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The AdS / CFT correspondence has long been used as a tool for understanding non­

perturbative phenomena in QCD-like theories. In its original form, the correspondence 

proposes a duality between type IIB string theory on AdS5 x S5 and N = 4 super­

symmetric Yang-Mills gauge theory. In this thesis, we investigate extensions to the 

original correspondence that allow one to construct dual supergravity theories to other 

gauge theories that are more similar to QCD. vVe study renormalisation group flow as a 

smooth deformation of the supergravity background. vVe then investigate dual models 

including quarks and chiral symmetry breaking in certain D3-D7-brane systems and 

propose a simple test to determine which supergravity backgrounds will exhibit chiral 

symmetry breaking behaviour. We go on to describe how improved action ideas from 

lattice QCD can be incorporated into the correspondence to improve the ultra-violet 

region of the dual theories. Finally we calculate meson and glueball spectra in the 

AdS/QCD approach, finding results in good agreement with experimental and lattice 

data. 
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Motivation 

During the last century great strides have been taken in the quest to understand the 

fundamental forces of nature. The discovery of quantum mechanics and special rela­

tivity revolutionized our understanding of fundamental physics, and out of these two 

great theories was born quantum field theory. One of the first quantum field theories 

was the theory of quantum electrodynamics or QED [1], discovered in the 1920s and 

subsequently yielding a Nobel prize for its founders. This remarkable theory of photons 

and electrons can be argued to be the most successful theory of modern physics, with 

its predictions verified by experiment to 10 decimal places [2, 3]. QED is an example 

of a gauge theory. Since its discovery, there has been a great effort to unify all fun­

damental interactions into a single gauge theory. In the 1950s, Cell-Mann introduced 

a non-Abelian gauge theory [4] called quantum chromo dynamics or QeD, which de­

scribed the strong nuclear force. Soon after, \Veinberg, Glashow and Salam unified the 

QED with a theory for the weak nuclear force in the so-called Electroweak model 

. These discoveries were brought together along with the Higgs mechanism [5] for dy­

namical mass generation into what is known as the Standard Model of particle physics. 
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This is a unified quantum field theory of the electromagnetic and the strong and weak 

nuclear forces. This model has proven to be remarkably successful in predicting many 

properties of nature including for instance the mass of the weak gauge bosons to within 

a 0.1 % error [6]. 

Despite the success of the Standard Model, there are many criticisms that might 

be aimed at it. The first most obvious point is that the theory does not include a 

description of the gravitational force. All attempts to unify general relativity with the 

current Standard Model into a unified gauge theory have failed. This is largely due 

to the fact that general relativity is not TenoTmalisable. On a more aesthetic note, 

there are many parameters in the standard model that have to be entered by hand. 

One would like to have some explanation as to where these numbers come from. For 

instance, the fact that the proton and electron have equal and opposite charge is an 

input to the theory and not a prediction. A more subtle point is the problem of fine 

tuning [7]. The value of the Higgs mass needs to be tuned to around 16 significant 

figures in order for the theory to give sensible results. 

On a practical level, making predictions from the Standard Model, particularly in 

the theory of the strong interactions, QCD, has proven to be difficult. Currently, QCD 

can only be solved perturbatively in powers of the strong coupling constant. This is 

fine for high energy calculations where the value of the coupling is small. However, the 

value of the coupling increases for low energies. This is the reason that we can't see 

individual quarks, only bound states of quarks such as the proton. The strength of the 

coupling constant at low energies means that perturbation theory breaks down and we 
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are no longer able to make reliable predictions. Although in theory QCD should be 

able to predict low energy results such as the mass of the proton, in practice there is 

no calculational tool yet developed that can be used to solve the theory analytically 

for all energy scales (although one can make some non-perturbative predictions using 

computational lattice QCD methods [8].) 

It was out of an attempt to understand strongly coupled QeD that a new fundamen­

tal theory of nature was discovered called String Theory [9, 10]. In string theory, the 

fundamental building blocks are no longer point-like particles as in the Standard Model, 

but instead one dimensional "strings". The different particles of the Standard Model 

are different modes of vibration of the string. The action of the theory is just the area 

swept out by the string as it propagates, called the string world-sheet; thus the Euler-

Lagrange equations of motion are found by minimizing the area of the world-sheet. 

From this extremely simple starting point comes a rich theory which shows tantalizing 

signs of being able to unify all of the fundamental forces including gravity into a single 

theory. In addition, unlike the standard model, there are no free parameters of the 

theory, which is remarkable. 

Of course there is a catch. One of the predictions from string theory is that the 

universe should actually be ten-dimensional. This is clearly in violation of current 

experimental data. One solution might be that the extra dimensions are compactified 

on a scale that we are currently unable to probe. The shape of the compact space 

is unknown, and the problem is that different compact spaces give entirely different 

predictions from string theory. The current dilemma within string theory is which 
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space to choose in order to give a low energy theory that looks like the standard model 

plus gravity. The current estimate on the number of possible different spaces is of the 

order of 10100 . 

A less ambitious line of development is the theory of Supersymmetry [7, 11], and the 

supersymmetric standard model. Supersymmetry was discovered in the development 

of string theory, but can be developed as a theory in its own right. It is a symmetry 

between bosons and fermions. It is a remarkable symmetry in that it non-trivially 

combines both space-time and internal symmetry groups, bypassing the so-called "no­

go" theorems [12] by adding non-commuting elements to the space-time algebra. One 

of the major achievements of supersymmetry is that it solves, at least partially, the 

fine-tuning problem of the standard model. Another nice prediction is that of gauge 

coupling unification at high energies, a feature not present in the non-supersymmetric 

standard model. The drawback of this model, though, is that it introduces yet more 

free parameters and additional particles that are yet to be discovered. It is hoped that 

some of these extra particles may be found by the Large Hadron Collider [13] when it 

begins collecting data in around 2008. 

Recently, an exciting new link between ten-dimensional string theory and four­

dimensional gauge theories has been proposed by Maldacena. In his revolutionary 

paper [14], Maldacena proposed that there is a duality between the low energy, weak 

coupling limit of Type IIB string theory compactified on the space AdS5xS5, and the 

four-dimensional N =4 supersymmetric Yang-Mills gauge theory in the strong coupling 

limit. By duality it is meant that any observable on one side of the correspondence can 
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be calculated by some method in the dual theory. This is remarkable for two reasons. 

Firstly, it is providing a link between string theory, believed to be a strong candidate 

for a unified field theory, and a four-dimensional gauge theory, which have proven to be 

extremely successful in describing the fundamental forces excluding gravity. Secondly, 

the correspondence gives us a tool for investigating the strong coupling limit of a gauge 

theory with many similarities to QCD. 

It is believed that the original duality proposed by Maldacena is just one example 

of a whole class of gauge/string dualities. The belief is that every four dimensional 

gauge theory can be described by an equivalent higher dimensional string theory in­

cluding gravity. This is known as the holographic principle. A lot of work has gone 

into modifying the correspondence in order to find gravitational duals of many gauge 

theories. The ultimate goal of this approach is to find a dual theory to QCD so that 

we may finally be able to make predictions in the low energy, strong coupling limit. 
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Outline 

The outline for this thesis is as follows: In Chapter 1 we first review the theory of 

QCD and then go on to look at the theory of chiral symmetry breaking. In Chapter 2 

String Theory, D-branes and Supergravity are briefly reviewed. In Chapter 3 we give 

an introduction to AdS/CFT correspondence and modifications of this, which will be 

the focus of this thesis in studying aspects of QCD at strong coupling. No claim to 

originality is made for the content of these first three chapters which were compiled 

using a variety of sources. 

In Chapter 4 we look at an example of a deformed geometry in supergravity that 

is dual to N = 4 super Yang-Mills in the UV and flowing to an N = 1 theory in the 

IR. \iVe show an explicit matching between the dual theories at fixed points along the 

renormalisation group flow. In Chapter 5 we use the AdS/eFT correspondence to study 

chiral symmetry breaking from a geometric point of view in a dual higher dimensional 

gravitational theory. In Chapter 6 we look at glueballs in finite temperature field 

theory, and how one can improve on predictions from the standard correspondence by 

introducing an improved action. Finally, in Chapter 7 we move on to the so-called 
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AdS/QCD approach, which is a "bottom up" approach to finding a gravitational dual 

theory to QCD. 

The work described In Chapters 5 and 6 was carried out in collaboration with 

Dr. N. J. Evans and Dr. J. P. Shock, and the work in Chapter 7 with Dr. N. J. Evans. 

References for the published material covering some of the original work in these chap-

ters are 

• Chapter 5: I\'. Evans, J. Shock and T. \A/aterson, "D7 brane embeddings and 

chiral symmetry breaking," JHEP 0503 (2005) 005 [arXiv:hep-th/0502091]. 

• Chapter 6: N. Evans, J. Shock and T. 'Waterson, "Towards a perfect QCD gravity 

dual," Phys. Lett. B 622 (2005) 165 [arXiv:hep-th/0505250]. 

• Chapter 7: N. Evans and T. Waterson, "Improving the infra-red of holographic 

descriptions of QCD," [arXiv:hep-ph/0603249]. 
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Chapter 1 

QeD & Quantum Field Theory 

1.1 QeD 

Since we will be trying to understand aspects of QCD through the AdS/CFT Corre-

spondence, it will be useful to briefly summarize the theory here. 

In the theory of QCD, quarks have a colour quantum number. There are three 

colours typically labelled as Red, Blue and Green. The quarks transform in the fun-

damental 3 representation of an SU(3) symmetry group associated with the colour 

quantum number, and the anti-quarks transform in the :3 representation. Unlike elec-

tric charge, we do not observe colour charge. This is due to confinement, which will be 

explained later. The particles we observe are all singlets under the colour group, such 

as mesons (3 @ :3 = 1 + . .. ) and baryons (3 @ 3 @ 3 = 1 + ... ). 

The Dirac Lagrangian for the quarks is 

r _ - (. J-L8 ) a f-- - qa Z, J-L - m q , 

1 

(1.1 ) 



where a = 1,2,3 and JL = 0, ... ,3. This is invariant under the transformation qa -+ 

Utqb, where Ut is a constant matrix representation of the SU(3) symmetry. If this 

global symmetry is now promoted to a local symmetry by letting U be a function of x, 

this will generate additional terms in the Lagrangian Vilhich will need to be cancelled 

by introducing a covariant derivative 

(1.2) 

where T a are the Gell-Mann matrices which are generators of SU(3), 9 is the SU(3) 

charge, and A~(x) are the connection fields. For the Lagrangian to be invariant, we 

require that under transformations 

(1.3) 

This means that the connection fields must transform in the following way 

(1.4) 

The fields A~(x) transform in the adjoint representation of the SU(3) and are the 

gluons. Vve can define the field strength tensor as the commutator of two covariant 

derivatives 

(1.5) 

This gives 

(1.6) 

where i rbcTc = [Ta , Tb]. The kinetic term for the gluons is therefore 

1 "1/ --TrF pt.-4 IW , (1.7) 
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where the trace is taken over the colour group index. This is indeed gauge invariant as 

can be seen from (l.3), (l.5) and the cyclic property of the trace. 

1.1.1 Confinement & Asymptotic Freedom 

A key feature of this theory is the self interaction of the gluons. Define the ,S-function 

as the derivative of the coupling with respect to the log of the defining energy scale JL: 

8g 
fJ(g) = ~l 

u nJL 

The one-loop fJ function for QeD is [15J 

(1.8) 

(l.9) 

where N is the number of colours and N f the number of flavours. The first term inside 

the brackets comes from the self interaction of the gluons and the second term from 

quark/gluon interactions. In QeD, N = Nf = 3. This means that the dominant term 

is the gluon self interaction term and the overall sign of the fJ function is negative. This 

has some important consequences for the theory. 

At large interaction energies the coupling goes to zero and the quarks essentially 

become non-interacting. This property is known as asymptotic freedom [16, 17]. When 

the theory of QeD was first proposed in the 1970s there was experimental evidence 

through deep inelastic scattering reactions such as e + p --+ e + anything that cross 

sections were scale invariant at high energies. This could be explained if the quarks 

were acting as free particles at high energies. Historically, it was the discovery of 

asymptotic freedom in QeD that led to it becoming the leading theory of the strong 

3 



interactions. 

At small interaction energies the coupling becomes large. This gives a possible 

theoretical interpretation for the confinement of the quarks: the strength of the strong 

interaction between a pair of quarks increases as their separation increases. The energy 

required to separate a pair of quarks is greater than the energy required to create a 

quark/ anti-quark pair from the vacuum, therefore we don't observe free quarks. Any 

attempt to split hadrons will just create more hadrons. Although a rigorous proof of 

ccJflfinement in QeD (or indeed any four-dimensional non-Abelian Yang-Mills theory) 

is yet to be found, there is compelling numerical evidence coming from lattice QeD 

that supports this picture. 

The fact that the coupling becomes large at small interaction energies also has major 

consequences when it comes to making concrete numerical predictions from QeD at 

these energies. The main calculational tool that has been used to date in field theory 

is perturbation theory, with the expansion parameter in the perturbation series being 

the coupling constant. When this coupling becomes large, as it does for QeD at low 

energy, perturbation theory breaks down and we are no longer able to use it to make 

predictions. This means that, although QeD may be the favoured theory of the strong 

interactions, we are currently unable to verify it against experiment at low energies. 

Finding new ways to tackle this problem will be the focus of this thesis. 

4 



1.2 Chiral Symmetries In QCD 

1.2.1 Chiral Symmetry 

In addition to the exact SU(3) colour symmetry, the quarks also possess an approximate 

global SU(2) flavour symmetry. This symmetry comes from unitary rotations of the u 

and d quarks. It is only an approximate symmetry as the u and d quarks have only 

approximately the same mass. In the limit that the quarks become massless, the quark 

action is invariant under an SU(2)®SU(2) symmetry as we will now demonstrate. 'Kote 

that we are ignoring the s quark in this discussion \vhich is slightly heavier (relative to 

AQCD) than the u and d quarks. The following analysis can be extended in an obvious 

way to include the s quark. 

The fermionic part of the QeD action can be written as 

(1.10) 

where 

Q= (:) 
(1.11) 

If all of the masses are equal (Ai = mI) then this action is invariant under 

Q -+ UQ, (1.12) 

where U is any constant unitary matrix mixing the u and d quark states. It is useful 
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to separate out the SU(2) and the U(l) parts of this transformation: 

(1.13) 

where T a are generators of SU(2). The currents associated with these symmetries are 

(1.14) 

and the associated conserved quantities are isospin and baryon number. 

\iVe can re-write the Lagrangian (1.10) in terms of its chiral components. Let 

(1.15) 

In terms of these fields, the Lagrangian is 

(1.16) 

In the limit that m = mu = md -7 0 this is invariant under separate unitary transfor-

mations 

(1.17) 

and the overall symmetry is enhanced to SU(2)L ® SU(2)R ® U(l)L ® U(l)R. The 

currents associated with these symmetries are 

(1.18) 

The sum of left-handed and right-handed currents give the vector currents 

(1.19) 
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which are the isospin and baryon number currents (1.14). The difference between the 

left and right handed currents give the axial vector currents 

(1.20) 

These are new currents exclusive to the massless theory, however, they do not appear to 

be associated with any conserved quantity of the strong interactions. It was proposed 

in 1960 by Nambu and Jona-Lasinio [18] that the axial symmetries are spontaneously 

broken. This idea has led to a very good theory for the pions. 

1.2.2 Chiral Symmetry Breaking 

Before we address the consequences of chiral symmetry breaking in QCD, let us first 

discuss why chiral symmetry might be broken. The attractive force between quarks 

at low energies is strong, so the cost of creating a quark/anti-quark pair from the 

vacuum is small. '\¥e therefore expect the QCD vacuum to contain a condensate of 

quark/anti-quark pairs. These pairs must consist of one left-handed and one right­

handed quark in order to preserve angular momentum. vVe therefore expect to find a 

non-zero condensate of the form 

(1.21 ) 

The presence of this expectation value means that quarks moving through the vacuum 

will appear to have an effective mass. Recall that the SU(2) A axial symmetry was only 

a good symmetry in the limit mu = md -+ O. The condensate therefore spontaneously 
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breaks the SU(2)A symmetry groupl. Goldstone's theorem [15] states that for every 

spontaneously broken continuous symmetry, the theory must contain a massless parti-

cle, known as a Goldstone boson. There are three independent generators of the group 

SU(2), so we therefore expect there to be three massless particles associated with its 

breaking. Nambu and Jona-Lasinio [18] proposed that the Goldstone bosons of the 

breaking of the SU(2)A are the pions (7TO,7T+,7T-). Since the symmetry was not an 

exact symmetry due to mu and md not being exactly equal, the pions are not exactly 

massless. This picture nicely explains why the pions are so light 2 

Notice that \ve did not include the U(l)A symmetry in the above analysis, which 

corresponds to transformations 

(1.22) 

This is because the U(l)A is only a symmetry of the classical theory, not the quantum 

theory - the path integral measure is not invariant. The action of the U(l)A symmetry 

on the measure can be shown [19] to change the Lagrangian by 

(1.23) 

where FiJV = fiJI/per Fper. In the limit NJiN -7 0 this term goes to zero and the U(l)A 

symmetry is restored. This will be important later on in this thesis when we will take 

this large N limit. The Goldstone boson associated with the breaking of this symmetry 

lThis is a heuristic argument that is widely believed, however, a formal proof that QeD dynamically 

breaks its chiral symmetry is yet to be found 

21£ we include the strange quark in this model, there are eight Goldstone bosons. The additional 

light states are the kaons. These are heavier than the pions as ms is substantially heavier than mu and 
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is known as the 7]' and, predictably, it is rather heavy since the symmetry only exists 

in the limit N j / N ---. 00 and yet in reality N JI N = 1. 

1.3 The 't Hooft Expansion 

The main calculational tool for quantum field theories has been perturbation theory. 

The expansion parameter that is usually used is the coupling constant. Perturbative 

techniques have proven to be extremely successful when the value of the coupling is 

small. In fact, perturbative predictions from QED are some of the most accurately 

verified results in all of physics. However, in QeD, unlike QED, the value of the 

coupling becomes large in the low energy regime and perturbative techniques break 

down. 

The difficulty for QeD is finding an expansion parameter that remains small for 

low energies. In [20] 't Hooft proposed that the inverse of the number of colours l/N 

could be used as such a parameter and he noticed that some remarkable simplifications 

occur as N ---. 00. The trouble is that l/N is not a particularly small parameter in 

which to expand when N = 3. The hope is that predictions made in the large N limit 

will be close to the actual values for N = 3 and that such calculations will at least 

give some insight into the strong coupling limit of QeD. In fact, corrections to large N 

calculations are typically of order 1/ N 2 
rv 10%. 

The basis of 't Hooft's method is as follows: The pure gauge part of the QeD f3 

function is given by 

dg 11 g3 5 
f-l- = ----N + O(g ). 

df-l 3 (471)2 
(1.24) 
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Integrating this equation gives 

(1.25) 

In order for the strong coupling scale to remain fixed for large N, the parameter A == 

g2 N must remain fixed, This parameter is known as the 't Rooft coupling and the limit 

N -+ 00, g2 -+ 0 with A fixed is known as the 't Rooft limit, 

The gauge part of the QCD action is 

_ 1 f.1// 
I: - -4"TrFf.1//F 

= Tr [-~3 A a (3f.1 Aa// - (Y A af.1) + gf (3 A a ) A bf.1 AC
// 2 f.1 // abc /~ // • 

(1.26) 

Notice that if we re-scale A -+ AI 9 both of the interaction terms will have the same 

power of 9 and we can bring a factor of 1 I g2 outside of the bracket 

I: = - _1_TrF F/l// 
4g2 f.1// (1.27) 

Now, letting g2 = AlN 

(1.28) 

Calculating amplitudes from this action amounts to adding up Feynman diagrams, The 

components of these diagrams come with the following powers of A. and N 

A 
Propagator: N 

N 
Vertex' 'A. 

Loop: N 

10 

(1.29) 



Considering the diagrams from a topological point of view, a propagator corresponds 

to an edge, a loop to a face and a vertex to a vertex. A diagram with E propagators, 

V vertices and F loops will contain a factor 

(1.30) 

where X is the Euler characteristic of the surface. The scaling of the diagrams with N 

is entirely dependant on the Euler characteristic of the surface, which is topologically 

invariant. In this case X = 2 2g, where 9 is the genus of the diagram. The large 

N limit is therefore dominated by planar diagrams for which 9 = O. This expansion 

in terms of X has parallels in string theory, where the surface in question is the string 

world-sheet. This hints at a possible link between non-Abelian gauge theory and string 

theory, which will be expanded upon in the next chapter. 
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Chapter 2 

Superstring Theory 

2.1 Superstring Theory 

In this thesis we will mainly be concerned with the low energy limit of superstring 

theory, namely supergravity, and its relationship to strongly coupled gauge theories 

through the AdS/eFT correspondence. It will be useful, however, to briefly review the 

fundamentals of superstring theory. For a comprehensive introduction to the subject 

see for example [9, 10]. 

The simplest approach to string theory is the so-called first quantized approach 

whereby one formulates the action of a string on its world-sheet (the area swept out 

by a string as it propagates through spacetime) and then quantizes this action. The 

alternative second quantized approach more commonly used for quantum field theories 

is known as string field theory and is less well understood. 
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For simplicity, we will start with the action for a bosonic string 

(2.1) 

where (T,u) are world-sheet coordinates, and X i1 (T,u),f.L 0, ... ,D -1 are spacetime 

coordinates. 1/(2710:') is equal to the string tension T. This action is (up to an overall 

scaling) nothing more than the area of the two-dimensional world-sheet when embedded 

in a D dimensional spacetime, with OaXi1ObXi1 being the induced metric on the world-

sheet. \iVhen one minimises this action, one is minimising the area of the world-sheet. 

This action is a direct extension of the action for a relativistic point particle. In 

that case, the action is proportional to the length of the particle's world-line and one 

minimises the length of the world-line in order to obtain the classical path. 

The action (2.1) is known as the Nambu-Goto string action. vVe can simplify this 

action by introducing an independent world-sheet metric gab(T, 0-). 

(2.2) 

This is known as the Polyakov action. This action has the following symmetries: 

• D-dimensional Poincare invariance: 

(2.3) 

• Diffeomorphism (coordinate) invariance: 

Xi1 (T, u) --+ X Ii1 (TI, ul ) Xi1 (T, u), 

I " ou
c 

ou
d 

( ) gab(T, u) --+ gab(T ,u ) = oula oulbgcd T, a , (2.4) 
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for new coordinates a'a ( T, a). 

e Two-dimensional Weyl (conformal) invariance: 

(2.5) 

for some general function w ( T, a). 

In fact, the vVeyl symmetry is anomalous. It turns out that in order to cancel the 

VVeyl anomaly the number of spacetime dimensions must be equal to 26. The existence 

of extra dimensions is a startling prediction of string theory that does not seem to 

be borne out by experiment. The popular view of string theorists is that the extra 

dimensions are small and thus beyond the reach of current experimental probes. 

\Ve can use these symmetries to gauge fix our action. We can use diffeomorphism 

invariance to choose the world-sheet metric to be of the form 

9 - ecP(T,u)r> 
ab - 'Iab, (2.6) 

where 7Jab has a signature (-1,1). This is called the conformal gauge. Weyl invariance 

means that the function decouples from the action and we are left with the very simple 

action 

(2.7) 

Variation of this action with respect to X fJ gives 
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where l is the length of the string. The first term results in a massless two-dimensional 

Klein-Gordon equation with independent left and right moving solutions X L(T+a) , X R (T-

a). In addition to this, there is a boundary term due to the finite extent of the string. 

In order for this to vanish, we require that 

(2.9) 

\l\Te are free to choose either Neumann or Dirichlet boundary conditions at either end 

of the string. For example, at a = l: 

(2.10) 

where elL is an arbitrary constant. These open strings come in three varieties according 

to the boundary conditions that they satisfy - Neumann-Neumann (NN), Dirichlet-

Dirichlet (DD) or Neumann-Dirichlet (ND). 

In addition to open strings, we may also have closed strings where the endpoints or • 
the string meet. These strings must satisfy the periodicity requirement that XIl(T, a + 

l) XIl(T, a). Since the strings are closed, left and right moving modes can exist on 

the string independently - for open strings a wave travelling one way hits the end and 

gets reflected back. 

The theory of the bosonic string is a rich one with many interesting properties, 

however, ultimately it cannot describe nature because it does not result in any fermionic 

spacetime fields. To rectify this, we introduce Majorana world-sheet fermions '1jJILcx(T, a), 

where a 1,2 is a spinor index on the world-sheet. Note that these world-sheet 
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fermions are not spacetime fermions. "Ve would like to have world-sheet supersymmetry 

between XIL(T, a) and 1jJ lLokr, a). Since there is also the field gab present in the action 

we will need to introduce its fermionic superpartner Xao:, which can be thought of as a 

world-sheet gravitino. The supersymmetric action is 

+2 ab cd - i ILEJ X + 1 ab cd n ! 'IL - J 9 9 XapcPb 1fJ d IL 2. 9 9 '1-) IL 1fJ XaPcPbXd , (2.11) 

where pa are 2 x 2 gamma matrices 

(2.12) 

As in the bosonic case, things simplify in the (super)conformal gauge: 

(2.13) 

This gauge-fixed action has a world-sheet supersymmetry 

(2.14) 

and, in addition to the Klein-Gordon equation for the bosonic fields, there is a two-

dimensional Dirac equation for the fermions 

(2.15) 

In order for superstring theory to be consistent, it turns out that, instead of the 26 

dimensions required by bosonic string theory, the required number of spacetime dimen-

sions is 10. 
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For the fermionic fields in the closed string theory, there is an additional possibility 

when imposing periodicity requirements. It is equally valid for the fields to be anti­

periodic in 0-: 

Ramond (R) 

(2.16) 

It can be shown that the NS states are all spacetime bosons, and the R states are 

all spacetime fermions. It can also be shown that the NS sector contains a tachyon. 

In order to get a physically satisfying theory, we must somehow combine both the R 

and the NS sectors and remove the tachyonic state in a way that leaves a spacetime 

supersymmetry. This can be achieved in what is known as the GSO projection. 

The full spectrum of the closed superstring is obtained by combining both the left 

moving and the right moving modes. \Ve thus have four distinct sectors 

NS-NS, R-R, NS-R, R-NS 

The NS-NS and R-R sectors will consist of bosonic fields, and the NS-R, R-NS sectors 

will consist of fermionic fields. 

\iVe can split the massless states of the NS-NS sector into a symmetric, traceless 

part, an anti-symmetric part and a trace part. These are massless fields propagating 

in ten-dimensional space: 

GIlV(X) is the familiar metric tensor, <I>(x) is the dilaton, and Bllv(x) is a 2-form. 
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In the R-R sector we have an additional choice to make, namely the chirality of the 

R modes. There are two inequivalent choices: Opposite chirality for the left and right 

movers, or the same chirality for both. Opposite chirality leads to the fields 

The same chirality leads to 

If we include the NS-R and the R-NS sectors, then each theory has N = 2 local 

spacetime supersymmetries. This is, in fact, the highest number of supersymmetries 

in ten dimensions consistent with a compactification to four dimensions. Remarkably, 

the massless content of these theories is exactly the same as that of the two classical 

theories of type IIA and type IIB supergravity, with opposite chirality =? type IIA and 

same chirality =? type IIB. Because of this, the string theories are known are type IIA 

and type IIB string theory. We will explore this connection in the next section. 

Type IIA bosons: 

f · L R \L \R ermlOns: X /L,W X /L,W /\ cy, /\ cy 

Type IIB bosons: 

Table 2.1: Summary of the massless states in type IIA and type lIB string theory 

We have so far considered non-interacting strings propagating in a flat background. 

Consider now adding a constant dilaton background Cj) (x) = <I> o. The string action will 

18 



acquire an extra term 

(2.17) 

In two dimensions, this factor is purely topological and is equal to 2Cl:>o(1- h), where h 

is the genus of the surface - the string world-sheet. In the string equivalent of Feynman 

diagrams adding a loop corresponds to increasing the genus of the surface by one. In a 

functional integral the addition of the dilaton will give 

(2.18) 

If we define the string coupling as 

(2.19) 

then 

-s (2)h-l-S e -+ gs e (2.20) 

Adding a closed string loop will give an additional weighting of g;. The coupling in 

string theory is given by the vacuum expectation value of the dilaton. Different values 

of gs do not correspond to different theories, but rather different backgrounds of the 

same theory. 

2.2 Supergravity 

Before superstring theory was formulated, an alternative approach to quantum gravity, 

known as supergravity, was developed. Supergravity is a supersymmetric formulation 

of general relativity, where the supersymmetry is promoted to a local symmetry. The 

theory of supergravity is not a renormalisable quantum theory (due to the negative 
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dimension of Newton's constant GN), and its action is purely classical. However, it is 

entirely possible that it is the low energy effective action of Some quantum theory. In 

fact, we will see that it emerges as the low energy limit of superstring theory. 

The largest possible supersymmetry algebra in four dimensions is N = 8. Any 

larger algebras would require massless states with helicities greater than 2, which is 

believed to be impossible. This theory has 4N = 32 supercharges. This bound on the 

number of supercharges will also hold for higher dimensional theories, since one can 

reduce higher dimensional theories to four dimensions through some compactification. 

This puts an upper bound on the dimension of a consistent supersymmetric theory. 

In fact, the highest dimensional supersymmetric theory has N = 1 supersymmetry in 

11 dimensions, since the smallest representation in 11 dimensions has 32 supercharges. 

If we restrict ourselves to an action with two or fewer derivatives, as one does with 

standard general relativity, there is a unique supersymmetric action in 11 dimensions 

(2.21) 

where A3 is a 3-form potential and F4 is its 4-form field strength. We can dimen-

sionally reduce this theory to 10 dimensions by compactifying on a circle and keeping 

only the massless states. The smallest spinor representation in 10 dimensions has 16 

supercharges. \Ve therefore obtain a theory with N = 2 supersymmetry and two spinor 

representations. If we choose these to have the opposite chirality (16,16), the theory is 

known as type IIA supergravity. The theory where the spinors have the same chirality 

(16,16) is known as type IIB supergravity. The bosonic sector of the action (excluding 

20 



Chern-Simons terms) for these two theories is 

SIJA = 4~2 J dlOxJ _Ge-2
<p (2R + 8(O<p)2 - IdBI2 - iF212 - IF412) , 

SIIB = 4~2 J dlOxJ-Ge- 2
<p (2R + 8(o<p)2 -ldBl 2 -iFli2 - IF312 -iF512), (2.22) 

where Fn are n-form field strength tensors. Remarkably, this is precisely the low energy 

action for type rIA and type HE string theory after integrating out heavy modes I, 

The constant", appearing in (2.22) is physically irrelevant due to the factor e-2 <'P. 

If <p acquires a vacuum expectation value <Po, we can scale this out of the action to get 

a pre-factor of e-2<Po. This confirms the role of the e<Po as the string coupling constant. 

vVe have so far restricted the action to include terms with two or less derivatives. 

However, since there is no renormalisability requirement, terms with more derivatives 

can be added which are consistent with the symmetries of the theory. Such terms will 

come with a dimensional constant. In string theory this is 0:
1

, which is proportional to 

the square of the string length ls '" vel. Allowing terms proportional to 0:
1 will give 

stringy corrections to the supergravity action. However, in this thesis we will work in 

the limit that 0:
1 

----7 O. 

The presence of the dilaton factor in (2.22) means that the supergravity action 

does not look like the usual Einstein-Hilbert action plus the action for fields in curved 

lIt was shown by 'Witten [21J that in the strong coupling limit an eleventh dimension emerges from 

IrA string theory, and the low energy limit of this ll-dimensional theory is ll-dimensional supergravity. 

This ll-dimensional theory is believed to unite all consistent string theories into a single model known 

as M-Theory. The low energy limit of this is believed to be ll-dimensional supergravity. 
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spacetime. This can be rectified by performing a Weyl rescaling of the metric 

(2.23) 

The metric G I.LV is known as the string frame metric, and g /LV is known as the Einstein 

frame metric. In the Einstein frame the action (2.22) becomes 

1 J 10 r-::; ( 2 3 iP 2 3 iP 2 1 iP 2) SIlA= 4K',2 d Xy-g 2R-(0ct» -e2 IdBI -e2 !P21 -e"2 IF41 ) 

1 J 10 r-::; ( 2 3 iP 2 2iP 2 iP 2 2) SIlB = 4K;2 d Xy-g 2R - (oct» - e"2 IdBI e !PI I -- e 1P31 -1P51 , 

(2.24) 

2.3 D-Branes 

Vie have already seen that open strings can obey either Neumann or Dirichlet boundary 

conditions at either end independently in each direction. Consider an open string with 

p Neumann and 9 - p Dirichlet boundary conditions at one end. Such strings ends will 

be restricted to a p-dimensional hypersurface. This is known as a Dp-brane [22]. Open 

strings living on the brane mean that it is truly a dynamical object. Consider Figure 

2.1 showing an open string with both ends on a single Dp-brane. If the two ends meet, 

the string can become closed and leave the surface of the Dp-brane. The Dp-brane is 

acting as a source for closed strings. The time reversed process is of course also possible 

whereby a closed string touches a Dp-brane and the endpoints open up to form an open 

string whose end points are free to move along the surface of the Dp-brane. In fact, it 

can be shown that Dp-branes are solitonic solutions of the closed string theory [23]. 
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..- G 

Figure 2. 1: Dp-brane emitting a closed string 

The simplest form of action for a Dp-brane is given by 

(2.25) 

where ~a , a = 0, . . . ) p are coordinates on the brane and J.1P is proportional to the tension 

of the D-brane. P [Clab is the metric induced on the D-brane when it is embedded in 

the space with metric G J.LV' otherwise known as the pullback of the metric 

(2.26) 

where XJ.L(~a) are the embedding coordinate functions. The form of the action (2.25) 

is a direct extension of the string action (2.1) to higher dimensions. The action is 

proportional to the world-volume of the Dp-brane. 

We have included in the action (2.25) the coupling to the dilaton. We can also 

include coupling to other spacetime fields. The Dp-brane can couple to the NS-NS 
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2-form Bj1v' As with the metric, the action will contain the pullback of this field. The 

brane can also couple to a RR (p+l)-form since we can include in the action a term 

which obeys all of the relevant symmetries. 

Since the Dp-branes have open strings with their end points fixed to the surface, 

we expect to find in the action a U(l) gauge theory describing these strings. We can 

include this as a field strength Fab living on the surface of the brane. The full bosonic 

action for the Dp-brane is 

det (Gab + Ba.b + 27fo/ Fab)] 1/2 

(2.27) 

Note that the integral of the expansion in the Chern-Simons-like term will pick out only 

those terms of the correct dimensionality. Also note that we have dropped the pullback 

notation for simplicity. All bulk fields appearing in this action are the pullbacks of 

the full dimensional fields onto the Dp-brane. The precise form of this action can be 

deduced by requiring gauge invariance and by using T-Duality, a topic not discussed 

here, see for example [9]. 
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Chapter 3 

The AdS / eFT Correspondence 

The Maldacena conjecture [14] or AdS/CFT correspondence is a conjecture concern­

ing certain string theories on backgrounds of the form AdSdxMD - d , where AdS d is 

d-dimensional anti de-Sitter space and M D-d is some compactified space in D - d 

dimensions. The conjecture states that string theory on these backgrounds are math­

ematically equivalent to certain conformal gauge theories in spacetimes of dimension 

d 1, interpreted as the boundary of AdS d . By mathematically equivalent we mean 

that any quantity that can be calculated in one theory can, in principle, be calculated 

in the other theory. A more precise formulation of the conjecture was subsequently 

presented in [33, 34]. A number of checks have been performed in order to test the 

conjecture, see for example [24, 25], although a proof has yet to be found. The idea of 

a higher dimensional theory being determined entirely by a lower dimensional theory 

is known as holography. For a discussion of this concept see for example [26]. 

One of the exciting things about the AdS/CFT correspondence is that it relates 
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weakly coupled string theories to strongly coupled gauge theories and vice-versa. This 

means that both the gauge theories and the string theories can be studied in the non­

perturbative strong coupling limit by switching to the dual description. In this thesis, 

we will be using the correspondence to investigate non-perturbative physics in the 

boundary gauge theory. 

An important extension to the original correspondence was made in [27]. In this 

paper, the author demonstrated that the correspondence could be extended to non­

conformal gauge theories by modifying the background spacetime of the string theory. 

Subsequently, a number of papers have been published demonstrating dualities between 

various non-conformal gauge theories and string theories on certain backgrounds, see 

for example [28, 29, 30]. 

Another important breakthrough came in [31], where the authors demonstrated a 

technique for introducing quarks into the gauge theory through the use of probe D7-

branes. These developments will be discussed later in this chapter. First, however, we 

will review the origins of the AdS/CFT correspondence. This involves considering two 

different descriptions of a stack of parallel Dp-branes. 

There are many reviews of the AdS / CFT correspondence available. Some of the 

better ones are [58, 32]. 

3.1 Maldacena's Conjecture 

Before stating Maldacena's conjecture, we will first give two different descriptions for 

a stack of N D3-branes. 
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D-Branes and Non-Abelian Gauge Theory 

D-branes can be used to construct a non-Abelian gauge theory. Consider a stack 

of N coincident D-branes as shown in Figure 3.1. Open strings can have either both 

endpoints on a single D-brane or different endpoints on different D-branes. Now asso­

ciate a particular (colour) charge with all of the string endpoints ending on a particular 

D-brane - a so-called Chan-Paton factor. The massless modes of the N 2 different 

species of open strings will lead to a U(N) gauge theory of gauge boson8 in the adjoint 

representation. 

Figure 3.1: Constructing a non-Abelian gauge theory from open strings attached to a 

stack of D-branes 

The presence of the Dp-branes in string theory will break the 10-dimensional Lorentz 

invariance 

80(1 , 9) --+ SO(l,p) x 80(9 - p) 
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The remaining symmetry is a (p+ 1 )-dimensional Lorentz symmetry on the world­

volume of the Dp-branes and an 80(9 - p) symmetry in the remaining directions. 

From the point of view of the U(N) field theory on the world-volume, this can be re­

garded as an internal symmetry group. VVe will be most interested in the case p = 3, 

where the field theory is four-dimensional. The internal symmetry group for p = 3 

is 80(6) which is locally isomorphic to 8U(4), and this symmetry is regarded as the 

R-symmetry part of the N 4 supersymmetry. Therefore, the theory of massless open 

strings on N coincident D3-branes is N = 4 U(N) supersymmetric Yang-Mills theory. 

The field content of this theory consists of a vector gauge boson All, f-L = 0, ... ,3, 

six scalars cPa, a = 1, ... ,6 and four fermions 1jJi, i = 1 ... ,4. In N = 1 language, these 

can be grouped into a vector multiplet (All, 1jJ4) and three gauge multiplets (1jJi, Ai), 

where we have grouped the six real scalars into three complex scalars Ai. It must also 

be noted that this theory is finite. 

In total, there are three parts to the effective action of the massless modes: The 

four dimensional action of open strings on the world-volume of the branes, the closed 

string modes in the bulk and interactions between the two 

8 = 8brane + 8 bulk + 8 int (3.1) 

The interaction terms will all involve derivatives, each coming with a power of Vd. 

Therefore, if we take the low energy, supergravity limit 0:' -+ 0 the two theories on the 

branes and in the bulk will decouple. 

Multiple D3-branes in Super-gravity 
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Any string theory with closed strings will contain gravity. A stack of N Dp-branes 

in such a theory will be heavy and will naturally warp the space into which they are 

embedded. This may be described by some classical metric along with some other 

background fields including the dilaton and the RR (p+l)-form potential for which 

the Dp-branes act as a source. A solution for a stack of N D3-branes in type lIB 

supergravity can be found which takes the form 

where 

H(r) 1 + (:) 4 (3.3) 

and dDg is the metric of a unit 5-sphere. R is an overall length scale of the metric 

9 

R2 = Ldy; 
i=4 

The form of H can be understood as H is a solution of the Laplace equation over 

the transverse 5-sphere 

(3.4) 

(3.5) 

which gives the result quoted in (3.2). 

The only RR field allowed by the symmetries is A(4)f.il/po-. The equation of motion 

for this field yields 

R = - *F5 , 4 4 l 
D5 S5 

(3.6) 
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where F5 = dA(4) and * denotes the Hodge dual. From this it is clear that the value of 

R is determined by the flux of F5 through the transverse 5-sphere. For N D3-branes 

this flux evaluates to [32] 

(3.7) 

where gs is the string coupling and ls is the string length. 

The metric (3.2) implies that the energy E of an object measured by an observer 

at a position T will be related to the energy Eoo of the same object measured by an 

observer at infinity by 

(3.8) 

In the low energy limit an observer at infinity will measure two distinct types of low 

energy excitations: Massless bulk closed string excitations and any excitations in the 

near horizon T -7 0 region of the geometry. In the low energy limit these two types of 

excitations will decouple and we will be left with two contributions to the total action 

S = Snear- horizon + Sbulk (3.9) 

In the near-horizon limit the geometry (3.2) becomes 

2 T 2 2 R 2 2 2 [ 312 ds = R2 -dt + 8dxi + --;::;:dT + dD5 · (3.10) 

This is just AdS5 X S5 with both an AdS radius and a 5-sphere radius of R. 

Equations (3.1) and (3.9) must be equated since they describe the same physics. In 

the low energy limit we then have 

Snear-horizon = Sbrane (3.11) 
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This is the essence of the AdS/CFT correspondence. 

(IN = 4 super- Yang-Mills theory in 3+1 dimensions is the same as (dual to) type 

JIB superstring theory on AdS5 xsD"[14, 58]. 

We must be careful when taking the low energy limit. Consider moving one of the 

D3-branes away from rest of the stack by a distance r. A string stretched between this 

brane and one in the stack will have a minimum energy E r--o r / 0:' (since the string 

tension is T rv 1/0:'). When we take the limit 0:' -+ 0 we would like to keep this 

"\V-boson" mass fixed, so we require that U == r / 0:' is fixed as 0:', r -+ O. 

In order for the supergravity approximation to be valid the radius of curvature R 

must be much greater than the string length ls. From (3.7) this implies that 

R4 
l4 rv gsN » 1. 

s 
(3.12) 

The string coupling gs is related to the Yang-Mills coupling gYM by gs = g~Ml, so 

the supergravity approximation is valid for g~ MN > > 1. This is the t'Hooft coupling 

of Section 1.3. This is important as it is telling us that the correspondence only holds 

in the non-perturbative limit of the SYM field theory. This is one of the reasons why 

the AdS/CFT correspondence is so powerful. Non-perturbative four-dimensional field 

theory calculations can be transformed into perturbative ten-dimensional supergravity 

problems. We would also like the string coupling gs to be small so that we can ignore 

higher order string interactions. \Ve must therefore take N -+ co. 

As a check on this correspondence we can look at the symmetries of each theory. The 

SYM field theory is invariant under the superconformal group C(1,3) and an SU(4)R 

IThis can be seen by expanding the DBI action (2.27) for a D3-brane 
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R-symmetry. The supergravity theory is invariant under the isometry group 30(2,4) 

corresponding to the AdS 5 space, and 30(6) rotations on the 5-sphere. We can see 

that there is indeed a local isomorphism between the symmetry groups on both sides: 

C(1,3) c:::' 30(2,4) and 3U(4) c:::' 30(6). 

3.2 Deformations and Renormalisation Group Flow 

Fixed values of r in AdS 5 correspond to slices of four-dimensional Minkowski space. 

In the standard AdS/eFT correspondence, the IVIinkowski slice is defined at r = 00. 

This means that the eFT has a cut-off energy scale set at infinity. We can look at 

eFTs with a finite energy cut-off by taking the Minkowski slice to be at some finite 

value of r. A picture of this is shown in Figure 3.2. The radial AdS coordinate r, 

therefore, corresponds to a (renormalisation group) energy scale in the field theory. 

To demonstrate this assertion consider a dilatation transformation on the field theory 

coordinates 

xl" -'; AXil, E -'; A-I E. (3.13) 

N ow consider the same scaling on the AdS metric 

(3.14) 

Xil -'; AXil is only a symmetry if r scales like an energy, r ----7 A -lr . Large r corresponds 

to large energies and small r to small energies. Throughout the thesis, as is common 

in works involving the AdS/eFT correspondence, we will refer to large r regions as the 

"UV" of the supergravity dual and small r as the "IR", remembering that these terms 
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refer to the energy scale of the dual field theory. 

r 

Figure 3.2: Minkowski space as a radial slice of AdS 5. 

This idea is important as it allows us to construct dual supergravity theories to 

other four-dimensional field theories besides N 4 supersymmetric Yang-Mills. Field 

theories can be studied that are /if = 4 SYM in the UV but flow to different theories 

in the IR through the introduction of extra symmetry breaking operators. The gravity 

dual of such operators can be found by considering perturbations about the Jif = 4 

theory in the UV. By adding the appropriate fields on the supergravity side of the 

duality one can in theory construct a supergravity theory which matches the field 

theory at all points during the renonnalisation group flow. The supergravity theory 

may be modified by deforming the metric and/or adding extra fields. It is important 

that any deformations or extra fields must go to zero for large r (the UV) and the 

geometry return to AdS 5 x S5. 

In the next chapter we will describe In some detail an example of a deformed 
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Ads/eFT correspondence and show the explicit matching of the two theories at differ-

ent points along the renormalisation group flow. 

3.3 Operator Matching 

\iVe have stated that ten-dimensional type IIB supergravity on AdS 5 x S5 and four-

dimensional N = 4 supersymmetric Yang-Mills are different descriptions of the same 

theory. \iVhat is not yet clear is precisely how states on either side of the correspondence 

are related. This matter was greatly clarified in [33, 34]. 

The explicit correspondence states that 

(3.15) 

Here 0 is some four dimensional field theory operator, ZSUGRA is the generating func-

tional of the supergravity theory, and ¢o is some "dual" bulk supergravity field eval-

uated on the r ----+ ex) boundary of AdS space which acts as a source for the operator 

O. We can use this relationship to calculate arbitrary correlation functions in the eFT 

purely in terms of supergravity fields, e.g. 

(3.16) 

In order to determine correlation functions for eFT operators O(x), we must first 

discover the correct dual supergravity field ¢(x, r). A simple check is to look at the 

dimension and symmetry properties of ¢ at the boundary r ----+ ex) (¢o (x) == ¢ (x, ex) ) ). 

We know that the product ToO must have mass dimension four and be invariant under 

all symmetries associated with the eFT. 
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As an example of operator matching consider the problem of finding the supergravity 

dual to the bilinear quark operator qq. This is a Lorentz scalar of dimension three, we 

are therefore looking for a scalar supergravity field of dimension one. The qq operator 

does not transform under the SU( 4) R-symmetry, so we will also require that the dual 

field has no indices on the 5-sphere. The action for a massive scalar ¢( r) in AdS 5 is 

(3.17) 

The equation of motion 

(3.18) 

has the general solution 

(3.19) 

where .6.. == 2 ± J 4 + 1\1J2 and A and B are arbitrary constants. If we take 2 M2 = -3 

the solution is 

m c 
¢(r)=-+-. 

r r3 
(3.20) 

Again m, c are constants. Because supergravity fields do not scale under four-dimensional 

conformal transformations, m must have dimension one. It therefore corresponds to a 

mass parameter, being a source for qq. For the other solution, c must have mass dimen-

sion three corresponding to the vacuum expectation value (vev) of the quark bilinear 

(qq). 

2The fact that AdS space has negative curvature means that we can have fields with 1\{2 < 0 and 

still have a positive overall energy density. 
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3.4 Introducing Fundamental Matter 

Quarks can be added to the dual supergravity theory through the addition of D7-branes 

[31]. More properly, fields in the fundamental representation of the SU(N) group can be 

included. Gauge fields living on the stack of D3-branes are in the adjoint of the SU(N) 

colour group since both endpoints have an associated colour charge which depends on 

the brane that they are attached to - these types of strings transform as an (iT, N). In 

order for strings to transform in the fundamental representation, they must have only 

one end attached to a D3-brane. The other is attached to a D7 brane. The mass of 

the string is determined by the distance of the D7 from the D3 stack at the origin - see 

Figure 3.4. 

D7-branes are used for a number of reasons: Firstly, the dimension is different to 

three, so they can be distinguished from the D3-branes and have a different associated 

charge - a flavour charge. Secondly, the degrees of freedom of the system are such that 

the supergravity Lagrangian gives a dual theory of mesons. This will be explored in 

Chapter 5. Lastly, the D3-D7 system is stable due to the D7 wrapping a 3-cycle of the 

5-sphere. For more on the stability of this system see [31]. 

One may worry that the introduction of extra D7-branes will distort the geometry. 

In general this will be the case but, if the number of D7-branes N f is small compared 

to the number of D3-branes N, the correction to the geometry will be small and can 

be ignored in the first approximation. This is known as the probe approximation. It is 

usually valid to use the probe approximation as vve take the number to D3-branes to 

approach infinity. 
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mass 

Figure 3.3: Fundamental and adjoint fields in a D3-D7 system. 

Adding quarks through probe D7 branes, coupled to deformations of the geometry 

in the IR means that we can begin to construct supergravity duals of field theories 

remarkably similar to QCD. The main focus of this thesis will be to describe efforts 

towards the construction of a supergravity dual of QCD. The aim of finding such a 

dual theory is to shed some light on low energy phenomena such as hadrons which are 

currently inaccessible to conventional perturbation theory. 
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Chapter 4 

Leigh-Strassler Off Moduli Space 

In this chapter; we will be investigating the geometry of Leigh and Strassler [35]. This 

geometry describes a renormalisation group (RG) flow from N = 4 supersymmetric 

Yang-Mills in the UV down to an N = 1 theory in the IR. The supersymmetry breaking 

is achieved through the addition of a mass term. Specifically, we will be looking at 

the RG flow of this theory off of its moduli space and explicitly matching the field 

theory with its gravity dual at the conformal fixed points. First we must introduce the 

technique of brane probing and define the moduli space. 

4.0.1 Brane Probing 

A useful tool in investigating supergravity duals is brane probing. This technique 

involves introducing a single D3-brane in the background geometry and looking at the 

induced field theory on the brane. In the limit of an infinite number of branes the 

addition of one more will not disturb the geometry. 
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The action for the theory on the world-volume of the D3-brane will be the DBI 

action 1 (2.27): 

(4.1 ) 

where 

(4.2) 

A sensible gauge to use is the static gauge whereby space-time coordinates and world-

volume coordinates are aligned so that 

~o = t, e xi, i = I, ... ) 3. ( 4.3) 

The remaining space-time directions ym, m = 0, ... ,9 will appear as scalar fields on 

the world-volume. It is typical to assume that the brane is rigid and that these fields 

are functions of t only. It is also typical to assume that the brane is moving slowly so 

that dym / de is small and the square root in the DBI action can be expanded. 

D3-probes are particularly useful in the study of holographic renormalisation group 

flows. By moving the probe along the radial coordinate one can study the gauge theory 

dual to the background supergravity theory at different points along the RG flow. 

Directions for which the probe brane feels no potential define a moduli space of 

inequivalent vacua of the gauge theory. For example, the N = 4 SYM theory has 

six scalars and is invariant under six-dimensional rotations of these scalars. These six 

scalars will correspond to directions ym(t) in the background space-time. The D3-probe 

should therefore feel no potential in these directions. 

l:-Jote that we are assuming for simplicity that Bab and Fab are zero. 
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4.0.2 The Calculation 

The dual geometry we will be investigating is the N = 1 Leigh-Strassler geometry [35]. 

3 

ds2 = [22e2A. L dX; + [22dr2 
i=O 

L 2 [22 [de2 6 2 e (COSh X 2 (}r + (}~) + 2 2 + P cos ---(}3 + ----"---=---
p cosh X X 2 Xl 

X2 cosh X sin2 e (d p6 sinh X tanh X cos2 e ) 2] 
+ Xl ¢ + X2 (}3, 

( 4.4) 

(4.5) 

where 

[22 = ;x;- cosh X , 
P 

X2 = sechx cos2 e + p6 cosh X sin2 e ( 4.6) 

and 

The (Ji coordinates parametrise a (squashed) 3-sphere: 

1 
(}l = "2 (cos a d1j; + sin a sin 1j; df3) , 

1 
(}2 = 2 sin a d1j; + cos a sin 1j; df3) , 

1 
(}3 = "2 (dO' + cos 1j; df3) . (4.8) 

Note that we are only showing the relevant part of C(4) , i.e. the part whose pullback 

onto the D3-brane will be non-zero. There is also a non-zero C(2) and NS-NS field B(2), 
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but we will align the probe brane in such a way that their pullback onto the brane in 

exactly zero. 

The supergravity superpotential for this theory is 

(4.9) 

and the fields p( r), X (r) and A (I) obey the first order set of equations 

dp 1 2aW 1 p6(cosh2X - 3) + 2cosh 2 X - = -p - = - '-----''----~-'-----'---:..:.:. 

dr 6L ap 6L p , 

dX 1 oW 1 (p6 - 2) . 
dr L aX 2L p2 smh 2X, 

dA = -~W = __ 1_ [(p6 _ 2)cosh2X (3 p6 + 2)]. 
dl 3L 6Lp2 

(4.10) 

This geometry describes a deformation of the N = 4 super Yang-Mills theory in the UV 

down to an N = 1 theory in the IR. In N = 1 supersymmetry language there are three 

chiral supermultiplets in the dual gauge theory iPk = ()'k, ¢k), k = 1, ... ,3 consisting 

of a fermion Ak and a complex scalar ¢k, and a single vector multiplet (All' A4). The 

SU(4)R symmetry is broken by giving a mass to one of the chiral multiplets 

(4.11) 

The theory then flows to an N = 1 theory in the IR with a symmetry group SU(2)F x 

U(l)R, where the SU(2)F symmetry comes from rotations of the two massless flavours. 

This RG flow corresponds to turning on scalar supergravity fields whose values 

asymptotes to zero in the (I = +(0) UV limit. In the IR, below the scale set by the 

mass m, these fields give a significant contribution to the geometry. The geometry will 

return back to AdS5 in the IR as the dual theory has a conformal fixed point there, but 
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the transverse space will change from an S5 to a deformed space with an SU(2) x U(l) 

isometry group. 

This background has been probed in [36], where the correspondence was tested on 

the moduli space of the theory. We will be investigating a region off of the moduli 

space. The Kahler structure has also been investigated in [37]. 

We will use a D3-brane probe to investigate the properties of this geometry (see 

the previous section). We will use a static gauge and assume that the brane is moving 

slowly (y dy/dt « 1). Expanding the square root up to O(y2) yields a Lagrangian 

L=T ( 4.12) 

It was shown in [36] that in the large r UV limit the potential takes the form 

( 4.13) 

In that paper, they looked at the moduli space given by e = 0 and found that the 

metric was topologically IRS. 4 corresponding to the parameter space of the vevs of the 

two complex massless scalars. They also found that the metric had an SU(2) x U(l) 

symmetry in the IR as required by the duality. 

Here we wish to look at a particular flow off of this moduli space. For convenience 

we will set e 7r /2. For this choice, the kinetic and potential terms of the probe 

D3-brane Lagrangian are 

(4.14) 
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\eVe are interested in the geometry at the two fixed points. Consider the equations for 

p and X (4.10) 

dp 1 p6(cosh2X-3)+2cosh2 X 
dr 6L p 

dX 1 (p6 - 2) . 
- = - smh 2X. 
dr 2L p2 

(4.15) 

We can simplify these by making a change of variables 

(4.16) 

Then 

dp 1 p6(ip-2)+ip 

dr 3L p 

dip _ ~ (p6 - 2). ( _ ) 
dr - L p2 zp zp 1. ( 4.17) 

The fixed points in the flow will be given by rtf;. = = O. The solutions are 

(p,zp) = (1,1) (UV) 

(p, ip) = (2 1/ 6 ,4/3) (IR) (4.18) 

A direction field showing these fixed points is shown in Figure 4.1. 

vVe are interested in the mapping between the supergravity theory and the dual 

field theory at the fixed points. Let us combine rand ¢ into a single com.plex scalar 

field 

(4.19) 

We expect that if our Lagrangian derives from a Kiihler potential K(A, At), then the 

kinetic term should be of the form 

( 4.20) 
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0.9 1.1 :.2 1.3 1.4 

Figure 4.1: Direction field for the supergravity fields p( T) and c.p( T) = cosh 2 X(T) showing 

UV and IR fixed points 

where 

This can be derived from the standard result found in many textbooks on supersym-

metry that 

T (4.21) 

where g.4.4* is the Kahler metric 

g.4.4* ( 4.22) 
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(see for example [7]). This gives 

= K' + K"IAI2 

( 4.23) 

\iVe also expect that, if there is a mass term in the supersymmetric action 

then the potential should be given by 

This can be derived as follows: Let the superfield <P A+eeF, where F is the standard 

"F term". Then <p2lee AF and the supersymmetric Lagrangian is 

The equations of motion for F and F* give 

and the result follows. 

8£ = 0 =} F = _ rnA* . 
8F* gAA" 

8£ = 0 =} F* = _ rnA 
8F gAA* 

Letting f(v 2
) == K' + K"v2 we expect that 

45 

(4.25) 

( 4.26) 
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and at the IR fixed point, where the dual theory has a mass term for one of the 

multiplets, 

( 4.28) 

with V = 0 at the UV fixed point. Matching (4.27) to (4.14) we find that 

( 4.29) 

so 

v(r) = exp [-l J drp (r)4] . ( 4.30) 

Note that we have taken the negative solution to ensure that v(oo) = O. v(r) can also 

be derived by matching the potential (4.28) to (4.14) using the flow equations (4.10). 

We find 

( 4.31) 

Note that this is only valid away from the UV fixed point. At the UV fixed point 

cosh2 X 1 and the potential is zero as required. Equating these two derivations gives 

( 4.32) 

At the IR fixed point p6 = 2 and the matching works. 

\iVe have successfully matched the supergravity theory to a dual supersymmetric 

theory with a non-trivial Kahler metric at the UV fixed point, and a supersymmetric 

theory with a non-trivial Kahler metric and a mass term at the IR fixed point. 

VlThat happens at points in the flow away from the two fixed points? As an example, 

we expand around the IR fixed point and solve the linearized flow equations for p and 
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X. The results are 

p(T) ~ 2J/ 6 (1 - V76- lboe"/L) + ... , 

NT) ~ ~ (1 .... V'f V76-1 boe"/L) . ( 4.33) 

The matching to the dual supersymmetric theory no longer works as the right hand side 

of (4.32) is no longer equal to zero (it goes to zero in the r -00 IR limit). This is to be 

expected as in the dual supersymmetric theory we expect renormalisation of our fields 

as we move away from the conformal fixed points. This would have to be included in the 

four-dimensional theory in order for our analysis to work. The trouble is that in order to 

determine the exact form of the dual theory away from the fixed points we would have 

to be able to solve the full non-perturbative renormalisation group flow. The difficulty 

of this problem is in fact one of the reasons why people turn to the dual supergravity 

theory. \iVithout being able to solve both the supergravity theory and the dual gauge 

theory at arbitrary energies, it is not possible to verify the correspondence between 

the two theories at points away from the conformal fixed points. Recently, however, a 

supergravity theory including D-branes and ghost D-branes was found which is dual to 

an SU(NIN) gauge theory [38]. The interesting thing about this set-up is that it may 

be possible to solve the dual gauge theory at arbitrary energies and therefore test the 

Ads/eFT correspondence at all points along the renormalisation group flow. 
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Chapter 5 

Gravitational Dual Theories of 

Chiral Symmetry Breaking 

One of the major aspects of QCD that we would like to learn more about is its chi­

ral symmetry breaking. The AdS/CFT correspondence is an extremely useful tool in 

investigating this problem. In the first section of this chapter we will show how the 

AdS/CFT correspondence can be used to provide a geometric picture of chiral symme­

try breaking in a QCD-like theory. In the second section we will provide a simple test 

to determine whether this phenomenon is exhibited by various supergravity geometries. 

5.1 A Geometric Picture of Chiral SYIlllnetry Breaking 

The basic tool we will be using to study chiral symmetry in this section is a D7-brane 

probe. Through studying the field theory induced on the world-volume of such a D-
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brane in a deformed AdS geometry we are able to examine chiral symmetry breaking 

from in a geometric way. 

The induced action on the world-volume is the DBI action (2.27): 

(5.1 ) 

where 

aXf-LaxV 

P[G]ab = a~a a~b Gf-LV , f-L, v = 0, ... ,9, a, b = 0, ... ,7. (5.2) 

Note that, for simplicity, we are only including the graviton contribution to this action. 

Let us assume that we can align the brane so that the two directions transverse 

to the brane (x 8 ,x9 ) have an associated diagonal metric Gij = Goij,i,j = 8,9 and all 

other bulk coordinates are aligned with brane world-volume coordinates. The pullback 

metric can then be written as 

(5.3) 

where X = x 8 + i.1;9. Without loss of generality 1 ) we can re-write this complex scalar 

field as 

X(r,x) = CT(r)eie(T,xl. (5.4) 

Let us try to interpret the field CT(r). For now we will set e = o. All deformed geometries 

must go to AdS for large r. In this limit the Lagrangian on the world-volume takes the 

form 

(5.5) 

I We are not letting the fields have components on the 5-sphere as we are interested in studying 

non-supersymmetric theories. 
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Note that here G must have mass dimension one. The equation of motion for G is 

whose asymptotic solution is 

c 
G(r)r-.o m + 2 · 

r 

(5.6) 

(5.7) 

The constant m must have mass dimension one, and c must have mass dimension three. 

Since G(r) is a dimension one scalar with this asymptotic form, we interpret it as the 

supergravity dual of the quark bilinear operator qq. m corresponds to the quark mass 

and c to the quark condensate. 

From the point of view of the geometry, jG(r)2 + r2 is the distance of the D7-

brane from the origin. This suggests that the position in which the D7-brane lies will 

determine the value of G and hence the value of the quark mass and condensate in the 

dual field theory. 

A picture of a D7-brane lying in some hypothetical background geometry is shown 

in Figure 5.1. At 'T' = ex:) the D7-brane is lying at G(r) = O. As the geometry moves into 

the small 'T' IR region there is some potential which causes the brane to be deflected 

away from the origin. G(r) becomes non-zero and a dynamical mass for the quarks is 

generated. Dynamical quark masses break chiral symmetry and so this picture shows 

the gravity dual of a chiral symmetry breaking renormalisation group flow. 

At r = ()O with the brane at G(r) = 0 there is a U(l) symmetry in the geometry. 

As the brane is deflected, that symmetry is broken. Goldstone's theorem says that 

breaking a continuous global symmetry will result in a massless Goldstone boson and 
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Figure 5.l: Geometric chiral symmetry breaking in a D3-D7 system. 

indeed it does. When ()" is non-zero, the field e(r, x) appears in the Lagrangian. Since 

there are only derivative terms for this field, it is massless. The field e is the pion 

generated by the breaking of the U (1) chiral symmetry2. 

5.2 A Test for Chiral Symmetry Breaking 

It would be nice to have a wider understanding of how generic the phenomena of 

chiral symmetry breaking is in gravitational duals - naively one might expect any 

non-supersymmetric, strongly coupled gauge background to induce chiral symmetry 

breaking. In this section we will pursue this goal by studying D7 brane embeddings 

2 Actually the symmetry is the axial U(l) symmetry so technically the Goldstone boson is the r/. 

In the limit N -> (Xl this has the same contributions to its mass as the regular pions. Throughout the 

thesis we will use the term pion loosely as a Goldstone boson of chiral symmetry breaking. 
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in a range of deformations of Ad85 x 8 5 . In general, such geometries are considerably 

more complicated and the embedding profile depends on many of the coordinates on 

the brane. This turns finding the solutions into an extended and complicated numerical 

problem. Instead we propose a simple spherical embedding of a D7 brane that can be 

performed analytically and tests the repulsion of the core of the geometry. We believe 

this is a good indication of whether chiral symmetry would be induced. Further, in the 

case of a known dilaton induced flow, it provides an analytic estimate of the dynamical 

quark mass at zero energy which matches the numerical results well. 

vVe begin by looking at a deformed geometry of Freedman, Gubser, Pilch and 

Warner [30]. In fact, this geometry is a coordinate transformation of an lv = 4 pre­

serving multi-centre solution in which chiral symmetry breaking can not occur. Study 

of it, though, highlights the pitfalls of interpreting the numerical embedding solutions 

too glibly. In one coordinate system we find solutions for the D7 brane embedding that 

appear to give a non-zero value for the quark condensate in the ultra-violet (UV) when 

in fact there is none. We learn that for there to be chiral symmetry breaking there 

must be a spatial gap between the embedded D7 brane and the core singularity for the 

case of a massless quark in the UV. 

We next quickly review the dilaton induced flow results [48, 49] and introduce our 

spherical D7 embedding showing how the full solutions corresponding to the usual D7 

embedding match on to these solutions in the infra-red. The spherical embedding 

illustrates the repulsion of the core of the geometry and provides the analytic result for 

the induced mass gap in the theory. 
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As a first new non-supersymmetric geometry we look at an extension of the FGFW 

solution [39] which allows for the inclusion of non-zero masses for the adjoint scalars of 

the .tv = 4 gauge theory as well as a vacuum expectation value. The gauge theory here 

has an unbounded scalar potential but the supersymmetry breaking could induce chiral 

symmetry breaking for the probe. \Ve find that this is a case where chiral symmetry 

breaking is not present. 

Pilch and \Varner have constructed a number of geometries describing the Jif 

2* gauge theory [40, 41, 42]. We study a D7 embedding that preserves the N = 2 

symmetry. The spherical D7 embedding allows us to check that there is no repulsion in 

this case and hence no chiral symmetry breaking as one expects in a supersymmetric 

theory. 

Finally we look at the non-supersymmetric Yang Mills* geometry [43]. Here the 

deformation is instigated by a mass and/or condensate for the adjoint fermions of the 

N = 4 theory (one would expect these parameters to be linked, but the supergravity 

geometry provides inconclusive evidence for what this link is). This supersymmetry 

breaking induces a mass for the adjoint scalars too, leaving just the Yang Mills field to 

survive to the IR. One would expect this theory to break chiral symmetries. \Ve find 

using the spherical embedding that generically the core is repulsive (although there is 

a line of flows in the adjoint mass vs condensate plane where chiral symmetry breaking 

is absent). 
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5.2.1 D7 Branes and N 4 Geometries 

The large Nc /v = 4 gauge theory at the origin of its moduli space is dual, via the 

AdS/CFT Correspondence to supergravity on AdS5 x S5 with radius R 

(5.8) 

where .T / / is the 3+ Id plane parallel to the D3 world volume and 1),2 = ~i v,r. Quark 

fields may be introduced (see Section 3.4) and N = 2 supersymmetry preserved by 

placing a D7 probe in the x / / and 1),1 1),4 directions (we write the metric on these four 

directions as dp2 + p2dD§). The U(I) symmetry in the U5 - U6 plane is the geometric 

realisation of the U(I)A axial symmetry of the quark fields on the probe. The Dirac 

Born Infeld action for the probe, with tension T7 , is 

where the prime indicates a derivative with respect to p, Gab is the pullback of the 

metric onto the probe, and we generically use d8~ to indicate integration over the 

world volume. The resulting equation of motion for the profile in, for example, the U6 

direction is: 

d [ p3u~ 1 
dp VI + uc = O. 

(5.10) 

The regular solution is U6 = m with the separation of the D7 from the p axis, m, 

representing the hypermultiplet's mass. Asymptotically at large u there is a second 
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solution 

c 
Us m+ 2 + .... 

p 
(5.11) 

The parameter c represents the magnitude of the fermionic quark bilinear 7jj1jJ. In pure 

AdS this solution is singular in the interior and unphysical [48, 49J. 

Now as a first example of embedding a D7 brane in a deformed geometry we con-

sider the geometry of Gubser, Freedman, Pilch and \Varner [30]. This geometry was 

constructed in the 5d truncation of lIB supergravity on AdS [44]-[45] then lifted to 

10d. A scalar field, X, in the 20-dimensional representation of SU( 4) R has a non triv-

ial radial profile corresponding to the scalar operator Tr¢2 having a vev of the form 

diag(l, 1, 1, 1, -2, -2). This vev preserves the supersymmetry of the N = 4/2 theory 

and we would expect to be able to introduce quarks of any mass via a D7 brane and 

find no chiral symmetry breaking. This is indeed the case, as we will show, but there 

are some interesting subtleties. 

The 10d geometry is given by: 

2 _ Xl/
2 2Ad 2 _ X

1
/
2 (d 2 R2 [d()2 sin

2 ()d,,2 X
S 

cos
2 Bdn2]) 

ds - e x / / U + 2 + X tV + X- ,0&3 . 
X X X 

(5.12) 

Here dD§ is the metric of a three sphere, R is the asymptotic (large 'u) AdS radius, and 

(5.13) 

The fields X and A satisfy the differential equations 

dX = ~ (2. _ X5) , 
du 3R X 

(5.14) 
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with solution 

2A [2 X4 
e = R2-6--1' 

X 
(5.15) 

where l is an integration constant. The solution also has a non-zero four-form potential 

4AX e 0 1 2 3 C(4) = --2-dx 1\ dx 1\ dx 1\ dx . 
9sX 

(5.16) 

Note that this solution is singular at the point where X = 1 - we will see the physical 

interpretation of this shortly. 

It is natural to embed the D7 brane in this geometry to lie in the x / /' u, D3 directions 

and look at the profile of the D7 brane e(u) at fixed ¢ (¢ provides the U(l) symmetry 

of the embedding which is the chiral symmetry of the theory with quarks). The DBI 

action is 

(5.17) 

To place the solutions in a Cartesian-like plane instead we can make a change of coor-

dinates from the circular coordinates (u, e) into the set (r, v): 

v 
r 

tane. (5.18) 

Using this coordinate transformation, the metric becomes: 

+ 
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Note that in these coordinates v and r are not perpendicular. In the AdS limit T, v 

become p, U6 above though, and hence the embedding results will be easier to interpret 

in these coordinates where we can compare them to the AdS U6 = m result. 

From the metric we can calculate the action when we embed with v and ¢ as the 

perpendicular directions. Again we choose ¢ = canst and now our variable is v(r). 

where 

(5.20) 

We can solve the equations of motion resulting from this action numerically and 

the solutions are shown in Figure 5.2. Note that the D7 appears to deform around 

the singularity and there is a non-zero gradient at large r. Naively, therefore, our 

embedding solutions suggest that there is a quark condensate present for some values 

of the quark mass - we plot the value extracted asymptotically also in Figure 5.3. If 

there were a quark condensate for any value of the mass, supersymmetry would be 

broken, which would be a surprise! 

In fact, this result is an artefact of being in the wrong coordinates for the duality 

to the field theory to be manifest. In general, finding the appropriate coordinates is 

rather hard, but in this highly supersymmetric theory the "correct') coordinates have 

been identified in [30, 47]. If we change the coordinates u, e for U, 0: so 
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Figure 5.2: D7 brane flow in the FGPvV geometry. The solid lines are the numerical 

solutions and the dashed lines the coordinate transform of the full analytic solutions. 

The singularity of the geometry is shown as a black circle. 
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Figure 5.3: Apparent values of the quark mass and condensate extracted asymptotically 

from the flows in Figure 5.2. 
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1), SIn a = -4- SIn , 
p 

then the metric takes the form of a standard multi-centre D3 brane solution: 

6 

ds 2 = H-
1

/
2dx// + Hl/2 2.:.: du;, 

'i=l 

with 

(5.21) 

( 5.22) 

(5.23) 

The singular region of the space is transformed from a sphere to a disc by this 

transformation. The disc lies at the origin in the v, T space. The singularity is now 

understood to be caused by the presence of a disc of D3 branes and the solution is a 

perfectly good geometry. 

Embedding the D7 brane in the x / / and four of the Wi directions leaves the standard 

DBI action (eq. (5.9)) for the D7 in AdS space - the factors of H cancel and play no 

part. There are as usual solutions with us) '116 constant as in AdS. \iVe interpret this as 

quark fields with a non-renormalized mass and no quark condensate. 

Using the change of coordinates in eq. (5.21) we can map these simple constant 

solutions onto the solutions shown in Figure 5.2. These are given by the dashed lines 

showing that the numerical solutions to the equations of motion do match with those 

acquired from the analytic functions of X and A. There are a number of lessons we 

can learn from this example. Firstly, it is not straightforward to interpret the D7 
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embedding solutions in terms of the field theory because of the potential ambiguity 

in the identification of the coordinate system. V\le can see, though, that there were 

two signals of the absence of chiral symmetry breaking in this system even in the 

wrong coordinates. Firstly, the value of the parameter c in the solutions fell to zero 

as m fell to zero. Secondly, the embedding solutions filled the full space down to the 

singularity - that is there was no clear radial gap between the embedding solutions 

and the singularity. The result of this is that, as we have seen, the singularity can 

be transformed to a branch cut by a coordinate transformation and the solution for 

a massless quark then lies along the v'6 = 0 axis. A true signal of chiral symmetry 

breaking, as we'll see shortly, is if there is a radial gap between the m = 0 embedding 

and the singularity - such an energy scale gap can never be removed by a coordinate 

transformation. 

5.2.2 Quarks in a Dilaton Flow Geometry 

Chiral symmetry breaking was first observed with a D7 embedding [48, 49] in the 

non-supersymmetric geometry of Constable and Myers [53]. This geometry in Einstein 

frame is given by 

( 

4 b4) 0/4 (4 b4 ) (2-0)/4 4 b4 6 d 2 = H- 1/ 2 W + d 2 H 1/ 2 W + W - I: d ,2 
S 4 b4 X4 + 4 b4 4 W~ , 

W W - W 
i=l 

(5.24) 

where 

(5.25) 
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and the dilaton and four-form are 

2<po w + b ( 4 4)6 
e w 4 b4 ' 

1 -1 
C(4) = -4H dt 1\ dx 1\ dy 1\ dz. (5.26) 

There are formally two free parameters, Rand b, since 

(5.27) 

It is convenient to write wand b in units of R which removes R from the definition 

of 5 and puts a factor of R2 into gww' The parameter b has no R-charge and dimension 

four so is interpreted as the vev of the operator TrF2. The N = 4 gauge theory is not 

expected to have a vev for this operator and hence this geometry probably does not 

describe a physical gauge theory vacuum. Nevertheless, it is an interesting geometry 

to study chiral symmetry breaking in because it does describe a non-supersymmetric, 

strongly coupled gauge background. 

This geometry is particularly simple to study because it has a fiat six plane trans-

verse to the D3s. \iVe parameterize this six plane as 

6 

L dW; = dp2 + p2dO~ + dw~ + dw~, (5.28) 

i=l 

where we will embed the D7 brane on the directions xII' p and 0 3 . The U(l) symmetry 

in the transverse W5 W6 plane is the geometric realisation of the U(l)A symmetry of 

the quark fields. The DEI action for the D7 is 

(5.29) 
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and we look for solutions where W5 = 0 and W6 is a function of p. The equation of 

motion is 

(5.30) 

where 

(5.31) 

The final terms in the equation of motion is a "potential" like term that is evaluated 

to be 

Asymptotically at large radius these equations are just those in AdS with solution 

C 
W6 =m+ 2 +···, 

p 

where m corresponds to the quark mass and c the condensate. 

(5.33) 

Numerical solutions for the regular embedding solutions are shown in Figure 5.4 as 

well as a plot of the parameter c vs m. We take b = 1 for these plots. The m = 0 

solution breaks the symmetry in the W5 - W6 plane which is present asymptotically at 

large W where the D7 lies at the origin of the space - this is the geometric breaking of 
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Figure 5.4: Numerical solutions for D7 embeddings in the Constable-Myers geometry 

with b = 1. The shaded area corresponds to the singularity in the metric. Also plotted 

is the value of the quark condensate vs the mass extracted asymptotically from those 

flows. 

Let us compare this case to that of the previous section where we showed that in 

the N = 4 theory with scalar vev there was no chiral symmetry breaking. Here there is 

a non-zero value of c as m goes to zero. There is also a radial gap between the m 0 

embedding and the singularity. \iVhatever coordinate transformation we might make 

on the geometry this gap will remain and the U(l) symmetry in the W5 W6 plane will 

be broken - this solution therefore definitely breaks chiral symmetry. 

5.2.3 Spherical D7 Embedding 

The above solutions in Figure 5.4 are calculated numerically, but it would be nice 

to be able to extract the chiral symmetry breaking behaviour and some dynamical 

information analytically. To do this we will look for minimum action solutions in the 
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form of a circle in the P-W6 plane plotted in Figure 5.4. The chiral symmetry breaking 

solutions naively look to match on to such a solution close to the singularity. \Vhether 

such an embedding falls into the singularity or is stabilized away from it will test 

whether the core of the geometry is repulsive to D7s and hence will be our test for 

chiral symmetry breaking. The distance it rests from the singularity will provide an 

estimate of the radial gap of the full embedding above. This gap corresponds to the 

dynamically generated quark mass at zero energy or the mass gap of the theory. 

Concretely, we write the metric in the six w directions as 

6 

L dW; = dr 2 + r2(da2 + cos2 ad¢;2 + sin2 adD§), (5.34) 
i=l 

and embed the D7 brane on the D3 and in a at constant r = roo The action of the D7 

brane is 

S - T J d8c 4 iP(r) 2 ( ) 2 () wrapped D7 - - 7 <" r e gxx r gww r 1+- ~ 1 (d )2 
r2 da 

(5.35) 

Note that in pure AdS or a multi-centre solution g;xg;w 1, the dilaton is a constant, 

dr / da is zero if r is fixed to some ro and so the action is simply r6' In the supersym-

metric case the circle collapses to the origin (ro ---+ 0) so here the core of the geometry 

is not repulsive which we take as evidence of the lack of chiral symmetry breaking. 

In the Constable-Myers geometry, though, we have 

1 (dr) 2 1+- -
r2 da 

(5.36) 
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Taking the equation of motion for r(a) we see that there is indeed a solution with 

~~ = O. The action is then minimised by the constant value of r = ro which is the root 

of 

(5.37) 

which is real and greater than b. For b = 1 there is a minimum of this action away 

from the singularity showing that the singularity is repulsive to such a configuration. 

For b = 1 this gives ro = 1.29. In Figure 5.5 we plot this solution and the massless 

quark solutions above. Comparison shows that the circular embedding provides a good 

approximation to the gap value for the D7 brane solutions we are interested in above. 

Generically, how good this match is will depend on the form of the repulsive potential 

induced by the geometry. In this case the potential sets in steeply and the two solutions 

do match well. 

It's clear that the full embedding comes close to matching to the spherical case in 

the infra-red. In fact, there is a small gap between these solutions. In [48] solutions 

were identified that lay closer to the singularity; these correspond to a second, higher 

action solution for each asymptotic value of the mass up to some critical mass. These 

solutions were identified with the chiral vacuum with - (;jJ1jJ) whose energy is raised by 

the quark mass. If the quark mass were too big, this vacuum is not even metastable 

and there is no solution describing it. In Figure 5.6 we plot this critical flow and the 

minimum action circular embedding showing that they overlap almost exactly. Overall, 

though, we conclude that the spherical embedding provides a good measure of the quark 
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Figure 5.5: Plot of the minimum action spherical D7 embedding and the massless 

quark embeddings in the Constable Myers Geometry. The black circle represents the 

singularity in the geometry. 
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Figure 5.6: Plot of the minimum action spherical D7 embedding and a local minimum 

embedding action for a massive quark in the Constable Myers Geometry. 
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mass gap. 

There is also some structure as b is changed. VVriting w in powers of b removes b 

from everywhere in the metric except the expression for Ll in the dilaton. For Ll to be 

real requires 

(5.38) 

Now the quadratic equation (5.37) has a solution for the position of the minimum 

action, spherically embedded D7 which lies outside the radius b where the geometry is 

singular only if 

(5.39) 

There is therefore a small range of b that we can study where the spherical D7 falls 

into the singularity. For these values we expect the full D7 embedding corresponding 

to the quark fields to fall in too. Numerically this is what we find. In fact there 

is a few percent discrepancy between where a chiral symmetry breaking solution is 

lost and where the spherical embedded D7 enters the singularity corresponding to the 

slight mismatch seen above for the gap value in the exact method and the spherical 

embedding approximation. For these cases where the singularity is crossed we can come 

to no further understanding without more knowledge of the singularity. 
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5.2.4 A Non-supersymmetric Scalar Deformation 

Let us now turn to our first example of a non-supersymmetric gravity dual [39] that 

has not been previously studied in this context. The background we will look at is 

related to the N = 4 [30] embedding introduced in Section 5.2.2. It was generated 

from a five-dimensional supergravity flow which was lifted to ten dimensions in [39]. A 

five-dimensional scalar field, A, in the 20 representation of 80(6) is switched on and 

has the potential 

4>'(1') 

V = -e V6 - 2e (5.40) 

The scalar field A acts as the source and vev of the field theory operator Tr( cPr + ¢~ + 

2¢§). Switching on a mass term will give rise to unbounded directions 

in the scalar potential and so, as with the Constable-Myers case, this is not a realistic 

dual. Nevertheless, it is an interesting case to see if the breaking of supersymmetry 

generates chiral symmetry breaking - we will see that in this case it does not. 

The relevant equations of motion for the scalar field are given by the usual five-

dimensional field equations [46]: 

A'(r) 

The large r limit of this field is given by 
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OA(r) , 

Jt('\/(r)2 - 2V). (5.41) 

(5.42) 



where A is interpreted as a source for our operator and B is the vev. The.Ai = 4 

deformation described earlier is the special case where only the vev is non-zero. Now, 

we are interested in the case where there is both a mass and condensate present. VVe plot 

numerical solutions of the five-dimensional field equations in Figure 5.7. Generically, 

the flows either diverge in the IR with A -+ ±oo. There is a boundary in the A-B 

plane between these two behaviours. In Figure 5.7 we show examples of each of these 

two behaviours A3, A4 and the unique flows that lie on the boundary between these two 

regimes. Al describes this boundary in the positive A positive B quadrant whilst A2 

describes the boundary in the quadrant where they are both negative. We will provide 

analytic forms for the IR of these flows below. 

1.5 

[rj 

r 
10 

Figure 5.7: 4 different flows of the SUGRA field A(7') all of which become singular at 

r=O. Al and A2 are the turning point flows between the flows of the form A3 and A4. 

The ten dimensional lift of the full set of five dimensional solutions shares the form 
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of the metric with the supersymmetric geometry so 

2 _ VX 2Ad 2 VX (d 2 R2 [de 2 sin
2 

e d 2 X
6 

cos
2 

e dn2]) ds --e x//+- u +-2 +-X ¢ + X ;\£3 ' 
X X X 

(5.43) 

where the parameters are defined in exactly the same way as in the supersymmetric 

case (see eqn. (5.13)) and 

~ 
x=e-/6. (5.44) 

Of course the solutions for X and A differ from the supersymmetric case. The four-form 

potential of the lift does not match that in the supersymmetric case but in neither case 

does it enter the DBI action of our D7 brane. 

vVe can look for chiral symmetry breaking using both of the techniques we have seen 

in previous examples. The first method is more direct but a little less enlightening; 

we probe with a D7 brane by embedding in the x! /' r, 0 3 directions (the angle ¢ again 

provides the U(l)A symmetry). The D7 action is given by eq. (5.17) and we will solve for 

flows in from the IR towards the UV with the symmetric boundary condition v = canst 

and calculate numerically the geometry of the brane. 'Ale saw in the supersymmetric 

example that we are not in the "correct" coordinate system~ to make the gauge theory 

living on the brane manifest and therefore to find the quark mass and condensate. 

In that case, we were helped by the first order equations and could find the correct 

coordinate system. In this more general case, where X and A are solutions of second 

order equations, we have no hint as to how to find the correct coordinates. 

vVe can perform the embedding by calculating e as a function of r) or we can change 

to the cartesian like set of coordinates, (v, r) given by the same change of variables as 
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Figure 5.8: Sample solutions for a D7 brane embedding in the non-supersymmetric 

scalar deformation geometry showing the absence of a gap between the solutions and 

the singularity. 

in the supersymmetric calculation eq. (5.18) and calculate the flow of v(r). The action 

is then given in eq. (5.20). vVe solve for the D7 embedding with IR boundary condition 

v(r) constant. We plot some representative solutions in Figure 5.8, which are in a 

background with positive A and B in eq. (5.42). 

We find generically that for geometries with D7 embeddings that correspond to 

small quark masses the flow wraps onto the surface of the singularity. As far as we 

can tell numerically, there is a solution that hugs the v axis down to the singularity 

and then follows the singularity to r = O. For this flow, both the mass and condensate 

asymptote to zero. \Ve conclude that the geometry does not break chiral symmetries. 

Note that, as with the supersymmetric flows, naively a flow that hugs the singularity 

breaks the U(l) symmetry due to ¢ translations. However, it seems likely that there 
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is a coordinate transformation that presses the singularity to the v = 0 axis as in the 

supersymmetric case. The absence of a gap between the D7 brane embedding and the 

singularity, which could not be removed by such a transformation, implies no clear 

signal of chiral symmetry breaking. 

The numerical studies above are somewhat messy and it would be nice to have 

an analytic understanding of the results. Such results are provided by our spherical 

embedding method developed in Section 5.2.3. We study the action of a circular D7 

brane wrapped on X!!, 0 3 , e at constant T as it gets nearer to the singular region. \iVe 

expect the full solutions above to match onto these solutions in the IR. If the spherical 

embedding collapses into the singularity then there will be D7 embeddings that flow 

in from infinite radius that also touch the singularity. This can be calculated from the 

numerical flows of the scalar field A, but it is more satisfactory to be able to get an 

analytic form for the potential. It turns out that we can do this for the IR limit of 

the scalar flow equations. We find four different solutions for the scalar fields X and A. 

These numbered solutions to X are related to the four types of behaviour in Figure 5.7 

A 

by X = ev'6: 

72 



(5.45) 

A3(r) = i log(c(r - rs )), 

where r s is the singular radius and band c are free parameters 3. \Ve have checked that 

these are all of the possible solutions by numerically solving the flow equations with 

these as the IR conditions. \Ve flow out to the UV with these boundary conditions and 

calculate the mass and condensate in this limit. As best we can tell, these are indeed 

all the IR solutions of the SUGRA field equations. 

Having found the analytic IR solutions, we can look at the action for the circular 

brane wrapping. We calculate the pullback for a brane with rand ¢ as the perpendicular 

directions with r(e) and ¢ constant which gives: 

J / (dr(e)) 2 x(r(e))2 SDBI = -T7 d8~R4V cos(ep + x(r(e)) sin2(e)e4ACrCB))X(r(e)) cos3 (e) 1 + ----;{8 R2 

(5.46) 

3We have found this asymptotic behaviour by looking for solutions of the form A(r) = a log(b(r-rs)) 

as l' ~ r 8 • In fact, the last two solutions are valid for any potential V which asymptotically smaller 

than .,-----l--)2 as r ~ rs. In this case the supergravity equation reduces to the first order equation: 
lr-rs 

A"(r) +4A'(r) 
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There are solutions where T(8) = TO and using the above IR solutions we can write 

down the action for each of these which gives 

J d8~(TO - Ts)121 sin(8)II cos3 (8)1, 

J d8~(TO - Ts)~ cos4 (8), 

J d8~(TO Ts)~ cos4 (8), 

J d8~1 sin(8) II cos3 (8)1· (5.47) 

We can see that for the first three there is obviously a minimising solution for which TO = 

T s, meaning that the circular brane will fall into the singularity. This strongly suggests 

from our earlier studies that there will not be any chiral symmetry breaking induced 

by this geometry. Indeed we saw above that numerical studies of the D7 embedding 

appropriate for the addition of quarks also suggest there is not chiral symmetry breaking 

here. It is not immediately apparent that the brane will collapse in the fourth solution, 

but we note that this solution interpolates from the UV for which the potential goes 

like e4r . By performing this calculation numerically we find a monotonically decreasing 

potential indicating that the flat behaviour seen in the equation interpolates smoothly 

into the exponential behaviour meaning that the brane collapses with this solution as 

well. 

\iVe conclude that this non-supersymmetric geometry does not induce chiral symme-

try breaking. The unrealistic nature of the geometry, having as it does an unbounded 

scalar potential, does not make this result overly concerning but it is interesting that 

supersymmetry breaking and chiral symmetry breaking do not appear to be necessarily 
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directly linked. 

5.2.5 N=2* Geometry 

vVe now turn to a more complicated supersymmetric geometry describing the N = 2* 

gauge theory [40][54]. This theory is the N 4 theory with mass terms for two 

adjoint chiral matter fields. It has the massless fields of N = 2 super Yang Mills 

and thus a two-dimensional scalar moduli space. The supergravity description has a 

field corresponding to the fermionic mass and another which describes both the scalar 

masses and vev. The lift of the original 5d background to 10d has been made [40] and 

the solution in the Einstein frame is given by 

where 

[22 

C 

Xl 

X2 

C(4) 

and the axion/ dilaton is given by: 

(I-B) iP ,\ = i 1 + B = CeO) + ie- , 

(5.48) 

1 

(CX1X2 ) 4 

X 

cosh 2(, 

cos2 e + x6csin2 e, 

ccos 2 (J + X6 sin2 (J, 

e4A X 
__ 1 dxO 1\ dx l 1\ dx 2 1\ dx 3 

4gs X2 ' 
(5.49) 
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In addition, there is the anti-symmetric two form, whose NSNS and RR parts are given 

respectively by 

al R2 tanh 2( cos e, 

R2 X6 sinh 2( . e 2 e 
Xl sm cos , 

R2 sinh 2( . e 2 e 
X

2 
sm cos . 

The SUGRA fields (, A and X = en satisfy the equations of motion 

do; 

dr 
dA 
dr 
d( 

dr 

These have partial solutions: 

6 
X cosh(() + sinh2(2C) b + log(tanh C)) , 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

The solutions with large r deform into N = 4 solutions of the form seen in section 

5.2.2 - here the scalar vev is so much larger than the supersymmetry breaking mass 

that the theory is effectively the N = 4 theory. The smallest possible vev in the theory 

corresponds to the background with r = 0 and we will concentrate on this case since 
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it is the vacuum most distinct from the N = 4 theory. Probing the geometry with 

a D3 brane [41, 42J shows that the e = 7r /2 plane corresponds to the moduli space. 

Further in a set of coordinates were found on that moduli space that correspond 

to the physical coordinates for computing the ,a-function of the field theory. In these 

coordinates the singularity is again transformed to a branch cut. 

As we have done in previous cases, we can analytically study the asymptotic solu-

tions to the flow equations in the IR limit. The results are 4 

((r) 

x(r) 

A(r) 

~ ~ log ( G ) I (r ~r,) ) . 

V2~ 
3V~' 

(r - r ) 
4log S + b R . (5.55) 

These are a one parameter family of solutions as expected due to the fact that 

the flow equations in this case are first order. The parameter b is related to k by 

b = log k + log (21887). This is not a free parameter, but is fixed by requiring that this 

flows to a solution which is asymptotically A(r) --7 r in the UV. 

Now consider including quark fields via a D7 brane probe in this geometry. The 

quark superfields have a superpotential coupling to the N = 4 adjoint scalars of the form 

QAQ, where the adjoint field A is represented in the geometry by the two transverse 

directions to the D7 brane. Therefore, in this geometry, where the N = 4 fields have 

4We find these by looking for real solutions to the flow equations which behave asymptotically like 

((r) ~ a.log(b(r - rs)/R),x(r) ~ c((r - rs)/R)d as r --', rs. It can be shown that these solutions 

correspond to ~( = 0 as, for I 0, we know from (5.54) that, for large (, X ~ (~) i e- %, as can be 

checked for our solution. 
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already been broken into .,IV = 2 multiplets, we must be careful to embed in such a 

way that we do not further break supersymmetry. The probe must lie perpendicular to 

the e = 7r /2 plane since that plane corresponds to the massless scalar fields. Were the 

probe at some angle to that plane the superpotential term would be with fields in a mix 

of superfields in terms of the breaking intrinsic in the geometry. In this configuration, 

though, we expect that we should be able to include arbitrary mass quarks and maintain 

su persymmetry. 

If we were attempting to find the flow of the brane in from the UV, we would want 

to embed it in the x / /' r, a, (3, 'IjJ directions and the DEI action of this embedding can 

be calculated easily. However, it can be seen that the two perpendicular directions e 

and ¢ will be dependent on both rand 'IjJ, which will make the equations of motion 

for the brane computationally very difficult to solve. Instead, we will fall back on our 

wrapping technique. We write the DEI action of the brane in terms of an embedding 

where the perpendicular directions rand ¢ are functions of e and 'IjJ and we take a 

constant value of ¢. This time by looking at the symmetries of the metric we know 

that the minimum action solution will not be spherical, however we can find out if there 

is a repulsive potential on the brane stopping it falling in on the singularity. 

To calculate the potential of a D7 brane in this background we first rewrite the 

3 differentials 171,2,3 in terms of the spherical coordinates a, (3,1/) using 171 = ~ (dO' + 

cos 'ljJd(3) , 172 ~ (cos ad'IjJ + sin a sin 'ljJd(3) , 173 = ~ ( - sin ad'IjJ + cos a sin 'ljJd(3). This gives 
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a metric of the form 

+ 2dad;3 cos </J )5.56) 
CX 2 

In fact even this configuration is hard to study because of the forms present in 

the geometry. For simplicity we will place the D7 probe at ¢ = mf" where the rocion 

vanishes, and the dilation is given by 

(5.57) 

In addition, the NSNS two form is zero. 

The DBI action for this configuration is given by 

SDBI 

(5.58) 

We also have to consider the "\Vess-Zumino part of the action for the D7 brane. As 

there are no gauge fields living on the brane, this is given by 

(5.59) 

For rjJ = mf this will be zero as the dual of C(8) (the axion) is zero and B(2) is also zero. 

As before, we are only interested in the IR behaviour of the potential felt by the 

brane so we can use our analytic solution in the above equation. Ignoring proportion-

ality factors, we find that for a constant TO solution 
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\Ve can see clearly that, as expected, this supersymmetric background, when probed 

in this particular way, does not have the signature of chiral symmetry breaking. There 

is no potential stopping the spherical D7 brane falling onto the singularity and the 

situation is analogous to that found in the N = 4 geometries. 

5.2.6 The Yang Mills* Geometry 

Finally we will turn our spherical D7 embedding technique on a geometry where phys­

ically one might expect chiral symmetry breaking. The Y 1\;{* geometry [43] was de­

veloped as a model of non-supersymmetric Yang Mills theory. The UV of the theory 

is the N = 4 gauge theory but then at a scale M a mass term is introduced for the 

four adjoint fermions, Ai. It is also possible to include in the solutions a vev for the 

operator Li AiAi· One would expect some dynamical determination of this condensate 

in terms of M but the supergravity solution does not clearly provide this link - we will 

investigate this whole space of geometries therefore. 

The Y M* geometry was originally constructed as a 5d supergravity solution but 

then lifted to a full 10d solution. In 10d D3 brane probe analysis indicates that the 

six adjoint scalars of the N 4 theory acquire masses radiatively as one would expect 

since supersymmetry is broken. In [55] the glueball spectrum and string tension prop­

erties were analysed. For the geometries with a fermion mass and small or vanishing 

condensate, a discrete glueball spectrum was found though probe strings fell onto the 

singularity. The interior of the geometry is therefore still ill understood, and possibly is 

also incomplete since the restricted 5d solution on which the geometry is built may not 
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have sufficient freedom to describe the full non-supersymmetric theory. Nevertheless, 

this is a prime candidate geometry to examine for chiral symmetry breaking, since it 

describes a model that shows some very QeD-like qualities. 

In the SUGRA theory the fermion mass terms correspond to turning on a scalar 

in the 10 of SO(6). As in the other examples, we can solve the 5d SUGRA equations 

numerically using the relevant field equations. 

).1I(r) + 4A'(r)).'(r) 
8V 
8),' 

A'(r) = /~(N(r)2 - 2V), 

with 

V= 

The AdS limit of this field has solutions 

).(r) Me- r + Ce- 3r , 

(5.61) 

(5.62) 

(5.63) 

with M and C, the mass and condensate of the operator ~i ).i).i respectively. We will 

be particularly interested in the large negative r limit of the space corresponding to 

the IR of the gauge theory. We can try to find analytic solutions in this limit as we did 

in the previous section. The solutions we have found are 
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A(r) = ~ log(r rs ), 

A(r) = ~ log(r - rs ), 

(5.64) 

AIR,3(r) = - l' log(a(r - rs)), A(r) = i log(r rs ), 

A(r) = i log(r - rs ), 

where rs is the radius where the flow becomes singular in the IR. In the C vs M 

plane there are regions where the A flows diverge positively and negatively described 

by the second two solutions. There is then a unique flow on the boundary which in the 

positive quadrant is described by A1 and in the negative quadrant by A2' Numerically 

the unique flow lies at least close to the boundary condition C O. 
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The lOd lift of the Y M* background is given by 

e cosh4 .\(r) + sinh4 .\(r) cos2 20', 

F± cosh2 .\(r) ± sinh2 .\(r) cos 2Q, 

A± 

B 

sinh2.\(r) 

cosh2 .\(r) ± cos 2Q sinh2 .\(r) , 

sinh2 .\(r) cos 2Q 

cosh2 .\(r) + ~ 
1- B 

l+B 
(5.65) 

Now consider including quark fields via a D7 brane probe in this geometry. The 

probe would naturally lie in the x / / and r directions and then wrap a three sphere in 

the deformed five sphere. For example we could wrap one of the two spheres (e.g. D 

and fill the angle Q leaving us to find the embedding e +. The angle ¢+ provides the 

U(l)A symmetry of the quarks. Clearly e+ will be a function of both rand Q on the D7 

world volume. In this complicated geometry it is too difficult to find the full embedding 

5 It is more straightforward though to embed a D7 spherically on x / /' D_, 0' and e+ 

5:.Jote that the usual AdS geometry can be written in the same coordinate system as Y 1\1* so the 

metric is 

ds
2 

e
2r 

dx/ / + dr
2 + do/ + cos adn~ + sin adO=-

The fiat D7 embedding of section 2 in these coordinates is then given by 

me-r 

e _ = arcsin -.­
Sill a 

(5.66) 

(5.67) 

which is itself a complicated function. Even in this case sophisticated numerical techniques would be 
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at fixed ¢+. \iVe treat the radius of this sphere r as our embedding coordinate. The 

DBI action for this configuration is 

(5.68) 

where 

V-M = e4A (5.69) 

The Wess-Zumino contribution eq.(5.59) of the action must also be studied. How-

ever, the integral over C(8) is zero as its dual, the axion, is zero and the integral over 

C(6) 1\ B(2) will also be zero since C(6) is dual to C(2) (dC(6) = *dC(2») and C(2) has 

a basis d8+ 1\ d¢+, whereas B(2) has a basis d8_ 1\ dqL. This means that we will end 

up with a wedge product of identical basis one forms which will be zero. For this 

embedding we can therefore drop these terms. 

The symmetries of our action imply that there are solutions where r is just a function 

of a which is to be compared with the more complicated full embedding where 8+(r, a). 

Numerical analysis will therefore be simpler in this case. 

As our variable is not dependent on 8 _, we must integrate over this quantity in the 

action before we can try to find a solution. This integral gives 

J ( A2' 6 (3) 7 q, 4A 2 sm a 
SDBI = -T7 d ~ e e 2F_ cos a EllipticE 1 - - 2 4 

4F_ cos a 

sin2 a 
(8e+r)2 + (1 + (8ar)2)~. 

(5.70) 

The simplest analysis vve can perform is just to look at the potential felt by a brane 

of fixed radius roo This will not be a solution of the equations of motion but will show 

needed to find this solution. 
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us whether there is a repulsion in the geometry to such a configuration collapsing. For 

our four analytic solutions, we find two sorts of behaviour in the IR. These are given 

by the potentials 

VciTcle 

corresponding to AIR) and AIR,2 and 

(5.71) 

8(b(ro rs))v1lcotal) Vlcos5asin3al, 

(5.72) 

corresponding to AI R,3 and AI R,4' For both of these solutions the elliptic integral tends 

to a constant in the IR so we can see explicitly the behaviour of the potential as a 

function of ro - r s. In the first case, corresponding to a line of solutions in the M 

vs C plane the embedding collapses onto the singularity. For the remainder of the M 

vs C space the probe is repelled from the singularity in the IR. In the UV where the 

geometry returns to AdS the potential always pushes the field into the IR so there must 

be a stable configuration away from the singularity. This suggests that the majority of 

parameter space in the model will give rise to chiral symmetry breaking. 

vVe know, however, from the a dependence of the action that the solution of the 

wrapped brane will not have a circular symmetry. Therefore, although we know that 

there is a repulsive potential at least somewhere around the singularity, we don't yet 

know what form the brane embedding will take. To calculate this, we have used a 

numerical relaxation method. We discretise the points on the brane parameterised 

by the angle a and write the action for r (a) in the discretised form with a starting 
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guess for the solution. VVe then minimise the action with respect to all points on the 

lattice, giving us N coupled equations for N lattice points. Because we are looking at 

a wrapping solution, we also have a boundary condition that the first and last points 

in a are at the same value of 7'. \iVe performed this calculation using 1iathematica. 

The resulting configuration of the brane is shown in Figure 5.9 for a generic flow of 

the type we have seen with a repulsive potential. We see that the repulsive potential is 

present away from a = IL7r /2 but vanishes at precisely rm /2 at which points the brane 

can fall in on the singularity. This is obviously an added complication which muddies 

the result. Consider beginning with a flat D7 brane far from the singularity which 

would include a heavy quark field in the theory. As the brane is brought in towards the 

singularity the repulsion centred at a = 7r / 4 will stop the brane moving to the origin 

of the space as sketched in Figure 5.10 implying a chiral symmetry breaking set of UV 

boundary conditions. 

The outstanding question is whether the probe will touch the singularity at a = 

7r /2. We cannot address this completely within our analysis. Of course touching the 

singularity may not be a disaster if it is simply indicating the presence of a fuzzy 

configuration of D3s - some brane bound state may form there. We tentatively conclude 

that Y M* generically does break chiral symmetries although there are outstanding 

issues to be understood. 
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0.32 

0.31 

ex 

0.29 

Figure 5.9: Sample result of a numerical solution for the determination of a spherical 

D7 brane embedding r vs (); that wraps the Y M* singularity shown by the lower straight 

line. 

5.2.7 Summary 

Quark fields can be introduced into the AdS/CFT Correspondence and its deformations 

via D7 brane probes. The mass and any chiral condensate induced can be read off from 

the asymptotic behaviour of the scalar in the D7 DBI action describing its embedding. 

\"/e have shown that in fact this prescription must be tempered by the possibility of 

making coordinate transformations that alter the a..'lymptotic behaviour of the field. 

In the FGPW geometry [30] that describes the N = 4 gauge theory on its moduli 

space we saw that the D7 embedding flows fill the whole space away from the central 

singularity of the geometry. A transformation that takes the singularity to a branch 

cut would then remove the signal for chiral symmetry breaking. In this case that is 
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transverse 
direction 

collapse 

fX=nl2 

slOn 

fX=O D7 world volume 

Figure 5.10: A sketch of how a flat D7 brane embedding is expected to behave in 

Y M* as the brane is brought close to the singularity. The repulsive potential away 

from a = mr /2 will induce a chiral symmetry breaking like configuration although the 

D7 may collapse into the singularity at a = 71/2. 

precisely the coordinate transformation that has been previously identified as necessary 

in the literature. In contrast, in the non-supersymmetric dilaton flow [53] in which chiral 

symmetry breaking has previously been studied [48,49]' there are D7 embeddings for all 

possible quark masses that lie separated from the core singularity. Here no coordinate 

transformation can remove the symmetry breaking embedding. 

To look at more complicated metrics where the full D7 embedding is numerically too 

involved to find, we developed a simple spherical D7 embedding in the dilaton driven 

flow. The full embedding appropriate for quark fields matches on to this spherical 

embedding in the IR. In the dilaton flow case, we could analytically find the potential 
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for the spherical embedding and use it to show that the core of the geometry is repulsive. 

This repulsion drives the D7 brane into a chiral symmetry breaking configuration. \Ve 

could also compute an analytic estimate of the quark mass gap. 

\Ve then used this spherical embedding technique to test three new geometries for 

chiral symmetry breaking behaviour. The first is a non-supersymmetric version of the 

FGPW background [56] in which an unbounded scalar mass is included in the gauge 

theory. D7 branes in this geometry behaved precisely as those in the supersymmetric 

version of the FGP\V geometry leaving no gap between the flows and the singularity. 

The spherical embedding technique showed there was no potential stopping the spher­

ical D7 falling onto the singularity. We conclude that this geometry does not break 

chiral symmetries. 

We next looked at a spherical D7 embedding in the N = 2* geometry [40] and found 

again that the D7 falls in on the singularity. This implies that for a supersymmetric 

embedding of a D7 for the inclusion of quarks in the geometry there would be no chiral 

symmetry breaking as we would expect. 

Finally we studied a spherical D7 embedding in the non-supersymmetric Yang Mills * 

geometry [43]. For most of the parameter space we found the central singularity of the 

geometry displayed a repulsive potential. This would imply chiral symmetry breaking 

embeddings for quark fields. There are special angles at which the repulsion vanishes 

but most probably this will not affect the conclusion. 

Interestingly we have found chiral symmetry breaking in only those theories that 

are both non-supersymmetric and have a running dilaton. The former matches our 
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expectations but the generality of the latter point is unclear. \Ve believe that our 

spherical embedding technique will provide a simple test for chiral symmetry breaking 

in the more complicated geometries that will be needed to describe QeD realistically. 
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Chapter 6 

Improving the Glueball Spectrum 

in Finite Temperature QCD 1 

An interesting use of the AdS / CFT correspondence has been the calculation of glueball 

masses. These are inherently non-perturbative phenomena due to the strength of the 

strong interaction at low energies. Before the ad vent of the AdS / CFT correspondence 

the masses of the glueballs could only be calculated using lattice QCD techniques. 

Naturally, there is not a discrete spectrum of glueballs in N = 4 supersymmetric 

Yang-Mills theory as this theory is conformal. A deformation of the correspondence 

was formulated by Witten [27] where a dual supergravity theory of finite temperature 

QCD was developed. This theory does have a discrete glueball spectrum which has 

been calculate using AdS/CFT techniques [60, 69, 70]. The results lie within 30% 

1The finite temperature theory we are referring to is known in the literature as QCD 4 , which is 

QeD in JFE3 ® 51. 
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or so of the QeD lattice results. In the first section of this chapter we review these 

calculations. 

One of the problems with trying to find a dual gravitational picture of QeD is that 

all dual geometries go to AdS 5 X S5 for large values of the radial coordinate where the 

operator matching takes place. On the field theory side, this corresponds to the theory 

flowing to the conformal N = 4 SYM at high energy. In QeD, the theory flows to a 

non-interacting fixed point as the energy goes to infinity. Even if properties of the dual 

theory are similar to QeD in the IR limit, the fact that the two theories differ in the 

UV will affect IR predictions through loop effects. In the second section of this chapter 

we show that, through adding a UV cutoff and tuning non-renormalisable operators, 

we can systematically remove these effects. \iVe apply the technique to the calculation 

of glueball spectra in finite temperature QeD. 

6.1 AdS-Schwarzschild Geometries and Finite Tempera-

ture QeD 

An approach to studying finite temperature QeD was proposed by Witten in [27]. He 

proposed a theory which starts as a maximally supersymmetric gauge theory on the 

world-volume of N M5-branes 1 . One then compactifies this theory on a circle of radius 

R. Fermions are given anti-periodic boundary conditions around the circle which means 

that they will get a mass of order m rv 1/ R. This in turn breaks the supersymmetry 

of the theory. 

lWe are using M to denote branes in M-Theory. 
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The ll-dimensional supergravity description of a stack of lVI5-branes is given by the 

AdS/Schwarzschild solution[57]. 

b 2 2 2 6) -1 1 p3 dp + P dD4 , (6.1) 

where h is the solution of the 5d Laplace equation and b corresponds to the inverse of the 

temperature of the dual field theory [27]. If we let p = A 2 and go to the non-extremal 

near horizon limit (b 0, h = p-3) of this metric, we get: 

(6.2) 

ie. AdS 7 x 84 after appropriate scaling of coordinates and a "\iVick rotation2 . The 

AdS/CFT dual theory to this is six-dimensional superconformal Yang-Mills. 

QCD4 is dual to the low energy limit of IrA string theory on the AdS-Schwarzschild 

background [58, 59] on imposing anti-periodic boundary conditions for the fermions in 

the compact T direction3 . We can obtain the type IrA metric from (6.1) by compacti-

210 1 
fying the 11th dimension and rescaling the metric by a factor e:3 = h - 6" : 

2 _1 b 2 2 1 b 2 2 2 [( 6) 4 1 [( 6)-1 1 dSIIA = h 2 1 - p3 dT + ~ dXi + h 2 1 - p3 dp + p dD4 . (6.3) 

, 1 

This solution also has a non-constant dilaton e({J = h -"4. Note that this metric is quoted 

in the string frame. 

We now follow the analysis of [60] and calculate the glueball spectrum for this 

theory. 

2From this we can see that p has mass dimension two. 

3Imposing anti-periodic boundary conditions for the fermions gives them an effective mass. This 

has the additional effect of breaking supersymmetry as the mass of the bosons will be different. 
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6.l.1 The 0++ Mass Spectrum 

Glueballs are labelled by their quantum numbers. JFC denotes a glueball of spin J, 

parity P and charge C. In this section we will calculate the 0++ glueball spectrum in 

finite temperature QCD4 using the dual supergravity description. 

The first step is to determine the dual field that acts as a source to the 0++ glueball. 

The dominant contribution to the glueball mass will come from the term g\ TrF2. This 

is a scalar of dimension 6. The supergravity dual is a massless scalar whose equation 

of motion is 

(6.4) 

In order to determine the glueball mass spectrum we must look for solutions to this 

equation of the form <P = f(p)e ikx . These solutions are four-dimensional momentum 

eigenstates with some overall variation in p. The mass spectrum of the glueballs will 

then be m 2 = _k2
. Using this ansatz the equation of motion becomes4 

1 ~ [(p4 _ p) df ] = k 2 f(p). 
pdp dp 

(6.5) 

The problem of finding the mass spectrum of the 0++ glueballs has been reduced to 

finding the eigenvalues of this second order differential equation. This equation can be 

solved in many ways, for instance as a series expansion, by using the WKB method, or 

by numerical methods. Vve will describe a numerical method for finding the eigenvalues 

as this technique will be used in the next section with our modified geometry. The 

particular technique we use is known as the shooting technique: 

4Note that we have set the dimensionful parameter b = 1. This means that all calculated masses 

will implicitly be in units of b. Vve use this freedom to fix the lightest 0++ mass. 
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The large p asymptotic solution to (6.5) is easily seen to be 

We impose boundary conditions f(R) = R- 3 , f(R) -3R-4 in the limit as R -+ 00 

and then numerically solve the equation of motion down to the black hole horizon at 

p = 1. This solution will be a function of k2 . We demand that our solutions be quantum 

mechanically normalisable, so reject solutions that go to ±oo at p = 1. Each value of 

- k2 that yields a normalisable solution is interpreted as a valid glueball m 2 . 

The results of this are shown in the next section in Table 6.1 (0: = 0) where they 

are compared to results from our improved geometry. 

\iVe now consider the 0-+ glueballs. Vie assume that the dominant contribution to 

their mass spectrum will come from the Tr F F operator as this is the lowest dimension 

operator with the correct quantum numbers. In order to find the supergravity dual of 

this field, consider the Chern-Simons term in the action of a probe D4-brane 10D type 

IrA background. 

(6.7) 

where C(q) are R-R q-form fields, F = dC(l), and we have neglected the NS-NS fields. 

In IrA string theory, there are RR fields for odd q. Letting C(1) = All' and expanding 

(6.7) gives 

(6.8) 

which in turn gives 

(6.9) 
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Since T is periodic, we have 

(6.10) 

The boundary value of the T component on a vector field AIL acts as a source for Tr F F 

and is thus its AdS dual. The equation of motion for a vector field A is 

(6.11) 

As with the 0++, we look for solutions which are an eigenstate of 4d momentum on 

the boundary of the form AT = f(p)e ikX in the background (6.3). The result is the 

equation 

(6.12) 

As with the 0++ glueballs, we use the shooting technique to numerically find the eigen-

values of this equation. The results are shown in Table 6.2. 

6.2 In~proving the Ultra-Violet 

Whilst deformed AdS geometries presumably do a good job of catching QCD-like 

physics in the IR below the mass of the superpartners, these theories all have addi-

tional massive states at strong coupling and evolve to a conformal strongly coupled 

theory in the UV. A priori this appears to leave very non QeD-like theories and any 

match with QCD states would appear to be telling us mainly about the universality 

of these masses across a range of gauge theories. In this section we want to begin 

addressing the issue of systematically removing this unwanted UV physics. We clearly 

do not want a large UV strongly coupled conformal interval so we will apply a hard UV 
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cutoff in the gravitational description, corresponding to roughly the scale where QCD 

would transition between perturbative and non-perturbative physics. In the theories 

developed to date there will be additional fields to those we want even at this scale 

(typically with masses of order this scale). The couplings of these fields will necessarily 

alter the physics of the fields we are interested in describing. Since the extra fields are 

massive we hope that their influence on the running of the gauge coupling will be small. 

Their main effect will be to distort the coefficients of higher dimension operators in the 

fields we wish to study. We want to assume that the physics above the cutoff scale is 

that of QCD rather than the N = 4 theory, but the higher dimensional operators will 

be the wrong ones for this case if we just impose a cutoff. The natural correction is 

to hand tune the higher dimension couplings to the values in QeD to reproduce the 

correct physics. This is what we begin to study here. 

The idea of tuning higher dimension operators to remove the effects of "regulator" 

fields is similar to the idea of perfect or improved actions in lattice gauge theory [61, 

62]. Ideally, one would like to take the lattice spacing to zero, but this is impossible 

computationally. Having a finite lattice spacing means that the field theory on the 

lattice will have a finite cutoff given by the inverse of the lattice spacing. 'vVe know that 

in a field theory with a cutoff, extra non-renormalisable operators will be generated. 

If working on too coarse a lattice, the effects of these operators will be significant. In 

practice, adjusting just one or a few of these higher dimension operators to correctly 

reproduce the physical data shows improvement across the whole predicted spectrum. 

The picture of this is shown in Figure 6.1, We apply a hard UV cutoff at around 
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the scale where the theory becomes conformal. By tuning the coefficient of a higher 

dimensional operator, we aim to change the effective UV of the theory. 

2 Ng
YM 

4n 

adjusting couplings here 
changes effective UV ;; 

A 
lTV u 

N=4UV 

CD 

Figure 6.1: Direction field for the supergravity fields p(r) and y(r) = cosh 2 x(r) showing 

lJV and IR fixed points 

As a test of this idea, we will calculate the glueball mass spectrum in the AdS 7 

Schwarzschild black hole geometry of the previous section. We will introduce an explicit 

UV cutoff into this theory and then add the supergravity dual of the TrF 4 operator. We 

will then tune the coefficient of this operator to try to remove the incorrect UV physics 

(i.e. the effects of these extra fields) in the glue sector and hence improve the glueball 

results. To switch on this operator one simply allows the solution to revert to fiat 

space asymptotically by undoing the near horizon limit. The resulting deformation has 

the correct dimension and symmetry properties to play the role of the TrF 4 coupling. 

Previous studies of this theory can be found in [50, 51, 52, 53]. We imagine that above 

our UV cutoff the theory is true Yang Mills theory. If we did not impose a cutoff the 
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higher dimension operator would grow into the UV and eventually come to dominate 

the physics. In this case the operator makes the potential that is responsible for the 

discrete glueball spectrum unbounded. 'liVe therefore take the scale where the potential 

instability sets in as the natural UV cutoff. 

vVe will see that to match the lattice large N 0++ glueball mass data, we must 

make the operator TrF 4 large at a rather low scale. In fact, there turns out to be such 

a small interval between the UV and IR cutoffs that there is no AdS-like geometry 

left, and barely any gravity description at all! This is perhaps not surprising since 

QeD presumably moves into the strong coupling regime fairly quickly and then almost 

immediately generates a mass gap. We nevertheless look at the predictions of our 

short interval for the 0-+ glueballs. Only N = 3 lattice data exists but our improved 

geometry is a better match to the data than the unimproved geometry. 

6.2.1 The Improved Geometry 

We wish to modify the metric (6.3) to include the effect of adding TrF 4 to the dual 

field theory. 

(6.13) 

The coupling G has mass dimension -6. The gravitational dual of this can be included 

by adding a constant term in the solution for h 

(6.14) 

i.e. going away from the near horizon limit. 0; has the right mass dimension -6 to be 

dual to G, plus correctly has no R-charge since it does not depend on angles on the 
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four sphere. 

Kote that the function h, being a solution of the five dimensional Laplace equation, 

can encode a more com.plicated function if we allow it to have angular dependence. 

Terms in h that fall off at large radius are associated with operators of the form Tr¢n 

in the field theory [63, 47], whilst those that grow correspond to R-charged higher 

dimension operator couplings. Since we are interested in the glue sector, we will not 

make use of these operators. 

6.2.2 The 0++ Mass Spectrum 

\iVe must use our modified metric in the equation of motion (6.4). The result is 

( 6.15) 

In order to change this equation of motion into a Schrodinger form we use the procedure 

outlined in Appendix A. We make a change of the dependant variable to z and re-scale 

f 

f(z) --> f(z)e-L[dz'p(z'), 

where 

\iVe now have an equation in Schrodinger form with a Schrodinger potential 

-g"(z) + Q(z)g(z) = m 2g(z), 

or, in terms of the radial coordinate p 

1 
Q(p) = 2" 
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( 6.17) 

(6.18) 

(6.19) 



Vile plot the potential as a function of 0: in Figure 6.2 for different values of 0:. For 

0: = 0 the pure AdS geometry gives a well that is bounded into the UV and an infinite, 

discrete glueball spectrum. \"Then 0: is non-zero, the UV potential is modified and 

eventually falls to zero. In the field theory the higher dimension operator grows into 

the UV until it dominates the physics and removes the discrete spectrum. If we allow 

this to happen then we are not describing a QCD-like theory in the UV, so we will 

impose a hard UV cutoff, A. The natural scale to place the cutoff is at the turning 

point of the potential since that includes in the IR theory the highest possible tower of 

discrete states - we will adopt this value for the cutoff henceforth. Thus as we increase 

0: we will necessarily be working on a shorter radial interval. 

V(P) 

60 a=Q 

40 

20 

0-::::0.01 

p 
10 15 20 25 30 

-20 

-40 

Figure 6.2: QCD4 Schrodinger potential for the 0++ glueballs 0: = 0 to 0: = 0.01. 

Again we calculate the eigenvalues using the shooting technique. The problem 

here is what to set as the appropriate boundary conditions. We know that for 0: = 0 
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taking p ~ CXi, the metric goes to AdS space and the normalisable solution to the wave 

equation (6.15) goes like p-3. We will use the naive boundary conditions f(A) = A- 3 , 

f'(A) = -3A-4 in all cases below. As ex grows and the cutoff falls, this boundary 

condition, which represents the effective dimension of TrF2, should presumably change 

- it is essentially a matching condition on the dimension that should come from the UV 

theory. We have checked that if we instead use the boundary conditions f(A) = A -(3+c), 

f'(A) = -(3 + E)A-(4+c) with -1 < E < 1 the ratio of the lightest two glueballs masses 

only changes by 6%. This indicates that the mass spectrum is largely insensitive to the 

precise values of the boundary conditions. Note that this range includes TrF2 having 

dimension four as one might expect in real QeD. 

Using this shooting technique, we tune ex to get a glueball spectrum that agrees 

best with the available large N lattice data [64, 65]. Figure 6.3 shows the ratio 

m(O++*)jm(O++) for different values of ex. We can see that setting ex = 0.0855 gives 

the correct value for the second glueball mass (the first is fixed by normalisation). This 

implies that A = 1.99 - we will refer to this case as the "improved geometry". For this 

value of ex we get the spectrum of masses shown in Table 6.1. The glueball masses rise 

in the theory although we have no more lattice data to compare to for this state. 

The result, that to correctly reproduce the lattice data we must raise ex so that 

the theory only provides a description between an IR scale of b = 1 and a UV scale 

of J7\. = 1.41 (note J7\. has mass dimension 1), is important. Although the original 

AdS black hole produced results that match the QeD data reasonably we find that to 

move to a phenomenological model of QeD we must actually distort the AdS space 
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considerably. Indeed, the gravitational theory's interval is worryingly small and non-

AdS like. This is not so surprising in terms of real QCD where the regime between the 

QCD coupling becoming non-perturbative and the scale of the mass gap of the theory 

is quite small. This result may have important ramifications for attempts to turn toy 

models of the sort in [66, 67, 68] into true phenomenological tools. 

Gl'Ueball State Improved Geometry 0:=0 Iv 3 Lattice N = CXJ Latt'ice 

0++ 1.00 1.00 1.00 1.00 

0++* 1.90 1.58 1.74 1.90 

0++** 3.05 2.15 - -

0++*** 4.27 2.72 - -

0++**** 5.52 3.33 - -

Table 6.1: QCD4 0++ glueball masses from AdS (0: = 0) and Improved (0: = 0.0855) 

geometries along \vith lattice data [64, 65]. Normalisation is such that the ground state 

mass is set to one. 

6.2.3 The 0-+ Mass Spectrum 

The result of using our improved metric in the equation of motion (6.11) is 

1 3 d [4 df] 2 3 -(p - 1)- p - = k (1 + o:p )f(p). 
p4 dp dp 

(6.20) 

If we set 0: = 0.0855 and A = 1.99, which were their optimum values for the 0++, we 

get the spectrum shown in Table 6.2. We have normalised all masses to the 0+-1- ground 

state. The lightest state does not match well to the N=3 lattice data - this state was 
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Figure 6.3: mo++- jmo++ for different values of a 

omitted from the spectrum in [69, 70] which then improves the fit considerably! The 

effect of our improved geometry is to make the states more m.assive, which improves the 

fit to the data whether the first state is omitted or left in. To truly match these states to 

the data would presumably require a higher dimension operator with P = -1, C = + 1 

quantum numbers to be tuned - it is not clear how to include such an operator though. 

6.3 Conclusions 

Vve have shown that by including the gravitational dual of a higher dimensional field 

theory operator to the usual AdS-Schwarzschild metric, we can tune our theory to 

match onto the first excited 0++ glueball state as calculated using lattice techniques. 

Having fixed the strength of this perturbation, we also find that the 0-+ spectrum is 

improved. \iVe find that in order to get the correct 0++ spectrum we almost entirely 
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Glueball State Improved Geometry 0:=0 N = 3 Lattice 

0-+ 0.35 0.29 1.61 

0-+* 1.38 1.24 2.26 I 
I 

I 
i 
I 

0-+** 2.48 1.84 - I 

0-+*** 3.71 2.42 -

Table 6.2: QCD4 0-+ glueball masses from AdS (0: 0) and Improved (0: = 0.0855) 

geometries along with lattice data [64]. All states are normalised to the 0++ ground 

state. 

remove the AdS-like region of the space. This ties in with there being only a small 

energy range between the mass gap and strong coupling region of QCD. 
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Chapter 7 

The AdS/QeD Approach 

One of the major goals of the AdS/CFT Correspondence and its variations has been 

to find a gravitational theory dual to QCD in order to investigate the strong coupling 

regime beyond the reach of perturbation theory. Some attempts towards this goal have 

been described in the previous two chapters. The attempts have based around finding 

a particular D-brane solution from 10 or ll-dimensional supergravity and interpreting 

the field content as dual source fields for some four-dimensional field theory. This 

approach has yielded some interesting general results about confining gauge theories; 

however, a solution has yet to be found which could truthfully be described as the dual 

theory to QCD. 

We know what the field content and symmetries of this QCD gravitational theory 

should be. This just comes from the standard AdS/CFT operator matching. We also 

know that the dual theory should have a mass gap, be confining, and exhibit some form 

of chiral symmetry breaking. Solutions have been found which satisfy some of these 
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criteria and include some of the relevant dual fields, but there has yet to be found a 

solution with all of the correct fields and properties required for a gravity dual to QeD. 

Recently, a new "bottom up" approach has been studied, known as AdS/QeD, in 

which one starts from QeD, and then attempts to construct a dual gravitational theory 

by adding the relevant dual fields by hand to a five-dimensional AdS background. The 

conformal invariance of the theory is broken by adding a hard cut-off in the infra-red. 

One then tries to constrain the properties of this dual theory by matching them to 

known properties of QeD. This approach has proven to be surprisingly successful in 

reproducing experimental meson data [66, 67] (see also [71]-[79]) . 

The phenomenological approaches to describing QeD holographically are based on 

a 5d action of the form 

s", J d4 x dr e¢ F9 (Ca + (J'2TrIDUI2 - 4~g Tr(F£ + F~)) , (7.1) 

where DJ-LU = 8J-LU - iALJ-LU + iUARw The field U(x,r) exp(i1Ta(x,r)Ta) describes 

the pions produced by the breaking of a SU(Nf ) chiral symmetry with generators 

T a . We assume that the background value of U is the identity so we are studying N f 

degenerate quarks. The non-abelian gauge fields AL and AR couple by left and right 

action on U. They will holographically describe the vector and axial vector mesons. 

The field (J' is a function of r only and holographically describes the quark mass and (qq) 

expectation value. A nOll-zero value for this field will break the SU(Nf h x SU(Nf)R 

chiral symmetry of the action down to the vector SU(Nf)v. 
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Pure AdS 

In the simplest approaches [66, 67], the dilaton, cp, is taken to be constant, so drops 

from the action. The background metric is AdS down to some boundary at ro which 

breaks the conformal symmetry and provides the theory with a mass gap. 

(7.2) 

Note that dilatation transformations in the field theory, which define the mass dimen·· 

sion of operators (for example if we scale x -+ eCl: x then a scalar field of dimension one 

scales as ¢ -+ e-Cl:¢), are mapped to a symmetry of the metric with the radial direction 

scaling as an energy scale. 

The Lagrangian for (J in these models is given by 

(7.3) 

with resulting solutions cr(r) = mlr + clr3 . Here (J has does not transform under 

the field theory dilatations so m has dimension one and c dimension three. The two 

parameters m, c are fitted phenomenologically to the (degenerate) light quarks' mass 

and condensate. 

The remaining parameter is 95, which in string theory duals is a prediction in terms 

of the gauge theory 'tHooft coupling 9~ M N. In the phenomenological approach though, 

this relation is abandoned and the value of 95 is fitted to the vector current correlator 

extracted from QeD. 

(7.4) 
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where J~(x) = fi'I"Taq. For QeD, the leading order contribution to I1V(_q2) is ~80l 

( 2) N ( 2 I1v -q - In -q ). (7 . .5) 

In order to calculate this quantity from the five-dimensional model, we appeal to the 

Ads/eFT correspondence. The five-dimensional vector field V;-(X,T) = (AL!l(X,T) + 

AR!l(.1:,T)) acts as a source for the four-dimensional vector current J~(x) in the limit 

T ---+ 00. It obeys the equation of motion 

(7.6) 

We look for solutions of the form V!l(x, T) vt(X)V(X,T), with limr-tXJv(x,T) = 1, 

so that vt(x) will act as a dimension one source for J~(x). Solving the equation of 

motion (7.6) in the vr(X,T) = 0 gauge gives 

(7.7) 

where Yl is a Bessel function of the second kind. Substituting the solution back into the 

action and differentiating twice with respect to the source vt gives the vector current 

correlator 

(7.8) 

which (up to contact terms) yields 

2 1 2 I1v(-q ) = --In(-q ). 
2gg 

(7.9) 

Finally, comparing this to the perturbative QeD result (7.5) determines the 5d coupling 

as 

(7.10) 
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In [67, 66] this model is used to calculate meson masses, decay constants and couplings 

coefficients with great success. We summarise these results in Table 7.l. 

The matching in (7.10) is of course naive. One should match the gravitational theory 

to QeD only at the point where the QeD coupling becomes non-perturbative where 

gluonic corrections to the perturbative QeD result become important. It is therefore 

interesting to recompute the results of [67], but with g5 being a free parameter of the 

model in order to see how accurate this matching is. On performing a global fit on all 

of the parameters, we found that the optimal value for g5 is 5.19, which is 17% smaller 

than the result )(127':2)/N from matching to perturbative QeD. \Ve conclude that 

non-perturbative effects could have a significant effect. 

7.1 Improving the Infra-red 

The AdS/QeD models are in many ways naive. Amongst the criticisms that might be 

aimed at these models are: 

" The use of an AdS geometry implicitly means that the background gauge config­

uration is conformal (and essentially that of large N N = 4 super Yang Mills). 

" The existence of a mass gap is imposed by hand through the inclusion of a bound­

ary to the space and is not the product of a running coupling . 

• The fields that holographically describe the quark bilinears are included phe­

nomenologically and there is no rigorous (string theory) realization of the con­

struction. 
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• The solution for the field which describes the quark mass and condensate is also 

included by hand and the quark condensate is not dynamically determined in 

terms of either the gauge configuration or the quark mass . 

• The ultra-violet of the theory does not become asymptotically free . 

• The excited meson mass spectrum typically scales like the excitation number n 

as opposed to the fo scaling predicted by a simple flux tube model [81]. 

In spite of these objections, the models do provide a good description of the light 

meson sector of QCD. The clear next step is to try to alleviate some or all of these 

objections. In this paper we will address this task (progress has already been made in 

[82, 83]). 

Our main tool will be to use the more rigorous AdS/CFT description of chiral 

symmetry breaking in [49]. Previously it has been used as a testing ground for the 

generic features of chiral symmetry breaking [48], but here we will massage it to a 

phenomenological five-dimensional holographic description of QCD. 

The geometry we will use is that on the surface of a D7 brane in a non-supersymmetric 

dilaton flow deformation of the AdS / CFT Correspondence. \lIfe review its origin in more 

detail later, but let us stress its benefits now: 

• The background gauge configuration in which the quarks live is non-supersymmetric 

(although not purely that of QeD) and has a running coupling. 

It The mass gap is a result of the non-supersymmetric gauge configuration and the 

geometry relevant for quark physics is smooth at all radii or energy scales. 
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III The holographic dual of the quark bilinear is explicit in the string construction. 

III The quark condensate is a prediction of the gauge configuration and is determined 

as a function of the quark mass. 

These points go a considerable way towards addressing the inconsistencies of the 

first models. \Ve will, however, continue to adopt the phenomenological approach of 

treating the background as describing an N=3 rather than N-+ CX) theory. In addition, 

the string theory construction can only realise a U (1) axial symmetry, and does not 

provide a holographic dual of the axial vector mesons. \Ve include by hand appropriate 

fields to provide a non-Abelian chiral symmetry and the axial vector states in the 

phenomenological spirit of [66, 67]. 

In this chapter we compute with our phenomenological model the masses and decay 

constants for the pion and the rho and 01 vector mesons, and also the gpn coupling. 

We find that the model gives comparable predictions to the pure AdS models within 

16% of the QCD values. We believe these results provide support for the robustness of 

the predictions of these holographic models. 

The geometry we propose returns to pure AdS space in the ultra-violet, so we do 

not address here the loss of asymptotic freedom. As we pointed out in Chapter 6, the 

theory should have a UV cut off corresponding to the scale at which QCD becomes 

non-perturbative. The correct UV dynamics should be encoded at that cut off by 

correcting the values of higher dimension operator couplings. In principle, these can 

be tuned in the AdS/CFT approach to produce the holographic equivalent of a perfect 

lattice action. As a small example of these ideas we consider the matching of the 
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five-dimensional gauge coupling in the UV. In [66, 67] this coupling is matched to the 

perturbative result for the vector vector correlator in QCD. Here we test how good that 

matching is by allowing the parameter to float and fitting it to data. \Ve find such a 

fit induces roughly a 20% change in the coupling value, which provides a measure of 

non-perturbative corrections at the scale of matching to the strongly coupled regime 

of QCD. \iVe leave attempts to further improve the UV of the theory for later work 

though. 

Finally, it has recently been pointed out that an appropriate change to the warp 

factor of the metric [85] or to the IR behaviour of the dilaton [83] can correct the 

n scaling of the tower of excited p meson states. \Ve have tested our model in this 

respect but find only a marginal improvement over the pure AdS case. This is a sign 

that, although our geometry describes a non-supersymmetric gauge configuration, it is 

still not a perfect description of QCD and work remains to be done on improving the 

geometric background. 

The New Model 

Our approach in this chapter will be based around the D3/D7 brane string theory con­

struction of [49]. In this paper the authors add a D7 brane probe to the ten-dimensional 

D3-brane solution of Constable and Myers [53]. The complex scalar describing the po­

sition of the D7-brane is dual to the quark mass/condensate operator qq, and there is 

a nice geometrical interpretation of chiral symmetry breaking (see Chapter .5). 
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The Constable-Myers geometry is 

( 

4 4)ii/4 ( 4 b4)(2-ii)/4 4 4 6 
d 2 = H-1/2 W + b dx2 + H1/2 W + W - b '" dw2 

S W4 _ b4 4 W4 _ b4 0 ~ , 
i,=l 

(7.11) 

where 

_(W4+b
4
)ii_ H - 4 4 1 w -b 

(7.12) 

and the dilaton and four-form are given by 

2¢ _ 290 (W4 + b4).6. 
e - e 4 b4 ) 

W -

1 -1 
C(4) = -/iH dt 1\ dx /\ dy 1\ dz. (7.13) 

There are formally two free parameters, Rand b, since 

(7.14) 

\1Ve can see that dimensionally b has energy dimension one and enters to the fourth 

power. The 80(6) symmetry of the geometry is retained at all T. \1Ve conclude that in 

the field theory a dimension four operator with no 80(6) charge has been s\vitched on. 

b4 therefore corresponds to a vev for the operator TrF2. 

Quarks are introduced by including probe D7 branes into the geometry (see section 

3.4). 

The DBI action for the D7-brane in the Einstein frame is 

(7.15) 

where P[gab] is the 8d metric induced on the D7-brane and Fab is the field strength for 

8d gauge fields living on the brane. This action can be expanded (see Appendix B) to 

114 



give 

S = -T7 J d7 ~ecP det (gab)]1/2 (1 + 0-2)1/2 

X { 1 + ~grrCT2(1 + 0-2)-laauaaut -l(27Ta')2e-cDTrF2 } , (7.16) 

Since we require that our fields be the duals of non-supersymmetric operators, we 

can assume that U and F only have non-zero components in the (x, r) directions. We 

can then integrate to give a five-dimensional action 

S = -T7(27T)3 J d5~ecP [- det (gab)]1/2 (1 + 0- 2)1/2 

X {I + ~grrCT2(1 + 0-2)-laauaaut -l(27Ta')2e-¢TrF2
}. (7.17) 

If we now re-scale U ---+ R47T jTiU and define the new dilaton and a five-dimensional 

coupling g5 as 

(7.18) 

we can bring the action into the standard form 

(7.19) 

The final step in constructing this phenomenological model is to artificially extend the 

symmetry group from SU(Nf)v x U(l)A to the chiral SU(Nf)L x SU(Nf)R and add 

in the axial vector gauge field in (7.1). We now have an action in the form of (7.1) with 

a 5d metric 
3 

ds2 = H- 1/ 2 f- O/4 Ldx; + H 1/2f1/2-0/4h dr2, (7.20) 
i=O 
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where 

and a radially changing dilaton and 5d gauge coupling 

(7.21) 

with 8 = 1/2, t,. = )39/2. Note that we scaled all coordinates by a factor of R. The 

conformal symmetry breaking scale is fixed by the parameter b which will determine the 

scale AQCD. Since it is the only scale in the model, we set it to one for computations. 

At the string theory level the value of R fixes the 5d gauge coupling, but here we will 

fix that phenomenologically to describe an Nc = 3 theory so we have also set R = 1 

and left 95 free. As r ----+ 00, the metric returns to AdS5 , the factor erPjgg goes to 1jgg 

and we are left with exactly the pure AdS model. 

Dynamical Quark Condensate 

The chiral symmetry breaking quark condensate is determined dynamically in this 

model by the background metric which represents the background gauge configuration. 

The Lagrangian for the field () (r) in this model is 

(7.22) 

where the dot indicates differentiation with respect to r. The equation of motion for 

this field, which is complicated since () occurs throughout the geometry, is given by 
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d [j6/2Q(p,a) 1 vi 2 d [ 6/2 ] 
d1' JI + (01'0')2 (Ora) - 1 + Ora dij j Q(p, a) = 0, (7.23) 

where 

(7.24) 

The large l' form of the solutions is of the AdS form (note from the metric that a 

here enters symmetrically with l' and therefore is rescaled relative to (3) and has energy 

dimension one) 

0'(1') = m + cjT2 + ... , (7.25) 

where m and c are interpreted as the the quark mass and condensate respectively. We 

seek regular solutions that satisfy 0-(0) = O. There is a single such solution for each 

value of 0'(0) indicating that the condensate c is determined for a fixed asymptotic 

value of m. The solutions are shown in Figure 7.1. 

Note that when the dynamical function 0'(1') is included in the metric for the model 

there is no singularity since one cannot reach l' + a = b. The model therefore extends 

smoothly down to l' = O. We do not need to impose a hard IR cut off and the conformal 

symmetry breaking is expressed through the parameter b only. 
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Figure 7.1: A plot of the embedding of the D7 brane as a function of the radial coor-

dinate r 

Matching the 5d Coupling 

The matching occurs at the boundary r -7 00, so the results are exactly the same as 

those for the pure AdS calculation, and we are led to the identification gg = (12712)/ N. 

Vector Mesons 

We look for solutions to the vector equation of motion (7.6) that are of the form 

V;: (x , r) = V;:(r) exp(iqx). In the vra(x, r) = 0 gauge this gives the following equation 

of motion 

(7.26) 

with 

Vle will interpret the rho mesons as normalisable modes of this equation, with the 

eigenvalues corresponding to the squared rho masses m~ = _q2. For these modes to be 
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normalisable, we require that they vanish sufficiently rapidly as r --'> 00. ,\Ve must also 

impose the gauge invariant boundary condition 1/J~(0) = 0 to ensure the smoothness of 

the solution. 

The rho wavefunction 1/Jp(r) is then a solution to (7.26) for an arbitrary component 

of V:(r) subject to the boundary conditions limr->='(Up(r) = 0 andl/!~(O) = O. We 

solve the equation numerically to find the spectrum of rho masses. 

For large N, one can write the vector current correlator as the sum over rho reso-

nances 

F2 

- L (q2 _ :n2)m2' p p p 
(7.27) 

where Fp is the rho decay constant defined by (OIJ~lpb) = Fp oab Ew In order to 

find Fp , we proceed by finding the Green's function solution to (7.26). Imposing the 

completeness relation 

L K2(r)l/!p(r)1jJp(rl) o(r - rl) (7.28) 
p 

on the set of eigenfunctions one finds 

G(q; r, rl) (7.29) 

Generalising (7.8) we have 

(7.30) 

It can be shown that, in terms of the Green's function, v(q, rl) = [Kl (r )OrG(q; r, rl)lr==" 

From this, one finds 

(7.31) 
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Comparing this to (7.27) we can extract the rho decay constant 

(7.32) 

The Axial Sector 

The action for the axial sector up to quadratic order is 

/ 4 6;-;,(12 21 2) S rv d X dr e V -g -(j (fhr - A) - -2 TrFA . 
2 495 

(7.33) 

In the Ar(r,x) = ° gauge, letting Ai(r,x) = Ai(r,x)exp('iqx) +8iC/)a the equations of 

motion are 

(7.34) 

(7.35) 

(7.36) 

vector meson if\ve let limr->x 7./Jal (r) = 0, 8r7./Jal (0) = 0. We find the masses m;l = _q2 

by numerically finding the eigenvalues of this equation. The decay constant Fal is found 

in the same way as (7.32). 

The pion can be found by solving (7.35) and (7.36) simultaneously subject to the 

boundary conditions orrjJ(O) = 0, limr->x rjJ(r) = ° and limr->oo 7T(r) = O. 

vVe find the pion decay constant by considering the axial current correlator. (OIA~I7Tb) = 
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_j;;/q2. Using (7.8) we find 

(7.37) 

Alternatively, we could of course have used the Gell-I\1ann-Oakes-Renner relation 

m2j2 = 2mc 
" 7T 

(7.38) 

to find j7f. The two approaches are compared in Figure 7.2. vVe see that the two agree 

for small values of m 7r1 but then diverge for m7f 2: lO(MeV). 

(m~ f; )/(2c) 

0.8 

0.6 

o. 

0.2 

2 4 6 8 10 m 

Figure 7.2: Plot of (m;r!;;)/(2c) against m. For the Gell-Mann-Oakes-Renner relation 

to hold, this must be a straight line. As expected, the graph diverges from this straight 

line behaviour for large m 

The Coupling gpn 

The value of the gpn coupling can be read off from the expansion of IDUi 2 in the 

action 

(7.39) 
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Observable Measured Model A AdS A Model B AdS B 

(MeV) (MeV) (MeV) (MeV) (MeV) 

mrr 139.6 ± 0.0004 139.6* 139.6* 136.7 141 

mp 775.8 ± 0.5 775.8* 775.8* 717.2 832 

mal 1230 ± 40 1433 1363 1326 1220 

frr 92.4 ± 0.35 102.5 92.4* 96.1 84.0 

Fl/2 
p 345 ± 8 324.2 329 299.6 353 

F,1/2 
al 433 ± 13 504.4 486 464.0 440 

gprrrr 6.03 ± 0.07 4.23 4.48 4.24 5.29 

Table 7.1: Results for meson variables in the models discussed in the text. Model A is 

the new model in the paper with parameters fixed to the starred measurements. AdS 

A is the equivalent pure AdS model results with a hard IR cut off and the value of the 

condensate being fitted. Model B is a global fit in the new model and AdS B is the 

equivalent fit result in pure AdS. 

The normalisation for 7l( T) is fixed by requiring that the pion kinetic term be canonically 

normalised. 

Substituting the T variation of the fields from the equations of motion and integrat-

ing over T gives 

(7.40) 

Note that it is entirely possible that the contribution to the coupling from an F3 term 

in the action not included in this model could be significant. 
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7.1.1 Results 

The results of the model are displayed in Table 7.1. We compute 7 QCD meson pa­

rameters. Our model has two free parameters (after fixing go phenomenologically as 

discussed above), b corresponding roughly to the strong coupling scale A and m corre­

sponding to the light quark mass. The model therefore has the same number of free 

parameters as real QCD. 

In the first model, A, we match band m by demanding that we correctly reproduce 

mJr and mp. In order to do this, we must set Ab 281.6(M eV) and m = 9.12(M eV). 

This gives a prediction of 522.7(MeV) for the scale of the quark condensate. The 

overall rms error for this model is 17.8%. For comparison we also reproduce the pure 

AdS fit to the same parameters found in [66]. That model has three free parameters, 

the value of the IR cut off, the quark mass and the quark condensate and is therefore 

less predictive. 

In model B, we perform a global fit to all observables. This gives Ab = 260.0(M eV) 

and m = 9.48(M e V), with the characteristic scale for the quark condensate 475.9(A1 eV). 

The overall rms error for this model is 15.8%. Again we reproduce the equivalent pure 

AdS model fit for comparison. 

All global fits in these models are performed excluding the calculation of g pu as this 

is not reliable due to the lack of an p3 term in the model. The coupling is calculated 

in each model using the best fit parameters for the rest of the data. 

It is again interesting to test how well determined the 5d gauge coupling g5 is by 

the phenomenological fit to the far UV expectation for II v. We therefore repeat the 
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fit with g5 allowed to vary. Vie use m and A to fix m7f and m.p to their experimental 

values, as these are the only two data that don't depend on 95. Vie then vary g5 in 

order to minimise the overall rms error of the remaining parameters. The overall error 

for the optimum value of g5 is 16.1 % for g5 = 7.32. This is 17% greater than the value 

)12712/Nc from perturbative QeD. Note that in this model the preferred value for g5 

is higher, whilst in the AdS model the fit came out lower. 

7.1.2 Conclusions 

We have adapted a string theoretic model of chiral symmetry breaking to a phenomeno­

logical description of QeD. The model we have proposed goes some way towards ad­

dressing the inconsistencies of simple AdS slice holographic QeD models [66,67]. The 

background geometry of our model is non-supersymmetric, and it is the smooth vari­

ation of this geometry with the radial direction T that provides a mass gap, without 

the need for an artificial hard IR cut-off. In addition, the dual field to the quark 

mass/condensate operator is a natural part of the geometrical set-up with the value of 

the condensate being determined by the quark mass. 

However, this is still a phenomenological approach in that we introduce extra fields 

and symmetries by hand into the model in order to describe the full pion and axial 

vector sectors. Formally there is no geometric string interpretation for this system. We 

also treat the background as though it describes an N = 3 rather than an N = 00 field 

theory by matching the 5d gauge coupling to QeD. 

vVe find that the predictions of this model match experimental results to within 
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16%. This model is a little more predictive than the pure AdS slice models since the 

condensate is dynamically determined by the geometry. The best fit is in fact a few 

percent worse than the AdS slice models but hopefully the theoretical improvements 

represent at least a moral victory. In any case one would naively have expected errors 

of order a few 100% in all of these models so the closeness to QeD across a range of 

holographic models supports the robustness of the approach. 

A drawback of these models to date has been that the geometry returns to AdS for 

large r, meaning that the field theory is not asymptotically free in the UV. Incorrect 

physics in the UV will affect the strong coupling regime in the IR [84]. Here we 

investigated corrections to the matching of the 5d gauge coupling to naive perturbative 

QeD results. We found that this coupling's value should be changed at the 20% level 

indicating the size of non-perturbative effects. In the future one might hope to study 

the importance of higher dimension operators in the IR physics as well. 
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7.2 Glueballs in AdS/QeD 

The AdS/QCD approach has been used to calculate the glueball spectrum [86]. In 

particular, in [86] the masses of the J++ glueballs were computed using either Dirichlet 

or Neumann boundary conditions on the IR brane. In both cases, the results compare 

favourably to lattice data. The Regge trajectory was also calculated and appears linear. 

In this section, we calculate the spectrum of both the J++ and the J-+ glueballs. 

We assert that the source term O(t, x)¢(t, X, TO) is invariant under 5d parity trans­

formations. O(t, x) is an operator in the 4d field theory, and ¢(t, x, TO) is a 5d field 

evaluated at the boundary T = TO which acts as a source for the 4d field theory operator. 

If O(t, x) is odd under parity transformations, O(t, x) -> -O(t, -x), then we require 

that the source term also be odd ¢(t, x, TO) -) -¢(t, -x, -TO). The gravity duals of 

the J++ glueballs are even parity scalars, and the duals of the J-+ glueballs are odd 

parity scalars. 

In section 7.2.1, we repeat the analysis of [86], but here we associate the parity of 

the solutions with the glueball parity. 

One of the problems with the original AdS/QCD models was that the excitations 

of the vector mesons grew like 1\112 rv n 2. A simple flux tube argument [81] shows that 

this behaviour should in fact be JvI2 rv n. In [79] the hard IR cutoff was replaced and 

a non-constant dilaton added. It was shown that, by choosing the correct function for 

the dilaton, the correct n scaling of the resonances could be achieved. 

In section 7.2.2, we calculate the glueball spectrum in this dilaton geometry. This 

geometry has the nice feature that a simple analytic formula for the glueball masses 
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can be derived which demonstrates the correct scaling of the masses with excitation 

number n and a linear Regge trajectory. 

7.2.1 AdS/QeD Glueball Model 

The dominant term in the Lagrangian for the glueballs of spin 1 is F D {iLl' .. DiLL} F. 

The dimension of this operator is d + I, where d is the dimension of spacetime. The 

dual AdS field to this operator is a scalar of mass m[ = l(l + d). In the AdS/QeD 

model, one studies this dual field in ad + 1 dimensional AdS background with a hard 

IR cutoff 

0< z S; Zm· (7.41) 

Note that all coordinates have been scaled by the AdS radius R to make them dimen-

sionless. The dual action for the glueballs is 

2 +2 2 ,-2) m 1 ¢l - ml CfJz . (7.42) 

(¢r ¢[) are the dual scalars to the glue balls of spin I and parity (+ ,-) respectively. 

The equation of motion for one of these scalars is 

(7.43) 

We look for solutions of the form ¢(:c, z) = J(z) exp(ikx). The mass squared of the 

glueball is then M2 = _k2 . With this ansatz, parity ± solutions are given by J(z) = 

±.f( -z). The equation of motion then becomes 

2 d2 J dJ 2 2 2) 
Z -2 + (1 - d)z- + (M z - m J = O. 

dz dz 
(7.44) 

127 



Rescaling the function J (z): 

transforms this into a standard Bessel equation 

2 d2g dg 2 2 2 
Z d 2 + Z-d + (M z - v )g = 0 zz 

with v 2 = (l + d/2)2. The solutions to J are therefore 

(7.45 ) 

(7.46) 

J(z) = (7.47) 

Here, a and b are arbitrary constants of integration. Using the asymptotic forms for 

the Bessel functions 

Jv(E) = f(v ~ 1) (~r + O(E
2
), 

Yv(E) = _ f~) (~) -v + O(E2), 

we can see that the two independent solutions scale like 

(7.48) 

as z --7 O. We take the solution b = 0 which corresponds to the value for TrF2 in the 

field theory (as opposed to the solution a=O corresponding to the coupling of the TrF2 

operator). 

The final solution is 

(7.49) 
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In order to get a discrete mass spectrum, we impose a fixed IR cutoff at Z = Zm' This 

breaks the conformal symmetry of the geometry. As the value of Zm is arbitrary, we 

identify even parity solutions, corresponding to the J++ glueballs, as those which obey 

Neumann boundary conditions on the IR brane. The odd parity solutions, correspond-

ing to the J-+ glueballs, will be those which obey Dirichlet boundary conditions. 

A Dirichlet boundary condition 1(zm) = 0 gives 

Xl d· 

M . - +2'~ 
~ - (7.50) 

Zm 

where Xl+£ . are the Bessel function zeroes. 
2,2 

A Neumann boundary condition 1'(z) 0 gives 

(7.51) 

The results for d = 4 for the first three resonances up to spin 4 are shown in Table 

7.2, and a comparison to lattice data made in Table 7.3. The results give a total rms 

error of 12.9%. 

7.2.2 Dilaton Geometry 

In [79] the metric is AdS s, 

ds 2 = 1 (~dX; + dZ 2
) , 0 < Z < 00, 

~=O 

(7.52) 

but instead of a hard IR cut-off, there is a non-constant dilaton 1 

e
i!'> -cz2 =e , (7.53) 

1 Note that in [], the sign of was positive. Although both signs give the same Schrodinger 

potential, it was argued that for negative cz 2 there was a massless solution for the rho meson. 
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where c is an arbitrary constant which sets the scale of the conformal symmetry breaking 

which we will set to 1 for convenience - note that all masses will implicitly be in units 

of this energy scale. 

The inclusion of this non-constant dilaton gives the correct ],1 2 
rv n scaling of the 

meson resonances. Vve will now investigate the glueball spectrum in this geometry. 

The equation of motion for a scalar in this background is 

(7.54) 

As in section 7.2.1, we look for solutions of the form ¢(x, z) = J(z) exp(ikx). 

d2 J [ 1 ] dJ 2 2 2 
-2 + (1 - d)z- + z - + (M - m z- )J = O. 
dz dz 

(7.55) 

We can bring this equation into Schrodinger form by rescaling the function J (z): 

(7.56) 

The equation of motion then becomes 

(7.57) 

where we have defined m = (l + d/2) and E = M2 + (d - 2). The solution to this 

equation which rv zl+d as z ---7 0 is 

(7.58) 

which gives 

(7.59) 
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where L:;: are the associated Laguerre polynomials. The eigenvalues of this system are 

E = 4n+2m+ 2. (7.60) 

The function f (z) is an even function for all values of n and therefore, according to 

our prescription must correspond to the j++ glueballs. The masses can be read from 

(7.60) as 

M2 = 4n + 2l + 4. (7.61) 

The error on the two predicted masses compared to lattice data is slightly larger than 

the pure AdS model at around 13.4%. However, this model does have some interesting 

properties: 

Gt The mass spectrum is given by an extremely simple analytic formula 

Gt The masses scale as yin as is predicted from a simple flux tube argument 

It The Regge trajectory is linear 

Rearranging (7.61) for n 0 we can read off the Regge parameters 

1 2 
l = -2 +-M 

2c ' 
(7.62) 

where we have reinstated the parameter c. This gives a string tension of a' = 1/(2c), 

and ao = -2. This value of aD is much too low for the glueball to play the role of a 

pomeron. This agrees with a recent lattice study [87] for (2+ 1) dimensional glue balls 

where a negative value of aD was also found. 

Interestingly, if we arbitrarily decide to identify the even n solutions with the even 

parity j++ glueballs and the odd n solutions with the odd parity j-+ glueballs, the 
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fit to lattice data is extremely good with an overall nns error of less than 4% (see table 

7.7). It is possible that some higher order effects may cause the even(odd) n solutions 

to have even ( odd) parity. For example, one can imagine that including the effects of 

some higher dimensional operator in the spirit of Chapter 5 would leave us with a 

modified metric of the form 

(7.63) 

where for instance h(z) = (1 + EZI + ... ). It turns out that the solution to the scalar 

equation of motion with this modified metric takes the form 

(7.64) 

for some function q( z). Our parity arguments tell us that the J++ glueballs should be 

even around r = 0 (r=l/z). For large x L:::(x) rv (_l)n~xn, so if I is odd then it is n. 

plausible that the solutions for even n have even parity, and the solutions for odd n 

have odd parity. This argument is, however, speculative and it would be interesting to 

investigate this model further. 

7.2.3 Conclusions 

'rye have demonstrated that the spectrum of J P+ glueballs can be successfully calculated 

by solving a gravitational dual theory of scalars in AdS and identifying the parity of the 

glueballs with the parity of the scalars under a change in the radial coordinate r -7 -r. 

The error for this model was 13% when compared to lattice data. 

If we modify the geometry by adding a non-constant dilaton, an extremely simple 
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analytic formula for the glueball masses can be derived which predicts a linear Regge 

trajectory and gives the correct M2 rv n scaling of the resonances. This model, however, 

only predicts the J++ glueballs and give a similar error to the pure AdS model of around 

13%. \Ve showed, however, that it may be possible to modify this model slightly in 

such a way that the masses of both the J++ and the J-+ glueballs could be derived to 

within 4% of lattice data. 
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state mass state mass 

0++ 1.00 0-+ 1.34 

0*++ 1.83 0*-+ 2.20 

0**++ 2.66 0**-+ 3.03 

1++ 1.28 1-+ 1.67 

1 *++ 2.16 1*-+ 2.55 

1 **++ 3.01 1**-+ 3.40 

2++ 1.56 2-+ 1.98 

2*++ 2.49 2*-+ 2.89 

2**++ 3.35 2**-+ 3.75 

3++ 1.84 3-+ 2.29 

3*++ 2.81 3*-+ 3.22 

3**++ 3.69 3**-+ 4.09 

4++ 2.11 4-+ 2.59 

4*++ 3.12 4*-+ 3.55 

4**++ 4.02 4**-+ 4.44 

Table 7.2: 4d glueball masses from simple AdS slice model. All masses are normalised 

to m(O++). 
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State AdS Nc = 3 Lattice 

m(O++) 1.00* 1.00* 

m(O*++) 1.83 1.74(11) 

m(2++) 1.56 1.39(4) 

m(O-+) 1.34 1.50(4) 

m(O*-+) 2.55 2.11(6) 

m(2-+) 1.98 1.79(5) 

Table 7.3: 4d glueball masses from AdS slice compared to Nc = 3 lattice data [64]. All 

masses are normalised to m(O++). The total rms error is 12.9% 
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state mass 

0++ 1.00 

0*++ 1.34 

0**++ 1.83 

1++ 1.28 

1*++ 1.67 

1**++ 2.16 

2++ 1.56 

2*++ 1.98 

2**++ 2.49 

3++ 1.84 

3*++ 2.29 

3**++ 2.81 

4++ 2.11 

4*++ 2.59 

4**++ 3.12 

Table 7.4: 4d glueball masses from AdS plus dilaton geometry. All masses are nor­

malised to m(O++) 
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State AdS Ne = 3 Lattice 

rn(O++) 1.00* 1.00* 

rn(O*++) 1.41 1.74(11) 

rn(2++) 1.41 1.39(4) 

Table 7.5: 4d glueball masses from AdS plus dilaton geometry compared to Ne = 3 

lattice data [64]. All masses are normalised to rn(O++). The total rrns error is 13.4% 
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state mass state mass 

0++ 1.00 0-+ 1.34 

0*++ 1.83 0*-+ 2.20 

0**++ 2.66 O*~-+ 3.03 

1++ 1.28 1-+ 1.67 

1*++ 2.16 1*-+ 2.55 

1 **++ 3.01 1**-+ 3.40 

2++ 1.56 2-+ 1.98 

2*++ 2.49 2*-+ 2.89 

2**++ 3.35 2**-+ 3.75 

3++ 1.84 3-+ 2.29 

3*++ 2.81 3*-+ 3.22 

3**++ 3.69 3**-+ 4.09 

4++ 2.11 4-+ 2.59 

4*++ 3.12 4*-+ 3.55 

4**++ 4.02 4**-+ 4.44 

Table 7.6: 4d glueball rnasses from AdS plus dilaton geometry, identifying even( odd) 

parity solutions with even( odd) values of n. All masses are normalised to m(O++) 
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State AdS Ne = 3 Lattice 

m(O++) 1.00* 1.00* 

m(O*++) 1.73 1.74(11) 

m(2++) 1.41 1.39( 4) 

m(O-+) 1.41 1.50(4) 

m(O*-+) 2.00 2.11(6) 

m(2-+) 1.73 1.79(5) 

Table 7.7: 4d glueball masses from AdS plus dilaton geometry, identifying even( odd) 

parity solutions with even(odd) values of n, compared to Ne = 3 lattice data [64]. All 

masses are normalised to m(O++). The total rms error is 3.9% 
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Chapter 8 

Conclusions 

We have provided many examples of the usefulness of the AdS/CFT correspondence 

as a tool for studying non-perturbative aspects of QCD-like theories. We have also 

demonstrated ways of modifying the correspondence in order to get closer to a dual 

theory of QCD. 

In Chapter 4 we studied a dual geometry which went from N = 4 supersymmetric 

Yang-Mills in the UV region and was broken down to an N = 1 theory through the 

inclusion of a mass term. 'Ve were able to demonstrate an explicit matching between 

the field theory and its gravity dual at fixed points along a particular renorlnalisation 

group flow off of moduli space. 

In Chapter 5 we were able to find a pleasing geometric picture of chiral symmetry 

breaking and produced a simple test to determine whether a supergravity theory would 

exhibit chiral symmetry breaking in its dual field theory. Out of the geometries that we 

tested, only geometries that were non-supersymmetric in the IR with a running dilaton 
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passed the chiral symmetry breaking test. 

A major downside to supergravity duals of QCD-like theories is that they all flow 

to the conformal N = 4 SYM at high energy. In QCD, the theory flows to a non­

interacting fixed point as the energy goes to infinity. Even if properties of the dual 

theory are similar to QCD in the IR limit, the fact that the UV of the two theories is 

different will affect IR predictions through loop effects. 

In Chapter 6 we demonstrated a systematic way of removing these unwanted ef­

fects by introducing a hard UV cut-off into the dual theory and tuning the coefficients 

of higher dimensional operators much like the improved action techniques of lattice 

QCD. We applied this technique to calculating the glueball spectrum in finite temper­

ature QCD4' The results showed a marked improvement over the original AdS/CFT 

calculations. 

Finally, in Chapter 7 we introduced the AdS/QCD bottom-up approach to finding 

a dual QCD gravity theory. Using this phenomenological approach we were able to 

calculate meson data to within 18% of experimental data and glueball masses to within 

14% of lattice data. It would be interesting to combine the improved action ideas of 

Chapter 5 within the AdS/QCD framework to see if an even better dual theory of QCD 

could be achieved. 
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Appendices 

A: Calculating the Schrodindger Potential 

In this appendix we will demonstrate how to transform a second order eigenvalue equa-

tion 

Lf = Af 

into Schrodinger form 

in the special case that the operator L is in self-adjoint form 

L(x) = -- p(x)- + q(x). d ( d) 
dx dx 

First, we make a change of variables x -7 Z, where 

z(x) = dx'p(x')-"2. J
x 1 

Using this change of variables, the equation (A.I) becomes 

d2 f 1 dp df 
------+qf=Af. 

dz2 2p dz dz . 
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Now, we let J(z) = h(z)g(z). Assuming h(z) # 0, this gives an equation in terms of g: 

where' indicates differentiation with respect to z. In order to get this equation into 

Schrodinger form, we must choose the function h so that 

(A.7) 

This implies that 

(A.8) 

giving the Schrodinger potential 

. 1 (_ld
2p 

3 -2 (dP)2 Ii (z) = -P z) - - -P (z) - + q(z), 
4 dz 2 16 dz 

(A.g) 

or, in terms of x 

. 1 d2 
P 1 -1 (dP ) 2 Ii (x) = -- - -p(.T) - + q(x). 

4 dx 2 16 dx 
(A.10) 

A slight variation of this is problem is finding the Schrodinger potential of the equation 

L(y)J(y) = ~s(y)J(y) (A.ll) 

This can be brought into self-adjoint form by letting 

x(y) = JY dy's(y'), 

p= sp, 

q = q/ s. (A.12) 
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This means that the equation can be brought into Schrodinger form with a change of 

variables y ~ z 

J
y 1 

z(y) = dy' (s(y')jp(y'))2 (A.13) 

and a scaling J(z) = h(z)g(z), where 

(A.14) 

The potential in terms of y is 

1 _2d2p 1 _3ds dp 
V(y) = -s(y) -2 - -s(y) --

4 dy 4 dy dy 
(A.15) 
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B: Expanding the D-Brane Action 

The action for a Dp-brane in the string frame is 

(B.1) 

where ~a, a = 0, ... ,p are coordinates on the brane. The fields on the brane are the 

embedding xm(~), m = 0, ... , D 1 and the gauge fields Aa(~). P[Gl ab is the pullback 

of the background metric on the Dp-brane 

(B.2) 

Let X 8 , X 9 be the two directions transverse to the brane and choose coordinates ~a 

to be aligned along the directions X a . With these choices, the pullback can be written 

as 

(B.3) 

Now, if the metric Gij is diagonal Gij = G!5ij then we may write 

(B.4) 

and 

(B.5) 

Let X(~) = (J(r)U(~). We can assume that 8U and 8A will be small. We will now 

expand the action up to order (8U)2,(8A)2,8U8A. 

V.,Te have 

(B.6) 
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The second term inside the brackets can be re-written in terms of u and U 

(B.7) 

where f-L = {O - r. Using this we can now write 

det (P[Gl ab + 271a' Fab) = det (Gab) det (A + B + e + D), (E.8) 

where 

A ~ CJ + G:'~3'~) :} ( 0 ff~~a"U ). B Gu 

8r uU8IL U 

( 8'U8,Ut 8'B8"Ut ) , 
( 0 F') e = Gu2 D 271(:/ v. (E.g) 

8IL U8r Ut 8IL U8v Ut FP;. F~ 

Now 

det(A + B + e + D) = det(A) det(l + A-I B + A-Ie + A-I D), 

= (1 + G8r u8r u) det(l + 13 + 6 + D), (E.IO) 
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where 

jj = 2110:' ( 0 

F~ 

(1 + Go'rao'rO")-lO'rUOvut ) , 

011U8v UT 

This is now in a form that can be expanded using 

[det(l + X)]1/2 = exp [lTr In(l + x)] , 

= exp [lTr (X -lX2 + ... )] , 

= 1 + lTtX ~TrX2 + O(X3). 

This gives 

[- det (P[Gl ab + 2110:' Fab)] 1/2 = det (Gab )]1/2 (1 + GGTT a-2)1/2 

(B.ll) 

(B.12) 

x { 1 + l Tr (B + 6 + is) - ~ Tr (B + 6 + is)2 + ... } , 

(B.13) 

where we have defined a- == Ora. Note that B rv oU, 6 rv (8U)2 and is rv oA so we 

only need to keep the terms linear in 6 and quadratic in 13 and D. Also note that 

- -
TrB = TrD = O. 
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Using (B.ll) the action becomes 

S = -Tp J dPf,e-if> [- det (Gab)]1/2 (1 + GGTT &2)1/2 

X {I + ~G(J2(1 + GGTT 0-2)-laauaau t 

-1(271(:1:')2 [(1 + GGTT 0-2)-1 FTJ.LFTJ.L + FJ.LvFJ.LvJ } . 

Define the Einstein frame metric, g, and dilaton, cp, as 

'/2 gab = e-CP Gab, cp = cP - CPo 

(B.14) 

(B.15) 

and let the effective string tension in the presence of a constant background dilaton 

field CPo be 

then the action in the Einstein frame is 

S = -Tp J dPf,e¢ det (gab)]1/2 (1 + ggTT 0-2)1/2 

X {I + ~9(J2(1 + ggTT 0-2)-laaUaau t 

-1(271(:i)2 e-¢ [(1 + ggTT 0-2)-1 FTf.LFTf.L + Ff.LvFf.LV] } . 
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