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By Huong Thi Xuan Doan 

Mixed pixels are often abundant in remotely sensed Imagery and cannot be 
appropriately or accurately classified by conventional hard classification. Soft 
classification has become a popular approach to reduce the negative impact of mixed 
pixels. Although soft classification analyses can reduce problems such as those 
associated with mixed pixels their accuracy is often low. The key aim of this research is 
to investigate the ways to increase the accuracy of soft classification, the factors that 
impacts on soft classification and its implications for the real world applications. 

Firstly, four possible methods for combining soft classifications to increase 
classification accuracy were assessed. All four ensemble approaches were found to 
increase classification accuracy. Relative to the most accurate individual classification, 
the increases in overall accuracy derived ranged from 2.20% to 4.45%, increases that 
were statistically significant at 95% level of confidence. The results highlighted that 
ensemble approaches may be used to significantly increase classification accuracy. 

The interpretation and use of sub-pixel scale information typically places great 
confidence on the estimated class cover proportions. This reliance on the single set of 
class proportion predictions derived from a soft classification may be inappropriate. In 
particular, this reliance often seems to be based on an implicit assumption that a class 
can be represented by a single spectral end-member. This may be unrealistic since 
classes typically display a degree of spectral variability. The impact of intra-class 
spectral variation on the estimation of sub-pixel class composition was, therefore, 
investigated. Results from the analyses showed that the nature of intra-class variation 
has a negative impact on the accuracy of sub-pixel estimation as it opposed the 
assumption that a class can be represented by a single spectral end-member. It was 
suggested that a distribution of possible class compositions could be derived from pixels 
instead of a single class composition prediction. This distribution provided a richer 
indication of possible sub-pixel class composition estimates and may be used to derive 
different scenarios of land cover change through the use of a post-classification 
comparison technique approach. 

The impacts of intra-class spectral variation on the use of soft classification for super
resolution mapping were assessed. It was apparent that the accuracy of the soft 
classification and super-resolution mapping declined as the degree of intra-class 
variation increased. As a distribution of possible class composition predictions may be 
derived for each pixel, it may be preferable to be aware of the range of possible class 
boundary positions. 

Finally, a possible method to reduce the impacts of intra-class spectral variation on sub
pixel classification was investigated. This was achieved by defining spectral sub-classes 
for use in the sub-pixel classification. Results from the analysis highlighted that 
reducing intra-class spectral variation may be used to reduce the impact of intra-class 
variation so that to increase the accuracy of soft classification and super-resolution 
mapping. 
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Chapter 1 

Introduction 

1.1 Introduction 

Land cover and land cover change mapping through the means of image classifications 

is one of the most common applications of remote sensing. However, the full potential 

of remote sensing as a source of both land cover mapping and monitoring activities is 

often unrealized due mainly to a set of technical problems. One of the most important 

problems limiting classification accuracy is that of mixed pixels (Fisher, 1997; 

Cracknell, 1998). A mixed pixel occurs when the area represented by the pixel 

contains more than one land cover class (Fisher, 1997). The proportion of mixed pixels 

in an image is often large. The number and proportion of mixed pixels in an image, for 

example, generally increases with a coarsening of the spatial resolution of the sensor 

and/or increasing fragmentation of the landscape to be represented (Campbell, 2002; 

Foody, 2002a). Thus, the problem of mixed pixels occurs most seriously in coarse 

spatial resolution remotely sensed imagery. Unfortunately, the applications of remote 

sensing using these coarse spatial resolution data sets are widely used in the mapping 

and monitoring of large areas and impacting on studies attempting to study major land 

cover transformations such as deforestation. 

Since a mixed pixel represents an area of more than one land cover class, the image 

which contains mixed pixels cannot be appropriately or accurately classified by a 

conventional hard classification. The mixed pixel problem may lead to substantial 

error in land cover mapping from remotely sensed data. This error may impact on 

studies of land cover change when basing on post-classification comparison technique. 

The mixed pixels problem may lead to very large error, with, for example, study from 

Skole and Tucker (1993) showing that deforestation may be over-estimated by about 

50% if coarse spatial resolution data sets used to derive classifications. The mixed 

pixel problem, therefore, should be addressed in order to derive accurate land cover 

information. Using fine spatial resolution remotely sensed imagery is one approach 

that may reduce the proportion of mixed pixels. This can be a very effective approach 



for the studies of small area but not for large area where a large number of images may 

be required. It may costly to acquire the imagery and substantially pre-processing 

could be needed to inter-calibrate and mosaic the images. An alternative approach to 

avoid these problems is to derive sub-pixel scale information from the coarse spatial 

resolution imagery. 

Sub-pixel scale land cover information is typically derived by unmixing the spectral 

responses of image pixels to identify their class compositions. There are a variety of 

methods for estimating the class composition of mixed pixels which have been applied 

to remotely sensed data, such as the linear mixture model (Foody and Cox, 1994, 

Atkinson et ai., 1997; Van De Meer and De Jong, 2000; Theseira et ai., 2003; Small, 

2004) and soft or fuzzy classifications (e.g. Foody, 1996a; Bateson et ai., 2000;). Soft 

classification approaches are those based on the maximum likelihood (Wang, 1990a 

and 1990b; Maselli et al., 1995; Ibrahim et al., 2005), fuzzy c-means (Zhang and 

Foody, 2001a; Ibrahim et at., 2005), k-nearest neighbour (Schowengerdt, 1996), 

artificial neural network (Foody, 1996b; Zhang and Foody, 2001) and support vector 

machine classifications (Brown et al., 2000) ect. The output of these analyses is 

typically a set of fraction images, one per-class, that show the predicted coverage of 

each thematic class in the area represented by each pixel. These fraction images can 

achieve accurate estimation of class composition. They also support to the 

representation of environmental continua and the detection of land cover changes when 

used in post-classification analyses (Foody, 2001 b; Haertel et al., 2004). The sub-pixel 

information also forms the basis of super-resolution mapping, in which the 

geographical location of the estimated class composition is located within each pixel's 

area to yield a thematic map at a finer resolution than the imagery used in its derivation 

(Tatem et ai., 2002; Mertens et ai., 2006; Muslim et ai., 2006; Boucher and Kyriakidis, 

2006). 

Although the fraction images derived from a soft classification can provide a more 

accurate and appropriate representation of themes such as land cover than a 

conventional hard classification there are many concerns. In particular, the accuracy of 

soft classifications is often low. The literature, for example, contains many examples 

of soft classification analyses in which the degree of correlation between the actual and 

predicted class composition was low (r<0.5) (e.g., Foody and Arora, 1996, Zhang and 

2 



Foody, 2001, Shalan et aI., 2003, Ibrahim et ai., 2003). This may likely to be a major 

limitation to studies seeking to estimate class fractional cover and its change over time 

or the sub-pixel distribution of classes as in super-resolution mapping. 

In reality the land cover classes of interest are rarely fully separable spectrally. 

Consequently, it is impossible to expect a perfect classifier which gives 100% 

accuracy. Different classifiers will commonly vary in their allocations, with some 

yielding high accuracies for some parts of the data while others may achieve high 

accuracies in other parts. A variety of different classification outputs can be derived 

from the application of a suite of classifiers to the same data set. The derived 

classifications may differ greatly in accuracy, on both a per-class and overall basis. 

Classifiers that have, largely, uncorrelated errors may sometimes usefully be combined 

to form an ensemble approach to classification (Giacinto and Roli, 2001a; 2001b). By 

combining the outputs of a set of classifiers it is possible to derive a classification that 

is often more accurate than the individual classifications used. The use of such an 

ensemble of classifiers has been shown to be able to increase the accuracy of hard 

classification analyses (Lam and Suen, 1997; Ji and Ma, 1997; Briem et aI., 2002; 

Steele, 2000; Giacinto et aI., 2000; Liu et aI., 2002) but its potential for soft 

classification has rarely been investigated (Huang and Lees, 2004). 

The interpretation and use of sub-pixel classification output often rely on the estimated 

class cover proportions. By using the outputs derived from two soft classifications for 

land cover change detection the estimated class proportions are typically compared 

directly (Foody, 2001b; Haertel et ai., 2004). In super-resolution mapping some 

approaches try to maintain the class proportion information output from soft 

classification (Tatem et ai., 2002; Muslim et aI., 2006). That is, if the soft 

classification indicates a pixel contains 30% forest the super-resolution mapping will 

map the pixel 30% forest. This reliance on the single set of class proportion estimates 

may be unwise. This seems to be based on the assumption that a class can be 

represented by a single spectral end-member. This is likely to be unrealistic as classes 

typically display a degree of spectral variability since the spectral signatures of land 

cover classes vary from pixels to pixels due to changes in biophysical (e.g., leaves, 

stems and bark) and biochemical (e.g. chlorophyll content) composition (Bateson et 

ai., 2000; Song, 2005). In fact, it is known that the accuracy of soft classification is 
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negatively related to the degree of intra-class variation (Petrou and Foschini, 1999) and 

approaches to refine basis unmixing methods to accommodate for this have been 

investigated (Bateson et al., 2000; Song, 2005). However, it is still common to see 

basic approaches to unmixing being used and the sub-pixel estimates used in manner 

that places great confidence in their accuracy. 

The research program reported in this thesis aims to investigate the use of soft 

classification for the extraction of land cover information from remotely sensed data. 

The research considers the issues including the ways to increase soft classification 

accuracy, the impacts of intra-class spectral variability on sub-pixel class composition 

estimates and its implications for the real world applications. There were three specific 

objectives: 

i. To investigate some of the possible approaches to increase the accuracy of soft 

land cover classification though the use of an ensemble of classifiers; 

11. To investigate the impacts of intra-class spectral variability on soft 

classification prediction and highlight its implications for analyses based on 

soft classification such as the detection of land cover change; 

iii. To explore the impacts of intra-class spectral variability on super-resolution 

mapping and investigate a possible approach to reduce these impacts through 

the reduction of the intra-class spectral variation. 

1.2 Thesis outline 

Chapter 2 reviewed how remotely sensed imagery may be used to provide land cover 

maps, with special regard to land cover classification. The chapter focused on the 

techniques to extract land cover information from remotely sensed imagery such as 

supervised classification. The problem of mixed pixels was then presented and its 

solution through the use of soft classification and super-resolution mapping was 

discussed. 
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Chapter 3 reported on the possible approaches to increase the accuracy of land cover 

classification though the use of an ensemble of classifiers. Initially, the approaches 

which have been used in the literature to combine hard classifications were explored. 

Following this, the methods to combine soft classifications were provided. The 

potential of the approaches to combine soft classifications as well as the approaches to 

combine hard classifications were assessed through a range of experiments. 

Chapter 4 investigated one possible factor that may affect the accuracy of soft 

classification, the intra-class spectral variability. Attentions focussed on the impacts of 

intra-class spectral variability on soft classification prediction and highlighted its 

implications for analyses based on soft classification such as the detection of land 

cover change. 

Although soft classifications estimate the proportion of land cover classes for each 

image pixel they do not show where within pixels the land cover classes are spatially 

located. The class proportions estimated in each image pixel may be geographically 

located using super-resolution mapping approach. Chapter 5, therefore, explored the 

impacts of intra-class spectral variability on super-resolution mapping and investigates 

a possible approach to reduce these impacts through the reduction of the intra-class 

spectral variation. 

Finally, chapter 6 summarised the mam results of the thesis and discussed the 

conclusions that arise from the research findings in the whole thesis. 
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Chapter 2 

Literature review 

2.1 Introduction 

This chapter reviews how remote sensing may be used to provide land cover maps. 

Initially, the topic of land cover is introduced, followed by a review of the principles of 

remote sensing. The techniques to extract land cover information from remotely sensed 

imagery are then presented, including techniques for image pre-processing, and some 

methods of hard classification. Finally, the problem of mixed pixels is presented and its 

possible resolution through the use of soft classification is discussed in detail. 

2.2 Land cover 

2.2.1 Definition of land cover 

The term land cover relates to the surface cover of the Earth (Lillesand and Kiefer, 

2000). Land cover corresponds to the physical condition of the ground surface, for 

example, forest, grassland, concrete, pavement etc., either natural or human-made, on 

the Earth's surface at a specific time of observation (Campbell, 2002). Land cover 

mapping is one of the most important and typical applications of remote sensing data. 

Information on land cover is required to help our understanding and management of the 

environment. Land cover maps are presently being developed from local to global 

scales. 

2.2.2 The need for land cover information 

Information on land cover is central to all scientific studies that aim to understand 

terrestrial dynamics and is required from local to global scales to guide land use 

planning. Land cover information can be of benefit to planners in some ways. First land 

cover data inventories have the potential to provide knowledge which is valuable for 

determining land management practices (Townshend, 1992, Veitch et al., 1995). 

Second, land cover data can be used to provide information on land cover dynamics for 
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monitoring changes in land cover (Mather, 1999). Finally, the analysis of land cover 

data can help planers understand the interaction between land use practices and 

environmental processes (Dimyati et al., 1996). This puts planners in a better position to 

implement land use policies that minimize harm to the environment. 

Although land cover plays a very important role in society, data on land cover are often 

out-of-date, of poor quality or inappropriate for a specific application (Foody, 1996a). 

However, land cover data are not easy to collect, especially if data are required for large 

areas or if frequent up-dating is required. A common way to obtain land cover 

information is remote sensing. Other alternative methods such as field survey can be 

relatively expensive and time consuming, especially for large areas (e.g., national or 

global scales). 

2.3 Introduction to remote sensing 

2.3.1 Definition of remote sensing 

The field of remote sensing is very broad (Campbell, 2002). According to Lillesand and 

Kiefer (2000, p.1), "remote sensing is the science and art of obtaining information about 

an object, area, or phenomenon through the analysis of data acquired by a device that is 

not in contact with the object, area, or phenomenon under investigation". The remote 

sensors acquire data on variations in electromagnetic energy. An electromagnetic 

remote sensing system is illustrated in Figure 2.1. 

Based on this definition, there are two main basic processes involved in the remote 

sensing system that are data acquisition and data analysis. The elements of the data 

acquisition process are energy sources, propagation and retransmission of energy 

through the atmosphere, energy interactions with Earth surface, and the image or digital 

image for data collection. The data analysis process involves examining and interpreting 

the image data collected by the sensors to collect information and provide the 

information for users. 
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Figure 2.1: Overview of a remote sensing system (Lillesand and Kiefer, 2000). 

2.3.2 Physical principles of remote sensing 

2.3.2.1 The electromagnetic spectrum 

Remote sensing makes use of electromagnetic radiation, In fact, all objects emit 

electromagnetic radiation and some objects also reflect radiation that has been emitted 

by the other objects (Campbell, 2002). The main source of electromagnetic radiation 

used in remote sensing is our Sun, which emits radiation over the entire electromagnetic 

spectrum (Lillesand and Kiefer, 2000, Campbell, 2002) (Figure 2.2). 
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Figure 2.2: Principle division of the electromagnetic spectrum (Lillesand and Kiefer, 

2000). 
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2.3.2.2 Interaction with the atmosphere 

All radiation detected by remote sensing must pass through the Earth's atmosphere 

(Lillesand and Kiefer, 2000, Campbell, 2002). As a result, the quality of images and 

data that the sensors create are affected by the atmospheric conditions. These effects are 

caused mainly through several physical processes, including: scattering, absorption, and 

refraction. All of these effects are, in general, dependent on wavelength (Rees, 1990). 

2.3.2.3 Interaction with Earth surface features 

When electromagnetic energy reaches the Earth's surface, it interacts with the surface in 

three fundamental ways such as reflected, absorbed, and/or transmitted. The proportions 

of light accounted for each process depend on the nature of the surface, the energy's 

wavelength and the angle of illumination (Campbell, 2002). The interrelationship 

among these three energy interactions can be expressed as follows (Lillesand and 

Kiefer, 2000): 

(2.1) 

where Ey(A) represents for the incident energy, ER(A) is the reflected energy, EACA) is the 

absorbed energy, EA.A) is the transmitted energy, and A denotes the wavelength. 

2.4 Image processing and analysis 

2.4.1 Pixel and digital data 

Pixels are the smallest picture elements or cells of an image, and represent the ground 

resolution element - ORE of a sensor. The ground area represented by each pixel is 

defined by the characteristics of the sensor that produced the image. Remote sensing 

images are recorded in digital form and then processed by computer to produce images 

for interpretation purposes. A digital image is composed of many thousands of discrete 

pixels. Each pixel represents the remotely sensed response of a small region on the 

Earth's surface, recorded digitally as a numeric value represented as DN (Digital 
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Number). Within a ORE, the properties of Earth surface are considered to be 

homogeneous although this is rarely the case in reality. 

2.4.2 Image resolution 

Image resolution can be defined as the ability of an imaging system to record fine 

details in a distinguishable manner (Campbell, 2002). In remote sensing, it is important 

to distinguish between 4 resolutions: spatial resolution, radiometric resolution, spectral 

resolution, and temporal resolution. 

2.4.2.1 Spatial Resolution 

Spatial resolution determines the fineness of spatial detail visible in an image. The finer 

the spatial resolution the smaller the ground objects that can be identified. For example, 

fine spatial resolution imagery such as IKONOS is created at 1 m in the panchromatic 

band and 4 m in the multispectral bands and a moderate resolution image such as 

Landsat ETM image is produced at 30 m. In contrast, coarse spatial resolution imagery 

like National Oceanic and Atmospheric Administration's Advanced Very High 

Resolution Radiometer (A VHRR) is produced at 1.1 km spatial resolution. The spatial 

resolution is related to the instantaneous field of view (lFOV) of the sensor, which is the 

angular subtend from which the sensor receives the energy at the given instant in time 

(Schowegerdt, 1997, Tso and Mather, 2001). 

2.4.2.2 Radiometric Resolution 

Radiometric resolution is defined as the number of digital levels used to express the data 

collected by the sensor. It is commonly expressed as the number of bits (binary digits) 

needs to store the maximum level. For example Landsat TM data are displayed to 256 

levels (0 to 255) and this equivalent to 8 bits. 

2.4.2.3 Spectral resolution 

Spectral resolution refers to the width of spectral bands and expresses the ability of a 

sensor to define the fine wavelength intervals. Different features on the Earth surface 
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obtain different spectral reflectances and emissivities and these spectral characteristics 

specify the spectral position and spectral sensitivity to distinguish features. 

2.4.2.4 Temporal resolution 

Temporal resolution refers to the frequency with which remotely sensed imagery of a 

defined geographic area can be acquired. The temporal resolution is determined by 

orbital characteristics and swath width, the width of the imagery in the area. This 

variable is important where imagery is being used to monitor land cover change over 

time. 

2.4.3 Overview of land cover mapping 

Digital image processing comprises a range of techniques for the manipulation of digital 

images by computers. The raw data acquired from the imaging sensors on the satellite 

platforms contains flaws and deficiencies. To get the originality of the data, it needs to 

undergo several steps of processing to reject these effects. This varies from image to 

image depending on the type of image format, initial condition of the image and the 

information of interest. Generally, digital image processing consists of three main steps: 

(i) Pre-processing, (ii) display and enhancement, (iii) information exaction. It can be 

illustrated by the flowchart in Figure 2.3. 

2.5 Pre-processing 

In the raw form, prior to any form of processing, remotely-sensed data generally contain 

distortion and deficiencies due to the influence of external factors which alter the 

spectral signal from surface features. These factors include atmospheric interference, 

variation in illumination geometry, geometric distortion and technical problems with the 

sensor. Therefore, to facilitate an accurate representation of land cover from remotely 

sensed imagery, it is first necessary to remove the influence of these factors. 

Preprocessing includes a wide range of operations. Typically preprocessing operations 

include: (1) radiometric corrections, (2) atmospheric correction, and (3) geometric 

corrections (Mather, 2004, Lillesand and Kiefer, 2000, Campbell, 2002), though all 

these corrections might not be necessarily be applied in all cases. The analyst should 
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Figure 2.3: Overview of land cover mapping. 

decide which pre-processing techniques are needed based on the quality of image data 

and the information to be extracted from those image data. Of the three techniques 

mentioned above, the last one is generally required. 

2.5.1 Radiometric correction 

When an image is recorded by a sensor the image contains errors in the measured 

brightness values of the pixels. These errors are referred as radiometric errors. 

Radiometric correction affects the brightness values of an image to correct for sensor 

malfunctions or to adjust the values to make up for atmospheric degradation (Campbell, 

2002). It is the process of converting the spectral values of remotely sensed imagery 
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from DN values - arbitrary values based on the radiometric resolution of the sensor, to 

radiance values (Curran, 1985). This process, which changes the DN values following 

the gain and offset parameters of the sensor, is important for some research where 

absolute values of radiation are required (Gu et al., 1999). 

2.5.2 Atmospheric correction 

Electromagnetic energy detected by the remote sensmg sensors contains energy 

reflected and emitted by the ground surface and energy that has been scattered within or 

emitted by the atmosphere. Thus, the objective of atmospheric correction is to recover 

the surface reflectance (that characterizes the surface properties) from remotely sensed 

imagery by removing the atmospheric effects. This is the process of converting values 

of radiance to values of reflectance. This is implemented by accounting for the 

contribution of atmospheric interference to the spectral values of an image. Atmospheric 

correction algorithms mainly include two major steps. First, the optical characteristics 

of the atmosphere are estimated either by using special features of the ground surface or 

by direct measurements of the atmospheric compositions or by using theoretical models. 

Second, the remotely sensed imagery can be corrected by inversion procedures that 

derive the surface reflectance. The procedure necessary for atmospheric correction 

depends on the purposes of the analysis. For instance, land cover classifications based 

on single-date images do not need atmospheric correction if it can be assumed that all 

pixels in the image are affected equally by the atmosphere since the pixels are being 

compared with other pixels within the image. However, atmospheric correction is 

necessary when multidate images are being classified, or for identification of land cover 

change over time, to make sure that pixel values are comparable from one image to the 

next (Tso and Mather, 2001). 

2.5.3 Geometric correction 

Geometric correction is carried out to reduce geometric distortions from a distorted 

image, and is achieved by projecting image data onto a plane and making it conform to 

a map projection and co-ordinate system. 

The geometric correction process is carried out by two steps. First, systematic image 

distortions such as those arsing from Earth curvature, panoramic distortion and non-
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linear scan lines are well understood and corrected by usmg formulas derived by 

modelling the sources of the distortions mathematically. Second, random image 

distortions such as those arising from variations in platform movement and relief can be 

corrected by transforming distorted image to regular coordinate systems. To do this, 

ground control points (OCPs - features of known ground location on a coordinate 

system in terms of UTM coordinates or latitude and longitude) are identified on both the 

image and map coordinate system and the two sets of coordinates (image and map) are 

compared (Lillesand and Kiefer, 2000). 

After producing the transformation function, a resampling approach is used to determine 

the spectral value of the pixels in the transformed image, based on the values of the 

original image. Several different resampling schemes may be applied including nearest 

neighbour, bilinear interpolation and cubic convolution (Lillesand and Kiefer, 2000, 

Campbell, 2002). Among them, nearest neighbour is the simplest method and widely 

used since it uses the value of the 'nearest' original pixel prior to transformation as the 

new pixel value and thus, had the benefit of maintaining the original pixel values, 

although this can cause a disjointed appearance in the output image product. 

2.6 Hard classification 

A common way to extract land cover information from remotely sensed imagery is to 

classify it. Image classification is the process of assigning pixels to classes (Campbell, 

2002). Land cover classes can be identified by their spectral, spatial, temporal and 

geometric characteristics. The simplest form of automatic (computer-based) image 

classification is to consider each pixel individually, assigning it to the most similar 

spectral class according to its spectral values in separate wavebands (Mather, 2004). For 

convenience per-pixel classification will be assumed throughout this thesis although the 

research may be applied to classification based on other spatial units (e.g., per-field, 

per-polygon classification etc). 

Classification techniques may be performed usmg either of two mam approaches, 

namely unsupervised or supervised classification. Unsupervised classification can be 

defined as the process of automatically aggregating pixels within multispectral data into 

a number of classes based on the natural groupings or clusters present in the image 

values (Campbell, 2002). Supervised classification can be defined as the process of 
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usmg pixels representing areas of known class membership to classify pixels of 

unknown membership. Pixels of known membership are located within training areas 

(section 2.6.2.1), which are identified by the operators according to the regions that 

matched to the areas of known land cover classes on the image. The main benefit of 

unsupervised classification is that it has a low requirement for manual processing. 

Besides, the pixels are grouped automatically by their spectral reflectance values within 

the imagery. Thus, unsupervised classification may be useful as a means to identify 

class separability in imagery prior to subsequent analysis. Conversely, supervised 

classification needs more efforts from the analysis, but has the benefit that the classes 

generated meet the analysis's requirement and may, therefore, relate directly to the 

problem. This is the reason why supervised classification has been more popular than 

unsupervised classification in remote sensing. 

In addition to the distinction between unsupervised and supervised classification, the 

classification techniques can also grouped on the basis of how classifiers represent land 

cover. Generally, they can be divided into two main types: hard classification and soft 

classification. Hard classification or conventional classification is a process in which 

each pixel is allocated to the single land cover class with which it has the greatest 

similarity (Rees, 1994; Foody, 2002a; Mather, 2004; Lillesand and Kiefer, 2000). In 

contrast, soft (fuzzy) classification represents land cover as a mixture of classes, and for 

each pixel, the probability of membership to each class is identified (Wang, 1990; 

Foody, 1996a; Atkinson, 1997; Campbell, 2002; Mather, 2004). The main advantage of 

hard classification is that hard classification outputs are quite simple and, thus, hard 

classified images require much less computer storage than soft classified images. 

However, soft classifiers are much more realistic than hard classifiers in terms of the 

representation of land cover. While hard classification operates under the hypothesis 

that each pixel is perfectly pure, fuzzy classification recognizes that, in fact, classes are 

not mutually exclusive and a single pixel may contain more than one land cover class. 

The latter technique may solve the problem of mixed pixels (section 2.7). As a result, 

there is a growing interest in, and application of, soft classification (e.g., Fisher, 1990; 

Foody and Cox; 1994; Atkinson et at., 1997; Embashi, 1998; Ghosh et at., 2003; Gopal, 

1998; Zhang and Foody, 2001; Foody, 2002b). This section provides a brief overview 

of hard classification, and soft classification is described in the section 2.8. 
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The majority of conventional classifiers are hard, representing land cover as a series of 

discrete units, whereby each pixel is associated with a single land cover class. This 

means that hard classification operates under the assumption that each pixel is perfectly 

pure, i.e. the ground area represented by a pixel is occupied by a single information 

class. The result of this process is a classified image in which each pixel is assigned to a 

land cover class. 

2.6.1 Stages of hard classification 

After appropriately pre-processing an image (section 2.5), the image can be used to 

classify in order to derive a thematic map from imagery. This process has three stages: 

training stage, class allocation stage, and accuracy assessment stage. 

2.6.1.1 Training stage 

Supervised classification methods require prior knowledge of the number of information 

classes. The information classes are expressed in training samples. The analyst defines 

training areas by locating areas on the image that can be matched to areas of known land 

cover class. This is an important procedure which has considerable impacts on 

classification accuracy. Training areas should be homogeneous in respect to the classes 

to be classified. In general, the class selection depends on the content of the thematic 

map needed or on each project and should be implemented using some knowledge of 

the study area. In practice, training areas can be normally identified by fieldwork, from 

aerial photographs, or from map interpretation, and their positions on the image can be 

located by visual observations directly or by carrying out a geometric correction on the 

image to be classified (Mather, 2004). 

When identifying training areas in an image, some important factors of concern are the 

overall number of training pixels in the image, size, location of the training area, and the 

number of training areas in the image (Campbell, 2002). The two most important factors 

are the number of training pixels and the size of training area. According to Campbell 

(2002), the overall number of training pixels in an image should be at least 100 pixels 

for each category. Mather (2004) stated that the number of training pixels per class 

should be at least 30p where p is the number of wavebands. Lillesand, and Kiefer 

(2000) suggested this figure should be at least lOp. For training size, some researchers 
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suggested that single-pixel training (or randomly selected training pixels) resulted in 

higher classification accuracies than contiguous blocks of training pixels. According to 

Campbell (1981), positive spatial autocorrelation exists among pixels which are 

spatially contiguous and the randomly selected pixels may reduce the effect of positive 

interrelationships between adjacent pixels upon the subsequent estimates. Gong and 

Howarth (1990) stated that the block training method violates the independent sampling 

requirement and therefore makes the training spectral responses for each class less 

representative. 

After all training areas are selected, they will be used in the training process (or training 

stage). The training stage is the process in which areas of known class membership in 

the image are used to derive a statistical description of each class (Foody, 2002b). The 

statistical characteristics of the classes that are to be estimated from training pixels 

depend on which method of supervised classification is used. For example, the 

parallelepiped algorithm requires estimates of the extreme values on each feature for 

each class, while maximum likelihood requires estimates of the mean vector and 

variance-covariance matrix of each class. Thus, the training data sets help the classifier 

to recognize the spectral properties that characterise or distinguish each class. 

2.6.1.2 Class allocation stage 

The derived training statistics from the training stage are then used in the second stage, 

the class allocation stage (or pixel labelling), to assign pixels representing an area of 

unknown class to the class with which it has greatest spectral similarity. There are 

various methods of classification which are used to distinguish the spectral similarity 

such as parallelepiped, minimum distance, maximum likelihood, decision tree, 

discriminant analysis, artificial neural network, support vector machine, etc. These 

techniques are described in section 2.6.3. The spectral similarity is assessed differently 

among different classification methods. For example, the minimum distance classifier 

labels pixels with the classes of which they are closest to in spectral space, but 

maximum likelihood assigns pixels to the class with which it has the highest a posterior 

probability of membership. The class allocation stage has the effect of converting the 

remotely sensed image displaying the spectral response of the Earth's surface into a 

map. 
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2.6.1.3 Accuracy assessment stage 

The final stage of the image classification problem is the accuracy assessment stage (or 

the testing stage) in which the accuracy of the classification is evaluated. This is very 

important stage because without it, the user does not know the accuracy of the 

classification and, therefore, does not know the utility of the classification (Nishii and 

Tanaka, 1999). The term accuracy in image classification means the level of agreement 

between labels assigned by the classifier and class allocations based on ground data 

collected by the user, known as reference data. In thematic mapping from remotely 

sensed data, accuracy defines the degree of 'correctness' of a classified image 

(Campbell, 2002; Foody, 2002c). In general, accuracy assessment is implemented by 

comparing the classified image with the known reference land cover data of the study. 

This can be a simple visual examination of the two data sets, involving the comparison 

of a statistical sample of points in study area (Gong and Howarth, 1990). Errors present 

in a classification are caused by misidentification of pixels, excessive generalization, 

errors in registration, variation in detail of interpretation, and other factors (Campbell, 

2002). The simplest error is the assignment of a pixel belonging to one category to 

another category through the classification process. 

Many methods of accuracy assessment have been discussed in the remote sensing 

literature (Rosenfield and Fitzpatrick-Lins, 1986; Lillesand and Kiefer, 2000; Campbell, 

2002). The most commonly used, however, derived from a confusion or error matrix 

(Figure 2.4). This indicates the number of sample pixels assigned to each class relative 

to the actual land cover class as identified using reference data. Such a matrix is square, 

with the number of rows and columns equal to the number of categories whose 

classification accuracy is being assessed. The confusion matrix identifies not only 

overall accuracies for each category but also misclassifications by category. The 

columns represent the sample elements assigned to corresponding actual classes 

(reference data), while the rows show the sample elements assigned to corresponding 

classified classes (predicted class). The meaning of columns and rows can be reversed 

in some applications since the convention is not universal. The diagonal elements of this 

matrix indicate the number of sample elements which have been classified correctly, 

whereas off-the-diagonal elements show misclassification. 
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Figure 2.4: The confusion matrix (Foody, 2002c). 

Many statistical measures of classification accuracy can be derived from an error 

matrix. Alternative formu las exist for matrices based on different sampling designs. 

(i) Overall classification accuracy 

This is one of the most popular measures of accuracy, and it is computed by dividing 

the total number of correctly classified pixels (i.e., the sum of elements along the major 

diagonal) by the total number of reference pixels. 

(2.2) 

where c is the number of classes, nu is the number of correctly classified pixels in class 

i, and n is the total number of testing (reference) pixels for all classes. 

(ii) Errors of omission and errors of commission 

All non-diagonal elements of the matrix represent errors of omission and commission. 

Omission errors correspond to non-diagonal column elements. Commission errors 

correspond to non-diagonal row elements. 

(iii) Producer's accuracy 

The producer accuracy is the proportion of the number of correctly classified pixels in 

each class to the total pixels of that class in the reference data (Campbell, 2002). It can 

be computed as: 
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(2.3) 

where ni+ is the marginal total of column i. 

(iv) User's accuracy 

The user accuracy is the proportion of the number of the correctly classified pixels in 

each class to the total pixels of that class to be classified (Campbell, 2002). It can be 

computed as: 

(2.4) 

where n+i is the marginal total of row i. 

(v) Kappa coefficient 

Kappa (k) is a measure to accommodate for the effects of chance agreement. In some 

circumstances, it can be used as a measure of classification accuracy (Smits, et al., 

1999; Foody, 2002c).1t can be calculated as follows, 

c 

Ao - Lni+n+i 
k = i=! 

c 

1- Lni+n+i 
i=! 

(2.5) 

The kappa coefficient has the benefit that all elements in the error matrix participate in 

its computation, rather than simply the main diagonal. Overall, the confusion matrix is a 

valuable tool of representing the results of classification accuracy assessment, from 

which various measures can be calculated to indicate levels of accuracy as required. 

2.6.2 Supervised classification algorithms 

Supervised classification algorithms may be divided into two groups: parametric or 

non parametric. Parametric algorithms assume a class statistical distribution and require 

estimates of the distribution parameters, namely the mean vector and variance-
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covanance matrices for each of classes, for classification (Schowengerdt, 1997; 

Kuncheva, 2000). The common type of statistical distribution for parametric 

classification algorithm applied to remote sensing classification is the normal (or 

Gausian) distribution. Parametric algorithms depend on the form of the probability 

distribution for each class. An example is maximum likelihood algorithm, which uses a 

probability model to identify the decision boundaries. The necessary parameters for the 

classification model are derived from training data. The limitations of the parametric 

classifiers are the dependence on statistical distribution, inability to handle data from 

different sources. 

Nonparametric algorithms make no assumptions about the probability distribution of the 

data and are often considered robust since they may implement for many class 

distributions, provided that the class signatures are reasonably distinct (Schowengerdt, 

1997; Kuncheva, 2000). They use information directly from training pixels. An example 

of nonparametric classifier is artificial neural network. The advantages of nonparametric 

algorithms are that they are the distribution free, and their ability to handle multi-source 

data efficiently. 

Some of the main methods of parametric and non-parametric classifiers are described on 

the next following sections. 

2.6.3 Parametric classifiers 

2.6.3.1 Parallelepiped classification 

In this method, the lower and upper limits of reflectances (pixel values) in each 

waveband, defined using training data, form the dimensions for each side of a 

parallelepiped. The unclassified pixels are projected into data space; those pixels that 

fall within the areas defined by the training data are assigned to the appropriate land 

cover classes. The parallelepiped method is fast and simple, but errors may occur, 

especially when a pixel lies outside all parallelepipeds or inside more than one 

parallelepiped. 
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2.6.3.2 Minimum distance classification 

Minimum distance classification uses the mean values ofthe spectral data in the training 

data to allocate unknown pixels to land cover classes. Each training class is represented 

by its class centroid. Thus, the multidimensional distances from unknown pixel to each 

class centres are calculated and this unknown pixel will be assigned to the closest class. 

The distance between a pixel and a class centre is commonly measured either by the 

Euclidean distance or Mahalanobis distance (Tso and Mather, 2001). The Euclidean 

distance can be expressed as: 

(2.6) 

where DE is the Euclidean distance, Xi is the observed vector of the ith pixel and Pi is the 

current mean vector of the jth class (or cluster). The dimension of vector Xi is equal to 

the number of bands being used as input. 

The Mahalanobis distance can be expressed as: 

(2.7) 

where DM is the Mahalanobis distance, T denotes the matrix transpose, and C;1 is the 

inverse of the variance-covariance matrix for clusterj. 

The minimum distance classifier is simple in concept and in implementation, but it is 

not widely used in remotely sensed image classification. It is sometimes not accurate in 

its simplest form because it does not support for the differences in variability of classes 

and therefore, some classes may overlap at their boundaries (Campbell, 2002). 

2.6.3.3 Maximum likelihood classification 

The maximum likelihood classifier (MLC), a supervised statistical approach to pattern 

recognition, is one of the most widely used methods of hard classification. It operates by 

using the training data as a means of estimating means and variances of the classes, 

which are then used to estimate the probabilities. ML classification considers not only 
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the mean, or average, values in labelling classification but also the variability of 

brightness values in each class. The probability density functions are calculated on the 

assumption that both training data and the classes themselves display a multivariate 

normal (Gaussian) distribution (Campbell, 2002; Mather, 2004). In this method, the 

conditional probabilities of an unknown pixel belonging to each of the predefined 

classes are calculated, and then the pixel is allocated to the land cover class which has 

the highest posterior probability of membership. MLC is based on the Bayesian 

probability formula (Tso and Mather, 2001): 

P(x, w) = P(w I x)p(x) = p(x I w )p(w) (2.8) 

where P(x, w) is the probability of pixel x belonging to class w, P(x) and P(w) are the 

prior probabilities of pixel x and class w, and P(wlx) is the conditional probability of 

pixel x given to class w. If Xi is the i1h pattern vector and Wj is class j then the probability 

that Xi belongs to class Wj is calculated by: 

(2.9) 

The conditional probability IS normally calculated from a Gaussian distribution as 

follows: 

(2.10) 

where Cj is the covariance matrix of class Wj with dimension p, Jl j is the mean vector 

of class Wj, and 1.1 is the determinant. The value in mean vector, Jl j , and the covariance 

matrix, Cj , are estimated from the training data. 

An extension of the MLC is the Bayesian classifier. This method uses two weighting 

factors to estimate probabilities. Fist, the analyst identifies the prior probability for each 

class in the given scene. Second, a weight related to the "cost" of misclassification is 

used for each class. Together, these two weighting factors operate to minimize the 

"cost" of misclassification, resulting in theoretically optimum classification. In practice, 

most MLC is operated assuming equal prior probability of occurrence and cost of 
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misclassification for all classes. If the data required are suitable for these factors, the 

Bayesian classifier is preferable. 

2.6.3.4 Discriminant analysis 

Method of discriminant analysis (Klecka, 1980; Hastie et al., 2001) is widely used in 

the classification of remotely sensed data (Tom and Miller, 1984; Lark, 1994; Foody 

and Mathur, 2004). Discriminant analysis is a conventional statistical classifier which 

generally assigns each case to the class with which it has the highest posterior 

probability of membership. The posterior probability L(i I X) of case X belonging to 

class i can be calculated as follow (Foody, 1996a): 

c 

L(i I x) = ~p(X I i)(LPjP(X I j) (2.11 ) 
j~l 

where p(X I i) is the typicality probability (the probability that case X would be a 

member of class i given the distance it is from the centroid of class i), ~ is the prior 

probability for class i, and c is· the number of classes. The posterior probabilities lie on 

0-1 scale and sum to 1.0 for each pixel. The class centroids can be calculated from the 

training data by using variance-covariance matrices, which can be a single pooled 

matrix or separate matrices for each class (Lark, 1994). 

There are two widely used methods of discriminant analysis namely linear discriminant 

analysis (LDA) and quadratic discriminant analysis (QDA) (Lark, 1994; Hastie et at., 

2001). In LDA a pixel is assigned to a land cover class which it has the minimum 

Mahalanobis distance, computed using a pooled variance-covariance matrix. Whereas, 

in QDA a pixel is assigned to a land cover class which has the smallest generalised 

square distance measured using separate estimates of the variance-covariance matrix for 

each class. Lark (1994) proposed the choice between LDA and QDA in remote sensing 

classification. He suggested QDA is preferred when the variance-covariance matrices of 

different classes are heterogeneous or LDA when the sampling error of the separate 

class variance-covariance matrices is high. 
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2.6.4 Nonparametric classifiers 

2.6.4.1 Decision tree 

Decision tree classifier (Friedl and Brodley, 1997) is a hierarchically based classifier 

which can perform automatic feature selection and complexity reduction. The tree 

structure is easily understandable and interpretable information (Figure 2.5). A decision 

tree divides a data set into smaller subdivisions on the basis of a set of tests defined at 

each branch (or node) in the tree. This procedure acquires three steps such as splitting 

nodes, determining which nodes are terminal nodes, and assigning class label to 

terminal nodes. It is very straightforward to assign class labels to terminal nodes in 

which labels are located following a majority vote or a weighted vote when it assumed 

that certain classes are more likely than others (Pal and Mather, 2001). 

A tree consists of a root node, a set of internal nodes ( splits), and a set of terminal nodes 

(leaves). Each node in a decision tree has only one parent node and two or more 

descendant nodes. A data set is classified by moving down the tree and sequentially 

subdividing it according to the decision framework defined by the tree, and a class label 

is assigned to each observation following the leaf node into which the observation falls 

(Friedl and Brodley, 1997). 

A B 

Figure 2.5: A decision tree classifier. Each box is a node at which test (T) are applied to 

recursively split the data into small groups. The label (A, B, C) at each leaf node refer to 

the class label assigned to each observation (Friedl and Braley, 1997). 
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Friedl and Brodley (1997) introduced details about these classification algorithms 

including a univariate decision tree, a multivariate decision tree, and a hybrid decision 

tree within a single decision tree structure. Results from their analysis also showed that 

decision tree algorithms were more accurate than maximum likelihood and discriminant 

classifiers. 

Decision tree classifiers have been commonly applied to remote sensing data (Suarez 

and Lutsko, 1999; Simard et aI, 2000; Pal and Mather, 2001; McIver and Friedl, 2002). 

The decision tree approach does not depend on any a prior statistical assumption and its 

rules are explicit and allow for identification of features which are relevant to 

distinguish specific classes (Simard et aI, 2000). Especially, decision trees are 

nonparametric and do not require assumptions regarding the distribution of the input 

data. They use non-linear relations between features and classes, allow for missing 

values, and can deal with both numeric and categorical input in a natural way. However 

the disadvantage of this classifier is that the accuracy depends on the design of the 

decision tree and the selected features (Friedl and Brodley, 1997). 

2.6.4.2 Artificial neural network 

Artificial neural networks (ANNs) are computer programs designed to simulate human 

learning processes through establishment and reinforcement of connections between 

input data and output data (Campbell, 2002). These connections (or pathways) form the 

analogy with the human learning process in the brain, in that repeated relationships 

between input and output in the training process consolidate linkages, which are then 

employed to connect input and output, in the absence of training data. ANNs have been 

studied for many years in many fields such as speech and hand writing recognition and 

in pattern recognition, etc. In recent years, the use of ANNs in pattern recognition 

applied to remotely sensed images has significantly increased due to some important 

advantages over conventional classifiers, especially the freedom from distribution 

assumption and ability to integrate ancillary data acquired at a low level of 

measurement precision (Zhang and Foody, 2001; Kavzoglu and Mather, 2003). 

There are many types of ANNs namely feed-forward back-propagation multi-layer 

perceptron (MLP), radial basis function (RBF) neural network, ARTMAP, probabilistic 

neural network (PNN) introduced in literature (Aleksander and Morton, 1990; Bishop, 
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1995; Petterson, 1996; Atkinson and Tatnall 1997; Tso and Mather, 2001) but the most 

commonly ones used in remotely sensed image classification are the feed-forward back

propagation MLP and RBF. The characteristics and applications of these two types are 

presented in the following sections. 

2.6.4.2.1 Multi-layer perceptron 

The MLP using the back-propagation learning algorithm is one of the most widely used 

neural network models. A neural network contains a number of interconnected nodes 

(equivalent to biological neurons). Each node is a simple processing unit that responds 

to the weighted inputs it receives from other nodes (Atkinson and Tatnall, 1997; Zhang 

and Foody, 2001). The architecture of this network used for image classification can be 

simply illustrated in Figure 2.6. 

The feed-forward back-propagation MLP is generally composed of three types of 

layer. Each layer consists of processing nodes that are fully connected to each other, 

except that there are no interconnections between nodes within the same layer. These 

layers are the input, hidden and output layers, respectively. An MLP neural network 

architecture usually contains one input layer, one or two hidden layers and one output 

layer. The input layer comprises a set of nodes corresponding to individual data sources 

input 

remotelY! -.. 
sensed _ ~'-""'C/ .... 

data 

-

hidden output 

class 
membership 
data 

Figure 2.6: An MLP neural network architecture for image classification (Zhang and 

Foody, 2001). 
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(e.g. different wavebands of remotely sensed data). There is no computation performed 

in the input layer, unlike the other layers. Hidden layers are used for computations, and 

the values associated with each node are calculated from the sum of the multiplications 

between input node values and the weighted links connected to that node. The number 

of hidden layers is usually determined by the analyst (there may be more than one 

hidden layer in complex networks). The output layer produces the results of the 

classified image. Note that the number of nodes in the input layer and the output layer is 

determined by the number of discriminating variables (e.g. wavebands) and classes, 

respectively. The number of hidden nodes is usually determined subjectively on the 

basic of trial runs (Zhang and Foody, 2001; Kavzoglu and Mather, 2003). 

Once the remote sensing data are put into the input layer as input signals, the input 

signals are passed to the nodes in the next layer in a feed-forward manner. As the signal 

passes from node to node, it is modified by the weights associated with the connection. 

The receiving node sums the weighted signals from all nodes to which it is connected in 

the preceding layer. The input that a node receives is weighted from (Atkinson and 

Tatnall, 1997; Zhang and Foody, 2001), 

(2.12) 

where illji represents the weight for the connection between node i and node j, and 0; is 

the output from the node i,. The output from a given node j is then computed by the 

node 'activation function' (usually a sigmoid activation function or hyperbolic tangent) 

such as (Kanellopoulos and Wilkinson, 1997), 

1 
o =f(net)=------

} } l+exp(-netj +f)j) 
[sigmoid function] (2.13) 

[hyperbolic tangent] (2.14) 

where ()j, m, and k are constants, f stands for an activation function that is used to the 

weighted sum of inputs before the signal passes to the next layer. 

A common learning algorithm used for ANN classification is back-propagation (Tso 

and Mather, 2001; Zhang and Foody, 2001). With this, training pixels are presented to 

the network via the input layer and the signals are fed-forwards through the network 
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using equations (2.12), and (2.13) or (2.14). In the output layer, network outputs are 

compared with the target outputs (training pixels) and the error computed (Atkinson and 

Tatnall, 1997; Zhang and Foody, 2001). This error is then back-propagated through the 

network and, generally weights are updated during training with the generalized delta 

rule (Kanellopoulos and Wilkinson, 1997; Atkinson and Tatnall, 1997), 

(2.15) 

where llwji(n + 1) is the change of a weight connecting nodes i and}, in two successive 

layers, at the (n+ l)th interaction, tSj is the rate of change of error with respect to the 

output from node), 7J is the learning rate parameter, and a is the momentum 

parameter. 

This process of feeding forward signals and back-propagating the error is repeated until 

the total error of the network is minimized or reaches an acceptable magnitude. After 

training, the network can be used for classification of unknown class membership. The 

outputs from an ANN exist as activation levels ranging from 0 to 1. Thus, a pixel is 

allocated to the class with which it has the highest activation level. 

The use of ANNs is more complicated than statistical classifiers, basically due to 

problems met in their design and implementation. Training a neural network requires 

that the users defines the network structure and sets the learning parameters. For the 

network's design, the identification of the number and size of the hidden layer(s) is 

important for the network capability to learn and generalize. In addition, the choice of 

appropriate values for network parameters also has a major influence on the 

performance of the learning algorithm. Significant parameters to be specified are: the 

range of the initial weights, the learning rate, the value of the momentum term, and the 

number of training iterations, all of which relate to the issue of when and how to stop 

the training process (Kavzoglu and Mather, 2003). 

Kavzoglu and Mather (2003) have investigated the major Issues in the design and 

training of ANNs for image classification. Attention was paid to the components of the 

network structure (input, hidden and output layers) and to the learning parameters 

(initial weight range, value of learning rate and momentum terms. The results showed 

that classification accuracies achieved through the use of ANNs can differ significantly, 
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depending on the selection of the network structure and parameter values. The authors 

suggested a number of useful guidelines for the effective design and use of ANNs in the 

classification of remotely sensed image data. They also stated that ANNs can perform 

well for small training samples and in the same small training sample ANNs perform 

much better than other statistical classifiers such as maximum likelihood in terms of 

classification accuracy. 

2.6.4.2.2 Radial basis function networks 

The MLP is just one of a set of networks that may be used for image classification; 

another is the radial basis function (RBF) network (Bishop, 1995; Bastos et al., 1999; 

Pasika, et al., 1999; Bruzzone and Prieto, 1999; Foody, 2001). The RBF differs from 

the MLP in many ways but mainly in its ability to divide feature space locally. This 

characteristic makes the RBF network less likely to make untenable extrapolations and 

indicates the potential to identify atypical cases by post-classification analysis of the 

network outputs (Foody, 2001). 

The architecture ofRBF network classifier is composed of three layers (Figure 2.7): one 

input layer, one hidden layer, and one output layer. The input layer relies on as many 

neurons as input features. Input neurons just create input features to the next layer. Each 

neuron in the hidden layer is related to a kernel function <D j (.) (commonly Gaussian 

function), created by a mean ,uj and a variance (Y j • The output layer is consisted of as 

many neurons as classes to be classified. Each output neuron 0, calculates a simple 

weighted summation over the responses of the hidden neurons for a given input 

pattern ~i = (x l" '" xJ, which is to be labelled to one of c different land-cover 

classes n = {WI' W2 ,"', We} (Bruzzone and Prieto, 1999; Bruzzone et ai, 1999): 

s 

0, (~J = L Wlj <D j (~J + Wbias,l 
j=1 

(2.16) 

where s represents the number of hidden neurons, wlj is the weight associated with the 

connection between the kernel function <D j (.) and the output neurons 0" and tIlbais,lIS 

the bias of the output neuron 0, . 
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Figure 2.7: An RBF neural network architecture (Bruzzone and Prieto, 1999). 

The training of the RBF neural classifiers is usually implemented in two stages with 

each stage relatively independent of the other. The first stage is training the hidden layer 

by selecting the centres and widths of the kernel functions related to the hidden units 

(Bishop, 1995). This selection is mainly implemented by applying a clustering 

technique such as the k-means clustering algorithm. When the centres of the kernel 

functions have been chosen, the widths of these functions are selected. The values of 

widths control the generalization abilities of the network (Bruzzone and Prieto, 1999). 

The width of a given kernel function can be selected as the standard deviation measured 

over all training samples in the cluster concerned with the kernel function considered. 

The second step of the training process is calculating the weights corresponding to the 

connection between the hidden units and the output units. This stage is basically done 

by minimizing a sum-af-squares error function (Bishop, 1995; Bruzzone and Prieto, 

1999). In fact, a sum-af-squares error function is a quadratic function of the weights and 

its minimization can be identified in terms of the solution of a set of linear equations 

calculated by a pseudo-inverse matrix. 

2.6.4.3 Support vector machine 

Support vector machines (SVMs) (Vapnik, 1995; Hermes et aI, 1999; Perkin et ai, 

2001; Hastie et aI., 2001; Huang et aI, 2002; Pal and Mather, 2003; Foody and Mathur, 

2004) have considerable potential as classifiers of remotely sensed imagery. They use a 

method to construct a learning machine based on statistical learning theory and produce 

non-linear boundaries by constructing a linear boundary in a large, transformed version 

of the feature space (Hastie et al., 2001). 
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In the two linearly separable classes, a SVM classifier identifies a hyperplane that 

maximises the distance from the numbers of each class to the optimal hyperplane 

(Figure 2.8). A separating hyperplane refers to a plane in a multi-dimensional space that 

separates the data samples of two classes. The optimal separating hyperplane is a 

separating hyperplane that maximizes the margin from closest data points to the plane 

(Huang et at, 2002). 

Let the training data with k samples be represented by (Xl, Yl), ... , (Xk, Yk) where 

X E R n is an n-dimensional space, and Y E {-l,+l} is the class label. A hyperplane can 

be defined by the equation w.x + b = 0, where X is a point lying on the hyperplane, w is 

normal to the hyperplane, b is the bias, and ~bl)/~[wII)is the perpendicular distance from 

the hyperplane to the origin, with Ilwll as the Euclidean norm of w (Foody and Mathur, 

2004). Suppose the two classes can be separated by two hyperplanes parallel to the 

optimal hyperplane (Figure 2.8 a) (Huang et at, 2002): 

w.X; + b ~ 1 for Yi=l, i=1,2, ... ,k 

w·x+b =±1 

(a) 

The optimal separating 
hyperplane 

(b) 

(2.17a) 

(2.17b) 

Figure 2.8: The optimal separating hyperplane between (a) separate data samples and 

(b) non-separate data samples (Huang et at., 2002). 
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The purpose is to find a hyperplane that divides the data so that all the points with the 

same label lie on the same side of the hyperplane. This can be used to define wand b so 

that 

(2.18) 

If a hyperplane exists that satisfies (2.18), the two classes are supposed to be linearly 

separable. Thus, it is possible to rescale wand b as 

(2.19) 

That is, the distance from the closest point to the hyperplane is 1 111wI1. Then (2.18) can be 

written as, 

(2.20) 

The training data points on these two hyperplanes are called support vectors and are 

central to the optimal separating hyperplane (OSH). Since the distance to the closest 

point is 1II1w11, the OSH can be identified by minimizing 11wI12 under constraint (2.20). 

The minimisation procedure uses Lagrange multipliers and Quadratic Programming 

(QP) optimisation methods. If Ai' i = 1, k are the non-negative Lagrange multipliers 

related to constraint (2.20), the optimisation problem becomes one of maximising (Pal 

and Mather, 2003): 

L(A) = LAi -~ 2: AiAjYiYj (xi.x j ) 
I I,} 

(2.21 ) 

with Ai :2: 0, i = 1, "., k. 

If X = (A;' ,,,., A~) is an optimal resolution of maximisation problem (2.21) then the 

OSH can be computed as: 

(2.22) 

The support vectors are the points for which A~ > Owhen the equality in (2.20) holds. 
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An important assumption to the above solution is that the data are linearly separable in 

the feature space. Commonly, the classes are not linearly separable, and the constraint 

(2.20) cannot be satisfied. To solve this problem, a slack variable;;, i= 1, k is introduced 

to indicate the distance the case is from the optimal hyperplane (Figure 2.8b) with 

;; ~ 0 such that (2.20) becomes 

(2.23) 

And the solution to find a generalised OSH, also called a soft margin hyperplane, can be 

found using the following conditions (Pal and Mather, 2003): 

(2.24) 

(2.25) 

i = 1, ... ,k (2.26) 

The first term in (2.24) is similar to the linearly separable case, and controls the learning 

capacity, while the second term controls the number of misclassified points. The 

parameter C is chosen by the user. Larger values of C indicate the assignment of higher 

penalty to misclassification errors. 

Where it is not possible to have a hyperplane defined by linear equations on the training 

data, the basic approach outlined above for linearly separable data can be extended to 

allow for non-linear decision surfaces (see e.g. Huang et ai., 2002; Pal and Mather, 

2003; Foody and Mathur, 2004). 

In the above theoretical development, the SVM was designed for binary classification 

(i.e. one SVM can only separate two classes), whereas most remote sensing applications 

involve multiple classes. Thus, integration strategies are needed to extend them to 

classifying multiple classes (Gualtieri and Cromp, 1998; Huang et ai, 2002; Foody and 

Mathur, 2004). 

The SVM classifiers were more accurate than other comparable classifiers such as 

disciminant analysis, decision tree, and neural network (Foody and Mathur, 2004). In a 
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comparative study, Huang et at. (2002) also indicated that SVM has the highest 

accuracies, followed by ANN, decision tree, and MLC. 

2.6.4.4 Evidential reasoning 

The mathematical theory of evidence is a field in which a number of data sources can be 

combined to generate a joint inference concerning pixel labelling (Tso and Mather, 

2001). The theory was first introduced by Dempster in the 1960s and later extended by 

Shafer (1976), who provided details of the development of evidential theory. Thus, this 

theory has become known as the Dempster-Shafer (D-S) theory of evidence. D-S theory 

is a valuable tool for dealing with the problems associated with analysis, integration, 

and classification (Peddle, 1995a; Tso and Mather, 2001). Moreover, D-S theory is also 

a means of distinguishing between uncertainty and ignorance (Lein, 2003). Several 

researchers have applied this theory for remotely sensed image classification in the 

literature. Lee et al. (1987) applied general methods of evidential calculus for 

multi source classification. Peddle (1995a; 1995b) using D-S theory of evidence for 

supervised evidential classification by deriving evidence from histogram bin 

transformation of supervised training data frequency distributions. The algorithms of 

evidential reasoning approaches are based on D-S theory of evidence. Thus, the basic 

concepts of D-S theory of evidence are briefly described with the applications to 

evidential reasoning classification as following. 

For a given pixel, the task of the classification is to assign the pixel to one member 

within a set of classes. In theory of evidence, the set of all possible classes is referred to 

as the frame of discernment which is denoted by the symbol e. Suppose that an analyst 

is trying to classify an image, which involves labelling pixels as belonging to one of 

three classes {A, F, U}, where A is agriculture, F is forest, ands U is urban. In D-S 

theory, this set {A, F, U} is called a frame of discernment. The number of all possible 

subsets of the frame of discernment e is equal to 2101 , where lei denotes the number of 

one-element subsets (called 'singletons '). In our case, there are three singletons in lei so 

the total number of subsets of e is 23 = 8, as shown in Figure 2.9. Note that the empty 

set { } is one of these subsets and it does not display in Figure 2.9 (Tso and Mather, 

2001). 
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Frame of discernment e --... {A,F, Uj 

Singletons {Aj {Fj {Uj 

Figure 2.9: A representation of subsets of frame of discernment {A, F, U} created by 

agriculture, forest, and urban. 

One important aspect of evidence theory is the basic probability assignment written as 

m. This basic probability assignment expresses the degree to which all available and 

relevant evidence supports the claim that a particular element (e.g., a pixel) of the 

universal set belongs to a particular set such as a land cover class (a singleton) or a 

subset of the frame of discernment. Those subsets of the universal set are called focal 

elements of the basic probability assignment, and equate to the classes being mapped. 

The basic probability assignment assigns value in [0, 1] to every element of 2101 such 

that the numeric values sum up to 1. Usually, meA) ~ ° is used to denote the value 

assigned to subset A. For a basic probability assignment of a focal element A, there will 

be a belief function Bel(A) and plausibility function PI(A). They can be calculated as 

follows: 

Bel(A) = Lm(B) (2.27) 
B,;;A 

PI(A) = L m(B) (2.28) 
Bnk~¢ 

with the special cases: 

1) When A =Ai is a singleton, then Bel(AJ = Bel(AJ = m(AJ. 

2) When A = 8, Bel(8) = 1 
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where 0 is the empty set, Bel(AJ is the sum of the mass of evidence which is committed 

to class A as well as various subsets of A, and PI(AJ is not only the equivalence of 

Bel(AJ but also the additional evidence related to sets overlapping with A (Klir and 

Folger, 1998; Zhang and Goodchild, 2002; Foody, 2002a). 

Belief measures communicate a level of confidence in the range [0.0, 1.0], where 0.0 

indicates no confidence and 1.0 explain absolute confidence in a given conclusion. 

Thus, belief measures can be summed to produce overall expression of certainty (Lein, 

2003). When a set of evidence has been assembled for each pixel of the image 

classified, the evidence needs to be combined (Peddle, 1995a). Suppose the evidence 

obtained from two independent sources and expressed by two basic probability 

assignment ml and m2. The two frames of evidence can be combined using Dempster's 

orthogonal sum, or rule of combination to get a joint basic assignment ml,2 by: 

ml2 (A) = m1 EB m2 (A) = k Lm1 (X).m2 (Y) (2.29) 
XnY;A,A*0 

F or all A "* ¢ , X and Yare any subsets of the universal set, and m1,2 (¢) = 0 , where k is a 

normalizing constant: 

k-1 =1- Lm1(X).m2(Y) (2.30) 
XnY;0 

To apply evidential reasoning to classification, a measure of evidence for subsets of 

class labels is computed. The requirements for a supervised evidential classifier include 

(1) the representative information for each class to base classification making is 

acquired. This requirement is implemented by using standard training data identified for 

each class; (2) converting this information into measure of evidence by individual class 

proportion (Peddle, 1995a). Assuming that focal elements consist of class label 

singletons, the procedures to combine two sources of data are quite simple. 

However, remote sensing image data do not provide direct measures of evidence for 

input to the mathematical theory of evidence and therefore a separate process to derive 

these measures is required (Peddle, 1995a; 1995b). They can be computed with respect 

to the frequency of occurrence of individual pixel values from training samples over the 

entire set of classes or frame of discernment. Training data are read from each data 

feature in sequence, and a frequency distribution of training values is interpreted for 
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each class. Thus, for c classes and k sources, there will be a total of cxk frequency 

distributions (Peddle, 1995a). When a set of evidential measures has been assembled for 

a pixel in a multi source data set, the evidence from all sources is combined by repeating 

application of Dempster's orthogonal sum into a manageable, one-dimensional format 

containing one measure of support per class. Then, a decision rule is applied to the mass 

function to classify the pixel into one of the classes within the frame of discernment. 

The decision rule may be based on maximum belief function or maximum plausibility 

function, where the class with the greatest support is assigned as the pixel label. 

Peddle (1995b) proposed a MERCURY software package as a multi source evidential 

reasoning classification software system based on the D-S theory of evidence. In this 

software, measures of both support and plausibility are included in the decision rule. 

Class allocation is based on the sum of support and plausibility for each class, with the 

pixel assigned as the class with the greatest sum. 

2.7 The mixed pixel problem 

Most remotely sensed image classification methods are implemented under the 

hypothesis that each pixel is perfectly pure (e.g. consists of one land cover class). If the 

spatial resolution of the image pixels is coarse in comparison with the variability ofland 

cover objects then a single pixel may contain more than one land cover class in the area 

that it represents. Such pixels are called mixed pixels (Cracknell, 1997; Fisher, 1997; 

Tso and Mather, 2001). There are four main reasons which may lead to mixed pixel 

(figure 2.1 0): (1) Boundaries between two or more mapping units (e.g. field-woodland 

boundary), (2) The intergrade between central concepts of mappable phenomena 

(ecotone), (3) Linear sub-pixel objects (e.g. a road), or (4) Small sub-pixel objects (e.g. 

a house or tree). 

The DN value recorded for a pixel may be derived in a number of different ways. It may 

be the majority of area of the pixel; represent a value at some systematic location within 

the area of the pixel; or be considered representative for some other reason (Fisher, 

1997). Manslow (2000) suggested that the reflectance information in a pixel can be 

described by the point spread function of the sensor. This means that the pixel's 

reflectance information tends to be most similar to the reflectance of land cover located 

towards the centre of pixel's ground area, and least similar to cover towards its edge. 
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Sub-pixel Boundary pixel 

Intergrade Linear sub-pixel 

Figure 2.10: Four causes of mixed pixels (Fisher, 1997). 

Thus, when a pixel area consists of two or more areas that differ greatly from 

brightness, its value may consist of several very different values, and the single digital 

value which represents the pixel may not accurately represent any of the classes present. 

As in Figure 2.10, mixed pixels often occur at the edges of large parcels, or along linear 

features, such as rivers or roads, where contrasting brightnesses are immediately 

adjacent to one another. The edge, or border, pixels then cause errors in image 

classification. Especially the difficult situation can be created by landscape composed of 

many parcels that are small relative to the spatial resolution of the sensor. A mosaic of 

such parcels will create an image, all formed by mixed pixels. The number and 

proportion of mixed pixels in an image typically increases with a coarsening of the 

spatial resolution of the sensor and/or increasing fragmentation of the landscape to be 

represented (Campbell, 2002, Foody, 2002b). 

2.8 Soft classification 

The techniques described in section 2.6 are concerned with 'hard' pixel labelling. All of 

the above classification methods require that each individual pixel is given a single, 

unambiguous label. They were developed for the classification of classes that may be 
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considered to be discrete and mutually exclusive, and assume that each pixel is perfectly 

pure (i.e. the ground area represented by a pixel is occupied by a single class). Such 

approaches are inappropriate for mixed pixels problem, which discussed in section 2.7. 

The fact discussed in section 2.7 was that mixed pixels are the main problem in 

mapping land cover from remotely sensed imagery and such image may be dominated 

by mixed pixels. Thus, a fuzzy/soft classification (or sub-pixel classification) is required 

and should allow for partial and multiple class membership of mixed pixels and 

therefore can give a more accurate and realistic representation of many land covers 

(Foody, 1996a; Bastin, 1997). This type of representation can be derived by using a 

fuzzy classification or 'softening' the output of a 'hard' conventional classification, 

which means that the measures of strength of class membership, rather than just code of 

the most likely class of membership may be output. The output of soft classification is 

typically a set of fraction images each describing the proportion of a particular land 

cover class within each pixel. The number of fraction images is equal to the number of 

target classes defined to map the land cover. These images are more informative and 

appropriate depicting land cover than those derived from the conventional hard 

classification. 

There are many methods of soft classification such as spectral mixture analysis, fuzzy 

set theory, artificial neural network, evidential reasoning, etc. Focusing on remotely 

sensed image classification based approaches, the use of fuzzy classifiers and softening 

of 'hard' classifications are the most commonly used approaches for the derivation of a 

soft thematic map (Foody, 2002a). Thus, this research will introduce and apply some 

methods of these two main approaches. 

2.8.1 Stages of soft classification 

As with their hard counterparts that were described in section 2.6.1, a soft classification 

also has three basic stages such as training stage, class allocation stage, and accuracy 

assessment stage after the application of any necessary pre-processing operations. 

2.8.1.1 Training stage 

As stated in the hard classification section, training stage is the stage in which pixels of 

known class membership are identified and used to characterise the classes in the image. 
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The purposes and the procedures of training stage in soft classification are similar to 

hard classification. However, they may only be different in selecting the type of training 

pixels. For hard classification, only pure pixels should be selected for training. This 

typically involves selecting training sites from only very large homogeneous regions of 

each class to avoid contamination of training sites by other classes. However, training 

sets for soft classification can be performed either in pure or mixed pixels. Some 

approaches to fuzzy training are to feed the network of ANN classifier with the 

proportional set of each class in the training pixels (Foody, 1997; Bernard et aI., 1997; 

Zhang and Foody, 2001). An empirical study is presented by Bernard et ai., (1997) to 

test training procedures with neural network for soft classification suggested that land 

cover mixtures are best recognized by training with two-component mixed pixels (pure 

and mixed pixels). Foody and Arora (1996) used mixed pixels in all three stages of 

MLC and ANNs. The results show that by accommodating for mixed pixels in the 

classification, more accurate, appropriate and useful outputs may be derived. 

2.8.1.2 Class allocation stage 

In the class allocation stage of a conventional supervised classification, the 

characteristics of the classes that are defined by training stage are used to allocate pixels 

of unknown class membership to the class with which they have the greatest similarity. 

For example, in MLC, each pixel is assigned to the class with which it has the greatest 

posterior probabilities of membership. For ANN, each pixel is assigned to the class 

related to the unit in the output layer with the greatest activation level. Such class 

assignments are "crisp" and it leads to the waste of information on the relative strength 

of class membership and its partition between classes. 

A soft classification allocation may be produced by outputting the measures of the 

strengths of class membership that are created in the classification. These measures can 

be used to represent for the proportional composition of the relevant classes and the 

spatial distribution of the classes represented by fraction images which display the class 

proportions in each pixel. For instance, in fuzzy MLC, the derived posterior 

probabilities of membership are considered to represent the proportional cover of the 

classes in each image pixel. For ANN, the measures of strength of class membership in 

each pixel are the activation levels of a neural network output unit (Foody and Arora, 

1996). The details of these two soft classifiers will be described in later sections. 
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The output of soft classification is a set of fraction images each describing the 

proportion of a particular land cover class within a pixel. The number of fraction images 

is equal to the number of target classes defined to map the land cover map. For example, 

if there are four land cover classes to be used to classify an image by soft classification, 

the results will be four fraction images. Each fraction image represents the strengths of 

class membership of that pure class in each pixel. 

2.8.1.3 Accuracy assessment 

As proposed in section 2.6.2.3, the measures derived from traditional confusion matrix 

are the most widely used ones to assess the accuracy of image classification. 

Unfortunately, in their present form they are only appropriate for use with a 'hard' 

classification since these measures of classification accuracy may be used when each 

pixel is assigned to only one class in the classification and only one class in the ground 

data (Congalton, 1991; Foody, 1996a). Consequently, a class labelling is judged exactly 

right, or exactly wrong. Therefore, the measures of classification accuracy derived from 

the confusion matrix are inappropriate for the evaluation of soft classification. The 

accuracy of the representation provided by a fuzzy classification is, however, difficult to 

evaluate (Foody, 1996a; Binaghi et al., 1999). A number of approaches have been 

proposed with emphasis on fuzzy measures (Foody, 1995; Foody, 1996a; Arora and 

Foody, 1997; Binaghi et at., 1999; Atkinson, 1999; Woodcock and Gopal, 2000; Lewis 

and Brown, 2001; Oki et at., 2004). They are generally implemented by comparing the 

actual and predicted class of membership for a set of pixels not used in training the 

classification. The following sections represent some of the most common use 

approaches for the evaluation of soft classification. 

2.8.2 Some approaches of accuracy assessment for soft classification 

2.8.2.1 Root mean square error 

The mean error (ME), root mean square error (RMSE) are statistics that are used 

commonly to calculate the level of agreement between a set of known fraction 

(reference data) y and a set of predicted fraction (classification data) z. They are the two 

simplest measures of agreement between y and z and computed as: 
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(2.31) 

n 

~:CYij _Zij)2 
RMSE. = 

} 

i=1 (2.32) 
n 

where, j is the /h class and n denotes the total number of pixels in the whole testing data 

set, Y ij is the proportion of class j in pixel i from the fuzzy reference data, and Z ij is the 

proportion of class j in pixel i from the fuzzy classification. Thus, the overall mean error 

and RMSE are calculated as: 

n 

~:CYij _Zij)2 
RMSE =!:t ...:..::i=,----1 ---

C j=! n 

where, c is the number of classes. 

(2.33) 

(2.34) 

The ME shows bias and RMSE shows accuracy (bias and precision). For the evaluation 

of soft classification, a low relative ME or RMSE indicates well classified and a high 

relative ME or RMSE indicates poor classified. The ME and RMSE for each class 

between fuzzy classification output and fuzzy reference data may also be used to 

indicate the accuracy of individual classes. 

However, there are some disadvantages with RMSE. The first disadvantage with RMSE 

is that it confounds two separate information dimensions into a single value. The second 

problem with RMSE is that it is not standardized by any measure of variance; therefore, 

if the variance of the estimated data is large, the RMSE may be large also, and vice 

versa. If no correlation between the actual and predicted proportions, the RMSE can be 

small. Consequently, comparison between RMSE is problematic, even for different 

classes of the same data (Atkinson, 1999). 
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2.8.2.2 Correlation coefficient 

The correlation coefficient per class (r) is a measure of the correlation between the 

proportions of corresponding memberships of reference and classification data by 

means of correlation. It is can computed from, 

(2.35) 

where Crycj is the covariance between y and Z for class} calculated as: 

i:(yj - Yij XZj -zij) 
;=1 

Crjcj = --'----"---n---l--- (2.36) 

and Syj andszj are standard deviations ofy and Z for class} calculated as: 

;=1 

n-l 
(2.37) 

(2.38) 

When coefficient r is large (r ~ 1), it indicates close association between a target and 

predicted data set. The r for each class between fuzzy classification output and fuzzy 

reference data may also be used to indicate the accuracy of individual classes. The 

larger the r the more accurate the classification of the specific class considered. 

One problem with r is that it could be large showing close association between a target 

and predicted data set while the RMSE is large; the error of the estimation is large. 

Especially, r could be large when the predictions are biased, with Zj being some fraction 

of Yj; therefore, r shows precision, and it is normalized by the two variances, but it is not 

sensitive to bias. In addition, the predictions could be accurate with r=O if the variances 

in the two distributions are small (Atkinson, 1999). 
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2.8.2.3 Entropy (H) 

Entropy is a measure of uncertainty and information formulated in terms of probability 

theory, which expresses the relative support associated with mutually exclusive 

alternative classes (Foody, 1996a). It may be used to express the variations in class 

membership probabilities associated with each pixel. Especially, it is an indicator of 

classification quality in case where ambiguity exists since it shows the degree to which 

the class membership probabilities are occupied between the defined classes. The 

entropy Hi of ith pixel can be calculated from class membership probabilities within that 

pixel as following: 

Hi = -:t (zij )log2 (zij) (2.39) 
j=i 

The choice of logarithm base is customized, but the logarithm base 2 is commonly used. 

With the logarithm base 2 the entropy is measured in bits (Klir and Folger 1988). 

Entropy may be generated only for situations in which all the possibilities of class 

membership are >0, which is likely in a truly fuzzy classification; if appropriate the data 

may be re-scaled to ensure this requirement is met. 

Entropy is maximized when the probability of class membership is equal between all 

defined classes in the classification and minimized when it consists of one class. It may 

be used to indicate the confidence that may be associated with classification outputs -

with pixels showing a low relative entropy assumed to be well classified and those with 

a high relative entropy poorly classified. Its value as an indicator of classification 

accuracy is, therefore, based on the hypothesis that in an accurate classification each 

pixel will have a high probability of membership with only one class. Thus, Foody 

(1995) suggested that the interpretation of entropy calculated for each pixel is more 

difficult when a mixed land cover composition is possible. Entropy, therefore, does not 

provide an assessment of how closely the fuzzy classification models the continuous 

classes. Further, entropy is only appropriate for situations in which the output of a 

classification is soft (i.e., the probabilities of membership to all defined classes are 

output for each pixel) and the reference data are crisp (i.e., the code of the single class 

of membership) (Foody, 1996a; Binaghi et ai, 1999). 
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2.8.2.4 Cross-entropy (d) 

Cross entropy (or directed divergence) is the measure of closeness of fuzzy 

classification where multiple and partial class membership is a feature of both remotely 

sensed data and ground data (Foody 1995). It is identified from the probability 

distributions of class membership of the ground data (y) and that of the fuzzy 

classification output (z). Cross entropy of a pixel can be computed from, 

d;(y, z) = - I(Yij)log2 (Zij)+ I (Yij) log2 (yij) (2.40) 
}=1 }=1 

This provides a measure of closeness of the classification to the ground data. A small 

value of entropy could shows that the classification was an accurate representation of 

the land cover. Cross-entropy, therefore, may be used as an indicator of the quality of 

the classification output and was most apparent for pixels which consisted of significant 

proportions of two or more classes. 

2.8.2.5 Fuzzy error matrix 

Binaghi et al. (1999) proposed a method called fuzzy error matrix that uses the fuzzy set 

theory based on the Minimum operator to extend the applicability of the traditional error 

matrix method to the accuracy assessment of soft classifiers. It is designed to deal with 

those situations in which classification and/or reference data are represented in multi 

membership form and the strengths of membership show different levels of 

approximation ambiguous classes. The method assumes that membership values in 

classes are known for the reference data set. According to the basic concepts of the 

traditional error matrix (as described in detail in section 2.6.2.3), Binaghi et al. (1999) 

formalize these concepts and the matrix building procedure in terms of classical set 

theory and derived set operations. The layout of fuzzy error matrix is similar to the 

traditional error matrix with the exception that elements of a fuzzy error matrix can be 

any non-negative real numbers instead of non-negative integer number. The elements of 

the fuzzy error matrix represent class proportion corresponding to reference data (i.e., 

fuzzy reference data) and classified outputs (i.e., fuzzy classified image) respectively. 
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Let Rn and C m be considered fuzzy sets of reference data assigned to class n and of 

classification data assigned to class m, respectively, with 1 ~ n ~ c, 1 ~ m ~ c and c as the 

number of classes. {Rn }and {Cm } form two fuzzy partitions of the sample data set X. 

Rn and C m have the membership function 

flRn : X ~ [0,1] 
flc", : X ~ [0,1] 

where [0,1] represents the interval of real numbers from 0 to 1 inclusive. 

(2.41) 

flRn (x) and flcm (x) indicate the gradual membership of the same element x in class n 

and m as presented in the reference and classification data, respectively. Since, in the 

context of soft classification, these membership functions also represent the proportion 

of a class in the testing sample, which for fuzzy reference data may be represented as, 

c 

LflR
n 
(x) = 1 (2.42) 

n=! 

The fuzzy error matrix M will be provided by using fuzzy set operators within the error 

matrix. The value of the element M (m, n) involves the calculation of the degree of 

membership in the fuzzy intersection set C m rI Rn' There are several different functions 

for the intersection operation proposed in the literature, in this algorithm the authors use 

the "min" operator introduced in the original formulation of the theory of fuzzy sets 

(Zadeh, 1977) as follows, 

(2.43) 

Thus, the value of the element M(m,n) in row m and column n computed on the overall 

data set: 

M(m,n) = ICm rlRnl = Lflcm"Rn (x). (2.44) 
XEX 
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The fuzzy error matrix is shown in Table 2.1, in which Pm,1I represents the cardinality of 

the intersection set em n Rn computed according to (2.43), Pi+ and P +i are the total 

assignment to the lh class for classification and reference data, respectively. 

Actual data 
1 2 .... c ~ 

1 Pll P12 ... Plq PI+ 

2 P21 P22 ... P2q P2+ 

... 
C Pql P q2 ... P qq P q+ 

~ P+I P+2 ... P+q 

Table 2.1: Fuzzy error matrix. 

The fuzzy error matrix can be used as a foundation to derive some measures that can be 

used to evaluate the accuracy of soft classifiers, in the same way as the conventional 

error matrix. The simplest element in both cases is overall accuracy (OA). In the fuzzy 

case, it is computed by dividing the sum of the major diagonal by the total grades of 

membership found in reference data, considering OA as a measure of the total match 

between reference and classification data. The accuracies of the individual classes is 

computed by dividing the corresponding element of the major diagonal by the total 

grades of membership found in reference and classification data in either the 

corresponding column, or corresponding row. For each category we have the producer's 

accuracy (PA) and user's accuracy (VA), respectively. All these measures, OA, PA and 

VA, are limited in the range [0,1] and assume the value of 1 is the perfect match 

between the gradual membership of reference and classification data. To fully 

understand this method, an example is illustrated in the table 2.2. 

Binaghi et ai. (1999) also represented some hypothetical examples and the results show 

that the accuracy information the proposed procedure provides, consistently reflects 

how correctly the strength of class membership is partitioned among classes. Due to the 

correspondence of the fuzzy error matrix and the traditional error matrix, the use of 

fuzzy error matrix to evaluate fuzzy classification may therefore be more appropriate 

than other methods such as entropy and correlation coefficients. Moreover, the 

formulation of fuzzy error matrix can also be used to assess the accuracy of hard 
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classification given the crisp reference data. Thus, from the view of standardizing the 

accuracy assessment procedures for both hard and soft classification, fuzzy error matrix 

and the associated measures seem to be more suitable in assessing the quality of 

remotely sensed derived classifications. 

Actual data 
Predicted data Water Wetland Other L User's accuracy 

Complete matching (OA=l) 

Water 111.58 74.36 0 111.58 1 

Wetland 74.36 128.53 0 128.53 1 
Other 0 0 0 0 # 

L 111.58 128.53 0 
Producer's accuracy 1 1 # 

ANN (OA=0.74) 
Water 90.78 86.59 0 116.25 0.78 

Wetland 71.48 87.16 0 97.12 0.90 
Other 26.34 26.21 0 26.75 0 

L 111.58 128.53 0 
Producer's accuracy 0.81 0.68 # 

Fuzzy statistical classification (OA=0.59) 
Water 24.34 20.88 0 35.34 0.69 

Wetland 97.12 117.53 0 204.66 0.57 
Other 0 0 0 0 # 

L 111.58 128.53 0 
Producer's accuracy 0.22 0.91 # 

Table 2.2: Three fuzzy error matrices with the first one is the complete matching case which 

designed to be easy to compare with the results obtain from other two fuzzy classifiers such 

as neural network classifier and fuzzy statistical classifier (Binaghi et aI, 1999). 

2.8.2.6 Generalized confusion matrix 

As concerned about evaluating the accuracy of soft classification, Lewis and Brown 

(2001) proposed a method called a generalized area-based confusion matrix. They use a 

multiplication operator to form a generalized confusion matrix for assessing area 

estimates from remotely sensed data. The generalized confusion matrix is appropriate 

for both traditional and soft classification algorithms. In addition, a corresponding error 

matrix, derived from the generalized confusion matrix, may be used to assess 
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quantitatively the accuracy of the maps generated using soft classification algorithms 

and to compare with the accuracy of the traditional classification techniques. 

For soft classification algorithms, the memberships in a target reference dataset 

containing n pixels and c classes can be represented in an n x c matrix, R as follows, 

r
RI] rRll Rz RZI 

R - -- -. . .. 

Rn Rnl 

Rl2 
R," ] Rzz Rze 

. .. 

RnZ ... Rne 

(2.45) 

and ± Rkj = 1 for k = 1, ... , n. Similarly, the membership estimated for the n pixels by the 
j=l 

soft classification algorithms can be presented in an n x c matrix, C as follows, 

r
eI] rell ez eZI e - -- -. . .. 

en enl 

and ±ekj =1 for k= 1, ... , n. 
j=l 

e l2 Ck] e ZZ e Ze 
. .. 

e nZ ... e ne 

(2.46) 

The c x c area-based confusion matrix, P, can be derived from matrices C and R as 

follows, 

n n n n 
IeklRkl Iekl Rk2 IeklRke Iekl 
k=l k=l k=l k=l 
n n n n 

p=e T R= Iek2 Rkl IekZRkZ IekZRke => IekZ 
k=l k=l k=l k=l 

n n n n 
IekeRkl IekeRkz IekeRke Iekc 
k=l k=l k=l k=l 

JJ (2.47) 

[~IRkl 
n 

~IRke ] IRkZ 
k=l 

where the row and column sum of the matrix P are also shown. 

While the individual elements of this area-based confusion matrix cannot be interpreted 

as area, the row and column shown in (2.49) can be interpreted in this mode. The sum of 

the element in row i of the confusion matrix, P, is 
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(2.48) 

This is the total area covered by class i in the target estimated data. Similarly, the sum 

of the element in column j represents the total area covered by class j in the target 

reference data. 

Here, the individual elements of the confusion matrix cannot be interpreted 

straightforwardly since there is no concept of correct or incorrect classification. 

However, the row sums and column sums represent the estimated and the referenced 

areas of the classes, respectively, and theses values can be used to assess the accuracy of 

the area estimates. 

For the ideal soft classification algorithm the referenced and estimated class areas are 

the same and the confusion matrix is symmetrical. This ideal confusion matrix IS 

equivalent to the c x c reference matrix, T, calculated from the target reference data, 

(2.49) 

In general, soft classification algorithms are not ideal and errors are apparent in a 

confusion matrix that is not symmetrical and differs from the ideal, symmetrical 

confusion matrix. The differences between the reference matrix, T, and the confusion 

matrix, P, therefore can form an error matrix, E derived from, 

m m m i: (Rkl - Ckl )Rkl I. Rkl(Rkl -Ckl ) I. Rk2 (Rkl -Ckl ) I. Rkc(Rkl -Ckl ) 
k~1 k~1 k~1 k~1 
m m m i: (Rk2 - CkJRkl E=T-P= I. Rkl (Rk2 -Ck2 ) I. Rk2 (Rk2 -Ck2 ) I. Rkc (Rk2 -Ck2 ) => k~1 k~1 k~1 k~1 

m m m 

i:(Rkc -CkJRkl I. Rkl (Rkc - CkJ I. Rk2 (Rkc -cke) I. Rkc(Rkc - ckJ 
k~1 k~1 k~1 k~1 

U (2.50) 

[~EiI =0 
c c ] I.Ei2 = 0 I.Eic = 0 
i~1 i=l 

where the row and column sums are represented in the vectors that are also shown. 

Values near to zero in the error matrix (for which Ckj similar to Rkj ) indicate accurate 

area estimation and high (positive and negative) values indicate inaccurate area 

estimation by the classification algorithm. The ideal case, where the values of all 
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elements of the error matrix are equal to zero, is the case where the measures of class 

membership of estimated data are equal to that of the reference data for every pixel and 

every class. 

Assuming IRk =1 and ICk =1 for k= 1, ... , n., the sum of elements in columnj of the 
j=1 g j=1 g 

error matrix is zero and the sum of the elements in row i of the error matrix is 

(2.51) 

The error matrix can be used as a means to derive some measures of accuracy 

describing the proportion of area in error that can be used to evaluate the accuracy of 

soft classifiers. They are the overall proportion of area in error calculated all over 

classes is 

c I c I I.I.Eij 
OE = 1=1 J=1 (2.52) 

n 

and the proportion of area in error calculated for class i: 

(2.53) 

The sign of DEi shows whether the measure of class membership was underestimated 

(positive) or overestimated (negative). These summary measures may be used to assess 

the accuracy of the classification algorithm. 

One problem of the generalized confusion matrix using multiplication operator is that it 

is possible to achieve a counter result that the agreement between a pixel and itself is 

less than the agreement between the pixel and a different pixel. For instance, supposing 

that there are two pixels, X and Y, and they have membership in two land cover classes 

called a and b. Assume that pixel X has class proportions for class a and bare 0.6 and 

0.4, and pixel Y has class proportions for class a and bare 0.8 and 0.2, respectively. 

According to the generalized confusion matrix, the agreement between pixel X and itself 

is 52%, while the agreement between pixel X and pixel Y is 58%. 
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2.8.2.7 Generalized cross-tabulation matrix 

Pontius and Cheuk (2005) propose a multiple-resolution approach that uses a Composite 

operator to compute the cross-tabulation matrix to compare soft classified maps at 

multiple resolutions. In this method, the pixel in both the classified and reference data 

has membership in a given class according to the proportion of the pixel that the class 

constitutes; therefore, the sum of class membership within a pixel is 1. 

Let en; is the membership of pixel n to class i in the target estimated data and Rnj is the 

membership of pixel n to class j in the target reference data. Both 0 ~ e n; ~ 1 and 

o ~ Rnj ~ 1 . In addition, they follow the constraint: 

fen; = fRnj = 1 
;=1 j=1 

(2.54) 

Assume the rows of the cross-tabulation matrix are classes of the classified data and the 

columns are classes of the reference data. Commonly, the cross-tabulation matrices are 

standardized by expressing all the entries of the matrix as a percent of the study area. 

This can be done dividing all of the matrix's entries by the total number of the pixels in 

the study area, and then expressing the result as a percent. 

Using Composite operator, there are two steps to compute the elements of the cross

tabulation matrix. The first step calculates the agreement (diagonal entries) of each class 

according to the minimum operator by apply the following equation for the case i = j: 

(2.55) 

After the agreement is computed for each pixel n, the remaining membership for each 

class is the disagreement. Therefore, the disagreement in each pixel for each class will 

be computed in the second step. The disagreement in pixel n of estimated data for class i 

is en; minus Pn;; because the total membership is en; and the agreement is Pn" . 

Similarly, the disagreement in pixel n of reference data for class j is Rnj minus Pnjj . The 

disagreement for class i is then distributed among the off-diagonal entries in proportion 

to the distribution of the disagreement for class j. In this case, the sums of the diagonal 
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and off-diagonal entries for each pixel make a total contribution of one unit to the cross

tabulation matrix. The disagreement in each pixel for each class calculated as follows, 

(2.56) 

For this Composite operator, the interpretation of the standardized matrix entry in 

position if depends on its position in the matrix. If the entry is on the diagonal (i = j), 

entry jj is the agreement between the classified data and reference data with respect to 

class j that means entry jj is the proportion of landscape for which class j in the 

classified map exits at the same location as class j in the reference map. When the entry 

is off the diagonal (i"* j), entry if is the disagreement between class i in the classified 

data and class j in the reference data. Specifically, the entry if is the proportion of 

landscape for which class i in the classified map exits at the same location as class j in 

the reference map. The concept of same location in this case means within the boundary 

of the same pixel. 

In companson with the generalized cross-tabulation matrices computed from other 

operators such as the Multiplication operator (Lewis and Brown, 2001) and Minimum 

operator (Binaghi, et aI., 1999), Pontius and Cheuk (2005) show that Composite 

operator solve some problems associated with these two operators. First, the Composite 

operator guarantees that the matrix's entries sum to 100%, which the Minimum operator 

fails to do. Second, the Composite operator gives the identity matrix when it compares a 

map to itself, which both the Multiplication and Minimum operators fail to do. Third, 

the Composite operator maintains the row totals and columns total as the resolution 

changes, which the minimum operator fail to do. 

Pontius and Cheuk (2005) also represent some hypothetical examples and indicate that 

the Composite operator is also useful to present how well two maps agree in terms of 

how classes are clustered spatially. Furthermore, for the Composite operator, agreement 

tends to increase when the resolution becomes coarser, since the disagreement by the 

location will be resolved when the resolution becomes coarser. 
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2.8.3 Spectral mixture analysis 

Spectral mixture analysis includes a number of techniques in which mixed spectral 

signatures are compared to a set of pure reference spectra. The reference spectra can be 

measured in the laboratory, in the field, or from the image. The fundamental assumption 

is that the spectral variation in an image is caused by mixtures of a limited number of 

surface materials. The results of these approaches are the estimations of proportions of 

the ground area of each pixel that are occupied by each of the reference classes 

(Lillesand and Kiefer, 2000). Spectral mixture analysis is a physical based model in 

which a mixed spectrum is modeled as a combination of pure spectra, called end

members. It supplies useful information at the sub-pixel level because multiple land 

cover classes can be identified within a single pixel. 

Many approaches of spectral mixture analysis apply linear mixture models, in which the 

observed spectral response from an area on the ground is considered to be a linear 

mixture of the individual spectral signatures of the land cover classes apparent within 

the area. The basic linear mixture model is described by two basic conditions for each 

pixel. First, the total of the proportion of all end-members in a pixel must equal to 1. It 

expresses as follows, 

± Ij = 1 with the constraints 0:0; Ij :0; 1 
j=l 

The second condition is that: 

(2.57) 

(2.58) 

where ri is the reflectance (or digital number) of a given pixel actually observed in band 

{h of m spectral bands, c is the number of mixture components or number of end

members; Ij represents the /h fractional component (proportion of end-member j) in the 

make-up of r i ; aij is the reflectance of end-member j in spectral band i; and ei is the 

error term expressing the difference between the observed pixel reflectance r i and the 

reflectance for that pixel calculated from the model. 
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With multispectral data with m spectral bands, there would be m+ 1 equations available 

to solve for the various end-members. Therefore, in order for the above equations to be 

computable, the number of end-members c must be equal or less than the number of 

spectral bands m (e::s; m), which means that one cannot have more classes than 

wavebands. If c = m+ 1, the set of the equations can only be computed to have exact 

end-member fractions (fj) without any error term. Ife::s; m, it is possible to estimate end

member fractions and error terms by least squares principle. 

A number of groups of researchers have applied linear mixture modeling remotely 

sensed data in some different fields of study. For example, linear mixture modeling has 

been applied to estimate sub-pixel land cover composition (Foody and Cox, 1994; Van 

De Meer and De Jong, 2000), to generate fraction images of forest covers proportion 

and crop area proportions (Townshend et al. 2000), to predict vegetation abundance for 

urban land (Small, 2001). Besides, this method is also used to compare with other soft 

classifiers. Examples are Bastin (1997), who compare fuzzy c-means, linear mixture 

modeling and MLC as a tools for unmixing coarse pixels, Atkinson et al. (1997), who 

compare linear mixture modelling for sub-pixel land cover mapping with other 

alternative approaches namely fuzzy c-means and artificial neural networks. However, 

the approach has some drawbacks such as the neglect of multiple reflections, which can 

result in complex non-linearities in the spectral mixing process and the limit of number 

of end-members (or number of land cover classes) for unmixing (Lillesand and Kiefer, 

2000). In this case, a more sophisticated non-linear spectral mixture model may be 

required (Borel and Gerstl, 1994; Carlotto et al., 1995). 

2.8.4 Methods based on fuzzy set theory 

Fuzzy classification is designed to solve the mixed-pixel problem by applying the fuzzy 

set theory, in which a given pixel may have partial membership in more than one land 

cover class (Lillesand and Kiefer, 2000). The concept of fuzzy sets was first proposed 

by Zadeh (1965, 1973) as a means of describing and quantifying imprecision (Bastin, 

1997). The fuzzy concept has been applied in different fields such as fuzzy logic control 

(Yamakawa, 1993), fuzzy neural networks (Pal and Mitra, 1992), and fuzzy rule base 

(Ishibuchi et al., 1995). The fuzzy concept can also be applied for classification 

problem. In remote sensing classification, fuzzy-based classifiers are very popular these 

years (Wang, 1990; Tzeng and Chen, 1998; Tso and Mather, 2001; Bardossy and 
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Samaniego, 2002). This section firstly presents brief introduction to fuzzy set theory 

which provides the basis for soft classification problem in remote sensing and secondly 

the main fuzzy-base classifiers such as fuzzy c-means classification, fuzzy maximum 

likelihood classification, fuzzy rule base classification, fuzzy neural networks are 

described. 

2.8.4.1 Introduction to fuzzy set theory 

The operations of fuzzy sets are extensions of those used for traditional crisp sets. 

Traditional crisp sets use probability theory to explain if an event is expected to occur, 

but fuzzy sets measure the degree to which an event occurs (Tzeng and Chen, 1998). In 

fuzzy set theory, let S represent a universal of generic elements expressed by s. A fuzzy 

subset G of S is identified by a membership function JIG , which assigns a membership 

grade within the interval [0, 1] to each element s. The membership grade can be denoted 

by: 

JIG : s~ [0,1] (2.59) 

In traditional crisp set approach, the membership grade must be either 0 or 1. Thus, the 

fuzzy set is more flexible for solving the problems of ambiguous boundaries that are 

common in nature world. Let JIG (s) represents the grade of membership of s in a fuzzy 

subset G that can be computed as (Tso and Mather, 2001): 

(2.60) 

The equation (2.60) represents the discrete case. In the continuous case, G becomes: 

(2.61) 

The symbol 'I' in equation (2.61) does not represent for the division operator but the 

link between the values of s and its corresponding membership grade JIG (s) in the fuzzy 

subset G. The membership grade JIG (s )can be defined as the partial memberships of a 

pixel for a set of land cover classes. Thus, these memberships can be used for the 

representation of land cover proportions within a pixel. Based on fuzzy set theory, there 

are several approaches such as fuzzy maximum likelihood classifier, fuzzy c-means 
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classifier, fuzzy rules base and fuzzy neural networks proposed for sub-pixel land cover 

proportion estimation. 

2.8.4.2 Maximum likelihood classification 

The MLC is represented in section 2.6.3.3 as for hard classification. But, this algorithm 

can also be applied for soft classification through two common approaches namely 

'soften' maximum likelihood and fuzzy maximum likelihood. 

'Hard' MLC operates by using the training data as of the way to estimate the means and 

variances of the classes, which are then used to estimate the posterior probabilities. The 

conditional probabilities of an unknown pixel belonging to each of the predefined 

classes are calculated, and then the pixel is allocated to the land cover class which has 

the highest posterior probability of membership. However, the posterior probability 

provides information on the relative strength of class membership. As evident from 

equation 2.9 the posterior probability indicates the membership of a pixel to a class 

from the set of defined classes and is a measure of the uncertainty in making a hard 

class allocation. Thus, it is possible to 'soften' a maximum likelihood classification by 

using the posterior membership probability values as indices of class membership and 

derive a soft classification (Bastin, 1997; Foody, 2002b). This method can be called 

softened MLC. 

However, many researchers (i.e Wang, 1990a and 1990b; Maselli et at., 1995; Bastin, 

1997; Tso and Mather, 2001; Foody, 2002a) suggested that fuzzy set theory may also be 

extended to the maximum likelihood algorithm to calculate the membership grade of the 

pixels. In 'hard' maximum likelihood algorithm, pixels are assigned to the class for 

which they have the highest membership probability with the use of the 'hard' mean and 

'hard' covariance matrix for each class. Thus for fuzzy maximum likelihood approach, 

the fuzzy means Vi and fuzzy covariance matrix F; for class i can also be computed as 

(Tso and Mather, 2001): 

(2.62) 

and 
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j 

where Xj is the feature vector for pixel}. 

The membership grade for each land cover class of each pixel can be calculated from 

the conditional probabilities as follows (Maselli et at., 1995; Tso and Mather, 2001): 

(2.64) 

where k is the land cover class and probability P; (x j) represents the class conditional 

probability for class i given the observation x j and calculated by equation (2.10) , 

except that the crisp mean and covariance matrix in equation (2.10) are replaced by 

fuzzy mean and fuzzy covariance matrix. The accuracy of fuzzy maximum likelihood to 

mixed pixel classification depends on how well fuzzy mean and fuzzy covariance 

matrix are estimated. 

In application of the maximum likelihood algorithm, Wang (1990) proposed that the 

classification results from 'soft' maximum likelihood algorithm are better than those 

from the 'hard' maximum likelihood algorithm in terms of accuracy. 

2.8.4.3 Fuzzy c-means classification 

To derive fuzzy membership, which may be used to create a soft classifier, the fuzzy 

classifier such as the fuzzy c-means (FCM) clustering algorithm (Bezdek et at., 1984) or 

its possibilistic counterpart the possibilistic c-means (PCM) algorithm (Krishnapuram 

and Keller, 1996) may be used. The FCM has widely applied for deriving of soft 

thematic maps in remote sensing (Foody, 1996a and 2002; Atkinson et aI., 1997; Bastin, 

1997). The FCM algorithm supplies a means of solving the false clustering problem. 

This algorithm separates data clusters with the algorithm is presented as follows, 

Let X = {Xl, X2, ... , xn} be a data set containing n observations (pixels) in an s

dimensional Euclidean space (e.g. with s wavebands). The integer c is the number of 
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clusters or classes in X. Thus, a fuzzy c partition of X can be represented by a real 

(c x n) matrix U consists of elements denoted by Uik, satisfies the following constraints 

(Bezdek et at., 1984; Tso and Mather, 2001; Foody, 2001), 

Uik E [0,1] (2.65) 

i = l..c (2.66) 

k=1..n (2.67) 

Uik is the fuzzy membership value of an observation Xk to the lh class and is positively 

related to the strength of membership of a pixel to a specified class. 

There are several algorithms to derive an optimal FCM clustering. One widely used 

algorithm is associated with the generalized least-squared error function Jm (Bezdek et 

at., 1984), 

JJU, V) = tt(Uik)mllxk -vill~ (2.68) 
k=l i=l 

where m is the membership weighting exponent that lies within the 

range 1 ~ m < 00 which controls the degree of fuzziness (increasing m tends to increase 

fuzziness). When m=1 a hard classification is acquired in which each is related to just 

one class. There is no optimal value of m and for most data, 1.5< m <3.0 are commonly 

chosen (Bezdek et at., 1984; Foody, 1996a; Zhang and Foody, 2001). V = (VI' v2 ' ••• , vJ 

are the vector centres. Vi = (Vii' Vi2 ' ... , vin ) is the centre of cluster i (i.e. the mean of the 

cluster). The squared distance between Xk and Vi (the Mahalanobis distance) is computed 

in the A-norm as, 

(2.69) 

There are infinitely many A-norms available for use in equation (2.68). In practice, 

however, only a few of these norms such as Euclidean Norm, Diagonal Norm, and 

Mahalonobis Norm are widely used (Bezdek et ai., 1984). For m> 1 and xk :I; Vi' for all i, 
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k, a local minimum of Jm may be calculated under the circumstance (Bezdek et al., 

1984, Tso and Mather, 2001), 

1 
for all k (2.70) 

and the lh cluster mean is calculated from, 

n 

I (Uik)m,Xk 
v. =..:::k=::.:..! __ _ 

I I (Uik)m 
for all i (2.71) 

k=! 

Thus the FCM clustering is performed by iteratively using equations (2.70) and (2.71). 

Although originally proposed as a clustering (unsupervised) technique, the algorithm 

may be modified so that it can be applied for supervised classification. The ability of 

FCM applying for unmixing coarse remote sensing image has examined by many 

analysis (Foody, 1996a; Atkinson, et al., 1997; Bastin, 1997; Zhang and Foody, 2001; 

and Foody, 2002,). In comparison of FCM, linear mixture modeling and maximum 

likelihood classifier as tools for unmixing mixed pixels, Bastin (1997) presented the 

differences between these three classifiers and also pointed out that the FCM gave the 

best prediction of sub-pixel land cover, followed by the linear mixture modeling and 

then fuzzy maximum likelihood classifier. 

2.8.4.4 Fuzzy rule-based classification 

This section introduces briefly a soft image classification usmg fuzzy rule-based 

methodology, as proposed by Ishibuchi, et al. (1992), Tso and Mather (2001). 

A fuzzy rule base (or fuzzy system) applied for soft classification in remote sensing 

generally consists of three main steps. In the first step, the analyst has to define 

membership functions to calculate the membership grade for the input pixels which will 

be used in the fuzzification (the second step) of the data. The types of membership 

functions are varieties (but the value of the function must be on the range [0, 1]) and 
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there are four kinds of them namely monotonic, triangular, trapezoidal, and bell-shaped 

(Figure 2.14), are used widely in practice (Tso and Mather, 20001). 

The second step, fuzzification, divide the input feature space into fuzzy subspaces, each 

specified by a fuzzy membership function which defined in the first step. When the 

construction of fuzzy subspace is finished, fuzzy rules are then generated for each fuzzy 

subspace. 

The third step, namely inference, generates a set of fuzzy rules in order to derive the 

information class membership grades from the subspace membership grade vector. The 

rule strengths wij are then computed from the training data. These rule strengths can 

then be used to calculate the membership grade values of each land cover class in each 

classified pixel. Thus, they can reflect the mixture information between the information 

classes. 

To illustrate the above steps, take an example. For simplicity, a two-dimensional input 

case is considered and the input features are on the range [0, 1]. Each dimension in the 

input space is then divided into c fuzzy subspaces (c is also the number of land cover 

classes) represented by {AI' A2 , • •• , A }, where Ai is the lh fuzzy subspace. A symmetric 

triangular membership function is applied, and the fuzzy subspace for Ai is then 

identified by: 

(2.72) 

where s is the input pixel value, ai is the triangular centre for fuzzy subspace i and A is 

the membership function width. Both ai and A are measured as: 

i-I 1 
a - -- and A = - (i = 1, 2, ... , c) 

i - c-l c-l 
(2.73) 

Thus, each fuzzy rule in the fuzzy subspace can take the flowing form: 

IF s] is in Ai and S2 is in Aj 

THEN pixel s assigns to the class cij with strength wij. 
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where s 1 and S2 are the input features for pixel s, and Ai and Aj (1 S i, j S c) are fuzzy 

subspace on both dimensions, respectively. The class cij and rule strength wij depended 

on the fuzzy rule are calculated from the training data. 

Further detail on fuzzy rule-based methodology can be seen in the text of Ishibuchi, et 

al. (1992); Nozaki, et al. (1996); Tso and Mather (2001); Bardossy and Samaniego 

(2002); Ghosh, et al. (2003). 

There are two issues relating to the use of the fuzzy rule base for solving the mixed 

pixel problem (Tso and Mather, 2001). Firstly, the membership grades for a given pixel 

over all classes must sum to one. When the number of data dimensions is large, the 

number of rules may encounter a problem for computation. This issue can be solved by 

data dimension reduction techniques. 

The application of fuzzy rule base methods is still at an early stage, especially in soft 

classification of remotely sensed data (Tso and Mather, 2001). Further investigation is 

needed before an adequate method of dealing with mixed pixels is produced. Bardossy 

and Samaniego (2002) investigated the application of fuzzy rule-based modelling to 

classify Landsat TM imagery and the results were a land cover map with four different 

categories of land cover and an image depicting the degree of ambiguity of 

classification for each pixel. Ghosh et al. (2003) used fuzzy rule based approaches for 

cloud cover estimation. The technique automatically shows some fuzzy rules for 

estimating the proportion of each class (three classes) in each pixel and then is hardened 

by the defuzzification to assign each pixel to one of three possible classes. 

2.8.5 Artificial neural networks 

ANNs have received attention for use in both hard and soft classification of remotely 

sensed imagery (e.g. Foody, 1996b; Atkinson et al., 1997; Kanellopoulos et al., 1997; 

Bernard et al., 1997; Carpenter et al., 1999; Zhang and Foody, 2001; Foody, 2002a). 

The use of artificial neural network classifiers for traditional hard classification is 

described in section 2.6.4.2. In this section, ANNs are considered to resolve the mixed 

pixel problem. 
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The architecture of MLP and RBF networks are described in section 2.6.4.2 as they use 

for hard classification. For soft classification, their architectures are similar but it may 

be different from the network training and output membership. As for hard 

classification, training samples for an ANN classifier should be pure and perform by a 

crisp method. However, training for an ANN can be performed either a crisp or a fuzzy 

method with the training samples containing either pure pixels or both pure and mixed 

pixels. In crisp training, each training pixel is associated fully with a single class and 

thus discrete classes are represented to the network. An approach to fuzzy training is to 

feed the network with the proportional coverage of each class in the training pixels 

(Foody, 1997; Zhang and Foody, 2001). After training, the networks can be used for 

classification of unknown class membership. The output from an ANN exists as 

activation levels ranging from 0 to 1. Traditionally, the results of the network are used 

for deriving a hard classification, in which a pixel is allocated to the class with which it 

has the highest activation level. However, several researchers suggested that the 

activation level of each output unit was correlated with the proportion of the area 

represented by a pixel which was covered with the class associated with the unit. Thus, 

the activation levels can also be treated as fuzzy membership values to indicate the 

strength of class membership in each pixel and forming the concept of soft 

classification. Since the output activations from an ANN classifier generally do not sum 

to 1, the output values must be rescaled in order to have the sum of the proportions of 

all classes in one pixel equal to 1.0. 

The potential of ANNs for mixed pixel problems is recognized by several authors (e.g. 

Foody, 1996b and 1997; Atkinson, et ai., 1997; Warner and Shank, 1997; Bernard et al., 

1997; Gopal et al., 1998; Lin et ai., 2000; Foody, 2002; Zhang and Foody, 2001). Some 

of them approved the superiority of the ANN to fuzzy maximum likelihood and fuzzy c

means classifiers for soft classification in terms of both information provided and the 

accuracy of classification (Atkinson et ai. 1997; Zhang and Foody, 2001). 

2.8.6 Evidential reasoning classifier 

In section 2.6.4.4, evidential reasoning classifier is described as a hard classification, 

however, the underlying theory of evidence is closely related to fuzzy set theory, and 

consequently evidential classifiers could be adapted for fuzzy classification (Zhang and 

Goodchild, 2002; Foody, 2002b) As stated in section 2.6.4.4, to apply evidential 
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reasoning to classification, a measure of evidence for subsets of class labels is 

computed. Evidential support is computed with respect to the frequency of occurrence 

of values within training samples. Class membership may be estimated from these 

frequency distributions or histograms of training samples over the entire set of classes, 

or frame of discernment. Training data are read from each data feature in sequence, and 

a frequency distribution of training values is interpreted for each class. Frequency 

distributions may be interpreted as approximating probability densities or as general 

fuzzy measures. So, for a pixel with value x, it probabilistic and fuzzy membership 

values of belonging to class i, denoted by plx) and Jli (x) respectively, can be measured 

as 

Pi (x) = 1;, 

Jli(X) = 1 
(2.74) 

(2.75) 

where lx, 1m and T represent the frequency of value x occurring, the maximum frequency 

and the total frequencies count in the histogram (Peddle, 1995a; Foody, 2002b). Using 

the frequency distributions compiled from the training data for all the classes to be 

mapped, a soft classification may be derived for a pixel by estimating the frequencies of 

occurrence (Zhang and Goodchild; 2002, Foody, 2002b). Implementing the analysis for 

each pixel, a soft classification may be generated by the spatial distribution of the fuzzy 

membership derived. 

In recent years, some researchers have applied evidential reasoning soft classification of 

remotely sensed image. Foody (2002b) proposed the use of evidential reasoning to 

derive a soft thematic map. While Lein(2003) demonstrated an alternative soft

classification strategy based on D-S theory of Evidence and applied this technique to the 

problem of agriculture land cover mapping. 

2.9 Super-resolution mapping 

The output of a soft classification is typically a set of proportion images that show the 

predicted coverage of each thematic class in the area represented by each pixel. Soft 

classifications have been found to provide more informative and potentially more 
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accurate representations of land cover than conventional hard classifications. Although 

soft classifications predict the proportion of each land cover class within each pixel they 

do not indicate where the land cover classes are spatially located within the pixels. The 

sub-pixel class proportions may, however, be located geographically through super

resolution mapping. 

Several techniques have been used for super-resolution mapping based on the output of 

a soft classification. They were briefly presented in Atkinson (2005). Atkinson (1997) 

mapped the location of the proportions output from a soft classification within each 

pixel based on an assumption of spatial dependence within and between pixels. This 

approach produces accurate land cover maps at a finer spatial resolution than the initial 

input images. However, the technique compared sub-pixels to pixel proportions and so 

the complex mixing in the data caused the simple technique to suffer from problems 

(Tatem at al., 2002). Verhoeye and De Wulf (2002) built on earlier work of Atkinson 

(1997), but formulated as a linear optimization problem. The approach was evaluated 

using synthetic imagery and a SPOT image of Sahelian wetlands. Compared to the 

conventional hard classification techniques, this algorithm achieved a certain degree of 

success, but problems were once again due to the fact that sub-pixels were compared to 

pixels, rather than other sub-pixels (Tatem at al., 2002). 

A solution to the super-resolution mapping problem may be achieved by comparing 

sub-pixels to sub-pixels (Atkinson, 2005). Recently, Tatem et al. (2001, 2002) 

developed a Hopfield neural network (HNN) technique (Hopfield and Tank, 1995) as an 

energy optimisation tool constrained by output from the soft-classification technique for 

super-resolution target mapping. The HNN technique is proposed as simple and robust 

technique for predicting the location of class proportions within each pixel. More details 

on the technique will be discussed in the next section. 

2.9.1 Hopfield Neural Networks 

Hopfield neural network (HNN) is a fully connected recurrent network which is mostly 

used for auto-association and optimisation. The HNN may be implemented physically 

by interconnecting a set of resistors and amplifiers with symmetrical outputs and 

external bias current sources (Tatem et al., 2001, 2002). The HNN has been used in 

remote sensing for applications such as ice-mapping, cloud motion, and ocean current 
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tracking (Cote and Tatnall, 1997, Lewis, 1998). Recently, this approach has been 

demonstrated to be a successful tool for super-resolution land cover mapping based on 

the output of soft classification (Tatem et al., 2002, Nguyen et al., 2006). The HNN was 

used to map the spatial location of classes using information of sub-pixel class 

compositions estimated from soft classification. This was implemented by converting 

soft land cover proportions to hard (per-sub-pixel) land cover classes (e.g., at a finer 

spatial resolution). The procedure of the HNN was outlined in detail in Tatem et al., 

(2002). 

The HNN is used as an optimization tool. It is initialized randomly using the class 

composition estimates from a soft classification and run until it converges to a 

monotonic stable state (Tatem et al., 2001 and 2002). The zoom factor, z, determined 

the increase in spatial resolution from the original remotely sensed imagery, which was 

used to derive soft classification output, to the new fine spatial resolution image. After 

convergence to a stable state, the output values of all neurons of the network were either 

o or 1, representing a binary classification of the land cover at the finer spatial 

resolution. The specific goals and constraints of the HNN energy function determined 

the final distribution of neuron output values. The energy function can be defined as, 

E = - L l:CkP1ij + k2G2ij + k3P;j +k4M ij) (2.76) 
i j 

where kJ' k2' k3 and k4 are weighting coefficients which define the effects of the 

corresponding two goal functions (G1ij and G2ij), proportion constraint (Pij) and multi

class constraint (Mij). 

Using the class proportion images derived from a soft classification as the input, the 

HNN is implemented using some parameters which should be carefully chosen by the 

user. Firstly, the optimum values of four weighting constants, kJ' k2' k3 and k4' should 

be used because they mainly control the direction of the optimisation process of the 

network. Typically, identifying optimum weighting constraint values is a difficult and 

tedious task, so an estimation of optimal values was made via certain assumptions and 

multiple network trial runs (Tatem et al., 2002). In addition to the constant values, a 

zoom factor, z should also be used for the system. Furthermore, the number of iterations 

for the performance of the network should be set up by the user. Like the zoom factor, 
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the higher the number of iterations the more accurate the output of the network 

produced but this also increases the computational time. 

The output of the HNN approach is a set of binary images with a spatial resolution that 

is finer than that of the input class proportional images derived from soft classification 

(Figure 2.11). The number of the binary images is equal to the number of land cover 

classes to be mapped with each image is shown the location of a defined class. 

2.10 Summary 

Information on land cover is required to help our understanding and management of the 

environment. Accurate mapping of land cover, as well as identifying and extracting the 

target land cover features, are extremely important procedures for this. Commonly, 

remote sensing is the most appropriate means of providing this information, particularly 

for large area studies. Because remotely sensed images provide a complete, relatively 

consistent and inexpensive representation of the Earth's surface, remote sensing is a 

huge potential source for land cover mapping based on the surface's reflectance 

response. 

In the raw form, prior to any form of processing, remotely-sensed data generally contain 

distortion and deficiencies due to the influence of external factors which alter the 

spectral signal from surface features. These factors include atmospheric interference, 

variation in illumination geometry, geometric distortion and technical problems with 

sensor. Therefore, to acquire an accurate representation of land cover from remotely 

sensed imagery, pre-processing is often necessary to reject the influence of these 

factors. After pre-processing, the remotely sensed imagery can be used for required 

image processing such as image classification. 

A common way to extract land cover information from remotely sensed imagery is via 

image classification analysis. Image classification is the process of assigning pixels to 

classes. Land cover classes can be identified by their spectral, spatial, temporal and 

geometric characteristics. The classification process generally consists of three basic 

steps: class training, pixel labeling and accuracy assessment. 
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In addition to the distinction between unsupervised and supervised classification, the 

classification techniques can also be grouped on the basis of how classifiers represent 

land cover. Generally, they can be divided into two main types such as hard 

classification and soft classification. Traditionally 'hard' classification techniques, 

which are among the most commonly undertaken analyses of remotely sensed data, 

assign each pixel to a single land cover class with which it has the greatest similarity. 

They were developed for the classification of classes that may be considered to be 

discrete and mutually exclusive, and assume that each pixel is perfectly pure (i.e. the 

ground area represented by a pixel is occupied by a single information class). However, 

if the pixel resolution is coarse in comparison with the variability of land cover objects 

then a single pixel in such imagery may be of more than one land cover class. Thus, 

hard classification techniques are inappropriate for mixed pixels. This led to the 

development of' soft' classification techniques. 

Soft classification allows image pixels to have partial and multiple class membership 

and therefore can give a more accurate and realistic representation of many land covers. 

A fuzzy classification may be derived through the use of fuzzy classifiers or by 

'softening the output of a 'hard' classification. For example, measures the strength of 

class membership, rather than just assign a single land cover class with which it has the 

greatest similarity, to each pixel. Soft classification approaches include a number of 

methods such as spectral mixture analysis, MLC, FCM, fuzzy rule-based, ANN, 

evidential reasoning, and k-nearest neighbour. The output of such approaches generally 

takes the form of a set of proportion images, each display the proportion of a certain 

class within each pixel. Although soft classifications can provide a more accurate and 

appropriate representation of themes such as land cover than a conventional hard 

classification, the application and development of such techniques require further 

research. 
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Chapter 3 

Increasing classification accuracy through the use of 

an ensem hIe of classifiers 

3.1 Introduction 

Land cover mapping through the means of an image classification is one of the most 

common applications of remote sensing. However, the full potential of remote sensing 

as a source of land cover information is often unrealized due mainly to a set of 

technical problems. As indicated in section 2.7, one of the most important problems 

limiting classification accuracy is that of mixed pixels (Fisher, 1997; Cracknell, 1998; 

Campbell, 2002), which can make the single class allocation derived from 

conventional hard classification inappropriate and inaccurate. Soft or fuzzy 

classification techniques allow for the partial and multiple class membership within 

each mixed pixel, and, therefore, may be used to refine the standard mapping process 

and to increase the accuracy of land cover mapping from remote sensing (Foody and 

Cox, 1994; Atkinson et ai,. 1997; Tso and Mather, 2001). 

The output of a soft classification is typically a set of fraction images that show the 

predicted coverage of each thematic class in the area represented by a pixel. There are 

a range of approaches that can be used to derive a soft classification such as those 

based on the maximum likelihood (Wang, 1990; Maselli et aI., 1995; Ibrahim et aI., 

2005), fuzzy c-means (Zhang and Foody, 2001; Ibrahim et ai, 2005), k-nearest 

neighbour (Schowengerdt, 1996), artificial neural network (Foody, 1996; Zhang and 

Foody, 2001) and support vector machine classifications (Brown et ai., 2000). These 

soft classification approaches were presented in section 2.8. Different classifiers will 

commonly vary in their allocations, with some yielding high accuracies for some parts 

of the data while others may achieve high accuracies in other parts. Although soft 

classifications can provide a more accurate and appropriate representation of themes 

such as land cover than a conventional hard classification there are many concerns. In 

particular, the accuracy of soft classifications is still often low. The literature, for 

example, contains many examples of soft classification analyses in which the degree of 
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correlation between the actual and predicted class composition was low (r<0.5) (e.g., 

Foody and Arora, 1996; Zhang and Foody, 2001; Shalan et aI., 2003; Ibrahim et al. 

2003). 

A variety of different classification outputs can be derived from the application of a 

suite of classifiers to the same data set. The derived classifications may differ greatly 

in accuracy, on both a per-class and overall basis. Classifiers that have, largely, 

uncorrelated errors may sometimes usefully be combined to form an ensemble 

approach to classification. By combining the outputs of a set of classifiers it is possible 

to derive a classification that is more accurate than any of the individual classifications 

used. The use of such an ensemble of classifiers has been shown to be able to increase 

the accuracy of hard classification (Rogova, 1994; Lam and Suen, 1997; Ji and Ma, 

1997; Briem et al., 2000; Steele, 2000; Giacinto et aI., 2000; Liu et aI., 2002) but its 

potential for soft classification has rarely been investigated (Huang and Lees, 2004). 

The main objective of this chapter, therefore, was to investigate some of the possible 

approaches to increase the accuracy of soft land cover classification though the use of 

an ensemble of classifiers. 

The approaches which have been used in the literature to combine hard classifications 

were investigated with some brief descriptions in section 3.2.1. Following this, the 

methods to combine soft classifications are provided in section 3.2.2. The data used for 

the research and some procedures required to pre-process them are presented in section 

3.3. The potential of the approaches to combine soft classifications as well as the 

approaches to combine hard classifications were assessed through a range of 

experiments with results in section 3.4. Finally, section 3.5 closes the chapter with 

some general conclusions. 

3.2 Methods for combining land cover classifications 

3.2.1 Methods for combining hard classifications 

There have been many methods that may be applied to combining hard classifications 

such as voting principle, Bayesian average, Bayesian belief function (Xu et al., 1992; 

Giacinto, 2000), boosting, bagging (Briem et aI., 2002; Kuncheva et al., 2002)), and 
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neural network (Wanas and Kamel, 2001), etc. In the following sections, two 

commonly used methods are briefly summarized. They are voting principle and 

Bayesian belief function. These methods are used with assuming that classifiers in the 

combination process are different from each other in their methodologies and make 

uncorrelated classification errors. 

3.2.1.1 Voting principle 

The voting principle or majority vote is a simple and popular method for combining 

hard classification outputs. It has been investigated by some researchers (e.g., Xu et 

ai., 1992; Giacinto and Roli, 1997; Lam and Suen, 1997; Kuncheva, 2000; Giacinto et 

ai., 2000). 

Let consider an ensemble made up of L different classifiers. Each classifier provides 

the outputs in terms of the land cover class labels assigned to the image pixels. A given 

input pixel X receives, therefore, L classification labels from the ensemble, each label 

corresponding to one of the c land cover classes. Voting principle is used to combine 

the results provided by L different classifiers by interpreting each classification's 

output as a 'vote' for one of the land cover classes. The final combined class label of 

an input pixel is the class which received the maximal number of votes among the 

individual classifications. Sometimes a majority vote is required. This means the class 

label that receives a vote greater than or equal to a prefixed threshold is taken as the 

final output of the input pattern X The threshold is commonly equal to half of the 

number of the classifiers in the ensemble. 

3.2.1.2 Bayesian belief function 

In the voting principle, the combination of classification outputs is only based on the 

class label outputted for each input pixel by each classifier and each classifier is treated 

equally. However, the classifiers may differ in the classification accuracy which should 

be considered in the combination process. The belief function, therefore, will take the 

errors of the classifiers in the ensemble into consideration as the prior knowledge of 

the classifiers (Giacinto and Roli, 1997; Giacinto, et ai., 2000; Lam and Suen, 1997; 

Kuncheva, 2000). 
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The Bayesian belief function method considers the available prior knowledge of the 

error of each classifier as its confusion matrix. For each classifier e[, l = 1 ... L, the 

confusion matrix can provide an estimate of the conditional probability that the true 

label is OJ; given that e[ assigns class labelOJj • The conditional probabilities can be 

calculated as follows, 

i = Le, j = Le, l = 1..L 
(3.1 ) 

where the element n~) denotes the number of samples whose true class label was OJ; , 

and were assigned by classifier e[ to class OJj , e is the number of classes. 

On the basis of the above conditional probabilities, the combination of the L classifiers 

can be obtained according to the following belief functions: 

L 

bel(j) = 17 IT p{X E OJ} I el (X) = OJj ) j =1...e (3.2) 
1=1 

c 

with 17 is a constant that ensures that Lbel(j) = 1. The final classification is then 
}=1 

taken by assigning the input pattern X to the land cover class for which belOJ has the 

maximum value. 

3.2.2 Methods for com bining soft classifications 

As indicated in section 2.8, the output of a soft classification is different from that of a 

hard classification. The output of the former is typically a set of fraction images, each 

describing the proportion of a particular land cover class within each pixel, while that 

of the latter is an image in which each pixel is associated with a single land cover class 

label. As a result of the different nature of the classification outputs, the methods to 

combine classifications that were applied for hard classifications may not be suitable 

for soft classifications. However, it may still be possible to combine the outputs of 

different soft classifications in order to increase classification accuracy. Four methods 
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to combine soft classification outputs were suggested here. They were (i) an approach 

that selects the most accurate predictions on a class-specific basis to construct the final 

combined classification output, (ii) an approach in which the combined classification 

output for a case is the average of the outputs derived from the individual soft 

classifiers (iii) the direct combination of the individual soft classifications through the 

use of the Dempster-Shafer theory of evidential reasoning and (iv) an approach which 

degrades the soft classification outputs into a set of ordered classes and then combines 

these through the use of a conventional ensemble approach. Details of these 

approaches are described in the following sections. 

3.2.2.1 Combination by selecting the most accurate predictions 

The ensemble approach was based on a comparison of the individual class accuracies. 

Using a selected measure of classification accuracy (e.g. producer's accuracy), the 

individual classifiers were ranked in terms of the accuracy with which they classified a 

class. The outputs from the most accurate classifier were then selected to form the 

representation of that class in the final classification. This process was then repeated 

for each class in the classification (Figure 3.1). 

Individual class accuracy may be expressed using class producer's accuracy, user's 

accuracy derived from fuzzy error matrix, and class correlation coefficient. Table 3.1 

shows an example of comparing the accuracies (e.g. the class correlation coefficients) 

of a land cover class among three individual soft classifications. 

Correlation coefficient 
Class 

Classification 1 Classification 2 Classification 3 

Class 1 0.775 0.802 0.727 

Class 2 0.577 0.615 0.624 

Class 3 0.434 0.507 0.496 

Class 4 0.780 0.766 0.727 

Class 5 0.527 0.518 0.474 

Table 3.1: An example using fictional data of the ensemble approach that selects the 

most accurate predictions of the individual classifications. The numbers in the Table are 

the class correlation coefficients and the ensemble outputs were highlighted in bold. 
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Output of 
class 1 

Accuracy 
ACll) 

Output of 
class 1 

Output of 
class 1 

Accuracy 
AC3(J) 

Select the class output which 
has the accuracy = Max (1) 

Output of 
class c 

Accuracy 
AClc) 

Classification 3 

Output of 
class c 

Accuracy 
AC2(c) 

Output of 
class c 

Accuracy 
AC3(c) 

Select the class output which 
has the accuracy = Max (c) 

Figure 3.1: Flow diagram of the approach to combine soft classifications by selecting 

the most accurate predictions on a class-specific basis. 

3.2.2.2 Combination based on average operator 

In this approach, the outputs of the individual soft classifiers were averaged to derive 

the combined classification output. For an input pixel X, each classifier produces a real 

vector [Pz(I), ... , Pz(e)]T, where Pz(i) is the measure of class membership for class i 

within pixel X estimated by the classifier, and c is the number of land cover classes. To 

combine the estimates provided by L different classifiers, the average measure of class 

membership of each pixel X among L classifiers was calculated from: 

i = Le, I = I..L (3.3) 
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where P av(i) is the average proportion of class i within input pixel X, and c is the 

number of land cover classes. 

The average values derived may be used as the final classification output for pixel X. 

3.2.2.3 Combination based on evidential reasoning 

The D-S theory of evidential reasoning (Shafer, 1976; Xu et aI., 1992; Rogova, 1994; 

Ahmadzadeh et aI., 2000; Tso and Mather, 2001; Foucher et al., 2002) is a tool for 

representing and combining measures of evidence and also the means to accommodate 

uncertainty and ignorance that is often inherent in the data sets. In remote sensing, this 

theory has been applied to deal with the remotely sensed multisource classification 

problem as indicated in section 2.6.4.4 and therefore, may also be applied for 

combining land cover classifications. The main points of D-S theory were briefly 

described in section 2.6.4.4. This section only presents some more information about 

this theory in supporting for combining soft classifications. 

In this approach, the soft classification outputs were directly combined through the use 

of the Dempster-Shafer theory of evidential reasoning (Shafer, 1976; Xu et aI., 1992; 

Ahmadzadeh et al., 2000; Tso and Mather, 2001; Foucher et aI., 2002) to derive the 

final combined classification output. 

The evidential reasoning approach may be illustrated for a classification of eland 

cover classes e = {0)1 , ..• , 0) c }, where e is the focal element and O)i denotes land 

cover class i. The measure of class membership generated for each pixel by a soft 

classifier is treated as the degree to which the input pattern X belongs to the class. 

Thus, for an input pixel X, each individual classifier e[ produces a real 

vector[P, (1),"', ~ (C)]T , where P, (i) is the proportion of class i within pixel X. 

One concept that plays an important role in evidential reasoning is the basic probability 

assignment m. This indicates the degree to which the evidence advocates the claims 

that a particular element (e.g., a pixel) of the universal set belongs to a particular set 

such as a land cover class (Tso and Mather 2001). For an input pixel X, each classifier 

e[ produce a mass of evidence from its basic probability assignments as follows: 
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m, = [m,(1), .. ,m,(c),e] 1 =1...L (3.4) 

m, (i) = R,.P, (i) (3.5) 

e =l-R, (3.6) 

where m, (i) is a basic probability assignment of classifier e, of focal Wi' R, is the 

individual classifier's confidence, and e is used to represent uncertainty (1 -

classifier' s confidence). An estimation of the individual classifier's confidence may be 

derived from the overall accuracy of that individual classifier. 

For a basic probability assignment of a focal element A, there will be a belief function 

Bel(AJ. This belief function has a numerical value in the range [0, 1] to indicate belief 

in a position (subset) Ace based on the occurrence of the evidence. The belief 

function can be calculated as follows: 

Bel(A) = L m(B) 
Bc;;;A 

(3.7) 

where Bel(AJ is the sum of the mass of evidence which is committed to class A as well 

as various subsets of A. 

When two or more masses of evidence [m J , ••• , m L] exist, here representing the 

opinions of a set of different soft classifiers, there will be two or more sets of basic 

probability assignments and belief functions given to the subset of the same focal 

elements. Dempster's combination rule could be used to combine them into a new 

basic probability assignment and belief function, which represents the combined 

impact of the evidences. If m] and m2 denote two basic probability assignments derived 

from two classifiers to be combined, the Dempster-Shafer combination rule defines a 

new basic probability assignment m = mJ EB m2 which represents the combined effect of 

m] and m2 by: 

mJ,2 (A) = mJ EB m2 (A) = k L mJ (X).m2 (Y) (3.8) 
XnY;A,A,00 
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where 0 is the empty set and m],2 (¢) = 0, X and Yare any subsets of the universal set, 

and k is a normalizing constant: 

k-] = 1- I m] (X).m2 (Y) (3.9) 
X"Y~0 

The Dempster-Shafer combination rule is associative and commutative (Xu et al, 

1992), thus it could be used to combine multiple evidences sequentially (and with an 

arbitrary order) using (3.8) and (3.9) to obtain: 

(3.10) 

After combining all of the masses of evidences of L classifiers, the final belief function 

Bel() can be computed by equation (3.7) and will be used as the final measures of 

class membership for input pixel X after combining the outputs of L individual 

classifiers. The process of combing soft classifications by the D-S theory of evidential 

reasoning can be illustrated in Figure 3.2. 

3.2.2.4 Combination through a conventional ensemble approach. 

As shown in section 3.2.1, there are a range of ensemble approaches for combining 

hard classifications such as those based on the voting principle (Xu et aI" 1992; Lam 

and Suen, 1997) and Bayesian belief function (Lam and Suen, 1997; Giacito et a/', 

2000) as well as bagging and boosting algorithms (Briem et aI" 2002). To use the 

conventional ensemble methods to combine soft classifications, the soft classification 

output of each land cover class in the individual classifications could be degraded into 

a set of ordered classes. For example, the soft classification output in the range [0,0-

0.19], [0.2-0.39], [0.4-0.59], [0.6-0.79] and [0,8-1.0] could be assigned to classes 

very small, small, medium, large and very large cover, respectively. Although this 

action results in the continuous soft classification being converted to a hard 

classification, the ordered nature of the classes preserves some of the main attractions 

of soft classification. The degraded output of each land cover class is, however, a hard 

classification and may then be combined through the use of a conventional ensemble 

method. The voting principle approach was selected to combine the degraded outputs 

here because it is simple and used widely (section 3.2.1.1). The process of the method 
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for combining soft classifications using a conventional ensemble method can be seen 

in Figure 3.3. 

Classification 1: 
Measures of class 

membership 

Classification 2: 
Measures of class 

membership 

Combine all evidences 
by D-S combination 

Calculate belief functions 

The combined 
classification output 

Classification 3: 
Measures of class 

membership 

Figure 3.2: Flow diagram of the D-S theory of evidence to combine soft classifications. 
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Degrade into a set 
of ordered classes 

Choose a class 
to combine 

Classification 2: 
the chosen class 

membership 

1 
Degrade into a set 
of ordered classes 

Combined the degraded outputs 
through the combined methods 
applied for hard classifications 

the chosen class 
membership 

1 
Degrade into a set 
of ordered classes 

The combined output of the chosen class 

Figure 3.3: Flow diagram of the approach to combine soft classifications through a 

conventional ensemble approach. 
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3.3 Data 

3.3.1 Study area and data used 

For the purposes of this research it was necessary to have remotely sensed imagery to 

be classified together with a ground data set at a finer spatial resolution that would 

describe the class composition of image pixels. Furthermore, the analysis required data 

comprising both pure pixels and mixed pixels in a large area to provide a sufficiently 

large sample size for training and testing sets. Here, attention focused on the land 

cover of Australia. The image data, with 8 km spatial resolution, were derived from the 

NOAAINASA Pathfinder AVHRR Land (PAL) archive. The reference data set used 

was the IGPB DISCover land cover map, with 1 km spatial resolution. 

In terms of the remotely sensed image data to be classified, monthly maximum value 

composite NDVI which were derived from the NOAA A VHRR data of Australia with 

8 km spatial resolution were used. These data were acquired in July 1992, December 

1992, and March 1993, providing a temporal sample to help enhance class separability 

(Figure 3.4a-c). The NOAA AVHRR imagery provided the data to which the 

individual soft classifications were applied to estimate the sub-pixel proportions of 

different land cover classes. The data were registered in the Interrupted Goode 

Homolosine map projection. 

The IGBP DISCover land cover map (Loveland and Belward 1997) of Australia with 

1 km spatial resolution was used as the reference data. This land cover map was 

derived from NOAA AVHRR data spanning a 12-month period (April 1992 to March 

1993) by an unsupervised clustering classification scheme using 12 monthly maximum 

NDVI composites as inputs and showed the distribution of 17 land cover classes 

(Table 3.2). For the purpose of the analysis, some of the classes which appeared to be 

similar in terms of their general characteristics, such as closed and open shrub land, 

were combined while the land cover classes covering only a small portion of the study 

area were discarded. The final set of classes defined for the study comprised five 

classes forest, shrubland, savanna, grassland, and cropland (Figure 3.4d). All the 

databases share the same map projection, Interrupted Goode Homolosine. 
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Class 
value 

1 

2 

3 

4 

5 

6 

7 

8 

Description Class Description 
value 

Evergreen N eedleleaf Forest 9 Savannas 

Evergreen Broadleaf Forest 10 Grasslands 

Deciduous N eedleleaf Forest 11 Permanent Wetlands 

Deciduous Broadleaf Forest 12 Croplands 

Mixed Forest 13 Urban and Built-Up 

Closed Shrub lands 14 Crop Ian dIN atural Vegetation Mosaic 

Open Shrub lands 15 Snow andIce 

Woody Savannas 16 Barren or Sparsely Vegetated 

17 Water Bodies 

Table 3.2 : IGBP DISCover land cover legend. 

(a) (b) 

(c) (d) 

• Forest 
o Shrublands 
• Savannas 
• Grasslands 
• Croplands 

Figure 3.4. The data of the study area: (a) NDVI data in July 1992; (b) NDVI data in 

December 1992; (c) NDVI data in March 1993; (d) reference data derived from the 

IGBP DISCover land cover map. 
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3.3.2 Data processing 

3.3.2.1 Co-registration of the IGBP DISCover land cover map and the 

NOAA A VHRR data 

To enable the classification of the NOAA A VHRR data using the training and testing 

samples derived from the IGBP DISCover land cover map, it was necessary to co

register them. Since the IGBP land cover map and the NOAA A VHRR image had the 

same coordinate system, Interrupted Goode Homolosine map projection, the 

procedures to co-register them were as follows. Firstly, the IGBP DISCover land cover 

map with 1 km spatial resolution was degraded to the same spatial resolution with the 

NOAA AVHRR imagery (e.g. 8 km). Then, two identical points (e.g. one in the 

spatially degraded land cover map and the other in the remote sensing image) were 

identified to fit the degraded land cover map and the NOAA A VHRR image together 

by cutting the same studied areas from them to make the coordinates (columns and 

lines) of the two above identical points were equal. Finally, the studied area in the 

IGBP DISCover land cover map 1 km was cut following the geometric coordinates of 

the studied area in the NOAA A VHRR image. 

3.3.2.2 Reference data 

The set of land cover classes defined for the study comprised five classes: forest, 

shrub land, savanna, grassland, and cropland. The percentage cover of each of five land 

cover classes within each 8 km resolution NOAA A VHRR pixel was computed from 

the corresponding area of the 1 km resolution IGBP DISCover land cover map. These 

data were used as the reference data for the analysis. 

As stated in section 2.8.2.3, the possible way to identify how mixed the image pixels 

was using the entropy values. The entropy of each A VHRR image pixel, therefore, was 

calculated based on Equation 2.39. The entropies of all NOAA AVHRR pixels were 

illustrated by the histogram in Figure 3.5. There were a number of mixed pixels in the 

AVHRR image (e.g. the pixels which have entropy larger than 0 are mixed pixels). 

This indicated that this data were suitable for soft classification. 
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Figure 3.5: The entropies of NOAA AVHRR pixels. 

3.4 Analysis for combining the outputs of hard classifications 

3.4.1 Methodology 

3.4.1.1 Training and testing data 

The training data were selected manually from the study area such that they were 

spread over the image to capture the spectral variability in class response. Although the 

nature of the training set should depend on the classifier to be used, it is generally 

recommended that at least 10 training samples per class per-waveband be used 

(Congalton and Green 1999). Following this heuristic, a training set that contained a 

sufficiently large sample for each class was acquired. This training set contained 604 

pure pixels, of which 70 pixels were forest, 179 were shrubland, 165 were savanna, 70 

were grassland, and 120 were cropland. 

A testing set was designed to assess accuracy of the individual classifications as well 

as the ensemble methods. The testing set comprised 250 pure pixels with 50 pixels for 

each class. 
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To understand the impacts of the mixed pixels on the accuracy of the individual hard 

classifications and the approaches to combine hard classifications, another independent 

testing set containing only mixed pixels was obtained. The testing mixed pixels were 

randomly selected from the set of NOAA A VHRR mixed pixels. This testing set 

comprised 5000 randomly selected pixels in which there were 397 pixels for forest, 

2182 for shrublands, 1736 for savannas, 247 for grassland, and 438 for cropland. This 

large sample was selected to ensure a sufficient representation of the rare classes in the 

testing data set. The class labeled of each testing pixel was the class which has the 

highest land cover proportion within that pixel. For example, a pixel which contains 

45% forest, 30% shrub lands, 25% savannas, 0% grassland and 0% cropland was 

labeled as forest in the testing data set. 

Two cases were analysed, hereafter referred to as case A and case B for simplicity 

(Table 3.3), generated from combinations of training and testing sets. 

3.4.1.2 Methods 

Four hard classifiers such as MLC, minimum distance, RBF, and MLP were trained by 

the selected training data to classify the NOAA A VHRR image. These classifiers were 

selected because they are different from each other in terms of the methodology and 

also commonly used classification algorithms. The first two methods were parametric 

classifiers while the others were non-parametric classifiers. The key concepts of these 

classification algorithms were introduced in section 2.6.3 and 2.6.4. 

The classification outputs of the individual classifiers were assessed using the overall 

accuracy and individual class accuracy (e.g. user's accuracy and producer's accuracy) 

derived from the confusion matrix based approach (section 2.6.1.3). The outputs of 

four individual classifications were then combined by two approaches to combine hard 

classifications, the voting principle and Bayesian belief function, described in section 

3.2.1. The classification outputs of combined algorithms were assessed using the same 

testing set as used for the individual classifiers in order to evaluate the potential of the 

approaches to combine hard classifications. 
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Case Training set Testing set 

A 604 pure pixels with 70 pixels for forest, 250 pure pixels with 50 pixels 
179 for shrub lands, 165 for savannas, 70 for each class. 
for grassland, and 120 for cropland. 

B Same as in case A. 5000 mixed pixels with 397 
pixels for forest, 2182 for 
shrub lands, 1736 for savannas, 
247 for grassland, and 438 for 
cropland. 

Table 3.3: Training and testing sets for the analysis of combining hard classifications. 

3.4.2 Results 

Case A (testing set comprising only pure pixels) 

Table 3.4 summarises the accuracies of four individual hard classifiers based on the 

testing set in case A. The MLP classifier produced the highest overall accuracy of 

93.60%, followed by MLC with an overall accuracy of 93.20%, RBF of 91.60% and 

minimum distance of 89.20%. Table 3.5 shows the accuracies of two methods to 

combine the outputs of these four individual classifications. 

MLC Minimum distance RBF MLP 

Class Producer's User's Producer's User's Producer's User's Producer's User's 
(%) (%) (%) (%) (%) (%) (%) (%) 

Forest 96.00 97.96 94.00 95.92 88.00 97.78 94.00 95.92 

Shrubland 88.00 91.67 88.00 77.19 88.00 86.27 92.00 90.20 

Savanna 92.00 92.00 88.00 95.65 96.00 94.12 94.00 92.16 

Grassland 96.00 97.96 82.00 95.35 92.00 100.00 96.00 100.00 

Cropland 94.00 87.04 94.00 85.45 94.00 82.46 92.00 90.20 

Overall 
accuracy 93.20 89.20 91.60 93.60 

(%) 

Table 3.4: Classification accuracies of individual classifications in case A. 
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Voting principle Bayesian belief function 

Class Producer's (%) User's (%) Producer's (%) User's (%) 

Forest 96.00 96.00 96.00 97.96 

Shrubland 92.00 90.20 92.00 93.88 

Savanna 92.00 95.83 94.00 100.00 

Grassland 96.00 100.00 100.00 100.00 

Cropland 94.00 88.68 96.00 87.27 

Overall accuracy (%) 94.00 95.60 

Table 3.5: Classification accuracy of two combined methods in case A. 

The method called the Bayesian belief function to combine hard classifications 

produced the highest overall accuracy of 95.60% (e.g., 2.00% higher than MLP, the 

most accurate individual classification) and the highest individual class accuracy, 

producer's accuracy and user's accuracy when compared against the individual 

classifiers as well as the integrated voting principle. The voting principle yielded an 

overall accuracy of 94.00%, lower than the Bayesian belief function but still higher 

than the most accurate individual classifications (e.g., 0.4% higher than MLP). The 

producer's and user's accuracies of the voting principle were also higher than those of 

the individual classifications. The statistically significant difference between two 

proportions of the approach to combine classifications and the most accurate individual 

classification was evaluated using McNemar's test (Foody, 2004). However, the 

differences between the approaches to combine classifications (e.g., voting principle 

and Bayesian belief function) and the most accurate individual classification were 

insignificant (95% confidence, difference between proportions test derived from 

related sample). 

Case B (testing set comprising only mixed pixels) 

Table 3.6 summarises the accuracies derived from the confusion matrices of four 

individual classifications based on the testing set in case B. The results in this table 

show that MLP classifier produced the highest overall accuracy of 63.50%, followed 

by RBF with an overall accuracy of 60.08%, MLC of 57.80% and minimum distance 

of57.54%. 
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MLC Minimum distance RBF MLP 

Class Producer's User's Producer's User's Producer's User's Producer's User's 
(%) (%) (%) (%) (%) (%) (%) (%) 

Forest 79.85 55.71 78.59 55.71 75.82 56.58 78.09 54.39 

Shrubland 59.40 70.59 64.80 67.49 55.59 76.43 63.20 79.71 

Savanna 44.70 58.35 43.38 59.76 61.06 56.75 61.23 61.41 

Grassland 80.97 51.55 57.89 40.51 65.59 55.86 65.18 58.33 

Cropland 68.72 34.32 58.22 34.84 61.19 37.07 59.82 37.81 

Overall 
accuracy 57.80 57.54 60.08 63.50 

(%) 

Table 3.6: Classification accuracies of individual classifications in case B. 

Table 3.7 shows the same information about the accuracies of two methods to combine 

the outputs of four individual hard classifications. Two ensemble algorithms, the 

Bayesian belief function and the voting principle, produced the overall accuracies of 

63.36% and 61.80%, respectively. In terms of the overall accuracy, they were slightly 

lower (about 0.14% and 1.70%, respectively) than the MLP, the most accurate 

individual classification, but still higher than other individual classifications. The 

overall accuracy of the combined output through the use of the Bayesian belief 

function was about 3% higher than RBF and about 6% higher than both MLC and 

Minimum distance. Moreover, there were increases in the individual class accuracies 

of the Bayesian belief function compared against those of the individual 

classifications. For example, the producer accuracies of class forest, shrublands, 

grassland and cropland of the Bayesian belief function were higher than those of the 

most accurate individual classification. 
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Voting principle Bayesian belief function 

Class Producer's (%) User's (%) Producer's (%) User's (%) 

Forest 79.85 56.81 79.09 58.36 

Shrubland 62.51 75.90 66.54 77.23 

Savanna 55.59 61.00 55.01 64.31 

Grassland 67.21 58.25 66.80 59.14 

Cropland 63.47 35.73 64.38 34.47 

Overall accuracy (%) 61.80 63.36 

Table 3.7: Classification accuracies of two combined methods in case B. 

3.4.3 Discussion 

Case A analysis 

The overall accuracies of four individual classifications were very high (ranging from 

89.20% to 93.60%) which implemented with only pure pixels in both the training and 

testing data sets. All two approaches (e.g. the voting principle and the Bayesian belief 

function) to combine the hard classification outputs increased accuracy. The increases 

in overall accuracy derived ranged from 0.04% to 2.00%, although the differences in 

accuracy between the ensemble approaches and the most individual classification were 

insignificant. Large increases in individual class accuracy were also observed. For 

example, the producer accuracies of class forest, grassland and cropland were 94%, 

96%, and 92%, respectively in MLP (the most accurate individual classification); 

while these figures were reached to 96%, 100%, and 96%, respectively in the Bayesian 

belief function. 

Case B analysis 

In case B four individual classifiers were trained by the same training data set as for 

case A but the testing set contained only mixed pixels. The overall accuracies of them 

were much lower (e.g. about 30% lower) than those in case A. In addition, the overall 

accuracies of the combined outputs did not increase compared with the most accurate 

individual classification. These poor results of the individual classifications were 
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expected as hard classification is inappropriate for the mixed pixel problem. Hard 

classification assigned pixel to only one land cover class based on the class of which it 

has the most similarity. For example, a pixel with only 45% forest may be classified as 

forest. 

The reason that led to the reduction of the overall accuracies of the two combined 

algorithms compared with the highest individual classifier may be because of the low 

accuracies of class savannas in MLC and minimum distance (its producer accuracies 

were 44.70% and 43.38%, respectively). In the combined results, these figures were 

reached to about 56%. Furthermore, the effect of mixed pixels may be the additional 

reason for this reduction in case B compared against the increase in the overall 

accuracy of combined methods in case A. There was about 6% different between the 

overall accuracies of the two lowest individual classifications (Minimum distance and 

MLC) and the highest individual classification (MLP) in case B while this number was 

only about 3% in case A. 

Although the overall accuracies of combined outputs did not increase compared with 

the most accurate individual classification, they were still much higher than the rest of 

the individual classifications. Moreover, there were large increases in class accuracy of 

combined outputs compared against those in the individual classifications. For 

instance, the producer accuracies of class forest, shrub lands, grassland and cropland 

were 78.09%, 63.20%, 65.18%, and 59.82%, respectively in the most accurate 

individual hard classification, these numbers in the Bayesian belief function, however, 

were reached to 79.09%, 66.54%, 66.80%, and 64.38%, respectively. 

In summary, the results from the two above analyses highlighted that ensemble based 

approaches may be used to increase hard classification accuracy and the combined 

method, the Bayesian belief function, yielded higher classification accuracy than the 

voting principle. 

3.5 Analysis for combining soft classifications 

A problem with the NOAA A VHRR imagery is that the natural scale of spatial 

variation in land cover in Australia is usually finer than the scale of sampling imposed 
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by the image pixels. Consequently, many NOAA AVHRR image pixels contain a 

mixture of land cover types (Figure 3.4). The following analyses were designed to 

evaluate the approaches to combine the individual soft classifications of the NOAA 

A VHRR image. 

3.5.1 Methodology 

3.5.1.1 Training and testing data 

The training data set was the same as the one used in the analysis of combining hard 

classifications described in Table 3.3. 

Since the focus of this work was on soft classification, attention was focused on only 

the accuracy with which mixed pixels were classified. The testing set used to assess the 

accuracy of the classifications derived from each of the three soft classifiers contained 

5000 mixed pixels drawn randomly from the NOAA A VHRR data. This large sample 

was selected to ensure a sufficient representation of the rare classes in the testing data 

set. This testing set was used to evaluate the accuracy of each individual classification 

derived and inform the production of the ensemble. To avoid bias in evaluating the 

accuracy of the classification derived from an ensemble approach, a further 

independent testing set was selected to assess the accuracy of the combined output. 

This second testing set also comprised 5000 mixed pixels which had been selected at 

random from the NOAA A VHRR data but excluding pixels contained in the first 

testing set. Hereafter, the testing set used to assess the accuracy of the individual 

classifications is referred to as testing set 1, while that used for the evaluation of the 

output from the ensemble approaches is referred to as testing set 2 (Table 3.8). 
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Training Testing set 1 Testing set 2 

604 pure pixels with 70 5000 random mixed 5000 random 
Composition pixels for forest, 179 for pixels mixed pixels 

shrub lands, 165 for 
savannas, 70 for 
grassland, and 120 for 
cropland 

To train the individual soft To assess the To assess the 
Purpose classifiers used to classify accuracy of the accuracy of the 

the A VHRR image by individual soft combined 
classifications classification 

output 

Table 3.8: Training and testing sets for the analysis of combining soft classifications. 

3.5.1.2 Algorithms used 

3.5.1.2.1 Individual soft classifications 

Three classifiers were applied to the NOAA A VHRR data. The set of classifiers used 

comprised two neural networks, MLP and RBF network, and a probabilistic classifier, 

the Bayesian classifier. These three soft classifiers were briefly described in section 

2.8.4 and 2.8.5. They were selected as the candidates for use in an ensemble because 

they have been used in other studies to derive accurate classifications (e.g. Atkinson et 

al. 1997, Zhang and Foody 2001, Eastman and Laney 2002) and are different in terms 

of their methodology. Each individual classification was undertaken using the same 

training data set. 

The Bayesian classifier (Eastman and Laney 2002) is similar to the maximum 

likelihood classification, the most popular parametric classifier used in remote sensing. 

A soft classification may be derived from the Bayesian classification by computing the 

posterior probabilities of membership to all classes for each pixel. The derived 

posterior probabilities of membership are considered here to represent the proportional 

cover of the classes in each 8 km resolution pixel. 

The MLP (Atkinson and Tatnall 1997, Bernard et al. 1997) and RBF (Bruzzone and 

Prieto 1999, Bastos et al. 1999) are non-parametric classifiers. A soft classification 
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may be derived from these classifiers by outputting the activation levels of the network 

output units for each pixel. These activation levels range from 0 to 1, and may be used 

as the measures of class membership that reflect the class composition of the pixel 

(Zhang and Foody 2001). 

The three individual soft classifiers were undertaken with the same training and testing 

data sets. The multi-layer perceptron, comprising 3 input, 16 hidden and 5 output 

nodes, was used to derive a fuzzy classification with the errors in training and testing 

of 0.095 and 0.272, respectively. Meanwhile, the radial basis function network, 

consisting of 3 input, 17 hidden and 5 output nodes, had errors of 0.183 and 0.274 in 

training and testing respectively. 

3.5.1.2.2 Assessing the accuracy of soft classifications 

The accuracy of the three individual soft classifications was assessed using testing set 

1. As stated in section 2.8.2, there were a number of methods to assess the accuracy of 

soft classification. Although all of these methods have something to offer, none is at 

the moment universally applicable. Advantages and disadvantages coexist in each of 

them. Here, the accuracy of the soft classifications was evaluated using the generalized 

cross-tabulation matrix approach proposed by Pontius and Cheuk (2006). This 

approach was chosen because of the following reasons: 

The confusion matrix is the most popular way to assess the accuracy of 

classification and therefore, people are familiar with it. The structure of the generalized 

cross-tabulation matrix using composite operator is the same with that of the 

traditional confusion matrix which are used to assess the accuracy of hard 

classification. 

The measures such as producer's accuracy, user's accuracy, and the overall 

accuracy derived from the generalized cross-tabulation matrix may be used to assess 

the accuracy of the soft classification. The producer's and user's accuracy indicate the 

proportions of agreement of each land cover class and the overall accuracy indicates 

the total agreement between the predicted data and the reference data. The matrix also 
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informs about bias using the totals of column and totals of row which are 

corresponding to the total grades of reference and classification data, respectively. 

The statistical significant difference between two classifications can be evaluated 

using two overall proportions of agreement derived from the generalized cross

tabulation matrix. 

The accuracy measures derived from the generalized cross-tabulation matrix were 

overall accuracy, individual class accuracy, producer's accuracy and user's accuracy. 

Accuracy was also expressed on a per-class basis using class correlation coefficient. 

The correlation coefficient per class is a measure of the correlation between the 

predicted and actual (ground data) coverage (Atkinson 1999). 

3.5.1.2.3 Combining individual soft classifications and evaluate the ensemble 

approaches 

Based on the accuracy of the individual soft classifications, the classification outputs 

were combined using the four ensemble approaches described in section 3.2.2. The 

potential of the ensemble approaches for increasing accuracy was assessed by 

comparing the classification accuracy of the ensemble classification with the 

individual classifications. The statistical significance of differences in classification 

accuracy between the combined outputs and the individual classifications was 

determined. In this research, testing set 1, which was used to assess the accuracy of the 

three individual classifications, was independent from testing set 2 which was used to 

assess the accuracy of the ensemble approaches. The statistical significance of 

differences between the overall accuracy of the most accurate individual classification 

and that derived from the application of an ensemble approach may, therefore, be 

estimated using a difference between proportions test (Foody, 2004). The statistical 

significance of a difference between two proportions in the independent samples may 

be estimated from: 

(3.11 ) 
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where G] and G2 represent the total grades of membership to be correctly allocated in 

two independent samples with the total grades of membership in reference data TJ and 

T2, respectively; and p = (GJ +G2)j(TJ +T2)' 

To assess whether the accuracy of the combined classification outputs was higher than 

that of the individual classifications, one-tailed tests for the significance of difference 

were undertaken. The significance of difference between the two proportions was 

evaluated by comparing the value of z calculated in the difference between proportions 

test against tabulated values. For example, with a one-tailed test, the null hypothesis, of 

no significant difference, would be rejected at the 95% level of confidence iflzl > 1.64 

(Congalton et ai., 1983; Foody, 2004). 

3.5.2 Results 

3.5.2.1 Individual soft classification outputs 

Soft classifications predict the proportional cover of each land cover class within each 

pixel (section 2.8). Ideally, each proportion is on the range [0, 1] and the total of all 

class proportions within each pixel is equal to 1. However, for some classifiers, the 

proportional results may have negative values and their sum in each pixel may not be 

equal to 1. This happened to the RBF and MLP in the experiment. For these cases the 

proportions of land cover classes within each pixel can be rescaled to get fractional 

values that are positive and for which the sums are equal to 1. This study used rescaled 

outputs of the individual soft classification for the analyses. 

The accuracy of the three individual soft classifications was assessed using testing set 

1. In terms of the overall accuracy, the classifications were broadly similar with an 

accuracy of about 61% (Table 3.9). On a per-class basis, however, differences in 

accuracy were more apparent. This was evident with the user's and producer's 

accuracy derived from the generalized cross-tabulation matrix (Table 3.9) and the 

correlation coefficient between the predicted and actual (ground data) coverage (Table 

3.10). 
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Actual data 

Predicted 
Forest Shrubland Savanna Grassland Cropland Total 

User's 

data accuracy 
(%) 

(a) Bayesian classification (Overall accuracy = 61.96%) 

Forest 6.49 0.13 3.88 0.00 0.75 11.26 57.66 

S hrub land 0.01 26.22 6.93 0.73 0.19 34.08 76.93 

Savanna 0.26 7.72 18.84 0.61 1.51 28.95 65.10 

Grassland 0.01 2.90 0.16 4.31 0.00 7.38 58.39 

Cropland 1.33 5.23 5.62 0.04 6.10 18.32 33.31 

Total 8.10 42.19 35.44 5.69 8.56 99.98 

Producer's 
80.10 62.14 53.15 75.70 71.32 accuracy (%) 

(c) REF (Overall accuracy = 61.27%) 

Forest 6.47 1.76 3.14 0.24 0.87 12.48 51.82 

Shrubland 0.14 22.90 3.55 0.80 0.41 27.80 82.39 

Savanna 0.24 8.83 22.56 0.56 1.54 33.73 66.89 

Grassland 0.13 3.07 1.15 3.90 0.31 8.57 45.57 

Cropland 1.12 5.63 5.06 0.18 5.43 17.43 31.19 

Total 8.10 42.19 35.46 5.69 8.56 100.000 

Producer's 
79.82 54.28 63.63 68.62 63.50 accuracy (%) 

(e) MLP (Overall accuracy = 61.20% 

Forest 5.91 0.07 4.38 0.00 1.00 11.36 52.06 

Shrub land 0.00 25.98 5.69 1.90 0.32 33.89 76.65 

Savanna 0.94 10.51 21.05 0.34 2.39 35.23 59.74 

Grassland 0.00 1.85 0.27 3.42 0.00 5.54 61.75 

Cropland 1.25 3.79 4.07 0.03 4.84 13.98 34.62 

Total 8.10 42.19 35.46 5.69 8.56 100.000 

Producer's 
72.97 61.57 59.36 60.15 56.56 accuracy (%) 

Table 3.9: Accuracy of the individual soft classifications. 
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Class Bayesian RBF MLP 

Forest 0.782 0.810 0.723 

Shrubland 0.573 0.610 0.624 

Savanna 0.412 0.485 0.479 

Grassland 0.777 0.768 0.729 

Cropland 0.511 0.504 0.458 

Average 0.611 0.636 0.603 

Table 3.1 0: Correlation coefficients between the estimated and actual class coverage 

from the individual classifications; all correlation coefficients were significant at the 

99.9% level of confidence. 

3.5.2.2 Combination by selecting the most accurate predictions 

In this ensemble approach, the class accuracies among the three individual soft 

classifiers were compared to derive the final combined classification outputs. Accuracy 

was expressed on a per-class basis using the producer's accuracy and user's accuracy 

derived from the generalized cross-tabulation matrix together with the correlation 

coefficients. The accuracies of the combined outputs derived from this ensemble 

approach are shown in Tables 3.11-3.13. Irrespective of the measure of accuracy used 

for the comparison, all of the ensemble approaches increased classification accuracy 

significantly. 

Table 3.11 presents the classification accuracy of the ensemble approach that selects 

the most accurate predictions on a class-specific basis based on class correlation 

coefficient. The overall accuracy of this ensemble approach was about 2.2% higher 

than that of the Bayesian, the most accurate individual classification. The difference in 

accuracy between the ensemble approach and the most accurate individual 

classification was statistically significant at the 95% level of significance (z = 2.28). 

Table 3.12 shows the classification accuracy of the ensemble approach that selects the 

most accurate predictions on a class-specific basis of the producer's accuracy. It was 

apparent that the overall accuracy of the combined output based on the comparison of 

class producer's accuracy was 2.73% higher than that of the Bayesian, the most 

accurate individual classification. The difference between two overall accuracies of 
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this ensemble approach and the most accurate individual classification was statistically 

significant at the 99% level of significance (z = 2.83). 

From Table 3.13, it was apparent that there was a large difference in accuracy between 

the ensemble approach that selects the most accurate predictions based on class user's 

accuracy and the most accurate individual classification. Their difference in the overall 

accuracy was about 4.45% and the statistical significance of the difference was at the 

99.9% level of significance (z = 4.46). 

Actual data 

Predicted Forest Shrubland Savanna Grassland Cropland Total User's 
data accuracy (%) 

Forest 5.74 1.96 3.73 0.23 0.80 12.45 46.10 

Shrubland 0.00 22.96 2.74 0.83 0.22 26.75 85.83 --
Savanna 0.33 11.15 25.75 0.63 1.48 39.34 65.46 

Grassland 0.00 1.89 0.10 4.00 0.00 5.99 66.80 

Cropland 1.03 4.63 4.04 0.07 5.71 15.47 36.91 

Total 7.10 42.58 36.36 5.75 8.21 100.00 

Producer's 
accuracy (%) 

80.84 53.92 70.83 69.60 69.53 

Overall 
accuracy (o/~ 

64.16 

z value 2.28 

Table 3.11: Accuracy of the ensemble approach that selects the most accurate 

predictions based on class correlation coefficient. 

Actual data 

Predicted Forest Shrubland Savanna Grassland Cropland Total User's 
data accuracy (% t 

Forest 5.46 0.11 3.17 0.00 0.61 9.35 58.37 

Shrubland 0.00 25.47 5.32 0.68 0.20 31.67 80.42 

Savanna 0.44 9.45 23.63 0.73 1.53 35.79 66.01 

Grassland 0.00 2.53 0.10 4.26 0.00 6.90 61.81 

Cropland 1.20 5.02 4.13 0.07 5.87 16.28 36.04 

Total 7.10 42.58 36.36 5.75 8.21 100.00 

Producer's 
accuracy (%) 

76.87 59.82 64.99 74.19 71.46 

Overall 64.69 
accuracy (%) 

zvalue 2.83 

Table 3.12: Accuracy of the ensemble approach that select the most accurate 

predictions based on class producer's accuracy. 
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Actual data 

Predicted Forest Shrubland Savanna Grassland Cropland Total User's 
data accuracy (%) 

Forest 5.68 0.11 3.51 0.00 0.91 10.22 55.60 

Shrubland 0.16 27.26 4.48 1.65 0.56 34.11 79.92 

Savanna 0.55 11.24 25.77 0.92 2.16 40.63 63.42 

Grassland 0.00 1.05 0.16 3.11 0.00 4.32 72.06 

Cropland 0.72 2.93 2.44 0.06 4.59 10.72 42.76 

Total 7.10 42.58 36.36 5.75 8.21 100.00 

Producer's 
accuracy (%) 

79.97 64.02 70.88 54.19 55.84 

Overall 66.41 
accuracy (%) 

z value 4.46 

Table 3.13: Accuracy of the ensemble approach that select the most accurate 

predictions based on class user's accuracy. 

3.5.2.3 Combination based on average operator 

The outputs of each land cover class among three individual soft classifications were 

averaged to construct the final combined output. The accuracy derived from the 

generalized cross-tabulation matrix of this ensemble approach is shown in Table 3.14. 

The overall accuracy of the averaging combination approach was 3.95% higher than 

that of the most accurate individual classification. The increases in individual class 

accuracy were also observed. For example, the producer's accuracy of class forest, 

shrub lands, and savannas increased compared with those of the most accurate 

individual classification, the Bayesian. The difference in overall accuracy between the 

averaging ensemble approach and the most accurate individual classification was 

statistically significant at the 99.9% level of significance (z = 4.11). 

3.5.2.4 Combination based on D-S theory of evidential reasoning 

The result of this ensemble approach is presented in Table 3.15. The overall accuracy 

of the combined output based on the D-S theory of evidential reasoning approach was 

3.61 % higher than that of the most accurate individual classification. Increases in 

individual class accuracy were also observed. For example, the user's accuracy of class 
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shrub lands, savannas, grasslands and croplands increased compared with those of the 

most accurate individual classification. The difference in overall accuracy between this 

ensemble approach and the most accurate individual classification was statistically 

significant at the 99.9% level of significance (z = 3.76). 

Actual data 

Predicted data F SH SV G C Total User's (%) 

F 5.76 0.63 3.39 0.10 0.62 10.51 54.84 

SH 0.04 27.03 4.50 0.90 0.31 32.78 82.47 

SV 0.34 7.92 23.32 0.51 1.52 33.61 69.41 

G 0.05 2.24 0.49 4.12 0.09 6.99 58.96 

C 0.91 4.75 4.65 0.12 5.67 16.11 35.22 

Total 7.10 42.57 36.36 5.75 8.21 99.99 

Producer's (%) 81.14 63.48 64.15 71.74 69.08 

Overall accuracy 65.91% 

zvalue 4.11 

Table 3.14: Accuracy of the ensemble approach that averages the predictions of the 

individual classifiers. 

Actual data 

Predicted data F SH SV G C Total User's (%) 

F 5.66 0.30 3.63 0.05 0.65 10.29 54.99 

SH 0.02 27.26 4.94 1.12 0.25 33.60 81.13 

SV 0.42 8.38 23.07 0.47 1.69 34.03 67.79 

G 0.02 2.12 0.31 4.01 0.04 6.50 61.63 

C 0.98 4.53 4.41 0.09 5.57 15.58 35.76 

Total 7.10 42.58 36.36 5.75 8.21 100.00 

Producer's (%) 79.68 64.02 63.44 69.74 67.87 

Overall accuracy 65.57% 

zvalue 3.76 

Table 3.15: Accuracy of the ensemble approach using D-S theory of evidential 

reasonmg. 
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3.5.2.5 Combining soft classifications through a conventional ensemble 

approach 

In this ensemble approach, the classification outputs for each land cover class were 

combined separately. To illustrate the potential of this ensemble approach, attention 

focuses on the forest class as an example. The proportions of forest within each pixel 

of three individual soft classifications were degraded into a set of 5 ordered classes. 

The ordered classes were 'very small' if forest proportion lay in the range [0.0-0.19], 

'small' [0.2-0.39], 'medium' [0.4-0.59], 'large' [0.6-0.79], or 'very large' [0.8-1.0] 

(Table 3.16). These degraded outputs were then combined by a conventional ensemble 

approach, the voting principle. The accuracies of the three individual classifications as 

well as of the ensemble output were estimated from the traditional confusion matrix 

using testing set 1 (Table 3.17). 

The MLP was the most accurate individual classification with the overall accuracy of 

87.42%, followed by Bayesian classification with an accuracy of 87.12% and RBF 

with an accuracy of 86.36%. The accuracy with which the ordered classes were 

classified varied markedly. A high accuracy was achieved for both the very small and 

very large classes but low accuracies for the other intermediate classes. The overall 

accuracy of the ensemble approach was 0.62% higher than that of MLP, although the 

difference was statistically insignificant (95% level of confidence). Although the 

difference in accuracy was insignificant the results indicate that conventional ensemble 

approaches may be used to combine soft classification output. The use of other 

methods that accommodate the ordered nature of the classes in the analysis may yield 

greater increases in accuracy. 

Ordered class Forest proportion 

Very small 0.0 - 0.19 

Small 0.2 - 0.39 

Medium 0.4 - 0.59 

Large 0.6 - 0.79 

Very large 0.8 - 1.00 

Table 3.16: The ranges used to degrade the soft classification output to ordered classes. 
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Individual classifications Combined method 

Bayesian RBF MLP Voting principle 

Class Producer's User's Producer's User's Producer's User's Producer's User's 
accuracy accuracy accuracy accuracy accuracy accuracy accuracy accuracy 

(%) (%) (%) (%) (%) (%) (%) (%) 

Very small 95.76 97.08 94.35 98.03 96.57 95.78 96.36 96.34 

Small 09.84 17.65 21.86 16.81 01.64 23.08 13.11 22.43 

Medium 07.43 14.10 22.30 16.02 03.38 19.23 13.51 33.90 

Large 09.63 15.85 23.70 17.68 01.48 10.00 08.15 52.38 

Very large 78.92 30.54 55.42 53.80 86.14 26.63 83.13 31.08 

Overall 
accuracy 87.12 86.36 87.42 88.04 

(%) 

Table 3.17: Classification accuracies of the degraded outputs from three individual soft 

classifications and of the combined output from these degraded outputs. 

3.5.3 Discussion 

Through the use of the ensemble approach that selects the most accurate predictions on 

a class-specific basis based on class user's accuracy, the overall accuracy was 4.45% 

higher than that of the most accurate individual soft classification, while based on class 

producer's accuracy, and correlation coefficient these figure were 2.73%, and 2.20%, 

respectively. 

Using the approach that averages the outputs of soft classifications, the overall 

accuracy of the combined output was 3.95% higher than that of the most accurate 

individual soft classification and large increases in individual class accuracy were also 

observed. 

The direct combination of soft classifications usmg D-S theory of evidence also 

increased classification accuracy. The overall accuracy of the combined output was 

3.61 % higher than the most accurate individual classification and the increases in 

individual class accuracy were also achieved. 
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Moreover, the differences in overall accuracy between the ensemble approaches and 

the most accurate individual classification were statistically significant at the 95% to 

99.9% level of significance. 

Focusing on per-class accuracy, the outputs of class forest in three individual soft 

classifications were degraded and then combined using a conventional ensemble 

approach, the voting principle. The accuracy of forest in the combined degraded output 

increased 0.62% compared with that of the most accurate individual classification. 

This ensemble approach lost some information of soft classification since it made the 

soft classification output degrade to a set of order classes. However, the spatial 

resolution of degraded output was still finer than that of the hard classification and this 

ensemble method may be more useful in case of focusing on one-class classification. 

In summary, all four above approaches to combine the soft classification outputs 

increased accuracy. The D-S theory of evidential reasoning approach was the most 

reliable one. It can accommodate the uncertainty of the individual classifications based 

on their classification confidences. The classification confidences were then used for 

combined process, whereas in other ensemble approaches such as selecting the most 

accurate predictions on a class-specific basis, averaging individual soft classification 

outputs, each individual classification was treated equally. 

3.6 Summary and conclusions 

The possible approaches to increase the accuracy of land cover classification in general 

and of soft land cover classification in particular through the use of an ensemble of 

different classifications were investigated. For this purpose a coarse spatial resolution 

NOAA A VHRR imagery of Australia was used. 

The A VHRR image was fist hard classified using two parametric classifiers (e.g. MLC 

and minimum distance) as well as two non-parametric neural network classifiers (e.g., 

RBF and MLP). They were all trained by the same training data and tested by the same 

testing data which comprised only pure pixels. Overall accuracy was assessed using 

confusion matrix based approach and showed that the accuracy of the individual 

classifications ranged from 89.2% to 93.6%. Both approaches to combining hard 
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classification outputs (e.g. the voting principle and Bayesian belief function) increased 

accuracy in comparison with the most accurate individual classifications. The increases 

in overall accuracy ranged from 0.04% to 2% and large increases in individual class 

accuracy were also observed although the differences between two overall accuracies 

of the ensemble approaches and the most accurate individual classification were 

insignificant (95% confidence, difference between proportions test derived from 

related sample). 

To study the impacts of the mixed pixel problem on the accuracy of the individual hard 

classifications and the approaches to combine hard classifications, another testing set 

which contained only mixed pixels was used to assess the accuracy of the individual 

hard classifications and the combined outputs. The overall accuracy of the individual 

classifications ranged from 57.8% to 63.5% and that of the combined outputs ranged 

from 61.8% to 63.4%. The reason that caused the low accuracy of the individual 

classifications as well as the combined outputs may be the effect of mixed pixels in the 

testing set which was explained in section 3.4.1. Although the overall accuracies of 

combined outputs did not increase compared with the most accurate individual 

classification, they were still much higher than the rest of the individual classifications 

and increases in class accuracy were also achieved. 

To evaluate the potential of the approaches to combine soft classifications, the NOAA 

A VHRR imagery of Australia was soft classified using two neural networks (RBF and 

MLP) as well as a probabilistic classifier (Bayesian). The classification accuracy of the 

three individual soft classifications was assessed using the testing set 1. Overall 

classification accuracy was assessed using the generalized cross-tabulation matrix 

based approach and showed that the overall accuracies of the individual soft 

classifications were similar at about 61 %. Accuracy was also expressed on a per-class 

basis using class producer's accuracy, user's accuracy and correlation coefficient. 

Four methods to combining soft classification outputs were assessed. These methods 

were (i) an approach that selects the most accurate predictions on a class-specific basis, 

(ii) an approach that averages the outputs of the individual classifications (iii) the 

direct combination of classifications using evidential reasoning and (iv) an approach 

which degrades the soft classification outputs into a set of ordered classes and then 
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combines these using a conventional ensemble approach. Based on the accuracy of the 

individual soft classifications, their classification outputs were combined using these 

four ensemble approaches. 

The combined classification outputs were then assessed with the testing set 2 using the 

generalized cross-tabulation matrix approach. Apart from comparing the accuracy 

measures, the statistical significance of differences in classification accuracy between 

the ensemble approaches and the most accurate individual classification were also 

evaluated. This was undertaken by comparing the value of z calculated in the 

difference between proportions test against tabulated values. The results highlighted 

that all four approaches to combining the soft classification outputs have been shown 

to be able to increase soft classification accuracy. 

The original outputs of the soft classifications were used in three of the four ensemble 

approaches. These three ensemble approaches were the selection of the most accurate 

prediction on a per-class basis, the use of the average of the outputs of the individual 

soft classifications, and the combination of the outputs through evidential reasoning. 

The increases in overall accuracy of these three ensemble approaches derived ranged 

from 2.20 to 4.45% and large increases in individual class accuracy were also 

observed. Moreover, the differences in overall accuracy between the ensemble 

approaches and the most accurate individual classification were statistically 

significant at the 95% to 99.9% level of significance. 

The fourth ensemble approach in which the individual soft classification outputs were 

degraded into a set of ordered classes and then combined using a conventional 

ensemble approach was also shown to be able to increase classification accuracy, 

although the difference was insignificant at 95% level of confidence. This approach, 

however, lost some information of soft classification output in the transition from a 

continuous representation to one based on a set of order classes. 

The results showed that the individual classifiers yielded classifications of similar 

overall accuracy (the range in accuracy was only 0.62%) but varied markedly in terms 

of the accuracy with which the individual classes were classified. This gave the 

potential to increase accuracy through an ensemble approach based on using the best 

feature (in terms of classification accuracy) of the individual classifiers in the 
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derivation of the final classification. The results highlighted that ensemble approaches 

of different classifications to increase classification accuracy may not only apply for 

hard classifications but also for soft classifications. 

Although the ensemble of soft classifications can increase soft classification accuracy, 

the accuracy of land cover classification derived from soft classifications themselves as 

well as from their ensemble approaches was still low. The next research, therefore, 

plan to investigate the factors that may impact on the soft classification predictions and 

its implications for sub-pixel scale change detection and super-resolution mapping. 
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Chapter 4 

Impacts of intra-class spectral variability on soft 

classification prediction and its implications for sub

pixel scale change detection 

4.1 Introduction 

Mixed pixels are one of the main problems limiting the accuracy of mapping land 

cover from remotely sensed imagery. Soft classification techniques allow for the 

partial and multiple class membership within each mixed pixel, and, therefore, may be 

used to refine the standard mapping process to increase the accuracy of land cover 

mapping from remote sensing (Foody and Cox 1994, Atkinson et al. 1997, Tso and 

Mather 2001). The output of a soft classification is typically a set of proportion images 

that show the predicted coverage of each thematic class in the area represented by each 

pixel. These proportion images can provide an accurate estimate of class composition. 

They also support to the representation of environmental continua and the detection of 

subtle land cover changes when used in post-classification analyses (F oody 2001, 

Haertel et ai. 2004). Although such soft classifications can reduce some of the 

problems associated with mixed pixels there are still concerns. In particular, the 

accuracy of soft classification is often low (section 3.1). One possible solution to this 

problem was to combine the outputs of different soft classifiers. This was evaluated in 

section 3.5 and all the ensemble approaches investigated were found to increase 

classification accuracy. However, the accuracy of land cover classification after the 

combination of soft classifications was still low. This may be a major limitation to 

studies attempting to predict class proportional cover and its change over time. 

In soft classification, each image pixel is provided with only one prediction which 

indicates the measures of class membership of each land cover class within the pixel. 

For example, if three land cover classes exist within one pixel then the prediction 

might be 25%, 35% and 40%, respectively for three land cover classes. The single 

prediction of soft classification has been used for a number of applications. For 
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example, by using a pair of soft classifications for land cover change detection the 

estimated class proportions are typically compared directly (Foody 2001, Haertel et af. 

2004). This trust in the single set of class proportion estimates may be unwise. 

Specifically, this trust seems to be based on the assumption that a class can be 

represented by a single spectral end-member. This is unrealistic as classes typically 

display a degree of spectral variability since the spectral signatures of land cover 

classes vary from pixel to pixel, often due to changes in biophysical (e.g., leaves, stems 

and bark) and biochemical (e.g. chlorophyll content) composition (Bateson et al., 

2000, Song, 2005). In fact, it is known that the accuracy of soft classification is 

negatively related to the degree of intra-class spectral variation (Petrou and Foschi, 

1999) and approaches to refine unmixing methods to accommodate for this have been 

investigated (Bateson et al., 2000, Song, 2005). However, it is still common to see 

basic approaches to unmixing being employed and the sub-pixel estimates used in a 

manner that places great confidence in their accuracy. This chapter aims to investigate 

the impacts of intra-class spectral variability on soft classification prediction and 

highlight its implications for analyses based on soft classification such as the detection 

of land cover change. 

The outline of the chapter is: 

1. To introduce the linear mixture model applied to sub-pixel estimation. 

2. To study the impacts of intra-class spectral variation on soft classification 

prediction. 

3. To explore the impacts of intra-class spectral variation on change detection. 

4. To investigate the ensemble of sub-pixel classifications. 

5. Finally the summary and conclusions will close the chapter. 
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4.2 Linear mixture model 

Linear mixture model (LMM) was briefly described in section 2.8.3. This section 

presents more details about this model in support of the estimation of sub-pixel class 

composition. 

The LMM is an established technique which is applied to remotely sensed imagery to 

estimate sub-pixel proportions of ground cover classes. It is based on an assumption of 

linear mixing between the spectral responses of each land cover type. This means the 

spectral response of an individual pixel is the linear sum of the spectral response of the 

individual ground components (e.g., land cover classes), weighted by their relative 

proportions on the ground. Mathematically, the model may be expressed as, 

x=Mf+e (4.1) 

XI 

X 2 where X = is the observation vector for a pixel (i.e., the spectral response or 

digital values) of a given pixel observed in each of m spectral wave bands. 

f ~ [~J is the vector of ground cover proportions for each of c land cover classes. 

e is the error term expressing the differences between the reflectance observation 

vector X and the reflectance for that pixel calculated from the model (Settle and Drake, 

1993). 

Mll MI2 M lc 

M= 
M21 M22 M 2c is the m x c end-member spectra matrix with c is the 

Mml Mm2 Mmc 

number of land cover classes. In the end-member spectra matrix, each column is a 
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vector which represents the pure spectral signatures given by c land cover classes in 

the absence of noise. 

There are a number of approaches used in the literature to identify the spectral 

response of end-members (Van Der Meer and De long, 2000; Theseira et aI., 2003). 

Although the specific techniques for selecting end-members may differ, the spectral 

responses of end-members are commonly derived from two sources: (1) reference end

members, whose spectral responses are derived from a set of laboratory or field spectra 

measured in units of reflectance (Adams et aI., 1995, Bryant, 1996), or (2) image end

members, whose spectral responses are identified from remotely sensed imagery to be 

classified (Foody and Cox, 1994, Atkinson et at., 1997). Image end-members are often 

achieved from the average spectral response of pure pixels of each class in the image 

to be unmixed (Foody and Cox, 1994, Roberts et at., 2002, Theseira et aI., 2003) or 

from a feature space (Theseira et al., 2003, Wu and Murray, 2003). Identifying image 

end-member spectra can sometimes be difficult because the spectral signature of an 

end-member may vary significantly (Theseira et at., 2003, Song, 2005). An approach 

for manual end-member selection from an image was investigated by Bateson and 

Curtis (1996). However, due to the class intra-spectral variability different users may 

provide different end-member spectral values for the same image. Variation in class 

spectral responses is a major problem in LMM since it has a negative effect on the 

accuracy of class composition estimates (Carpenter et aI., 1999, Petrou and Foschi, 

1999, Theseira et at., 2003). 

Two more constraints are also generally added to the mixture model: 

c 

L I j = 1 and 0:::; I j :::; 1 for all} classes 
j=! 

(4.2) 

The first constraint indicates that the total class proportions within one pixel is 1 and 

the second constraint indicates that all class proportions of mixed pixels must take 

values between 0 and 1. 

Equations (4.1) and (4.2) form a linear system of equations. With multispectral data 

with m spectral bands, there would be m+ 1 equations available to solve for the various 

end-members. 
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In the LMM, generally x and M are known and the aim is to estimate the vector f which 

is the class proportions of pixels (Settle and Drake 1993). The solution of the system of 

equations is subject to the constraint that the number of estimated parameters is less 

than the number of equations, c < m+ 1, where c is the number of end-members (land 

cover classes). The vector land cover proportion f can be estimated using least-squares 

methods. That means that, with respect to equation 4.1, the sum of squares error e can 

be minimized by carrying out a standard least square fit: 

Q(x, f) = (x-Mfr (x-Mf)= eTe (4.3) 

Without two constraints offin equation (4.2), in the case the error e is independent and 

normally distributed, the least squares solution is estimated by minimizing the 

quadratic Q by setting to zero its partial derivatives with respect to each of the Ji as 

follows: 

(4.4) 

where a is the partial derivative. 

The estimation of the proportionfis given by: 

(4.5) 

The solution for the least square method in the case where the error e is correlated was 

discussed by Settle and Drake (1993). 
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4.3 Impacts of intra-class spectral variability on soft 

classification prediction 

4.3.1 Data and methods 

The impacts of intra-class spectral variability on soft classification prediction were 

explored using simulated data, so as to control the variables impacting on the remotely 

sensed response. As the major aim was to illustrate the effects of intra-class variation 

on soft classification prediction, a simple data set was generated. The data set 

comprised of three classes (classes A, B, and C) and four simulated spectral 

wavebands to accommodate for the dimensionality constraint in unmixing (Settle and 

Drake, 1993). For simplicity, the data for each class in each waveband were normally 

distributed. Keeping the class centroids constant, further data set with different level of 

intra-class variation were constructed to illustrate the impacts of differences in intra

class variation, including co-variation, in the spectral feature space on the accuracy of 

soft classification estimation. The key parameters describing the data are summarised 

in Tables 4.1 - 4.3. 

Class 

A 

B 

C 

Class Mean Variance-covariance matrix 

A [380 490 300 320] r4 50 40 

SO] B [310 335 235 260] 
50 100 45 64 

40 45 49 45 
C [250 410 180 390] 50 64 45 100 

Table 4.1: Summary of simulated classes. 

Mean Variance-covariance matrix 

Small variability Medium variability Large variability 

[380 490 300 320] 

r~ 
3 2 

i] 
r64 50 40 

SO] 
rlO24 800 640 800] 

[310 335 235 260] 
6 3 50 100 45 64 800 1600 720 1024 

3 3 40 45 49 45 640 720 784 720 
[250 410 180 390] 4 3 50 64 45 100 800 1024 720 1600 

Table 4.2: Summary of simulated data with small, medium and large intra-class 

spectral variability. 
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Class 

A 

B 

C 

Variance-covariance matrix 
Mean 

Equal class Increase class C Change the direction of 
variability variability class C 

380 490 300 320 

[6' 
50 40 50 

[6' 

50 40 50

1 
[6' 

50 40 

50 100 45 64 50 100 45 64 50 100 45 

40 45 49 45 40 45 49 45 40 45 49 
310 335 235 260 

50 64 45 100 50 64 45 100 50 64 45 

[64 
50 40 

50 j [256 
200 160 200

1 
[ 6' 

-50 40 
250 410 180 390 50 100 45 64 200 400 180 256 -50 100 -45 

40 45 49 45 160 180 196 180 40 -45 49 
50 64 45 100 200 256 180 400 -50 64 -45 

Table 4.3: Summary of simulated data with differing degree of variation and co

variation for class C. 

50 
64 

45 
100 

-50 

64 

-45 
100 

For each simulated remote sensing data set, 3000 pure pixels with 1000 pixels for each 

class were generated using their relevant descriptive statistics in Tables 4.1 - 4.3. 

These data were used to train the classifier. A further sample of 400 pixels with known 

and variable class proportions were simulated for use as the testing data. These 

simulated testing data were obtained using a simulated land cover map and a 

corresponding mean and standard deviation of each land cover class as shown in 

Tables 4.1 - 4.3. This was implemented as follows. 

i) A land cover map was simulated in an area of 200x200 pixels (Figure 4.1) that 

consists of three land cover classes. 

ii) From the simulated land cover map and the corresponding statistical information of 

each land cover class in Tables 4.1 - 4.3, the remote sensing images were 

simulated. The simulated images were then degraded by a factor of 10 to produce 

coarser spatial resolution images with 20x20 image pixels for each (400 pixels in 

total). The class proportions of pixels in the degraded image were identified from 

the corresponding area of the land cover map. Figure 4.2 shows the original image 

and its degraded image with the statistical information of each land cover class in 

Table 4.1 as an example. 
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The LMM (section 4.2) was used as the convenient tool to estimate the class 

composition for the 400 testing pixels. For illustrative purposes, the data were 

subjected to a principal component analysis and the first two principal components that 

explained most of the variation in the data set are used to display the classes in the 

feature space. 

Legend 

.. ClassA 

.. ClassB 

.. ClassC 

Figure 4.1: Simulated land cover map in an area of200 x200 pixels. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 4.2: Four bands (a) band 1, (b) band 2, (c), band 3, and (d) band 4 of the 

original simulated image; and other four bands (e) band 1, (f) band 2, (g) band 3, and 

(h) band 4 of the degraded image. The classes were defined in Table 4.1. 
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4.3.2 Possible outputs of soft classification 

One possible approach to determine end-members, M, is through the use of training 

data which consists of a set of pure pixels representing end-members, called image 

end-members. These training data can be extracted from the image. The reflectance 

values of the end-members are commonly the average spectral response of pure pixels 

of each class in the training data (Foody and Cox, 1994). This means that a single 

spectral response is taken to represent the class. With the constant values of the end

members, according to the LMM in Equations 4.1 and 4.2, there will be only one set of 

prediction of the class proportions for each image pixel. For example, the prediction of 

a soft classification for one image pixel may be 30%, 20%, and 50% respectively for 

three land cover classes. In this case, the intra-class variation is, therefore, ignored. 

Figure 4.3 shows the location of classes defined by the parameters in table 4.1 in the 

feature space in the first two principal components derived from four spectral wave

bands. As expected each class occupies an area in the feature space. A class clearly 

cannot be adequately represented by a single end-member, an assumption in the 

traditional unmixing researches (Settle and Drake, 1993, Theseira et. al., 2003, Liu and 

Wu, 2005). As a result of the intra-class variation, pixels with a particular class 

composition could occupy an area in the feature space (Figure 4.3). The distributions 

for class composition mixtures shown in Figure 4.3 were derived using each 

reflectance value of each pure pixel in the training data as an end-member for a LMM. 

For example the mixture 80: 12:08 means the proportions of class A, B, and Care 80%, 

12%, and 8%, respectively. Due to the intra-class spectral variability, there were many 

possible image pixels that have this class composition. Moreover, from Figure 4.3 it 

was apparent that anyone point in the feature space could be associated with a variety 

of class compositions. It was illustrated by the area of overlap between two class 

compositions (e.g, 33:33:34 and 30:30:40) highlighted in Figure 4.3. 

Assuming the spectral response of each pure pixel in the training data as an end

member reflectance value for the class representing that pixel, there would be a 

number of different sets of end-member values. By unmixing the spectral response of a 

pixel many times with different end-members a series of sub-pixel class proportion 

predictions could be derived for a pixel of any given spectral response. As a result of 
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this it was possible to form a distribution of class proportion estimates for each pixe1. 

The nature of the distribution will depend on the position of the pixel in the feature 

space and the degree of intra-class variation and class co-variation. Figure 4.4 shows 

an example about the distributions of possible composition estimates of each land 

cover class within an image pixel (e.g. pixel x in shown in Figure 4.3). 

Using LMM, the distributions of possible mixing predictions may not follow a normal 

distribution. The interquartile range of each distribution was, therefore, used to express 

the spread of its distribution. 

-200 

-250 • • 

-300 

N 
33 :33:34 x 

U -350 • 
~ 

..-. 30:30:40 
-400 

80:12:08 
-450 

• 
-500 

-700 -650 -600 -550 -500 -450 -400 -350 

PCl 

Figure 4.3 Location of the classes defined by Table 4.1 and three mixed compositions 

in the feature space defined by the first two principal components . The mixed 

compositions are defined in terms of the percentage cover of class A: B: C. Note the 

large area of overlap between the 33 :33 :34 and 30:30:40 mixtures . 
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J..I = 0.33 
Iqt = 0.06 
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Figure 4.4: Distributions of possible class composition predictions (a) class A's 

predictions, (b) class B's predictions, and (c) class C's predictions. (AC - actual value; 

)1: the mean value of the distribution; Iqt - Interquartile range of the distribution). 

4.3.3 Impacts of intra-class spectral variation on the accuracy of soft 

classification 

From Figure 4.3 it is apparent that for any image pixel extracted from the imagery 

there are a number of possible class compositions that could be associated with the 

spectral response of the pixel. The variability of possible composition will be a 

function of the degree of intra-class variation and co-variation. This will impact on the 

accuracy of the sub-pixel class composition estimates using a conventional LMM. This 

section was, therefore, designed to investigate the impact of the intra-class variation in 

spectral response on the accuracy of soft classification. 

To illustrate the impacts of the intra-class spectral variation on the accuracy of soft 

classifications three analyses were implemented using the simulated data based on the 

statistical information summarised in Table 4.2. The spectral response of the classes 

was varied in the analyses in terms of both the intra-class variation and co-variation in 

the spectral feature space. There were three simulated data sets which were 

correspondingly simulated from the small, medium, and large class variability (section 

4.3.1). 

For each simulated remote sensing data set, 3000 pure pixels with 1000 pixels for each 

class were generated using their relevant descriptive statistics in Table 4.2. These data 

were used to train the classifiers. The location of the classes in the training data of 
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three simulated datasets, which have the class variability from small to large, are 

illustrated in Figure 4.5a using the first two principal components . The sample of 400 

pixels with known and variable class proportions in each degraded simulated data were 

used as their corresponding testing data (section 4.3.1) . 
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Figure 4.5: The impact of class variability on classification accuracy (a) the class 

variability; (b), (c), (d): relationship between the proportional coverage of a class 

derived from the LMM and the actual data The classes were defined in table 4.2. 
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Using the class centroids defined in Table 4.2 as the class end-member spectra for the 

input in the LMM, the class composition for 400 testing pixels was estimated. 

Accuracy of the sub-pixel class composition predictions was evaluated using the 

correlation coefficient between the predicted and reference coverage and RMSE. 

Figures 4.5(b-d) show the relationship between the proportional coverage of a class 

derived from the LMM and the reference data of three different testing data sets 

corresponding to small, medium and large class variability. 

Generally, the amount of scatter in the relationships between predicted and reference 

class composition increased with an increase in the degree of intra-class spectral 

variation, reducing the accuracy of soft classification predictions (Table 4.4). With 

small class variability, the sub-pixel class proportions were estimated with the highest 

accuracy, followed by medium class variability and then large class variability. For 

example, the correlation coefficient and RMSE of class A in small class variability 

data set were 0.999 and 0.012, respectively but the corresponding values in large class 

variability data set were 0.872 and 0.169. The results of this analysis showed that soft 

classification accuracy was negatively related to the degree of intra-class spectral 

variation and this was comparable to that reported in other studies (e.g., Carpenter et 

aI., 1999; Liu and Wu, 2005; Song, 2005). This is unsurprising as the class centroid 

becomes increasingly less useful as a descriptor of a class as the degree of intra-class 

variation rises, highlighting concerns about end member selection (Theseira et aI., 

2003; Song, 2005). 

The accuracy of the land cover classification not only depended on the intra-class 

variability but also on their separability with other classes in the feature space. 

Although the class variabilities of three land cover classes were equal in each data set, 

the accuracy of predictions for class C was much more accurate than other two classes. 

This was due to the position of class C in the feature space, as it was the most separate 

class among three classes in the feature space. This was shown clearly in the large 

class variability data set in the feature space (Figure 4.5a). In this data set correlation 

coefficient of class C was 0.959 while that of class A and class B were 0.872 and 

0.862, respectively. 
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Class r RMSE 

A 0.999 0.012 

(a) B 0.993 0.013 

C 0.998 0.007 

Class r RMSE 

A 0.993 0.041 

(b) B 0.988 0.053 

C 0.996 0.031 

Class r RMSE 

A 0.872 0.169 

(c) B 0.862 0.177 

C 0.959 0.102 

Table 4.4: Accuracy of predictions in Figure 4.5 (a) small, (b) medium and (c) large 

class variability. 

4.3.4 Impacts of intra-class spectral variation on soft classification 

prediction 

From Figure 4.5, it is shown that the classification accuracy was affected by the intra

class variation in spectral response in the feature space. The larger the intra-class 

spectral variability was, the less accurate the classification. This indicated that the class 

centroid becomes increasingly less useful as a representation of a class as the degree of 

intra-class variation rises, showing concerns about end-member selection (e.g. Song, 

2005 and Bateson et at., 2000). Mixing the distribution of class spectral response of the 

individual training pixels rather than the centroids of classes may be a more realistic 

basis for soft classification. This allows the prediction of a distribution of possible 

class compositions for each image pixel (Figure 4.4). The nature of the distribution of 

possible class composition estimates will depend on the location of the pixel in the 

feature space and the degree of intra-class variation and class co-variation. The 

objective of this section was, therefore, to study the impact of intra-class variation in 

spectral response on the shape of the distributions which are formed by the possible 

output of each class proportion for each image pixel. 

120 



Three simulated data sets were generated for three scenanos based on the class 

descriptions summarised in Table 4.3. In the first scenario, the classes had equal intra

class spectral variability. The second scenario was designed with a four-fold increase 

in the intra-class variability of class C and finally the third scenario was repeated but 

with the distribution of class C rotated 90° in feature space. The locations of the classes 

in the training data of three scenarios are illustrated in Figures 4.6(a-c). 

Using the spectral response of each pixel in the training data as an end-member value 

for the class representing in that pixel, there would be a number of different values for 

each end-member. By unmixing the spectral response of a pixel many times with 

different end-members a number of sub-pixel class composition estimates could be 

derived for a pixel of any given spectral response. As a result, it was possible to derive 

a distribution of sub-pixel class composition estimates for each pixel. The class 

proportions of 27 pixels, which were located in 6 different transects (e.g., from transect 

i to transect vi) in Figures 4.6(a-c), were predicted in this manner. The distributions of 

possible class composition predictions within each image pixel in the 6 transects are 

correspondingly illustrated in 6 figures (Figures 4.7(a-f). 

In general, the nature of the distribution of possible mixing predictions for an image 

pixel will depend on the location of the point in feature space and the degree of intra

class variation and class co-variation. The more overlap between the scatter plots of 

land cover classes in the feature space, the larger the distributions of the mixing 

predictions. 

Although the intra-class spectral variability of three classes equalled in the first 

scenario (Figure 4.6a), the distributions of mixing predictions for class A and class B 

were much wider that that for class C (compare especially the distributions for 

transects i to iv in Figures 4.7(a-d». This was due to the position of class C in the 

feature space as it was the most separate class among three classes in the feature space. 

Specifically, in the third scenario, the direction of class C was rotated 90° in the feature 

space (Figure 4.6c) and this made the separability between B and class C reduced. 

Consequently, the distributions of possible class composition predictions for class B 

and class C were more spread than those in the first scenario (compare especially the 

distributions for transects iii and v highlighted in Figure 4.7c and e). 

121 



-2:50 

-3 00 

(iY 
·360 o 3 

N o 4 
0 
p., 

· 400 
(iv) 

·460 

-:500 
-700 · 660 ·600 · 660 ·600 ·460 · 400 -350 

PC1 

(a) 
·260 

·300 

·360 

N 
0 
p., 

·400 

·460 

·600 
-700 

PC1 

(b) 
-250 

·300 

·360 

N 
0 
p., A 

·400 

·460 

c 

·600 
-700 ·360 

PC1 

(c) 

Figure 4.6: Location of the classes in three scenarios defined in Table 4.3 with the 

position of 27 testing points (0) in 6 transects (i, ii, iii, iv, v, and vi) highlighted. 
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The spread of the distributions was positively related to the degree of intra-class 

variation and co-variation. This was shown in the second scenario (Figure 4.6b). In the 

second scenario, the scatter plot of class C in the feature space was increased 4 times 

compared with that in the first scenario. This led to the scatter plots of three land cover 

classes in the feature space were more overlapped compared with those in the first 

scenario. As a result, all the distributions of proportion predictions for class A, class B, 

and class C were much wider than those in the first scenario (compare especially the 

distributions for transects iii and vi highlighted in Figure 4.7c and f). The distributions 

of the mixing predictions for class C, in particular, were much wider than those in the 

first scenario. 

Given the results of the impact of intra-class variation and class co-variation on the 

shape of the distribution, especially the impact on sub-pixel estimation accuracy (e.g. 

Table 4.4), it seems unwise to trust a single class composition prediction for a pixel. 

Instead it would seem more sensible to recognise that a distribution of sUb-pixel class 

composition estimates is possible and utilise that in subsequent analyses. 
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Figure 4.7a: Histograms show distribution of possible composition estimates for a 

class located in transect (i) defined in Table 4.6. 
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Figure 4.7b: Histograms show distribution of possible composition estimates 

for a class located in transect (ii) defined in Figure 4.6. 
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Figure 4.7c: Histograms show distribution of possible composition estimates 

for a class located in transect (iii) defined in Figure 4.6. 
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class located in transect (v) defined in Figure 4.6. 
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Figure 4.7f: Histograms show distribution of possible composition estimates 

for a class located in transect (vi) defined in Figure 4.6. 
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4.3.5 Output of the distributions of possible class composition 

estimates 

Results of the analyses in section 4.3.3 and 4.3.4 showed that soft classification 

accuracy was negatively related to the degree of intra-class variation. It was suggested 

that a distribution of possible class compositions be derived from pixels instead of a 

single class composition prediction. The nature of the distribution depended on the 

position of the pixel in the feature space and the degree of intra-class variation and 

class co-variation. The larger the intra-class variation was, the more spread the 

distribution of possible class composition estimates and the less accurate the soft 

classification. In soft classification, proportion images are used as a means to display 

the output of soft classification. To illustrate the results derived from the distributions, 

some outputs may be derived. 

For representational purposes an area of 8x8 image pixels (64 pixels in total) was 

simulated using the information summarised in Tables 4.1 - 4.3 (Figure 4.8a). 

4.3.5.1 Variation images 

Variation images were a set of fraction images in which the value of each pixel was the 

interquartile range of the corresponding distribution of possible class composition 

predictions for that pixel. The numbers of variation images were equal to the numbers 

of target classes defined to map the land cover map. Figure 4.8c shows three variation 

images for three land cover classes, A, B, and C. The data used to derive these 

variation images were 64 image pixels which were generated using the data 

summarised in Table 4.1, data with the same class variability for three land cover 

classes. 

The information from the variation images may show the degree of the 'uncertainty' of 

the unmixing predictions in using the class centroids to define the class end-member 

spectra. The larger value of a pixel in the variation images (the more spread the 

distribution of possible class composition predictions) was, the more 'uncertainty' the 

prediction of class proportions for that pixel. 
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4.3.5.2 Closeness images 

Closeness images were a set of fraction images where each shows the measures of the 

distance between the actual class proportion and the predicted class proportion based 

on the distributions of possible class composition estimates for a particular land cover 

in each pixel. The closeness of a class proportion in a pixel was defined as illustrations 

in Figure 4.9(a-c). The number of closeness images was equal to the numbers of target 

classes defined to map the land cover map. Figure 4.8d shows three closeness images 

for three land cover classes, A, B, and C. 

The information from the closeness images could be used to evaluate the accuracy of 

the predicted data. The smaller the closeness was the less the difference between actual 

and predicted data and the more accurate the classification. In Figure 4.9b, the 

predicted class proportion was equal to actual class proportion and the closeness was 

0.0, the most accurate predictions. Conversely, the actual class proportion was outside 

the distribution of mixing predictions in Figure 4.9c and the closeness was 1.0, the 

least accurate predictions. 
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Class A Class B Class C 

(a) 

(b) 

(c) 

(d) 

Figure 4.8: Results derived from soft classification using the data set with the classes 

defined in Table 4.1. (a): actual proportion images; (b): predicted proportion images; 

(c) variation images; (d): closeness images. 

132 

0.00 
0.01 
0.01 
0.D2 
0.D2 
0 .03 
0.03 
0.04 
0.05 
0.05 
0.06 
0.06 
0.07 
0.07 
0.08 
0.08 
0.09 

0.00 
0.03 
0.05 
0.08 
0.11 
D.13 
0.16 
0.19 
022 
024 
027 
0.30 
0.32 
0.35 
0.38 
0.40 
0.43 



a +a 
closeness = 1 2 

n 

Figure 4.9a: Calculation of closeness between the actual and predicted data based on 

the distribution derived. Act was the actual class proportion, Pre was the predicted 

class proportion, al and a2 were the number of class proportion predictions that lie 

inside the actual and predicted data, n was the total number of class proportion 

predictions. 

a +a 
closeness = 1 2 = 0.0 

n 

Figure 4.9b: The illustration of calculating closeness between actual and predicted data 

based on the distribution in case the predicted class proportion was equal to actual 

class proportion. The closeness was equal to 0.0. 

Pre 

a +a 
closeness = 1 2 = 1.0 

n 

Figure 4.9c: Calculation of closeness between actual and predicted data based on the 

distribution derived in case the predicted class proportion was outside of the 

distribution. The closeness was equal to 1.0. 
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4.4 Impacts of intra-class spectral variability on change 

detection 

Soft classification accuracy was negatively related to the degree of intra-class spectral 

variability. This was illustrated by some analyses using the simulated data sets in 

section 4.3. Here, some analyses of real remotely sensed data were undertaken to 

investigate the impacts of the intra-class spectral variation on soft classification and its 

implications. Attention focused on a common type of analysis in a major 

environmental science context; the assessment of tropical deforestation. Initially the 

data used for the analyses and the procedures needed to process the data are presented. 

The technique to extract spectral responses of end-members from mixed pixels is then 

proposed. Finally, the application of the distributions of possible sub-pixel class 

composition predictions to the assessment of deforestation is investigated. 

4.4.1 Study area, data, and data processing 

4.4.1.1 Study area and data used 

Two Landsat TM images of the same site in part of Para, Brazil with the path of 223 

and the row of 064 were used. These two images were acquired on 11 July 1984 and 

22 July 1988 and extracted in the internet from the Global Land Cover Facility 

(GLCF) at the University of Maryland at http://glcf.umiacs.umd.edu. The images were 

acquired in 7 spectral wavebands with a spatial resolution of 30 m, except spectral 

band 6 with spatial resolution of 120 m. Due to the striping effects on three spectral 

bands: blue (TM band 1), green (TM band 2), and red (TM band 3) in both of the 

images, and the spatial resolution in band 6 of 120 m, only three infrared bands (TM 

band 4, band 5 and band 7) were used for the analyses. 

4.4.1.2 Data processing 

In terms of the estimation of deforestation from sub-pixel classifications in two time 

periods of the same region, two Landsat TM images were co-registered using the 

image-to-image registration approach. Nearest neighbour resampling was used with an 

134 



estimated RMSE of ± 0.5 pixel. After registration, an area of 400 x 400 pixels was 

selected from the two images for this study because of its rapid deforestation (see 

Figure 4.10). 

The test-site was dominated by forest and the region cleared of forest cover was 

evident. For the purposes of this study, each pixel in the two original TM images was 

assumed to be pure and classified visually into two land cover classes, forest and non

forest, using a supervised classifier, the MLC. In the absence of accurate ground 

survey data, these classification data were considered as the reference data for the 

analyses. 

The two original Landsat TM images were spatially degraded by a factor of 10 to 

simulate data sets with a relatively coarse spatial resolution of 300 m. This coarse 

spatial resolution is comparable to the spatial resolution of medium spatial resolution 

system such as MODIS and MERIS data used to derive deforestation. The degraded 

imagery was obtained by aggregating pixels to the desired spatial resolution, with each 

degraded DN expressed as the mean DN of the original un-degraded pixels it 

comprised. The degraded data sets represented simulated coarse spatial resolution 

imagery and they were used to derive sub-pixel estimations and deforestation for the 

analyses (Figure 4.11). 

The class composition of pixels in the coarse spatial resolution images were defined 

from the corresponding areas of the land cover maps derived from the classification of 

two original Landsat TM images. This was used as the reference data to derive the sub

pixel classification of the two simulated remotely sensed images to estimate 

deforestation. 

4.4.1.3 Training and testing data 

The training data consisted of 180 randomly selected pure pixels with 90 pixels for 

each land cover class (e.g., forest and non-forest). The statistical information of the 

two land cover classes is shown in Table 4.5. For illustrative purposes, the data were 

subjected to principal components analyses from three used wave-bands and the first 

two components (PCl and PC2) that explained most of the variation in the data sets are 
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used to display classes in the feature space. The scatter plots of the training samples 

were displayed in this manner in Figure 4.12. The testing set contained 500 randomly 

selected pixels. 

(a) (b) 

Figure 4.10: Three-band composite Landsat TM images using bands 4, 5, and 7 

mapped to red, green, and blue respectively of the study area in part of Para, Brazil, (a) 

July 1984; (b) July 1988. 

(a) (b) 

Figure 4.11 : Three-band composite spatially degraded images using bands 4, 5, and 7 

mapped to red, green, and blue respectively of the study area in part of Para, Brazil, (a) 

July 1984; (b) July 1988. 
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lOS 

" 

(a) 

Class Mean Standard deviation Variance-covariance 

Band 4 Band 5 Band 7 Band 4 Band 5 Band 7 matrix 

[1150 6.03 125] Forest 76.83 51.25 12.72 3.39 2.43 0.60 6.03 5.88 1.41 

1.25 1.41 0.36 

[ 3720 - 24.17 -1182] Non-forest 71.88 96.64 34.55 6.10 17.92 10.03 - 24.17 320.98 177.87 

-11.82 177.88 100.55 

(b) 

Class Mean Standard deviation Variance-covariance 

Band 4 Band 5 Band 7 Band 4 Band 5 Band matrix 
7 

[853 4.07 061] Forest 72.23 51.79 9.70 2.92 2.37 0.54 4.07 5.63 l.l9 

0.61 l.l9 0.29 

Non-forest 62.00 94.04 29.14 6.506 12.62 6.49 [ 42.33 -32.49 -17.51] 
- 32.49 159.13 80.58 

- 17.51 80.58 42.13 

Table 4.5: Class description for the imagery, (a) July 1984 and (b) July 1988. 
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Figure 4.12: Location of the classes in feature space, (a) July 1984 and (b) July 1988. 
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4.4.2 Incorporating mixed pixels in the end-member selection for 

LMM 

Conventionally in LMM, the image end-members are identified from the training 

pixels assumed to be pure. Therefore, in an attempt to derive sub-pixel class 

composition within image pixels, mixed pixels are intentionally avoided in training a 

classifier. In many remote sensing images, especially for coarse spatial resolution 

imagery, a majority of image pixels are mixed. It may however be difficult to identifY 

a training set of an appropriate size that contains only pure pixels. Therefore, mixed 

pixels need to be incorporated in the training set to define the spectral response of the 

end-members. The accommodation of mixed pixels in three stages (e.g. training, 

allocation, and testing) of fuzzy supervised classification has been investigated by 

Foody and Arora (1996), Foody (1997), and Zhang and Foody (2001). In these studies, 

mixed pixels were incorporated in the fuzzy classification of land cover from remotely 

sensed imagery with the MLC and ANN. In the research presented here an approach of 

identifying end-member spectra for the input of the conventional LMM from mixed 

pixels was explored. 

4.4.2.1 Methods 

One approach to derive end-members, M, is through the average spectral response of 

pure pixels in the image. In imagery dominated by mixed pixels it may, however, be 

difficult to identify a set of pixels that contains only pure pixels. An alternative 

approach to determine end-members was, therefore, to select a set of pixels in the 

image whose class proportions, f are known from the reference data. The end-member 

spectra M can be estimated by running the LMM in reverse. 

Assume there are n mixed pixels derived from the image with known class proportions 

and, the error e is independent and normal distributed, the end-member M can be 

estimated using least-squares solution of Equation 4.1 as follows: 

(4.6) 
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X ... X . 
X 21 ... xnl] 
. . ~2 . :.2 is the m x n matrix of the observation vector for n pIxels 

X 2m ... Xnm 

which are known as the class proportions. Each column is a vector which represents 

the observation vector of a pixel. 

i = ~~ ~~~ ... ~~~ is the n x c matrix of the ground cover proportions for each of C 

[

ill i21 .. , inl] 

ile i23 .. , ine 
land cover classes. Each column is a vector which represents the class proportions of a 

pixel. 

Once the end-member spectra are known, the class compositions of all the pixels in the 

image may be estimated using conventional LMM (equations 4.1 and 4.2). 

4.4.2.2 Analysis 

The degraded imagery in 1984 was used in this experiment as an example. Analysis 

was implemented to explore the approach of identifying end-member spectra from 

mixed pixels. Before presenting results of this approach, for the comparison purpose 

results of the LMM using the end-members derived from pure pixels is illustrated. 

4.4.2.2.1 End-member selection from pure pixels 

In this section, the spectral responses of the end-members were derived from the 

average spectral responses of the training pixels for each land cover class. The training 

sample contained 180 randomly selected pure pixels with 90 pixels for each land cover 

class as described in section 4.4.1.3. Class proportions within spatially degraded image 

pixels in the year of 1988 were estimated using LMM. The testing sets used to assess 

the accuracy of the sub-pixel composition estimates derived from LMM contained 500 

randomly selected pixels as described in section 4.4.1.3. The accuracy of the sub-pixel 

class composition estimates was evaluated with a strong and significant relationship 

between actual and predicted class cover observed although there was a large degree of 

scatter (Figure 4.13). This was achieved with the correlation coefficient of 0.95 and 

RMSE of 0.15. 
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Figure 4.13: Relationships between predicted and actual cover for data in 1984. 

4.4.2.2.2 End-member selection from mixed pixels 

For the purpose of this analysis, all the training pixels had a mixed and known land 

cover composition. The training pixels were selected in such a way that each of two 

classes dominated the land cover in the training pixels. To assess the relative impacts 

of mixed pixels on the accuracy of sub-pixel estimatons using LMM, four training 

samples were used for the analysis with each training sample contained mixed pixels 

with differently dominated class proportions (Table 4.6). For example, the first training 

sample presented in Table 4.6 consisted of 30 mixed pixels, of which 15 pixels was 

dominated by forest contained between 90-99.99% forest cover and the other 15 pixels 

dominated by non-forest contained between 90-99.99% non-forest cover. The 

characteristics of the second and third training samples were the same as those of the 

first one except the dominant class proportion were between 80-89.9% and 70-79.9%, 

respectively. The last sample contained 100 randomly selected mixed pixels. 

Two cases were analysed, hereafter referred to as the unadjusted case and adjusted 

case. In the unadjusted case, the spectral response of the end-member of a land cover 

class was derived from the average spectral response of the training pixels which have 

that class as the dominant class. These end-member values were then used for the input 

to the conventional LMM (equations 4.1 and 4.2) to estimate the class proportions 

within pixels of the whole image. 
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Dominant class composition Number of pixels in the 
training data 

90 - 99.99 30 

80 - 89.99 30 

70-79.99 30 

Random mixed pixels 100 

Table 4.6: Training samples used to estimate spectral end-member values. 

In adjusted case, the pixels with known class proportions in the training sample were 

used to estimate the spectral end-member values using equation 4.6. The sub-pixel 

class compositions within each image pixel were then predicted using these estimated 

end-member values from the conventional LMM (equations 4.1 and 4.2). 

The testing sets used to assess the accuracy of the sub-pixel composition estimates 

derived from LMM contained 500 randomly selected pixels as described in section 

4.4.1.3. Figure 4.14 shows the relationship between the proportional coverage of a 

class derived from LMM and actual data of the testing dataset. 

From Figure 4.14 it was apparent that the adjusted case was more accurate than the 

unadjusted case, although the difference was statistically insignificant (95% level of 

confidence). The accuracy of the LMM using pure pixels (Figure 4.13) to derive end

member was less accurate than those derived from mixed pixels in both cases, adjusted 

and unadjusted (Figure 4.14). This indicated that identifying end-members as the 

"purest" pixels may lead to systematic bias in end-member proportions if the "purest" 

pixels were not spectrally representative of the end-members. The end-members not 

only need to be pure but also to be representative. 

The results highlighted the potential to derive end-members from mixed pixels for 

LMM in the estimation of sub-pixel proportions. This may help to derive the end

member spectra for the imagery which is mainly dominated by mixed pixels. 
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Figure 4.14: Relationships between predicted and actual cover of forest with different 

dominant class proportion within the training pixels used to derive end-member spectra, 

(a) 90 - 99.99%; (b) 80 - 89.99%; (c) 70 -79.99%; and (d) randomly selected mixed pixels. 

142 



4.4.3 Impacts of intra-class spectral variation on the estimation of 

deforestation 

By using soft classifications, the sub-pixel class composition estimates derived from 

two time periods can be compared to derive the sub-pixel scale change in class 

composition in time. This has been undertaken with a single class composition 

prediction for each image pixel when the class centroids were used to define the end

members. The centroids, however, do not fully describe the classes spectrally (section 

4.3). In this analysis, every pixel in the training set was used to provide the end

member spectra and a distribution of possible sub-pixel class compositions could be 

derived for each pixel in the simulated coarse spatial resolution imagery. The 

distribution was then used for the assessment of tropical deforestation when used in 

post-classification comparison approach. 

4.4.3.1 Sub-pixel classification and the estimation of deforestation 

The training data which included 90 pure pixels for each of forest and non-forest 

classes was used to derive the spectral response of the end-members. The spectral 

response of the classes in two images were summarised in Table 4.5. The forest and, in 

particular, the non-forest classes displayed a degree of variation in the feature space 

(Figure 4.12). For each pixel in the spatially degraded imagery, the sub-pixel class 

composition predictions were derived. Initially the end-members were defined as the 

class centroids for input to the conventional LMM. The accuracy of the sub-pixel class 

composition estimates was evaluated using correlation coefficient and RMSE. There 

was a strong and significant relationship between the actual and predicted class 

compositions, although with a large degree of scatter (Figure 4.15). The sub-pixel scale 

deforestation information can be constructed from the comparison of the sub-pixel 

class composition estimates derived from two time periods (Figure 4.l7(a - c)). 
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Figure 4.15: Relationships between predicted and actual cover (a) 1984 and (b) 1988. 

4.4.3.2 Impacts of intra-class spectral variation on the estimation of 

deforestation 

As with the simulated data set in section 4.3, the centroids do not fully describe the 

characteristics of the classes spectrally. The spectral responses of the individual 

training pixels were, therefore, used to define the end-member spectra to repeat the 

analyses many times. Consequently, a distribution of possible sub-pixel class 

composition could be derived for each pixel in the simulated coarse spatial resolution 

imagery. Comparison of the distributions derived at two time periods may provide a 

richer indication of deforestation information than the comparison of the single class 

composition estimate from standard sUb-pixel classification. This was illustrated for 

six pixels in Figure 4.16. 
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Figure 4.16: Sub-pixel class composition distributions for six pixels derived from 1984 

and 1988 images together with a graphical comparison of their difference in 

cumulative distributions. Summary statistics are given for each case in Table 4.7 (Act: 

Actual class proportion; J.l: mean of the distribution; iqt: interquartile range of the 

distribution; LlAct: deforestation from actual values; Llpre: deforestation from single 

prediction from a LMM using class centroids as end-members; D: maximum absolute 

difference between two cumulative probability distributions). 
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One possible approach to compare the distributions of two samples is using the 

Kolmogorov-Smimov (K-S) test (Daniel, 1978). The K-S statistic of two distributions 

is simply the maximum absolute difference between their cumulative probability 

distributions, written as D. This statistic can be used to test the (null) hypothesis that 

the population distributions are identical and, therefore, that both samples have been 

drawn from the same population. If the calculated value of D is greater than the tabled 

critical value at a specified significance level, the null hypothesis can be rejected at 

that level. 

By comparing directly the single estimate of sub-pixel class composition for each 

image pixel from standard unmixing analysis, there was a single estimate of change 

detection (Table 4.7). The comparison based on the single set of forest proportion 

predictions may be unwise. For example, in Figure 4.16c, the change detection based 

on single prediction of sub-pixel class composition in 1984 and 1988 was 6.6% (with 

the pixel size of 300m, this figure was corresponding to an area of 594 m2 at the 

ground surface). However, using D value (D = 0.21) in the K-S test two distributions 

of possible class composition predictions in these times did not differ significantly at 

95% level of confidence (Table 4.7). The value of D from K-S test of two samples, 

therefore, may be used to test the significant difference of the change detection from 

soft classification, especially for small change detection. Figure 4.17e shows a 

proportion image in which each pixel's value was the value of D when comparing two 

distributions of possible mixing predictions for that pixel in 1984 and 1988 using K-S 

test. This proportion image may provide the additional information about the 

significant difference of change detection. 
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Case L1 from actual L1 from prediction D 

(%) (%) 

a 0.0 2.3 0.19 

b 0.0 0.8 0.24 

c 0.0 6.6 0.21 

d 5.0 6.3 0.32 

e 62.0 37.4 0.88 

f 84.0 68.5 0.98 

Table 4.7: Summary of changes based on actual and single sub-pixel estimation from a 

LMM using class centroids as end-members. The D value was derived from a 

Kolmogorov-Smirnov test, with a critical value of 0.21 at 95% level of confidence. 

4.4.3.3 Different scenarios of deforestation 

The direct comparison of the single predictions from standard unmixing analysis (e.g. 

from Figures 4.17a and 4.l7b, the proportion images of forest in 1984 and 1988) 

achieved a single estimate of change detection (e.g. Figure 4.l7c). In reality, since a 

distribution of possible class compositions may be derived for each pixel, it may allow 

to view the change in different perspectives. For example, the use of the single 

prediction from a standard application of the LMM may be unwise and the 

distributions used to indicate change. So rather than directly compare single 

predictions (Figure 4.17c), one could, for instance, focus on the upper and lower 

quartiles of the distributions to derive different scenarios of change detection. Figure 

4.18a to 4.18d shows the four possible scenarios of deforestation between 1984 and 

1988 using the distributions of possible forest proportion predictions. Assuming that 

deforestation was viewed negatively, some scenarios might be considered a relatively 

'good' case (Figure 4.18b) and a relatively 'bad' case scenario of change detection 

(Figure 4.18c). This provided useful information and qualification to the standard use 

of single prediction of sub-pixel class composition. 
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Figure 4.17: Sub-pixel estimates and change detection, (a) sub-pixel forest cover 

estimate 1984; (b) sub-pixel forest cover estimate 1988; (c) Difference (1984-1988) in 

forest cover estimates; (d) change assessed if sub-pixel estimates placed in classes of 

0.1 (10%) cover; (e) D value from Kolmogorov-Smirnov test; and (t) actual change 

(1984-1988). 
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Figure 4.18: Different scenarios of change derived by comparison of distributions, (a) 

first quartile 1984 minus first quartile 1988; (b) first quartile 1984 minus third quartile 

1988; (c) third quartile 1984 minus first quartile 1988; and (d) third quartile 1984 

minus third quartile 1988. Assuming that forest clearance is viewed negatively, some 

scenarios might be considered a relatively' good ' case scenario (b) and a relatively 

'bad' case scenario (c). 
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4.5 Increasing soft classification accuracy through the use 

of an ensemble of sub-pixel classifiers 

The analyses detailed in section 4.3 demonstrated that the nature of intra-class 

variation in spectral response has a marked impact on the accuracy of sub-pixel 

estimation as it violates the assumption that a class can be represented by a single 

spectral endmember. As a result, it may be inappropriate to provide a single estimate 

of class composition for each image pixel. It was suggested that a distribution of 

possible proportional covers be derived from pixels instead of a single class 

compostition prediction. The spread of the distribution was a function of the degree of 

intra-class spectral variation and impact on the accuracy of the sub-pixel estimation. 

The larger the intra-class variability was, the more spread the distribution and the less 

accurate the sub-pixel class composition estimates. 

Results in chapter 3 indicated that soft classification accuracy may increase through 

the use of an ensemble of individual soft classifications. The outputs of the individual 

soft classifiers were combined to derive the final output which obtained higher 

accuracy than that of the individual classifiers. This was implemented using a single 

class composition prediction for image pixels in the individual classifications. The 

analysis in this section was, therefore, to combine different soft classifications in 

which the distribution of class compostion estimates was used as the output for the 

individual classifications. The main aims of this analysis were two fold: 

To increase the accuracy of sub-pixel class composition estimates 

To reduce the variety of possible sub-pixel class composition estimates. 

150 



4.5.1 Data and methods 

4.5.1.1 Data 

The data set obtained in 1988 (section 4.4.1) was used for the analysis. It included an 

original Landsat TM image (Figure 4.1 Ob) which was used as the reference data and 

the degraded coarse spatial resolution image of 300 m (Figure 4.11 b) which was used 

to derive the sub-pixel classifications. The TM image was classified into forest and 

non-forest visually and used as the reference data for the analysis. Sub-pixel 

classifications estimated the forest and non-forest proportions within each image pixel. 

4.5.1.2 Individual sub-pixel classifications 

Different soft classifications may be derived from different classification algorithms or 

from the same classification algorithm using different approaches to identify training 

data or using different parameter settings. In this analysis, the LMM was used to derive 

sub-pixel class compositions. As with the analyses in sections 4.3 and 4.4, it was 

possible to derive a distribution of class composition estimates for each pixel. The 

distributions were derived by using each training pixel's spectrum as an endmember in 

the LMM. Different distributions of possible class composition estimates for each class 

within each image pixel may be derived from different sets of end-members used as 

the input for the LMM. Here, the end-members defined from pure pixels. Two 

approaches to derive 'pure' pixels which then used as the end-member spetra were 

applied. In the first approach, the pure pixels were derived from the reference data 

which were used as the training data in section 4.4.1.3. Pixel purity index (PPI) was the 

second approach to derive pure pixels (Plaza et ai., 2004, Chang and Plaza, 2006) and 

these were used as the second training data. Hereafter, these two approaches were 

called the reference data approach and PPI approach, respectively. 

The first training data consisted of 180 randomly selected pure pixels derived from the 

reference data with 90 pixels for each land cover class (e.g., forest and non-forest). The 

second training data also consisted of 180 randomly selected pure pixels (e.g., 90 pixel 

for forest and 90 pixels for non-forest) derived from the PPI approach using the 

simulated coarse spatial resolution imagery. The statistical information of the two land 
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cover classes is shown in Table 4.8. For illustrative purposes, the data were subjected 

to principal components analyses from three used wave-bands and the first two 

components (PCI and PC2) that explained most of the variation in the data sets were 

used to display classes in the feature space. The scatter plots of the training samples 

were displayed in this manner in Figure 4.19. The testing set contained 30 randomly 

selected mixed pixels. 

Every pixel in each training data set was used to provide the end-member spectrum to 

estimate the sub-pixel class composition for each pixel in the spatially degraded 

imagery. By unmixing the spectral response of a pixel many times with different end

members derived from each pixel in two training data sets, a series of sub-pixel class 

composition estimates could be derived for a pixel of any given spectral response. As a 

result of this it was possible to form two different distributions of possible sub-pixel 

proportion estimates of a class within an image pixel. Two distributions of each class 

composition for each image pixel were then combined to get the final combined 

distribution. 

4.5.1.3 Methods for combining distributions 

Section 3.2.2 presented four possible approaches to combining individual soft 

classifications. These four ensemble approaches were implemented using a single class 

composition prediction for image pixels in the individual classifications. The four 

ensemble approaches may not be suitable for this analysis as the distribution of 

possible class composition estimates was used as the output for the individual 

classifications. One possible method to combine two different distributions of class 

composition estimates for each pixel which derived from two individual soft 

classifications was investigated. This combined method was a simplified form of the 

Bayesian integration updating implicit in the Ensemble Kalman Filter (EKF) based 

approach (Evensen, 2003). 
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(a) 

Class Mean Standard deviation Variance-covariance 
Band 4 Band 5 Band 7 Band 4 Band 5 Band 7 matrix 

[853 
4.07 061] Forest 72.23 51.79 9.70 2.92 2.37 0.54 4.07 5.63 l.l9 

0.61 1.1 9 0.29 

Non- [ 4233 - 32.49 -17.51] 
forest 

62.00 94.04 29.14 6.51 12.62 6.49 - 32.49 159. 13 80.58 

- 17.51 80.58 42.13 

(b) 

Class Mean Standard deviation Variance-covariance 
Band 4 Band 5 Band 7 Band 4 Band 5 Band 7 matrix 

[966 4.22 063] Forest 72.10 52.01 9.84 3.11 2.58 0.70 4.22 6.67 1.66 

0.63 1.66 0.49 

Non- [ 40.04 - 42.66 -2609] 
forest 

62.19 91.88 26.70 6.33 16.96 8.35 - 42.66 287.75 138.39 

- 26.09 138.39 69.67 

Table 4.8 : Class description for the training data used (a) reference data approach; (b) 

PPI approach. 

Non-forest Forest Non-forest Forest 
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Figure 4.19: Distribution of the training samples in feature space with PCl and PC2 

are the first two principal components derived from three spectral wave-bands (a) 

reference data approach; (b) PPI approach. 
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Assuming two matrices holding two distributions of possible class composition 

predictions derived from two sub-pixel classifications: 

A = (a"a2 , ••• ,an ) E m1xn 

B = (b"b2 , ... ,bJ E mlxn 

where n is the number of class composition predictions in the distributions. 

The ensemble means are stored in A and B that can be defined as: 

A =A1n 

B =B1n 

(4.7) 

(4.8) 

where 1 n E m nxn is the matrix where each element is equal to lin. We can define the 

ensemble perturbation matrix as 

A'=A-A 

B'=B-B 

The ensemble variance can be defined as 

A'(A'f 
PA =--'---~ n-l 

B'(B'f 
P

B 
=--'--~ 

n-l 

The ensemble matrix (ensemble distribution) can be defined as: 

(4.9) 

(4.10) 

(4.11) 

To investigate the potential of the ensemble approach, the testing set which consisted 

of30 mixed pixels was used. The process ofthe analysis was illustrated in Figure 4.20. 
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Figure 4.20: Flow diagram of the ensemble sub-pixel classifications using distribution 

of possible class composition estimates as the output. 
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4.5.2 Results 

As with the analyses in sections 4.3 and 4.4, it was possible to derive a distribution of 

class composition estimates for each pixel in the simulated coarse spatial resolution 

imagery. Figures 4.21a and 4.21b present an example of two distributions of possible 

sub-pixel proportion estimates of forest within an image pixel. They were derived 

using the two training data sets derived from the reference data approach and the PPI 

approach, respectively as the end-member spectrum to input for the LMM. These two 

distributions were then combined using some equations of Bayesian integration 

(section 4.5.1.3) to derive the ensemble distributions (Figure 4.21c). From Figure 4.21, 

it was apparent that the ensemble distribution was derived with less uncertainty (e.g., 

less spread) than the two individual distributions. 

To evaluate the potential of the ensemble approach, the outputs of the ensemble 

approach and of the individual sub-pixel classifications were assessed. They were 

evaluated using the variability of the distribution of possible sub-pixel class 

composition estimates derived. 

40 Act = 0.41 
fl = 0.57 

(a) 20 
iqt = 0.17 

(/l 0 
$:I 
0 
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(b) 0.. 20 fl = 0.53 
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Figure 4.21: Distributions of possible sub-pixel proportion estimates of forest within 

an image pixel, (a) pure pixels from reference data; (b) PPI approach; and (c) ensemble 

output. 
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4.5.1.4 Evaluation of the accuracy of sub-pixel class composition 

predictions 

The accuracy of the sub-pixel class composition estimates was evaluated based on a 

comparison of predicted class proportions with that derived from the reference data, 

the 30 m spatial resolution image using correlation coefficient and RMSE. Figure 4.22 

shows the relationships between predicted and actual cover of two individual sub-pixel 

classifications and of the ensemble approach. From Figure 4.22, it was apparent that 

the accuracy of the sub-pixel classification using the end-members derived from pixels 

of the PPI approach (r = 0.95 and RMSE = 0.15) was more accurate than that from the 

reference data approach (r = 0.94 and RMSE = 0.18), although the difference between 

two correlation coefficients was statistically insignificant (95% level of confidence). 

The accuracy of the sub-pixel class composition estimates derived from the ensemble 

approach (r = 0.94 and RMSE = 0.17) was slightly lower than that from the PPI 

approach, but it increased compared with the accuracy derived from the reference data 

approach. 

4.5.1.5 Evaluation of the width of the distribution of possible sub-pixel 

class composition estimates 

Since a distribution of possible class compositions may be derived for each image 

pixel, it may be preferable to be aware of the spread of the distribution using the inter

quartile range. The variety of possible compositions will be a function of the degree of 

intra-class variation and impact on the accuracy of the sub-pixel estimation using a 

conventional LMM (section 4.3.3). To assess whether the variability of possible 

composition in the ensemble approach was reduced compared with that in two 

individual sub-pixel classifications, the average interquartile range of the class 

composition distributions generated were calculated and compared (Table 4.9). 

According to Table 4.9, the distribution of sub-pixel class composition estimates in the 

ensemble approach was less spread than that from two individual sub-pixel 

classifications. This was highlighted that combining the output of different sub-pixel 

class composition estimates, the variety of possible sUb-pixel class composition 
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estimates may reduce so that may increase the confidence of soft classification using 

one single prediction of class composition. 

Forest Non-forest 
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RMSE = 0.15 RMSE = 0.15 
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Figure 4.22: Relationships between predicted and actual cover (a) from PPI approach; 

and (b) from pure pixels of the reference data; and (c) from combined output. 

158 



Method 
Reference data PPI Ensemble 

approach approach approach 

Average interquartile 0.10 0.13 0.09 
range of the distribution 

Table 4.9: With of the distribution of possible class composition estimates. 

4.6 Summary and Conclusions 

In many sub-pixel scale analyses in remote sensing an assumption made implicitly is 

that the classes may be described by a single endmember. Following from this, great 

trust is placed in the single class composition prediction made in sub-pixel 

classification. However, intra-class spectral variability means that no single spectrum 

can adequately describe a class. Instead of just one single sub-pixel class prediction, 

which derived from the constant values of spectral end-members, a number of sub

pixel predictions were derived for the estimation of class proportion within image 

pixel. A consequence of this was that a distribution of possible class compositions 

exists for each pixel. 

The impacts of intra-class spectral variability on the accuracy of land cover 

classification as well as on the spread of the distributions of possible sub-pixel class 

composition predictions were investigated using simulated data sets. The results 

indicated that intra-class spectral variability was an important factor that affects the 

estimates of sub-pixel class proportions. It has been shown that the accuracy of sub

pixel class composition estimation is a function of the degree and nature of intra-class 

spectral variation (section 4.3.3). Similarly, the spread of the distribution of possible 

sub-pixel class composition predictions within image pixel also depended on the intra

class variability (section 4.3.4). The larger the intra-class variability was the more 

spread the distributions. 

Some outputs were derived from the distribution of possible SUb-pixel class 

composition predictions. These were variation images and closeness images. The 

variation images showed the variability (or spread) of the distribution while closeness 
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image showed the measures of the distance between the actual class proportions and 

the predicted class proportions based on the distribution of sub-pixel estimates. 

The impacts of intra-class spectral variation on sub-pixel estimation and its 

implications on deforestation were undertaken using real remotely sensed data, the 

Landsat TM imagery. First of all, the selections of the spectral signatures for the end

members from mixed pixels with known class proportions were studied. This 

highlighted the potential of incorporating mixed pixels in the end-member selection for 

LMM in the process of sub-pixel class composition estimation. 

Distributions of class composition estimates for each pixel were used for the 

assessment of tropical deforestation. Comparison of distributions derived at the two 

time periods may result in a different interpretation to that derived through comparison 

of the single class composition estimate derived from standard sub-pixel analysis. The 

direct comparison of the single predictions from a standard unmixing analysis yields a 

single estimate of land cover change. The uncertainty of the deforestation derived from 

these single predictions was assessed by comparing the distributions of each land cover 

class proportion for each image pixel in two time periods. A K-S test based approach 

was used to compare two distributions to test the statistical significance of differences 

of forest in each image pixel area in two periods of time. 

The distributions of class composition estimates also provided a richer description of 

the class composition that may allow the change to be viewed from different 

perspectives. For example, the danger in using the single prediction from a standard 

application of the linear mixture model could be recognised and the distributions used 

to indicate change. This could be taken from a range of perspectives. So rather than 

directly compare single predictions, one could, for instance, focus on the upper and 

lower quartiles of the distributions to derive what could be considered by some to be a 

relatively good and bad case scenario of change. This provides a useful extension and 

qualification to the standard use of single prediction estimates. 

The ensemble of the sub-pixel classifications was explored. This was implemented by 

combining the output of different sub-pixel classifications by using the distribution of 

possible class composition estimates as the output for each pixel in the individual 

classifications. Different distributions of possible class composition estimates for each 
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class within each image pixel were derived with different set of end-members using as 

the input for LMM. Pure pixels derived from reference data and from PPI approach 

were used as two different training data sets to derive end-members. As a result, two 

different distributions of possible sub-pixel proportion estimates of a class within each 

image pixel were derived. They were then combined to get the final combined 

distribution. It was suggested that although ensemble based approach may not increase 

sub-pixel classification accuracy compared with the most accurate individual 

classification, it increased accuracy compared with other individual classification of 

the ensemble. Furthermore, ensemble approach reduced the variety of possible sub

pixel class composition estimates so that may increase the confidence of standard sub

pixel analysis. 

In conclusion, results from this chapter have shown that the accuracy of sub-pixel class 

composition estimation is a function of the degree and nature of class spectral variation 

as it violates the assumption that a class can be represented by a single spectral end

member. A distribution of possible class compositions could be derived from pixels 

instead of a single class composition prediction. This distribution provided a richer 

indication of possible sub-pixel class compositions and may be used to derive different 

scenarios of change when used in a post-classification comparison type approach to 

change detection. The application of this for other applications such as super

resolution mapping will be the topic for next research. 
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Chapter 5 

Reducing the impacts of intra-class spectral 

variability on soft classification and its implications 

for super-resolution mapping 

5.1 Introduction 

Soft classifications predict the proportion of each land cover class within each image 

pixel. However, they do not indicate where the land cover classes are spatially located 

within the pixels. The sub-pixel class proportions may, however, be located 

geographically through super-resolution mapping. 

Super-resolution mapping is a set of techniques to predict the location of land cover 

classes within each image pixel based on the proportion images derived from soft 

classification (Tatem et aI., 2001, 2002, Foody et ai., 2005, Nguyen et aI., 2006). In 

super-resolution mapping some approaches attempt to maintain the class proportion 

information output from soft classification (Tatem et aI., 2002, Muslim et ai., 2006). 

That is, if the soft classification indicates that a pixel contains 30% forest the super

resolution mapping will locate the pixel with 30% forest. This trust in the single set of 

class proportion estimates may be unwise. This seems to be based on the assumption 

that a class can be represented by a single spectral end-member. This is likely to be 

unrealistic as the results stated in section 4.3 that classes typically display a degree of 

spectral variability (Petrou and Foschi, 1999). 

The analyses detailed in chapter 4 demonstrated that soft classification accuracy was 

negatively related to the degree of intra-class spectral variation and this against the 

assumption that a class can be represented by a single spectral end-member. It may be 

inappropriate to derive a single prediction for class proportion for each pixel. A 

consequence of this is that a distribution of possible class composition exists for each 

pixel. The distribution provided a richer indication of possible class composition 

estimates. It was then used to derive different scenarios of change when used in post-
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classification comparison technique to change detection. Moreover, the distribution of 

possible class composition estimates may also be used to highlight a limitation of 

conventional soft classification output for super-resolution mapping. 

This chapter aims to explore the impacts of intra-class spectral variability, which 

resulted in a distribution of possible class proportions for each image pixel, on super

resolution mapping and to investigate a possible approach to reduce these impacts 

through the reduction of the intra-class spectral variation. These issues are illustrated 

with an example of shoreline mapping in Isle of Wight, UK from Landsat ETM+ data. 

The outline of the chapter is: 

1. To analyse data used in the chapter. Attention focuses on a small region of Isle of 

Wight in UK. 

2. To investigate methods used to derive shoreline mapping from the output of soft 

classification. 

3. To explore the impacts of intra-class spectral variability on super-resolution 

mapping. Here attention focused on a common type of analysis in a major 

environmental science context; the assessment of shoreline mapping using soft 

classification output. 

4. To investigate an approach to reduce the impacts of intra-class variation on soft 

classification predictions as well as on shoreline mapping. The approach 

investigated here is the reduction of the intra-class spectral variation of the land 

cover classes used for sub-pixel classification. In particular, attention focused on 

the division of a land cover class into sub-classes. 

5. Finally the summary and conclusions will close the chapter 
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5.2 Study area and data used 

To illustrate the impacts of the intra-class spectral variation on super-resolution 

mapping some analyses of real remotely sensed data were undertaken. Here, the 

assessment of shoreline mapping using soft classification as input was implemented as 

an example. Attention was focused on a small region on the Isle of Wight in the United 

Kingdom. This study area was extracted from a Landsat ETM+ image of the region 

with path of 202 and the row of 25 (Figure 5.1). It was apparent from Figure 5.1 that 

there was a large degree of intra-class spectral variation for land cover classes to be 

mapped. Specifically, there were many land cover classes and the water class varied in 

terms of the turbidity. It is, therefore, difficult to define the land and water boundary. 

The image was acquired on 12 May 2001 and extracted in the internet from the Global 

Land Cover Facility (GLCF) at the University of Maryland at 

http://glcf.umiacs.umd.edu. It was already system-corrected using UTM-30 and WGS-

84 as the projection and reference ellipsoid respectively and acquired in 8 spectral 

wavebands with a spatial resolution of 30 m, except spectral band 6 with spatial 

resolution of 120 m and band 8 with spatial resolution of 15 m. Since the spectral 

response of water in band 4, 5, and 7 was similar and the purpose of the research was 

to assess the impact of class spectral variability on the shoreline mapping only three 

bands (ETM+ band 1, band 2 and band 3) were used for the analyses. 

5.2.1 Data processing 

To evaluate the error in shoreline mapping, a ground/ reference data was required. Due 

to the difficulty in accurately obtaining the actual shoreline, this ground dataset was 

generated from the original Landsat ETM+ image. Each pixel in this image was 

assumed to be pure and classified into two land cover classes, land and water, using a 

supervised classifier, the MLC. The classified image was then vectorised along the 

boundary between land and water classes to generate the reference shoreline (Figure 

5.1). 
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Figure 5.1: Three-band composite Landsat TM images using bands 3, 2, and 1 mapped 

to red, green, and blue respectively of the study area in part ofIsle of Wight in United 

Kingdom (-- : Reference shoreline). 

The Landsat ETM+ image was spatially degraded by a factor of 10 to simulate data 

sets with a relatively coarse spatial resolution of 300 m. This coarse spatial resolution 

is comparable to the spatial resolution of medium spatial resolution system such as 

MODIS and MERIS. The degraded image was obtained by aggregating pixels to the 

desired spatial resolution, with each degraded DN expressed as the mean DN of the 

original un-degraded pixels it comprised. The degraded data set represented simulated 

coarse spatial resolution imagery (Figure 5.2). This data set was used in the analyses to 

predict the shoreline. 
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Figure 5.2: Three-band composite spatial spatially degraded images using bands 3, 2, 

and 1 mapped to red, green, and blue respectively of the study area in part ofIsle of 

Wight in United Kingdom. 

5.3 Methodology 

Land cover mapping from remotely sensed imagery is commonly obtained through the 

conventional hard classification that located each pixel to the class with which it has 

the greatest similarity. Using the output of hard classification, boundary between 

classes is constrained to lie between pixels. However, with the pixels having a mixed 

class composition, the boundary between classes will run through the area represented 

by a pixel. Soft classification techniques allow for the partial and multiple class 

membership within each mixed pixel, and, therefore, may be used to refine the 

standard mapping process as well as increase the accuracy of shoreline mapping from 

remote sensing. This section, therefore, presents the methods used to derive the 

shoreline from soft classification and the approach to assess the accuracy of predicted 

shoreline. 

166 



5.3.1 Methods for mapping the shoreline from soft classification 

output 

The output from a soft classification is typically a set of proportion images with pixel 

values representing the proportion of a certain class within pixels. Here, a soft 

classification depicting the two classes, land and water, was derived usmg 

conventional LMM. The output of the soft classification for each pixel was an 

indication of the relative membership to the two classes. This output, however, does 

not indicate where within the pixels these classes are located, information that is 

required to fit a class boundary at the sub-pixel scale. To address this issue, the 

approaches for fitting the shoreline to a soft classification derived from remotely 

sensed imagery were investigated. In this study, two approaches, contouring and 

Hopfield Neural Network (HNN), were undertaken. 

5.3.1.1 Contouring soft classification 

Outputs derived from soft classification are class membership values representing the 

proportion of a class within each image pixel. Using these proportion values a 

shoreline is identified by fitting the output of the soft classification a contour of 0.5 

membership to the land class, representing the 50% membership to land and 50% 

membership to water scenario. This provides an approach of positioning the shoreline 

location within a pixel. This method has been applied previously to allocating the 

waterline (Foody et at., 2005) and coastal features (Foody, 2002) at a sub-pixel scale. 

The shoreline located from the contour fitted to the soft classification output may be 

more accurate than that from hard classification and the implementation of the 

approach is simple and quick. A draw back of the contour-based method to shoreline 

mapping, however, is that the class proportional information provided by the soft 

classification is not maintained in fitting the contour. This means the shoreline derived 

from contouring soft classification using the class compositional information provided 

by the soft classification but the proportions either side of the shoreline derived may 

not match those shown in the soft classification. This is due to the generalization 

process related to fitting the contour. An example of the contouring process was shown 

in Figure 5.3. 
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Figure 5.3: Contouring process (a) proportion image of soft classification; (b) 

contouring output. 

5.3.1.2 Hopfield neural network 

Hopfield neural network (HNN) was briefly discussed in section 2.9.1. Using the class 

proportion images derived from a soft classification as the input, the HNN is 

implemented using some parameters (Equation 2.76) which should be carefully chosen 

by the user. They are four weighting constants: k" k2' k3 and k4' a zoom factor z and 

the number of iterations for the performance of the network. 

The output of the HNN approach is a set of binary images with a spatial resolution that 

is z times finer than that of the input class proportional images derived from soft 

classification (Figure 5.4). In the analyses of this chapter the HNN was undertaken 

with a zoom factor of 10. With that zoom factor applied for the input proportion 

images with spatial resolution of 300 m, the HNN produced the output maps with a 

spatial resolution of 30 m which was equal to the spatial resolution of the reference 

image. The number of the binary images is equal to the number ofland cover classes to 

be mapped with each image is shown the location of a defined class. In this study, with 

the purpose of shoreline mapping, the remotely sensed imagery used was mapped to 

two land cover classes water and land. The binary images derived from the HNN 

approach were then vectorised along the boundary between the land and water classes 

to generate the shoreline. 
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Figure 5.4: HNN process (a) a proportion image of soft classification; (b) a binary 

image derived from HNN. 

The shoreline determined from the binary images of the HNN based approach may be 

more accurate than that from hard classification and the output of the HNN maintains 

the class proportions per pixel derived from soft classification. However, in 

comparison with the contouring based approach for shoreline mapping, HNN is more 

complicated since the user need to carefully choose the suited parameters for the 

network and it is a time consuming approach. 

5.3.2 Accuracy assessment for shoreline mapping 

The shorelines predicted from two methods (e.g., contouring and HNN) using the soft 

classification output derived from the degraded coarse spatial resolution imagery were 

compared with the reference shoreline derived from the classification of the original 

Landsat ETM+ imagery. To achieve an estimate of the accuracy of the shoreline, the 

perpendicular distance between the predicted and actual location of the shoreline was 

measured at each 10 metres point along the shoreline and its RMSE was calculated. 

The length of the shoreline in this study area was 41.68 km. As a result, the closeness 

of predicted shoreline to actual shoreline indicated by the average distance between 

them and by RMSE. 
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5.4 Impacts of class spectral variability on shoreline mapping 

5.4.1 Training and testing data 

For the purposes of this study, each pixel in the original Land ETM+ image was 

assumed to be pure and classified into two land cover classes, water and land, using a 

supervised classifier, the MLC. In the absence of accurate ground survey data, these 

classification data were considered as the ground/reference data. 

The class proportion of pixels in the coarse spatial resolution image were defined from 

the corresponding area of the land cover map derived from the classification of original 

Landsat ETM+ image. The data extracted for each pixel included its DN value in three 

wavebands and the proportional coverage of each land cover class. 

The training data consisted of 180 randomly selected pure pixels with 90 pixels for 

each land cover class (e.g., land and water). The descriptive statistics for the two land 

cover classes are shown in Table 5.1. For illustrative purposes, the data were subjected 

to principal components analyses from three used wave-bands and the first two 

components (PCl and PC2) that explained most of the variation (98.9%) in the data 

sets were used to display the data in feature space. The scatter plots of the training 

samples were displayed in this manner in Figure 5.5. From this Figure, it was apparent 

that the water and, in particularly, the land classes exhibited a degree of variation in the 

feature space. The testing set for the analysis contained 5000 randomly selected pixels. 

Class Mean Standard deviation Variance-covariance 
Band 1 Band 2 Band 3 Band 1 Band 2 Band 3 matrix 

[5945 71.03 121.12] 
Land 79.92 69.10 64.76 7.71 9.56 17.42 71.03 91.42 157.33 

121.12 157.33 303.38 

[6086 62.35 4436] 
Water 77.09 53.59 37.565 7.80 8.17 5.78 62.35 66.72 46.89 

44.36 46.89 33.47 

Table 5.1: Class descriptions for the spatially degraded imagery. 
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Figure 5.5: Location of the classes in feature space. 

5.4.2 Sub-pixel prediction 

For each pixel in the spatially degraded imagery, sub-pixel class composition estimates 

were derived. The training data, which included 90 pure pixels for each of water and 

land classes, were used to derive the spectral response of the end-members. Initially 

the end-members were defined as the class centroids for input to the conventional 

LMM. The LMM then classified each pixel in the simulated image to proportion 

values representing proportion of land and water within a pixel. This resulted in two 

proportion images with each one contained the class proportion of each class in each 

image pixel (Figure 5.6). 

The accuracy of the sub-pixel class composition estimates was evaluated based on a 

comparison of predicted class proportions with that derived from the reference data, 

the 30 m spatial resolution image. The testing set consisted of 5000 randomly selected 

pixels. The accuracy was assessed using correlation coefficient and RMSE. The 

resulting soft classification output has a r value of 0.87 and RMSE of 0.26. The results 

showed that there was a strong and significant relationship between the actual and 

predicted class compositions (Figure 5.7) and the output of the sub-pixel class 

proportion estimates accurately represented the actual composition of classes within 

each image pixel. This was vitally important as further analysis in locating the 

shoreline depends on the accuracy of the sub-pixel class composition estimates. 
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Figure 5.6: Output of soft classification. The grey level represents the proportion of 

land class in each image pixel. 
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Figure 5.7: Relationships between predicted and actual cover. 

5.4.3 Results of shoreline mapping 

For the comparison purpose shoreline mapping from the output of both the hard and 

soft classifications applied to the coarse spatial simulated image was presented. Using 

the centroids of each class as end-members, the class composition of pixels was 

estimated using the LMM. 

172 



In the output of soft classification the proportion values at pure pixel (0 and 1) still 

contain membership of other land cover classes. This could be seen in Figure 5.5, for 

example, the pixels that were purely land but still have water membership in their 

output. This may confuse the shoreline mapping process. Therefore, for the purpose of 

shoreline mapping in this chapter, pure pixels of land or water were located to the 

value of 1 in their proportion image while maintaining proportion information at pixels 

adjacent to the shoreline (Figure 5.8). The accuracy of the predicted shorelines was 

assessed by comparing them with the shoreline derived from the classification of the 

original Landsat ETM+ image with 30 m spatial resolution. 

To evaluate the potential of the soft classification for shoreline mapping, the traditional 

method of producing a shoreline map from a hard classification output was also carried 

out. Predicted shoreline derived from hard classification was then compared with that 

derived from soft classification. 

0.00 
0.06 
0.13 
0.19 
0.25 
0.31 
0.38 
0.44 
0.50 
0.56 
0.63 
0.69 
0.75 
0.81 
0.88 
0.94 
1.00 

Figure 5.8 : Output of soft classification where only the pixels located along the 

shoreline maintained the proportion values. The grey level represents the proportion of 

land class in each image pixel. 

173 



5.4.3.1 Shoreline from hard classification 

The hard classification of the simulated image was derived by degrading the soft 

classification output of conventional LMM in which the class label for the pixel was 

the dominant class in that pixel. This was classified into two classes (land and water). 

Shoreline was fitted between pixels allocated to the different classes, resulting in an 

unrealistically jagged boundary (Figure 5.1 Oa). The average distance between the 

actual shoreline and 'hard' shoreline derived from hard classification was 81.11 m and 

the RMSE calculated along the shoreline was 71.38 m (Table 5.3). 

5.4.3.2 Shoreline from soft classification 

The shorelines were derived using two approaches (e.g., contouring and HNN) based 

on the output of the sub-pixel class compositions. They were more realistic and 

accurate representation than that derived from hard classification (Table 5.3) 

5.4.3.2.1 Shoreline from contouring approach 

The shoreline predicted from the contour based approach fitted to the sub-pixel class 

compositions provided. Using the compositional values within each pixel a shoreline 

location may be generated using the contour at 0.5 interval. The shoreline generated 

from contour based approach with an average distance of 41.91 m and RMSE of38.57 

m was more accurate and smoother than that derived from hard classification (Table 

5.3 and Figure 5.10(a-b)). 

5.4.3.3 Shoreline from HNN approach 

The sub-pixel class composition estimates were used to initialise the HNN and provide 

area estimates for the proportion constraint. As discussed in section 5.3.1.2, in order to 

implement the HNN, the user should identify the appropriate values of two goal 

function constraints, proportion constraint and multi-class weighting constraint, 

kp k2' k3 and k4 respectively, the zoom factor z, and the number of iterations for the 

network. In this analysis, the network was run with the number of iterations equaled to 

5000 and with a zoom factor of 10. With that zoom factor applied for the input 
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proportion images with spatial resolution of 300 m, the HNN was produced the output 

maps with a spatial resolution of 30 m which was equal to the spatial resolution of 

reference image. 

The values of the goal and weighting constraints estimation were derived via certain 

assumptions and multiple network trial runs. According to Tatem et al. (2001, 2002), 

these weighting constants should be equal and the optimal values were found to be of 

150. Several trial networks were run with different values of the weighting constants 

(Table 5.2), the zoom factor of 10, and number of iterations of 5000. The greatest 

accuracy of shoreline mapping was obtained with the weighting constants of 

k j = k2 = k3 = k4 = 70 and they were used for the HNN in the analyses of this chapter. 

After running the HNN using proportion images derived from soft classification and 

the above defined parameters, a super-resolution map was produced (Figure 5.9) with 

spatial resolution 10 times finer than that of the input class proportions in Figure 5.8. 

The shoreline boundary was derived from this super-resolution map using the raster to 

vector conversion approach (Figure 5.10c). This HNN based approach increased the 

shoreline mapping accuracy and provided a shoreline with an RMSE of 41.13 m. 

Weightin~ constants Accuracy of shoreline mapping 

k j k2 k3 k4 Average distance (m) RMSE (m) 

70 70 70 70 45.00 41.13 

100 100 100 100 53.10 44.92 

120 120 120 120 47.39 43.08 

150 150 150 150 47.50 43.37 

170 170 170 170 47.06 42.90 

200 200 200 200 47.31 43.12 

Table 5.2: Accuracy of shoreline mapping derived from trial HNN (kj' k2 ,k3' k4 are 

the two goal functions, proportion, and multi- class weighting constants, respectively). 
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Figure 5.9: Super-resolution land cover map derived from HNN. White pixels 

represent land class and dark pixels represent water class. 

5.4.3.4 Evaluation of methods for shoreline mapping 

From Table 5.3, it was apparent that shoreline derived from contouring approach was 

the most accurate with the average distance of 41.91 m and RMSE of 38.57 m, 

followed by HNN approach derived shoreline with the average distance of 45.00 m 

and RMSE of 41.13 m. The shoreline derived from hard classification was the least 

accurate. This was produced with the average distance of 81.11 m and the RMSE of 

71.38 m. 

The shoreline generated from contouring approach was visually smoothest one among 

three shorelines derived from three methods used. A disadvantage of this method was 

that it modified the class proportion values when fitting the contour. The shoreline 

derived from HNN approach was less smooth than that derived from the contour based 

approach. Hard classification generated a shoreline which was jagged compared with 

those generated by soft classification. The advantage of the HNN against the 

contouring approach was that it was very dependent on the initial soft classification 

output as the class proportions in each pixel were maintained. This explained why in 

certain portion sharps peaks were visible (Figure 5.1 Oc). 
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Figure 5.10: Results of shoreline mapping (a) Actual shoreline and 'hard ' shoreline 

derived from hard classification; (b) Actual shoreline and ' soft' shoreline derived from 

soft classification using contouring approach; (c) Actual shoreline and ' soft' shoreline 

derived from super-resolution mapping using HNN. 
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Accuracy measure Hard classification Soft classification 

Contouring HNN 

Average distance 81.11 m 41.91 m 45.00 m 

RMSE 71.38 m 38.57 m 41.13 m 

Table 5.3: Accuracy of the shoreline. 

5.4.4 Range of possible shoreline positions 

The shoreline mapping presented in section 5.4.3 was derived using the single 

prediction of conventional LMM where the centroids of each class were used as end

members. The class centroids derived from the training data, however do not fully 

describe the characteristics of the classes spectrally. It was, therefore, possible to 

derive a distribution of class composition estimates for each pixel (section 4.3). The 

analyses were repeated many times with the spectral response of the individual training 

pixels used to define the end-member spectra so that a distribution of possible sub

pixel class composition could be derived for each pixel in the simulated coarse spatial 

resolution imagery. Figure 5.11 is an example of the histograms show distribution of 

possible class proportions for a class of an image pixel. 

If many predictions of sub-pixel class composition are derived, there will be many 

possible shorelines generated. In reality since a distribution of possible class 

compositions may be derived for each image pixel, it may be preferable to be aware of 

the range of possible shoreline positions. To provide a guide for this, Figure 5.12 

shows the location of the shorelines using the 5th and 95th percentiles of the class 

composition distributions generated. This type of information could be used to view 

the shoreline boundary from different perspectives (e.g. a conservative or a pessimistic 

viewpoint on land/water cover). In section 4.3.4, it was apparent that the nature of the 

distribution of possible mixing predictions for an image pixel will depend on the 

location of the point in feature space and the degree of intra-class variation and class 

co-variation. This may impact on the width of the zone of possible shoreline locations, 

bounded by the 5th and 95th percentiles of land coverage. 
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Figure 5.11: Histograms show distribution of possible class proportions within a pixel 

(Ae - actual value; ~: the mean value of the distribution; Iqt - InterquartiIe range of 

the distribution). 

The width of the possible shoreline positions varied along the study area. In particular, 

Figure 5.13 shows part of the study area where the width of the shoreline was much 

larger than the other part. The average distance between the zone of possible shoreline 

positions were shown in Table 5.4. This information may be used as the means to 

measure the effect of intra-class variation on shoreline mapping. This range of possible 

shoreline positions may show the confidence of the shoreline mapped from one single 

prediction soft classification. The larger the width of the zone of possible shoreline 

positions the less confidence the shoreline mapped from one single prediction of soft 

classification. It was suggested that the trust in the single set of class proportion 

predictions as input for super-resolution mapping may be unwise and the distribution 

of possible predictions may be used to provide a richer interpretation for this process. 

Furthermore, if the width of the uncertainty of the distribution is large, there may be a 

problem for the applications of using soft classification such as change detection 

(section 4.4) and super-resolution mapping here. The next section, therefore, was 

focused on the approach to reduce the impact of intra-class spectral variability on sub

pixel class composition estimate as well as on shoreline mapping. 
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31l.29 m 283 .65 m 

Table 5.4: Average distance between the shorelines using the 5th and 95th percentiles 

of the class composition distribution. 

(a) 

Legend: 

(b) 
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95th percentiles 

Figure 5.12: The zone of possible shoreline locations, bounded by the 5th and 95th 

percentiles (a) contouring approach; (b) HNN. 
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Legend: 
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Figure 5.13: The zone of possible shoreline locations, bounded by the 5th and 95th 

percentiles in the area highlighted in the ETM+ imagery (a) contouring approach; (b) 

HNN. 
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5.5 Reducing the impacts of intra-class spectral variability 

on shoreline mapping. 

The analyses detailed in section 4.3 and 5.4 demonstrated that the nature of the intra

class spectral variation has negative impacts on the accuracy of the sub-pixel class 

composition estimates as well as the accuracy of shoreline mapping. This violated the 

assumption that a class can be represented by a single spectrum end-member. It was 

suggested that a distribution of possible class compositions be derived from pixels 

instead of a single class composition prediction. The nature of this distribution will 

depend on the location of the point in feature space and the degree of intra-class 

variation and class co-variation (section 4.3). Using this distribution as the output of 

soft classification, a range of possible shoreline positions would be derived, 

highlighting a limitation for super-resolution mapping when using a single set of class 

proportion predictions of soft classification. It may suggest that reducing the degree of 

intra-class spectral variation and class co-variation may lead to the increase of soft 

classification accuracy as well as shoreline mapping accuracy and reduce the 

uncertainty of the width ofthe zone of possible shoreline positions. 

A possible approach to reduce the impacts of intra-class spectral variation was, 

therefore, investigated in this section. This was based on reducing the intra-class 

spectral variation and achieved by defining spectral sub-classes for use in the soft 

classification. In section 5.4, the remotely sensed imagery was classified with two land 

cover classes (e.g, land and water). However, from Figure 5.1, it was apparent that 

water class may consist of two sub-classes (e.g., turbid water and clear water). To 

illustrate the method, the water class was divided into two sub-classes, based on 

relative turbidity. In this study, the LMM with real ETM+ data was performed with 

three end-members, land, turbid water and clear water as an example and these could 

readily identified from the images (Figure 5.1). Hereafter this analysis is called three

class analysis and the analysis in section 5.3 called two-class analysis. 

To assess the potential of the approach that reducing intra-class spectral variation by 

increasing the number of classes in the analysis, the results derived from the three

class analysis and two-class analysis were compared. The study in this section aims: 
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1. To increase the accuracy of sub-pixel classification; 

2. To increase the accuracy of shoreline mapping; 

3. To reduce the width of the zone of possible shoreline positions. 

5.5.1 Training and testing data 

Each pixel in the original ETM+ image was assumed to be pure and classified visually 

into three land cover classes (e.g., land, turbid water and clear water) using a 

supervised classifier, the MLC (Figure 5.14). In the absence of accurate ground survey 

data, these classification data were considered as the ground/reference data. 

Sub-pixel class compositions within pixels in the coarse spatial resolution imagery, 

which were used to derive training and testing data, were defined from the 

corresponding area of the land cover map derived from the classification of original 

Landsat ETM+ imagery. The data extracted for each pixel included its DN value in 

three wavebands and the proportional coverage of each land cover class. 

The training data consisted of 270 randomly selected pure pixels with 90 pixels for 

each land cover class (e.g., land, turbid water and clear water). The description 

statistics of the three land cover classes was shown in Table 5.5 and displayed in 

Figure 5.15. It was apparent from Figures 5.4 and 5.14 that the spectral variation of 

turbid water and clear water classes were narrower than that of water class in the two

class analysis presented in section 5.4. 

The testing set which contained 5000 randomly selected pixels was the same with that 

in the two-class analysis. 
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Legend: 

• Land 

• Turbid water 

• Clear water 

Figure 5.14: 30 m spatial resolution classified imagery with three classes, land, turbid 

water and clear water that was used as ground data in analysis. 

Class Mean Standard deviation Variance-covariance 

Band 1 Band 2 Band 3 Band 1 Band 2 Band 3 matrix 

[8329 97.28 165.57] 
Land 8l. 56 70.81 67.52 9.13 10.93 19.22 97.28 119.56 203 .92 

165.57 203.92 369.50 

[2188 2l.l 2 1584] Turbid 82.26 59.28 41.49 4.68 4.86 3.62 2l.l2 23.62 17.20 
water 

15.84 17.20 13.07 

[222 l.58 174] Clear 68.60 44.56 31.42 1.49 l.38 l.28 l.58 l.91 1.46 
water 

l.74 1.46 l.65 

Table 5.5 : Class descriptions of the degraded imagery. 
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Figure 5.15: Location of the classes in feature space. 

5.5.2 Sub-pixel class composition predictions 

For each pixel in the spatially degraded imagery (Figure 5.2), sub-pixel class 

composition estimates were derived. The training data which included 90 pure pixels 

for each of land, turbid water and clear water classes was used to derive the spectral 

response of the end-members. The spectral response of the classes in the image are 

summarised in Table 5.5. Initially the end-members were defined as the class centroids 

for input to the conventional LMM. The LMM then classified each pixel in the 

simulated image to proportion values representing proportion of land, turbid water and 

clear water within a pixel. This resulted in three proportion images with each one 

contained the class proportion of each class in the image pixels. Figure 5.16 shows the 

proportion images of land class derived from the soft classification of both two-class 

analysis and three-class analysis. 
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Figure 5.16: Output of soft classification. The grey level represents the proportion of 

land class in each image pixel. (a) two-class analysis scenario; (b) three-class analysis-

scenario. 
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comparison of predicted class proportions with that derived from the reference data, 

the 30 m spatial resolution image. They were assessed using correlation coefficient and 

RMSE. The resulting soft classification output has a r value of 0.94 and RMSE of 

0.20. The results showed that there was a strong and significant relationship between 

the actual and predicted class compositions (Figure 5.17) and the output of the sub

pixel class proportion estimates accurately represented the actual composition of 

classes within each image pixel. This was vitally important as further analysis in 

locating the shoreline depends on the accuracy of the sub-pixel class composition 

estimates. 

In section 4.3.3, it was shown that the nature of intra-class variation has a marked 

impact on the accuracy of sub-pixel class composition estimation; the larger the intra

class variability, the less accurate the sub-pixel classification. To assess whether the 

accuracy of sub-pixel class composition estimates in three-class analysis increased 

compared with two-class analysis, Table 5.6 illustrates the accuracy (e.g., correlation 

coefficient and RMSE) of the sub-pixel class composition predictions from the two

class and three-class analyses. It was apparent that the accuracy of the predictions from 

three-class analysis (e.g., r = 0.94 and RMSE = 0.20) was much higher than that from 

two-class analysis (e.g., r = 0.87 and RMSE = 0.27). The two correlation coefficients 

were statistically significant at 99% level of confidence. It was suggested that the 

reduction of the intra-class spectral variability by increasing the number of land cover 

classes increased soft classification accuracy so that it reduced the impacts of the intra

class variation on sub-pixel class composition estimates. 
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Figure 5.17: Relationships between predicted and actual cover. 
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Methodology Class r RMSE 

Land 0.87 0.27 

Two-class analysis Water 0.87 0.27 

Average 0.87 0.27 

Land 0.94 0.20 

Three-class analysis Turbid water 0.96 0.20 

Clear water 0.92 0.21 

Average 0.94 0.20 

Table 5.6: Accuracy of the sub-pixel class composition estimates. 

5.5.3 Shoreline mapping 

The assessments of shoreline mapping from two-class and three-class analyses were 

presented to evaluate the potential of the reducing intra-class spectral variation 

approach. The output of soft classification used to generate shoreline mapping here 

was derived from conventional LMM in which the centroids of each class were used as 

the end-members. The shoreline was generated based on two approaches (e.g., 

contouring and HNN) using the output of the sub-pixel class composition estimates. 

The reduction of the intra-class variation increased the accuracy of soft classification 

(section 5.5.2). In this study, shoreline position was determined from the output of soft 

classification so that its accuracy may depend on the accuracy of the soft classification. 

Figure 5.18 and 5.19 show the shoreline positions derived from the output of soft 

classification of both the two-class and three-class analyses using contouring and HNN 

based approaches. For the comparison purpose, Table 5.7 presents the accuracy of the 

shoreline mapping from these two analyses. The accuracy of the shoreline predictions 

was assessed by comparing them with the shoreline predicted from the classification of 

the original Landsat ETM+ image with 30 m spatial resolution. 
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(a) 

(b) 

Legend: 

Actual shoreline 

Shoreline from two-class analysis 

Shoreline from three-class analysis 

Figure 5.18: Results of shoreline mapping from contouring approach which shows 

actual shoreline and shoreline derived from soft classification using contouring 

approach: (a) two-class analysis; (b) three-class analysis . 
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(a) 

(b) 

Legend: 

Actual shoreline 

Shoreline from two-class analysis 

Shoreline from three-class analysis 

Figure 5.19: Results of shoreline mapping from HNN approach which shows actual 

shoreline and shoreline derived from soft classification using contouring approach: (a) 

two-class analysis; (b) three-class analysis. 

Methodology Contouring HNN 

Average distance (m) RMSE (m) Average distance (m) RMSE (m) 

Two class analysis 41.91 38.57 45 .00 41.13 

Three class analysis 32.76 28.12 39.76 37.21 

Table 5.7: Accuracy of the shoreline predictions. 
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From Table 5.7, it was apparent that in both approaches used to generate shorelines, 

the accuracy of the shoreline mapping in three-class analysis was higher than that in 

two-class analysis. For example, using the contour fitted to the soft classification 

output, shoreline derived from three-class analysis produced higher accuracy (e.g., 

with an average distance of 32.76 m and RMSE of 28.12 m) than that from two-class 

analysis (e.g., with an average distance of 41.91 m and RMSE of 38.57 m). Similarly, 

by using HNN based approach to derive shoreline mappmg, three-class analysis 

provided the shoreline with higher accuracy than two-class analysis. Shoreline 

mapping from three-class analysis obtained the average distance of 39.76 m and 

RMSE of 37.21 m, while these figures in two-class analysis were reached to 45.00 m 

and 41.13 m, respectively. It was suggested that the reduction of the intra-class spectral 

variability by increasing the number of land cover classes increased the accuracy of 

shoreline mapping so that it reduced the impacts of the intra-class variation on 

shoreline predictions. 

5.5.4 Range of possible shoreline positions 

In section 5.5.3, the predicted shorelines were derived based on the single prediction of 

the class proportion of the conventional LMM when using the centroids of each class 

as end-members. The class centroids, however do not fully represent the classes 

spectrally. Instead of using a single set of class proportion predictions, a distribution of 

possible fractional cover could be derived for each class (section 4.3). Using the 

spectral response of the individual training pixels to define the end-member spectra as 

the input for the LMM, a distribution of possible sub-pixel class composition could be 

derived for each pixel in the simulated coarse spatial resolution imagery. Figure 5.20 is 

an example of the histograms which show distributions of possible class proportions 

within a defined image pixel of two analyses, two-class and three-class. From Figure 

5.20, it was apparent that within the same image pixel the widths ofthe distributions of 

possible class proportions derived from three-class analysis were correspondingly 

smaller than those from two-class analysis. 
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Figure 5.20: Histograms show distribution of possible class proportions within a pixel: 

(a) two-class analysis; (b) three-class analysis (Ae - actual value; fl: the mean value of 

the distribution; Iqt - Interquartile range of the distribution). 

In reality since a distribution of possible class compositions may be derived for each 

image pixel, it may be preferable to be aware of the range of possible shoreline 

positions (section 5.4.4). To provide a guide for this, the location of the shorelines 

using the 5th and 95th percentiles of the class composition distribution generated may 

be derived (Figure 5.21 and 5.22). The width of the zone of possible shoreline 

locations was bounded by the 5th and 95th percentiles of land coverage. 

To assess whether the width of the zone of possible shoreline positions in three-class 

analysis was reduced compared with that in two-class analysis, the average distance 

between the locations of the shorelines using the 5th and 95th percentiles of the class 

composition distribution generated were calculated (Table 5.8). 
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According to Table 5.8, the average ranges of possible shoreline positions derived 

from both contouring and HNN based approaches in three-class analysis was smaller 

than that from two-class analysis. For example, using HNN based approach the width 

of the zone of possible shoreline locations, bounded by the 5th and 95th percentiles of 

land coverage, was narrower, 215.82m, from the three-class analysis than from two

class analysis, 283.65m. 

The results highlighted that reducing the intra-class class spectral variability may 

reduce the width of the possible shoreline positions in shoreline mapping so that this 

may increase the confidence of shoreline mapping using one single prediction of soft 

classification. 

Methodology Contouring HNN 

Two class analysis 311.29 m 283.65 m 

Three class analysis 250.13 m 215.82 m 

Table 5.8: Average distance between the shorelines using the 5th and 95th percentiles 

of the class composition distribution. 
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Figure 5.21 : The zone of possible shoreline locations, derived based on the contouring 

approach, bounded by the 5th and 95th percentiles of the distributions (a) two-class 

analysis ; (b) three-class analysis. 
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Figure 5.22: The zone of possible shoreline locations, derived based on the HNN 

approach, bounded by the 5th and 95th percentiles of the distributions (a) two-class 

analysis; (b) three-class analysis. 
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5.6 Summary and conclusions 

This chapter aimed to study the impacts of intra-class spectral variability, which 

resulted in a distribution of possible class proportions for each image pixel, on the 

accuracy of super-resolution mapping and to study the possible approach to reduce 

these impacts through the reduction of the intra-class spectral variation. The research 

was undertaken through analyses of real remotely sensed data. Here, attention focused 

on the assessment of shoreline mapping using soft classification. Attention was 

focused on a small region in Isle of Wight in United Kingdom where a large degree of 

intra-class spectral variation exists for land cover classes (e.g., water and land). This 

study area was extracted from a Landsat ETM+ image. This ETM+ image was 

classified into land and water visually, then derived the shoreline and used as the 

reference shoreline data for the analyses. The image was then degraded spatially to 300 

m spatial resolution. 

To illustrate the impacts of intra-class spectral variation an analysis was implemented 

with two land cover classes (e.g., land and water) and this called two-class analysis. 

The ETM+ image was classified into land and water visually and used as the reference 

data for the analysis. Sub-pixel class composition estimates were derived for each pixel 

in the spatially degraded imagery with the end-members defined initially as the class 

centroids of the training data for input to the LMM. 

The inappropriateness of placing great confidence on the singe class composition 

prediction derived from a soft classification for shoreline mapping was illustrated. The 

shorelines could be defined from the output of a classification. The accuracy of the 

shoreline predictions was assessed by comparing them with the shoreline predicted 

from the classification of the original Landsat ETM+ image with 30 m spatial 

resolution. For a hard classification, the shoreline was resulted in an unrealistically 

jagged boundary and achieved with the least accuracy (e.g., average distance of 81.11 

m and the RMSE of 71.38 m). A refinement on this representation was to produce a 

super-resolution map based on the output of the soft classification. Here, contouring 

and HNN approaches were used to derive the super-resolution map and these were 

used to derive shoreline. Shoreline derived from contouring approach was visually the 

smoothest shoreline and the most accurate with the average distance of 41.91 m and 
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RMSE of 38.57, followed by HNN approach derived shoreline with the average 

distance of 45.00 m and RMSE of 41.13. 

The shoreline mappmg presented was derived using the single prediction of 

conventional LMM where the centroids of each class were used as end-members. The 

class centroids however do not fully describe the characteristics of the classes 

spectrally as classes typically display a degree of spectral variability. It was, therefore, 

possible to derive a distribution of class composition estimates for each pixel. Since 

there were a range of predictions of sub-pixel class composition derived, there would 

be a range of shoreline locations generated. To provide a guide for this, a range of 

possible shoreline positions determined using the 5th and 95th percentiles of 

distribution generated was derived. The width of the possible shoreline positions was 

varied along the study area. This type of information could be used to view the effect 

of intra-class variation on shoreline mapping highlighting a limitation for super

resolution mapping as the trust in the single set of class proportion predictions. 

Reducing the intra-class spectral variation may increase soft classification accuracy as 

well as shoreline prediction accuracy and reduce the range of possible positions of 

shoreline was the purpose of the second analysis in the chapter. This second analysis 

was implemented with three land cover classes and called three-class analysis in which 

water class was divided into two classes (e.g., turbid water and clear water classes) and 

this led to the reduction of the intra-class variation of water class compared with two

class analysis. The potential of the approach that reducing intra-class spectral variation 

was assessed by comparing the outputs of the sub-pixel estimation, shoreline mapping 

and range of possible shoreline positions from three-class analysis with those from 

two-class analysis. 

In terms of the sub-pixel class composition estimates, the accuracy of the predictions 

from three-class analysis (e.g., r = 0.94 and RMSE = 0.20) was higher than that from 

two-class analysis (e.g., r = 0.87 and RMSE = 0.26). The two correlation coefficients 

derived from these two analyses were statistically significant at 99% level of 

confidence. In terms of shoreline mapping, with both approaches used to generate 

shorelines, the accuracy of the shoreline in three-class analysis was higher than that in 

two-class analysis. For example, using the contour fitted to the soft classification 
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output, shoreline derived from three-class analysis produced RMSE of28.12 while that 

from two-class analysis achieved the RMSE of 38.57. Similarly, by using HNN based 

approach to derive shoreline mapping, three-class analysis provided the shoreline with 

RMSE of 37.21 m, while these figures in two-class analysis were reached to 41.13 m. 

Furthermore the width of the zone of possible shoreline locations, bounded by the 5th 

and 95th percentiles of the distributions of sub-pixel class composition estimates, was 

narrower from the three-class analysis than from two-class analysis. For example, 

using the contouring approach to derived shorelines, the average distance between the 

possible shorelines in three-class analysis was 250.13 m, while this number in two

class analysis reached to 311.29 m. Similarly, using HNN based approach it this 

average distance was 283.65 m in three-class analysis and 215.82 m in two-class 

analysis. 

In conclusion, this chapter has shown that intra-class spectral variation has negative 

impacts on the accuracy of sub-pixel class composition estimates and super-resolution 

mapping. This based on the assumption that the classes may be described by a single 

end-member. However, class spectral variability means that single spectrum may not 

adequately describe a class and therefore a distribution of possible class composition 

estimates should be derived. This resulted in a range of possible shoreline positions 

instead of just one single shoreline. Reducing the intra-class class spectral variability 

was a possible approach to reduce the negative impacts of intra-class spectral 

variability on these procedures. This increased soft classification and shoreline 

mapping accuracy and reduce the range of possible shoreline positions. 
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Chapter 6 

Summary and conclusions 

In this final chapter, an attempt is made to summarise the main results of the thesis and 

to discuss the conclusions that arise from the research findings. Possible future 

directions for research are suggested finally. 

6.1 Summary 

As presented in chapter 1, remote sensing has been used commonly as a source of 

information on land cover and land cover change. Unfortunately, the accuracy of both 

land cover mapping and monitoring activities is often limited by the presence of mixed 

pixels, which can make the single class allocation derived from a conventional hard 

classification inappropriate and inaccurate. Sub-pixel land cover classification (or soft 

classification) techniques allow for the partial and multiple class membership within 

each mixed pixel, and, therefore, may be used to refine the standard mapping process as 

well as increase the accuracy of land cover mapping from remote sensing (Wang 1990, 

Foody and Cox 1994, Tso and Mather 2001). The output of a soft classification is 

typically a set of fraction images that show the predicted coverage of each thematic 

class in the area represented by each pixel. Although soft classifications can provide a 

more accurate and appropriate representation of themes such as land cover than a 

conventional hard classification there are many concerns. In particular, the accuracy of 

soft classifications is often low. The main aims of the thesis were, therefore, to 

investigate the possible approaches to increase the accuracy of soft land cover 

classification and study one of the factors that may impact on soft classification 

prediction, the intra-class spectral variability, and highlight its implications for analyses 

based on soft classification such as the detection of land cover change and super

resolution mapping. Finally an approach to reduce the impacts of intra-class spectral 

variability on soft classification and its implications for analyses based on soft 

classification was explored. 

As a first step, the literature was studied to explore the potential of remote sensing to 

land cover mapping. Chapter 2 reviewed how remote sensing and related techniques 
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may be used to provide the means to map land cover. Consequently, a brief review of 

the issues involved in land cover mapping from remotely sensed imagery was provided. 

The problem of mixed pixels was presented and its solution through the use of soft 

classification was discussed. Specifically, a number of methods for sub-pixel class 

composition estimates were presented with some discussion of the approaches of the 

accuracy assessment. Although soft classifications estimate the sub-pixel class 

compositions within each pixel they do not indicate where the land cover classes are 

spatially located within the pixels. The sub-pixel class fractions may, however, be 

located geographically through super-resolution mapping. A brief discussion of super

resolution mapping using soft classification output was, therefore, presented. The 

chapter closed with the conclusion that although soft classifications can provide a more 

accurate and appropriate representation of themes such as land cover than a 

conventional hard classification, the application and development of such techniques 

require further research including the ways to increase soft classification accuracy, the 

impacts of intra-class spectral variability on sub-pixel class composition estimates and 

its implications to the real world applications from remotely sensed data. 

The possible approaches to increasing the accuracy of soft classification through the use 

of an ensemble of classifiers were investigated in chapter 3. A variety of different 

outputs can be derived from the application of a suite of classifiers applied to the same 

data set. The classification output derived may differ greatly in accuracy, on both a per

class and overall basis. By combining the outputs of a set of classifiers it is possible to 

derive a classification that is more accurate than any of the individual classifications 

used. The use of such an ensemble of classifiers has been shown to be able to increase 

the accuracy of hard classification but its potential for soft classification has rarely been 

demonstrated. Here, four methods for combining soft classifications to increase soft 

classification accuracy were assessed. These methods were based on (i) the selection of 

the most accurate predictions on a class-specific basis, (ii) the average of the outputs of 

the individual classifications for each case, (iii) the direct combination of classifications 

using evidential reasoning and (iv) the adaptation of the outputs to enable the use of a 

conventional (hard classification) ensemble approach. The potential of these approaches 

was assessed using coarse spatial resolution NOAA A VHRR imagery of Australia. 

NOAA AVHRR data were classified usmg two neural networks (a multi-layer 

perceptron and a radial basis function network) as well as a probabilistic classifier. 

200 



Overall classification accuracy was assessed using a generalized cross-tabulation matrix 

approach and showed that in terms of the overall accuracy, the classifications were 

broadly similar with an accuracy of about 61 % (section 3.5.2.1). Accuracy was also 

expressed on a per-class basis using the correlation coefficient between the predicted 

and actual (ground data) coverage. Based on the accuracy of the individual soft 

classifications, the classification outputs were combined using the four ensemble 

approaches proposed. The results highlighted that all four approaches to combining the 

soft classification outputs have been shown to be able to significantly increase 

classification accuracy. The increases in overall accuracy derived from these ensemble 

approaches ranged from 2.20% to 4.45% and large increases in individual class 

accuracy were also observed. Moreover, the differences in overall accuracy between 

the ensemble approaches and the most accurate individual classification were 

statistically significant at at least the 95% level of confidence. 

Although the ensemble of soft classifications can increase soft classification accuracy, 

the accuracy of land cover classification derived from soft classifications themselves as 

well as from their ensemble was still often low. This was clearly a major limitation to 

studies seeking to estimate class fractional cover and its change over time or the sub

pixel distribution of classes as in super-resolution mapping. Chapter 4, therefore, aimed 

to evaluate one major cause of error, intra-class spectral variability, and explore its 

impacts on the accuracy of soft classification prediction and highlight its implications 

for analyses based on soft classification such as the detection of land cover change. 

The impacts of intra-class spectral variability on the accuracy of soft classification were 

assessed using simulated data, so as to control variables impacting on the remotely 

sensed response. The data were classified using LMM. A series of analyses were 

undertaken in which the degree of intra-class variation was altered. Initially, the class 

centroids were taken to define the class end-member spectra and the intra-class variation 

was, therefore, ignored. In later analyses, a multitude of LMMs were applied. In this, 

every pixel in the training set was used to provide the end-member spectrum for the 

analysis. By unmixing the spectral response of a pixel many times with different end

members a series of sub-pixel class composition estimates could be derived for a pixel 

of any given spectral response. As a result of this it was possible to form a distribution 

of sub-pixel estimates for each pixel. The nature of this distribution depended on the 

location of the point in feature space and the degree of intra-class variation and class co-
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variation. The results indicated that intra-class spectral variability was an important 

factor that affects the estimates of sub-pixel class proportions. It has been shown that 

the accuracy of sub-pixel class composition estimation was a function of the degree and 

nature of intra-class spectral variation (section 4.3). 

The impacts of intra-class variation on the use of soft classification for change detection 

were assessed. This analysis focussed on the detection of deforestation in part of Para, 

Brazil from Landsat TM data. Specifically, two images separated by a four year period 

in which major forest clearance activities had been undertaken were used. The forest 

and, in particular the more heterogeneous, the non-forest classes exhibited a degree of 

variation in feature space. The class composition of pixels in each image was estimated 

using the LMM. Comparison of the estimates derived from the two time periods could 

then be derived in order to an estimate the sub-pixel scale change in class composition 

in time. 

Distributions of class composition estimates for each pixel in two time periods were 

derived. Comparison of these distributions may result in a different interpretation to that 

derived through comparison of the single class composition estimate derived from a 

standard sub-pixel analysis. This was illustrated with reference to several different 

examples drawn from the study area. The direct comparison of the single predictions 

from a standard soft classification analysis yielded a single estimate of deforestation. 

The apparent precision of the estimated amount of change could be dangerous (section 

4.4.3.2). Moreover, the distributions of class composition estimates provided a richer 

description of the class composition that may allow the change to be viewed from 

different perspectives. For example, the danger in using the single prediction from a 

standard application of the LMM could be recognised and the distributions used to 

indicate change. This could be taken from a range of perspectives. So rather than 

directly compare single predictions, one could, for instance, focus on the upper and 

lower quartiles of the distributions to derive what could be considered by some to be a 

relatively 'good' and 'bad' case scenario of change. This provided a useful extension 

and qualification to the standard use of single prediction estimates. 

Results in chapter 3 showed that soft classification accuracy may increase through the 

use of an ensemble of individual soft classifications. This was implemented using a 

single class composition prediction for image pixels in the individual classifications. 
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The study in chapter 4 (section 4.5) was, therefore, to combine different soft 

classifications in which the distribution of class composition estimates was used as the 

output for the individual classifications. Different distributions of possible class 

composition estimates for each class within each image pixel were derived from 

different set of end-members using as the input for LMM. Pure pixels derived from 

reference data and from PPI approaches were used as two different training data sets to 

derive end-members. As a result, two different distributions of possible sub-pixel 

proportion estimates of a class within each image pixel were derived. They were then 

combined to get the final combined distribution. The accuracy of the sub-pixel class 

composition estimates derived from the ensemble approach (r = 0.94 and RMSE = 0.17) 

was slightly lower than that from the PPI approach (r = 0.95 and RMSE = 0.15), but it 

slightly increased compared with the accuracy derived from the reference data approach 

(r = 0.94 and RMSE = 0.18). However, the distribution of sub-pixel class composition 

estimates in the ensemble approach was less spread than that from the two individual 

sub-pixel classifications. It was suggested that although ensemble based approach may 

not increase sub-pixel classification accuracy compared with the most accurate 

individual classification, it reduced the variety of possible sub-pixel class composition 

estimates so that may increase the confidence of standard sub-pixel analysis. 

Due to the impacts of intra-class spectral variability on the soft classification prediction, 

chapter 5 aimed to study the impacts of intra-class spectral variability on super

resolution mapping using soft classification as the input and investigate the possible 

approach to reduce these impacts through the reduction of the intra-class spectral 

variation. The impacts of intra-class spectral variation on the use of soft classification 

outputs in super-resolution mapping were assessed. This work focussed on mapping 

part of the shoreline of the Isle of Wight, UK, from Landsat ETM+ data. There was a 

large degree of intra-class spectral variation for the land cover classes to be mapped. A 

soft classification of the remotely sensed imagery was derived with two land cover 

classes, water and land, using a LMM. This soft classification was then used to derive a 

super-resolution map of the shoreline through the use of a Hopfield neural network and 

contouring approaches. It was evident that the accuracy of the soft classification as well 

as of the shoreline mapping declined as the degree of intra-class variation increased. 

Since a distribution of possible class compositions may be derived for each pixel, it may 

be preferable to be aware of the range of possible shoreline positions. To provide a 

guide to this, a range of the possible shoreline positions was determined and was 
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illustrated in the analysis using the 5th and 95th percentiles of the class composition 

distributions generated. 

A possible approach to reduce the impacts of intra-class spectral variation was 

investigated. This was based on the reduction of the intra-class spectral variation of the 

land cover classes used for sub-pixel classification and achieved by defining spectral 

sub-classes for use in the soft classification. To illustrate the method, the water class 

was divided into two sub-classes, based on relative turbidity (section 5.5). A three-class 

soft classification of the Landsat ETM+ image was derived with three land cover 

classes, turbid water, clear water and land, using a LMM. The accuracy of the soft 

classification was assessed using correlation coefficient between the predicted and 

actual (ground data) coverage. The accuracy of the shoreline was evaluated using 

RMSE based on the predicted and actual locations of the shorelines. The range of 

possible shoreline positions was indicated by the distance between the shoreline 

represented by the 5th and 95th percentiles of the class composition generated. The 

three-class analysis provided higher accuracies of the soft classification and shoreline 

mapping and narrower range of possible shoreline positions than those from the original 

two-class analysis. Soft classification from three-class analysis was achieved with the 

correlation coefficient of 0.94, while that from two-class analysis was 0.87. These two 

correlation coefficients were statistically significant at 99% level of confidence. 

Similarly, shoreline mapping from three-class analysis was derived with the RMSE of 

37.21 m, while this figure in two-class analysis was reached to 41.13m. Furthermore, the 

width of the zone of possible shoreline locations, bounded by the 5th and 95th 

percentiles ofland coverage, was narrower, 215.81m, from the three-class analysis than 

from two-class analysis, 283.65m. 

The results from chapter 5 highlighted that reducing intra-class spectral variation may 

be used to increase soft classification accuracy so that to increase shoreline mapping 

accuracy and reduce the range of possible shoreline positions. 

6.2 Conclusions 

A number of different soft classification outputs may be delivered from soft classifiers, 

which are different in terms of their methodology, applied to the same data set. These 

classification outputs may differ greatly in accuracy, on both a per-class and overall 
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basis. Classifiers that make different errors may sometimes usefully be combined to 

form an ensemble approach to classification. It was possible to result in a final 

classification that was often more accurate than the most accurate individual 

classification from the combination of the outputs of a group of different classifiers. 

Results from the analyses highlighted that ensemble based approaches may be used to 

significantly increase classification accuracy. 

The reliance on the single set of class proportion predictions derived from a standard 

soft classification for the analyses such as change detection and super-resolution 

mapping may be unwise. This trust was assumed that a single spectral end-member can 

be used to represent a land cover class to be mapped. This is likely to be unrealistic as 

classes typically display a degree of spectral variability. The degree of intra-class 

spectral variation impacts negatively on the accuracy of sub-pixel class composition 

estimates as it opposes to the assumption that a class can be represented by a single 

spectral end-member. A consequence of this is that, a distribution of possible class 

composition estimates should be derived from pixels instead of a single class 

composition prediction. The width of the distribution depends on the location of the 

pixel in the feature space and the degree of intra-class variation and class co-variation. 

This distribution provided a richer indication of sub-pixel class composition estimates 

and may be used to derive different scenarios of deforestation through the use of a post

classification comparison technique. 

Furthermore, using soft classification outputs as the input for super-resolution mapping 

process to derive shoreline map, the accuracy of shoreline mapping reduced when the 

degree of intra-class variation increased. Since a distribution of possible class 

compositions may be derived for each pixel, it may be preferable to be aware of the 

range of possible shoreline positions. This range of possible shoreline positions may 

show the confidence of the shoreline mapped from one single prediction of standard soft 

classification. The larger the width of the zone of possible shoreline positions the less 

confidence the shoreline mapped from one single prediction of soft classification. It was 

suggested that the trust in the single set of class proportion predictions as input for 

super-resolution mapping may be unwise and the distribution of possible predictions 

may be used to provide a richer interpretation for this process. 
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One possible approach of reducing the negative impacts of the intra-class spectral 

variation on the accuracy of soft classification was to reduce the degree of intra-class 

spectral variation. Specifically, this increased the accuracy of shoreline mapping and 

reduced the width of the zone of possible shoreline positions. 

6.3 Future work 

In chapter 3, some possible approaches to increase the accuracy of soft land cover 

classification though the use of an ensemble of classifiers have been investigated. 

Although the ensemble of soft classifications can increase soft classification accuracy, 

the accuracy of land cover classification derived from soft classifications themselves as 

well as from their ensemble was still often low. Further research addressing this issue 

need to be undertaken to be able to increase soft classification accracy. This may be the 

optimisation of the training data characteristics for soft classification to increase 

classification accuracy. Different training data sets with different class components will 

be evaluated to find the one that may achieve the highest accuracy for the soft 

classification algorithm used. 

In chapters 4 and 5, LMM was the only convenient tool used to derive the sub-pixel 

scale information on class composition. By unmixing the spectral response of a pixel 

many times with different end-members a series of sub-pixel class composition 

estimates could be derived for a pixel of any given spectral response. As a result of th is 

it was possible to form a distribution of sub-pixel estimates for each pixel. The 

implications of the distributions derived for the analyses such as change detection and 

super-resolution have been illustrated. It was suggested that the distribution of possible 

predictions could be used to provide a richer interpretation of sub-pixel cover and 

change. It, therefore, would be worth to explore other soft classifiion approaches which 

can derive distribution information of the sub-pixel predictions for each pixel. 

In chapter 5, shoreline mapping from soft classification output was studied. The results 

highlighted that by using a soft classification to a coarse spatial resolution imagery to 

estimate the class composition within a pixel and applying super-resolution mapping to 

locate classes geographically, an accurate prediction of the shoreline position may be 

derived. However, the accuracy of the shoreline was varied along the shoreline in the 

study area. A possible approach may be a new research direction is to derive a soft 
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classification based on local training data to increase soft classification accuracy and 

ultimately the accuracy of shoreline predictions (Muslim et aI., 2006). 

In chapter 5, the impacts of the intra-class spectral variability on soft classification in 

general and on shoreline mapping in particular were reduced by decreasing the intra

class spectral variation of the land cover classes used. In particular, attention focused on 

the division of a land cover class into sub-classes used for soft classification. However, 

due to the limited number of spectral wave-bands used in the remotely sensed imagery, 

the number of end-members is also limited, it may be impossible to increase the number 

of end-members. Further research may be worth to explore other possible approaches 

that can reduce the impacts of intra-class spectral variability on the accuracy of sub

pixel classification. 
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