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Chapter 1

Introduction

1.1 The Standard Model

The modern understanding of the fundamental principles, that are at the root of how
the universe works, is through quantum particles. There are four forces in nature,
the Strong Nuclear Force, the Weak Nuclear Force, the Electromagnetic Force and
Gravity. Due to the relatively weak strength of gravity over short distances, and for
small masses, its understanding is largely separate from the other three forces of nature.
Today Gravity is well described by General Relativity [1] and does not impinge on any
physics at the atomic scale within current experiments. The remaining three forces of
nature have been successfully described for the past thirty years by what is called the
Standard Model.

The Standard Model has had a remarkable degree of success meeting experimental
tests for the past three decades. It breaks déwn into two parts: Electroweak Theory
2, 3, 4], a theory which incorporates the Weak Nuclear Force with Quantum Electro-
dynamics (QED) [5] that describes the Electromagnetic Force. The Electromagnetic

Force describes how charged particles are attracted or repelled by the interchange of



photons. The Weak Nuclear Force is responsible for radioactive $-decay within the
nuclei of atoms. The second part of the Standard Model is Quantum Chromodynam-
ics (QCD)I6, 7, 8, 9, 10, 11, 12], which describes the Strong Nuclear Force that binds
proton’s and neutron’s, and more specifically the quarks that make these composite
particles, together via the exchange of particles called gluons.

The guiding principle in the construction of theories of the forces is gauge invariance
with the prototype theory QED. QED has a U(1) local gauge symmetry [13] - that is
the phase of the charged quantum fields can be rotated by a space-time dependent
phase without the physics of the theory changing. The photon naturally emerges from
this theory - it communicates the different phase conventions in different regions of
space.

The Standard Model can be described as possessing the internal wave function
symmetries SU(3)x SU(2)xU(1)y. The SU(3) symmetry corresponds to the symmetry
over the interchange of the three so called colour charges of quarks, red, green and blue,
where the symmetry is upheld by the passage of colour charge through the gluons. The
gluons are as such the force carriers for the Strong Nuclear Force in QCD. The Weak
Nuclear Force is described by the symmetry SU(2) x U(1)y which is upheld at high
energies, but spontaneously broken at lower energy scales into the U(1) symmetry
of electromagnetism. The SU(2) symmetry describes the approximate symmetry over
weak isospin, the symmetry between ‘up’ and ‘down’ quarks preserved by three massless
particles called gauge bosons. The U(1)y or hypercharge gauge symmetry of SU(2) x
U(l)’y also has a rhassless gauge boson similar to the photon. After the SU(2) x U(1)y
symmetry is broken three gauge bosons gain a mass and become the particles known
as the W+ W~ and Z° bosons. The symmetry is lost and the ‘up’ and ‘down’ qﬁarks

become distinguishable as a result. However, one gauge boson remains massless and



becomes the photon of electromagnetism. As such, it is said that the high energy
symmetry SU(2) x U(1)y has broken down to U(1) electromagnetism.

The standard description of how this symmetry is broken is the so called Higgs
Mechanism, which also generates the Higgs boson. However, the Higgs Mechanism
remains unproven by experiments, and as we shall see in Chapter 2 there are other
alternative explanations of how this symmetry breaking may occur. In the next 12
months a new particle accelerator is due to come on line named the Large Hadron
Collider. This new experiment will probe fully the energies at which spontaneous
symmetry breaking must occur. In this experiment it is hoped the Higgs b’oson will
be discovered as a signature verifying the Higgs Mechanism, or alternatively other new
particles will be found establishing alternative explanations of Electroweak Symmetry

breaking.

1.2 Introduction to Thesis Research

In this section we will present an overview of the research in this thesis and how it
fits into the broader field. It is not intended that the reader should follow the details
in this section, but instead get a general feel for the structure of what will follow and
its place in the wider subject. We will hold off until Chapter 2 before introducing
Deconstruction in full from the beginning.

The need to restore unitarity in high energy WW scattering has long been cited as
evidence that there must be a Higgs boson with mass below of order 1 TeV [14]. The
Higgs may be a strongly bound fermion coinposite such as in technicolor [15] or top
condensate models [16] but the presence of an effective scalar is still néeded at the 1
TeV scale. An alternative suggestion has been that the loss of unitarity is a signal of

non-perturbative WW physics [17] - it is possible a non-perturbative resolution of the



problem might exist.

Recently though it has been realized that unitarity can also be restored by a Kaluza
Klein (KK) like tower of massive W-bosons without a Higgs [19, 20, 21, 22]. These
models [21, 23] are vériants on the idea that there is a fifth dimension that is a discrete
interval. The gauge group is broken by boundary conditions at the ends of the interval
rather than by a Higgs mechanism. In the four dimensiohal theory at long distance
scales there are only the W, Z fields and their KK towers, yet the theory is unitary.

Such a model must though meet the stringent experimental constraints on the
masses of extra W bosons, and on the precision data for sin 8y and dp (or equivalently
the parameters S and 7). Some of the above models in which the extra dimension is
warped have made progress in meeting these constraints. However a five dimensional
theory is naively ill defined in the UV where it becomes strongly coupled - one might
expect the strong coupling to bind the constituent particles into bound states and
there would be no sense in which a weak coupling regime existed at lower energies (one
could imagine some strong coupled fixed point that might allow such a scenario but
such physics is not understood). We expect in five dimensional models that some UV
completion would be needed before strong coupling is reached. One must be careful
not to make use of spacetime curvature on scales \vhgre the theory is strongly coupled
- the AdS metric used in [22] with an exponential warp factor may for example be hard
to support. Also the analysis of [24], which uses the'models we study below, explicitly
works in the strong coupling limit.

To keep track of the gauge coupling strength it is useful to have a fully defined theory
with an explicit UV completion. Deconstruction [25, 26] provides such a realization with
the fifth dimension manually constructed by the reproduction of the Kaluza Klein tower

in a renormalizable four dimensional theory. The extra fifth dimension is first thought of



DD+ - OO
g g g g g g

3

Figure 1.1: The moose model under consideration - numbered circles represent SU(N)
gauge groups and links bi-fundamental Higgs fields.

as a lattice where a separate copy of the four dimensional gauge group lives at each site.
The sites are then linked by Goldstone fields transforming in the (IV, V) representation
of the two neighbouring site gauge groups. The resulting gauge boson mass spectrum,
in the purely four dimensional model, then mimics a KK tower at scales well below
the symmetry breaking scale. A fully renormalizable gauge theory can be found by
promoting the Goldstone fields to a full Higgs multiplet. WW unitarity is restored
by the Kaluza Klein tower at low energies and finally at the very high fundamental
symmetry breaking scale by the Higgs bosons [19]. These models therefore are only
Higgsless in the sense that the Higgs mass rises relative to that of the Standard Model
and phenomenology may appear Higgsless at the LHC.

The simplest Deconstruction extension of the Standard Model has been suggested
by a number of authors [24, 27, 28, 29]. It consists of multiple repeats of the SU(2) gauge
group as shown in the moose diagram notation [30, 31] of Figure 1.1, an explanation
of moose diagram notation will be presented in section 2.4. There are N + 1 copies of
SU(2) each potentially with a unique coupling g;. The gauge bosons are coupled by
bi-fundamental Higgs with vevs v; linking SU(2); and SU(2);41. Finally the (V + 1)th
SU(2) is coupled by the (N + 1)th Higgs to a U(1)y hypercharge group. This final
symmetry breaking pattern ensures that there is a massless photon.

The low energy dynamics is described by a non-linear realization of the Goldstone



fields [32]
v2
L= E ZlTTD“UiTDMUi + higher derivative (1.1)

where as usual U; = exp(2infT?/v;) with 7¢ the Goldstone fields associated with the
broken generators 7'%. The gauge fields enter the covariant derivatives with generators
acting on U; from the left or right depending upon their coupling to the left or right in
the moose diagram.

The tree level W and 7Z mass matrices may be read off as

gzv% —gglvf 0 0 0 a 0
—gg1v? g (u?+ad) —g192v2 0 .. 0 0 0
5 0 —9192v3 —g2(v3 +12) -—gogzvi ... 0O o 0
My = (1.2)
2 2
0 0 0 0 e 0 —gn_1gnvdig gk (WRh_i+uE)
g%v? —gg1v? 0 0 .. 0 0 0 0
—gglvf gf(v? +v§) —glgzv% 0 .. 0 0 0 0
0 —g192v2 —g2(wZ+v2) —gagzvi .. O 0 0 0
2
Mz =
2
0 0 0 0 0 —gn_1anvi_y ek h_1+vEh)  ang'vi
’
0 0 0 0 0 0 ang'v% g %%

(1.3)

Note that in the limit where N = 0 this description of the Goldstone modes of the
model is simply the Standard Model. In fact to completely recover the Standard Model
the Higgs in the UV completion must also be made real.

For larger N when the couplings and vevs are all equal the W mass matrix has



eigenvalues [21]

(1.4)

ME, = gusin [M}

4N -2

which for large N and k& < N reproduces a KK like tower of W states. Note that the W
tower masses are suppressed relative to v by a factor of V. This is the mechanism by
which we will remove the Higgs from the low energy spectrum. In fact the couplings g
grow as VN to keep the low energy coupling invariant so the gain in Higgs mass is only
VN too. In a simple Higgs model the Higgs mass is given by v/Av with A the quartic
coupling in the Higgs potential. Thus as the Higgs vev increases by a factor of VN so
does its mass. In fact in the UV completion the scalar potential could be considerably
more complicated with renormalizable terms of the form |h;|?|h;[? affecting the masses,
but it is only our intention here to study the dependence of the vev on N which is
indicative of the Higgs mass scale. Unitarity in W scattering must still be maintained
at scales of order the lightest W mass - as discussed in [19] the KK tower acts as the
restoring mechanism.

This simple set up will not make for good phenomenology since the first KK partner
of the W is very light (the direct experimental bound is of order 500 GeV). We must
therefore look at limits where the KK modes are starting to become more massive and
decouple. There are two obvious limits of this form. Firétly we can raise the vévs
v1 — vy; in the limit where they are infinite the low energy theory just becomes the
Standard Model. ’This limit seems promising since precision parameters will naturally
tend to the Standard Model values in this limit too (we will see soon how well the new
physics decouples). However, the lightest Higgs is becoming Standard Model like too

in this limit and hence light. The second limit, explored in [24], is to take the couplings



g1 — gn to be large - this makes the KK modes heavy but does not precisely return
the Standard Model even in the infinite coupling limit. Varying the vevs and couplings
along the chain corresponds at the five dimensional level to warping the geometry [33]
so we might hope to find the same successes seen in such models. We will explore both
of these limits in Chapter 3.

To present results that can be compared to experimental data we will numerically
solve for the eigenvalues of the matrices (1.2,1.3). Within Chapter 3 we will work at
tree level and search for a theory compatible with the data at this level. We must also
couple the Standard Model matter fields into the model. We will follow [24] and allow
the fermions to couple to the end two gauge groups in the moose chain. This choice
ensures that 7' = U = 0 [24] when the central SU(2) groups’ couplings are taken large.
We have also explored other assignments but found little benefit from them. As usual
we will fix our model to the measured values of Mz the electric charge e and the Fermi
constant G since these are the best measured experimental results.

Having presented results at tree level we will then move on to perform loop level
calculations with specific attention to the S parameter (T = U = 0 [24]). Where
a small S parameter correction at the loop level implies minimal cérrections to the
tree level phenomenology and establishes perturbativity. In Chapter 4 we will perform
these loop level S parameter calculations Within the Standard Model. This detailed
analysis will provide insight into how the loop level calculation should be generalized in
Deconstruction. Iﬁ Chapter 5 we will present the evaluated results for the S parameter

for a Deconstructed Model with one additional gauge group.



Chapter 2

Introduction to Deconstruction

In this chapter we will introduce Deconstruction and the idea of Higgsless models of
electroweak symmetry breaking. First though let us review the Higgs and gauge sectors

of the Standard Model.

2.1 The Standard Model Higgs Mechanism

The Standard Model Lagrangian for a non-abelian gauge theory coupling to the Higgs

scalar 3 is shown in equation 2.1.

L=-1iBMB,, — tW*™W,,, + itr D*E(DE) - V(D) (2.1)
Where the potential is,
V(Z) = —u?T s+ %(2*2)2 (2.2)
And the gauge boson tensors are of the form,

F2, = 0,A% — B,A% + gf " AL A (2.3)



from which it is possible to generate the mass matrices and in turn the masses for the

W boson, Z boson and photon. These mass matrices form from the covariant derivative

part of the Lagrangian,
D, X =08,%—ig IB, S + igET*W; (2.4)

Where X is the Higgs field which generates the masses of the W and Z bosons through

the Higgs Mechanism.

E:(¢>+—i¢>_,v+(h+ix)> (2.5)

This field contains the Goldstone fields ¢, ¢, x which are absorbed in the generation
of the W and Z masses. It also contains the Higgs boson field A and the Higgs vacuum
expectation value (vev), v.

The presence of the Goldstone fields, the physical Higgs boson and the gauge boson
masses can be understood by observation of the Higgs potential for the spontaneously
broken symmetry V(X)) shown in Figure 2.1. The shape of this potential follows from
the form in equation 2.2, where the explicit minus sign on the p? term results in the
circular minimum away from zero value of the field. The fact that the minimum of
the Higgs potential is shifted from the centre where everything is symmetric to phase
changes of the field ¥, to a position where this is no longer an explicit symmetry, is
the breaking of the O(N) rotation symmetry. It is natural to rewrite the Higgs field
in a manner that centres things around the minimum of the potential. This results in
the vacuum expectation value v with a new field, called the Higgs field, directed along

the radial direction and an additional field x which is a Goldstone boson field directed
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along the trough in the potential. The ¢*,i¢~ fields are directed along the trough of
the potential in the dimensions not shown in the diagram, and like the x field the fact

that they see flat potentials makes them massless particles.

Figure 2.1: Two dimensional representation of the Higgs potential for spontaneous
breaking of a continuous O(N) rotation symmetry, showing Higgs vev v, Higgs boson
h and Goldstone boson y. The Goldstone bosons ¢~, ¢1 appear in the two suppressed
dimensions of the four dimension Higgs field.

When we rewrite the Higgs potential centred upon the minimum value of the field
there are terms in the Lagrangian that contain the gauge boson fields coupled to the
Higgs vev coming from the four point interactions of the unbroken theory. Since the
Higgs vev is a constant, not a fluctuating field, this term in the Lagrangian becomes
a two point vertex with a coeflicient of the Higgs vev squared, this in effect is a mass
squared term and the gauge boson field has gained a mass. These mass terms in the
Lagrangian are for the W, W~ bosons and Z boson.

The Goldstone fields can be said to be absorbed in the generation of the W/Z

masses. This can be seen most easily in Unitary gauge where the Goldstones are

11



explicitly removed by a gauge transformation. This removal of the Goldstone fields
corresponds to a removal of degrees of freedom from the Lagrangian, however the
additional longitudinal degrees of freedom required for gauge bosons to have a mass
exactly compensates, in effect the Goldstone’s degrees of freedom have been absorbed
into the the generation of gauge boson masses.

In this thesis we will follow the trend in the research literature and work in the
Feynman-t’Hooft gauge. Unlike the Unitary gauge the Goldstone bosons do not get
removed from the Lagrangian through the gauge choice, instead they remain consistent
with the Unitary gauge in asserting the unphysical nature of the Goldstone bosons
through their cancellation within the S matrix [34, 35]. In Feynman-'t Hooft gauge
the Goldstone bosons have masses equal to that of their corresponding gauge bosons,
¢T,i¢~ having the W boson mass and x having the Z boson mass. These shared
masses tie in neatly with the principle that such unphysical Goldstone bosons should
ultimately be absorbed into their respective massive gauge bosons.

The gauge fixing Lagrangian in 't Hooft gauge is [36],

£ = =2 (0, A% = CgoiT ) (2.6)

Where Unitary gauge corresponds to { = oo, while Feynman-’t Hooft gauge corresponds
to ¢ = 1. It can be seen that in Feynman-'t Hooft gauge the charged Goldstone fields
have a mass mg = gv, which we will see later is eéual to the mass of the W boson.
There is also a term for the hypercharge component of the gauge fixing Lagrangian
which analogously produces m,, = Um, equivalent to the 7Z boson mass.

Expanding the covariant derivative part of the Lagrangian with attention to the

12



Higgs vev forms the mass matrices for the gauge bosons.

tr [D*2(D, )] = ( 0 v ) (8 — ig'IB, + igT*W2)

0 (2.7)
x(8, — ig'IB, + igT*W2)T
v
This yields

2 ! 3 1

g  —g9 4% W,
< W2 B, )U2 + ( W w? >g2v2 (2.8)

_gg/ g/2 Bu WE

We can diagonalise the mass matrices to explicitly display the eigenvalues. These

eigenvalues correspond to the masses of the gauge bosons.

2 O A 2 2 W+
(A Z>U +(W+ W—>gv (2.9)
(9*+ 9% Z W=

Hence the Photon mass is zero, M4 = 0, the Z mass is Mz = v+/(g? + ¢’?) and the W
mass is My = vg.

The relationships between the unbroken gauge fields and their broken counterparts
are shown in equations 2.10,2.11. Where the coeflicients are formed from components
of the eigenvectors of the mass matrix. It is conventional to describe the neutral current
matrix, equation 2.11, in terms of a single parameter known as the weak mixing angle

Ow , matrices of this form are therefore referred to as the mixing angle matrices.

WE=— (W!siW?) (2.10)
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o cos By —sinfy Wg
= (2.11)

A, sinfw  cosfy B,

The physics of gauge boson masses is also often described in terms of an additional
parameter p. The p-parameter is equal to one at tree level in the Standard Model and
deviates from one both at the loop level in the Standard Model and at tree level for
certain beyond the Standard Model theories (In Chapter 3 we shall see that Decon-
struction is such a theory).

My,

M?2 cos? Oy ( )

Ptree =

The experimental value for the p-parameter is updated within the particle data book
[37], and recorded in terms of the parameter ép the deviation from the p-parameter’s
tree level value of one.

M2
op = W

=t ] 2.13
M2 cos? Oy ( )

We can input the experimental values of My, Mz and cos 0y (we use the renormaliza-
tion scheme of [61]). The value of ép is 0.0009 with 1o errors 0.0027. In Chapter 3 we
will present graphs of the parameter/ dp which must remain within these experimental
bounds. Given the accuracy with which the Z boson mass is experimentally constrained,
the p-parameter bounds are essentially degenerate with the W boson mass bounds and
so we will say little about §p in Chapter 3, but include the plots for completeness.

The covariant derivative,
D, =0,— ig'IB# + igT“I/V[Ll (2.14)
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transforms after symmetry breaking into the form,

_ g et ey a1 203 _ 2
D= Ou=igWiTT + WiT™) =i Z,(8PT — g°Y) 215

—i\/&%-gEA#(TS +Y)

where T4 = T! £4T2. By observing the photon term in the covariant derivative and
making the association Q = T2 + Y, we can clearly see that the electron coupling e,

that couples the electron to photons, is defined as follows.

/
e=- 99 (2.16)

 The photon part of the covariant derivative is now,
AD, = —ieQA, (2.17)

With @ representing electric charge.

There is an alternative formulation to the Higgs mechanism for describing symme-
try breaking in which the Goldstones are inserted by hand [38]. In this method the
Higgs boson is ﬂot assumed and there is no attempt to describe how the theory remains
renormalizable at the scale of the Higgs mass and above. The symmetry is not spon-
taneously broken, as through the Higgs mechanism, but broken explicitly through the
mentioned introduction of Goldstone fields. This formalism does have the advantage
of being consistent with experimental data (the non-renormalizable operators in the
theory can be chosen to reproduce the observed data - see [65]) , without introducing
any physics that has yet to be verified experimentally.

Mathematically the alternative formulation can be described by the Goldstone field
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below,

U =™/ (2.18)

where T is the generator of the symmetry for the individual Goldstone boson fields

7%, with a symmetry breaking vev f [39]. U enters the Lagrangian as,
v2
L= ZTTD“UTD“U + higher derivative (2.19)

where SU(2), transformations act on U from the left and SU (2)r transformations from

the right.

2.2 Unitarity Problem

One of the major open questions in modern high energy physics is how to resolve the
so called Unitarity Problem. There have been numerous theories and models proposed
to fix this anomaly that presents itself in W boson scattering in the Electroweak Field
Theory.

The Unitarity Problem explicitly presents itself in the cross sections for gauge bo-
son scatterings at high energy. This cross section grows at high energies until the
probability of the interaction grows greater than one, which is clearly unphysical. The
relevant Feynman diagrams are shown in Figure 2.2. The energies at which the Unitar-
ity Problem appears have yet to be probed fully by experiments, but will be thoroughly
explored by the Large Hadron Collider (LHC) when it comes online in the near future.
It is hoped that the accelerator will detect evidence of whatever theory is ultimately

responsible for recovering unitarity. It is a very relevant time to be expanding options,
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i WX W

Figure 2.2: Feynman diagrams for gauge boson scattering

P XX

Figure 2.3: Additional Feynman diagrams contributing to the gauge boson scattering
through the presence of the Higgs field

with theories to resolve the Unitarity Problem.

The simplest known solution to this unphysical probability is the Higgs Mechanism,
proposed in 1964 by Peter Higgs [40, 41, 42]. The Higgs Mechanism of the Standard
Model includes a symmetry breaking Higgs field. The Higgs field produces a new parti-
cle known as the Higgs boson that represents the calling card by which the mechanism
might be detected at the LHC.

The presence of the Higgs field introduces additional Feynman diagrams, as shown
in Figure 2.3, which must be accounted for in gauge boson scattering. The corrections
due to these new diagrams resolve the Unitarity Problem by reducing the cross section
probability of such scatterings occurring, to less than one [43, 44, 45, 46, 47].

Given the necessity of a unitarity correcting mechanism within Quantum Field
Theory at higher energies, and the naturalness and relative simplicity of the Higgs
Mechanism it has been adopted as an accepted part of the Standard Model. We will
follow the convention of referring to the Higgs Mechanism as implicit in the term ‘Stan-
dard Model’ throughout this thesis. (Unless we are describing the Higgs Mechanism
itself explicitly, where the break with this convention should be apparent to the reader).

Models that extend the Standard Model without using a conventional Higgs Mechanism
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will be categorised as Beyond the Standard Model.

However, in spite of the attractiveness of the Higgs Mechanism in the Standard
Model, there remains no proof that it is in fact the reality in Nature. Alternatives,
to prepare for the eventuality that the Higgs is not observed at the LHC, are thus
highly relevant. Two leading rival descriptions of how unitarity might be maintained
at high energy will be presented in this introduction, namely Kaluza-Klein Theory and

Deconstruction. It is the second of these that will be the subject of this thesis.

2.3 Unitarity Through Kaluza-Klein Theory and Decon-
struction

Since the Higgs hasn’t been found yet, it is appropriate to look for alternate solutions to
the unitarity problem. Kaluza-Klein Theory and Deconstruction are such alternatives.
Here we will briefly introduce the principles involved. We will go into more detail of

the mechanism of Deconstruction in section 2.5.

2.3.1 Resolving Unitarity Through Kaluza-Klein Theory

Kaluza-Klein Theory [18] was first introduced as an extra dimensional description of
Electromagnetism in the 1920’s in a hope of unifying Electromagnetism with General
Relativity. However, the form of Kaluza-Klein Theory that we present in this the-
sis is the modern revival of such extra dimensional methods to describe Electroweak
symmetry breaking [48, 49, 50, 51, 52, 53].

In straightforward terms Kaluza-Klein Theory is a theory in which a compactified
fifth dimension is introduced in addition to the four dimensions of the Standard Model

(Standard Model refers to existing physics exclusive of the Higgs mechanism in this
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compactified dimension
1 |
4D T | |

Figure 2.4: Pictorial description of Kaluza Klein Theory as a combination of a four
dimensional bulk and a compactified fifth dimension

section). This is presented pictorially in Figure 2.4, where we note that the gauge bosons
W,Z,y are present in the four dimensional bulk as the lowest energy excitations of their
respective fields in the compactified dimension. In fact Kaluza-Klein Theories can be
generalized to any number of additional compactified dimensions, but the principle
remains essentially unchanged.

In Kaluza-Klein theory additional compactified dimensions (Figure 2.5) are intro-
duced with periodic boundary conditions to resolve the unitarity problem without the

need for a Higgs field.

length R
< =

Figure 2.5: Pictorial display of a compactified dimension with periodic boundary con-
dition

Fields from the standard four-dimensional bulk must also propagate within the
compactified dimension, in effect forming waves on the compactified dimension. The
lowest excited states, the ground states, correspond to the familiar Standard Model
gauge bosons (where our attention here is on the Electroweak sector only). The excited
states become copies of the these bosons with greater masses, which are known as the
W' bosons and Z’ bosons.

Periodic boundary conditions require a periodic wavefunction. If we describe the
waves of the fields on the compactified dimension in terms of exponentials we can follow

the following path. As we move once around the compact dimension a free wave soluton

19



will change as

£ire - ez’p(z—l—Qﬂ'R) ‘ (220)

The wave must return to itself so we require ¢?(?"%) = 1, We learn that pR is an

integer n, so that p = %

2

On shell a particle satisfies p> = m? so we have

(2.21)

=yl s

This describes a set of masses known as a Kaluza-Klein tower. The Kaluza-Klein towers
for W bosons due to the presence of an additional compactified dimension is shown in

Figure 2.6

. W”,
W
W
W

Figure 2.6: Pictorial display of the Kaluza Klein tower of additional massive W’ bosons
from a compactified dimension.

The excitation from the ground state in the compactified dimension of the W,Z, and
v bosons forms a tower of more massive equivalents: W/, W"..., Z',Z"... ~',~v"... The
presence of these additional bosons, at the higher energies required for their production,
adds an array of Feynman diagrams into the gauge boson scattering cross section. These
new diagrams, presented pictorially in figure 2.7, correct the cross section for gauge

boson scattering so that it remains less than one in an analogous way to that of the
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Figure 2.7: Example of the additional scattering diagrams entering from Kaluza Klein
theory at higher energy scales to correct unitarity

diagrams in figure 2.3, and thus resolve the unitarity problem [19, 20, 54, 55, 56, 57, 21].

One distinction of note between the resolution of unitarity in the Higgs mechanism
and that of Kaluza-Klein Theory, is that there are a finite number of additional dia-
grams in the Higgs mechanism. Kaluza-Klein theory, however, has an ever increasing
number of additional Feynman diagrams as the energy scale rises, due to the presence of
extra excited gauge bosons emerging from the additional energy states available within
the compactified dimension. In effect the new gauge bosons formed at each energy
level maintain unitarity for their respective energies, much as the W/Z bosons do in
the Standard Model at low energy.

It is, of course, key to the merits of Kaluza-Klein Theory that it solves the unitarity
problem without a Higgs field or the Higgs mechanism. It is, as such, a Higgsless model.

It is appealing that Kaluza-Klein theory solves unitarity in a manner fundamentally
distinct from the Higgs mechanism. However, it has several key difficulties. Firstly it is
strongly coupled in the ultra violet and so potentially non-perturbative at high scales.
Secondly, in its most basic form, it predicts additional massive gauge bosons with

masses excluded by searches performed at existing accelerators.

2.3.2 Resolving Unitarity Through Deconstruction

The new model of Deconstruction can extend the four dimensional Standard Model to

imitate Kaluza-Klein Theory, without requiring extra dimensions, and their inherent
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problems. This model proposed by Arkani-Hamed, Cohen and Georgi in 2001 [25]
was devised to recreate the interesting phenomenology of Kaluza-Klein Theory, while
avoiding the problems of having additional dimensions.

Deconstruction was born out of considering the compactified dimensions of Kaluza-
Klein Theory as a lattice of gauge ’groups. By latticising the model it then became
possible to reconsider the compactified dimension, not as a dirmension at all, but instead
as an array of new gauge groups coupled together by Higgs fields. It then became
reasonable to reduce the number of gauge groups, which is equivalent to increasing the
lattice spacing, until the chain of gauge groups no longer resembled a realistic extra
dimension. In effect the additional dimension, ‘constructed’ out of a lattice of gauge
groups, has been ‘deconstructed’ - from which the name Deconstruction derives.

The new model is explicitly four dimensional but will reproduce the phenomenology
of Kaluza-Klein Theory, inclusive of its unitarity correcting additional gauge bosons, up
to an energy level at which the lattice spacing becomes overt. Deconstruction ultimately
is an effective five (or more) dimensional model described within four dimensions. The
pay-off, for having the best of both Worlds in effect, is that at a certain energy scale the
imitated additional dimensionality breaks down and the model displays the chain of
Higgs fields that go into its construction. This means that at a certain scale the model
ceases to be Higgsless like Kaluza-Klein Theory, but instead continues to maintain
unitarity through a generalisation of the Higgs mechanism.

In summary Deconstruction could be seen as a middle ground between Kaluza-Klein
Theory and the Higgs Mechanism. It resolves unitarity as both do, but offers poten-
tially Higgsless phenomenology within future experiments without the complications
of additional dimensions. On the other hand it is by its very make-up an extension of

the Standard Model Higgs Mechanism. In fact the minimal limiting case of a Decon-

22



structed lattice chain containing just two gauge groups, an SU(2) and a U(1) coupled

together by a single Higgs field, is precisely the Standard Model.

2.4 Moose Diagrams

Deconstructed models are typically described using a Convenienf diagrammatic form
known as Moose Diagraﬁls. Figure 2.8 shows the general appearance of a moose dia-
gram, with the Higgs flelds that correspond to lines and the gauge groups that corre-
spond to circles labelled. The Higgs fields in Deconstructed models are all in the (N, N)
representation. Figure 2.8 shows an N=1 moose, where N'stands for the number of
additional gauge groups beyond the Standard Model.

The reader should note that in the original Deconstruction paper the lines within the
diagrams refer to Goldstone fields and the theory may not contain a Higgs. Such models
may perform the symmetry breaking in some other manner, or are simply effective
theories up to the symmetry breaking scale. They are as such, only renormalizable
up to the symmetry breaking scal‘e. Our models will always contain a Higgs vacuum
expectation value as indicated in Figure 2.8, and are consequently fully renormalizable.

A good example of the principle by which moose diagrams describe Deconstructed
models, is to look at the limiting case of an N=0 moose diagram as shown in Figure
2.9. This diagram is precisely the Standard Model Electroweak SU(2) x U(1) written in
moose notation. Deconstruption is then diagrammatically seen to be an extension of the
same principles that operate in the formation of the Standard Model Higgs Mechanism.

Here moose ’diagram notation displays diagrammatically the useful fact that the
Standard Model can be replicated as a limiting case of a Deconstructed Model. This fact
can be used as a check on the correctness of Deconstructed Models by establishing they

can replicate the Standard Model for N=0. It also provides a limiting case guaranteeing
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higgs field in (2, 2) independent higgs field

_- @@'C/D -~

SU(2) gauge group \\ U(1) gauge group
independent SU(2)

Figure 2.8: Labelled moose diagram for an N=1 Deconstructed model

Figure 2.9: Labelled moose diagram for an N=0 Deconstructed model, which corre-
sponds to the Electroweak Standard Model

experimental consistency, that can be used as a solid base from which to expand towards
Deconstructed models that yield fresh phenomenology without violating experimental

bounds.

2.5 Deconstruction

If we use the analogy between Deconstruction and the Standard model shown diagram-
matically in Figure 2.10, it is easier to see how Deconstructed models can be described
mathematically by the extension of the principles of section 2.1.

Consider just the simplest form of a Deconstructed model, that of an N=1 U(1) x
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Figure 2.10: Schematic description using moose diagram notation of the analogy be-
tween the Electroweak Standard Model and generalised Deconstructed models of single

chain form

SU(2); x SU(2)3 [24]. The Lagrangian Density for this N=1 Deconstructed model is,

L=—}B*B,, — W} HWE L, — Wy W L+ Hr [D“&(Duzlﬂ

+hir [D5(D, %)

Where %1, X5 are the two Higgs doublets within the N=1 Deconstructed model.

Y= ( (I)T_Z'(I)l_;vl"i_(hl +2X1) )

Yy = ( (I);—Z(I)Q_ , Ug + (ha +ix2) >
The two covariant derivatives in the (N, N) representation are as follows,

Duzl = 8;;21 - Z‘g,IB#Zh + i§E1TaW1a#

D,E2 = 8,5 — T W, 5 + igseTOWS,

Giving the Lagrangian mass terms:

o g | O |
-39 & 52

¢ —g3 O w2

+ (W W B | g 72— w3,

0 -dg g°2 B,

(2.22)

(2.23)
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More generally for an arbitrary N model the terms take the form

¢ -9
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"
ap prrap 2 —¢° 292
E = (Wl 3 W 3 ..-)7_} . ’542
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g2 _g‘é \ (228)
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25> —gg
B#
_gg/ g/2

The eigenvalues of these matrices are the physical masses of multiple excited W/Z

bosons as well as the W boson, Z boson and massless photon.

2.6 Connection Between Kaluza-Klein Theory and De-
construction

In subsection 2.3.2 we described how Deconstruction originated as a way of describing
Kaluza-Klein theory on a four dimensional lattice. In this section we will no§v go into
the details of that process.

In Figure 2.11 we show pictorially the idea of a compactified extra dimension de-
scribed in terms of moose diagram notation. The gauge groups are represented here
by the lattice points. The lines linking sites correspond to the Higgs fields. In order to
replicate an extra dimension there must be an infinite number of gauge groups linked

by an infinite number of bi-fundamental Higgs fields.
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Figure 2.11: Pictorial display of a Kaluza Klein compactified dimension as a moose
diagram from a Deconstructed model with an arbitrarily large number of SU(2) gauge
groups, and one boundary U(1) group.

The mass matrix of such a moose diagram has the same structure as a coupled
harmonic oscillator. If all the couplings to the gauge groups are equal and we take
equal Higgs vevs on each link, as in a conventional lattice where all points are treated as
equivalent, then the mass matrix and associated eigenvectors take the form of equation

2.29.

-1 2  —1 S -un < AC LY
g*v? 12 4 S = Y (2.29)
-1 2 -1 51"(%-{4)“ Eiﬁ: %_{hl)n
With eigenvalues,
X ™
A= M2 = 4¢%0% sin? <W) (2.30)

The lightest gauge bosons (n <« N) then generate a Kaluza-Klein tower of masses as
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in equation 2.31.
- n
M =2gvr— 231
v (2.31)

Here we can see that the lattice of gauge groups of our Deconstructed moose model
does indeed replicate the phenomenology of Kaluza-Klein theory.

By reducing the number of gauge groups in a Deconstructed model we can replicate
some of the physics of Kaluza-Klein theory, while working with models that are explic-
itly only four dimensional. Such models resolve unitarity at low energy scales through
the formation of a tower of excited W/Z bosons, analogous to Kaluza-Klein Theory,
while at much higher energies a very massive Higgs corrects unitarity, analogously to
the Standard Model.

It is of particular interest that these manifestly four dimensional models, can be seen

as Higgsless effective theories up to an arbitrarily high scale where the Higgs resides.

2.7 Fermion Couplings in Deconstructed Models

In Deconstruction the electron couples to the gauge groups in analogy to how they do in
the Standard Model. In this thesis we will impose that the fermions couple to the end
two gauge groups of the moose chain, ie one SU(2) and one U(1) (this ensures there is
a custodial symmetry in the model). We must generate the same value for the electron
coupling as found from experiment and this requirement will place a constraint upon
the values of the couplings in the moose model.

The electron coupling can be established from the Lagrangian through the evalua-
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tion of the neutral current coupling to the electron

L =ey"D,e, DF =" —igWg ., —ig' B* (2.32)

We must re-write the gauge fields in terms of their physical mass eigenstates. We will

generically write the mixing angle matrix for the neutral currents in Deconstruction as,

A =bypB + b10W13 + ...+ b(N—i—l)OWj%/-q-l (2.33)
Z' =bo1 B+ buWi + ...+ by Wi (2.34)
Z" =bpaB +biaW + .+ bve Wi (2.35)

Z = bO(N+1)B + bl(N—Q—l)WIB + cen + b(N-ﬁ-l)(N—i—l)Wﬁf—Q—l (236)

The choice of ordering for the coefficients follows that of reference [24], for consistency
with the existing research literature.

The Z boson vertex contributions are

bo(N+1)Ql

summed with,
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Where the coefficients by n41),b(n+1)(N+1) are elements from the mixing angle ma-
trix which transforms the unbroken fields W(3N+1)#’B/i into their broken counterparts
the Z boson and photon.

Similarly the photon vertex contributions are:

boog’

-

summed with,
ot
3
Win+1y
bv+1)09
g ( )
o
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From which we get the neutral current parts of the covariant derivative;

D¢ = Z,(bn 1y +1)9T° + bon+1)g'Y) + Au(bv11)09T° + baog'Y) - (237)

We define the charge @ to be the coupling between photons and fermions. By requiring
that the electric charge be a coefficient of a single electron coupling and using the
relation Q = 7% +Y as in the standard model, the mixing angle matrix elements need

to be re-expressed in terms of a single coupling e as follows,

bOO = %7 b(N+1)O = g (238)

Therefore,
DYC = Z, (v i1y vy 9T + bov 1) 9'Y ) + Au(eT? + €Y) (2.39)
= Zu(bvey v+ 9T° + bov+1)g'Y ) + AueQ (2.40)

The coupling e is now clearly the electron coupling with a coefficient of electric charge
@, which couples the photon field A, to fermions. The mixing angle matrices are now
linked by a common factor of the electron coupling that is very precisely constrained
by experimental data [37], removing a degree of freedom from the model.

The Fermi constant G is an additional strong constraint from experimental data

[37] on the values of the couplings in the Deconstructed model. It is defined as below,

(2.41)
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Finally the Z boson mass is very accurately measured compared to the W boson
mass and so we will treat the Z boson mass as a constant. We now have three constraints
on the parameters of our Deconstructed models, that can be used to establish the values

of the couplings g,¢’ and the Higgs vev v.
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Chapter 3

Tree Level Plots

Having introduced Deconstructed models we will now present our own numerical anal-
ysis of various such models at the tree level, undertaken in order to find out what
interesting phenomenology is predicted. We are particularly interested in whether such
models can present effective Higgsless phenomenology at scales probable at the Large
Hadron Collider (LHC). This would provide alternative physics consistent with resolv-

ing unitarity and renormalizability if the LHC failed to find a Higgs.

3.1 N=50 One U(1) Group

In this section we will present the first of a string of models covered through this Chapter
as we investigate the array of possible models that may present effective Higgsless

phenomenology at LHC energy scales.

Increasing the size of the mass matrix creates additional W/Z bosons, making it
possible for the Higgs mass to be greater. Consequently we chose to begin our investi-
gations by numerically analysing a model with a large number of gauge groups.

We construct an example of a large mass matrix, with fifty SU(2) gauge groups.

This is shown in moose diagram form in Figure 3.1. The SU(2) couplings are all set to

33



be equal. The U(1) coupling is set to its Standard Model value and the SU(2) groups
are all given the Standard Model value multiplied by the number of these gauge groups,

in this case fifty. This choice recovers the standard coupling to the electron.

N=50 (fifty SU(2) gauge groups)

Figure 3.1: Moose diagram for a Deconstructed model with fifty SU(2) gauge groups
and one U(1) group

We fix the first non-zero eigenvalue and set it to the Z mass (~90GeV). This fixes
our Higgs vacuum expectation value (vev) which in this case is 1.2 TeV and the Z’
masses. We use the same normalisation to determine the predicted masses for the W
mass matrix, fixing the W mass and the W' masses.

If we set all the Higgs vevs to be of equal value we yield the Kaluza-Klein tower of

massive gauge bosons shown in Figures 3.2 and 3.3

573GeV W’
410GeV W’
m expt. bound W’>720GeV
246GeV W’
82GeV W

Figure 3.2: Kaluza-Klein tower of W' bosons for a Deconstructed model with fifty
SU(2) gauge groups and one U(1) group

We would like throughout this chapter to have some measure of success in raising
the Higgs mass relative to the Standard Model. In fact each line in the moose diagrams
corresponds to a Higgs field generating three Goldstone bosons that are eaten and one

physical Higgs boson - in this case we will assume that all of these fields have the same
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Figure 3.3: Kaluza Klein tower of Z’ bosons for a Deconstructed model with fifty SU(2)
gauge groups and one U(1) group

potential. The Higgs mass is given by a product of the four point self cbupling and
the vev. Since we have increased the Higgs vev relative to the Standard Model here,
the Higgs is naturally heavier. In the Standard Model one normally assumes that the
Higgs mass lies below about 1 TeV - if this is not the case the four point self coupling
is so large as to become non-perturbative - there is a Landau pole in its running very
close by [58, 59]. Naively if the coupling is strong at the 1 TeV scale one would expect
bound states and so forth at that scale so 1 TeV is still the scale at which the Higgs
physics would be found. We will therefore plot the largest possible Higgs mass in these

models as

™MH Decon = ____UDecon x 1TeV (31)
vsm ‘

Using this estimate here the Higgs mass upper limit is driven up to 4700GeV. This
is clearly Higgsless at energies that can be probed at the Large Hadron Collider (LHC).
This Higgs mass increases with the number of additional gauge groups up to an infinite
value, where it decouples from physics, in the Kaluza-Klein emulating limiting case of
Deconstruction N — oo.

It is reassuring that we have managed to emulate the Kaluza-Klein theory ’”phe-
nomenology from our Deconstructed model with a large number of gauge groups. While

fifty additional gauge groups is still far from the continuum limit we nevertheless see
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aspects of Kaluza-Klein phenomenology.

Recreating the Kaluza-Klein tower is to be expected, however standard Kaluza-
Klein models predict W’ bbson masses and Z’ boson masses that are far below the
lower bounds set by experimental searches for these bosons [37]. Only more exotic
Kaluza-Klein models meet such experimental bounds [22], where the lightest addi-
tional W boson should be at least 720GeV and the lightest additional Z boson should
be heavier than 630GeV. Qur interest in recreating such Kaluza-Klein like phenomenol-
ogy is therefore restricted only to establishing that our calculations are showing valid
behaviour.

Perhaps more concerning is the fact that the W mass fails to meet its quite tight

experimental bounds, we hope to correct this by exploring more relevant models.

3.2 Exploring The Space of Deconstruction Models

We have seen that a Deconstructed model with many additional gauge groups beyond
the Standard Model can generate a Kaluza-Klein like tower of gauge bosons and push
the mass of the Higgs bosons in the model beyond the range of the LHC. Qur task
now is to try to find a model with these benefits but which is also compatible with
precision experimental constraints. We have many free parameters we can vary - the
number of extra gauge groups, the vevs of the individual Higgs fields and the couplihgs
of each additional SU(2) group. Let us see what benefit we can gain from each of these

changes.
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3.3 N=50 One U(1) Group, Adjusting the Last Higgs Vev

We'll first explore varying the last Higgs vev in the moose chain, the one coupling the
U(1) group to an\ SU(2) group. This case is of particular interest as setting this Higgs
vev small decouples the additional gauge groups, in a sense, to recreate the Standard
Model when this Higgs vev is infinitesimal relative to the other Higgs vevs. This is of
course identical to making the other Higgs vevs very big so they generate huge gauge
boson masses - the additional SU(2) groups decouple at low energy leaving the Standard
Model.

The results of this analysis are shown in Figures 3.4, 3.5 and 3.6. The Higgs mass
shown in these plots is that given by (3.1) with the smallest Higgs vev of the moose
chain inserted - this will be the lightest Higgs in the model. Here we are able to confirm
that we can emulate Standard Model phenomenology by using the limit of a small final
Higgs vev. The Standard Model W mass is reproduced in this limit and the masses of
the additional W’ bosons and Z’ bosons rise to an infinite scale, removing themselves
from the model. This is a good test of the reliability of our calculations.

By moving away from this limit we can maintain a degree of consistency with the
Standard Model while introducing new phenomenology. Here we are able to see from
Figure 3.6 that the W mass remains within its 20 experimental bounds with the varied
Higgs vev as large as a tenth of the value of the other Higgs vevs. For this value
of the Higgs vev we can see the W’ bosons and Z’ bosons in Figures 3.4, 3.5 are well
within the detectable range at the Large Hadron Collider (LHC). They are however too
light, and are ruled out by the bounds set by experimental searches for these particles.
Unfortunately the lightest Higgs mass in the model is not appreciably larger than that

in the Standard Model even as we move away from the Standard Model limit. The
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Higgs mechanism is still playing a large role in correcting unitarity at the lowest energy
scales.

Nonetheless, we have formed a model consistent with experimental data on the W
bounds, which predicts new physics. The model also displays in Figures 3.4 and 3.5 both
Standard Model behaviour on the left hand side of the plot and a Kaluza-Klein tower of
states emulating Kaluza-Klein theory on the right hand side of the plot. We have as such
been able to recreate the characteristic features expected of a Deconstructed model.
This is a sound basis for venturing out to explore new models with new parameters in

hope of finding experimentally consistent physics with interesting new physics.
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Figure 3.4: Plot of the ratio between Higgs vevs, against W’ boson masses and Higgs
mass for a Deconstructed model with fifty SU(2) gauge groups and one U(1) group and
one variable Higgs vev
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Figure 3.5: Plot of the ratio between Higgs vevs, against Z’ boson masses and Higgs
mass for a Deconstructed model with fifty SU(2) gauge groups and one U(1) group and
one variable Higgs vev
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Figure 3.6: Plot of the ratio between Higgs vevs, against the W boson mass less the W
mass in the Standard Model, for a Deconstructed model with fifty SU(2) gauge groups
and one U(1) group and one variable Higgs vev
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3.4 Varying Multiple Vevs

We note here that we have performed a considerable search of the parameter space of
these types of models including varying the full range of vevs in a number of Decon-
structed models. For example we tried varying two Higgs vevs instead of one. The
result of this investigation yielded both heavier Higgs masses and larger W' boson and
Z' boson masses. However, there was no great difference in the pattern of Higgs and
gauge boson masses from that seen by varying a single vev. We then proceeded to
take the approach of varying multiple vevs further, by even varying all vevs within a
model. Included in this investigation was a look at exponentially varying Higgs vevs
in an attempt to recreate the models in the paper by [22]. The results of this analysis
again failed to throw up any radically new results though. We do not therefore provide
plots for these cases. Inevitably however, there are an unlimited number of ways of
exploring such parameters so we cannot conclude that this path is fruitless, but we

satisfied ourselves that it was probably a dead end.

3.5 Varying Couplings

Having explored the benefits of having a large number of additional gauge groups,
and managed to confirm to our satisfaction that the expected Kaluza Klein emulating
behaviour was apparent we now explore slightly smaller moose models with only ten
SU(2) groups. The purpose of this is partly the flexibility of being able to generate
results with speed and convenience in order to investigate a large range of parameter
choices.

Having made only limited progress by varying the vevs, we now turn our attention

to the other obvious set of parameters at our disposal to vary, that of the couplings.
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By increasing the strength of the extra gauge bosons’ couplings, we hoped that the
tower of bosons would make a greater contribution to the unitarity of the lightest W
scattering. This might then free the Higgs boson to become heavier since it is no longer
needed to be light for unitarity. This is a direct way of targeting the Higgs mass, in
order to increase it as we hope to do in order to find an existence proof of a Higgsless
model at the Large Hadron Collider.

As a first example, we will adopt an approach from [24]. In these models only the
end two gauge groups couple to fermions. The remaining gauge groups have identical
couplings, which are set by hand.

In the original paper by Schmidt et al the central gauge boson couplings were given
values far larger than the gauge boson couplings at each end. In this limit it was
possible to calculate physical parameters analytically. However we had concerns that
the presence of such strong couplings in the theory might result in the model being
non-perturbative. As such models of this kind in such a limit would have large loop
level corrections, rendering the tree level results invalid.

The phenomenology obtained by Schmidt et al in their paper [24] was however very
promising - they found that in the limit where the new gauge groups couplings go
to infinity deviations from the Standard Model predictions in precision measurements
are small (as we will see). We considered it worthwhile to explore these models using
our numerical methods, outside of the strong coupling limit, to see if the interesting
results could be preserved. Aé shall be shown in the following sections, we performed
these calculations over a range of coupling strengths and variable Higgs vev values for

different sizes moose chains.
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3.6 Deconstructed Models with Varying Additional Cou-

plings g

Let us explore the Deconstructed model with N = 10 in the limit proposed by Schmidt
et al. We first explore the effect of varying the coupling strengths g of the central gauge

groups. We do this with all the Higgs vevs set to equal values. Pictorially we have:

N f
elolosed
g g

/

g

>
>

The N=10 model is both strongly Deconstructed but clearly distinct from the Kaluza-
Klein equivalent limit.

Our results are displayed in Figures 3.7 to 3.10. Here we can observe the more
massive partners to the W boson already forming an approximate Kaluza-Klein tower
of states. We have only plotted the first six additional W like bosons, but it can be
seen that the differences between their masses are decreasing as we go up the tower.
The presence of a Higgs boson is, of course, distinct from any Kaluza-Klein limit. As
such the properties unique to Deconstructed models are becoming apparent.

The raised level of the Higgs mass is clearly preserved outside the strong additional
coupling limit employed by Schmidt et al. This is promising, as is the reduction in the
masses of the additional W like bosons - which would bécome more evident at LHC
energy scales. Unfortunately the W mass diverges from its experimental bounds as the
coupling reduces away from the strong coupling limit. It appears that these models
lose some of their consistency with experiments for perturbative values of §. However,
we can still explore other choices of parameters to see if they might be consistent with

experimental bounds.
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Figure 3.7: Plot of the coupling strength of the additional gauge groups (g), against
W’ boson masses and Higgs mass for a Deconstructed model with ten additional SU(2)
gauge groups and one U(1) group
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Figure 3.8: Plot of the coupling strength of the additional gauge groups (§), against
the W boson mass less its Standard Model value for a Deconstructed model with ten
additional SU(2) gauge groups and one U(1) group
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Figure 3.9: Plot of the coupling strength of the additional gauge groups (g), against
Z' boson masses and Higgs mass for a Deconstructed model with ten additional SU(2)

gauge groups and one U(1) group
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Figure 3.10: Plot of the coupling strength of the additional gauge groups (g), against
the p parameter for a Deconstructed model with ten additional SU(2) gauge groups
and one U(1) group
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Figure 3.11: Plot of the number of additional gauge groups (NV), against the W boson
mass less its Standard Model value for a Deconstructed model with one additional
SU(2) gauge group and one U(1) group, with additional coupling strengths g = 4

3.7 Deconstructed Models with Variable Numbers of Gauge

Groups.

Having found that the W mass is inconsistent with experimental bounds for an N=10
model, we consider varying the number of additional gauge groups to see if this offers
any improvement.

We plot in Figure 3.11 the W mass against number of additional gauge groups N.
We do this for § = 4w, the naive maximum value for a theory to be perturbative.
This is an upper bound on perturbative correctness, it is of course far too high to be
perturbative in any practical sense. This limiting case will be used simply to place an
upper limit on what our best case scenario might be.

The plot shows that consistency with W mass bounds can be more easily met for
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smaller numbers of additional gauge groups. This result confirms what intuition would
suggest, that the closer we go towards the Standard Model case of no additional gauge
groups the more consistent we become with experiment. The Standard Model is in fact

represented on this plot at N=0, with the standard model mass as would be, of course,

required.

Clearly it is worth exploring Deconstructed models with fewer gauge groups.

3.8 Deconstructed Models with Varying Additional Cou-

plings’ ¢ Continued for Smaller Moose Chains

OO0

g g

3.8.1 N=1

Based on the indications of section 3.7 we explore the moose model with the minimum
additional gauge groups N=1, in order to understand how the experimental consistency
for the W mass improves. As can be seen in Figures 3.12-3.15 the W mass remains
within experimental bounds up to 3o for additional coupling strengths as small as 6.
A coupling strength of 6 is perturbative, although the size of the perturbations would
be prohibitively high. However, for the purposes of pursuing an existence proof it is
' informative simply to have results that are perturbative in principle.

Here we have a model that is technically perturbative, is consistent with the exper-
imental bounds on the W mass and has one additional W’ boson as light as 1.5 TeV.
This W’ boson is comfortably both above the limit on searches for massive bosons of

around 5-7 TeV [37] and clearly within the range of the LHC to detect. As such we
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have a model, that at tree level, presents new physics visible at future experiments and
consistent with current experimental bounds.

Unfortunately, although this model offers valid new physics, it only increases the
Higgs mass up to a maximum of 1.4 TeV. Consequently it falls short of our goal of an
existence proof of a model without a Higgs visible at the LHC. Without a heavier Higgs
these models offer little of phenomenological use to justify their added complexity.

Nonetheless, these N=1 moose diagram models have demonstrated that the indica-
tion of section 3.7, that smaller moose diagrams can make the W mass more consistent
with experiment. It is therefore worth exploring slightly larger moose diagram models

to see if a compromise can be found between experimental consistency and a heavy

Higgs.
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Figure 3.12: Plot of the coupling strength of the additional gauge group (g), against
W’ boson masses and Higgs mass for a Deconstructed model with one additional SU(2)

gauge group and one U(1) group
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Figure 3.13: Plot of the coupling strength of the additional gauge group (g), against
the W boson mass less its Standard Model value for a Deconstructed model with one
additional SU(2) gauge group and one U(1) group
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Figure 3.14: Plot of the coupling strength of the additional gauge group (§), agaiﬁst
Z' boson masses and Higgs mass for a Deconstructed model with one additional SU(2)

gauge group and one U(1) group
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Figure 3.15: Plot of the coupling strength of the additional gauge group (), against
the p parameter for a Deconstructed model with one additional SU(2) gauge group and

one U(1) group

3.8.2 NN=3

fo=t =J =7
2~2-0~(2-
g 9 g § 4q
Having found regions of consistency with the experimental bounds on the W mass for
an N=1 moose model, we now look to increase the number of additional gauge groups.
We find the best balance at N=3.

As can be seen in Figures 3.16-3.19 the W mass is within the experimental bounds
below the strict cut-off for perturbativity. For additional coupling strengths g of about
10 the W' boson mass is marginally lower than the Higgs mass, while the W mass
remains correct to within 3¢ accuracy. The Higgs mass itself is slightly above 2 TeV

and as such is at the limits of what might be seen at the LHC.

This N=3 model represents a very borderline example of a model which is experi-
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mentally consistent at tree level. But also, describes potentially ‘Higgsless’ phenomenol-
ogy at energies accessible by the LHC, with the very marginal possibility of a signature
W' boson being observed. The above N=3 moose diagram model could be said to fulfil
the objective of an existence proof of a verifiably Deconstructed model without a Higgs
at the LHC.

However, this existence proof has numerous caveats and achieves its goals in only the
most borderline sense. It represents evidence of the potential of such Deconstructed
models to provide interesting phenomenology at LHC energy scales. We feel this is
a step forward, although the borderline perturbativity renders the model merely an

indicator and not a truly computable alternative to a Standard Model Higgs scenario.
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Figure 3.16: Plot of the coupling strength of the additional gauge groups (g), against
W' boson masses and Higgs mass for a Deconstructed model with three additional
SU(2) gauge groups and one U(1) group



Figure 3.17: Plot of the coupling strength of the additional gauge groups (), against
the W boson mass less its Standard Model value for a Deconstructed model with three
additional SU(2) gauge groups and one U(1) group
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Figure 3.18: Plot of the coupling strength of the additional gauge groups (g), against Z’
boson masses and Higgs mass for a Deconstructed model with three additional SU(2)
gauge groups and one U(1) group
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Figure 3.19: Plot of the coupling strength of the additional gauge groups (g), against
the p parameter for a Deconstructed model with three additional SU(2) gauge groups

and one U(1) group

3.9 Deconstructed Models with One Variable Higgs Vev.

3.9.1 N=10

ot f

olodossed
g g g g g

On the basis of the promising results of subsection 3.8.2, we continue to explore the
phenomenology achievable by varying further parameters. The last major unexplored
set of parameters for these models first introduced by Schmidt et al [24], are the Higgs
vevs. We would be interested to see if the variation of these Higgs vevs can be used to
strengthen the results of subsection 3.8.2, and whether they might make it possible to
revive large N moose models without losing experimental consistency with the W mass
bounds.

Following the pattern of the previous sections we first calculate an N=10 moose



model. We set the coupling strength of the additional gauge bosons § to 47 in order
to explore the best case scenario at the strict bound of perturbativity. Having found
in séction 3.4 that the variation of Higgs vevs, other than the Higgs vev between the
first SU(2) and the U(1) group, provided little improvement to justify the increased
complexity, we explore only variation of that end Higgs vev.

We plot in Figures 3.20-3.23 the effect of decreasing the value of the last Higgs
vev relative to the remaining Higgs vevs (which are all equal). Specifically we plot f
. divided by f against the masses of the W boson, W’ bosons and the Higgs. For this
choice of axes the effect of varying the Higgs vev becomes more pronounced as we look
from left to right along the plot. It expands the region on the graph in which the
additional gauge bosons decouple from physics at t‘he observed scale and the Standard
Model is replicated. That is a particularly interesting region so its increased visibility
is beneficial.

It can be seen for these models that the Higgs mass reduces toward its standard
model limit (accounting for the fact that we are working with the maximal possible
Standard Model Higgs mass of 1 TeV) on the right of the graph as the last Higgs vev
becomes small. The W' bosons increase quickly in mass as this happens .and the W
mass approaches its Standard Model value. (These two properties are more obvious
at Higgs vev ratios larger than the f/f = 5, that the plot extends to). As should be
expected the results do match those of the Standard Model in this limit.

The presence of a Standard Model limit in these variable Higgs vev models both
provides a check on the correctness of our calculation and guarantees a region of pa-
rameter space consistent with experiment. We would like to see the matching of the W
mass to experimental constraints maiﬁtained as far as possible away from the Standard

Model limit. If this matching holds while the Higgs mass is increased by the strength-

53



ened effect of the additional gauge groups we should see an improvement on previous
phenomenology.

Unfortunately, as can be seen, the Higgs mass reduces a little sharply as we alter
the last Higgs vev. The corresponding W mass results do not begin to move towards
their experimental bounds until after the Higgs mass has fallen most of the way toward
its Standard Model value. This is perhaps not unexpected as the (lightest) Higgs mass
will inevitably be linked strongly to the strength of the lightest Higgs vev. An effect
that apbears to dominate over the link between Higgs vev and W mass consistency.

Nonetheless, for the sake of completeness having developed the formalism, we should

check what effect varying the last Higgs vev has on these models with fewer extra gauge

groups.
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Figure 3.20: Plot of the ratio between the last Higgs vev and its counterparts, against
the W’ boson masses and Higgs mass for a Deconstructed model with ten additional
SU(2) gauge groups and one U(1) group, with additional coupling strengths § = 47
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Figure 3.21: Plot of the ratio between the last Higgs vev and its counterparts, against
the W boson mass less its Standard Model value for a Deconstructed model with ten
additional SU(2) gauge groups and one U(1) group, with additional coupling strengths
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Figure 3.22: Plot of the ratio between the last Higgs vev and its counterparts, against
the Z' boson masses and Higgs mass for a Deconstructed model with ten additional
SU(2) gauge groups and one U(1) group, with additional coupling strengths g = 4m
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Figure 3.23: Plot of the ratio between the last Higgs vev and its counterparts, against
the p parameter for a Deconstructed model with ten additional SU(2) gauge groups
and one U(1) group, with additional coupling strengths § = 4x
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3.9.2 N=1

After the disappointing results found in subsection 3.9.1 we press on to see if better
phenomenology can be found with minimal additional gauge groups. We start with
the smallest moose diagram model of our kind N=1. Again following the pattern of
previous sections.

It is more obvious on these plots, Figures 3.24-3.27, that the Standard Model is
reproduced as we move further to the right on the graph. The W mass bounds are met
easily throughout the range of Higgs vev values. We of course expect this, as the W
mass bounds were easily met for N=1 models with strong additional couplings § and

we are working at g = 4m. The reduction of Higgs vev moves us towards a Standard
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Model limit, which can only improve the consistency on experimental bounds.
Varying the Higgs vevs for an N=1 model at strong coupling is perhaps a little un-
interesting as it serves primarily to improve consistency with experimental constraints

that are already easily met.
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Figure 3.24: Plot of the ratio between the last Higgs vev and its counterparts, against
the W' boson masses and Higgs mass for a Deconstructed model with one additional
SU(2) gauge groups and one U(1) group, with additional coupling strengths g = 4w
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Figure 3.25: Plot of the ratio between the last Higgs vev and its counterparts, against
the W boson mass less its Standard Model value for a Deconstructed model with one
additional SU(2) gauge groups and one U(1) group, with additional coupling strengths
g=4r
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Figure 3.26: Plot of the ratio between the last Higgs vev and its counterparts, against
the Z’' boson masses and Higgs mass for a Deconstructed model with one additional
SU(2) gauge groups and one U(1) group, with additional coupling strengths § = 47
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Figure 3.27: Plot of the ratio between the last Higgs vev and its counterparts, against
the p parameter for a Deconstructed model with one additional SU(2) gauge groups
and one U(1) group, with additional coupling strengths g = 4

3.9.3 N=3

PN PPN
2~~~
g 9 g g 4
Given that N=3 provided the most interesting phenomenology so far, for variation
of the additional coupling strengths in subsection 3.8.2, we will show the results, in
Figures 3.28-3.31, for varying the last Higgs vev for that model at g = 4.

While varying the Higgs vev does provide us with the power to increase the exper-
imental consistency of our best model so far, we lose too much of the desirable heavy
Higgs mass, for the trade off to be useful.

There are however, two ways in which the variation of the Higgs vev could expand

our phenomenological options. First it allows us to improve the experimental consis-

tency of larger moose diagram models. We saw this for N=10 in a limited sense, but as
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N=3 meets the experimental bounds quite easily there is potential for expldring values
of N between these two cases, as we shall in subsection 3.9.4.‘ Secondly we can offset
the improvements in experimental consistency from varying the vev against the loss of
such consistency for weaker, more perturbative, coupling strengths.

It appears unlikely that we will improve upon thé results in subsection 3.8.2 by
Varying the vevs, but we may well be able to expand the array of models and their

parameters that can match experimental constraints.
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Figure 3.28: Plot of the ratio between the last Higgs vev and its counterparts, against
the W' boson masses and Higgs mass for a Deconstructed model with three additional
SU(2) gauge groups and one U(1) group, with additional coupling strengths g = 4
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Figure 3.29: Plot of the ratio between the last Higgs vev and its counterparts, against
the W boson mass less its Standard Model value for a Deconstructed model with three
additional SU(2) gauge groups and one U(1) group, with additional coupling strengths
g=4r
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Figure 3.30: Plot of the ratio between the last Higgs vev and its counterparts, against
the Z’' boson masses and Higgs mass for a Deconstructed model with three additional
SU(2) gauge groups and one U(1) group, with additional coupling strengths g = 4w
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Figure 3.31: Plot of the ratio between the last Higgs vev and its counterparts, against
the p parameter for a Deconstructed model with three additional SU(2) gauge groups
and one U(1) group, with additional coupling strengths § = 47

3.9.4 N=7 B

g g
In Figures 3.32-3.35 we display the effects of varying the Higgs vev for a moose diagram
with seven additional gauge groups at § = 47. What we can observe is that there is a
significant region of Higgs vev variation in which the experimental bounds on the W
mass are met. While the phenomenoclogy of this region is not of especially great interest,
we have managed to get experimental consistency for a quite large moose diagram with

a W’ boson mass detectable at the LHC and a Higgs mass larger than that observable

in the Standard Model (in the sense described on page ).
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Figure 3.32: Plot of the ratio between the last Higgs vev and its counterparts, against
the W’ boson masses and Higgs mass for a Deconstructed model! with seven additional
SU(2) gauge groups and one U(1) group, with additional coupling strengths § = 47
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Figure 3.33: Plot of the ratio between the last Higgs vev and its counterparts, against
the W boson mass less its Standard Model value for a Deconstructed model with seven
additional SU(2) gauge groups and one U(1) group, with additional coupling strengths
g=4n
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Figure 3.34: Plot of the ratio between the last Higgs vev and its counterparts, against
the Z' boson masses and Higgs mass for a Deconstructed model with seven additional
SU(2) gauge groups and one U(1) group, with additional coupling strengths § = 47
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Figure 3.35: Plot of the ratio between the last Higgs vev and its counterparts, against
the p parameter for a Deconstructed model with seven additional SU(2) gauge groups
and one U(1) group, with additional coupling strengths g = 47
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3.9.5 N=3 - Weaker Couplings with Variable Higgs Vevs

f ot =t =

OROROSORE
g g g g 4
In the following plots, Figures 3.36-3.39, we attempt to use variation in the Higgs
vev to find experimental consistency at tree level for more perturbative values of the
additional couplings. We do this for an N=3 moose diagram model with additional
couplings g set to 6. Approximately half the perturbative limit of 47, and as such,
meaningfully perturbative. Sadly although this reduction in coupling strength does
represent perturbativity in principle, it is not a strong enough improvement for the
tree level results to be reliable or for the calculation to be accurate within a tractable
number of loops. Nonetheless, it represents movement in the correct direction, and
establishes such movement is possible.

The graphs show that the W mass experimental bounds can be met at more per-
turbative coupling strengths for a certain region of Higgs vev scale. They also display
that at this scale the W’ boson would be within the observable range at the LHC.
Unfortunately no pleasing progress is made towards increasing the Higgs mass, which
has been our primary goal. In effect we have created a Deconstructed Model at tree
level here that is approaching experimental consistency, but for the anticipated effect of
larger than desirable loop level corrections, and provides us with LHC phenomenology

distinct from the Standard Model.
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Figure 3.36: Plot of the ratio between the last Higgs vev and its counterparts, against
the W' boson masses and Higgs mass for a Deconstructed model with three additional
SU(2) gauge groups and one U(1) group, with additional coupling strengths g = 6

fIf

Figure 3.37: Plot of the ratio between the last Higgs vev and its counterparts, against
the W boson mass less its Standard Model value for a Deconstructed model with three
additional SU(2) gauge groups and one U(1) group, with additional coupling strengths
g==6
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Figure 3.38: Plot of the ratio between the last Higgs vev and its counterparts, against
the Z' boson masses and Higgs mass for a Deconstructed model with three additional
SU(2) gauge groups and one U(1) group, with additional coupling strengths § = 6
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Figure 3.39: Plot of the ratio between the last Higgs vev and its counterparts, against
the p parameter for a Deconstructed model with three additional SU(2) gauge groups
and one U(1) group, with additional coupling strengths g = 6

67



3.10 Conclusions from the Phenomenological Exploration
of Tree Level Numerical Analysis in Deconstructed

Models

In conclusion to our numerical analysis of tree level Deconstructed moose models we
have achieved three areas of promising results.

Firstly an array of models was explored that present diversely new phenomenology
from the, as yet unobserved, Standard Model Higgs predictions. While the most inter-
esting results belonged to models that failed to meet current experimental constraint,
and as such must be discounted, they did provide precisely the phenomenology we
sought to find. On the basis of this analysis we have established that a range of Decon-
structed models do indeed predict Higgsless phenomenology and an abundance of new
gauge bosons at energies the LHC can probe. Regrettably the most vivid examples of
these models fail to accurately conform tb the precise experimental constraint set by
experiments such as LEP2.

Secondly, we successfully developed a model, consistent with current experimental
constraint, which did achieved our goal of an existence proof for a tree level model
without a Higgs boson at the LHC with the possibility of the observation of a signature
W' boson. The N=3 Deconstructed moose model displayed in subsections 3.8.2 and
3.9.3 met the objective of this existence proof only narrowly and, given that it met
experimental constraint only in the strong coupling limit, this result is only naively
perturbative and would most likely break down at the loop level.

Finally the model presented in subsection 3.9.5 came close to providing perturbative
results for an experimentally consistent model with observably distinct phenomenology

from that of the Standard Model. Sadly the presence of a relatively light Higgs meant
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that this model fails to meet the stated goal of an effectively Higgsless model at LHC
energy scales. Nonetheless, scientific preferences-aside, it does represent experimen-
tally valid unitarity corrected new physics which could be both verified or disproved
at experiments in the near future. We believe the results of our tree level numerical
analysis from a raft of Deconstructed models, presented in this chapter, appreciably
better informs consideration of the merits of using Deconstruction to predict fresh
LHC-level phenomenology. Our results might well have ruled out attempting Higgs-
less phenomenology using standard Deconstructed models. They might equally have
established that such models easily achieve new Higgsless predictions at LHC energies.
Instead we have found data that suggests that it is challenging, but perhaps possible,
to develop models that use Deconstruction to present experimentaily valid Higgsless
predictions at high energy. Certainly we have verified that new physics can be predicted

by these theories without violating existing experimental constraint.
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Chapter 4

Calculating Electroweak Oblique
Corrections in the Standard

Model at the One Loop Level

4.1 Loop Level Calculations and the Oblique Electroweak
Parameters.

Throughout Chapter 3 we worked exclusively at the tree level in Deconstructed models
looking for interesting phenomenology. Having found useful results at the tree level, it
becomes important to find out if these models remain consistent with data at the loop
level,

As far as we are aware, at time of performing these computations no loop level
calculations had been performed for Deconstructed models. Whilst writing up ref [72]
was released - we have explicitly checked our results against those as we will explain.

We here set about performing a one loop calculation to test models of the form used
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in Chapter 3, and perhaps to gain insight into the validity of Deconstructed models in
general beyond tree level.

Most of the experimental bounds on beyond the Standard Model physics were es-
tablished at LEP [62, 63], an electron positron collider, and other similar experiments.
We will be interested in corrections to the self-energies of gauge bosons formed through
electron positron annihilation as shown in Figure 4.2. These co;rections to the stan-
dard model éauge boson propagators are called “oblique corrections”. There are also
possible non-oblique corrections, for example due to the exchange of a new particle
between the external fermion lines. Higgs physics of this sort is suppressed because
the electron’s Yukawa coupling is so small. We will neglect these interactions from the
extra gauge bosons in Deconstructed models because we work close to the decoupling
limit where the Stahdard Model fermion interactions return to those of the Standard
Model.

In order to establish whether the loop level porrections of our model are large, and
whether they are non-perturbative, we adopt a parametrization introduced by Peskin
and Takeuchi [60, 61]. The introduced parameters known as the Electroweak Oblique
Corrections and denoted .S, T"and U are used in order to check experimental consistency

of Beyond the Standard Model theories. They are defined as

aS = 4e? (Mh3(M3) — IT35(0)) (4.1)
82
al = 222 (111 (0) — M33(0)) (4.2)
S8“C z
ol = 4e® (11, (0) — IM35(0)) (4.3)



where e is the electron charge, s and ¢ are shorthand for sin fy and cos 8y and the I1
are the coefficient of the g,, piece of the gauge boson self energies. A prime denotes
differentiation with respect to the external momentum squared flowing through the
diagram.

The majority of experimentally measured parameters, such as the W mass and the
p-parameter, can be re-expressed as function of the Electroweak Oblique Parameters
- S, T and U. A table of relations of this kind can be found in Appendix B of the paper
by Peskin and Takeuchi [61]. From these inter-relations experimental bounds on S, T’
and U have been established and can be found in the Particle Data Book [37]. We

display the current experimental bounds in Figure 4.1

0 P —
| [ Im=178.0£4.3 GeV
my,= 114...1000 GeV
0.2-
0B AN
0.2-
o4 LS 68%CL
04 -02 0 02 04

Figure 4.1: Latest electroweak precision measurements taken from [73]. The ellipse is

drawn fc:r the reference values: 5a§3d(M%) = 0.02758, as(M%) = 0.118, Mz = 91.1875
GeV, my = 175 GeV and my, = 150 GeV and U=0 (see [73] for more details).
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In the remainder of this thesis we make use of the experimental bounds set by the
Particle Data Book to confirm whether our models are valid at the one loop level.
~ Consequently we concern ourselves only with evaluating at one loop, the S, T and U

parameters.
For models of the form introduced in Chapter 3, where the fermions couple only to
the end two gauge groups, there is a Custodial Symmetry [24] which fixes the T and U

parameters to be zero. As such it is only necessary to calculate the S parameter.

Figure 4.2: A generic diagram for gauge boson production by electron-positron annihi-
lation.

4.2 The Oblique Electroweak Parameter S

The S parameter was defined in the limit where the scale of new physics is much higher

than the Z mass as follows, in [60]:

a5 = de? [I35(0) — Mg (0)] (44)

Here o is the fine-structure constant. Il33(0) and II3o(0) are the self energies for

unbroken gauge bosons at zero incoming momentum.
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Before we calculate the S pararh’eter in Deconstruction we wish to evaluate it in the
Standard Model. This is necessary for two reasons: firstly the S parameter constraints
are defined such that the S parameter is zero in the Standard Model. This is achieved
by simply subtracting the Standard Model S parameter contribution from any results.
The value of the S parameter is dependent on the Higgs mass and so a reference value
of the Higgs mass is used to define S = 0 (see Figure 4.1). Secondly we will use the
computational techniques needed in the Standard Model S parameter computation in
performing the analogous calculation in Deconstruction. The form of the S parameter
introduced by Peskin and Takeuchi [60] is valid only in the limit where the scale of new
physics is much higher than the 7Z mass. This is clearly no use for any Standard Model
calculation and lacks generality, consequently we make use of a more general formula
from the paper of Bhattacharyya, Banerjee and Roy [64]. This alternate form of the S

parameter is entirely equivalent to that of Peskin and Takeuchi at high scales.

S = }\3—7 [M33(M3) — 1a3(0) — 30 (M3)] (4.5)

Z
Here two of the self energies are at the Z mass scale, which would be indistinguishable
from zero external momenta for physics at an appreciably higher scale.

It is most useful to work with the mass eigenstate gauge bosons - the Z boson and
Photon (A). We thus convert the S parameter into a form which contains the self
energies of these fields.

The relations between the gauge and mass eigenstate gauge bosons in the Standard

Model are
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1

+ 1 . K
W= (W) Fiw2), = (4.6)
AL 5 B,
from which we can deduce the relations [64],
HAA = EQHQQ (47)
2
Maz = —(Tsq — s’Tgq) (4.8)
e’ 2 4
IIzz = @(HBB — 25°II3g + s*1lgo) (4.9)

These can be rearranged into the reverse form

HQQ — E%HAA (410)
Mag = S(csllza+ s*T44) (4.11)
g3 = % (c?s* 7z + 2c5° 24 + 511 44) (4.12)

where e is the coupling of the electron and s and ¢ are shorthand for sinfy and
cosfy in the Standard Model respectively. It is worth flagging at this point that
these relationships differ in Deconstruction. The above relations will have to be re-
derived, later in this thesis, from first principles, to accommodate the source of those
distinctions. We will begin, however, by performing the calculation in the Standard
Model before generalizing.

We can re-express the S parameter, using the above Standard Model relations, in
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the following form,

167

S
eZM%

[(6252H22(M%) + QCSSHZA(M%) + S4HAA(M%))/

—(csliza(M3) + s°TL4a(M3)) (4.13)

_(62321‘[22(0) + 2¢s3TI£.4(0) + S4HAA(O))]

In order to calculate the S parameter in the Standard Model we must calculate the

three self-energies 7 boson to 7 boson, Photon to Z boson and Photon to Photon.

4.3 Calculation of the Scalar Two-Point Function B

The one loop self energies will be calculated from the sum of all contributing Feynman
diagrams formed using Feynman rules, which will be multiplied together and integrated
over the undetermined loop momentum. Before we proceed with that calculation it is
valuable to establish certain mathematical shorthands that will be useful.

All Feynman diagrams which will be added together to form our self-energies, have
certain features in common. Firstly they are one loop diagrams with either one or
two internal propagators which contain momentum dependence in their denominators.
Secondly they have vertex terms which have momentum dependence only in the numer-
ator. The product of these propagators and vertices will be integrated over all possible
values of the loop momentum. The basic template for this is the simplest case, were
there are no momenta in the numerator. These are called the Scalar one-point and two
point functions Ag and By.

The scalar one-point function has only one propagator, and although simpler will
be of less importance in the calculation of our self-energies. Instead we focus on the

scalar two-point function. (The method we will follow in the remainder of this section,
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for calculating the scalar two-point function, can be found elaborated in Peskin and

Schroeder [66].) We define

. #*()
By = / (2m)4=2¢ (12 + m%)((l + p)2 + m%) (4.14)

Here p is the external momentum, [ is the loop momentum and mj and mg are the
masses of the gauge bosons to which the respective propagators refer. Using the method
of dimensional regularization we are working in 4 — 2¢ dimensions, where ¢ is, as usual,

infinitesimally small. g(u) is the coupling which runs according to the momentum scale

[
Feynman parameterizing as follows
1 ! 1
— = d 4.15
AB ./0 x[:cA—l—(l—:c)BP (4.15)
We get
1 ! 1
= dz 4.16
(12 +m?)((L +p)? + m3) /0 [z(l 4+ p)? + xm3 + 12 + m? — zl2 — zm?]? (4.16)
If we now re-parameterize [ — [ — zp we find
1 1
1 1
d = dr——— 4.17
/0 $[12—$2p2+$p2+xm% — zm? + m3]? A m(l2 — A)? (417)
where
A =z2p? — xp? — zmi 4+ zm? — m? | (4.18)

Now that we have the integral in a simplified form, we can employ a mathematical
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identity [66], to perform the integration over loop momentum. In particular we use

d21 1 _ i NG d/2) 1 2—d/2 -
/ @r)f (=AY~ @4m)i?  T(2) (Z) ;o d=4-2 (@19)

Substituting back into equation 4.14, By becomes

Y gt T2 —df2) 1\
BO_/O i T T () (z) (4.20)

The gamma functions take the following values

I(2) =2 (4.21)
I'2—-d/2)=T(2-24¢)=T(e) (4.22)

where
D) = = ~ 7+ 0@)amo (4.23)

We also have

- ) e

We thus get By into the following form

By = /01 dz (19;(5_)5% (% o 0(5)> (%) (4.25)

We can make use of certain approximations and re-arrangements due to the fact that
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€ is infinitesimal:

cF =€ x1—clogz (4.26)
L) o1 cloga (4.27
)~ 1 clog 27)

i
@) = {n) (1 + elog4n) | (4.28)
9°(u) = g°1* = g*(1 + elog 1) (4.29)

These can be substituted to simplify Bp, and allow us to separate out terms of order

€. These terms can then be set to zero.We are left with

2

: 1
i g 1 9
S - m) + — 4.30
0 20 )2/0 dzx (5 v+ log (4m) + log logA) ( )

Using the M S subtraction scheme this takes the form

By = (49:)2 /Old:clog <§) (4.31)

where once again A is defined by

N | e,

A =2%p? — zp? — mm% + :Um% — m% (4.32)

We are now in a position to evaluate the scalar two-point function explicitly for any

given set of values for momenta and masses. In practise we will use the package Loop-
Tools [67] to perform these evaluations.

This expression is the basic template for the loop momenta integrals performed on

our Feynman rules.
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4.4 Evaluation of Feynman Rule Coefficients

The Feynman rules we will require are derived from the Electroweak Lagrangian (shown
in equation 4.33). In this section we will explicitly calculate the coefficients for a couple
of examples of vertices, in order to indicate the principles. In Chapter 5 we will need
these methods in order to generalize to our Deconstructed models. The momentum
dependent parts of the Feynman rules (shown in section 4.5) generalize trivially to
Deconstruction, so we will extract them and concentrate on the numerical coefficients.

The Lagrangian Density is,
1 v UQ i
L =—}F*"F + tr | D*S(D,D)| (4.33)

where > is the Higgs doublet containing the Goldstone bosons, Higgs boson and Higgs

vacuum expectation value

L= ( ot — i~ v+ (h+ix) ) (4.34)
The covariant derivative takes the form
D,¥ =0,%— z‘g’IB“E + z’gZT“Wﬁ (4.35)

Our first example will be the calculation of the coefficient of the vertex containing

a Z boson coupling to two Goldstone fields. This vertex comes out of the covariant
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derivative part of the Electroweak Lagrangian, expanded as follows

1 0 1 0
£:<(p+_iq)—,v> @A—%igW?’ —%ig/B
0 -1 01
1 0 1 0 ot 4 i~
x | 8, — Ligw?® +ligB
0 -1 01 v

(4.36)

Contracting the matrices and suppressing terms that will not contribute to the vertex

of interest we find

L= K 2igW(@* —i®7) — Jig' B(®* —i®7) , —igW v — ig'Bu )

+( Ou(®FT —4®07) , v )}

(—3igW? + Lig/ B)(®+ +1D7) + 0, (d* +i® )
X

independent of ®

(4.37)

We now want to re-express the gauge eigenstate gauge bosons in terms of the mass

eigenstates using (4.6). The coefficient of the Z®1T®~ vertex is then

L=20, (%g cos By — %g’ sin HW) TP~ Z

(4.38)

We can write this with the couplings expressed in terms of the electron-photon coupling,

by employing the following relations

e = gsinfy

e = g’ cos Oy,
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We find

ECF)SQW_%BSIHHW o+ (4.41)
sin Gy cos By

c=o,(

The numerical coefficient (neglecting the standard momentum dependence) of the ver-

B =

tex between a Z boson and two Goldstone bosons is therefore

(4.42)

Our second example will be the calculation of the numerical coefficient of the vertex
containing a Z boson coupling to a Goldstone field and a W boson. This vertex comes

out of the covariant derivative part of the Electroweak Lagrangian, expanded as follows

R B / 1 0 0 0
L= ( O —id v ) F1gW - %ig B + %igW—
0 -1 0 1 10
1 0 10 0 1 OF 45D
x | Op — SigW?® + 3ig'B - Ligw~
0 -1 0 1 0 0 v
(4.43)

Contracting the matrices and suppressing terms that will not contribute to the vertex

of interest we have

1 . —
—51gW v
L= ( SigW3(®F —i®7) — 2ig’ B(®* —1®7) , —LigW 3y — lig/Bu )
0

+h.c.

(4.44)
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Re-expressing this in terms of the mass eigenstate gauge fields gives
L= 3gv(gcosby — ¢ sinbw)Ze™ W™ + h.c. (4.45)
Where the hermitian conjugate is,
h.c. = gu(—gcosby — ¢'sinOy) Z¢T W™ (4.46)

Therefore the numerical coefficient of the vertex for a Z boson to a Goldstone boson

and W boson is

~3sd'gu = —sg'My = —eiMw (4.47)

where we have used the fact My, = %gv.

4.5 Feynman Rules.

~,

In order to calculate the gauge boson self energies, and therefore the S parameter, we
will require the full set of Feynman rules for all the relevant propagators and vertices.

In the conventions used above, the Feynman rules are as follows, with the momenta in

all the vertices considered to be incoming.

P _1 g
WAINANANAN,  —ZEE

p*+my,
2NN ;ig—i‘—”y
p?4mi
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4.6 Evaluation of Feynman Diagrams for Photon-Photon
Loops

Now that we know the Feynman rules that will be required, we can construct and

evaluate the Feynman diagrams which will be require to generate the self-energies. To

begin with we will describe how the Photon-Photon Feynman diagrams are formed.
At this stage we won’t concern ourselves with ‘tadpole diagrams’ - ie. diagrams

with a single four-point vertex. They are momentum independent and will cancel from
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the S parameter. The remainder of the Feynman diagrams that can contribute to the

one loop self-energies, have the generic form of figure 4.3.

[—p

Figure 4.3: Generic form of Feynman diagrams that contribute to the S parameter;
showing the routing of the loop momentum and Lorentz indices

Figure 4.3 displays the Lorentz indices {nrhich will need to be contracted, as well as

the routing of the loop momentum.

We’'ll begin by calculating the Feynman diagram with two external photons and a

Goldstone boson loop.

4.6.1 Photon-Photon One Loop Correction from ¢"¢~ Goldstone Bo-

son Loops

Using the Feynman rules from section 4.5, we evaluate the Goldstone loop diagram to

be the following

o A d%p —t
5 s — S — )z l + l Y o
N / (27r)d( Jies(L+ (L +p))y 2 +mi,

: x (~)ies(—1 — (i +p))gmz+—%

(4.48)

Where S stands for the symmetry factor, which is 2 for this Goldstone loop.
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First we’ll deal with the momentum parts in the numerator as these determine which

B-relations apply. We extract these out separately below and expand the brackets.

(l + (Z —{-p))#(—l - (l +p))a = _pupa - 4lupa - 4lpla (4‘49)

Note the following two point integrals are defined as [68]

Bo; Bu; Buo (p, m1,ma) = / ddpd D) 21; e ZMZUQ 2 (4.50)
(2m)® (12 +m7)((L + p)? + m3)
B, (p,m1,m2) = p,B1(p,m1,m2) (4.51)
B;w = p/LpUBQI + g/LUBQQ (4'52)
Therefore the diagram (4.48) can be rewritten
o
4 / Y A
’\/\/\4\ .I}’\/\/\/ — SQ(-pupaBo _ 4paBu o 4B;w) (4_53)
.
&
4 / Y 4
”\/\/\/l\\ ,’NW — SQ(—pupaBo — 4p,poB1 — 4pupoBa — 4gWB22) (4.54)

We suppress keeping track of the momentum scale and the masses of the two-point

functions By(p?, mw, mw ), down to By, By, Bae and so forth, for brevity.
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Given that the Ward Identity imposes that

AN [V " (4.55)

A // \ A
[AVAVAV ,W ) <9u0 . pup0> T(pQ) (456)

As such we may simply take the g,, coefficient to determine the self-energy, since the

coefficients of p,p, must sum to an identical value. Therefore,

’ A
[AVAVAV] I}’\/\/\J — 482B22 (457)

4.6.2 Photon-Photon One Loop Correction from GGG~ Faddeev-Popov

Ghost Loops

d%p —1 —1

on)e (—ze)slum(—me)s(l + p)a(l—m

ol ks
vvvvv (4.58)

The symmetry factor S here is one, However there is a factor of -1 because the ghost

fields are Grassmann variables which anticommute, analogous to the factor of -1 in
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fermion loops.

The momentum parts are

l#(l +p)0’ = l,LLpO’ + lulcf

Therefore

Now using the definitions

By(p,m1,m2) = puBi(p, m1, m2)

B,ucr = pp.pchQl + Q,LLUBQQ

we find

MM PN = 5% (pupo By + PuboBai + Guo B22)
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(4.60)

(4.61)

(4.62)
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4.6.3 Photon-Photon One Loop Correction from W+*¢~ Loops

A A d . L
m _ S/ dp _ﬂ@_iesmwgﬁg__L“A (4.65)

1e8Mwg
(2m)d 12+ mi, (l+p)?+ m2y

The symmetry factor S here is one. Here the metric tensors contract, and the result is

quite trivial

4.6.4 Photon-Photon One Loop Correction from W*W~ Loops

\A/vf A dp .
R\/\J = 5/ ) e (900 (P2 — P1)p + Gup(P3 — P2)p + Gopu(P1 — P3)u]

~igup
mles [955(P2 = P1)a + 98alPs — P2)o

—igpa

+ac (P1 — D TN 2
R (s

(4.66)

The symmetry factor S here has value 2. The momentum factors after contraction are

= 6puPs + Puls + Lulo] +4[=Pupo — 4puls — Al + guo [—5p” — 2pl — 21°]  (4.67)

Using the relations in equation 4.61 we can re-express the diagram as follows
W

A A

= 5%[2pupoBo — 10p,poBr — 10p,.po Ba1 — 10g,,0 Bao

—59,0p°Bo — 2p°Bo1 — 89,5 B22)  (4.68)
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Using the relations from Passarino and Veltman’s paper [68]:

p*Bo1 + By = —1/2p*B) (4.69)
—m?Bg = p®Bo1 + 4Bgy + 1/2(2m? + 1/3p?) (4.70)
p?B1 = —1/2p*By (4.71)

and employing the Ward Identity, we find the WTW ™ loop gives,

W+

= 52 ((—2my + 4p*) B + 10Bas + 2 (2my + 1/3p%))  (4.72)

W=

4.7 Corrections from Loops

Collecting the evaluated diagrams from section 4.6 for the photon-photon corrections
we find

Ww-

Wt

52 ((—2m}y, + 4p®) By + 10B2; + 2 (2m¥, +1/3p?))

A A
’\Am/v» 252m%/VBO

AN AV 48°Byy
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f\/\/\z f\/\/\, —282B22
-
Included in the above diagrams are symmetry factors of 2 for WTW™ and ¢ ¢~

There are no symmetry factors for GT G~ or W1¢~. However there is a factor of -1 in

G1 G~ because the ghost fields are Grassmann variables which anticommute, analogous
to the factor of -1 in fermion loops.

The summation of these photon-photon one loop corrections yields the photon-
photon self energy TTaa. We use ATl 44 to signify the suppression of momentum inde-

pendent contributions to the self energy, which will not be required to calculate the S

parameter
ATl g4 = s%[4p* By + 12Bgy + 2(2m? 4 1/3p?)) (4.73)
Using the formulae in (4.69) we may solve for Bay [69]
By =1/6 {(-2m® — 1/2p*) By — 2m?* — 1/3p%} (4.74)
Substituting for Bgy into equation (4.73) we find the photon self-energy;
ATlaa = —% {[3p% — 4m¥y] Bo(p®, mw, mw)) (4.75)

The Feynman diagrams for the Z boson to photon self energy are:
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y S sc ((=2m%, + 4p?) Bo + 10Bys + 2 (2m%, + 1/3p?))

z A 3
Wmv\, m?
—2=mi, By

oo
ﬂj*
Z l/ \\\ A
AN nAA 2%(02 — 52)322
-
G*tG~
[end
z N A
N [a%%Y —25cBog

The summation of the these diagrams yields the Z boson-photon self energy.

3
Allz4 = sc((—2md, + 4p%) By + 10Ba + 2 (2miy, +1/3p%)) — 2%(m%VBO + Ba)

(4.76)

Substituting with (4.74) this becomes

1 1
oo 00~ i o+ )

(4.77)
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The Feynman diagrams for the Z boson to Z boson self energy are:

WHW-
W
Z : c? ((—2m, + 4p?) Bo + 10Ba, + 2 (2miy + 1/3p?))
W
W+

z 4 4
2
Wm/\m Q%TmWBO

RN
&
z / " z (c2—52)2 1,
’\/\/\/ﬁ\ /r\/\/\/ ———Q——C 22
o
GG
G+
z i z 2
AN A —2¢*Byy

These diagrams can be calculated analogously to 1144 and Tlz4, to give

>
=
AN
Ny
Il
|
—N—
(3]
—
—
oo
(@}
™
+
[\)
(@}
[Lv]
[Nl
3
[Lv]
|
(S
N
O
'
+
=
(@)}
o
[N}
|
[
=
3
=
oy}
o
=
o [S)
3
=
3
3

However there are additional contributions from the following two diagrams:
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Using the more general relations for By, Ba1, Bag, which apply when the masses in

the two-point function are not equal

p’Ba1 + By = $ Ag(ma) — §(p* — mf +m?) By (4.79)
1
Ag (ml) - mgBo = p2B21 + 4By + g(m% + ’I’)’Lg + %pQ) (480)

1
B (pQ,mO,ml) = ? [Ao(mo) — Ag(m1) — (p* — mg + nl%)Bo(pQ,mo,ml)J (4.81)

Which have the following solution for Bos:

m2—m?2
+ ot [A(mo) — A(my) — (mF —m{) Bo]
—m2—m? %pQ} (4.82)

These extra diagrams contribute the following additional term to Ilzz,

oY% 1
m2 _m2 2 2
_(_'%L)_ (BO(anmZ-,mh) - BO(OamZ7mh)) - gpQ (483)
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We keep one factor here of Bg(0,mz, my) as a lone momentum independent term, as

it is convenient in performing the cancellation of the divergences in section 4.8.
Collecting together results, we get the Electroweak self energies below. Noting that

the momentum independent terms are suppressed as they don’t contribute to the 5

parameter, which is the objective we've set out to calculate.

Has =~ { 39" — 4mfy ] Bo(o?, mw, )} (4.84)

a1 1
fos == {2 {10et + 19?1262 + 4y ] Balo?, o, ) + 25} | 059

& 1 4 212 2
lyz = o {63202 { {(180 + 2¢ — §)p — (24c* +16¢% — 1O)m‘24,} By(p®, mw, mw )

—_

1
(42— 1>—p2} L (o — m = 5] B )

m2 —m?)2 2
_mz = mi)” (Bo(p®,mz,my) — Bo(0,mz, ms)) — gPZ}}

(4.86)

We now have the self energy contributions which we require in order to calculate the

Electroweak oblique parameters, of which the S parameter will be of specific interest.
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4.8 Cancelation of Divergences in the Standard Model at
One Loop

From section 4.2 we know that the S parameter expands to equation 4.2.

[(®s*TIzz(M3) + 2¢s’TIz 4 (M3) + s*TTaa(M3))

—(csTlza(M3) + SQHAA(M%))

—(c?s*Tz2(0) + 2¢s°T1z4(0) + s 4 4(0))] (4.87)

Electromagnetic gauge invariance implies I144(0) = IIz4(0) = 0 [64, 63] consequently
only the terms with momentum dependent coefficients in the these self energies will
contribute to the S parameter. Equally an observation that the Z-Z self energy ap-
pears twice in the S parameter, with a difference of a sign and a differing momentum
scalé, makes it apparent that all but the terms with momentum dependent coefficients
must cancel here too. Therefore, the S par‘ameter is formed only from the terms with
momentum dependent coefficients from the gauge boson self energies.

The momentum dependent terms in the neutral current gauge boson self energies

from chapter 4 are as follows,

o

AHAA = _E {SPQBO(p27mWamW)} (488)
lo% 1 1

Allzs = =< z— {9 + H)p* Bo(p*, mw, mw) + —PQ}} (4.89)
47 | 3sc 3
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«

Allzz = - {

1
Ge2c2 {(18c* + 2¢* — i)pZBO(pE, mw,mw)

1 1
Hae = 135} + iz (Bl mam)

3
mQ _mQ 2 9
—_(_Z?Q_—h)— (BO(pQ,mZ,mh)—BO(O7mZ,mh)) —gpQ}}

(4.90)

The divergences must cancel within the S parameter, as it is a physical observable.
Divergences are present in the scalar two-point functions through Bjy. Denoting the
divergences in By as A, the insertion of the abbreviated self energy relations below into

equation 4.2, must equal zero.

@
Allgs = —— {3p°A 4.91
AA 47r{3p } ( )
1% 1
Allgg= —— 4 — 2+ Dp2a 4.92
z4 47r{350{(90 + 3P A} (4.92)
Allyy = 30 1 gt 1o - Ly2av . L [ 2a 4.93
227 T ar | 6522 {(18¢" 4 2¢ = 5)p }+128202 {=p"a} (4.93)

The substitution and cancellation of divergences is shown explicitly below,

1 1 .
S(divergences) =c”s {63202 {(18¢* + 2¢* - SIMZAY + 195202 {—M'%A}}
: 1
+2¢s’ {3—30 {(9¢* + %)M%A}} + s 3MZA}
1
—cs {@ {(9¢® + %)M%A}} —s? {3MZA} (4.94)
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S(divergences) = {é {(18(:4 +2¢2 — DIMZA} + % {—M%A}}
+ 2¢° {% {(9¢* + %)M%A}} + s*{3M3A}

— {% {(9¢% + %)M%A}} - s {3MzA} (4.95)

S(divergences) = 1—12 [{{(36c* +4c® — DMZA} + {-MZA}}
+5% {(72¢* + HMZA} + s* {36MEA}

{~(36c* +2)MEA} - 52 {36M3A}] (4.96)

Implementing the relation s% = 1 — ¢?

S(divergences) = %2 [(36¢* +4c* — 1) — 1
+(1 = cA)(72¢% 4 4) + 36(1 — ¢*)?
—(36¢% +2) — 36(1 — ¢*)] M3A (4.97)
=0 (4.98)

Here we have confirmed that the standard model S parameter, as expected, is free of
divergences. A statement which also establishes that the S parameter is momentum
scale independent (ie. the running coupling 4 in equation 4.14 has no bearing on the
observable S parameter.).

In the leading log approximation one sets

2 2
_ 9 A 4.99
Bo = (47r)2LOg <m2> (4.99)

where A is a UV cut off on the integration and m the largest mass in the loop. The
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UV cut off dependence cancels as we have just shown explicitly. The largest mass in

the loops will be either My, or mp. Explicitly in this approximation one finds

1 m?
S=-_Log <——h) (4.100)
127 ME,

This is the familiar result from refs [68, 70, 71].

We can of course now substitute the full values of the self energies into the S
parameter definition, in the knowledge that they are divergence free. Doing so with
the W/Z boson masses from experimental data and a Higgs mass set to 100GeV the S

parameter has the value S = 0.140.
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Chapter 5

Calculating Electroweak Oblique
Corrections in Deconstruction at

the One Loop Level

In the previous chapter we computed the contributions to the S parameter from the
gauge sector of the Standard Model. That analysis developed the techniques we need
to calculate the additional contributions to S in deconstructed models. We will concen-
trate on the special case of a deconstructed model with just a single additional SU(2)
gauge group beyond the Standard Model here. As we saw in Chapter 3 to obtain decon-
structed models that are compatible at tree level with the electroweak constraints one
must concentrate on the decoupling limit where the gauge coupling of the new gauge
groups is large (§ — co). For this reason we will pay special attention to that limit
of our computations. We also make use of [72] in which a parallel analysis of the S
contribution in that limit is made in the low energy effective theory of Deconstruction.

Our computations extend that analysis beyond the leading log approximation and pro-
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vide an explicitly renormalizable model of the symmetry breaking dynamics through

the inclusion of Higgs fields.

5.1 Evaluation of Mixing Angles in N=1 Deconstruction

We explore the simplest form of a Deconstructed model, that with an N=1 U(1) x
SU(2), x SU(2)2 gauge group. [24]

The Lagrangian Density for an N=1 Deconstructed model is

L= _%B#VB#V - %Wla #lea,uu - iWZQ #VWZQ,LW + %LLT‘ [Dluzl(Dﬂzl)T} +

Ltr [D“EQ(D#EQ)T} (5.1)
Where X1, 39 are the two Higgs doublets within the N=1 Deconstructed model.

Ty = < O —i®d7 , vy + (b1 +ix1) ) (5.2)

Yo = ( @3‘_#@2— ,02+(h2+iX2) ) (5.3)

We will restrict to the case where v; = vy = v for simplicity (we will also assume the
two Higgs bosons have the same mass). The two covariant derivatives in the (N, N)

representation are as follows,

D,y = 8,51 —ig'IB, %1 + 1§ T°WE, (5.4)

DSy = 8,5 — igT W, Sy + ig8o T W, (5.5)

The Feynman rules for three point vertices in such an N=1 Deconstructed moose model

can be found by extracting out the relevant terms from this Lagrangian. To get the
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Feynman rules in terms of the mass eigenstate gauge bosons of the spontaneously
broken symmetry, we employ the following mixing angle matrix expansions (obtained

in practice by diagonalizing the mass matrices in section 2.7).

W = appnWi + anW, ' (5.6)
W' =anuWi + anWs (5.7)
A = booB + bigW7; + byoW3 (5.8)
7 = b1 B + b11W13 + b21W23 (59)
Z =bypB + b12W13 + bQQWS (510)

In addition we must find the Goldstone boson eigenvector components. The mass

matrices are given via the gauge fixing terms discussed in section 2.1 and in this case

are

2 =2 ~2
g°+g° —g
M = (5.11)
_g? g?
2 ~2 ~2
g +g -9
_g? g? + g/2
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We define the mixing angles after diagonalization as

¢ = c19¢1 + c2202

¢ = c11¢1 + 62

X = di2x1 + da2x2

X = di1x1 + da1xe

5.2 The Large g Limit

(5.13)

(5.14)

(5.15)

(5.16)

Phenomenologically compatible models all live at large values of the additional SU(2)

group’s coupling, . One can explicitly find the leading terms in the expansion of the

above couplings in this limit. This was mostly done in [24] and we reproduce those

results here extended to the ¢ and d coefficients. Firstly the QED coupling is given by

_ 9'9g
\/g2§2 —|—g’2g2 +g’2§2

€

The a coefficients are then

1
a9y — 1-— g)\Q
A
a = —
12 2
A
a = ——=
21 9
1
a1] = 1-— g)\Q
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(5.18)
(5.19)
(5.20)

(5.21)



where A = g/g (and we will similarly use A = ¢’/g). Both X and )\  are zero in the

formal § — oo limit.

The b coeflicients

e
boo = —
g
e
blO:t
g
e
bao = —
g
/\/
bo1=—3
L2 2
51121—5(/\ + M%)
A
521:—5
—q 1 1
bop = —— 2 (1 S SO2 N 4 -
/g2_|_g/2 8
; 11 92_912
2=z | ———
2g /g2_|_g/2
1 1
b22=¢<1——(z\2—|—/\l2)+
/g2_|_g/2 8

Finally the cs and ds

are

are given by

|
N
[\
TN
—t
|
=
>
[
~—

Cop =

c12 = % (1 + %/\2)
o1 = % <1 + %\2)
1 = % (1 - %V)
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2\ + /\’2)>

/\/4
2(AZ+ /\’2)>

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)
(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)



dys = -\% (1 ~ Iy iw) (5.35)
dip = % <1 + iv — ix”) (5.36)
doy = % (1 + iﬂ — iw) ' (5.37)
dip = LZ (1 - EAZ + %/\’2> (5.38)

5.3 Tree Level S Parameter in Deconstruction

Before reviewing the calculation of the S parameter in Deconstruction at the loop level,
which is our main interest, we will present the calculation at tree level. The tree level
calculation follows the WOI‘k’Of Schmidt et al. in their paper [24].

The S parameter can be defined in theylimit where the scale of new physics is much

higher than the Z mass as follows [61]

aS = de® [IT34(0) — M55 (0)] (5.39)

= 4e” [T}y (0)] (5.40)

The mass matrix for a Deconstructed model with generic N is

9 —99 Wi
—-93 2 w3
2
Mj ==
2%  —gg’ wy
-39 g"* B
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For this tree level calculation we work in the limit where the additional couplings g are
set to be very large compared to the Standard Model couplings g and ¢'. In this limit
the central gauge groups decouple from the end two groups as their coupling strengths
to each other of order g are much greater than their couplings to the end groups
of order gg, gg’. By diagonalizing groups 1 to N we determine how much each mass
eigenstate gauge boson couples to the end two unbroken gauge groups.

Diagrammatically IIgy, in the strong coupling § limit, at tree level is as follows;

WJBV +1 W/és B

A VAVAVAV QVAVAVAVQVAVAVAV.

The central propagator is made up of a mixture of all the gauge groups. We are
specifically interested in the contributions from the beyond the Standard Model bosons.
Note here that only W3 and va can couple through the end two Higgs fields to B
and W5 41+ Therefore the relevant mixing angles are by and by, where & runs from 1

to N. We can then evaluate the Feynman diagram for IIsy .

N a2 _ b _ i 2
H3Y(P2)=Z( ij > (pff’;i;;)( Zif> (5.41)

k=1
N =0 * =2

Héy(O)zZ( Zif ) (bﬁlb““)( Zf) (5.42)
k=1 z,

Using equation 5.40 we therefore have a relation for the tree level value of the S pa-

rameter

N ~2 r4 *
4.2 g f bN}cbk
aS =4de [E j< s ) ( m%: )] (5.43)

k=1
Equations for the Z’ masses and the mixing angles by, and bj,, for these models can
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be found from relations in the appendix of [24]. Note A=g¢/g, N =¢'/3.

2 2
m%h =5°f? (sin 2—(—]\22_—5—) + 2m% (cos Q—(Nnj—_l—)) (1+ O(\?) (5.44)

2 TN

o = ; 22 5.45
brm N—|—151nN—|—1+0( ) (5.45)

We are calculating the S parameter in the limit where the scale of new physics is much
greater than the Z mass. Consequently the second term in the expression for the Z'
mass may be suppressed. By substituting for n and m in the generic relation for the

central mixing angles we extract byg and b3,

2
2 =2 .2 { . nw

, = S 5.46
mz =4°f (Sln 2(N+1)> (5.46)

. 2 7k
* i A2 5.47
=Yy TOW) (5.47)

2 TNk
bnp = i 2 5.48
M=\ Ty T O (5.48)

Substituting into equation 5.43 we get
N : 7wk i TNk
2 SIN w777 SIN =7

Q/S: 4 2 N4+1 N+1 549
¢ {Z 16(N 4+ 1) ( sin TN (5-49)

k=1

which can be simplified into the form

_2N(N42) A2\

5.50
3(N+1) A2+ 22 (5.50)

We have made use of the fact that in the large § limit e? reduces to the form (as in the

Standard Model)

2_ 949
e = 2157 (5.51)
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The result can be expressed in terms of the gauge boson masses. For the N = 1

model one finds for example

M2
asS =4 542/ sin? 6, (5.52)
My

To be compatible with the electroweak data one needs S < 0.2 (see figure 4.1) which

implies My ~ 2 TeV which is broadly in line with our findings in chapter 3.

5.4 Non-Limiting Scenario S Parameter in Deconstruc-
tion

When we extend the S-parameter computation beyond the large g limit we must be

careful about how we define the S parameter itself. Quantities such as sin 8y and cos 8y,

are specific to the Standard Model and become more complicated in Deconstructed

models. In particular we must define S in terms of measured quantities.

Let us work backwards in the Standard Model from the usual definition of S

167

S =
M3

[Ta3 (M%) — Ig3(0) — Iaq(MZ)] (5.53)

The relations between the broken and unbroken gauge bosons are

62 2
Haz = —Msg — s*Ilgg) (5.55)
9z ,
2
€
HZZ = ?(Hgg - 282H3Q + S4HQQ) (5'56)
Z +
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Here the Z coupling has been parameterized as gz(T° — s?Q) - in the Standard Model

gz = g/c. These can be rearranged into the reverse format

Moo = #1laa (5.57)
I3 = §HAA + ﬁHZA (5.58)
g3 = 5144 + ggHZA + éﬂzz (5.59)

so that

(5Tz2(M3) + % Tza(ME) + s*TLaa(M3))
—(2T74(M3) + s°TLaa(M3))

~(5T122(0) + ZLT124(0) + 5 T1aa(0))] (5.60)

The quantities gz, s and e are all experimentally measured quantities so we will use
this as our definition of S. We now turn to understanding what values these quantities
take in the N=1 deéonstructed model. As in the Standard Model they are extracted
from the coupling of the Z boson and photon to fermions. The model has been defined
such that the fermions only couple to the end two gauge groups of the moose chain;
consequently the neutral boson coupling breaks down into two pairs of unbroken sub-
diagrams.

The Z boson vertex contributions are:

bo2g’
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summed with

baag

€

Similarly the photon vertex contributions are:

boog’

-

summed with
et
Wf’“
baog
g
-

From which we obtain the neutral current parts of the covariant derivative

Divc = Z,(b22gT3 + boag'Y) + Au(boogT? + boog'Y) (5.61)

We define the charge Q to be the coupling between photons and electrons. By inserting
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the values for the mixing angles from [24] into the photon part of the covariant derivative

we establish the relation Q = T3 4+ Y as in the Standard Model

boo = 5 b20 = ¢ (5.62)

Therefore
D[S = Z,(byagT® + boag'Y ) + Au(eT® + €Y) (5.63)
= Zu(bogT? + boag'Y) + A,eQ (5.64)

Here it is obvious that [24] have chosen to describe the mixing angles to the photon
in terms of an arbitrary parameter e in the knowledge that the above relation defines
that parameter to be the charge on the electron.

Analogously to the standard model, we reparaméterise the Z boson charge using

the simple relation below [72]
baogT> + bo2g'Y = (bazg — boag )T? + bo2g'Q (5.65)

The covariant derivative can then be written in the simplified form we want to establish

gz and s°.

DY = Z,((b2og — boog)T® + boog' Q) + A,eQ
= Zu(boag — boag') (TB + %Q> + ApeQ
baag — bo2g’

= Zu9z (T° - s°Q) + A.eQ (5.66)
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Consequently

97 = baog — boag’ (5.67)
and
b /
2 _ 029
§f= ———— 5.68
b22g — bo2g’ (5.68)

We can now compute (5.60) explicitly in this deconstructed model.

5.5 Vertex Coefficients

We have just worked through the photon and Z to electron couplings in the decon-
structed model. We will need the full set of vertices in the gauge sector to compute S
parameter contributions. As an example let us compute the photon W W vertex explic-
itly. There are two contributing diagrams in terms of the undiagonalized gauge states -
the W3W1W2 vertices for each of the two SU(2) groups. We must then re-write each of
the three fields in terms of the mass eigenstates using the eigenstate expansions given
in section 5.1. The two diagrams contribute (stripping off the momentum dependence)

Caww = Gbioal, — gbaoad (5.69)

One then proceeds throughout the model in this fashion and we find for the vertex
coefficients (with the standard momentum factor stripped)
Caww = gb1oal, — gba0a,

Caw'w = gbioaizair — gbaoazzas:
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Cawnw = Gbioad; — gbaoas,

Cago = 9 Ciaboo — gc5yba0
Cagp = g'c1ac11boo — geazca1bao
Caggr = g'¢hrboo — gc31 b
Cace = Gbioady — ghaoad
Cac'g = ghioaizair — gbaaseas:

Cagrar = Gbioad; — gbaoad

Crzww = g'bizaly — gbasas,
Czww = g'bi2aiza11 — gbxnagzan
Cowiw = gbiaad; + gbxad

Czoo = g'chaboz — 9¢3ybam
Czee = g'c12c11bo2 — geaacarbao
Crerer = g'ciiboz — gc31bao
Czcc = g'bi2aly — gbazad

Czaic = g'braarzarn — gbazagaan
Czaar = §b12a%1 + 9b22a%1

szh = g'boadra + gbaodan

Czyn = g'boad1a 4 gbaadao

Czyn = g'bo2d11 + gbaadar

Czyn = §'boadan + gbaadar + Gbiadin + Ghiadiz
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(5.73)
(5.74)
(5.75)
(5.76)
(5.77)
(5.78)
(5.79)
(5.80)
(5.81)
(5.82)
(5.83)
(5.84)
(5.85)
(5.86)
(5.87)
(5.88)
(5.89)

(5.90)
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5.6 Feynman Diagrams in Deconstruction

The self energies required to calculate the S parameter are formed from the Feynman
diagrams shown in this section. The Feynman diagrams are displayed with the mo-
mentum independent vertex coeflicients written in abbreviated form, such as Caww.
The values of these factors aré shown in section 5.5.

In this section we suppress the W — ¢ loops and Z — x loop diagrams as they cancel
out of the S parameter calculation. Their presence in Chapter 4 was for completeness
and to make consistency with references [70, 71, 68] clearer.

For the diagrams below containing Standard Model like gauge bosons in the loops,
Bp and Bs, are defined as By = BO(pQ,m%V, mé,), By = BQQ(pQ,m%V,mIQV).

Photon-Photon corrections

3+

A A
= Cww ((—2m, + 4p®) By + 10Bys + 2 (2mfy, +1/3p))

W

A I/ \\ A

’\AN\ (Y\/\/\/ — C}%¢¢4BQQ
‘&;,
o+

A ; A

! VY = Chpe(—)2B2n

a-

7 boson-Photon corrections

¥4 A '
= CowwCaww ((—2m?y, + 4p?) Bo + 10Ba; + 2 (2miy, + 1/3p?))
w-
&
z /’ \\. A
/\/\/\,{\ ,?’\/\/\/ CZ¢¢,CA¢,¢4BQQ
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_ |
Y = Cz606Cacc(—)2B2

7 boson-7Z boson corrections

z z
= C2yw ((—2m%, + 4p%) By + 10Bg, + 2 (2miy + 1/3p%))
W=
¢+
4 ///’ ) \\ zZ
-
G+
z z
e N = CFe(—)2B2
.
X
Z /( \\ z
AN AN C%Xh4B22 (pz’ m?Z, m}QL)

For the diagrams below containing heavy gauge bosons and Standard Model like
bosons in the loops, By and By, are defined as By = By(p?, m%vl,m%v),
B22 = B22(p23 mIQ/V/,m‘Q/V)'
Photon-Photon corrections

A A

= Chyow ((—2mf3 + 4p?) Bo + 10Bgs + 2 (miy + miy + 1/3p%))
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ul/+
z A , \
= Czww Caw'w ((—Qm% + 4p2) Bg + 10Bg; + 2 (m/w +myy + 1/3p2))
W=
s
z / N 4
,\/\N‘\ ) = C’Zqﬁ,qﬁC’AQJ),(#)zLB22
G+
z A
M S = Cza6Cacc(—)2By

7 boson-Z boson corrections

W
z z
= CZyw ((—2miE + 4p%) By + 10Bg2 + 2 (mf}, + m%, + 1/3p?))
W
¢r+
Z // \\ Z
— 2
’\/\/\,{\\ ; = CZ¢’¢4B22
‘w__,
leias
z z
[AVAVAV/ | QA Ve VI C%G’G(_)2B22
N
zZ // ) \ zZ
’\/\/\4\ IY\/\/\/ — C%x’h4322 (pZ? mEZ,, m}%)
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Photon-Photon corrections

Wwt

: S Cihww: ((—2m?, + 4p?) By + 10Bas + 2 (m?, + mi} +1/3p?))
o
"
A / ) ' A
R A o PP
P
<
A V A
VM VY = C,%GG/(‘)QBzz
-

wt
z 4
=Caww Caww ((—Zm%V + 4p2) Bp + 108y + 2 (m%v + m’v%/ + 1/3}72))
W
o
z // \\ A
’\/\/\j\\ //)”\/\/\/ — CZ¢¢’CA¢¢'4B22
G+
z / A
M Y = CgaarCacer (—)2B2

Z boson-Z boson corrections

W

z Z

= C%uw ((—2m, + 4p?) By + 10B2g + 2 (m}, +mi2 + 1/3p%))

. z
[AVAVAV] A VAVAVENES 2
| , = C ;4B
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z 5 z
AN AN (12
/ = Cz00/(—)2B2
-
X
4 // \\ z
AN |QVAVAW]

— (2 2 2 2
' ! - Cth’4B22 (p T mh’)

For the diagrams below containing only heavy gauge bosons in the loops By and

B22 are defined as BO = Bo(pQ, m%vl,m%,v,), B22 = B22 (p2, m%,vl,m%,w).

Photon-Photon corrections

Wit
A, A
W=
@'
A 1/ \\ A
[QVAVAVi _ 2
\ I — A¢/¢/ 4B22
&'~
G+
A B A )
AN |aVAVAVENES
=Cacc (—)2322
G~

Z boson-Photon corrections

wet

zZ A
W
o'

Z // \\ A

’\/\/\/{‘ /Y\/\/\/ — CZQ?)’(ZS’ CA¢/¢/4B22

o'
G'*

z 4
o
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= Corww Cawwr ((—2mf +4p®) By + 1083 + 2 (2mf3, + 1/3p°))



7 boson-Z boson corrections

we

z z
= Chyny ((—2mf + 4p?) Bo + 108y, + 2 (2mi +1/3p%))
W=
o
z !/, ) \\ z
— 2
/\/W\\ K - Cz¢/¢/4322
;;,
feas
z ,»"" z
’\/\/\/ AN CZG’G’( )2322
¥
z /// ) \\ z
/\/\N\ /}’\/\/\I — C%X/h/4322 (p2, mQZ/, m]%,)

The self-energies Allga, Allz4 and Allyz form from these diagrams in an analo-

gous way to that shown in sections 4.6 and 4.7 in the Standard Model.

5.7 Comparison To The Work Of [72]

A parallel analysis of the contributions to the S parameter has been performed in [72].
There they work in the éffective low energy theory of the deconstruction model without
an explicit Higgs boson - we can just drop our Higgs diagrams to make a comparison.
They also work only in the § — oo limit. In this limit as we have discussed in
section 5.2 the gauge and mass eigenstates for the end two groups are the same and
become the Standard Model gauge bosons. The central group’s gauge bosons become
the heavy W' and Z'. We can see this explicitly by using the large § expansions in
section 5.2 on the loop diagrams with just the “non-prime” gauge bosons in section 5.6

they become the Standard Model diagrams of chapter 4.
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As an explicit example consider the photon self energy contribution with two Ws
in the loop. The diagram in section 5.6 and the Standard Model diagram in section 4.7
only differ in the momentum independent coefficient. Taking the leading large g limit

on the result in section 5.6 gives

Caww = (§b10a%y — gbgoad,)?

= ¢? (5.92)

The remaining diagrams with the lightest mass eigenstates just reproduce the results
of Chapter 4 in this limit.

The new contributions to S therefore come from the diagrams with the the heavy
“primed” particles in the loops. In fact [72] work only in the leading log approximation.
This means that their S parameter result depends on just the diagrams which have a
result of the form gu,,p2 log K/\%—/ There are three such diagrams for each of the AA
and ZA self-energies - those with internal W's, primed charged Goldstones and finally
primed ghosts. We have explicitly checked our results against those diagrams.

As an example consider the photon self energy diagram with two W' bosons in
the loop. From section 5.6 and taking the leading log approximation we have the

momentum dependence

1 19 A?
((—2m%y + 4p°) Bo + 10B22 + 2 (2mi3 + 1/3p%)) = ngwp? log <M2 )

(5.93)

where A is the UV cut off on the diagrams (remember that without the Higgs the theory

is non-renormalizable).
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The additional Feynman rule factor, taking the large g limit gives

Chwrwr = (Gbr0ad; — gbaoad;)?

_ 2 €242
.—(9 (1) 99(0))

€
g

=¢? (5.94)

This is the result of [72].

In this way one finds the full results from the three diagrams of [72]

€ g A 5.95
ITan ZQWWB’P log M—&,, (5.95)
e 3/¢c s A2 ‘
za =g (= =2) pllog | —— 5.96

For TIzz there is a fourth diagram in which a primed and an unprimed Goldstone
live in the loop. This can be found in section 5.6 and we have again checked it’s

contribution is that found in [72]. One has

e? [3/c s\2 1 A?
I =g, Sz _2) o o p2 5.97
22 = 9u (47)? [4 (s c) 2452(:2} prios (M&,;) (5-97)

It is easy then to compute the loop contributions to the S parameter from the heavy
gauge sector in the large ¢ limit since the light sector is just that of the Standard model
and we may use the usual definition for S in equation 5.40. Substituting in we find

19 A?

S =———log —— 5.98
247 & M‘QM ( )
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5.7.1 An Alternative Derivation

The calculation in the paper by Chivukula et al [72] is calculated by making use of
the Feynman diagrams that we have independently derived in section 5.6 in the strong
coupling limit. We have however discovered a very brief way of replicating these results
by employing the method of Schmidt et al [24] presented in section 5.3 but at the loop
level instead of the tree level.

Naively in the large g limit the gauge boson mass matrices decouple into two sectors
- the light Standard Model fields and a heavy sector of additional W bosons. One can
immediately see there are the one loop S parameter contributions from Figure 5.1. The
first is just the Standard Model loop diagram and the second a diagram containing

loops of the diagonalised additional gauge groups (as used in tree level form in section

5.3).

SM bosons Additional SU(2) group bosons

Figure 5.1: One loop S parameter contribution diagrams

In addition to the diagrams in Figure 5.1, we have the equivalent diagrams but with
W}J\’, at both ends and hypercharge Y at both ends. Also to be consistent with reference

(72] we will reparameterise in terms of the photon field A and the Z boson field Z, were

Legf?
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7 - Wheavy

AVAVAN VAV,

ge(e-2)ar?

The beyond the Standard Model contribution diagrams in full then look like

heavy

And similarly for Z boson to photon and Z boson to Z boson. The factor of 1/M:,
comes from the two internal propagators not in the loop. Note the factors of g cancel.
Let us compute just the pQQW contributions from the loops of heavy Ws in the
N=1 moose mode] - as in [72] we will refer to the heavy W as the p. For the photon

self-energy we obtain, in the leading log approximation
) 2
1%, (p) = ip“g"” | 3log — (5.99)

The W self energy is easily obtained from the results we have given previously but
is in fact just equal to the photon self energy. This term is precisely the extra term

beyond the Standard Model contribution in [72]. The ZA mixing self-energy gives

1e? 3(c s A2
%, (p) = 2 [ 2[C 5 = 100
z4(p) (4m2?? (2 {s c}log M2 (5.100)
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Again this matches the term in [72] and here clearly differs from the photon self
energy by replacing the photon W’ mixing by the ZW’ mixing.
Finally we predict the Z-boson self-energy to be the same but with a further vertex

replacement to give,

- 2 3(62 _ 52)2 A2
% (p) = —2—_p2g 1 5.101
22(P) TRk og 7 ( )

This term is again present in [72].

This analysis is slightly over simplified so far. In addition to the mass mixings
between the light Standard Model fields and the heavy sector there are also three point
vertices that become important at one loop. These are vertices which couple a light
gauge boson to one Goldstone from the light sector and one from the heavy sector.
In the large § limit as shown in [72] only the Z vertices are present. At leading log

approximation there is just a single extra diagram shown

There is therefore one extra diagram contribution

w i€ 2 ! A” 5.102
HZZ(p) = (47T)2p g - 24522 lOg MQ:{; ( : )
p

We have now reproduced the final results in [72]. We can also easily obtain their
S parameter result. The diagrams in the light gauge sector are just the well known

Standard Model contributions to the S parameter but one must set mp = A
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: Log< A” ) (5.103)

S=_— —
127 MI%V

Then inserting the above self energy contributions into the formulae for the S pa-

rameter in section 4.2 one finds their final result,

1 M? 17 A?
_ 1. p ) AT g (A 5.104
S = 108 (MV?V) 24r 8 (Mﬁ) (5.104)

Note the result grows as M, grows at large g. Reproducing this result using the
results of our previous analysis provides support for the numerical results discussed
before in this thesis. This simple method for computing in the large g limit may also
make models with N > 1 accessible to computation which has not so far been done

either here or in the literature.

5.8 Inclusion of the Higgs

The addition of the Higgs diagram contributions to the result of Sekhar et. al. shown
in equation 5.104 must cancel the my = A divergences, in order that result be renor-

malisable. There are four diagrams that contribute shown below.

X
4 - - \\
/ \
zZ / \ zZ
AVAVAV [AVAVAW.
\ /
\ /
N 4
h
!
X
// b \\
/ AN
zZ / \ zZ
A VAVAVI IOVAVAV
\ /
\ /
N 4
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Z / \ Z
AVAVAV | AVAVAWV
\ '

\ ’

Y I
hl
X/

I - - h > Y
’ \

Z / \ Z
AVAVAV| I OVAVAV
\ '

\ /

Y I
hl

Here we will look at the Higgs-x loop in detail, substituting for the mixing angles

in the § — oo limit. The diagram takes the form
\ zZ
m\\ //NW = C%Xhllng (p?,m%, m?) The C-factor for a Z to Higgs-x vertex

in the g — oo limit is

Czxn = (g'boadr2 + ghoadan) (5.105)

and we will use the large g relations

bos = ——. 1 1(>\2 + N+ LM (5.106)
2T g 8 2 (A2 + X2) '

11 2 12
bo= -z | 22— (5.107)

2g /g2 +g/2

g 1 2 2 1 A
bog = —=2— [ 1— (A2 + A\ S A — 5.108
22 /92 + g ( 8( A+ 2 (A2 + \?) ( )
1 1 1

oy = ——— (1= A2+ 2 )2 5.109
22 ) < 1 + 1 ) ( )
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1 1 1
1 1 1

do1 = 7 <1 + Z/\Q ~ ZA’Q) (5.111)
1 1 1

We find in this limit

C i 2 12
Xh 2\/5 92 -+ 9/2 (g J ) ‘9 =

We therefore have

zZ 1/ \\ z
[AVAVAV] |Q VAV AWV

_ 1 2
\ J T 29%+9") (g

— )2 By (p?, m%,m3)|5-00

h

From equation 4.74 we can see that the momentum dependent part of Bog (pQ, m% , m}%)

is —I%Bo (p?, m%, m}%) which is a divergent contribution of —11—2Log (AQ). Consequently

f\/\/\x‘\ /Ir\/\/\, — —W(QQ _ g'Q)QLog (AQ/m}Ql) ‘g—'oo

Substituting for the Z-Z self energy part of the S parameter (equation 5.60) that
contributes to the divergences through the Higgs diagrams, shown in equation 5.114 we

find

167T 2 2 '
gg“]\T%QEgHZZ(MZ) (5.114)

AS =

The Higgs-x diagram contribution is
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Shy = 51 Loz (A2/m3) (5.115)

On summation with the Higgs’-x, Higgs-x’ and Higgs’-x’ loops the contribution to

the divergences from the Higgs diagrams is,

17 .
S = ;- Log (A?/m}) (5.116)

which cancels the divergences from the non-Higgs diagrams shown in equation 5.104.

The result is finite as required.

5.9 Beyond Leading Log Approximation

We have so far explicitly computed the leading log approximation for S but we have
sufficient information to compute the full answer. It is therefore interesting to test the
leading log approximation. As an example we will study the sub-leading contributions
to the Higgs Z gauge loops (or equally Higgs Z’ loops). The generic form of the

momentum dependence of these loops is given by

[(p*) = (2m} — MZ — p*)Bo(p®, my, M)

(5.117)
M2 _m2y2
#(J—pz—mb)-—(Bo(p%mh,Mz) — By(0,mp, M;)) — 2p?
where
d4k) 1 1
Bolp,mn, Mz :/_ (5.118)
O( h ) T2 (/‘CQ-meL) ((k +p)2—|—M§.)

Since my, is large relative to the energy scale at which precision measurements have
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been taken we will Taylor expand By

Bqy(p?, mp, M) = By (0,my, M) + p*BL(0, my, M) +p4Bg(O,mh,Mz) +... (5.119)
The coefficients are
d*k 1 1
BO(OamhaMz):/“—
w2 (k% + m%) (k2 + M%)
d*k 1 1 4c2 k?
Bé(o7mh’MZ):/_2 5 23 (12 ) EyIvie 21 )
w2 (k +ms) (k +MZ) (k% + M3) (k%2 + Mz)
" d*k 1 1 162 k* 12¢2 k2 1
7w (k +mh) (k +MZ) (k + M3) (k +MZ) (k +MZ)

Performing the angular integration over the angle ¢ between p and k gives forms

that can be numerically integrated (these can be checked by their invariance to the

interchange of Mz and my)

d*k 1 1
BoO,mp, M,) = | —
(0, mn >/w2(k2+m;§)(k2+M§)

dik 1 1 { k2 1 }

By (0, mn, M, :/—f -
ol0mn, M) w2 (k2 +mf) (k2 + MZ) (K2 + M2)2 (k% + M3)

1

" d*k 1 1 2k 3k2
By (0, my, M, :/— - £
0! h ) 72 (k2 + m2) (k* + M%) [(lc2+M§)4 (k2 + M2)®

(k2 + M%)Z

Note the leading log approximation is to set By(0) = LOgT/r\Tz‘ and drop everything
h

else.

The S parameter depends on the derivatives of II so we are most interested in

evaluating

II'(0) = —Bo(0, mp, M,) + (2m? — M2)BL(0, mp, M,) — (M2 — m?)2By (0, my, M,) — 3
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To simulate the effect of this term in S we subtract the logarithmic divergence
through a suitably normalized term Log(Az/Mg) with M, the appropriate W boson
mass. We plot the full value of this difference as a function of my/M, in Figure 5.2
and compare to the leading log result. For large mj, there is a constant shift in the
IT" contribution of about a factor of 3 relative to the pure log term. For very large
mp /M, this is a small effect but if that ratio falls to as low as 10 then the error is of
order the logarithmic term. We conclude that provided the Higgs and W' masses do
not accidentally become degenerate then the leading log approximation will be valid.

If they do come too close though the sub-leading terms can contribute significantly.

/ 20 20 60 80 160

mh /Mp
Figure 5.2: A plot of the quantity I’ (with the divergence subtracted by a term Log
m}%/Mg term) from the Higgs diagrams as a function of my/M,. The top curve that

goes through zero at my/M, = 1 is the leading log approximation, the lower curve the
full result.

5.10 Phenomenology

We saw in Chapter 3 that the only Deconstruction models even close to compatible
with experimental constraints were those with large § (see for example section 3.8.2)

so we will continue to use the results above from that limit. We found in leading log

approximation
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1 m2 19 m2
S =_"1, Cho) 2P h 5.121
127 ¢ (M&V) on O <M3V> (5-121)

This should be compared with the value at one loop in the Standard Model

2
S = Log (lni> (5.122)

127 Mg,

The first two terms are identical reflecting the fact that the loop diagrams involving
the Standard Model particles are precisely as in the Standard Model in this limit.

For comparison to experiment, the S parameter is defined as zero in the Standard
Model for some fixed reference Higgs mass - 150 GeV for the data we will use from [73].

The deviations in the deconstructed models are therefore

1 ms 19 mi
Sdecon = —L —h )T, h 5.123
decon = 79,08 ((150 GeV)2> YE S (M%) (5.123)
To claim any success in a deconstructed model one would want to have pushed the

Higgs mass beyond 1 TeV by the presence of the extra W’ boson. We therefore plot

this contribution for mp = 1000 GeV as a function of My in Fig 5.3.

Sdecon0 -4

0.2

1000 1500 2000 2500

Figure 5.3: A plot of the contribution to the S parameter in the Deconstruction model
for a Higgs mass of 1 TeV for varying mass of the extra W boson.

If the model were compatible with the data at tree level and the Higgs mass was

of order 800GeV then the model predicts that S is roughly zero which is consistent
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with the data shown in Figure 4.1. In fact we found in Chapter 3 that at tree level we
could at best bring such models to the upper bounds on experimental limits and then
only when the extra Ws had masses in excess of 2 TeV - for these parameters we find
values of S that are a little too large (0.4 or so) even at loop level. It’s worth noting
that to accommodate such a large value of S one would also need a source of positive T
which we have not addressed at all. We must conclude that finding such deconstructed

models that truly fit the data remains a challenge.

133



Chapter 6

Conclusions

Over recent years there has been a great deal of interest in methods for resolving the
unitarity problem in W scattering presented in section 2.2. The conventional method
for resolving this problem is through the Higgs Mechanism. Next year a new particle
accelerator called the Large Hadron Collider (LHC) will come online which will probe
the energies at which the unitarity problem becomes explicit. If this new accelerator
does not find the Higgs boson, a particle required if the Higgs Mechanism is correct,
then the question of how‘unita’rity is resolved will be wide open.

Anticipating the need for alternative theories to the Higgs Mechanism, for resolv-
ing unitarity if the LHC fails to find the Higgs boson, many theorists have proposed
Higgsless models to tackle this pressing question. Kaluza Klein theory and Deconstruc-
tion are two of the leading candidates for addressing the issue of maintaining unitarity
without a low energy Higgs boson. In this thesis we have studied a range of models
within the framework of Deconstruction, at tree level in Chapter 3 and at the one loop
level in Chapter 5.

Our analysis has d‘emonstrated that at tree level models can be generated that do

not have a Higgs boson at the energies that will be probed at the LHC (section 3.8.2).
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These models have additional gauge boson which could be detected at the LHC as a
signature verifying the model.

At the time that the write up of this thesis commenced no research had been
published exploring Deconstruction at the loop level. In Chapter 5 we have calculated
the S parameter for the purposes of confirming or disproving the validity at the one
loop level, within perturbation theory, of our tree level calculations. Recently a parallel
analysis has been published, as presented in section 5.7, that also explores loop level
physics in Deconstruction (and proves consistent with our own findings).

We have found that the loop level contributions to S are of order the experimental
constraints or larger. Combining both the difficulty of a producing a tree level successful
model of this type and the sizable loop contributions we conclude that producing such
a model that is fully compatible with constraints is at best hard.

Deconstruction does though still present interesting implications for LHC phe-
nomenology, that would resolve the unitarity problem without recourse to a Higgs
boson at the LHC energy scale. It is apparent, through the results of this thesis, that
these Deconstructed models face appreciable problems and that subtle exotic models

may be required to address these issues.
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