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Mapping rural land cover features, such as trees and hedgerows, for ecological 
applications is a desirable component of the creation of cartographic maps by the 
Ordnance Survey and inclusion in geographic database systems such as OS 
Mastermap®. Based on the phenomenon of spatial dependence, sub-pixel mapping 
can provide increased mapping accuracy of such features. A simple pixel swapping 
algorithm for super-resolution sub-pixel mapping was applied to predicted class 
proportions derived from a soft classification of simulated and real fine spatial 
resolution remotely sensed imagery. Input proportions were super-resolved into sub­
pixels using a specified zoom factor. Sub-pixels were then iteratively swapped until 
the spatial correlation between sub-pixels for the entire image was maximised. The 
standard pixel swapping algorithm was developed to increase the accuracy with which 
rural land cover features were predicted. Firstly, the algorithm was modified to 
increase the likelihood of predicting linear features, such as hedgerows, on the basis 
of measured anisotropy within class proportions. Secondly, an image fusion 
component was integrated to enable the use of multiple datasets such as panchromatic 
imagery, to refine the prediction of the geometric characteristics of the predicted 
features. The new pixel swapping technique, increased the accuracy with which rural 
land cover features compared with the standard technique and substantially increased 
the utility of such land cover maps compared with conventional mapping techniques, 
such as classification. 
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Chapter 1 

1. Introduction 

In this thesis, a super-resolution pixel swapping technique for mapping land cover is 

presented, with a specific emphasis on the mapping of small rural features, such as 

hedgerows and trees, from fine spatial resolution remotely sensed imagery. 

In this preliminary chapter, land cover is defined and the value and importance of its 

mapping is described and discussed. The availability of land cover information, such 

as remotely sensed imagery, is then discussed, including an introduction to the key 

principles of remote sensing and the process of classifying remotely sensed imagery 

for the creation of land cover maps. A common practical limitation of classifying 

remotely sensed imagery (mixed pixels) is then introduced and the use of super­

resolution techniques as a tool to minimise the effect of mixed pixels and enable more 

accurate mapping of land cover is introduced. The chapter then presents a rationale 

for the research and closes with a statement of the objectives of the research presented 

in this thesis. 

1.1 Land Cover 

Land cover is an intrinsic component of many environmental systems and represents a 

key variable in scientific research. Land cover is defined as 'the description of the 

physical nature of the land surface, for example, vegetation, buildings, water or bare 

soil' (Wyatt et al., 1993). Land cover plays an important part in systems such as the 

water cycle (Congalton et al., 1998), where a heavily vegetated area such as a forest 

will, for example, affect the speed at which water is returned to its source (in contrast 

to a recently deforested area) and the climate cycle, for example, the role of different 

land cover objects within the creation of regionalized climate (Kerr and Ostrovsky, 

2003). 
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The term land cover should not be confused with the term 'land use'. Land use, as 

defined by (Campbell, 1996), is "the use ofland by humans, usually with emphasis on 

the functional role of land in economic activities". In contrast, land cover could be 

considered to be the physical cover of the land surface. Land use is not directly 

observable and although it might be possible to infer land use from independent land 

cover objects (for example, a large area of trees (land cover objects) might suggest a 

land use of forest) there will be significant uncertainty in this prediction (Lambin et 

al., 2001). For example, each of the four examples of land cover (vegetation, 

buildings, water, bare soil) in the definition by Wyatt et al. (1993), above, may 

represent many different contrasting land uses. 'Vegetation' land cover could 

represent either agricultural land use in the form of cereal fields or alternatively 

domestic land use in the form of a sports playing field. 'Buildings' land cover might 

suggest a residential housing estate or a commercial business park. 'Water' land cover 

might suggest a human-made reservoir for recreational purposes or an agricultural 

irrigation system. 'Bare soil' land cover might suggest agricultural land use or a 

commercial quarry. Accordingly, combining land cover types contextually, by 

considering the characteristics of each land cover individually and in aggregate may 

allow accurate prediction of land use. 

1.1.1 The importance ofland cover mapping 

Information on land cover is used in many different applications. Inventories of land 

cover data, such as the International Geosphere Biosphere Programme's (IGBP) Data 

and Information System (DIS) (Belward et aI., 1999), are used to determine and 

develop land management procedures. Repeated land cover mapping through the 

creation of temporal sequences facilitates change detection and monitoring (Stefanov 

et aI., 2001). Indeed, the use of remote sensing data is of great utility to global leaders 

involved in the Kyoto protocol, a worldwide discussion on global climate change 

(Rosenqvist et aI., 2003). Advances in land cover planning can be effected by the 

study of the interaction of land cover types for the development and implementation 

of land use policies and strategies around human existence. 

3 



"Three decades of research have given us a far more nuanced view of Earth's 

"resources". Our concerns now center on understanding how the land surface 

helps govern the primary cycles of energy, water, and carbon, and how the 

variability of those cycles may be affected by our own activities." 

(Editorial, 2001) 

To assist our understanding of the Earth's surface, mapping land cover and in 

particular, land cover objects, is important (Foody, 2002b). For example, the ability to 

locate individual buildings within a scene would be useful for town planning, or in the 

context of this research, the ability to locate and extract small rural features would 

allow for their accurate cartographic mapping. The creation of land cover maps dates 

as far back as l086 with the creation of the Domesday Book; a collation of parish 

records of land cover to national scale. Since the 1890s, the Ordnance Survey has 

mapped the whole of Great Britain creating maps at a variety of scales. Greater and 

more accurate information on land cover objects would be of great utility to the 

Ordnance Survey, for inclusion within modem-day maps of the UK. 

1.1.2 The availability of land cover data 

Due largely to advances in technology, the availability of land cover data in recent 

years has increased. The availability of land cover data can be described in two ways: 

1) what data have been acquired and 2) how are these data dispersed. 

Remote sensing is a well-used source of land cover information, most commonly 

acquired in the format of a remotely sensed image, from ground-based, aerial-based 

or satellite-based survey (Cihlar, 2000). Ground-based methods of data acquisition, 

such as field survey, provide potentially accurate land cover information over a small 

area. Such methods are often inappropriate for use in particular types of application 

due to the large acquisition times, the small area covered and the expense of such data 

relative to that provided by other sources of remotely sensed data (Veitch et al., 

1995). Field survey is frequently used as a source of remotely sensed data. For 

example, airborne remote sensing provides data, such as aerial photography, 
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considerably faster than field survey and these data can be provided at a fine spatial 

resolution in a variety of fonnats, relatively inexpensively (Congalton et at., 1998). 

Additionally, many commercial finns are able to provide aerial photography "on 

demand", i.e., they are able to purposively collect data in a specified area as required 

by the needs of the application (Mullerova et aI., 2005). 

There are many examples of cartographic mapping that involve the integration of 

mUltiple sources of land cover data. For example, the Land Cover Map of Great 

Britain (LCMGB: http://www.ceh.ac.uk) is a digital dataset that classifies the whole 

of Great Britain into 25 land cover types (Fuller et al., 1994). It was generated from 

satellite sensor imagery, mainly Landsat Thematic Mapper (TM) imagery, and is 

created approximately every 10 years. These data are also being integrated into 

CORlNE (Co-Ordinating Infonnation on the European Environment), a mapping 

initiative set up by the European Environment Agency to provide a Europe-wide map 

of land cover in 44 classes (http://science.ceh.ac. uk/subsites/CORlNE). Such maps 

and mapping initiatives rely heavily on the plentiful availability of accurate land 

cover infonnation. In recent years, there has been a great deal of investment in the use 

of satellite-based remote sensing (Loveland and DeFries, 2004). Satellite-based 

remotely sensed imagery is often preferable to aerial imagery since the imagery 

acquired from the satellite sensor can be provided at local to global scales, with 

greater frequency of repeat coverage enabling, for example, the assembly of temporal 

data sets covering large areas of the Earth's surface (Gregoire et at., 2003). 

Satellite sensors launched in the last 10 years are now providing imagery at fine 

spatial resolutions, such as Systeme Pour L'Observation de la Terre (SPOT), (5 m), 

Ikonos multispectral (4 m), Quickbird multispectral (2.6 m), Ikonos panchromatic (1 

m) and Quickbird panchromatic (0.6 m). Quickbird multispectral satellite sensor 

imagery, for example, is available at a spatial resolution of 0.6 m, which uses 

Quickbird panchromatic imagery to increase the spatial resolution of the standard 

multispectral imagery via a pansharpening fusion technique (Vijayaraj et at., 2006). 

Remotely sensed data are available in an ever-burgeoning array of fonnats, from 

panchromatic, multispectral and hyperspectral image formats to imagery acquired 

using laser scanning, such as Light Detection and Ranging (LiDAR), and radar 

scanning, such as Synthetic Aperture Radar (SAR). 
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There have been many advances in technology, both in satellite remote sensing and 

image processing, which, when combined with the relaxation of legislation 

concerning existing and new data collection (Aplin et al., 1997) and the 

commercialisation of remote sensing, have resulted in the proliferation of the 

availability and use of remotely sensed imagery for land cover mapping. 

Consequently, the technologies and techniques used in the creation ofland cover 

maps are continually developing, as further advances in the types of maps and the 

technology that underpins the creation of these maps is achieved. In addition, the 

ways in which the data that these maps provide is disseminated is constantly 

changing. For example, the Ordnance Survey maintains a database of feature-level 

geometric information on many different types of land cover objects across the 

majority of the United Kingdom, called OS MasterMap©. This database can be used 

to generate highly specialised maps where, for example, only the information 

requested by the user is displayed on the map. One such implementation is Digimap 

(http://www.digimap.com).aninternet-based service, where highly specialised maps 

can be generated instantly. For example, an agency in charge of water services could 

use the Digimap service to generate a map for a predefined area that displays only 

rivers and field boundaries, which could be used to determine access routes to their 

water supplies, for example, across private land. The growth in use of the Internet and 

electronic communications and developments in data storage technology have greatly 

influenced the availability and distribution of remotely sensed data (Su et al., June, 

2003). Broadband internet connections have enabled the transmission of small 

numbers of data quickly and easily. Moderate numbers of data can be recorded to a 

DVD inexpensively. Improved electronic storage capabilities now mean that a single 

data centre can store terabytes of data, which can be distributed efficiently via the 

Internet or private FTP sites to authorised users. 

In the last two years, remotely sensed imagery has been placed into the public 

spotlight as several commercial applications became available. Foremost is the 

Google Earth service (http://earth.goog1c.com), a software application that provides 

near global coverage of the Earth using remotely sensed imagery. Users are able to 

pan and zoom within the application and add pinpoints to favourite places or get 

directions to popular attractions (Butler, 2000). Similar services are those that 
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combine infonnation from a Geographic Infonnation System (GIS) to provide a 

combination of satellite sensor imagery, aerial photographs and cartographic maps, 

such as Google Maps (http://maps.googJe.com), Multimap (http://multimap.com) and 

Streetmap (http://streetmap.co.uk). Motoring organisations in the UK, such as The 

AA (http://theaa.com) and the RAe (http://www.rac.co.uk) utilise this technology and 

further extend the functionality of these maps, by offering comprehensive route 

planner services, providing users of these services with detailed directions and maps 

of the route between any two or more locations, with near European coverage. Such 

services represent only a small sample of the proliferation of using remotely sensed 

data in general purpose applications but are representative of the rapid expansion of 

the use of these data from the academic domain through to the commercial and public 

domains. As the availability of land cover infonnation continues to increase and the 

use of land cover object databases, such as OS MasterMap or Google Earth develops, 

so the requirement for techniques to process these data to provide infonnation on all 

kinds of land cover objects, including hedgerows and trees, for use in such databases 

also increases. 

1.2 Principles of Remote Sensing 

Earlier sections of this chapter evaluated the importance of land cover maps and 

considered the potential benefits of using remote sensing to create these maps. The 

following section describes how remote sensing can be used to assist in the creation 

of land cover maps. Initially, the theory and physical basis of remote sensing are 

described. Methods for overcoming some of the practical limitations are presented 

and then some key principles relevant to use of remotely sensed imagery, such as the 

effect of spatial resolution and mixed pixels, are introduced. The aims and objectives 

of this research project precede a conclusion. 
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1.2.1 Physical basis 

(Campbell, 1996) defines remote sensing as: 

"the practice of deriving information about the Earth's atmosphere and surface 

using images acquired from an overhead perspective, using electromagnetic 

radiation reflected or emitted from the Earth's surface". 

All physical objects on the surface of the Earth reflect electromagnetic radiation at 

certain frequencies within the electromagnetic spectrum. Remote sensing equipment 

is able to monitor and measure reflected radiation and reflectance data, recorded in 

the sensor's instantaneous-field-of-view (IFOV), that are considered to be 

representative of the land cover type at the land-level. A remotely sensed image, 

however, is not a map of land cover; it is a collection of measured radiation values. It 

is variation in measured radiation, that is, variation in brightness per waveband, 

across an image that facilitates prediction of land cover and allows identification of 

features within an image, for example, using knowledge of the way in which 

measured radiation interacts with the environment and the reflectance characteristics 

of different types of land cover. Such information is commonly acquired during field 

study on the ground, for example, using techniques such as field spectroscopy to 

record the reflectance characteristics of different land cover types (Baath et af., 2002). 

For example, the red and near infrared (NIR) portion of the electromagnetic spectrum 

is commonly used to map vegetation, since chlorophyll in plants absorbs radiation in 

the red wavelengths and the internal scattering properties of leaves increases 

reflectance in the NIR wavelengths of the electromagnetic spectrum (Kerr and 

Ostrovsky, 2003). Such information enables classification and mapping of many land 

covers within a remotely sensed image. 

Remote sensing systems measure reflected radiation in sets of wavebands. A 

waveband can be defined by its starting position and width in relation to the 

electromagnetic spectrum. For example, the Landsat TM sensor measures in seven 

distinct wavebands across the spectrum (blue, green, red, near infrared, middle 

infrared, thermal infrared, middle infrared) in the wavelengths (excluding the thermal 
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band) from 0.45 flm to 2.35 flm (with the Enhanced Thematic Mapper (ETM) 

providing an additional 15 m spatial resolution panchromatic image), whereas the 

Airborne Visible-Infrared Imaging Spectrometer (A VIRIS) has 224 narrow 

wavebands in approximately the same wavelengths as the Landsat sensor but due to 

the narrower wavebands, produces a finer spectral resolution. The decision on an 

appropriate sensor to use should be made based on the requirements of the project, 

dependent primarily on the features of interest and the amount of detail required (Ju et 

at., 2005). For example, a project monitoring the growth of tropical forests in Africa 

might be suited to Landsat TM imagery which offers moderate spatial and spectral 

resolution but wide spatial coverage, whereas a project monitoring the growth and 

decline of individual species of tree in a tropical forest in Africa would require greater 

spectral detail, for which A VIRIS may be more suitable, due to its finer spectral 

resolution. 

1.2.2 Images and Pixels 

A remotely sensed image is a collection of discrete pixels containing data on 

measured reflectance of the Earth's surface. Pixels are the smallest element of the 

image and represent an output device to which a remotely sensed observation is 

assigned. The Ground Resolution Element (GRE) of the sensor is the actual area that 

a sensor "sees" in making an observation. The number of pixels in an image will 

depend on the IFOV and the swath (the width of the image on the ground) of the 

sensor. In theory, each pixel should be representative of the reflectance from its own 

area and it should, therefore, be possible to use the image to identify the land cover on 

the ground. In reality, however, several factors affect this ability. These include the 

spatial resolution, available wavebands (spectral resolution), completeness of the 

imagery, as well as the make and model and the point spread function (PSF) of the 

sensing equipment (Campbell, 1996), in addition to several practical limitations, 

which affect the quality of the acquired imagery. Such limitations include 

atmospheric interference (e.g., cloud cover), geometric inconsistencies (e.g., 

movements of the sensor platform, relief variability and the curvature of the Earth) 

and technical problems with the remote sensing system. It is common practice to post-
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process remotely sensed imagery using a variety of correction procedures to minimise 

the effect of such limitations (Ju et al., 2005). 

1.2.3 Radiometric Resolution 

Radiometric resolution is a term used to describe the sensitivity of a sensor to the 

magnitude of electromagnetic energy it receives, that is, it is a measure of its ability to 

discriminate slight differences in energy (Campbell, 1996), commonly referred to as 

(levels of) "brightness". The finer the radiometric resolution of a sensor the more 

sensitive it is to detecting small differences in reflected or emitted energy and the 

more levels of brightness are in the resultant image (Richards and Jia, 2006). 

The maximum number of brightness levels available depends on the number of bits 

used in representing the energy recorded. Thus, if a sensor used 8 bits to record the 

data, there would be 2/\8 digital values available, ranging from 0 to 255, whereas an 

11 bit sensor would have 2/\ 11 values ranging from 0 to 2047 and would have a finer 

radiometric resolution (Richards and Jia, 2006). 

For fine spatial resolution, the sensor tends to have a small IFOV. A consequence of a 

small IFOV, however, is that the amount of energy detected decreases as spatial 

resolution increases which leads therefore to a decrease in radiometric resolution. To 

maintain both a fine spatial resolution and radiometric resolution would require a 

broader wavelength range detected for a particular channel or band, which would 

decrease the spectral resolution of the sensor (Forshaw et aI., 1983). Conversely, 

coarser spatial resolution would allow increased radiometric and/or spectral resolution 

(Tso and Mather, 2001). Thus, the three types of resolution must be balanced against 

the desired capabilities and objectives of the sensor. 

1.2.4 Spatial resolution 

The spatial resolution of an image is a term used to describe the size of the area on the 

ground from which the sensor receives electromagnetic radiation in each pixel (and is 

therefore approximately equal to the GRE, most commonly referred to as the support, 
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that is, the size of the area from which sample data are recorded). A quantitative 

definition of spatial resolution is not generally possible, since it can be interpreted in a 

variety of ways (Atkinson and Aplin, 2004). In most cases, the geometric properties 

of the sensor are used instead. For example, the Landsat TM has a support of 30 m by 

30 m. Pixels in the images have dimensions of 30 m by 30 m and accordingly the 

spatial resolution is said to be 30 m. The Landsat Multispectral Scmming System 

(MSS), for example, has a support of 79 m by 79 m, but due to the design of the 

imaging device, has an overlap of 11 m between pixels, so that each pixel represents 

an area of 57 m by 79 m. Spatial resolution is a fundamental consideration in any 

research involving remotely sensed imagery, since it affects several facets of the 

resultant imagery, such as the scale of spatial variation within the imagery and the 

frequency of mixed pixels. Generally, it is true that the finer the spatial resolution of 

the imagery the smaller the ground objects that can be distinguished within it (but 

equally more imagery is required to cover larger areas on the ground) (Atkinson and 

Aplin, 2004). 

1.2.5 Spatial variation 

Selection of an appropriate remote sensing scanner in order that the resultant imagery 

is suitable for the intended research is important, since land cover types identifiable at 

one spatial resolution may not be identifiable at a different spatial resolution 

(Woodcock and Strahler, 1987) due to the effect of spatial variation. For example, 

mapping a large fairly homogeneous area such as desert would require a sensor such 

as the National Oceanographic and Atmospheric Adm~.nistration Advanced Very High 

Resolution Radiometer (NOAA A VHRR) which in local coverage mode has a spatial 

resolution of 1.1 km, whereas mapping a small area with high frequency spatial 

variation in land cover, such as many urban areas, might require a sensor with a finer 

spatial resolution. Depending on the intended use of the imagery, a spatial resolution 

of 5 m, as available from the SPOT Panchromatic sensor, could be used to extract 

individual features, such as buildings, from urban areas. 

Spatial variation is an important consideration when creating maps of land cover. 

Spatial variation describes the variation between land cover types within a remotely 
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sensed image and is intrinsically linked with the spatial resolution of the image. The 

concept of the L-resolution and H-resolution models of spatial resolution (Strahler et 

al., 1986; Woodcock and Strahler, 1987) describes the effect of spatial resolution on 

the scale of spatial variation observable within remotely sensed imagery. In the L­

resolution case, features of interest are smaller than the spatial resolution of the 

imagery and cannot be resolved spatially. In the H-resolution case, features of interest 

are larger than the spatial resolution of the imagery and can be resolved. The L­

resolution case describes a frequent problem with remotely sensed imagery, that of 

mixed pixels. Mixed pixels occur where a single pixel contains more than one land 

cover type. Mixed pixels are one of the most common sources of error in image 

classification. In general, the propensity for mixed pixels to occur increases as the 

spatial resolution of the imagery becomes coarser. In some cases, therefore, 

increasing the spatial resolution of the imagery may reduce the number of mixed 

pixels. However, increasing the spatial resolution beyond the H-resolution case may 

lead to oversampling, where variation within land cover types occurs. For example, an 

area of land cover at a coarse spatial resolution may be labelled "woodland" but at a 

finer spatial resolution, individual species of tree and areas of bare soil or grass within 

the forest may become discernible, and pixels that should ideally be labelled 

"woodland" may be incorrectly labelled "bare soil" or "grass". The effect of mixed 

pixels on the interpretation of a remotely sensed image therefore depends on the 

spatial resolution of the remotely sensed imagery, the sizes of features to be resolved 

and the objectives of the research being carried out. 

In most cases, finer spatial resolutions will reveal greater spatial variation than coarser 

spatial resolutions. However, this is wholly dependent on the types of land cover, the 

spatial arrangement of the land cover and the spatial frequency of the land cover types 

within the image. 

1.2.6 Spatial dependence 

Geostatistics is a set of techniques for the analysis of spatial data, first presented in 

(Matheron, 1965) and popularised in (Journel and Huijbregts, 1978), primarily as a set 

of techniques to assist in the mining industry. The cornerstone of geostatistics is the 
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phenomenon of spatial dependence. Spatial dependence is the tendency for proximate 

observations to be more alike than those further apart (Curran and Atkinson, 1998; 

Curran et aI., 1998) and can generally be described by the variance and semi-variance 

methods of the geostatistical paradigm. The phenomenon of spatial dependence is 

critical, since it enables the prediction of the relationship between two or more points 

in both discrete and continuous probability distributions. For example, by assuming 

spatial dependence, it is possible to make predictions on the spatial arrangement of 

land cover within a remotely sensed image. Super-resolution techniques are one 

example of this and are commonly implemented in a mapping objective to overcome 

the difficulties associated with mixed pixels in the classification of remotely sensed 

Imagery. 

Super-resolution techniques generally seek to adjust the spatial resolution of remotely 

sensed imagery so as to optimise the scale of spatial variation for the mapping 

objective. Such adjustments are made by increasing the spatial resolution of the 

imagery via a process known as downscaling. Estimated proportions of land cover 

classes within pixels (e.g., from a soft classification) can be used to perform a 

classification on the imagery at a finer spatial resolution (at the sub-pixel scale) and 

by assuming spatial dependence within and between pixels, the accuracy with which 

land cover classes are mapped can be increased by maximising spatial correlation 

between pixels such as to increase the spatial clustering within and between pixels 

(Atkinson, 2005). 

1.3 Research objectives 

Developments within the field of remote sensing, particularly as a result of 

technological advances, have led to a significant increase in the use of remotely 

sensed imagery for the creation of land cover maps. In particular, remotely sensed 

imagery at finer spatial resolutions than were previously available (from sources such 

as those described in Section 1.1.2), has increased the accuracy with which such maps 

can be created. 
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1.3.1 Rationale 

To increase our understanding of, and ability to manage, the natural and built 

environments of the Earth, it is important to have information on land cover. Rural 

linear land cover features, such as hedgerows and pathways, are an important 

constituent of rural biodiversity. Hedgerows, in particular, support a rich diversity of 

plants, insects, birds and mammals and form an integral part of the UK Biodiversity 

Action Plan (UKBAP, http://www.ukbap.org.uk), cited as a "priority habitat". Over 

the last 40 years, up to half of the UK's hedgerows have been removed (McCollin, 

2002), which is known to have had a profound effect on many different components 

of the UK's rural biodiversity (Robinson and Sutherland, 2002). Accordingly, 

accurate maps of these rural linear features would be of great utility to the 

organisations involved in the protection of UK hedgerows. 

Land cover information is available from many different sources, but in recent years, 

a common source of such information has been remote sensing. Technological 

advances in remote sensing have enabled fast and relatively inexpensive collection of 

large amounts of data whilst developments in image processing have enabled accurate 

and semi-automated analysis of these data. One of the most important technological 

developments has been the ability to acquire remotely sensed imagery at finer spatial 

resolutions than was previously available. Fine spatial resolution remotely sensed 

imagery is often used to extract more information from a scene than would have been 

possible at coarser spatial resolutions. Information on small land cover objects is 

important for use in many applications, such as land use planning and management, 

GIS databases and change detection, particularly in the case of monitoring and 

maintaining the UK's natural hedgerows and rural areas. With the increased 

availability of fine spatial resolution remotely sensed imagery, the identification of 

land cover features smaller than was previously possible becomes feasible. However, 

the existence of mixed pixels in such remotely sensed imagery remains the most 

common source of error in land cover maps, and despite advances in classification 

techniques, such as the development of soft (or fuzzy) classification, a solution to the 

problem is still required (Foody, 2002b). 
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1.3.2 Aims and Objectives 

In most cases, the ability to create accurate land cover maps relies on the availability 

of accurate feature-level geometric information on the location and position of 

individual land cover types. There are many techniques in common use for the 

creation of land cover maps, starting with classification techniques, which are covered 

in greater detail in Chapter 2. However, as finer spatial resolution remotely sensed 

imagery became available, so did the effect of mixed pixels increase (Foody, 2002b), 

since small land cover artefacts that were not visible at coarser spatial resolutions, 

occupy appreciable proportions of pixels in fine spatial resolution remotely sensed 

Imagery. 

To make best use of fine spatial resolution remotely sensed imagery for land cover 

mapping, techniques that actively allow for the effect of multiple land cover types 

within single pixels (mixed pixels) are required. Super-resolution mapping is one such 

set of techniques. Based on the phenomenon of spatial dependence and using 

information on the proportions of individual classes within pixels, super-resolution 

mapping has already been seen to map land cover with increased accuracy over 

conventional classification methods (Atkinson, 1997; Verhoeye and De Wulf, 2002). 

The objective of the research presented in this thesis was to develop an accurate 

technique for mapping small features in fine spatial resolution imagery using super­

resolution techniques. The aims of this research were: 

• Evaluate the potential of super-resolution techniques for accurate mapping of 

land cover and land cover features, in particular, linear features 

• Define the important characteristics of land cover features and investigate the 

extent to which super-resolution mapping can be used to map these 

characteristics 

• Develop an algorithm that can map land cover more accurately than standard 

mapping techniques, such as hard classification, with appropriate 

consideration to those characteristics described previously 
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The rationale for the objective is presented in 1.3.1. In order to test the development 

of the algorithm presented in this thesis, land cover features such as hedgerows and 

trees were used as target features and standard accuracy assessment techniques were 

used in evaluating the super-resolution technique for the objective. 

1.3.3 Thesis Outline 

The thesis is organised accordingly: Chapter 2 sets the contextual background to this 

research. Firstly, the motives and key concepts that form the rationale of this research 

are described. Secondly, a review of existing methods and techniques from the 

literature is presented, including a description of each of the methods used in this 

research. Chapter 3 introduces each of the data sets used in this research for evaluating 

and testing the techniques. Chapter 4 introduces the super-resolution pixel swapping 

technique in a practical sense, by evaluating its performance when applied to 

simulated and real remotely sensed imagery. Chapters 5 and 6 represent the primary 

contribution of this research. Chapter 5 presents a pixel swapping technique for 

identifying and mapping rural features, including linear features, with greater 

accuracy than was previously possible. Chapter 6 presents an image fusion 

framework, to integrate multiple sources of data. In Chapter 7, a discussion of the 

important issues that arose during this research is provided. Chapter 8 closes the 

thesis with conclusions. 

1.3.4 Publications 

The research presented in this thesis has resulted (in part or in full) in the following 
publications (or submissions) and conference presentations: 

Peer-reviewed journal papers: 

Thornton, M.W., Atkinson, P.M., and Holland, D.A. Super-resolution image fusion 
for sub-pixel mapping of rural land cover features from fine spatial resolution 
remotely sensed imagery. To appear as part of a journal special edition arising from 
the RSPSoc Annual Conference, Cambridge, 2006. 
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Thornton, M.W., Atkinson, P.M., and Holland, D.A., 2007. Sub-pixel mapping for 
extracting rural linear land cover features from fine spatial resolution remotely sensed 
imagery. Computers & Geosciences, in press. 

Thornton, M.W., Atkinson, P.M., and Holland, D.A., 2006. Sub-pixel mapping of 
rural land cover objects from fine spatial resolution satellite sensor imagery using 
super-resolution pixel swapping. International Journal of Remote Sensing, 27,473-
491. 

Conference proceedings/presentations: 

Super-resolution mapping oflinear land cover features from remotely sensed imagery. 
International Symposium on Remote Sensing of Environment (ISRSE), Hawaii, 2003. 

Sub-pixel identification of fine spatial resolution land cover objects from Quickbird™ 
satellite sensor imagery using super-resolution mapping techniques. Remote sensing 
and Photogrammetry Society (RSPSOC) Annual Conference, Aberdeen, 2004. 

Simulated annealing for super-resolution land cover mapping from fine spatial 
resolution remotely sensed imagery. Remote sensing and Photogrammetry Society 
(RSPSOC) Annual Conference, Portsmouth, 2005. 

1.4 Conclusion 

Remotely sensed imagery is a common source of information for creating land cover 

maps. A remotely sensed image, as a set of discrete pixels, is a record of reflected 

electromagnetic radiation of an area of the Earth's surface. Using knowledge of the 

reflectance characteristics of the Earth's surface, many objects can be identified from 

the radiation they reflect. Traditional techniques achieve this by classifying remotely 

sensed images into a set of discrete land cover classes and representing these classes 

visually in a map of land cover. In recent years, the availability of remotely sensed 

imagery in general has increased, but notably technological advances have lead to the 

availability of remotely sensed imagery at fine spatial resolutions. 

Fine spatial resolution remotely sensed imagery generally enables the production of 

more accurate classification maps. However, the derisory effect of mixed pixels on 
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classification accuracy is still apparent. Using super-resolution techniques, such as 

sub-pixel mapping based on the phenomenon of spatial dependence, pixels can be 

classified with a greater accuracy than standard classification techniques. 

This introductory chapter has discussed the basic principles behind remote sensing 

and image analysis for predicting land cover on the ground and stated the objectives 

of the research in this thesis. Chapter 2 continues in more detail by presenting and 

analysing the key set of techniques, which form the basis of this research project. 
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Background and Methods 
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Chapter 2 

2. Background and Methods 

2.1 Introduction 

The methodology required for super-resolution mapping, the primary goal of this 

research, is a process whereby (i) input remotely sensed imagery is classified (using 

one or more of a range of available soft classification techniques), to provide input 

data for (ii) a super-resolution mapping technique. During the course of this research, 

the functionality of an existing super-resolution pixel swapping technique was 

extended to produce accurate land cover maps of small rural features, such as 

hedgerows and trees. 

In this chapter, the methods and techniques used in this research project are reviewed. 

Initially, a review of the concept of classification is presented, followed by an analysis 

of two soft classification methods used in this research project. Following the review 

of classification techniques, super-resolution mapping is introduced and a background 

to existing techniques is presented. The pixel swapping technique used in this 

research is then presented and analysed. 

During this research, the super-resolution pixel swapping technique was modified in 

two key ways: (i) 'linearisation' was performed to increase the accuracy with which 

linear features were predicted and, (ii) an image fusion component was integrated to 

further increase the accuracy of prediction and refine feature-level delineation of 

feature characteristics. Accordingly, the background to the role of feature 

identification and image fusion and existing techniques are presented. 
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The final component of this chapter reviews techniques that were used for assessing 

the accuracy of the methods used in this research. Various aspects of accuracy 

assessment are discussed and the methods employed are reviewed. The chapter closes 

with conclusions. 

2.2 Classification 

Classification is one of the most common objectives for which remotely sensed 

imagery are applied (Foody, 2002b). Land cover classification is the process of 

converting remotely sensed imagery (spectral domain) into a representation ofland 

cover on the ground (spatial domain), often in the form of a land cover map (Tso and 

Mather, 2001). This is achieved by assigning pixels (containing digital numbers) to 

land cover types (land cover classes) (Campbell, 1996). Classification can be divided 

broadly into two types - hard classification and soft classification. 

2.2.1 Hard classification 

Hard classification comprises a large proportion of all available classification 

techniques (Foody, 2002a; Foody, 2002b). Traditional hard classification techniques 

are formulated under a key principle, that is, a pixel is assigned to a single class 

(Atkinson and Aplin, 2004). Common techniques for performing hard classification 

are the maximum likelihood, minimum-distance-to-means and parallelepiped methods 

(Campbell, 1996). 

The maximum likelihood (ML) classifier is perhaps the most commonly implemented 

approach to hard classification. Classes within an image are defined on the basis of 

measured training data based on Bayes' Theorem. ML classification proceeds by 

estimating the histogram of each class in multivariate feature space from training data. 

The mean and variance-covariance are then estimated which characterizes the 

"likelihood". The maximum posterior probability of a pixel belonging to a class is 

then calculated by normalizing the product of the likelihood and the prior. A pixel is 
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then allocated to the class with which it has the highest posterior probability- the 

maximum likelihood (Atkinson and Lewis, 2000). In other words, the ML classifier 

measures the mean and variance-covariance between bands per class, such that the 

probability of a pixel belonging to a class can be estimated from its spectral response. 

The ML classifier is often described as the most accurate of the three main 

conventional methods of hard classification (Foody, 1990; Congalton, 1991; 

Campbell, 1996; Foody, 2002b), though the accuracy can depend on an appropriate 

sample size, accurate training data to ensure the class characteristics, as determined 

by mean vector covariance matrices, are representative and that the data are 

accurately represented by a normal distribution. The ML classifier is also fairly 

statistically and computationally intensive, though given the availability of 

technology for image processing, as well as field spectroscopy for collection of 

training observations, the ML classifier is the most widely used hard classification 

technique. 

Classification techniques often make assumptions about the data that they are being 

applied to. For example, the ML classifier is based on the assumption that the prior 

probability in the information class has a Gaussian (normal) distribution (Mather, 

1999) which, in reality, is rarely the case; generalising the distribution of a complex 

land cover class, which often incorporates unpredictable deviations from normality, 

may be inappropriate. 

Hard classification techniques commonly make the assumption that individual pixels 

are discrete units (on the ground), that is, they are pure pixels containing a single land 

cover class. In reality, where land cover classes are not discrete units and intergrade 

across many pixels, this assumption is not justifiable (Foody, 2002a). Pixels often 

contain a mix of more than a single land cover type. These pixels are called mixed 

pixels and are a fundamental consideration in remote sensing research. (Foody, 2002a; 

Foody and Mathur, 2006) suggest that alternative methods for hard classification, 

such as evidential reasoning or neural networks, are no more or less suited to 

classification than conventional hard classification, similarly due to the questionable 

reliability of the assumptions inherent in these techniques. However, a well-
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established set of classification techniques, so-called soft classifiers, provides a 

possible solution to the problem of mixed pixels. 

2.2.2 Soft classification 

In a remotely sensed image, the spatial frequency of land cover and the frequency of 

sampling (factors such as the spatial resolution of the sensor, effects of the point­

spread function and to a lesser extent, pre-processing corrections) wi11likely result in 

mixed pixels (pixels containing more than one class) (Gebbinck, 1998; Choi and Lee, 

2001; Tso and Mather, 2001; Hochberg and Atkinson, 2003). For example, a pixel 

might exhibit 60% forest, 30% urban and 10% water yet using the maximum 

likelihood classifier it would be assigned to a single class (in this example, it would 

be assigned to forest). In most cases, this is inappropriate. 

Soft classification (sometimes referred to as fuzzy classification) techniques evolved 

as a response to the problem of mixed pixels, where, on the assumption that a pixel is 

a linear combination of the spectral responses of the land cover within it, the 

proportions of each class within a pixel can be estimated and a proportional 

representation of each class is given, such that, instead of assigning a pixel to a single 

class (a one-to-one relationship), a pixel is assigned to multiple classes (a one-to­

many relationship) (Tso and Mather, 2001). 

According to (Tso and Mather, 2001), soft classification techniques fall into three 

categories: fuzzy set theory, artificial neural networks and spectral mixture analysis. 

Fuzzy set theory algorithms work on the existence of fuzzy partitions between classes, 

which can be used to construct fuzzy membership values for each class. A 

straightforward implementation of fuzzy set theory is a 'softened' version of the 

traditional hard maximum likelihood classifier known as the fuzzy maximum 

likelihood classifier (Wang, 1990). It uses the fuzzy mean and fuzzy covariance 

matrix, and outputs fuzzy membership grades for each pixel (Tso and Mather, 2001). 

Earlier work on fuzzy methods led to the development of the fuzzy c-means clustering 

algorithm (Bezdek et aI., 1984) which may be used for either unsupervised (Key et 

aI., 1989) or supervised (Cannon et al., 1986; Foody and Cox, 1994) classification. 

Fuzzy rule bases are an extension to the fuzzy set membership functions and can be 
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used to generate a series of rules on how to unmix pixels in feature space (Wu et al., 

2001). (Ho et at., 1994) suggest a series of techniques for combining multiple 

classifiers to maximise classification accuracy by using different classifiers based on 

decision rules. 

Artificial neural networks (ANNs) may be used to soft classify remotely sensed 

imagery (Bernard et aI., 1997). The network is trained initially with mixed pixels 

using pixel proportions. Input vectors generate a membership value for each class. 

This information is then repeatedly fed forward and back propagated through the 

network such that it learns the characteristics of the classes and accordingly assigns 

pixels to multiple classes based on their spectra. In most cases, ANN classification is 

more accurate than traditional classifiers (Foody, 1996; Atkinson and Tatnall, 1997). 

Two of the most commonly used soft classification techniques are the fuzzy c-means 

and the linear mixture model, both of which are used in this thesis and, therefore, are 

described in more detail below. 

2.2.2.1 Fuzzy c-means 

The fuzzy c-means clustering algorithm was first presented by (Bezdek et al., 1984), 

as a more robust clustering algorithm than traditional algorithms, such as the 

ISODATA method (Tso and Mather, 2001) and as a means of overcoming the false 

clustering problem (Acqua and Gamba, 2001). Initially, the number of clusters 

(classes) in an image is chosen, and a c x n sized fuzzy covariance matrix is created 

accordingly, where c is the number of clusters and n is the number of pixels. Then, the 

mean value of each cluster is calculated and using a membership weighting exponent 

and a distance metric, such as the Mahalanobis distance, the membership of each 

pixel in the covariance matrix to each cluster is updated iteratively (Campbell, 1996). 

The membership weighting exponent, m, can be varied such that the fuzziness 

(hardness) of the classification can be controlled, that is, pixels can be "members" of 

many classes or only a few. The fuzzy c-means classifier has been used extensively in 

a variety of different applications (Cannon et at., 1986; Nguyen and Cohen, 1993; 

Foody and Cox, 1994; Bastin, 1997; Foody, 1998). 
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2.2.2.2 Linear mixture model 

Spectral mixture analysis uses pure pixels (or "endmember" pixels), which are 

homogeneous pixels, that is, pixels that are known to contain a single class. Each 

endmember may be found in feature space, around which a polyhedron can be drawn 

- all possible mixtures are found within this polyhedron in feature space (Settle and 

Drake, 1993). An example of spectral mixture analysis is the linear mixture model 

(Adams et al., 1985; Settle and Drake, 1993). 

Mixture modelling assumes that within a pixel, the spectral responses of each class 

are mixed linearly in proportion to the area that each class represents. Therefore, the 

spectral response of each pixel is a linear combination of the endmember spectra of 

each class and contains information on the proportion of each class found within that 

pixel. Spectral endmembers for each class can then be used to unmix the pixels and 

predict the proportions of each class within each pixel (Adams et at., 1985; Settle and 

Drake, 1993; Foody and Cox, 1994; Bastin, 1997; Manolakis et aI., 2001; Shimazaki 

and Tateishi, 2001; Settle, 2002). 

Soft classification comprises a set of alternative techniques to hard classification by 

providing information on the number of classes within a pixel and the proportion of 

the pixel that each class occupies. However, the information provides only the 

proportions of each class: the location of these proportions is unknown. Super­

resolution techniques are commonly used to map the location of class proportions 

within pixels. 

2.3 Super-resolution techniques for land cover mapping 

Remotely sensed imagery can be used, through classification and a variety of post­

classification techniques, to create land cover maps. Some of these techniques draw 

on the basic concepts and theory of geostatistics, in particular, the phenomenon of 

spatial dependence, and whilst the common geostatistical tools, such as the variogram 

are not used in this research, a brief description of geostatistical theory is presented. 
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After a brief review of geostatistical theory, advanced techniques for land cover 

mapping are presented, including the concept of sub-pixel mapping, which ultimately 

leads to the super-resolution techniques used in this research: pixel swapping and, 

subsequently, an updated version based on simulated annealing. 

2.3.1 Geostatistical theory 

Geostatistics can be defined as the study of phenomena that fluctuate in space 

(Deutsch and Journel, 1998). Geostatistical methods first appeared to assist in spatial 

prediction in the mining industry (Matheron, 1971). However, these methods are 

increasingly being applied to a diverse range of fields, including geological, 

atmospheric and environmental sciences and more recently, geostatistics has been 

used in remote sensing applications (Curran and Atkinson, 1998; Curran et al., 1998). 

Geostatistics offers a collection of tools that have been developed to aid the 

understanding and modelling of spatial variability. One use of such information 

would be for the prediction of unknown values within a sample (Isaaks and 

Srivastava, 1989). In the prediction of unknown values, the phenomenon of spatial 

dependence (that is, proximate values are more alike than those further apart) is 

commonly used. For example, a geostatistical tool such as the variogram can be used 

to describe the relationship between pairs of known values in a given space. This 

information can then be used to interpolate values at locations for which no sampled 

data exist (Lloyd and Atkinson, 2004). Collectively, geostatistical theory, and its tools 

and techniques can be used to model across a set of data, as well as providing 

estimates as to the uncertainty of the model and its predictions. 

2.3.2 Sub-pixel mapping 

(Atkinson, 1997) used an assumption of spatial dependence within and between sub­

pixels to map the location of land cover classes within pixels. This was achieved by 

using the output from a soft classification, which provided information on the 

proportions of each class in each pixel. The assumption was valid for re-creating the 
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layout and areal coverage of the land cover, and the algorithm produced an acceptable 

degree of accuracy for semi-natural land cover. However, the technique compared 

sub-pixels to pixels and so the complex mixing in the data caused the simple 

technique to suffer from problems. 

(Verhoeye and De Wulf, 2002) used similar assumptions as (Atkinson, 1997), but 

formulated them as a linear optimization problem. The algorithm was applied to 

synthetic imagery and a Systeme Pour L'Observation de la Terre (SPOT) 

multispectral image of Sahelian wetlands. Compared with traditional hard 

classification techniques, acceptable results were produced, but the method was 

similarly impaired to that of (Atkinson, 1997) in that sub-pixels were compared to 

pixels, rather than to other sub-pixels, causing the appearance of linear artefacts. 

(Zhan et aI., 2002) developed the assumptions of (Atkinson, 1997) and (Verhoeye and 

De Wulf, 2002) and applied the technique to two of the four mixed pixels scenarios 

suggested by (Fisher, 1997), the boundary pixel and intergrade pixel. They used a 

two-stage methodology. Initially, the maximum likelihood (ML) classifier was used 

to derive maximum likelihood probabilities (MLP) of class membership and then, 

secondly, applied an inverse distance-weighting predictor to interpolate a probability 

surface at the sub-pixel scale with the MLP values for the central pixel and 

neighbourhood pixels at the pixel scale. The image was classified according to the 

interpolated MLP values at the sub-pixel scale. However, comparison between pixels 

was only made on sub-pixels in either the current sub-pixel or the corners of 

neighbouring pixels which reproduced the scale and linearity limitations that arose in 

the (Atkinson, 1997) and (Verhoeye and De Wulf, 2002) methods. 

Further work on the Verhoeye and De Wulf (2002) method was carried out using 

genetic algorithms (Mertens et aI., 2003). Working on the basis of spatial dependence 

on both simulated and real imagery, the genetic algorithm is a search and replace 

optimisation algorithm based on the principles of natural selection and genetics. 

Based on a fitness value, sub-pixels were iteratively compared with other sub-pixels, 

such that the "fitter" sub-pixels were used to influence the selection process and vary 

the arrangement of sub-pixels within an image until spatial dependence between sub­

pixels was optimised. When compared with traditional hard classification techniques, 
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the genetics method was quantitatively more accurate on both the simulated and real 

Imagery. 

(Aplin and Atkinson, 2001) developed a technique for sub-pixel mapping that 

operated on a "per-field" basis. Most sub-pixel mapping techniques classify within 

sub-pixels independently from ancillary data (e.g., vector data) that may be available, 

whereas the per-field technique grouped individual sub-pixels of similar land cover 

based on available Ordnance Survey polygons. Their method required the use of two 

datasets, the Ordnance Survey Land-Line (a vector dataset of land cover polygons) 

and Compact Airborne Spectrographic Imager (CASI) imagery. Four land cover 

classes were selected from the imagery and a supervised ML classification was then 

performed using the Mahalanobis distance measure. A soft classification was also 

applied. The two datasets were then integrated by rasterising the vector Land-Line 

data and then relating the two as ASCII files. Per-field classifications were carried out 

on these data, performed on both the hard classified and soft classified imagery. For 

the hard classified imagery, the land cover class from the CASI image was assigned to 

the (new) Land-Line polygons. For each polygon, the area covered by each class was 

summed, and the modal land cover class was assigned to the polygon as a whole. For 

the soft classified image, the Mahalanobis distance of each pixel and the Land-Line 

polygon within each CASI pixel were ranked, with land cover labels being assigned 

based on the shortest distance and largest proportional cover. 

Aritficial neural networks (ANNs) can be used for the creation ofland cover maps. 

(Paola and Schowengerdt, 1995) have previously established the benefits of using an 

artificial neural network (ANN) over conventional classification methods such as the 

ML classifier. (Tatem et aI., 2001) used a Hopfield neural network (HNN) to map the 

location of land cover classes within pixels based on the output of a soft classification. 

The HNN has been shown to be able to predict the location of class proportions to 

produce a sub-pixel scale land cover map for use in land cover target identification 

and for mapping of sub-pixel scale land cover features on both simulated and real 

imagery (Tatem et at., 2002b; Tatem et at., 2002a; Tatem et at., 2003). (Mertens et 

aI., 2004b) have applied the use of neural networks and wavelet coefficients to sub­

pixel mapping and (Nguyen et aI., 2005) extended the use of the HNN to include 

LiDAR data for the creation of super-resolution maps using digital surface models. 
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Other sub-pixel techniques have enabled multiple-scale land cover change detection 

(Braswell et aI., 2003), land cover mapping, target detection from unknown sub­

pixels using spatial filtering (Ashton, 1998) and sub-pixel land cover mapping using 

mixture analysis (Ju et at., 2003), the linear mixture model (Manolakis et at., 2001), 

indicator geostatistics (Boucher and Kyriakidis, 2006), spatial attraction models 

(Mertens et aI., 2006) and shoreline mapping (Muslim et at., 2003; Muslim et aI., 

2006). 

Making more realistic assumptions about the contents of pixels and providing a 

mechanism for minimising the effect of mixed pixels lead to increases in 

classification accuracy. In most cases, the sub-pixel techniques described above 

demonstrated significantly increased classification accuracy over conventional hard 

classification methods. 

2.3.3 Sub-pixel mapping: pixel swapping 

(Atkinson, 2004b) proposed a super-resolution pixel swapping algorithm. Land cover 

proportions from pixels in a remotely sensed image were transformed into sub-pixels 

and allocated randomly. The goal was to maximise spatial correlation by varying the 

spatial arrangement of the sub-pixels within each pixel- the proportional values of 

the pixels (and quantity of sub-pixels allocated to each class) remained fixed. A 

distance weighted function of each sub-pixel and its neighbours was predicted that 

determined the position and attractiveness of the sub-pixel within the pixel. Once this 

information was stored, sub-pixels within pixels were initially allocated randomly, 

and the algorithm then compared sub-pixels. The most attractive and least attractive 

sub-pixels in each pixel were compared. If the attractiveness of the least positive sub­

pixel was less than that of the most attractive neutral sub-pixel in the same pixel, then 

the land cover classes were swapped (otherwise no change was made). 

The pixel swapping algorithm works as follows. Within each iteration, the 

attractiveness (.ft) of each sub-pixel for a particular class k is predicted as a distance­

weighted function of its neighbours: 
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In 

Ai = AJxJ= 2 AijZk(X) 
j=1 

(1) 

where m is the number of neighbours, Zk (x) is the value of the class, k (now 

constrained to be either 0 or 1), at the /h pixel location, x j' and A Ii is a distance­

dependent weight predicted as: 

(
-h. ) Aij = exp ----;;-

(2) 

where hi} is the distance between pixel Xi (for which the attractiveness is desired) and 

the neighbour Xj and a is the non-linear parameter of the exponential distance-decay 

model (here the exponential model is used, but this is not mandatory). 

The algorithm is run for a fixed number of iterations or until no swaps are made. In 

(Atkinson, 2004b), the algorithm operated quickly and efficiently on simulated 

imagery and the basic, simulated shapes, on a visual comparison with the input 

shapes, were mapped and reformed accurately. 

The pixel swapping algorithm is a simple and efficient super-resolution technique. It 

uses the exponential distance-decay model in ranking the attractiveness of sub-pixels 

within pixels. This model allows control over the way in which sub-pixels are ranked, 

through the use of the non-linear parameter, which controls the gradient and descent 

of the curve of the model. A further parameter to be set by the investigator is the 

distance at which sub-pixels surrounding the target sub-pixel are included (the 

bandwidth). For example, a bandwidth setting of two utilises the sub-pixels 

immediately surrounding the sub-pixel in question, and the sub-pixels immediately 

surrounding those. That is, a moving window with the target sub-pixel at the centre. 
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2.3.3.1 Simulated Annealing 

Simulated annealing is an optimisation algorithm that is used to perturb a set of input 

data until an objective, defined by some predetermined criterion, is met (Deutsch and 

Joumel, 1998). Simulated annealing is similar in concept to the pixel swapping 

technique described above, yet simulated annealing is based on a more rigorous 

statistical background (Tso and Mather, 200 1). 

Within a pixel swapping framework, simulated annealing can be used to distribute 

sub-pixels randomly within pixels and subsequently make swaps between sub-pixels 

based on conditional probability (changes in energy). Over a series of iterations, a 

temperature parameter, starting high, is gradually cooled until 'frozen'. At each 

iteration, the prediction of the swap is compared with the objective function. A swap 

is retained when the predicted swap results in a move towards the objective function. 

At higher temperatures, the probability of a swap being made is greater, where large 

differences in energy are allowed. As the system cools, only small increases in energy 

are allowed and accordingly, fewer swaps are made, with the potential for incorrect 

swaps decreasing over the course of the annealing schedule. The schedule lasts until 

repeated iterations do not lower the objective function (i.e. no swaps are made) or 

when a pre-specified minimum value is met. The effect of the annealing schedule is to 

introduce error into the system to avoid getting stuck in a local minimum. 

2.3.3.2 Swap criteria 

There are a wide variety of options for defining the conditions under which a swap is 

accepted; that is, assessing whether a predicted swap is suitable or not. 

In this research, the criteria are initially defined, thus: 

One target and one background sub-pixel (i.e., a 1 (target) and a a (background)) 

within a pixel were selected randomly. Ai values for each sub-pixel were calculated as 

per the pixel swapping method described above. The sub-pixels were then swapped 

and the Ai values were recalculated. If the swap resulted in an increase in Ai for the 
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target (1) sub-pixel, then the swap was retained. If the Ai attractiveness decreased for 

the target (1) sub-pixel then an annealing schedule was used to detennine whether the 

swap was retained. In Chapter 6 of this thesis, where image fusion was used to 

combine multiple sources of data, the criteria were updated. Complete details are 

provided in Chapter 6. 

2.4 Identifying land cover features 

The objective of the research presented in this thesis was to develop a super­

resolution mapping technique for the mapping of rural land cover features. An 

emphasis was placed on the mapping of linear rural land cover features, such as 

hedgerows (although other land cover features, such as trees, were also of great 

interest). Commonly used concepts in existing linear feature extraction techniques 

aided in the development of a "linearised" version of the pixel swapping technique 

and so a brief review of these common feature extraction techniques is now presented. 

However, the techniques described here were not used directly in this research. The 

linearised pixel swapping technique is described in detail in Chapter 5. 

Feature extraction can be viewed as the objective of finding a set of vectors that 

represent an observation (Lee and Landgrebe, 1993; Choi and Lee, 2001). Defining a 

feature is a complex task since features can have many dimensions and varied 

characteristics, which often causes problems (Kovalev and Petrou, 1996). In simple 

tenns, a feature can be a physical object (e.g., a tree, hedgerow, or building), an area 

(e.g., a field or city or geographical region) or alternatively a land cover class (e.g., 

within feature space) (Choi and Lee, 2001; Kuo and Landgrebe, 2002). Features 

extracted from images can be linear or areal: linear features, for example, are roads, 

pathways, hedgerows or any linear artefact found within the scene, such as the edge 

or boundary of a field; areal features are, for example, buildings, trees or fields 

(Mayer, 1999; Shi and Zhu, 2002). 
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2.4.1 Edge Detection 

Edge detection (or enhancement) is a generic term that covers a range of feature 

extraction techniques for finding edges based on spatial filtering or templating. A 

commonly used edge detector is the Canny operator (Canny, 1986; Heath et a!., 

1997). An image is first smoothed by Gaussian convolution and a two-dimensional 

first derivative operator is then applied to create a gradient magnitude image, with 

regions of high spatial first-derivatives forming along edges found within it. 

Subsequently, non-maximal suppression is tracked along the ridges, whereby any 

pixels not contained within the ridge are set to zero. This is controlled by two 

threshold values, Tl and T2, where Tl > T2. Tracking commences on a point on a 

ridge with a value higher than Tl, and continues until the ridge falls below T2. This 

thresholding is used to ensure that noisy edges are not broken up into a series of edge 

fragments. Careful selection of suitable thresholds is required in order to minimise an 

inevitable trade-off between extraction of all edges in the image and an increase in 

noise. Two other edge detectors are the Roberts Cross operator and the Sobel operator 

(Heath et al., 1997; Richards and Jia, 1999), which consist of a pair of convolution 

masks (Roberts Cross is 2x2 pixels, Sobel is 3x3 pixels) where the second mask is 

identical to the first mask, except rotated through 90 degrees. Each mask is applied 

separately to the image and then combined to find the magnitude and orientation of 

gradients at each point. This produces a smoothed image with edges that have been 

both enhanced, and in some cases, widened (by several pixels). 

2.4.2 The Hough transform 

A well-known technique for detecting lines in images is the Hough transform (Hough, 

1962). The Hough transform invariably receives as its input, the output from an edge 

detection algorithm. Hough presented the transformation procedure as a method to 

detect the presence of groups of collinear or almost collinear figure points in pictures 

for the extraction of complex patterns. Initially developed for extracting patterns from 

charged particles in bubble tubes and then in astrophysics for charting stars, the 

Hough transform has been developed by researchers (Duda and Hart, 1972; Leavers, 
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1993; Stewart, 1999) as an efficient line detector for remotely sensed imagery. It is 

particularly suited to noisy imagery, such as synthetic aperture radar (SAR) (Skingley 

and Rye, 1987). Any single point (e.g. X;, Y;) has an infinite number of lines passing 

through it. This point can be represented uniquely based on the distance from the 

origin (P) and the angle (e) in slope-intercept (parameter) space. All points in image 

space can be transformed into lines in parameter space which are then divided up into 

a number of discrete accumulator cells which count each time a line is projected into 

it. Peaks in these cells mark the equations of the collinear points in x y space. This is 

the classical Hough transform. However, a problem exists when lines become vertical 

since the parameter space becomes unbounded. Therefore, a norn1alised Hough 

transform is more commonly used. 

The Hough transform is efficient for simple shapes such as lines, curves and circles. If 

shapes become mathematically complex, as Duda and Hart (1972) point out, line 

matching can be computationally intensive when there are a large number of points. It 

is possible, however, to adjust the parameters, such that the cells used to search for 

lines are bounded to a specified area using the angle-radius parameters. The Hough 

transform has also been applied to SAR imagery for the extraction of faint, thin lines, 

such as horse tracks in coniferous woodland (Skingley and Rye, 1987). The Hough 

transform, however, pays no regard to contiguity within the image, such that it would 

be possible for completely unrelated or meaningless groups of points to influence the 

line and relies heavily on thresholding (i.e., the choice of what is a "high" value in 

accumulator cells) which introduces bias and operator error into the results. (Davies, 

1987) also presents a difficulty with the Hough transform, whereby objects that 

possess more than one straight edge are not detected with optimal sensitivity. The 

solution to the problem is a further parameterisation of the transform, which 

consequently requires further computation. 

2.4.3 Active contour models: snakes 

Active contour models (also called 'snakes') are "an energy minimizing spline guided 

by external constraint forces and internal forces that pull it toward features such as 
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lines and edges" (Kass et aI., 1988). (Nixon and Aguado, 2002) use the analogy of 

using a balloon to 'find' a shape, i.e. the balloon is placed outside the shape, enclosing 

it. The air is then taken out of the balloon, making it shrink and the edges of the shape 

are detected when no more air can be released from the balloon. Snakes, therefore, 

define a set of points that enclose the target feature. Snakes are advantageous over 

other feature extraction techniques, since image data are integrated into the process, 

knowledge-based constraints can be used, and desired contour properties can be 

achieved, all in a single process (Gunn and Nixon, 1997). Furthermore, the predicted 

edges are not restricted to straight edges as contouring techniques allow the prediction 

of the edges of curvilinear features. 

(Abd-Alamageed et at., 2003) describe common problems with statistical pressure 

snakes. Specifically, they note that the shape must exhibit a strong edge in order for it 

to be detected and accordingly causes difficulties for detecting shapes in "weak 

gradient fields" - i.e., where the transition between target and background is not 

pronounced. Furthermore, these techniques assume that low-order statistics, such as 

the mean and the standard deviation, represent the target area accurately. Snakes also 

require complex parameterisation. The authors present a generalised non-parametric 

pressure snake based on the work of (Parzen, 1962). Initially, they estimated a 

probability density function (pdf) of the target and background and implemented a 

Gaussian kernel function, followed by a k-point moving average filter, to reduce noise 

from the pdf. When executed, the snake 'collapsed' around the target within five 

frames, using a 30 control-point snake. Increased accuracy was achieved by 

increasing the number of control-points, although this resulted in a trade-off between 

speed and accuracy. 

(Gunn and Nixon, 1994; Gunn and Nixon, 1997) have researched extensively the use 

of snakes, and, in work designed to overcome the problem of complex 

parameterisation and initial placement of the snake, developed a dual active contour 

system. A dual contour system is applied by placing two snakes on the image, one 

outside the feature, as in the conventional snake technique, followed by an additional 

snake within the feature. The outer snake is then contracted to fit the outer edge, 

whilst the inner snake is expanded outwards to fit the inner edge. Neither snake was 

programmed with any preference about which direction to move in. That is, they were 
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simply allowed to acquire their natural shape. This reduced the need for 

parameterisation and initialisation, and allowed a comparison between the two 

contours' energies, enabling the rejection of weak local minima. In each test case, the 

dual contour technique performed more accurately than conventional single contour 

methods, especially when there was noise or complex minima in the image, since the 

dual contour technique was less sensitive to such factors. 

2.4.4 'Linearisation' 

In this research, a linearisation technique was developed to increase the accuracy of 

predicted linear features in the super-resolved output of the pixel swapping technique. 

A summary of the linearisation technique is now provided. The technique is described 

in full in Chapter 5. 

The linear features of primary interest in this research are hedgerows found in rural 

areas of the UK countryside. In addition to information in the literature, fieldwork 

was undertaken to investigate and define the properties and characteristics of such 

hedgerows. This fieldwork is described in greater detail in Chapter 3. Three key 

characteristics of hedgerows, which were used to assist in the selection of suitable 

study areas and data, were established: variable size (width and length), curvature (the 

tendency for the geometric orientation of hedgerows to change along its width and 

length) and the existence of embedded objects (trees and other land cover artefacts 

were commonly found within hedgerows). Each of these properties represented 

important considerations when developing the linearisation technique. 

Existing feature extraction techniques (above) were reviewed to provide information 

on common practices in the detection of linear features. It occurred, however, that 

individual techniques, such as those described above, were not configured optimally 

for the detection of small linear features, such as hedgerows. The linearisation 

technique was developed such that an estimation of the existence of linear features 

(and the associated geometric orientation of such features, often referred to in this 

research as 'direction') in remotely sensed imagery, based on the input soft 
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proportions, was used to increase the likelihood of predicting contiguous linear 

features in the super-resolved output. 

It is worth noting, however, that linear features are not explicitly extracted. That is, 

the term 'features' in this research is generally used to infer the prediction of features 

as contiguous pixels (in a visible sense) as defined by their classification. For 

example, a land cover class labelled "hedgerow" defines a feature, or set of features, 

which are "hedgerows". However, given the super-resolved output of the pixel 

swapping technique, creating actual objects is relatively straightforward, using a 

simple raster-vector conversion, as performed in standard GIS applications. 

2.5 Image fusion 

The use of image fusion techniques for increasing the accuracy of mapping land cover 

classes was investigated. A discussion and review of existing image fusion technique 

follows. 

Image fusion (or image merging, image integration or multi-sensor data fusion) is a 

concept comprising a set of techniques to combine multiple sources of data (Wald, 

1999). The goal of image fusion is to integrate complementary information from 

multi sensor data such that the new images are more suitable for the purpose of human 

visual perception and computer-processing tasks (Li et aI., 1995; Pi ella, 2003). 

Through the combination of multiple sources of data, it is possible to extract more 

information than from each source independently (Chavez, 1991) - '1 + 1 = 3' (Pohl 

and Van Genderen, 1998). For example, a common implementation of image fusion is 

to merge multispectral remotely sensed imagery with panchromatic remotely sensed 

imagery (Li et aI., 2002). Panchromatic imagery often has a finer spatial resolution 

than multispectral imagery, which is useful in object recognition, but lacks the 

spectral information for use in applications such as mapping land cover (Chibani and 

Houacine, 2002b; Chibani and Houacine, 2002a). By fusing complementary imagery, 

a multispectral image with the spatial resolution of the panchromatic image can be 

produced (Liu, 2000). Data fusion is not limited to simply merging two images 
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together; ancillary data, such as topographic maps, GPS information or other 

geophysical information can be used in fusion (Harris and Murray, 1989). 

Before any image fusion technique is performed, input images must be geometrically 

co-registered to ensure that the input images are both representative of the same area 

on the ground (Pohl, 1999). The commonly used technique for co-registration is to 

resample one image to match the other, through the use of ground control points 

(GCPs) which are sites that are easily distinguishable on each input image (Campbell, 

1996). Registration accuracy has a direct result on the accuracy of the fused output 

and should be accounted for in any analysis. Figure 2.1 illustrates the fusion process. 

Figure 2.1: The image fusion model (pohl, 1999) 

Image fusion techniques are often divided into three categories, dependent on the 

stage at which fusion takes place (Li et al., 2002): 

1. Pixel level - individual pixels are merged 

2. Feature level- groups of pixels ("features") are merged 

3. Decision level- complete images are merged 

38 



which can be visualised as shown in Figure 2.2: 
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Figure 2.2: The three levels of image fusion (Pohl and Van Genderen, 1998) 

One of the common image fusion techniques is Intensity-Hue-Saturation (IHS) (Pohl, 

1999; Tu et al., 2001; Chibani and Houacine, 2002a; Simone et aI., 2002). In simplest 

terms, one of the image components (1, H or S) is replaced with a similar component 

from the image to be fused. Three channels of the input data set are transformed from 

RGB to IHS colour space (Gillespie et aI., 1986; Pohl and Van Genderen, 1998). The 

resultant image is a linear combination of the input multispectral chanl1els and fused 

panchromatic channel (Campbell, 1996). IHS is suitable for many applications, 

although since the initial transformation resamples the image, there can occasionally 

be a small loss of spectral information. 

Principal components analysis (PCA) can be used for image fusion. A standard PCA 

is often used to identify the optimum linear combination of the original channels that 

account for maximum variation of pixel values in an image (Campbell, 1996). The 

linear combination is calculated for each pixel by summing each available channel 

multiplied by a specified coefficient. The coefficients, estimated by a complex 

process, account for maximum variation within the data set. In a typical PCA, a set of 

coefficients is created for each input band (PC1 - PCn) . Each set of coefficients yields 

progressively less information. A simple method for using PCA for fusion is to 

replace PC1 with the image to be fused (Chavez et al., 1991), which is often referred 

to as principal component substitution (PCS), since PC1 contains information that is 

common to all bands of the multispectral image, whereas the other PCs tend to 
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contain spectral information specific to individual bands. A drawback to the PCA 

approach is that the output is affected by the data within it, and a PCA for a 

subsection of an image may not be representative of the entire image, yet a PCA for a 

complete image may not be appropriate due to computational restrictions. 

Wavelets are a subset of frequency domain processing techniques (Wu et af., 2005), 

which, similar to transformation techniques such as the Fourier transfOlm, are 

designed to decompose a signal into its component frequencies (Nunez et aI., 1999; 

Nixon and Aguado, 2002). Information on individual frequencies of a remotely 

sensed image can be used to make assumptions about the contents of the image 

(Nixon and Aguado, 2002). (Li et al., 2002) used the discrete wavelet frame transform 

(DWFT) to merge Landsat and SPOT remotely sensed imagery. Input images were 

decomposed into a DWFT representation at the same spatial resolution . A selected 

sub-band of the multispectral image was then fused with the remaining sub-bands in 

the panchromatic image, and an inverse DWFT transform performed to produce a one 

band "fused" output. Figure 2.3 visualises the methodology: 

Figure 2.3: The discrete wavelet frame transform 
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Results from the DWFT fusion technique were demonstrated to often be more 

accurate when compared with other fusion techniques such as IHS and PCA (Li et al., 

2002). 

2.5.1 Super-resolution image fusion 

The techniques described above represent only a few fusion techniques in common 

use. Pixel level techniques represent the majority of fusion techniques, although the 

accuracy of any fusion technique is reliant on the accuracy of geometric co­

registration. In this research, a fusion technique was developed and incorporated to 

increase the accuracy of the super-resolved output of the linearised pixel swapping 

technique. A summary of the fusion technique is now provided. The technique is 

described in full in Chapter 6. 

The fusion technique used in this research is a pixel level technique. The successful 

use of such techniques in a super-resolution context has previously been demonstrated 

to be feasible (Rajan and Chaudhuri, 2002; Zomet and Peleg, 2002; Nguyen et aI., 

2006). Information from panchromatic imagery were used to increase the accuracy of 

the prediction of the location of sub-pixels being swapped, such that the prediction of 

high-level characteristics of features (i.e., the edges of hedgerows) were predicted 

with greater precision. 

The information contained within a panchromatic image is generally given as a set of 

intensity values. Training data were used to inform on the location of pure pixels (i.e., 

pixels containing only one class) and these data were used to calculate average class 

intensity values for each class in the remotely sensed imagery of the study area. These 

data were then used during pixel swapping. When a swap was predicted, the 

attractiveness value (Ai) was calculated as per the standard technique. However, the 

swap was also compared with the panchromatic imagery, such that new criteria for 

the acceptance of a swap were established (Pi). These criteria are described in full in 

Chapter 6. 
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2.6 Accuracy assessment 

Accuracy assessment is an important component of any research. Accuracy 

assessment provides information on the accuracy and validity of the techniques used 

and feedback on areas of the methodology that may require improvement. In remote 

sensing land cover classification, accuracy assessment should ideally focus on the 

extent to which the predicted land cover at a certain point agrees with ground data 

collected to support the research. 

2.6.1 Confusion matrix 

There are many different methods for performing accuracy assessment. One of the 

most commonly used tools is the confusion (or error) matrix. This is a K x K square 

array, where K is the number of classes in the image, and is a tabular representation of 

the relationship between two sets of observations from the classified area - the 

"actual" ground data (reference) and the prediction. Table 2.1 illustrates an example 

confusion matrix. 

Table 2.1: Example confusion matrix involving four classes 

Predicted 

Grass Cereal Hedgerow 

Grass 29 5 8 

Cereal 7 46 4 

Hedgerow 3 4 21 

Road 1 0 1 

Total 40 55 34 

Road Total 

1 43 

3 60 

0 28 

28 30 

32 161 

From the confusion matrix, it is possible to derive several indicators of "accuracy". 

The "overall accuracy" (% correct) is calculated by dividing the sum of the main 

diagonal by the total number of observations (e.g., (29+46+21+28)1161=77%). In this 

example, the confusion matrix can be used to indicate that approximately 77% of the 
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image area is classified correctly, or that there is a 0.77 probability that each pixel is 

classified correctly. Two further statistics that can be calculated from the matrix are 

the producer's accuracy (PA based on errors of omission) and the user's accuracy 

(VA based on errors of commission). The PA informs on how many pixels of a 

certain class in the ground data are correctly classified, and is calculated by dividing 

the class cell by the row sum of that class. For example, in the case of grass, the PA is 

calculated as 29/43=67.45%. The VA informs on the probability that a classified pixel 

actually represents that class on the ground (Tso and Mather, 200 I). It is calculated by 

dividing the class cell value by the column total, for example, in the case of grass, it is 

29/40=72.4%. 

The confusion matrix provides a simple and efficient method of accuracy assessment 

for hard classification and super-resolution techniques. When comparing two 

confusion matrices, it would be useful to know if differences in overall accuracy were 

significant. Significance testing is a well-documented problem in the remote sensing 

literature and several techniques exist for this purpose. One of the most commonly 

used techniques is the Kappa coefficient (Campbell, 1996), although its use as a 

reliable metric of classification accuracy is contentious (Foody, 2002b). 

The percentage correct value, provided by a confusion matrix, is often used to provide 

a simple metric with which to assess the accuracy of a land cover map. In this 

research, it was necessary to establish percentage correct values that would be 

deemed, in a qualitative sense, as "accurate" as a means of evaluating the techniques 

and drawing conclusions. This research does not attempt to provide a methodology 

for determining appropriate levels of accuracy; instead appropriate levels were 

derived from empirical testing. For real remotely sensed imagery, in this research, a 

value of 85% or greater was deemed as accurate. For synthetic imagery, however, 

where the effect of many real-world problems associated with remote sensing 

techniques, for example, atmospheric interference, the point spread function or the 

complexities of a real-world scene, were minimised or non-existent, it was anticipated 

that reported accuracies would be much greater and, as a consequence, differences in 

accuracy between the reported accuracies of different versions of the pixel swapping 

technique would be smaller. Therefore, accuracies of 98% or greater were deemed 

"accurate". Indeed, establishing a level of acceptable accuracy in the context of the 
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aims and objectives of this research is actually of little meaning, considering that the 

ultimate goal is in the development of an algorithm. It is, therefore, intended to 

provide a simple quantification of the performance of the algorithm. In fact, the most 

useful accuracy metrics are actually the differences in accuracy between different 

versions of the technique. 

In this research, confusion matrices were constructed to evaluate the accuracy of the 

pixel swapping technique. It was important to evaluate the differences in reported 

accuracy between each version of the technique. In particular, the high level of 

accuracy expected (as described in the previous paragraph), meant that small 

differences in accuracy might be significant. To evaluate the significance of 

differences in predicted accuracy, McNemar's test was therefore used (Foody, 2004). 

The test requires a confusion matrix 2 by 2 in dimension, where the data contained 

within it are the values of correct and incorrect predictions from each technique to be 

compared. For example, the confusion matrix in Table 2.1 could be 'collapsed' thus: 

Correct: 124, Incorrect: 37. 

McNemar's test may be expressed as (Agresti, 1996): 

(3) 

where fi) is the frequency of sites lying in matrix elements iJ and the result is adjusted 

for continuity. The derived value (x2
) may be compared against values from a chi­

square distribution to indicate its significance (Foody, 2004). In most cases, 

McNemar's test of significance is useful in predicting the likelihood that a difference 

in accuracy between, for example, two techniques, arose by chance. That is, a value 

that is significant at a specified level (in this research, a confidence level of 0.05% is 

used throughout) can be said to be unlikely to arise as a result of chance. 

The interpretation of the accuracy metrics provided by the confusion matrices is 

important in the context of this research. The specified "acceptable" accuracy values 

are, in essence, arbitrary, and were derived to enable the evaluation of the techniques 
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and to draw conclusions on the merits of the work presented in this thesis. Indeed, the 

accuracy metrics used in this thesis describe the accuracy of land cover maps whereas 

in reality, this research was primarily interested in the delineation of individual 

features and, in particular, the boundaries of features, something which was difficult 

to analyse quantitatively. The use of difference images (below) was a useful tool in 

visualising error on these boundaries. McNemar's test was applicable only where the 

confusion matrices were calculated as a sample of a larger population. That is, if the 

confusion matrices were calculated from the entire population, then it was sufficient 

to compare the overall accuracy values obtained from the matrix. In this situation, 

particularly in the case of synthetic imagery where there was an expectation of highly 

accurate results, the percentage correct value could be considered as both an 

assessment of the number of correctly allocated sub-pixels as well as the amount of 

error in the output. For example, if technique A was assessed as being 97% accurate 

(3% error) and technique B was assessed as being 98% accurate (2% error), an 

increase in accuracy of 1 % might be considered insignificant. However, in this 

example, a 1 % increase in accuracy also represents a decrease in error of 

approximately 33%, which could be considered to be significant. Where a subsection 

of a field site was used to create a confusion matrix, then McNemar's test was 

applicable. However, it could be argued that the fieldsites used in this research, whilst 

identified here as discrete (that is, a population), were, in fact, a sample of a wider 

surrounding area and accordingly, McNemar's test would be of interest. 

2.6.2 Root mean square error (RMSE) 

The root mean square error (RMSE) is the square root of the mean squared error, 

where the "error" is the difference between a predicted value and an observed value. 

In this research, the RMSE was used to estimate the overall accuracy of a soft 

classification. It is calculated using Tso and Mather (2001): 

RMSE (4) 
n 
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where K is the number of classes, Zk (Xi) is the proportion of class k at the ith pixel 

location Xi of the reference (original) image and z; (Xi) is the value of the same pixel 

in the soft classified image. The RMSE is presented as a percentage value and the 

larger the value, the more error apparent in the soft classification. 

2.6.3 Pearson's product-moment correlation coefficient 

The correlation coefficient (r) is a measure of how well a linear equation describes the 

relation between two variables X and Y. In this research, it was used to describe the 

amount of association between the target and the predicted proportions and informs 

on the precision of the prediction. It is defined as the result of dividing the covariance 

between the two variables by the product of their standard deviations. It is calculated 

per class by: 

C(uv) C(uv) 

rk =rl/V = ~S2(U)XS2(V) = s(u) xs(v) (5) 

where u= Z k (x) is the target image for class k, v= z; (x) is the predicted image for class 

k, C(uv) is the covariance between u and v, S2 is the variance and s is the standard 

deviation. 

The coefficient ranges from -1 to 1. A value of 1 shows that a linear equation 

describes the relationship perfectly and positively, with all data points lying on the 

same line and with Y increasing with X. A score of -1 shows that all data points lie on 

a single line but that Y increases as X decreases. A value of 0 shows that a linear 

model is inappropriate, that is, there is no linear relationship between the variables. 

2.6.4 Difference imaging 
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A useful approach to the visualisation of error in super-resolved output was applied in 

this study. The accuracy assessment techniques detailed above provide statistical 

information on error, yet the location of the error is unknown. A difference image can 

be created to highlight the location of error. Where a suitable target image is available 

(i.e., a map of the actual positions ofland cover, often referred to in the literature as a 

reference image), then the output map and the target map can be compared and 

combined. In this research, pixels in which there is agreement between both maps are 

removed, leaving only pixels in erroneous positions. 

2.7 Conclusion 

Image classification is commonly applied to remotely sensed imagery and is the 

process of assigning land cover labels to image pixels. These labels can be either 

derived automatically from the spectral information available (unsupervised 

classification) or by first inputting training data containing information on the land 

cover classes of interest (supervised classification). The existence of more than one 

land cover class in pixels (mixed pixels) can lead to inaccurate classification whereas 

soft classification techniques can be used to assign pixels to more than one land cover 

class. 

Super-resolution techniques, such as pixel swapping, can be used to predict the spatial 

location of multiple land cover classes within pixels, using the geostatistical 

phenomenon of spatial dependence. 

The objective of this research was to use super-resolution mapping to produce 

accurate land cover maps, with the emphasis being on the mapping of linear land 

cover features such as hedgerows. Therefore, existing linear feature extraction 

techniques, such as edge detectors, the Hough transform and Snakes, were reviewed 

to inform on the procedure of identifying linear features in remotely sensed imagery. 

In addition, image fusion was seen as a possible method of further increasing the 

accuracy of the resultant maps. 
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In each stage of the research methodology, accuracy assessments were used to infom1 

on the accuracy of the classification and in validating the newly created land cover 

map. 

The remainder of this thesis presents and analyses the findings of this research. 

Initially, the data used in this research is presented (Chapter 3). Chapter 4 provides a 

detailed description of the complete methodology of this research and an evaluation 

of the pixel swapping technique when applied to remotely sensed imagery. Chapter 5 

describes the research carried out to 'linearise' the pixel swapping technique and 

Chapter 6 presents the final stage of the research: image fusion. 
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Chapter 3 

3. Study Areas and Data 

3.1 Introduction 

This third chapter of the thesis introduces the study area used in the research. To test 

and evaluate the super-resolution pixel swapping technique, remotely sensed data 

were required. There are three common sources of real remotely sensed data: field 

survey, using, for example, handheld field spectroscopy equipment; airborne sensors 

onboard aircraft, providing data such as aerial photography and airborne multispectral 

imagery; and spaceborne satellite sensors. As discussed in Chapter 1, field survey was 

the foremost source of data during much of the 20th century. Data of this type tend to 

be highly accurate though their use is often limited by the time required to acquire 

them, the comparatively small area they tend to cover and the comparatively high cost 

of their acquisition (Veitch et al., 1995). Aerial survey provides data such as optical 

remotely sensed imagery considerably faster than field survey, at potentially sub­

metre spatial resolutions and in multispectral or hyperspectral format. Satellite-based 

remotely sensed imagery is available with often global coverage from a range of 

sensors. 

The pixel swapping technique used in this research is intuitively simple and can be 

applied to any imagery where the proportion of land cover classes within each pixel 

can be predicted. In this thesis, the technique was applied to both simulated and real 

remotely sensed imagery. 

A 'decision support system' was devised to enable the selection ofa set of suitable 

field sites to evaluate the algorithm. In this chapter, the decision support system is 

first described. Each stage of the system is described, starting with the requirements 
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of the field sites, followed by the types of imagery available for use in the research. 

Each of the field sites derived from applying the decision process is presented with a 

description of the site and supporting imagery. The chapter closes with a summary. 

3.2 Field site selection 'decision support system' 

A 'decision support system' (DSS) is a useful tool designed to "aid the process of 

decision making" (Finlay, 1994). A DSS can be used to provide solutions to 

structured and unstructured problems where input data are both qualitative and 

quantitative. 

The decision support system was used to assist in answering important questions 

about the method for selection of remotely sensed imagery and field sites for use in 

this research. Figure 3.1 presents a flow-diagram illustrating the decision support 

system. 
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Step 2 : Remotely Sensed Imagery 

, , , , 
________________ 2 

Step 1 : Image Components 

Field site characteristics 

Feature characteristics 

Most suitable 

How 
to 

depict? 

I Field data I 

Figure 3.1: Flow diagram illustrating the decision support system. Solid lines 
represent direction of decision making. Dashed lines illustrate questions 
dependent on other areas of the system. 

These questions were categorised into questions about remotely sensed imagery 

(constraints), and questions about image components (objectives): 

Remotely sensed imagery 

• What remotely sensed imagery is available? 

• What characteristics of the available remotely sensed imagery are of interest? 

• Which of the available remotely sensed images are most appropriate? 

Field sites 

• What are the important characteristics of a suitable field site? 

• How can these characteristics be suitably depicted in a remotely sensed 

image? 

• What features within the field site are of most interest? 
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• 

• 

What are the important characteristics of these features? 

How can these characteristics be suitably depicted in a remotely sensed 

image? 

• What affect will the characteristics of the remotely sensed image have on the 

field site and the features within the field site? 

The answers to these questions, presented in further sections of this chapter, were 

used in devising a strategy for selecting field sites. In answering these questions, it 

was recognised that individual questions were dependent on questions elsewhere in 

the system (represented by dashed lines in Figure 3.1). 

The following sections present the various stages of the decision process. 

3.3 DSS Step 1: Image components 

The first component of the decision process (lower half of Figure 3.1) was used to 

determine the properties of the field sites such that the sites would be suitable for use 

in this research. Initially, the characteristics of the overall site were considered. 

3.3.1 Field site characteristics 

Each field site was required to exhibit certain characteristics: 

• accessible by car in order to transport bulky field equipment 

• have public access (or be easy to obtain permission from the owner of the 

land) 

• unsusceptible to damage as a result of basic field work operations 

o e.g., many of the fields in the study area were planted with cereal crops 

which in many cases did not provide easy access 

• be of a manageable size 

o possible to map and measure the area in the field with field equipment 

o acceptable computational requirements 
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3.3.2 Feature characteristics 

In addition to field site characteristics, a set ofJeature characteristics was also 

established as being requirements of any field site. 

3.3.2.1 Width (and size) 

Rural linear land cover features, such as hedgerows, tend to be between 1 m and 5 m 

in width (Baudry and Bunce, 2001), as opposed to urban roads, which tend to be 

greater than 10m in width (Mayer, 1999; Quackenbush, 2004). The width of a linear 

feature is an important aspect of the feature's character. For example, in the absence 

of class information knowledge of the width of the feature can be used to increase the 

accuracy with which feature type can be predicted. For instance, ecologists might use 

the width of the feature (in addition to the length and height) to predict, for example, 

the species of vegetation within the hedgerow or the suitability of the hedgerow as a 

habitat for different species of fauna (Gillings and Fuller, 1998; Fuller et a!., 2004). 

3.3.2.2 Curvature 

Rural linear features, such as hedgerows, often exhibit directional variation along 

their length, for example, where they follow natural boundaries, such as streams and 

rivers, where they follow human-made linear land cover objects, such as minor roads, 

or where they have been planted to serve a specific purpose, such as separators 

between agricultural fields (Boutin et a!., 2002; Thenail and Baudry, 2004). The 

frequency of variation in curvature is diverse, from minor changes in direction (for 

example, where a feature has been modified to suit modem farming practices 

(McCollin, 2000) to major changes in direction (for example, where a hedgerow 

curves around the comers of a field or deviates from a straight line where it follows 

the natural course of a stream or river). Curvature is an intrinsic component of a 

feature's character, but is often not represented accurately in land cover maps created 

by traditional classification techniques (Kristensen, 2001; Franco, 2002; Baudry et al., 

2003; Gerd et al., 2006). 

54 



3.3.2.3 Embedded objects 

Trees and other land cover objects are often found within rural linear features such as 

hedgerows, which, in addition to breakpoints and localised changes in size (e.g., 

increased growth in small sections due to spatial variation in soil type, proximity to a 

water source or the use of fertilizers in adjacent fields), alters the spectral character 

and width of the feature at points along its length. Trees within hedgerows are a 

common occurrence and an important requirement of the model. 

Variation in all of the above three characteristics was required when selecting a 

suitable set of field sites. After establishing the requirements of the field sites, it was 

then necessary to consider the next step of the DSS - remotely sensed imagery. 

3.4 DSS Step 2: Remotely sensed imagery 

The second component of the decision support system (top half of Figure 3.1) was 

used to select the remotely sensed imagery for use in this research. Initially, it was 

necessary to establish the objective of the research in order to determine a starting 

point. The objective of this research was to develop a super-resolution technique for 

the identification of linear land cover features from remotely sensed imagery, such as 

hedgerows and pathways. Using information from Chapter 3.3, a study area and 

supporting remotely sensed imagery for use in this research were selected. 

The Ordnance Survey maintains an extensive library of remotely sensed imagery in a 

variety of formats. Remotely sensed imagery covering large areas of the United 

Kingdom were available for selection. The majority of these data were satellite sensor 

remotely sensed imagery, although in some areas, there were additional data, such as 

aerial photography. When selecting individual datasets from this library, these data 

were considered in terms of their suitability with respect to the requirements of the 

research and the practicality of using the imagery (for example, would the distance to 
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the location covered by the image inhibit site survey and field work?). Initially, a 

study area was selected from the available imagery. 

3.4.1 Study area 

The study area used in this research was in the locale of Christchurch, Dorset in South 

West England. Christchurch is a small suburban area with a population of 

approximately 45,000. Christchurch harbour is located on a natural salt marsh which 

is protected by Mudeford Spit, which together with Hengistbury Head are designated 

Sites of Special Scientific Interest (SSSI). The land use in the area surrounding 

Christchurch is primarily agricultural and included planted cereals, fallow fields, 

woodlands, small dwellings, trees, streams, hedgerows and roads. Much of the land in 

this area is private property. The dominant crops in the planted fields are wheat, 

barley and maize. Unplanted fields are used primarily for grazing animals such as 

sheep and cattle. The hedgerows in the study area are managed, maintained and are the 

direct responsibility of the owner of the land on which they are planted. Many of the 

pathways in the study area are Public Rights of Way as determined by the local 

council. 

The study area was chosen primarily for the availability of remotely sensed imagery 

of the area, as well as the relatively short distance to the study area from Southampton 

University, compared with other datasets. Visual inspection of the imagery suggested 

many potential field sites. This was confirmed by visiting the study area. After 

selecting the study area, remotely sensed imagery was selected. 

Remotely sensed imagery was used in two formats: real imagery, such as that 

acquired from a satellite sensor and simulated imagery, that is, synthetic imagery 

generated to fulfil a specific purpose. 
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3.4.2 Real imagery 

Real remotely sensed imagery of the study area was available in two formats: aerial 

photography and Quickbird satellite sensor imagery. 

3.4.2.1 Aerial photography 

Table 3.1 presents the specifications of the colour aerial photography used in this 

research project, whilst Figure 3.2 presents a sample image. 

Table 3.1: Specifications of aerial photography 

Spatial resolution 0.25 m 

Flying height: 1620 m 

Lens focal length 150mm 

Other Orthorectified with GPS and OSTN97 

by Ordnance Survey 

3 wavebands (red, blue, green) 

.. ;, 
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Figure 3.2: Sample colour aerial photograph of the study area, spatial resolution 
25 cm, Christchurch study area 

In Figure 3.2, the dominant land use (agricultural) of the study area is clearly visible. 

Areas of forest (maintained by the Forestry Commission) are also evident. The fine 

spatial resolution (25 cm) of the aerial photography enabled simple identification of 

features of interest, such as hedgerows, as well as other land cover objects such as 

trees and minor roads. In addition, crop growth lines and linear tractor paths 

(tram lines) are visible in the fields in the top right quarter. There is evidence of some 

shadowing in the image, particularly around the trees and areas of woodland. 
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3.4.2.2 Satellite sensor imagery 

The satellite sensor imagery used in this research project was Quickbird panchromatic 

and multispectral imagery. Table 3.2 presents the specifications l of the imagery: 

Table 3.2: Quickbird multispectral and panchromatic imagery characteristics 

Panchromatic Multispectral 

Spatial resolution 61 cm at nadir 2.44 m - 2.8 m at nadir 

Swath 16.5 km (10.3 mi) width at nadir 

II-bit digitization (up to 2048 levels of gray scale) 

Discrete non-overlapping bands 

Scene dimensions 27,552 x 27,424 pixels 6,888 x 6,856 pixels 

Spectral 450 to 900 run Blue: 450 to 520 nm 

characteristics Green: 520 to 600 nm 

Red: 630 to 690 nm 

Near IR: 760 to 900 nm 

Pre-processing Radiometric corrections: 

• Relative radiometric response 

between detectors 

• Non-responsive detector fill 

• Conversion to absolute radiometry 

• Internal detector geometry 

Optical corrections: 

• Optical distortion 

• Scan distortion 

• Any line-rate variations 

• Registration of multispectral bands 

The multispectral imagery was provided in four discrete wavebands in the same 

portion of the electromagnetic spectrum as the panchromatic image. The spatial 

resolution of the panchromatic image was approximately four times finer than the 

multispectral image. Each of the pre-processing steps (Table 3.2) as well as co-

I http://www.digitalglobe.com/product/basic _imagery .shtml 
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registering of the imagery (meaning that they both represented the same area on the 

ground) was performed by the image vendor. 

In addition to real remotely sensed imagery, synthetic imagery was used. 

3.4.3 Simulated imagery 

Simulated (or synthetic) imagery were used in this thesis to provide a controlled 

environment in which to test a specific issue within a remote sensing investigation, 

where the effect of specific variables can be tested. In most cases, simulated imagery 

is used to isolate a problem or phenomenon in order to investigate it more thoroughly 

(Atkinson, 2004a). For example, simulated imagery can be generated to give a 

realistic yet simplistic representation of a typical remotely sensed image without the 

problems introduced by factors such as geometric error, atmospheric interference and 

the point spread function. By using simple simulated imagery, the understanding of 

how image processing techniques and algorithms operate may be increased and 

facilitate developments to such techniques. Additionally, the effects of these problems 

can be investigated by introducing simulations of the problem into the synthetic 

imagery in controlled amounts. For example, the effect of cloud cover or noise within 

an image on classification accuracy could be investigated by producing multiple 

versions of a simulated image, each with a different amount of simulated cloud or 

noise, and assessing the differences in classification accuracy between each image. 

Simulated imagery is particularly suitable for super-resolution applications where the 

information from a soft classification, such as class proportions, are required. For 

example, it is possible to generate a synthetic image of a sample scene with two or 

more simulated land cover classes. By degrading the spatial resolution of this imagc 

mixed pixels with a proportion of each class can be created. Additionally, the starting 

image can be used as a target or "truth" image, if the output of the super-resolution 

technique matches the spatial resolution of the original simulated imagery. Such 

images are often free of errors such as misregistration or poor classification (Mertens 

et aI., 2004a). An accuracy assessment tool, such as the difference image, can be used 
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to visualise error in the super-resolved output by comparing it with the target image. 

The simulated imagery used in this research is described in the next section. 

3.5 Step 3: Field site selection 

The final stage in preparing imagery for testing the algorithm was to establish a set of 

simulated and real field sites with supporting remotely sensed imagery. 

Two types of simulated imagery were created: (1) entirely computer-generated 

synthetic imagery and (2) synthetic imagery simulated from real remotely sensed 

Imagery. 

3.5.1 Simulated imagery (1) 

Simulated imagery for provisional testing of the algorithm (Chapter 4) was generated 

using the S-PLUS software. Three images were generated. Images 1 and 2 contained 

simple shapes ('diamond' and 'line'). The third simulated image was a simplified 

representation of a typical scene in a classified remotely sensed image, containing 

four simulated field classes, such as cereals or grass (the actual class labels are not 

important), and a simple linear feature, such as a hedgerow or pathway. Figure 3.3, 

Figure 3.4 and Figure 3.5 present these simulated images. 
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Figure 3.3: Simulated image 1, 'diamond', (dimensions: 250 pixels by 250 pixels, 
number of classes: 2) 

Figure 3.4: Simulated image 2, 'line', (dimensions: 250 pixels by 250 pixels, 
number of classes: 2) 
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Figure 3.5: Simulated image 3, 'complex scene', (dimensions: 250 pixels by 250 
pixels, number of classes: 5) 

Each simulated image represented simplistic test data with which to evaluate the 

algorithm. 

3.5.2 Simulated imagery (2) 

Aerial photography in three bands (red, green and blue) at a spatial resolution of 0.25 

m of Burton in the study area acquired on 21 sl December, 2000 (see section 3.4.2.1) 

was used to simulate a field site. A sub site (400 x 400 pixels) of the original aerial 

photography, which contained a simple linear feature: a hedgerow combined with 

four trees, one distinct from the hedgerow and three embedded within it, was selected. 

Using RSI ENVI, the imagery was hard classified into four unique classes (hedgerow, 

trees, cereal and shadow) using the Mahalanobis distance classifier, and the shadow 

class was removed from the image by merging it with the cereal class. This resulted in 

a simple 3-category classification of the input imagery (Table 3.3). 
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Table 3.3: Simulated imagery 2 

Site reference 

Dimensions (pixels) 

No. classes 

Raw image 
(RGB) 

Simulated image 
(greyscale) 

3.5.3 Real imagery 

Simulated 2 

400 x 400 

3 

In addition to simulated imagery, a real remotely sensed image was used. Quickbird 

multispectral remotely sensed imagery at a spatial resolution of 2.6 m was used as the 

source. 

Quickbird multispectral (and panchromatic) imagery of the study area acquired on 

June 2nd 2001 was used to establish three field si tes. The characteristics of the 

Quickbird sensor are described in section 3.4.2.2. After an initial visual inspection of 

the remotely sensed imagery, a list of approximately 10 possible field sites that were 

thought to meet the field site requirements was produced. A site survey of each 

possible field site then followed, from which five field sites were chosen. After a 
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second inspection of the imagery, three field sites from the remaining five were 

chosen. The sites chosen were deemed most suitable as per the requirements of the 

DSS. 

After selecting three field sites, an image of each field site was produced from 

Quickbird satellite sensor imagery at a spatial resolution of 2.6 musing RSI ENVI. 

The field sites were purposefully kept small to minimise computational overheads. 

Each site contained at least one linear feature, such as a hedgerow. Trees were also 

included in each site. The field sites are presented in Figure 3.6, Figure 3.7 and Figure 

3.8. 

Figure 3.6: Real imagery, Site A, (dimensions: 35 pixels by 35 pixels, number of 
classes: 3) 
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Figure 3.7: Real imagery, Site B, (dimensions: 46 pixels by 169 pixels, number of 
classes: 4) 

Figure 3.8: Real imagery, Site C, (dimensions: 73 pixels by 73 pixels, number of 
classes: 4) 

Site A represents the most simplistic field site. The site was small with a single linear 

feature and three land cover classes. Site B was more complex, containing four land 

cover classes, including a large strip of woodland in the centre of the site. Hedgerows 

separated each of the fields in the site. A tree is embedded within one of these 

hedgerows. Site C was the most complex site where there were four land cover 

classes and a network of three hedgerows. Trees were embedded within each 

hedgerow and each hedgerow exhibited varying levels of curvature. 
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3.5.3.1 Field Data 

Following field site selection, field data for each site were acquired between June 1th 

and June 23rd 2003. Since these measurements were eventually not used extensively in 

this thesis, concise details only are presented in this thesis. Data were acquired during 

June 2003 to minimise phenological and other seasonal differences between the 

recorded ground data and the remotely sensed imagery. 

On 12th June, 2003, each field site was provisionally surveyed. Digital photographs 

and a simple drawn schematic with a record of any anomalies or miscellaneous 

features were taken. The schematic was used to record the type and position of the 

predominant land cover classes in the site. Positional information on the location of 

trees and hedgerows within it were collected using a differential GPS. 

Following an initial survey of each field site, further measurements in each site were 

taken. On three separate days (June 14th, June 19th and June 3rd
, 2003) the following 

sampling strategy was applied to each site. Spectral data for each class in the field site 

were recorded using a Milton Multiband Radiometer (MMR). For each class, spectral 

data in ten different locations were recorded. A differential GPS was used to record 

the location of these measurements. For the linear features within the field site, which 

were hedgerows, additional measurements were taken. The length of the hedgerow 

was measured with a tape measure along both edges and the location of the end points 

of the hedgerow were recorded with a GPS. The geometric characteristics of the 

hedgerows, such as width, height and length (as well as miscellaneous information 

such as phenological stage or anomalous data) were recorded. At 5 m intervals along 

the length of the hedgerow, the following measurements were taken: 

• Three GPS measurements were taken: at each edge and in the centre. The 

edges and the centre of the hedgerow were estimated visually. 

• The width of the hedgerow at the approximate top and approximate bottom 

was measured using a solid measuring rod. 
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• At the centre of the feature, a spectral measurement using an MMR was taken. 

Where the hedgerow deviated from its normal course, additional measurements were 

made so as to characterise the hedgerow fully. Examples of the data are presented in 

the Appendix. 

3.6 Summary 

Selection of appropriate remotely sensed imagery for use in any research project is 

critical to the validity of the results and the conclusions reached as a consequence of 

these results. This chapter has described the study area and data used in this research 

and the process through which suitable simulated imagery was created or field sites 

from real satellite sensor imagery were selected. The purposes and benefits of using 

both real remotely sensed imagery and simulated remotely sensed imagery were 

discussed and each of the study areas and field sites were presented. 
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Chapter 4 

Evaluating the super-resolution pixel 
swapping technique 
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Chapter 4 

4. Evaluating the super-resolution pixel 
swapping technique 

4.1 Introduction 

The pixel swapping algorithm used in this research was originally developed by 

Professor Peter Atkinson in the School of Geography at the University of 

Southampton. It was presented in 2001 as a simple pixel swapping technique at the 

GeoComputation conference in Brisbane, Australia (Atkinson, 2001) and later 

appeared as an article in Photogrammetric Engineering and Remote Sensing 

(Atkinson, 2004). The objective of the research presented in this thesis was to develop 

the pixel swapping technique for the identification of fine rural linear features. 

In order to establish the suitability of the pixel swapping technique for the objective 

of this research, the technique was evaluated by applying it to the simulated imagery 

and real satellite sensor imagery described in Chapter 3. This chapter presents the 

results of this preliminary evaluation of the algorithm. 

The methodology for evaluating the technique consisted of three stages: 

1) Soft classify the imagery to create soft proportions and assess the accuracy 

2) Apply the pixel swapping technique to the soft proportions 

3) Assess the accuracy of the super-resolved output 

The methodology was first applied to simulated imagery; the results of soft 

classification and pixel swapping are presented and analysed (Section 4.2). The 

methodology was then applied to real satellite sensor imagery; the results of soft 
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classification and pixel swapping are presented and analysed (Section 4.3). These 

analyses are followed by a discussion of the overall results and key findings. The 

chapter closes with conclusions. 

4.2 Simulated Imagery 

The first stage of evaluation of the super-resolution pixel swapping technique was to 

apply the technique to simulated imagery. Three simple features were simulated, as 

described in Chapter 3. 

4.2.1 Soft proportions 

Soft class proportions were predicted by initially simulating each image at a fine 

spatial resolution and then degrading the spatial resolution of the image. Each image 

was simulated with dimensions of 250 pixels by 250 pixels and then degraded by a 

factor of five, creating input images with dimensions of 50 pixels by 50 pixels. A 

zoom factor of five was used in pixel swapping. The principal benefit of this action 

was that the spatial resolution of the super-resolved output matched the spatial 

resolution of the original simulated imagery enabling direct comparison between 

input and output. 

4.2.2 Pixel swapping 

The super-resolution pixel swapping technique uses the proportions information from 

a soft classification to predict the locations of each class within the pixels of remotely 

sensed imagery. A technical description of the technique is presented in Chapter 2 of 

this thesis. In the case of simulated imagery, soft proportions were derived from 

simulated mixed pixels, as described in Section 4.2.1, above. The super-resolution 

pixel swapping technique was applied to each of the three simulated images using a 

zoom factor of five. 
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4.2.3 Results 

In this section, the results of simulating soft proportions from simulated imagery and 

then applying the pixel swapping technique are presented, accordingly: 

• Simulated image 1: Diamond 

o Soft proportions (Figure 4.1) 

o Accuracy assessment of soft proportions (Table 4.1) 

o Super-resolved output (Figure 4.3) 

o Accuracy assessment of super-resolved output (Table 4.3) 

• Simulated image 2: Line 

o Soft proportions (Figure 4.5) 

o Accuracy assessment of soft proportions (Table 4.6) 

o Super-resolved output (Figure 4.7) 

o Accuracy assessment of super-resolved output (Table 4.8) 

• Simulated image 3: Complex scene 

o Soft proportions (Figure 4.9) 

o Accuracy assessment of soft proportions (Table 4.11) 

o Super-resolved output (Figure 4.11) 

o Accuracy assessment of super-resolved output (Table 4.13) 

4.2.3.1 Simulated image 1: Diamond 

Soft proportions in simulated image 1 were created by degrading the spatial resolution 

of the input imagery by a factor of five. Figure 4.1 displays the predicted soft 

proportions for each class in the simulated diamond feature. 
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(a) (b) 

Legend: 

100% 

O'Yo 

Figure 4.1: Soft proportions for feature 1, 'Diamond', (a) feature, (b) background 

Mixed pixels occur along the boundary between the two classes, that is, along each 

edge of the diamond feature and are depicted in Figure 4.1 by grey pixels. Table 4.1 

shows the predicted accuracy of the soft classification. 

Table 4.1: Accuracy assessment, diamond feature 

RMSE r 

6.91 0.99 

Accuracy assessment of the soft proportions revealed that class proportions were 

predicted with a high level of accuracy. 
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A simple maximum likelihood classification was then applied to the diamond feature. 

The hard classified output is displayed in Figure 4.2. 

Figure 4.2: Hard classification, diamond feature 

It was evident that the hard classification of the diamond resulted in the edges of the 

feature taking on a "blocky" appearance. 

Table 4.2: Confusion matrix, hard classified diamond feature 

Predicted 

Background Feature Totals PA(%) 

Background 50211 391 50602 99.2 

<l) 
Feature 165 11234 11399 98.5 u 

$:l 
<l) 
H 

<2 Totals 50376 11625 61445 <l) 

~ 

UA(%) 99.6 96.6 % Correct: 99.1 

Overall accuracy was estimated for the diamond feature to be 99.1 %. The pixel 

swapping technique was then applied to feature 1 using a zoom factor of five . Sub­

pixels were allocated randomly and the pixel swapping algorithm ran until it 
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converged (i.e., no further swaps were made). Figure 4.3 shows the super-resolved 

output of the pixel swapping technique applied to simulated image 1. 

(a) (b) 

Figure 4.3: Super-resolved output, feature 1, (a) initial allocation, (b) super­
resolved output 

Figure 4.3(a) was the starting point (random allocation). Sub-pixels within mixed 

pixels were allocated randomly. Figure 4.3(b) shows the super-resolved output. A 

visual inspection shows that the output closely resembled the original simulated 

feature. Table 4.3 presents the predicted accuracy of the super-resolved output for the 

initial allocation (soft classification) and super-resolved output for the whole image. 
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Table 4.3: Confusion matrix, simulated image 1, (a) initial allocation, (b) super­
resolved output 

(a) 

Predicted 

Background Feature Totals PA(%) 

Background 50237 365 50602 99.2 

<l) 

Feature 365 11034 11399 96.7 u 
I=l 
<l) 
I-< 

~ Totals 50602 11399 61271 <l) 

~ 

UA(%) 99.2 96.7 % Correct: 98.8 

(b) 

Predicted 

Background Feature Totals PA(%) 

Background 50589 13 50602 99.9 

<l) 
Feature 13 11386 11399 99.8 u 

I=l 
<l) 
I-< 

~ Totals 50602 11399 61975 <l) 

~ 

UA(%) 99.9 99.8 % Correct: 99.9 

Overall accuracy for the super-resolved output was estimated as 99.9%. Accuracy 

assessment of the soft proportions predicted an RMSE of 6.9%, but since the majority 

of pixels in the image were pure pixels, the effect of mixed pixels on the accuracy was 

reduced. To assess the effect of the mixed pixels on the accuracy, a confusion matrix 

(Table 4.4) was calculated for a smaller area (100 sub-pixels by 100 sub-pixels) of the 

original feature (illustrated by Figure 4.4). 
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Figure 4.4: Subsection of simulated image 1 used in confusion matrix 

Table 4.4: Confusion matrix, subsection of feature 1, (a) hard classification, (b), 
soft classification, (c), super-resolution 

(a) 

Predicted 

Background Feature Totals PA(%) 

Background 4710 150 4860 96.9 

Q) 

Feature 15 5326 5341 99.7 u 
q 
Q) 
I-< 

tB Totals 4725 5476 10036 Q) 

~ 

UA(%) 99.6 97.2 % Correct: 98.3 

(b) 

Predicted 

Background Feature Totals PA(%) 

Background 4738 122 4860 97.4 

Q) 
Feature 127 5214 5341 97.6 u 

q 
Q) 
I-< 

tB Totals 4865 5336 9952 Q) 

~ 

UA(%) 97.3 97.7 % Correct: 97.5 
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(c) 

Predicted 

Background Feature Totals PA(%) 

Background 4853 7 4860 99.8 

Q) 

Feature 7 5334 5341 99.8 u .::: 
Q) 
I-< 

~ Totals 4860 5341 10187 ~ 

UA(%) 99.8 99.8 % Correct: 99.8 

The confusion matrix in Table 4.4 for a subsection of the simulated diamond feature 

reveals that, as expected, the abundance of pure pixels in the image were reducing the 

effect of mixed pixels on the overall accuracy. Accordingly, in the subsection of the 

site, the overall accuracy of the hard classification was estimated as 98.3% compared 

with 99.8% for the whole image, a significant difference of 1.5% (Table 4.5). 

Table 4.5: Significance test, Hard classification & Pixel swapping 

Pixel swapping 

Correct Incorrect 

Hard classification Correct 10036 0 

Incorrect 151 14 

Total 10187 14 

x2 = 149. Significant at 0.05% 

4.2.3.2 Simulated image 2: Line 

Soft proportions in simulated image 2 were created by degrading the spatial resolution 

of the input imagery by a factor of five. Figure 4.5 displays the predicted soft 

proportions for each class in the simulated line feature. 
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(a) (b) 

Legend: 

100'/"o 

0% 

Figure 4.5: Soft proportions for feature 2, 'Line', (a) feature, (b) background. 

Figure 4.5 displays the predicted soft proportions for each class in the simulated line 

feature. Mixed pixels occur along the boundary between the two classes, that is, each 

edge of the line. Table 4.6 shows the predicted accuracy of the soft classification. 

Table 4.6: Accuracy assessment, simulated image 2 

I RMSE% r 

6.59 0.99 

Accuracy assessment of the soft proportions revealed that class proportions were 

predicted with a high level of accuracy. 
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A simple maximum likelihood classification was then applied. The image is displayed 

in Figure 4.6 

Figure 4.6: Hard classification, line feature 

A visual inspection of the hard classification revealed that the edges of the feature had 

taken on a "blocky" appearance. The accuracy assessment of this image is displayed 

in Table 4.7. 

Table 4.7: Confusion matrix, hard classified line feature 

Predicted 

Background Feature Totals PA (%) 

Background 55476 300 55776 99.4 

(j) 
Feature 300 5925 6225 95 .1 () 

~ 
(j) 
l-< .e Totals 55776 6225 61401 
~ 

UA(%) 99.4 95.1 % Correct: 99.0 

Overall accuracy of the hard classification was estimated at 99%. The pixel swapping 

technique was then applied to feature 2 using a zoom factor of five. Sub-pixels were 

allocated randomly and the pixel swapping algorithm ran until it converged (i.e., no 
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further swaps were made). Figure 4.7 shows the super-resolved output of the pixel 

swapping technique applied to simulated image 2. 

(a) (b) 

Figure 4.7: Super-resolved output, feature 2, (a) initial allocation, (b) super­
resolved output 

Figure 4.7(a) was the starting point (random allocation) . Sub-pixels within mixed 

pixels were allocated randomly. Figure 4.7(b) shows the super-resolved output. A 

visual inspection shows that the output closely resembled the original simulated 

feature. Table 4.8 presents the predicted accuracy of the initial allocation (soft 

classification) and the super-resolved output. 
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Table 4.8: Confusion matrices, feature 2, (a) Initial allocation, (b) Super-resolved 
output 

(a) 

Predicted 

Background Feature Totals PA(%) 

Background 55334 442 55776 99.2 

<I) 

Feature 442 5783 6225 92.8 u 
~ 
<I) .... 
~ Totals 55776 6225 61117 ~ 

UA(%) 99.2 92.8 % Correct: 98.5 

(b) 

Predicted 

Background Feature Totals PA(%) 

Background 55772 4 55776 99.9 

<I) 
Feature 3 6222 6225 99.9 u 

~ 
<I) .... 
~ Totals 55775 6226 61994 <I) 

~ 

UA(%) 99.9 99.9 % Correct: 99.9 

Overall accuracy for the super-resolved output was predicted as 99.9%. To assess the 

effect of the mixed pixels on the accuracy, a confusion matrix (Table 4.9) was 

calculated for a smaller area (loa pixels by 100 pixels) of the feature, as illustrated by 

Figure 4.8. 
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Figure 4.8: Subsection of feature 2 used in confusion matrix 

Table 4.9: Confusion matrix, subsection of feature 2, (a) Hard classification, (b) 
Initial random allocation, (c) Super-resolved output 

(a) 

Predicted 

Background Feature Totals PA(%) 

Background 7556 120 7676 98.4 

Q) 
Feature 120 2405 2525 95.2 u 

1=1 
Q) .... 

c2 Totals 7676 2525 9961 Q) 

~ 

UA(%) 98.4 95.2 % Correct: 97.6 
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i1» 
Predicted 

Background Feature Totals PA(%) 

Background 7500 176 7676 97.7 

0 Feature 177 2348 2525 92.9 u 
1=1 
0 
I-< 

~ Totals 7677 2524 9848 ~ 

UA(%) 97.6 93.0 % Correct: 96.5 

(c) 

Predicted 

Background Feature Totals PA(%) 

Background 7676 0 7676 100 

0 Feature 0 2525 2525 100 u 
1=1 
0 
I-< 

~ Totals 7676 2525 10201 
~ 

UA(%) 100 100 % Correct: 100 

The confusion matrix in Table 4.9 for a subsection of the simulated diamond feature 

reveals that the abundance of pure pixels in the image were, as expected, reducing the 

effect of mixed pixels. Accordingly, in the subsection of the site, the overall accuracy 

for the hard classification was predicted at 96.5% compared with a perfect allocation 

of 100% for the same subsection image in the pixel swapping technique. McNemar's 

test was used to evaluate the significance of these results (Table 4.1 0). 
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Table 4.10 : Significance test, hard classification & pixel swapping 

Pixel swapping 

Correct Incorrect 

Hard classification Correct 9961 0 

Incorrect 240 0 

Total 10201 0 

L_ x -242. SIgnificant at 0.05%. 

4.2.3.3 Simulated image 3: Complex scene 

Soft proportions in feature 3 were created by degrading the spatial resolution of the 

input imagery by a factor of five. Figure 4.9 displays the predicted soft proportions 

for each class in the simulated complex scene. 

(a) (b) 

Total 

9961 

240 

10201 
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(c) (d) 

(e) Legend: 

100'10 

50% 

0% 

Figure 4.9: Class proportion images for feature 3: (a) "field 1", (b) "field 2", (c) 
"field 3", (d) "field 4", (e) "hedgerow". Units: pixels. 

Figure 4.9 displays the predicted soft proportions for each class in the simulated 

complex scene. Mixed pixels occur along the boundary between classes, that is, along 

the boundaries of the "fields" and on each edge of the "hedgerow". Table 4.11 shows 

the predicted accuracy of the soft classification. 
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Table 4.11: Accuracy assessment, feature 3 

RMSE% r 

Field 1 7.84 0.99 

Field 2 6.01 0.99 

Field 3 6.91 0.99 

Field 4 6.12 0.99 

Hedgerow 8.16 0.98 

Accuracy assessment of the soft proportions revealed that class proportions were 

predicted with a high level of accuracy. The greatest error was predicted in the 

simulated hedgerow class. This can be explained due to the hedgerow class having the 

fewest pixels (i.e ., a "thin" hedgerow) and therefore when the spatial resolution of the 

original imagery was degraded, more mixed pixels in the hedgerow class were 

created. A maximum likelihood classification was applied to this image, as displayed 

in Figure 4.1 O. 

Figure 4.10: Hard classification, complex scene 

The "hedgerow" feature was predicted by the hard classification as a "blocky" 

feature. Accuracy assessments of the hard classification are presented in Table 4.11. 
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Table 4.12: Confusion matrix, hard classification, complex scene 

Predicted 

PA 
Field 1 Field 2 Field 3 Field 4 Hedgerow Totals 

(%) 

Field 1 8950 0 0 0 136 9086 98.5 

Field 2 105 14270 0 0 94 14469 98.6 

Field 3 0 0 6440 204 15 6659 96.7 
Q) 
u 
~ 
Q) Field 4 0 0 0 30427 115 30542 99.6 I-< 

~ 
Q) 

~ Hedgerow 70 60 30 200 885 1245 71.0 

Totals 9125 14330 6470 30831 1245 60972 

UA(%) 98.0 99.5 99.5 98.6 71.0 % Correct: 98.3 

Overall accuracy for the hard classification techniques was estimated at 98.3%. 

However, the hedgerow class was predicted considerably less accurately than each of 

the other classes. The pixel swapping technique was applied to feature 3 using a zoom 

factor of five. Sub-pixels were allocated randomly and the pixel swapping algorithm 

ran until it converged (i.e., no further swaps were made). Figure 4.11 shows the super­

resolved output of the pixel swapping technique applied to the third simulated image 

(complex scene). 
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(a) (b) 

Figure 4.11: Super-resolved output, feature 3, (a) initial allocation, (b) super­
resolved output 

Figure 4.11(a) was the starting point (random allocation) . Sub-pixels within mixed 

pixels were allocated randomly. Figure 4.11(b) shows the super-resolved output. A 

visual inspection suggests that the output closely resembled the original simulated 

feature. Table 4.13 presents the predicted accuracy of the initial allocation and the 

super-resolved output. 
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Table 4.13: Confusion matrices, feature 3, (a) Initial allocation, (b) Super­
resolved output 

(a) 

Predicted 

PA 
Field I Field 2 Field 3 Field 4 Hedgerow Totals 

(%) 

Field 1 8855 88 0 0 143 9086 97.4 

Field 2 87 14279 0 1 102 14469 98.6 

Field 3 0 0 6454 171 34 6659 96.9 
CI) 
u 
~ 
CI) Field 4 2 1 171 30148 220 30542 98.7 H 

~ 
CI) 

~ Hedgerow 142 103 33 219 748 1245 60.0 

Totals 9086 14471 6658 30539 1247 60484 

UA(%) 97.4 98.6 96.9 98.7 59.9 % Correct: 97.5 

(b) 

Predicted 

PA 
Field 1 Field 2 Field 3 Field 4 Hedgerow Totals 

(%) 

Field 1 9081 1 0 0 4 9086 99.9 

Field 2 1 14468 0 0 0 14469 99.9 

Field 3 0 0 6657 1 1 6659 99.9 
CI) 
u 
~ 

Field 4 0 0 0 30538 4 30542 99.9 CI) 
H 

~ 
CI) 

~ Hedgerow 4 1 1 2 1237 1245 99.3 

Totals 9086 14470 6658 30541 1246 61981 

UA(%) 99.9 99.9 99.9 99.9 99.2 % Correct: 99.9 
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Table 4.13 shows that the overall accuracy of the super-resolved output for the 

complex scene was estimated at 99.9%. This was an increase of 1.5% over the hard 

classification. However, attention should be drawn to the accuracy of the prediction of 

the hedgerow class. In the hard classification, accuracy of this class was estimated at 

71.0%. In the super-resolved output, the accuracy was estimated as 99.3% a positive 

difference of 28.3%. Accuracy assessments were also calculated for a 100 sub-pixel 

by 100 sub-pixel subsection of the complex scene, which contained samples of the 

field 1, field 4 and hedgerow classes. These accuracy assessments are displayed in 

Table 4.14. 

Table 4.14: Confusion matrices, subsection of complex scene 

(a) 

Predicted 

Field 1 Field 4 Hedgerow Totals 

Field 1 3362 0 92 3454 

Field 4 0 6189 53 6242 
(l) 
u 
~ 

92 360 505 (l) Hedgerow 53 I-< 

~ 
~ Totals 3415 6281 505 9911 

PA 

(%) 

97.3 

99.1 

71.2 

UA(%) 98.4 98.5 71.2 % Correct: 97.1 
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(b) 

Predicted 

PA 
Field 1 Field 4 Hedgerow Totals 

(%) 

Field 1 3335 18 101 3454 96.5 

Field 4 2 6142 98 6242 98.3 
Q) 
u 
$:l 
Q) Hedgerow 101 100 304 505 60.1 I-< 

~ 
Q) 

~ Totals 3438 6260 503 9780 

UA(%) 97.0 98.3 60.4 % Correct: 99.9 

(c) 

Predicted 

PA 
Field 1 Field 4 Hedgerow Totals 

(%) 

Field 1 3453 0 1 3454 99.9 

Field 4 0 6241 1 6242 99.9 
Q) 
u 
$:l 
Q) Hedgerow 1 1 503 505 99.6 I-< 

~ 
~ Totals 3454 6242 505 10197 

UA(%) 99.9 99.9 99.6 % Correct: 99.9 

Accuracy assessments of the three techniques to the input imagery revealed results 

very similar to those of the complete scene. This was not unexpected, however, as the 

number of mixed pixels in the subsection was still low relative to the number of pure 

pixels. 

In addition to the confusion matrices, difference images were constructed to help 

visualise the error in each of the outputs. These images are displayed in Figure 4.12. 
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(a) 

(i) Hard classification (ii) Soft classification (iii) Pixel swapping 

(b) 

(i) Hard classification (ii) Soft classification (iii) Pixel swapping 

(c) 

(i) Hard classification (ii) Soft classification (iii) Pixel swapping 

Figure 4.12: Difference images, (a) Diamond shape, (b) Soft classification, (c) 
Pixel swapping 

93 



In Figure 4.12, black areas indicate perfect agreement between the target and the 

prediction. Misclassification existed along the edges of classes at the points where 

classes intersected neighbouring classes, as depicted by white and grey pixels. Small 

areas ofmisclassification also existed at the topmost and bottommost ends of the 

hedgerow class. In each case, it was evident that considerably less error was apparent 

in the super-resolved output from the pixel swapping technique than either the hard 

classification or the soft classification. 

4.2.4 Discussion of results 

Degrading the spatial resolution of the simulated imagery resulted in simple features 

with mixed pixels. Mixed pixels (i.e., pixels with proportions of two or more classes) 

all occurred on or adjacent to boundaries between classes, i.e., along the edges of the 

diamond and line features, and between the simulated field and hedgerow classes in 

the third set. This was an expected outcome, since degrading the spatial resolution of 

a pure pixel entirely surrounded by pure pixels will always result in a pure pixel at the 

degraded spatial resolution. It is only where the window in the degradation process (in 

this case, 5 pixels by 5 pixels) covered multiple classes that mixed pixels (and 

accordingly soft proportions) result in the output image at the degraded spatial 

resolution. 

Accuracy assessment of the resultant images of degrading the spatial resolution of the 

original simulated imagery showed very small amounts of error. In each of the three 

features, the RMSE was between 6% and 8%, with the exception of the hedgerow 

class in feature 3, where the RMSE was 8.l4%. In the same class, the correlation 

coefficient was 0.98, and in all other classes in each feature, the correlation 

coefficient was 0.99. The small amounts of error in the images were not unexpected. 

The error occurs due to the images being reasonably small (250 pixels on each axis 

degraded to 50 pixels on each axis), yet the geometry of the features contained within 

them caused quite dense mixing within pixels (i.e., in the two class examples, 

proportions of 60 and 40 were often output as opposed to, for example, 90 and 10). 
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Since the number of pixels with proportions was low relative to the number of pure 

pixels, the effect of densely mixed pixels on the accuracy assessment was more acute. 

Confusion matrices which were created for the soft classifications of each of the 

simulated images, were displayed to illustrate the benefit of using super-resolution 

techniques. As described in previous chapters of this thesis, soft classification does 

not provide any information on the locations of proportions in pixels. Therefore, the 

random allocation was used. In each case, the overall accuracy of the random 

allocation was less than that of the hard classification. This was, of course, not 

unexpected, since it was a random allocation. However, it was demonstrated that the 

pixel swapping technique could be used to predict the proper locations of the 

randomly allocated sub-pixels and increase the accuracy of the resultant super­

resolved map. 

In each of the three simulated images, the predictions made using the pixel swapping 

technique were very accurate. In most cases, the accuracy of the super-resolved 

output was 99%. In some cases, the accuracy was reported as 100%. The areas of 

error in the super-resolved output of each of the sites were around the edges of the 

classes, for example, on vertices of the diamond feature, the outermost edges of the 

line feature, and on the boundaries of the simulated field and hedgerow classes in 

feature 3. In each case, though, the super-resolved output matched the input imagery 

with very little error. When the accuracy of the technique was assessed in subsections 

of the simulated features, the accuracy of the hard classification technique was less 

than the accuracy for the whole image, whereas, in most cases, the accuracy of the 

super-resolved output was comparable to that of the whole image, indicating that the 

effect of mixed pixels on the hard classification was significant. That is, the pixel 

swapping technique demonstrated an ability to map classes within mixed pixels with 

greater accuracy than hard classification techniques. Difference images of each of the 

features, revealed the areas in which misclassification occurred. As expected, these 

areas were at the boundaries of classes, where mixed pixels were created in the 

process of degrading the spatial resolution of the original imagery. 

On the basis of these results, the standard pixel swapping algorithm displayed great 

potential for mapping land cover classes in remotely sensed imagery. Mixed pixels 
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were mapped more accurately than in a traditional hard classification. The simulated 

imagery used in this initial evaluation identified key parts of features that would 

require consideration in development of the algorithm (i.e., boundaries of features, in 

particular, boundaries that changed direction, e.g., the four points of the diamond 

shape that displayed most error). The simulated imagery were simplistic and 

represented a useful set of test cases, without many of the complications of using real 

remotely sensed imagery, such as atmospheric interference or the point-spread 

function. Mixed pixels created by degrading the spatial resolution of the input 

imagery were mixed perfectly linearly, which simplified the super-resolution task. In 

reality, however, such perfect mixing is rarely the case. Therefore, in order to fully 

evaluate the pixel swapping algorithm for sub-pixel mapping, it was applied to real 

remotely sensed imagery. 

4.3 Real imagery 

The second stage of testing the pixel swapping algorithm with real imagery is now 

presented. The imagery used in this section is described in Section 3.4.2 of this thesis. 

4.3.1 Soft classification 

Quickbird imagery at a spatial resolution of 2.6 m of each of the three field sites in the 

Christchurch study area were soft classified to provide soft proportions for input to 

the pixel swapping algorithm. Two soft classification methods were used: the fuzzy c­

means (FCM) and the linear mixture model (MM), as described in Section 2.2.2.1 and 

section 2.2.2.2 of this thesis. In the case of the FCM, a parameter known as the fuzzy 

exponent, that determines the fuzziness of the output, was set at 2. Results could, 

therefore, be expected to fall between minimum and maximum entropy. Values 

between 1.5 and 2.5 were evaluated, but did not lead to an increase in accuracy. A 

value of 2 is commonly found in the literature, and so was adopted in this thesis. 

Accuracy assessment was applied to the soft classification output, as described in 
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Section 2.6 of this thesis. Information on the location of pure pixels, for use within 

soft classification, was collected during field survey. 

Soft classification results are presented as a set of greyscale images - one for each 

land cover class in the field site. These images are displayed from the FCM only. In 

these images, white represents areas completely covered by a particular class (100%); 

black represents zero proportion of a particular class. Greys, therefore, indicate areas 

of mixing between classes. Accuracy assessments of each soft classification are 

presented in tables showing the RMSE and correlation coefficient for each of the soft 

classification methods. 

4.3.2 Pixel swapping 

The super-resolution pixel swapping method uses the soft proportions from a soft 

classification to map the locations of classes within remotely sensed imagery. A 

technical description of the technique is presented in Chapter 2 of this thesis. At this 

stage, information on soft proportions were derived from two soft classification 

techniques, as described in Section 2.2.2 above. The super-resolution pixel swapping 

technique was applied to each of the three field sites using a zoom factor of five. The 

effect of the spatial resolution and the zoom factor were explored as part of this 

research (the results are presented later in this thesis). For this initial evaluation sub­

pixels were allocated randomly and the pixel swapping algorithm iterated until it 

converged (i.e., no further swaps were made). 

In this stage of the research, where the objective was to evaluate the potential of 

super-resolution pixel swapping for the identification of fine linear features, confusion 

matrices were constructed to assess the accuracy of the linear feature (i.e., hedgerow) 

class against all other classes. 
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4.3.3 Results 

In this section, the results of simulating soft proportions from simulated imagery and 

then applying to the pixel swapping technique are presented, accordingly: 

• Field site A 

o Soft proportions (Figure 4.13) 

o Accuracy assessment of soft proportions (Table 4.15) 

o Super-resolved output (Figure 4.14) 

o Accuracy assessment of super-resolved output (Table 4.16) 

• Field site B 

o Soft proportions (Figure 4.15) 

o Accuracy assessment of soft proportions (Table 4.17) 

o Super-resolved output (Figure 4.16) 

o Accuracy assessment of super-resolved output (Table 4.18) 

• Field site C 

o Soft proportions (Figure 4.17) 

o Accuracy assessment of soft proportions (Table 4.19) 

o Super-resolved output (Figure 4.18) 

o Accuracy assessment of super-resolved output (Table 4.20) 

4.3.3.1 Field site 1 (Site ref: A) 

Field site 1 was soft classified with the FCM and MM. Figure 4.13 displays the 

predicted soft proportions for each class in field site 1. 
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Figure 4.13: FCM Proportion images for field site 1: (a) "hedgerow", (b) 
"cereal", (c) "woodland". Units: percentage of a pixel's area. 

Mixed pixels occurred within each land cover class, as depicted by grey pixels. Table 

4.15 shows the predicted accuracy of the soft "classification. 
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Table 4.15: Accuracy assessment, field site 1 

Site: A FCM MM 

RMSE% r RMSE% r 

Class 1 (hedgerow) 11.55 0.97 12.17 0.97 

Class 2 (woodland) 11.30 0.97 15.45 0.95 

Class 3 (cereal) 12.36 0.97 13.97 0.96 

Average 11.73 0.97 13.86 0.96 

Accuracy assessment of the soft proportions revealed that class proportions were 

predicted with a moderate level of accuracy. Differences in the accuracy of the two 

soft classifications were apparent in the accuracy assessments. In each class, the MM 

predicted less accurately than the FCM. Additionally, the FCM was least accurate in 

the cereal class (12.36%) whereas as the MM was least accurate in the woodland class 

(15.45%). For the above reasons, the proportions infonnation from the FCM was used 

as input to the pixel swapping technique. 

The pixel swapping technique was applied to the soft proportions from the FCM using 

a zoom factor of five. Figure 4.14 displays the super-resolved output. 
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Figure 4.14: Super-resolved output, field site 1 
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A visual inspection reveals that the super-resolved output generally reflects the scene 

depicted in the original imagery. The hedgerow class was predicted as a continuous 

feature and the shape of the woodland class resembled the shape of the feature in the 

original imagery. However, misclassification was clearly evident throughout the 

image in the form of discrete blocks of error. Table 4.16 presents the accuracy 

assessment of the hedgerow class, where training data ( reference) were used to 

produce a confusion matrix against the prediction (super-resolved output). Overall 

accuracy was predicted at 65 .6%. 
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Table 4.16: Confusion matrix, field site 1 

Predicted 

Hedgerow Not hedgerow Totals PA(%) 

Hedgerow 19 26 45 42.2 

Q) 

Not hedgerow 5 40 45 88.8 (,,) 

~ 
Q) 
I-< 

~ Totals 24 66 59 Q) 

~ 

UA(%) 79.2 60.6 % Correct: 65 .6 

4.3.3.2 Field site 2 (Site ref: B) 

Field site 2 was soft classified with the FCM and MM. Figure 4.15 displays the 

predicted soft proportions for each class in field site 2. 
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Figure 4.15: Proportion images for field site 2: (a) "woodland", (b) "hedgerow", 
(c) "non-ripe cereal", (d) "ripe cereal". Units: percentage of a pixel's area. 

In Figure 4.15, mixed pixels occurred within each land cover class, as depicted by 

grey pixels. Mixed pixels were most obvious within the ripe cereal class (Figure 

4.15( d)). Misclassification was also apparent, particularly in the hedgerow class 

(Figure 4.15(b)), where light grey pixels in the ripe cereal field (lower-left corner of 

the image), suggest some confusion between the hedgerow and ripe cereal classes. 

Table 4.17 shows the predicted accuracy of the soft classification. 
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Table 4.17: Accuracy assessment, field site 2 

Site: B FCM MM 

RMSE% r RMSE% r 

Class 1 (woodland) 14.91 0.94 19.31 0.91 

Class 2 (hedgerow) 25.95 0.81 28.08 0.76 

Class 3 (non-ripe 6.56 0.99 15.81 0.96 

cereal) 

Class 4 (ripe cereal) 24.64 0.83 23.36 0.85 

Average 18.01 0.89 21.64 0.87 

Accuracy assessment of the soft proportions revealed that class proportions were 

predicted with a moderate level of accuracy. Differences in the accuracy of the two 

soft classifications were apparent in the accuracy assessments. The MM was less 

accurate than the FCM in each class except the ripe cereal class. Both soft 

classifications were least accurate in the hedgerow class. The misclassification 

described above was confirmed by the accuracy assessments, since the highest levels 

of error occurred in the hedgerow and ripe cereal classes. Values of r were lowest in 

these classes, which suggested that there was confusion between the hedgerow and 

ripe cereal classes in the predicted soft proportions. 

The pixel swapping technique was then applied to the soft proportions from the FCM 

using a zoom factor of five. Figure 4.16 displays the super-resolved output. 
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Figure 4.16: Super-resolved output, field site 2 

A visual inspection reveals that the super-resolved output generally reflects the scene 

depicted in the original imagery. The hedgerow class was predicted as a continuous 

feature and the shape of the woodland class resembled the shape of the feature in the 

original imagery. Misclassification was clearly distinguishable throughout the image 

in the form of discrete blocks of error. Table 4.18 presents the accuracy assessment 

of the hedgerow class, where training data (reference) were used to produce a 

confusion matrix against the prediction (super-resolved output). Overall accuracy was 

estimated at 84.2%. 
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Table 4.18: Confusion matrix, field site 2 

Predicted 

Hedgerow Not hedgerow Totals PA (%) 

Hedgerow 15 3 18 83.3 

Q) 

Not hedgerow 1 17 18 94.4 u 
~ 
Q) 
I-< 

~ Totals 16 20 32 Q) 

~ 

UA(%) 93 .7 85.0 % Correct: 84.2 

4.3.3.3 Field site 3 (Site ref: C) 

Field site 3 was soft classified with the FCM and MM. Figure 4.17 displays the 

predicted soft proportions for each class in field site 3. 
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Figure 4.17: Proportion images for field site 3: (a) "hedgerow", (b) "woodland" 
(i.e. individual trees), (c) "ripe cereal", (d) "non-ripe cereal". Units: percentage 
of a pixel's area. 

In Figure 4.17, mixed pixels occurred within each land cover class, as depicted by 

grey pixels. Mixed pixels were most obvious within the ripe-cereal class (Figure 

4.17( c)) where misclassification was apparent due to the existence of grey pixels in 

each of the other proportion images in the area of the image measured as non-ripe 
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cereal on the ground. Table 4.19 shows the predicted accuracy of the soft 

classification. 

Table 4.19: Accuracy assessment, field site 3 

Site: C FCM MM 

RMSE% r RMSE% 

Class 1 (hedgerow) 18.15 0.90 38.03 

Class 2 (woodland) 20.03 0.88 18.84 

Class 3 (ripe cereal) 12.21 0.95 12.71 

Class 4 (non-ripe 10.63 0.97 16.80 

cereal) 

r 

0.33 

0.89 

0.95 

0.93 

Accuracy assessment of the soft proportions revealed that class proportions were 

predicted with a moderate level of accuracy. Differences in the accuracy of the two 

soft classifications were apparent in the accuracy assessments. In each class, the MM 

was less accurate than the FCM. The FCM was least accurate in the woodland class, 

whereas the MM was least accurate in the hedgerow class. With the exception of the 

non-ripe cereal class, in this field site, the MM was substantially less accurate than the 

FCM, ranging from 6% more error in the non-ripe cereal class to 20% more error in 

the hedgerow class. 

The pixel swapping technique was then applied to the soft proportions from the FCM. 

Figure 4.18 displays the super-resolved output. 
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Figure 4.18: Super-resolved output, field site 3 

A visual inspection reveals that the super-resolved output generally reflects the scene 

depicted in the original imagery. The hedgerows in the hedgerow class were predicted 

as continuous features and the shape of the woodland class resembled the shape of the 

feature in the original imagery. However, misclassification was clearly evident 

throughout the image in the form of discrete blocks of error. Table 4.20 presents 

accuracy assessment of the hedgerow class, where training data (reference) were used 

to produce a confusion matrix against the prediction (super-resolved output). Overall 

accuracy of the hedgerow class was estimated at 67.6%. 
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Table 4.20: Confusion matrix, field site 3. 

Predicted 

Hedgerow Not hedgerow Totals PA(%) 

Hedgerow 17 20 37 45.9 

Q) 

Not hedgerow 4 89.1 u 33 37 $:l 
Q) 
I-< 

~ Totals 21 53 50 Q) 

~ 

UA(%) 80.9 62.2 % Correct: 67.6 

4.3.4 Discussion of results 

A visual inspection of the results of applying the soft classification techniques to each 

of the three field sites indicated that the woodland class in each of the field sites was 

separated from surrounding classes adequately by soft classification techniques. In 

other classes, particularly the cereal classes, however, the existence of greys 

suggested mixing between classes. Accuracy measures, such as RMSE and the 

correlation coefficient were used to assess the accuracy of each of the soft 

classification techniques. The reported accuracy of the woodland class from each of 

the accuracy assessments supported the visual inspection of the imagery. However, 

accuracy assessments revealed more information about the soft classification than a 

visual inspection. For example, in field site 1, there was little difference in accuracy 

between the FCM and MM. In the hedgerow and cereal classes, the difference in 

RMSE was 1-2%. In the woodland class, the difference was 4%. However, in field 

sites 2 and 3, where there were both more land cover classes and individual classes 

which were less spectrally separable, accuracy assessments showed that the FCM was 

more accurate than the MM. Accordingly, only the output of the FCM was used as 

input to the sub-pixel mapping algorithm. 

A visual inspection of the super-resolved output revealed that in most cases 

continuous features were predicted and hedgerows approximately reflected the size 

and geometry of the features in the original imagery. In some cases, though, 
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particularly field site 3, small gaps appeared within the hedgerows. Trees within 

hedgerows resembled their initial shape. 

The super-resolved output from the pixel swapping algorithm contained detailed 

information about the rural land cover features of interest. Field site I represented the 

simplest scene containing only three classes (hedgerow, woodland and cereal) and 

these features were resolved with reasonable accuracy. Variation in width along the 

length of the hedgerow was mapped. Inspection of the original imagery confirmed the 

narrowing to the south-western and north-eastern ends of the hedgerow. In field sites 

2 and 3, the classification task was more difficult. In field site 2, the primary mapping 

tasks for the algorithm were the area of woodland (around 20 m wide) and the 

adjacent hedgerow (1-2 m wide). The former feature was predicted relatively 

accurately. The hedgerow was predicted accurately on a per-pixel basis. However, 

visually the hedgerow was mapped as a series of discrete objects. The same was true 

of the mapping tasks in field site 3 (each of the hedgerows), although in this case, 

where the hedgerow was clearly distinguished from its background, greater contiguity 

was achieved. Remembering that the original pixel size was 2.6 m and the widths of 

the hedgerows were approximately equal to that, the results were reasonable. It was 

also demonstrated that the pixel swapping technique could be used to map land cover 

features within features. For example, in field site 3, in addition to mapping the 

hedgerows, individual trees within hedgerows were mapped. This represented a great 

potential for the pixel swapping algorithm and represented functionality that was not 

common within mainstream feature extraction techniques. With development, the 

pixel swapping algorithm could be used to provide geometric information on these 

features. Such information (e.g., size of tree crowns, number of tree crowns, relative 

density of tree crowns to hedgerow, width of hedgerow) could be of great utility to 

ecologists (e.g., in terms of characterising habitats for bird foraging, nesting and 

territories generally) for a variety of applications. 

In the super-resolved outputs of each of the three field sites, there was evidence of 

error, which resulted in speckled patterns appearing in the output and affected the 

accuracy of the super-resolved output. The error was a result of misclassification in 

the soft classification stage. Visual inspection of the original imagery and the soft 

proportion images provided some possible reasons for this error. In the original 
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imagery (Chapter 3), variation within classes was apparent in each of the three field 

sites. The human eye was able to distinguish between the classes quite simply, that is, 

in field site 1, the hedgerow, the woodland and field classes were easily delineated. In 

field sites 2 and 3, it was also possible to delineate individual classes by eye, 

including more complex features such as trees within hedgerows. It was also apparent 

that within classes, for example, in each of the cereal classes, which the human eye 

delineates as "fields", there was mixing within them, notably in field site B. On the 

ground, mixing within the field could have been caused by many things, for example, 

the stage of the growth of the cereals, where the spectral response of cereals change as 

they ripen, or areas of non-growth resulting in bare soil. In the case of the woodland 

class in field site B, the unusual shape of the feature in the super-resolved output, was 

a result of tree crowns and gaps within the canopy. Mixing within classes would have 

affected the accuracy of the soft classification, if the number of classes used in soft 

classification did not realistically describe the number of the classes on the ground. 

To minimise the effect of the error on the super-resolved output a mathematical 

morphology technique was developed. This technique is described and presented in 

the next section. 

4.4 Mathematical morphology 

The accuracy of the pixel swapping technique was affected adversely by error in the 

soft classification input. Therefore, a two-step mathematical morphology (Heijmans, 

1995; Serra, 1982) approach was used to remove small areas of error from the super­

resolved output. Mathematical morphology techniques were developed to handle 

objects with a characteristic spatial structure, comprised of a specific arrangement of 

individual elements. Mathematical morphology techniques adjust and rearrange these 

individual elements to influence the state and appearance of the structure of objects. 

In this research, "closing and opening" operations were used. On a class-by-class 

basis, a filter (the "structuring element"), variable in both size and shape, was passed 

over the image, which initially eroded objects, by removing pixels around the objects' 

edges. Then, the objects were dilated, where sub-pixels were added back in. This 
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completely removed small objects (assumed to be classification error) leaving larger 

objects (assumed to be actual objects) relatively untouched. 

Mathematical morphology was used to remove error in the super-resolved output 

while leaving the feature of interest intact. In each case, the structuring element was 

disc-shaped and the size of the structuring element was varied on a class-by-class 

basis for each field site. Morphology was applied initially on all classes except the 

feature class (i.e. all non-feature error sub-pixels were removed first) to maximise the 

availability of feature class pixels in a subsequent inverse-distance weighting step. 

For example, in field site 1, a basic [0,1,1] structuring element was used (i.e., no 

morphology operator was applied to the feature class, and the structuring element for 

the other two classes was of size 1 sub-pixel). In the remaining sites, where there were 

more classes and more significant error, larger elements were used, for example, 

[0,2,2,2] for field site 2 and [0,1,2,3,3] for field site 3. Morphology was then applied a 

second time, acting only on the feature class (to remove feature class error pixels e.g. 

[1,0,0] for site A, [1,0,0,0] for site Band [1,0,0,0,0] for site C). 

As a result of applying the mathematical morphology technique and removing small 

areas of error, some sub-pixels were no longer assigned to a class. Therefore, a simple 

inverse-distance weighting algorithm in a 3 by 3 window was applied, to assign a 

class to these sub-pixels, predicting the class based on the sub-pixels' neighbours. 

The mathematical morphology technique described above was applied to the super­

resolved output of each of the three Christchurch field sites. The result of applying the 

mathematical morphology technique to the super-resolved output of each of the three 

Christchurch field sites is presented in the following section, in the form of super­

resolved land cover maps. The accuracy of the technique is assessed using confusion 

matrices. 

4.4.1 Field Site 1 

The mathematical morphology technique was applied to field site 1, using a disc­

shaped structuring element, in two stages. The size (in sub-pixels) of the structuring 
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element was ° on the hedgerow class, 1 on the woodland class and 1 on the cereal 

class (represented as [0,1,1]). The element was then reapplied in the form [1,0,0]. 

Inverse distance weighting was then used to assign classes to any sub-pixels without a 

class allocation. Figure 4.19: Super-resolved output with mathematical morphology 

applied, field site 1 shows the super-resolved output with morphology applied. 

(a) 

3 Woodhtnd 

150 2 Ccrelll 

lIedgerow 

100 

o 
Lr------.-------.-------.---~ 

o 50 100 150 

Figure 4.19: Super-resolved output with mathematical morphology applied, field 
site 1 

A visual inspection of Figure 4.19 suggests that much of the error apparent in the 

standard super-resolved output was removed. Figure 4.19 was more visually 

appealing without the error and resembled more closely the type of output that was 

expected from the technique (three distinct classes). Noticeably, areas of error along 

the edges of the classes (for example, hedgerow pixels along the edge of the 

woodland class) were removed without affecting the shape of the woodland class. The 

single tree within the hedgerow remained, whilst other misclassified woodland pixels 

were removed. Table 4.21 presents the confusion matrices to assess the accuracy of 

the morphology technique. 
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Table 4.21: Confusion matrix, super-resolved output with mathematical 
morphology applied 

Predicted 

Hedgerow Not hedgerow Totals 

Hedgerow 21 24 45 

<!) 

Not hedgerow 4 41 45 (,) 

~ 
<!) 
I-< 

~ Totals 25 65 62 <!) 

~ 

PA(%) 

46.7 

91.1 

UA(%) 84.0 63.1 % Correct: 68.8 

Accuracy assessment of the super-resolved output with morphology applied indicated 

that the accuracy of the prediction of the hedgerow class increased by 3%. 

4.4.2 Field site 2 

The mathematical morphology technique was applied to field site 2, using a disc­

shaped structuring element, in two stages. The size (in sub-pixels) of the structuring 

element was 0 on the hedgerow class, and 2 for each of the other three classes 

(represented as [0,2,2,2]). The element was then reapplied in the form [1,0,0,0]. 

Inverse distance weighting was then used to assign classes to any sub-pixels without a 

class allocation. Figure 4.20 displays the super-resolved output with mathematical 

morphology applied. 
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Figure 4.20: Super-resolved output with mathematical morphology applied, field 
site 2 

A visual inspection of Figure 4.20 suggests that much of the error apparent in the 

standard super-resolved output was removed, particularly in the non-ripe cereal class 

in the upper left corner and lower-right corner of the figure. Figure 4.20 was more 

visually appealing without the error and resembled more closely the type of output 

that was expected from the technique (four distinct classes). Error still existed, for 

example, ripe cereal sub-pixels were not removed from areas where hedgerow pixels 

were expected. Table 4.22 presents the confusion matrices to assess the accuracy of 

the morphology technique. 
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Table 4.22: Confusion matrix, super-resolved output with mathematical 
morphology applied 

Predicted 

Feature Not Feature Totals 

Feature 17 1 18 
<!) 

Not Feature u 1 17 18 1=1 
<!) 
I-< 

~ Totals 18 18 34 <!) 

t:z::: 

PA (%) 

94.4 

94.4 

UA(%) 94.4 94.4 % Correct: 94.4 

Accuracy assessment of the super-resolved output with mathematical morphology 

applied estimated an increase in accuracy of 6%. 

4.4.3 Field site 3 

The mathematical morphology was applied to field site 2, using a disc-shaped 

structuring element, in stages. The size (in sub-pixels) of the structuring element was 

° on the hedgerow class, 1 on the tree class, 2 on the cereal class and 3 on the 

remaining cereal classes (represented as [0,1,2,3,3]). The element was then reapplied 

in the form [1,0,0,0,0]. Inverse distance weighting was then used to assign classes to 

any sub-pixels without a class allocation. Figure 4.21 displays the super-resolved 

output with mathematical morphology applied. 
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Figure 4.21 : Super-resolved output with mathematical morphology applied, field 
site 3 

A visual inspection of Figure 4.21 suggests that much of the error apparent in the 

standard super-resolved output was removed. Figure 4.21 was more visually 

appealing without the error and resembled more closely the type of output that was 

expected from the technique (four distinct classes). Table 4.23 presents the confusion 

matrices to assess the accuracy of the morphology technique. 
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Table 4.23: Confusion matrix, super-resolved output with mathematical 
morphology applied, field site 3 

Predicted 

Feature Not Feature Totals 

Feature 21 16 37 

(I,) 

Not Feature 5 32 37 (,) 

~ 
(I,) 
I-< 

~ Totals 26 48 53 
~ 

PA (%) 

46.5 

86.4 

UA(%) 80.7 66.7 % Correct: 71.2 

Accuracy assessment of the super-resolved output with mathematical morphology 

applied estimated an increase in accuracy of 4%. 

4.4.4 Discussion of results after mathematical morphology 

The super-resolved output after mathematical morphology was applied showed some 

visual improvements. In most cases, mathematical morphology removed small areas 

of misclassification from the super-resolved output. When compared with confusion 

matrices for the standard super-resolved output, the confusion matrices for the super­

resolved output after mathematical morphology had been applied, indicated an 

increase in overall accuracy. However, in field sites 2 and 3, where mixing between 

classes was complex, particularly in the' cereal' classes, some obvious error was still 

apparent, even after application of the mathematical morphology. 

The primary constraint of the pixel swapping algorithm is that class proportions (from 

a soft classification) are not modified, it only updates the spatial location of sub­

pixels. The mathematical morphology technique violates this constraint since areas of 

misclassification are removed, and inverse distance weighting is used to interpolate 

unknown values. As previously discussed, the existence of error in the super-resolved 

output is solely a function of the input soft classification, and accordingly, a preferred 

solution to the problem would be to increase the accuracy of the soft classification, 

rather than post-process the imagery, as described above. 
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4.5 Discussion of chapter results 

When applied to simulated imagery, the pixel swapping technique displayed results 

which were both comparable visually to the target and were accurate to 98% or 

greater. In each case, the super-resolution technique produced more accurate results 

than a standard hard classification and displayed the potential of the pixel swapping 

technique for land cover mapping. The simple shapes depicted in the simulated 

imagery were useful in identifying key characteristics of land cover features that 

would require consideration when developing the technique. 

When the pixel swapping technique was applied to real imagery, using soft 

proportions derived from a soft classification technique, several problems occurred. 

The primary problem was the handling of error in the soft classification output. As the 

pixel swapping algorithm completed successive iterations, the algorithm swapped the 

misclassified sub-pixels as if they were correctly allocated. After several iterations, 

the misclassified sub-pixels clustered together and began to take a spatially structured 

form. This limited the accuracy of the pixel swapping technique. In order to 

understand this problem and develop the algorithm accordingly, it was important to 

investigate the causes of the error based on what was on the ground in the image. 

There were several facets of the imagery, which affected the accuracy of the standard 

pixel swapping technique. In complex sites such as field site 2 and field site 3, class 

mixing existed on the ground (i.e., areas within the image exhibited complex mixing). 

In some fields, the percentage crop cover varied spatially and was mixed with areas of 

bare soil. This was problematic during both soft classification and subsequently 

during pixel swapping. The problem of mixing is a real life problem that exists as a 

challenge for any remote sensing research project, however, for the purposes of 

testing the algorithm, a different choice of field sites might have yielded more 

informative results. Had time permitted, an in-depth evaluation of the effect of mixing 

on the ground would have been carried out, initially by testing the algorithm on 

additional sources of real remotely sensed imagery. 
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Both classifiers displayed accuracies above 80%, yet both classifiers were less 

accurate where there was mixing within classes on the ground. This was most obvious 

in the more complex sites, such as field sites 2 and 3, where there was both bare soil 

and cereals in the agricultural fields, even though only 'cereal' was used in training. 

Further, as Foody (2000) points out, the existence of untrained classes in the image 

may have led to reduced accuracy of the soft classification. Consequently, the 

accuracy of the pixel swapping algorithm was affected, due to its reliance on accurate 

class proportion prediction. It is likely that more accurate soft classification data 

would have yielded more accurate output from the pixel swapping technique. 

The trees and hedgerows in the imagery were commonly spectrally similar to the 

background, which made separating them from their background difficult. For 

example, the hedgerows on the ground were generally made up of green plants, such 

as short and long grasses (Miscanthus), ferns (Athyrium) and cow parsley (Anthriscus 

sylvestris). In some cases, there were also woody plants, such as sticks, brambles and 

young trees. The plants in the non-ripe cereal classes, were generally green, but 

changing to yellow as they ripened. Therefore, they often had similar spectral 

characteristics to the hedgerow classes. 

Error in the ground data may have affected the assessment of the accuracy of the 

techniques. The phenological stage of the vegetation in the scene when the satellite 

sensor image was acquired was likely to differ slightly from that when the ground 

data were acquired. Additionally, land cover features may have changed: the width of 

the hedgerow might have differed to the width of the hedgerow in the satellite sensor 

image, due, for example, to hedgerow management practices. The GPS Position 

Dilution of Precision (PDOP) value, a function of satellite geometry, affects the 

precision with which measurements are taken. PDOPs of between 2.2 and 4.0 were 

recorded which related to an average precision of 68%. Furthermore, georectification 

of the imagery was accurate to approximately 2 m. Given that the average width of 

the hedgerows were 3 m, this accuracy would have had an effect on locating the 

hedgerow (measured in the field) in the actual image in accuracy assessment. These 

issues may have affected the accuracy of the assessment of the sub-pixel output. 
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4.6 Conclusion 

The standard pixel swapping algorithm is a simple and efficient super-resolution 

technique. Initial testing of the pixel swapping algorithm on simulated imagery led to 

accurate predictions. Application to real satellite sensor imagery, however, yielded 

less promising results. During this stage of research, one key requirement for accurate 

sub-pixel mapping was highlighted, that is, accurate soft classification information are 

required as input. For features that were approximately half the width of a pixel, the 

algorithm failed to produce contiguous features, instead, mapping them as a series of 

discrete objects. It was evident, therefore, that the technique required some 

deVelopment in order to accurately predict linear features. Nevertheless, the super­

resolution pixel swapping technique displayed obvious potential for mapping linear 

features. 

Chapter 5 presents the next stage of the research - "linearisation". 
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Chapter 5 

Linearisation 
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Chapter 5 

5. Linearisation 

5.1 Introduction 

In Chapter 4 of this thesis, a super-resolution pixel swapping technique was evaluated 

for its potential to map land cover classes from remotely sensed imagery. When 

applied to simulated remotely sensed imagery, the technique mapped the features in 

the imagery accurately. When applied to real satellite imagery, however, the land 

cover classes in each of the three field sites were mapped less accurately as a result of 

error in the soft classification. After a morphology technique was applied to the super­

resolved output to remove small areas of error, the locations of the classes in the 

output were more comparable with the target imagery. In particular, the locations and 

dimensions of the linear features within the super-resolved output were mapped with 

reasonable accuracy, displaying the obvious potential of the technique for mapping 

land cover. However, in some cases, the predicted features were not contiguous, 

instead, they were predicted as a series of discrete objects. Additionally, some feature­

level characteristics, for example, variation in the width of a feature along its length, 

were not accurately represented. It was therefore necessary to develop the pixel 

swapping technique to accommodate these requirements. 

In the following two chapters, research carried out to develop the pixel swapping 

technique is presented, where the objective was to specifically map linear features in 

remotely sensed imagery. Research into existing linear feature techniques (as 

described in Chapter 2 of this thesis) served as a useful background in defining some 

of the key characteristics of linear features (as described in Chapter 3). With this 

information, the pixel swapping technique was modified to map linear features. The 

research carried out to achieve this objective is presented in this chapter. 
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5.2 Linearisation 

Linear features exhibit a wide range of geometric characteristics. These characteristics 

are described in Chapter 3 of this thesis. In order to map linear features within 

remotely sensed imagery with greater accuracy than the existing pixel swapping 

technique, the pixel swapping technique was developed to incorporate two of these 

characteristics: direction and width. 

5.2.1 Introduction 

In the standard pixel swapping technique, an exponential distance decay window is 

used to predict which sub-pixels to swap. A uniform isotropic exponential distance 

decay window is used on each pixel, regardless of the spatial and spectral 

arrangement of the sub-pixels. Anisotropy (the opposite of isotropy) is the property of 

being directionally dependent. A rural linear feature is anisotropic, that is, it may 

appear different, or have different characteristics in different directions. For example, 

we would expect the scale of spatial variation along the length of a hedgerow to be 

quite different compared to the scale of spatial variation across the width. Indeed, the 

existence of a linear feature could be predicted on the basis of measured anisotropy 

within pixels in a remotely sensed image. 

In the new 'linearised' pixel swapping algorithm, in order to increase the likelihood of 

predicting linear features, a unique anisotropic exponential distance decay window 

was created for every pixel, on the basis of measured anisotropy within the class 

proportions. The new method is described below. 
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5.2.2 Linearising the pixel swapping technique 

In order to develop the pixel swapping technique to increase the likelihood of 

predicting linear features, a priori information on the existence of linear features in 

the field site was required. One source oftrus information was soft classification. Soft 

classification provides information on the proportion of classes within individual 

pixels. Soft proportions do not provide any information on the location of features at 

the sub-pixel level. However, assumptions on the existence of linear features can be 

made using the arrangement of pixels which contain proportions of a particular class. 

Figure 5.1 illustrates this. 

10 17 20 54 80 

7 22 28 74 65 

20 40 i 60 58 

46 58 40 40 35 

49 37 30 29 29 

Figure 5.1: Predicting the direction of a linear feature from soft proportions. A 
constraint is imposed that a linear feature must pass through the central pixel of 
a moving window. In this example, a linear feature is predicted at 45° from 
north. 

In a moving window applied to the class proportions of the feature class, with the 

centre pixel Xi as the 'target', the preferred direction is extracted as that in which the 

sum of two pixels in a straight line through the central pixel is greatest. Figure 5.2 

illustrates this. The anisotropy ratio is also estimated, by dividing the sum of the 

pixels on the orthogonal of the estimated direction by the sum of the pixels in the 

estimated direction. 

The direction estimated within the moving window applied to the class proportions 

image is then used to modify the exponential distance decay model using a standard 

anisotropic correction (see Goovaerts (1997» . The co-ordinates of the exponential 

126 



distance decay window, h = (h"hy)T (where Tis the transpose), are transfonned by 

the direction estimated from the class proportions and the anisotropy 

ratio, h' = (h;, h~) T , such that the transfonned co-ordinates are isotropic: 

g(h)=g'(lh'l) Withlh'I=~h¢2+h~2 

where g' (.) is an isotropic model with a range equal to the minor range a q, of 

anisotropy. 

(6) 

Figure 5.2(a) shows the 'standard' isotropic exponential distance decay model for one 

pixel. Figure 5.2(b) shows an anisotropic exponential distance decay model, with a 

direction of 45° and anisotropy ratio of 0.35. The shape of the model changes from 

circular to ellipsoid, with the anisotropy ratio defining the width of the ellipse. 

(a) (b) 

Figure 5.2: Exponential distance decay models, (a) Isotropic (b) Anisotropic. 
Legend: White = 1, Black = 0 

In this investigation, two different sized moving windows were used: a 3 by 3 window 

and a 5 by 5 window. In the 3 by 3 window, four directions can be estimated, 0°, 45°, 

90° and 135° (Figure 5.3(a)) and in the 5 by 5 window, eight directions can be 

estimated, between 0° and 157.5° at 22.5° intervals (Figure 5.3(b)). In the 5 by 5 

window, where the line passes through two pixels adjacent to the central pixel (e.g., 
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4 

7 

22.5° in Figure 5.3, pixels 8 and 9 and 17 and 18), the mean of the sum of the two 

pixels is used in estimating the proportion for that direction. 

(a) 
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(b) 

0°1180° 22.5° 45° 

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 
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12 13 14 15 11 12 13 14 15 11 12 13 14 15 11 12 

17 18 19 20 16 17 18 19 20 16 17 18 19 20 16 17 

22 23 24 25 21 22 23 24 25 21 22 23 24 25 21 22 

90° 112.5° 135° 

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 

7 8 9 10 6 7 8 9 10 6 7 8 9 10 6 7 

12 13 14 15 11 12 13 14 15 11 12 13 14 15 11 12 

f--

17 18 19 20 16 17 18 19 20 16 17 18 19 20 16 17 

22 23 24 25 21 22 23 24 25 21 22 23 24 25 21 22 

Figure 5.3: Directions, (a) The 4 directions in a 3 by 3 window, (b) The 8 
directions in a 5 by 5 window 

5.2.3 Multiple directions 
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In some cases, more than one obvious direction existed within the proportions. To 

allow for such occurrences, for each pixel, multiple directions estimated from the 

pixel class proportions were combined into the same anisotropic exponential distance 

decay window. For example, in a 3 by 3 window, directions of 90° and 135° might be 
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predicted. In this circumstance, two Aij windows were created, one for each direction 

and anisotropy ratio combination. The mean value of each pixel with the same co­

ordinates in the two different Aij windows created by the anisotropy correction (e.g., 

the mean value of the top left pixel in the first window and the top left pixel in the 

second window) is the Aij value used in the pixel swapping. 

The anisotropic Aij window was only used on the linear feature class of interest. Aij 

values for all other classes were calculated using the standard isotropic function. In 

the event that no direction was predicted, the standard isotropic function was used. 

In Chapter 4, the effect of soft classification accuracy was discussed. When the pixel 

swapping algorithm was applied to fuzzy c-means soft classified Quickbird satellite 

sensor imagery, the accuracy of the super-resolved output was limited by the 

inaccuracy of the soft classification. A thorough investigation of the effect of soft 

classification accuracy on the super-resolved output would be of great interest, but 

was beyond the scope of this research thesis. In this stage of the research, therefore, 

performing a hard classification and then degrading the spatial resolution of the 

imagery to produce soft proportions reduced the uncertainty attributed to soft 

classification error. The input aerial photography, at a spatial resolution of 0.25 m 

used in this section is described in Chapter 3.4.2. After hard classification had been 

performed, the spatial resolution of the classified imagery was degraded to create two 

sets of input imagery for use in this stage of research - by a factor of lO, simulating 

soft classified imagery at a spatial resolution of 2.5 m, and by a factor of 20, 

simulating soft classified imagery at a spatial resolution of 5 m. 

In using hard classified aerial photography at a degraded spatial resolution as input to 

the pixel swapping technique, the super-resolved output was configured to be at the 

same spatial resolution as that of the original aerial photography, which enabled a full 

assessment of accuracy, including the creation of difference images. 
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5.3 Results 

The following section presents the results of applying the pixel swapping technique to 

the input imagery. In each case, three versions of the pixel swapping algorithm were 

applied - original, linear (3 by 3) and linear (5 by 5). The size of the Aij window was 9 

pixels on each axis (81 pixels). This size was chosen through repeated testing and 

provided the best overall solution in terms of accuracy. 

The results for each set of imagery are presented in the following formats: the input 

imagery (at the degraded spatial resolution), a hard classification, the initial random 

allocation, a direction map, confusion matrices and a difference image. The direction 

map is a simple representation of the shape and orientation of the local anisotropic Aij 

window used in the linearised version of the pixel swapping. 

5.3.1 Field site (spatial resolution 2.5 m) 

Initially, the input imagery was hard classified using the maximum likelihood 

classifier. The hard classification is presented in Figure 5.4. 

Figure 5.4: Hard classification, SR 2.5 m 

131 



The hard classification of the input imagery depicted the site poorly. The edges of the 

hedgerow and tree classes have taken on a "blocky" appearance. A confusion matrix 

of this classification is presented in Table 5.1. 

Table 5.1: Confusion matrix, hard classification, 2.5 m SR 

Predicted 

Cereal Hedgerow Tree Totals 

Cereal 6467 154 32 6653 

Hedgerow 236 2548 83 2867 
(!) 
<..) 

::: 
(!) Tree 88 198 395 681 I-< 

~ 

~ Totals 6791 2900 510 9410 

PA (%) 

97.2 

88.8 

58.0 

UA(%) 95.2 87.8 77.4 % Correct: 92.2 

Accuracy assessment of the hard classification revealed that the cereal class was 

mapped with reasonable accuracy, however, the other two classes, in particular, the 

tree class, were mapped with moderate accuracy. 

The pixel swapping technique was applied to the 2.5 m spatial resolution input 

imagery, at a zoom factor of ten resulting in super-resolved output images at the same 

spatial resolution as the original aerial photography (0.25 m). Sub-pixels were 

allocated randomly and the pixel swapping technique iterated until the predicted 

image converged on a solution. Figure 5.5(a) shows the simulated input imagery and 

Figure 5.5(b) shows the random allocation. 
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Input imagery Random allocation 

(a) (b) 

Figure 5.5: Field site, spatial resolution 2.5 m, (a) Input imagery, (b) Random 
allocation 

Anisotropic exponential distance decay windows from the soft proportions were 

calculated for the input imagery. Figure 5.6(a) shows the windows for a 3 by 3 

window on the soft proportions and Figure 5.6(b) shows the windows for a 5 by 5 

window on the soft proportions. 
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Anisotropic distance decay windows 

(,Linearised' pixel swapping) 

(a) 

3 by 3 

(b) 

5 by 5 

Figure 5.6: Direction maps (a) Anisotropic, 3 by 3 window, 2.5 m SR, (b) 
Anisotropic, 5 by 5 window, 2.5 m SR. Legend (Aij): Cyan - Low weight, Red­
High weight 
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The linearised pixel swapping technique was applied to the input imagery using a 

zoom factor of 10. Figure 5.7(a) displays the result from the standard pixel swapping 

technique and Figure 5.7(b) and Figure 5.7(c) show the results for the linearised 

technique for the anisotropic distance decay models . 

'Linearised' pixel swapping 

Pixel swapping 

3by3 5by 5 

(a) (b) (c) 

Figure 5.7: Pixel swapping output, 2.5 m SR (a) Standard, 2.5 m (b) Linearised, 3 
by 3 window, (c) 'Linearised', 5 by 5 window 

A visual inspection of Figure 5.7 reveals that each of the super-resolved outputs 

generally matched the input imagery. The hedgerow class was predicted as a 

contiguous shape and the dimensions and shape of the trees closely resembled the 

trees in the input imagery. The main disagreement in the super-resolved output was 

between the area between the two trees embedded in the hedgerow, that is, the shape 

of the lowermost tree was predicted differently in each of the outputs. Accuracy 

assessments in the form of confusion matrices and difference images provided more 

useful information on the accuracy of the technique. These accuracy assessments are 

provided below in Table 5.2 (confusion matrices) and Figure 5.8 (difference images). 
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Table 5.2: Super-resolved output confusion matrices, 2.5 m spatial resolution, (a) 
pixel swapping, (b) 'linearised' pixel swapping, 3 by 3 window, (c) 'linearised' 
pixel swapping,S by 5 window 

(a) 

Predicted 

Cereal Hedgerow Tree Totals 

Cereal 6531 90 32 6653 

Hedgerow 74 2762 31 2867 
<!) 
(.) 
$:l 
<!) Tree 45 114 522 681 I-< 

<2 
~ Totals 6650 2966 585 9815 

PA (%) 

98.1 

96.3 

76.6 

UA(%) 98.2 93.1 89.2 % Correct: 96.2 

(b) 

Predicted 

Cereal Hedgerow Tree Totals PA (%) 

Cereal 6532 92 29 6653 98.1 

Hedgerow 74 2768 25 2867 96.5 
<!) 
(.) 

$:l 
<!) Tree 44 106 531 681 77.9 I-< 

<2 
<!) 

~ Totals 6650 2966 585 9831 

UA(%) 98.2 93.3 90.7 % Correct: 96.3 

136 



, I 

s 

(c) 

Predicted 
I 

Cereal Hedgerow Tree Totals PA (%) 

Cereal 6530 91 32 6653 98 .1 

Hedgerow 75 2763 29 2867 96.3 
(1) 
() 

t:: 
(1) Tree 44 112 525 681 77.0 H 

~ 
(1) 

~ Totals 6649 2966 586 9818 

UA(%) 98.2 93.1 89.1 % Correct: 96.2 

Linear Pixel Swapping 

Pixel Swapping 

3by3 5by5 

(a) (b) (c) 

Figure 5.8: Difference maps: spatial resolution 2.5 m, (a) pixel swapping, (b) 
'linearised' pixel swapping, 3 by 3 window, (c) 'linearised' pixel swapping,S by 5 
window. Legend: black - correct allocation, white - error of omission, grey -
error of commission 

Confusion matrices for the standard pixel swapping techniques estimated the overall 

accuracy as 96.2%, 4% greater than a standard hard classification. The overall 

accuracy for the linearised technique in the 3 by 3 window was estimated as 96.3% 

and for the 5 by 5 window as 96.2%. Closer inspection of the confusion matrices 

reveals that each of the techniques converged to virtually identical solutions, 
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separated only by disagreement between the hedgerow and tree classes. The 

difference images show the areas of error, which was most prevalent between the two 

trees embedded within the hedgerow. A significance test, as described in Chapter 2.6, 

was applied to evaluate the differences between the confusion matrices. In each case 

the linearised pixel swapping technique was compared with the standard pixel 

swapping technique. 

Table 5.3: Significance tests, (a) PS & LPS, 3 by 3 window, (b) PS & LPS, 5 by 5 
window 

(a) 

I Linearised Pixel Swapping 

Correct Incorrect 

Pixel Swapping Correct 9815 0 

Incorrect 16 370 

Total 9831 370 

_.2 _ 0 x - 16. SIgmficant at 0.05 Yo. 

(b) 

Linearised Pixel Swapping 

Correct Incorrect 

Pixel Swapping Correct 9814 1 

Incorrect 4 382 

Total 9818 383 

.2 _ 0 x - 1.8. Not sIgmficant at 0.05 Yo. 

Significance tests on the super-resolved output show that although the overall 

accuracy was very similar for each technique, the difference in accuracy between the 

standard pixel swapping technique and the linearised pixel swapping in a 3 by 3 

window was significant. This result should be treated with caution, however, due to 

the large number of sub-pixels involved. 
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5.3.2 Field site (spatial resolution 5 m) 

Initially, a hard classification of the input imagery was performed. This hard 

classification is presented in Figure 5.9. 

Figure 5.9: Hard classification, 5 m SR 

The hard classification of the field site at the 5 m spatial resolution delineated the 

classes in the site poorly. The hedgerow was depicted as a series of discrete objects 

and the intricate shape of the trees have been entirely lost. An accuracy assessment of 

this classification was performed and is presented in Table 5.4. 
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Table 5.4: Confusion matrix, hard classification,S m SR 

Predicted 

Cereal Hedgerow Tree Totals PA (%) 

Cereal 6190 361 102 6653 93.0 

Hedgerow 588 2172 107 2867 75.7 
Q) 
u s:: 
Q) Tree 203 267 211 681 30.9 ;..., 

~ 
Q) 

~ Totals 6981 2800 420 8573 

UA(%) 88.6 77.5 50.2 % Correct: 84.0 

Accuracy assessment of the hard classification applied to the input imagery at a 

spatial resolution of 5 m, confirmed the analyses of the visual inspection, that is, the 

hedgerow and tree classes were predicted with poor accuracy. 

The pixel swapping technique was applied to the 5 m spatial resolution input imagery, 

at a zoom factor of 20 resulting in super-resolved output images at the same spatial 

resolution as the original aerial photography (0.25 m). Sub-pixels were randomly 

allocated and the pixel swapping technique iterated until the predicted image 

converged on a solution. Figure 5. 10 (a) shows the simulated input imagery and Figure 

5.1 O(b) shows the random allocation. 
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Input imagery Random allocation 

(a) (b) 

Figure 5.10: Field site, spatial resolution 5 m, (a) Input imagery (b) Random 
allocation 

Anisotropic exponential distance decay windows from the soft proportions were 

calculated for the input imagery. Figure 5. 11 (a) shows the windows for a 3 by 3 

window on the soft proportions and Figure 5.11 (b) shows the windows for a 5 by 5 

window on the soft proportions. 
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Anisotropic distance decay windows 

('Linearised' pixel swapping) 

(a) 

3 by 3 

(b) 

5 by 5 

Figure 5.11: Direction maps (a) Anisotropic, 3 by 3 window, 5 m SR, (b) 
Anisotropic, 5 by 5 window, 5 m SR. Legend (Aij): Cyan - Low weight, Red­
High weight 
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The linearised pixel swapping technique was applied to the input imagery using a 

zoom factor of 20. Figure 5.12(a) displays the result from the standard pixel swapping 

technique and Figure 5.12(b) and Figure 5.12(c) show the results for the linearised 

technique for the anisotropic distance decay models. 

'Linearised' pixel swapping 

Pixel swapping 

3by3 5by5 

(a) (b) (c) 

Figure 5.12: Pixel swapping output, spatial resolution 5 m (a) 'Linearised', 3 by 3 
window, (b) 'Linearised', 5 by 5 window, (c) 'Linearised', 5 by 5 window 

A visual inspection of Figure 5.12 reveals that the orientation of each class in each of 

the super-resolved outputs approximately matched the input imagery. In the standard 

pixel swapping output and the linearised pixel swapping in a 5 by 5 window, the 

hedgerow class was predicted as a series of discrete objects, whereas in the linearised 

pixel swapping in a 3 by 3 window, the hedgerow was predicted as a contiguous 

shape. In each super-resolved output, the shape of the trees barely resembled the trees 

in the input imagery. The main disagreement in the super-resolved output was 

between the area between the two trees embedded in the hedgerow, that is, the shape 

of the lowermost tree was predicted differently in each of the outputs. Accuracy 

assessments in the form of confusion matrices and difference images provided more 

useful information on the accuracy of the technique. These accuracy assessments are 

provided below in Table 5.5 (confusion matrices) and Figure 5.13 (difference 

images) . 
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Table 5.5: Super-resolved output confusion matrices, 5 m spatial resolution, (a) 
pixel swapping, (b) 'linearised' pixel swapping, 3 by 3 window, (c) 'linearised' 
pixel swapping, 5 by 5 window 

(a) 

Predicted 

Cereal Hedgerow Tree Totals 

Cereal 6374 177 102 6653 

Hedgerow 177 
v 2617 73 2867 
u 
~ 
v Tree 103 73 505 681 I-< 

~ 
v 
~ Totals 6654 2867 680 9496 

PA (%) 

95.8 

91.2 

74.1 

UA(%) 95.7 91.2 74.2 % Correct: 93.0 

(b) 

Predicted 

Cereal Hedgerow Tree Totals PA (%) 

Cereal 6451 111 91 6653 96.9 

Hedgerow 131 2662 74 2867 92.8 
v 
u 
~ 

69 94 518 681 76.0 v Tree I-< 

~ 
~ Totals 6651 5867 683 9631 

UA(%) 96.9 92.8 75.8 % Correct: 94.4 
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(c) 

Predicted 

Cereal Hedgerow Tree Totals PA (%) 

Cereal 6461 125 67 6653 97.1 

<!) 
Hedgerow 125 2629 113 2867 91.6 

(,) 

~ 
<!) Tree 68 113 500 681 73.4 l-< 

~ 
<!) 

P::: Totals 6654 2867 680 9590 

UA(%) 97.0 91.6 73.5 % Correct: 94.0 

Linear Pixel Swapping 

Pixel Swapping 

3by3 5by5 

(a) (b) (c) 

Figure 5.13: Difference maps: spatial resolution 5 m, (a) pixel swapping, (b) 
'linearised' pixel swapping, 3 by 3 window, (c) 'linearised' pixel swapping, 5 by 5 
window. Legend: black - correct allocation, white - error of omission, grey -
error of commission 

Confusion matrices for each of the super-resolved outputs reported overall accuracy 

for the standard pixel swapping technique as 93.0%, in the linearised output in the 3 

by 3 window as 94.4% and 94.0% in the linearised pixel swapping output in the 5 by 

5 window. Closer inspection of the confusion matrices reveals that each of the 

techniques converged to virtually identical solutions, separated only by disagreement 
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between the hedgerow and tree classes. The difference images show the areas of error, 

which were most prevalent between the two trees embedded within the hedgerow. A 

significance test, as described in Chapter 2.6, was applied to evaluate the differences 

between the confusion matrices. In each case, the linearised pixel swapping technique 

was compared with the standard pixel swapping technique. These results are 

displayed in Table 5.6. 

Table 5.6: Significance tests, (a) PS & LPS, 3 by 3 window, (b) PS & LPS, 5 by 5 
window 

(a) 

Linearised Pixel Swapping 

Correct Incorrect 

Pixel Swapping Correct 9496 0 

Incorrect 135 570 

Total 9631 570 

1- -x - 133.0. SIgmficant at 0.05%. 

(b) 

Linearised Pixel Swapping 

Correct Incorrect 

Pixel Swapping Correct 9491 5 

Incorrect 99 606 

Total 9590 611 

2_ 0 x - 86.7. SIgmficant at 0.05 Yo. 

It was evident from the significance tests that the super-resolved output of each 

version of the linearised pixel swapping technique were producing more accurate 

results than the standard pixel swapping technique. 
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5.3.3 Discussion of results 

A hard classification was applied to each of the input images. Hard classification is a 

common application of remotely sensed imagery in the production of land cover 

maps. In this research, however, it was clear that hard classification was not suitable 

for application to fine spatial resolution remotely sensed imagery. The resultant maps 

were generally not comparable with the target imagery. In every case, the super­

resolved output of the pixel swapping technique was both more accurate and created 

visually superior output images. 

Figure 5.6 and Figure 5.11 show the exponential distance decay windows for each 

pixel across the entire image, i.e., the anisotropic windows used in the 'linearised' 

pixel swapping technique, for 3 by 3 pixel and 5 by 5 pixel windows respectively. The 

gaps in the direction maps within the hedgerow class were created by the trees evident 

within the hedgerow (in which case the default isotropic model was used). 

The pixel swapping method operated efficiently when the input data were at a spatial 

resolution of 2.5 m. For each of the three versions of the technique, the accuracy of 

the map for the cereal class was 98.1 %. The hedgerow class was mapped with an 

accuracy of 96% and the tree class was mapped with an accuracy of 80%. Using the 5 

by 5 window was 3% more accurate than the standard method, whereas the 3 by 3 

window produced results 5% more accurate than the standard method. When the input 

imagery was at a spatial resolution of 5 m, the standard pixel swapping algorithm did 

not map the hedgerow as a continuous feature. Instead, the feature was mapped as a 

series of discrete units. Each of the 'linearised' versions mapped a more contiguous 

feature, and through visual inspection, produced a result more comparable to the 

original 0.25 m spatial resolution imagery than the standard pixel swapping method. 

The accuracy of the maps in each case was> 93%. Both '}inearised' versions of the 

technique were more accurate than the standard pixel swapping technique. The 

confusion matrices indicated that the standard pixel swapping method mapped the tree 

class more accurately, in this case, and the significance tests confirmed these 

analyses. 
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'Linearised' pixel swapping with a 3 by 3 window was more accurate than with a 5 by 

5 window at both spatial resolutions. Results at a spatial resolution of 2.5 m were 

comparable, but at a spatial resolution of 5 m the significance tests suggest that the 3 

by 3 window achieved a better result in the hedgerow and tree classes, in spite of the 

overall accuracies being similar. 

The difference maps show the areas in which error occurred. This was predominantly 

around the edges of the hedgerow and tree features, particularly around those trees 

embedded within the hedgerow. 

5.4 Advanced linearisation -12 directions 

The super-resolved output from each of the three versions of the pixel swapping 

algorithm described in the previous section, mapped the predicted sub-pixel locations 

of land cover classes with reasonable accuracy. In the absence of fine spatial 

resolution remotely sensed imagery, the sub-pixel map, in most cases, will be of 

greater utility than a standard hard classification, particularly in the case of mapping 

features that are fine relative to their surroundings. 

The linearised pixel swapping technique displayed an increase in mapping accuracy 

over the standard pixel swapping technique, through the use of anisotropically 

adjusted Aij windows, based on an estimation of the direction of the linear feature 

within an image. In this stage of the research, the estimation of direction was made in 

a fixed number of directions, in either a 3 by 3 window (4 directions) or a 5 by 5 

window (8 directions). Several possible means existed for increasing the number of 

directions and thus potentially increasing the precision of the estimation of the 

direction of the feature. Table 5.7 illustrates one possible approach in a 3 by 3 

window, increasing the number of directions to 12. 
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Table 5.7: 12 possible directions in a 3 by 3 window, Scale: pixels 

0° 15° 30° 

1 2 3 1 2 3 1 2 3 

4 5 6 4 5 6 4 5 6 

7 8 9 7 8 9 7 8 9 

45° 60° 75° 

1 2 3 1 2 3 1 2 3 

4 5 6 4 5 6 4 5 6 

7 8 9 7 8 9 7 8 9 

90° 105° 120° 

1 2 3 1 2 3 1 2 3 

4 5 6 4 5 6 4 5 6 

7 8 9 7 8 9 7 8 9 

135° 150° 165° 

1 2 3 1 2 3 1 2 3 

4 5 6 4 5 6 4 5 6 

7 8 9 7 8 9 7 8 9 

Such an approach would increase the likelihood of predicting a direction, especially 

on the edges of linear features where the spatial resolution is coarse relative to the 

width of the feature. 
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The linearised pixel swapping, using 12 directions in a 3 by 3 window, was applied to 

each of the input images, using the same parameters as in Section 5.3, above. Figure 

5.14 shows the super-resolve~ output, Table 5.8 and Table 5.9 show the accuracy 

assessment (confusion matrices) and Figure 5.15 shows the difference images. 

Linearised pixel swapping, 12 directions 

2.5 m 5m 

(a) (b) 

Figure 5.14: Super-resolved output. Linearised pixel swapping, 3 by 3 window, 
12 directions (a) spatial resolution 2.5 m (b) spatial resolution 5 m 

Table 5.8: Confusion matrices, linearised pixel swapping, 12 directions, spatial 
resolution: 2.5 m 

Predicted 

Cereal Hedgerow Tree Totals 

Cereal 6549 91 13 6653 

Hedgerow 73 2768 26 2867 
Q) 
u 
0 
Q) Tree 28 107 546 681 l-< 

~ 
Q) 

~ Totals 6650 2966 585 9863 

PA (%) 

98.4 

96.5 

80.1 

UA(%) 98.4 93.3 93.3 % Correct: 96.7 
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Table 5.9: Confusion matrices, linearised pixel swapping, 12 directions, spatial 
resolution: 5 m 

Predicted 

Cereal Hedgerow Tree Totals 

Cereal 6482 125 46 6653 

Hedgerow 106 2546 215 2867 
<1) 
u 
~ 
<1) Tree 68 196 417 681 I-< 

~ 
<1) 

~ Totals 6656 2867 678 9445 

PA (%) 

97.4 

88 .8 

61.2 

VA (%) 97.3 88.8 61.5 % Correct: 92. 5 

Linearised pixel swapping, 12 directions 

2.5m 5m 

(a) (b) 

Figure 5.15: Difference maps. Linearised pixel swapping, 3 by 3 window, 12 
directions (a) spatial resolution 2.5 m (b) spatial resolution 5 m. Legend: black­
correct allocation, white - error of omission, grey - error of commission 

The linearised pixel swapping technique using 12 directions was, at the 2.5 m spatial 

resolution more accurate than other versions of the linearised technique. However, the 

accuracy in the prediction of the hedgerow and tree classes at 5 m spatial resolution, 

in particular, decreased. The difference maps show the locations of the error, and it is 
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evident from these maps that the increase in the number of directions resulted in less 

error along the edges of the hedgerow and tree classes. Figure 5.15 illustrates this. 

The difference images highlight the fact that complexity of the edges of the hedgerow 

class have not been characterised by the pixel swapping technique. In the super­

resolved output in each site, the edges of the features have been over-simplified. 

When compared with the target image, the edges of the hedgerow and trees appear 

smoothed. The 12 directions was provided in this thesis as an example of developing 

the prediction of direction. Further discussion of avenues for developing the 

linearisaton technique are discussed in Chapter 7. 

5.5 Discussion of chapter 

When compared with the standard pixel swapping algorithm, the linearised version 

increased overall mapping accuracy, when using a 3 by 3 and 5 by 5 window in the 

hedgerow and tree classes. When the linearised version used 12 directions in the 

calculation of anisotropy, there was a significant increase in overall accuracy 

compared with other versions, particularly in the 5 by 5 window. The accuracy with 

which the class containing the linear feature was predicted increased, which suggests 

that the direction of the feature was being predicted with greater precision. Indeed, 

confusion matrices for each of the super-resolved outputs suggest that either a large 

set of directions (12 or more) or a small set of directions (4) should be used, since 

results for 8 directions in the 5 by 5 window were least accurate in each of the 

outputs. 

A visual inspection of the 'direction maps' (Figure 5.6 and Figure 5.11) provided 

information for consideration in development of the pixel swapping algorithm. 

Firstly, in each field site, measured anisotropy in a 3 by 3 window yielded more 

accurate results than in a 5 by 5 window. Anisotropy, used in determining the shape 

oftheAij window, was measured from the soft proportions. The 3 by 3 window 

predicted one direction per pixel. As a result, anisotropic exponential function 

windows tended to be linear in a single direction and accuracy was increased. In the 5 
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by 5 window, multiple directions in each pixel were predicted more frequently. As 

more directions were predicted in each pixel, the exponential function window 

became increasingly isotropic (that is, similar to the exponential function window 

used in the standard pixel swapping technique) and accuracy was not increased above 

that of the standard pixel swapping technique. When 12 directions were used, 

however, multiple directions were predicted less frequently, since the prediction of 

direction was more precise, and accordingly the exponential function window 

remained anisotropic. 

Secondly, the direction maps indicate that there were "gaps" in Ai]" between pixels 

(less spatial dependence). This was most evident when applied to the 5 m spatial 

resolution input imagery in the 5 by 5 window. These gaps are one factor in 

accounting for the standard pixel swapping technique and the linearised pixel 

swapping technique failing to map a continuous feature (Figure 5.12). In the 3 by 3 

window, there were fewer gaps between pixels and anisotropy in pixels was much 

more pronounced, which resulted in more accurate results and ultimately, the 

prediction of a contiguous feature. A further evaluation of the effect of measured 

anisotropy and the anisotropy ratio is presented in Chapter 7 of this thesis. 

It should be noted that the input imagery to which the prediction task was applied, did 

not represent an "easy" prediction task for the algorithm. Since the simulated imagery 

used in development was derived from colour aerial photography, it retained many 

facets of real imagery. For example, the edges of hedgerows and trees were 

geometrically complex, displaying minute changes in direction, which affected 

overall accuracy. Despite these complex characteristics, the algorithm performed 

well. In Chapter 6, the second component of the linearised pixel swapping model is 

presented, which presents one solution for mapping such complex geometric 

characteristics. 
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5.6 Conclusion 

In this chapter, the standard pixel swapping algorithm was developed to increase the 

likelihood of predicting linear features in simulated remotely sensed imagery. Using 

information from soft proportions on the position and direction of linear features, the 

standard exponential distance decay model was adjusted, using anisotropy, to 

influence the prediction of linear features. These modifications led to an increase in 

average accuracy over the standard pixel swapping technique. The effect of the size of 

the window from which the directions was estimated was evaluated, and in general, 

using a 3 by 3 window provided most accurate results. 

The algorithm was developed such that the size of the window used in estimating 

directions and the number of directions that could be estimated could be adjusted. 

Potential for increases in accuracy using the linearised technique was demonstrated by 

increasing the number of predicted directions to 12. Increasing the number of 

directions was shown to increase the precision with which the directions in the soft 

proportions were predicted and accordingly some increases in the accuracy of the 

technique were observed. 
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Chapter 6 

6. Image fusion 

6.1 Introduction 

In the previous chapter, the standard pixel swapping technique was modified to 

increase the likelihood of resolving linear features within remotely sensed imagery. 

The output from the modified technique was on average 5% more accurate than the 

standard pixel swapping technique. In this chapter, the results of an additional 

development to the pixel swapping method are presented. Common sources of 

remotely sensed imagery, such Ikonos or Quickbird (as used in this research), are 

available as both multispectral and panchromatic data. Panchromatic imagery often 

offers finer spatial resolution, enabling more accurate delineation of land cover 

classes. In this second stage of development of the pixel swapping algorithm, an 

image fusion framework was incorporated, enabling the use of fine spatial resolution 

panchromatic imagery when determining the quality of a swap. 

6.2 Image Fusion 

Image fusion is an image processing concept implemented to combine multiple 

sources of information. The resultant combination theoretically provides more 

information than would be available from each data source individually. A common 

approach to image fusion is the combination of two or more remotely sensed images, 

where the individual images contain information that the others do not, such as via a 

different spatial resolution or more spectral information through different spectral 

wavebands. For example, where the mapping of individual species of vegetation is 
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required, a fine spatial resolution panchromatic image could be combined with a 

hyperspectral image to create a fine spatial resolution hyperspectral image, i.e., an 

image with the spatial resolution of the panchromatic image and the spectral detail of 

the hyperspectral image, which could increase the accuracy with which the species are 

mapped at the panchromatic image spatial resolution. 

A review of existing image fusion techniques was presented in Chapter 2 of this 

thesis. In this chapter, a new approach to image fusion is presented, whereby a 

panchromatic image was fused with multispectral imagery during pixel swapping. 

Simulated multispectral and panchromatic imagery were used to evaluate the fusion 

technique. 

Raw data contained within a panchromatic image is commonly in the form of 

measured intensity values. The measured intensity value of each pixel represents a 

mixture of the land cover classes found within the pixel at the ground level- the 

intensity value is therefore assumed to be a linear combination of the spectral 

response of each of these land cover classes. Using information derived during soft 

classification on the location of spectral endmembers (pure pixels) in the multispectral 

imagery and assuming accurate geometric coregistration of the two images, it is 

possible to predict the location of pure pixels in the panchromatic imagery. The 

average intensity for each class can then be calculated, by averaging the panchromatic 

pixels that correspond to the pure pixels in the multispectral image. Figure 6.1 

illustrates this. The location of a pure pixel (e.g., Class 1) in the multispectral imagery 

is used to locate the equivalent four pixels in the panchromatic image. The average 

value of the panchromatic pixels predicts an average intensity value of Class 1 of 36. 

This operation is performed for every pure pixel in each class. 
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Classification (Multispectral) 

Panchromatic 

Figure 6.1: Preliminary stage of fusion model 

6.2.1 Methodology 

The pixel swapping technique is initialised as per the standard technique (Chapter 4) . 

For each of the two randomly selected sub-pixels (rI , r2), the binary values of the 

sub-pixels in a window with the selected sub-pixel in the centre are converted to 

intensity values using the average class intensities derived in stage 1 of the model. For 

example, during pixel swapping, pixel proportions are super-resolved to a binary hard 

classification at the sub-pixel scale, that is, each sub-pixel is assigned to be only one 

class (Class 1,2 or 3). If the predicted average intensity for land cover class I was 37, 

then every sub-pixel assigned to land cover class 1 in the window around the selected 

sub-pixel would be assigned a value of 37. The intensity values in the window are 

averaged (Pr\,P,.z) . The two selected sub-pixels are swapped, and the average intensity 

values for each sub-pixel are recalculated (Pr\ * ,Pr2*) . The differences are calculated: 

(7) 
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and an overall Pij value is calculated: 

(8) 

Figure 6.2 illustrates the fusion model. The classified multispectral image is super­

resolved into binary class values (1). Two sub-pixels are selected randomly within a 

pixel. Using the average class intensities derived from stage 1, an average intensity 

value for each relevant pan-pixel is calculated. Sub-pixels are swapped and the pan­

pixel intensity value is recalculated. For each selected sub-pixel, the corresponding 

pixel in the panchromatic image is located (2). The value of this pixel is returned (3). 

The difference between the calculated average intensity value for each pan-pixel and 

the "actual" value before and after the swap is calculated. 

1 Mu ltispectral 

Super-resolution - target 

Panchromatic 

Figure 6.2: The fusion model 
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6.2.2 Defining the energy function 

In the standard technique, a swap is retained on the basis of an attractiveness function 

(Aij) using the exponential distance-decay function in a moving window. The 

linearised version of the pixel swapping technique uses an anisotropically adjusted 

exponential distance-decay window to calculate Aij. The fusion process uses the 

anisotropically corrected exponential distance-decay window to calculate Aij as well 

as Pij. A linear combination of Aij and Pij determines whether a swap is accepted, thus: 

(9) 

where kl and k2 are weights and k2 = (1 - k1). If the swap resulted in an overall 

increase in Eij the swap was retained (as opposed to the simulated annealing approach 

where a swap was retained if the swap resulted in a decrease in the energy function 

Qij: [Qij= E~ - EijD. Otherwise, an annealing schedule (Chapter 4) was used to 

determine whether the swap was retained or rejected. 

Appropriate weights were chosen through repeated testing. Weights of {k/ = 0.5, k2 = 

0.5}, {k/=0.6,k2=0.4}, {k/=0.75,k2=0.25} and {k/=0.9,k2=0.1} were 

evaluated. Weights of { k/ = 0.75, k2 = 0.25} were found to be optimal. This 

evaluation is presented later in a subsequent section of this chapter. 

6.3 Initialisation 

The following sections present the results of applying the linearised pixel swapping 

technique with fusion to the input imagery described in Chapter 3.4.3. Simulated 

multispectral imagery at spatial resolutions of 2.5 m and 5 m were used as input. On 

the basis of the results in Chapter 5, the size of the linear anisotropic window was set 

at 3 by 3. A zoom factor of 10 was used to super-resolve the 2.5 m spatial resolution 

input imagery and a zoom factor of 20 was used to super-resolve the 5 m spatial 

resolution input imagery to the same spatial resolution as that of the input (25 cm). 
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Confusion matrices and difference images were constructed for each super-resolved 

output to evaluate the accuracy of the technique. 

6.3.1 Simulating panchromatic imagery 

A panchromatic image (Figure 6.3) at a spatial resolution of 1.25 m was simulated 

from the classified aerial photography described in Chapter 3. The process to create 

the panchromatic imagery was similar to that used to generate the simulated 

multispectral imagery, except that estimated class intensity values were used instead 

of binary class values (6.2.1). The advantage with simulating panchromatic imagery 

from the original multispectral imagery was that the panchromatic image and 

multispectral images used as input to the pixel swapping technique were 

automatically geometrically coregistered. 

Figure 6.3: Simulated panchromatic image 

6.4 Results 

6.4.1 Field site (spatial resolution 2.5 m) 

The linearised pixel swapping technique was applied to the 2.5 m spatial resolution 

input imagery and fused with the simulated panchromatic image, at a zoom factor of 

ten resulting in super-resolved output images at the same spatial resolution as the 
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original aerial photography (0.25 m). Sub-pixels were allocated randomly and the 

pixel swapping technique iterated until it converged. Weights of 0.75 were applied to 

Aij and 0.25 applied to Pij in the fusion process. Figure 6.4 displays the results. 

Input imagery Random allocation Super-resolved output 

(a) (b) (c) 

Figure 6.4: Fusion output, (a) Input imagery, 2.5 m SR, (b) Random allocation, 
(c) Super-resolved output 

A visual inspection of the super-resolved output in Figure 6.4( c), revealed a close 

resemblance to the input imagery. The hedgerow was predicted as a continuous 

feature and the geometric characteristics of edges of the hedgerow and the trees, 

particularly the trees embedded within the hedgerow, bore a close resemblance to 

those in the input imagery. This was most evident on the lone tree, where the shape 

was a very close match to the input imagery. The two small areas of hedgerow that 

were visible in the input imagery in the topmost and middle trees embedded within 

the hedgerow, have been "removed", i.e., they have been clustered with the main 

hedgerow, as opposed to remaining within the trees. Table 6.1 displays the accuracy 

assessments. 
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Table 6.1: Confusion matrix, super-resolved output (2.5 m input SR) 

Predicted 

Cereal Hedgerow Tree Totals PA (%) 

Cereal 9043 17 12 9072 99.6 

Hedgerow 15 709 3 727 97.5 
<!) 
u 
~ 
<!) Tree 14 60 328 402 81.6 I-< 

~ 
<!) 

~ Totals 9072 786 343 10080 

UA(%) 99.7 90.2 95 .6 % Correct: 98 .8 

Overall accuracy was estimated at 98 .8%. The cereal class was mapped with a high 

level of accuracy, as was the hedgerow class. The tree class was the least accurate, 

which the confusion matrix suggested was due to confusion between the tree and 

hedgerow classes. Figure 6.5 displays the difference image, which shows the location 

of error in the super-resolved output. 

Figure 6.5: Difference image, super-resolved output, 2.5 m SR 

Error is visible in the difference image along the edges of the hedgerow and tree 

classes. Misclassification occurred between the two trees embedded within the 

hedgerow. The small areas of hedgerow within the embedded trees, which were 

misclassified during the technique, are also visible in the difference, as white sections 

where the hedgerow class has been misclassified as the tree class. Particular attention 

should be paid to the areas of the difference image which were black, i.e., the 
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predicted image matched the target image, in the areas where error was expected to 

occur. For example, along the edge of the tree separate from the hedgerow, there are 

several areas of zero error, that is, the predicted shape of the tree matched the input 

imagery. The same was true of several sections along the edges of the hedgerow. A 

significance test was applied to evaluate the differences between the linearised pixel 

swapping technique in a 3 by 3 and the linearised pixel swapping technique with 

fusion in a 3 by 3 window. These results are displayed in Table 6.2. 

Table 6.2: Significance test, linearised pixel swapping and linearised pixel 
swapping with fusion 

Linearised Pixel Swapping with fusion 

Correct Incorrect 

Linearised Pixel Correct 10054 0 
Swapping 

Incorrect 21 126 

Total 10080 126 

1. -x - 21. SIgmficant at 0.05%. 

Inspection of the significance test (Table 6.2) reveals that the fusion technique 

operated more accurately than the linearised pixel swapping technique. 

6.4.2 Field site (spatial resolution 5 m) 

The linearised pixel swapping technique was applied to the 5 m spatial resolution 

input imagery and fused with the simulated panchromatic image, at a zoom factor of 

20 resulting in super-resolved output images at the same spatial resolution as the 

original aerial photography (0.25 m). Sub-pixels were allocated randomly and the 

pixel swapping technique iterated until it converged. Weights of 0.75 were applied to 

Aij and 0.25 applied to Pij in the fusion process. Figure 6.6 displays the results. 
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15 

Input imagery Random allocation Super-resolved output 

(a) (b) (c) 

Figure 6.6: Fusion output, (a) Input imagery, 2.5 m SR, (b) Random allocation, 
(c) Super-resolved output 

Figure 6.6(c) displays the super-resolved output. The hedgerow was predicted as a 

continuous feature, which shows an obvious improvement over the standard pixel 

swapping technique. Some of the geometric characteristics of the hedgerow and tree 

classes were lost and there was obvious confusion in the trees embedded within the 

hedgerow. In particular, the edges of the hedgerow show a greater degree of 

curvilinearity than was evident in the input image. Table 6.3 displays the accuracy 

assessment. 

Table 6.3: Confusion matrix, super-resolved output (5 m input SR) 

Predicted 

Cereal Hedgerow Tree Totals 

Cereal 8947 32 93 9072 

Hedgerow 43 680 4 727 
Q) 
u 
~ 
Q) Tree 42 88 272 402 I-< 

~ 
Q) 

0::: Totals 9032 800 369 9899 

PA (%) 

98.6 

93.5 

67.6 

UA(%) 99.0 85 .0 73 .7 % Correct: 97.0 
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Overall accuracy was estimated at 97%. The cereal class was mapped with a high 

level of accuracy, as was the hedgerow class. The tree class was the least accurate, 

which the confusion matrix suggested was due to confusion between the tree and 

hedgerow classes. The accuracy was, however, greater than any of the equivalent 

super-resolved outputs from the previously described techniques (standard pixel 

swapping, linearised pixel swapping). Figure 6.7 displays the difference image, which 

shows the location of error in the super-resolved output. 

Figure 6.7: Difference image, super-resolved output, 5 m SR 

Error is visible in the difference image along the edges of the hedgerow and tree 

classes. Misclassification occurred between the two trees embedded within the 

hedgerow. The small areas of hedgerow within the embedded trees, which were 

misclassified during the technique, are also visible in the difference, as white sections 

where the hedgerow class has been misclassified as the tree class. 

6.5 Discussion of results 

Through visual inspection, the super-resolved output from the 2.5 m and 5 m spatial 

resolution multispectral inputs resembled the target image. At each spatial resolution, 

a contiguous feature was mapped. At both spatial resolutions, the accuracy of the 

super-resolved output in the cereal class was greater than 98%. Overall, the super-
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resolved output was more accurate in each class when the input was at a spatial 

resolution of 2.5 m than at a spatial resolution of 5 m. 

When compared with results from the linearised pixel swapping technique with the 3 

by 3 window (Chapter 5), at each spatial resolution the super-resolved output from the 

fused method was more accurate in each class at both spatial resolutions. The 

difference images show less error along the edges of the images and less 

misallocation between the hedgerow and tree classes. In particular, through visual 

inspection, the edges of the target image are more realistically predicted in the output 

of the fusion method than the output of the standard pixel swapping method. Figure 

6.8 illustrates this at the 2.5 m spatial resolution. Particular points of interest have 

been highlighted (black squares) in the target image for reference against each super­

resolved output. 

(a) (b) (c) 

Figure 6.8: Comparison of super-resolution output with target image: (a) Target 
image, (b) Linearised pixel swapping output, (c) Linearised pixel swapping 
output with image fusion 

In the linearised pixel swapping output, the edges and shapes of each of the tree 

features in the tree class have been smoothed. In the output of the fusion method, the 

shape and edges of each of the trees more closely resemble the original. For example, 

in Figure 6.8, consider the tree that is separate from the hedgerow. Figure 6.8(a) 

shows the target. In Figure 6.8(b), the tree was represented as a circular feature, with 

obvious smoothing on the edges. In Figure 6.8(c), the shape of the tree has been more 

realistically predicted, with sub-pixel level intricacy. Consider also the two trees 
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embedded within the hedgerow. In the linearised output (Figure 6.8(b), the two trees 

have been predicted as two separate objects, whereas in the target image it appeared 

that the two trees were "joined" (where partial canopies overlapped). In the linearised 

with fusion output (Figure 6. 8( c)), the shapes of the trees were a closer match to the 

target than the linearised output and the canopy was more realistically predicted. The 

complexities of the edges of the hedgerow class are more realistically predicted in the 

fusion output than in the linearised pixel swapping method. The difference images 

support these points. This represents a key advantage to the fusion algorithm over the 

standard and linearised pixel swapping algorithms. 

There are errors in the output. For example, in both the linearised pixel swapping 

output and the fusion output, the small area of hedgerow class that is visible within 

the tree within the hedgerow class at the upper end of the image is incorrectly mapped 

- the hedgerow sub-pixels are adjoined to other areas of hedgerow. The two trees in 

the lower area of the hedgerow are mapped as a contiguous feature in both super­

resolved outputs, whereas in the original they are separate features. The fusion 

method predicts the locations of these two trees more accurately than the linearised 

pixel swapping method. 

6.6 Discussion of chapter 

In this chapter, the linearised version of the pixel swapping technique was further 

developed to incorporate a fusion component. It has been previously noted, that the 

super-resolved outputs from the standard and linearised versions of the technique 

were statistically accurate but visually the edges of the classes appear smoothed. In 

the fusion output, however, the edges of land cover classes in the super-resolved 

output of the fusion technique when applied to simulated imagery are represented 

more realistically when compared with the target image. For example, in the standard 

and linearised pixel swapping technique, the individual tree in the left of the image 

was mapped as a more or less circular feature. In the output from the fused method, 

the individual tree and the edges of the hedgerow visually display more resemblance 

to the actual boundaries of these classes in the target image. 
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In developing the linearised pixel swapping algorithm to incorporate fusion, there 

were important considerations and decisions to be made. A discussion of these factors 

is now presented. 

6.6.1 Parameterisation 

6.6.1.1 Weightings 

The fusion model introduced a further parameter to the pixel swapping technique -

the weighting applied to Aij (k,) and Pij (k2)' The weighting was used to determine the 

effect of each of these two values on the acceptance of a swap. The optimal value for 

2.5 m spatial resolution input imagery was k, = 0.75, k2 = 0.25. These values were 

derived through repeated testing. Figure 6.9 shows the effect of the weighting. Aij was 

essential to clustering of sub-pixels whereas Pij increased the precision of the 

clustering. 

Weights Super-resolved output % Correct 

(a) 97.l 

(b) 97.9 

169 



(c) 

(d) 

(e) 

kJ = 0.75 

k2 = 0.25 
98.8 

98 .1 

Figure 6.9: Effect of weights on super-resolution output, (a) kJ = 0.5, k2 = 0.5, (b) 
kJ = 0.6, k2 = 0.4, (c) kJ = 0.75, k2 = 0.25, (d) kJ = 0.9, k2 = 0.1, (e) kJ = 1, k2 = 0, 

6.6.1.2 Spatial resolution 

The extent to which fusion increased the accuracy of the prediction of the edges was, 

in this research, not dependent on the spatial resolution of the input imagery. 2.5 m 

spatial resolution and 5 m spatial resolution remotely sensed imagery was fused with 

1.25 m spatial resolution panchromatic imagery. Therefore, the spatial resolution of 

the panchromatic image was twice or four times as fine as the multispectral imagery. 
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At both spatial resolutions, the effect of the fusion was an average increase in 

accuracy of 1-2% in each class. 

6.6.1.3 Image coregistration 

An important factor in any fusion technique is that all sources of data are accurately 

coregistered to each other. Coregistration of imagery to be used in the fusion is 

beyond the control of the pixel swapping algorith, but nevertheless requires careful 

consideration. 

In this research, simulated imagery were used and so perfect coregistration of the 

multispectral and panchromatic images was assured. However, the effect of 

inaccurately coregistered imagery was investigated. Panchromatic imagery was 

simulated that incorporated a horizontal shift, by displacing the panchromatic image 

to the left. Figure 6.10 shows the results . 

Displacement: Pixels / Distance Super-resolved output 

0/0 

(a) 

1 / 1.25 m 

(b) 

171 



2/2.5 m 

(c) 

3/3.75 m 

(d) 

415 m 

(e) 

Figure 6.10: Effect of inaccurate coregistration of input imagery, super-resolved 
output (a) Perfect registration, (b) 1 pixel displacement (1.25 m), (c) 2 pixel 
displacement (2.5 m), (d) 3 pixel displacement (3.75 m), (e) 4 pixel displacement 
(5 m) 

The effect of inaccurate coregistration of the imagery on the accuracy of the super­

resolved output is directly related to the spatial resolution of the imagery, the number 

of classes within the imagery, the spatial arrangement of land cover classes within the 

imagery and the size of the window used to measure Aij and values of k, and k2. In this 

example, the deleterious effect of inaccurate coregistration was most prevalent when 

the displacement was 2.5 m, equivalent to the spatial resolution of the input imagery 

172 



and approximately equivalent to the width of the hedgerow class, as erroneous 

location of panchromatic pixels used in the fusion process will affect the acceptance 

of swaps. However, when the displacement was greater than the size of the features in 

the imagery, the effect of the displacement was to use only cereal class panchromatic 

pixels in the calculation of Pi} and, therefore, had a more limited effect. In real 

remotely sensed imagery where there may be more classes or the spatial arrangement 

of those classes may be more complex, the effect of inaccurate coregistration will 

likely be greater. 

6.7 Conclusion 

Introducing a fusion element to the linearised pixel swapping technique increased the 

accuracy with which the land cover classes were mapped. In particular, edges of 

classes (for example, the hedgerow and tree classes) were more comparable to the 

target imagery. 

Accuracy assessment in the form of difference images, confirmed that along the edges 

of the features, the output from the fusion process more accurately resembled the 

target image than the output from the standard and linearised pixel swapping 

technique. This is of great utility in giving a realistic representation of the shape and 

geometry of the boundaries of these classes on the ground. 
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Chapter 7 

7. Discussion and further research 

7.1 Introduction 

The objective of the research presented in this thesis was to develop an algorithm to 

facilitate super-resolution mapping of linear land cover features. The super-resolution 

pixel swapping technique presented in this thesis, which included an estimation of 

anisotropy, has been demonstrated to be able to map linear land cover features from 

remotely sensed imagery with a spatial resolution that was around the same size as or 

coarser than the width of those features. An image fusion component of the model 

increased the ability of the algorithm to delineate the complexities of the edges of 

linear and other land cover features. 

In this penultimate chapter, an in depth discussion of the key components of the 

model that make up the pixel swapping algorithm described in thesis is presented. 

Initially, the overall performance of the algorithm is examined along with the effect of 

the assumptions that the model makes on the accuracy of the super-resolved output, 

and some pertinent limitations of the model. Then the model, including the main 

parameters such as the zoom factor, is discussed. The chapter presents possibilities for 

future research and closes with a conclusion. 

7.1.1 Overall performance 

The pixel swapping technique is an iterative technique where one swap (two sub­

pixels) is made in each pixel of the image per iteration. The standard technique was 

configured to swap sub-pixels after calculating an attractiveness value for every sub-
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pixel in each pixel. The two sub-pixels that when swapped were most likely to result 

in an increase in spatial dependence (as indicated by the attractiveness measure) were 

swapped. The standard configuration was resource intensive as each iteration required 

substantial computation. In this research, the standard technique was modified to 

select sub-pixels randomly as per spatial simulated annealing approaches. This 

modification was used in each subsequent version of the technique (linearisation and 

fusion). This resulted in substantially less computation per iteration. The number of 

iterations required for the model to converge increased dramatically. However, the 

processing time for each iteration decreased. Table 7.1 shows an example of the 

performance. 

Table 7.1: Example processing time for a 3-class classified image, Size: 100 pixels 
by 100 pixels, zoom factor: 5 

Convergence criteria 
Computed sub-pixel Random sub-pixel 

selection selection 

No. iterations 20 5000 

Processing time (minutes) 30 < I 

The size of the image, the number of land cover classes and zoom factor each affected 

overall processing time. When increasing any of these factors when using random 

sub-pixel selection, the increase in processing time was approximately linear. 

However, when computing sub-pixel selection, the increase was approximately 

exponential. Random sub-pixel selection was occasionally affected by local minima 

(i.e., where different swaps produced the same result and were always accepted) and 

the algorithm would not converge. The use of an annealing schedule, however, 

reduced the likelihood of local minima, although increased the number of iterations 

required for the technique to converge. 

7.1.2 Assumptions and considerations 

In order to develop an algorithm for land cover mapping, certain assumptions about 

land cover were made. The underlying assumption of the pixel swapping model was 

that land cover classes within remotely sensed imagery were spatially dependent. The 
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goal of pixel swapping was to maximise spatial dependence. Spatial dependence was 

maximised by calculating a sub-pixel distance function using the exponential 

distance-decay model (Aij). The distance function was modified by an anisotropic 

correction to increase the likelihood of predicting linear features using directions 

predicted from soft proportions. The correction facilitated the prediction of multiple 

directions within each pixel, which was assumed likely to increase the accuracy of the 

super-resolved output. 

When applied to remotely sensed imagery, the impact of these assumptions could be 

evaluated. By assuming spatial dependence, for example, small groups of isolated 

sub-pixels of a particular class were occasionally incorrectly clustered with larger 

groups of sub-pixels of the same class. For example, in the field used in Chapter 5, a 

small part of the canopy of the lowermost tree within the hedgerow class was open, so 

that soft classification correctly predicted this small area as hedgerow. In the target 

image (in Section 3.4.3), this is shown as a small area of white. On most occasions in 

the super-resolved outputs, this area of hedgerow was incorrectly clustered with the 

main areas of the hedgerow class and did not remain in the middle of the tree. In 

addition, non-linear features will have the tendency to become elongated and 

linearised as a result of the anisotropic correction to the distance-decay window. 

The pixel swapping algorithm accurately mapped features that were approximately 

the width of a pixel. In addition, characteristics of edges of features that were in 

adjoining pixels were also mapped accurately. However, features that were smaller 

than a pixel were often mapped inaccurately (for example, the small patch of 

hedgerow described previously). In general, as the size of the feature relative to the 

size of the pixel increased, the accuracy with which it was mapped increased. 

7.1.2.1 Accuracy assessments 

Accuracy assessment techniques were implemented to assess the accuracy of the 

super-resolved output of each technique and inform on the efficiency of the algorithm 

and the effect of the developments made to it. For example, confusion matrices were 

constructed to provide an overall accuracy statistic to provide a simple metric for 
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evaluating the effectiveness of the technique. However, in some cases, these accuracy 

assessments may not provide a realistic representation of the utility of the super­

resolved output. In some cases, particularly when applied to input imagery at a spatial 

resolution of 5 m, overall accuracy was estimated at > 93%. Significance tests were 

used to evaluate the difference in accuracy between each of the techniques. However, 

visual inspection of the super-resolved output often suggested that the output was not 

comparable to the input imagery, for example, where a hedgerow was not predicted as 

a contiguous feature (e.g., Figure 5.14). Certain measures were implemented to 

evaluate this, for example, producing accuracy assessments of specific areas of a 

super-resolved output and the use of difference images. Indeed, the arbitrary values 

established in Chapter 2 to describe what results would be deemed "accurate", may 

have been set too high and exceeded the limits of the model and, remembering that 

the objective of the research presented in this thesis was to 

One of the primary benefits of the fusion technique was the increased precision with 

which the edges of features, such as the hedgerow, were predicted. In some cases, 

these increases were not reflected in the accuracy assessments, that is, the overall 

accuracy was not increased so as to be significant. That is, a small increase (e.g., 

0.5%) in overall accuracy would not accurately reflect the improved delineation of 

feature boundaries at the sub-pixel level. However, such improvements were clearly 

evident in the super-resolved output and through visual inspection of the difference 

images, where error visible in the difference images along the edges of features 

decreased. 

7.1.3 Limitations of the algorithm 

The pixel swapping technique was dependent on the accuracy of the proportions 

information derived from the soft classification. As Chapter 4 demonstrated, where 

soft classification was unable to unmix land cover classes accurately, the accuracy of 

the super-resolved output was affected. 

The spatial resolution of the input imagery was critical to super-resolving contiguous 

linear features. Where degrading the spatial resolution of the classified image (to 

simulate proportions) resulted in two or more contiguous pixels for which the 
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proportion of the hedgerow class were both less than 50%, the technique did not 

super-resolve a contiguous feature. Additionally, the random allocation of sub-pixels 

occasionally prevented the mapping of a contiguous feature if the allocation was such 

that sub-pixels allocated to the feature were further apart than the size of the window 

used to calculate Aij. In this instance, spatial dependence between sub-pixels was not 

sufficient to cluster them as a contiguous feature, since spatial dependence between 

sub-pixels allocated to other classes was greater. 

7.2 Discussion of the model 

The pixel swapping algorithm was developed around a model which utilised a 

complex set of parameters. In this section, the parameters of the model are discussed. 

The effects of altering the parameters are evaluated and some considerations on 

determining optimal settings are presented. 

The standard pixel swapping model has four parameters: 

• Zoom factor 

• Size of exponential function window 

• Non-linear parameter (NLP) of distance-decay model 

• Cooling rate of annealing schedule 

In addition, the linearised pixel swapping model introduced two extra parameters: 

• Size of direction window (and thereby number of predicted directions) 

• Anisotropy ratio 

The fusion component required one additional parameter: 

• Weight applied to Aij and Pij 

In total, therefore, the full model has seven parameters. Evaluating the effects of these 

parameters on the super-resolved output was performed to assess the operation of the 

179 



algorithm and to facilitate the prediction of optimal conditions. The majority of 

parameters were affected directly by one of the other parameters. For example, the 

size of the exponential function window and the rate of decay of the model (NLP) 

changed the scale of spatial dependence, since the rate of decay in the exponential 

function was calculated as a function of the size of the window and the NLP. 

Consider two windows (3 pixels by 3 pixels and 5 pixels by 5 pixels) together with a 

constant NLP. In this example, the rate of decay of the 3 by 3 window will be less 

than the rate of decay in a 5 by 5 window. 

The value of each parameter was dependent on the characteristics of the input 

remotely sensed imagery, the frequency of spatial variation within the imagery and 

the intended use of the super-resolved output. Optimal parameter conditions will, 

therefore, vary considerably between datasets and need to be evaluated on a case-by­

case basis. 

Discussion of each of the parameters is now presented. 

7.2.1 Zoom factor 

Perhaps the most important parameter of the model was the zoom factor. The zoom 

factor was used to determine how many sub-pixels were created along each axis of a 

pixel. Increasing the zoom factor resulted in super-resolved output at a finer spatial 

resolution. A finer spatial resolution theoretically enabled more accurate identification 

of linear features. The zoom factor had a direct impact on the performance of the 

technique - as the zoom factor increased, the technique became more computationally 

intensive and required more iterations to converge. 

The pixel swapping algorithm was developed such that the zoom factor could be 

easily varied. In order to evaluate the effect of the zoom factor, the linearised pixel 

swapping technique (using a 3 by 3 window to calculate directions) was applied to 2.5 

m spatial resolution simulated imagery at different zoom factors and the super­

resolved output and resultant accuracy assessments were evaluated. Figure 7.1 shows 

the super-resolved output at each zoom factor. 
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(a) 

(b) 

(c) 

Zoom factor / 

SR (m) / 

Dimensions 

(pixels)/ 

2/ 1.25/80 

5/0.5/200 

8/0.32/320 

Overall accuracy 

(%) 
Super-resolved output 

95.1 

97.6 

97.9 
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(d) 10 / 0.25 / 400 98.6 

(e) 12 / 0.20 / 480 98.6 

(f) 15/0.16/600 98.5 

Figure 7.1: Effect of zoom factor on super-resolved output (linearised pixel 
swapping, 3 by 3 window, 2.5 m SR) 

At a zoom factor of 2 the super-resolved output of the hedgerow class and tree classes 

were poorly delineated. As the zoom factor increased, the super-resolved output 

started to resemble the target image. However, as the zoom factor increased beyond a 

certain point (zoom factor> 10), so the additional benefits relative to the target image 

diminished (Figure 7.1(e,f)). 

In this research, the zoom factor on this particular dataset was 1 0, as it super-resolved 

the input to match the spatial resolution of the target, which enabled simple accuracy 
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assessment and the creation of difference images to represent visually areas of error. 

However, the results above suggest that there is little utility in using zoom factors 

greater than 10, since little or no extra information was discernible from the super­

resolved output compared with the computational cost and the effect of smoothing on 

the edges of the classes, particularly in the example of the fusion technique, where the 

results displayed increased accuracy in predicting the edges of features, benefits that 

were less apparent if the input was super-resolved beyond a zoom factor of 10. 

7.2.2 Exponential function window parameters 

The exponential distance-decay model was used in a moving window to calculate the 

attractiveness function (Aij) and was central to the swapping process. The size of the 

window determined how many sub-pixels surrounding the selected sub-pixels were 

used in calculating Aij. The non-linear parameter defined the rate at which the distance 

model decayed spatially, that is, the rate at which values in the function window 

decreased from 1 to ° and, thus, the value of Aij. A model with a high rate of decay 

placed greater weights on sub-pixels that were close to the selected sub-pixel, whereas 

a model with a slower rate of decay performed in the opposite manner. A model with 

a high rate of decay accepted fewer swaps, converged faster and the super-resolved 

output was less prone to local minima. However, the super-resolved output was less 

accurate than if a lower rate of decay was used. Figure 7.2 illustrates this when 

applied to 2.5 m spatial resolution remotely sensed imagery in an exponential function 

window 9 pixels by 9 pixels with a zoom factor of 10, using the linearised pixel 

swapping algorithm with fusion. 
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(a) 

NLP: 4.5 

(low rate of decay) 

More accurate 

(b) 

NLP: 2.25 

(c) 

NLP: 1.125 

(high rate of decay) 

Less accurate 

Figure 7.2: Non-linear parameter of the exponential distance decay model, 
linearised pixel swapping with fusion: (a) low rate of decay, (b) increased rate of 
decay, (c) highest rate of decay 

Figure 7.3 illustrates the effect of changing the size of the exponential function 

window. The pixel swapping technique was applied to 2.5 m spatial resolution 

imagery, with a non-linear parameter of 4.5 and a zoom factor of 10, using the 

linearised pixel swapping algorithm with fusion. 

(a) 

Window: 5 by 5 

(b) 

Window: 9 by 9 

(c) 

Window: 13 by 13 

Less accurate Most accurate (Optimal) Accurate (sub-optimal) 

Figure 7.3: Size of exponential function window (a) 5 by 5, (b) 9 by 9, (c) 13 by 
13. Scale: sub-pixels. 
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Increasing the size of the exponential function window increased the processing time 

substantially. The optimal size of the window was 9 by 9. In smaller windows, the 

edges of the hedgerow classes and tree classes are less accurately delineated. 

However, as the window size increased beyond 9 by 9, the additional benefits relative 

to the target diminished. 

7.2.3 Anisotropy ratio 

The anisotropy ratio was used during the prediction of direction in the linearised pixel 

swapping technique. The standard exponential function decayed isotropically in the 

exponential function window. In the linearised model, the function was modified to 

decay ellipsoidaly in the direction predicted from the soft proportions. The length of 

the ellipse was determined by the actual soft proportion values and the width of the 

ellipse was determined by the anisotropy ratio. A small anisotropy ratio increased the 

prediction of linearity in the super-resolved output, since the shape of the ellipse was 

more linear than at larger ratios. As a result, non-linear features such as trees 

occasionally became linearised and accordingly, the pixel swapping algorithm was 

modified to only use the anisotropic exponential feature on classes that were known to 

contain linear features. A larger anisotropy ratio tended to produce more rounded 

features, since the shape of the ellipse was more spherical than at lower ratios, which 

occasionally resulted in the loss of geometric detail on the edges of features. 

7.2.4 Annealing schedule 

The annealing schedule was used to retain bad swaps during pixel swapping in order 

to avoid the problem of local minima. Accepting bad swaps "shook up" the system by 

introducing small amounts error. As the annealing schedule progressed and "cooled" 

bad swaps were retained often. An effect of the annealing schedule was to increase 

the number of iterations required to converge, thus increasing computation time. 
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7.3 Future research 

The pixel swapping technique with linearization and image fusion components is a 

robust technique for super-resolution mapping oflinear land cover features. However, 

there are parts of the technique that if investigated further could yield more accurate 

results and extend the applicability of the technique. 

7.3.1 Prediction of direction 

The prediction of linear features is a useful addition to the standard pixel swapping 

technique. Currently, directions are predicted using soft classification data and in a 

fixed number of directions (4, 8 or 12) in two window sizes (3 by 3 or 5 by 5). Further 

investigation into these parameters could enable more precise prediction of the 

direction of a linear feature, where the prediction of direction at any angle would 

likely be an optimal solution. Additionally, the techniques of other line detection 

methods such as snakes, could be incorporated into the pixel swapping method. For 

example, a snake could be applied to the panchromatic image and used to emphasise 

the edges of features. This could then be used to increase the precision with which the 

directions of the edges of features (and the feature itself) are predicted. 

Alternatively, a method that predicts linear features by counting connected pixels, 

such as the Hough transform, could be used to inform on the existence of linear 

features within remotely sensed imagery and increase the precision of detecting 

directions during the linearisation stage. 

7.3.2 Soft classification, noise, geometric error and real imagery 

Error in soft classification is covered extensively in the literature (Congalton, 1991; 

Congalton, 1994; Bastin, 1997; Foody, 2002) and the causes of many of the problems 

experienced in the current research have been described previously. There are various 

factors influencing the results which, broadly speaking, are either methods-related 
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(limitations of the soft classification) or scene-related (nature and properties of the 

scene), with considerable overlap and inter-dependency between each. By 

understanding the nature of the error found within the super-resolved output, it is 

possible to recreate these errors in a controlled situation, using simulated imagery. 

Importantly, factors affecting the error specific to the scene (e.g., the number ofland 

cover classes or the spatial arrangement of the classes) can be varied such that a 

characterisation of the error can be created and information on optimal parameters can 

be gained. A more thorough understanding of the causes of error can then be applied 

when soft classifying real satellite sensor imagery in order to produce more accurate 

soft proportions for use in the pixel swapping. 

The fuzzy c-means classifier and linear mixture model have previously been shown to 

have certain limitations (Bastin, 1997). Specifically, the assumption of linear mixing 

between classes or the use of the mean to represent classes, may be unrealistic. Other 

soft classification techniques are available which could provide more accurate results, 

for example, a non-parametric soft classifier such as the k-nearest neighbour 

(McRoberts et al., 2002). A non-parametric soft classifier is data-based (i.e. it uses all 

available information on each class) and could provide more accurate soft proportion 

predictions compared with trying to fit a model to complex data as (in parametric 

classifiers). Similarly, a multi-layer perceptron artificial neural network may in 

certain circumstances predict class proportions more accurately than the fuzzy c­

means or linear mixture model. 

An absolute classifier could also be investigated (Foody, 1990; Foody, 2000). As 

(Foody, 2002a) indicates, the existence of untrained classes within a soft classification 

can have deleterious effects on the overall accuracy of the classification. Accordingly, 

it is suggested that specific classes be excluded from training if they are of no interest 

to the investigation. Such a technique may be termed an "absolute" classifier, 

whereby only classes of interest are used in the training stages and all other classes 

are grouped together homogeneously. For example, in this investigation, training 

solely on the feature of interest, such as a hedgerow, would be possible, and could 

reduce error in the overall accuracy, by removing the potential for confusion between 

multiple classes that are of no interest to the overall classification. Sanchez­

Hernandez et al. (2004) implemented a one class classification technique using 
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support vector machines for habitat monitoring, reporting increased classification 

accuracy over traditional classification methods. 

The absolute classifier differs from traditional soft classification techniques in that 

class training is performed only on the feature of interest (e.g., the path or hedgerow, 

as opposed to all potential classes in the image) using a typicality measure, that is, the 

likeness of a pixel to each class independently of all classes. Then, any pixel, which 

does not contain any of that class, can be ignored in the super-resolution method. One 

method for achieving an absolute classification is by using a variation on the fuzzy c­

means classifier, known as the possibilistic c-means, where the membership values 

for each class are predicted (distance measured from class centroids) independently of 

all other classes. This technique requires very careful training, so that the feature is 

characterised accurately to ensure none of the feature of interest is removed. 

However, it has obvious potential benefits. Firstly, confusion between classes should 

be reduced as the soft classifier needs to distinguish only between two classes (is it 

the feature class or is it not the feature class?). Secondly, we can still train on 

additional classes (for example, trees, which are commonly found within hedgerows), 

maintaining class distinctions. 

7.4 Conclusion 

This chapter of the thesis has discussed further the parameters of the pixel swapping 

model and the effect that changing these parameters has on the output. The 

parameters of the model are in many ways directly dependent on the value of other 

parameters and the optimal configuration will vary depending on the type of imagery 

used as input. 

Further avenues for developing the methodology were also discussed, such as refining 

the prediction of directions and a more rigorous assessment of the data used as input 

to the pixel swapping technique. 
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Chapter 8 

8. Conclusions ',-:,'",- 1: 

8.1 Introduction 

In this concluding chapter, the findings of the research presented in this thesis are 

drawn together. Initially the research, including the background, aims and objectives, 

and results are summarised. The implications of this research are then discussed. The 

chapter closes with concluding remarks. 

8.2 Summary 

The research in this thesis can be summarised in four parts: (i) background, (ii) aims 

and objectives, (iii) development and analysis, and (iv) results. 

8.2.1 Background 

Remote sensing represents one important source of land cover information, which can 

be an invaluable aid to mapping, monitoring and management of the natural and built 

environments. Remote sensing often represents the only feasible means of obtaining 

such information, particularly in cases where large study areas are required. However, 

the coarse spatial resolution provided by satellite sensor imagery has commonly been 

disadvantageous to the accuracy of such studies. For example, the pixel size, relative 

to the land cover features of interest, often leads to large numbers of mixed pixels, 

where there is more than one land cover feature within a pixel. Such mixed pixels 
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consequently produce error in land cover maps derived from traditional hard 

classification techniques, where pixels are allocated to a single class. The introduction 

of soft classification approaches, has, in recent years, helped to somewhat reduce 

these problems, producing more informative land cover maps. Nevertheless, while 

such classifiers predict the class composition of each pixel, there are few techniques 

for mapping the location of these classes within image pixels. 

8.2.2 Research aims and objectives 

The principal objective of this research was to develop an algorithm to perform super­

resolution mapping ofland cover features in remotely sensed imagery. These features 

exhibited many important geometric characteristics, perhaps most importantly of 

which, is the width of the feature. In most cases, however, the width of the feature is 

finer than the spatial resolution of the remotely sensed imagery. Soft classification 

techniques are able to predict the proportion of classes within each pixel, yet a 

technique was required to predict the location of these classes with sub-metre 

geometric accuracy. Super-resolution mapping was chosen as the tool to achieve this. 

An emphasis was placed on the identification of fine linear land cover features. For 

the purposes of evaluating the technique, hedgerows and other land cover objects such 

as trees, particularly as they are often found embedded within hedgerows, were used 

as target features. 

8.2.3 Development and analysis 

The super-resolution pixel swapping method was developed as a stochastic 

optimisation algorithm using the principles of simulated annealing as a framework. 

Image pixels were converted into sub-pixels converting the output from a soft 

classification into binary values, maintaining the predicted proportions, yet effectively 

giving the class proportions locations. Using the geostatistical phenomenon of spatial 

dependence, sub-pixels were selected randomly and the suitability of the swap was 
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analysed on the basis of estimated 'attractiveness'. The exponential distance decay 

model was used to estimate an attractiveness value as an indicator of spatial 

dependence. The model was developed to increase the likelihood of predicting linear 

features. The existence of linear features was estimated from soft class proportions; 

this information was used to apply an anisotropic correction to the shape of the 

exponential distance decay model, such that features exhibiting directional differences 

would be identified. Further, an image fusion component was developed to refine the 

prediction of the sub-pixel class, by merging information from a panchromatic image 

at a finer spatial resolution than the multispectral imagery and adjusting the criteria 

for accepting a swap. 

The pixel swapping technique was tested on multiple sources of data. Initially, the 

standard pixel swapping technique was applied to fully synthetic simulated imagery 

of basic shapes, allowing an evaluation of the function and suitability of the technique 

as well as ensuring a thorough understanding of the technique to enable its 

development. As the technique was developed, it was also applied to real satellite 

sensor imagery, aerial photography and pseudo-synthetic imagery (simulated imagery 

derived from aerial photography). The image fusion technique enabled the fusion of 

panchromatic imagery with the available multispectral imagery (satellite sensor and 

aerial photography). The scenes depicted in each set of imagery were semi-rural, 

where the land-use was mainly agricultural and the common land cover classes were 

cereal and grass fields, hedgerows, pathways, trees and forest. 

8.2.4 Results 

In the majority of cases, the super-resolution pixel swapping technique produced 

accurate results. When applied to simple simulated imagery, in some cases, the 

accuracy of the super-resolved output was estimated as 99% when compared with the 

input imagery. In every case, the results were more accurate than was possible using a 

traditional hard classification technique. The development of the technique to identify 

linear features enabled the prediction of continuous features, where hard classification 
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techniques or, indeed, the standard pixel swapping technique, mapped the features as 

a series of discrete objects. The results of each technique are summarised in Table 8.1 

for the simulated field site at a spatial resolution of2.5 m. 

Table 8.1: Summary of results, spatial resolution 2.5 m 

Technique Image output % Correct 

Target 100 

Hard classification 92.2 

Pixel swapping 96.3 

f. 
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Linearised pixel 

swapping (3 by 3 

window) 

Linearised pixel 

swapping with fusion 

(3 by 3 window) 

98.6 

98.8 

The hard classified image is one of the most commonly produced land cover maps 

used in remote sensing applications. In many situations, a hard classification may be 

sufficient. However, in applications where a high-level of detail is required, it will not 

be sufficient. The pixel swapping technique has been demonstrated to provide more 

accurate land cover maps (6.6%) with a superior visual output. The linearised pixel 

swapping technique was effective at delineating objects found within other objects, 

for example, trees found within hedgerows. The inclusion of a fusion component, 

where simulated panchromatic imagery was merged with simulated aerial 

photography, resulted in more realistic characterisation of the edges of classes 

There are factors that affect the accuracy of the pixel swapping teclmique presented in 

this thesis, such as, the accuracy of the input soft classification, the number of land 

cover classes and the frequency of mixing between these classes. Selection of a 

suitable zoom factor is important for accurate results; a higher zoom factor does not 

always produce more accurate results - a suitable zoom factor is dependent on many 

factors, for example, spatial resolution of the input imagery, the fuzziness of the soft 
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classification data, the number of land cover classes and the size of the window used 

in the exponential distance decay. 

8.3 Implications 

The research presented in this thesis has demonstrated the benefits of using super­

resolution sub-pixel mapping techniques, such as the pixel swapping technique 

presented here, for the creation of accurate land cover maps. Certainly, the extension 

of existing techniques, to incorporate additional information (e.g., additional 

information from the original imagery, such as, estimated directions of linear features, 

or, alternatively the use of fusion to incorporate an additional source of data) has 

demonstrated the value and potential of such algorithms. Indeed, the information 

contained within such maps, for certain remote sensing applications, will be of far 

greater use than the information derived from a standard hard classification. The 

standard pixel swapping technique was efficient when applied to simple shapes. 

However, by introducing information on measured anisotropy, the technique 

predicted continuous linear features, whereas in the standard configuration, the pixel 

swapping technique predicted linear features as a series of discrete objects. As 

discussed, the ability to map fine linear features in remotely sensed imagery would be 

of great use to organisations involved in the monitoring and management of, for 

example, the countryside. Indeed, by merging panchromatic imagery with 

multispectral imagery, it was possible to further increase the accuracy of these maps. 

8.4 Conclusion 

The super-resolution pixel swapping technique presented in this thesis has been 

shown to be able to map linear land cover features from fine spatial remotely sensed 

imagery with greater accuracy than was previously possible. Further work is required 

to refine the technique for application to different remotely sensed imagery, however, 

the technique is a simple and accurate method, that could realistically be used for the 
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creation of land cover maps containing accurate information on the location of rural 

land cover features. 

:' ~ } . ' 
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Appendix 1 

The principal output of the research presented in this thesis was a fully functional 

computer application for super-resolution pixel swapping. The operational 

development and key components of this software are described below. 

Technical Background 

The standard pixel swapping algorithm was originally written by Peter Atkinson as a 

simple iterative subroutine in the S programming language. The subroutine was 

executed in S-PLUS. S-PLUS is statistics software that provides basic and advanced 

statistical calculations in an integrated environment. In particular, S-PLUS provides 

the functionality for a user to write custom scripts. However, the software has a large 

application overhead, which makes such scripts unsuitable for processing very large 

datasets such as remotely sensed imagery (as described in Chapter 7) and, therefore, 

unsuitable for the purposes of this research. Accordingly, it was decided to port the 

subroutine to an alternative programming language. 

Three programming languages were considered as part of the process to "translate" 

the standard pixel swapping algorithm. These languages were: Fortran, Perl and C++. 

Fortran was considered due to the availability of many pre-existing image processing 

routines, such as the NAG libraries. Perl was considered due to its reputation of 

excellence in data mining and processing of large datasets and the authors' previous 

exposure to the language. However, C++ was ultimately chosen as the programming 

language for a number ofreasons. Foremost, the author had prior exposure to and 

experience of the language and its constructs, which meant the learning curve was 

much lower. In addition, C++ is an industry standard programming language and the 

wide-reaching and common use of C++ in every day programming meant that there 

was a wealth of help and support available in books and on the Internet. As a 

compiled language, C++ was guaranteed to provide substantial improvements over 

the procedural approach ofS-PLUS (or Perl) and was considered to be a more 
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straightforward (and up to date) approach than Fortran, especially with the availability 

of an excellent open source integrated development environment (DevC++, 

http://www.bloodshed.net/devcpp.html) that provided invaluable development and 

debugging tools. Finally, applications written in C++ can be executed in virtually any 

operating system that can run the compiler. The pixel swapping algorithm was 

primarily developed under both the Win32 and Linux environments, but was also 

tested under two of the distributed computing environments offered by the University 

of Southampton (Linuxcompute and IRIDIS). The application could therefore process 

very large datasets efficiently. 

Programming tasks 

Converting the pixel swapping subroutine code from the S programming language to 

C++ involved a number of key tasks. C++ does not natively provide the same file 

management (e.g., opening input files, creating data structures), memory management 

and visualisation functionality that S-PLUS does, and so, each of these areas needed 

consideration. A generic file reading routine was developed to handle all input and 

output file related tasks, such as reading the output from a soft classification or 

simulated soft proportions as well as writing results (e.g., super-resolved output and 

accuracy assessments) to files. In addition, the portable graymap image format 

(http://netpbm.sourceforge.net/doc/pgm.html) was adopted to enable visualisation of 

all image output. A set of functions to manage all memory allocation tasks was also 

developed, which simplified the process of creating multi-dimensional arrays, which 

contained image and proportions data. 

In developing the application, the pixel swapping algorithm was initially converted 

from S to C++. During this process, various optimisation were made to increase the 

efficiency of the algorithm, such as, using delegates and functions for performing 

repetitive tasks and changing the datatype of the arrays from real number arrays to bit 

arrays (to represent the binary hard classification of the input proportions in a true 

Boolean format), saving approximately two bytes of memory overhead per element of 

each array. 
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In addition to optimising the original algorithm, the pixel swapping algorithm was 

primarily developed in three ways: simulated annealing, linearisation and image 

fusion. These developments were programmed, however, in such a way that the 

application could be executed in a specific mode, such that differences in the accuracy 

of the super-resolved output between each of the methods could be compared easily. 

For example, the software can be executed in any of the following 'modes': 

• 

• 

• 

• 

Pixel swapping 

Linearised pixel swapping 

Pixel swapping with fusion 

Linearised pixel swapping with fusion 

In each mode, sub-pixels to be swapped can be selected using either the method 

described in the original pixel swapping technique or randomly (simulated annealing). 

It was observed, however, that the algorithm converged to the same result through 

either method. Screenshots of the application are presented in Appendix 2. 

In its output, the pixel swapping application also provides a complete set of accuracy 

assessments, depending on the mode in which it is to be run. As required, it can 

output maps of estimated direction, difference images and confusion matrices as well 

as complete operation logs and debugging information. 

Additional programming 

The pixel swapping application used information from a soft classification as input. 

These data were provided in different formats from many different sources. Soft 

classification of real remotely sensed imagery was perfOlmed using the fuzzy c-means 

and linear mixture model techniques. These algorithms were acquired in Fortran from 

the openly available Numerical Algorithms Group (NAG) Library. In some cases, 

data were reformatted in Matlab. Non-standard data visualisation was carried out in 

either S-PLUS or Matlab. 
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Appendix 2 

Screenshot 1: Application with no command-line arguments 
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Screenshot 2: Application in pixel swapping mode 
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Screens hot 3: Field work data capture sheet 
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