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Abstract 

We give a brief overview of artificial neural networks (ANNs) , focusing on Ko­

honen networks (KNs). The two kinds of KNs will be described in detail: the 

unsupervised self-organizing map (SOM) and the supervised learning vector 

quantization (LVQ). We then apply these algorithms to two astronomical clas­

sification problems: the classification of broad absorption line quasars (BALQ­

SOs) and of gamma-ray bursts (GRBs). In the context of BALQSOs, we find 

a BALQSO fraction of 10.4%, and compile a catalogue from the Sloan Digital 

Sky Survey (SDSS) using the supervised LVQ. This is currently the most com­

plete BALQSO catalogue. We then apply the unsupervised SOM to GRB light 

curves obtained from the Burst and Transient Source Experiment (BATSE). 

Using only shape-dependent variables, we find that two classes are recovered: 

single-pulsed bursts (SPBs) and multi-pulsed bursts (MPBs). We show that 
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these two network classes also have different observational properties that are 

independent of light curve shape (T90 and fluence), suggesting an intrinsic dif­

ference between the two. We conclude with some attempts to correlate our GRB 

result to previous studies and suggest improvements for future work. 
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Chapter 1 

Neural Networks In 

Astronomy 

Every historical period has its godword. There was an Age of Faith, 

and Age of Reason, an Age of Discovery. Our time has been nomi-

nated to be the Age of Information - Theodor Roszack (1986), The 

Cult of Information 

A new model for the way information is processed has emerged during the last 

centuryl; Artificial Neural Networks (ANNs). Inspired by the way biological 

nervous systems work, the key element of this model is the novel structure of 

its processing system. ANNs are composed of a large number of interconnected 

processing elements, called neurons (by analogy to the brain), which work to-

get her to solve a specific problem such as pattern recognition or classification. 

Just like animals, ANNs can be trained to solve such problems, since they are 

able to learn by example. This new paradigm arose mainly due to the ever 

1 For a good review of the history of Artificial Neural Networks refer to Anderson D. and 
McNeil G. [2] 
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Figure 1.1: Schematic of brain neurons as taken from [27]. 

increasing amounts and sheer complexity of data that need to be analyzed. 

In order to explain the basic principles governing ANNs, let us consider t he 

analogy to t he human brain, since this was t he basic inspiration for their inven-

tion. Much is still unknown about how the brain "t rains" itself and processes 

information, but t he basic principles seem t o be understood. The cell respon-

sible for our learning is the neuron (Figure 1.1) . It collects electrical signals 

(information) through a host of fine structures named dendrites . It t hen "com-

municates" with other neurons by sending electrical activity t hrough a connect-

ing struct ure called an axon, which event ually splits into many smaller branches, 

which terminate in so-called synapses. It is t hese syn apses that communicate 

wit h the dendrites of other neurons, and t he information is t hus propagated to 

many more neurons. Learning t akes place by changing t he effectiveness of t he 

synapses so that the influence of one neuron on another changes. 

In ANNs a similar scheme is adopted. An input is presented to one or more 

hidden layers of neurons , which process t he information and communicate wit h 
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Figure 1.2: Schematic of a ANN as taken from [28]. 

each other using weights; these weights are the analogues of synapses. As the 

weights change in response to the inputs, learning takes place. The result from 

all neurons are then collected in the last layer , the output layer. (Actually, this 

distinction between output and hidden layer is not always clear. In fact, this 

thesis will be dealing with an ANN in which these two layers are t he same.) 

The main difference between the brain and an AN"N is the number of neurons 

and synapses/weights. A typical ANN contains a few hundred to a few thousand 

weights , compared to the 1014 synapses in the human brain. Moreover, there is 

also a difference in processing power and speed. In particular , the human brain 

can parallelise (solve multiple tasks at the same time) tasks neatly and therefore 

speed up processing. This level of parallelism is not possible with contemporary 

ANNs. 

In the context of data mining and classification, ANN schemes can come in 

two main types: supervised or unsupervised. In the former case, the user knows 

in advance what the dataset consists of and has a training set available for the 

network. This training set will be tagged into various classes as determined by 

the user. The ANN will then process the information in a reward-punishment 
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scheme. Every time an input gets connected to the correct neuron the network 

will "learn", while it will "unlearn" every time the connection is wrong. The 

aim is to determine the set of weights which minimise the error. In doing so, 

particular neurons will be tuned to recognise particular input patterns, which 

could then be applied to unseen data for recognition purposes. 

On the other hand, unsupervised ANNs work in a way that is more closely 

analogous to the brain. No external factor, other than the inputs, can affect the 

performance of the ANN. Thus there is no separate "training set". Learning in­

stead becomes a process by which the neuron weights collect "experiences" from 

past inputs and "compete" for representation. This form of ANN is more robust 

against outliers, and particularly useful for locating new, unseen or overlooked, 

patterns within a dataset. 

A particular unsupervised ANN has received particular attention, especially 

in the context of data classification: self-organizing maps (SOMs). Also known 

as a type of Kohonen network, this form of unsupervised learning is being used 

in a variety of fields and will be used in this thesis. In addition to being a 

very effective ANN, it also enables the user to easily interpret the results (out­

puts), contrary to many other ANNs. Ever since its first application in speech 

recognition [9], the algorithm has been used for a wide variety of problems, and 

has particularly flourished in astronomy over the past few years. For example, 

SOMs have been used for star/galaxy classification by Miller et al [11], and 

for galaxy morphology classification by Naim et al [13]. SOMs have also been 

applied to the problem of gamma-ray burst classification by Rajaniemi et al 

[16], an area we will revisit later in the thesis. More recently SOMs have also 

been applied successfully to the automated classification of light curves from 

interacting binaries by Brett et al [4]. 

The last 50 years have been demanding increasingly powerful computers. As 
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Djorgovski [34] says, 

... the world is drowning in a tidal wave of data, which increases 

exponentially both in volume and complexity. 

11 

With the amount of data growing in astronomy with a doubling time scale of 

'" 1.5 years [34], the potential usefulness of ANNs is also increasing. Surveys like 

the Sloan Digital Sky Survey (SDSS) and the 2 Degree Field Survey (2DF) are 

already producing incredible amounts of images and spectra, and conventional 

data exploration techniques will become less and less feasible. Astronomers 

will find it harder to visually inspect most of this data and consider it for 

classification. The Wide Angle Search for Planets (SuperWASP), for example, 

uses ultra-wide-field surveys techniques to observe the sky, producing over 40 

Gb per night. The analysis of this data must be automated, and ANNs can 

provide a well-tested, powerful and convenient approach to achieving this. 

In the following chapter, we will present a detailed description of the two 

types of ANNs used. Both are Kohonen Networks, but one is the unsupervised 

Self-Organising Map (SOM), whereas the other is the supervised Learning Vec­

tor Quantisation (LVQ) scheme. In Chapter 3 we will apply both SOM and 

LVQ to spectra obtained from the SDSS in order to identify broad absorption 

line quasars (BALQSOs). In Chapter 4 we will concentrate on GRBs, and use 

SOMs with data taken from the Compton Gamma Ray Observatory (CGRO), 

to search for potential classes within the GRB population. The summary and 

conclusions will be presented in the last chapter together with some potential 

ANN applications in astronomy. 



Chapter 2 

Kohonen N etwor ks 

We are modelling our experiences all the time. Our thinking is 

based on mental images and ideas, which are projections of some 

internal representation from the brain to the exterior world. In that 

process our nervous system carries out modelling of various occur­

rences. In the history of mankind, mathematical modelling was first 

used in counting, then in geometry relating the land use and astron­

omy, and finally in all exact and even less exact sciences. - Teuvo 

Kohonen (1982), Self-Organizing Maps 

In this chapter we will describe in more detail the two ANNs used in this thesis. 

The unsupervised SOM will be introduced first, giving an informal explanation 

together with a more technical one. This algorithm will then be applied in 

both Chapters 3 and 4. The supervised version of the SOM, LVQ, will also be 

introduced, and this is used in Chapter 3. 

12 
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2.1 Self-Organizing Maps: An Overview 

The SOM, created by Teuvo Kohonen [35] in the early 80's, is a particular kind 

of ANN with the advantage of displaying the result to the user in an easily 

interpretable way. As described in the introduction, all ANNs are characterised 

by a layer of hidden nodes and output nodes, but the connections differ between 

different types of ANNs. In the SOM, the output nodes are connected in such 

a way that the results are presented on a 2D (or 3D) map of neurons. In 

this scenario, the hidden and output nodes are actually the same, as shown in 

Figure 2.1. In this "neuron map", after training, each individual neuron will be 

specialised at recognising some particular input pattern. Neurons representing 

similar patterns are located close to each other in the output map, which has 

the topology of a torus. In this way, there are no borders to the map, and every 

neuron is allowed to communicate with every other neuron. This last statement 

is key to the SOM, in that when one neuron is activated, and changed by an 

input, it will communicate this to all other neurons through weights, and thus 

affect even potentially distant neighbours. 

The whole learning process starts by creating the weights responsible for the 

communication between the inputs and the map. This is done by randomising 

the initial neuron weights. The inputs are then presented one by one to the map. 

Each input stimulates a particular neuron (the most similar to the input) which 

will then take the responsibility of "learning" from the input and "teaching" 

neighbouring neurons. These processes are then iterated, i.e. the same inputs 

are presented to the map over and over. The main parameters affecting training 

are the so-called learning factor and neighbourhood kernel. The learning factor 

determines the amount "learned" by the neurons during each iteration, whilst 

the neighbourhood kernel is responsible for controlling who learns on the map. 

At first, all neurons will learn regardless of position on the map. As the iteration 
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Figure 2.1: Schematic of the SOM. Note the hidden and output layers are the 
same for this ANN as taken from [29]. 

process proceeds, the learning factor decreases , and so does the neighbourhood 

kernel. By the final iteration only close neighbours of a stimulated neuron will 

learn. The combination of the two parameters ensures that the map will learn 

the gross structure of the input data early on during training, whilst focusing 

on the fine structure during the later stages. 

The whole process can also be considered as a "model fitting" minimisation 

process by which the neurons are trying to find the best fit to the data. In 

doing so, the resulting neurons will act like composites to the data at the end 

of training. This is nice, in that the user will then have to only check the 

neuron weights rather than the input data, thus decreasing the amount of visual 

inspection to be carried out. In addition to performing an elegant regression, the 

neurons develop into specific "decoders" of their respective inputs and organise 

themselves on the map in a meaningful order, thus allowing t he user to project 

and display higher dimensional data on a 2D grid. 
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2.2 Self-Organizing Maps: Technical description 

In the following section, we will explore in more detail the equations that govern 

the SOM algorithm [35]. Moreover we will show some simple example runs to 

give a flavour of the abilities (and limitations) of the ANN for classification 

purposes. 

Suppose we want to classify a large dataset, all consisting of n data points, 

F(x) E ~n. The SOM should then be initialised accordingly, with neurons 

having weights with the same dimension as the input data, mi(x) E ~n, where 

i is the neuron index. These neurons should be organised on a torus-like map, 

so that no borders exist between them, and all are able to communicate. The 

number of these neurons is determined by the user, but one must be careful 

not to have too few of them. If the user knows in advance there are 3 evident 

patterns in a dataset, there is no point in running a SOM with 2 neurons: the 

result would be uninterpretable and wrong. It is always best to include more 

neurons than one would expect to need, as we will show later. 

Once the neuron weights and input data are ready, we start by presenting 

the inputs to the map one by one. Each time we ask the ANN to locate the 

neuron most similar to the input data. This is done by fitting the input to all 

neurons and evaluating their norm 1. Obviously, the most similar neuron will be 

the one with the lowest value. Let us assume this neuron to be defined by the 

index c in the following 

(2.1) 

. This neuron is called the Best Matching Unit (BMU) for the specific input and 

will take the responsibility of "learning" and "teaching" other neurons. This is 

done by updating itself and others according to the following equation 

lThe norm is the Euclidean distance between two vectors (similar to x2 ). 
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Figure 2.2: Snapshot of the neuron weights on a 64 node (8 x 8) map. The 
input seek the most similar neuron weight on the map. Neuron weights are then 
updated according to their position in map space: the closer to the BMU the 
more it's weight will be updated. 

(2.2) 

, where 1ni(t + 1) is the updated neuron and 1ni(t) the old one. Note the new 

parameter hci(t), or neighbourhood kernel, which is responsible for the self­

organisation of the whole map. This parameter is responsible for the amount 

learned at iteration t, together with how much a neuron learns given its distance 

in map space from the BMU. It in turn is controlled by two parameters, namely 

the learning factor a(t), and the width of the kernel dt), both taken to be 

decreasing with time. The definition we use is 

(2.3) 

, where rc and ri are respectively the coordinates in map space (2D) ofthe BMU 

and of the neuron under consideration. It is this last equation which enables 

the SOM to learn in a competitive environment, as neurons further away will 

learn less. This idea is sketched in Figure 2.2. 

Since learning is a stochastic process, the final statistical accuracy depends 
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on the number of iterations. In general, the more, the better, but it is especially 

important to have a long final convergence, in which the map concentrates 

on fine-tuning the neuron weights. Note that compared to other ANNs, the 

algorithm is extremely efficient, and if only a few input samples are available 

they must be recycled for the desired number of iterations. As noted above, 

a(t) is conventionally taken to be a decreasing function of time, but this does 

not have to be the case. One can even keep the learning factor to a very low 

constant throughout the whole process, and only vary the neighbourhood width, 

thus ensuring that the fine structure of the data is considered throughout. On 

the other hand, O'(t) cannot be constant. A good starting point is to set it 

at half the neuron map size, so that during the first iteration, all neurons will 

learn. This function must be decreasing with time so that by the end only close 

neighbours to the BMU will be updated. 

Once training is ended, the neuron map is ready for inspection. In order to 

best interpret the results obtained by the SOM, we use the so-called U-matrix 

devised by Ultsch [24]. This has the same size as the neuron map and is usually 

used to visually identify statistically different clusters within the data set. It 

encapsulates the rate of change between neuron weights. In other words, each 

element within the matrix will represent the average goodness-of-fit between 

that neuron and its neighbours. In our case, each neuron has four neighbours, 

but if one adopts hexagonal neurons, it will have 6. This matrix can then be 

colour coded for ease of interpretation. 

2.3 Self-Organizing Maps: Examples 

In this section we will consider the ability of the SOM to organise four trivial 

cases: sine, cosine, negative and positive gradient curves. These will contain 

30 points varying from 0 to 21f, and be in the range between -1 to 1. We will 
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create a dataset consisting of 500 inputs (125 of each), adding some noise to the 

curves in order to disguise them, and make it harder for the SOM to classify 

them. More specifically, we will add some normally distributed numbers to each 

data point in the input sample, increasing the standard deviation until the SOM 

has trouble in distinguishing the four classes. In other words, we will decrease 

the "signal-to-noise" (SIN) ratio of our sample until the data is to "noisy" to 

be recognised by the algorithm. 

In Figure 2.3 we present some examples taken from four datasets created. 

The first (second, third and fourth) set has normally distributed numbers with 

a 0.4 (0.5, 0.7 and 0.85) standard deviation added on to them. As we will see 

the SOM will have no problem in distinguishing the first three, but by the last, 

the standard deviation added is too large, and the results become harder to 

interpret. 

Having created our datasets, we prepare the neuron map and weights for 

each of the four runs. In each map, there will be 400 neurons (20 x 20), and 

each neuron will be randomly initialised with data points taken from a normal 

distribution with mean 0 and standard deviation 1. We initialise the neuron 

weights this way since we know in advance the average range of our inputs to be 

between -1 and 1 with some noise added on. By doing this we will help the map 

to quickly learn the gross scale structure of our data. This initialisation step 

is not necessary for correct convergence, but it allows us to keep the learning 

constant fixed to a very low value of 0.01 throughout. This means the map is 

always focused in on the fine structure present in the dataset and gives us a 

better feel for the ability of the ANN to self-organise. The width of the kernel 

on the other hand will begin as half the map size and decrease linearly over the 

course of the training phase, ending as half a neuron size. 

In Figure 2.4 we show the four U-matrices generated by the four runs. We 



CHAPTER 2. KOHONEN NETWORKS 19 

cosi1e sine cosile sine 

:0 :[SJ:0 .:tsJ 
o 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 

'Q""laIN' '[2jPOS;';" 15Q_IN' '0POS"" I 0.5 1 1 

.: ~: ~: .: 
-2 -1 - 1 -2 o 2 4 6 8 0 2 4 6 6 0 2 4 6 8 0 2 4 6 8 

cosile sine castle sine 

:52J:~ EiJ:~ 
o 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 

fStJ ;0:~ IE] 
-2 -2 -2 -4 

o 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 

Figure 2.3: Four examples from each of the four datasets created. From top left 
to bottom right the quadrants are respectively 0.4, 0.5, 0.7 and 0.85 standard 
deviations curves. 
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note that all four used 10 learning steps, each of which had 500 files iterated 

through them. By visual inspection, it is clear from the first map that the 

SOM was able to distinguish all four classes easily - there are definite borders 

on the map and no outliers. Also note that since all four classes were present 

in equal numbers (125 of each), the four classes occupy more or less the same 

number of neurons in map space. Moving onto the map with 0.5 standard 

deviation, we find that this is very similar to the first, with definite borders 

and no outliers. However, at 0.7 standard deviations, the borders between the 

sine and negative gradient curves tend to disappear, since these two curves can 

look remarkably similar (as already seen in Figure 2.3). Note, however, that the 

four classes are still easily distinguished by looking at the density distribution 

of the mapped inputs (black dots). No outliers seem to appear and there is 

no confusion either. The last map presented, with 0.85 standard deviations, 

is a bit more confusing. The sine and negative gradient clusters have merged 

together, and one cannot tell by visual inspection of the map where the border 

lies. Moreover, the boundaries for the remaining classes have become blurred, 

with many inputs being mapped onto borders, without definite classification. 

It is clear from Figure 2.3, however, that not even a human "inspector" would 

have classified all these curves correctly, due to the low SIN. 

2.4 Supervised Learning: Learning Vector Quan­

tization 

As outlined in the introduction, a supervised form of the SOM exists, namely 

LVQ. Also devised by Kohonen ([35]), this form of ANN is meant to be used for 

classification purposes when prior knowledge about the classes within a dataset 

exist. In such cases, one can use a pre-classified or visually tagged dataset to 
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Figure 2.4: The four U-matrices produced by t he four runs. The maps are in the 
same order as for F igure 2.3. The black dots represent t he input files assigned, 
randomized within their host neuron. 
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train the LVQ, and then present a new dataset as input for classification. LVQ 

is based on a "reward-punishment" scheme2 
, but the ideas behind this ANN 

are very similar to that of 80Ms. Competitive learning is still present, but the 

neurons are not allowed to communicate with each other, only with the inputs. 

We will now explore how the algorithm is structured. 

We begin by creating a neuron map, but this time each neuron will have 

associated with it a tag referring to its class. This can be only two neurons for 

two classes or ten for each, depending on the feature one is trying to pick out. 

The number of neurons per class is predetermined by the user, and trial and 

error should be employed for best performance. Neuron weights can again be 

initialised at random, taking into account the range of the inputs, or can be 

initialised with an input from that class; both cases will converge. The only 

parameter affecting the performance of the algorithm is the learning factor Q. 

This can be set at decrease linearly or kept fixed to a very low value. The effect 

is the same as for the 80M: learning the gross structure of the dataset with 

high Q, and concentrating on the fine structure with low Q. 

As stated before, the neurons within the map have no connections between 

them, and no order exists except for the tags. Thus there is no topology as­

sociated with the map. The algorithm begins in the same way as the 80M. 

The inputs are presented to the neurons one by one, which will compete to find 

the BMU using the Euclidean distance as a metric. Once the best fit has been 

located, learning or unlearning takes place using the following equations: 

(2.4) 

2The SOM is never "punished", as there exist only "learning" rules. 
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if F(x) and me belong to the same class, 

me(t + 1) = me(t) - a(t) [F(x) - me(t)] (2.5) 

if F(x) and me belong to different classes, 

(2.6) 

for all other neurons. Note from equations 2.4, 2.5 and 2.6 that only the BMU 

will learn or unlearn each time an input is presented, leaving other neurons as 

they are. 

Having described the algorithms used in this thesis, we will next apply such 

methods for BALQSO classification purposes. 



Chapter 3 

AGN, QSOs and BALQSO 

Anyone who has never made a mistake has never tried something 

new - Albert Einstein 

This chapter will deal with the classification of broad absorption line quasars 

(BALQSOs). The main motivation for this comes from the recent work by 

Trump et al [23], which found a BALQSO fraction two times times higher than 

previous studies. This result is striking and needs further confirmation and 

analysis. However, first we will briefly introduce the quasar (QSO) population, 

connecting it to active galactic nuclei (AGN). We will then explore the various 

definitions of "breadth" in BALQSO classification work and closely inspect the 

catalogue produced by Trump et al [23]. Having established that their work 

needs revision, we will employ the techniques explained in the previous chapter 

to produce a more reliable BALQSO catalogue. 

24 
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In the 1950's, due to the fast technological advances in radio astronomy caused 

by the war, the first radio surveys were compiled1 . These revealed a new popu­

lation of bright, point-like objects that, at the time, due to the poor positional 

accuracy of the radio dishes, could not be identified with an optical counter­

part. About 10 years later, the positional accuracy of radio telescopes was good 

enough for astronomers to identify the optical counterparts of these radio bright 

sources. What they found was something like a relatively blue, unresolved 'star' 

with what looked like a very faint emission around it. Subsequently astronomers 

found that the spectra of these objects exhibited very broad emission lines, but 

the point-like appearance of the objects obscured the connection to the already 

known Seyfert galaxies. At the time, the astronomical community agreed they 

had discovered a new type of radio-loud star. However, there was still a lot 

of confusion, since astronomers found these 'stars' not to be moving in posi­

tion when comparing older photographic plates to each other. Then, in 1962, 

Maarten Schmidt stared at the optical spectrum of the famous Quasar 3C273 

and recognised the Balmer series of hydrogen, but shifted from their normal 

wavelength by a factor of (1 + z) = 1.16. This implied the sources were of 

extragalactic origin. Very few people had thought of this due to the extremely 

high luminosities this would imply for these sources. To distinguish them from 

previous interpretations, these new types of objects were named quasi-stellar 

radio sources or quasars for short. In fact, it is now believed that quasars are 

part of the AGN (Active Galactic Nucleus) family. More specifically, these 

objects represent the high luminosity tail of the AGN distribution and out­

shine their host galaxies by a large factor. AGN have extreme luminosities 

(1039 - 1047 erg/s) which put them amongst the most luminous objects known 

1 For a good review of Active Galactic Nuclei and their history refer to Mushotsky R. [33] 



CHAPTER 3. AGN, QSOS AND BALQSO 26 

to date. Moreover, observed short timescale variations suggest that the only 

plausible energy production mechanism is the release of gravitational potential 

energy from matter deep within the potential well of the super-massive black 

hole (SMBH; 106 - 109 M 0 ) of the galaxy. 

Thanks to many multi-wavelength studies, AGN today come in many flavours, 

with sometimes very different observational characteristics (e.g. broad vs. nar-

row emission lines or radio loud vs. quiet). However, despite these differences, 

it is now thought that all of these objects are fundamentally similar, with differ-

ences reflecting mainly orientation effects, luminosity variations and differences 

in the relative luminosities of jets and disks. Quasars (QSOS2) also come in many 

flavours, mainly reflecting observational differences in their spectra. The reso-

nant transitions named broad emission lines (BELs) in QSO spectra are believed 

to be formed deep within the potential well of the 5MBH hosted by the AGN. 

This region will contain very high density gas moving at high velocities which, 

through thermal emission, produces the emission lines. The breadth of the lines 

is thought to be caused by the Doppler effect. In the rest-frame, UV /optical 

QSO spectra are reasonably well-described by a reddened power law with su-

perimposed permitted emission lines. However, some QSOs show absorption 

troughs blue-ward of the strong UV resonance lines. These so-called BALQSOs 

are a sub-class of QSOs that exhibit strong, broad and blue-shifted spectroscopic 

absorption features. Most BALQSOs (the so-called HiBALs) only display ab-

sorption troughs in certain high-ionization lines (e.g. NV, CIV, SiIV) , but, in a 

small percentage of BALQSOs (the so-called LoBALs) some low-ionization lines 

(most notably MgII) are also affected. 

From the Sloan Digital Sky Survey Early Data Release, Reichard et al [19] 

showed that BALQSOs and BELQSOs appear to be drawn from the same parent 

2QSO is an abbreviation for quasi-stellar object. Quasar is a short form of quasi-stellar 
radio source. 
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population, consistent with the idea that all AGNs are intrinsically similar, 

differing mainly in viewing angle. However, the dividing line between BALQSOs 

and non-BALQSOs is still somewhat non trivial. The main problem resides in 

distinguishing between narrow absorption lines (NALs) and BALs. In practice, 

Weyman ([25]) arbitrarily set the dividing line to be 2000 km/s in velocity space 

in order to distinguish the two. 

For years, BALs have been regarded as signatures of large scale outflows since 

only this mechanism can account for the breadth of the absorption. There is 

some observational evidence (Brotherton et al [5]) that the outflows are predom­

inantly equatorial (along the plane of accretion), but there are already hints that 

the true geometry may be more complex than a simple outflowing disk (Punsly 

et al [15]). The driving mechanism for the outflows is still not known, but the 

ghost of Lyman-o:3 seen in BALQSOs (Arav [3], North et al [14]) implies that 

radiation pressure mediated through spectral lines contributes in at least some 

BALQSOs. 

In trying to understand the relationship between QSOs and BALQSOs, a 

quantity known as the BALQSO fraction is of particular significance. More 

specifically, the BALQSO fraction is defined as the fraction of QSOs that display 

BALQSO features. Its importance derives from the fact that it allows a simple, 

geometric interpretation: in the context of simple unified schemes, the BALQSO 

fraction is the covering fraction of the outflow. Thus an estimate of this fraction 

can provide strong constraints on the physical model of the accretion processes 

and associated outflows of AGNs and QSOs. 

The biggest obstacle to measuring the BALQSO fraction reliably are NALs. 

Traditionally these have been thought to be caused by clouds of gas or by a 

corona orbiting the host galaxy of the AGN and were therefore not associated 

3 A hump manifesting itself at -5900 km/s in the troughs of BALs providing strong evidence 
for the importance of line driving in powering the outflows of BALQSOs. 
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with the AGN itself. These clouds might be moving due to the extreme radi­

ation pressure caused by the AGN itself, manifesting themselves as NALs. On 

the other hand, Elvis [30] proposed a quasar unification model in which the 

NALs are formed in the same outflow that is responsible for BALs, with the 

observational difference caused only by viewing angle. Again, if this were to 

be true, it would elegantly unify all the three different kinds of phenomena, 

as shown in Figure 3.1. If the AGN is viewed directly through the flow, we 

see BALs; if, on the other hand, we look across the flow we would observe a 

NAL; and finally, if we do not view the central engine through any outflow, 

we simply observe a BEL. This model should therefore explain the incidence 

of BELs, BALs and NALs amongst QSOs as a result of the outflow geometry. 

It is therefore extremely important to determine the correct percentage of each 

subclass. 

3.2 The P-Cygni Profile 

Having introduced BALQSOs as part of the AGN family, we will now go through 

the physical processes that are responsible for both the emission and the ab­

sorption observed in these objects. The 'P-Cygni profile' specifically refers to 

broad blue-shifted absorption next to the line emission and is named after the 

first star in which this phenomenon was observed. 

To best understand the physics, we consider the simple scenario of a spheri­

cal star emitting pure continuum photons into a non-rotating spherical outflow, 

and consider only line formation via pure scattering (e.g. by a strong resonance 

transition). Figure 3.2 from Knigge [1] shows the geometry of the situation. By 

removing the narrow 'cylinder' of outflowing material from the line of sight, one 

would only observe a BEL caused by scattering into the line of sight the sym­

metrical outflow, resulting in a broad emission line. However, with an outflow 
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Figure 3.1: Schematic of the simple unifying model for BELQSOs and BALQSOs 
as taken from Elvis [30]. The red ellipse represent s the accretion disk whilst the 
green regions represent the out flow. 
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present in the line of sight, the situation changes. The cylinder 'behind' the 

star is occulted, and photons scattering from it will never reach the observer. 

However, the outflow "in front of" the star will scatter continuum photons out 

of the line of sight of the observer. Now, because the outflow is moving towards 

the observer, we see an absorption blue-ward of the emission, whose width can 

also be used to infer the maximum outflow velocity. 

Figure 3.3 shows a sketch of the line profile expected from such an outflow 

(Knigge [1]). 

One must take care, however, since the observed absorption profiles seen 

in BALQSOs are far from being described by the spherical star description 

presented! The central engines of these sources are 5MBHs, and it is thought 

that the emission components might be caused by thermal emission rather than 

scattering. Nevertheless, the broad, blue-shifted absorption trough would still be 

caused by viewing the continuum source through an outflow and should contain 

important information regarding the velocity field in which the absorption takes 

place. 

3.3 The SDSS DR3 Quasar Catalogue 

The Sloan Digital Sky Survey (SDSS; York et al [26]) is an imaging and spectro­

scopic survey which aims to provide the astronomical community with immense 

amounts of data. In particular, it concentrates on the large scale distribution 

of galaxies and quasars. The survey is carried out using a CCD camera on a 

dedicated 2.5 meter telescope at Apache Point observatory, New Mexico. Im­

ages in five broad optical bands (ugriz) over approximately 10,000 deg2 of the 

high Galactic latitude sky in the Northern hemisphere are taken. The catalogue 

contains photometry from 136 different imaging runs between 1998 and 2003 

and spectra from 826 spectroscopic plates between 2000 and 2003, covering a 
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Figure 3.3: Typical P-Cygni profile decomposed into underlying absorption and 
emission components as taken from Knigge [1]. 

smaller fraction of the sky ( ~ 4188 deg2). All spectra cover a wavelength range 

of 3800-9200 Angstroms (in the observed frame). Most of the QSOs found in 

the SDSS have been identified based on a colour selection algorithm that uses 

all 5 optical bands. More details of the spectroscopic observations can be found 

in York et al [26]. 

All of the SDSS quasar spectra have been wavelength calibrated and sky 

subtracted, but not corrected for Galactic extinction. A redshift estimate is also 

determined automatically, by cross-correlating the quasar spectra and fitting 

emission lines to some quasar template. 

The number of QSOs found by the SDSS has increased by a factor of ~ 12 

with Data Release 3 (DR3) [20] compared with that in the Early Data Release 

[17]. This nicely illustrates the need for automated methods when dealing with 

such a rapid growth in datasets. The DR3 catalogue contains 44221 spectroscop-
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ically identified QSOs. Moreover, one can see that robust and reliable methods 

are also needed since more outliers (and maybe even new sUb-populations) will 

appear. With such a rapid growth, finding ways to reduce computation time and 

minimise human input to the analysis become important. One would prefer­

ably like to spend as little time as possible reducing and classifying the data and 

avoid having to look at specific outliers and decide which class best fits them. 

3.4 Trump et aI's BALQSO Catalogue 

In March 2006, Trump et al [23] released a data release 3 (DR3) BALQSO 

catalogue consisting of 4787 BALQSOs out of the 16,883 QSOs (26%) that had 

the CIV and MgII in the observed spectra. Compared to the Early Data Release 

(EDR), this is an increase in the BALQSO fraction by over a factor of two. This 

is mainly due to a new metric adopted in defining BALs. In this section we will 

first describe the metrics used for BALQSO recognition, then analyse the results 

obtained by Trump et al and finally assess the reliability of the metrics adopted. 

3.4.1 BALQSO Metrics 

In the EDR catalogue by Reicard et al [18], the definition of BAL adopted was 

that of Weyman et al [25], namely the Balnicity Index (BI). This definition 

came about because of the difficulties in distinguishing BALs from other ab­

sorbed QSOs. In particular, narrow absorption line quasars (NALQSOs) exhibit 

narrow absorption features (~ 1000 km/s, usually detached from the emission 

line), making it difficult to distinguish them from BALQSOs. The dividing line 

between the BALs and NALs was arbitrarily set to 2000 km/s. The BI index is 

determined as follows: 

• Concentrating on CIV emission line, define a continuum as sensibly as 
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possible between the rest wavelength of CIV and SiIV emission lines . 

• Define the systematic rest frame as accurately as possible 

• Compute the BI (modified equivalent width of strong absorption in km/s) 

using the following equation 

BI= 1- - Cdv 13000 [ f(V)] 
25000 0.9 

(3.1) 

, where f(v) is defined to be the normalised flux as a function of velocity dis­

placement from line centre. The value C is binary and therefore can only take 

the values 0 or 1. It is initially set to zero, and is turned to 1 whenever the 

quantity in brackets has been continuously positive for over 2000 km/s. How­

ever C is turned back to zero when the quantity in brackets turns negative 

again. A BI of zero means no absorption, whilst any QSO with BI greater than 

zero is considered to be a BAL. Thus the BI gives us a feel of how much broad 

absorption is present. It turns out that the BI metric is very good at identifying 

BALs, but one can see that the definition is very conservative and some BALs 

will be missed (as we will see later in the chapter). Moreover, BALs exhibiting 

the ghost of Lyman-a [14] may be missed by the BI metric, and wrong redshift 

determination or bad continuum fitting can also cause missclasifications. 

Trump et al [23], on the other hand, adopted a new metric named the Ab­

sorption Index (AI), devised by Hall et al [7]. They modified the BI metric 

slightly, so as to measure all absorption within the limits of every trough, and 

extended the integration limit to 29,000 km/s. The formal definition is given in 

the following equation 

r29000 

AI = Jo [1 - f(v)] Cdv (3.2) 

Obviously, as for the BI, the spectrum needs to be normalised. Again in this 

case, the value C is binary, but it behaves differently. C is set to zero except 
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Figure 3.4: Distribution of QSOs with AI>O from Trump et al [23]. 
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in contiguous troughs which exceed a minimum depth of 10%, and a minimum 

width of 1000 km/s, in which case it is set to one. By adopting this extra 

definition, the SDSS team have increased the numbers of BALs in DR3 from 

1756 (10.4%) which satisfy BI>O to 4386 (26.0%) which satisfy BI>O or AI>O. 

This is not surprising: the AI is much less conservative than the BI, since the 

minimum width is only 1000km/s and the index extends to 29000km/s. Having 

said this, the DR3 BAL catalogue does not address this as a problem at all. 

Moreover Trump et al [23] discard any QSO with BI>O and AI=O (although 

they still give BI values for each QSO). 

When defining the AI, Trump et al [23] chose 1000km/s as their minimum 

width, after having also tried 450km/s and 750km/s. Their preference for 1000 

km/s threshold was based on the fact that the other two cuts were too liberal 

(but they did not try larger widths). 
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Figure 3.5: Same distribution as in Figure 3.4 broken down for objects with 
BI>O in blue and the rest in green. 

3.4.2 Trump et aI's results: a closer examination 

Figure 3.4 shows the AI distribution for QSOs taken from Trump ([23]) . It is 

formed by a population of 11646 QSOs, all of which contained the eIV line 

from which the AI was measured. The distribution is clearly bimodal. We 

note that Trump et al [23] produced a similar plot on a linear velocity scale 

up to 4000km/s. They did not notice this bimodality since the linear scale was 

inappropriate for such a large range of AI's. The distribution is roughly split 

between objects with BI>O and the rest, as shown in Figure 3.5. This result 

is striking and suggests that the most recent BAL catalogue contains far too 

many objects. 

We will now inspect more closely spectra from the extremes of the distribu-

tion together with spectra from the intersection. Figure 3.6 shows four particular 

objects from the bulk of the green distribution (also the bulk of the whole dis-
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tribution) with an AI~400km/s. It seems clear that none of these objects have 

any proper CIV absorption in them, never-mind BALs. 

On the other hand, objects with an AI~4000km/s and a BI>O seem to 

contain most of the properties of genuine BALs, as shown in 3.7. Clearly, the 

AI on its own is inappropriate for BAL recognition. Over half of the objects 

in the whole distribution are contained in the low-AI region of this bimodal 

distribution, so serious revision of the catalogue seems necessary. 

Let us now inspect the distribution containing objects with BI>O. In Figure 

3.8 are presented objects from the low velocity tail of the blue distribution. 

Again there are no evident signs of absorption. We note that these QSOs have 

always been included in BAL catalogues. 

On the other hand the bulk of the blue distribution does contain genuine 

BALs, as the ones taken from Figure 3.7. The BI is by no means perfect though. 

As we see from Figure 3.9, some genuine BALQSOs would have been missed if 

one had relied solely on the BI. 

It is clear that further examination is needed. Next we will try and use some 

of the methods explained in the previous chapter to help us mine the data and 

produce a new, more appropriate, BALQSO catalogue. 

3.5 Data Selection & Normalisation 

Preconditioning the data is of key importance when employing SOMs. If one 

does not account for redshift, for example, the SOM might classify on that, 

giving no importance whatsoever to spectral shape. On the other hand, if 

one does not take into account dust reddening, the SOM might classify on the 

spectral index, ignoring the absorption issues we are interested in. This next 

section will explain the procedures adopted to ensure the SOM (and later LVQ) 

have the best chance to identify BALs. 
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From the 44221 QSOs in [20], we impose a redshift cut of 1.90 :::; z :::; 4.94 to 

ensure the presence of the CIV region where we will check for broad absorption. 

This yields 11646 QSOs which will be carried forward for normalisation. 

The first thing that needs to be done is correcting for host galaxy extinction. 

This affects almost all the spectra of extra-galactic objects. Dust grains within 

galaxies preferentially scatter wavelengths with increasing intensity at shorter 

wavelengths. The result is that the observer will see more flux from the red end 

of a spectrum than from the blue. Although this is unlikely to alter the small 

scale structure of the spectrum, this phenomenon can definitely alter the slope 

of the continuum quite drastically, and the ANNs might classify on this rather 

than on absorption. We will therefore account for this by using the extinction 

curve tabulated by Pei [37]. Pei examined three particular cases, namely the 

Milky Way, the SMC (Small Magellanic Cloud) and the LMC (Large Magellanic 

Cloud). The values obtained for the SMC are commonly used to account for 

dust reddening in distant QSOs (e.g. [23]), and we will follow this practice 

here. 

Pei's empirical law for dust reddening is expressed as 

~(A) = [(E.>--v / E B - V ) + Rv] / (1 + Rv) (3.3) 

where E.>-_ v = A.>- - Av is the colour excess in magnitudes, Rv = Av / E B - V 

is the ratio of total-to-selective extinction, with the subscript V indicating the 

visual photometric band. For the SMC, Rv ~ 2.93, whilst E.>-_ v / E B - vis tab­

ulated in Pei [37] as a function of A-I. 

We now turn our attention to the composite fitting method employed here to 

normalise the spectra. We assume that all QSO spectra, fint(A), are intrinsically 

the same, but observed to be at different distances, having different continuum 

slope characteristics and being differently absorbed. This can be expressed as 
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(3.4) 

where a = 0.4(1 + Rv), ~(>.) is the Pei SMC extinction curve, >. is the rest 

wavelength, E is the host galaxy extinction EB-V, K is the constant of pro­

portionality (responsible for distance) and O! the spectral index (responsible for 

reddening). With this assumption, we can create a geometric mean composite 

of all QSO spectra, whilst still retaining fint(>') as before. This is defined as 

where now O!comp and Ecomp are the arithmetic means of all spectral indeces and 

host galaxy extinctions in the sample from which the composite was constructed. 

Subtracting equations 3.5 from 3.4 in log space for all QSO spectra allows us to 

solve for the constants & = O!obs - O!conp, E = Eobs - Ecomp and the constant 

of proportionality Log(Kobs) - Log(Kcomp) without actually requiring a formal 

definition for fint(>'). This will then allow us to fit a continuum to the spectra. 

The continuum windows adopted here for fitting purposes are those used by 

North et al [14]. MATLAB was employed for the fitting procedures. 

3.6 SOMs application to SDSS 

Here we will present our first attempt to apply the methods explained in Chapter 

2 for the purposes of BAL recognition. Having normalised our spectra, we focus 

on the crv region on which to perform our training. We do this by choosing 

the rest wavelength region between 1400-1700 Angstroms and smooth it to 1 

Angstrom per pixel to ensure the spectrum within this region has the same 

number of pixels for all QSOs. 

We then trained different SOMs with different sets of training data and 
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different initial conditions. In doing so, we had to account for possible errors 

in the redshift determination of the QSOs. Without accounting for this, the 

map would have probably classified on redshift (or more appropriately redshift 

error) rather than spectral shape. We account for possible redshift errors as 

follows. During training, each QSO spectrum is compared to each neuron in the 

map one at a time. To find the best possible fit to the neuron, we allow some 

shifting of the QSO spectra relative to the neuron. This is done by comparing 

the neurons to the inputs, allowing for a ±15 Angstrom shift on the red side of 

CIV (1535-1575 Angstroms). Only the red side of CIV has been chosen so as to 

not fit any absorption present on the blue side4
. 

A lot of computing time was spent trying to produce a clean map. However, 

this goal was not achieved. The least confusing map produced was trained on 

2000 QSO spectra with a very low learning constant of 0.01. The computation 

took a day or so, and the map is presented in Figure 3.10. 

We inspected the map neurons and established that the top blue cluster is 

that of BALs. However the U-matrix produced no definite boundaries to the 

cluster, and no classification was possible with this method. The main reason 

for this is caused by the metric adopted here to define QSO, the Euclidean 

distance. This is best illustrated visually. From Figure 3.11 one can see that 

the blue and red spectra are both BALs, yet in terms of Euclidean distance the 

blue and green spectrum are more similar. This issue consistently confuses the 

map. In fact, this problem arises often with SOMs: preconditioning of the data 

is crucial in identifying clusters. On the other hand it could also be that the two 

QSO populations are continuous from being absorbed to being non absorbed. 

4We tried to shift all the spectrum but soon realised that some QSOs were being fit in the 
absorption window rather than emission. 
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Figure 3.10: SOM trained on 2000 QSOs with a = 0.01 throughout. The top 
blue cluster is that of BALs, however no definite boundaries were produced, and 
no definite classification was possible. 
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Figure 3.11: Three QSO spectra to demonstrate the Euclidean distance problem. 
In this case the blue and green spectrum are most similar, however being that 
only the blue and red are BALQSOs. 

3.7 LV Q Classification 

Having tried the unsupervised SOM, we now attempt classification using the 

supervised LVQ. As explained in the previous chapter, this method is noticeably 

more time consuming as the user needs to tag a training data set. Moreover , if 

errors may exist within the tags , the user will have to asses the appropriateness 

of the results. At the same time, however , this method allows us to overcome 

the problem we had when dealing with SOMs, as we will show later. 

3.7.1 Training 

The first thing to be done is create a training set for the ANN to work on. As a 

first step it seems plausible to tag QSOs with BI>O as likely BALQSOs, since 

most objects with this index are indeed genuine BALQSOs. We therefore cre-



CHAPTER 3. AGN, QSOS AND BALQSO 47 

ate a t raining set composed of 400 QSOs with Bl>O and 400 QSOs with BI= O. 

In t his way, t he map will learn to recognise objects wit h BI>O, which contain 

mostly BALs. The key advantage t his method retains over a pure BI classifica­

tion is t hat the user can ult imately check the map neurons for misclassification 

and correct them manually. The LVQ can t herefore be considered as a mixture 

of human expert classification and BI classification. 

Our LVQ map contains 150 neurons, 75 dedicated to objects wit h Bl>O 

and the rest to BI= O. At the start , each neuron contains a random QSO from 

the training set, with wavelength range between 1420-1630 Angstroms, like in 

the SOM case. The problem we had with SOMs, displayed in figure 3.11 , is 

not an issue anymore, since wit hin t he 75 neurons dedicated to BALs we can 

have various combinations of spectral shape (e.g. strong emission and weak 

absorption and vice versa). We then employ t he LVQ algorit hm on t he 800 QSOs 

for 3000 iterations, keeping t he learning constant fixed at 0: = 0.01 , allowing 

for t he 30 Angstrom shift, as described earlier . In Figure 3.12, we show the 

average E uclidean distance for each iteration. Convergence was achieved after 

about 500-1000 iterations. Training took over a day, and the final map weights 

are presented in Figure 3.13. 

Since we know t he BI is not a perfect metric, we now need to inspect the 

neurons wit hin t he map. We first search for BAL neurons that contain QSOs 

with BI=O in t he final map. This yielded 7 neurons. Moreover , visual inspection 

of t he BAL side reveals 6 extra borderline cases. We therefore examined 13 

neurons in total on t he BAL neurons, together with most QSOs within them. 

However , we find that only t hree BAL neurons5 have been "rnisclassified" on 

t his side, in t he sense that they have learned to recognise non-BALs wit h BI> O. 

We now turn our attent ion to t he non-BAL neurons, here asking the map 

to return neurons containing objects with BI >O. T his yielded 14 neurons plus, 

5([row,column], [4,5]' [5,3J and [3,3]) 
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12 more we decided to check as borderline cases. This is a bigger number than 

before, and is probably due to the fact that the BI metric misses quite a few 

BALs (as we have seen from Figure 3.9). Inspection reveals that only 7 of these 

neurons6 have been genuinely mislabeled (i.e. contain predominantly BALs). 

It is worth stressing that this is actually a good thing: we now have known 

neurons in the map that have actually learned to recognise BALs with BI=O. 

3.7.2 Results 

Having trained the map and corrected it, we can now easily classify the remain­

ing QSOs (10846). In order to assess the performance of our algorithm, we will 

now locate some of the spectra presented previously (Figures 3.6, 3.7, 3.8 and 

3.9). VVe note that these spectra have not been included in the training set. We 

find that all these spectra are classified correctly. 

We are now ready to compile our own final BAL catalogue using our LVQ 

map. This contains 1208 (10.4%) BALs out of the 11643 QSOs. It is interesting 

to consider the AI distribution of the objects we classify as BALQSOs and 

"normal" QSOs. This is presented in Figure 3.14. Clearly the skewness of the 

distributions has diminished, although a low velocity tail of BALs still remains. 

This might in fact be a characteristic of BALs and will be examined further in 

future work. 

3.8 Conclusion 

We have used LVQ to search the DR3 QSO catalogue for BALQSOs. We find 

a BALQSO fraction of 10.4% for objects exhibiting CIV emission. Our result 

is in close agreement with that of Reichard et al [18] (based purely on BI), but 

disagrees with Trump et al [23] (based purely on AI). We think that ours is 

6([15,10], [12,8], [4,9]' [6,7]' [12,lO]' [14,6] and [13,7]) 



CHAPTER 3. AGN, QSOS AND BALQSO 

300 

250 

1;'200 
c 

" => 
C" 
i!! 
u. 150 

100 

50 

AI value in kmls 

51 

Figure 3.14: Final AI distribution for BALs according to the LVQ classification. 
To be compared with Figure 3.5 . Part iculary the blue distribution shows t he 
true distribution of BALQSOs within DR3. 

to date the most complete and reliable catalogue of BALQSO systems in t he 

redshift range 1.90 :::; z :::; 4.94. The neuron map will be posted on the web7 in 

form of a MATLAB .mat file together with the catalogue in ASCII format. This 

can then be used for future reference on the release of future , more complete, 

QSO catalogues. 

7http://www.astro.soton.ac. uk;-simo 



Chapter 4 

Mining Gamma-Ray Bursts 

All truths are easy to understand once they are discovered; the point 

is to discover them - Galileo Galilei 

In this chapter we will attempt to use SOMs for mining the GRB data obtained 

from the Burst And Transient Source Experiment (BATSE) on board the Comp­

ton Gamma-Ray Observatory (CGRO). We will first give a brief introduction 

to GRBs, together with a brief literature review regarding their classification. 

Next, we will describe the catalogue used together with the background re­

duction techniques employed to try and extract light curve shape dependent 

variables. The results from the SOMs will show us a distinction between single­

pulsed bursts (SPBs) and multi-pulsed bursts (MPBs), which will be investi­

gated further. We conclude with some suggestions for future work. 

4.1 GRBs: An Introduction 

Gamma-Ray Bursts are intense and short (0.1-100 seconds) bursts of gamma 

ray radiation occurring on average once per day at cosmological distances from 

52 



CHAPTER 4. MINING GAMMA-RAY BURSTS 53 

Earthl. Their distribution in the sky is isotropic. They were first detected by 

the Vela satellites in the 1960's. Since then, thousands have been observed by 

missions such as CGRO, BeppoSax, High Energy Transient Explorer (HETE), 

Konus and many more. Because of the difficulty in detecting such events, GRBs 

remain poorly understood, with little progress being made until the advent of 

the Compton Gamma Ray Observatory (CGRO) which proved the isotropy 

of GRBs, Beppo SAX finding a lot of the optical counterparts and the GRB 

chaser SWIFT. GRBs are the most luminous sources known, for a few seconds 

outshining the entire Universe in gamma-rays. Hence GRBs can be seen out to 

large redshifts, and are thereby strong cosmological probes. They illuminate the 

intergalactic medium (IGM), and can give us information about star formation, 

galaxy evolution and the chemical enrichment in the early Universe. 

The first detector to produce a statistically meaningful sample of GRBs 

was BATSE, with over 2700 triggered bursts. The analysis from the duration 

distribution of such bursts turned out to be bimodal ([10]), with an empirical 

split at rv 2 seconds. Since then, the GRB population has been classified into two 

main groups: short GRBs and long GRBs, with a lot of speculation regarding 

their origin. However, it is clear that short GRBs are energetically weaker (by 

a factor of ~ 100) and have only been seen at relatively low redshift mainly 

in elliptical galaxies. Indeed some short GRBs may in fact be soft gamma-ray 

repeaters (SGRs). 

For many years, multivariate studies have been employed to study these 

classes and potential others. Variables such as duration, fiuence, maximum 

peak energy and hardness ratio2 have been used. In particular, Mukherjee ([12]) 

suggested the existence of an "intermediate" class between the short and long 

bursts using such variables. A similar analysis with a different algorithm was 

1 For an excellent review of Gamma-Ray Bursts physics and history refer to Mezaros P. [32] 
2The hardness ratio is the ratio of the fluences obtained in two different energy channels. 
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then carried out by Hakkila et al ([6]), with the conclusion that the "intermedi­

ate" class is not necessarily a distinct source population. Hakkila also pointed 

out the fact that this third class could also be an artifact caused by analysis 

errors. Rajaniemi et al ([16]) employed SOMs to classify the data, using similar 

variables as Mukherjee and Hakkila, but a different algorithm. Their results, 

like Hakkila's, suggested the existence of two distinct GRB populations, but did 

not support the finding of Mukherjee. We note that this last analysis was the 

first to reiy on an unsupervised ANN. 

Due to the many multivariate analysis carried out already, we will concen­

trate solely on light curve shape to try and distinguish possible GRB popula­

tions. This kind of analysis is less susceptible to systematic errors either caused 

by the detector(s) or the analysis. In multivariate studies one usually needs 

to obtain data from different detectors, increasing the inhomogeneity of the 

dataset. Concentrating only on light curve shape will yield us a more complete 

and homogeneous GRB population. Moreover, concentrating solely on light 

curve shape will allow us to examine variables which have not been included in 

the analysis. We will employ the unsupervised SOM algorithm for this, but, as 

usual, we will first have to precondition the data. The information regarding 

GRB strength and duration will have to be removed after having subtracted the 

appropriate background. 

4.2 The Data & Preconditioning 

The data set used within this work is that compiled by Stern et al. ([22]) 

containing in total 3666 GRBs recorded by BATSE between 23 April 1991 to 19 

November 1999. It is the largest sample of such events and was compiled using 

the observatory's archival data. It consists of 1.024s resolution data covering the 

whole period of BATSE's lifetime. Almost half of these GRBs did not trigger the 
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detector, as they were too weak or occurred during dead-time. The catalogue 

consists of the best-fit time profiles in the four energy channels for each burst, 

and is currently the best available for the 1.024s resolution. We will be using 

the sum of the counts in the two brightest energy channels (#2 and #3) in the 

energy range 50-300 keY. Background still needs to be subtracted, however. 

In order to aid the reader with the background reduction steps that follow, 

we suggest the inspection of Figure 4.2. In it, we show four examples of how 

the burst data is reduced, and how the variables used within our networks are 

defined. We will now describe in detail the procedures adopted. 

We fit a simple quadratic model to the background using a least squares fit 

combined with sigma-clipping. The procedure fits a background model to the 

light curve, while excluding every point lying outside n standard deviations (ncr). 

The process is then iterated until no more points are rejected. This enables the 

model to be fitted only to the background, excluding the burst. A threshold 

of 2cr has been chosen by trial and error as this visually seems appropriate for 

most bursts. 

Next, in order to eliminate flux and time information, we evaluate the Cu-

mulative Distribution Function (CDF)3 for each burst and normalise it to the 

burst fluence and T904 duration. However, this is not appropriate from the 

background-subtracted time profiles, since the noise present before and after 

the bursts will be a major disturbance, especially for GRBs with a low fluence. 

This disturbance will result in a "noisy" CDF which will not be always positive 

and not be monotonically increasing. In order to overcome this problem, we 

only consider the 3200 GRBs with the greatest fluence, and moreover employ 

a similar method to sigma-clipping, Chauvenet's criterion [36], to eliminate the 

background noise contamination. This method was first introduced as a way 

3The CDF is the cumulative area of the burst light curve. 
4The T90 duration of a burst is the time it takes for the middle 90% of photons to reach 

the detector. 
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of assessing if one piece of experimental data was spurious out of a set of ob-

servations. Here, we modify its application slightly. The method assumes that 

the background noise follows a Gaussian distribution5 with a corresponding (J. 

All points lying clearly outside of this distribution must therefore be associated 

with the burst. In practice, the method proceeds iteratively. In each iteration, 

the standard deviation of all points is calculated and used to define an exclu­

sion threshold. This threshold is chosen so that less than one point is expected 

beyond it. Mathematically, 

( 4.1) 

where /VI is the number of data points. As more and more points get excluded, 

(J decreases together with M, thus lowering the exclusion threshold every time. 

This threshold converges asymptotically to the point where only background-

noise points are included. The excluded points will then be our background 

noise free burst. 

Having obtained the pure burst light curve, we can produce a clean CDF. 

This in turn allows us to produce the T90 distribution of such events, as dis-

played in Figure 4.1, together with fluence and maximum peak intensity. Note 

that the famous T90 bimodality is not present in our sample, since the data 

used 1.024 seconds resolution, and the "short GRBs" peak at '" 0.1 seconds. 

Having evaluated the CDF for each burst and normalised it to burst fluence 

and T90, we define 9 variables in an attempt to encapsulate information regard-

ing burst structure. This was done after taking inspiration from Horvath et al. 

[8], who used similar variables for GRB classification purposes with a supervised 

ANN. 

We first define To, T lO ,T20 up to Tgo , as the interval between the arrival 

5This is not exactly correct since we know that the background noise is best described by 
Poisson statistics. However, for sufficiently high number of counts this is not important. 
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Figure 4.1: Distributions for the 3200 GRB population. From left to right: 
Log(T90), Log(Fluence) and Log(Maximum peak intensity). 

of the middle 0%, 10%, 20% up to 90% of photons. We then define our nine 

variables as the difference between neighbouring intervals and normalise them 

to T9o . Expressed mathematically, 

( 4.2) 

This will give us a set of variables independent of burst time, since the sum 

of these will always be 1. The variables are also independent of burst fluence 

or hardness. This set of variables will then be then fed into the 80M for 

classification purposes, since now all bursts are expressed in 9 variables. 

4.3 SOM Results 

We have applied the 80M algorithm to the GRB dataset using as input the 9 

variables obtained from Equation 4.2. The map consisted of 225 neurons (15 

x 15), whilst the number of iterations was arbitrarily set to 2000. The neuron 

weights were initialised with random numbers with 0 mean and 1 standard 

deviation. This was done so that, on average, the range of the weight values 



CHAPTER 4. MINING GAMMA-RAY BURSTS 58 

'~I ~-1"·~ 1 '~I··-f·1 -I ~~r~ 1 :1 ··~Ir 1 I: ..... :1.:........ 1= ....•. ..... • ... • ... : •. J ••••• •. If·: :: ..... .. .......... .,. 
o ... .. ~ ~ ::. •.... 0······· • . ~~IM I: .••. : •.••..... 

· .. ". . . 
-5000 o · -1000 '" O · 

-200 -100 0 100 200 -200 -100 0 100 200 -200 -100 0 100 200 -200 - 100 0 100 200 
~ ~ ~ . 

Currulalive Disuibulion Function Netnrork variables Currulawe Distribution Functioo NetNork variables lOTI' 0.8t] .. : l[ill: O.,(]., 08 ;. .;.. .... . O~ .... •• .. . . .• 
. . :._ 0.6 .... ,:,····':···· '-:".. . .: 0.3 .... : ........ ; ... . 

0.6 ···· .. • ,.. . .:. 0.6 ....•.... : .. ,.. . .:. 
. , ,- 0.' .....•.... , ..... ;... : . , , - 02 .... , ... : .... : 

0.4 .. , . :. :,. ::: 0.4 ··· ·· . ... : .. ':'. . ::: · .. ... . 
01 .... .... !", •• . :..... •• 0.2 .... : .... ~ .... :.. 0.2 .. .. . :.... .. _:... 0.1 ·· ·· · .... : .... . - . 

· . . . · . . . o O · 0 . 0 . 
-200 -100 0 100 200 0 2 4 6 8 -200 -100 0 100 200 0 2 -4 6 8 

15OO8§Backg<OU
nd

SUb''''''.b
lUS
l 15OO[!I]Bu'lwi. 00 baUg<OUnd 2OOO~Backg<OUndSUb"CI"nUISI 2OOOITJBuOlwi. 00 baUg<ound · . . . · .. .. . .. .. . 

1000 '.-... ...... " ... ~..... . . . 1000 ... l ..... . ... L.. 1500 .... r' o

, • r 1500 ... .... • : ... ... ...... '~- .. . 

500 ..... . ... :. . '. 1000 :Jtt ..... .. . ; 1000 ... .... . ' ..... ... ... ... ..... ... . . 
· .. 500 .... ... . •.• .. 

o ..... ,.. . #~ 500 ..... .... . .~.... 0 .... Ii'r . • .. 500 · .. .. : ............ . 
.. .. . . .. . . 

-500 . 0 " -500 " 0 
-200 -100 0 100 200 -200 -100 0 100 200 -200 - 100 0 100 200 -200 - 100 0 100 200 

time line 

CUlTlJlalive Disbibutioo Function Nef'HOI'k variableS CUITlJlative Disbibutioo Function NerNOrk varia!res 1.5[0 O::~ ..... :... .... 0:[Ij ... ·. O::bd:'-1 . I • . 

· . . •. 0 6 . . . . • . •. ~. 

: , - 0.15 .... : •... : ... ~. 0.4 .... •... .. •. ,- 0.\5 . . . . ... • ... 

0.5 ... . . ; ...... ',... . . . . 

· 0.1 " : .... : ~ ... 02 ........ :.... . ... . ... , ,. 0.1 . . - .. 

. . 
o 0.05 . . 0 0.05 

-200 -100 0 100 200 0 2 4 6 8 -200 -100 0 100 200 0 2 J 6 8 - -
Figure 4.2: Figures to visually assist the explanation of the reduction methods. 
For each burst we display on the top left the burst after background fitting, 
subt raction and sigma clipping. The x-axis is t ime in seconds whilst t he y­
axis is photon counts in channels 2+ 3. The top right is the burst without 
background, as obtained by applying Cheuvenet's criterion. The corresponding 
burst CDF is presented in the bot tom left , but not normalised to T 90 for ease 
of comparison to the real burst. Finally t he 9 variables used by t he 80M and 
defined in Equation 4.2 are presented in t he bottom right. 
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were relatively close to the input data6 , and the learning factor could be kept to 

a low constant. The neighbourhood kernel decreased monotonically from half 

the map size to a negligible value of 21·50 = 3.7 x 10-3 . 

Two runs were carried out: one with a = 0.1 throughout and one with a = 

0.01. The U-matrices for these are presented in Figures 4.3 and 4.5, respectively, 

together with their final weight vectors in Figures 4.4 and 4.6. 

6We note that the weights had negative values contrary to any of the inputs. In terms of 
Euclidean space, however, this distance was on average the same for all inputs across t he 9 
variables. 
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The figures show that the V-matrix has identified only two classes, although 

the boundaries are not completely clear. Moreover, from both the V-matrix and 

weight vector maps, one can see that a large portion of the neuron weights are 

dedicated to a particular pattern within the dataset: the one for Single-Pulsed 

Bursts (SPBs) having a single burst structure in the prompt emission. This 

class consists of over half of the total population. Having established that SPBs 

are the only recurring pattern the SOM recognises, we can ask if this is a "real" 

distinction. To answer this question, we first need to split the SPB class and 

the remaining Multiple-Pulsed Bursts (MPBs). We can then compare their T90, 

fiuence and maximum peak distributions, since these variables have not been 

used by the network. Thus any difference between the distributions of these 

quantities, would suggest that SPBs and MPBs are intrinsically different. 

Because the boundaries are not so evident from the V-matrix, strictly speak­

ing we would need to inspect nearly all neuron weights to classify SPB and 

MPBs. For simplicity, we therefore rerun a smaller SOM with 25 neurons (5 x 

5) and assess those neurons, thus decreasing the amount of visual inspection. 

This last map was obtained after 500 iterations with a constant 0: value of O.l. 

The V-matrix and weight vectors are displayed in Figure 4.7. Note, however, 

that for such a small map, the V-matrix has no real meaning, and the figure is 

included mainly to give a feeling of the hits within the neurons. 

We have inspected all 25 neuron weights and conclude that 5 have been 

dedicated to SPB. These are7 [4,5], [5,1], [2 3], [3 5] and [5,5], and can be 

visually checked in Figure 4.7. The total number of SPBs is 1696 whilst the 

MPBs add up to 1504. 

7 [row,columnJ 
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Figure 4.7: U-matrix with hits and weight vector for the 5 by 5 SOM. 
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4.3 .1 Are SPBs and MPBs intrinsically different? 

4 .3.1.1 Fluence, T90 and Peak Intensity Distributions 

Having located the neurons responsible for SPBs and MPBs, we can classify 

each burst and produce the T90 , fiuence and peak intensity distributions for 

the two classes. These can be then compared to each other and to the global 

distribution in Figure 4.1. These comparisons are presented in Figure 4.8. The 

T90 distributions seem different for SPBs and MPBs, with the former being 

characterised by shorter durations than the latter on average. Moreover , the 

fiuence distributions seem to peak in different places, with the MPBs being less 

energetic on average. These differences suggest that our two network classes do 

indeed have different intrinsic properties. Only the maximum peak distributions 

of both classes seem to be quite similar. 

However , before we can draw any solid conclusion, we have to consider the 

possibility of any biasing effects. The two main effects which might have caused 

this classification scheme to arise are: the possible biasing effect caused by the 
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Figure 4.8: Same distributions as in Figure 4. 1 but split between SPBs and 
MPBs. 

signal-to-noise (S I N) ratio of the observations and the preconditioning of our 

data (i.e. the definition of our variables). We will now examine the question of 

possible biasing effects caused by the observations, and later assess the relevance 

of preconditioning. 

4.3.1.2 S I N bias? 

It is trivial to imagine that many SPBs could actually be MPBs for which we only 

can only see the strongest spike. In order to understand if this effect might cause 

our result, we have performed some simulations, in order to determine if the 

SPB / MPB split is simply determined by burst distance or detection threshold. 

The way this was carried out was by taking all MPBs and raising their threshold 

level (decrease their SIN ratio) gradually, until the burst turned into a SPB. In 

other words, we increased the background level of MPBs until they turned into 

SPBs. A similar analysis was performed by Schmidt [31] in order to determine 

the reliability of the T9D measure. Our analysis was performed by "cutting out" 

the bottom part of the burst, in steps of 5% of the maximum peak of the burst. 

As a reference for determining if an altered burst is classified as an MPB or a 

SPB, we used t he 5 x 5 map presented in the previous section . Once we have 

turned the MPBs into SPBs, we can compare their distributions and inspect 

them for any changes to assess the biasing effect question. If the distributions 
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Figure 4.9: Threshold/ Distance simulation for MPBs normalised to a common 
peak. The dashed black line shows the result ing distributions from the simu­
lation described in Section 4.3.1.2. The true SPB and MPB distributions are 
t here for reference. 

of the simulation closely follows that of MPBs, then that would suggest biasing 

effects could not be the cause of t he network distinction. On t he other if t he 

result of t he simulation would closely follow that of SPBs, then it is possible 

that the SPB / MPB split could be caused by this biasing effect. 

Out of 1504 MPBs, only 548 could be turned into SPBs wit h the method 

described (i.e. -2/3 of all bursts became undetectable before t hey could be 

turned into SPBs) . The remaining bursts could not be transformed into SPB 

by simply increasing t he threshold level (equivalent to increasing distance). The 

distributions of the SPBs created from the MPBs in t he simulation are presented 

in Figure 4.9. We note t hat most of the 548 MPBs which t urned into SPBs 

did so with a tiny increase in the threshold level (5%-10% of t he maximum 

peak). This would suggest t hat these are bursts with pre/ post cursors or high 

"spikes" present in the light curve. All three simulation distributions seem to 

more closely follow the one of the MPBs, although there is a slight shift within 

the distributions (T90 and fiuence) of the simulated MPBs towards the SPB 

distribution. Overall we think the results show that t he SPB population cannot 

be caused by biasing effects due to dist ance from the observatory or t hreshold 

0' 
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Figure 4.10: Two Multiple bursts with similar ratios between pulses. The 
smooth changes, as seen from the CDF, happen just before and after 0.6 for 
each. This change however is not smooth in variable space. One burst peaks at 
T20-TI0 whilst the other at TI0-TO. 

level. The fact that only about 40% of the MPB population could be turned to 

SPBs is a particular strong hint towards the fact that these two groups do have 

indeed different intrinsical properties. 

4.3.1.3 Preconditioning bias? 

Another possible bias effect could be caused by the particular definition adopted 

for our network variables. We will now examine this in more detail. 

Closer inspection of the neuron weights , together with the hits on the U-

matrix, reveals a subtle problem with our network variables, which might be 

the reason why the MPBs did not cluster properly. Because of the nature of 

these variables, the change between similar patterns is not a smooth one. This 

can have a great impact on the ANN, as t he Euclidean distance is its measure 

of "difference". The phenomenon is displayed in Figures 4.10 and 4.11. On the 

other hand two examples of t he SPB group are presented in Figure 4.12. 

The figures suggest that the definition of our network variables does indeed 

explain why t he SOM would have found it easier to separate SPBs from MPBs, 

than to discover sub-classes within t he MPB population, for example. How-
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Figure 4.11 : Two multiple bursts: One with precursor and one with a post­
cursor. Our variables have been defined as to make such events as similar as 
possible, however the change between the two is still not smooth. 

ever , it is important to understand that this does invalidate the evidence for 

intrinsic differences between SPBs and MPBs, as presented in Sections 4.3.1.1 

and 4.3.1.2. Rather, the existence of what may be called "preconditioning bias" 

means that we cannot rule out that there are, in fact , sub-classes within the 

MPBs. There could even be a continuous distribution of burst complexity (with 

SPBs occupying one extreme end), but then our results imply that there must 

be a correlation between complexity and other burst parameters (such as T90 

and fluence). 

4.4 Conclusions and future work 

This chapter has mainly been focused on mining the GRB dataset using solely 

light-curve shape dependant variables. This was done with the SOM, finding 

one main distinction within the set: SPBs and MPBs. The two sets also had the 

independent characteristic of having different duration and fluence properties. 

We note that other authors have examined differences between SPBs and 

MPBs [6, 21]. This could definitely be investigated further by, for example, 
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Figure 4.12: T wo GRBs mapped onto random blue neurons in maps 4.3 and 
4.5. Note the smooth variable rise characteristic of this class of bursts. 

including additional variables in the 80M such as spectral lag. Moreover , based 

on this study, it is clear t hat concentrating on light curve shape solely requires 

the definition of some new, smoothly varying, variables. This would give the 

80M a better chance in establishing boundaries between classes. One could 

even run two 80Ms, one with t he light curve shape variables and one with 

independent ones, such as T90 and fiuence, and inspect the two to identify 

classes and correlations within the dataset . 
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Chapter 5 

Summary and Conclusions 

I have never met a man so ignorant that I couldn't leam something 

jmm him - Galileo Galilei 

I have said consistently that global warming something is a serious 

pmblem. There is a debate over whether it's manmade or naturally 

caused - G.W. Bush 

Two things are infinite: the universe and human stupidity; and I'm 

not sure about the universe - Albert Einstein 

This thesis has dealt with the application of Kohonen networks to astronom­

ical data mining. In particular, we have shown how important the effect of 

preconditioning is when applying such algorithms. In chapter 3 we have seen 

how the metric used in SOMs is not appropriate for spectral shape classifica­

tions, but, with the help of the supervised LVQ, we still managed to compile 

the most complete BALQSO catalogue to date. In fact, when using SOMs for 

BAL recognition, the metric to adopt is very non-trivial to define, and until one 

has created an appropriate one, unsupervised methods will always be hard to 

interpret. 
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We have also presented an application of SOMs to the GRB dataset obtained 

by BATSE. Using a new definition of light curve shape driven variables, we were 

able to identify two major recurring patterns: SPBs and MPBs. However, we 

have also realised the non-continuous behaviour of these variables, suggesting 

a possible improvement for future work. We showed that our two "network 

classes" also have different independent properties (T90 and fluence), which 

would suggest intrinsic differences between them. The reason for this difference 

has not been determined, and will definitely be investigated further in future 

work. 

We conclude this thesis by restating the importance of algorithms such as 

the ones used here for future astronomical data mining. The advent of enormous 

multi-wavelength surveys is already having a great impact on the astronomical 

community. The amount of data in astronomy triples every two years, and the 

dependence on robust algorithms follows accordingly. As an example, in ten 

years time, the square kilometer array (SKA) will be able to survey the entire 

radio sky on timescales of weeks, with much higher resolution and sensitivity 

than is possible today. Moreover, we can already see applications such as the 

Virtual Observatory taking shape. These will present astronomical data to the 

community in an extremely effective way and increase the potential for data­

mining based research. This will also require classification tools (such as ANNs) 

that will have to deal with new and unseen patterns. 
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