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A popular technique for modelling data is to construct an ensemble of learners and 

combine them in to a single hypothesis. This final model can achieve an accuracy 

that is greater than that of the ensemble members, provided that there is a sufficient 

level of diversity within these learners. Measuring and promoting this diversity can 

be achieved in a variety of ways and typically a trade-off exists between the accuracy 

and diversity of the ensemble members. This thesis investigates and develops ensemble 

techniques for improving this accuracy and diversity, and compares them to other well­

known ensemble methods. These algorithms are shown to successfully promote diversity 

whilst maintaining the learner accuracy. 

An important area of machine learning research is that of feature selection. Choosing 

an appropriate subset of the available features with which to represent the data can 

improve the performance of learning algorithms in terms of accuracy, efficiency and 

interpretability. However, this task is non-trivial and can be complicated further through 

interactions amongst the features, which can result in features only being relevant within 

a local area of the space. Through the creation of diverse local models, ensemble methods 

have the capability to address these issues and identify feature relevance. This work 

develops new methods that utilise these aspects of ensemble algorithms to identify and 

exploit feature information. Experiments demonstrate that these methods can surpass 

existing approaches in terms of classification accuracy, dimensionality reduction and 

relevance identification. 
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Chapter 1 

Introduction 

Many areas of science can benefit from the ability to build models from large amounts 

of data. Applications possess a need to extract the rules and general principles to 

improve understanding and enable predictability. This has motivated the development 

of computer learning systems, which have the ability to construct reliable models in an 

efficient manner. Typically, the goal of these methods is to create models that capture 

the essence of the data, whilst not becoming overly complex. Depending on the type 

of learning problem under consideration and the specific requirement of the application, 

the choice and complexity of learning algorithm can vary. Research in machine learning 

deals with the understanding of relationships within data and of developing algorithms 

to uncover and exploit this information. 

1.1 Problem Statement 

The type of learning problem considered here is that of supervised learning, where each 

example in the data is asscoiated with a target value. This target variable, Y, can 

assume a continuous value in the case of regression or one of a set of labels in the case of 

classification. Each example is described by a vector of values corresponding to feature 

variables. This input data, X, can then be viewed as a set of points in an F-dimensional 

space, where F denotes the number of feature variables. The requirement of the learning 

algorithm is to identify the relationship between the input data and the target. For 

clarity this thesis focuses on binary classification, where the target can assume one of 

two possible labels. However, the potential exists for extending the methods in this 

thesis, such that they can be applied to any supervised learning task. 

There exist many types of learning algorithm to perform binary classification. Ensem­

ble algorithms are one class of learning algorithm, which have achieved much success 

by combining multiple weak learners to form one strong hypothesis. Two popular ap­

proaches to ensemble construction are Bagging (Breiman, 1996) and Boosting (Freund 

1 



Chapter 1 Introduction 2 

and Schapire, 1999). It is known that a successful ensemble is one that consists of 

accurate base learners that make their mistakes on different parts of the data. This 

is because the overall accuracy of an ensemble is dependent upon the amount of data 

which is predicted correctly by most of the ensemble members. Therefore, ensemble 

algorithms should attempt to construct learners that are both accurate and diverse. 

Many algorithms have been developed to achieve this and they do so in a variety of 

ways. The quality of the data that is presented to each learner is one aspect that can 

be manipulated to promote accuracy or diversity, and the forementioned Bagging and 

Boosting methods are examples of this. The feature representation of the data can also 

be manipulated to improve ensemble performance (Ho, 1998a), whilst other methods ex­

plicitly measure the accuracy and diversity of ensemble members and employ a selection 

strategy to optimise these factors (Opitz, 1999). 

Depending upon the objective of the particular learning problem, describing the data 

in the original F-dimensional space may be sub-optimal. The factors which affect the 

optimality of a set of features are varied and identification of the best subset is a non­

trivial task. Therefore, one of the problems posed by learning tasks is that of selecting 

an appropriate subset of the original features and much research has been conducted on 

this topic. The particular motivation for a learning problem can affect the criteria for 

selecting an optimal set of features. It has been observed that data can contain irrelevant 

features and that these can be detrimental to the accuracy of the algorithm (Almuallim 

and Dietterich, 1991). Higher dimensionality in the data can lead to increased com­

putational costs, a reduced potential for interpretability of an induced hypothesis and 

result in an effect known as The curse of dimensionality (Bellman, 1961). Performing a 

search through the space of possible feature subsets is a combinatorial problem and is 

infeasible for high dimensional data. However, some algorithms employ a basic search 

strategy which simplifies the task by limiting the size of the space that is searched. Fast 

feature selection methods often analyse individual features and rank them according to 

some relevance measure. These global measures can fail to identify features with strong 

interaction that may only be relevant within a local area of the input space (Friedman, 

1994). Some methods aim to improve learner performance through the identification of 

this type of local feature relevance (Domingos, 1997; Hong, 1997). The useful informa­

tion that is carried by a set of features may be subsumed by another set and it can be 

beneficial if this redundancy within the data is identified and removed. It has also been 

observed that the particular learning algorithm implemented can affect which features 

are optimal and therefore, some techniques utilise the learning algorithm to identify the 

most useful features (Kohavi and John, 1997). 

Certain types of ensemble algorithm are useful for feature selection as they can explore 

different feature representations of the data and produce diverse local models. In partic­

ular, this research develops feature relevance identification techniques using the Random 

Forest algorithm (Breiman, 2001), which constructs an ensemble of decision trees using 
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random feature selection. The ability of Random Forest as a feature selection method is 

supported by the concept of random subset exploration and the potential of techniques 

based on decision trees to identify the local relevance of features. 

This thesis is concerned with investigating ways of improving ensemble performance 

through the promotion of accuracy and diversity in the base learners. The work discusses 

and develops new diversity promotion techniques that employ data and feature manip­

ulation methods. The accuracy of the learners is inc~eased by improving the robustness 

of these techniques or through feature relevance identification and the development of 

techniques for employing this obtained knowledge. 

1.2 Related Work 

The relationship between the accuracy and diversity of the base learners, and the perfor­

mance of the resulting ensemble has previously been studied. Breiman (2001) motivates 

the need for ensemble diversity by bounding the generalisation error of an ensemble in 

terms of this quantity. Their exist different measures for quantifying diversity and the 

suitability of these is a topic that has been explored by Kuncheva and Whitaker (2001). 

Explicit attempts have been made to promote diversity through a manipulation of the 

training data (Melville and Mooney, 2003) or through a manipulation of the feature 

representation, such as the Random Forest algorithm (Breiman, 2001). This promotes 

ensemble diversity through random feature selection and, consequently, performs bet­

ter than Bagging (Breiman, 1996). Further improvements to this have been sought 

by creating additional diversity (Cutler and Zhao, 2001; Robnik-Sikonja, 2004). Typi­

cally, improving the diversity of the ensemble members worsens their accuracy and these 

methods explore this mechanism. The techniques developed in this thesis are designed 

to promote diversity whilst being robust to the data and the learning process. In this 

way, the methods improve the diversity whilst maintaining accuracy. 

The employment of ensemble algorithms to perform feature selection has been attempted 

previously. The Random Forest algorithm lends itself to feature selection because of its 

random subset exploration and this has recently been explored (Chen and Lin, 2006; 

Svetnik et al., 2004; Borisov et al., 2006). Other algorithms select a subset of learners 

based on their accuracy and diversity (Opitz, 1999; Cunningham and Carney, 2000; 

Oliveira et al., 2003) and it has been suggested that these methods have the capacity to 

identify diverse feature representations in the data. 

The pursuit of ensemble diversity results in algorithms that achieve a good exploration 

of possible hypotheses, and the ability of these learners may vary in different areas of 

the input space. Therefore, the potential exists for these type of techniques to uncover 

local feature relevance. Tsymbal et al. (2006) attempt to exploit this concept through an 
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alteration to the combination strategy of Random Forest. Instead of altering the combi­

nation method or employing a selection strategy, the techniques that are developed here 

examine the ensemble to identify feature information and then use this knowledge to 

improve ensemble construction. This methodology enables the creation of better ensem­

ble members rather than attempting to combine ones that are sub-optimal. The feature 

information that is gained from these techniques is also useful for the understanding and 

interpretation of the data. 

1.3 Contributions 

This work has made contributions in the following areas: 

• Development of novel diversity promotion techniques. This research investigates 

methods of building accurate and diverse ensembles through the manipulation and 

exploitation of different aspects of the data and the learning process. Specifically, 

methods are developed that promote diversity whilst maintaining the accuracy of 

the base learners. This is achieved through the introduction of new methods for 

altering the distribution over the data and manipulating the feature representation 

to exploit the decision tree bias. 

• Demonstration and justification of the need for feature selection when perform­

ing classification with Random Forest and other diversity promotion techniques. 

This work discusses and gives theoretical justification for the specific effects of 

feature selection on Random Forest and demonstrates them through experimental 

methods. 

• Novel approaches to feature weighting/selection using Random Forest. This work 

explores techniques using the Random Forest algorithm to perform feature rele­

vance identification and ways in which this information can be employed to benefit 

the algorithm. In particular, methods for improving Random Forest through up­

dating the feature sampling distribution and eliminating irrelevant features are in­

troduced. It is shown that Random Forest can identify more complex relationships 

between the features and that this knowledge can be utilised by the algorithm to 

improve performance. This work describes a new technique that improves Random 

Forest through the identification and employment of local feature information. 

• Improved relevance identification through the employment of information theoretic 

and statistical techniques. Use of statistical methods and techniques from infor­

mation theory have been adopted to provide more reliability to the techniques, 

which make them more robust. In particular an information theoretic technique is 

introduced which improves the measure of feature relevance, and the employment 

of hypothesis testing is shown to provide more effective feature selection. 
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This work has contributed to the following publications: 

• Rogers J.D. and Gunn S.R. (2005). Ensemble Algorithms for Feature Selection, 

Sheffield Machine Learning Workshop, LNCS, Vol 3635, Pages 180-198. 

• Rogers J.D. and Gunn S.R. (2006). Identifying Feature Relevance Using a Random 

Forest, Latent Structure and Feature Selection techniques: Statistical and Opti­

misation Perspectives Workshop. Bohinj, Slovenia 2005, LNCS, Vol 3940, Pages 

173-184. 

• Rogers J.D. and Gunn S.R. (2007). Ensemble Diversity and Feature Selection, 

Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence. 

1.4 Thesis Outline 

Chapter 2 discusses the mechanics of ensemble methods and describes some popular 

choices of ensemble algorithm, along with the reasons for their success. The chapter 

also considers the suitability of possible base learning algorithms and what impact these 

have on the performance of the algorithm as a whole. The chapter concludes with a 

description of the Random Forest algorithm, which forms a key component of this work. 

Chapter 3 reviews some theoretical work concerning the importance of ensemble diversity 

and examines some currently employed techniques for measuring this quantity. Several 

algorithms that promote diversity are then compared and categorised according to their 

subject of manipulation. 

Chapter 4 introduces a new diversity promotion method that functions by focussing the 

algorithm on certain areas of the space. This approach is related to outlier identification 

and its tolerance to noise is argued. A further new method is also proposed which 

alters the feature representation of the data to exploit the learning bias of decision tree 

induction. 

Chapter 5 conducts an empirical evaluation of the techniques that were introduced in 

Chapter 4. The methods are compared to other well known ensemble algorithms and 

the reasons for the differences in performance are explored and discussed. 

Chapter 6 conducts a review of feature selection techniques. A theoretical justification 

is given for the specific problems that irrelevant features pose to the Random Forest 

algorithm. The different ways of defining feature relevance are discussed and their 

limitations are examined. Some currently employed feature selection techniques are 

described and compared in terms of their efficiency and relevance identification ability. 

Chapter 7 conducts a review of feature selection methods that utilise Random Forest and 

explores the potential of this algorithm to identify feature importance. These measures 



Chapter 1 Introduction 6 

of feature relevance are then used to derive several feature weighting/selection tech­

niques. Improvements to these techniques are also discussed, which rely on statistical 

and information theoretic concepts. The chapter also explores the capacity of Random 

Forest to identify local feature relevance and how this local knowledge can be employed. 

Chapter 8 describes experimental results for the methods introduced in Chapter 7 on 

artificial and real world data sets. The specific effects of feature selection on the Random 

Forest algorithm are demonstrated and the feature selection techniques introduced are 

shown to compare favourably to other well known methods. The techniques of Ran­

dom Forest that identify and exploit local feature knowledge are evaluated and their 

mechanisms are compared to the other ensemble methods of Chapter 4. 

Chapter 9 describes a machine learning application, which involves inferring user prefer­

ence from eye movements. Details are given on the method of constructing this data set 

and on the features that are used to represent the eye movements of the user. The meth­

ods that are developed in this thesis are applied to this task, and the different aspects 

of the data that result in a variation in performance of these techniques is discussed. 

A discussion concerning the outcome of the work described in this report is given in 

Chapter 10 along with some possible directions for future work. 



Chapter 2 

Learning Ensembles 

2.1 Introduction 

The general scheme for ensemble construction consists of training a set of simple base 

learners and combining their learned knowledge into a single powerful hypothesis. En­

semble algorithms vary in their choice of base learner, combination strategy and method 

of training. Broadly, ensemble algorithms can be classed as adaptive or non-adaptive. 

Adaptive algorithms alter the method of ensemble construction for subsequent learners 

using knowledge gleaned from the set of hypotheses that have already been trained. In 

contrast, non-adaptive algorithms construct independent learners, which can be viewed 

as being drawn from the same distribution. Typically, the combination of these learners 

is achieved through aggregation, weighted voting or the employment of an ensemble 

selection strategy. 

This chapter describes two popular ensemble techniques, Bagging and Boosting. The 

choice of base hypothesis is also discussed in the context of some commonly employed 

learners. The chapter concludes with a description of the Random Forest algorithm. 

2.2 Bagging 

A popular ensemble method is Bagging (Breiman, 1996), which trains each weak learner 

on a subset of the training data. These subsets are formed through sampling N examples 

with replacement from the training data of size N. It can be shown that the probability 

P of an example not being in the sampled subset of data for hypothesis ht is, 

( l)N 1- -
N ' 

(2.1) 

7 
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where XPOB represents the subset of data that is not sampled for hypothesis ht and can 

be referred to as the out-of-bag set. This converges quickly to, 

(2.2) 

As the examples are drawn independently, this method selects around ~ of the training 

data with some examples selected multiple times. This means that the learners are 

trained on different parts of the training data, which should result in varying solutions. 

The prediction of each base learner or hypothesis ht for example x is then aggregated 

to form the ensemble prediction, 

(2.3) 

An explanation for the effectiveness of Bagging, given in Breiman (1998), is that of 

the bias and variance of the classifier. Here, the expected error of any classifier can be 

decomposed into three terms. The first is the Bayes misclassification rate, which is the 

theoretical minimum error rate of any classifier. The bias and variance terms are both 

defined as the difference between the accuracy of the Bayes classifier, BC(X), and the 

average accuracy of the base hypotheses. However, the bias and variance are defined on 

two exclusive sets of the total distribution from which the training and testing data is 

drawn. The bias set consists of all points which give a classification that is contrary to 

the Bayes classifier more often than not, over all possible hypotheses. The variance set 

is the complement of this. Example x, y is included in the bias set, XB, if 

1 
Pe [he (x) = BC(x)] < 2 

and is included in the unbiased set Xu if 

1 
Pe [he (x) = BC(x)] 2: 2' 

(2.4) 

(2.5) 

The bias and variance components of a learner that is drawn from a hypothesis distri­

bution, e, can be written as the difference between the accuracy of the Bayes classifier 

and the expected accuracy of the learner on these two sets, 

Bias (he) = PX,y [BC (X) = Y, X E XB]- EePx,y [he (X) = Y, X E XB] (2.6) 

Variance (he) = PX,y [BC (X) = Y, X E Xu] - EePx,y [he (X) = Y, X E Xu]. (2.7) 

As Bagging works by aggregating hypotheses, the variance term can be eliminated and 

the overall error reduced. The logical argument is then that bagging works especially 

well if the base learning algorithm produces classifiers with a large variance and small 

bias. 
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One of the advantages of using bagged training sets is that some of the training data 

is left out in the form of the out-of-bag set. This means that each individual learner 

automatically has its own independent test set, which can be used to evaluate the perfor­

mance. The out-of-bag data can also be used to estimate the test error of the ensemble by 

classifying every training point using all of the hypotheses where it was in the out-of-bag 

set and aggregating the result. 

2.3 Boosting 

Boosting is an adaptive type of ensemble algorithm and a well known variant of this 

is ADABOOST. This algorithm maintains a weighted distribution Wt over the training 

examples and uses this to train each weak learner. Each of these learners is also weighted 

by a value at, which is calculated according to its accuracy, taken with respect to Wt. The 

intuition behind ADABOOST is that examples which are misclassified by the algorithm are 

deemed more important, and ADA BOOST then focuses on the more difficult components 

of the training data in order to construct a more accurate model. At each iteration the 

weight assigned to example Xi with corresponding label Yi is updated according to, 

(2.8) 

where Zt is a normalising factor to ensure that Wt+l is a distribution. 

The hypotheses are combined through weighted voting, where hypothesis ht is assigned 

weight at. 

(2.9) 

Freund and Schapire (1999) show that the training error can be bounded by, 

1 N T 

N I.: I (H(Xi) # Yi) ::; II Zt, 
i=l t=l 

(2.10) 

where Ie) is the indicator function which equals 1 if the condition within the brackets 

is true and 0 otherwise. 

At each iteration the value of at is chosen to minimise Zt and for binary classification 

the value chosen is, 
1 1 (1 - Et) 

at = -2 og , 
Et 

(2.11) 

where Et is the training error of hypothesis ht weighted by Wt. 

Breiman (1998) suggests that the success of ADABOOST is due to its re-sampling strategy 

of focussing on commonly misclassified examples, and is not due to the specific form of 
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the algorithm. Following this intuition, Breiman introduces ARC-x4 which combines 

learners through aggregation and updates the distribution over the training examples 

according to, 

(2.12) 

This method alters the relative importance of the examples according to their frequency 

of misclassification and was found to achieve a performance similar to that of ADABOOST. 

By updating a distribution over the training data, these methods also alter the distribu­

tion over the hypothesis space. Consequently, examples can be moved between the bias 

and variance sets and it has been observed (Bauer and Kohavi, 1999) that both of these 

algorithms can reduce the bias component of the error as well as that of the variance. 

2.4 Base Learning Algorithms 

The choice of which base learning algorithm to implement can have a large effect on 

the ensemble as a whole. The general requirement of the base learners is that they 

are accurate enough to give some useful information concerning the target, but are 

sufficiently different to enable an improvement upon their combination. Also, as many 

of these hypotheses need to be created, it is important that their construction does not 

impose a computational overhead that is too great. This section describes three popular 

choices of base learner, the K-nearest neighbour algorithm, decision trees and the naIve 

Bayes model. 

2.4.1 K-Nearest Neighbour 

The nearest neighbour algorithm is a 'lazy' learner that, given a test example, assigns 

to it the class that is most commonly represented in the set of closest training examples. 

It is described as a lazy learning algorithm because it has no training stage. All of the 

training data is kept and no calculations are performed until a test instance needs to be 

classified. The intuition behind the method is that examples which are in close proximity 

to each other are more likely to belong to the same class. Although the distance metric 

can vary, the Euclidian distance is most often used. 

(2.13) 

If Xi (1) denotes the value of feature f for example Xi, then this distance can also be 

written, 
F 

D2 (Xi, Xj) = L (Xi (1) - Xj (1))2. (2.14) 
J=l 
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When classifying new data, the algorithm first uses Equation 2.13 to establish the K 

nearest neighbours by comparing the test case Xj, with each of the training examples. 

These nearest examples constitute the set Xnn and Xj is then assigned to the mode class 

in this set. 

(2.15) 

Figure 2.1 shows a simple two dimensional example of a binary classification problem 

and the decision boundary that is induced by the K-Nearest Neighbour algorithm, with 

K=1. 

x x 

x 

x 
0 

04 
X 

0.3 0 

0.2 8 
01 

0 
0 01 02 03 0.4 0.5 0.6 0.7 08 0.9 

FIGURE 2.1: Example binary classification problem and induced hypothesis boundary 
through nearest neighbour. 

The value of K is a parameter of the method. If it is chosen to be too small, the 

algorithm can focus too closely on the immediate vicinity of the test cases. In this case 

the algorithm may overfit the data by being misled by noise or random variations in the 

data. Conversely, if the value of K is too large, the learner may become too general and 

not identify the more subtle trends in the data. When considering employing this base 

learning algorithm in conjunction with an ensemble method, the choice of K will have 

an effect on the bias and variance components of the error. The stability of the models 

increases with the value of K and if K is too large, the learners become too similar and 

do not yield a great benefit from their combination. 

2.4.2 Decision Tree Induction 

Decision trees attempt to discover relationships in the data by recursive partitioning. At 

each node a search is performed to find a suitable separation of the data, which results 

in the formation of child nodes. Here, binary partitions are considered which result in a 

node being split into two new nodes only. This partitioning continues until a stopping 

criterion is reached or until no more partitions are available. Test instances can then be 

run down the tree, following the partitioning conditions of each split, until a terminal 



Chapter 2 Learning Ensembles 12 

node is reached. The output of the hypothesis for the particular test instance is then 

governed by the state of the data in that terminal node. 

The criteria for selecting a particular split usually involves an impurity function, Imp, 

which describes the level of disagreement amongst the values of the target variable, Y, 

within the data of a node. The objective is to reduce the impurity so that similar data 

is contained within each terminal node. The gain that is achieved by partitioning the 

data in node l into a set, L e , of new child nodes is then the reduction in this impurity. 

(2.16) 

where Xl and Xli represent the set of data within node l and child node li respectively. 

If a tree is constructed for the purpose of regression, the impurity function can take the 

form of the variance, V ar, of the target values. 

(2.17) 

where y denotes the mean of the target values of set Xl. In this case, the output of the 

hypothesis assumes the mean of the target data in each terminal node. Therefore, the 

gain represents the reduction in squared error that is achieved by the partition. 

For classification problems a different impurity function is required. A popular choice for 

this is entropy (Quinlan, 1986), Ent, which quantifies the amount of information required 

to describe the data. vVhen using entropy, the gain is referred to as the Information 

Gain, IG. 

Imp (Y, Xl) = Ent (Y, Xl) = "I{i: Xi E XI,Yi = y}I I <Y I{i: Xi E XI,Yi = Y}I 
~ IXI 0

0
2 IXI ' 

yEY I I 

(2.18) 

where Y denotes the set of possible class labels. 

Some tree induction procedures consider multiple partitions at each node. In this case, 

Information Gain will favour features that involve more partitions and bias the algo­

rithm. To overcome this problem, Quinlan (1986) suggests using Gain Ratio, 

IG 
GR (t, Lc) = EntP 

which penalises the gain with the entropy of the partition, 

(2.19) 

(2.20) 

A measure implemented by the CART algorithm (Breiman et al., 1984), is the GINI 
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index, 

I (Y~) = GINI(Y~) = 1- "" (!{i: Xi E XZ,Yi = y}!)2 
mp , Z , Z ~ IX! 

yEY z 
(2.21 ) 

For binary classification, Heath et al. (1993) employ the sum minority measure SM, to 

identify a suitable partition, which can be considered as adopting the impurity function, 

I (Y V)=SM(Y V)= . !{i:XiEXZ,Yi=Y}! 
mp ,"-Z ,"-Z mJn !Xz! . (2.22) 

When classifying new data, a test instance descends the tree and finishes in a terminal 

node. If the output of a classification tree is given by the mode class of the data within 

this node, the gain for the impurity function of Equation 2.22 represents the reduction 

in training error. 

Figure 2.2 shows how the three impurity measures vary for different proportions of pos­

itive and negative examples when performing binary classification. All of the measures 

are maximum when the node contains equal numbers of each class and are zero when 

the node is pure. 
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FIGURE 2.2: Node impurity measures for binary classification. 

The decision tree algorithm can continue to partition the nodes of a tree until no more 

splits are possible, but this can lead to the model overfitting the data. To avoid this, 

a stopping criterion can be used in order to prevent the nodes from becoming overly 

specific. In the extreme case, each learner consists of a single partition and these are 

referred to as decision stumps. Rather than halting the construction, the tree can be 

grown as large as possible and then pruned back to a more suitable size. The criterion for 

limiting the size of a tree can be based on the performance of the tree, when tested on an 

independent set of test data. Alternatively, some measure of complexity of the tree, such 

as the number or size of the terminal nodes can be utilised. One method for controlling 

the complexity of the tree is to employ the minimum description length principle. This 
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principle simply states that the optimal hypothesis should minimise the information 

required to describe the hypothesis and the data using the hypothesis. Fayyad and Irani 

(1993) use this method to derive a stopping criterion for their discretisation technique. 

This uses recursive entropy partitioning to convert continuous features into discrete 

ones and is therefore equivalent to decision tree induction using a single feature. The 

algorithm will continue to partition the data until no split can be found that reduces 

the required information. 

When partitioning data, the entropy represents the theoretical minimum average number 

of bits required to describe each data point in node l. The information gain Ie, is then 

the reduction in this value caused by splitting the data into two new nodes, 11 and l2. 

The total amount of information that is saved is I Xl/ Ie bits. The cost of introducing 

a partition has several parts. Firstly, if the node contains IXll examples, then there are 

IXll - 1 possible split positions (see Figure 2.3), assuming that they are all realisable. 

This leads to a cost of 10g2 (I XII - 1) bits. 

I I 
I I 

X:O:X 
I I , , 

I 
I 

O:X 

FIGURE 2.3: Illustration of 5 data points and 4 possible split positions. (IXll = 5) 

Each node requires a key, which assigns a bit vector to each class to enable the description 

of the data. The size of this key is approximated by IYll·Ent (l), where IYll is the number 

of classes represented in l. The keys of nodes 11 and l2 replace that of node 1 and it is this 

change that represents the cost. Furthermore, a description must be given concerning 

which of the classes are contained within each node. Here, each class can be viewed as 

having three possible states as a result of the split: 

1. Having representative examples in 11 only; 

2. Having representative examples in l2 only; 

3. Having representative examples in both II and 12. 

Therefore, there are 31Yd possible arrangements for the way in which the classes are 

distributed between the two new nodes. As the split must separate some data, neither 

node may be empty. The two arrangements which describe all of the representatives of 

all of the classes only existing within one of the nodes, must be ignored. The cost for 

describing this arrangement is then, 10g2 (3 1Y11 2). 

The partitioning of the data will only continue if splits can be found which satisfy the 

inequality, 

IXll Ie > 10g2 (IXll- 1) + 10g2 (31Yd - 2) (2.23) 

-IYli Ent (l) + IYlll Ent (11) + IY21 Ent (12), 
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where IYlll and IY121 are the number of classes represented in nodes 11 and l2 respectively. 

This method can be applied directly to decision tree pruning, however, as this method 

was developed for discretisation, there is no cost associated with describing which fea­

tures were used and where. Here, the dimensionality of the data is denoted as F and 

the subset of features that have been used in the construction of the tree is denoted as 

5. To give the key for the features which were used requires lSI ·10g2 F bits. Each split 

then requires 10g2151 bits to describe which feature was used. 

As the tree is constructed, the number of previous splits must be observed and recorded. 

If the current set of features 5, has previously resulted in d splits, then the cost of creating 

a new split using a feature within 5 is simply 10g2151. However, the cost of introducing 

a new feature must account for a new addition to the key and the changing of all of the 

node descriptions. The cost in this case is, 

log2 F + (d + 1) log2 (iSI + 1) dlog2 iSi· (2.24) 

This method enables the tree to continue partitioning the nodes, if the gain in class 

discrimination outweighs the complexity of the hypothesis. 

Figure 2.4 shows the same two dimensional example as in Figure 2.1 with a decision 

boundary formed through decision tree induction. The node impurity of this decision 

tree was measured using entropy and no pruning or stopping criterion was employed. 
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FIGURE 2.4: Example binary classification problem and induced hypothesis boundary 
through decision tree induction. 

When performing classification, the predictions of the base hypotheses can take the 

form of the class labels. Alternatively, a soft output that reflects the confidence in the 

predictions can be used. ADABoosT weights all of the outputs of a given hypothesis 

using Equation 2.8, where the weight reflects the accuracy of the hypothesis on the 

training data. However, different base learners can provide a readily available measure 

of confidence in each prediction. Such a measure can be obtained from a decision tree 
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prediction by examining the terminal node that contains the example in question. Frank 

and Witten (1998) propose the number of training examples contained within the ter­

minal node as a measure of the predictions reliability. This is reasonable as smaller 

nodes are more sensitive to variations in the data and are more likely to be found in 

areas of the space that are awkward to classify. Ho (1998b) employs the proportion of 

examples that belong to the majority class within the node and this was found (Bauer 

and Kohavi, 1999) to improve the performance of Bagging. This concept of class purity 

can also be adopted in the nearest neighbour algorithm where the proportion is taken 

over the set of nearest neighbours, Xnn . 

2.4.3 NaIve Bayes 

The naIve bayes classifier, which is also used to construct ensembles (Bauer and Kohavi, 

1999; Tsymbal et al., 2002), attempts to model the probability of the class over the 

input space. Using Bayes theorem, this can be written, 

P (YIX) = P (YIX V) = P (Y) P (Xl, ... , XpIY) 
1, ... , ./\.. P P (X X) , 

1, ... , P 
(2.25) 

where Xl, ... , Xp represent the different features of the data. The output of the classifier 

for example Xi is then given by, 

h (Xi) = arg max {P (yIXi)} . 
y 

(2.26) 

When comparing the class probabilities for a particular example, the probability of 

the data can be considered constant and ignored. The naIve bayes model makes the 

assumption that the features are independent when conditioned on the class. Two 

features, Xl and X 2 , can be considered conditionally independent if, 

(2.27) 

With this assumption and the fact that the denominator of Equation 2.25 can be ignored, 

the conditional probabilities can be written, 

p 

P (YIXl , ... , Xp) ex P (Y) II P (X1IY) . 
1=1 

(2.28) 

This independence assumption enables the probabilities of each feature to be calculated 

separately and, therefore, more efficiently. 
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2.4.4 Stability 

Breiman (1996) argues that bagging works better for unstable learners, which produce 

very different hypotheses for a small perturbation in the training data. As bagging works 

by repeatedly perturbing the training data, a large variety of hypotheses will be created. 

Decision tree methods fulfil this criteria, as changing small amounts of the training data 

can result in alternative features or split locations being chosen to partition particular 

nodes. The descendants of this split will all be affected and an entire branch of the tree 

can alter dramatically. In contrast, if a stable learner is bagged, all base hypotheses 

will be similar and no great improvement in accuracy would be achieved. The Nearest 

Neighbour algorithm is one example of a learner that is stable in this respect. As Bagging 

typically selects about ~ of the training data, the nearest example in the whole of the 

training set to any test instance would be expected to be included in ~ of the base 

hypotheses. Therefore, if the nearest neighbour algorithm is used in conjunction with 

Bagging and K = 1, the majority of the base hypotheses will concur with the result of a 

single nearest neighbour that uses all of the training data. The resultant ensemble will 

not generate a significant improvement over the single hypothesis. The output of the 

nearest neighbour algorithm is given by Equation 2.15 and is based on the set of nearest 

examples, Xnn . Bagging does not create a large improvement with nearest neighbour 

because its method of sub-sampling the data does not sufficiently alter this set. The 

naive bayes learner can also be regarded as a stable learner and has been observed to 

offer little improvement with Bagging (Bauer and Kohavi, 1999). This is because sub­

sampling of the data in this manner does not produce large changes in the estimates of 

the class distributions and, therefore, creates similar learners. 

2.5 Random Forest 

It is known that a successful ensemble is one which consists of base learners that make 

their mistakes on different parts of the data. Therefore, a good ensemble construction 

process should promote variation in the learners. Breiman (2001) exploits this concept 

with the Random Forest algorithm. This method uses Bagging to create a set of decision 

trees, but randomises the split selection process. At each node, instead of performing a 

search through all of the features for an optimal split, the search is only conducted over 

a randomly selected subset of the features. To increase the variability of these models 

further, the trees are grown as large as possible. Figure 2.5 illustrates the diversity of the 

individual trees with some examples that are produced by Random Forest on a simple 

binary classification problem in two dimensions. Upon aggregation of 100 trees, a more 

accurate hypothesis can be formed and is shown in Figure 2.6. 

Breiman tried two sizes of subset, one experiment used only a single feature to perform 

the optimal split and another used subsets of size 10g2 F + 1, where F is the total 
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FIGURE 2.5: Examples of individual base hypotheses produced by RF for binary clas­
sification. 
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FIGURE 2.6: Aggregated hypothesis over 100 trees. 
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number of features. It was noted that the procedure was not overly sensitive to the size 

of subset chosen. Due to this observation and the simplicity and interpretability of using 

a single feature, the experiments conducted here use subsets of size l. Breiman also tried 

random linear combinations of features where at each node the split is performed using 

a fixed number of features. The features are randomly weighted and summed. This 

allows different relationships in the data to be explored by not limiting the hypotheses 

to just creating hyper-rectangles in the input space. Breiman found this method to be 

marginally better than using a single feature. 

2.6 Conclusions 

This chapter has described the concept of ensemble algorithms along with three well 

established methods: Bagging, Boosting and Random Forest. Some base learning meth­

ods were examined and their suitability discussed. When generating ensemble members 

it is important to consider the space of potential hypotheses, as the members that are 

drawn from this space are required to be accurate and diverse. These quantities of ac­

curacy and diversity are crucial to the success of the ensemble and improvements can 

be gained through their promotion. The Bagging algorithm depends upon the base 



Chapter 2 Learning Ensembles 19 

learners being unstable such that the perturbation of the data results in learners with 

a high variance. Random Forest extends this idea further by adding randomisation into 

the feature selection process and enlarging the hypothesis space. By implementing this 

idea, the diversity is increased whilst maintaining a degree of accuracy in the members 

of this space. 



Chapter 3 

Ensemble Diversity 

3.1 Introduction 

Ensemble algorithms have achieved much success in machine learning through their 

ability to combine multiple weak learners to form one strong hypothesis. As discussed 

in Chapter 2, the methods for construction and combination of these learners vary, but 

the explanations for how they work centre around the concept of diversity within the 

base learners. Many algorithms have been developed to exploit this diversity and create 

more accurate ensembles. Although it is hoped that these base learners will achieve some 

level of accuracy, it is immediately apparent that there is no benefit in their combination 

if they are identical. 

This chapter reviews and motivates the need for diversity in ensemble combination and 

discusses the different ways that diversity can be viewed. Several approaches, that are 

currently employed to measure diversity, are compared and an overview of diversity 

promotion techniques is also given. 

3.2 Motivation 

When constructing an ensemble, it is advantageous to build base learners that are ac­

curate and discover useful relationships within the data. However, an ensemble is only 

useful if the discovered relationships vary in some way. As previously discussed, Breiman 

(1998) showed that the classification error of an ensemble can be decomposed into a bias 

and a variance term and that aggregation of the hypotheses can eliminate the variance 

component. This demonstrates that it is favourable if the base learners make their 

mistakes on different parts of the data, such that the majority of the ensemble is usu­

ally correct. A different way of representing the ensemble error was given by Krogh and 

Vedelsby (1995) for regression ensembles. For an ensemble that weights each hypothesis, 

20 
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ht, with a factor, at, the output is given by, 

T 

H (Xi) = L atht(Xi) ' (3.1) 
t=l 

where 

(3.2) 

They define the ambiguity, a (Xi), of an example as the mean squared difference between 

the hypothesis outputs and the combined ensemble output. 

T 

a (Xi) = L at(ht{Xi) - H (Xi))2 (3.3) 
t=l 

They then show that if Et (Xi) is the error of hypothesis ht on example Xi, the error of a 

regression ensemble is given by, 

T 

(H (Xi) - Yi)2 = L atEt (Xi) - a (Xi) . (3.4) 
t=l 

This shows that the error of a regression ensemble is given by the average error of the hy­

potheses minus the ambiguity. The ambiguity is a measure of the disagreement amongst 

the ensemble members and this, therefore, gives evidence advocating the promotion of 

this type of disagreement. 

Analysis of error and diversity can also be performed for classification problems. Turner 

and Ghosh (1996) examine the case when an ensemble consists of base learners that 

produce an output for each class, where each output approximates the conditional class 

distribution, P (YIXi). 

(3.5) 

where E¥ is the error associated with the output for class Y of hypothesis ht. 

The Bayes optimum decision is given by classifying an example Xi to class y for which, 

(3.6) 

When an ensemble of these learners are constructed, the final output is given by av­

eraging each class output over the ensemble and predicting class y for example Xi, for 

which output HY (Xi) is greatest. They show that the expected additional error of such 

an ensemble, ETTadd (H), beyond that of the Bayes optimum decision, is given by, 

(
1+ P(T-1») 

E [ETTadd (H)] = E [ETTadd (h)] T . (3.7) 

The term E [ETTadd (h)] is the expected additional error of a single hypothesis and p is 
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the correlation between classifier errors, averaged over all pairs and all outputs. If the 

errors are independent, p = 0 and the additional error is reduced by ~, the size of the 

ensemble. If the errors are completely correlated, then p = 1 and no improvement is 

gained. 

When considering ensembles of classifiers that produce a single class prediction, an 

important concept is that of the margin. The margin of an example, marg(x, y), is 

defined as the difference between the probability over the hypothesis space e, of correct 

classification and the probability of predicting the next most likely class, 

marg (x, y) = Pe (he (x) = y) - maxj=f-yPe (he (x) = j). (3.8) 

Breiman (2001) uses the law of large numbers to prove that the misclassification rate of 

an ensemble converges asymptotically to the probability over the input space of achieving 

a negative margin. 

PX,Y (H (X) -=1= Y) = PX,Y (marg (X, Y) < 0) (3.9) 

Breiman then bounds the generalisation error in terms of the strength and correlation 

of the base learners. The strength St is defined as the expectation of the margin over 

the input space, 

St = Ex,Y [marg (X, Y)]. (3.10) 

The correlation is measured between the raw margin functions, rmarg (ht, x, y), which 

can be described as the contribution that hypothesis ht gives to the margin of example 

x. The margin of example x can then be defined as the expectation of the raw margin 

function over the hypothesis space. 

marg (x, y) = Ee [rmarg (he, x, y)] (3.11) 

The generalisation error of a majority vote ensemble can then be bounded by, 

p(1-St2 ) 

PX,Y (H (X) -=1= Y) :s St2 ' (3.12) 

where p is the average correlation between the raw margin functions. This bound is only 

valid for 0 :S St :S 1. 

Although the bound is loose, it suggests that an accurate ensemble should consist of 

accurate and diverse base learners. 
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3.3 Measuring Diversity 

It is known that diversity is a useful tool in ensemble construction and some techniques 

attempt to measure this quantity, although the adopted metrics vary. Sharkey and 

Sharkey (1997) give four definitions for describing the state of the diversity of an ensem­

ble. Type I diversity exists when all of the training examples are predicted correctly by 

at least one of the base learners and there are no two classifiers which make the same 

mistake on any of the data. Type II diversity exists when there are some coincident 

errors but the majority of the ensemble is always correct. Type III occurs when there 

is always at least one member that gives the correct prediction but the majority is not 

always correct and type IV describes the case when some examples exist which none 

of the ensemble members predict correctly. Types I and II describe the ideal case as 

an ensemble will converge to a solution that correctly predicts all of the data. These 

definitions are useful when performing ensemble selection as it may be possible to select 

a subset of the learners such that a type III ensemble can be converted into a type II 

and that a type II can be converted into a type 1. However, a type IV ensemble cannot 

be considered upwardly mobile in this sense, as the examples that are misclassified by 

all hypotheses can not be classified correctly by any subset. 

Measuring the level of diversity within an ensemble can generally be achieved in two 

ways, either by some measure of correlation between the hypotheses or by some measure 

of ambiguity in the predictions of each example. This section reviews some of these 

measures that are currently employed. 

3.3.1 Correlation Measures 

This type of diversity metric analyses the level of agreement between pairs of classifiers 

and can be averaged over all of the pairs in an ensemble to produce an overall measure. 

Alternatively, it can be used to select or remove particular learners, based on their 

similarity to the rest of the ensemble. The measures of pairwise correlation vary, but 

some employ the standard correlation coefficient. This coefficient C (Vi, 112), measures 

the correlation between two variables VI and V2 , with respect to a sample of size n, as 

(3.13) 

In the analysis of Tumer and Ghosh (1996), this correlation is taken between the errors of 

the classifier outputs. Their measure of ensemble similarity is this correlation measured 

over all of the classifier pairs and over all of the classes, 

p= LPX,Y(Y=Y) (T(T1_1)tLC(Ef(X)'E~(X)))' 
yEY t=1 u=Jt 

(3.14) 
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where PX,y (Y = y) is the prior probability of class y and E¥ (..:\:') defines the vector of 

errors for output y of hypothesis ht, over the set of examples being tested, X. 

Breiman's bound on the generalisation error uses the correlation coefficient to analyse 

the agreement between the raw margin functions of classifier pairs, 

(3.15) 

where rmarg (h t , X) denotes the vector of raw margin values for hypothesis ht over the 

set of examples, X. This is then averaged over all of the pairs in the ensemble. 

(3.16) 

A simple measure of agreement between classifiers was adopted by Ho (1998b), which 

defines the correlation between two classifiers as the probability that they concur. 

(3.17) 

An estimation of this probability can be achieved, although it requires an independent 

set of data with which to test both hypotheses. This estimate can then be written as 

the proportion of examples in this set, for which the classifiers agree. 

(3.18) 

Here, xab represents the set of examples which satisfy the conditions of a and b, where 

a = 1 if hI is correct and a = 0 if it is incorrect. Similarly, b = 1 if h2 is correct and b = 0 

if it is incorrect. Margineantu and Dietterich (1997) employ the Kappa statistic which 

improves the above measure by compensating for the probability that the agreement 

occurs by chance. The probability of agreement by chance, pABC, can be written, 

The Kappa statistic, K, (hI, h 2 ), is then written, 

(3.20) 

A pairwise correlation measure favoured by Kuncheva and Whitaker (2001) is the Q 

statistic, which measures the correlation between two classifiers hI and h2 . This measure 

assumes a value in the range [-1, +1] and equals 0 if the errors of the hypotheses are 

independent. This measure is favourable as these values do not depend on the accuracy 
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of the base learners. 

(3.21 ) 

Another correlation measure is implemented by Goebel and Yan (2004), where the cor­

relation is calculated with respect to the number of coincident errors. 

2/XOO/ 
p (hI, h2 ) = IXlOl + IX01 I + 21Xool (3.22) 

Instead of averaging these pairwise quantities, this measure is extended to T classifiers 

so that the correlation of the entire ensemble can be observed. 

(3.23) 

where /Xo/ represents the number of examples that are misclassified by all of the ensem­

ble members and /X 1 / represents the number of examples that are classified correctly 

by all of the ensemble members. 

Correlation can also be measured between a hypothesis and the output of the rest of the 

ensemble (Zenobi and Cunningham, 2001; Opitz, 1999) and this has been termed the 

ambiguity of a classifier, 

1 N 

A (hT+1) = N L I (hT+1 (Xi) of H (Xi)). (3.24) 
i=l 

This can be useful when employing an ensemble selection strategy, as this measure 

reflects the impact that hypothesis hT+1 has on the diversity of the current ensemble. 

For binary classification where the possible class labels are {+ 1, -I}, this can also be 

written, 

(3.25) 

3.3.2 Example-Based Measures 

Another view of diversity concerns the ambiguity in the predictions of individual data 

points. By measuring the proportions of the votes for an example, a measure of diversity 

can be constructed and this can be averaged over all of the data. The diversity of an 

example is greatest when equal votes are given for each class. For regression ensembles, 

Krogh and Vedelsby (1995) describe the ambiguity of an example as in Equation 3.3. 

This quantity measures the variance in the predictions of the example in question and 

is implemented by Oliveira et al. (2003). This principle is also adopted by Cunningham 

and Carney (2000) for classification problems. They define the ambiguity of an example 
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as the entropy of the class predictions, 

(3.26) 

A different measure of diversity is given by Kuncheva and Whitaker (2001), which they 

also call a type of entropy. For binary classification, their entropy, aEnLb, of an example 

x is given by the number of votes awarded to the minority class in relation to the number 

that would yield the maximum disagreement, l ~ J . 

(3.27) 

This can also be written, 

(3.28) 

The quantity, 

(3.29) 

can be viewed as a measure of confidence in the ensemble prediction and can be seen to 

be inversely related to aEnLb(X), Therefore, it is important to note that an ambiguous 

or diverse example is one which has not been classified with a large degree of confidence. 

Care must then be taken with algorithms that explicitly attempt to promote this type 

of diversity as they can also reduce the confidence in the model. For this reason, it 

is favourable to employ a correlation-based measure to examine the level of diversity 

within an ensemble. 

3.4 Diversity Promotion 

Ensemble diversity can be promoted in a variety of ways and this section overviews 

some of the techniques that are currently used to achieve this. Here, the methods 

are categorised by the way that they manipulate the learning technique. They can be 

classified as manipulating the data, the features or the learning algorithm itself. 

3.4.1 Data Manipulation 

Some algorithms alter the training examples that are used to construct each learner. 

Bagging is an example of this, as each learner is trained with a sub-sampled set of the 

original training data. As previously discussed, Bagging is useful if the base learning 
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algorithm is unstable, such that small perturbations in the training data cause large 

changes in the induced hypothesis. Bagging will fail to promote the necessary level of 

diversity if a stable learner is used. It has been observed that Bagging is more useful 

than Boosting for small sample sizes (Skurichina et al., 2002) and the explanation for 

this is given by the effect that sample size has on the diversity of the ensemble. For 

smaller sample sizes the effect of perturbing the training data on the induced hypothesis 

will be much greater. The improvement created by Bagging is less significant for larger 

sample sizes as the bagged sets of training data will be similar and result in an ensemble 

with low diversity. Skurichina et al. (2002) suggests that Boosting methods, such as 

ADABooST (Freund and Schapire, 1999) and ARC-x4 (Breiman, 1998), promote diversity 

by focussing the algorithm on the class boundaries. Unlike Bagging, the manipulation 

of the data is not performed randomly with Boosting. The distribution over the data 

is updated in such a way as to award higher weights to the examples which are hard 

to classify. As discussed in Section 3.3.2, diversity is sometimes measured with respect 

to example ambiguity and an ambiguous example can be considered hard to classify as 

the ensemble members disagree about how it should be labelled. Boosting can then be 

viewed as promoting diversity by focussing the algorithm on the ambiguous examples. 

The DECORATE algorithm (Melville and Mooney, 2003) introduces artificial training 

examples in order to promote diversity within an ensemble. They achieve this by drawing 

examples from an estimate of the data distribution and labelling them in a way that 

contradicts the current ensemble. The artificial data deliberately misleads the learning 

algorithm to create an ensemble with high diversity. The amount of artificial data to 

create for each learner is a parameter of the algorithm. If the amount of additional 

data is too small, then an insufficient level of diversity will be created. However, too 

much additional data will have a detrimental effect on the accuracy of the hypotheses 

and make them too unreliable. They empirically found that creating as many artificial 

training examples as there were in the original training data produced good results. 

Although these artificial examples mislead the base learners through contradicting the 

general trend of the data, they should not mislead the ensemble, as they are created 

randomly at each iteration and are not consistently present in the same areas of the 

input space for all of the learners. 

3.4.2 Feature Manipulation 

Altering the set of examples that are presented to each learner or their relative measures 

of importance are not the only methods for creating variation in the base learners. The 

set of features used to represent the data can also be manipulated. In the same way 

that ADABoosT produces diverse learners by forcing them to consider difficult examples, 

the FEATUREBooST algorithm (O'Sullivan et al., 2000) increases diversity by focussing 

on less descriptive features. The algorithm maintains a weighted distribution over the 
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features, which represents their relevance to the current learner. At each iteration a set 

of features is removed, according to this distribution, to force the subsequent learner 

to explore the discriminative power of features that were not utilised by the previous 

hypothesis. The method calculates the minimum value, pmin, such that if pmin features 

are corrupted, the error of the current learner is expected to be sufficiently increased. 

pmin features are then removed according to the distribution and the reduced feature 

set is used to construct the next hypothesis. 

The Random Subspace Method (Ho, 1998a) trains each base learner on a randomly 

sampled subset of the features and uses this to introduce a measure of randomness to 

the ensemble construction. Tsymbal et al. (2002) noted that if this approach is employed 

with the naIve bayes base learners that were described in Section 2.4, the probabilities 

for each feature only need to be calculated once. This is because all of the learners 

are trained on the same set of data and the learner simply selects the probabilities 

that are relevant for the given feature subset. However, if these learners are used in 

conjunction with data manipulation algorithms such as Bagging, the probabilities must 

be re-calculated for each learner. Bay (1999) showed that the random subspace method 

introduced enough diversity into the base hypotheses to enable Bagging to improve 

classification accuracy of nearest neighbour algorithms. The diversity that is introduced 

into a nearest neighbour ensemble comes from the variation that occurs in the distance 

measure between the examples. This distance measure, given in Equation 2.14, becomes, 

D (Xi, Xj) = L (Xi (1) - Xj (1))2 , 
jES 

(3.30) 

where the summation is now taken over the random feature subset S. This has a much 

greater capacity for variation in the set of nearest neighbours, Xnn , than the data sub­

sampling of Bagging alone. 

A variant of this technique is implemented by Bryll et al. (2003), where the size of the 

feature subsets is fixed. The algorithm first conducts trials on the data to establish a 

suitable subset size. Small subset sizes result in inaccurate but diverse learners, whilst 

larger subset sizes create learners that are accurate but more correlated. Ho (2002) 

compared ensembles constructed using Bagging to ones that employed random subspace 

on several data sets for which different complexity measures are also calculated. It was 

found that the random subspace method performed more favourably for problems where 

the training set is large compared to the dimensionality. A measure of the non-linearity 

of the class boundary was also calculated by training a nearest neighbour classifier on the 

data set and testing it on artificially generated examples. These examples are created 

through an approximation of the convex hull of each class. A high error rate on these 

examples indicates a larger degree of non-linearity of the class boundary. Ho found 

that the random subspace method was less favourable than Bagging for data sets that 

exhibited a large degree of this non-linearity. A possible explanation for this is that 
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these data sets have a more complex structure and, as random subspace discards some 

features for each learner, a suitable hypothesis becomes difficult to generate and the 

base learners become too unreliable. 

The randomisation technique of Dietterich (2000) constructs an ensemble of decision 

trees where instead of choosing the best possible split at each node, the best twenty 

splits are found and one is chosen randomly from this set. This simple method reduces 

the correlation between the trees and was empirically shown to be competitive with Bag­

ging and ADABoosT. The Random Forest algorithm (Breiman, 2001) also introduces 

diversity by randomising the split selection of decision trees, but uses the random sub­

space method to select a random subset at each node and finds the best split available 

from that set. 

Randomly reducing the set of features for each learner reduces the similarity and correla­

tion between learners at the cost of also reducing their accuracy. Oza and Tumer (2001) 

utilise feature subspaces to generate diverse but accurate learners for multi-class classi­

fication. Their method constructs a set of learners, where each learner is a specialist for 

each class. The specialisation is gained through selecting the subset of features that are 

most correlated to that particular class. The intuition behind this method is that the 

diversity of the resultant ensemble is gained through training each learner on different 

feature subsets, but the accuracy is maintained through selecting useful subsets. 

3.4.3 Algorithm Manipulation 

A variety of hypotheses can be induced from different learning algorithms and the suit­

ability of each is dependent upon the learning problem. Furthermore, different learning 

biases may be more appropriate in different areas of the input space of a particular prob­

lem. Brodley (1995) attempts to uncover this variation with the Model Class Selection 

algorithm, which selects the best from a set of algorithms to partition the space in a tree 

structured manner. The method has the capacity to utilise the biases of decision trees, 

nearest neighbour and linear discriminant functions to construct a composite hypothesis 

which can achieve a performance that is better than any of the individual algorithms. 

When constructing an ensemble, the variation in learning bias can be exploited to pro­

duce diverse hypotheses. Caruana et al. (2004) adopts this method by employing many 

different learning algorithms including K Nearest Neighbour, Decision Trees, Decision 

Stumps and Support Vector Machines (SVM). These diverse learners are then combined 

through an ensemble selection strategy. Tsoumakas et al. (2004) also constructs a set 

of learners using different learning algorithms and uses a statistical test to identify a 

subset of these learners, which are significantly the most accurate. As an example of the 

difference between learning biases, Figure 3.1 illustrates the two dimensional example 

that was given in Chapter 2 as well as the induced hypotheses of a nearest neighbour 
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and a decision tree. Both hypotheses fit the data perfectly but the shaded areas show 

where the two learners disagree. 

0.2 8 
0.1 
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FIGURE 3.1: Binary classification example showing the disagreement between a nearest 
neighbour classifier and a decision tree. 

For some learning algorithms, a set of diverse learners can be created by varying the 

model parameters. The method of Caruana et al. (2004) constructs several SVM's 

using various choices of kernel function and cost parameter. Robnik-Sikonja (2004) 

create further decorrelation between the classifiers of the Random Forest algorithm by 

varying the choice of node split criterion. The split procedure is randomised further by 

Cutler and Zhao (2001) in the construction of PERT (PErfect Random Trees). At each 

node, the split is performed by randomly choosing two examples from different classes 

and choosing a random point between them along a random feature. Geurts et al. 

(2006) also randomise the split value at each node, but draw the value randomly from a 

uniform distribution along the range of the feature. The size of the feature subset, that 

is randomly selected and searched at each node, is an input parameter of the technique 

and controls the strength of the trees. In the extreme case of selecting a single feature, 

the trees are totally randomised and are independent of the target. The large random 

element involved in these node split selection schemes result in trees which are larger 

and less accurate than those obtained with random forest. However, due to the high 

level of diversity between the base learners, the ensembles that are generated by these 

methods are shown to be competitive with a random forest. 

Other algorithms employ some of the above techniques to generate a large number of 

different hypotheses and then adopt a selection strategy to exploit this variation. The 

method of Opitz (1999) explicitly measures the accuracy and diversity of the learners and 

selects a subset which maximises these quantities. Other methods attempt to generate 

an accurate set of learners and select a diverse group from this set (Cunningham and 

Carney, 2000; Oliveira et al., 2003). Margineantu and Dietterich (1997) regards each 

pair of learners as a point in a 2-dimensional space which is defined by their average 

accuracy and pairwise correlation. This method then selects all of the learner pairs that 
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form the convex hull in this space. 

3.5 Conclusions 

This chapter has reviewed some theoretical results justifying the importance of diversity 

in ensemble construction. The definition of this diversity varies, but can be categorised as 

correlation-based or example-based. Correlation-based methods quantify the similarity 

between the predictions of pairs of learners, whereas example-based methods utilise 

a measure of ambiguity in the predictions of individual examples. Correlation-based 

methods are favourable for examining the level of diversity within an ensemble because 

example-based measures are inversely related to the ensemble confidence. However, 

the example ambiguity is a useful concept when considering the mechanics of diversity 

promotion. 

An overview of diversity promotion techniques has been given and these have been 

grouped according to their subject of manipulation. These methods can be viewed as 

altering the hypothesis space from which the learners are drawn. Compared to other 

techniques, Bagging produces accurate but quite correlated learners, therefore, drawing 

learners from a small hypothesis space. Boosting methods can also employ accurate 

learners but alter the distribution of the hypothesis space through focussing the learners 

on awkward problems. The Random Forest algorithm randomises feature selection to 

produce a much larger and more diverse hypothesis space, which contains learners that 

are less accurate on average. In order to optimise the accuracy and diversity of the 

base learners, diversity promotion should be conducted in a way that maintains learner 

accuracy. 

Chapter 4 will introduce new methods for diversity promotion and motivates these 

approaches in terms of their methods of manipulating and exploiting the data, the 

features or the base learning algorithm. 



Chapter 4 

Robust Promotion of Diversity 

4.1 Introduction 

Chapter 3 reviewed and discussed several approaches for promoting diversity within an 

ensemble, as well as motivating the concept through previous theoretical results. As 

previously discussed, Boosting is a type of algorithm that can be viewed as introduc­

ing diversity by concentrating the learners on more difficult examples. A method is 

introduced here, that focusses learners on ambiguous or diverse examples rather than 

commonly misclassified ones. The advantages of this algorithm are discussed in the 

context of outlier detection and separate-and-conquer techniques. 

Diversity can also be promoted through manipulation of the feature space and Chapter 3 

reviewed several examples of this. A new method is given which alters the feature 

representation of the data to exploit the bias of the base learning algorithm and generate 

further ensemble diversity. 

4.2 Data Manipulation 

The ADABOOST algorithm, described in Chapter 2, alters the relative importance of the 

training examples such that the subsequent base learners concentrate more on the com­

monly misclassified examples. Skurichina et al. (2002) suggests that Boosting promotes 

diversity in the ensemble by concentrating on the examples that lie in the regions of class 

boundaries. This idea also offers an explanation for why boosting algorithms perform 

well with stable base learners such as decision stumps. Due to the nature of ADABOOST 

focusing on commonly misclassified examples, it has been observed (Dietterich, 2000; 

Bauer and Kohavi, 1999) that it can be intolerant to noise. 

32 
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The objective of ADA BOOST is to minimise Zt, which can be written as, 

(4.1) 

This loss function increases exponentially for negative values of 

(4.2) 

and is of key importance when considering the problems faced by ADABOOST in the 

presence of outliers. An outlier is an example which is expected to be misclassified by a 

learning algorithm as its presence is contrary to the general trend of the data. Outliers 

then give large negative values for the above quantity, which can result in a dominating 

effect on the solution. A variation of ADABOOST called LOGlTBoOST (Friedman et al., 

1998) implements a cost function which only increases linearly for negative values of 

the above quantity and is shown to be more robust to the presence of noise. Figure 4.1 

shows a two dimensional classification problem, with the region of the class boundary 

illustrated by the dashed lines. Two outliers are also shown and these examples can be 

seen to contradict the data and lie away from the class boundary. It is reasonable to 

expect outliers to be misclassified by a large majority of the base learners and because of 

this, outliers should not be viewed as ambiguous examples as they do not lie in the regions 

of class boundaries. This then poses the question of whether these type of algorithms 

should actively concentrate on commonly misclassified examples or ambiguous ones. 
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FIGURE 4.1: Two dimensional binary classification problem with dashed lines indicat­
ing the approximate class boundary. Two outliers are also shown at (0.25,0.75) and 

(0.75,0.25). 
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4.2.1 Outlier Identification 

The presence of outliers in data causes several problems for machine learning tasks. 

They can be defined as examples which contradict the general trend of the data and can 

mislead learning algorithms. This can result in a reduced generalisation ability or an 

increase in computational load. Therefore, the elimination of these outliers is beneficial 

and many methods have been developed to achieve this. It is important to note that 

due to the different biases imposed by learning algorithms, the effects of outliers vary 

between them and what may be considered an outlier by one method may not be for 

another. 

One approach to outlier identification is to construct a model that describes the data 

well and search for the examples which contradict this model. John (1995) uses this 

approach in the construction of ROBUST-C4.5 decision trees. It is well known that 

pruning a decision tree can result in a model which gives better generalisation than one 

that has been expanded fully and classifies the training data perfectly. Consequently, 

pruned decision trees misclassify part of the training data which is judged to be uninfor­

mative. This philosophy can be extended to hypothesising that if these examples can be 

considered locally uninformative within a leaf of the tree, then they can be considered 

globally uninformative. In this case, the examples may have misled the algorithm at 

previous stages, where their presence may have caused a node higher up the tree to be 

split differently. In order to cope with this, the algorithm of John (1995) repeatedly 

builds and prunes decision trees and at each iteration removes the examples that are 

misclassified. The technique continues until all of the examples are classified correctly, 

and the resultant models are typically more accurate and concise. 

Outliers can also be identified through ensemble techniques and two such methods have 

been introduced by Brodley and Friedl (1999). As with ROBUST-C4.5, a model is 

created and the examples which are misclassified by this model are labelled as outliers. 

\Vith an ensemble, an example is misclassified if the majority of the learners predict the 

wrong class and this form of outlier identification is termed majority filtering. A similar 

method labels examples as outliers if they have been misclassified by all of the learners 

and this is termed consensus filtering. The algorithm proposed by Brodley and Friedl 

(1999) and adopted by Berthelsen and Megyesi (2000) constructs the learners using 

different learning algorithms in an attempt to identify outliers which are independent 

of the implemented algorithm. Verbaeten and Assche (2003) adopted consensus and 

majority filtering but constructed diverse learners by perturbing the training data with 

Bagging and cross-validation committees. 

The choice between consensus and majority filtering is an unresolved issue and appears 

to be data dependent. Consensus filtering is clearly more conservative at removing data 

and is therefore prone to leaving outliers in the data. In contrast, majority filtering 

removes more data but can suffer from removing some good examples and hindering the 
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learning process with a reduced set of training data. It is apparent that these methods 

can be generalised such that example Xi is designated as an outlier if it is misclassified 

by at least To of the learners. 

Where I is the indicator function, example Xi is an outlier if, 

T 

L I (ht(Xi) =1= Yi) ? To. (4.3) 
t=l 

Consensus and majority filtering are then equivalent to Equation 4.3 with To = T and 

To = ~ respectively. This can also be written as, 

T 

Yi L ht (Xi) :S T - 2To . (4.4) 
t=l 

To can then be viewed as a model selection parameter and optimised accordingly. The 

absolute value of the left hand side of Equation 4.4 is equivalent to the ensemble confi­

dence, H, given in Equation 3.29. Therefore, these methods show that outlier detection 

can be performed by identifying examples that are classified with a high degree of con­

fidence, but also incorrectly. Equation 4.4 indicates that an example is more likely to 

be an outlier, the lower the value of, 

T 

Yi L ht (Xi)' (4.5) 
t=l 

From Equation 4.2 it can be seen that ADA BOOST assigns larger weights to examples 

which exhibit low values of, 
T 

Yi L Cl:tht (Xi) , (4.6) 
t=l 

which indicates why ADABOOST can suffer with the presence of outliers. 

4.2.2 Separate and Conquer 

The separate-and-conquer covering strategy (Furnkranz, 1999) is used to describe a class 

of algorithms which recursively discover rules to explain part of the training data and 

then remove the examples that are covered by this rule. Typically, at each stage a rule 

is chosen that is judged in some way as being the most powerful. By removing the 

examples that are covered, the technique can be viewed as repeatedly focussing on the 

more difficult areas of the input space. Frank and Witten (1998) adopt this philosophy 

in the construction of partial decision trees. This technique effectively chooses the leaf of 

a pruned decision tree which contains the largest number of examples. The largest leaf 

is deemed to be the most general rule and the data that it covers is removed from the 
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training data and another tree is created. Although all of the rules are kept for classifying 

new data, the method contains similarities to the previously discussed outlier detection 

algorithms. The largest node is chosen as the most general rule and the examples that 

it covers are removed, including the examples that the rule misclassified. In this sense, 

the misclassified examples can be viewed as outliers in the methodology of John (1995). 

Other methods exist for establishing the most general rule and Ferri et al. (2004) achieves 

this by introducing the concept of a 'Cautious Classifier'. This type of classifier covers 

the examples which it classifies with high confidence. In this sense, any soft classifier 

or classifier which provides an associated measure of confidence in the prediction can 

be converted into a cautious classifier. This can be achieved by setting a confidence 

threshold " such that an example is covered if it is classified with confidence at least ,. 

Ferri et al. (2004) selects a value for, using global absolute percentage, which ensures 

that each classifier covers at least a fixed proportion p, of the data. This is formulated 

as, 

(4.7) 

where h (xd is the associated confidence or real-valued output of classifier h on example 

A variation of this idea was developed by Khoussainov et al. (2005) in the design of 

TRISKEL, where pairs of classifiers are produced. Each of these classifiers is biased to 

predicting one of the classes, so that one classifier has high precision on the positive 

examples and the other has high precision on the negative examples. The examples for 

which the two hypotheses classify in agreement are deemed to be classified confidently 

and hence covered. These are removed and the remaining ones are used to train a third, 

unbiased, classifier. Alternatively, an iterative approach can be used where a further 

two biased classifiers are constructed and the algorithm repeats. The assumption can 

be made that when the negatively biased classifier predicts an example as positive, the 

positively biased classifier does the same and vice versa. In this case, the classifiers are 

always in agreement when predicting the examples that dictate the positive precision 

of the negatively biased classifier and the negative precision of the positively biased 

classifier. As these examples are covered by this agreement, these two precision values 

give lower bounds on the precision values for the total ensemble. 

The separate-and-conquer methodology can then be summarised as removing the exam­

ples that are classified confidently and concentrating on the more difficult areas of the 

space. These difficult areas can be defined as the ambiguous examples within an ensem­

ble, such as the diversity measures described in Section 3.3.2. Some outlier detection 

techniques take a similar approach by labelling examples as outliers if a hypothesis clas-
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sifies them confidently and incorrectly. The confidence in the TRISKEL algorithm can 

be defined as the agreement between two classifiers, whereas the confidence in the con­

sensus and majority filtering approaches can be defined as the level of agreement within 

an ensemble. Therefore, separate-and-conquer techniques can be viewed as containing 

an implicit form of outlier detection. The ADABOOST algorithm also concentrates on 

the difficult areas of the space, but defines these areas as ones which are commonly 

mis-classified. ADABOOST will then assign large weights to the examples which are mis­

classified by the majority of the ensemble. These examples can be seen as being classified 

confidently but incorrectly and would be removed by the outlier detection techniques 

and ignored by the separate-and-conquer techniques. Khoussainov et al. (2005) sug­

gests a link between boosting and separate-and-conquer by altering their approach to 

adjusting the weights of the examples instead of removing them. 

4.2.3 Boosting Diversity 

The previous sections have illustrated the problems faced by ADABOOST when outliers 

are present and how an ensemble can be used to detect these outliers. These tech­

niques were also compared to the separate-and-conquer methodology which focusses the 

algorithm on ambiguous examples. Example ambiguity can be defined as the level of 

disagreement between the votes of an ensemble, such as the diversity measures described 

in Section 3.3.2. This section explores the concept of a boosting style algorithm that 

focuses on ambiguous examples, rather than those that are commonly misclassified. 

To minimise the training error of a binary classification problem, the distribution over the 

data, Wt, should be chosen to alter the hypothesis distribution, e, such that the number 

of examples with probability of correct classification greater than 0.5 is maximised. 

These examples are expected to be classified correctly by a majority vote ensemble and 

this can be written, 

max {t I [Pe (he (Xi) = Yi) > 0.5]} . 
Wt 

i=l 

(4.8) 

This maximises the number of examples for which the probability of correct classification 

is greater than 0.5. This should minimise the training error as examples which fulfill 

this criteria are expected to be classified correctly by an aggregated ensemble. 

The distribution, Wt, can be applied to the base learners within boosting methods 

through resampling of the data (Drucker and Cortes, 1996). This technique trains each 

learner on a subset of the data, which is formed through sampling N examples with 

replacement from the data of size N. However, the sampling probabilities are generated 

according to the values of Wt. In this case, the probability of correct classification can be 

decomposed into two terms which are defined by whether or not the example in question 

was included in the sampled subset. This subset can be referred to as the bagged subset 
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for hypothesis ht and is denoted as X t
BAG . These probabilities can be written as, 

(4.9) 

and 

(4.10) 

The probabilities are dependent upon Wt as this distribution affects the distribution over 

the hypothesis space, e. The probability of example Xi being included in the bagged 

subset is, 

(4.11) 

and the probability of not being included is, 

(4.12) 

The probability of correct classification can then be written, 

Assuming that H (Xi; Wt) > P2 (Xi; Wt), Equation 4.8 can be written, 

(4.14) 

The inequality for each example is dependent upon Wt and on the probabilities, PI (Xi; Wt) 

and P2 (Xi; Wt), which are determined by the distribution over the hypothesis space, e. 
It can be seen that to reduce the required value of Wt (Xi), the values of PI (Xi; Wt) and 

P2 (Xi; Wt) should minimise, 

(4.15) 

As the derivative of this is, 

[) {0.5 - P2 (Xi; Wt)} 0.5 - PI (Xi; Wt) 
[) [P2 (Xi; Wt)] H (Xi; Wt) - P2 (Xi; Wt) - (PI (Xi; Wt) - P2 (Xi; Wt))2' 

(4.16) 

and assuming that PI (Xi; Wt) > 0.5, the required value of Wt (Xi) is smaller for larger 

values of PI (Xi; Wt) and P2 (Xi; Wt). This is intuitively correct as less focus needs to 

be given to examples which are easier to classify. As P2 (Xi; Wt) is the probability of 

correct classification when the example is not included in the training set, the value 

of P2 (Xi; Wt) represents the generalisation ability of the learners on that example. If 

P2 (Xi; Wt) > 0.5, then the example is expected to be classified correctly and a weight of 

zero for this example is sufficient. 
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From Equation 4.14 it can be seen that it is advantageous to increase the weights of each 

example so that the inequality is true for as many examples as possible. However, it can 

also be seen from the left hand side of the inequality that the sum of all of the weights 

should be minimised, which indicates that weights should not be larger than they need 

to be. Therefore, the weights assigned to each example should be chosen according to 

their values of PI (Xi; Wt) and P2 (Xi; Wt). Also, examples which are especially awkward 

to classify may require an exceptionally large value of Wt (Xi). This may not be feasible 

as the required value may increase the total of the weight vector to such an extent 

that it prevents the correct classification of other examples. These examples can be 

considered outliers and it is better to assign them very small values and accept that 

they will be misclassified. Therefore, a suitable weighting scheme should assign higher 

weights to examples which are harder to classify and have low values of H (Xi; Wt) 

and P2 (Xi; Wt), but should assign low weights to examples with extremely low values 

for these probabilities. The method proposed here is to implement a boosting style 

algorithm, which gives higher weights to more ambiguous examples rather than ones 

that are commonly misclassified. This should promote the correct type of diversity by 

improving the performance on awkward examples without being misled by outliers. 

The relative weight given to example Xi by the ADABoosT algorithm at iteration T + 1 

is, 

WT+1(Xi) = ~ exp (-Yi t atht(Xi)) . 
t=1 

(4.17) 

If this measure was replaced by one based upon ambiguity rather than common misclas-

sification, one possible candidate would be to remove the influence of the class, Yi, from 

Equation 4.17, 

(4.18) 

This would then relate the weighting to the confidence estimate H(Xi), given by Equa­

tion 3.29. Other explicit measures of example-based diversity could also be used such 

as entropy, discussed in Chapter 3. However, the entropy of examples would equal zero 

if all of the hypotheses were in agreement which would be undesirable as a weighting 

coefficient. Also, the diversity measure needs to account for the number of predictions 

that have been made. Measures that are based purely on the proportions of class predic­

tions would be very unreliable in the initial stages of the algorithm. A suitable quantity 

for weighting the examples should not only measure their degree of ambiguity, but also 

account for the reliability of this information. 

An approach that was introduced by Freund (1995) weights the examples according to, 

) 
ffl-t-1+H:(xi) 

T , (4.19) 
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where Hi (Xi) symbolises the number of correct votes for example Xi in the current 

ensemble of size t, 
t 

Hi (Xi) = L I (hi' (Xi) = Yi) . (4.20) 
t'=l 

The method fixes the ensemble size prior to construction and makes the assumption 

that the learner errors do not exceed ~ - T. The weighting scheme then represents the 

probability that at the final iteration, example Xi requires exactly 1 more correct vote. 

The weighting for the final iteration is uniform for all such examples and zero otherwise. 

Examples will receive a weight of zero if the number of correct and incorrect votes is 

such that it is impossible for the ensemble decision to change. 

The following describes a measure that is based on the likelihood of example ambiguity 

(Rogers and Gunn, 2007). For binary classification, and under the assumption that 

the base hypotheses are generated independently, the predictions of the hypotheses can 

be viewed as being generated from a binomial distribution, with probability of correct 

classification given by, 

T ( ) 
t T t T P(H(x)=y)= L (Pe(he(x)=y)) (l- Pe(he (x)=y)) - . 

~~ t 
(4.21) 

A measure of confidence in the predictions of a majority vote ensemble is the observed 

estimate of the margin, 

1 T 
margest (Xi, Yi) = T LYiht (Xi) . 

t=l 

( 4.22) 

The significance of this measure is dependent on the proportions of correct and incorrect 

predictions and on the size of the ensemble, T. For a more interpretable measure, a 

sign test can be performed. Given T predictions, the sign of the estimate of the margin 

represents the ensemble prediction. It is then possible to calculate a measure of likelihood 

that the true margin contradicts the observed value. The null hypothesis can be set up 

to represent this case, 

(4.23) 

The maximum likelihood estimate of Pe (he (Xi) = yd within the null hypothesis is given 

by 0.5. Given an example Xi, with a positive observed margin and Hi correct predic­

tions, the likelihood of the null hypothesis is, 

( 4.24) 

A similar quantity can be expressed for an example with a negative observed margin. 
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In this second case, the quantity would represent the likelihood that the true margin is 

positive. An example for which this likelihood is negligible can be considered an outlier. 

The general measure adopted here is the likelihood that the true margin is zero and that 

the observations have occurred by chance. As these weights are normalised to form a 

distribution, the multiplication by the constant 0.5T can be ignored. 

min{Hj,T-Hj} 

WT+1 (Xi) = L [Pe (he (Xi) = Yi) = 0.5] = L 
t=O 

( 4.25) 

Examples for which this quantity is small can be considered as having a significant de­

gree of confidence in their predictions. This can then be used to implement a separate­

and-conquer strategy by setting a threshold on this quantity and removing examples 

accordingly. Alternatively, a boosting style approach can be implemented which weights 

the examples by this quantity and therefore, emphasises the more ambiguous examples. 

If the examples are weighted by this measure, then the assumption that the learners are 

generated independently is violated. The learners are drawn from different hypothesis 

distributions, according to the distribution Wt. However, this method makes the as­

sumption that there is one single hypothesis distribution from which all of the learners 

are drawn. As a measure for examining the relative ambiguity in the predictions of the 

examples, this is a reasonable approximation. 

As the algorithm proceeds, the size of the ensemble, T, increases and the difference 

between the potential maximum weight and potential minimum weight will also become 

larger. Therefore, it is possible that the weights of the ambiguous examples will con­

tinue to increase and dominate the distribution, which could result in the algorithm 

overfitting. However, this is not expected to occur as the method should control the 

weights in the following manner. If the weight assigned to example Xi increases, the 

probability of correct classification of the example also increases. As before, this is as­

suming that PI (Xi) > P2 (Xi)' Therefore, the expected number of correct predictions 

will also increase, which will reduce the ambiguity of the example and result in a lower 

relative value of Wt (Xi)' Conversely, as the weight assigned to example Xi decreases, the 

probability of correct classification also decreases. If example Xi was initially classified 

confidently and correctly, then the reduction in Wt (Xi) will result in a lower number 

of correct predictions. This will increase the ambiguity of the example and result in a 

larger value of Wt (xd. However, if the example was initially predicted confidently and 

incorrectly, the lower value of Wt (Xi) will result in even fewer correct predictions. This 

will further decrease the ambiguity of example Xi and result in an increasingly lower 

weight. Therefore, the weights assigned to the examples that are considered outliers 

will continue to decrease as the algorithm progresses, whilst the weights assigned to the 

remaining examples are not expected to dominate the distribution. 
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Another consideration is the choice of base learner. In order to effectively measure 

the ambiguity, it is important that the base learners do not overfit. The ambiguity is 

measured on the predictions of the training data and, as this is used to train the learners, 

a bias is introduced. Outliers are expected to be misclassified by the learners most of 

the time, but if the learners overfit, they may often be classified correctly. Therefore, 

the requirement that the learners do not overfit is necessary in order to minimise the 

bias that is imposed on the estimates of the margin for each example in the training 

data. This requirement can be avoided if an unbiased estimate of the margin can be 

found. When using Bagging to form the training set for each learner, such an estimate 

is available through the out-of-bag data. The training examples can be tested on all 

of the learners for which they were not used to train. However, when comparing the 

relative ambiguity of examples, this method is unsuitable as each example will be in the 

out-of-bag set for only a subset of the learners. The size of the subset will vary between 

examples and introduce a bias on the quantity of Equation 4.25. 

The quantity used to weight each of the examples is given by Equation 4.25, but a 

simpler and more cautious measure would be to use the binomial coefficient, 

(4.26) 

The methods of updating w according to Equations 4.25 and 4.26 are referred to as 

DrvBoosT WI and DrvBoosT W2 respectively, and the following pseudo-code describes 

these methods. 

Interestingly, this method can be viewed as performing the opposite operation as that of 

the DECORATE algorithm (Melville and Mooney, 2003), described in Chapter 3. Their 

technique adds artificial outliers into the data to promote diversity, but these are gen­

erated for each learner. Therefore, the artificial data does not result in ensembles that 

make consistent mistakes. The DrVBOOST methods promote diversity in a different way 

and avoid the consistent mistakes that are associated with outliers that exist in the input 

data. 

4.3 Feature Manipulation 

Ensemble diversity can be promoted through utilising different learning algorithms and 

exploiting the variation in their learning biases. This section explores the bias that is 

imposed by decision tree methods and highlights the possible problems that this bias 

creates. A new method is then introduced that exploits this bias to promote diversity 

by manipulating the feature space. 
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Algorithm 1: Divboost 

Input 

Initialise 

Algorithm 

Output 

Training Data X, Y = (Xl, Yl), ... , (XN, YN) 
Test Data XI = x~, ... , xM 

wI( Xl, ... , X N) = (iT,···, ~ ) 
H+ (Xl, ... , XN) = (0, ... , 0) 
Number of Learners e.g. T = 100 

For t = 1 to T 
X BAG = Sample N examples from X, Y using Wt 
Train ht using X BAG 

Classify X using ht 

H+ (Xi) = H+ (Xi) + 1 Vi: ht (Xi) = Yi 
If Using Divboost WI 

() 
,\,illin{ H+(Xi),T-H+(Xi)} 

WHI Xi = 6j=0 

Else If Using Divboost W2 
( ~ ) 

Wt+! (Xi) = ( H/(Xi) ) i = 1 to N 

end. 

Normalise wH 1 

Classify XI using ht 

H (xD = sgn (2:[=1 ht (xD) : i = 1 to M 

Test Data Predictions H (x~, ... , x'rvI) 

4.3.1 The Decision Tree Bias 
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i = 1 to N 

Typically, decision trees are constructed by recursive partitioning using single features. 

Only considering single features reduces the search space that is traversed by the tree 

induction process, making their construction simpler and quicker. This is particularly 

advantageous for ensemble algorithms where multiple trees are required. However, the 

resultant hypotheses then consist of sets of axis-parallel partitions, which bias the clas­

sification of areas of the space. Figure 4.2 illustrates a binary classification problem and 

two possible decision tree hypotheses. It should be noted that the problem can be solved 

by simply placing limits on the features such that the hypothesis becomes, 

h (x) = +1 

h (x) = +1 

h(x) =-1 

X (1) < 0.25 or X (1) > 0.75 

X (2) < 0.25 or X (2) > 0.75 

otherwise 

( 4.27) 

Due to the rotational symmetry of the problem, these trees are equally likely to be 

produced. Figure 4.3 shows the areas where the two trees agree (white) and disagree 
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FIGURE 4.2: Binary classification example with two possible decision tree hypotheses. 

(shaded). From this figure, ' the effect of the decision tree bias is clearly visible. Some 

regions that have been classified in agreement, and therefore confidently, contain no 

data and are surrounded by ambiguous regions which represent the hypothesised class 

boundary. 
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FIGURE 4.3: Binary classification example showing the disagreement between the two 
decision trees. 

Employing Random Forest on this problem results in the hypothesis of Figure 4.4. 

Despite the randomisation of the feature selection process, the learning bias is still 

clearly evident. This hypothesis has an overly high complexity, as it describes one class 

with nine disjoint regions , induced from only four examples. Although thIs is only a toy 

example, it highlights the potential problems that can exist with ensembles of decision 

trees. It is also possible that this type of problem can occur within a local area of the 

space for some data sets. 
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FIGURE 4.4: Binary classification example with hypothesis induced by a Random Forest 
consisting of 500 trees. 

4.3.2 Random Rotation 
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To avoid the potential complexity that is imposed by the decision tree bias, the tree 

induction algorithm can be altered so that partitions involving subsets of features are 

considered. Heath et al. (1993) use simulated annealing to search for such a suitable 

split and Breiman (2001) tried random feature combinations as part of Random For­

est construction. Instead of adapting the algorithm to allow partitions that are not 

axis-parallel, Rodriguez and Alonso (2004) manipulate the feature space to exploit the 

decision tree bias and promote diversity within an ensemble. Their Rotation Forest 

technique performs a principal components analysis (peA) of feature subsets which are 

randomly grouped for each learner. The data is then transformed by projection onto 

the full set of components. By using all of the components, the projection amounts to 

an axis-rotation of the data, which then alters the bias imposed by decision tree algo­

rithms. As this is performed on random feature groups for each learner, a variety of 

axis-rotations are produced and the resultant decision trees are quite diverse. Rodriguez 

et al. (2006) compared the accuracy and diversity of the method to that of simply con­

structing decision trees in conjunction with the Bagging algorithm. The learners of the 

Rotation Forest were found to be slightly more accurate and slightly more diverse and 

the small increase in these quantities yields a large increase in the accuracy of the overall 

ensemble. 

peA can be used to order the features according to how much of the variance in the data 

they explain. In some sense, this rotation can be considered optimal as it enables the 

tree induction process to search for these more potent features. However, the diversity 

is created from randomly grouping the features and therefore, the overall rotation would 

not be the same as if the peA was performed on the full set. Also, peA is an unsuper­

vised technique which transforms the data based on the directions of maximal variance. 

This is not necessarily the transformation which enables the optimal partitioning of the 
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classes. 

The approach introduced here is a variation of this method, which forms random ro­

tations of the data to exploit the decision tree bias and promote ensemble diversity. 

The features are randomly paired and a random angle is chosen in the range [0, ~l. A 

rotation of ~ simply swaps the axes, so there is no benefit in going beyond this value. 

A rotation matrix can then be constructed. The following matrix can be used to rotate 

the data about features 1 and 2 through angle {3, 

cos ({3) sin ({3) 0 .. 0 

- sin ({3) cos ({3) 0 0 

0 0 1 0 0 
( 4.28) R= 

0 0 0 1 0 

0 

0 0 0 0 1 

The data, X, can then be rotated to a new representation, 

(4.29) 

As the rotation is only conducted through feature pairs, the set of possible orientations 

is limited. However, if the transformed data is kept and rotated in the same manner in 

the next iteration, the space of possible orientations is enlarged. The rotation of a pair 

of features results in two new features, which are a combination of the original pair. If 

one of these features is then rotated with an entirely different feature, the resultant pair 

is then a combination of the original three. As this continues, the features being created 

consist of combinations of larger subsets of the original features. 

The following pseudo-code describes this algorithm, 

Instead of trying to find an optimal rotation of the data, or attempting to develop more 

potent features through the combination of existing ones, this method simply trains 

each learner on a random transformation of the data. By not using a single rotation 

consistently, this method avoids the potential problems of the decision tree bias. To 

demonstrate this, the previous example of Figure 4.4 is used again to train a Random 

Forest of 500 trees. However, each learner in this forest is given a different rotation of 

the data and the final induced hypothesis is shown in Figure 4.5. The hypothesis now 

appears more reasonable, as it describes only two disjoint regions. 

The method proposed here is to perform random rotation with standard decision tree 

algorithms. Unlike other feature manipulation algorithms, such as Random Subspace 

or Random Forest, this technique does not discard any feature information. Therefore, 

the accuracy of the learners created by this method can be expected to be greater. 

This technique promotes diversity through the exploitation of the decision tree bias 
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Algorithm 2: Random Rotation 

Input Training Data X, Y = (XI,yd, ... , (XN,YN) 
Test Data X' = x~, ... , xM 

Initialise Number of Learners e.g. T = 100 

Algorithm For t = 1 to T 

Output 

end. 

:;:: = {Xl, ... , Xp} 
R = F by F identity matrix 

For f = 1 to l ~ J 
X a, Xb =Randomly pick feature pair from :;:: 
:;:: = :;:: - {Xa, Xb} 
(3 = Choose random angle in range [0, ~J 
Update corresponding elements of R: 

R ( (a, a) (b, a)) (cos ((3) sin ((3) ) 
( a, b) (b, b) - sin ((3) cos ((3) 

end. 
X=XRT 

Train ht using X 
X' = X'RT 

Classify X' using ht 

H (xD = sgn ( ~'[=l ht (xD) : i = 1 to M 

Test Data Predictions H (x~, ... , xM) 
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FIGURE 4.5: Binary classification example with hypothesis induced by a Random Forest 
consisting of 500 trees with data rotation. 
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and its rotation variant nature. Therefore, the potential for ensemble improvement only 

exists when this type of method is used in conjunction with rotation variant learners. No 

improvement would be found with rotation invariant learners such as Nearest Neighbour, 
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unless the distance metric was replaced with one that was rotation variant. 

4.4 Conclusions 

This chapter has considered boosting in the context of diversity promotion, and con­

jectured that boosting methods promote diversity through concentrating on the awk­

ward examples. The concept of example ambiguity has been defined and related to the 

example-based diversity measures of Chapter 3. The effect of outliers on the ADABOOST 

algorithm has been discussed and this motivates the idea of focussing on ambiguous 

examples. This new approach was related to separate-and-conquer style algorithms, 

which were shown to implicitly perform outlier detection. Following this intuition, a 

new boosting-style algorithm was introduced that characterises example ambiguity in 

terms of the margin function. 

The bias of decision trees was discussed, along with the potential problems that it creates. 

An ensemble algorithm was proposed that manipulates the feature space through random 

rotation. This technique has the capacity to exploit the decision tree bias and can avoid 

some of its associated problems. 

Chapter 5 conducts some experiments with these methods and investigates their perfor­

mance as diversity promotion techniques. 



Chapter 5 

Empirical Evaluation of Diversity 

Promotion Techniques 

5.1 Datasets 

The properties of the data sets used in these experiments are shown in Table 5.1. The 

Wisconsin Breast Cancer (WBC), Pima Diabetes, Sonar, Ionosphere and Votes are avail­

able from the DCI Repository (Blake and Merz, 1998). 

TABLE 5.1: Data Set Properties 

Data Set No. Examples No. Features 
WBe 683 9 
Pima 768 8 
Sonar 208 60 

Ionosphere 351 34 
Votes 435 16 

Friedman 200 10 

The Friedman dataset, (Friedman, 1991) is an artificial data set that contains five ir­

relevant features and additive gaussian target noise. It is generated according to the 

following formula and has been thresholded in order to convert it into a binary classifi­

cation problem. A threshold value of 14 was chosen to yield a reasonably balanced data 

set. 

49 
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5.2 Diversity Promotion Through Data Manipulation 

The base learners used here are decision trees that use Information Gain as the node split 

criterion. They are pruned with a method that is based on the discretisation technique 

of Fayyad and Irani (1993), which adopts the minimum description length principle and 

is described in more detail in Section 2.4.2. After the construction of each tree, it is used 

to classifY the training data and update the weights for each example. These weights are 

applied to the data in the same manner as Drucker and Cortes (1996), such that each 

learner is constructed on a sample of the training data where each example is selected 

randomly, with replacement and with probability, 

(5.2) 

Four experiments are conducted. Bagging is used to generate an ensemble of trees, where 

the sampling distribution of the data is kept uniform throughout and the final ensemble 

prediction is given by a majority vote. ADABOOST is implemented by updating the 

sampling distribution according to Equation 2.8 and weighting each vote by the weight 

given in Equation 2.11. These methods are compared to the two DIVBOOST variants, 

where the sampling distribution is updated according to Equations 4.25 or 4.26. In both 

of these cases the learners are combined through a majority vote. 

Each data set is randomly partitioned into 90% for training and 10% for testing, and this 

is repeated over 100 trials. The results are averaged and shown in Table 5.2. The average 

error of each learner in the ensemble is also recorded, along with the averaged pairwise 

Q-statistics for each method. These results are shown in Table 5.3 and Table 5.4. The 

Q-statistics measure the average correlation between the base learners and are calculated 

according to, 

(5.3) 

Here, xab represents the set of examples which satisfy the conditions of a and b, where 

a = 1 if hI is correct and a = 0 if it is incorrect. Similarly, b = 1 if h2 is correct and 

b = 0 if it is incorrect. 

TABLE 5.2: Error rates when employing ensemble algorithms with decision tree base 
learners. The values in brackets are the corresponding variances of test error over the 

100 trials. 

Data Set Bagging Adaboost Divboost WI Divboost W2 
WBe 0.0345(0.0005) 0.0284(0.0003) 0.0319(0.0004) 0.0325(0.0005) 
Sonar 0.1890(0.0072) 0.1324(0.0045) 0.1295(0.0060) 0.1329(0.0056) 
Votes 0.0450(0.0009) 0.0498(0.0010) 0.0416(0.0007) 0.0395(0.0007) 
Pima 0.2586(0.0025) 0.2570(0.0017) 0.2383(0.0023) 0.2458(0.0021) 

Ionosphere 0.0606(0.0016) 0.0686(0.0015) 0.0617(0.0016) 0.0614(0.0015) 
Friedman 0.1885(0.0068) 0.1485(0.0059) 0.1505(0.0063) 0.1445(0.0057) 
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DIVBOOST can be seen to compare favourably with ADA BOOST as it is significantly more 

accurate on several data sets and is only beaten on two. 

TABLE 5.3: Averaged pairwise Q-statistic measured over the test data when employing 
ensemble algorithms with decision tree base learners. 

Data Set Bagging Adaboost Divboost WI Divboost W2 
WBC 0.6858 0.3977 0.3185 0.3381 
Sonar 0.3904 0.0723 0.0958 0.0939 
Votes 0.7464 0.1748 0.1365 0.1325 
Pima 0.7797 0.0217 0.0269 0.0409 

Ionosphere 0.6970 0.1595 0.2288 0.2368 
Friedman 0.5276 0.0460 0.0310 0.0228 

TABLE 5.4: Average base learner error when employing ensemble algorithms with 
decision tree base learners. 

Data Set Bagging Adaboost Divboost WI Divboost W2 
WBC 0.0512 0.1157 0.1775 0.1672 
Sonar 0.2816 0.3692 0.3514 0.3552 
Votes 0.0543 0.2337 0.2644 0.2618 
Pima 0.2817 0.4047 0.4416 0.4336 

Ionosphere 0.0981 0.2532 0.2258 0.2165 
Friedman 0.2458 0.3839 0.4079 0.4093 

From examination of Table 5.3 and Table 5.4, it can be seen that the underlying mech­

anisms of ADABOOST and DIVBOOST are quite similar. Both algorithms concentrate 

on the awkward examples and increase the ensemble diversity at the cost of increased 

error rates in the base learners. In contrast, Bagging generates much more accurate 

base learners that are less diverse. Therefore, the reduction in error is less significant in 

Bagging. 

Figure 5.1 shows how the average Q-statistic changes as the ensemble is constructed in 

conjunction with ADABOOST and DIVBOOST WI. Separate plots are given for each data 

set and they illustrate the diversity measured with respect to the training and test data. 

Apart from the Pima data set, the training correlation of the learners constructed using 

ADABOOST begins low and gradually rises with increasing ensemble size. This is due to 

ADA BOOST attempting to correct its previous mistakes on the training data. Therefore, 

the method produces very different hypotheses in the initial stages of the algorithm. In 

contrast, the correlation between learners constructed with DIVBOOST tends to gradually 

decrease as the algorithm proceeds. This tendency is due to DIVBOOST progressively 

focussing on the ambiguous training examples. The plots illustrating the correlation, 

measured with respect to the test data, show a pronounced increase in diversity as 

DIVBOOST proceeds, demonstrating the utility of this algorithm as a diversity promotion 

technique. 

Both of the DIVBOOST methods perform significantly better than ADABOOST on the 
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FIGURE 5.1: Plots showing variation of average Q-statistic with ensemble size for 
ADABOOST and DIVBOOST. Correlation is measured with respect to training and test 

data. 
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Pima data set. This data set is noisy and it is known that ADABOOST can be intolerant 

to noise. Figure 5.2 compares the average final weights given to the data by ADA BOOST 

and DIVBOOST. It is easily seen that ADABOOST gives very large weights to some 

examples which are given very low weights by DIVBOOST. These are the examples 

which are misclassified most often and could be considered outliers. DIVBOOST achieves 

better generalisation on this data set because it does not concentrate on these examples 

but rather focuses on the ambiguous ones. 
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5.3 Diversity Promotion Through Feature Manipulation 
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The experiments conducted here examine the potential of Random Rotation as a diver­

sity promotion technique. The method is compared against the other feature manipula­

tion techniques of Random Subspace and Random Forest. As Random Forest incorpo­

rates Bagging as part of its algorithm, the same is also done for Random Subspace and 

Random Rotation. A Bagged sample of data is used to train each base learner. Random 

Subspace selects a random subset of the features for each of these samples and projects 

the data onto this set before constructing a decision tree. Random Rotation creates a 

new representation of the data for each sample by performing a rotation of the data, as 

described in Chapter 4. The results for Bagging without any feature manipulation are 

also given as a basis for comparison. 

As before, the data is randomly partitioned into 90% for training and 10% for testing 

and this is repeated over 100 trials. Ensembles of 100 learners are constructed and the 

results are given in Table 5.5. Random Rotation can be seen to compare favourably to 

the other techniques as it gives the best performance on 4 of the 6 data sets. 

The average error of the base learners within these ensembles is given in Table 5.7 and 

the average pairwise Q-Statistic is given in Table 5.6. Bagging tends to create the most 

accurate base learners, but also the most correlated. In particular, Bagging creates 

accurate learners for the Votes and Friedman data sets. It is known that Votes contains 

a large number of redundant features and that half of the features in the Friedman 

data set are irrelevant. By not manipulating the feature space, Bagging can keep these 

features separate whilst the other algorithms are forced to use them. Random Subspace 

and Random Forest will often disregard the useful features whilst randomly selecting 

less potent or completely irrelevent ones. Random Rotation can dilute the potency of a 

useful feature by randomly combining it with a less useful one. 
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TABLE 5.5: Error rates of ensemble algorithms when using Bagging in conjunction 
with feature manipulation techniques. The values in brackets are the corresponding 

variances of test error over the 100 trials. 

Data Set Bagging Random Random Random 
Subspace Forest Rotation 

WBe 0.0345(0.0005) 0.0290(0.0003) 0.0293(0.0004) 0.0278(0.0004) 
Sonar 0.1890(0.0072) 0.2033(0.0082) 0.1671(0.0066) 0.1705(0.0068) 
Votes 0.0450(0.0009) 0.0457(0.0009) 0.0586(0.0012) 0.0486(0.0008) 
Pima 0.2586(0.0025) 0.2683(0.0024) 0.2525(0.0022) 0.2414(0.0020) 

Ionosphere 0.0606(0.0016) 0.0633(0.0015) 0.0756(0.0016) 0.0486(0.0011) 
Friedman 0.1885(0.0068) 0.1895(0.0066) 0.1670(0.0070) 0.1650(0.0069) 
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Apart from the Votes and Friedman data sets, the average base learner error of random 

rotation is comparable to that of Bagging. However, Random Rotation tends to create 

more diversity within the ensemble, which results in a better overall performance. 

TABLE 5.6: Averaged pairwise Q-statistic when using Bagging in conjunction with 
feature manipulation techniques. 

Data Set Bagging Random Random Random 
Subspace Forest Rotation 

WBe 0.6858 0.6339 0.6051 0.6908 
Sonar 0.3904 0.3323 0.1267 0.2653 
Votes 0.7464 0.4747 0.4728 0.4993 
Pima 0.7797 0.6255 0.4466 0.7471 

Ionosphere 0.6970 0.6243 0.4326 0.4110 
Friedman 0.5276 0.1586 0.1120 0.2365 

TABLE 5.7: Average base learner error when using Bagging in conjunction with feature 
manipulation techniques. 

Data Set Bagging Random Random Random 
Subspace Forest Rotation 

WBe 0.0512 0.0632 0.0645 0.0420 
Sonar 0.2816 0.2985 0.3518 0.3094 
Votes 0.0543 0.0920 0.1226 0.0944 
Pima 0.2817 0.3099 0.3405 0.2868 

Ionosphere 0.0981 0.1216 0.1708 0.1389 
Friedman 0.2458 0.3343 0.3646 0.3082 

The method of Rodriguez et al. (2006), described in Chapter 3, introduces diversity 

into an ensemble of trees by randomly grouping the features and performing a principal 

component analyis (PCA) on each group. By including all of the components, this 

method amounts to a rotation of the data. The intuition behind this method is that the 

different rotations will promote diversity, whilst the employment of PCA should produce 

more relevant features and, therefore, more accurate hypotheses. Table 5.8 compares 

this method, denoted PCA rotation, to the random rotation technique and it can be seen 

that random rotation performs better than PCA rotation on 5 of the 6 data sets tested 
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here. However, it should be noted that peA rotation out-performs Bagging, Random 

Subspace and Random Forest on 4 of the 6 data sets. The table also shows the average 

base learner accuracy and Q-statistic for these methods. These quantities show how the 

ensembles produced by peA rotation consist of learners that tend to be slightly more 

accurate and slightly more correlated than those produced by random rotation. peA is 

a dimensionality reduction technique that can remove redundancy in data. This would 

explain why peA rotation performs better than random rotation on the Votes data set, 

as this data contains a large amount of redundancy. 

TABLE 5.8: Comparison of PCA and Random Rotation techniques. The table shows 
the ensemble error (Error), average base learner error (B.E.) and average Q-statistic 

(Q-Stat) for both methods. 

Data Set PCA Random 
Rotation Rotation 

Error B.E. Q-Stat Error B.E. Q-Stat 
WBC 0.0278(0.0004) 0.0421 0.6842 0.0278(0.0004) 0.0420 0.6908 
Sonar 0.1876(0.0086) 0.2910 0.3172 0.1705(0.0068) 0.3094 0.2653 
Votes 0.0418(0.0007) 0.0585 0.5875 0.0486(0.0008) 0.0944 0.4993 
Pima 0.2458(0.0030) 0.2744 0.7726 0.2414(0.0020) 0.2868 0.7471 

Ionosphere 0.0561(0.0013) 0.1247 0.4801 0.0486(0.0011) 0.1389 0.4110 
Friedman 0.1905(0.0092) 0.3081 0.2643 0.1650(0.0069) 0.3082 0.2365 

As the diversity element of peA rotation is produced by randomly grouping the features, 

it is possible that the obtained level of diversity is limited by the dimensionality of the 

data. peA rotation groups the features into sets of 3. For a data set of dimensionality 

F, this method results in ( ~ ) possihle feature subsets, each c,eating 3 new featmes. 

Thcreime, PCA mtation "cates a possible 3 ( ~ ) new featu,,,, fwm which a suhset is 

selected and used to train each learner. The diversity that is introduced by this method 

may be limited by this number of possible features, which increases quickly with the 

dimensionality of the data. In contrast, there is no limit to the number of features that 

can be created by the random rotation technique. Therefore, peA rotation may perform 

better with data of higher dimensionality, especially if this data contains a large amount 

of redundancy. 

5.4 Conclusions 

This chapter has demonstrated the importance of diversity within a learning ensemble 

and compared several algorithms for promoting this. The DIVBOOST variants promote 

diversity through manipulation of the relative importance of each example and compare 

favourably to Bagging and ADABoOST. The methods focus the algorithm on the regions 

of the class boundaries and are shown to be more robust to the presence of outliers than 
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ADABOOST. This outlier tolerance comes from the similarities between this method 

and the approaches of separate-and-conquer and outlier identification. The technique 

promotes diversity in a robust way as the algorithm is not misled by outliers, which 

could have a detrimental effect on the accuracy of the base learners. 

The Random Rotation algorithm exploits the decision tree bias to create more diversity 

than Bagging alone and performs well when compared to Random Forest and Random 

Subspace. Unlike these techniques, Random Rotation does not discard any feature 

information and the induced learners are typically more accurate as a result. One 

of the problems faced by feature manipulation techniques is that of the presence of 

irrelevant features. By randomising the feature representation of the data, the effect 

of these features is increased. For Random Forest and Random Subspace, the feature 

selection process is randomised, which increases the likelihood of relying on the irrelevant 

features. Random Rotation can reduce the potency of some features by rotating them 

with irrelevant ones. The data manipulation algorithms do not suffer as badly from 

the presence of irrelevant features, as they maintain the original feature representation. 

When using decision tree learners, the implicit feature selection that the algorithm 

incorporates at each node of construction avoids features with low class discrimination. 



Chapter 6 

Feature Selection 

6.1 Introduction 

One of the important areas of machine learning research is that of selecting an optimal 

set of the available features. The motivation behind this is partly due to the computa­

tional load that is imposed upon many learning algorithms by higher dimensional data. 

The way in which execution time scales with the number of features varies between 

learning algorithms, and in some cases can be poor. For certain situations, the accuracy 

of a classification algorithm can be significantly reduced with the presence of irrelevant 

features. This can be a consequence of the learning algorithm such as in nearest neigh­

bour, which has no implicit feature selection and has shown significant degradation in 

accuracy with an increased number of irrelevant features (Almuallim and Dietterich, 

1991). However, it can also be caused by an effect known as The curse of dimension­

ality (Bellman, 1961). This problem is a result of the increased hyper-volume of the 

space with increased dimensionality, which results in an increase in the amount of data 

required to sustain a given spatial density. Therefore, for high-dimensional data there 

may be an insufficient number of examples to describe the target function. 

The interpretability of an induced hypothesis is also a desirable attribute for certain 

applications, and this benefits greatly from the employment of a reduced set of features. 

The different motivations behind feature selection can alter the definition of what the 

optimal subset should be and result in different methods for selection. The criteria 

may be based on classification accuracy, computational complexity, interpretability or a 

compromise between some or all of these factors. 

57 
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6.2 Irrelevant Features and Random Forest 

The Random Forest algorithm makes no distinction between the relevance of features 

during construction of the forest. As the features are selected randomly and with equal 

probability at each node, the performance can suffer significantly from the presence of ir­

relevant features (Rogers and Gunn, 2006). Standard decision tree algorithms will select 

the optimal feature at each split in terms of maximal information gain. As Random For­

est lacks this implicit feature selection, the probability of selecting an irrelevant feature 

increases with the proportion of irrelevant features present. These irrelevant features 

can then mislead the algorithm and increase the generalisation error. Also, as irrelevant 

features are not effective at separating the data, they can result in unnecessarily large 

trees and therefore, an increased computational load. 

An explanation for the effect of irrelevant features on the Random Forest algorithm can 

be found by considering the space of possible hypotheses. As previously discussed, one 

of the explanations for how ensemble methods work centres around the concept of the 

margin. The margin for example x, with label y, is the difference between the probability 

of correct classification and of being classified as belonging to the next most likely class. 

For binary classification, the margin is simply, 

marg (x, y) = 2Pe (he (x) = y) - 1, (6.1) 

where e represents the environment in which hypothesis h, was constructed. This in­

cludes the bagged set of examples that were used to construct h and the features that 

were chosen. 

The probability of classifying a data point correctly converges to either 1 or 0 depending 

on the sign of the margin and Breiman (2001) uses the law of large numbers to prove that 

the misclassification rate of an ensemble H, converges asymptotically to the probability 

over the input space of obtaining an example with a negative margin. However, for a 

finite number, T, of hypotheses, the probability of correct classification is given by, 

T ( ) 
t T t T P (H (x) = y) = L (Pe (he (x) = y)) (1 - Pe (he (x) = y)) - . 

~m~ t 
(6.2) 

As more base hypotheses are added to the ensemble, the error rate converges in line 

with this function. Therefore, the speed of convergence can be increased by increasing 

the size of the margin. For Random Forest the diversity within the base hypotheses 

is introduced through the combination of bagging, which trains the hypothesis on a 

random subset of the training data, and random input selection (Ho, 1998a). The space 

of possible base hypotheses is affected by the set of features chosen to represent the 

data. As a consequence of this, feature selection can alter the margin values of the data. 

Ideally, this should result in fewer data points having a negative margin and allow the 
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algorithm to converge to a smaller error rate. But, it also has the ability to increase the 

size of the margin values and result in faster convergence. Therefore, fewer trees may 

be needed, which lowers the computational requirement. 

6.3 Feature Relevance 

Many algorithms adopt the principle of selecting the subset of features which carry the 

most information concerning the target, such as Almuallim and Dietterich (1991), with 

their algorithm Focus. Designed to be used for data with binary features, the technique 

identifies the smallest set of features for which no two examples exist that agree on all the 

features but not on the class. This enables complete discrimination between the classes, 

but could easily fail when noise is present as the selected subset can be affected by a 

single example. By preferring smaller subsets, the method implements what is termed 

the min-features bias, which although useful for some applications, can be inappropriate 

for certain data. 

The Focus algorithm deems features to be relevant if they are essential for discriminat­

ing between all examples of different classes. For continuous data, the class conditional 

probabilities can be examined to form different definitions of feature relevance. As de­

scribed by John et al. (1994) and Kohavi and John (1997), one such definition is that 

a feature Xi is relevant if there exists values Xi and y assigned to Xi and the target Y 

respectively, such that, 

(6.3) 

Intuitively, this appears logical as knowledge concerning a relevant feature is expected 

to alter the distribution of the target. It is equivalent to defining a feature as rele­

vant if there is a significant degree of correlation between the feature and the class. 

Consequently, there are many algorithms which attempt to identify relevant features 

by calculating some measure of correlation between the feature and the target. Infor­

mation theoretic measures such as information gain are ideal for this purpose as they 

are not limited to linear aspects of correlation and can identify non-linear relationships. 

Roobaert et al. (2006) use information gain in this way to measure the correlation be­

tween the features and the target, and select the features with a correlation value greater 

than some threshold. 

There are problems with using this simple approach. One is that this definition of fea­

ture relevance does not account for redundancy within the feature subset. Information 

concerning the target that is repeated in different features is only required once. A pos­

sible extension to this type of algorithm is to approximate the redundancy by measuring 

the pairwise correlation between the features in the subset. Battiti (1994), Yu and Liu 



Chapter 6 Feature Selection 60 

(2004a), Hall (2000) and Koller and Sahami (1996) adopt this unsupervised approach 

using various measures of correlation. 

Here, we define p(Xi' Y) as the measure of correlation between a feature Xi and the 

class Y, and the corresponding measure of correlation between a pair of features Xi and 

Xj is given by p(Xi' Xj). The algorithm of Yu and Liu (2004a) then attempts to find 

the largest feature subset that contains no two features, Xi and Xj for which, 

(6.4) 

and 

(6.5) 

The CFS algorithm of Hall (2000) searches for the feature subset, S, of F features that 

maximises the merit function, 

(6.6) 

Lee et al. (2006) form clusters by grouping features with high values of p(Xi' X j ). The 

feature with the greatest value of P(Xi' Y) from each of the clusters is selected as a 

representer. The number of clusters is a parameter that must be chosen by the user. 

As already mentioned, the linear correlation coefficient is unable to identifY non-linear 

relationships within the data, but is implemented in Koller and Sahami (1996). Another 

way of measuring the degree of correlation between pairs of features is the Maximum 

Information Compression Index (Mitra, 2002). The measure is based on the smallest 

eigenvalue of the covariance matrix of the data, when projected onto the subspace of the 

feature pair. If this value is zero then the data lies in a one-dimensional subspace and 

the features are linearly dependent. A benefit of this method is that it is insensitive to 

rotation. However, it can still only identify linear relationships within the data. 

Information theoretic measures can be used to identify non-linear correlation between 

features, such as information gain, IG. This was described in Chapter 2 as a node split 

criterion. Here, the notation used for information gain is slightly different to reflect the 

fact that it is being used to measure the correlation between two variables. 

(6.7) 

where Ent (Xl, Xli) defines the entropy of variable Xl over the subset of data Xli. If no 

subset is specified, the full set of data is assumed. The set of partitions for feature X 2 

is denoted as £2. 

These type of measures require discretisation of continuous features. As simple uniform 
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partitioning may not produce a meaningful representation of the data, different methods 

exist for identifying suitable intervals (Dougherty et al., 1995). The number of intervals 

created by these methods can be data dependent and therefore, different features may 

have a different number of partitions. Information gain is biased in favour of features 

with more partitions and is not a fair measure if used to identify the relative importance 

of features which have been discretised into a dynamically chosen number of partitions, 

as above. For this reason, Gain Ratio, G R, can be used instead of information gain. 

(6.8) 

This measure divides the information gain by the entropy of the feature, but is not 

suitable for measuring pairwise feature correlation because it is not symmetric. The 

properties of symmetry and invariance to the number of feature partitions makes the 

symmetrical uncertainty, SU, measure ideal for this purpose (Press et al., 1988). This 

measure divides the information gain by the average of the two variable entropies and 

is used in Yu and Liu (2004a), Yu and Liu (2004b) and Hall (2000). 

(6.9) 

Although the pairwise correlation between features can reveal redundancy within them, 

the process does not discriminate between the useful information, which is helpful in 

predicting the class, and other correlations in the data. Yu and Liu (2004b) make 

an improvement to their algorithm of Yu and Liu (2004a) by examining the combined 

feature correlation to the class, instead of pairwise feature correlation. This technique 

then eliminates a feature, Xj, if there exists another feature, Xi, for which, 

(6.10) 

and 

(6.11) 

where P ((Xi, X j ) , Y) denotes the correlation between the target Y and the combination 

of the two features, Xi and X j . This method deems the feature, X j , to be relevant with 

respect to another feature, Xi, if the combination of the two features contains more 

information about the target than is contained within Xi alone. As well as being able 

to identify information that is shared between pairs of features, this method can also 

detect interaction between them. A feature that shows very little correlation to the class 

may contain a large amount of information when combined with other features. John 

et al. (1994) and Kohavi and John (1997) illustrate this point with the parity problem. 

Example 6.1. If the target, Y is given by the exclusive OR of the binary features, Xl 
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and X 2 , then Y is fully described by the features and they are both relevant. 

However, if each feature assumes the values of 1 or 0 with equal probability, then there 

appears to be no correlation between either of the features individually and the class. 

This is because knowing the value of one of the features gives no information about the 

target without knowing the value of the other feature. 

Friedman (1994) describes strongly interacting features as being locally predictive. In 

this sense, measuring the degree of correlation between the feature and the class can be 

viewed as a global measure. A feature may only be relevant within a particular area of 

the input space, which has been determined by the values of other features. In Example 

6.1, the features appear locally relevant when considered within areas of the input space 

that have been restricted by the other feature. This idea of local feature relevance is 

highlighted in the example of the Multiplexor (Apte et al., 1997). 

Example 6.2. A multiplexor has a set of control variables which dictate which of the 

input channels is produced at the output. For the multiplexor shown in Figure 6.1, the 

input variables Xl and X 2 are the control variables and X3 to X6 constitute the input 

channels. A set of data can be created by this model, by randomly assigning values to 

the input variables and recording the output of the multiplexor as the target, Y. For any 

X1 X2 

I 
X3 ----IO 0 
X4 0 1 
X5 1 0 

y 

X6 1 1 

FIGURE 6.1: 

given example, the target is given by one of the input channels, which can be determined 

by the two control variables. Therefore, only three features are relevant within a given 

area of the space. The input channels are locally relevant features, where the locality is 

defined by the control variables. 

Hong (1997) explores this idea by measuring feature relevance according to its local 

ability. For each example, the algorithm identifies the K nearest examples of the opposite 

class. The feature relevance measure is then the sum of the distances between each 

example and the K counter-examples, along the feature in question. Although this 

method examines the local relevance of the feature, the K nearest counter examples 
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are chosen with respect to all of the features. Therefore, this concept of locality can 

be corrupted by the presence of irrelevant features. A similar approach is adopted 

by Domingos (1997) to improve the nearest neighbour algorithm through local feature 

selection. For each training example, this technique identifies the nearest neighbour of 

the same class and searches for any features which differ. In the case of continuous­

valued features, examples are considered different if their values differ by more than 

one standard deviation of the samples of that feature. If any such features are found, 

they are removed from the considered example. Cross-validation is then performed to 

determine the effect of the removal on the accuracy of the classifier and, if the classifier 

performance has been worsened, the change is reversed. 

Within the algorithms of Hong (1997) and Domingos (1997) the concept of locality 

is defined by the neighbourhood of each example. However, Howe and Cardie (1997) 

measure the relevance of each feature with respect to a given class. Their method uses 

categorical features and constructs a distribution for each one. This distribution takes 

the form of a vector containing the relative frequencies of the possible values of that 

feature. Such a distribution can then be created over the subset of data belonging to 

each class. The distribution of feature Xf, for class y, is designated as \IF (Xf , y). The 

relevance of a feature to a particular class is measured as the ability of that feature to 

discrmininate between whether or not examples belong to that class. Their relevance 

measure is then given as the difference between the distribution taken over the class in 

question, and of that taken over the rest of the data, 

(6.12) 

where \IF (Xf , Y - y) is the distribution of feature Xf, calculated with respect to exam­

ples belonging to all classes other than y. 

John et al. (1994) and Kohavi and John (1997) formalise these ideas into the definitions 

of strong and weak relevance. If Si is the subset of all of the features apart from Xi 

and Si is a value assignment to those features, then Xi is strongly relevant if there exists 

some Xi, y and Si such that, 

(6.13) 

Removing a strongly relevant feature from the set will result in a loss of information 

about the target. 

Weak relevance is used to describe features that carry information about the target, but 

which is repeated in other features. Unlike strongly relevant features, if a weakly relevant 

feature is removed, no information about the target is lost. Xi is weakly relevant if it is 

not strongly relevant and there exists some subset, S: of Si and values y, Xi and s~ such 

that, 

p (Y = ylXi = Xi, S: = sD =1= p (Y = ylS: = sD . (6.14) 
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These definitions of feature relevance are now sufficient to identify redundancy and cope 

with feature interaction. This theory then leads to the concept of identifying Markov 

Blankets (Koller and Sahami, 1996). A Markov Blanket can be defined in the following 

way. If S: is some subset of the features, such that Xi tf- S:, and Si is the subset of 

remaining features, that excludes S: and Xi, then S: is a Markov Blanket for Xi if there 

are no value assignments to the variables such that, 

(6.15) 

The optimal feature subset is then the minimal subset that forms a Markov Blanket 

for the remaining features. Due to the fact that feature interaction can occur amongst 

any number of the available features, searching for a Markov Blanket is a combinatorial 

problem and prohibitive for high dimensional data. Yu and Liu (2004a), Yu and Liu 

(2004b) and Koller and Sahami (1996) attempt to approximate Markov Blankets in 

their feature selection algorithms, but use correlation based measures to simplify the 

problem. A Markov Blanket for a feature incorporates all of the information that the 

feature contains. This information not only concerns the target, but all of the other 

features as well. Therefore, the attractive property of Markov Blanket identification is 

that features can be eliminated recursively. If a subset of features, Si, forms a Markov 

Blanket for a feature, Xi and another subset, Sj, forms a Markov Blanket for Xj and 

Xj E Si, then Si U Sj - {Xj } also forms a Markov Blanket for Xi. This means that, 

provided a feature is removed only when a corresponding Markov Blanket is discovered, 

a feature that has been removed cannot become relevant again as more features are 

eliminated. 

6.4 Decision Tree Based Methods 

Decision tree methods, such as CART (Breiman et al., 1984), select the feature at each 

node in the tree which yields the optimal partition according to some split criterion 

and, therefore, contain an implicit form of feature selection. If such a tree is pruned 

in a way that yields an induced hypothesis with a good generalisation ability, then the 

features that were used in the tree construction can be considered relevant. Cardie (1993) 

uses C4.5 trees to identify relevant features in exactly this way. The stopping criterion 

given in Equation 2.24 uses the minimum description length principle to associate a 

cost with describing the features that a tree utilises. This cost biases the algorithm 

to prefer features which have been used previously in the construction of the tree and 

minimises the number of features chosen. Frey and Fisher (2003) demonstrated that 

an improvement could be found if instead of simply selecting the chosen features, the 

selection is based upon the frequency with which each feature is selected. This method 

was proposed as a way of identifying Markov Blankets and has certain advantages over 
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correlation based methods. Each node in the tree represents a region of the input space 

that is bounded by values along some of the features. All of the nodes, for which 

the particular node is a direct descendant, form these boundaries when they are split. 

Consequently, the feature that is selected to perform a split anywhere in the tree, is 

optimal only for the local area (Friedman, 1994). This exploitation of local relevance can 

then use features in the context of other features and therefore, aids in the identification 

of feature interaction. Also, redundancy can be removed, as features are less likely to 

be chosen if the information that they contain has already been applied by the subset 

of features that were used to form the path from the root. Apte et al. (1997) employ 

a decision tree approach to partition the data and identify regions of the input space 

for which different features are relevant. They use correlation measures to construct 

vectors that represent the relative values of feature importance within a region of the 

input space. The relevance, Rel (Xa, Xf), of feature Xf can be calculated for a region 

of the input space that contains the subset of the data, Xa. The vector, M (Xa), then 

consists of the relevance measures for all of the features within region, Xa , 

(6.16) 

They introduce the concept of an Importance Profile Angle I P A, which quantifies the 

difference in feature relevance between two disjoint regions of the input space. 

(6.17) 

The motivation for this technique is that learning problems that contain locally relevant 

features can be broken down to yield separate sub-problems that contain consistent 

measures of feature relevance. A decision tree is used to create the separate regions and 

any learning algorithm can then be applied to the sub-problems. 

Due to feature interaction, the actual optimal split at any point of a tree may not 

result in good class discrimination, but partition the data in such a way that subsequent 

features can separate the classes. As these methods select a feature on the basis of 

how accurately it partitions the current node and do not examine subsequent splits, 

the optimal feature may not be selected. Another limitation with decision tree based 

methods is that the number of employed features is restricted by the number of examples 

in the training data. 

6.5 Ensemble Feature Selection 

When applying feature selection for ensemble algorithms, the definition of feature rel­

evance is not solely motivated by the reduction of dimensionality and the inclusion 

of target information. As previously discussed, ensemble algorithms require diversity 
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amongst the base learners and therefore, the criteria for selecting the features should 

incorporate this. The optimal feature subset should be comprised of features, which not 

only contain information concerning the target with a minimal quantity of redundancy, 

but must also promote diversity. Typically, feature selection for ensemble learners is 

embedded within the ensemble construction process. Multiple learners can be created 

on random feature subsets using the random subspace method (Ho, 1998a). From this 

set, a subset of accurate and diverse learners can be chosen to represent the ensemble. 

An example of this was proposed by Opitz (1999), which measured the fitness of each 

learner in terms of the accuracy and diversity. Other algorithms use a search method 

on the set of features for each learner to increase the accuracy of each one and then 

select a subset of these learners to maximise the diversity, (Cunningham and Carney, 

2000; Oliveira et al., 2003). These methods suggest that effective feature selection for 

ensemble learners should not involve the identification of a single global subset, but 

combine multiple diverse representations of the data. The FEATUREBooST algorithm 

(O'Sullivan et al., 2000) attempts to find such diverse models by forcing the algorithm 

to consider features that have not been relied upon to a great extent. The measurement 

of diversity can be defined as the ambiguity in the target predictions. These methods 

then select learners, which explore the areas of the input space that have high ambiguity 

in the target information. This is similar to the method of boosting, which concentrates 

the construction of the base learners on the examples which are commonly misclassified 

and therefore, also explores the ambiguous areas of the space. 

As previously discussed, some features may be relevant within a local area of the input 

space. This local relevance can be identified and exploited by ensembles that create 

diversity by varying the employed set of features. Puuronen and Tsymbal (2001) adopt 

this approach by utilising the random subspace method to explore various feature subsets 

and altering the integration method. Each vote is weighted according to the performance 

of the hypothesis within the vicinity of the example being classified. Cross-validation is 

performed to obtain the performance estimate of each model on each example and the 

locality is defined by the K nearest neighbours. This integration method was applied to 

an ensemble of naIve bayes learners (Tsymbal et al., 2002). Although this was found to 

yield an improvement over simple aggregation of the ensemble, the ability of this type 

of ensemble to identify local feature relevance is limited. This is due to the naIve bayes 

learner assuming independence between the features when conditioned on the class, as 

discussed in Section 2.4.3. Strong interactions between features are not expected to be 

identified when utilising this base learner. 

Puuronen and Tsymbal (2001) also select which hypotheses to combine for each test 

case. This is achieved through the construction of a decision tree and examination of 

the relevant branch. Section 6.4 discussed the ability of decision trees to uncover feature 

interaction. For a particular example, the features that are perceived to be relevant are 

the ones that comprise the path from the root to the appropriate leaf. For each test 
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example, their method only combines the votes of hypotheses that were trained on a 

feature subset that includes the features along the relevant branch of the tree. 

6.6 Wrapper Methods 

Feature selection algorithms can broadly be categorised into two types, Filter and Wrap­

per methods (Kohavi and John, 1997). Filter methods tend to examine the structure 

of the data, in order to identify the relevant features efficiently. However, Wrapper 

methods perform a search through the possible feature subsets and utilise the learning 

algorithm to compare their abilities. As discussed by Kohavi and John (1997), if the aim 

is to maximise the generalisation ability of the algorithm, then for certain algorithms 

and certain data sets, the optimal feature subset may not contain all of the relevant fea­

tures and may contain some irrelevant features. Therefore, the argument for employing 

Wrapper methods is that unlike Filter methods, the Wrapper incorporates the bias of 

the learning algorithm for which the selected feature subset is intended. Performing an 

exhaustive search through the possible feature subsets is computationally expensive and 

infeasible for many data sets. For this reason a search is conducted through this space, 

which only requires the testing of a limited number of subsets but hopefully identifies 

the optimal subset. Forward selection is one example of this, where initially there are no 

features selected and at each stage, the single feature is added that increases the accu­

racy of the algorithm the most. Backward elimination begins with the full set of features 

and removes the single feature at each stage that reduces the accuracy the least. Both 

of these methods can become stuck in local minima, as the algorithm terminates when 

no further improvement is possible. To overcome this problem, the algorithms can be 

modified to include a degree of backtracking. Skalak (1994) use Random Mutation Hill 

Climbing (RMHC), which randomly adds or removes a feature at each step and keeps 

the change if it improves the generalisation ability of a nearest neighbour algorithm. 

The simplest evaluation of the feature subsets involves the generalisation error rate. For 

variable cost problems, a more extensive analysis of the performance of the hypothesis 

is required and typically involves examination of the Receiver Operating Characteristic 

(ROC) curve. This curve shows the effect on class error rates of imposing different biases 

on the algorithm. The PARCEL algorithm (Scott et aI., 1998a), performs a random 

exploration of possible feature subsets and uses them to construct classifiers. These 

classifiers are then deemed to be useful if they extend the convex hull of the ROC space, 

using the theory of Maximum Realisable ROC (MRROC) (Scott et aI., 1998b). 
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6.7 Feature Weighting 

Some algorithms do not attempt to select a subset of the available features, but try 

to assign a degree of relevance to each one. Each feature can then be relied upon to 

a varying extent. Nearest Neighbour algorithms can easily be modified to incorporate 

this varying importance by re-scaling the input space. Assigning weights to each of 

the features is not as beneficial to the interpretability of the induced hypothesis and 

does not reduce the dimensionality. It is usually employed in incremental or embedded 

algorithms where feature selection is desirable but only a small amount of information 

concerning the features is available. 

By enabling varying degrees of relevance to be assigned to the features instead of 0 and 

1, as in selection, the size of the search space is dramatically increased and can lead 

to over-fitting. Kohavi et al. (1997) showed that weighting the features for a nearest 

neighbour algorithm rarely produces a more accurate hypothesis than selection and can 

do significantly worse. 

6.8 Conclusions 

This chapter has explained the need for feature selection when using Random Forest, in 

terms of accuracy and computational load. The effects that can be created by irrelevant 

features on Random Forest have been explored and a theoretical justification has been 

given for the particular effect on error convergence. A review of some current feature 

selection techniques has been conducted and their ability at relevance identification has 

been examined. The chapter has explored the different definitions of feature relevance 

and has found that the identification of an optimal subset can be complicated by inter­

actions within the data. Performing feature selection for ensembles presents an added 

problem, as there is a requirement to promote diversity amongst the base hypotheses. 

Chapter 7 will review and introduce some feature relevance identification techniques 

using Random Forest to enable random subset exploration and local relevance exploita­

tion. 



Chapter 7 

Random Forest Methods 

7.1 Introduction 

Due to the complex relationships that can exist between features, the identification of an 

optimal set is a challenging problem. To best explore these relationships it is necessary 

to evaluate subsets of features rather than individuals. The Random Forest algorithm 

builds a large number of simple classifiers using randomly chosen features and therefore, 

achieves a good exploration of possible feature subsets. Unlike the random subspace 

method (Ho, 1998a), random forest enables the evaluation of multiple feature subsets 

within an individual learner. As Bagging is employed as an integral component of the 

algorithm, the out-of-bag data enables evaluation of the feature subsets without the need 

for an independent test set. Also, these measures of feature importance incorporate the 

bias of decision tree induction, which is beneficial if they are applied to decision tree 

techniques. For these reasons, Random Forest lends itself to feature selection well. 

7.2 Relevance Identification with Random Forests 

7.2.1 Out-of-Bag Estimation 

Breiman (2001) gave a method for identifying feature relevance using Random Forest 

through examination of the out-of-bag error rate. Random Forest employs Bagging to 

form the training sample with which to construct each tree. Typically, this selects about 

~ of the entire training data, as explained in Chapter 2. Each training example can then 

be classified by all of the trees in the forest that did not include the example in their 

training set. The out-of-bag error rate is then the average error of all of the training 

examples, classified in this way. To measure the amount of information contained within 

a feature, the values of the feature are randomly permuted among all of the examples. 

69 
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The out-of-bag error rate is then calculated again and the difference represents the 

amount of information that was lost by the feature permutation. This method can 

identify all of the predictive information in the feature, including information that is 

caused by feature interaction. However, it is important to note that this is not equivalent 

to a Wrapper method, that removes the feature and re-trains the algorithm. When the 

algorithm is initially trained, any information that is contained in the features will be 

used for construction of the hypothesis and relied upon for future classification. After 

feature permutation, the algorithm is not re-trained and the predictive information 

that was contained within the feature will continue to be falsely relied upon. Any 

useful information will cause degradation in accuracy upon permutation, even if it is 

redundant and therefore, this method is unable to identify redundancy. Svetnik et al. 

(2004) use this method for feature selection, however, Chen and Lin (2006) suggest that 

the method is computationally expensive for high dimensional data and apply a pre­

processing technique that examines the individual performance of each feature. Again, 

this pre-processing can eliminate features with strong interaction. 

7.2.2 Evaluation of Feature Importance in Tree Construction 

At each node in the construction of a Random Forest, a feature is selected randomly 

and used to split the node and maximise the information gain. As already mentioned, 

the information gain can be used as a measure of correlation between the feature and 

the class. Borisov et al. (2006) use these measures of feature importance to increase the 

performance of the learning algorithm. Although these measures appear to be simpler 

forms of information gain, there are some benefits to using this method over standard 

information gain. As discussed in Section 6.4, each terminal node in a decision tree can 

be viewed as a learner that has been trained on the features that were used in the path 

from the root. Consequently, the information gain values are not simply measures of the 

individual feature performance, but measures of the ability of the feature in a variety of 

possible feature subsets. Figure 7.1 shows how these feature subsets are formed in the 

construction of the tree. In this example feature X 3 is tested on data that has previously 

been partitioned on features Xl and X 2 . It is clear from the XOR example that if the 

data was split using one of the features and then split again using the other feature, 

that the second split would reveal the relevance of the feature. This is consistent with 

the idea of local relevance (Friedman, 1994), and therefore, there is some allowance for 

relationships between the features with this method. 

The problem with using the average information gain achieved by each feature, is that 

some nodes in the tree are easier to split than others. The number of ways a node can 

be split is determined by its composition, and the measure of information gain is clearly 

more unreliable when partitioning smaller nodes. The following describes a measure 

to weight each value of information gain according to its reliability (Rogers and Gunn, 
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FIGURE 7.1: Example of possible tree showing which features were used at each node. 

2005). 

7.2.3 A Node Complexity Measure 

This measure attempts to assign a value of reliability to a node by examining its com­

position and calculating the information associated with the splitting of such a node. 

For every split, the data is projected along a single feature. The assumptions made here 

are that once the data is projected into the one dimensional space, no data points lie on 

top of one another and that during the split optimisation procedure, all possible splits 

are found. Figure 7.2 shows the possible split positions for one node once the data is 

projected into the one dimensional space. 

I I I I 
I I I I 

X: :-e-:-)( L 0 :X: I 
I I I , 

FIGURE 7.2: Illustration of possible splits in one dimensional space of a node consisting 
of 3 data points from one class and 2 from the other. 

The problem is now a matter of considering how many possible arrangements of the 

data are possible. For binary classification problems, IXli is the number of examples 

contained in the node and IXz+1 is the number of positive examples. The number of 

possible arrangements is given by the combinatorial function, 

(7.1) 

However, some of these arrangements are merely reflections of each other and will, 

therefore, result in the same optimised information gain. For example, a node containing 

only two examples, one of each class, will have two possible arrangements. The optimal 

split value is the same in both cases and this node can yield only one information gain 
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TABLE 7.1: Number of unique arrangements for node 

IXll IXl+1 Au 

EVEN EVEN ( IXzI/2 ) 
IXl+I/2 

ODD ODD ( (IXzI- 1) /2 ) (IXl+1 - 1) /2 

ODD EVEN ( (IXll -1) /2 ) 
IX1+1/2 

EVEN ODD 0 

value. Using the assumptions stated above, this example would be split perfectly by 

all features and would result in a maximum information gain value. Therefore, this 

illustrates the need for effective weighting of the nodes. 

Not all of the arrangements have a reflected twin because some arrangements are sym­

metrical about their centre. These symmetrical arrangements shall be referred to as 

unique and their frequency designated by Au. Their counterparts shall be referred to as 

non-unique and their frequency can be written ( I Xz I ) - Au. Au can be calculated 
IX1+1 

by considering the arrangements of half of the data and then taking the reflection to 

form the other half. This technique is dependent upon whether the values of IXzI and 

IX/+I are odd or even and the corresponding functions are given in Table 7.1. 

The probability of a random occurrence of a particular unique arrangement, Ux is simply 

the probability of any particular arrangement, 

(7.2) 

As non-unique arrangements have two possible configurations, their corresponding prob­

ability, N x is, 

(7.3) 

Assuming that the arrangements are random, the node complexity measure, ¢, which is 

the information associated with the split of node lis, 

which can be simplified to, 

(7.5) 
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This is a suitable weight for calculating the average information gain because it repre­

sents the node complexity and therefore, how useful it is in identifying the predictive 

power of the feature. 

7.3 The Feature Sampling Distribution 

The measures of feature importance can be used to select the most relevant features, but 

another application is to include all of the features in the learning process and assign 

a weight to each one. Random Forest can be adapted quite easily to achieve this. The 

standard Random Forest method chooses a feature at each split randomly from the 

set of all possible features. This feature sampling distribution is typically uniform but 

can be altered to incorporate the learned feature importance (Rogers and Gunn, 2005; 

Borisov et al., 2006). By applying this technique, features that are deemed to be more 

important are chosen with a greater probability. Standard decision trees consider all 

features at each stage of construction and choose the feature that provides the highest 

information gain. Altering the feature sampling distribution can be viewed as increasing 

the similarity of the randomly created trees to a tree that incorporates feature selection 

in its construction. If a feature selection algorithm is applied to Random Forest, then 

the class of possible trees that can be built is restricted and the diversity is reduced. By 

altering the feature sampling distribution, a trade off is introduced between increasing 

the strength of the base learners and maintaining the diversity of the ensemble. The goal 

is then to maximise the generalisation performance by optimising the feature sampling 

distribution in terms of these factors. This method alters the distribution from which the 

base learners are created, so that the more accurate learners are created more frequently. 

This can be compared to some ensemble feature selection algorithms which actively 

choose accurate base learners, and is also similar to methods that alter the combination 

strategy such that the learners are weighted according to their accuracy. 

The alteration of the feature sampling distribution can be achieved in two ways. A 

two-stage method can be adopted, where an evaluation of the feature importance is 

conducted first and then applied to the construction of a Random Forest. Another 

approach is to combine the evaluation stage and the construction stage in a parallel 

scheme. As each tree in the forest is constructed, it can be used to evaluate the features 

and update the feature sampling distribution accordingly. The two-stage approach has 

the advantage of developing a reliable and accurate estimate of the ideal feature sampling 

distribution from which to build the forest. The parallel approach would be faster but 

has the problem of instability during the initial stages of the algorithm. When the forest 

is still small, there is very little information about the features from which to update 

the sampling distribution. Initial overweighting of some features may create a sampling 

distribution that is far from ideal and the algorithm may not be able to recover from this 

as more trees are added. An implementation of the parallel method by Borisov et al. 
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(2006) uses the measure of gain as the feature importance metric. The weights of the 

features, v, are updated according to, 

T 

v(Xf , T) = ) . .!mp(Xf , 0) + L Gain(Xf , t), (7.6) 
t=l 

where Gain(Xf , t) is the average reduction in impurity that is caused by feature X f in 

the construction of the tth tree. Imp(Xf'O) is taken as the impurity of the whole data 

and>" is a parameter which is used to control the rate at which the feature sampling 

distribution changes. By increasing the value of>.. the rate is decreased and the problem 

of initial overweighting is overcome. However, if>.. is too high, the sampling distribution 

will not change significantly and a forest very close to a standard Random Forest will be 

produced. Therefore, there is a need for tuning of the>.. parameter, which can typically 

be achieved using cross validation on the training data but the advantage of the small 

computational requirement is lost. 

This method is comparable to the FEATUREBoosT algorithm (O'Sullivan et al., 2000), 

described in Chapter 3, which also alters the selection of features to improve ensemble 

performance. However, although these two techniques have apparent similarities, their 

underlying processes are very different. The method described here employs Random 

Forest base learners, which have a high level of diversity, and attempt to improve their 

accuracy by utilising the more relevant features. Conversely, the FEATUREBoOST algo­

rithm employs accurate base learners and attempts to promote diversity by forcing the 

algorithm to consider the less relevant features. 

7.3.1 A Stable Parallel Method Using Confidence intervals 

A method of avoiding the cross validation stage would certainly be beneficial to the 

performance of the algorithm but a way of estimating the optimal convergence rate 

of the sampling distribution is required. The method introduced here, is to calculate 

a confidence interval for the estimate of expected information gain for each feature. 

Effectively, by observing the information gain values one is sampling from a distribution, 

which is assumed here to be normal. What is then required is the ability to approximate 

the probable distance between the mean of this normal distribution and the observed 

average information gain. Although the mean and variance of the true distribution are 

unknown, this can be accomplished by using the pivotal quantity method. 

Given the sample mean (observed average information gain), IG, the sample variance, 

a2 , the sample size, m and the true mean of the distribution f.L. The pivotal quantity is, 

TG - f.L 

a/vm' 
(7.7) 

and has a Student's t distribution with m - 1 degrees of freedom. A confidence interval 
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can then be constructed within the distribution of the pivotal quantity, 

(7.8) 

which gives the bound, 

[IC - fo,Ic - ~] . (7.9) 

The process then consists of taking the observed information gains for each feature, 

calculating the sample mean and sample variance and deciding what level of confidence 

to use. A value of 0.95 for, is typical. As the Student's t distribution is symmetrical, 

the optimal boundary values will occur when ql = -Q2' These can be calculated from 

the value of, by using an inverse Student's t distribution and then used to give the 

confidence interval around the sample mean. 

If the sample mean is calculated using the weighted method then the sample variance 

must be weighted accordingly. Also, the sample size m must be re-examined, as a defini­

tion is required for a unit observation. A sensible value should be close to the information 

associated with the split of a node, averaged over all nodes in the tree. However, this is 

not known before the construction of the forest and must remain constant throughout. 

These confidence intervals can then be used to update the feature sampling distribution 

by choosing values for each feature that lie within each confidence interval that yield 

the most uniform distribution. Here, the average information gain for each feature is 

viewed as assuming a value within a range of possible values, which are determined 

by the corresponding confidence interval. These average information gains can then 

be normalised and applied directly to set the feature sampling distribution, but their 

values must first be chosen such that they remain similar to each other and within their 

respective ranges. One simple method for achieving this, is to find the midpoint between 

the maximum lower bound and minimum upper bound of all of the confidence intervals. 

The value for each feature is then chosen to be as close to this value as possible without 

falling outside of the corresponding confidence interval. 

This method will only update the feature sampling distribution when it has a confidence 

equal to ,. As more trees are added to the forest, the confidence in each estimate in­

creases and the confidence intervals become smaller. Consequently, the feature sampling 

distribution becomes less uniform and closer to the ideal. 

The confidence interval construction requires the calculation of an inverse Student's 

t distribution and the mean and variance of information gain for each feature. The 

experiments in this thesis update the confidence intervals after the construction of every 

tree, in order to utilise the information concerning the features as soon as it is available. 

However, the computational load can be reduced, if desired, by updating the confidence 

intervals after a larger number of trees have been constructed. The cost of this is that 

some of the trees will be constructed using a feature sampling distribution that has not 



Chapter 7 Random Forest Methods 

Algorithm 3: Parallel Update of Feature Sampling Distribution 

Input Training Data X, Y = (Xl, YI), ... , (XN, YN) 
Test Data XI = x~, ... , xM 

Initialise Feature sampling distribution v (Xl, ... , XF) = (*, ... , *) 
Confidence Parameter e.g. 1=0.95 
Sets of gain samples IG (Xi) = empty: i = 1 to F 
Number of Learners e.g. T = 100 

Algorithm For t = 1 to T 

Output 

end. 

X BAG = Use Bagging to sample N examples from X, Y 
Train ht using X BAG and Vt 

For l = all non-terminal nodes in ht 

XI = Feature used to partition l 

end. 

Add information gain achieved by XI, 
when partitioning l, to the set IG (XI) 

For i = 1 to F 

end. 

Calculate lower (low (Xi)) and upper (upp (Xi)) 
confidence bounds using I 

midPoint= ~ (maxi {low (Xi)} + mini { upp (Xi) } ) 
For i = 1 to F 

end. 

If midPoint> upp (Xi) 
v (Xi) = UPP (Xi) 

Else If midPoint< low (Xi) 
v (Xi) = low (Xi) 

Else 
v (Xi) =midPoint 

Normalise v 
Classify XI using ht 

H (xD = sgn ('Li=l hd xD) : i = 1 to M 

Test Data Predictions H (x~, ... , xlvi) 

been created from all of the information that is available. 

7.4 A Feature Selection Threshold 

76 

It is conjectured that the average information gain during the construction of decision 

trees is a measure of feature relevance. As previously discussed, it tests the feature on 

different areas of the input space and consequently accounts for the different relation-
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ships between features. If these measures of feature importance are applied to learning 

algorithms which are based on decision trees, it also contains the bias of the learning 

algorithm. However, the worst performance of any given feature for the splitting of 

any given node, is that no reduction in entropy is possible and an information gain 

of zero is achieved. This means that the average information gain for any feature is 

the mean of a non-negative sample. The problem that arises from this, is that a fea­

ture which is completely irrelevant will produce some reductions in entropy purely by 

chance. Therefore, a non-zero feature importance value will be produced. This problem 

is particularly detrimental to performance when there are a relatively large number of 

irrelevant features and these values are used to update the feature sampling distribution. 

This is because, the probability of sampling any of the irrelevant features is the sum of 

all of their individual probabilities and although these may be small, the total can easily 

become significant if there are many. To overcome this problem, a feature selection 

threshold is introduced here, which approximates the expected information gain that is 

achieved by an irrelevant feature, given the size of the node being split. 

Assuming that the task is binary classification and the data is projected onto a single 

feature, a node of size IAlI, containing IX1+1 positive examples has ( IXl! ) possible 
IX1+1 

arrangements. If the feature is irrelevant then these arrangements occur with equal 

probability. By constructing all of the possible arrangements and finding the maxi­

mum information gain for each one, the expected value is calculated for various node 

constitutions and the outcome is shown in Figure 7.3. 
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FIGURE 7.3: Expected information gain for nodes containing various numbers of posi­
tive and negative examples 

Due to the huge computational cost of evaluating the expected information gain in this 

manner, it is not a feasible method for feature selection, however, it can be approximated. 

For a fixed node size, the maximum expected information gain appears to be when there 

are equal numbers of positive and negative examples and the minimum occurs when the 

ratio is most unbalanced. Therefore, the minimum expected information gain for a node 

of fixed size lXII, occurs when it contains only one example of one class, IXI+I = 1 or 
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lXI-I = 1. This can be calculated in the following manner. 

The information gain is the difference between the parent entropy and the combined 

child entropy and as the parent entropy for any given composition is fixed, only the 

combined child entropy needs to be considered. The case used here is that there is only 

one positive example, IXI+I = 1, and the optimal split leaves this example in the left 

node of size I AlII. The right node then contains only negative examples and will have 

an entropy of zero. The combined child entropy is then, 

Ent (l1, l2) = I XlI I ( 1 1 1 IXlIl- 11 IXlIl- 1) - -- -- og2 -- + og2 -'-----'---
IXll I XlI I I XlI I I XlI I I XlI I 
1 

-IXll ((IXlIl- 1) 10g2 (IXlIl- 1) -IXllllog2IXlIl) (7.10) 

Differentiating by I XlI I then gives, 

8 1 
8 I XlI I [Ent (ll, l2)] = IXll (log2IXlIl-10g2 (IXlll- 1)) (7.11) 

For the case when I XlII is not equal to 1 and consequently, must be a positive value 

of a least 2, the entropy is always increasing with IXlIl. Therefore, the optimal split 

is obtained when I XlI I is minimal. For a parent node of size lXII, the single positive 

example can assume only one of the possible IXz! positions. If IXll is taken to be even, 

then by symmetry only I~d of the arrangements need to be considered. The expected 

child entropy can then be written, 

E [Ent (ll, l2)] 2 "" I XlI I ( 1 1 1 I XlI I - 11 IXI1I- 1) 
IXlll.-1:'~l IXll I XlI I og2 I XlI I + I XlI I og2 I XlI I 

2 (l.-1:'d/
2 

(IXlIl _ 1)1.-1:'111 - 1) 
-IX 12 10g2 II IX 11.-1:'111 

I 1.-1:'1l1=1 11 

1 1 
IXIllog21Xli - IXll (7.12) 

Re-introducing the parent entropy, the expected information gain for a node of size IXli 

with only one example of one class is a lower bound on the general expected information 

gain of an irrelevant feature E [J Cf FJ, and can be written, 

E [JCfF ] > _1 __ IXli 11 cr -,----IX-:-,-II---,------l 
- IXli IXll 0",2 IXll 

(7.13) 

The expected information gain for the case when there are equal numbers of each class 

cannot be calculated as easily. By examining the data that was generated for the con­

struction of Figure 7.3 and plotting the expected information gain for the case when 

the classes are equal on a logarithmic scale, it is seen that this quantity gives an upper 
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bound on the general expectation and can be approximated by the following expression, 

E [JefF] < C~ll) -0.82 (7.14) 

These two quantities can be viewed as upper and lower bounds on the expected informa­

tion gain that is achieved by splitting a node of size IXl! and are shown in Figure 7.4. The 

mid-point between these two bounds represents an estimate of the expected information 

gain of an irrelevant feature and can be applied as a feature selection threshold. The 

assumption that is made here is that no data points lie on top of one another and all of 

the possible split positions are realisable. However, the Random Forest algorithm uses 

Bagging, which samples the data with replacement to form different sets from which to 

construct the base learners. As a result of this some data points are selected multiple 

times and will consequently lie on top of one another. This limits the possible arrange­

ments and results in a higher observed information gain. To account for this, Bagging is 

performed as usual to form a sample of the training data and then the multiple instances 

are removed. 
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FIGURE 7.4: Bounds on the expected information gain for varying node size. The 
parent entropy of a node containing a single example of one class is also plotted, as this 

represents the maximum achievable information gain for this case. 

7.4.1 Hypothesis Testing 

The approximated value E [JefF], is assumed to be the worst case performance of any 

feature. If a feature is irrelevant then the value of the mean Je, should be equal to 

E [JefF]. However, as the technique uses a sample to estimate this mean, there is 

still a good chance that it will be greater than this threshold. Consequently, irrelevant 

features may be chosen. Hypothesis testing can be employed here to discover the degree 

of confidence there is in a feature being relevant. Each feature has a set of samples of 

information gain, corresponding to when it was used to split data. On each of these 
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occasions the expected information gain of an irrelevant feature is also approximated. 

If the feature is irrelevant, then these values should approximate one another. The 

variable that is used here is the difference between these values and it is assumed to 

have a normal distribution. The thresholding method is then equivalent to rejecting the 

feature if the observed mean, IG - E [IGfF], is less than or equal to zero. 

The null hypothesis is then set up to represent an irrelevant feature by assuming that 

the true mean, IL, is less than or equal to zero. 

Ho : IL ::; 0 (7.15) 

The alternate hypothesis must be the complement of this. 

Ha: IL > 0 (7.16) 

The null hypothesis can then be rejected if the corresponding likelihood is less than some 

confidence value, ,. If IG - E [IGfF] is less than 0 then the null hypothesis cannot be 

rejected. However, if it is greater than zero then a one tailed t test can be performed, 

where the null hypothesis can be rejected with confidence 1 - , if, 

I G - E [I Gf F] - IL 
(J > q. (7.17) 

Vm 

Where m is the sample size and a is the standard deviation of the sample. The left 

hand side of this inequality is a variable which has a Student's t distribution with m - 1 

degrees of freedom. The value of q represents a threshold, where the likelihood function 

at this point is equal to ,. This simplifies to, 

IG - E [IGfF]Jiii ----'------'---'-- > q. 
a 

(7.18) 

It is important to note that while this method will identify features that are relevant 

with some degree of confidence, the relevance of the remaining features will be unknown. 

Therefore, as a feature selection technique, this method may discard some relevant 

features. 

The following pseudo-code describes how this algorithm identifies a relevant subset of 

features, 

The reliability of the estimated relevance of a feature is dependent upon the number of 

samples of information gain, m, that are gathered. This number is dependent upon the 

dimensionality of the data, the number of ensemble members and the size of the trees. 

The trees supply the samples of information gain, which are randomly allocated to each 

of the F features. If £t denotes the set of non-terminal nodes in hypothesis ht, then the 

average number of samples of information gain for each feature, that are gathered in a 
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Algorithm 4: Feature Selection Through Random Forest 

Input Training Data X, Y = (xl,yd, ... , (XN,YN) 

Initialise Confidence Parameter e.g. 1 = 0.05 
Subset of relevant features S = empty 
Sets of gain samples Ie (Xi) = empty: i = 1 to F 
Number of Learners e.g. T = 100 

Algorithm For t = 1 to T 

Output 

end. 

X BAG = Use Bagging to sample N examples from X, Y 
Train ht using X BAG 

For l = all non-terminal nodes in ht 

XI = Feature used to partition l 

end. 

gain (l) = Information Gain achieved by partition of l 
Add (gain (l) - E [IefF ]) to set Ie (XI) 

For i = 1 to F 

end. 

Compute likelihood of null hypothesis LO from set Ie (Xi) 
If LO < 1 

Add Xi to set S 

Subset of relevant features S 

Random Forest of size T, can be written, 

81 

(7.19) 

Therefore, the number of required trees may vary between data sets. Data which yields 

smaller trees or has higher dimensionality may require a larger number of trees to be 

constructed. 

7.5 Local Feature Relevance 

In Chapter 6 it was discussed how some learning problems contain features that are 

only relevant within a local area of the space. An example of this was the Multiplexor, 

as in Example 6.2. This kind of feature interaction leads to some features only being 

useful when they are used in conjunction with another specific subset of features. Some 

algorithms have been developed to identify and exploit this local relevance, by exam­

ining the discriminative capabilities of features within different localities (Hong, 1997; 
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Domingos, 1997; Howe and Cardie, 1997; Apte et aI., 1997). 

Ensemble algorithms that promote diversity through manipulation of the feature space, 

have the potential to uncover feature interaction by exploring different feature subsets. 

Puuronen and Tsymbal (2001) take advantage of this random subset exploration by 

employing local weights for each hypothesis. The intuition behind their method is that 

the combination of random feature selection and the exploitation of local hypothesis 

performance, implicitly performs local feature selection. This dynamic integration can 

also be applied to Random Forest (Tsymbal et aI., 2006), and there is an extra advantage 

to employing Random Forest with this technique. As Random Forest utilises the Bagging 

algorithm to sample the training data, each learner has an independent set of data in the 

form of the out-of-bag examples. This set of data can be used to assess the performance 

of the learner, without the need for cross-validation. 

Another issue that is considered by Tsymbal et aI. (2006), when applying dynamic 

integration to Random Forest, is that of the distance measure. Previously, their tech­

nique defined the locality of an example through the Euclidian distance metric. When 

analysing data with decision tree induction, this measure may be inappropriate. Fig­

ure 7.5 shows an example decision tree and the corresponding split positions in the input 

space. The two examples are in close proximity in terms of the Euclidian distance, but 

are partitioned into very different sections of the tree. In this case, the local performance 

of the tree on one example is not representative of the ability of the tree on the other. 

x 0 

x 

FIGURE 7.5: Example showing possible split locations of a decision tree model and 
the corresponding tree. The two examples appear close in the Euclidian sense, but are 

classified by different sections of the tree. 

Their method measures the similarity of two examples as the proportion of decision trees 

in a Random Forest for which the examples lie in the same leaf node. 

(7.20) 

where h~ (x) is the leaf node position of example x in hypothesis ht. This similarity 

measure is calculated with respect to the classification model and is, therefore, a more 

reliable quantity. 
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Each prediction is weighted according to the performance of the hypothesis on the out­

of-bag set and the similarity of these examples to the test example. 

(7.21 ) 

where XPOB represents the set of out-of-bag data for hypothesis ht. They empirically 

found that cubing the similarity measure gave good performance. The output of the 

ensemble for test case x is then given by, 

H (,) ~ sgn (t w,(x) h, (X)) . (7.22) 

7.5.1 A measure of local relevance 

When constructing a Random Forest, statistics can be gathered on the performance 

of each feature. As previously discussed, Random Forest has the ability to discover 

feature interaction through its nature of testing features within the context of other 

features. The statistics that have been presented earlier in this chapter have the capacity 

to account for feature interaction, but are still formulated as global measures for the 

relative importance of each feature. However, these measures can be adapted to reflect 

their local ability. The partitioning of each node provides a measure of information gain 

for the selected feature, which represents the degree of correlation to the target. This 

correlation is relevant to the specific area that is being partitioned, and this area can 

be defined by the set of training data that is within the node. The following describes 

a method to record the average gain that is achieved by each feature, for each example 

(Rogers and Gunn, 2007). The feature relevance statistics can then be stored in a matrix 

that is of equal size to the training data. 

An observed value of information gain represents the reduction in entropy of the class 

labels, which is the average information required to describe the data. 

E (Y X) = _ '" I {i : Xi E Xl, Yi = y} I 1 I {i : Xi E Xl, Yi = y} I 
nt ,I ~ I Xli og2 I Xli (7.23) 

If the measures of feature relevance are to become example-specific, then the quantity 

should reflect the reduction in information that is required to describe the example in 

question. The information is dependent on the class of the example and can be written, 

I f ( "l)=-l 0" l{i:XiEXI,Yi=Yj}1 
n 0 XJ' 0 0 2 IXII ' (7.24) 

and the example-based feature relevance statistic, F R (XI, Xi), is the average observed 

reduction in this information for example Xi when partitioning on feature XI. 
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7.5.2 Local Feature Sampling 

The statistic introduced in Section 7.5.1 builds up a picture of how useful each feature is 

across the training data. If applied correctly, this example-based feature information can 

be used to improve classifier performance. In Section 7.3 the relative measures of feature 

importance are used to alter the feature sampling distribution of a Random Forest, but 

the distribution is fixed and remains constant for all partitions. Here, the motivation 

is to adapt the Random Forest algorithm so that it utilises the local knowledge, whilst 

maintaining the diversity of the ensemble. The method described by Rogers and Gunn 

(2007) constructs a separate feature sampling distribution for each node, accounting for 

the data that is being partitioned. This can be achieved by calculating the average 

feature relevance over the data concerned. The relative weight v, for each feature Xf, 

in node l, can be written, 

~o FR(Xf x o
) 

(X l) = L.n:XiE:t'l ' 2 

V f, lXII' (7.25) 

which is normalised to form a distribution. 

It is important to note that the measure of gain can assume a negative value and, 

therefore, so can the corresponding sampling probability. In this case, the sampling 

probability is set to zero. 

The pseudo-code on the following page describes how each tree IS constructed with 

localised sampling, 

7.6 Conclusions 

This chapter has discussed the utility of employing Random Forest as a mechanism for 

identifying feature relevance. The values of information gain that are observed during 

Random Forest construction are proposed as a measure of feature importance. The 

reliability of this measure was examined and an improvement was suggested through 

weighting the observations with a new measure of node complexity. 

Several methods for employing these measures of feature relevance to improve Random 

Forest performance have also been proposed. A feature weighting technique, that up­

dates the feature sampling distribution during Random Forest construction, has been 

introduced that implements a statistical technique to control the rate of update. A 

feature selection threshold has been derived through an analysis of the expected per­

formance of an irrelevant feature and the notion of combining this with a hypothesis 

testing technique has also been proposed. 

It has been discussed that, as Random Forest tests features in different areas of the space, 
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Algorithm 5: Localised Feature Sampling 

Input 

Initialise 

Bagged training data X BAG , yBAG 

[

(Xl, Xl) (XF' xI) 1 
Feature relevance statistics F R 

(Xl,XN) .. (XF,XN) 

Tree node 1 = 1 
Tree ht = Unexpanded root node 1 
Xl = X BAG 

Algorithm While(Tree Complete = FALSE) 
For j = 1 to F 

end. 

Output ht 

v (Xj) = I:i:X;EXI F R (Xj, Xi) 

If(v(Xj) <0) 

end. 
Normalise v 

v(Xj)=O 

X f = Choose random feature using distribution v 
Partition node 1 using feature X f to maximise information gain 
Add child nodes 11 and l2 to ht, along with corresponding 
subsets XlI and Xl2 

1 = 1 + 1 
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it incorporates the ability to identify local feature information. An example-specific 

measure of feature relevance has been presented to exploit this idea, which measures 

the individual gain of examples. A method has also been described for altering the 

feature sampling distribution to accomodate these measures that takes advantage of 

local information and improves ensemble accuracy. 



Chapter 8 

Empirical Evaluation of Random 

Forest Methods 

8.1 Datasets 

The propeties of the data sets used in these experiments are shown in Table 8.1, including 

the number of relevant features where known. The Wisconsin Breast Cancer (WBC), 

Pima Diabetes, Sonar, Ionosphere and Votes are available from the DCI Repository 

(Blake and Merz, 1998). 

TABLE 8.1: Data Set Properties 

Data Set No. Examples No. Features No. Relevant Features 
WBC 683 9 ? 
Pima 768 8 ? 
Sonar 208 60 ? 

Ionosphere 351 34 ? 
Votes 435 16 ? 

Friedman 200 10 5 
Simple 300 9 2 

Madelon(Train) 2000 500 ? 
Madelon (Valid ) 600 500 ? 

Simple is an artificial dataset consisting of 9 features and 300 examples. The output is 

generated according to the function, 

(8.1) 

The remaining seven features are redundant and consequently this data set should benefit 

significantly from feature selection algorithms. It is important to note that as the input 

values to the function are drawn from a uniform distribution on [0,1]9, feature 2 has a 

86 
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larger influence on the target. 

The Madelon dataset is synthetic and was used in the NIPS 2003 Feature Selection 

Challenge (Guyon et al., 2006). 

8.2 Irrelevant Features and Random Forest 

To demonstrate the effect of irrelevant features on Random Forest, the five real data 

sets are tested with various numbers of additional random features, generated from a 

uniform distribution. The number of irrelevant features is varied between 0 and 30. For 

each experiment, the data sets are randomly partitioned into 90% for training and 10% 

for testing. 100 trees are consructed to form the forest and classify the test data. This 

is repeated over 100 trials and the results for the extreme cases of 0 and 30 irrelevant 

features are shown in Table 8.2. The average tree sizes represent the number of nodes 

within each tree, averaged over the entire forest. 

TABLE 8.2: Error rates and average tree sizes in Random forest for 0 and 30 irrelevant 
features. Values in brackets for the error rates are the corresponding variances. 

Data Set Error(O) Av. 'free(O) Error(30) A v. 'free(30) 
WEe 0.0293(0.0004) 55.7 0.0370(0.0004) 148.7 
Pima 0.2525(0.0022) 265.3 0.2999(0.0025) 334.1 
Sonar 0.1671(0.0066) 81.9 0.2190(0.0071 ) 89.4 

Ionosphere 0.0756(0.0016) 61.0 0.0975(0.0021 ) 97.2 
Votes 0.0586(0.0012) 51.1 0.0982(0.0021 ) 123.7 

Figure 8.1 shows how the error rates increase steadily, as more irrelevant features are 

added to the forest and Figure 8.2 demonstrates how the average tree size also increases 

with the presence of irrelevant features. It is important to note that in some cases the 

error rate does not increase as rapidly, because there is sufficient data to allow the trees 

to grow larger and compensate. This increase in tree size is undesirable as it increases 

the computational load. 

8.3 The Node Complexity Measure 

It is proposed that our node complexity measure can improve the estimate of average 

information gain. In order to examine this, the effect of our measure on the informa­

tion gain distributions is evaluated. The Simple dataset is used to generate 5000 trees 

and the information gain values for all of the features are recorded. The values are 

discretised into intervals of size 0.01 so that each feature has a set of bins. As each 

node is split, the algorithm increments the bin corresponding to the feature being used 

and the information gain value obtained. As a comparison, one method increments the 
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FIGURE 8.1: Error rates of Random Forest on five real data sets with varying numbers 
of additional irrelevant features. Error bars have a width of one standard deviation 

recorded over 100 trials. 
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FIGURE 8.2: Average tree sizes created by Random Forest on five real data sets with 
varying numbers of additional irrelevant features. Error bars have a width of one 

standard deviation recorded over 100 trials. 
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bins by a single unit, the other method increments by the measure of node complexity, 

¢(l). Incrementing by this value shows the effect of weighting the information gains in 

this manner. The results for three of the features are shown in Figure 8.3. The middle 

example is feature two, which carries the most information about the target. The left 

example is the next most important feature and the example on the right is a redundant 

feature. 

It is particularly interesting to note the spikes that occur when unit weighting is used. 

At first glance, they appear to simply be noise but closer inspection reveals that they 

occur in the same places for all three features. The extreme right hand spike is the 

information gain that is achieved by the perfect split of a node made up from half of 

each class. This can occur when a node containing two examples, one from each class, 
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FIGURE 8.3: Observed density functions of information gain for three features from 
the Simple dataset. Observed density using unit weighting (top) and observed density 

using node complexity weighting (bottom). 
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is split. The spike immediately to the left of the maximum one can occur when a node 

containing two examples of one class and one of the other is split perfectly. These smaller 

nodes are much easier to split and can be split perfectly by features which carry very 

little information about the target. This is illustrated by the eradication of the spikes 

in the lower plots, where the samples of information gain are weighted according to the 

node complexity. This result clearly demonstrates the ability of the node complexity 

measure to improve the estimate of feature importance by analysing the reliability of 

each sample. 

8.4 Feature Selection by Decision Tree Induction 

The feature weighting/selection techniques introduced here, involve the average infor­

mation gain achieved during construction of a Random Forest as a measure of feature 

importance. These methods are compared to a correlation-based technique Hall (2000), 

and the MDL motivated decision tree method described in Section 2.4.2. Firstly, the 

decision tree method is tested in two experiments. The first experiment builds a deci­

sion tree, optimising the information gain at each split in terms of split position and 

feature used. The tree is pruned using the MDL constraint and the features that were 

used in the tree are the ones selected. These features are then applied to constructing 

a Random Forest with a uniform feature sampling distribution and this forest is used 

to classify the test data. The second experiment is conducted in exactly the same way, 

except that instead of only selecting features which were used in the tree, all features 

that were deemed feasible at any point are selected. The term feasible refers to features 
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that could split a node without violating the MDL pruning condition, even if it was not 

the feature that maximised the information gain. The first approach has the problem 

that the number of features that can be selected is limited by the size of the tree. The 

second approach should not have this problem, but may select some redundant features 

that do not provide any additional target information. 

The data sets are partitioned into 90% for training and 10% for testing. The experiment 

is repeated over 100 trials and the results are averaged. Table 8.3 compares Random 

forest without feature selection to the decision tree methods. 

TABLE 8.3: Classification error rates of Random Forest without feature selection (RF), 
and with decision tree feature selection, selecting only features that were used (DTl), 
and all feasible (DT2). The values in brackets are the corresponding variances of test 

Data Set 
WBe 
Sonar 
Votes 
Pima 

Ionosphere 
Friedman 

Simple 

error over the 100 trials. 

RF 
0.0293(0.0004) 
0.1671 (0.0066) 
0.0586(0.0012) 
0.2525(0.0022) 
0.0756(0.0016) 
0.1670(0.0070) 
0.0870(0.0028) 

DTl 
0.0310(0.0005) 
0.2567(0.0077) 
0.0418(0.0008) 
0.2674(0.0024) 
0.0892(0.0019) 
0.1975(0.0077) 
0.0147(0.0005) 

DT2 
0.0251(0.0003) 
0.2043(0.0056) 
0.0625(0.0015) 
0.2381(0.0018) 
0.0614(0.0017) 
0.1910(0.0068) 
0.0147(0.0005) 

It can be seen that the method of only selecting the features that were used (DT1), 

performs very badly for certain data sets. This is due to the number of features that 

can be selected being limited by the size of the tree. However, this method does per­

form significantly better for the votes data set, as this data contains a large amount 

of redundancy and the second method is unable to remove redundancy as it selects all 

features that appear useful. The second method performs well for most data sets but 

can suffer like all decision tree based methods, as the features chosen at any node may 

not be optimal in regards to the subsequent splits. 

8.5 Updating The Feature Sampling Distribution 

Examining the effect of using the average information gain as a feature weighting method 

is explored here. The following experiments use the relative average information gain 

of each feature to alter the feature sampling distribution, in an attempt to improve 

the accuracy. The parallel method is employed to form confidence intervals on the 

estimates of feature importance and the feature sampling distribution is updated after 

every tree. The assumption that the information gain values are normally distributed 

is an approximation as the values are bounded on [0,1]. However, the shape of the 

distribution approximates normal if the node complexity weighting is used. 

The initial feature sampling distribution is uniform and the algorithm keeps the most 
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uniform distribution that is within the confidence interval of every feature. As the 

measures of information gain are weighted, a value for a unit of weight is required. This 

value should represent the information of the average split in a tree built on the dataset 

concerned. This value is approximated using a fraction of the node complexity of the 

entire data. 

100 trials are conducted, using 90% of the data for training and 10% for testing. On 

each of the trials the rate of decrease of average confidence interval size is recorded and 

the result averaged over all of the trials. This represents the rate of convergence towards 

the final feature sampling distribution and the results are shown in Figure 8.4. 

WBC 
- Pima 

Ionosphere 
Sonar 

- - Votes 
- Friedman 
-- Simple 

oL-~ __ -L __ ~ __ ~ __ L-__ L-~ __ -L __ ~~ 

a 10 20 30 40 50 60 70 80 90 100 

No. Trees 

FIGURE 8.4: Convergence rates for the feature sampling distribution. This shows how 
the average confidence interval size becomes smaller as more trees are added to the 

forest. 

The convergence rates vary with the size of the trees constructed and with the dimen­

sionality of the data. The Pima data set has few features and produces large trees so 

the features are picked more often within each tree. In contrast, the Sonar data set has 

60 features and produces smaller trees. 

A two-stage method is also applied where a single decision tree is built on the training 

data before construction of the forest to produce estimates of the feature importance. 

The average information gain is calculated using the measure of node complexity as 

before. However, a standard decision tree performs a search through all of the features 

for each split. Therefore, an information gain value for every feature is supplied at each 

node, regardless of whether or not the feature was used. The forest is then constructed 

using the resultant fixed feature sampling distribution. 

These methods are also compared to the CFS algorithm of Hall (2000), which selects 

a subset of features that have high correlation with the class and low correlation with 

each other. The selected features are then used to construct a Random Forest using a 

uniform feature sampling distribution. 

Table 8.4 shows the error rates for Random Forest with four feature selection/weighting 
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methods: The best of the two decision tree methods, which selects all of the feasible 

features (DT), the CFS algorithm (CFS), weighted sampling using confidence interval 

method (CI WS RF) and the two-stage method using a single tree for evaluation (TREE 

WS). 

TABLE 8.4: Test errors showing the improvement that three feature relevance identifi­
cation techniques give to Random Forest construction. The values in brackets are the 

corresponding variances of test error over the 100 trials. 

Data Set DT CFS CI WS RF TREEWS 
WBC 0.0251(0.0003) 0.0245(0.0004) 0.0241(0.0003) 0.0288(0.0004) 
Sonar 0.2043(0.0056) 0.2329(0.0070) 0.1624(0.0066) 0.2276(0.0068) 
Votes 0.0625(0.0015) 0.0452(0.0010) 0.0491(0.0011) 0.0455(0.0008) 
Pima 0.2381(0.0018) 0.2560(0.0020) 0.2461(0.0021) 0.2634(0.0019) 

Ionosphere 0.0614(0.0017) 0.0625(0.0015) 0.0614(0.0015) 0.0592(0.0015) 
Friedman 0.1910(0.0068) 0.1785(0.0056) 0.1630(0.0062) 0.1720(0.0081) 

Simple 0.0147(0.0005) 0.1693(0.0037) 0.0387(0.0010) 0.0217(0.0007) 

Both methods of updating the feature sampling distribution improve the accuracy for 

some data sets. This improvement is most noticeable for the Simple data set, which 

contains a number of irrelevant features. The confidence interval method does not 

significantly reduce the accuracy for any data set tested here, suggesting that the problem 

of initial over weighting of the features has been avoided. The two-stage tree method is 

shown to work well here, although it does significantly reduce the accuracy on the Sonar 

data set. Both methods compare favourably to the CFS algorithm, as CFS eliminates 

relevant features for some of the data sets, and consequently degrades the accuracy 

significantly. 

8.6 Feature Selection Thresholding 

To view the suitability of the measures of expected information gain as feature selection 

thresholds, 100 trees are constructed on the Simple dataset and the average information 

gain for each feature was recorded. The measures of expected information gain for 

irrelevant features are also calculated. Figure 8.5 shows that the seven irrelevant features 

are within the bounds that an irrelevant feature is expected to be in and the two relevant 

features are shown to be more important. 

The expected information gain of an irrelevant feature is approximated at each node of 

forest construction by the mid-point of the two bounds, given by Equations 7.13 and 7.14. 

This represents the ability of a feature that contains no useful information concerning 

the target and can be used as a feature selection threshold. Hypothesis testing can 

also be used as an extension to this by including only the features that were considered 

relevant with a degree of confidence. In each experiment, 100 trees are constructed to 

obtain the average information gain for each feature, using the node complexity measure. 
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Along with these estimates of feature importance, the corresponding approximations for 

the performance of an irrelevant feature are also calculated. This information is then 

used to select a subset of the features and a further 100 trees are constructed based 

on this subset. Again, the data is partitioned into 90% training and 10% testing and 

the experiment is repeated over 100 trials. These techniques are compared against RF 

without feature selection and the CFS algorithm of Hall (2000), which is a correlation­

based method. The observed error rates are shown in Table 8.5 and the average number 

of features selected are shown in Table 8.6. 

TABLE 8.5: Error rates for RF when using different feature selection strategies. With­
out feature selection (standard RF), the CFS algorithm (CFS) and using the expected 
information gain of an irrelevant feature for thresholding (RF Thr) and with hypothesis 

testing (RF HT). 

Data Set DT CFS RF Thr RFHT 
WBC 0.0251(0.0003) 0.0245(0.0004) 0.0228(0.0003) 0.0228(0.0003) 
Pima 0.2381 (0.0018) 0.2560(0.0020) 0.2530(0.0024) 0.2530(0.0024) 
Sonar 0.2043(0.0056) 0.2329(0.0070) 0.1762(0.0092) 0.1910(0.0089) 

Ionosphere 0.0614(0.0017) 0.0625(0.0015) 0.0708(0.0015) 0.0744(0.0015) 
Votes 0.0625(0.0015) 0.0452(0.0010) 0.0602(0.0013) 0.0575(0.0011) 

Friedman 0.1910(0.0068) 0.1785(0.0056) 0.1610(0.0064) 0.1515(0.0069) 
Simple 0.0147(0.0005) 0.1693(0.0037) 0.0750(0.0026) 0.0300(0.0010) 

The CFS algorithm performs significantly better on the Votes data set, as this contains 

a large proportion of redundant features. However, the CFS algorithm significantly 

degrades in performance on a number of data sets as it can eliminate relevant features. 

It can be seen that using the expected information gain of an irrelevant feature performs 

well on most data sets and even those where the accuracy is degraded slightly, the 

dimensionality is greatly reduced. Hypothesis testing is also shown to be beneficial as 

it enables further dimensionality reduction. 
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TABLE 8.6: Number offeatures used with different feature selection strategies. Without 
feature selection (standard RF), the CFS algorithm (CFS) and using the expected 
information gain of an irrelevant feature for thresholding (RF Thr) and with hypothesis 

testing (RF HT). 

Data Set DT CFS RF Thr RFHT 
WBC 9.00(100.0%) 8.62(95.8%) 9.00(100.0%) 9.00(100.0%) 
Pima 5.36(67.0%) 3.12(39.0%) 4.00(50.0%) 4.00(50.0%) 
Sonar 19.66(32.8%) 14.61(24.4%) 58.39(97.3%) 40.47(67.5%) 

Ionosphere 31.29(92.0%) 14.33(42.2%) 32.83(96.6%) 32.60(95.9%) 
Votes 14.00(87.5%) 1.00(0.0625) 12.95(80.9%) 12.43(77.7%) 

Friedman 3.22(32.2%) 3.06(30.6%) 7.99(79.9%) 5.63(56.3%) 
Simple 2.00(22.2%) 1.00(11.1%) 7.06(78.4%) 3.91(43.4%) 
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The accuracy of the RF HT method is dependent upon the number of trees that were 

constructed to form the estimates of the average information gain for each feature. Two 

parameters for this method are the number of trees constructed for this purpose and the 

level of confidence used. Here the Madelon data set (Guyon et al., 2006), is employed 

as it is already separated into a training and validation set. 10,000 trees are constructed 

on the training set to form estimates for the average information gain. The confidence 

level can then be varied to alter the features that are selected. These features are then 

used to represent the data and a further 1000 trees are constructed on the training set 

in order to test the validation set. The results are shown in Table 8.7. 

TABLE 8.7: Effect of applying feature selection technique to Madelon data set and 
varying confidence level. The validation set error and the Out-of-Bag estimate of test 

error (OOB Est.) is shown. 

Confidence Error OOB Est. #Features Av. Tree Size 
0.05 0.3800 0.3825 257 1236 

0.025 0.3567 0.3660 232 1232 
0.01 0.3783 0.3575 196 1226 
0.001 0.3583 0.3255 130 1209 

0.0001 0.3167 0.3050 82 1180 
10-6 0.2333 0.2445 52 1130 
10-9 0.1800 0.1770 30 1025 

As the confidence level is lowered, it becomes more difficult to reject the null hypothesis 

and deem features to be relevant. The Out-of-Bag estimate of test error is gained 

through testing each training point on the subset of the forest which was not included 

in the bagged set. It does not use the test data and can therefore, be used to optimise 

the confidence level. 
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8.7 Error Convergence 

The effect of feature selection on the error convergence rate can be tested by calculating 

the error as each tree is added to the forest. This is demonstrated here using the Madelon 

data set. The experiment is performed twice, once without feature selection and once 

using 100 trees to obtain estimates of the avergage information gain and using these 

with RF HT with a confidence level of 0.05. The results are averaged over 100 trials and 

shown in Figure 8.6. 
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FIGURE 8.6: Comparison of error convergence for Madelon with RF. Top shows conver­
gence without feature selection. Bottom shows convergence with RF HT and confidence 

level of 0.05. 

The improved accuracy that is generated by the feature selection method is immediately 

apparent, but the effect on the error convergence is also clearly visible. It can clearly be 

seen that after 100 trees have been added to the forest, the error has not yet converged 

when all of the features are present. However, when the feature selection scheme is used, 

the algorithm is close to convergence. 

8.8 Local Feature Relevance 

This section analyses the potential for local relevance identification within Random For­

est. The method that was introduced in Section 7.5 is implemented to construct mea­

sures of example-based feature importance. To demonstrate the effect of this method, a 

simple two-dimensional problem is created and shown in Figure 8.7. The examples are 

generated by drawing feature values from a uniform distribution on [0,1] and labelling 

them according to, 
y 

y 
+1: X 2 > 2.5Xl 0.75 

-1 : otherwise 
(8.2) 

From Figure 8.7, Xl appears to be more useful at the global level as it can partition 
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FIGURE 8.7: Artificial Data generated by Equation 8.2 and possible split locations for 
feature I, as shown by the dashed lines. 
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the data as shown by the dashed lines. Feature X 2 does not appear to be as useful at 

the global level, but can be considered locally useful within the area that is between the 

dashed lines. This data set is used to construct a Random Forest of 100 trees and record 

the example-based feature relevance. 

Figure 8.8 shows the feature relevance that is observed for the different examples. The 

top plot shows the original data and the middle and bottom plots show the relevance 

measures for features Xl and X 2 respectively. The measures of feature relevance are 

ordered along feature Xl so that the bottom two plots represent the importance of the 

feature as you move across the space from left to right. 
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FIGURE 8.8: Observed local relevance for the artificial data. Top plot shows original 
data, middle plot shows local relevance for feature Xl (Feat 1 ReI) and bottom plot 
shows the same for feature X 2 (Feat 2 ReI). The dashed line illustrates the feature 
importance for the positive examples and the solid line shows the same for the negative 

examples. 

The figure shows the importance of feature Xl to the outer examples, which are approx­

imately those that are not within the dashed region of Figure 8.7. The opposite effect is 
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observed for feature X 2 , which contains very little relevance for the outer examples, but 

is more relevant to the central area. From the figure, the two features can be considered 

to have approximately equal relevance within the dashed central area. 

The local relevance measures of the features in Figure 8.8 appear to be inversely related 

to each other and the reason for this is as follows. The local relevance for example Xi 

and feature Xj is defined as the the average observed reduction in information, required 

to describe Xi, that is caused by feature X j . 

where If represents the feature used to partition node l, Xl represents the subset of data 

within node land Lt is the subset of non-terminal nodes within hypothesis ht . 

The value of gain (l, Yi) is the reduction in the information length of examples belonging 

to class Yi, that was yielded from the partitioning of node l. This reduction can some­

times be negative as the information length may increase as an example is partitioned 

into new nodes. As the trees are grown as large as possible, the leaf nodes of each tree 

contain examples from only one class and thus produce an information length of zero. 

Therefore, the total reduction in information length for any example in any tree is given 

. by the information length of the example in the root node of that tree. If the numerator 

of equation 8.3 is denoted as FRRAW (Xj,Xi), then the sum of these values for any 

example across the features can be written, 

F T 

~ F RRAW (Xj, Xi) = ~ ~ I (Xi E Xl) gain (l, Yi). (8.4) 
j=l 

This value equals the sum of the information lengths of an example belonging to class 

Yi in the root nodes of all the trees in the ensemble. Therefore, it is constant for all 

examples belonging to class Yi. 

F F 

~ F RRAW (Xj, Xi) = ~ F RRAW (Xj, Xi') 'v' i, i' : Yi = Yi' (8.5) 
j=l j=l 

For the example data set, there are only two features and the values for F RRAW for these 

features must sum to the corresponding constant for the class concerned. If Lt (1) cor­

responds to the root node of hypothesis ht and Info (Xi, Lt (1)) denotes the information 

length of example Xi in this node, as defined in Equation 7.24, then, 

T 

FRRAW (Xl, Xi) + FRRAW (X2, Xi) = ~Info (Xi, Lt (1)). (8.6) 
t=l 

Therefore, an inverse relationship would be expected between these quantities. 
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The statistics that are actually employed incorporate the denominator of equation 8.3. 

However, as the features are selected randomly with equal probability, the value of the 

denominator is expected to be approximately the same for each feature and simply 

produces a scaling effect. 

T T 

L L I (Zf = Xl) I (Xi E Xl) ~ L L I (Zf = X2) I (Xi E Xl) (8.7) 
t=l IELt t=l IEL t 

8.8.1 Localised Feature Sampling 

Here, the method of observing and applying this feature relevance is tested on the real 

and artificial data sets. A Random Forest of 100 trees is constructed on the training 

data and the example-based feature relevance is recorded. Then, a second forest is 

constructed on the training data, but this time using the feature information to alter 

the sampling distribution, as described in Section 7.5. The second forest also consists of 

100 trees and is used to classify the test data. The results are averaged over 100 trials 

and in each trial the data is randomly partitioned into 90% for training and 10% for 

testing. Table 8.8 compares the results of this method to the standard Random Forest 

algorithm, Random Forest with the dynamic integration method of Tsymbal et al. (2006) 

and the results of DIVBOOST W2 from Chapter 5. 

TABLE 8.8: Classification error rates of different ensemble algorithms; Random Forest 
(RF), Random Forest with dynamic integration (RF DYN INT), Random Forest with 
localised sampling (RF LOCAL) and DrvBoosT W2. The values in brackets are the 

corresponding variances of test error over the 100 trials. 

Data Set RF RF DYN INT RF LOCAL Divboost W2 
WBe 0.0293(0.0004) 0.0301(0.0004) 0.0278(0.0004) 0.0325(0.0005) 
Sonar 0.1671(0.0066) 0.1333(0.0060) 0.1552(0.0065) 0.1329(0.0056) 
Votes 0.0586(0.0012) 0.0516(0.0011) 0.0477(0.0008) 0.0395(0.0007) 
Pima 0.2525(0.0022) 0.2648(0.0024) 0.2283(0.0020) 0.2458(0.0021) 

Ionosphere 0.0756(0.0016) 0.0703(0.0015) 0.0683(0.0018) 0.0614(0.0015) 
Friedman 0.1670(0.0070) 0.1745(0.0070) 0.1620(0.0066) 0.1445(0.0057) 

Simple 0.0870(0.0028) 0.0610(0.0020) 0.0403(0.0015) 0.0240(0.0009) 

It can be observed that applying the measures of example-based feature importance to 

the feature sampling distribution improves the accuracy of Random Forest for all of 

the data sets. The method also performs better than Random Forest with dynamic 

integration on all but the Sonar data set. The averaged pairwise Q-statistics and base 

learner errors are shown in Tables 8.9 and 8.10. These tables show that employing local 

feature knowledge produces more accurate learners that are slightly less diverse, when 

compared to standard Random Forest. 

The DIVBOOST algorithm performs better for the artificial data sets as these contain 

irrelevant features, which are mostly removed by the implicit feature selection of the 
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TABLE 8.9: Averaged pairwise Q-statistic when using the different learning ensembles. 

Data Set RF LOCAL RF Divboost W2 
WBC 0.6051 0.5882 0.3381 
Sonar 0.1267 0.1772 0.0939 
Votes 0.4728 0.6475 0.1325 
Pima 0.4466 0.5351 0.0409 

Ionosphere 0.4326 0.4671 0.2368 
Friedman 0.1120 0.2067 0.0228 

Simple 0.1928 0.2395 0.1265 

TABLE 8.10: Average base learner errors when using the different learning ensembles. 

Data Set RF LOCAL RF Divboost W2 
WBC 0.0645 0.0529 0.1672 
Sonar 0.3518 0.3244 0.3552 
Votes 0.1226 0.0762 0.2618 
Pima 0.3405 0.3099 0.4336 

Ionosphere 0.1708 0.1392 0.2165 
Friedman 0.3646 0.3184 0.4093 

Simple 0.2669 0.1291 0.1123 

DIVBOOST learners. This implicit feature selection may also explain why DIVBOOST 

performs well for the Votes data set, as this particular problem contains a high level of 

redundancy. 

By focussing on a local area of the space and employing a feature selection scheme 

within decision tree induction, DIVBOOST can be viewed as performing a degree of local 

feature selection. To examine the similarities of these methods, the levels of feature 

importance can be observed as the DIVBOOST method proceeds. The weight, Wt (Xi), 

that DIVBOOST assigns to example Xi at iteration t, can be combined with the measures 

of example-based feature relevance to produce a feature relevance measure for hypothesis 

ht, 
N 

divFRt(Xj ) = LWt{Xi)FR(Xj,Xi). (8.8) 
i=l 

This measure represents the importance of feature Xj at iteration t of the DIVBOOST al­

gorithm, that is expected from the local feature knowledge. This value can be compared 

to the actual change in feature selection that is produced by DIVBOOST. A measure of 

feature importance that is specific to a decision tree can be formulated as the frequency 

with which the feature is selected (Frey and Fisher, 2003), 

(8.9) 

where Zf represents the feature used to partition node land Lt represents the set of 

non-terminal nodes within ht. 
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Figure 8.9 shows the plots for the different features within the Friedman data set. As the 

DrvBoosT algorithm progresses, the values of Equations 8.8 and 8.9 are compared. The 

local feature relevance measures are the averaged observations from the local feature 

selection experiments involving Random Forest. The plots show how the decision trees 

alter their feature selection in a manner that is expected from the local feature relevance 

estimates. For the Friedman data set, features 1 to 5 are relevant and features 6 to 

10 are irrelevant. The features 1,2 and 4 are used with a high frequency in the initial 

stages and are gradually used less frequently as the algorithm progresses. Conversely, 

the frequency with which the irrelevant features are used gradually increases. However, 

although there is an apparent degree of correlation between these measures, their relative 

values between different features are not the same. In the latter stages of the algorithm, 

DrvBoosT still does not select the irrelevant features as often as the relevant ones. In 

contrast, the expected feature importance converges to approximately the same level for 

all features. This illustrates how the local relevance technique with Random Forest can 

still assign a high degree of perceived relevance to irrelevant features, particularly when 

examining the ambiguous examples. 
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FIGURE 8.9: Measures of feature importance for each of the ten features in the Fried­
man data set during DIVBOOST operation. Dashed lines indicate expected feature 
relevance using local feature knowledge and solid lines represent the actual frequency 

that the feature is used. 

To further investigate the potential of localised Random Forest, the method is combined 

with the feature selection strategy that was previously introduced. A Random Forest 

of 100 trees is constructed and used to gather the example-based feature information, 
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along with the global measures of information gain for each feature. The hypothesis 

testing method is conducted with a confidence paramter of 0.025 to remove the features 

which are perceived to be irrelevant, and then a second forest is constructed using the 

remaining features. This forest locally alters the feature sampling distribution according 

to the example-based information that was gathered from the first forest. This second 

forest is then used to classify the test data and the results are shown in Table 8.11. 

TABLE 8.11: Classification error rates when employing Random Forest with different 
feature selection strategies. 

Data Set RF RFHT RF LOCAL RFHT 
+ RF LOCAL 

WBC 0.0293(0.0004) 0.0228(0.0003) 0.0278(0.0004) 0.0264(0.0003) 
Sonar 0.1671(0.0066) 0.1910(0.0089) 0.1552(0.0065) 0.1729(0.0072) 
Votes 0.0586(0.0012) 0.0575(0.0011) 0.0477(0.0008) 0.0459(0.0010) 
Pima 0.2525(0.0022) 0.2530(0.0024) 0.2283(0.0020) 0.2452(0.0023) 

Ionosphere 0.0756(0.0016) 0.0744(0.0015) 0.0683(0.0018) 0.0575(0.0013) 
Friedman 0.1670(0.0070) 0.1515(0.0069) 0.1620(0.0066) 0.1425(0.0047) 

Simple 0.0870(0.0028) 0.0300(0.0010) 0.0403(0.0015) 0.0367(0.0012) 

The combination of the two methods compares well to each of the techniques individ­

ually. By eliminating irrelevant features, locally weighting the features or combining 

the two, the Random Forest algorithm can be significantly improved. However, the 

hypothesis testing method can remove some partially relevant features, which may be 

useful when employing the localised Random Forest. For example the feature selection 

scheme removes approximately half of the features of the Pima data set. This reduction 

in dimensionality has little effect on the classification accuracy of the standard Random 

Forest, but clearly impedes the performance of localised Random Forest. 

8.9 Concl usions 

This chapter has shown that the Random Forest algorithm can suffer significantly with 

the presence of irrelevant features. The lack of implicit feature selection within the 

algorithm allows irrelevant features to be used which consequently reduce accuracy. 

Irrelevant features have also been shown to increase the size of the resultant trees and, 

if there is sufficient data, the algorithm can compensate to some extent by allowing the 

trees to grow larger. However, larger trees represent an increased computational load 

and are undesirable. Another reason for the use of feature selection with Random Forest 

is the effect that irrelevant features have on the error convergence rate. This effect has 

been demonstrated and an improvement can be achieved with the implementation of a 

suitable feature selection scheme. 

The average information gain achieved during Random Forest construction achieves good 

identification of feature relevance if treated correctly. The node complexity measure has 
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been shown to improve the reliability of this feature importance by compensating for the 

node constitution. The algorithms that were introduced in Chapter 7 were implemented 

to investigate the application of these feature relevance measures. Including all of the 

features and altering their sampling probabilities allows exploration of the trade-off be­

tween improving the accuracy of the base learners and maintaining the diversity within 

the ensemble. This can be performed by either using a parallel method or a two stage 

method. One of the problems associated with employing a parallel method is that the 

algorithm may proceed incorrectly if the sampling distribution is updated too quickly. 

It is shown that by constructing confidence intervals on the estimates of feature impor­

tance, the rate of convergence can be controlled and the stability maintained. Through 

examination of the expected performance of an irrelevant feature and the employment of 

hypothesis testing, the feature selection threshold is shown to achieve good performance 

in terms of improved accuracy and dimensionality reduction. 

It has been shown that local feature relevance identification can be achieved with an 

example-based relevance measure for Random Forest, which was illustrated with a sim­

ple example. The measures were also applied to the feature sampling distribution in a 

manner that was introduced in Chapter 7. This localised feature sampling was shown to 

capitalise on the local knowledge to improve learner accuracy whilst maintaining ensem­

ble diversity. This technique was also compared to the DIVBOOST method, introduced 

in Chapter 4. The DIVBOOST algorithm concentrates on ambiguous examples whilst 

employing decision trees with implicit feature selection. Although the structure of the 

algorithms are quite different, similarities between their mechanisms have been shown. 

Whilst focussing on an ambiguous local area of the space, DIVBOOST selects different 

features in a manner that is consistent with the local feature knowledge that was gained 

from Random Forest. 



Chapter 9 

Application to the Relevance of 

Eye Movements 

9.1 Introduction 

An important application where machine learning methods have proved useful is that of 

information retrieval. When users search for particular topics, they rely on the system 

to identify relevant material from simple text queries. These text queries can often be 

ambiguous and the search can be complicated further because the target of the search 

may be unclear to the user. Therefore, it is useful to incorporate some form of feedback 

concerning the relevance of viewed documents so that the system can formulate a more 

accurate interpretation of the user's interest. Explicit feedback can be given in the 

form of the user telling the system which of the search results are relevant, but this is 

laborious and undesirable. A better approach is to utilise some form of implicit feedback 

and one way that this can be achieved is through studying the user's eye movements 

as they examine the documents. Constructing eye movement data and relating this 

information to the relevance of viewed documents is an increasingly studied machine 

learning problem. 

9.2 Eye Movement Data 

Hardoon et al. (2007) analysed the eye movements of subjects as they searched for 

documents on a given topic. Their data consists of articles from 25 topics, from which 

they first construct a classifier to identify each topic based on word occurrences. Each 

document is represented by an example, and the feature values consist of how often each 

word occurs in the document. These examples can then be viewed as points in a high 

dimensional space with the dimensionality equal to the size of the dictionary. Using 
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this data, they train a set of linear support vector machines to distinguish each topic 

from the rest. This produces an 'ideal' weight vector for each topic and enables them 

to construct a regression model from the eye movement data to the coefficients of these 

vectors. When a new query is sought, the eye movement information is recorded and 

the regression model uses this data to construct a new weight vector. Each coefficient 

represents the perceived relevance of the corresponding word and this weight vector can 

then be used to predict the relevance of documents based on their word frequencies. 

9.2.1 Eye Movement Features 

The eye movement information consists of 22 features which describe how a subject 

examines each word in the document. Salojarvi et al. (2005) explain the different features 

that are used. A subject's eye movement trajectory can be segmented into fixations and 

saccades. A fixation occurs when the eye remains fairly motionless and is inspecting a 

specific area, while saccades are rapid eye movements that occur between fixations. Once 

the eye movement data is segmented in this way, a set of features can be constructed. 

The following describes the features that are used with the corresponding number of 

each feature given in the brackets. 

Information concerning the users interest can be contained in their initial reaction to a 

word and some of the features correspond to the initial processing of the word. Conse­

quently, the duration of the first fixation to the word (6) and this duration as a ratio of 

the sum of the durations of all fixations (21) are recorded. Other forms of this informa­

tion are the summed durations of all of the fixations to the word during the first pass 

(7) and the number of fixations to the word when it is first encountered (2). Salojarvi 

et al. (2005) also include the fixation duration that preceded the first fixation to the 

word (5) and the fixation duration that followed the first fixation (8). Two binary fea­

tures are also used to analyse the differences between initial and late processing. These 

are whether or not a fixation to the word occurred when the corresponding line was 

encountered for the first time (3), and when it was encountered for the second time (4). 

Three other features were used which cover all fixations to the word. These are the 

sum of the durations of all of the fixations to the word (14), the number of fixations to 

the word (1) and the mean duration of fixations to the word (15). These three features 

contain redundancy through interaction as the mean duration can be calculated from 

the sum of the durations and their number. Therefore, only two of these features are 

necessary as they are capable of explaining the third. 

The position within the word of each fixation can also provide information concerning 

the processing of the word. The optimal viewing position when the eye trajectory first 

lands on a word is approximately a quarter of the way along the word. This position 

minimises the recognition time of the word and deviation from this optimal position can 
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influence subsequent eye movements. Three position features are included and these are 

measured as distances from the beginning of the word. They are the distance to the 

location of the fixation prior to the first fixation on the word (11), the distance to the 

location of the first fixation on the word (12) and the distance to the last fixation on the 

word (13). Two other distance features are included that concern the saccades to and 

from the word. These are the distances between the location of the first fixation on the 

word to the previous fixation location (9), and the location of the last fixation on the 

word to the next fixation location (10). 

Regressions occur when a fixation is made to a previously read word. Generally, eye 

movements are controlled by low-level brain functions, but higher level functions can 

interfere if something needs to be clarified (Salojarvi et al., 2005). Therefore, a regression 

is indicative of a higher level process and four features are measured to represent this. 

These are the number of regressions that originated from the word (16), the sum of the 

durations of these regressions (17) and the sum of the durations of the regressions to 

the word (19). Sometimes the processing of a word may continue whilst the next word 

is being read. Therefore, the reaction to the word may cause a regression that initiates 

from the next word. To incorporate this information, a binary feature is included which 

states whether or not a regression originated from the following word. 

Other features are included that are also indicative of higher level processing. Pupil 

dilation is one such factor and the mean pupil diameter during fixation to the word (20) 

is used. Sometimes less important words can be skipped if they are easily predicted and 

the data records the number of words that are skipped before the fixation onto the word 

(22). 

9.2.2 Identifying Relevant Words 

The objective here is to identify when a user regards a word as relevant to their search 

topic, using the information from their eye movements. To achieve this, it is necessary 

to first identify the important words for discriminating between the topics. This task is 

relatively simple as it is just a matter of identifying words that are frequently used in a 

particular topic and less so in other topics. Therefore, there are no complex interactions 

expected between the features and a univariate test is suitable. Also, it is not desirable 

to remove redundancy in the data as all of the words that are indicative of the topic are 

wanted. 

For each topic, the documents are labelled according to whether they are relevant to the 

topic (+ 1) or not (-1). The features of this data are the inverse document frequencies 

for each word. 

X (doc, word) = wf (word, doc) log (NN ) 
word 

(9.1) 
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where wi (word, doc) is the number of times word occurs in document doc, N is the 

number of documents and Nword is the number of documents which contain word. 

Each feature/word is tested by employing it to partition the documents. The partition 

is chosen to maximise the information gain and these measures of gain represent the 

importance of the word for identifying the topic in question. For each topic, the d most 

important words are selected and these are provided in Appendix A. 

9.2.3 Data Construction 

It is now possible to construct a binary classfication problem where the target to be 

learned is whether or not the user regards a particular word as being relevant to their 

search topic. Hardoon et al. (2007) collected eye movement data for subjects as they 

searched for documents on a particular topic. Here, this data is used to form a binary 

classification task. This is achieved through examination of the examples for which users 

are inspecting one of the d most discriminative words for their search topic. If the user 

marks a document as relevant, the eye movement features for all of the examined words 

that are in the set of most discriminative are kept as an example and allocated to the 

positive class. If the document is marked as irrelevant, the eye movement features for 

all of the examined words that are in one of the sets of most discriminative words for 

any other topic are kept and allocated to the negative class. This data set contains eye 

movements concerning the inspection of discriminative words, and the learning problem 

is to use the eye movement information to identify when a user recognises a relevant 

word. 

One limitation with constructing the data in this way is that subjects may not recognise 

a word as being relevant to their search and, therefore, exhibit similar eye movements 

to those associated with irrelevant words. Also, the subjects are told to search for a 

specific topic, but may have interests in other areas and regard words from other topics 

as relevant to them. Another problem is that the set of words that have been chosen 

to represent each topic may be good discriminators, but are not necessarily expected 

to provoke a large human response. For example, the word 'given' is measured as the 

best discriminator for topic Speeches, but would not be considered synonymous with 

the topic. Also, the limited number of documents with which to find the best words can 

result in obscure words being considered usefuL The 5th best discriminator for topic 

Speeches is the word 'quebec', which may be regarded as more relevant to topic Cities. 

The word 'laws' is measured as the 15th best discriminator for topic Elections, but is 

possibly more suitable for topic Court Systems. This possible confusion can lead to a 

user regarding relevant words as irrelevant and vice versa. 

The value of d determines the number of examples in the data set. A small value of d will 

create few examples, but the data will consist of the most important words. Conversely, 
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a large value of d will result in more examples, but will include some less useful words. A 

value of 15 is chosen for d such that a sufficient number of examples is selected without 

including too many irrelevant words. The data set consists of 3744 examples, which 

equates to eye movement information for a total of 3744 viewed words. Of these words, 

1594 are relevant to the search topic and labelled positive, and 2150 are relevant to a 

different topic and labelled negative. 

9.3 Experiments 

The algorithms that have been described in this work are tested on this data set. The 

data is randomly partitioned into 90% for training and 10% for testing. Each experiment 

constructs 100 trees on the training data with which to classify the test data and this is 

repeated over 100 trials. Each of the algorithms are tested in this way and the results 

are shown in Table 9.1. A method of always predicting the majority class would result in 

an error of 0.4257. As these learning techniques achieve accuracies that are significantly 

better than this, it is evident that the eye movement information can be used as an 

indicator of user preference. 

TABLE 9.1: Ensemble error (Error), average base learner error (B.E.) and average Q 
statistic (Q-Stat) for different ensemble algorithms. 
Method Error B.E. Q-Stat 

RF 0.3853(0.0006) 0.4369 0.4174 
Local RF 0.365Q(0.0005) 0.4424 0.2302 
Adaboost 0.3896(0.0006) 0.4712 -0.0493 
Divboost 0.3671(0.0005) 0.4743 0.0332 
Bagging 0.3860(0.0005) 0.3947 0.9439 

Random Rotation 0.4088(0.0006) 0.4161 0.8925 
peA Rotation 0.3823(0.0006) 0.3933 0.9259 

Plots showing how the average pairwise Q statistic changes as the ADABOOST and DI­

VBOOST algorithms progress are shown in Figure 9.1. It can be seen that ADABOOST 

exhibits a low level of correlation during the initial stages, but this gradually increases as 

the method proceeds. Conversely, DIVBOOST begins with high correlation and increases 

the diversity as each learner is added to the ensemble. Table 9.1 shows that ADABOOST 

and DIVBOOST produce learners with very similar accuracy, but the ADABOOST learners 

are more diverse and slightly more accurate. However, DIVBOOST produces a signifi­

cantly more accurate ensemble. This data set contains a large amount of noise and it 

has already been shown that ADABOOST can be misled by outliers. Figure 9.2 compares 

the average final weighting of the examples that are produced by ADABOOST and DIV­

BOOST. ADABOOST gives very high weights for the examples that are most commonly 

misclassified, whilst DIVBOOST is not misled by these. It can be seen that DIVBOOST 

allocates lower weights to these outliers, which results in a better ensemble. 
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FIGURE 9.1: Plots illustrating how average pairwise Q statistic varies with ensemble 
size for ADABOOST and DIVBOOST. 
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Employing localised sampling with random forest results in a significant improvement 

over the standard algorithm. This method constructs 100 trees using standard Ran­

dom Forest to gather the local feature information as described in Section 7.5.1. The 

measures of local feature relevance can be summed across all of the data and are shown 

in Figure 9.3. Binary and discrete features introduce a bias on the measures of feature 

importance. These features have a limited set of split positions and consequently achieve 

lower gain values. Features 1, 2, 3, 4, 16, 18 and 22 are discrete or binary and, except 

for feature 22, exhibit low measures of relevance. The most useful feature for identify­

ing relevant words to the search topic is feature 21, which is the duration of the first 

fixation to the word as a ratio of the durations of all fixations. This ratio is more useful 

than simply using the duration of the first fixation, as with feature 6. The second most 

discriminative feature is feature 20 which is the mean pupil diameter during fixation 

to the word. This supports the notion that pupil dilation is indicative of higher level 

processing. 

The localised sampling method produces learners that are less accurate than the stan­

dard algorithm, but significantly more diverse. This is unexpected as the feature se­

lection should improve the accuracy of the learners at the cost of reducing some of the 

diversity. This increase in diversity is possibly due to the local feature selection cor­

rectly identifying diverse local models within the data which produces a variety of good 
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For this data set, peA rotation produces a significantly more accurate ensemble than 

random rotation. This is due to a high level of redundancy within the data which results 

in peA producing more useful representations. The random grouping of subsets within 

this algorithm enables a sufficient level of diversity to be created, whilst still gaining 

benefit from the peA technique. 

Examining all of these methods, localised sampling with Random Forest and DIVBOOST 

result in the most accurate ensembles. Although they achieve very similar performance, 

DIVBOOST produces less accurate learners with a much greater level of diversity. Ran­

dom Forest, Bagging, ADABoosT and peA rotation are not as accurate as local Random 

Forest or DIVBOOST, but achieve similar performance to each other. The levels of ac­

curacy and diversity of the base learners of Bagging and peA rotation are very similar, 

but the the slight increase in both of these quantities with peA rotation yields a slightly 

better ensemble accuracy. The Random Forest learners are less accurate and far more 

diverse which results in an ensemble that is competitive with these methods. The AD­

ABOOST learners are the most diverse, but due to the problems that the algorithm 

experiences with outliers, the resultant ensemble is less accurate. 
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It can be concluded here that information concerning user preference can be inferred from 

their eye movement data. The learning techniques employed here utilise eye movements 

to discriminate between words that are considered relevant and irrelevant by the user. 

These methods achieve an accuracy that is significantly better than random and advocate 

the employment of this information. Certain aspects of the data result in some differing 

levels of performance between these algorithms. It has been previously shown that 

ADA BOOST can perform poorly in the presence of outliers and the high level of noise 

within this data demonstrates the benefits of employing DIVBOOST. Also, redundancy 

within this data means that PCA rotation is preferable over random rotation. Random 

Forest performs well, but can be significantly improved through the use of localised 

sampling, which employs knowledge of local feature relevance. 

The techniques that are demonstrated here can help to determine the relevance of viewed 

words. To enable this information to improve document retrieval, this can be extended 

such that the relevance of words is used to rank other documents. A possible way that 

this can be achieved is through employing a soft-valued output which reflects the degree 

of relevance to the search topic. Unseen documents can then be ranked according to 

these relevance measures and their corresponding word frequencies. 



Chapter 10 

Conclusions 

10.1 Summary of Work 

A strong relationship exists between the diversity of an ensemble and its accuracy. This 

thesis has highlighted the need for diversity and has reviewed methods for measuring 

and promoting this aspect of learning ensembles. Many algorithms have been designed 

to exploit this concept by manipulating the conditions through which each ensemble 

member is constructed. These algorithms can be viewed as altering the distribution over 

the hypothesis space from which each learner is drawn. Through performing this, these 

methods explore the trade-off between the accuracy and diversity of the base learners. 

Boosting methods can employ accurate base learners, whilst promoting diversity through 

progressively focussing on more awkward aspects of the problem. The mechanism of 

Random Forest improves the performance of the Bagging algorithm by randomising the 

feature representation to produce a more diverse set of learners. Other methods employ a 

selection strategy to explicitly measure and optimise the levels of accuracy and diversity. 

A new method has been introduced that promotes diversity in an ensemble by focussing 

the learner on ambiguous examples. This ambiguity was related to the concept of the 

margin and concentrates the algorithm on the regions of the class boundaries. There­

fore, the method produces a diverse set of learners in a similar way to that of other 

boosting techniques. However, the method possesses the capacity to produce more ac­

curate learners as it was shown to be more tolerant to outliers. Employing this strategy 

produced significant improvements in accuracy when compared to other well known 

ensemble methods. 

Diversity promotion can be achieved through a manipulation of the feature space, al­

though these methods typically weaken the learners by discarding some feature infor­

mation. A method has been introduced that retains all of the feature information and 

exploits the bias of decision tree learners. The technique achieves a high level of diver-
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sity through random rotations of the data and has been shown to compare well to other 

diversity promotion methods. 

It is known that the performance of learning algorithms can be improved through the 

selection of a suitable feature subset. This reduction in dimensionality can result in 

higher learner accuracy, a reduced computational load and an improvement in the in­

terpretability of an induced hypothesis. Here, it has been observed that, due to their 

nature, feature manipulation techniques are particularly susceptible to the presence of 

irrelevant features. The Random Forest algorithm has been shown to suffer significantly 

with the presence of such features. The lack of implicit feature selection within the 

algorithm allows irrelevant features to be used and consequently, reduces the accuracy. 

Irrelevant features have also been shown to increase the size of the resultant trees and 

if there is sufficient data, the algorithm can compensate by allowing the trees to grow 

larger. However, larger trees represent an increased computational load and are undesir­

able. Another motivation for applying feature selection to Random Forest is the effect 

that irrelevant features can have on the error convergence rate. This has been explained 

through the concept of the margin and demonstrated with experimental results. 

Due to their subset exploration, ensemble algorithms that promote diversity through fea­

ture manipulation can be employed to perform feature relevance identification. Random 

Forest is a particularly useful tool for this purpose, as it provides measures of informa­

tion gain for each feature. These are more than simply measures of correlation as the 

features are tested within different feature subsets and, therefore, interactions between 

the features can be accounted for. These measures of information gain are improved by 

considering the size and composition of the node being split. A node complexity measure 

has been introduced to achieve this through considering the information associated with 

partitioning such a node, and is shown to perform well. 

A feature weighting method can be adopted by altering the feature sampling distribu­

tion to reflect the learned feature importance. The relative average information gain 

achieved by each feature provides useful values from which the sampling probabilities 

can be weighted. A parallel method has been introduced, that employs confidence in­

tervals to control the rate at which the sampling distribution is updated. This method 

initially produces diverse learners and, through weighting the features, gradually alters 

the hypothesis distribution to favour more accurate hypotheses. Therefore, the mech­

anism of this algorithm is in contrast to that of boosting approaches, which employ 

accurate learners and then alter the hypothesis distribution to favour more diverse hy­

potheses. Although weighting the features in this manner is shown to benefit Random 

Forest, the nature of the technique yields non-zero weights for irrelevant features, which 

can be detrimental to performance. Therefore, further improvement is possible through 

the identification and removal of these irrelevant features. 

The identification of irrelevant features can be achieved by comparing the performance 
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of each feature with an approximation of what is expected from an irrelevant feature. 

A feature selection method has been introduced, where hypothesis testing is used to 

identify features that achieve an information gain which is significantly greater than the 

expected value of an irrelevant feature. Experiments demonstrated that this method 

achieves good results in terms of classification accuracy and dimensionality reduction. 

One aspect of data, which can make feature selection a challenging task, is that groups 

of features can interact or that certain features may only be relevant within a local 

area of the space. Consequently, the target information that is provided by a single 

feature is not a sufficient definition of feature relevance. It has been noted here that 

employing Random Forest for feature relevance identification can account for this type 

of feature interaction by testing features in different areas of the space. This knowledge 

can be exploited further by examining the local performance of the base learners. A 

new measure has been proposed for recording the feature relevance with respect to 

particular examples and has been shown to identify variations within different regions 

of the space. This knowledge can be employed to improve the performance of Random 

Forest and a technique to achieve this has been introduced. This method updates the 

feature sampling distribution depending on the area of the space concerned and is shown 

to improve the accuracy of Random Forest. A relationship between this method and 

the DIVBOOST algorithm has been demonstrated. Random Forest with localised feature 

sampling constructs a diverse set of hypotheses, but employs local feature knowledge to 

improve learner accuracy. In comparison, the DIVBOOST algorithm promotes diversity 

through focussing on a local region of the space and employs implicit feature selection 

within each learner to identify the local feature knowledge. 

The methods that have been developed in this thesis were applied to a data set, where the 

objective is to infer user preference from eye movements. Due to the high level of noise 

in this data, the DIVBOOST algorithm was shown to perform better than ADABOOST. 

A significant improvement to the performance of Random Forest was demonstrated on 

this data set, through the employment of the new localised sampling technique. This 

method and DIVBOOST produced the best performance for this task, although all of the 

techniques achieved an accuracy that is significantly better than random. Therefore, 

these methods have demonstrated the potential for inferring information concerning 

user preference from eye movements. 

10.2 Further Work 

The feature selection techniques, that have been introduced here, have been developed 

for binary classification problems. However, they can be adapted for other supervised 

learning scenarios and a useful extension to this work would be to alter these techniques 

so that they can be applied to regression tasks. Instead of employing information gain 
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as the measure of feature importance, a suitable substitute would be the reduction in 

variance that is caused by a decision tree partition. This would then directly relate 

the measures of feature importance to the mean-squared error. A suitable measure of 

node complexity would need to be derived, based on its size and composition, and a 

feature selection threshold could also be derived through an analysis of the expected 

performance of an irrelevant feature. 

The random rotation technique is a feature manipulation method that promotes diver­

sity whilst not discarding feature information. It would be interesting to investigate 

possible extensions to this method that form better rotations through an analysis of 

the feature relevance. Rodriguez et al. (2006) use peA to form the rotations, while 

better results may be possible through the employment of supervised feature relevance 

detection techniques. Diversity promotion methods that function through feature ma­

nipulation possess the capacity for feature relevance identification, as they can build 

up statistics concerning each feature. The random rotation technique is not so suit­

able for this type of method because the features are constantly changing. However, as 

this method utilises decision trees, which search for the best feature at each node, the 

potential exists to guide the rotations using this implicit feature selection. It has been 

discussed here that each terminal node in a tree can be regarded as an individual learner 

that is trained on the features that form the path from the root. It is possible that levels 

of interaction can exist amongst this feature subset and it may be beneficial to perform 

rotations within these subsets. 

It has been observed that algorithms can benefit from the employment of local feature 

knowledge and that decision tree methods enable the identification of this relevance. 

A comparison has also been made here between locally sampling the features and the 

implicit feature selection of decision tree induction when used in conjunction with the 

DIVBOOST methods. As DIVBOOST progressively focusses on a more localised area 

of the space, the frequency with which each feature is selected changes. It would be 

interesting to investigate the utility of employing the knowledge of local feature relevance 

to boosting algorithms. Instead of using the weighted distribution over the data to alter 

the sampling probabilities of the examples, the distribution can be combined with the 

local feature information to adapt a distribution over the features. Any method that 

updates a distribution over the data can implement this method, provided that the 

adopted base learner can incorporate some form of feature weighting. 

The methods developed here extract local measures of feature relevance, and this infor­

mation takes the form of a matrix containing relevance values for each feature and for 

each example. This has proved to be useful in terms of improved classifier performance, 

although interpretation of this data is not trivial in its current form. This type of method 

could benefit from the development of algorithms that model this feature information, 

such that the variation in feature relevance can be understood and the areas of local 

relevance can be better defined. This would improve the interpretability of the feature 
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information and enable a better understanding of the data that is being learned. 



Appendix A 

Relevant Words for Eye 

Movement Data 

These tables show the words that were found to be the most useful at identifying each 

topic. 

TABLE A.I: Sets of most discriminative words for each topic. 
Topic 

Ball Games 

Dinosaurs 

Most Discriminative Words 
game balls tennis players throw side thrown propel 
playground Square Wall squash indoor four-wall hockey 
dinosaur species Cretaceous fossil lizard weighing theropod 
bone teeth carnivorous predators metre plant-eating Jurassic 
vertebrae 

Space exploration Space NASA probes Pioneer Apollo astronauts Voyager rocket 
Exploration spaceflight Sputnik solar orbits travels 
interplanetary 

Literature literature worked stories literary novel epic poet movement 
novella reader poetry intellectual prose cycles modern 

Government government parliamentary legislature oligarchy ruler 
dictatorships junta appropriate unicameralism motion might 
occur described forms highest 

Court Systems court judges jurisdictions jurors juries criminal justices 
magistrate appellate equivalent judgment staffed indictable 
inferior Supreme 

Cities city Euphrates city-states sovereign Tigris suburban density 
still that when does independent area Opis Akkadian 

Film film movie filmmakers often slang Hollywood B-movie dating 
being started like score synthetic simply style 

Sculpture sculptures marble depicting three-dimensional sculpting statue 
stone installed durable legs korean jade difficulties Greek need 

Natural Disasters Hurricane storm depression cyclone strength earthquake result 
drowned westward September strengthening reaching Auguste 
category wind 
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Topic 
Education 

TABLE A.2: Sets of most discriminative words for each topic. 
Most Discriminative Words 
education students grade School board Kindergarten course 
States public academic assessment institutions significantly 
classroom funded 

Printing Printing inks colorized pressing sheet printer master papers 
black duplicator offset copier Dots darkening adhered 
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Writing Systems symbols syllables stenography methods writing represents script 
grapheme abugida operating translation vowel linear Syllabary 
text 

Optical Devices lens optical microscopes focal glasses mirror magnify 
microscopy magnification binoculars polarization convex 
interference eyepiece minimize 

Internet Internet online pages server protocol websites search contents 
site audio webpage file producer availability packet 

Family sibling father mother marries household parent half-sister 
half-brother family role biological sociological fatherhood 
husband half-siblings 

Television television channel cable serials satellite number featuring factors 
receiving series action displayed conducted commonplace Journal 

Speeches given speech politicians freedom Quebec farewell retirement 
troops Destiny Reagan value distant Canada according dollars 

Postal System postal mail postage stamps post deliveries recipient 
self-addressed courtesy senders sent reply payment forwarding 
medium 

Languages dialect Indo-European Baltic Latin grammar Northeastern 
Meroitic ancestral Anatolia variety language spoken 
proto-language liturgical borrowed 

Music music song improvised term bands group piece thrash 
popularised Forbidden teutonic crossover instrument composition 
acoustic 

Olympics Olympic athletes flag medal held Winter Olympiad Committee 
Pierre Coubertin oath Athens game competitive organised 

Astronomy astronomical celestial star planets galaxy observed astrology 
physics earth mechanical Jupiter gravitational catalogue horizon 
Milky 

Transportation vehicle airports bicycles transit wheels mode transport ship 
intermodal automobile subway railroad contract cargo driver 

Elections elections voter ballot polling electoral voting party candidate 
suffrage from appear process dimensions attended Laws 
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