UNIVERSITY OF SOUTHAMPTON
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF CIVIL ENGINEERING AND THE ENVIRONMENT

RELATIVE SOIL/WALL STIFFNESS EFFECTS ON
RETAINING WALLS PROPPED AT THE CREST

BY

MARIA DIAKOUMI

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

MAY 2007



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Professor William Powrie for
his valuable and continuous support, advice, guidance, patience and encouragement

throughout the analysis and write-up of this thesis.
I would like to thank Dr Mike Byfield for his advice on Mathematica programme.

I'm grateful to my close friend Dr Asimina Maniopoulou for the advice, useful discussions

and moreover the moral support and understanding during the last years.

Thanks to Dr David Richards and Dr Jo Clark for providing the data for the retaining wall
at Ashford.

I would also like to thank Dr Antonis Zervos who encouraged me to start the project.

Many thanks to the Geotechnical Group of the School of Civil Engineering and the

Environment for the financial support; 1 wouldn’t have been able to undertake this project

without it.

Special thanks to Clive Farquhar for the help with the printing and more importantly for

the support and encouragement during the write-up of the thesis.

Finally, I should thank my family and all my friends who have made this experience really

enjoyable.



UNIVERSITY OF SOUTHAMPTON
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF CIVIL ENGINEERING AND THE ENVIRONMENT
PHD THESIS
RELATIVE SOIL/WALL STIFFNESS EFFECTS ON RETAINING WALLS
PROPPED AT THE CREST

ABSTRACT

This thesis is focused on developing a practical design method, with reference to Eurocode
7 (EC7,1995), for retaining walls propped at the crest, which satisfies safety against
collapse and serviceability requirements and incorporates both the real nature of soil

behaviour and the wall flexibility.

For stiff walls, the rotation of the wall at the prop and the normalized prop loads, bending
moments and deformations have been calculated for a range of values of retained height
ratios, initial earth pressure coefficients and soil stiffness. The relative soil/wall flexibility
has been quantified by means of a critical flexibility ratio that distinguishes a stiff from a

flexible system.

The method is applied to flexible walls by idealising the wall flexibility into a simple
mechanism and introducing new kinematically admissible fields to associate the mobilized
shear strain with the mobilized shear strength in each soil zone by a hyperbolic
relationship. The results are compared to those derived from Eurocode 7 (EC7, 1995) and
are presented in curves to illustrate any differences. The advantage of this solution is that
both the wall flexibility and the soil stiffness are considered in a simple calculation and it

can be applied in a reasonably general manner.

The validity of this method has been assessed by comparison to results presented in
previous research and to published data obtained from monitored case histories. The
method can provide reasonably accurate results and is an improvement to linear elastic soil

models or empirical techniques and thus can be a useful design tool.
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NOTATION

Parameter in the calculation of the bending moments and deformations of
a retaining wall
Parameter used in the transformed hyperbolic stress-strain relationship
Parameter used in the transformed hyperbolic stress-strain relationship
Parameter related to the soil plasticity
Parameter used in the transformed hyperbolic stress-strain relationship
Parameter in the calculation of the bending moments and deformations of
a retaining wall
Parameter used in the transformed hyperbolic stress-strain relationship
Parameter in the calculation of the bending moments and deformations of
a retaining wall
Parameter in the calculation of the bending moments and deformations of
a retaining wall
Young’s modulus. Subscripts may be used as follows: 7 (initial tangent);
sec (secant); tan (tangent); u (undrained)
Rate of increase of Young’s modulus with depth
Drained Young’s modulus
Bending stiffness
Prop load
Factor of safety. A subscript may be used to describe how the factor of
safety is applied.
Factor of safety applied to soil strength
Normalised prop load
Prop load according to Eurocode 7
Prop load according to the free earth support method
Normalised prop load according to Eurocode 7 equal to F ecr/H
Experimental normalised maximum prop load according to Rowe

(1955)
Normalised prop load according to the free earth support method equal to
Fry/H’ (Rowe,1952)

Theoretical normalised prop load according to Rowe (1955)
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R
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Shear modulus. Subscripts may be used as follows: o (initial tangent); sec
(secant); fan (tangent).
Rate of increase of shear modulus with depth
Overall length of a retaining wall
Constants of integration in the calculation of the deformations of a
retaining wall
Parameter in the calculation of the bending moments and deformations of
a retaining wall
Active earth pressure coefficient
Coulomb active earth pressure coefficient
Pre-excavation earth pressure coefficient
In situ earth pressure coefficient
Passive earth pressure coefficient
Coulomb passive earth pressure coefficient
Parameter in the calculation of the critical flexibility ratio
Bending moment. Subscripts may be used as follows: i (value at i, point
along the retaining wall); max (maximum value); max, EC7 (maximum
value according to Eurocode, EC7,1995); maxfes (maximum value
according to the free earth support method
Normalised maximum bending moment equal to M./ (Vs )
Normalised maximum bending moment according to the free earth
support  method equal to M,,,, ers/H3 (Rowe,1952)
Normalised maximum bending moment according to Eurocode 7 equal to
Miyaxgcr / H
Experimental normalised maximum bending moment according to Rowe
(1955)

Theoretical normalised maximum bending moment according to Rowe

Overconsolidation ratio

Rowe’s (1952, 1955) flexibility number

Critical flexibility ratio

Parameter used in the hyperbolic stress-strain relationship (Duncan and

Cheng, 1970)
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Parameter used in the hyperbolic stress-strain relationship (Duncan and
Cheng, 1970)

Parameter used in the hyperbolic stress-strain relationship (Duncan and
Cheng, 1970)

Undrained shear strength

Embedment depth of a retaining wall

Subscript used to denote final conditions

Retained height of a retaining wall

Subscript used to denote horizontal

Subscript used to denote points along the retaining wall

Rotational spring stiffness

Retained height ratio (=//H)

Rowe’s (1952, 1955) soil parameter

Subscript used to denote maximum value of a parameter

Number of springs

Parameter related to the soil plasticity

Mean effective stress

Passive pressure

Reference pressure of 1 kPa

Initial mean effective stress; average principal effective stress at the tip of
current yield locus

Surface surcharge

Deviator stress

Average total stress: defines centre of Mohr circle of stress on g-axis
Average effective stress: defines centre of Mohr circle of stress on ¢ ’-axis
Radius of Mohr circle of stress

Pore water pressures

Subscript used to denote the ultimate value of a parameter

Subscript used to denote vertical

Subscript used to denote volumetric

Load

Depth coordinate

Depth of iy, poin
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Denotes the ratio: depth to anchor level / overall height
Shear strain

Soil unit weight

Angle of soil/wall friction

Angle of soil/wall friction behind the wall

Displacement at i, point along the retaining wall

Angle of soil/wall friction in front of the wall

Change in the shear strain

Change in the direct strain

Change in the rotation at i,; point along the retaining wall
Change in the shear stress

Direct strain. Subscripts are used: 4 (horizontal); v (vertical);
Axial strain

Volumetric strain
Major and minor principal strains

Rotation

Poisson’s ratio

Critical flexibility according to Rowe (1952, 1955)
Critical flexibility according to Rowe (1952, 1955)

Total and effective stress. Subscripts are used as follows: & (horizontal); v

(vertical); o (initial)
Major and minor total stress

Major and minor effective stress

Effective horizontal active stresses for a wall in limit equilibrium

according to Rowe (1952, 1955)

Effective horizontal passive stresses for a wall in limit equilibrium

according to Rowe (1952, 1955)

Shear stress. Subscripts are used as follows: f(final); o (initial); ult

(ultimate);un (undrained)
Soil strength

Critical soil strength
Design soil strength
Mobilised soil strength
Peak soil strength
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1. GENERAL INTRODUCTION

1.1 INTRODUCTION

The construction of excavations and retaining walls is now a common solution to the
congestion 1n urban areas and its inevitable consequences of limited building space, high
land cost, overloaded transport and scarce parking space. Advances in construction
methods and the improved accuracy of monitoring systems encourage its application to
many large scale engineering projects i a variety of soils. However, the design
procedure is often complicated, since soil-structure interaction may have an important
effect on the behaviour of retaining walls and the control of deformations required to

minimise disturbance to the adjacent properties at a minimum construction cost.

Retaining walls should maintain stability and prevent excessive deformations and
bending moments. Avoidance of collapse or other form of structural failure of the wall is
ensured by limit state design, known as the Ultimate Limit State (ULS). However, a wall
should not only be remote from collapse, but must also meet specific service
performance requirements. Excessive deformations and associated ground movements,
excessive stresses in walls and props or unwanted leakage of ground water through or
beneath the wall can all be considered as another limit state known as the Serviceability
Limit State (SLS), that a wall should also be designed to avoid. Depending on the
properties of the soil and the retaining wall, the avoidance of collapse may predominate

in some design cases, while serviceability can be more critical in others.

Codes of practice recommend limit equilibrium calculations with the soil strength being
reduced by a factor of safety F; to ensure that the wall is remote from the Ultimate Limit
State (ULS). Guidelines to avoid the Serviceability Limit State are fewer and less clear
than for the ultimate state, since deformations are often assumed to be a secondary
problem and are predicted by calculations based on elasticity theory. However, in reality
soil 1s not a linear isotropic elastic material and its stiffness depends on both stress and

strain; hence in some cases past experience and recorded behaviour of retaining walls is



used as guidance in design, but this empirical knowledge can only be applied to similar

and comparable cases.

Numerical methods such as finite element analysis are increasingly used to develop
analytical models that represent non-linear soil behaviour. Their accuracy depends on the
selected soil model and although in recent years substantial progress has been made,
there remain significant drawbacks which restrict their application. The use of more
sophisticated soil models and soil parameters derived from high quality laboratory test
data does not always contribute to the correct prediction of strains and deformations.
Moreover, the assumptions are such that the evaluation of the results may be difficult,
and although they may be applicable to specific sites, they are often inappropriate for
other design cases. The use of a detailed model could cause complications and be
unacceptably time consuming in design analysis. The great numbers of parameters
required for the development of the soil model, the calibration of the values and their
sensitivity restrict significantly the practicality of these methods. Taking into account the
expertise and the cost involved when adopting such rigorous soil models, the designer

should decide whether their use is justified.

Therefore, the development of a simple and practical design method that can reliably
determine the factor of safety against Ultimate Limit failure in the ground and the likely
in service deformations for walls propped at the crest would be a useful tool in the design
of retaining walls. The geostructural mechanism proposed by Bolton and Powrie (1988)
relates the wall deformations to the proportion of the actually mobilised soil strength in a
limit equilibrium analysis for stiff cantilever or propped at the crest retaining walls. The
mobilised soil strength can then be used to estimate the factor of safety on soil strength.
The advantages of this approach are its simplicity, the small number of the required input

parameters and its potential to provide a general design solution.

Previous research (Rowe, 1952) has shown that wall flexibility could cause a reduction
in bending moments compared with stiffer walls. Considering also the non-linear
behaviour of soil, with soil stiffhess being dependent on the stress and strain level, there
is a need for a new approach that takes into account both of these effects in the design of
retaining walls. An expression that quantifies the overall flexibility of the soil and the

retaining wall needs to be established and the term “stiff” or “flexible” system might be



more appropriate than referring merely to the wall flexibility in the analysis of retaining
walls. A critical flexibility value that distinguishes a flexible system from a stiff one

should be defined and its sensitivity to other parameters should be checked.

For stiff systems the geostructural mechanism procedure (Bolton and Powrie, 1988)
could then be used to explore the effect of the soil stress-strain response on wall
rotations, deformations, bending moment and prop loads. Application of a modified form
of the geostructural mechanism to flexible systems might be possible, and its potential
should be investigated for walls with different embedment depths and flexibilities and for

soils with different earth pressure coefficients and stiffness parameters in drained and

undrained conditions.

1.2 OBJECTIVES OF THE RESEARCH

This dissertation is aimed at developing a simple and reliable design procedure, with
reference to the codes of practice, that can be used as an alternative to either empirical or
potentially expensive and complicated numerical solutions. The method will be able to
determine the factor of safety against a limit state failure in the ground and provide an
estimate of the in service deformations for retaining walls propped at the crest. The post-
installation stress state and the stress-strain response, together with the relative soil-wall
flexibility and other soil-structure interaction effects, that lead to a variation in soil strain

and hence mobilised soil strength with depth, will be taken into account.
More specifically the objectives of this research are:

e To review, evaluate and compare previous research, current design procedures

and their limitations (Chapter 2).

e To quantify the relative soil / wall flexibility and define a critical flexibility value

that distinguishes a stiff from a flexible system for walls with different



embedment depths and flexibilities and for soils with different earth pressure

coefficients and stiffness parameters (Chapter 3).

e To develop a geostructural mechanism for flexible systems and explore the effect
of the wall flexibility and soil stress-strain response on their design parameters.

To compare the results to those derived from the modem codes of practice

(Chapter 4).

e To incorporate the pore water pressures with the water table at different levels

(Chapter 5).

e To compare the results obtained from the geostructural mechanism to
experimental and theoretical results presented by Rowe (1952, 1955). To
illustrate any similarities or differences in the application of the geostructural

mechanism to stiff and flexible systems (Chapter 6).

e To assess the validity of the methods by comparison with data from monitored

case studies (Chapter 7).

The volume and complexity of the calculations involved in the establishment of the
methods described above were facilitated by Mathematica, a computer programme that
combines symbolic manipulation, numerical mathematics and graphics. A detailed

description of the calculations carried out in Mathematica is provided in the Appendices.



2. ANALYSIS AND DESIGN OF RETAINING WALLS

2.1 INTRODUCTION

In this chapter the different methods used in current engineering practice and the codes of
practice for the calculation of collapse conditions and the estimation of the in service
deformations in the design of retaining walls are presented and discussed. The methods
are evaluated and the restrictions associated with their application to design are indicated.
The need for a simple design solution that incorporates the real nature of soil behaviour is
underlined. Finally, the mobilised strength method introduced by Bolton and Powrie

(1988) is described and discussed.

2.2 ANALYSIS OF RETAINING WALLS

2.2.1 Limit equilibrium methods for embedded retaining walls

To assess the stability of an embedded retaining wall, limit equilibrium methods or lower
bound solutions are often used. Limit equilibrium methods are based on the calculation of
the maximum height of excavation or the minimum depth of embedment for which static
equilibrium may be maintained; this is the limit equilibrium situation. In the lower bound
approach proposed by Rankine (1857), the earth pressure distributions in certain zones of

soil are described by the active and passive limit values (K, and K,).

2.2.2 Fixed earth support conditions for unpropped embedded walls

Unpropped embedded walls are frequently used for temporary and permanent support of
excavations up to 4-5 m high. Formed of steel sheet piles or constructed in situ using

reinforced concrete, they consist of a vertical structural element embedded into the ground



below the retained material. The force required to retain the material behind the wall is
obtained from the upper part of the wall due to its stiffness and the embedment of the
lower part. In front of the embedded portion of the wall passive earth pressures are

developed to resist the pressures of the retained soil behind the wall.

Assuming that a structural failure of the wall does not occur, unpropped embedded walls
will tend to fail by rotation about a pivot point near the toe at some depth z, below
formation level. On the verge of collapse the stress distribution on the wall can be
obtained by assuming frictionless discontinuities running vertically and horizontally
through the pivot point and the toe. The limiting lateral effective stress distribution for an
unpropped wall is shown in Figure 2.1. In zones where the wall is moving away from the

soil the lateral effective stresses are at the active limit
cw=K,c', K,=(I-sinp')/(1+sing’) (2.1)

where ¢, and o', are the horizontal and vertical effective stresses, K, is the active earth
pressure coefficient and ¢'is the soil angle of shearing resistance. In zones where the wall

is moving into the soil the lateral effective stresses are at the passive limit
chw=K,c", K,=(l+sing')/ (1-sing’) (2.2)

where K, is the passive earth pressure coefficient. A centre of rotation near the toe is
required for moment equilibrium, so below this point the wall is assumed to deflect
towards the retained soil. This causes a switch in soil pressures, with the passive pressures
now induced in the soil behind the wall and the active pressures induced in the soil in

front.
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Figure 2.1: Idealised effective stress distribution for an unpropped embedded retaining
wall (Powrie, 1997).

In this approach, which is known as the fixed earth support method, there are two
unknowns that must be calculated using the conditions of horizontal and moment
equilibrium. These are the depth of embedment required for limiting equilibrium and the
depth z, to the pivot point. For ease of calculation, the lateral stresses below the level of

the pivot point may be replaced by a point force O (Figure 2.2).
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Figure 2.2: Approximate stress analysis for unpropped walls (Powrie, 1997).

In this case the two unknowns are the force Q and the depth z,, which can be calculated
by taking moments about the pivot. The required depth of embedment is then
conventionally taken as d = 1.2 z,. It is necessary to check that this additional depth of
embedment is actually sufficient to mobilise the force O below the pivot point. For most

real walls, the stress analysis described above with the values of K, and K, obtained from



Equations (2.1) and (2.2) will result in an over-conservative estimation because the effects

of soil-wall friction are neglected.

2.2.3 Free earth support conditions for embedded walls propped at the

crest

For deep excavations, unpropped embedded walls are inadequate and installation of props
or anchors at one or more levels is required. Assuming that a structural failure of the wall
or the props does not occur, an embedded wall will tend to fail by rotation about the
position of the prop. In this method, which is known as the free earth support method, the
effect of any possible fixity below the excavation level is not considered and hence the toe

of the wall 1s assumed to be free to move laterally.

The effective stress distribution at failure shown in Figure 2.3 may be determined by
assuming stress discontinuities running vertically on both sides of the wall and
horizontally through the toe. The two unknowns in this case are the depth of embedment
and the prop load. The depth of embedment d can be calculated by taking moments about

the prop and then the prop load F is calculated from the horizontal force equilibrium.

The free earth support method will lead to overconservative results, because the effects of
soil-wall friction and also the lateral stress reduction behind the wall due to soil arching

when the prop is rigid are both neglected.
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Figure 2.3: Idealised stress distribution for an embedded wall propped at the crest
(Powrie,1997).



2.2.4 Fixed earth support conditions for walls propped at the crest

A fixed earth support calculation may be considered appropriate for an embedded wall
propped at the crest, if the wall is sufficiently flexible. The idealised and simplified
effective stress distributions are shown in Figure 2.4. In this approach it is assumed that
there is a point of fixity near the toe, which results in a reversal in the sign of the bending
moments due to the wall flexibility. However, the system shown in Figure 2.4 1s statically
indeterminate since a collapse mechanism 1is not defined, unless some further assumption
is made. Williams and Waite (1993) suggest that the point of contraflexure at which the
bending moment is zero, occurs at the level where the net pressure acting on the wall is
zero, in order to calculate the prop force and the depth of embedment. Alternatively, such
a system would be statically determinate for a propped wall where the prop yields at a

constant load and the prop yield load is known (Powrie, 1997).

Although this approach may be appropnate for flexible walls, since it takes into account
in a way the effects of the wall bending, it is not generally recommended for stiff walls in

clay soils (Padfield and Mair, 1984).
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Figure 2.4: Effective stress distribution based on the fixed earth support method for
embedded walls propped at the crest (Powrie, 1997).



2.2.5 Earth pressure coefficients and the contribution of soil-wall

friction

The shear stresses generated at the soil/wall interface can contribute to wall stability; thus
it is common, particularly in an effective stress analysis, to use modified values of earth
pressure coefficients. The soil/wall friction and hence the modified values of earth
pressure coefficients depend on the direction and degree of the relative movement
between the wall and the soil. It is generally assumed that the soil exerts a downward
shear force on the wall in the active zone and an upward shear force in the passive zone.
This decreases the active earth pressure coefficient K, and increases the passive earth

pressure coefficient K, in order to take account of the soil/wall friction.

However, there is considerable uncertainty in defining the direction of soil/wall friction
below the point of rotation for unpropped walls. Krey’s (1932) experiments on a small-
scale model of a cantilever wall embedded in sand indicated that the value of K, was
larger above the centre of rotation of the wall than below it, consistent with the direction
of soil/wall friction being downwards below this point. Bica and Clayton’s (1998)
laboratory-based experiments, which modelled the embedded length of cantilever walls
on sand, confirmed Krey’s opinion on the downwards direction of soil/wall friction below

the centre of rotation on the retained side.

Regarding the magnitude of wall friction, Rowe (1963) suggested that the maximum
soil/wall friction angle that can possibly be developed, d,..., has two components, d,ax =
¢ + r, where ¢, is the true friction angle between the soil grains and the material of the
wall and r is the wall roughness angle. For practical purposes this might imply 0ex = ¢ e
Most design methods adopt values of soil/wall friction ¢ which are somewhat less than the
soil strength ¢'. More details regarding the recommendations of some popular codes of

practice will be given later in this chapter.

10



2.2.6 Estimation of the displacements

The soil displacements associated with excavations comprise of vertical and horizontal
movements. Vertical heave within the excavation occurs in response to the vertical load
relief in front of the retaining wall, while wall movements behind the wall result from the
removal of lateral support. Horizontal movements are usually more critical than vertical
behind the wall because they can cause more damage to adjacent buildings and services

(Gaba et al, 2003).

Although soil is a non-linear material and its stiffness depends on its stress history, stress
state and stress/strain path, calculations of soil and wall deformations are often based on
elasticity theory and a constant soil stiffness modulus is assumed. The advantage of this is
that a number of standard solutions and methods of analysis for elastic materials can then

be used (e.g. Terzaghi, 1943; Boussinesq, 1885; Newmark, 1942; Fadum, 1948).

However, the complexity of the theoretical analyses has led to the use of empirical
methods based on observational data for the estimation of the pattern and magnitude of
deformations in current design practice. Peck (1969) presented a chart that separates the
settlements induced by excavations in clay soils into three zones depending on some of
the properties of the clay and the excavation. Peck’s chart as shown in Figure 2.5
generally overestimates settlements as it is based on data from retaining systems that are
outdated (Diakoumi and Lavdas, 2003); hence his results may be used for the estimation
of the upper deformation limits. Clough and O’Rourke (1990) proposed envelopes of
short term ground settlements behind different types of retaining walls, based on
observational data from a number of excavations in sands, stiff to hard clays and soft to
medium clays. These empirical settlement profiles are presented in Figure 2.6, where the
distance from the wall is expressed as a ratio of the maximum excavation depth H, and
the distribution of settlements o, is shown as a proportion of the maximum settlement
behind the wall 6,,,,,. According to Gaba er al (2003), they provide a conservative estimate

of the distribution of settlements.

Hsieh and Ou (1998), based on observational data from ten deep excavations in Taipei

(Ou et al, 1993), presented two possible settlement profiles as shown in Figure 2.7. In the
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spandrel settlement profile the maximum settlement is observed just behind the retaining
wall, whereas in the concave profile the maximum settlement js measured at a distance
from the wall. Regarding the horizontal movements, Long (2001) presented graphs of
measured normalised maximum wall deflections against the support system stiffness p, =
EL/y, h?, where E I is the rigidity of the wall, y,, is the bulk unit weight of water and / is
the average vertical distance between the props, for a great number of case histories of
walls embedded in a stiff stratum but retaining varying amounts of soft ground.
According to Long (2001), wall deflections may increase substantially for walls
embedded in a stiff stratum that retain a significant thick stratum of soft soil, have soft
soil at formation level and are designed with a large factor of safety (greater than 3). More
data from monitored retaining walls in various soil conditions with different construction

techniques and support systems have been published and are often used in current design

practice.

Advances in computer software have encouraged the use of numerical modelling that
takes into consideration the interaction between the soil and the wall. Some popular types
of software used in the simplest form of soil-structure analysis are WALLAP and FREW,
in which the wall is modelled as a beam and the soil as a series of horizontal springs
(subgrade reaction method) or as an elastic continuum (pseudo-finite element method).
These forms of analysis have the potential to model the full soil-structure interaction and
construction sequence, to take account of pre-excavation stress state and to calculate the
wall deflections, bending moments and prop loads in a relatively straightforward way.
However, the ground movements around the wall can not be calculated, the input
parameters should be calibrated against field measurements and are likely to provide only
a rough estimation of the soil behaviour; .hence, their results should be regarded as an

approximate solution (Gaba et al, 2003).

More advanced software packages such as CRISP, FLAC, PLAXIS and ABAQUS use
finite element or finite difference methods. They can incorporate complex soil models
with the soil stiffness varying with strain and anisotropy, model support details, wall and
excavation geometry and calculate wall and ground movements, bending moments and
prop loads taking into account any possible soil consolidation effects. Despite their
potential, numerical modelling has significant drawbacks that will be discussed later in

this chapter.
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2.3 CODES OF PRACTICE FOR RETAINING WALLS

The obvious practical and commercial significance and impact of codes of practice
justifies the efforts of various committees over the years to develop a unified and
internationally agreed method for the design of the retaining walls. Limit equilibrium
methods use stress distributions behind and in front of the retaining wall to calculate the
depth of embedment necessary just to prevent collapse of the wall. The stresses behind the
wall are at their minimum possible values (the active limit), while the stresses in front of
the wall are at their maximum possible values (the passive limit). The stress state of the
soil everywhere is in equilibrium without violating the failure condition t /¢’ = tan¢'. For
the actual design condition, it is necessary to increase the depth of embedment beyond
that required merely to prevent collapse in order to allow for uncertainties and avoid
excessive deformations. The collapse limit state is known as the ultimate limit state
(ULS), whereas acceptable performance of the wall in terms of displacement, damage and

appearance is related to another limit state known as the serviceability limit state (SLS).
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The soil loads on an embedded retaining wall at failure in the ground are not as easily
identified as they are in a conventional structural analysis. Historically, a factor of safety
F has been applied to one of the parameters in a collapse calculation to distance the wall
both from an ultimate and serviceability failure. The confusion in the definition and
selection of a factor of safety is illustrated by the diversity of the methods that have been
adopted in the past. Such examples are:

e The application of a factor of safety F to the embedment depth derived from a

limit equilibrium calculation using unfactored soil strengths.

e The reduction of the passive earth pressure coefficients by a factor F,.

e The reduction of the moment of the net resisting pressure by a factor F,.
Comparative figures provided by Burland er a/ (1981) and extensive calculations carried
out by Gaba er al (2003, Appendix A7) demonstrate the inconsistency and sometimes lack

of safety associated with some of these methods.

2.3.1 Modern codes of practice for embedded retaining walls in the

ultimate limit state

The design method adopted by the modern codes of practice such as BS8002 (BSI, 2001),
Eurocode 7 (1995) and CIRIA report C580 (Gaba et al, 2003) against ultimate limit states
requires a limit equilibrium or other stability calculation with the application of a factor of
safety F (or strength mobilisation factor M) to the actual soil strengths, which are reduced

in order to distance the retaining walls from collapse.

The uncertainties in possible future loading conditions are taken into account by
increasing the retained height by 10% of the retained height for embedded cantilever
walls, normally up to a maximum of 0.5m, representing an unplanned excavation in front
of the wall and by assuming an additional uniform surcharge of 10 kPa acting on the
retained soil surface. However, the value of the strength mobilisation factor M adopted by
each code is different. The different values of factors of safety in each code are presented
below. A more detailed description of the procedure which should be followed can be

found in each of the modern codes of practice.
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A. EUROCODE 7

Eurocode 7 (1995) recommends that the design strength ¢ 40, used in the ULS
calculation should be equal to tan’l{ (tan ¢’)/ 1.25}, where ¢ " is a moderately conservative
estimate of the effective angle of friction relevant to the ultimate limit state. The term
moderately conservative actually means that only 5% of the sample values will be more
unfavourable. The suggested maximum design values of the soil / wall friction angle
Odesign are 0.67 ¢ ¢ for smooth concrete and ¢ ', for rough concrete, so that the selection
of Ogesion = @ crir might be allowed in the ultimate limit state calculation. The
recommended design value of the undrained shear strength 7,4 in a total stress

calculation is equal to the value of the actual soil strength ¢, divided by a factor M = 1.4.

B. CIRIA Report C580

CIRIA Report C580 (Gaba et al, 2003) is in agreement with Eurocode 7 on the values of
the design strength ¢ "gesig, and the maximum values of the soil / wall friction angle Jgesign
used in the ultimate limit state calculation. However, the recommended design value of
the undrained shear strength #, 40, in a total stress calculation is reduced to 7,/ 1.5, 1.€. an
increased factor of safety M=1.5 is used. The maximum value of wall adhesion allowed in
the design is 0.5 X t, gesign, Which is equivalent to 7,/ 3. Furthermore, the use of numerical
soil-structure analysis is suggested instead of simple limit equilibrium calculations,
particularly for complex structures that are statically indeterminate, where the potential
mechanism of collapse is not obvious or where the construction sequence must be

considered.

C. BS8002

BS8002 (BSI, 2001) recommends that the design strength ¢ “ese, should be the lesser of
tan” {(tan ¢ pear) / 1.2} and ¢, The suggested maximum value of the soil / wall friction
angle Ogesign 18 tan’’ (0.75 x tan @ gesign). For a total stress ultimate limit calculation the
value of the undrained shear strength used in the design 7, gesign should be ¢,/ 1.5, which is
in agreement with CIRIA Report. BS8002 allows a wall adhesion in the design of 0.75 x

1y design, Which 1s equivalent to a maximum value of 0.5 x #,.
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2.3.2 Modern codes of practice for embedded retaining walls at the

serviceability limit state

The ultimate limit state calculations, factored as described above, should ensure that the
wall is remote from collapse. However, excessive deformation and associated ground
movements, excessive stresses in walls or props or unwanted leakage of groundwater
through or beneath the wall can be considered as another limit state, known as the
serviceability limit state (SLS) and a wall should be designed to avoid it. In reality, the
soil strengths mobilised may be different on each side, different at different depths and
dependent on the wall-flexibility and soil-structure interaction effects which will result in
a variation in soil strain with depth. Therefore, an analysis aimed at determining the exact

stress state in the soil adjacent to the wall can be very complicated.

Eurocode 7, CIRIA Report C580 and BS8002 distinguish the ultimate limit state from the
serviceability limit state. CIRIA Report C580 (Gaba et al., 2003) recommend that some
form of numerical analysis that takes account of soil-structure interaction effects should
be carried out. This analysis should be based on the actual wall geometry and the actual
soil strength parameters. If the limit equilibrium approach is adopted for walls with a prop
near the crest, Gaba er al (2003) point out that the wall bending moments are
overestimated, and the prop loads are underestimated in comparison with a soil-structure
interaction analysis. They suggest that the SLS bending moment diagram should be
“sketched in” between the maximum of the limit equilibrium distribution using the full
strength of the soil and the actual toe of the wall. The bending moment distribution in true
limiting equilibrium is calculated with the wall having the embedment needed just to
prevent collapse with unfactored soil strengths, an increased excavation depth and
additional external loads as required by the code. This approach is presented in Figure 2.8.

More detail‘s can be found in Gaba et a/ (2003).
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Figure 2.8: Design bending moments as estimated in CIRIA Report C580.

2.3.3 Limitations of current design practice

The use of observational data from monitored case studies cannot cover every
contingency in design, since the range of encountered soil conditions, construction
sequences and support systems is wide. The amount of data related to recently developed
and advanced construction methods is significantly restricted. In addition, the reliability
of data from case histories depends on the technology, accuracy and calibration of the
monitoring systems that were used, and results may depend to some extent on the quality
of the workmanship. Hence, conservative values of parameters are often chosen for

design, despite the increased cost that this entrusts.

The methods used in soil-structure interaction analysis such as subgrade reaction or
pseudo-finite element are relatively straightforward, but can only provide approximate
solutions. More complex analyses using finite element and finite difference methods
might seem an alternative for design, but depend hugely on the accuracy of the chosen
soil model. Their results should be calibrated against reliable field measurements.
However, such data has to be comparable and available so that the numerical solutions
can be verified. The most important disadvantage is the number of the required input
parameters, their calibration and the volume of the results may frustrate any comparison

and evaluation. The possible sensitivity of the solutions to a small change in a particular
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parameter is another potential drawback that cannot be neglected. The expertise in the use
of advanced software programmes and the significant numerical modelling experience
required from the user, and the cost and time involved in using complex models cannot be

justified in every case.

Gaba et al (2003) recommend that the complexity of the structure and the construction
process, the required information, the input data available and economy should be taken
into consideration in selecting the appropriate method of analysis. Some simple
calculations are suggested to serve as a check on more complex methods and the
importance of a simple calculation with appropriate soil data in preference to a complex

analysis with inappropriate data is emphasised.

2.4 THE MOBILISED STRENGTH DESIGN (MSD) METHOD
2.4.1 Theoretical background of the method

From the above, a simple method that relates the mobilised soil strength to the
displacements in a rational and consistent way will be of significant practical value to the
design of retaining walls. Bolton and Powrie (1988) proposed a geostructural mechanism
for stiff walls in clays in order to relate the rigid body rotation of the wall to the maximum
- shear strain in the adjacent soil and hence to the ground movements. The shear strain
the adjacent soil can be related to the mobilised strength required for equilibrium, and
then the soil and wall deformations under working conditions can be estimated from the
equilibrium calculation. This approach has been introduced for stiff walls, for which the
effective stress distributions on either side can be assumed to be approximately linear with
depth and the ground movements due to wall bending can be neglected. Powrie (1985)
has suggested that the construction of a diaphragm wall in clay would reduce the initial
earth pressure coefficient, K, towards unity prior to excavation. Therefore, this approach

as presented by Bolton and Powrie (1988) is based on the assumption that K,=1.
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Figure 2.9 shows a kinematically admissible soil displacement field compatible with the
outward rotation of an anchored retaining wall, as proposed by Milligan (1983). The soil
is shearing at a constant angle of dilatancy w and significant deformations occur within a

zone bounded by a line at 45° from the base of the wall to the ground surface.
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Figure 2.9: Kinematically admissible displacement field for an anchored retaining wall
(Milligan 1983).

Bolton and Powrie (1988) subdivided the active and passive zones behind and in front of
a wall into triangles, in which the verticals and horizontals are assumed as frictionless
displacement discontinuities and the hypotenuses as zero extension lines. In a simplified
approach the angle of dilation was taken to be equal to zero. Although this is realistic in
undrained conditions, in drained conditions over consolidated clay will dilate until it
ruptures. This will cause shear softening until sufficient soil has reached a critical state
and no further dilation will take place. Therefore, the assumption of zero dilation is
justified by the fact that dilation is significant only in determining the size of the shear

zone rather than the magnitude of strain within it.

The idealised displacement mechanism for a stiff unpropped wall rotating about its toe is
shown in Figure 2.10a. It has been assumed that significant soil movement during
excavation will occur mainly in the zones defined approximately by lines drawn at 45°,
extending upward from the toe and that the line OA4 is a zero extension line. This is

consistent with a shearing triangle A0V, beyond which the soil is effectively rigid. Within
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this triangle the shear strain increment Jy according to Mohr circle (Fig. 2.10b) is uniform
and equal to twice the strain increment Je. The triangle A0V is extending horizontally by -
h 06 and compressing vertically by & 60, where 66 is the wall rotation and the

compression is taken positive. Assuming zero rate of dilation:

e+ 0er=0 (2.4.1)

(2.4.2)

o
<
Il
i~
N

From the Mohr circle:

Oy =(de,- dey) = v/ h - (- du/h)=60-(- 56 ) = 2 66 (2.4.3)

It is obvious that a reversed rotation would lead to reversed strains.
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Figure 2.10: Admissible strains for a wall rotating about its toe (Bolton and Powrie,

1988).

The same mechanism can be used for a stiff unpropped wall rotating about a point O near

the toe as shown in Figure 2.11.
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Figure 2.11: Admissible strains for an unpropped wall rotating about a point O near its toe
(Bolton and Powrie, 1988).

In this case six, instead of two, deforming triangles are formed, but the shear strain
increment Jy in each of them remains uniform and equal to twice the incremental wall

rotation J6.

Figure 2.12 showé a similar strain field for a stiff propped wall rotating about 1its crest V.
In this case, the magnitudes of strain within the triangles in front of the wall differ,
however the consideration of the larger of the two strains would be safer; that is the shear
strain on the excavated side of the wall, which is (1 + / / d) times that on the retained

side, where / is the retained height and d is the depth of embedment.

The mobilised soil strength, expressed by the mobilised angle of friction ¢, assumed to
be the same on both sides of an unpropped wall and uniform with depth, can be related to
the shear strain via undrained triaxial tests on a representative soil sample rather than
empirical data. Undrained plane strain data were used instead of drained ones because
they were associated with lower soil stiffness and hence with more onerous conditions.
The linear stress distributions can be used for a wall of any geometry, so as to calculate
the mobilised soil strength ¢, required for equilibrium and the corresponding shear
strain can be derived from the graph of mobilised soil strength ¢’ against shear strain y
for the specific soil. From the geostructural mechanism described above, the magnitude of

the wall rotation and soil movements can be determined. Bolton and Powrie (1988)



carried out centrifuge tests modelling both the short term and long term behaviour of
cantilever and propped at the crest walls retaining clay with different retained heights and
embedment depths. The pattern of the deformations obtained from the tests was

comparatively close to those estimated using kinematically admissible strain fields.

Figure 2.12: Admissible strains for a wall rotating about its crest (Bolton and Powrie,

1988).

2.4.2 Evaluation and accuracy of results

The short-term and long-term crest deflections of an unpropped wall with a retained
height of 10 m and an embedment depth of 20 m retaining clay were measured during
centrifuge tests and compared with the displacements calculated using the mobilised
strength method (Bolton and Powrie, 1988). The comparison attests that the measured
deflections were very close to the ones that were calculated with a soil / wall interface
friction angle equal to the mobilised angle of shearing resistance, 0 = @’y If the soil /

wall friction was ignored (0 = 0), the deflections were overpredicted.
In the case of a wall propped at the crest with a retained height of 10 m and an
embedment depth of 15 m, the prop forces measured in the centrifuge tests were close to

the calculated ones. The values of prop force derived from a short-term calculation were
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in slightly better agreement than those obtained from a long-term calculation. The
measured maximum bending moments were again close to the calculated values, with the
long-term calculations being more accurate than the short-term ones. In the calculations
the shear strain on the excavated side was taken as (/ + 4 / d) times that on the retained

side, in accordance with the geostructural mechanism presented in Figure 2.12.

The centrifuge tests retaining clay demonstrated the potential of the mobilised strength
approach to provide satisfactorily accurate design solutions for stiff walls in clay. The
advantages of the method are that it provides a simple and reliable solution avoiding the
uncertainty involved in the selection of an appropnate factor of safety or the complexity
of a detailed soil-structure analysis. In addition, the incorporation of consistent strain
fields allows the ready adoption of real data obtained from appropriate stress paths. One
of the assumptions used in this approach is that the mobilised soil strength ¢’y 1s the
same on both sides of the wall. However, this is not always the case, since the pre-
excavation soil stresses and the method of construction can result in a change in the initial
stress paths behind the wall and therefore in a different response of the soil behind the
wall in comparison with the soil in front of the wall. Moreover, the analysis was carried
out in undrained conditions and the pre-excavation earth pressure coefficient K, was
assumed to be close to unity. Therefore, further analyses is required to assess the
influence of pore water pressures, the effects of values of K, different from one, and a

possible difference in the soil strength mobilisation in front and behind the wall.

2.4.3 Design procedure based on the mobilised strength method

Osman (2004) illustrated two possible design procedures for rigid retaining walls using
the mobilised strength method. These are presented in Figure 2.13. Following the first
procedure an engineer should first decide the limits imposed on the deformations based on
the sensitivity of the adjacent properties. The maximum allowed wall rotation can be
determined and related to the mobilised shear strain through an idealised displacement
mechanism. The average mobilised shear strength can then be deduced from a stress-

strain curve obtained from laboratory soil tests on representative soil samples. Finally, a
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limit equilibrium calculation assuming linear stress distributions behind and in front of the

wall is carried out for the specified mobilised strength and hence the essential retained

height ratio A / D is calculated.

An alternative design procedure could commence with the selection of the preferred

retained height ratio H / D, followed by a limit equilibrium calculation which involves the

stress distributions for the specific wall dimensions and leads to the estimation of the

mobilised shear strength. The shear strain is found from the stress-strain curve and the

wall rotation is calculated through admissible strain fields. The maximum deflections can

then be obtained and compared to serviceability limits. If they exceed the serviceability

limit, selection of a new retained height ratio is required and the procedure should be

repeated from the beginning.

Limit wall rotation 8
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Find €gmop by doubling ©

Select /D

'
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Deduce cpqp from the stress
strain curve

Find cmep for plastic equilibrium

y

Determine the excavation depth
for plastic equilibrium
H/D=f(cmob)

(a)

Figure 2.13: Possible design procedures for rigid retaining walls using the mobilised

strength method (Osman, 2004).
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2.5 SUMMARY

The limitations in the current design methods and codes of practice attest the need for a
simple method for the calculation of the serviceability bending moments and
displacements that incorporates the real nature of the soil behaviour in a consistent manner.
The theoretical background and the accuracy of the mobilised strength method are
presented. The main advantage of this method is the straight forward way of relating the
mobilised soil strength to the wall and soil displacements under working conditions.
Finally, two example procedures of incorporating the mobilised strength method 1n the

design are displayed.
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3. ANALYSIS AND DESIGN OF STIFF RETAINING WALLS
PROPPED AT THE CREST

3.1 INTRODUCTION

The relative soil / wall stiffness may have a considerable effect on the performance of a
retaining wall. According to Potts and Day (1990) flexible walls attract smaller bending
moments than stiff walls in the same conditions due to the redistribution of the soil
stresses acﬁng on the wall. Although there might be an economic benefit from the design
of a flexible wall, the wall and ground displacements may be greater than for a stiffer
wall. Moreover, the soil strains depend on the level of the soil stiffness. Research that has
been carried out previously regarding the relative soil / wall stiffness is reviewed,

evaluated and discussed.

In this chapter, wall rotations are related to the retained to overall height ratios, the soil
stiffness and the initial earth pressure coefficients with regard to the mobilized strength
for retaining walls propped at the crest. A general design framework is presented which
distinguishes flexible from stiff systems for walls propped at the crest with different
retained to overall height ratios, retaining different soils with varying stiffnesses and

different initial earth pressure coefficients.

3.2 THE RELATIVE SOIL / WALL STIFFNESS

Most of the simple methods commonly used in retaining wall analysis or design neglect
the effects of the relative soil / wall stiffness. However, stiffness may have a considerable
influence on the deformations and bending moments of a retaining wall under working
conditions, especially for walls propped near the crest. Rowe (1952) defined the stiffness
of a wall by means of a flexibility, p = [’/ EI, where H is the overall height of the wall,

E the Young’s modulus of the wall and I the second moment of inertia per unit length.
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To quantify the effects of the wall flexibility, he carried out a series of model tests on
anchored sheet pile walls retaining dry sand varying the flexibility p. He repeated his
tests for various surcharge, anchor levels, anchor yield and dredge levels, so as to

generalise his results.

In the case of unyielding tie-back anchors, he found that the horizontal stress distribution
behind the retaining wall was non-linear (Figure 3.1). This was explained by a reduction
in the lateral stress approximately at the mid-section of the wall as a consequence of the
increase in the lateral stress at the unyielding section near the anchor. However, an
outward movement at the anchor point of less than H / /000 was sufficient to generate
fully active conditions and a linear distribution of lateral stress behind the wall
(Rowe,1952). In reality, the distributions of the active pressures behind the wall can be
considered linear, since movements at the anchor point more than 7 / /000 will probably
occur, if the supports are not pre-stressed. The assumption of full active pressures behind
the wall seems reasonable, since Rowe used sand which was placed loosely in order to

keep the pre-excavation lateral earth pressure coefficients low.
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Figure 3.1: Reduction of lateral stress behind the wall when the prop is rigid (Powrie
1997).

Rowe’s results demonstrate significantly reduced values of anchor loads and maximum
bending moments compared with those calculated using the free earth support method
with full active and factored passive pressures. He found that the pattern of the reduction
was independent of the surcharge, anchor level and dredge level and depended on the

wall flexibility expressed in the term of p and the density of the soil. He presented his
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results in figures with the anchor loads and bending moments divided by the values
calculated with the factored free earth support method and plotted against the logarithm
of the wall flexibility p for loose and dense sands (Figure 3.2). In Figure 3.2 the wall

flexibility p is calculated in ft>/ 1bxin’ units.
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Figure 3.2: Moment reduction as a function of wall flexibility for dense and loose sands
(Rowe, 1952).

According to Rowe, a retaining wall can be characterised as stiff when the deflection at
the excavation level is less than the deflection at the toe, so that the stress distribution in
front of the wall is approximately linear. The bending moments measured in his tests for
stiff walls were very close to those calculated using the free earth support method, based
on a fully active triangular stress distribution behind the wall and on a passive triangular

distribution with passive pressures reduced by a factor /), in front of the wall.

If the deflection at excavation level is significantly greater than at the toe, the wall may
be characterised as flexible and the stress distribution in front of the wall will be non-
linear. This is because the centroid of the stress distribution in front of a flexible
retaining wall is raised as shown in Figure 3.3. Therefore, Rowe defined the critical wall
flexibility p. as the value at which the deflection at the excavation level is equal to the

deflection at the toe and the bending moment starts to fall below the factored free carth



values. He related p. to the coefficient of volume compressibility of the soil and he also
investigated its dependence on the retained height ratio 4 / H (where /4 is the retained

height) and the depth of the anchor.

Frop or
anchor

Actual stress
distribution
3

Active
s
e
- - e
e

s

{\ Factored passive
Full passive

Figure 3.3: Stress distribution on both sides of a flexible wall (Powrie, 1997).

In a later analysis of anchored sheet pile walls by Rowe (1955), it was assumed that the
lateral effective stresses behind the wall had reached the active limit and the lateral
effective stress p, in front of the wall at depth x below the excavation level was given by

the expression
pr=m.xy /d (3.1)

where d is the embedment depth of the wall, y is the deﬂection and m, 1s a soil stiffness
parameter. Rowe presented his results in a single reduction curve, which shows the
bending moment as a percentage of the free earth support value plotted against the
logarithm of m, p. The parameter m, p is known as the flexibility number and is given the
symbol R. Powrie (1997) multiplied Rowe’s values by 144 and redrew Rowe’s curve
with m, p converted in consistent units (Figure 3.4). According to Rowe, the theoretical
critical flexibility number m1, p in consistent units (S /) is generally approaching 1000 for
dense sand and is in agreement with his experimental data. However, in the case of
stiffer walls in loose sand, the critical flexibility number derived from the experiments
was approximately 2500 in consistent units (S /) and thus considerably higher than the

theoretical value.
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Figure 3.4: Moment reduction curve as a function of soil/wall flexibility (Powrie, 1997).

The wall deflection can be analysed in a component due to a rigid body rotation and a

component due to wall bending (Figure 3.5).

Prop

Component of Component of
‘deformation due gﬁgg'lﬁg%n
to wall bending ’ bodly rotdion

.

De&flection at

excavated

50/ surface &, \

SR B

Dsftexion at toe, §;

D

Figure 3.5: Components of wall displacements (Powrie, 1997).

Rowe’s results are of importance because he quantified the effects of the bending
component of wall deformation and therefore the effects of the bending stiffness of the
wall. The figures he produced were simple and the influence of the retained height ratio
a, the depth to the anchor level divided by the overall height f and the surcharge

coefficient ¢ was taken into account (Table 3.1), so his results can be used for a range of

cascs.

There are many parameters that should be taken into account when the relative soil / wall

stiffness is investigated. In Table 3.1 the values of some parameters that Rowe used in
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his experiments are listed. The values of some parameters are not given, because it is not
clear which values he adopted. This makes comparison with other work difficult.
Moreover, the ranges of the values he considered are small, so that the application of his
method can not be considered safe for all the cases. The doubts about the wall and soil

characteristics he chose will be amplified below.

Rowe modelled an excavated wall, so the validity of his results is uncertain for backfilled
walls. The retained to overall height ratio, 4 / H, investigated is in the range of 0.6~0.8.
However, this may not be suitable for walls where the groundwater level in the retained
soil is high, because smaller values of /2 / H would be required. The curves he presented
were for the case of a slightly yielding anchor, so they are not reliable for pre-stressed
anchors, which would be expected to result in slightly higher bending moments and
anchor loads. Moreover, the units Rowe used for the calculation of the wall flexibility p,
are ft / Ibxin?, so its application is not easy and calculations are required to convert it to

consistent units.

Rowe’s tests were carried out in dry sand, so the effect of the pore water pressures,
which can be very significant for wall stability, were not considered. In addition, the
definition of m, in expression (3.1) as a soil stiffness parameter is unusual. If y / d 1s
taken as indicative of the magnitude of the linear strain, then m, x would be the Young’s
modulus of the soil and m, a measure of the rate of increase of Young’s modulus with
depth, E’. The operational values of £ and hence of F * will decrease with increasing
shear strain, but this variation is not easily defined in Rowe’s analysis. Powrie (1997)
argued that the use of G°, which is the rate of increase of the shear modulus G with
depth, may be more appropriate. This will be discussed later. Moreover, the pre-
excavation lateral earth pressure coefficients in Rowe’s tests were low. Although this is
reasonable for sandy soils, in the case of overconsolidated clays with high pre-excavation
lateral earth pressure coefficients, the applicability of his reduction curves is open to

question.

Rowe compared the anchor loads and the bending moments measured in his experiments
to the values calculated in the free earth support method with the passive pressures
reduced by a factor of safety, . This procedure was suggested in the former UK code of

practice CP2 but, as already mentioned, modern codes of practice require the application
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of a factor of safety to the soil strength directly. Therefore, Rowe’s figures cannot easily

be used directly in current design.

Another analysis of the effect of the bending stiffness on wall movements, bending
moments and prop loads was carried out by Potts and Fourie (1985). In this analysis, the
pre-excavation earth pressure coefficient K;, which is the ratio ¢’ / ¢ after wall
installation and immediately prior to excavation of the soil in front of the wall, was given
values of K;=2.0 and 0.5. It is important to mention that K is different from the in situ
earth pressure coefficient K,, due to the lateral stress relief that occurs during wall
installation. The behaviour of four walls with different stiffnesses, varying from a rigid

to a soft wall, was investigated.

Potts and Fourie’s results indicate that for the two more flexible walls, the calculated
bending moments were lower than those derived from limit equilibrium calculations,
using a factor of safety, F,, defined by Burland, Potts and Walsh (1981), for both K, =
0.5 and K; = 2.0. In this case, their results are in agreement with Rowe’s analysis.
However, for the two stiffer walls the bending moments were lower at K; = 0.5, but
greatly exceeded the limit equilibrium values at K; = 2.0. For this last case it was found
that the earth pressures behind the wall were far from linearly distributed. A similar
conclusion was made for the prop loads, so that a divergence from Rowe’s analysis is
obvious. The wall and soil characteristics that Potts and Fourie (1985) adopted' are
presented in Table 3.1. Their results refer to a single value of the retained height ratio / /
H, a specific depth of anchor (f=0) and a specific type of soil. Therefore, their results

may not be valid for other cases.

Potts and Fourie did not take into account the difference between the pre-excavation
earth pressure coefficients after wall installation K; and the in situ earth pressure
coefficient K, although wall installation will tend to reduce the lateral stresses below
their initial values in the soil close to the wall. In Potts and Fourie’s analysis the wall
with £~ p = 420, where £~ = 6000 kN / m’ is the rate of increase of soil Young’s modulus
with depth, was characterised as stiff although the deflection at the excavation level

exceeded the deflection at the toe. This is not consistent with Rowe’s flexibility criterion,

"' In Potts and Fourie (1985) analysis the bending stiffnesses of the walls are given in (kN / m?). However, this
is believed to be a typographical error, since the bending stiffness should be i (AN n’ / m) units.
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which infers that in this case the critical flexibility number E'p is less than 420. In the
calculation of bending moments in limit equilibrium, Potts and Fourie (1985) used a
factor of safety, F,, defined by Burland, Potts and Walsh (1981), which is different from

the factor of safety, £, that Rowe used and the factor of safety, F; used in modern codes

of practice.

The review of the two methods of characterising the relative soil / wall stiffness indicates
that a direct comparison between them may give misleading results. An attempt to list
the parameters involved in the problem in consistent units for ease of comparison is

presented in Table 3.1.

It is obvious from results of previous research as presented above that a change in the
relative soil / wall stiffness can alter significantly the bending moments and prop loads;
thus its effects on the design of retaining walls should not be neglected. However, the
values of the parameters in previous research were not varied over wide ranges of values,
which is necessary if a general understanding is to be obtained. The influence of the pore
water pressures should also be considered. Finally, to quantify the relative soil / wall
stiffness and study its effects on a design calculation, a more consistent and clearer

definition of soil stiffness is required.
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Rowe Potts& Fourie

Type of wall Excavated e Excavated
e Backfilled

Anchor / prop yield No No
Prop stiffness No data No data
h/ H (m) *0.6 «0.7 +0.8 0.765
J (ratio: depth to anchor level / *0 0.1 +02 «03 0
overall height
¢ (surcharge pressure /v H) *Q 0.1 02 No data
Logp (wall ﬂexibility,p=H4/EI -1.29 ~ 0.96 *-4.16+-1.16 +0.31
in m’/KN) - 0.84
o' (degrees) 30° ~ 50° 25°
Oactive 2/3 ¢’ 0
Opassive Q' ¢’
Void ratio 0.53 ~1.76 No data
E (kN/m°) No data 6000 7
u (Poisson’s ratio) No data 0.2
y (soil unit weight in kN/mz) No data 20
v ( angle of dilation in degrees) No data o'
¢’ (soil’s cohesion) No data
K; (after wall installation) Low 05 1.0 15 <20
K, No data 0.33
K, Ky/F, (Fp=1.5) 3.9
Pore water pressures 0 0

Method of prediction

Free "earth support
with application of
F. to the passive

Free earth support with
application of I,

Method of analysis

Experiments

Finite element analysis

Table 3.1

K; denotes the earth pressure coefficient before excavation and after installation of the

wall

K, denotes the active earth pressure coetficient
K, denotes the passive earth pressure coefficient 4/H denotes the retained height ratio
J denotes the ratio: depth to anchor level / overall height
0qc denotes the angle of soil/wall friction behind the wall

Opass denotes the angle of soil/wall friction in front of the wall
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3.2.1 Flexibility number

Rowe defined a flexibility number R = m p = m H' / EI, where m is a rather ambiguous
parameter used to express the soil stiffness. He also defined the critical wall flexibility p,.
as the value at which the deflection at the excavation level is equal to the deflection at
the toe. In this definition the influence of the soil stiffness on the wall deformations 1s not
considered. Li (1990) introduced a different definition of a flexibility number quantifying
the relative importance of wall deflections due to rigid body rotation and bending. This

approach is presented below.

W]

Figure 3.6: Mohr circle of stress.

From the geometry of the Mohr circle of stresses shown in Figure 3.6 the mobilised soil

strength is defined by the relationship
O'nos = sin [1/5]] | (3.2)
where ¢ is the maximum shear stress and is equal to the radius of the Mohr circle
t=05][c")-0'5] (3.3)
and s'1s the average effective stress which is located at the centre of the Mohr circle

s'=05[c"+ 03] (3.4)
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In Equations (3.3) and (3.4) ¢'; and ¢'3 are the major and minor effective stresses

respectively. The maximum shear stress can be expressed as

1=Gy (3.5)
where G is the secant shear modulus of the soil and y is the shear strain.
Therefore, from Equations (3.2) and (3.5):

0'mor=sin”! [Gy /5] (3.6)

The use of a single ¢~y curve on one side of the wall is equivalent to the assumption
of an increasing shear modulus with average effective stress s’ and hence with depth. If
G is the rate of increase of the shear modulus G with depth, Li (1990) used the
geostructural mechanism for an initial earth pressure coefficient K, = 1 to show that the
rigid body rotation is governed by ¥, / G, where 7, is the unit weight of the soil and that
in undrained conditions the bending deformation is dependent on y, H’ / E I, where H is
the overall height and E/ the bending stiffness of the wall. Figure 3.5 shows that the
deflection of a retaining wall is due partly to a rotation as a rigid body and partly due to
the effects of bending. Therefore, Li (1990) defined a flexibility number quantifying the

relative importance of wall deflections due to rigid body rotation and bending
[ys/ Gl = [ H' /EI] =G H'/EI (3.7)

This definition of a flexibility number seems similar to Rowe’s definition m, H'/EI
However, the use of the rate of increase of the shear modulus G instead of m, is

considered a more direct and clear description of the soil stiffness.
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3.2.2 Critical flexibility ratio

The flexibility number as identified by Li (1990) and Rowe’s definition of the critical
flexibility of the wall can be combined to distinguish a stiff from a flexible system. To
take into account both the wall flexibility and the soil stiffness, the term flexible or stiff
system is used instead of one referring merely either to the wall or to the soil. The critical
flexibility ratio is defined as the specific value of G H'/ E I at which the deflection at
the excavation level of a retaining wall is equal to the deflection at the toe and is denoted
by R If a system has values of G H/EI greater than R, it is characterised as a
flexible system, whereas if the values of G H'/ E I are less than R, the system is

regarded as stiff.

The calculations for the critical flexibility ratio that are presented later in this chapter are
aimed at providing a general solution for soils with different initial earth pressure
coefticients, in drained or undrained conditions and for walls propped at the crest with
different retained height ratios A / H . Moreover, the variation of the values of R..;, with
other parameters is investigated. However, since the geostructural mechanism is used to
quantify R, its application is restricted to stiff walls. An attempt to apply the geostructural

mechanism to flexible walls also, will be discussed in Chapter 4.

3.3 STRESS DISTRIBUTIONS

3.3.1 Behind the retaining wall

The total stresses behind the retaining wall before excavation are assumed to be linear

and proportional to the depth, with a pre-excavation horizontal total stress coefficient:
KO = Oho /0-\’0 (38)

Then, at a depth z below ground level

o= Vs Z (3.9)



where 0., the vertical total stresses and vs 1s the bulk unit weight of the soil and

Oho = Ko Vs Z (310)

where o}, the horizontal total stresses.
The 1nitial shear stress is
1, = 1/2 (67 - 03) (3.11)

where o, o3 are the major and minor principal stresses respectively. If we assume that

ovw,= oy and o;,= 03 (1.e., K, < 1), then :
when K, <1,

To = 1/2 (615~ 040)=1/2 (vsz - K, p52)=1/2 (1 -K, ) ysz >0 (3.12)

when K, > 1,

To,=1/2(1 -K,)y;z<0 (3.13)
when K, =1,

T, =1/2(1 -K,)ypsz=0 (3.14)

After a small rotation of the retaining wall 00 into the excavation, the vertical total
stresses will remain the same whereas the horizontal stresses will be reduced below their

initial pre-excavation values:

Oy = Ys Z

Op < Opo (315)
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The shear stress 7rat this stage, assuming that 6,= ¢; and 0,= 03 (i.e. , K, < 1), is:

7= 1/2 (0] - 03) = 1/2 (0, - 63) = 1/2 (y sz - 0p) (3.16)
In Equation (3.16) 7 > 0 since the horizontal stresses will approach their active values.

Hence the incremental shear stress is

OT =1 -1, = 1/2 (0, - 04) - 1/2 (04 - Ohe) =

172 (ysz~-0p) -12y z(1- K,)=1/2(K, v z - 0p) (3.17)
which gives:

on=Ky,y5z— 20t (3.18)

According to the geostructural mechanism (Bolton & Powrie 1988), the rigid body
rotation of a stiff wall propped at the crest can be related to the maximum shear strain in

the soil behind the retaining wall via the relationship
oy =200 (3.19)

where 00 is the rotation of the wall towards the excavation taken to be positive and dy is
the shear strain in the soil. The incremental shear strain can then be related to the
incremental shear stress required for equilibrium assuming that the concepts of elasticity

theory still hold. Hence,

ot =G oy (3.20)

where G is the soil shear modulus. Since the soil shear modulus is not a constant but
depends on the shear strain and the stress state, the rate of increase of G with depth is

usually used:

G=G*z— G*= G/z (3.21)
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So from Equations (3.19), (3.20) and (3.21):

ot =2G*z 80 (3.22)
In Equation (3.22) J7 and 06 represent absolute values. Assuming that the final shear

stress 1y is greater than the initial shear stress 7, and substituting Equation (3.22) in

equation (3.18):
oy, = K, y5z-4G* 200 (3.23)

The above Equation relates the total horizontal stresses behind the wall after a small wall
rotation to the initial in situ earth pressure coefficient K, the wall rotation 00 and the soil

stiffness, which is expressed as the rate of increase of the soil shear modulus with depth

G* If 1, > 17:

T =1,-1=1/2(01y- Opo) -1/2 (6,- a3) = 1/2 (04- K, 7, 2) (3.24)
From equations (3.22) and (3.24):

o= K, v z+4G* z06 (3.25)

Equation (3.25) indicates that as the rotation of the wall towards the excavation
increases, the horizontal stresses behind the wall increase as well. However, the wall
rotation will cause a relief in the horizontal stresses behind the wall, which will decrease
towards their active values; hence, the assumption 7, > 7y cannot be correct. The
distribution of the total horizontal stresses behind the wall is therefore derived from
Equation (3.23). The Mohr circles of total stresses when K, < 1, K, > 1 and K, = 1 are

presented in Figures 3.7, 3.8 and 3.9 respectively.

42



A. IfK, <1,thenc,, > 04, 17,> 0 and 7y > 0. Assuming o, = 6,, > Ono > Op

r—To >()

Figure 3.7: Mohr circle of total stresses behind a retaining wall before and after

excavation (K, <1).

B. If K, > 1, then 0., < 03,7, <0 and 17 > 0. Therefore 17— 1, >0 since o, > 0y

=0y > Op.

T =

.
/

Figure 3.8: Mohr circle of total stresses behind a retaining wall before and after
excavation (K, > 1). '
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C.

If K, = 1, then 7, = 0, 7y > 0. Therefore: 77— 7, >0.

Tf = — - = — -
] \\\\ \\\
,// Zf \\\ ‘\,\
/ \
i A y
z t,
To } ‘
Ch Y f | Cu 9]
; Cvo
// Cho

Figure 3.9: Mohr circle of total stresses behind a retaining wall before and after

excavation (K, = 1).

3.3.2 In front of the retaining wall
The total stresses at a depth z below the ground level before excavation are again

assumed to be linear and proportional to the depth
(3.26)

U—\’O ;5
Oho — ]<o Vs Z (327)
where 0., o), are the vertical and horizontal stresses in front of the wall respectively. If

we assume that 0,,= ¢, 6,,= 03, then the initial shear stress is:

when K, <1,
T, = 1/2 (Ovo- Opo) = 1/2 (v5z - Ky v52) = 1/2 (1 -K, ) ysz> 0 (3.28)
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when K, > 1,

to=1/2(1 -K,) 9,2 <0

when K, =1,

t0=1/2(1 -K,)2=0

(3.29)

(3.30)

After a rotation 06 of the retaining wall into the excavation, the total stresses and the

shear stress are:

Ov= Vs (Z‘h)

0} > Ojo

r=1/2(0;- 03) =1/2(0v- 03) =12 [ys (z— h) - 04 ]

(3.31)

(3.32)

In Equation (3.32) 7, < 0 since the horizontal stresses will approach their passive values.

Following the same reasoning as before, the incremental shear stress is:

when K, <1,

Oro>00— T,>0 and 0, <0, > 177,<0— 177-17,<0
when K, > 1,

Ovo<0ho—To <0 and o, <o — 17<0
Therefore:

Oy <0y <0po <0 — Oy Op- 0ot 0y <0 — Tr— T, <0

when K, =1,

,=0 and 7<0— 1,-7,<0

Therefore: dt=1, -7, >0 — 01=1/2 (0, - 0p,) - 1/2 (0, - 0})) =

=12 [y z(1-Ko)-ps (z-h) + o] =172 (0, + ps h-Ko s 2)

(3.33)

(3.34)

(3.35)

(3.36)
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From the geostructural mechanism the shear strain at the excavated side is (1+ 4 / d)

times that on the retained side of the wall, so:
oy=2(1+h/d)ob (3.37)

where d is the wall embedment depth. Combining Equations (3.20), (3.21), (3.36) and
(3.37):

ot=2G* z(1 +h/d) o0 —

12[ysz-Ko ys z-ys (z-h) + 03] =2G* z(1 +h/d) 60 —

0y =Ko vsz -y h+4G* z(1+h/d) oo (3.38)
The Mohr circles of total stresses in front of the wall when K, <1, K, > 1 and K, = 1 are
presented in Figures 3.10, 3.11 and 3.12 respectively. The horizontal stress distributions

behind and in front of the retaining wall are plotted in Figure 3.13.

A. IfK, <1,thent,> 0,17 <0and1,—7,>0.

a. Ifope <o, <0, <o;,the Mohr circle of total stresses may be drawn as:
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b. If 6, < 04 < 6y, < 05, the Mohr circle of total stresses may be drawn as:

_
i

(b)
Figure 3.10a & b: Mohr circles of total stresses in front of a retaining wall before and
after excavation (K, < 1).

B. IfK,>1,thent, <0, 1 <0 and o, > 64 > 0y, > 0, Therefore, 7, — 7, >0 and the

Mohr circle of total stresses may be drawn as:

Figure 3.11: Mohr circles of total stresses in front of a retaining wall before and

after excavation (K, > 1).
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C. fK,=1,thent,=0,7, <0and 7, 77>0.
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Figure 3.12: Mohr circle of total stresses in front of a retaining wall before and after
excavation (K, = 1).

oh = Koysz~ ysh

K 1C*z(1+h/d)sv oh = Koysz~4G%z 00
h

oh = ysh{ Ko 1)
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Figure 3.13: Lateral total stress distributions behind and in front of a retaining wall



3.4 WALL ROTATION

Assuming that the total stress distribution behind and in front of the wall are described
by Equations (3.25) and (3.38) respectively, the wall rotation 06 required to maintain

stability can be calculated by considering the moment equilibrium about the prop:
00 =ypm[(2K,-3)m’+3]/8G*(m’ +m+2) (3.39)

where m is the retained height ratio, which is defined as the ratio of the retained height to
the retaining wall’s overall height. The detailed calculations are carried out in

Mathematica and are presented in the Appendix.

The above relationship specifies the wall rotation 06 in relation to the initial in situ earth
pressure coefficient K, the retained height ratio m and the ratio of the bulk soil unit
weight to the rate of increase of the shear modulus y; / G*. In Figures 3.14, 3.15 and 3.16
06 is plotted against m for different values of y / G* and K, = 0.5, 1.0 and 2.0
respectively. The values of y; / G* vary from 0.005 to 0.02, whereas m varies from O to 1.
In figures 3.17 and 3.18 06 is plotted against K, for different values of y; / G* and for m
= 0.6 and 0.7 respectively. Figures 3.19 and 3.20 show 06 against y, / G* for K, = 0.5,
1.0, 2.0 and m = 0.6 and 0.7.

/: e
0.001 y g .
0.0008 — T~ N —— y5/G#*=5x10""
, . — \\ \\7 N
0.0006 /S T - = y5/Ga=8x10°
/ e L ~ N
0.0004 ;s T - N ¥s/G»=0.012
B /////// ,,,,,,,, o — — - ¥5/G#=0.015
. /Z/ - : T vs/G*=0.02
/ . . m
0.2 0.4 0.6 0.8 1

Figure 3.14: Variation of the wall rotation 00 with m for K,= 0.5 and y, / G* = 0.005,
0.008, 0.012, 0.015 and 0.02.
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Figure 3.15: Variation of the wall rotation 06 with m for K,= 1.0 and y, / G* = 0.005,

0.008, 0.012, 0.015 and 0.02.
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Figure 3.16: Variation of the wall rotation 66 with m for K,= 2.0 and y, / G* =0.005,

0.008, 0.012, 0.015 and 0.02.

50

\ -

0.002 —

/// N -

0.0015 - S )

— — I -

— o

0.001 —  —  _ ~ o

— - — SRR N
0.0005 | -
1 2 3 4

¥Ss/Gx=5x10""
¥S/Gx=8x10 °
vs/Gx=0.012
v¥s/Gx=0.015
¥s/Gx=0.02

Figure 3.17: Variation of the wall rotation 66 with K, for m= 0.6 and y, / G* = 0.005,

0.008, 0.012, 0.015 and 0.02.
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Figure 3.18: Variation of the wall rotation 06 with K, for m= 0.7 and y, / G* = 0.005,
0.008, 0.012, 0.015 and 0.02.
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Figure 3.19: Variation of the wall rotation 66 with y, / G* for m= 0.6 and K, = 0.5, 1.0
and 2.0.
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Figure 3.20: Variation of the wall rotation 08 with y, / G* for m= 0.8 and K, = 0.5, 1.0
and 2.0.



According to the Figures, the wall rotation about the prop increases with decreasing soil
stiffness and increasing earth pressure coefficient. The rate of the increase in the wall
rotation with increasing K, is less for high soil stiffness than for low. The relationship
between the wall rotation and the retained height is approximately linear for £,=2. It
would be expected that as the retained height ratio, m, approaches unity the wall would
fail. However, this is not obvious in Figures 3.14 and 3.15. An explanation could be that
maybe there is a failure cut off at some value of m, indicated by a dashed line in Figures
3.14 and 3.15, that depends on the maximum principal stress difference; hence, the
results for bigger values of m than this wouldn’t apply. Moreover, it should be noted that
the assumption of a perfectly rigid wall 1s followed herein; in reality retaining walls may

not exhibit such a stiff response.

3.5 PROP LOADS

From the condition of horizontal equilibrium, the stress distributions and the wall

rotation 66 deduced from equation (3.39), the prop force can be calculated:
F=ymIP [-m-2m° (K,-3)+m (4K,-7) +2] /4 (m°+m+2) (3.40)
The normalised prop load is given by:
F/yH =[-m -2m’ (K,-3) +m(4K,-7)+2] /4 (m’+m+2) (3.41)
In Figure 3.21 the normalised prop load £/ y, H is plotted against m and K,, with m
varying from 0 to 1.0 and K, from 0.5 to 4.0. Figure 3.22 shows the variation of the

normalized prop load with m for K, = 0.5, 1.0 and 2.0. In Figure 3.23 the normalized

prop load is plotted against K, for m = 0.6, 0.7 and 0.8.
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Figure 3.21: The variation of the normalised prop load F/ w I with m and K,,.
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Figure 3.22: The variation of the normalised prop load 7/ w H with m for K,= 0.5, 1.0
and 2.0.
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Figure 3.23: The variation of the normalised prop load F'/w 1 with m for K, =0.5, 1.0,
and 2.0.
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From the Figures, the normalized prop load increases with increasing K, and m. For very
low K, values, negative prop loads are shown in Figure 3.23. The physical meaning of
this might be that very low K, values could result in a backward wall movement instead
of a movement into the excavation. From the empirical relationship K,=1-sing, for very
low values of K, the soil strength ¢ would be significantly increased; however, such high

values of soil strength might not be realistic.

3.6 BENDING MOMENTS

The normalised bending moments along the wall at a depth z from the ground surface is:
M/, ff =AGE/H)+BE/H +Clz/H-mP’+D [z/H-m]”  (3.42) '

where A, B, C and D are constants that depend on the retained height ratio m and the

initial in situ earth pressure coefficient K, and they are defined by equations (3.43),

(3.44), (3.45) and (3.46). If z/ H <m, then [z /T - m] = 0.

A=-fm[m’ +2m° (K,~3) +m (7-4K,) 2]} / {4[m" +m+ 2]} (3.43)

B=-K,/6+ {m[m (2K,~3)+3])/[12(m +m+2)] (3.44)

C={m[m -5m+4+2K, (m- 2)]) /4 (m’ +m—2)] 3.45)

D=[2K,(m~2)+3mm’~1)] / [12(m +m-2)] (3.46)
3.7 DEFORMATIONS

The wall deflection J is calculated from the differential equation:

d&’0/d’ = -M/E1 ' (3.47)

After double integrating equation (3.47) the normalised wall deflection is:
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O/H=-yH JEI[A/6(z/H} +BE/H’ +C/12(=/H-m)’ +D/20
/H-m) +J, (z/H)+J5] (3.48)

Where E [ is the retaining wall flexural rigidity and .J;, J; are constants of integration.

From the boundary condition at the prop at z=0 — J=0, J, can be calculated:
Jr=-C/12m’ +D/20m’ (3.49)

According to the geostructural mechanism, the maximum deflection for a rigid wall
propped at the crest is at the toe of the wall and is related to the wall rotation 06 required

to maintain stability by the relationship:
Oie/H=00=p,m[(2K,-3)m’+3]/8G*(m’ +m+2) (3.50)
Therefore, the boundary condition at the toe atz = H — 0 = J,,, defines J:
Ji=-E100/yH -4/6-B/20-C(1-m)?/12+ Cm"/12-D (1-m)’/20
-Dm’ /20 (3.51)
By substituting the integration constants J; and J, in equation (3.48):
0/H=-y H /EI[A/6(z/H) +B/20(z/H’+C/12(z/H-m)" +D/20
(z/H-m) -EI130/vH (z/H)-A/6(z/H)-B/20(z/H)-C(I-m)’/12(z/H)

+Cm*/12(/H)-D(1-m)/20(=/H) -Dm’/20 (z/H)-Cm* /12 +Dm’/20]

(3.52)

Equation (3.52) enables the calculation of the deformations of a rigid wall for different
initial earth pressure coefficients K, and retained height ratios m, if the wall flexibility £

7 and the rate of increase of the soil shear modulus G* are known.
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3.8 CRITICAL FLEXIBILITY RATIO

Considering the definition of the critical flexibility ratio R, the deflection at the dredge

level should be equal to the deflection at the toe of the retaining wall:
(5dredge = Orge — (jd)'edge /H = 5r09 /H (353)

From the geostructural mechanism the wall rotation 06 will be related to the deflections,

s0:
ddre(lge /H = (5t0€ /H =00 (354)
At the dredge level the depth z equals the retained height /4, so:

=h—z/H=h/H=m (3.55)

z

From equations (3.52), (3.54) and (3.55):
00=md0-yH /EI[A/6m’ +B/20m” -A/6m-B/20m-C/12m

(I-m'+ Cm’ /12-Dm(1-m)’ /20 -Dm®/20 -Cm*/12+Dm’/20]

—(m-1)00-y, H/EI{Am (m’-1)/6 + B m (m4—])/20+Cm[m/l—mj--"—

(1-m)]/12+Dm[m’ -m’-(1-m)]/20) =0

(3.56)

Equation (3.56) can be rewritten in the form:
00 =y /G*xL (3.57)
where L= {m [(2 K, - 3) m’ + 3]} /{8 (m’ +m +2)) (3.58)
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From equations (3.56), (3.57) and (3.58):
Lm-1)/{[Am (m’~1)/6] +[Bm (m’~1)/20] + [Cm (m’ —m’ ~

(1-m"))/12] + [Dm(m"—m’ -(1—-m’))/20] = G*H' /EI = Ry,
(3.59)

Substituting 4, B, C, D and L which are given by Equations (3.43), (3.44), (3.45), (3.46)

and (3.58) respectively, Equation (3.59) can be rewritten in the form:

(K,-3)+2m (29K,-65) +m’ (-44K, + 83)-3m-6])=G* I’ /El = R,
(3.60)

Equation (3.60) specifies the value of the critical flexibility ratio for different initial earth
pressure coefficients K, and retained height ratios m. Therefore, depending on the values
of R obtained from the above equation a stiff system can be distinguished from a
flexible one. The advantages of this solution are that both the wall flexibility and the soil
stiffness are considered in the same calculation and it can be applied in a general manner
if the retained height ratio and the initial earth pressure coefficient are known. Moreover,
a clear and consistent parameter for the soil stiffness is used, which can be obtained from
laboratory tests on representative soil samples. Most of the calculations were carried out
in Mathematica and can be found in the Appendix.

R, 1s plotted against m and K, in Figure 3.24, against m for K, = 0.5, 1.0 and 2.0 in
Figures 3.25 and 3.26 and against K, for m = 0.4, 0.5, 0.6, 0.7 and 0.8 in Figure 3.27.
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Figure 3.24: The variation of the critical flexibility ratio R, with m and K.
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Figure 3.25: The variation of the critical flexibility ratio R.,;, with m for K, = 0.5, 1.0 and
2.0.
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Figure 3.27: The variation of the critical flexibility ratio R.,;, with K, for m = 0.4, 0.5,
0.6, 0.7 and 0.8, where K, 1s in the range of 0.3 to 4.0.

The critical flexibility ratio increases when K, and m decrease. A system may be
characterized stiff for values of G* H' / EI, K, and m below the critical flexibility curve,
whereas flexible for values of G* H' / EI, K, and m above the critical flexibility curve.
For a stiff system, the prop loads, bending moments, wall rotations and deformations
may be calculated by the method presented in this Chapter. For a combination of values
which lie on the critical flexibility curve, the wall movement at the toe of the wall will be

the same with the wall movement at dredge level.

3.8. SUMMARY

The critical flexibility curves presented in this Chapter enable the designer to distinguish
a stiff from a flexible system taking into account the relative soil/wall stitfness, the in
situ earth pressure coefficient and the retained height ratio. For stiff systems, curves and
relationships are given for the estimation of the prop loads, bending moments, wall
rotations and deformations incorporating the relative soil/wall stiffness and the mobilized
shear strength behind and in front of a retaining wall. For flexible systems, the
application of the MSD method is examined in Chapter 4. Simple and reasonably

accurate predictions may be obtained by this simple design framework.



4. ANALYSIS AND DESIGN OF FLEXIBLE RETAINING WALLS
PROPPED AT THE CREST

4.1 INTRODUCTION

Some aspects of the soil behaviour and its theoretical modeling are reviewed and
discussed in the beginning of this chapter. The hyperbolic relationship, introduced by
Duncan and Cheng (1970) to represent the soil non-linear stress-strain relationship, is

presented in detail and compared to other soil models.

The mobilised strength method for stiff walls, as presented earlier in this thesis, is
extended, modified and applied to flexible retaining walls propped at the crest. New
deformation patterns are proposed, the mobilized shear strain is associated with the
mobilized shear strength by a modified version of the hyperbolic relationship introduced
by Duncan and Cheng (1970) and the wall flexibility is idealized into a simple

mechanism.

Finally, the potential of the method to serve as a design tool for flexible retaining walls
propped at the crest in drained conditions is examined and the effects of the wall
flexibility, the soil stiffness and the soil shear strength before excavation on the predicted

deformations are investigated.

4.2 SOIL BEHAVIOUR

Soil behaviour is generally complicated and a substantial number of parameters may be
required to describe it adequately. Previous research studies have been focused on
investigating these parameters and developing constitutive models to achieve a better

understanding of soil behaviour and its importance to the calculation of realistic ground
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deformations. However, the complexity and extent of the problem allows only for a brief

discussion here.

4.2.1 Soil stress-strain behaviour

The stress-strain behaviour of most soils is non-linear, with the soil stiffness depending
on various parameters which are related to the type of soil, the soil current state and its
stress history. Some of these parameters are real, whereas others are artifacts of the
sampling process. The soil stiffness is quantified by means of the Young’s modulus £ or

the shear modulus G, expressed as a tangent or secant, on a stress-strain curve.

The type of soil may be described by the grading and plasticity. An example of the effect
of these parameters on soil stiffness can be found in the results of undrained triaxial tests
on various soils carried out by Jardine, Symes and Burland (1984) with the accurate
measurement of local axial strains. Low plasticity clays were found to exhibit the most
non-linear but stiff initial behaviour, whereas cemented chalk samples showed the
nearest approximation to linear stress-strain behavior. A summary of their results is
presented in Figure 4.1, where the stiffness is expressed as the undrained secant Young’s
modulus normalized by the undrained shear strength, £, / ¢,, and plotted against the local

axial strain ¢;.
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Figure 4.1: Normalised secant stiffness £, / ¢, against axial strain for all the undrained
triaxial tests (Jardine, Symes and Burland, 1984).

The state of a soil may be described by its current stress state, which together with the
current strain will affect the soil stiffness considerably. Jovi¢i¢ and Coop (1997) carried
out undrained triaxial tests on different types of sand. Some of their results are shown in
Figures 4.2a and b in which the dependence of the tangent shear modulus G, on the
initial mean effective stress before shearing, p;, is obvious, particularly for very small
strains. Soil stiffness is usually normalized with respect to the initial mean effective

stress before shearing, p,’ or p;'.
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Figure 4.2: Variation of tangent shear stiffness with strain and initial effective stress for
undrained triaxial tests on: (a) compacted samples; (b) overconsolidated samples (JoviCic

and Coop 1997).



The graph in Figure 4.3 represents the typical soil stiffness-strain relationship which has
been in use for many years and is referred to as the S-shaped curve. The soil stiffness is
high at small strains and reduces at larger strains. Simpson (1992) redrew the S-shaped
curve, as shown in Figure 4.4, to indicate what proportion of the soil behaves elastically
at each strain level. From this graph soil may be viewed 100% elastic at very small
strains and the proportion of soil that behaves plastically increases with reducing

stiffness.

Plastic
proportion

100%

log {strain)

Figure 4.3: Proportions of elastic and plastic soil behaviour on the S-shaped curve
(Simpson 1992).

Georgiannou et al (1991) measured the soil stiffness of several overconsolidated clays at
very small strains using dynamic techniques. Figure 4.4, presented by Georgiannou et al
(1991), shows that the typical stiffhess-strain relationship for a monotonic loading path at
any particular strain, with G being the tangent shear modulus, could be divided into three
different strain regions which correspond to very small, small and larger strain levels.
The shear strains dividing each zone are approximately 0.001% and 1% respectively. The
importance of the very small to small strain region is pronounced; Jardine, Potts, Fourie
and Burland (1986) found that in footings and excavations, the small strain
characteristics appear to have the greatest influence on the deflection profiles around a
loaded boundary, while Burland (1989) showed that the strains around many

geotechnical structures are usually within this range.
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Figure 4.4: Typical shear stiffness-shear strain curve (Georgiannou et al,1991).

At the range of very small strains, strains may be considered as recoverable and elastic
(Atkinson and Salfors, 1991) and the soil stiffness is proportional to ¥ p,, while at small
to large stains G is proportional to p,’. This agrees with previous work for sands carried

out by Wroth and Houlsby (1985), who related G to the mean effective stress p ' by

Equation (4.1)
G/p=A@/p) 4.1)

where p, 1s a reference pressure of 1 kPa, used to make Equation (4.1) dimensionless, and
A and n are material parameters (constants) in the very small strain region. At the range
of larger strains, strains are irrecoverable and may be considered as inelastic and 4 and »
are not constants but will depend on the strain level and the stress path. Wroth et al
(1979) found from experimental data that »n 1s equal to 0.5 at small strains and increases
to unity at large strains, while 4 decreased to zero. Allman and Atkinson (1992)
investigated the basic behaviour of Bothkennar soil by drained and undrained triaxial

tests. They rewrote Equation (4.2) between the shear stiffness and the initial mean

effective stress in the form of Equation (4.3)
G=A4Ap,"” (4.2)

InG=mA+nin p,’ ’ (4.3)
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where the parameters 4 and » depend on the soil, the overconsolidation ratio and the
strain level. Their results from drained and undrained tests on normally consolidated
samples are shown in Figure 4.5, where /n G is plotted against In p, ' for strain levels
from 0.01% to 1%. The parameter n was again found to vary from 0.5 at small strains to

unity at larger strains.
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Figure 4.5: Variation of stiffness with initial effective stress and strain for normally
consolidated samples (Allman and Atkinson 1992).

The soil consolidation history can be represented by the overconsolidation ratio OCR,
and the soil stress-strain relationship is considered to be particularly dependent on it.
Jardine, Symes and Burland (1984) found that the strain required to achieve peak
strength steadily increased with increasing OCR, as shown in Figure 4.6, where R1, R1.4,
R2, R4, R8 represent reconstituted samples of North Sea clay with OCR increasing from
sample R1 to R8. Figure 4.7 shows that the normalised secant stiffness £, / ¢, at 0.01%
axial strain is higher for lightly overconsolidated test conditions (e.g. tests R1 and R1.4),
while it is lower for heavily overconsolidated conditions (e.g. test 13). In this figure, I1,
12, 13 and RM1, RM2 correspond to intact and remoulded samples respectively of North
Sea clay, LC1, LC2 represent intact samples of London clay, HRS1, HRS2 are pluviated
samples of Ham river sand and C1, C2 are intact samples of upper chalk. However, these

results could be influenced by the different values of ¢, for each test and the dependence
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of ¢, on other parameters, such as stress history, sample disturbance and soil microfabric.
The initial mean effective stress p,” may be a more appropriate parameter to normalise
the secant stiffness, since it can be measured in the laboratory quite accurately. In Figure
4.8, £, which 1s normalized with respect to p,’, is plotted against OCR for several test
conditions. In this case, the difference between the lightly and heavily overconsolidated

samples 1s less pronounced.
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Figure 4.6: Stress-strain data for reconstituted samples of North Sea clay with OCR
increasing from sample R1 to R8 (Jardine, Symes and Burland, 1984).

TC1
81-4
30a0 Reconstituted
= tests
d
3 LC2
i
o
& 2000
k4
2:\
m:
g Loz RM2
g 1000k ——itLC1 e
&
- RM1
HRS2 HAST 13
| ]
0 2 1 PSS A N —
3 2 4 8 830 20 40 100
OCH

Figure 4.7: Variation of normalized secant axial stiffness with overconsolidation ratio
for undrained triaxial tests on different soil samples (Jardine, Symes and Burland, 1984).
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undrained triaxial tests on different soil samples (Jardine, Symes and Burland, 1984).

The results from drained and undrained tests on Bothkennar soil obtained by Allman and
Atkinson (1992) show a similar trend. Figures 4.9 and 4.10 depict the variation of the
normalised secant shear modulus Gs. / p, ' with shear strain for different over-

consolidation ratios (expressed as R, on the graphs).
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Figure 4.9: Normalised secant stiffness against shear strain for samples with different
overconsolidation ratios in drained triaxial tests (Allman and Atkinson  1992).
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Figure 4.10: Normalised secant stiffness against shear strain for samples with different
overconsolidation ratios in undrained triaxial tests (Allman and Atkinson 1992).

Viggiani and Atkinson (1995) suggested that the relationship between the initial tangent

shear modulus Gy and the overconsolidation ratio is given by Equation (4.4)
Gy/pr=Ay(p’ /' py) "o (OCR)m (4.4)
where Ay, ny and m are parameters related to the soil plasticity.

Atkinson, Richardson and Stallebrass (1990) investigated the effects of recent loading on
the stiffness of overconsolidated soil by means of triaxial tests on reconstituted samples
of London Clay. They suggested that the recent loading of a soil might consist of a
relatively long period of time at constant stress state or a sudden change in the direction
of the stress path and used the term “recent stress history” to describe both. Richardson
(1988) found that stiffness increased logarithmically with time spent at constant stress,
independently of any changes in stress path direction; therefore, these effects can be
additive. Figure 4.11 shows the different stress paths followed at constant mean effective
stress p' or constant deviatoric stresss g, during triaxial tests carried out by Atkinson,

Richardson and Stallebrass (1990). The samples had been brought to stress state O along
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different stress paths from stress states P, Q, R or S, before they were loaded drained
along stress paths OA or AB. The change in the direction of the stress path is denoted in
Figure 4.11 by the symbol @, which can take positive or negative values. Stress paths OA
represented a change in ¢ with constant p'; stress paths OB represented a change in p’

with Ag= 0.

(a)

)

Figure 4.11: Different stress paths for triaxial tests at (a) constant p’ (b) constant g
(Atkinson, Richardson and Stallebrass 1990).

In Figure 4.12 d q / d &, which corresponds to 3 G, is plotted against shear strain for
different rotations of the direction of initial stress path. The influence of the change in the
stress paths on stiffness is obvious, especially at small strains. At 0.01% strain ]eyel the
stiffness for € = 180° is approximately an order of magnitude larger than the stiffness for
0 = 0°, while at 0.5% strain level there is almost no difference. Figure 4.13 illustrates the
variation of 3G,,, with the rotation of the stress path measured in constant p’ tests for two
stages of loading. At the beginning of the loading, when g / p,/ = 0.05, a significant
increase of stiffness is noticed as the change in direction of the stress path varies from ¢
= 0° to 6 = 180°. During the second stage of loading, when ¢ / p, = 0.40, the

corresponding change in stiffness is very small.
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Figure 4.12: Shear stiffness of reconstituted London clay samples from triaxial constant p’
tests (Atkinson, Richardson and Stallebrass 1990).
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Figure 4.13: Variation of shear stiffness of reconstituted London clay samples with stress
path rotation in triaxial constant p’ tests (Atkinson, Richardson and Stallebrass 1990).
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Powrie, Pantelidou and Stallebrass (1998) investigated the stress-strain relationship of
clay soils appropriate to diaphragm walls by carrying out triaxial tests on samples of
speswhite kaolin. Their results emphasize the importance of recent stress history during
wall installation on the soil behaviour during excavation, which was found to be outside
the influence of the soil geological or prewall-installation history. They suggested that
during wall installation a reversal in the direction of the stress path in the soil behind the
wall can result in a stiff response during excavation. For the soil in front of the wall, the
change in the stress path direction during wall installation was smaller, resulting in a
significantly less stiff response during excavation in comparison with the retained soil.
Figure 4.14 shows the normalised stiffness G / p,’ plotted against triaxial shear strain for

elements K5, K7, K8 M1A, NK1 in front the wall and KA1 behind the wall.
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Figure 4.14: Normalised shear stiffness against triaxial shear strain for different total
stress path rotations (Powrie, Pantelidou & Stallebrass, 1998).

Additionally, ageing or creep can affect soil stiffness. Allman and Atkinson (1992)
plotted the variation of the normalized secant shear modulus Gy, / p, ' against shear
strain for normally consolidated samples of Bothkennar clay that had been allowed
different periods of rest before shearing. In Figure 4.15 sample B49 was sheared
immediately, while samples B33 and B70 were sheared after 20 and 200 hours
respectively. Sample B49 showed significantly lower stiffness than the other two
samples. Allman and Atkinson (1992) noticed that the stress-strain behaviour of samples

sheared after periods of rest was similar to that for a lightly overconsolidated soil.
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Therefore, they suggested that the effects of creep or ageing might be equivalent to

overconsolidation, at least for short periods of ageing.
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Figure 4.15: The effect of ageing on normalized secant shear stiffness of normally
consolidated samples (Allman and Atkinson 1992).

It becomes obvious from the results of previous studies, as presented above, that the soil
stress-strain relationship is rather complicated and depends on various parameters. The
influence of even one parameter on soil stiffness may be difficult to evaluate accurately,
due to the interaction with other parameters. Therefore, the values for each parameter

should be selected carefully, allowing for possible uncertainty.

4.2.2 Theoretical modeling of soil behaviour

Roscoe and Schofield (1963) introduced a state boundary surface in stress space which
embodies yield and is based on the concept of critical states. This model, which is known
as Cam Clay, is shown in Figure 4.17. The yield locus is given by Equation (4.5) and
separates elastic states inside the surface from elasto-plastic states on the boundary for a
soil effectively preconsolidated isotropically to an average effective stress of p, '. The
value of p, ' defines the size of the state boundary surface. More details can be found in

Schofield and Wroth (1968).



q/Mp +In(p'/p,")=0 (4.5)

normal consolidation line

!
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Figure 4.16: Current state and isotropic consolidation history.

Critical state line
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Figure 4.17: Cam Clay model (Osman, 2004).
Roscoe and Burland (1968) proposed a revised form of this model, known as Modified

Cam Clay (Figure 4.18). In the yield locus expression, 5 stands for the stress ratio g / p'.

In Figures 4.16 and 4.17 the vectors indicate the direction of the plastic strain increments.
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Figure 4.18: Moditied Cam Clay model (Osman, 2004).

Al Tabaa (1987) and Al Tabaa and Wood (1989) introduced the “bubble” model using a
single kinematic surface within the Modified Cam Clay state boundary surface.
Stallebrass and Taylor (1997), based on the concept of multiple kinematic yield surfaces
introduced by Mroz, Norris and Zienkiewicz (1979), employed three kinematic surfaces
to take account of both the effect of recent stress history and yield at small strains or
changes in stress. Simpson (1992) developed a brick analogue, known as the “brick

model”, to simulate the effect of non-linearity and recent stress history.

q/

4.
ar

Bounding surface

Figure 4.19: Soil model with three kinematic yield surfaces in triaxial stress space
(Stallebrass and Taylor, 1997).

Jardine (1992) using a different experimental approach, observed two zones of behaviour
in normalised stress space within a bounding yield surface which can be repositioned and

modified if the soil is subjected to different stress histories.
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Despite developments in theoretical soil modeling, soil behaviour still remains difficult
to simulate accurately with a single constitutive model. Some of the models are complex,
have many parameters and the calibration of their values may be difficult. In addition,
some models are inherently fitted to a certain sample preparation procedure and testing
process (e.g. during isotropic compression the triaxial shear strain is defined at constant
confining pressure); this factor should be taken into consideration when such soil models
are used. Therefore, a simple soil model that takes account of the soil inelasticity and its
‘input parameters could be easily determined would be a useful design tool; such a soil
model is used to represent the soil stress-strain behaviour in this thesis since it is
consistent with the objective of achieving a practical and reasonably accurate solution
and is presented in the next Section. Other simple soil models (e.g. power law) may also

be incorporated in the method developed herein.

4.2.3 Hyperbolic stress-strain relationship

Duncan and Cheng (1970) proposed a simplified, practical relationship for representing
the non-linear, inelastic and stress dependent behaviour of soils. The simplicity of the
relationship derives from the relatively straightforward determination of the required
parameters from laboratory triaxial tests. It is adopted in this project since it contributes
to the objective of a practical design solution. According to this approach, the non-linear
stress-strain relationship may be approximated by the hyberbolic equation proposed by

Kodner (1963)
(c;—03) =¢/(a+beg) (4.6)

where ¢, and o3 are the major and minor principal stresses respectively, ¢ is the axial
strain and ¢ and b are constants which can be derived from experimental data. In Figure
4.20 where the hyperbolic Equation (4.6) is plotted, the physical meaning of constants a
and b is illustrated. The constant a is the reciprocal of the initial tangent Young's
modulus £; and the constant‘ b is the reciprocal of the asymptotic value of stress
difference, (6; — 03),s, which the stress-strain curve approaches at infinite strain.

Equation (4.6) can be written in the form of Equation (4.7):
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e/(o;—03)=a+be 4.7

The values of the constants ¢ and » may be derived from triaxial test results and can be
fitted to the plot of Equation (4.7) on transformed axes as shown in Figure 4.21, where a

is the intercept and b is the slope of the straight line.

+ (o1-03)ut = 7/b

~03)

(a1

A 4

™

o3)

e/ (o

Figure 4.21: Transformed hyperbolic stress-strain curve.

The stress difference in the soil (o; — 5) at failure is usually found to be slightly less than
its asymptotic value (o; — 03),, at infinite strain and a factor Ry can be used to relate them

in Equation (4.8):
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(01— 03)r = Rp(0; ~ 03)uy (4.8)

Duncan and Cheng (1970) found that factor Ry is generally in the range of 0.75 to 1.00
and is independent of the confining pressure g3 They derived an expression for the

tangent Young’s modulus in terms of stresses

E=[1- Re(I-sinp ) (c;—03)/(2ccosp+ 203 sing)]’ K pa(03/pd)"
(4.9)

where c is the true cohesion, ¢ is the effective friction angle, o3 is the confining pressure,
Pa 1s the atmospheric pressure expressed in the same pressure units as £, and o3, K is a
dimensionless modulus number and » is an exponent determining the rate of variation of
the initial tangent Young’s modulus £; with g;. The analytical calculations are presented
in the Appendix. The advantage of equation (4.9) is that it facilitates the determination of
the tangent Young’s modulus for any stress condition if data from triaxial tests are
available. However, it was assumed that the soil might be characterised by a single
constant value of Poisson’s ratio and the volume changes were not related to shear

stresses.

It may be argued that the dilation of the soil due to shearing might be less significant than
the dilation due to soil consolidation. Therefore, the approximation of zero volumetric
strains may be allowed. In reality, pure volumetric strains might occur; these could be
super imposed in the kinematic mechanism presented in this thesis assuming that they
might not cause additional shear. The hyperbolic Equation (4.6), which relates the total
principal stresses to axial strain, can then be transformed into the hyperbolic Equation

(4.10) to relate the shear stress 7 to shear strain y:
T=((0/3)/(a+by/1)5) (4.10)

In Equation (4.10) the parameters a and b are related to the initial shear modulus G; and
the shear stresses at failure 7, and at infinite strain 7,, respectively by appropriate

substitutions. The shear modulus G;is related to the Young’s modulus by the expression

G=E/[2(] +v)] (4.11)
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where v is the Poisson’s ratio. The shear stresses at failure 7 ; are related to those at

infinite strain 7, by the parameter R;:
Ry =17/ Ty (4.12)
Therefore the parameters a and b in equation (4.10) may be defined as:
a=1/E=1/[2G; (1 +v)] (4.13)
b=1/(o;~03)y =R /(0)~03)r=Re/(27Ty) (4.14)

Following the necessary substitutions and calculations as presented in Appendix A, the
tangent shear modulus G for drained conditions may be represented by an Equation

similar to Equation (4.9) in the form
Guan =[1-Rr 1 (1 ~sing)/ (c cosp + (73*51'71(/))]2 [Gi(l +v)/1.5] (4.15)

where G; is the initial tangent shear modulus. In relationships (4.13) and (4.15) a single
value of Poisson’s ratio has been chosen, v=0.5, in an effort to keep consistent with the
assumptions followed by Duncan and Cheng (1970). The tangent shear modulus G, can

then be calculated from equation (4.15) for any stress condition if data from triaxial tests

are available.

4.2.4 Comparison with other soil models

In previous research, different stress-strain relationships have been adopted to represent
non-linear soil behaviour. A comparison between some of these relationships and the
hyperbolic relationship introduced by Duncan and Cheng (1970) is presented in this

section to investigate the order of approximation when the simplified approach is

adopted.
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According to the generalized Hooke’s law, a change in shear stress in an isotropic elastic

material 1s related to the change in shear strain by Equation (4.16):
ot =G oy (4.16)

From Equations (4.10) and (4.16) and assuming that the Poisson’s ratio is equal to 0.5

(constant volume conditions), the secant shear modulus is given by the relationship

(4.17).

Gsee =1/(3a+2by) (4.17)
If 4; = 3 a and B; = 2 b, Equation (4.17) can be rewritten in the simpler form:

Gsee =1 /(A1 + B y) (4.18)
Equation (4.18) is plotted in Figure 4.22 for the data presented in Table 4.1, which were
obtained from triaxial tests on dense and loose silica sand carried out by Duncan and

Cheng (1970) with constant confining pressure to examine whether it can provide a good

approximation of the soil stiffness-strain behaviour in drained conditions.

150000
140000 *
§ 130000 -
& 120000 -
@ 110000 - ---A--- Dense (98.1)
§ 188888 i —-e-—Loose (98.1)
E 80000 —=8&— Dense (294.5)
= 70000 -
2 60000 - ---m--- Loose (294.3)
% 50000
§ 40000 - —a—Dense (490.5)
S 30000 —e—Loose (490.5)
(1]

20000 T
10008 '?_':‘—'!_'l_’:'_'l_'l_':’_'-l-"_:f;- =
1E-05 0.0001 0.001 0.01 0.1 1 10

shear strain g

Figure 4.22: Shear modulus-shear strain curves for dense and loose fine silica sand at
different confining pressures (in kN/m”. Data after Duncan and Cheng, 1970).
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Dense Loose N
D,
(Relative 100% 38%
density)
Ry 0.91 0.90
K 2,000 295
n 0.54 0.65
03
KN * 98.1 ©2943  +490.5 *98.1 +2943  490.5
a * 1315107 +6.796 10° *1.059 10* +5.097 10
(m%/KN) | +227310° «1.223 107
b ©3.09210° +1.019107 4587107 +3.20210°
(m%/KN) | +6.178 10" 9439 10™
3 *©3.945107 +2.039 107 +3.17710%  +1.52910"
*6.819 10" »3.669 107
*6.184 107 +2.038 107 *9.174 107 + 6.405 10~
Bi=2b +1.236 107 +1.888 107

Table 4.1: Triaxial tests on dense and loose silica sand carried out by Duncan and Cheng
(1970).

To derive Equation (4.18), it was assumed that y =/.5 &,, where ¢, is the axial strain and y
is the shear strain, and the Poisson’s ratio is equal to 0.5 which is valid for
undrained conditions. For drained conditions, slightly different parameters of A; and B;
may need to be applied. However, the shape of the diagram in Figure (4.22) is similar in
shape to the S-shaped curve which is typically used to represent soil stiffness-strain
relationship for a monotonic loading path (Figure 4.4). Therefore, the hyperbolic
function may be used to characterize the soil stiffness-strain or mobilized shear strength-
strain behaviour in drained conditions with acceptable accuracy. Its applicability to other
types of soils will be investigated by fitting data from triaxial tests carried out in previous

research studies to the hyperbolic Equation (4.18) and comparing the results.
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Jardine, Symes and Burland (1984) presented the results of undrained triaxial tests on
reconstituted and intact soil samples with different overconsolidation ratios and initial
mean effective stresses and determined the axial stiffness by measurements of the local
axial strain. The shear modulus G is related to the axial strain ¢, and Young’s modulus £
by Equation (4.11), whereas ¢, is related to y by Equation (4.19)
y=1/2 (3 &4~ €o)) (4.19)
where ¢,,; 1s the volumetric strain. In an undrained triaxial test ¢,,, = 0; hence, y=1.5 &,.
Jardine, Symes and Burland (1984) measured the secant Young’s modulus Es.; this is
related to the secant shear modulus Gy by Equation (4.11), taking the Poisson’s ratio v
equal to 0.5. Some of their results have been fitted to Equation (4.18) and are plotted in
Figure 4.23. In Table 4.2 some of the parameters employed in their tests together with

the values of 4, and B, which appear in Equation (4.18), are presented.

Tests R1 R2 I] Iz LC] LC2
) North North North North London |London
Material Sea cla Seacla Seca Sca cla cla
y Y clay clay Y y
Sample . .
Reconsti Reconsti . : . :
- - mtact mtact 1ntact mntact
P e.p ara -tuted -tuted
tion
OCR 1.0 2.05 1.1 1.1 - -
po 199
(KN/mz) 267 158 474 508 226 9
T
100
(KN/mZ) 122 108 255 275 123
A 1.540 8.390 4.810 3.96 2.103 1.760
(m*/KN) 107 107 107 10° 107 10°
B; 7.787 8.800 3.73 3.450 7.72 9.501
(m?/KN) 107 107 10° 107 107 10

Table 4.2: Summary of some of the triaxial tests carried out by Jardine, Symes and

Burland (1984).
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Figure 4.23: Secant shear modulus-shear strain curves clays at different initial mean
effective stresses (p,' ) and overconsolidation ratios (OCR) as indicated in Table 4.2
(Data after Jardine, Symes and Burland, 1984)

In Tables 4.3 the results of drained and undrained triaxial tests on Bothkennar soil are
presented. The tests were carried out by Allman and Atkinson (1992) on one-
dimensionally normally consolidated and lightly overconsolidated samples, which were
reconstituted from a slurry and compressed and swelled to different states. The drained
tests were carried out with constant mean effective stress, p’, while the undrained tests
were carried out with constant cell pressure o3’; an external displacement transducer was
used to measure the axial strains. The results shown in Table 4.4 were presented by
Smith, Jardine and Hight (1992) from triaxial tests on undisturbed Laval and Sherbrooke
samples of Bothkennar clay. Plots of the secant shear modulus Gy and tangent shear
modulus, G,, normalized with respect to the mean effective stress at the start of shearing
Po', against shear strain y were produced. In order to evaluate the hyperbolic stress-strain
relationship proposed by Duncan and Cheng (1970), all the results are fitted to Equation
(4.18) and are plotted in Figures 4.24 and 4.25a&b. The values of the parameters 4; and
B; are indicated in Tables 4.3 and 4.4.
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Tests B55 B57 B73 B75
. Bothkennar Bothkennar Bothkennar Bothkennar
Material
clay clay clay clay
Sample
prepara- reconstituted  |reconstituted reconstituted reconstituted
tion
OCR 1.14 1.33 4.0 1.0
Loading |[Compression |Compression Compression Compression
Drainage Drained Drained Undrained Undrained
po
(KN/m?) 175 150 50 200
T
(KN/m?) 115.06 99.75 38.16 144.7
A 5 -5 5 5
(m¥/KN) 1.520 10 1.543 10 7.520 10 6.410 10
B 3 3 2 3
(m¥/KN) 8.256 10 9.254 10 2.490 10 6.570 10

Table 4.3: Summary of some of the triaxial tests carried out by Allman and Atkinson

(1992).
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Figure 4.24: Secant shear modulus-shear strain curves for Bothkennar clay at different
initial mean effective stresses (p,’ ) and overconsolidation ratios (OCR) as indicated in
Table 4.3. (Data after Allman and Atkinson, 1992)



Tests Bss Bs7
Material Laval samples Sherbrooke samples
Sample . ,
Undisturbed Undisturbed
preparation
Drainage Undrained Undrained
po (KN/m?) 34 35.67
T (KN/m’) 25.89 31.57
B; (m¥KN) 3.670 107 3.009 107
A; (m*/KN) s 5
5.882 10 5.610 10
(for Gisee)
A; (m“/KN) S s
6.077 10° 5.792 10°
(for G)

Table 4.4: Summary of some of the triaxial tests for the characterization of Bothkennar
clay (Smith, Jardine and Hight ,1992).
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Figure 4.25a: Secant shear modulus-shear strain curves for undisturbed Laval and

Sherbrooke samples of Bothkennar clay. (Data after Smith, Jardine and Hight ,1992)
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Figure 4.25b: Tangent shear modulus-shear strain curves for undisturbed Laval and
Sherbrooke samples of Bothkennar clay. (Data after Smith, Jardine and Hight ,1992)

From Figures 4.22, 4.23, 4.24 and 4.25a&b the initial shear modulus at small strains is
high. The shear modulus then decreases, following an S-shaped curve, to approximately
zero at large strains. The shape of the diagram is similar for different types of soil,
different sampling procedures and consolidation history as indicated by Tables 4.2, 4.3
and 4.4 and is in agreement with the results of more recent research work on the soil
stiffness — strain behaviour, as discussed in the previous paragraph. Therefore, the
hyperbolic Equation (4.18) may be used for a variety of soils with reasonable accuracy.
In addition, Equation (4.18) has a relatively simple form and allows the determination of

shear modulus for any stress condition if data from triaxial tests are available.
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4.3 APPLICATION OF THE MSD METHOD TO FLEXIBLE WALLS

4.3.1 Assumptioﬁs

The mobilized strength method, described in Section 2.4, idealizes soil behaviour by
means of simplified kinematically admissible strain fields. The active and passive soil
zones are subdivided into triangles, the verticals and horizontals of which are frictionless
displacement discontinuities, while the hypotenuse of each is a zero extension line.
Mobilisation of a uniform shear strength is assumed which is consistent with the
development of a uniform shear strain in each triangle. From a deformation geostructural

mechanism, the mobilized strains are related to wall deformations.

According to the simplified geostructural mechanism, the maximum wall deflection will
be at the toe of a rigid wall propped at the crest. However, flexible walls deform in a
more complicated mode and the maximum wall deflection will possibly be close to
dredge level. In this case, further kinematically admissible strain fields may be added to
better represent the soil behaviour. Therefore, the active and passive soil zones are
subdivided into a number of triangles as shown in Figure 4.26. The soil is divided n four
zones behind the wall and two zones in front of the wall for the analysis presented in the
thesis. In principle, the soil may be divided into more zones to achieve higher accuracy.
The soil behind the wall and above the dredge level is divided into triangles OAE and
AEK with heights equal to half the retained height, /4 /2 and triangles BOF and BFJ with
heights equal to the retained height, h. The soil behind the wall and below the dredge
level is divided into triangles OPC and PCI, with heights equal to # + d / 2, where d 1s
the penetration depth, and triangles ODG and DGH with heights equal to the overall
height, 4 + d. For the soil in front of the wall two deforming triangles, FPL and LPN, are
assumed with heights equal to half the penetration depth, d / 2 and two deforming

triangles, FMG and MGQ, with heights equal to the penetration depth, d.

The triangles are free to slide on vertical and horizontal surfaces, which are assumed to
be frictionless and can be attached to the surrounding rigid zones through zero extension
lines. Zero extension lines are at 45° to the principal axes of strain, since the angle of

dilation is taken as zero. The mobilised shear strength and the shear strain are assumed to
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be uniform within each triangle. The use of additional kinematically admissible strain
fields permits the incorporation of different mobilised shear strengths and hence
mobilized strains in each zone of the soil surrounding the retaining wall. Strains can then
be related to the wall deformations by a geostructural mechanism. The strain increment
within a triangle should be consistent with the relative rotation of the same triangle and
then the total strain is estimated by adding the strain increments of the adjacent triangles.
The rotation of a triangle is related to the wall displacement by means of a geometrical
relationship. The appropriate relationships, between the shear strains and the rotations,

developed for each triangle will be presented later in this chapter.
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Figure 4.26: Admissible strain fields for a flexible retaining wall propped at the crest.

4.3.2 Wall rotations

Assuming that the wall movement takes place in four successive stages, then Figure 4.27
depicts the first stage, which consists of the movement of triangle OGD behind the wall
to its new position OG’D’ and of triangle FMG in front of the wall to its new position

FM’G’.
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Figure 4.27: Stage 1 of the assumed wall movement — rotation of triangles ODG behind

the wall and FMG 1in front of the wall.

The rotation of triangle ODG is 664 and its horizontal d,opg and vertical dyopa)

movements, taking compression positive, are:

Ouone) = -004 (h+d) (4.20)

Oviopey = 004 (h+d) (4.21)
Therefore, the increments in horizontal (u) and vertical (v) strains are:

0y (onG) = Oopg)/ (h+d) = -00, (4.22)

9&y 0pG) = OViopgy/ (h+d) = 00, (4.23)
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N6y )2

Figure 4.28: Mohr circle of strain increments.

Inward rotation would cause the signs of the vertical and horizontal strain increments to

reverse. If 0y is the shear strain increment, then from the Molr circle of strain increments

in Figure 4.28:
(5}’4 =2 ()(94 (424)

Triangle MFG in front of the wall will be compressed and the horizontal and vertical

strain increments within it are related to the rotation of triangle ODG by Equation (4.25).
oe, mcoy + 06 oy =0 — 004 (h+d)/d -00,(h +d)/d=10 (4.25)
Therefore, the maximum shear strain increment is given by Equation (4.26).

Iy = 0ys =200, (h+d)/d (4.26)
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Figure 4.29: Stage 2 of the assumed wall movement — incremental rotation of triangles

OCP behind the wall and FLP in front of the wall.

The second stage of the wall movement is illustrated in Figure 4.29. The shear strain

increment &y; within triangle OCP behind the wall is:

5)’3 =2 (5(93 (427)
The horizontal and vertical strain increments within triangle LPN in front of the wall,
which is compressed, are related to the rotation of triangle OCP by Equation (4.28) and
the maximum shear strain increment is given by Equation (4.29).

(SEM (FLP) = - (38\,(/?'L])) = (5(93 (h + d/2)/(d/.2) - (5(93 (h + a’/2)/(a’/2) (428)

OFrp = 0ps =2003(h+d/2)/(d/2) (4.29)
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Figure 4.30: Stage 3 of the assumed wall movement — incremental rotation of triangle
OBF.

During the third stage of the wall movement the incremental shear strain in triangle OBF

behind the wall 1s: |
(5}}2 =2 56’_) (430)

Figure 4.31 shows the final stage of the wall movement.
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Figure 4.31: Stage 4 of the assumed wall movement - incremental rotation of triangle
OAE.

The shear strain increment dy; within triangle OAE behind the wall is:
(5})/ =2 0(9/ (431)

In Figure 4.31 the total wall movement is shown. The total shear strain associated with the
upper triangles is assumed to be the sum of the incremental shear strains assoctated with
this triangle during each stage. Therefore, for triangles ODG, OCP, OBF and OAE behind
the wall the total shear strains y,, y3, 72 and y; are given by Equations (4.32), (4.33), (4.34)
and (4.35) respectively:

YopG) = P4 = 0ys = 2 304 (4.32)
Yiocp) = Y3 =0y4 + 0y = 2 (004 + 603) (4.33)
Yior) = V2 = Oya+ Ov3+ 0y; = 2 (00, + 005 + 06 ) (4.34)
Yioag) = V1= 0ps + Oz + 0z + 0y; = 2 (004 + 005 + 60> + 60)) (4.35)



For triangles MFG and LPN in front of the wall the total shear strains ys and s are given
by Equations (4.36) and (4.37) respectively. The smaller triangle LPN in front of the wall
will first be sheared by dys = 2 00, (h + d) / d, due to the rotation of triangle FMG during
the first stage. An additional amount of shear strain will then develop within triangle

LPN during the second stage.
YmGo) = Vs =0ys =200, (h+d)/d (4.36)

y(Lp/x9:y6:5y5+ 0vs =200, (h+d)/d+20;h+d/2)/d/2) (437)

4.3.3 Mobilised strength

If the increments of strain in a soil zone are known, then the mobilized strength can be
estimated by a constitutive relationship measured in an element test on a representative
sample of the soil. Bolton and Powrie (1988) used plots of mobilized friction angle ¢'n0p
against shear strain y, derived from plane strain tests, as the means of expressing the
mobilized strength and stiffness of the soil surrounding the wall. The rate of change of

¢’ mo» With shear strain is a useful tool for expressing strength and stiffness at the same time,

providing information on the soil state relative to its critical state.

From the Mohr circle of stress (Figure 4.32) the mobilised angle of friction is given by

relationship (4.38):

0os = sin [1/s] =sin” [(6)) - 05)/ (6, + 05)] (4.38)
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Figure 4.32: The Mohr circle of stress.

The use of the ¢, — 7 relationship, instead of the conventional way of presenting soil
stiffness by the shear modulus G, has the advantage of being comparatively insensitive to
small changes of OCR and initial effective stress (Bolton & Powrie, 1988) and will be
adopted in the present project. Application of more kinematically admissible strain
fields, as described in Sections 4.3.1 and 4.3.2, enables the use of different values of

@ 'mob for the active and passive soil zone and for different depths from the crest.

The hyperbolic relationship introduced by Duncan and Cheng (1970) and described in
Section 4.2.2, can be rewritten in terms of ¢',,, — 7. Their results from triaxial tests on
dense and loose uniform fine silica sand samples by Duncan and Cheng (1970) can be
transformed to fit this form (Equation 4.40) and are plotted in Figure 4.33a and b
respectively, for different confining pressures. A list of the values of the parameters

involved is presented in Table 4.5.
From Equation (4.10) in section 4.2.2 and Equation (4.38):

(ﬂ’mob = Sl.”J {}’/[3 aocz+y (] + 2 o3 b)]} (439)

Equation (4.39) can be written in the simpler form

Olwos = sin” [y/ (A + By)] (4.40)
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where A = 3 a 03, B= (1 + 2 03 b) and a, b are constants of the hyperbolic relationship as

defined in section 4.2.2. As already mentioned, the parameters 4 and B might differ for

drained conditions but the aim here is to show that Equation (4.40) can approximate

satisfactorily the function of ¢’,,, — y. The analytical calculations are presented in the

Appendix.
Silica Dense Loose
sand
D,
(Relative 100% 38%
density)
Ry 0.91 0.90
K 2,000 295
n 0.54 0.65
03
. 98. <204, . 490. . 98. « 204, * 490.5
(KN/?) 98.1 2043 490.5 98.1 2043 9
2
”K(E)/ 1315107 +6.796 10° «2.27310° | +1.059 10* +5.097 107 1.223 107
2
bK(E)/ 3.092 107 «1.019 107 «6.178 10* | +4.587 107 +3.202 107 +9.43910™
A=3a o3 387107 <6107 «33510° |+0.0312 «0.045 0.018
B=I+26:p | *1.61 « 1.6 « 1.606 1.9 . 1.885 «1.926

Table 4.5: Triaxial tests on dense and loose silica sand carried out by Duncan and Cheng
(1970) together with the values of parameters 4 and B.
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Figure 4.33: Mobilised friction angle against shear strain for (a) dense silica sand, (b)
loose silica sand for results obtained from triaxial tests by Duncan and Cheng (1970).

4.4 WALL FLEXURAL RIGIDITY ANALYSIS

In Figure 4.34, the continuous curvature of the wall is idealized into a number of
rotations at discrete points, corresponding to the triangles in the active and passive soil

zones. The total length of the wall, s + d, is divided into four parts with lengths of /1 / 2,
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h/2,d/2andd/?2, where h is the retained height of the wall and 4 its embedment depth
(Figure 4.31). |

T
i !
’/"?/m | |
,,,,, ‘/”’//”/( | k2 l ; E/Cg?
P & L B B B B . _
A 7 2 ‘,‘ i‘ ‘,3 =
E

h/ 2 h/ 2 d/2 d/ 2

Figure 4.34: Discretisation of wall into four rigid parts connected by rotational springs.

The flexural rigidity of the beam, £ I, is modeled by rotational springs of stiffness /;, >
and k;, where k = M / 6, at points 1, 2 and 3 respectively. The first component at point 1
has a value k; equal to £ 7 divided by half the lengths of parts A-1 and 1-2:

ki =EL/(h/4+h/4)=2EI/h (4.41)

Component k; at point 2 is equal to £ / divided by half the lengths of parts 1-2 and 2-3:

ko=FE1/(h/4+d/4)=4E1/(h+d) (4.42)

Following the same approach, component k; at point 3 has a value of:

ks=E1/(d/2)=2E1/d (4.43)

The assumption that the flexural rigidity of a beam can be represented by a number of
rotational springs concentrated on different points with rotational stiffness equal to £ /
divided by half the lengths of the adjacent sections, will now be examined with reference
to examples of beams with different boundary conditions subject to uniform and

triangular loads.
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e Simply supported beam subject to uniform loading

ke
: ~ i" :
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Figure 4.35: Simply supported beam subject to uniform loading.
The simply supported beam in Figure 4.35 is divided into two parts of equal length s.

According to standard beam theory, the bending moment at any distance x from the

support A is given by Equation (4.44), where w is the uniform load acting on the beam

per meter of its length:
Mx)=w@2s)y {x/(2s)-[x/(2s)]°}/2 (4.44)

If k is the component of flexural rigidity concentrated on point 1 and &, is the rotation at

this point, then the bending moment at the same point is:

M(s) =M, =k0, (4.45)
From Equations (4.44) and (4.45) 6, can be calculated:

O =ws/(2k) (4.46)

From standard beam theory, the deformation at any distance x from the support A is

given by Equation (4.47):
3() = [w(2s) /24 EL] {[x/(2s)]-2[x/(2s)] +[x/(2s5)]") (4.47)

If 0y 1s the rotation at point A, then the deformation at point 1 is:
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5(5) = 5/ - L()()S (448)

From Equations (4.47) and (4.48):

Oy=5ws /(24 E 1) (4.49)

Considering the symmetry of the beam:

()/} - ]/2 9/ (450)

From Equations (4.46), (4.49) and (4.50), component & can be calculated:

k=12FE1/s (4.51)
W ki k '
P - ! C’ I Q |
A SO Owr Ove B
\\\\? o 1 ////
< 3 \397” B

Figure 4.36: Simply supported beam subject to uniform loading with two rotational

springs.
In Figure 4.36 a beam with the same loading and boundary conditions is divided in three
parts of equal lengths s and its flexural rigidity is assumed to consist of two equal
components, k, at points 1 and 2. The bending moments at any distance x from support A
and at point 1 are given by Equations (4.52) and (4.53) respectively:

M) =w(3s) {x/(3s)-[x/(3s)]°)/2 (4.52)

M(s )= M) =k 6, (4.53)
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Then, the rotation at point 1, 4,, can be calculated:
0, =ws’/k (4.54)

From the standard beam theory, if &y is the rotation at point A, the deformations at any
distance x from support A and at point 1 are given by Equation (4.55) and (4.50)

respectively:

o) =[w@Bs)/(24ED] {x/(3s)-2[x/(3s)] +[x/(3s)]') (4.55)

o(s) =0, =0ys (4.56)
From Equations (4.55) and (4.56), 0, is calculated:

Oy=11ws /(12E] (4.57)
From the symmetry of the beam:

6y=0, (4.58)

From Equations (4.54), (4.57) and (4.58): |

k=109FE1/s (4.59)
w
[ T I i
. LK kel
Jo1 ijv RS
T o Y w2
NN [ i
//:i \\\\ Lo : T
2 jOvr Gv2
\;\\‘;’\ \;:,;tgji_:;fr’/r
< v vz <
(nt1)s

Figure 4.37: Simply supported beam subject to uniform loading with n rotational springs.
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Figure 4.37 shows a simply supported beam subject to uniform loading, divided in (n+1)

parts of equal length s; hence its total length is (n+17) s. Its flexural rigidity is assumed to

consist of n equal components, 4. In equations (4.60) and (4.61) the bending moments at

any distance x from support A and at point 1 according to standard beam theory are

respectively:
M(x)=wm+t1)P s’ {2x/[(n+1)s] - [x/((n+1)s)]°} /2
M;=k0,

The rotation at point 1, 4, is:

O, =-wns'/(2k)

(4.60)

(4.61)

(4.62)

The general expression for the deformations at any point along the beam is given by

Equation (4.63) and the deformations at points 1 and 2 are calculated by Equations (4.64)

and (4.65):
o) =wm+1)'s* /(24 ED {x/[m+1)s]—2[x/((nt])s)] +
[x/((n+1)s)]"}
ds)=0;=0ps — Op=ws n(n’+3n+1)/(24F1I)
0(2s) =0, =20ys5-6;s
Substituting Equation (4.62) into Equation (4.65):
Oy=ws [ksm+3n’-5n+ 1)+ 6EIn]/(24kE I)
From Equations (4.64) and (4.66):

k=6nkEl/[s(6n-1)] =>ks/El=6n/(6n-1)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)
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It is obvious from Equation (4.67) that £ depends on the number of points that the
flexural rigidity is assumed to be concentrated on, n, and the distance, s, between these
points. In Figure 4.38, where ks / (E I) s plotted against », k s / (E ) tends to unity as the

number of components of flexural rigidity increases. Hence, the assumption £k = £/ /s is

justified for n > 1.

ks /EI
L-2 it
|
1.15 4
6
1.1 ‘
\

1.05 |\

xmk

. N
20 40 60 86 100

Figure 4.38: Plot of the quantity % s / (E I) against the number of flexural rigidity
components .

Following the same approach the quantity k s / (E ) is given by Equations (4.68) to
(4.74) and is plotted against n in Figures (4.39) to (4.52) for beams with different
boundary conditions subject to uniform and triangular loads. The analytical calculations

have been carried out in Mathematica and are presented in the Appendix.

e Built in beam subject to uniform loading
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Figure 4.39: Built-in beam subject to uniform loading with n rotational springs.
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ks/(ED)=@ -4n+1) /(" -4n+2) (4.68)

In Figure 4.40, ks / (E 1) is plotted against n, for n > 4. As n increases, ks / (E 1) tends to
unity. Hence, k = E ] /s for n> 4.

AU 20 v 40

83
O

Figure 4.40: Plot of the quantity k s / (F 1) against the number of the flexural rigidity
components n for a built in beam subject to uniform loading.

e (Cantilever beam subject to uniform loading
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Figure 4.41: Cantilever beam subject to uniform loading with n rotational springs.

k=6nE1/[(I+6n’)s] — ks/EI=6n" /(1+ 6n’) (4.69)
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Figure 4.42: Plot of the quantity ks / (£ ) against the number of the flexural rigidity
components n for a cantilever beam subject to uniform loading.

e Built in — simply supported beam subject to uniform loading

Figure 4.43: Built-in simply supported beam subject to uniform loading with n
rotational springs.

ks/(ED)=3nn-3)/03n —9n+2) (4.70)

From Figure 4.44, where k s / £ [ is plotted against n for n > 3, as n increases k' s / £ 1

tends to unity.

ks /EL

s /100 200 300 40 5
.9

0.7 |

0.6

0.5 |

Figure 4.44: Plot of the quantity k s / (E 1) against the number of the flexural rigidity
components z for a built in — simply supported beam subject to uniform loading.
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Figure 4.45: Simply supported beam subject to triangular loading with n rotational

springs.
For the beam shown in Figure (4.45):
ks/(EL)=2nm+2)/2n’ +4n—1) (4.71)

In Figure 4.46, where k s / (E 1) is plotted against n, k s / (E I) tends to unity as n

mcreases.

ks /EI
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Figure 4.46: Plot of the quantity ks / (£ I) against the number of the flexural rigidity
components n for a simply supported beam subject to triangular loading.
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e Built in beam subject to triangular loading

Figure 4.47: Built-in beam subject to triangular loading with n rotational springs.
ks/(ELD)=(2n - 30" —12n+3) / (20" - 30"~ 12n + 8) (4.72)

In Figure 4.48 ks / (E 1) is plotted against n, for n > 4. According to this plot, ks / (£ 1)

tends to unity as # increases.

- A 200 30 40 50

.98
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Figure 4.48: Plot of the quantity k s / (£ I) against the number of the flexural rigidity
components # for a built in beam subject to triangular loading.
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e Cantilever beam subject to triangular loading
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Figure 4.49: Cantilever beam subject to triangular loading with n rotational springs.
The quantity ks /(£ I) is given by Equation (4.71) and 1s plotted against » in Figure 4.50.

ks/(ED)=2n" /(1+2n’) (4.73)

o O O
Ne¢j

O O
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o
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Figure 4.50: Plot of the quantity ks /(£ 1) against the number of the flexural rigidity
components n for a cantilever beam subject to triangular loading.
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e Built in - simply supported beam subject to triangular loading

(n+1)s

Figure 4.51: Built-in beam subject to triangular loading with n rotational springs.

ks/EI=202n"-6n-3)/({4n’-12n-1) (4.74)

In Figure 4.52 ks / E I is plotted against n for n > 4. It is obvious from the graph that £ =
E1/s forn>4.
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Figure 4.52: Plot of the quantity & s / (£ I) against the number of the flexural rigidity
components # (n>4) for a built in — simply supported beam subject to triangular loading.

The behaviour of a retaining wall propped at the crest is likely to resemble the behaviour
of a simply supported or cantilever beam, since the point at the crest, where the prop
force acts, can be considered as a simple support and the toe of the wall is free to move
laterally. The discretised flexural rigidity approach, as described in this section, has been
applied both to a cantilever and a simply supported beam and it has been shown that their
flexural rigidity can be analysed in components with values of k = E I/ s. Therefore, the
flexural rigidity of a retaining wall propped at the crest can be approximated in this way.

More examples of beams are presented in the Appendix.
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4.4.1 Flexural rigidity analysis for a retaining wall propped at the crest

h

h/2

d/2

A,/ 2

Figure 4.53: Rotations and displacements at discretised points along a retaining wall
propped at the crest.

Figure 4.53 shows the rotations and displacements of a retaining wall propped at the crest
according to the discretised flexural rigidity approach presented in the previous section.
The continuous curvature of the wall is idealized into three rotations at discrete points,

corresponding to the triangles in the active and passive soil zones.

The horizontal displacement at point G is du, and at point P it is ouz. From the
geostructural mechanism described in section 4.3.1, the displacements du, and du; are
related to the wall rotations d6, and 00; by Equations (4.75) and (4.76):

ouy = (h +d) 00, (4.75)

ous =(h+d/2)(0,+ 6;) (4.76)
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From Figure 4.53, w;is the rotation of the wall at the i, discrete point from its vertical
position, while ; is the rotation of the (i+17), discrete point relevant to the rotation of the
iy discrete point. Hence, Equation (4.76) may be written:

ouz = (h+d) o0, + wsd /2 (4.77)
From Equations (4.76) and (4.77):

ws=[(h+d/2) 00;-d/2004 /d/2 | (4.78)
The displacement at point F, du,, is given by Equations (4.79) and (4.80):

ouy; = h (00, + 905+ 00,) (4.79)

our = ouz + wzd /2 ) (4.80)
From Equations (4.76), (4.79) and (4.80), the angle w;may be calculated:

ws=[h 6, -d /2 (50, + 605)] / d/2 (4.81)

Similarly the horizontal displacement at point £, du,, is given by Equations (4.82), (4.83)
and (4.84):

571] = h/2 ((5(94 + (5(93 + (5(92+ 5(9/) (482)
521/ :(5u3—a)_ph/2 (483)
ou;=aw;h/2 (4.84)

Therefore, the angles w; and w, may be calculated and are given by Equations (4.85) and

(4.86) respectively:

w>= 00, + 063 + 00> - 00, (485)
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w; = (56’4 + (563 + ()6’2 + (5@/ (486)

The rotation of the wall at the (i+1), discrete point along its length relative to the

rotation of the i, discrete point, v, w, and w3 can be calculated geometrically from

Figure 4.53:
W= —w;= 208, (4.87)
W= wr + w3 =2 [0 (h+d/2)—0,d/2] /d (4.88)
W= ws-w3=2[0s(h+d)—-0,h] /d (4.89)

In the previous section it was shown that the flexural rigidity of a retaining wall, £/, can
be modelled by three rotational springs of stiffness k;, k> and k;, where k; = M; / ;.
Therefore, considering Equations (4.41) and (4.87) the bending moment M, at point E at
the retaining wall shown in Figure 4.53 is given by Equation (4.90):

]C/:M//W/:2E1/h—> M/:256/2E1/h—> M/:4(56/E1/h
(4.90)

Similarly, the bending moments at points F and P are given by Equations (4.91) and

(4.92) respectively:
]Q:Mg/l//g:4E1/(h+d)—>
- M, =2[0,(h+d/2)—-6,d/2]4EI1/[d(h+d)]—

— My =4ET[0;2h/d+1)—0,]/(h+d) (4.91)

ks =Ms/ws =2EI/d—M;=22EI/d)[0;(h+d)—0,h] /d—
S M;=4EI/d [6;(h+d)—0,h] (4.92)
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The normalized bending moments are:

M)/ () =4 E10,/ (my, HY) (4.93)
M/ (v H) =4 E1/(y, H) [60> (1+m) / (1-m) — 50,] (4.94)
M;/ (s H’) = 4 E1/ [y, H (1I-m)°] (065 — m 665) (4.95)

The normalised bending moments can be rewritten in the form of Equations (4.96) to

(4.98) where p is the wall flexibility defined by Rowe (1952):

M,/ (0 H) =400,/ (mysp) (4.96)
M/ (y 1) =4 / (v p) [00; (1+m) / (1-m) — 50,] (4.97)
Ms/ (3 H) =4/ [y p (1-m)°] (305 —m 962) (4.98)
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4.5 ULS CALCULATIONS FOR A RETAINING WALL PROPPED
AT THE CREST IN CONDITIONS OF ZERO PORE WATER

PRESSURES

In Figure 4.54 the horizontal stress distributions together with the pore water pressures,
assuming linear seepage, are shown behind and in front of a retaining wall, which is in

limiting equilibrium. The active and passive stresses at the toe of the wall are written in

Figure 4.54.
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Figure 4.54: Stress and pore water pressure distribution in limit equilibrium behind and
in front of a retaining wall propped at the crest.

Conditions of steady state seepage are often assumed; hence, the pore water pressures at
the toe are given by Equation (4.99), where z; and z, are the distances between the

ground surface and the ground water level behind and in front of the wall respectively:
u = yw[(d—z_;) + (h +z,—z1) (d-Z_))/(h +2d-z; —Z]) (499)

For simplicity and to emphasize the effect of soil stresses, since u is unaffected by

soil/wall stiffness, the analysis is now focused on conditions of zero pore water

pressures. Therefore:

zi=h+dand z,= d (4.100)
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From the condition of horizontal stress equilibrium, the prop force /' may be calculated:
SRy=0—>1/2K, 5 (h+d)f =1/2K,y,d° +F —
F=1/2K,y(h+d) - 1/2K, . d (4.101)

If m is the retained height ratio (m = £ / H), the normalized prop force F'/ H’, where H
is the overall height of the wall, is given by Equation (4.102):

FlyH =1/2K, - ]/ZKP(]—gm)‘j (4.102)
Taking the moments at the point O at the crest, m may be calculated by Equation (4.103):

SMy=0—1/2K,ps(h+d)y'2/3=1/2K,y,d (h+2/3d) —

Ky =K,(1-m)’+3/2K,m (1-m)°’ (4.103)
According to Eurocode (EC7, 1997) the design soil strength ¢ 'sesien should be equal to
tan {(tan ¢*) / 1.25}, where ¢’ 1s a moderately conservative estimate of the effective

angle of friction relevant to the ultimate limit state. Taking into account wall friction, the

active and passive earth pressure coefficients are given by Equations (4.104) and (4.105)
Ko = {1~ it ¢ tesign €05 (A-0)] /(1 + Sin @ design)) €7 14" “787(4.104)
Ky={[1—5in @ gesigncos (A4-0)] /(1 + sin ¢ gesign)} g {A-0 tanp design (4 1)5)

where sin A = sin 0 /sin ¢ desian-

Equations (4.103), (4.104) and (4.105) relate the design soil strength ¢ jesign to the

retained height ratio m. Therefore, if the retained height ratio is known, the soil strength

required to maintain stability may be calculated. Similarly, if the design soil strength is

known, the retained height ratio required to avoid collapse of the wall may be derived

from the Equations above.
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4.6 SLS CALCULATIONS FOR A RETAINING WALL PROPPED
AT THE CREST IN CONDITIONS OF ZERO PORE WATER
PRESSURES

The design of a retaining wall should not merely ensure avoidance of collapse but should
also meet specific criteria in terms of displacement, damage and appearance. The required
retained height ratio m may be calculated from the ULS calculations using the factored
(design) strength, as shown in Section 4.5, and the soil and wall deformations can be

estimated using the mobilised strength method.

Figures 4.27, 4.29, 4.30 and 4.31 in section 4.3.2 show four successive stages of a small
wall movement into the excavation. According to the mobilised strength method for a
wall with a retained height ratio m calculated from the ULS calculations, wall rotation
about the crest will mobilise different amounts of soil strength, ¢, in each soil zone.
The transformed form (Equation 4.40) of the hyperbolic relationship introduced by
Duncan and Cheng (1970) and described in Section 4.2.2, is used to relate the mobilised
soil strength ¢',.5 to the shear strain y; developed in each soil zone. The shear strain y;
can be related to the wall rotations 06; as shown Section 4.3.2. The active and passive
earth pressure coefficients, K,; and K,; will be different in each soil zone because the
mobilised strengths ¢, are different and may be calculated by Equations (4.104) and

(4.105) (Powrie, 1997), assuming full wall friction (¢ - 0):
Kai = {[1 = 5in ¢ oy cos (A-0)] / (1 + sin @ ep)) € 0% (4.106)
Kﬁi:{[] - sin ® ,m()b cos (A’(S)/ / (] + sin o ’mob /2 ei/mﬂj) oy mob) (4 1 07)

The distribution of the active and passive pressures behind and in front of the retaining

wall 1s assumed to be different but linear in each soil zone as shown in Figure 4.55.
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Figure 4.55: Redistribution of the active and passive stresses after a small movement of a
retaining wall propped at the crest.

The mobilised soil strength, ¢',5;, 18 assumed to be uniform within each soil zone. For a

wall with a retained height ratio m calculated from the ULS calculations using factored

(design) strength, the soil strength mobilised in the soil zones 0-1, 1-2, 2-3 and 3-4

behind the wall and 2-3 and 3-4 in front (Figure 4.55) after a small wall rotation at the
crest is given by Equations (4.108), (4.109), (4.110), (4.111), (4.112) and (4.113)

respectively:

(,9’/110111 - Sl'}’l_] [y /(A + B })])] —

— (ﬂ’mobl = SZVZJ {2 [5!94 + 06; + 06>+ ()!91] /[/1 +28 ((5!94 + 5!93 + 5!92+ 06, )]}

O mop2 = 5in” [y2/ (A + B y5)] —

(4.108)

- (ﬂ,1710b2 - Sl’nij {2 [(5(94 + (593 + 56_7] /[A +28B ((504 + (593 + 592)]} (4109)

0'movs = sin [/ (A + B y3)] —

— 0 ons = Sin {2 [00,+005] /[A + 2 B (90, + 065)]) - (4.110)
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O'mobs = Sin” [14/ (A + Byy] —

— Qlons = Sin” [200,/ (4 + 2 B 50,)]

O'movs = Sin” [y5/ (4 + B ys)] —

O 'mons = sin {[260; (h+d)/d]/[A+ 2B 60, (h+d)/d)}

P 'mobs = Sl’nil [v6/ (A + Byg)] —

0 ovs =i {2 [00, (h + d)/d + 305 (h + d/2) / (d/2)] /

[(A+ 2B [50, (h+ d)/d + 305 (h + d/2) / (4/2)]}

It is shown in the Appendix that parameters 4 and B are given by:
A=y/G*

B=1+05(—-sing)/sing

4.111)

(4.112)

(4.113)

(4.114)

(4.115)

where G*is the rate of increase of the shear modulus with depth and ¢ is the angle of

shearing resistance at failure. The analytical calculations for the derivation of Equations

(4.114) and (4.115) are presented in Appendix B.

The active and passive stresses just above and below each of the points along the wall,

with a retained height ratio m calculated from the ULS calculations using the uniform

factored (design) strength, can then be determined:

Ohia = Kala Vs 2 = 1/2 Kaiq Vs h

Opiu :Kalu Vs 2= 1/2 Ka]u Vs h

(4.116)

(4.117)
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On2a = Kaza Ys 2 = Ka2a Vs h (41 18)

Onou = Kooy vs 2 = Kaoy ys h (4.119)
On3a = Kasa Vs 2= Kaza ps (h + d/2) (4.120)
Oz = Kazy vs 2= Kazu Vs (h + d/2) (4.121)
Opt = Kag 75 2= Koy 5 (h + d) (4.122)
ons = Kps ys z = Kps ps d (4.123)
Onou = Kpsu Vs 2 = Kpgu ys d /2 (4.124)
Onbae = Kpsa Vs 2= Kpsa ysd /2 (4.125)

If we assume that after a small wall rotation into the excavation a new equilibrium
condition is reached, the prop force is equal to the sum of the stresses behind and in front
of the wall:
F A+ opead/ 4+ (050t 0ha) d/4-0p10h /4~ (0420+ Onp) h/ 4 - (0134
+ 0—/1211) d/4 - (6/14a + O—/z_?u) d/4 = 0 (4126)
If m is the retained height ratio (m= h / H), Equation (4.126) can be rewritten in the form:
F/ (’})S Hz) =1/ (4 Vs H) [I?’l ((7/7111 + Oph2q + (7/111() (] - ]77) ((7/1611 + Ojsa + Oh6u —
Oh3a = Opou = Op3y - (7/14a) (4 127)

Taking the moments about the crest O:

IMy=0—1/24y,H) [2 m Opra + 4 n’ opy 5 m’ Opoq + (1-m) (5 m+1)
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Oh2u + (]"777) (4 I7l+2) O3 + (]*I’I’l) (2 m+4) Oj3u + (]*77’1) (I’I’l+5) Ojq — (]*771)
(m+5) 0454 — (1-m) (4 m+2) 6460 - (1-m) (2 m+4) o6, = 0 (4.128)

The normalized bending moments at points 1, 2 and 3 along the wall are given by

Equations (4.129), (4.130) and (4.131) respectively.
M/ (s H) = 12mF/ (y H) -m’ op1a/ (24 s H) (4.129)
Ms/ (s H ) =m F/ (ys HY) -m” /(24 ys H) (4 Ot + 4 Opp + 5 0420)  (4.130)
Ms/ (s IF) = m” /(24 35 H) (0he + 2 Ohsa— 2 Oaa— Onsi) (4.131)

Combining Equations (4.129), (4.130) and (4.131) with Equations (4.96), (4.97) and
(4.98) from Section 4.4.1, where p is the wall flexibility p defined by Rowe (1952) and 1s

equal to H'/ EI:
12mF/(ys H) -m’ opa/ (24 v H)= 400, / (m v, p) (4.132)

mF/ (s H)-m’ /(24 y, H) (4 0p1q + 4 0p + 5 0420) =
=4/ (vsp) [060> (1+m) / (1-m)— 68,] (4.133)

7772 / (24 Vs H) (0—/16“ +2 Oh5a— 2 Onda ™ 0—/131,/) =
=4/ [y p (I-m)°] (005 —m 06,) (4.134)

The active and passive pressures are related to the wall rotations at discrete points by
Equations (4.108) to (4.125). Substitution of their values into Equations (4.127), (4.128),
(4.132), (4.133) and (4.134) gives a system of five unknowns: 06;, 66, 003, 004 and F.
The solution of this system requires the determination of parameters A4 and 5. Parameter
B can be easily obtained from triaxial tests on soil samples and parameter 4 depends on
G*, the rate of increase of the shear modulus G with depth. To explore the rotations of a

retaining wall propped at the crest for a range of wall flexibility numbers embedded in a
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variety of soil conditions, the system of five unknowns is solved numerically for values
of ¢’ from 20° to 40°; values of log (y; p) from -4 to 2, where the quantity (ys p) is
dimensionless and values of log (y; / G*) from -6 to -1, where the quantity (3, / G*) is
dimensionless, assuming full wall friction (@ = ¢’). The in service normalized maximum
bending moments M,a / (35 H°) and prop loads F / (vs H°) and the normalized
deformations at points 1 (0,/H), 2 (6,/H), 3 (d3/H) and 4 (0,/H) along the wall can then be
determined. The in service maximum bending moments and prop loads are divided by
the respective values M, ec7 /(¥s Hj) and Feer /(ys HZ) calculated from the ULS
calculations according to Eurocode 7 (1995). The programming of the numerical
calculations was carried out in Mathematica and can be found in the electronic copy of
the Appendices. The results are presented in tables in Appendix C. Some of the

numerical results are plotted in Figures 4.56 to 4.91.

The ratio of the serviceability maximum bending moments to the bending moments
calculated according to Eurocode 7 (1995) (M,0x / Mmav, Ec7), the ratio of the serviceability
prop loads to the prop loads calculated according to Eurocode 7 (1995) (F/Fgc7) and the
normalised displacements (0,/H, d,/H, 0;/H, 0,/H) are plotted in Figures 4.56 to 4.61 when
A is equal to 10 and in Figures 4.62 to 4.67 when A4 is equal to 107 against (v; p) for
different values of ¢’; in Figures 4.68 to 4.73 when y, p is equal to 10™ and in Figures 4.74
to 4.79 when y; p is equal to 10 against the parameter A4 for different values of ¢”; in
Figures 4.80 to 4.85 when ¢’ is equal to 20° and in Figures 4.86 to 4.91 when ¢'is equal to
25° against y; p for different values of 4. Tables and figures for a wider range of values can

be found in Appendix D.
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Figure 4.56: The ratio of M,qy / Mypax,ec7 against (vs p) for different values of ¢’ when A
=10,
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Figure 4.58: Normalized deformations at depth 4/2 from the crest against (y; p) for
different values of ¢’when 4 = 10",
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Figure 4.59: Normalized deformations at depth /4 from the crestagainst (y; p) for different
values of ¢’ when 4 = 10™.

83
H
0.8,  p— .
0.07 'S —— ¢ =20
0.06 /"¥ k=25
I
0s /u m $=30
’ /!/
0.03 [N s h=35
0.02 g L_ soa0
0.01 > T

~
K
X
i

Figure 4.60: Normalized deformations at depth 2+d/2 from the crest against (y; p) for
different values of ¢'when 4 = 107
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Figure 4.61: Normalized deformations at depth 7/ from the crest against (y, p) for different
values of ¢’ when 4 = 107,
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Figure 4.64: Normalized deformations at depth 4/2 from the crest against (y; p) for
different values of ¢’ when 4 = 107.
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Figure 4.65: Normalized deformations at depth /4 from the crest against (y, p) for different
values of ¢’ when 4 = 107,
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Figure 4.66: Normalized deformations at depth 2+d/2 from the crest against (ys p) for
different values of ¢’ when 4 =107,
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Figure 4.68: The ratio of M,,,u/Muax,Ec7 against parameter A4 for different values of ¢’ when
(7:p) =107
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Figure 4.69: The ratio of F/Fgc; against parameter 4 for different values of ¢ * when (¥,
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Figure 4.70: Normalized deformations at depth 4/2 from the crest against parameter 4 for
different values of ¢’ when (¥, p)=10".
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Figure 4.71: Normalized deformations at depth / from the crest against parameter 4 for
different values of ¢’ when (y, p)=10"".
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Figure 4.73: Normalized deformations at depth /7 from the crest against parameter 4 for
different values of ¢’ when (y, p)=10".
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Figure 4.75: The ratio of F/Fgc7 against parameter 4 for different values of ¢'when
(7s p)=10.
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Figure 4.76: Normalized deformations at depth /2 from the crest against parameter A for
different values of ¢’ when (y, p)=10.
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Figure 4.77: Normalized deformations at depth / from the crest against parameter 4 for
different values of ¢’ when (y; p)=10.
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Figure 4.78: Normalized deformations at depth 2+d/2 from the crest against parameter 4
for different values of ¢ when (y; p)=10.
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Figure 4.79: Normalized deformations at depth /7 from the crest against parameter 4 for
different values of ¢’ when (y; p)=10.
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Figure 4.83: Normalized deformations at depth / from the crest against (y; p) for different

values of A when ¢’ = 20°.
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Figure 4.84: Normalized deformations at depth s+d/2 from the crest against (y, p) for

different values of 4 when ¢’ =20°.
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Figure 4.85: Normalized deformations at depth H from the crest against (y, p) for different

values of 4 when ¢’ =20°.
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Figure 4.86: The ratio of Myu/Muax,ec7 against (ys p) for different values of 4 when ¢’
=25°.
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Figure 4.89: Normalized deformations at depth 4/2 from the crest against (y, p) for different
values of 4 when ¢’ = 25°.
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Figure 4.90: Normalized deformations at depth 4 from the crest against (y, p) for different
values of 4 when ¢’ = 25°.
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Figure 4.91: Normalized deformations at depth 4+d/2 from the crest against (y; p) for
different values of 4 when ¢' = 25°.
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Figure 4.92: Normalized deformations at depth / from the crest against (¥, p) for different
values of 4 when ¢’ = 25°.
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The origin of axes for the M,,.x / Mumax,ec7 and I/ Fgey graphs is at (0, 1). The x-x axis
represents the case when the maximum bending moments and prop loads calculated
according to the mobilized strength method is equal to the respective magnitudes
calculated according to Eurocode 7 (1995). For the parts of the curves above the x-x’ axis
Eurocode 7 (1995) might underpredict, whereas for the parts of the curves below the x-x’
axis might overpredict the maximum bending moments and the prop loads compared with
the mobilized strength method. The figures show that as the wall flexibility or the soil
stiffness increases, the maximum bending moments and the prop loads reduce below their
limit equilibrium values. The pattern of the reduction is similar for different values of ¢".
At very high or very low values of wall flexibility or soil stiffness there is insignificant
change in the ratios M,y / Myav,ec7 and I/ Feey and they tend to similar values. However,
it should be noted that very high or low values of wall flexibility or soil stiffness might not
be realistic, but are included to represent extreme conditions. According to the curves, as
the soil becomes stiffer, the wall should be stiffer to get the same reduction in the bending
moments. This is in agreement with the definition of R.;= G* I/ EI as presented in
Chapter 3; as G* increases, p= H* / EI should decrease to maintain the same value of R.;.
Moreover, greater values of soil stiffness or wall flexibility are needed for a given

reduction of M, / Miyax,ec7 and F'/ Fge7 when ¢ is high (40°) than when it is low (20°).

The normalized displacements increase with decreasing soil stiffness or increasing wall
flexibility, with the exception of 64//f which decreases with increasing wall flexibility. This
may be explained by attributing J,/H to rigid body rotation about the prop. Moreover, there

is insignificant change in the values of the normalized displacements when log A<-2.

It should be noted that the accuracy of the MSD method as presented in this Section may
be improved if the soil behind and in front of the retaining wall is divided into a larger
number of soil zones and a more complex model of the soil behaviour is adopted. In this
thesis, the number of soil zones and the soil model incorporated in the MSD method can

achieve reasonable accuracy and meet the objective for a simple approach.
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4.7 SUMMARY

In Chapter 4, new kinematically admissible soil displacement fields have been introduced
to apply the MSD method to flexible retaining walls propped at the crest in conditions of
zero pore water pressures. The wall flexibility has been idealised into a simple mechanism
and the hyperbolic relationship, introduced by Duncan and Cheng (1970), has been
modified and is used to associate the mobilized shear strain with the mobilized shear
strength. The ratios of the MSD maximum bending moments and prop loads to those
calculated according to Eurocode 7 (EC7, 1995) and the displacements at characteristic
points along the wall are plotted against the shear strength before excavation, wall
flexibility and soil stiffness. According to the MSD results presented in this Chapter, the
maximum bending moments and prop loads are significantly reduced from the values
suggested by Eurocode 7 (EC7, 1995) for flexible walls or stiff soils. However, Eurocode 7
(EC7, 1995) might underpredict the maximum bending moments and prop loads for rigid
walls or less stiff soils. Regarding the displacements, little change is noticed for large

values of soil stiffness or small values of wall flexibility.



5. ANALYSIS AND DESIGN OF FLEXIBLE RETAINING WALLS
PROPPED AT THE CREST IN CONDITIONS OF PORE WATER
PRESSURES CORRESPONDING TO LINEAR SEEPAGE

5.1 INTRODUCTION

The pore water pressures may have a considerable effect on retaining structures.
Therefore, their influence when excavating or constructing retaining walls should not be
neglected. In this chapter, the MSD method is applied to flexible retaining walls propped
at the crest in conditions of pore water pressures corresponding to an approximate state
of linear seepage from an original ground water table at the ground level and at half the
retained height level. Initially, the retained height ratio, m, is determined from the ULS
calculations according to Eurocode 7 (EC7, 1995). The maximum bending moments and
prop loads are calculated according to Eurocode 7 (EC7, 1995) and according to the
MSD method. The ratios of the maximum bending moments and prop loads derived from
the MSD method to those determined by Eurocode 7 (Mar /Mopaxec7, F /Frc7) and the
normalized bending moments at characteristic points along the wall (0,/H, 0,/H, 03/H,
o4/H) are plotted for different values of initial shear strength, wall flexibility and soil

stiffness, similarly to the procedure described in Chapter 4.

5.2 ULS CALCULATIONS: ORIGINAL WATER TABLE AT
GROUND LEVEL

Figure 5.1 shows the horizontal stress distributions together with the pore water
pressures, assuming linear seepage from a water table at ground level, behind and in
front of a retaining wall which is in limiting equilibrium. The normalized pore water
pressures u / (y; H) at the toe are given by Equation (5.1) and the normalized effective .

active o'n, / (7 H) and passive stresses o'y, / (s H) at the toe of the wall are given by
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Equations (5.2) and (5.3) respectively, where y; is the soil unit weight and /7 is the
overall height of the wall.

i

OJhp 0’ ha

Figure 5.1: Stress and pore water pressure distribution in limit equilibrium behind and
in front of a retaining wall propped at the crest in conditions of pore water pressures at
ground level.

u=y.dfl+h/2d+h)] — u/(y;H) =2y, (1-m)/ [vs (2-m)] (5.1)
Oha! (s H) =Ko [ 1 —u/(ps H)] = K, {1-v.(1-m) / [ys (2- m)]} (5.2)
O ! (s H) =Ky, [ I-m—u/(p H)] = K, {1-m-y,. (1-m) / [y (2-m)]} (5.3)

From the condition of horizontal stress equilibrium, the normalized prop force I/ (y; H)

may be calculated

F /(v HZ) =1/2K.[1-u/(yH)]-1/2(1-m)K, [1—m— u/(y; H)]
+1/2mu/(ys H) (5.4)

where m 1s the retained height ratio (m = A/ H).

Taking the moments at the point O at the crest, m may be calculated by Equation (5.5):

YMy=0— 1/3 0"/ (s H)- 1/6 0",/ (vs H) (1-m) (2+m) + 1/3 u/ (ys H)
-1/6 (1-m) (2+m)u/ (s H) = 0 (5.5)
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Assuming full wall friction, the active and passive earth pressure coefficients are given
by Equations (4.104) and (4.105). The determination of the retained height ratio m,
enables the calculation of the maximum bending moment along the wall assuming a

uniform value of ¢ ’,,,» according to Eurocode 7 (EC7, 1997).

5.3 SLS CALCULATIONS: ORIGINAL WATER TABLE AT
GROUND LEVEL

For a wall with a retained height ratio m calculated from the ULS calculations using
factored (design) strength and pore water pressures corresponding to a linear seepage from
a water table at ground level, the distribution of total stresses in each soil zone is similar to
that shown in Figure 4.55 and their normalised values are given by Equations (5.12) to
(5.21). The normalised pore water pressures in each soil zone are determined by Equations
(5.7) to (5.11), where u/(y; H) are the pore water pressures at the toe of the wall given by

Equation (5.6) and y,, the unit weight of water:

u /vy H)=ywd /s [1+h/(2d+h)] =2 (1- m) 3,/ [v (2-m)] (5.6)
uy /(s H)= h/2 1/H w/(ys H)=1/2 m u/(y; H) (5.7)
uy /(s H)= h/H u/(ys H)=m u/(y; H) (5.8)
us /(ys H)= (h+d/2)/H w/(ys H)=1/2 (1+m) u/(y; H) (5.9)
us /(ys H) = w/(y; H) (5.10)
ug /(s )= d/2 / d w/(ys H)=1/2 w/(y; H) (5.11)

Optg = 1 /2 Kqia (ys h- Z/l])"‘ uy—
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Uh/a/(ys H) =1 /2mKa/a+ M//(}’s H) (]’Ka/a):

= 172 m Koyt 172 m u/(y H) (1- Kure) (5.12)
Oniu /(s ) =172 m Kyt 172 mu/(ys H) (1- Ka1) (5.13)
Onza (Vs H) = m Kapat m u/(ys H) (1- Kazo) (5.14)
Op2u /(vs H) = m Kap = mu/(ys H) (1- Kaz) (5.15)
Gusa /(s 1) =172(1%+ m) Kasat 17201+ m) w/(ys H) (1- Koz (5.16)
Oz /(s H) =1/2(1+ m) Koz, + 172(1+ m) w/(ys H) (1- Ky3.) (5.17)
ona/(vs H) = Ko + u/(ys H) (1- Kay) (5.18)
o/ 1D) = Kys (1-m) + u/(y 1) (1- K 5) (5.19)
Onea Mys H) = 1/2(1-m) Kpsat+ 1/2 w/(ys H) (1- Kpsa) (5.20)
Onou/(ys H) = 1/2(1-m) Ko+ 1/2 u/(ys H) (1- Kp5.) (5.21)

Substituting the values of total stresses into Equations (4.127), (4.128), (4.132), (4.133)
and (4.134), gives a system of five unknowns which is solved numerically for a range of

values of ¢, log (ys p) and log (y, / G*) as described in Section 4.6.

The results are presented in tables and figures in the Appendix. To enable comparison of
the curves for zero pore water pressures to those with the original water table at ground
level, some of the numerical results are presented in Figures 5.2 to 5.37 similarly to

Figures 4.56 to 4.91 in Section 4.6.
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Figure 5.2: The ratio of M4 / Muax,ec7 against (ys p) for different values of ¢’ when 4 =
107 and the original water table is at ground level.
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Figure 5.3: The ratio of F'/ Fz¢7 against (y, p) for different values of ¢’ when 4 = 10* and
the original water table is at ground level.
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Figure 5.4: Normalized deformations at depth 4/2 from the crest against (y; p) for
different values of ¢’ when 4 = 10™ and the original water table is at ground level.
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Figure 5.5: Normalized deformations at depth 4 from the crest against (y, p) for different
values of ¢’ when A4 = 10 and the original water table is at ground level.
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Figure 5.6: Normalized deformations at depth A+d/2 from the crest against (y; p) for
different values of ¢’ when 4 = 10™* and the original water table is at ground level.
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Figure 5.7: Normalized deformations at depth H from the crest against (y, p) for different
values of ¢’ when 4 = 10™ and the original water table is at ground level.
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Figure 5.8: The ratio of M, / Muax,ec7 against (s p) for different values of ¢’ when 4 =
107 and the original water table is at ground level.

Figure 5.9: The ratio of I/ Frc7against (y; p) for different values of ¢’ when 4 = 10~ and
the original water table is at ground level.
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Figure 5.10: Normalized deformations at depth //2 from the crest against (y, p) for different
values of ¢’ when 4 = 10~ and the original water table is at ground level.
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Figure 5.11 Normalized deformations at depth / from the crest against (¥ p) for different
values of ¢’ when 4 = 10~ and the original water table is at ground level.
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Figure 5.12: Normalized deformations at depth 2+d/2 from the crest against (y, p) for
different values of ¢’ when 4 = 10” and the original water table is at ground level.
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Figure 5.13: Normalized deformations at depth H from the crestagainst (y; p) for different
values of ¢’ when 4 = 107 and the original water table is at ground level.
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Figure 5.14: The ratio of M,uay / Mmax,ec7 against parameter A4 for different values of ¢’
when (¥, p)= 10" and the original water table is at ground level.
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Figure 5.15: The ratio of F'/ Fgc7 against parameter 4 for different values of ¢’ when (y;
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Figure 5.16: Normalized deformations at depth 4/2 from the crest against parameter A4 for

different values of ¢’ when (y, p)= 10" and the original water table is at ground level.

144



52/H

0.08 —— ¢=20
'0.06 x $=25
’/ - $=30

/B.04
jO* —4 (=35
A 20,02 S $=40
g R

BB 8 B 8 B-B- - Tog [A]

% -5 -4 -3 -2 -

Figure 5.17: Normalized deformations at depth A from the crest against parameter 4 for
different values of ¢’ when (¥, p)= 10" and the original water table is at ground level.
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Figure 5.18: Normalized deformations at depth A+d/2 from the crest against parameter A4
for different values of ¢’ when (¥, p)= 10" and the original water table is at ground level.
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Figure 5.19: Normalized deformations at depth /7 from the crest against parameter 4 for
different values of ¢’ when (¥, p)= 10" and the original water table is at ground level.
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Figure 5.20: The ratio of My / Myax,ec7 against parameter A for different values of ¢’
when (y; p)= 10 and the original water table is at ground level.
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Figure 5.21: The ratio of I/ Fgc7 against parameter A for different values of ¢’ when (y;
p)= 10 and the original water table is at ground level.
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Figure 5.22: Normalized deformations at depth 4/2 from the crest against parameter 4 for

different values of ¢’ when (¥, p)= 10 and the original water table is at ground level.
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Figure 5.23: Normalized deformations at depth 4 from the crest against parameter 4 for
different values of ¢’ when (y; p)= 10 and the original water table is at ground level.
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Figure 5.24: Normalized deformations at depth /4+d/2 from the crest against parameter 4
for different values of ¢’ when (¥, p)= 10 and the original water table is at ground level.
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Figure 5.25: Normalized deformations at depth 7/ from the crest against parameter 4 for
different values of ¢' when (¥ p)= 10 and the original water table is at ground level.
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Figure 5.26: The ratio of M.« / Myuax,ec7 against (ys p) for different values of 4 when ¢’ =
20° and the original water table is at ground level.
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Figure 5.27: The ratio of '/ Frcyagainst (3, p) for different values of 4 when ¢’ = 20°
and the original water table is at ground level.
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Figure 5.28: Normalized deformations at depth /2/2 from the crest against (y; p) for
different values of 4 when ¢’ = 20° and the original water table is at ground level.
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Figure 5.29: Normalized deformations at depth /4 from the crest against (y; p) for different
values of A when ¢’ = 20° and the original water table is at ground level.
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Figure 5.30: Normalized deformations at depth A+d/2 from the crest against (y; p) for
different values of 4 when ¢’ = 20° and the original water table is at ground level.
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Figure 5.31: Normalized deformations at depth /{ from the crest against (y; p) for different
values of 4 when ¢’ = 20° and the original water table is at ground level.

149



il [ 2*4 e AR — A=10"¢
B x m N Leg [ysoll , a-10-s
4\\ *\" % \)\ - 3 < ) 1 s
3 * B gdo5 | o * m A-l0-
\.\ x . N . N —a A=1073
\ * l\ Og\ ",\ \' e A=1077
* ] \1\ \_ bY —+ p-1p-t

* B bY .

\\ x (mB5 | "\

“"ﬁ,

R
R R Saaaa LI

Figure 5.32: The ratio of M,y / Muax,ec7 against (y, p) for different values of 4 when ¢’ =
25° and the original water table is at ground level.
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Figure 5.33: The ratio of F'/ Fc7 against (y; p) for different values of 4 when ¢'=25° and
the original water table is at ground level.
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Figure 5.34: Normalized deformations at depth 4/2 from the crest against (y, p) for different
values of 4 when ¢’ = 25° and the original water table is at ground level.
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Figure 5.35: Normalized deformations at depth h from the crest against (v, p) for different
values of 4 when ¢ = 25° and the original water table is at ground level.
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Figure 5.36: Normalized deformations at depth /2+d/2 from the crest against (v, p) for
different values of 4 when ¢’ = 25° and the original water table is at ground level.

44
H
0.0 . _
-4~ A=10"°
0.008 % A=10"°
e ‘B A-10-¢
0.006 . e A1pC
0.004 « A=107°
~¢- A=10
6.o02 v T o
AAAAAAAL LA M AAALAALLALAAL AAAALALALLA

-EEDEREUR B DRERSEDARN NN DB RE ]Og [YQ p]

4 -3 2 -1 1 2 -

Figure 5.37: Normalized deformations at depth /7 from the crest against (y, p) for different
values of 4 when ¢’ = 25° and the original water table is at ground level.

From the figures, the curves for M.,y / Mpyav,ec7 tend to a value of 0.8, while F'/ Fgcr
tend to a value of 0.85 for large values of y; p or very small values of A. The ratios M,q. /

M,ax,ec7 and F'/ Frezare generally closer to unity, the influence of the different values of
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@' becomes less important and the rate of the reduction is slightly lower when the pore
water pressures are included in the calculations; however, the pattem of the reduction is
similar to the one presented in Chapter 4 for zero pore water pressures. The calculation
of the maximum bending moments and prop loads for very stiff walls based on the
Eurocode 7 (1995) might be more accurate when the pore water pressures are considered.
The normalized displacements (6,/H, 0,/H, d3/H and Jd,/H) are larger when the original
water table is at ground level than in conditions of zero pore water pressures. Some of the

results for a retaining wall with the water table at ground level are presented in Tables in

Appendix D.

5.4 ULS CALCULATIONS: ORIGINAL WATER TABLE AT HALF
THE RETAINED HEIGHT LEVEL

The effective stress distribution and pore water pressures for a retaining wall propped at
the crest in limit equilibrium when the original ground water table is at a distance 4/2
from the ground surface, where % is the wall retained height, are shown in Figure 5.38.
The normalized pore water pressures u / (ys H) at the toe of the wall are given by
Equation (5.22) and the normalized effective active 0’54,/ (vs H), 0102/ (75 H) and passive

stresses 0"y, / (ys ) are given by Equations (5.23), (5.24) and (5.25) respectively.
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h//;g ‘\‘.;
'\Q'haz i
h/2 ‘
d Ny v

T hp 0 'ha2
Figure 5.38: Stress and pore water pressure distribution in limit equilibrium behind and

in front of a retaining wall propped at the crest with the original water table at half the
retained height level.

152



u/ (ys H) = yw(1-m) (2-m) / [ys (2-1.5m)] (5.22)

0 e = Ka Vs h/2 — 0 hal / (ys H) =]1/2m K, (523)
Ohaz! (Vs H) =K, [1 0.5 m-u/ (y; H)] (5.24)
Ty = Kp (Vs d—u)— Tip! (s H) =Ky [1—m— u/(ys H)] (5.25)

The normalized prop force F'/ (y; H) and the retained height ratio m may be calculated
from Equations (5.26) and (5.27):

F/oH)=1/8m’ Ko+ (1-172m) 1/2m Ko+ 1/2 (1-1/2 m) K, [1-0.5 m—u / (7

H)] - 172 (1-m) Ky, [1-m—u/ (s H)] + 1/4 mu/ (s H) (5.26)

SMy=0— 1/12 m’ Char/ (s H) + 1/2 (1-1/2m) (1+1/2m) & a1/ (Vs H)

+1/6 (1-1/2m) (1/2m+2) 0 paz/ (3 H) = 1/6 (1-m) (m+2) 0,/ (y5 H)

+ 1/6 (1-172m) (12m+2) u/ (ys H)— 1/6 (1-m) (m+2) u/ (v H)=0
(5.27)

The maximum bending moment along the wall may then be determined according to

Eurocode (EC7, 1995).
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5.5 SL.S CALCULATIONS: ORIGINAL WATER TABLE AT HALF
THE RETAINED HEIGHT LEVEL

The normalised pore water pressures at the toe and in each soil zone for a wall with a
retained height ratio m, calculated from the ULS calculations using factored (design)
strength are determined by Equation (5.22) and Equations (5.28) to (5.33) respectively; the

normalised total stresses along the wall are given by Equations (5.34) to (5.43):
up/(ys H)= 0 (5.28)
uy Mys H)= h/2 /(h/2+d) w/(y; H) = 0.5m / (1-1/2m) u/(ys H) (5:29)

us /(s H)= (h+d/2)/ (W2+d) w/(ys H)=1/2 (14m) / (1-1/2m) w/(ys H)  (5.30)

ug /(ys H)=w/(ys H) (5.31)
us /(ys H) = u/(ys H) (5.32)
ug /(ys H)=d/2 /d w/(ve H)=12 u/(y H) (5.33)
On1a/(vs H) = 0.5 m Kyyq (5.34)
Ohr /(s H)= 0.5 m K,y (5.35)
Onaa (Vs H)= m K0t 0.5m / (1-0.5m) w/(ys H) (1- K,24) (5.36)
Oha /(vs H)= m Kozt 0.5m / (1-0.5m) w/(ys H) (1- Ka2u) (5.37)

Gsa /(s H)=0.5(14m)K y3a 0.5(14m) / (1-0.5m) w/(ys H) (1- Kusg)  (5.38)

sl (vs FH)=0.5(14m)Kozut 0.5(1+m) / (1-0.5m) w/(ys H) (I- Ko3,)  (5.39)
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opa/(vs H)= Kog + u/(y, H) (1- Kug)

ons/(ys H)= Kp5 (1-m) + u/(y; H) (1-

Kp5)

Ohb6a /(yg H): 05(]—]’}/1) Kp6u+ 05 u/(ys H) (]_Kpﬁu)

Ot/ (9s H)= 0.5(1-m) Kpsa+ 0.5 w/(y, H) (1- Kpi)

Substitution of the total stresses into Equations (4.127), (4.128), (4.132), (4.133) and

(4.134) given in Section 4.6, gives a system of five unknowns: 06;, 00,, d0;, 00,and F. The

system 1s solved numerically in Appendix D and some of the results are plotted in Figures

5.39 to 5.74 for the same range of parameters A4, y; p and ¢’ as in Section 4.6 and 5.2 for

comparison between the different conditions of pore water pressures.
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Figure 5.39: The ratio of M, / MyuaxEc7 against (y, p) for different values of ¢’ when 4 =

10" and the original water table is at half the retained height level.
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Figure 5.40: The ratio of F'/ Fc7 against (y, p) for different values of ¢’ when 4=1 0 and
the original water table is at half the retained height level.
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Figure 5.41: Normalized deformations at depth A/2 from the crest against (y; p) for
different values of ¢’ when 4 = 10 and the original water table is at half the retained

height level.
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Figure 5.42: Normalized deformations at depth / from the crest against (y; p) for ditferent
values of ¢’ when 4 = 10 and the original water table is at half the retained height level.
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Figure 5.43: Normalized deformations at depth 4+d/2 from the crest against (ys p) for
different values of ¢’ when A4 = 10 and the original water table is at half the retained

height level.
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Figure 5.44: Normalized deformations at depth H from the crest against (y; p) for
different values of ¢’ when 4 = 10 and the original water table is at half the retained

height level.
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Figure 5.45: The ratio of M,y / Myyax,ec7 against (y; p) for different values of ¢’ when 4 =
107 and the original water table is at half the retained height level.
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Figure 5.46: The ratio of F'/ Fgc7 against (y; p) for different values of ¢’ when 4 = 107 and
the original water table is at half the retained height level.
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Figure 5.47: Normalized deformations at depth 4/2 from the crest against (y; p) for
different values of ¢’ when 4 = 107 and the original water table is at half the retained

height level.
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Figure 5.48: Normalized deformations at depth 4 from the crest against (3, p) for different
values of ¢’ when A = 107 and the original water table is at half the retained height level.
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Figure 5.49: Normalized deformations at depth A+d/2 from the crest against (y; p) for
different values of ¢’ when A4 = 10” and the original water table is at half the retained

height level.
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Figure 5.50: Normalized deformations at depth / from the crest against (y, p) for
different values of ¢’ when A4 = 107 and the original water table is at half the retained

height level.

_ Mmax
-
. ,k/k’k‘; asxaaa 1.1 = ¢=20
=1 122 o2 w - =25
r log [A] - ® ¢-30
6 5 ¥ -3 2 - ¢
- . —a- =35
iﬁ‘ 0.9 -— =40
mzfﬁ 0.85
e 0.8

Figure 5.51: The ratio of Myux / Miax,ec7 against parameter A for different values of ¢’
when (v, p) =10" and the original water table is at half the retained height level.
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Figure 5.52: The ratio of F'/ Frc7 against parameter A for different values of ¢’ when (y, p)
=10" and the original water table is at half the retained height level.
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Figure 5.53: Normalized deformations at depth 4/2 from the crest against parameter 4 for
different values of ¢’ when (% p) =107 and the original water table is at half the retained

height level.
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Figure 5.54: Normalized deformations at depth /#/2 from the crest against parameter 4 for
different values of ¢’ when (y; p) =10"" and the original water table is at half the retained

height level.
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Figure 5.55: Normalized deformations at depth h+d/2 from the crest against (y; p) for
different values of ¢’ when (¥, p) =10" and the original water table is at half the retained

height level.
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Figure 5.56: Normalized deformations at depth A from the crest against (y; p) for
different values of ¢’ when (¥, p) =107 and the original water table is at half the retained

height level.
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Figure 5.57: The ratio of M., / Myyux ec7 against parameter 4 for different values of ¢’
when (¥, p) =10 and the original water table is at half the retained height level.
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Figure 5.58: The ratio of I/ Frc7against parameter 4 for different values of ¢’ when (y, p)

=10 and the original water table is at half the retained height level.
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Figure 5.59: Normalized deformations at depth /2 from the crest against parameter A4 for
different values of ¢’ when (¥, p) =10 and the original water table is at half the retained

height level.
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Figure 5.60: Normalized deformations at depth 4/2 from the crest against parameter 4 for
different values of ¢’ when (y; p) =10 and the original water table is at half the retained

height level.
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Figure 5.61: Normalized deformations at depth A+d/2 from the crest against (y; p) for
different values of ¢’ when (y; p) = 10 and the original water table is at half the retained

height level.
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Figure 5.62: Normalized deformations at depth H from the crest against (¥, p) for
different values of ¢’ when (y; p) =10 and the original water table is at half the retained

height level.
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Figure 5.63: The ratio of M. / My ec7 against (y; p) for different values of 4 when ¢’ =
20° and the original water table is at half the retained height level.
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Figure 5.64: The ratio of F'/ Fc7 against (v, p) for different values of 4 when ¢’ = 20° and
the original water table is at half the retained height level.
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Figure 5.65: Normalized deformations at depth 4/2 from the crest against (y, p) for different
values of A when ¢’ = 20° and the original water table is at half the retained height level.
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Figure 5.66: Normalized deformations at depth /4 from the crest against (, p) for different
values of 4 when ¢’ = 20° and the original water table is at half the retained height level.
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Figure 5.67: Normalized deformations at depth h+d/2 from the crest against (y, p) for
different values of 4 when ¢’ = 20° and the original water table is at half the retained
height level.
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Figure 5.68: Normalized deformations at depth H from the crest against (¥, p) for different

values of A when ¢’ = 20° and the original water table is at half the retained height level.

Mmnax
MrasECT
L T R R Ry A .
¥** ﬁ:. ‘A T of ’\‘\'\‘

\'\ Tx “ \‘\‘A\
o

* m 0.95

B 5 \

* -‘\ X{‘
\ x ;\-\O.9 \\

» * ]
. » ]
+, 0.868

’\,\ > A A S
ERNSE SEMLL | THT TP

N

-4 A=10-°
-+ A=10"°
log [yse] m p-10"*
— A=10"°
+ A=10"7
—~ A=10"1

Figure 5.69: The ratio of M,uay / Max ec7 against (y; p) for different values of 4 when ¢'=
25° and the original water table is at half the retained height level.
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Figure 5.70: The ratio of F'/ Frc;7 against (v, p) for different values of 4 when ¢’ = 25°
and the original water table is at half the retained height level.
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Figure 5.71: Normalized deformations at depth 4/2 from the crest against (y; p) for
different values of 4 when ¢’ = 25° and the original water table is at half the retained

height level.
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Figure 5.72: Normalized deformations at depth z from the crest against (y, p) for different
values of 4 when ¢’ = 25° and the original water table is at half the retained height level.
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Figure 5.73: Normalized deformations at depth A+d/2 from the crest against (y; p) for
different values of 4 when ¢’ = 25° and the original water table is at half the retained

height level.
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Figure 5.74: Normalized deformations at depth A from the crest against (¥, p) for
different values of 4 when ¢’ = 25° and the original water table is at half the retained

height level.

From the figures, the ratios Muax / Mpavec7 and F / F, EC} are closer to unity than in
conditions of zero pore water pressures and slightly higher for small values of y; p and
large values of A4, but slightly lower for large values of y; p and small values of 4 than
those with the water table at ground level; however, the pattern of the reduction is similar
for all cases. The calculation of the maximum bending moments and prop loads for very
stift walls according to the Eurocode (EC7, 1995) might be more accurate when the
water table is assumed to be at the ground level. When the water table is at half the
retained height level the normalized displacements (6,/H, J,/H, 03/H and o4/H) are

slightly higher than when the water table is at ground level.

5.6 REDUCTION CURVES FOR STIFF CLAYS AND SANDS

In Figures 5.75 and 5.76 the ratios Myuy / Myaxec7 and F/ Fgc7 are shown for values of A
and ¢’ that are typically found in stiff clays, while in Figures 5.77 and 5.78 these values are
chosen to represent the behaviour of sandy deposits. It should be noted that the selection of
parameter A is not that straightforward and usually varies; however, the scope herein is to
limit the number of curves to those that may be typical in current engineering practice in
UK hence, the selection of these values is based on the results of triaxial tests on samples

from different locations as found in the literature.
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In the Figures, curve 1 is drawn for conditions of zero pore water pressures, while curves 2

and 3 represent a water table at the ground surface and at half the retained height level

respectively. The lines perpendicular to axis x-x show the typical wall flexibility values

(Log [y p]) for a rigid, diaphragm, sheet pile and soft retaining wall with a total length of

20m. The rigid and soft walls are included to represent extreme cases.
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Figure 5.75: The ratio of M4 / Myav,ec7 against (ys p) when A=107 and o= 20°.
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Figure 5.76: The ratio of F'/ Fc7 against (¥ p) when A=107 and p'=20°.
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Figure 5.77: The ratio of M4y / Mywax,ec7 against (v, p) when A=1 02! and p'=30°.
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According to the figures, the pattern of the reduction is similar in each case. Eurocode 7
(EC7, 1995) might underpredict the bending moments and prop loads for a rigid wall and
the bending moments for a diaphragm wall embedded in sand assuming zero pore water
pressures, while it might overpredict both the bending moments and prop loads for the
other types of walls. For a diaphragm wall, the MSD results are in very good agreement
with those derived from Eorocode 7 (EC7, 1995), while for a sheet pile wall the maximum
reduction in the bending moments is about 23% in clays and 20% in sands. Regarding the
prop loads of a sheet pile wall, a maximum reduction from the Eurocode 7 (EC7, 1995)
results of about 20% in clays and 21% in sands is noticed. If these reduction curves are
taken into account in engineering practice, together with a safe selection of parameter 4 as

discussed, more economic designs might be feasible.

5.7 SUMMARY

In Chapter 5 the bending moment and prop load reduction curves together with the
normalised displacements at characteristic points along a retaining wall are presented
assuming a natural water table at the ground surface and at half the retained height level.
The pattern of the reduction is similar to that presented in Chapter 4 for conditions of zero
pore water pressures, but the magnitudes differ. A reduction in both the bending moments
and the prop loads can be achieved when sheet pile walls are embedded in stiff clays or
sands, while for diaphragm walls the MSD results are in good agreement with those
calculated following Eurocode 7 (EC7, 1995). The advantage of the MSD method is that
incorporates the effect of both the wall flexibility and soil stiffness in the design of
retaining walls. The degree of safety in the design depends significantly on the selection of

the appropriate value of parameter 4 for different types of soil.
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6. COMPARISON BETWEEN THE MSD METHOD AND OTHER
METHODS OF ANALYSIS

6.1 INTRODUCTION

In an early analysis, Rowe (1952) presented a number of reduction curves based on the
results of a series of model tests on anchored sheet pile walls retaining loose and dense dry
sand varying the flexibility p for various surcharge, anchor levels, anchor yield and dredge
levels. In a later analysis by Rowe (1955) more reduction curves are presented based on an
analytical solution in which both the wall flexibility and the soil stiffness are taken into
account. The soil stiffness is described by means of a soil parameter m,, which is assumed
to increase linearly with depth. For the reasons discussed in Chapter 2 the soil parameter
m, may be considered as equivalent to the rate of increase of the Young’s modulus with
depth, £*. However, a direct comparison between the reduction curves presented by Rowe
and the curves showed in Chapter 4 could lead to misleading conclusions, since Rowe
compared the anchor loads and the bending moments measured in his experiments or
calculated theoretically to the values calculated by the free earth support method with the
stress distributions estimated using Coulomb’s theory and the passive pressures reduced by
a factor of safety, F,. This procedure was suggested in the former UK code of practice CP2
but, as already mentioned, modern codes of practice require the application of a factor of
safety to the soil strength directly. Moreover, in Rowe’s analysis the wall flexibility p 1s
calculated in /7 / b Xyin‘) and the soil parameter m, in Ib/ f¢ . Therefore, Rowe’s results for
bending moments and prop loads need to be compared to values derived from calculations
based on the current codes of practice and his curves need to be redrawn in consistent units
to facilitate a valid comparison. In Section 6.3, an MSD analysis is carried out for stiff
walls and the results are compared to values predicted by the geostructural mechanism

proposed by Bolton and Powrie(1988), to check the consistency of the MSD method.
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6.2 COMPARISON BETWEEN THE MSD METHOD AND ROWE’S
ANALYSIS

6.2.1 Transformed axes

a. x-x’ axis

Rowe (1952) plotted the ratio of the experimental maximum bending moments per unit
of model height (M,1ax/H3) to the free earth support value against the logarithm of wall
flexibility p for retained height ratios (A/H) in the range 0.6 to 0.8, surcharge coefficients
(q/v:H) in the range 0 to 0.2 and anchor levels in the range O to 0.3H. The values for Log
p varied from -4.5 to -2. If p is converted in SI units (m’/kN), then the x-x ' axis should be
redrawn for values of Log p in the range -1.54 to 0.96. The friction angle ¢ is taken by
Rowe(1952) as 30° for loose and 40° for dense dry sand.

In his later analysis, Rowe (1955) plotted the ratio of the theoretical maximum bending
moments to the free earth support value against the logarithm of parameter m, p, where
m, is the soil parameter as defined by Rowe (1955), as already discussed. If m, p is
converted in S7 units, then the x-x " axis should be redrawn for values of Log(m, p) in the
range 2.16 to 6.16. For a specific soil, the parameter m, is given by Rowe (1955);
therefore, for loose sands Logp 1s in the range -1.79 to 2.21 and for dense sands Logp is

in the range -2.79 to 1.21.

b. y-y’ axis

The ratios M = Mg s/ H, Flos - Fro/H (Rowe, 1952) and Mg os/KarysH'
F f’eS/KaR}’SHz (Rowe, 1955) based on the free earth support method are converted to those
according to Eurocode 7 (1995) in the calculations presented in this section.

In Rowe’s analysis, the free earth support calculations were carried out with an active

earth pressure coefficient, K4z, equal to the Coulomb value (Equation 6.1) for soil/ wall

friction J equal to 2/3 ¢’ and a passive earth pressure, 0"z, €qual to the Coulomb value
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for soil/wall friction 6=0 and divided by a factor F,=1.5. The active and passive stresses
for a wall in limit equilibrium according to Rowe are given by Equations (6.2) and (6.3),

where m is the retained height ratio.

Kor = cos’p /{1 + [sin (p+5) sin ¢ / cos 5] 02)

=cos’p /{1 + [sin (5/3¢) sin ¢ / cos (2/3 )] "} (6.1)
0'har = Kar ¥s H/ 2 (6.2)
Tior= Kor s /(2 F,) — Kopys (1-m)°’H' / (2 F,) (6.3)

-Taking the moments about the crest:

XMy =0—

(Karys H/2) 2/3 H - Kor ys (1-m)°H / (2 F,) [m H + 2/3 (1-m) H] =0—

Ko (1-m)° / (Kag F)= 2/ (2+m) (6.4)
From the condition of horizontal stress equilibrium, the normalized prop force F'z/Kar
may be calculated

Fr/Kap =F 1 (Kag H) = 1729, [1 - Ko (1-m)° / (Kar F,)]

=1/2y;m/(2+m) (6.5)

In Rowe’s analysis it is assumed that the maximum bending moments will occur above

dredge level. If z, is the depth where the maximum bending moment occurs divided by

the wall height H, then for z, <m = h/FH, the normalised maximum bending moments are:

Mffés :Mna.\‘,fes /]]?: 1/3 Kar Vs [l’}’l /(2+m)] - (66)
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Mifes/KuR:Mnax{/es /KHR H3 =1/3 Vs [m / (2+m)] "2 (67)

The normalised bending moments in the form of Equation (6.6) are used in Rowe’s earlier
analysis (1952), whereas in his later analysis (1955) they are presented in the form of

Equation (6.7) and are independent of the values of ¢ .

The ULS calculations for zero pore water pressures according to Eurocode 7 (1995) are
presented in Chapter 4. Taking the moments about the crest, Equation (6.8) is derived and
the normalised prop loads and maximum bending moments are given by Equations (6.9),

(6.10) and (6.11).

KK, =1/[(1-m)° (1+0.5m)] (6.8)
Fecr/Ke=Feer ! (Ka ) = 0.25 y,m / (1+0.5 m) (6.9)

M'rc7 =Myargcr / H'= Fred/H 2,- 1/6 Ko ys 2,0 + 1/6 Ky s (20— m)” (6.10)

M)EC7/KH :M171a,\‘,EC7 /Ka H3 =

Fecr !l (Ka H?) zo- 1/6 s 20+ 1/6 ys K/ Ky (20— m)? (6.11)
D

The earth pressure coefficients K, and K, are given by Equations (4.104) and (4.105) in
Chapter 4.

In Table 6.1 the ratio of the free earth support maximum bending moments to the
respective values calculated according to Eurocode 7 (1995), M s / M gc7, and the ratio
(M ros/Kar)/( M ec7/K,) are calculated for different values of ¢’ and m and are plotted in
Figures 6.1 and 6.2. The ratio (M r.s/K.p)/( M 'rc7/K,) is independent of ¢ .
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Table 6.1: Comparison between the maximum bending moment ratios derived from the

m

N

M’y M’gc;

OO OO O OO OOH OOOORFR,ROODOORFRL OO OO

.879255
.900429
.93645
.996409
.0982
.853864
.874426
.909407
.967634
.06648
.831575
.851601
.885669
.9423776
.03865
.812201
.83176
.865034
.92042
.01445
. 795669
.81483
.847427
.901685
.993798

(M 1o/ Kor)/(M’ec7/Ko)

e e e e e e e e e e e e S T S G T S O U

.02176
.04636
.08822
L1579

.27618
.02176
.04636
.08822
L1579

.27618
.02176
.04636
.08822
.157%

.27618
.02176
.04636
.08822
L1573

.27618
.02176
.04636
.08822
.157%

.27618

Free Earth Support method (Rowe, 1952) and those derived from Eurocode 7 (EC7, 1995).
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Figure 6.1: The ratio M /M ey against ¢ and m.
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Figure 6.2: The ratio (M ny/K.r)/( M rc7/K,) against ¢’ and m.
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In Table 6.2 the ratio of the free earth support prop loads to the respective values
calculated according to Eurocode 7 (1995), F''rs/ F 'ge7, and the ratio (F ry/Kar) / (F'Ec/K,)
are calculated for different values of ¢’ and m. The ratio F s/ F "¢ is plotted in Figure 6.5

and is independent of m. The values for (F'n/K,z) are the same as those calculated

according to Eurocode 7 (1995).
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Table 6.2: Comparison between the prop load ratios derived from the Free Earth Support

method (Rowe, 1952) and those derived from Eurocode 7 (EC7, 1995).
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Figure 6.3: The ratio /"¢ / I g7 against ¢ " and m.

If Moy, Fexp and My, Fy are the experimental and theoretical maximum bending
moments and prop loads according to Rowe, then the y-y° axis in Rowe’s curves can be

multiplied by M '»/ M’rc7 and F'r/ - gc7 according to Equations (6.12) to (6.15):

M oy /M s x M fos / M7= M e/ M Ec7 (6-12)
M’y /M s x M pos / M pc7= M g/ M k7 (6.13)
Flop /F s X F s / Fper=F o/ Fucr (6.14)
ooy /F fos X F g / Fper=F oy / Fecr (6.15)
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6.2.2 Experimental curves

Rowe’s reduction curves based on experiments are redrawn on transformed axes for dense
and loose sands and for retained height ratios 4/ from 0.6 to 0.8 in the Figures presented
in this Section. Rowe used values of ¢ =30° and Logm,=4.75 lb/ﬁ3 for loose sands, while
¢ '=40° and Logm,=5.75 Ib/ff’ for dense sands. As already discussed in Section 3.2, the
definition of parameter m, is quite unusual and might be considered as a measure of the
rate of increase of Young’s modulus with depth, E. Analyses according to the MSD
method is carried out for ¢ =30° and Log4 =-2.25 for loose sands and ¢ =40° and Log4 =-
3.33 for dense sands to compare with Rowe’s results. For the values of parameter A=y,/G*,
it is assumed that parameter m, in Rowe’s analysis is equal to £; hence, G* may be
estimated. It should be noted that in the MSD analysis the retained height ratio 4// 1s equal
to 0.73 for ¢ ’:30° (loose sands) and equal to 0.82 for ¢ '=40° (dense sands); this is because
a unique value of 4/H can be correlated to a specific value of ¢’ in the ULS calculations
according to Eurocode 7 (EC7, 1995) as shown in Section 4.5 (Equations 4.103-4.105).
The results based on the MSD method are presented in Figures 6.7, 6.10, 6.13 and 6.15.

80
\\
64 b
<
N\
~
M/ M’pcr 48 \\
x 100% : \
32 :‘m\
k~__'
16 -
-1.29 -1.04 -0.54 -0.04 0.46 0.96
Log p

Figure 6.4: Rowe’s experimental reduction curves for A/H=0.6 for dense sands on
transformed axes.
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Figure 6.5: Rowe’s experimental reduction curves for A/H=0.7 for dense sands on
transformed axes.
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Figure 6.6: Rowe’s experimental reduction curves for A/H=0.8 for dense sands on
transformed axes.
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Figure 6.7: MSD reduction curve for ~/H=0.8 for dense sands.
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Figure 6.8: Rowe’s experimental reduction curves for A/H=0.6 for loose sands on
transformed axes.
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Figure 6.9: Rowe’s experimental reduction curves for A/H=0.7 for loose sands on
transformed axes.

e Loose sands

0

Figure 6.10: MSD reduction curve for #/H=0.7 for loose sands.
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Figure 6.11: Rowe’s experimental reduction curves for 4//1=0.8 for loose sands on
transformed axes.
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Figure 6.12: Rowe’s experimental reduction curves for prop loads for dense sands for A/H
from 0.6 to 0.8.

Figure 6.13: MSD reduction curve for #//H=0.8 for dense sands.
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Figure 6.14: Rowe’s experimental reduction curves for prop loads for loose sands for A/H
from 0.6 to 0.8.
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Figure 6.15: MSD reduction curve for 4#/H=0.7 for loose sands.

From Rowe’s curves on transformed axis, the reduction in the maximum bending
moments and prop loads is greater when the design procedure suggested in the Eurocode
(EC7, 1995) is followed rather than the free earth support method. In Figures 6.7, 6.10,
6.13 and 6.15 the pattern of the reduction according to the MSD method is the same with
that derived from Rowe’s experiments. However, for increasing wall flexibility Rowe’s
experiments show larger reduction than the MSD method in both the maximum bending
moments and the prop loads. According to the MSD method, Eurocode 7 (EC7, 1995)
might underpredict the maximum bending moments and prop loads for stiffer walls; this
is not noticed in Rowe’s results. Rowe presented mean curves for the prop loads with

surcharge coefficients (g/y;H) in the range from 0 to 0.2, whereas in the MSD method the
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surcharge was assumed to be equal to 0; this might be a reason for the difference in the
results. It should be noted that the soil parameter m, used in Rowe’s analysis is quite
unusual and it is assumed to be equivalent to the rate of increase of the Young’s modulus
with depth, £* to enable the comparison with the MSD results; however there might be
some uncertainty in this assumption. Moreover, Powrie, Pantelidou and Stallebrass
(1998) suggested that for the soil in front of a retaining wall propped at the crest, the
change in the stress path direction during wall installation might be smaller, resulting in a
significant less stiff response during excavation in comparison with the retained soil.
Therefore, a more rapid rate of mobilisation of soil strength with mobilized strength may
be used for the retained soil. This was not taken into account in the MSD method; hence

it might be another reason for the divergence in the results.

6.2.3 Theoretical curves

Rowe’s (1955) mean theoretical curves for the maximum bending moments and prop loads
are redrawn on transformed axes in Figures 6.16 and 6.19 respectively, where My, , Iy,
and M 'cc7. F'pe7 are the normalised maximum bending moments and the normalised prop
loads according to the Free Earth Support method and Eurocode 7 (EC7, 1995)

respectively.

847

M’ W/M’Ec7 5084

x100% Bending moment
239

160 Curves for no anchor yield
G ki ki 2 ~ _
2.16 3.16 4.16 5.16 6.16
Log (m, p)
in ST units

Figure 6.16: Rowe’s theoretical mean reduction curve for dense sands on transformed axes.

184



88.6

519 4
M’ /Mg 532

X 100% Bend;ng mgment \\\
354

17.7 Curves for no anchor yield

2.16 3.16 4.16 5.16 6.16

Log (m, p) in SI units

Figure 6.17: Rowe’s theoretical mean reduction curve for loose sands on transformed axes.
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Figure 6.18: Rowe’s theoretical mean reduction curve for dense sands on transformed axes.
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Figure 6.19: Rowe’s theoretical mean reduction curve for loose sands on tranformed axes.

The theoretical curves presented by Rowe (1955) and redrawn in transformed axes in the
Figures are mean curves for walls with retained ratios from 0.6 to 0.8, anchor levels from 0
to 0.2 and surcharge coefficients from 0 to 0.2. According to Rowe’s (1955) theoretical
curves the reduction in the maximum bending moments and prop loads is greater when the
design procedure suggested in the Eurocode (EC7, 1995) is followed rather than the free
earth support method. Rowe (1955) notes that there is a wide divergence between his
experimental and theoretical curves for stiff walls in dense and loose sands. This may be

explained by the uncertainty in the soil parameter m, used in the theoretical approach.

6.3 COMPARISON OF THE MSD METHOD BETWEEN STIFF AND
FLEXIBLE WALLS

Bolton and Powrie (1988) introduced the mobilised strength method for stiff walls as
described in Chapter 2. According to this approach, the active and passive soil zones are
subdivided into two triangles, the mobilised soil strength, @', 1S assumed to be uniform
with depth and consistent with the development of a uniform shear strain in each triangle.
For a wall propped at the crest, the shear strain on the retained side is equal to 2 00 and on
the excavated side is equal to 2 06 (1+ h/d), where 06 is the rotation at the crest and the

pattern of the deformations is presented in Figure 2.12.
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The mobilised strength method for flexible walls, as presented in Chapter 4, assumes that
the active soil zone is subdivided into four triangles and the passive into two triangles.
The use of additional kinematically admissible strain fields permits the incorporation of
different mobilised shear strengths and hence mobilized strains in each zone of the soil
surrounding the retaining wall. The shear strains are related to the wall rotations at the

crest as described in Chapter 4 and the pattern of the rotations and deformations is

presented in Figure 4.31.

For a flexible wall, mobilisation of four different values of shear strength would be
expected on the retained side of the wall and two on the excavated side. However, as the
wall flexibility decreases the rotations 06;, d6, and 603, which are attributed to wall
bending, should decrease, while 66,, which is attributed to rigid body rotation should
increase. Ideally, for a very stiff wall the rotations 66,, 68, and 08; would approach zero,
the shear strains and mobilized shear strengths would become uniform in the active and
passive soil zone and reach the values suggested by Bolton and Powrie (1988) and the

pattern of deformations would resemble that shown in Figure 2.12; this is checked in the

following examples.
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6.3.1 Example 1

In Table 6.3 the mobilised shear strength in each triangle and the wall rotations at the crest
are shown for a value of 4 equal to 107 and different values of Log p and ¢’ The mobilised
strengths within the triangles OAE, OBF, OCP, ODG, FGM and FPL, as showed in Figure
4.31, are @'monis P'mob2s P'mob3s ©'mobes ©'mops and @'n0ps rEspectively. From Table 6.3, it is
obvious that for low wall flexibility values (Log p= -6) the mobilised strength becomes
uniform on the retained and excavated side of the wall and the rotations 66;, 00, and 665
tend to zero and are significantly lower than 66,. For higher wall flexibility values different

values of soil strength are mobilised and the rotations d6;, 06, and d6; become higher than

00,.

In the case of 4=107, p'= 20° and Log p= -6, the mobilized strength on the retained side is

uniform and equal to 0.219, while on the excavated side is equal to 0.333. For the same
case, the shear strains behind (y,) and in front (y) of the wall according to Bolton and

Powrie (1988) are given by Equations (6.16) and (6.17) E
|
vy = 2 00,=0.0038 (6.16)

=2 604 (1 +h/d)= 2 60,/ (1-m) = 0.0091 (6.17)

where m is the retained height ratio and is equal to 0.582. The shear strains are related to
the mobilised strengths behind (¢'n0p5) and in front (¢',055) of the wall by the relationship
(4.40) in Chapter 4.

(/)’mob,b = Sil’l_] [;Vb /(A +B yb)] =0.219 (618)

O monsr = Sin” [y7/ (4 + Byj] = 0.333 (6.19)
Therefore, for low wall flexibility values the mobilized strength method as developed in

Chapter 4 gives the same results with the geostructural mechanism proposed by Bolton and

Powrie(1988).
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6.3.2 Example 2

In Table 6.4 the mobilised shear strength in each triangle and the wall rotations at the crest
are shown for a value of ¢’ equal to 20° and different values of Log p and Log A From
Table 6.4, as the soil becomes stiffer (Log 4 decreases), the wall has to become stitter for

the mobilised strength to become uniform on the retained and excavated side.

In the case of p'= 20°, 4=10" and Log p= -7, the mobilized strength on the retained side is
uniform and equal to 0.22, while on the excavated side is equal to 0.333. For the same
case, the shear strains behind (y;) and in front (yy) of the wall according to Bolton and

Powrie (1988) are given by Equations (6.20) and (6.21)

v =200,=38x 10" (6.20)

yr=2 00, (\+h/d)= 2 60,/ (1-m) =9.1 x 10”° 6.21)

where m is the retained height ratio and is equal to 0.582. The mobilised strengths behind
(9" mob.») and in front (¢'y0p ) of the wall are:

Doy = sin” [y /(A + By)] =022 (6.22)

(/)'mob,f: SinJ [}}f/ (A +tB Vj)] =0.333 (623)

The values calculated in Equations (6.22) and (6.23) are the same as those shown in Table

6.4 for the specific case examined.
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6.4 SUMMARY

Rowe’s (1952, 1955) experimental and theoretical curves are redrawn on transformed
axes to show the reduction in the maximum bending moments and displacements when
the design procedure suggested in the Eurocode 7 (EC7, 1995) is followed; the reduction
is generally greater compared to the free earth support method. The MSD curves display
a similar reduction pattern; however, Rowe’s experiments show larger reduction in both
the maximum bending moments and the prop loads than the MSD method for increasing
wall flexibility. According to the MSD method, Eurocode 7 (EC7, 1995) might
underpredict the maximum bending moments and prop loads for stiffer walls; this is not
noticed in Rowe’s analysis. However, this may be justified to a certain extent since
Rowe presented mean curves and used a rather ambiguous parameter to represent the soil
behaviour. Furthermore, the change in the stress path direction during wall installation,
which might result in a less stiff response of the soil in front of the retaining wall during
excavation, has not been incorporated in the MSD method. This might be another reason

for the divergence in the results.

To assess the consistency of the MSD method as presented in this thesis, an analysis for
low wall flexibility values was carried out. For stiff walls, the MSD method tends to values

predicted by the geostructural mechanism proposed by Bolton and Powrie(1988).
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7. VALIDATION OF THE MSD METHOD FOR FLEXIBLE WALLS
WITH CASE HISTORIES

7.1 INTRODUCTION

The validity of the MSD method for flexible walls is assessed by comparison with data
from five monitored case histories of deep excavations. In recent engineering practice,
detailed data for singly propped at the crest embedded retaining walls are limited.
Therefore, one case history of a singly propped retaining wall at Bell Common is
presented. The rest of the case histories are retaining walls supported by temporary props
near the crest and a permanent reinforced concrete prop slab at dredge level. The data used
for comparison with the MSD method are those obtained during the period that followed
the installation of the temporary props and before casting of the permanent prop slab;

hence, for these stages the walls act as singly propped at the crest.

The MSD method is a simple and practical design framework which may also be used to
check whether a further more complicated analysis is required. Therefore, the following

simplifications are made in the calculations according to the MSD method:

e Lower bound parameters are used.

e The soil profile in the case histories is variable; hence the selection of a
representative value for the soil parameter 4=y,/G* used in the MSD calculations is
complicated. In some case histories deposits of sand and gravel overlying clay are
found, and London Clay extends to a greater depth than the other soil layers;
therefore, it is assumed that the properties of clay will govern the behaviour, and the
value of parameter A=y,/G* is chosen to be representative of the London clay.
Jardine et al (1984) presented results of the ratio E,/c, against the axial strain, where
E, is the undrained Young’s modulus and ¢, the undrained shear strength, obtained
from triaxial tests on London clay samples with different overconsolidation ratios. In
this Section, parameter A:yJ * 1s calculated from tbe results provided by Jardine et
al (1984) for axial strains equal to 0.01% in conjunction with the undrained shear

strength profile of the London Clay given in each case history with the exception of
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case history 4. In case history 4, Atherfield Clay was found to extend to a great
depth; hence, different values of parameter 4 were used as described in Section 7.5.

e In order to provide general results, the MSD method has been developed for conditions
of pore water pressures at ground level or at half the retained height level as described
in Chapter 5. Hence, for the case histories examined two solutions are presented and
compared; the ground water table in the first one is assumed to be at ground level,
while in the second one at a distance of half the retained height from the ground level.

e The temporary props are assumed to be installed at the crest, although in some case
histories they were installed at a small distance from the crest.

e The value of the factor of safety applied to the soil strength and employed in the MSD
calculations is derived from the limit equilibrium calculations according to Eurocode 7

(EC7, 1995), since the excavation geometry is already known.

7.2 CASE HISTORY 1: Propped contiguous bored pile wall at
Walthamstow

The first case study is a propped contiguous bored pile retaining wall constructed as part of
the A406 North Circular Road improvement scheme between Chingford Road and Hale
End Road in Walthamstow, London (Project Report 10, E468A/BG, TRL, 1993). The
instrumented section of the wall was formed from 17m deep by 1.5m diameter bored piles,
spaced at 1.7m centres with a retained height of 8m, supported by temporary props at
distance of 0.7m below the crest and a permanent prop slab at dredge level. Measurements
of the wall bending moments and movements were obtained during and after construction.
Ground instrumentation in the vicinity of the wall was installed before commencement of

construction. The site location and the instrumented sections are shown in Figure 7.1.

The ground in the vicinity of the instrumented section comprised 1.5m made ground and a
silty clay with coarse gravel overlying London Clay, which is weathered to a depth of
between 5 and 6m. The ground water table is at a distance of 1.5m below the original
ground level. The soil profile and the undrained shear strength from consolidated

undrained triaxial tests are shown in Figure 7.2.
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NN Instrumented ssctions: A1 1989/90; A2 1992 (O8 765909)

BH10,11 Location of borgholes 10 and 11 from original site investigation,1983
$S1 Borehols location for TRL soil samples (100mm @ triaxial specimens, 1992)
C4, C5, C6 TRL Camkometer test locations (C4 -1989; C5/6 -1992)
D3 TRL Marchatti Dilatometer test location {1989)
<Y G1, G2 Geomensor pillars

London Medical College
University of London
Sports Ground

ce G5 S81

Chingford Road

N

A2

Crooked Biliet
Roundabout

Figure 7.1: Location of site and instrumented sections (Project Report 10, E468A/BG,
TRL, 1993).
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Figure 7.2: Soil profile and undrained shear strength (Project Report 10, E468A/BG,
TRL, 1993).

The MSD results are validated against bending moment and movement data obtained after
bulk excavation and just before the casting of the permanent prop slab. The values of the
parameters used in the MSD calculations are listed in Table 7.1. For the parameter 4=
y/G* a range of values is given. According to Jardine et al (1984), for intact samples of
London Clay with initial mean effective stress equal to 226 kPa (sample LC1) and 199 kPa
(sample LC2), the values of £, /c, at 0.01% axial strain were found equal to 1010 and 1200
respectively. The profile of the undrained shear strength with depth is given in Figure 7.2.
Hence, the rate of increase of £, with depth, E,*, can be determined. Assuming that the
Poisson’s ratio, v, is equal to 0.5 (undrained conditions) the rate of increase of the shear

modulus with depth can be calculated from the relationship:
G, *=G/z=E/[2(1+ v,)z]= E,*/3 (7.1)

Therefore, for a value of y; equal to 20 kN/m’, parameter A is in the range of values shown
in Table 7.1.
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p=H/EI A=7y/G* 9 pea s Y
(m*/KN) (dimensionless) | (degrees) (KN /m’) (KN/m’)
values | 1077 102%<10%%7 22° 20 10

Table 7.1

The bending moments as measured by vibrating wire strain gauges are showed in Figure
7.3. It has been checked and confirmed by the original authors that a negative sign is

equivalent to a convex outwards bending of the wall towards the excavation.

After bulk éxcavation {day 643)

T 15
Retained ground level
ARREXX
Temp.
R |
prop
-{10
Excavation
T E
ds g
o
4
-0
—— ]
Wall toe
I H -5

2000 1000 0 1000 --2000

Bending moment (kN m m—1)

Figure 7.3: Bending moments measured by vibrating wire gauges after bulk excavation
(Project Report 10, E468A/BG, TRL, 1993).

In the first column in Tables 7.2a & b the maximum bending moments estimated according
to the MSD method and according to Gaba et al (2003), as described in Section 2.3.2,
together with the measured values are showed. The displacements at characteristic points

along the wall (Figure 4.55) are also presented. The pore water pressures are assumed to be
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at ground level for the results in Table 7.2a, while at half the retained height level for the
results in Table 7.2b.

Ground water M, ae o o 03 Oy
table at 7z =0 (KNm) (mm) (mm) (mm) (mm)

Estimated (MSD) 1590~1610 15.3~16.9 | 28.4~30.1 | 26.2~27.5 8.2~9.5

Estimated

(Gaba et al,2003) 1784

Measured 1000 6.8 7.7 6.6 4.9
|

Table 7.2a

Ground water M, o 0 03 Oy

table atz=0.5h (KNm) (mm) (mm) (mm) (mm)

Estimated (MSD) 1505~1521 15.5~16.9 | 29.1~31.4 | 22.4~23.8 | 17~19.4

Estimated

(Gaba et al,2003) 1207.8

Measured 1000 6.8 7.7 6.6 49
Table 7.2b

The estimated maximum bending moments according to the MSD method is closer to the
measured values when the pore water pressures are at half the retained height level. The
empirical method suggested by Gaba er al (2003) gives a good estimation when conditions
of pore water pressures at half the retained height level are assumed, but overestimates the
maximum bending moments for conditions of pore water pressures at ground level; the

MSD results appear to be closer to the measured ones in this case.

The displacements are over predicted by the MSD calculations. However, the
measurements on the inclinometers were examined only for a short period of time until

casting of the permanent prop slab. Higher horizontal movements would possibly develop
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in the long term. Moreover, the displacements were obtained from the inclinometer
readings assuming base fixity; hence, these values are possibly underestimated in
comparison to those that occurred in reality. Generally, the MSD method gives a
conservative estimation of the maximum bending moments and the displacements when

compared to the measured values.

7.3 CASE HISTORY 2: Propped diaphragm wall at the A406/A10

junction

The second case study is a diaphragm retaining wall embedded in over-consolidated clay
constructed as part of the A406 North Circular Road, Great Cambridge Road Junction
improvement scheme in North London (Research Report 331, RR331, TRL, 1991). Field
instrumentation was installed prior to any construction work to determine the initial ground
conditions and instruments were installed in two of the wall panels to record measurements

during and immediately after construction as showed in Figure 7.4.

At the instrumented section, made ground at the surface overlies a 1.3m thick deposit of
firm sand and gravel, while firm silty clay, characteristic of the London clay formation was
encountered below. The ground water table is at the top of the London clay layer which is
at a distance of 2.6m from the original ground level. The soil profile together with the

undrained shear strength obtained from triaxial tests is showed in Figure 7.5.
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Figure 7.4: Plan of instrumentation (Research Report 331, RR331, TRL, 1991).
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Figure 7.5: Soil profile and undrained shear strength (Research Report 331, RR331, TRL,
1991).

For the construction of the instrumented section of the wall, T-panels penetrated from
original ground level to a depth of about 13.5m and excavation in front of the wall
followed. Temporary props were installed near the crest retaining a height of 6m and a
permanent reinforced concrete slab was later cast below the final carriageway level at

12.7m. The data obtained at the commencement of excavation and just before the casting
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of the permanent slab are used for comparison with the MSD results. The construction

sequence is shown in Table 7.3.

Construction sequence atinstrumented section of south wall

Stage Description Period Schematic

Installation of guide walls 14-7-87

instaliation of walf panels

_a. A N
under bentonite 11-9-871011-4-88

Temporary excavation to 2m
on both sides of wall: panels 5-2-88 tn 9-2-88 End of stage 1
reduced to cut off levels,

Retained side backfilled 12-4-88

Capping beam and parapet built 16-5-88 to 14-8-88

Construction of slip road on
retained side

End of stage 3

— o o —

30-9-88t0 11-10-88

Slip road opened 16-10-88

Excavationto 1.7 m 21-2-89 i
3 : ]
Temporary props installed 10-3-89 10 17-3-89 : End of stage 4

and concreted to wall

Excavationto 5 m 20-3-89
4 Excavation to 6 m 21-3-89 | |
b m—
| !
Excavationto 6.3 m 22-3-89 i End of stage 5 ]
| I
]

Excavation completed to

north wall 5-4-89
5
Prop slab with hinges cast 12-7-89 | X
]|
|
6 Temporary props released 2-8-89to 3-8-89 : i
: End of stage 6 I
Carriageway construction 14-12-89
7
Road opened 25-2-90

Table 7.3: Construction sequence (Research Report 331, RR331, TRL, 1991).
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In Table 7.4 the values of the parameters used in the MSD calculations are listed. The

values of the parameter 4= y/G* were obtained similarly to the procedure described in

Section 7.2.
p=H"/EI A=y/G* 0’ pea Vs P
(m’*/KN) (dimensionless) | (degrees) (KN /m’) (KN/m3)
values | 1077 107310727 [ 24° 20 10
Table 7.4
~1000 0 1000
T 1 ]
T
. Temporary prop
203 kN/m
= estimated
o 15 ~ moments
e
< o N \fibj'alillg
} Wire gauges
AN
1oL k

Atter bulk excavation (stage 4)

Figure 7.5: Bending moment distribution after bulk excavation (Research Report 331,
RR331, TRL, 1991).

The bending moments determined from measurements on the vibrating wire strain gauges
are showed in Figure 7.5. It has been checked and confirmed by the original authors that a
negative sign is equivalent to a convex outwards bending of the wall towards the
excavation. Some of the vibrating wire gauges stopped functioning after a specific stage;
hence measurements were only available for the lower part of the wall. The estimated
bending moments assuming a linear distribution of earth pressures corresponding to an
earth pressure coefficient of unity on the retained side together with the prop load
measured by the Contractor are shown in the same figure. The estimated values are
reasonably close to those measured except for the maximum value; the maximum
measured value was substantially different from the maximum estimated and it was

considered suspect. However, the small number of measured values results in uncertainty.
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Therefore, an average of the measured and estimated assuming K=1 values for the
maximum bending moment was considered appropriate for comparison with the MSD
results and is listed in Tables 7.5a & b, together with the maximum bending moments
estimated according to the MSD method and according to Gaba et al (2003). The
displacements at characteristic points along the wall (Figure 4.55) are also presented. The
original water table is assumed to be at ground level for the results in Table 7.5a, and at

half the retained height level for the results in Table 7.5b.

Ground water
table atz =10

Mmax
(KNm)

01
(mm)

02
(mm)

03
(mm)

04
(mm)

Estimated (MSD)

804.8~804.9

12.9~13.5

21.4~22.7

25.2~26.7

20.7~21.9

Estimated
(Gaba et al,2003)

627.8

Average value for
measured and
estimated with
K=1

689.2

2.25

1.34

0.8

Table 7.5a

Ground water
tableatz=05h

MM(L\’
(KNm)

(mm)

02
(mm)

(mm)

04
(mm)

Estimated (MSD)

735.5~735.8

8.4~9.6

16.2~18.9

25.6~27

19.8~21.4

Estimated
(Gaba et al,2003)

412.3

Average value for
measured and
estimated with
K=1

689.2

2.25

1.34

0.8

Table 7.5b

The MSD values for the maximum bending moments are reasonably close to the measured
ones. However, the horizontal displacement profile is different from the one assumed in
the MSD calculations and the values are overpredicted. This difference could be due to the

assumption of a rigid prop in the MSD calculations. Moreover, the measurements were
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examined only for a short period of time and higher horizontal movements would possibly

develop in the long term.

7.4 CASE HISTORY 3: Propped secant pile wall at Hackney to M11
link

The secant pile wall being examined forms part of the south wall on the George Green
tunnel which is located on the new alignment of the Al12 to MI11 link road. The
instrumented wall section lies between Wanstead underground station and Blake Hall Road

(Report 188, TRL, 1996).

The ground near the instrumented section consists of made ground to a depth of 1m and a
4.8m thick band of sandy gravel overlying a deposit of London clay. The London clay
becomes stiffer with depth and some evidence of weathering was noticed in the upper
0.3m. The ground water table is at a depth of 4.5m below the ground level. The soil profile
and the undrained shear strength measured from 100mm diameter triaxial specimens are

shown in Figure 7.6.

Secant bored piles of 1.2m diameter were installed at 1m centres with a penetration depth
of 18m at the instrumented part of the wall. A reinforced concrete capping beam was
constructed on the pile tops. Temporary steel props were installed and bulk excavation was
carried out. At completion of excavation the retained height was 7.5m. A reinforced
concrete slab was constructed at the carriageway centre during a later stage. The main
stages of the construction are given in Table 7.6. For comparison with the MSD results, the

data obtained at Day 414 are examined.
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Figure 7.6: Soil profile and undrained shear strength (Report 188, TRL, 1996).

Construction sequence at instrumented area

Stage Description Period Day Number

1 Installation of piles $209-5217 8/7/94 - 21/7/94 100-113

2 Capping beam constructed ‘ 30/9/94-17/11/94 1‘84-232

3 Excavation to 4m depth 16/12/94-19/12/94 261-264
Temporary props installed 23/1/95-10/2/95 299317

4 Excavation to 6.5m depth 21/3/95-28/3/95 356-363
Excavation to formation (8m depth) 11/4/95 377

5 Reinforced concrete slab cast 19/5/95-25/5/95 415-421

6 Jacks inserted in props 10/7/95-21/7/95 v 467-478

7 Temporary props released 21/7/95 478

Table 7.6: The construction sequence (Report 188, TRL, 1996).

The values of the parameters used in the MSD calculations are listed in Table 7.7. The
values of the parameter A= y/G* were obtained similarly to the procedure described in

Section 7.2.

p=H/EI A=y/G* O pea Ps P

(m*/KN) (dimensionless) | (degrees) (KN /m”) (KN/m?)
values | 107’ 10%7~10%" | 25.1° 20 10
Table 7.7
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The bending moments as measured by vibrating wire strain gauges are showed in Figure

7.7. It has been checked and confirmed by the original authors that a negative sign is

equivalent to a convex outwards bending of the wall towards the excavation.

28

24

18

16

14

S —
Temporary
prop

SR

3 i %
-1500 -1600 500 O 500
Bending moments (kNm/m)

Excavation to formation

Figure 7.7: Bending moment distribution after excavation to formation and before casting

of the reinforced concrete slab (Report 188, TRL, 1996).

In Tables 7.8a & b the maximum bending moments estimated according to the MSD

method and according to Gaba et al (2003), as described in Section 2.3.2, together with the

measured values are showed. The displacements at characteristic points along the wall

(Figure 4.55) are also presented. The initial water table is assumed to be at ground level for

the results in Table 7.8a, and at half the retained height level for the results in Table 7.8b.
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Ground water M 0y 7] O3 oy

table atz =0 (KNm) (mm) (mm) (mm) (mm)
Estimated (MSD) 1736~1787 21.9~23.5 | 29.8~31.2 | 35~36.7 33~35.9
Estimated

(Gaba et al,2003) 1394.8

Measured 667 2.5 4.8 3.2 2.9
Table 7.8a

Ground water M ax 0, 0, 03 oy
table atz=0.5h (KNm) (mm) (mm) (mm) (mm)
Estimated (MSD) 1559~1596 18.8~19.9 | 32.1~35.3 37.2~39.5 35~36.7
Estimated

(Gaba et al,2003) 908.7

Measured 667 2.5 4.8 3.2 2.9
Table 7.8b

It is obvious from Tables 7.8a & b that the MSD calculations overpredict the maximum
bending moments for both solutions. The estimated values according to Gaba et al (2003)
are less than the MSD results for conditions of pore water pressures at the ground level, but
are significantly different when the ground water table is assumed to be at half the retained
height level. However, it should be mentioned that the magnitude of the bending moments
is quite uncertain. The measured values were determined from the bending strains given by
each pair of gauges based on the flexural rigidity (£I) per metre run of the secant pile wall
and the same value of EI was employed in the MSD calculations. The value of parameter 4
was based on the experimental results on London clay presented by Jardine et al (1984).
Therefore, the difference between the measured and the MSD values could possibly be
caused by a slight divergence in the values of the parameters 4 or p used in the analysis. If

the bending moments were estimated from the total lateral stress distribution as read from
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spade pressure cells and piezometers before construction and summarised in Figure 7.8,

higher values would be expected.

The MSD calculations result in overpredicted values of lateral displacement. However, it is
noted in the relevant report that wall movement measurements were not taken at the

extremes of temperature and larger movements may have actually occurred.

30
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E
o 20 -
&
o
15
et Wall t08 .
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Figure 7.8: Total stress distribution measured by spade pressure cells and piezometers
before and after construction (Report 188, TRL, 1996).
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7.5 CASE HISTORY 4: A contiguous bored pile wall on the Channel
Tunnel Rail Link at Ashford

The Channel Tunnel Rail Link (CTRL) consists of 109 km of high speed track linking the
Channel Tunnel at Folkstone, Kent to the London terminus at St Pancras. At Ashford, Kent
the railway runs through approximately 1.8km of cut and cover tunnels and associated
retained cuttings to minimise the impact of noise and to avoid crossing existing road and
rail routes at grade. The sides of the tunnels and propped retained cuttings were
constructed between contiguous bored pile retaining walls (Richards et a/, 2006). An 11m
long section of a retaining wall that forms part of a propped cutting between Gasworks
Lane to Beaver Road constructed has been comprehensively instrumented.  The
instrumented section has been constructed from bored pile walls using 1.05m diameter
piles approximately 20m long and spaced at 1.35m centres. Preliminary assessment of the
geology in the area was collected from borehole records and laboratory tests. The location
of the examined section together with the instrumentation in the area is showed in Figure

7.9.

BH1

“’\sz
-]
25 m,

NORTH

WALL

SOUTH %

PRESSUREMETER TEST

BH # - Wireline boreholes undertaken
&' PR 3593 (reference from by University of Southampton
.. CTRL Site Investigation) .
SA #5H# - Useful boreholes

from CTRL Site Invesligation 12m
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- 54116, ‘...‘..‘ \%
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Figure 7.9: Site location and plan of instrumentation (Clark, 2000).
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Made ground of 2.8m thickness overlying a 1.4m thick deposit of Hythe Beds was present
at the instrumented section. High and lower plasticity Atherfield Clay of 11.9m thickness
overlying Weald Clay was present at greater depths. The soil profile is shown in Figure
7.10. The soil characterisation, design and estimated in situ earth pressure parameters are
listed in Table 7.9. The Atherfield Clay deposit was thicker than the rest and it is assumed
in the MSD calculations that its propertiecs govern the behaviour. Therefore, the value of
parameter A=y,/G* is representative of the Atherfield Clay and is derived from results
presented by Clayton et al (2006). Figure 7.11 shows the variation in the undrained secant
Young’s modulus with axial strain for an undisturbed sample of Atherfield Clay. From
Figure 7.11, E,/p’, is equal to 800 for small strains and combining Equations (7.2) and
(7.3), Equation (7.4) is derived:

G=FEu/[2(1+ v,)] (7.2)
pjoz(ovj\*0+2 O'Jh()) /3= O'Jv() (]+2 KO)/3 (73)
6G(1+v,)/[cw(I+2 K,)]=800 (7.4)

From Equation (7.4), the values of the rate of increase of the undrained shear modulus with
depth are calculated for K,=1 and K,=1.5. Assuming a value of y, equal to 20.6 kN/m3,
parameter A4 is in the range of values shown in Table 7.9. The ground water table was at
Im below the ground surface. However, the data collected at the dewatered section
approximately 100m away from the instrumented section indicate that the lower Atherfield

and Weald clays have been subjected to a drawdown of 5m (Clark, 2006).

stratum unit § estimated | estimated K, hydraulic
weight OCR =(1-sin") x | conductivity
Mg/m® OCRS™* (permeability)

k, m/s

Hythe Beds | 1.95 27° 731093 [135t01.5 |2x10*

Atherfield | 2.1 22° 351103 | 1..0to 1.5 2 %107

Clay

Weald Clay | 2.1 21°. 451107 [1.1to15 2x10°

Table 7.9: Soil parameters (Clark, 2006).
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Figure 7.10: Soil profile (Clark, 2006).
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Figure 7.11: Normalised undrained Young’s modulus E,/p', against the logarithm of the
axial strain for the Atherfield Clay (Clayton et al, 2006).

At the instrumented section, installation of the contiguous bored pile wall was followed by -
construction of reinforced concrete props at the crest and commencement of bulk
excavation beneath them. Temporary props were installed at a depth of 6m, further

excavation took place and a base slab was constructed at dredge level. The construction
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sequence is shown in Table 7.10. For comparison with the MSD results, the data obtained

before commencement of further excavation are used; at that point the wall had a retained

height of 5.4m and an overall height of 20.25m.

Stage Name Schematic Day Date
1 | Spade Cell 1-13  8M-20" October 1999
Installation
2 | Pile Installation 47-71 23" November to 17"
December 1999
3 | Sand Drain A\ 349-  201-23™ September
Installation ‘ ’ 352 2000
4 | Capping Beam 7\ 440- approximately 20-22™
Construction 442  December 2000
5 | RC (reinforced 465 Props 1 & 2: 14"
concrete) Prop 467 January 2001
Construction Prop 3: 16" January
2001
6 | Excavation 483- 127" February 2001
Phase 1 - 509  (no work 7"-21% Feb
inclusive)
7 Temporary Prop Z&A7TF—= 512  Prop 1: 2" March 2001
Installation TR 522 Props 2 & 3: 12" March
2001
L
8 | Excavation S7TF——= 530-  20"-27" March 2001
Phase 2 “"—_%f? 537
9 | Base Slab 579 8" May 2001
Construction
A
10 | Temporary Prop 581 Prop 1: 10" May 2001
Removal 595  Props 2 & 3: 24™ May
IZY 2001

Table 7.10: Construction sequence (Clark, 2006).
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The values of the parameters used in the MSD calculations are listed in Table 7.11. It
should be noted that the upper part of the piles had a different flexural rigidity than the
lower part (Clark, 2006); hence, in the MSD calculations p is given a range of values.

p=H"/EI A= y/G* O peak s P

(m’/KN) (dimensionless) | (degrees) (KN /m’) (KN/m3)
values | 10°7~10"7 | 107%~10"" [ 220 20.6 10
Table 7.11

The bending moments as measured by vibrating wire strain gauges and calculated from
curve fits to the inclinometer data (Clark, 2006) are shown in Figure 7.12. In Figure 7.13

the inclinometer measurements taken following the first phase of excavation are presented.

Strain gauge readings
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Figure 7.11: Bending moments measured by vibrating wire strain gauges after the first

phase of excavation (Clark, 2006).
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Figure 7.13: Inclinometer data after the first phase of excavation (Clark, 2006).

The MSD calculations are carried out for conditions of zero pore water pressures, since a
drawdown of 5m was noticed in the clays and the retained height is taken equal to 5.4m. In
Table 7.12 the maximum bending moments estimated according to the MSD method and
according to Gaba et al (2003), as described in Section 2.3.2, together with the measured
values are showed. The displacements at characteristic points along the wall (Figure 4.55)

are also listed.

As indicated in Table 7.12, the MSD method calculated slightly higher values of maximum
bending moments than those measured; this is expected since conservative assumptions
were adopted in the MSD calculation. The maximum bending moments according to Gaba
et al (2003) are substantially below those measured. The measured values of lateral
displacements are reasonably close to those calculated by the MSD method. However, the

displacement profile is different since a rigid prop was assumed in the MSD calculations.
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Ground water M, ax P 7 02 03 Oy
table at z = 6m (KNm) (mm) (mm) (mm) (mm)
Estimated (MSD) 583~597 8~9.5 13.5~14.3 | 10.8~12.2 4~5.3
Estimated

(Gaba et al,2003) 188.1

Measured by

vibrating strain 433

gauges

Calculated from 301 7.8 8.3 5 0.5
inclinometers

Table 7.12

7.6 CASE HISTORY 5: A secant pile embedded retaining wall at Bell

Common Tunnel in Essex

A 470m long cut and cover tunnel was constructed in the early 1980’s at Bell Common to
take the M25 London motorway through the northern edge of Epping Forest in Essex. The
tunnel is formed by a central line of piles and two embedded retaining walls propped at the
crest by a simply supported roofing slab. A section of the retaining wall and the adjacent
ground was extensively instrumented to monitor the behaviour of the structure (Tedd et al,
1984). Figure 7.14 shows a cross section of the tunnel and the instrumentation in the

vicinity are showed.

The soil profile in the area comprises of a 1.5m thick deposit of Older Head, similar in
nature to the Claygate Beds which lie underneath it. The Claygate Beds deposit has a
thickness of 5.5m and overlies London Clay. The soil profile and the undrained strength

determined from triaxial tests and Camkometer self-boring pressuremeters are shown in
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Figure 7.15. The initial ground water table was at a distance of 3m below the ground

surface.

§ Surface station @ Spade colland plezomster

{ Inclinometer % Plate gauge and settlement cali

M Magnet extensometer res Straingauge

S Levelling station €

e e yo&_

Older Head i V ¥ + E ['f 1 f
— 7 7
gfggate T T /Formauon lovel W

Drainagetrench

———— ? :D}- : i _/Caniageway level '
1

London s o i P E}\
{ .

P
@1
@

Clay L 4 il BN - it
ns 1
'Y off|il® + .
Access manhole
® + 4
i
_'w_
T
l, M
ﬂ— .
Ia la Scals of matres
4 10
T

Figure 7.14: Plan of instrumentation (Tedd et al/, 1984).
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The instrumented section of the wall has been formed by 1.18m diameter bored piles
spaced at 1.08m centres. Firstly, a number of primary piles were bored to a depth of 21m
and secondary piles were bored in between to a depth of 19m. An initial excavation of
3.5m took place to construct the cill beam and the thrust wall and temporary shoring was
placed between the secant pile wall and the closest surface instrumentation to retain the
ground. Further excavation to Sm and construction of the roof beam followed. Between the
roof beam and the thrust wall a compressible material 75mm thick was introduced. The
final excavation to formation level was down to about 8m.

The values of the parameters used in the MSD calculations are representative of the

London clay and are listed in Table 7.13.

p=H/EI | A=7y/G* 0 peat Vs Vo

(m*/KN) (dimensionless) | (degrees) (KN /m’) (KN/m*)
values | 107 107%2~1071 | 220 20 10
Table 7.13

The bending moments as measured by vibrating-wire strain gauges and the horizontal
deformations measured by inclinometers are shown in Figures 7.16 a & b. In the bending
moment diagram a negative sign represent a concave curvature towards excavation. Tedd
et al (1984) note that both the bending moment and deformation profile depend heavily on
the magnitude of the prop load which is only an approximate estimate. According to Figure
7.16a, the wall rotated about its toe and the maximum displacement at the end of the
construction period occurred mainly at the crest; however, this can be explained by the
compressible prop creeping at a very high rate. The bending moments appear to be very
small possibly because of their sensitivity to the complex time-dependent stress-strain
behaviour of the compressible material at the roof prop which caused fluctuations in the
prop load. If the bending moments are estimated from the earth pressures, considerably
larger magnitudes would be obtained (Tedd et al, 1984). Bolton and Powrie (1985)
presented a bending moment diagram estimated from the earth pressure distributions as
shown in Figure 7.17, where positive values represent concave curvature towards the
excavation. The magnitudes in this case are far greater than those measured directly. In an
elastic finite element analysis carried out by Hubbard et al/ (1984) the bending moments

were also found much higher than those measured.
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Figures 7.16: (a) Horizontal movements and (b) bending moment profile of the secant pile
wall during various stages of excavation (Tedd et al, 1984).
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Figures 7.17: Bending moment profile of the secant pile wall as calculated from the
measured earth pressures distribution (Bolton and Powrie, 1985).

In Tables 7.14 a & b the maximum bending moments estimated according to the MSD

method and according to Gaba et al (2003), and measured directly (Tedd et al, 1984) and
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calculated from the earth pressure distribution (Bolton and Powrie, 1985) are shown

together with displacements at characteristic points along the wall (Figure 4.55). For the

values in Table 7.14 a the pore water pressures are at ground level, while in Table 7.14 b

the water table is at half the retained height level.

Ground water table
atz=10

MM ax
(KNm)

(mm)

(mm)

03
(mm)

04
(mm)

Estimated (MSD)

1609~1620

33.2~34.5

41~43.8

44.3~45.4

39~42.1

Estimated
(Gaba et al,2003)

1692.1

Measured from
strain gauges
(Tedd et al, 1984)

262.5

18.4

12.9

7.8

Calculated from the
earth pressures
(Bolton and Powrie,
1985)

1378

Table 7.14a

Ground water table
atz=05h

M miax
(KNm)

(mm)

(mm)

(mm)

(mm)

Estimated (MSD)

1127~1142

8~9.6

13.8~16

10.8~13.3

4.6~6.1

Estimated
(Gaba et al,2003)

1207.76

Measured from
strain gauges
(Tedd et al, 1984)

262.5

18.4

12.9

7.8

Calculated from
the earth pressures
(Bolton and Powrie,
1985)

1378

Table 7.14b
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The MSD method gives a reasonably close prediction of the maximum bending moments
when compared to those calculated from the earth pressures for a water table at half the
retained height level, while the empirical method (Gaba et a/, 2003) might be unsafe in this
case. When the water table is at ground level, the MSD results may be conservative;
however, the assumption of a water table at half the retained height level is closer to the
case study since the water table was at 3m from ground level. The measured values are
close to those calculated by the MSD method assuming a water table at half the retained
height level. A big divergence is noticed between the directly measured magnitudes and
the rest of the values presented in Table 7.14 when the water table is at ground level.
Moreover, the displacement profile differs from the one assumed in the MSD calculations.
However, the accuracy of the directly measured values is uncertain for the reasons
discussed in this Section. A finite element analysis for the Bell Common singly propped

wall (Potts and Day, 1991) is presented and discussed in the next Section for further

comparison.

7.6.1 CASE HISTORY 5: Finite element analysis for a propped retaining

wall at Bell Common Tunnel in Essex

A finite element analysis for a propped retaining wall at Bell Common Tunnel has been
performed by Potts and Day (1991). The purpose of the analysis was to assess whether
flexible sheet pile walls can provide a viable alternative to concrete diaphragm or secant
pile walls retaining stiff clays; hence, four different values of wall stiffness, ranging from
an extreme value attributed to a very soft wall to a value equivalent to 1m thick concrete
wall, as listed in Table 7.15, were used. The soil profile and properties employed in the
analysis are shown in Figure 7.18. The original ground water table is at a distance of 3m
from the ground surface. However, the maximum bending moments were calculated in the
long term when excess pore water pressures had dissipated. During the dissipation stages

of the finite element analysis the bulk modulus of the pore water was set to zero.
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Figure 7.18: Soil properties employed in the finite element analysis (Potts and Day, 1991).

In the MSD calculations the same values of wall stiffness are used for comparison with the
finite element analysis, while conservative values for the soil parameters are chosen as
listed in Table 7.15. The MSD calculations are carried out assuming a water table at half

the retained height level.

p=HEI | A=y/G* © ek s Vo

(m3 /KN) (dimensionless) | (degrees) (KN /m3) (KN/m3)
1* case 10" 1073 25° 19.6 10
2" case 10%7 1073 25° 19.6 10
3" case 100 1077 25° 19.6 10
4" case 108 1077 25° 19.6 10

I

Table 7.15
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Cases M0
(kNm/m)

ISt case 1325
2" case 1419

Estimated (MSD

stimated ( ) 3 case [a5s

4th case 2054
1* case 120
2" case

Finite Element Analysis 170

(Potts&Day, 1991) 3" case 305
4" case 635

Estimated

(Gaba et al,2003) 1080.5

Table 7.16

In Table 7.16 the results obtained from the finite element analysis are compared to those
determined from the MSD method and those according to Gaba et al (2003). For the two
stiffer walls the MSD results are reasonably close, while for the two more flexible walls
the MSD method overpredicts the maximum bending moments compared to finite element
analysis. It should be mentioned that the assumption of a rigid prop was followed in the
MSD calculations, whereas in the finite element analysis the propping slab was modelled
by a spring with a linear stiffness of 10MN/m per metre; hence the difference in the results
may be explained. The values estimated according to Gaba ef al (2003) are higher than the
finite element results results. It should be noted that the first case is equivalent to a very

soft wall which is not likely to be used in practice, but was included in the analysis to

represent an extreme case.

7.7 SUMMARY

The comparison between the MSD results and the data obtained from five case histories
show that the MSD method can provide a useful prediction of the maximum bending
moments and the displacements at characteristic points along the wall for preliminary

design. In all the case histories examined in this Chapter, the MSD method gives slightly
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overpredicted values; however, this would be expected since conservative assumptions and
lower bound parameters were employed. Moreover, in the MSD calculations the wall
flexibility and soil stiffness and shear strength are taken into account, which is an
improvement for preliminary design when compared to the limit equilibrium calculations
or the empirical method suggested by Gaba et a/ (2003). A further more complex analysis

(i.e. finite element analysis) could be carried out for a detailed design if needed.

Furthermore, it should be noted that due to the limited number of detailed case studies of
embedded retaining walls propped at the crest, it was assumed that the data obtained after
installation of the temporary props and before casting of the permanent base slab could
resemble the behaviour of walls propped singly at the crest for some of the case histories
presented herein. Even so, the accuracy of the measurements is uncertain in some cases.
Some divergence between the MSD results and the measurements could be justified by

these reasons.
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8. CONCLUSIONS AND FURTHER WORK

8.1 CONCLUSIONS

Review of the different methods used in current engineering practice and the codes of
practice for the design of retaining walls has indicated that complex and time consuming
analysis is often required to model the soil behaviour. Alternatively, empirical or simple
methods based on linear elasticity can be used, but their limitations are significant. The
potential of the mobilised strength method to serve as a simple design framework that
incorporates the real nature of soil behaviour for retaining walls propped near the crest has

been investigated in this thesis.

In Chapter 3, the maximum principle stress difference failure criterion has been used to
derive the total stresses behind and in front of a stiff retaining wall propped at the crest
incorporating the initial earth pressure coefficient, K, and the rate of increase of the shear
modulus with depth, G*. The rotation of the wall at the prop and the normalized prop
loads, bending moments and deformations have been calculated for different values of
retained height ratios, initial earth pressure coefficients and soil stiffness. The soil/wall
flexibility is characterized by a flexibility number, the critical value of which differentiates
stiff from flexible walls. The critical flexibility ratio has been found to increase when the
initial earth pressure coefficient and the retained height ratio decrease. The advantages of
this solution are that both the wall ﬂexibilfty and the soil stiffness are considered in a

simple calculation and it can be applied in a reasonably general manner.

In Chapters 4 and 5, the mobilized strength method has been applied to flexible retaining
walls for conditions of zero pore water pressures and linear seepage respectively. New
kinematically admissible soil displacement fields have been introduced to associate the
mobilized shear strain with the mobilized shear strength in each soil zone by a modified
version of the hyperbolic relationship introduced by Duncan and Cheng (1970) and the
wall flexibility has been idealised into a simple mechanism. Curves have been presented to
illustrate the divergence in the maximum bending moments and the prop loads when the
wall flexibility, soil stiffness and initial shear strength are taken into account from those

calculated according to Eurocode 7 (1995). To estimate the effect of each of the wall
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flexibility, soil stiffness and initial shear strength independently, a variation in one
magnitude has been allowed while constant values were employed for the rest. According
to the curves, a significant reduction in the maximum bending moments and prop loads is
noticed when the wall flexibility or the soil stiffness increases. The reduction is more
pronounced for retaining walls embedded in clays than in sands. The normalised
displacements at characteristic points along the wall have been also plotted for different

values of wall flexibility, soil stiffness and initial shear strength.

In Chapter 6, Rowe’s (1952, 1955) experimental and theoretical curves have been redrawn
on transformed axes in consistent units to show the reduction in the maximum bending
moments and the prop loads when the design procedure suggested in the Eurocode 7 (EC7,
1995) is followed and moreover, to enable the comparison with the MSD curves. The
reduction in Rowe’s curves is greater when the design procedure suggested by Eurocode 7
(EC7, 1995) 1s followed than the free earth support method. However, Rowe’s results were
derived for sheet pile walls embedded in sands with low K, and were based on a rather
ambiguous soil parameter; hence, their general application might not be appropriate.
Rowe’s reduction curves and those derived from the MSD method are in good agreement
when are both compared to Eurocode 7 (EC7,1995) regarding the maximum bending
moments, but a difference is noticed in the prop loads. However, Rowe (1952, 1955) took
also account of the surcharge, whereas in the MSD method zero surcharge was assumed.
Furthermore, comparison between the MSD method, as presented in this thesis, and the
geostructural mechanism presented by Bolton and Powrie (1988) has showed that the same

results are found for low wall flexibility values; hence the MSD method is consistent.

Comparison of the MSD results with data obtained from five monitored case studies has
been presented in Chapter 7. Conservative assumptions and lower bound parameters were
employed to derive the MSD results and this may have led to slightly overpredicted values
of maximum bending moments and prop loads compared to the measurements. Even so,
the MSD method is an improvement to linear elastic soil models or empirical techniques
and may be a simple and useful design tool. Its accuracy may be increased if more
kinematically admissible soil displacement fields are introduced and different rates of
mobilized strength with strain are allowed for behind and in front of a retaining wall to

take account of the recent stress history.
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8.2 FURTHER WORK

Simple soil-structure interaction analysis (i.e. using software like FREW or WALLAP) is
commonly used in engineering practice for the preliminary design of retaining walls and
could be compared to the results derived from the MSD method. The MSD method has
been presented in this thesis in terms of an effective stress analysis; its validity could also
be assessed for a total stress analysis. Moreover, the soil behind and in front of a
retaining wall may be divided into a greater number of triangles with uniform but
different mobilized strength within each one to approach the realistic soil/wall
movements. The soil arching may be included in the stress distribution on the retained
side when flexible retaining walls are analysed. The relationship for the derivation of the
mobilized strength with the mobilized strain may also be improved to achieve better
accuracy; however, the key point might be to retain its simplicity. Powrie, Pantelidou and
Stallebrass (1998) emphasized the importance of recent stress history during wall
installation on the soil behaviour during excavation; they suggested that for the soil in
front of a retaining wall, the change in the stress path direction during wall installation
was smaller, resulting in a significant less stiff response during excavation in comparison
with the retained soil. Therefore, a more rapid rate of mobilisation of soil strength with
mobilized strength may be used for the retained soil in the MSD method to incorporate

the recent stress history.
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APPENDICES

A. HYPERBOLIC STRESS-STRAIN RELATIONSHIP

Duncan and Cheng approximated the non-linear stress-strain relationship by the

hyberbolic equation proposed by Kodner (1963)

(c;—03)=¢/(a+tbeg) (A1)
where o; and o; are the major and minor principal stresses respectively, ¢ is the axial
strain and @ and b are constants which can be derived from experimental data. Constant
is the reciprocal of the initial tangent Young’s modulus E; and constant b is the reciprocal
of the asymptotic value of stress difference, (o, — 03),, which the stress-strain curve
approaches at infinite strain. Equation (A.1) can be written in the form of Equation (A.2):

e/(o;—03) =a+be (A.2)

The stress difference in the soil (o; — 03) at failure is usually found to be slightly less than
its asymptotic value (o, — 03),;, at infinite strain and a factor R, can be used to relate them
in Equation (A.3):

(01— 03)r = Rp(0] — 03)u (A.3)
Substituting the constants a and b and the factor Ryin Equation (A.2):

(0)—-03) =¢/[1/Ei+eRs/ (0] 03)] (A.4)

Janbu (1963) found from experimental studies that the initial tangent Young’s modulus

E; is related to the confining pressure o3 by Equation (A.5)

Ei =K p,(03/p)" (A.5)
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where p, is the atmospheric pressure expressed in the same pressure units as E; and 03, K

is a dimensionless modulus number and #» is the exponent determining the rate of

variation of £; with ¢;. In Figure A.1 the determination of the parameters K and » from

drained triaxial tests is shown.

10,0C0 T T i T T
8000+ Silt from foundation of Cannonsville Dam
(Data from Hirschfeid ond Poulos, 1S63)
. K=360, n=0.56
< 4000 -
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Figure A.1: Determination of parameters K and »n from drained triaxial test data (Duncan

and Cheng, 1970).

The stress difference at failure can be related to the confining pressure o3
(0;—03)r = (2 ccosp + 2o03sinp)/ (1 —sing) (A.6)

where c is the soil cohesion and ¢ is the friction angle.

The tangent Young’s modulus may be expressed by Equation (A.7):
E=d(o,—03)/de— E=(/E)/[1/E+Rre/(o;—03)]" (A.7)
Duncan and Cheng (1970) rewrote Equation (A.4) in the form of Equation (A.8):

e=(o;,—03)/{Ei[]-R(0;—03)/(0;—03)]} (A.8)

The expression for the tangent Young’s modulus can be independent of strain by

substituting Equation (A.8) in Equation (A.7)
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E,=(1-RS) E (A.9)
where S is the normalized stress level and is given by Equation (A.10)
S:(O']—O'j)/(o—]*ﬂj)f (AIO)

Duncan and Cheng (1970) substituted Equations (A.5), (A.6) and (A.10) in Equation
(A.9)

E=[1- Re(I-sing) (67— 063)] (2 ccosp + 203sinp)]° K pa(os/ps)"
(A.11)

where ¢ is the soil cohesion, ¢ is the friction angle o3 is the confining pressure, p, is the
atmospheric pressure expressed in the same pressure units as £, and o3, K is a
dimensionless modulus number and # is the exponent determining the rate of variation of
the initial tangent Young’s modulus £; with o3.

After carrying out additional tests on sands to investigate the effect of unloading and
reloading on the proposed relationship, Duncan and Cheng (1970) found that the

unloading-reloading Young’s modulus £, may be expressed by Equation (A.12)
L, =K, Pa (03 /pa)n (A12)

where K,,-is a dimensionless modulus number for unloading and reloading and was found

to be higher than for primary loading
The tangent shear modulus G may be represented by an Equation similar to the one

(Equation A.11) proposed by Duncan and Cheng (1970). The radius of the Mohr circle of

total stresses is:

t = (0, - 03)/2 (A.13)

Equation (A.13) can be rewritten as:
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o =21+ o3 (A.14)
The average total stress is given by Equation (A.15):
s=(o; + 03)/2 (A.15)

Substituting Equation (A.14) into Equation (A.15):

s= 1+ o3 (A.16)

The maximum shear strain is
y=1/2 (3 e4- € (A.17)

where &,,; and ¢, are the volumetric and axial strain. In an undrained triaxial test ,,; = 0,

hence:
y=1J5 & (A.18)
Considering Equations (A.13) and (A.18), Equation (A.1) can be rewritten in the form:
t=®/3)/(a+tby/l)5) (A.19)
The initial shear modulus G; is related to the initial Young’s modulus by the expression
Gi=E/[2(] +V)] - (A20)

where v is the Poisson’s ratio. Therefore the parameters a and » in Equation (A.19) may

be defined as:
a=1/E=1/]2G;i(I+v)] (A.21)
b=1 /(0'] - ()'3)L,/, = Rf /(O’] — 0’3)f:Rf/ (2 tf) (A.22)
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If trand 1, are the shear stresses at failure and at infinite strain respectively, then:

Ry = tr/ by

Substituting a and b in Equation (A.19):

t=y / {1.5/[Gi(l+v) + yRs / ]}

From Equations (A.5) and (A.20):

Gi = [Kpa(o5/pd"] /[2 (1 + V)]

Equation (A.6) can be rewritten in terms of shear stress:

tr=(c cosgp + o3 sing) /(1 —sing)

The tangent shear modulus G, can be defined by the differentiation:

(A.23)

(A24)

(A.25)

(A.26)

Go=dt/dy— G, =15/[Gi(1+v)] /{[1.5/[G:(I +v)] +yRr /1)

Equation (A.24) can be rewritten as:
y=15t/[G;(1+v)(l-Rrt/t)
Substituting Equation (A.28) into Equation (A.27):
G=Gi(l+v)(1-SR) /15
where S =t /1t
From Equations (A.26), (A.27), (A.28), (A.29) and (A.30):

G, =[1-Ryt(1—sing)/ (c cosp + a3 sing)]” [Gi(1 +v)/1.5]

(A.27)

(A.28)

(A.29)

(A.30)

(A31)
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The advantage of Equation (A.31) is that it facilitates the determination of the tangent

shear modulus G, for any stress condition if data from triaxial tests are available.

B. MOBILISED STRENGTH
The rate of change of the mobilized friction angle ¢',,,, with shear strain y is a useful tool
for expressing strength and stiffness at the same time, providing information on the soil

state relative to its critical state. The mobilized friction angle ¢, is given by Equation

(B.1).

O'op = sin” [1/5'] (B.1)
Equation (A.16) can be rewritten in terms of effective stresses

sST=1+ o3, (B.2)
Substituting Equations (A.19) and (B.2) into Equation (B.1):

Oop=sin” [(v/3)/(a+b v/ 1.5) /(t+ o3)] —

O'mop= sin {(v/3)/(atby/15) /[o5.(v/3)/(a+by/l5)]—

Olop = sin’ {1/[1+ a3 (a+v+by/1.5/(/3)]—

Oop = sin” [(»/3) /(y/3+o3sa+a3by/1.5)] —

O b = sin”! [v/(p+303a+203bv)]—

O oy = i’ v/ [3aocs+ (1 +203b)y]} —

O'wob = sin” {y/[A+ By]) (B.3)
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In equation (B.3):
A=3ao0; (B.4)
wherea =1/FE; =1/[2 G; (1 +v)] (B.5)

Ifv=0.5, G; = G* z where G* is the rate of increase of the shear modulus with depth
and o3 = y;z assuming that the initial earth pressure coefficient K, is greater than unity,

then from Equations (B.4) and (B.5):
A=3yz2/[2G*z(1+05)]—> A=y/ G* (B.6)
In equation (B.3):
B=(1+203b) (B.7)

whereb=R/2 1, (B.8)

and 17 is the shear stress at failure and is equal to 2 o3 sin ¢ / (1-sin ¢).
Duncan and Cheng (1970) used a value of Ry equal to 0.95, because their experiments
were not continued long enough to reach failure. In this research it is assumed that the

tests will be carried out long enough to reach failure and therefore a value of Rrequal to 1

is appropriate. From Equations (B.7) and (B.8):
B=1+20;3(l-sinp)/40c3sinp—

B=1+05(l-sing)/sin @ (B.9)

In Equation (B.9), ¢ is the angle of shearing resistance at failure.
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C. TABLES: MSD RESULTS FOR CONDITIONS OF ZERO PORE

WATER PRESSURES

In Tables C.1 and C.2 the value of 4 (4 =y, / G*) is kept constant and equal to 10* and

107 respectively, while (3, p = 3, H' / E I) is in the range of 10™ to 10% and ¢'is in the

range of 20° to 40°. In Tables C.3 and C.4 the value of y; p is kept constant and equal to

10" and 10 respectively, while 4 is in the range of 10° to 10" and ¢'is in the range of

20° to 40°. In Tables C.5 and C.6 the value of ¢’ is kept constant and equal to 20° and

25° respectively, while 4 is in the range of 10 to 10" and v, p is in the range of 10* to

10°.
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F/Frer
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A: ys/G* =10-3
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Log (ys p)
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(7, p)=10"
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(7s p)=10
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Table C.5
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0 =950

Log (ys p)

-4

Table C.6
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.784117
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D. TABLES: MSD RESULTS FOR CONDITIONS OF PORE WATER
PRESSURES CORRESPONDING TO LINEAR SEEPAGE FROM AN
ORIGINAL WATER TABLE AT GROUND LEVEL

In Tables D.1 and D.2 the value of 4 (4 = y, / G*) is kept constant and equal to 10 and
107 respectively, while (y; p = ¥, H'/E D) is in the range of 10 to 10* and ¢'is in the
range of 20° to 40°. In Tables D.3 and D.4 the value of y; p is kept constant and equal to
107" and 10° respectively, while 4 is in the range of 10° to 10™ and ¢'is in the range of
20° to 40°. In Tables D.5 and D.6 the value of ¢’ is kept constant and equal to 20° and
25° respectively, while 4 is in the range of 10°t0 10" and ys p is in the range of 10* to

10,
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A=,/ G*=10"
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Muax / Mmax’EC7

.812013
.820557
.877202
.97976%
.01253
.0le661l
.80206
.814952
.891649
.00516
.03712
.04089
.79644
.818948
.93013
.05267
.08127
.08459

F/Fecr

R PP, OOO0ORFrr P REkPE OOORFR EFEFOOOO

.851101
.857549
.900611
.98315
.01274
.01663
.838466
.848404
.908496
.0056
.03697
.04098
.83064
.848203
.937543
.04957
.08071
.08453
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(v, p)=10’

20
20
20
20
20
20
30
30
30
30
30
30
40
40
40
40
40
40

Table D.4

Log(4)

R O O OO Ok OO OO0 0OoO OO 0o oo o

Mmax /Mmax)EC7

.811023
.811113
.812013
.820557
.877202
.979769
.800538
.800677
.80206
.814952
.891649
.00516
.793676
.79393
.79644
.818948
.93013
.05267

F/Fgc;

R O O OO Ok OO OO0 OO0 oo o oo

.850354
.850422
.851101
.857549
.900611
.98315
.837293
.837401
.838466
.848404
.908496
.0056
.82849
.828687
.83064
.857549
.900611
.04957
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) =2()°

Log (ysp) Log(A)

-4
-3
-2
-1

Table D.5

-6
-6
-6
-6
-6
-6
-4
-4
-4

Mnax / Mnax)E Cc7

OO PP P OO OO P OOOoOOoo o

.979769
.877202
.820557
.812013
.811113
.811023
.0le6l
.01253
.979768
.877202
.820557
.812013
.01707
.01703
.0le6l
.01253
.979768
.877202

F/Fecr

OO P PP P OO0 0P OO0 0O0OOoOOo

.98315
.900611
.857549
.851101
.850422
.850354
.01663
.01274
.98315
.900611
.85754¢9
.851101
.01707
.01703
.01663
.01274
.98315
.90061
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0 =250

Log (ysp) Log(A)

-4
-3
-2
-1

Table D.6

-6
-6
-6
-6
-6
-6
-4
-4

Mmax /MmaxyEC7

OCOMFRPr PP FEFOOCOORFR,RHEFOODOOOO

.990375
.882317
.816872
.806521
.805422
.805311
.02705
.02303
.990375
.90259
.816872
.80652
L0275
.02747
.02705
.02303
.990375
.882317

F/Frcr

OCORMFRPF P FPFRPROOOORFR,REFEFOODOOOO

.992285
.90259
.852059
.844157
.843319
.843235
.02705
.02305
.992285
.900611
.852059
.844157
.02751
.02747
.02705
.02305
.992285
.90259
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