 0.074
Average diameter (mm) of tumour at detection if detected by other means 23.570 23.162 23.353 23.188 0.117 0.112 0.124 0.130
Average time (years) to detection if detected by other means 14.862 14.147 14,446 14.190 0.082 0.075 0.079 0.076
Average diameter (mm) of tumour if screen detected 9.776 9.898 9.610 9.905 0.057 0.061 0.065 0.064
Average time to detection (years) if screen detected 18.494 18.679 | 18.315 | 18.766 0.013 0.017 0.015 0.029
Life years saved 268.607 315.157 | 297.359 | 308.093 15.900 15.585 | 15.488 16.227
Years carlier detected if screen detected 4.528 4.545 4.591 4.541 0.076 0.063 0.069 0.067
Average number of attendances (of those who attended at least once) 4.299 4.351 5.024 4.346 0.020 0.013 0.017 0.016

Table C.2: Results from screening age 51 to age 69 every 3 years, by attendance behaviour option
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. Average 90% Confidence interval for the av-

Output Variable N
erage (mean plus and minus result)
Equation | Local | Global | TPB | Equation | Local | Global TPB
Number of cancers screen detected 181.543 218.290 | 204.793 | 218.067 2.707 2.680 2.636 2.756
Number detected by other means 550.203 516.680 | 530.410 | 516.793 3.740 3.768 3.198 3.360
Number of women who got cancer 896.150 896.307 | 896.467 | 895.223 2.106 2.291 2.064 2.214
Number of women screen invited while had cancer 467.087 470.793 | 469.720 | 470.613 3.399 3.372 3.421 3.529
Number of cancers that were not detected 164.403 161.337 | 161.263 | 160.363 2.757 2.706 2.534 2.508
Number of women not screen invited while had cancer 429.063 425.513 | 426.747 | 424.610 3.427 3.540 3.407 3.407
Number of women who did not get cancer 103.850 103.693 | 103.533 | 104.777 2.106 2.291 2.064 2.214
Number of women who attended screening at least once 684.320 804.747 | 690.993 | 805.207 3.470 2.684 3.254 2.756
Percent of detected cancers detected by screening 24.813 29.706 27.854 29.675 0.367 0.362 0.337 0.358
Average tumour diamecter (mm) at registration 20.283 19.295 19.623 19.325 0.122 0.122 0.113 0.119
Average time (years) to detection 15.810 15.644 15.672 15.637 0.080 0.077 0.079 0.073
Average diameter (mm) of tumour at detection if detected by other means 24.007 23.603 23.859 23.687 0.133 0.125 0.122 0.127
Average time (years) to detection if detected by other means 15.214 14.763 14.984 14.753 0.088 0.078 0.085 0.080
Average diameter (mm) of tumour if screen detected 8.929 9.090 8.662 9.022 0.047 0.056 0.055 0.057
Average time to detection (years) if screen detected 17.685 17.673 17.415 17.702 0.008 0.025 0.022 0.014
Life years saved 271.758 336.155 | 310.306 | 325.953 15.234 15.563 | 16.080 17.488
Years earlicr detected if screen detected 4.788 4.739 4.852 4.750 0.085 0.079 0.082 0.080
Average number of attendances (of those who attended at least once) 4.764 4.812 5.587 4.802 0.020 0.015 0.016 0.015

Table C.3: Results from screening age 51 to age 63 every 2 years, by attendance behaviour option
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. Average 90% Confidence interval for the av-

Output Variable .
erage (mean plus and minus result)
Equation | Local | Global | TPB | Equation [ Local | Global TPB
Number of cancers screen detected 243.310 296.553 | 274.807 | 295.260 3.018 3.121 3.137 3.234
Number detected by other means 497.317 449.883 | 468.473 | 450.720 3.667 3.256 3.676 3.493
Number of women who got cancer 895.543 896.787 | 896.277 | 894.900 2.215 2.238 2.161 2.198
Number of women screen invited while had cancer 534.307 540.237 | 535.237 | 540.240 3.509 3.760 3.586 3.529
Number of cancers that were not detected 154.917 150.350 | 152.997 | 148.920 2.594 2.647 2.642 2.583
Nutnber of woinen not screen invited while had cancer 361.237 356.550 | 361.040 | 354.660 3.272 3.565 3.323 3.271
Number of women who did not get cancer 104.457 103.213 | 103.723 | 105.100 2.215 2.238 2.161 2.198
Number of women who attended screcning at least once 686.293 806.150 | 688.897 | 804.590 3.312 2.740 3.210 2.714
Percent of detected cancers detected by screening 32.853 39.727 36.974 39.580 0.387 0.373 0.402 0.400
Average tumour diameter (mm) at registration 18.720 17.433 17.871 17.444 0.113 0.116 0.119 0.104
Average time (years) to detection 15.595 15.424 | 15.443 15.423 0.077 0.073 0.074 0.072
Average diameter (mm) of tumour at detection if detected by other means 23.601 23.065 | 23.369 23.017 0.117 0.122 0.125 0.115
Average time (years) to detection if detected by other means 14.594 13.921 14.329 13.902 0.077 0.079 0.080 0.080
Average diameter (mm) of tumour if screen detected 8.671 8.902 8.486 8.911 0.045 0.051 0.058 0.060
Average time to detection (years) if screen detected 17.645 17.630 17.332 17.774 0.009 0.020 0.020 0.016
Life years saved 316.024 377.109 | 350.160 | 369.401 16.322 16.862 | 17.209 17.874
Years carlier detected if screen detected 4.829 4.765 4.894 4.765 0.072 0.066 0.072 0.061
Average number of attendances (of those who attended at least once) 6.005 6.057 7.013 6.034 0.028 0.020 0.027 0.022

Table C.4: Results from screening age 51 to age 69 every 2 years, by attendance behaviour option
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Output Variable

Average

90% Confidence interval for the av-
erage (mean plus and minus result)

Equation | Local | Global | TPB | Equation | Local | Global TPB
Number of cancers screen detected 246.763 283.480 | 270.513 | 283.210 3.058 3.164 2.982 3.127
Number detected by other means 493.027 458.683 | 468.847 | 458.000 3.439 3.525 3.658 3.690
Number of women who got cancer 896.280 895.580 | 895.393 | 896.087 2.180 2.234 2.250 2.102
Number of women screen invited while had cancer 602.643 604.550 | 602.107 | 603.427 3.441 3.505 3.436 3.419
Number of cancers that were not detected 156.490 153.417 | 156.033 | 154.877 2.285 2.583 2.644 2.535
Nuinber of women not screen invited while had cancer 293.637 291.030 | 293.287 | 292.660 3.135 3.329 3.301 3.153
Number of women who did ot get cancer 103.720 104.420 | 104.607 | 103.913 2.180 2.234 2.250 2.102
Number of women who attended screcning at least once 779.443 888.870 | 761.273 | 888.880 3.063 1.989 2.923 2.165
Percent of detected cancers detected by screening 33.355 38.197 36.591 38.212 0.388 0.397 0.390 0.408
Average tumour diameter (mm) at registration 18.744 17.810 18.079 17.810 0.122 0.111 0.117 0.108
Average time (years) to detection 15.615 15.470 15.457 15.428 0.076 0.075 0.073 0.068
Average diameter (mm) of tumour at detection if detected by other means 23.372 22.846 23.176 22.928 0.126 0.140 0.125 0.125
Average time (years) to detection if detected by other means 14.543 13.941 14.242 | 13.828 0.082 0.078 0.087 0.074
Average diameter (mm) of tumour if screen detected 9.473 9.609 9.284 9.638 0.069 0.058 0.063 0.062
Average time to detection (years) if screen detected 17.781 17.957 | 17.488 | 17.966 0.027 0.012 0.008 0.015
Life years saved 372.338 417.927 | 403.376 | 420.791 17.724 21.208 19.951 18.849
Yecars carlicr detected if screen detected 4.594 4.578 4.626 4.573 0.069 0.069 0.062 0.065
Average number of attendances {of those who attended at least once) 5.592 5.555 6.449 5.546 0.024 0.018 0.021 0.018

Table C.5: Results from screening age 45 to age 69 every 3 years, by attendance behaviour option




Appendix D

Results of Screening Scenarios
Across Different Assumptions of
Tumour Growth

This Appendix provides the detailed results from all of the outputs from the
simulation runs reported in Section 7.3 that consider the effect of tumour growth
assumptions upon simulated outcomes. The Tables that follow provide the mean and
90% confidence intervals for the mean, of all of the simulation outcomes for each run.

The 90% confidence intervals are generated via methodology described in Section 7.2.

Where Mod Gom = Modified Gompertzian tumour growth assumption.
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Output Variable Average 90% Confidence ir{terval for the average
(mean plus and minus result)
Mod Gom | Logistic | Gompertz | Exponential | Mod Gom | Logistic | Gompertz | Exponential

Number of cancers screen detected 147.363 220.227 67.190 184.777 2.632 2.797 1.796 2.723
Number detected by other means 575.267 515.620 663.340 546.657 3.161 3.326 3.420 3.412
Number of women who got cancer 828.393 906.370 770.603 895.687 2.736 2.134 3.073 2.292
Number of women screen invited while had cancer 344.277 486.150 274.880 468.047 3.443 3.449 3.082 3.277
Number of cancers that were not detected 105.763 170.523 40.073 164.253 2.160 2.754 1.446 2.399
Number of wornen not screen invited while had cancer 484.117 420.220 495.723 427.640 3.652 3.360 3.275 3.145
Number of women who did not get cancer 171.607 93.630 229.397 104.313 2.736 2.134 3.073 2.292
Number of women who attended screening at least once 789.143 800.833 799.867 802.820 2.759 3.091 3.013 2.560
Percent of detected cancers detected by screening 20.388 29.927 9.197 25.261 0.341 0.351 0.242 0.354
Average tumour diameter {mm) at registration 21.268 19.050 23.801 20.258 0.119 0.111 0.111 0.110
Average time (years) to detection 6.807 17.118 2.882 15.829 0.032 0.087 0.020 0.079
Average diameter (mm) of tumour at detection if detected by other means 24.089 22.972 24.628 23.741 0.122 0.117 0.118 0.119
Average time (ycars) to detection if detected by other means 7.067 15.725 2.790 14.952 0.032 0.100 0.020 0.086
Avcrage diameter (mm) of tumour if screen detected 10.306 9.921 15.643 9.987 0.002 0.013 0.002 0.009
Average time to detection (years) if screen detected 5.806 20.486 3.757 18.544 0.020 0.069 0.020 0.077
Life years saved 222.966 326.475 107.644 274.372 14.226 16.754 9.970 15.155
Years earlier detected if screen detected 3.654 6.142 1.259 4.493 0.067 0.101 0.043 0.078
Avcrage number of attendances (of those who attended at least once) 3.561 3.448 3.606 3.519 0.010 0.010 0.010 0.010

Table D.1: Results for screening ages 51 to 63 every 3 years, by tumour growth pattern
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Output Variable Average 90% Confidence in'terval for the average
(mean plus and minus result)
Mod Gom | Logistic | Gompertz | Exponential | Mod Gom | Logistic | Gompertz | Exponential

Number of cancers screen detected 202.513 294.377 91.627 247.000 2.846 3.080 2.008 2.892
Number detected by other means 526.830 455.200 639.777 493.397 3.463 3.386 3.266 3.382
Number of women who got cancer 828.550 905.683 771.157 895.853 2.713 1.947 2.979 2.070
Number of women screen invited while had cancer 439.903 550.580 373.093 533.303 3.542 3.260 3.256 3.501
Number of cancers that were not detected 99.207 156.107 39.753 155.457 2.046 2.671 1.422 2.678
Number of women not screen invited while had cancer 388.647 355.103 398.063 362.550 3.650 3.220 3.217 3.373
Number of women who did not get cancer 171.450 94.317 228.843 104.147 2.713 1.947 2.979 2.070
Number of women who attended screening at least once 789.160 802.207 799.650 801.337 2.890 2.918 2.829 2.687
Percent of detected cancers detected by screening 27.766 39.272 12.526 33.360 0.372 0.376 0.264 0.362
Average tumour diameter (mm) at registration 19.930 17.499 23.226 18.751 0.124 0.104 0.109 0.114
Average time (years) to detection 6.582 16.963 2.847 15.652 0.031 0.084 0.019 0.073
Average diameter (mmn1) of tumour at detection if detected by other means 23.680 22.442 24.273 23.162 0.125 0.119 0.111 0.112
Avcrage time (years) to detection if detected by other means 6.901 14.547 2.713 14.147 0.034 0.095 0.018 0.075
Avcrage diameter (mm) of tumour if screen detected 10.207 9.867 15.829 9.898 0.005 0.020 0.004 0.009
Average time to detection (years) if screen detected 5.747 20.734 3.733 18.679 0.022 0.083 0.017 0.069
Life years saved 255.678 369.338 131.571 315.157 15.027 19.148 10.507 15.585
Years earlier detected if screen detected 3.671 6.091 1.253 4.545 0.055 0.080 0.038 0.063
Average number of attendances (of those who attended at least once) 4.438 4.236 4.506 4.351 0.016 0.015 0.015 0.013

Table D.2: Results for screening ages 51 to 69 every 3 years, by tumour growth pattern
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Output Variable Average 90% Confidence ir{terval for the average
(mean plus and minus result)
Mod Gom | Logistic | Gompertz | Exponential | Mod Gom | Logistic | Gompertz | Exponential

Number of cancers screen detected 177.807 255.997 89.203 218.290 2.737 2.761 2.140 2.680
Number detected by other means 546.800 483.493 640.810 516.680 3.532 3.337 3.358 3.768
Number of women who got cancer 829.553 905.890 770.993 896.307 2.763 2.083 3.121 2.291
Number of women screen invited while had cancer 346.697 490.660 275.560 470.793 3.551 3.387 3.389 3.372
Number of cancers that were not detected 104.947 166.400 40.980 161.337 2.220 2.797 1.297 2.706
Number of woimen not screen invited while had cancer 482.857 415.230 495.433 425.513 3.273 3.183 3.621 3.540
Number of women who did not get cancer 170.447 94.110 229.007 103.693 2.763 2.083 3.121 2.291
Number of women who attended screening at least once 792.743 804.533 805.657 804.747 2.714 3.116 2.804 2.684
Percent of detected cancers detected by screening 24.536 34.619 12.216 29.706 0.350 0.346 0.281 0.362
Average tumour diameter {mm) at registration 20.419 18.151 23.224 19.295 0.113 0.113 0.120 0.122
Average time (years) to detection 6.648 16.895 2.840 15.644 0.030 0.095 0.018 0.077
Average diameter (mm) of tumour at detection if detected by other means 23.972 22.989 24.395 23.603 0.123 0.125 0.120 0.125
Average time (ycars) to detection if detected by other means 7.041 15.366 2.752 14.763 0.031 0.103 0.018 0.078
Average diameter (mm) of tumour if screen detected 9.454 8.999 14.828 9.090 0.002 0.008 0.004 0.006
Average time to detection (years) if screen detected 5.486 19.725 3.487 17.673 0.027 0.075 0.020 0.067
Life years saved 265.524 383.608 154.898 336.155 15.453 18.952 12.373 15.563
Years earlier detected if screen detected 3.790 6.468 1.250 4.739 0.057 0.099 0.038 0.079
Average number of attendances (of those who attended at least once) 4.899 4.684 5.025 4.812 0.015 0.016 0.015 0.015

Table D.3: Results for screening ages 51 to 63 every 2 years, by tumour growth pattern
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Output Variable Average 90% Confidence in.terval for the average
(mean plus and minus result)
Mod Gom | Logistic | Gompertz | Exponential | Mod Gom | Logistic | Gompertz | Exponential

Number of cancers screen detected 245.640 340.913 124.350 296.553 3.206 3.079 2.457 3.121
Number detected by other means 487.330 414.203 607.383 449.883 3.499 3.337 3.314 3.256
Number of women who got cancer 829.317 906.200 771.107 896.787 2.610 2.156 2.800 2.238
Number of women screen invited while had cancer 442.403 555.710 375.960 540.237 3.568 3.686 3.396 3.760
Number of cancers that were not detected 96.347 151.083 39.373 150.350 2.051 2.427 1.388 2.647
Number of women not screen invited while had cancer 386.913 350.490 395.147 356.550 3.513 3.340 3.555 3.565
Number of women who did not get cancer 170.683 93.800 228.893 103.213 2.610 2.156 2.800 2.238
Number of women who attended screening at least once 791.830 804.663 804.833 806.150 2.896 3.102 2.715 2.740
Percent of detected cancers detected by screening 33.512 45.148 16.992 39.727 0.412 0.374 0.325 0.373
Average tumour diameter (mm) at registration 18.726 16.232 22.402 17.433 0.108 0.104 0.110 0.116
Average time (years) to detection 6.342 16.595 2.803 15.424 0.031 0.092 0.019 0.073
Average diameter (inm) of tumour at detection if detected by other means 23.491 22.379 23.955 23.065 0.123 0.115 0.114 0.122
Average time (years) to detection if detected by other means 6.802 14.040 2.666 13.921 0.032 0.089 0.019 0.079
Avcrage diameter (mm) of tumour if screen detected 9.301 8.805 14.890 8.902 0.003 0.016 0.002 0.014
Average time to detection (years) if screen detected 5.417 19.636 3.440 17.630 0.025 0.084 0.017 0.062
Life years saved 315.567 427.638 180.599 377.109 16.877 18.489 13.029 16.862
Years earlier detected if screen detected 3.801 6.419 1.237 4.765 0.047 0.080 0.031 0.066
Average number of attendances (of those who attended at least once) 6.204 5.837 6.398 6.057 0.024 0.022 0.023 0.020

Table D.4: Results for screening

ages 51 to 69 every 2 years, by tumour growth pattern
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Output Variable Average 90% Confidence in_terval for the average
(mean plus and minus result)
Mod Gom | Logistic | Gompertz | Exponential | Mod Gom | Logistic | Gompertz | Exponential

Number of cancers screen detected 238.640 333.383 106.670 283.480 3.182 3.285 2.224 3.164
Number detected by other means 492.757 417.823 623.883 458.683 3.686 3.456 3.347 3.525
Number of women who got cancer 829.093 906.397 770.087 895.580 2.633 2.155 2.939 2.234
Number of women screen invited while had cancer 513.373 619.360 444.337 604.550 3.493 3.522 3.505 3.505
Number of cancers that were not detected 97.697 155.190 39.533 153.417 1.989 2.535 1.278 2.583
Nuiber of women not screen invited while had cancer 315.720 287.037 325.750 291.030 3.183 3.220 3.420 3.329
Number of women who did not get cancer 170.907 93.603 229.913 104.420 2.633 2.155 2.939 2.234
Number of women who attended screening at least once 878.413 887.943 890.653 888.870 2.523 2.285 2.328 1.989
Percent of detected cancers detected by screening 32.629 44.380 14.600 38.197 0.416 0.398 0.294 0.397
Average tumounr diameter (mm) at registration 18.998 16.430 22.912 17.810 0.118 0.106 0.117 0.111
Average tie (years) to detection 6.409 16.668 2.822 15.470 0.029 0.091 0.017 0.075
Average diammeter (nmu) of tumour at detection if detected by other means 23.385 21.975 24.183 22.846 0.123 0.113 0.118 0.140
Average time (years) to detection if detected by other means 6.817 14.182 2.671 13.941 0.032 0.096 0.017 0.078
Avcrage diameter (mm) of tumour if screen detected 9.983 9.475 15.441 9.609 0.002 0.014 0.002 0.011
Average time to detection (years) if screen detected 5.591 19.736 3.682 17.957 0.024 0.075 0.021 0.069
Life years saved 356.622 488.427 172.710 417.927 18.473 20.861 13.506 21.208
Years earlier detected if screen detected 3.672 6.197 1.268 4.578 0.045 0.076 0.035 0.069
Average number of attendances (of those who attended at least once) 5.630 5.442 5.729 5.555 0.019 0.019 0.018 0.018

Table D.5: Results for screening ages 45 to 69 every 3 years, by tumour growth pattern




Appendix E

Results of Sensitivity Analysis
Performed on the Theory of

Planned Behaviour Variables

Table E.1 provides the means from the 300 iterations run for each of the sensitivity
simulations performed as described in Chapter 7. Each of the three constructs of the
Theory of Planned Behaviour (TPB) were increased, and then decreased (by 10%)
relative to their baseline values discussed in Chapter 6.

Where SN= Subjective norm, PBC= Perceived behavioural control as before.
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tended at least once)

Direction change/ Variable change Up 10% Baseline Down 10%

Attitude SN PBC All Attitude SN PBC All Attitude SN PBC All
Number of cancers screen detected 246.13 248.27 249.97  252.70 244.30 244.30 244.30 244.30 24491 242.51 240.19 23641
Number detected by other means 495.24 492.62 491.92 487.69 495.92 495.92 49592 495.92 494.17 498.47 499.96 502.99
Number of women who got cancer 896.83 897.05 896.35 895.35 896.18 896.18 896.18 896.18 895.35 896.66 896.37 896.11
Number of women screen invited while had cancer 534.09 533.95 535.17 534.19 531.68 531.68 531.68 531.68 532.99 533.76  533.13 533.73
Number of cancers that were not detected 155.45 156.16 154.46 154.96 155.96 155.96 155.96 155.96 156.27 155.68 156.22 156.71
Number of women not screen invited while had 362.74 363.10 361.19 361.16 364.50 364.50 364.50 364.50 362.36 362.90 363.25 362.38
cancer
Number of women who did not get cancer 103.17 102.95 103.65 104.65 103.82 103.82 103.82 103.82 104.65 103.34 103.63 103.89
Number of women who attended screening at least 800.92 801.85 803.02 803.68 799.74 799.74 799.74 799.74 799.77 799.36 797.65 797.86
once
Percent of detected cancers detected by screening 33.20 33.51 33.70 34.13 33.00 33.00 33.00 33.00 33.14 32.73 32.46 31.98
Average tumour diameter (1nm) at registration 18.84 18.79 18.70 18.61 18.83 18.83 18.83 18.83 18.84 18.94 18.92 19.07
Average time (years) to detection 15.69 15.66 15.67 15.61 15.69 15.69 15.69 15.69 15.67 15.68 15.69 15.73
Avcrage diamcter (mm) of tuinour at detection if 23.25 23.24 23.20 23.15 23.19 23.19 23.19 23.19 23.25 23.28 23.23 23.32
detected by other means
Average time (years) to detection if detected by 14.20 14.16 14.19 14.10 14.20 14.20 14.20 14.20 14.20 14.20 14.22 14.29
other means
Average diameter (mm) of tumour if screen de- 9.94 9.91 9.84 9.86 9.90 9.90 9.90 9.90 9.97 9.98 9.95 10.04
tected
Average time to detection (years) if screen de- 18.68 18.68 18.65 18.47 18.76 18.76 18.76 18.76 18.61 18.70 18.68 18.74
tected
Life ycars saved 308.56 309.81 314.18 320.96 307.86 307.86 307.86 307.86 314.39 311.12  303.05 293.07
Years earlier detected if screen detected 4.55 4.52 4.52 4.53 4.54 4.54 4.54 4.54 4.54 4.53 4.55 4.52
Average number of attendances (of those who at- 4.36 4.39 4.45 4.49 4.34 4.34 4.34 4.34 4.33 4.29 4.22 4.17

Table E.1: Sensitivity results from screening age 51 to age 69 every 3 years, for baseline TPB values and increasing or decreasing the TPB
parameter values by 10% in turn (exponential growth assumed)




Appendix F

TPB Experimentation Results

This Appendix provides the detailed results from all of the outputs from the two ruus
reported in Section 7.6 that estimated the increase in TPB values required in the UK
population in order to provide as much benefit with todays’ screening strategy as
would be expected by lowering the first invited age of screening to 45. Table F.1
provides the mean and 90% confidence intervals for the mean, of all of the simulation
outcomes for both the reported 75% baseline, and TPB run with equivalent 95%
attendance (for a discussion of the terms, please see Section 7.6).

The 90% confidence intervals are generated via methodology described in Section 7.2.
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TPB implied attendance

75% Baseline

95% Attendance

dances (of those who attended
at least once)

Screening scenario 45-69/3yrs 50-69/3yrs

Statistic Mean | Upper | Lower Mean | Upper | Lower
90% CI | 90% CI 90% CI | 90% CI

Number of cancers screen de- | 268.07 | 270.46 265.69 265.80 | 267.98 263.62

tected

Number detected by other | 472.94 | 475.39 470.49 476.54 | 479.09 473.99

means

Number of women who got | 896.77 | 898.34 895.20 895.33 | 896.90 893.77

cancer

Number of women screen in- | 602.94 | 605.50 600.38 535.99 | 538.61 533.38

vited while had cancer

Number of cancers that were | 155.76 | 157.55 153.97 152.99 | 154.89 151.10

not detected

Number of women not screen | 293.83 [ 296.16 291.50 359.34 | 361.90 356.78

invited while had cancer

Number of women who did | 103.23 | 104.80 101.66 104.67 | 106.23 103.10

not get cancer

Number of women who at- | 882.94 | 884.50 881.38 809.02 | 810.89 807.16

tended screening at least once

Percent of detected cancers | 36.17 | 36.47 35.88 35.81 | 36.09 35.53

detected by screening

Average tumour diameter | 18.23 | 18.31 18.15 18.27 | 18.36 18.18

(mm) at registration

Average time (years) to detec- | 15.53 | 15.59 15.48 15.55 | 15.60 15.49

tion

Average diameter (mm) of tu- | 22.99 | 23.08 22.90 23.08 | 23.17 22.99

mour at detection if detected

by other means

Average time (years) to de- | 14.06 | 14.12 14.00 13.95 | 14.01 13.90

tection if detected by other

means

Average diameter (mm) of tu- | 9.75 9.80 9.70 9.70 9.75 9.65

mour if screen detected

Average time to detection | 18.09 | 18.14 18.04 18.37 | 18.42 18.31

(vears) if screen detected

Life years saved 389.20 | 403.77 374.62 345.09 | 357.36 332.81

Years earlier detected if screen | 4.56 4.61 4.52 4.57 4.62 4.52

detected

Average number of atten- | 5.10 5.11 5.09 4.80 481 4.79

Table F.1: Table of TPB experiment results to find the equiva

acheive
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