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PROPPED AT THE CREST 

ABSTRACT 

This thesis is focused on developing a practical design method, with reference to Eurocode 

7 (EC7,1995), for retaining walls propped at the crest, which satisfies safety against 

collapse and serviceability requirements and incorporates both the real nature of soil 

behaviour and the wall flexibility. 

For stiff walls, the rotation of the wall at the prop and the normalized prop loads, bending 

moments and defonnations have been calculated for a range of values of retained height 

ratios, initial earth pressure coefficients and soil stiffness. The relative soil/wall flexibility 

has been quantified by means of a critical flexibility ratio that distinguishes a stiff from a 

flexible system. 

The method is applied to flexible walls by idealising the wall flexibility into a simple 

mechanism and introducing new kinematically admissible fields to associate the mobilized 

shear strain with the mobilized shear strength in each soil zone by a hyperbolic 

relationship. The results are compared to those derived from Eurocode 7 (EC7, 1995) and 

are presented in curves to illustrate any differences. The advantage of this solution is that 

both the wall flexibility and the soil stiffness are considered in a simple calculation and it 

can be applied in a reasonably general manner. 

The validity of this method has been assessed by companson to results presented in 

previous research and to published data obtained from monitored case histories. The 

method can provide reasonably accurate results and is an improvement to linear elastic soil 

models or empirical techniques and thus can be a useful design tool. 
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NOTATION 

Parameter in the calculation of the bending moments and defonnations of 

a retaining wall 

Parameter used in the transfonned hyperbolic stress-strain relationship 

Parameter used in the transfonned hyperbolic stress-strain relationship 

Parameter related to the soil plasticity 

Parameter used in the transformed hyperbolic stress-strain relationship 

Parameter in the calculation of the bending moments and defonnations of 

a retaining wall 

Parameter used in the transfonned hyperbolic stress-strain relationship 

Parameter in the calculation of the bending moments and defonnations of 

a retaining wall 

Parameter in the calculation of the bending moments and defonnations of 

a retaining wall 

Young's modulus. Subscripts may be used as follows: i (initial tangent); 

sec (secant); tan (tangent); u (undrained) 

Rate of increase of Young's modulus with depth 

Drained Young's modulus 

Bending stiffness 

Prop load 

Factor of safety. A subscript may be used to describe how the factor of 

safety is applied. 

Factor of safety applied to soil strength 

Nonnalised prop load 

Prop load according to Eurocode 7 

Prop load according to the free earth support method 

Nonnalised prop load according to Eurocode 7 equal to F£C/H2 

Experimental normalised maximum prop load according to Rowe 

(1955) 

Normalised prop load according to the free earth support method equal to 

FJeslH2 (Rowe, 1952) 

Theoretical nonnalised prop load according to Rowe (1955) 
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Shear modulus. Subscripts may be used as follows: 0 (initial tangent); sec 

(secant); tan (tangent). 

Rate of increase of shear modulus with depth 

Overall length of a retaining wall 

Constants of integration in the calculation of the deformations of a 

retaining wall 

Parameter in the calculation of the bending moments and defonnations of 

a retaining wall 

Active earth pressure coefficient 

Coulomb active earth pressure coefficient 

Pre-excavation earth pressure coefficient 

In situ earth pressure coefficient 

Passive em1h pressure coefficient 

Coulomb passive earth pressure coefficient 

Parameter in the calculation of the critical fl exibility ratio 

Bending moment. Subscripts may be used as follows: i (value at i1h point 

along the retaining wall); max (maximum value); max,EC7 (maximum 

value according to Eurocode, EC7, 1995); maxJes (maximum value 

according to the free earth support method 

Nonnalised maximum bending moment equal to Mmaxl (Ys H3
) 

Nonnalised maximum bending moment according to the free earth 

support method equal to ~naxJe/H3 (Rowe,1952) 

Nonnalised maximum bending moment according to Eurocode 7 equal to 

Mmax,EC7 I H3 

Experimental nonnalised maximum bending moment according to Rowe 

(1955) 

Theoretical nonnalised maximum bending moment according to Rowe 

Overconsolidation ratio 

Rowe's (1952, 1955) flexibility number 

Critical flexibility ratio 

Parameter used in the hyperbolic stress-strain relationship (Duncan and 

Cheng, 1970) 
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Parameter used in the hyperbolic stress-strain relationship (Duncan and 

Cheng, 1970) 

Parameter used in the hyperbolic stress-strain relationship (Duncan and 

Cheng, 1970) 

Undrained shear strength 

Embedment depth of a retaining wall 

Subscript used to denote final conditions 

Retained height of a retaining wall 

Subscript used to denote horizontal 

Subscript used to denote points along the retaining wall 

Rotational spring stiffness 

Retained height ratio (=h/H) 

Rowe's (1952,1955) soil parameter 

Subscript used to denote maximum value of a parameter 

Number of springs 

Parameter related to the soil plasticity 

Mean effective stress 

Passive pressure 

Reference pressure of 1 kPa 

Initial mean effective stress; average principal effective stress at the tip of 

current yield locus 

Surface surcharge 

Deviator stress 

A verage total stress: defines centre of Mohr circle of stress on (J-axis 

Average effective stress: defines centre of Mohr circle of stress on (J'-axis 

Radius of Mohr circle of stress 

Pore water pressures 

Subscript used to denote the ultimate value of a parameter 

Subscript used to denote vertical 

Subscript used to denote volumetric 

Load 

Depth coordinate 

Depth of i1h poin 
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Denotes the ratio: depth to anchor level/overall height 

Shear strain 

Soil unit weight 

Angle of soil/wall fi'iction 

Angle of soil/wall friction behind the wall 

Displacement at ith point along the retaining wall 

Angle of soil/wall friction in front of the wall 

Change in the shear strain 

Change in the direct strain 

Change in the rotation at irh point along the retaining wall 

Change in the shear stress 

Direct strain. Subscripts are used: h (hOlizontal); v (vertical); 

Axial strain 

Volumetric strain 

Major and minor principal strains 

Rotation 

Poisson's ratio 

Critical flexibility according to Rowe (1952, 1955) 

Critical flexibility according to Rowe (1952, 1955) 

Total and effective stress. Subscripts are used as follows: h (horizontal); v 

(vertical); 0 (initial) 

Major and minor total stress 

Major and minor effective stress 

Effective horizontal active stresses for a wall in limit equilibrium 

according to Rowe (1952, 1955) 

Effective horizontal passive stresses for a wall in limit equiliblium 

according to Rowe (1952, 1955) 

Shear stress. Subscripts are used as follows:f(final); 0 (initial); ult 

(ultimate);un (undrained) 

Soil strength 

Critical soil strength 

Design soil strength 

Mobilised soil strength 

Peak soil strength 

VI 



Relative rotations of i1h point along the retaining wall 

Vll 



CONTENTS 
Acknowledgements ..................................................................... . 
Abstract ............................... ,. ... ... . ...... ... .. ......... . . . . . . .................. 11 
Notation .................................................................................. ,. 111 

1. General introduction .............................................................. . 1 
1.1 Introduction ..................................................................... . 1 
1.2 Objectives of the research ..................................................... , " J 

2. Analysis and design of retaining walls ......................................... . 5 
2.1 Introduction ..................................................................... . 5 
2.2 Analysis of retaining walls .................................................... . 5 

2.2.1 Limit equilibrium methods for embedded retaining walls ........... . 5 
2.2.2 Fixed earth support conditions for unpropped embedded walls ..... , 5 
2.2.3 Free earth support conditions for embedded walls propped at the 
crest ................................................................................. , 8 
2.2.4 Fixed earth suppoli conditions for walls propped at the crest. ....... . 9 
2.2.5 Earth pressure coefficients and the contribution of soil-wall friction 10 
2.2.6 Estimation of the displacements ......................................... . 11 

2.3 Codes of practice for retaining walls ......................................... . 15 
2.3.1 Modem codes of practice for embedded retaining walls in the ultimate 
limit state ................................................................ . 16 
2.3.2 Modem codes of practice for embedded retaining walls at the 
serviceability limit state .......................................................... . 18 
2 " "L' 't t'o f t d' t' .J.J 1m1 a 1 ns 0 cunen eS1gn prac Ice ................................... . 19 

2.4 The mobilised strength method ............................................... . 20 
2.4.1 Theoretical background of the method .............. , ................... . 20 
2.4.2 Evaluation and accuracy of results ...................................... . 24 
2.4.3 Design procedure based on the mobilised strength method .......... . 25 

2.5 Summary ........................................................................ . 27 

3. Analysis and design of stiff retaining walls propped at the crest.. ...... . 28 
3.1 Introduction ..................................................................... . 28 
3.2 The relative soil/wall stiffness ............................................... . 28 

3.2.1 Flexibility number. ......................................................... . 37 
3.2.2 Critical flexibility ratio ................................................... 0. 39 

3.3 Stress distributions ............................................................ 0 •• 39 
3.3.1 Behind the retaining wall .................................................. . 39 
3.3.2 In front of the retaining wall .............................................. . 44 

3.4 Wall rotation ................................................................... .. 49 
3.5 Prop loads .................................................................... 0 ••• 52 
3.6 Bending llloments .............................................................. . 54 
3.7 Deforn1ations ................................................................ 0 •••• 54 
3.8 Critical flexibility ratio ....................................................... .. 56 
3.9 S U111n1ary ...................................................................... 0 ••• 59 

4. Analysis and design of flexible retaining walls propped at the crest.. .... 60 
4.1 Introduction ...................... 0 0 •••••••• 0 ••••••••••••••••••••••••••• 0.0.0 ••••• 60 
4.2 Soil behaviour. .......... 0 ••••••••••••••• 0 •• 0 •••••• 0 ••••••• 0 •••••••• 0 ..... 0 ..... .. 60 Vlll 



4.2.1 Soil stress-strain behaviour... ... ...... ...... ............ ... ...... ...... ... 61 
4.2.2 Theoretical modelling of soil behaviour................................. 73 
4.2.3 Hyperbolic stress-strain relationship............... ....................... 76 
4.2.4 Comparison with other soil models.................................... ... 79 

4.3 Application of the mobilized strength method to flexible retaining 
walls ............................... ,. ... ... ...... ......... ........... .... ............... 87 

4.3.1 Assunlptions.............................................................. .... 87 
4.3.2 Wall rotations................................................................ 88 
4.3.3 Mobilised strength.......................................................... 94 

4.4 Wall flexural rigidity analysis................................................. 97 
4.4.1 Flexural rigidity analysis for a retaining wall propped at the crest... 110 

4.5 ULS calculations for a retaining wall propped at the crest in conditions 
of zero pore water pressures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 114 
4.6 SLS calculations for a flexible retaining wall propped at the crest in 
drained conditions................................................................... 116 
4.7 Summary...... ... ... ...... ... .... ........ ....... .... ........... ..... ... ... ... ..... 135 

5. Analysis and design of flexible retaining walls propped at the crest in 
conditions of pore water pressures corresponding to linear seepage....... 136 

5.1 Introduction...................................................................... 136 
5.2 ULS calculations: Original water table at ground level................. ... 136 
5.3 SLS calculations: Original water table at ground level.. . . . . . . . . . . . . . . . . ... 138 
5.4 ULS calculations: Original water table at half the retained height level. 152 
5.5 SLS calculations: Original water table at half the retained height level. 154 
5.6 Reduction curves for stiff clays and sands.. . ... ...... . . . . .. ... .............. 167 
5.7 SumInary....................................................................... ... 170 

6. Comparison between the MSD method and other methods of analysis.. 171 
6.1 Introduction ...................................................................... 171 
6.2 Comparison between the MSD method and Rowe's analysis............. 172 

6.2.1 Transformed axes......................................................... ... 172 
6.2.2 Experimental curves.................................... .................. ... 179 
6.2.3 Theoretical curves....................................... .................... 184 

6.3 Comparison of the MSD method between stiff and flexible walls....... 186 
6.3.1 Example 1................................................................. ... 188 
6.3.2 Exanlple 2... ... ....... ........ ... ... ...... .... .............. ... ... ..... ... ... 190 

6.4 Sunlmary .................................... '" ... ... ... ................ ..... ..... 192 

7. Validation of the MSD method for flexible walls with case histories. .... 193 
7.1 Introduction......... ...... ... ... ... ....... ........... ......... .......... ..... .... 193 
7.2 Case History 1: Propped contiguous bored pile wall at Walthamstow... 194 
7.3 Case History 2: Propped diaphragm wall atthe A4061 Al 0 junction..... 199 
7.4 Case History 3: Propped secant pile wall at Hackney to MIl link....... 204 
7.5 Case History 4: A contiguous bored pile wall on the Chmmel Tunnel 
Rail Link at Ashford.............................................................. ... 209 
7.6 Case History 5: A secant pile embedded retaining wall at Bell 
Common Tunnel in Essex....................................... ......... .......... 215 

IX 



7.6.1 Case History 5: Finite element analysis for a propped retaining 220 
wall at Bell Common Tunnel in Essex ......................................... . 

7.7 Sumn1ary...................................................... . . . . . . . . . . . . . . . . . . . 222 
8. Conclusions and further work................................................... 224 

8.1 Conclusions...................................................................... 224 
8.2 Further work..................................................................... 226 

References............................................................................... 227 
Appendices...................................................................... ......... 234 

x 



1. GENERAL INTRODUCTION 

1.1 INTRODUCTION 

The construction of. excavations and retaining walls is now a common solution to the 

congestion in urban areas and its inevitable consequences of limited building space, high 

land cost, overloaded transport and scarce parking space. Advances in construction 

methods and the improved accuracy of monitoring systems encourage its application to 

many large scale engineering projects in a variety of soils. However, the design 

procedure is often complicated, since soil-structure interaction may have an important 

effect on the behaviour of retaining walls and the control of defoTInations required to 

minimise disturbance to the adjacent properties at a minimum construction cost. 

Retaining walls should maintain stability and prevent exceSSIve defoTInations and 

bending moments. A voidance of collapse or other form of structural failure of the wall is 

ensured by limit state design, known as the Ultimate Limit State (ULS). However, a wall 

should not only be remote from collapse, but must also meet specific service 

perfoTInance requirements. Excessive deformations and associated ground movements, 

excessive stresses in walls and props or unwanted leakage of ground water through or 

beneath the wall can all be considered as another limit state known as the Serviceability 

Limit State (SLS), that a wall should also be designed to avoid. Depending on the 

properties of the soil and the retaining wall, the avoidance of collapse may predominate 

in some design cases, while serviceability can be more critical in others. 

Codes of practice recommend limit equilibrium calculations with the soil strength being 

reduced by a factor of safety F, to ensure that the wall is remote from the Ultimate Limit 

State (ULS). Guidelines to avoid the Serviceability Limit State are fewer and less clear 

than for the ultimate state, since def01mations are often assumed to be a secondary 

problem and are predicted by calculations based on elasticity theory. However, in reality 

soil is not a linear isotropic elastic material and its stiffness depends on both stress and 

strain; hence in some cases past experience and recorded behaviour of retaining walls is 



used as guidance in design, but this empirical knowledge can only be applied to similar 

and comparable cases. 

Numerical methods such as finite element analysis are increasingly used to develop 

analytical models that represent non-linear soil behaviour. Their accuracy depends on the 

selected soil model and although in recent years substantial progress has been made, 

there remain significant drawbacks which restrict their application. The use of more 

sophisticated soil models and soil parameters derived from high quality laboratory test 

data does not always contribute to the correct prediction of strains and defom1ations. 

Moreover, the assumptions are such that the evaluation of the results may be difficult, 

and although they may be applicable to specific sites, they are often inappropriate for 

other design cases. The use of a detailed model could cause complications and be 

unacceptably time consuming in design analysis. The great numbers of parameters 

required for the development of the soil model, the calibration of the values and their 

sensitivity restrict significantly the practicality of these methods. Taking into account the 

expertise and the cost involved when adopting such rigorous soil models, the designer 

should decide whether their use is justified. 

Therefore, the development of a simple and practical design method that can reliably 

detem1ine the factor of safety against Ultimate Limit failure in the ground and the likely 

in service defonnations for walls propped at the crest would be a useful tool in the design 

of retaining walls. The geostructural mechanism proposed by Bolton and Powrie (1988) 

relates the wall deformations to the proportion of the actually mobilised soil strength in a 

limit equilibrium analysis for stiff cantilever or propped at the crest retaining walls. The 

mobilised soil strength can then be used to estimate the factor of safety on soil strength. 

The advantages of this approach are its simplicity, the small number of the required input 

parameters and its potential to provide a general design solution. 

Previous research (Rowe, 1952) has shown that wall flexibility could cause a reduction 

in bending moments compared with stiffer walls. Considering also the non-linear 

behaviour of soil, with soil stiffness being dependent on the stress and strain level, there 

is a need for a new approach that takes into account both of these effects in the design of 

retaining walls. An expression that quantifies the overall flexibility of the soil and the 

retaining wall needs to be established and the term "stiff' or "flexible" system might be 
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more appropriate than refening merely to the wall flexibility in the analysis of retaining 

walls. A critical flexibility value that distinguishes a flexible system from a stiff one 

should be defined and its sensitivity to other parameters should be checked. 

F or stiff systems the geostructural mechanism procedure (Bolton and Powrie, 1988) 

could then be used to explore the effect of the soil stress-strain response on wall 

rotations, deformations, bending moment and prop loads. Application of a modified form 

of the geostructural mechanism to flexible systems might be possible, and its potential 

should be investigated for walls with different embedment depths and flexibilities and for 

soils with different earth pressure coefficients and stiffness parameters in drained and 

undrained conditions. 

1.2 OBJECTIVES OF THE RESEARCH 

This dissertation is aimed at developing a simple and reliable design procedure, with 

reference to the codes of practice, that can be used as an alternative to either empirical or 

potentially expensive and complicated numerical solutions. The method will be able to 

detennine the factor of safety against a limit state failure in the ground and provide an 

estimate of the in service def01111ations for retaining walls propped at the crest. The post­

installation stress state and the stress-strain response, together with the relative soil-wall 

flexibility and other soil-structure interaction effects, that lead to a variation in soil strain 

and hence mobilised soil strength with depth, will be taken into account. 

More specifically the objectives ofthis research are: 

• To review, evaluate and compare previous research, cunent design procedures 

and their limitations (Chapter 2). 

• To quantify the relative soil/wall flexibility and define a critical flexibility value 

that distinguishes a stiff from a flexible system for walls with different 
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embedment depths and flexibilities and for soils with different ealih pressure 

coefficients and stiffiJess parameters (Chapter 3). 

• To develop a geostructural mechanism for flexible systems and explore the effect 

of the wall flexibility and soil stress-strain response on their design parameters. 

To compare the results to those derived fi'om the modem codes of practice 

(Chapter 4). 

• To incorporate the pore water pressures with the water table at different levels 

(Chapter 5). 

• To compare the results obtained from the geostructural mechanism to 

experimental and theoretical results presented by Rowe (1952, 1955). To 

illustrate any similarities or differences in the application of the geostructural 

mechanism to stiff and flexible systems (Chapter 6). 

• To assess the validity of the methods by comparison with data from monitored 

case studies (Chapter 7). 

The volume and complexity of the calculations involved in the establishment of the 

methods described above were facilitated by Mathematica, a computer programme that 

combines symbolic manipulation, numerical mathematics and graphics. A detailed 

description of the calculations carried out in Mathematica is provided in the Appendices. 
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2. ANALYSIS AND DESIGN OF RETAINING WALLS 

2.1 INTRODUCTION 

In this chapter the different methods used in current engineering practice and the codes of 

practice for the calculation of collapse conditions and the estimation of the in service 

defol111ations in the design of retaining walls are presented and discussed. The rr:ethods 

are evaluated and the restrictions associated with their application to design are indicated. 

The need for a simple design solution that incorporates the real nature of soil behaviour is 

underlined. Finally, the mobilised strength method introduced by Bolton and Powrie 

(1988) is described and discussed. 

2.2 ANALYSIS OF RETAINING WALLS 

2.2.1 Limit equilibrium methods for embedded retaining walls 

To assess the stability of an embedded retaining wall, limit equilibrium methods or lower 

bound solutions are often used. Limit equilibrium methods are based on the calculation of 

the maximum height of excavation or the minimum depth of embedment for which static 

equilibrium may be maintained; this is the limit equilibrium situation. In the lower bound 

approach proposed by Rankine (1857), the eatih pressure distributions in certain zones of 

soil are described by the active and passive limit values (Ka and Kp). 

2.2.2 Fixed earth support conditions for unpropped embedded walls 

Unpropped embedded walls are frequently used for temporary and permanent support of 

excavations up to 4-5 m high. Formed of steel sheet piles or constructed in situ using 

reinforced concrete, they consist of a vertical structural element embedded into the ground 
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below the retained material. The force required to retain the material behind the wall is 

obtained from the upper part of the wall due to its stiffness and the embedment of the 

lower part. In front of the embedded portion of the wall passive earth pressures are 

developed to resist the pressures ofthe retained soil behind the wall. 

Assuming that a structural failure of the wall does not occur, unpropped embedded walls 

will tend to fail by rotation about a pivot point near the toe at some depth zp below 

fOlmation level. On the verge of collapse the stress distribution on the wall can be 

obtained by assuming frictionless discontinuities running veliically and horizontally 

through the pivot point and the toe. The limiting lateral effective stress distribution for an 

unpropped wall is shown in Figure 2.1. In zones where the wall is moving away from the 

soil the lateral effective stresses are at the active limit 

(2.1) 

where (J';, and (J', are the horizontal and vertical effective stresses, Ka is the active earth 

pressure coefficient and rp' is the soil angle of shearing resistance. In zones where the wall 

is moving into the soil the lateral effective stresses are at the passive limit 

'-K ' (J ;, - P (J I', Kp={l+sinrp,) / (J-sinrp,) (2.2) 

where Kp is the passive earth pressure coefficient. A centre of rotation near the toe is 

required for moment equilibrium, so below this point the wall is assumed to deflect 

towards the retained soil. This causes a switch in soil pressures, with the passive pressures 

now induced in the soil behind the wall and the active pressures induced in the soil in 

front. 
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Figure 2.1: Idealised effective stress distribution for an unpropped embedded retaining 
wall (Powrie, 1997). 

In this approach, which is known as the fixed earth support method, there are two 

unknowns that must be calculated using the conditions of horizontal and moment 

equilibrium. These are the depth of embedment required for limiting equilibrium and the 

depth zp to the pivot point. For ease of calculation, the lateral stresses below the level of 

the pivot point may be replaced by a point force Q (Figure 2.2) . 

.' / 
/ 

PhlC)t 

. f' 

'I 

Figure 2.2: Approximate stress analysis for unpropped walls (Powrie, 1997). 

In this case the two unknowns are the force Q and the depth zP' which can be calculated 

by taking moments about the pivot. The required depth of embedment is then 

conventionally taken as d = 1.2 zp. It is necessary to check that this additional depth of 

embedment is actually sufficient to mobilise the force Q below the pivot point. For most 

real walls, the stress analysis desclibed above with the values of Ka and Kp obtained from 
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Equations (2.1) and (2.2) will result in an over-conservative estimation because the effects 

of soil-wall friction are neglected. 

2.2.3 Free earth support conditions for embedded walls propped at the 

crest 

For deep excavations, unpropped embedded walls are inadequate and installation of props 

or anchors at one or more levels is required. Assuming that a structural failure of the wall 

or the props does not occur, an embedded wall will tend to fail by rotation about the 

position of the prop. In this method, which is known as the free earth support method, the 

effect of any possible fixity below the excavation level is not considered and hence the toe 

of the wall is assumed to be free to move laterally. 

The effective stress distribution at failure shown in Figure 2.3 may be detelmined by 

assuming stress discontinuities running vertically on both sides of the wall and 

horizontally through the toe. The two unknowns in this case are the depth of embedment 

and the prop load. The depth of embedment d can be calculated by taking moments about 

the prop and then the prop load F is calculated from the horizontal force equilibrium. 

The free earth support method will lead to overconservative results, because the effects of 

soil-wall friction and also the lateral stress reduction behind the wall due to soil arching 

when the prop is rigid are both neglected. 

Figure 2.3: Idealised stress distribution for an embedded wall propped at the crest 
(Powrie, 1 997). 
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2.2.4 Fixed earth support conditions for walls propped at the crest 

A fixed earth support calculation may be considered appropriate for an embedded wall 

propped at the crest, if the wall is sufficiently flexible. The idealised and simplified 

effective stress distributions are shown in Figure 2.4. In this approach it is assumed that 

there is a point of fixity near the toe, which results in a reversal in the sign of the bending 

moments due to the wall flexibility. However, the system shown in Figure 2.4 is statically 

indeterminate since a collapse mechanism is not defined, unless some further assumption 

is made. Williams and Waite (1993) suggest that the point of contraflexure at which the 

bending moment is zero, occurs at the level where the net pressure acting on the wall is 

zero, in order to calculate the prop force and the depth of embedment. Alternatively, such 

a system would be statically detenninate for a propped wall where the prop yields at a 

constant load and the prop yield load is known (Powrie, 1997). 

Although this approach may be appropriate for flexible walls, since it takes into account 

in a way the effects of the wall bending, it is not generally recommended for stiff walls in 

clay soils (Padfield and Mair, 1984). 

Figure 2.4: Effective stress distribution based on the fixed earth support method for 
embedded walls propped at the crest (Powrie, 1997). 
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2.2.5 Earth pressure coefficients and the contribution of soil-wall 

friction 

The shear stresses generated at the soil/wall interface can contribute to wall stability; thus 

it is common, particularly in an effective stress analysis, to use modified values of earth 

pressure coefficients. The soil/wall friction and hence the modified values of emih 

pressure coefficients depend on the direction and degree of the relative movement 

between the wall and the soil. It is generally assumed that the soil exerts a downward 

shear force on the wall in the active zone and an upward shear force in the passive zone. 

This decreases the active emih pressure coefficient Ka and increases the passive earth 

pressure coefficient Kp , in order to take account of the soil/wall friction. 

However, there is considerable uncertainty in defining the direction of soil/wall friction 

below the point of rotation for unpropped walls. Krey's (1932) experiments on a small­

scale model of a cantilever wall embedded in sand indicated that the value of Kp was 

larger above the centre of rotation of the wall than below it, consistent with the direction 

of soil/wall friction being downwards below this point. Bica and Clayton's (1998) 

laboratory-based experiments, which modelled the embedded length of cantilever walls 

on sand, confimled Krey's opinion on the downwards direction of soil/wall fliction below 

the centre of rotation on the retained side. 

Regarding the magnitude of wall friction, Rowe (1963) suggested that the maximum 

soil/wall friction angle that can possibly be developed, ()ma\, has two components, 6max = 

rplt + r, where rp" is the true friction angle between the soil grains and the material of the 

wall and r is the wall roughness angle. For practical purposes this might imply 6I11a,:::: rp'Clil. 

Most design methods adopt values of soil/wall friction 6 which are somewhat less than the 

soil strength rp'. More details regarding the recommendations of some popular codes of 

practice will be given later in this chapter. 
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2.2.6 Estimation of the displacements 

The soil displacements associated with excavations comprise of vertical and horizontal 

movements. Vertical heave within the excavation occurs in response to the vertical load 

relief in front of the retaining wall, while wall movements behind the wall result from the 

removal of lateral support. Horizontal movements are usually more clitical than vertical 

behind the wall because they can cause more damage to adjacent buildings and services 

(Gaba et aI, 2003). 

Although soil is a non-linear material and its stiffness depends on its stress history, stress 

state and stress/strain path, calculations of soil and wall deformations are often based on 

elasticity theory and a constant soil stiffness modulus is assumed. The advantage of this is 

that a number of standard solutions and methods of analysis for elastic materials can then 

be used (e.g. Terzaghi, 1943; Boussinesq, 1885; Newmark, 1942; Fadum, 1948). 

However, the complexity of the theoretical analyses has led to the use of empirical 

methods based on observational data for the estimation of the pattem and magnitude of 

defol111ations in current design practice. Peck (1969) presented a chart that separates the 

settlements induced by excavations in clay soils into three zones depending on some of 

the properties of the clay and the excavation. Peck's chmi as shown in Figure 2.5 

generally overestimates settlements as it is based on data from retaining systems that are 

outdated (Diakoumi and Lavdas, 2003); hence his results may be used for the estimation 

of the upper defol111ation limits. Clough and O'Rourke (1990) proposed envelopes of 

short tem1 ground settlements behind different types of retaining walls, based on 

observational data from a number of excavations in sands, stiff to hard clays and soft to 

medium clays. These empirical settlement profiles are presented in Figure 2.6, where the 

distance from the wall is expressed as a ratio of the maximum excavation depth He and 

the distribution of settlements 6, is shown as a proportion of the maximum settlement 

behind the wall 611nx • According to Gaba et al (2003), they provide a conservative estimate 

of the distribution of settlements. 

Hsieh and Ou (1998), based on observational data from ten deep excavations in Taipei 

(Ou et aI, 1993), presented two possible settlement profiles as shown in Figure 2.7. In the 
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spandrel settlement profile the maximum settlement is observed just behind the retaining 

wall, whereas in the concave profile the maximum settlement is measured at a distance 

from the wal1. Regarding the horizontal movements, Long (2001) presented graphs of 

measured normalised maximum wall deflections against the suppOli system stiffness Ps 

E I / Yw h 4, where E I is the rigidity of the wall, Yw is the bulk unit weight of water and h is 

the average vertical distance between the props, for a great number of case histories of 

walls embedded in a stiff stratum but retaining varying amounts of soft ground. 

According to Long (2001), wall deflections may increase substantially for walls 

embedded in a stiff stratum that retain a significant thick stratum of soft soil, have soft 

soil at fonnation level and are designed with a large factor of safety (greater than 3). More 

data from monitored retaining walls in various soil conditions with different construction 

techniques and support systems have been published and are often used in current design 

practice. 

Advances in computer software have encouraged the use of numerical modelling that 

takes into consideration the interaction between the soil and the wall. Some popular types 

of software used in the simplest form of soil-structure analysis are WALLAP and FREW, 

in which the wall is modelled as a beam and the soil as a series of horizontal springs 

(subgrade reaction method) or as an elastic continuum (pseudo-finite element method). 

These forms of analysis have the potential to model the full soil-structure interaction and 

construction sequence, to take account of pre-excavation stress state and to calculate the 

wall deflections, bending moments and prop loads in a relatively straightforward way. 

However, the ground movements around the wall can not be calculated, the input 

parameters should be calibrated against field measurements and are likely to provide only 

a rough estimation of the soil behaviour; hence, their results should be regarded as an 

approximate solution (Gaba et ai, 2003). 

More advanced software packages such as CRISP, FLAC, PLAXIS and ABAQUS use 

finite element or finite difference methods. They can incorporate complex soil models 

with the soil stiffness varying with strain and anisotropy, model support details, wall and 

excavation geometry and calculate wall and ground movements, bending moments and 

prop loads taking into account any possible soil consolidation effects. Despite their 

potential, numerical modelling has significant drawbacks that will be discussed later in 

this chapter. 
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Figure 2.5: Estimation of settlements for excavations in clay soils by Peck (1969). 
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Figure 2.6: Estimation of settlement envelopes by Clough and 0' Rourke (1990). 
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Figure 2.7: Estimation of the displacement profiles by Hsieh and Ou (1998). 

2.3 CODES OF PRACTICE FOR RETAINING WALLS 

The obvious practical and commercial significance and impact of codes of practice 

justifies the efforts of various committees over the years to develop a unified and 

internationally agreed method for the design of the retaining walls. Limit equilibrium 

methods use stress distributions behind and in front of the retaining wall to calculate the 

depth of embedment necessary just to prevent collapse of the wall. The stresses behind the 

wall are at their minimum possible values (the active limit), while the stresses in front of 

the wall are at their maximum possible values (the passive limit). The stress state of the 

soil everywhere is in equilibrium without violating the failure condition T / v' = tamp'. For 

the actual design condition, it is necessary to increase the depth of embedment beyond 

that required merely to prevent collapse in order to allow for uncertainties and avoid 

excessive deformations. The collapse limit state is known as the ultimate limit state 

(ULS), whereas acceptable perfomlance of the wall in terms of displacement, damage and 

appearance is related to another limit state known as the serviceability limit state (SLS). 
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The soil loads on an embedded retaining wall at failure in the ground are not as easily 

identified as they are in a conventional structural analysis. Historically, a factor of safety 

F has been applied to one of the parameters in a collapse calculation to distance the wall 

both from an ultimate and serviceability failure. The confusion in the definition and 

selection of a factor of safety is illustrated by the diversity of the methods that have been 

adopted in the past. Such examples are: 

• The application of a factor of safety Fd to the embedment depth derived from a 

limit equilibrium calculation using un factored soil strengths. 

• The reduction of the passive earth pressure coefficients by a factor Fp. 

• The reduction of the moment of the net resisting pressure by a factor Fnp. 

Comparative figures provided by Burland et al (1981) and extensive calculations carried 

out by Gaba et al (2003, Appendix A 7) demonstrate the inconsistency and sometimes lack 

of safety associated with some of these methods. 

2.3.1 Modern codes of practice for embedded retaining walls in the 

ultimate limit state 

The design method adopted by the modern codes of practice such as BS8002 (BSI, 2001), 

Eurocode 7 (1995) and CIRIA repOli C580 (Gaba et ai, 2003) against ultimate limit states 

requires a limit equilibrium or other stability calculation with the application of a factor of 

safety Fs (or strength mobilisation factor M) to the actual soil strengths, which are reduced 

in order to distance the retaining walls from collapse. 

The unceliainties 111 possible future loading conditions are taken into account by 

increasing the retained height by 10% of the retained height for embedded cantilever 

walls, nOTIl1ally up to a maximum of 0.5m, representing an unplanned excavation in front 

of the wall and by assuming an additional unifoTIl1 surcharge of 10 kPa acting on the 

retained soil surface. However, the value of the strength mobilisation factor M adopted by 

each code is different. The different values of factors of safety in each code are presented 

below. A more detailed description of the procedure which should be followed can be 

found in each of the modern codes of practice. 

16 



A. EUROCODE 7 

Eurocode 7 (1995) recommends that the design strength (jJ'design used in the ULS 

calculation should be equal to tan-
1 
((tan (jJ ') I 1.25}, where (jJ' is a moderately conservative 

estimate of the effective angle of friction relevant to the ultimate limit state. The term 

moderately conservative actually means that only 5% of the sample values will be more 

unfavourable. The suggested maximum design values of the soil/wall friction angle 

(jdesign are 0.67 (jJ 'crit for smooth concrete and (jJ 'cril for rough concrete, so that the selection 

of (jdesign = (jJ 'cril might be allowed in the ultimate limit state calculation. The 

recommended design value of the undrained shear strength tu,design in a total stress 

calculation is equal to the value of the actual soil strength tu divided by a factor M = 1.4. 

B. CIRIA Report C580 

CIRIA Report C580 (Gaba et ai, 2003) is in agreement with Eurocode 7 on the values of 

the design strength (jJ'design and the maximum values of the soil/wall friction angle (jdesign 

used in the ultimate limit state calculation. However, the recommended design value of 

the undrained shear strength tu.design in a total stress calculation is reduced to tul 1.5, i.e. an 

increased factor of safety M=1.5 is used. The maximum value of wall adhesion allowed in 

the design is 0.5 X tu,design, which is equivalent to tu I 3. Furthennore, the use of numerical 

soil-structure analysis is suggested instead of simple limit equilibrium calculations, 

particularly for complex structures that are statically indetenninate, where the potential 

mechanism of collapse is not obvious or where the construction sequence must be 

considered. 

C. BS8002 

BS8002 (BSI, 2001) recommends that the design strength (jJ'design should be the lesser of 

tan-
1 

((tan (jJ 'peaJ I 1.2) and (jJ 'ail' The suggested maximum value of the soil/wall friction 

angle (jdesiglJ is tan-
l (0.75 x tan (jJ'design). For a total stress ultimate limit calculation the 

value of the undrained shear strength used in the design t".design should be tul 1.5, which is 

in agreement with CIRIA Report. BS8002 allows a wall adhesion in the design of O. 75 x 

t",design, which is equivalent to a maximum value of 0.5 x tu. 
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2.3.2 Modern codes of practice for embedded retaining walls at the 

serviceability limit state 

The ultimate limit state calculations, factored as described above, should ensure that the 

wall is remote £i'om collapse. However, excessive defonnation and associated ground 

movements, excessive stresses in walls or props or unwanted leakage of groundwater 

through or beneath the wall can be considered as another limit state, known as the 

serviceability limit state (SLS) and a wall should be designed to avoid it. In reality, the 

soil strengths mobilised may be different on each side, different at different depths and 

dependent on the wall-flexibility and soil-structure interaction effects which will result in 

a variation in soil strain with depth. Therefore, an analysis aimed at determining the exact 

stress state in the soil adjacent to the wall can be very complicated. 

Eurocode 7, CIRIA Report C580 and BS8002 distinguish the ultimate limit state fi-om the 

serviceability limit state. CIRIA Report C580 (Gaba et al., 2003) recommend that some 

form of numerical analysis that takes account of soil-structure interaction effects should 

be carried out. This analysis should be based on the actual wall geometry and the actual 

soil strength parameters. If the limit equilibrium approach is adopted for walls with a prop 

near the crest, Gaba et al (2003) point out that the wall bending moments are 

overestimated, and the prop loads are underestimated in comparison with a soil-structure 

interaction analysis. They suggest that the SLS bending moment diagram should be 

"sketched in" between the maximum of the limit equilibrium distribution using the full 

strength of the soil and the actual toe of the wall. The bending moment distribution in true 

limiting equilibrium is calculated with the wall having the embedment needed just to 

prevent collapse with unfactored soil strengths, an increased excavation depth and 

additional extemalloads as required by the code. This approach is presented in Figure 2.8. 

More details can be found in Gaba et al (2003). 
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Figure 2.8: Design bending moments as estimated in CIRIA Report C580. 

2.3.3 Limitations of current design practice 

The use of observational data from monitored case studies cannot cover every 

contingency in design, since the range of encountered soil conditions, construction 

sequences and support systems is wide. The amount of data related to recently developed 

and advanced construction methods is significantly restricted. In addition, the reliability 

of data from case histories depends on the technology, accuracy and calibration of the 

monitoring systems that were used, and results may depend to some extent on the quality 

of the workmanship. Hence, conservative values of parameters are often chosen for 

design, despite the increased cost that this entrusts. 

The methods used in soil-structure interaction analysis such as subgrade reaction or 

pseudo-finite element are relatively straightforward, but can only provide approximate 

solutions. More complex analyses using finite element and finite difference methods 

might seem an alternative for design, but depend hugely on the accuracy of the chosen 

soil model. Their results should be calibrated against reliable field measurements. 

However, such data has to be comparable and available so that the numerical solutions 

can be verified. The most important disadvantage is the number of the required input 

parameters, their calibration and the volume of the results may frustrate any comparison 

and evaluation. The possible sensitivity of the solutions to a small change in a particular 
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parameter is another potential drawback that cmIDot be neglected. The expertise in the use 

of advanced software programmes and the significant numerical modelling experience 

required from the user, and the cost and time involved in using complex models cannot be 

justified in every case. 

Gaba et al (2003) recommend that the complexity of the structure and the construction 

process, the required infonnation, the input data available and economy should be taken 

into consideration in selecting the appropriate method of analysis. Some simple 

calculations are suggested to serve as a check on more complex methods and the 

importance of a simple calculation with appropriate soil data in preference to a complex 

analysis with inappropriate data is emphasised. 

2.4 THE MOBILISED STRENGTH DESIGN (MSD) METHOD 

2.4.1 Theoretical background of the method 

From the above, a simple method that relates the mobilised soil strength to the 

displacements in a rational and consistent way will be of significant practical value to the 

design of retaining walls. Bolton and Powrie (1988) proposed a geostructural mechanism 

for stiff walls in clays in order to relate the rigid body rotation of the wall to the maximum 

shear strain in the adjacent soil and hence to the ground movements. The shear strain in 

the adjacent soil can be related to the mobilised strength required for equilibrium, and 

then the soil and wall defonnations under working conditions can be estimated from the 

equilibrium calculation. This approach has been introduced for stiff walls, for which the 

effective stress distributions on either side can be assumed to be approximately linear with 

depth and the ground movements due to wall bending can be neglected. Powlie (1985) 

has suggested that the construction of a diaphragm wall in clay would reduce the initial 

earth pressure coefficient, Ko, towards unity prior to excavation. Therefore, this approach 

as presented by Bolton and Powrie (1988) is based on the assumption that Ko=1. 
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Figure 2.9 shows a kinematically admissible soil displacement field compatible with the 

outward rotation of an anchored retaining wall, as proposed by Milligan (1983). The soil 

is shearing at a constant angle of dilatancy If! and significant deformations occur within a 

zone bounded by a line at 45° from the base of the wall to the ground surface. 
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Figure 2.9: Kinematically admissible displacement field for an anchored retaining wall 
(Milligan 1983). 

Bolton and Powrie (1988) subdivided the active and passive zones behind and in front of 

a wall into triangles, in which the verticals and horizontals are assumed as frictionless 

displacement discontinuities and the hypotenuses as zero extension lines. In a simplified 

approach the angle of dilation was taken to be equal to zero. Although this is realistic in 

undrained conditions, in drained conditions over consolidated clay will dilate until it 

ruptures. This will cause shear softening until sufficient soil has reached a critical state 

and no further dilation will take place. Therefore, the assumption of zero dilation is 

justified by the fact that dilation is significant only in determining the size of the shear 

zone rather than the magnitude of strain within it. 

The idealised displacement mechanism for a stiff unpropped wall rotating about its toe is 

shown in Figure 2.10a. It has been assumed that significant soil movement during 

excavation will occur mainly in the zones defined approximately by lines drawn at 45°, 

extending upward from the toe and that the line OA is a zero extension line. This is 

consistent with a shearing triangle AOV, beyond which the soil is effectively rigid. Within 
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this tliangle the shear strain increment by according to Mohr circle (Fig. 2.1 Ob) is unifonn 

and equal to twice the strain increment &. The triangle AOV is extending horizontally by -

h be and compressing vertically by h be, where be is the wall rotation and the 

compression is taken positive. Assuming zero rate of dilation: 

bv = bu 

From the Mohr circle: 

(5y =( &\.- &11) = bv / h - (- bu / h)= be-(- be) = 2 NJ 

It is obvious that a reversed rotation would lead to reversed strains. 

(a) o 

Sy/2 

(b) 

J:;; Freedom 
f0: to slide 

uf·f) 8<"1 ". 
Compmssion 
positive 

(2.4.1 ) 

(2.4.2) 

(2.4.3) 

Figure 2.10: Admissible strains for a wall rotating about its toe (Bolton and Powrie, 

1988). 

The same mechanism can be used for a stiff unpropped wall rotating about a point 0 near 

the toe as shown in Figure 2.11. 
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Figure 2.11: Admissible strains for an unpropped wall rotating about a point 0 near its toe 
(Bolton and Powrie, 1988). 

In this case six, instead of two, deforming triangles are formed, but the shear strain 

increment 6y in each of them remains unifOlm and equal to twice the incremental wall 

rotation 60. 

Figure 2.12 shows a similar strain field for a stiff propped wall rotating about its crest V. 

In this case, the magnitudes of strain within the triangles in front of the wall differ, 

however the consideration of the larger of the two strains would be safer; that is the shear 

strain on the excavated side of the wall, which is (1 + h / d) times that on the retained 

side, where h is the retained height and d is the depth of embedment. 

The mobilised soil strength, expressed by the mobilised angle of friction rp'lI1ob, assumed to 

be the same on both sides of an unpropped wall and uniform with depth, can be related to 

the shear strain via undrained triaxial tests on a representative soil sample rather than 

empilical data. Undrained plane strain data were used instead of drained ones because 

they were associated with lower soil stiffness and hence with more onerous conditions. 

The linear stress distributions can be used for a wall of any geometry, so as to calculate 

the mobilised soil strength rp'lI1ob required for equilibrium and the corresponding shear 

strain can be derived from the graph of mobilised soil strength rp'lI1ob against shear strain y 

for the specific soil. From the geostructural mechanism described above, the magnitude of 

the wall rotation and soil movements can be detennined. Bolton and Powrie (1988) 
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calTied out centrifuge tests modelling both the short term and long tenn behaviour of 

cantilever and propped at the crest walls retaining clay with different retained heights and 

embedment depths. The pattern of the defonnations obtained fi-om the tests was 

comparatively close to those estimated using kinematically admissible strain fields. 

~~~~-----------------~--~)~ -----IL-_"'-
h 

Figure 2.12: Admissible strains for a wall rotating about its crest (Bolton and Powlie, 

1988). 

2.4.2 Evaluation and accuracy of results 

The short-tenn and long-term crest deflections of an unpropped wall with a retained 

height of 10m and an embedment depth of 20 m retaining clay were measured during 

centrifuge tests and compared with the displacements calculated using the mobilised 

strength method (Bolton and Powlie, 1988). The comparison attests that the measured 

deflections were very close to the ones that were calculated with a soil/wall interface 

friction angle equal to the mobilised angle of shearing resistance, 6 = rp'mob. If the soil / 

wall friction was ignored (6 = 0), the deflections were overpredicted. 

In the case of a wall propped at the crest with a retained height of 10m and an 

embedment depth of 15 m, the prop forces measured in the centrifuge tests were close to 

the calculated ones. The values of prop force derived from a short-tenn calculation were 
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111 slightly better agreement than those obtained from a long-term calculation. The 

measured maximum bending moments were again close to the calculated values, with the 

long-term calculations being more accurate than the short-teml ones. In the calculations 

the shear strain on the excavated side was taken as (1 + h / d) times that on the retained 

side, in accordance with the geostructural mechanism presented in Figure 2.12. 

The centrifuge tests retaining clay demonstrated the potential of the mobilised strength 

approach to provide satisfactorily accurate design solutions for stiff walls in clay. The 

advantages of the method are that it provides a simple and reliable solution avoiding the 

uncertainty involved in the selection of an appropriate factor of safety or the complexity 

of a detailed soil-structure analysis. In addition, the incorporation of consistent strain 

fields allows the ready adoption of real data obtained from appropriate stress paths. One 

of the assumptions used in this approach is that the mobilised soil strength cp'mob is the 

same on both sides of the wall. However, this is not always the case, since the pre­

excavation soil stresses and the method of construction can result in a change in the initial 

stress paths behind the wall and therefore in a different response of the soil behind the 

wall in comparison with the soil in front of the wall. Moreover, the analysis was carried 

out in undrained conditions and the pre-excavation earth pressure coefficient Ko was 

assumed to be close to unity. Therefore, further analyses is required to assess the 

influence of pore water pressures, the effects of values of Ko different from one, and a 

possible difference in the soil strength mobilisation in fi·ont and behind the wall. 

2.4.3 Design procedure based on the mobilised strength method 

Osman (2004) illustrated two possible design procedures for rigid retaining walls using 

the mobilised strength method. These are presented in Figure 2.13. Following the first 

procedure an engineer should first decide the limits imposed on the defOlmations based on 

the sensitivity of the adjacent properties. The maximum allowed wall rotation can be 

determined and related to the mobilised shear strain through an idealised displacement 

mechanism. The average mobilised shear strength can then be deduced from a stress­

strain curve obtained from laboratory soil tests on representative soil samples. Finally, a 
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limit equilibrium calculation assuming linear stress distributions behind and in front of the 

wall is carried out for the specified mobilised strength and hence the essential retained 

height ratio H / D is calculated. 

An altemative design procedure could commence with the selection of the prefen-ed 

retained height ratio H / D, followed by a limit equilibrium calculation which involves the 

stress distributions for the specific wall dimensions and leads to the estimation of the 

mobilised shear strength. The shear strain is found iI·om the stress-strain curve and the 

wall rotation is calculated through admissible strain fields. The maximum deflections can 

then be obtained and compared to serviceability limits. If they exceed the serviceability 

limit, selection of a new retained height ratio is required and the procedure should be 

repeated from the beginning. 

Find esmob by doubling e 

Deduce Cmob from the stress 
strain curve 

Determine the excavation depth 
for plastic equilibrium 
HJD=f( Cmob) 

(a) 

SelectHfD 

Find Cmob for plastic equilibrium 
HfD=f( Cmob) 

Find esmob from the stress strain 
curve 

From the plastic deformation 
mechanism obtain wall rotation e 

Calculate the crest displacement 

The excavation depth is acceptable 

(b) 

Yes 

Figure 2.13: Possible design procedures for rigid retaining walls using the mobilised 
strength method (Osman, 2004). 
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2.5 SUMMARY 

The limitations in the current design methods and codes of practice attest the need for a 

simple method for the calculation of the serviceability bending moments and 

displacements that incorporates the real nature of the soil behaviour in a consistent manner. 

The theoretical background and the accuracy of the mobilised strength method are 

presented. The main advantage of this method is the straight forward way of relating the 

mobilised soil strength to the wall and soil displacements under working conditions. 

Finally, two example procedures of incorporating the mobilised strength method in the 

design are displayed. 
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3. ANALYSIS AND DESIGN OF STIFF RETAINING WALLS 

PROPPED AT THE CREST 

3.1 INTRODUCTION 

The relative soil/wall stiffness may have a considerable effect on the perfollnance of a 

retaining wall. According to Potts and Day (1990) flexible walls attract smaller bending 

moments than stiff walls in the same conditions due to the redistribution of the soil 

stresses acting on the wall. Although there might be an economic benefit from the design 

of a flexible wall, the wall and ground displacements may be greater than for a stiffer 

wall. Moreover, the soil strains depend on the level of the soil stiffness. Research that has 

been calTied out previously regarding the relative soil/wall stiffness is reviewed, 

evaluated and discussed. 

In this chapter, wall rotations are related to the retained to overall height ratios, the soil 

stiffness and the initial earth pressure coefficients with regard to the mobilized strength 

for retaining walls propped at the crest. A general design framework is presented which 

distinguishes flexible from stiff systems for walls propped at the crest with different 

retained to overall height ratios, retaining different soils with varying stiffnesses and 

different initial earth pressure coefficients. 

3.2 THE RELATIVE SOIL / WALL STIFFNESS 

Most of the simple methods commonly used in retaining wall analysis or design neglect 

the effects of the relative soil/wall stiffness. However, stiffness may have a considerable 

influence on the defom1ations and bending moments of a retaining wall under working 

conditions, especially for walls propped near the crest. Rowe (1952) defined the stiffi1ess 

of a wall by means of a flexibility, p = J-t / E1, where H is the overall height of the wall, 

E the Young's modulus of the wall and 1 the second moment of inertia per unit length. 
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To quantify the effects of the wall flexibility, he carried out a series of model tests on 

anchored sheet pile walls retaining dry sand varying the flexibility p. He repeated his 

tests for various surcharge, anchor levels, anchor yield and dredge levels, so as to 

generalise his results. 

In the case of unyielding tie-back anchors, he found that the horizontal stress distribution 

behind the retaining wall was non-linear (Figure 3.1). This was explained by a reduction 

in the lateral stress approximately at the mid-section of the wall as a consequence of the 

increase in the lateral stress at the unyielding section near the anchor. However, an 

outward movement at the anchor point of less than H / 1000 was sufficient to generate 

fully active conditions and a linear distribution of lateral stress behind the wall 

(Rowe,1952). In reality, the distributions of the active pressures behind the wall can be 

considered linear, since movements at the anchor point more than H / 1000 will probably 

occur, if the supports are not pre-stressed. The assumption of full active pressures behind 

the wall seems reasonable, since Rowe used sand which was placed loosely in order to 

keep the pre-excavation lateral earth pressure coefficients low. 

Prop ----~--

\ lateral stress reduction due 
~ to 'arching' when prop is rigid 

\ \ 
\ 
\ \y (ih = Ko ()~ (in situ) 

\ 
-- ()h == Ka (5~ {active) 

Figure 3.1: Reduction of lateral stress behind the wall when the prop is rigid (Powrie 
1997). 

Rowe's results demonstrate significantly reduced values of anchor loads and maximum 

bending moments compared with those calculated using the free earth suppOli methQd 

with full active and factored passive pressures. He found that the pattern of the reduction 

was independent of the surcharge, anchor level and dredge level and depended on the 

wall flexibility expressed in the term of p and the density of the soil. He presented his 
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results in figures with the anchor loads and bending moments divided by the values 

calculated with the factored free earth support method and plotted against the logarithm 

of the wall flexibility P for loose and dense sands (Figure 3.2). In Figure 3.2 the wall 

flexibility p is calculated in fts / Ibxin2 units. 
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Figure 3.2: Moment reduction as a function of wall flexibility for dense and loose sands 
(Rowe, 1952). 

According to Rowe, a retaining wall can be characterised as stiff when the deflection at 

the excavation level is less than the deflection at the toe, so that the stress distribution in 

front of the wall is approximately linear. The bending moments measured in his tests for 

stiff walls were very close to those calculated using the free earth support method, based 

on a fully active triangular stress distribution behind the wall and on a passive triangular 

distribution with passive pressures reduced by a factor Fp , in front of the wall. 

If the deflection at excavation level is significantly greater than at the toe, the wall may 

be characterised as flexible and the stress distribution in front of the wall will be non­

linear. This is because the centroid of the stress distribution in front of a flexible 

retaining wall is raised as shown in Figure 3.3. Therefore, Rowe defined the critical wall 

flexibility Pc as the value at which the deflection at the excavation level is equal to the 

deflection at the toe and the bending moment starts to fall below the factored free earth 
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values. He related Pc to the coefficient of volume compressibility of the soil and he also 

investigated its dependence on the retained height ratio h / H (where h is the retained 

height) and the depth of the anchor. 

Prop or -..-----
anchor 

Actual stress 
distribution 

~ \- Facto,'ed passive 
Fulf passive 

Figure 3.3: Stress distlibution on both sides of a flexible wall (Powrie, 1997). 

In a later analysis of anchored sheet pile walls by Rowe (1955), it was assumed that the 

lateral effective stresses behind the wall had reached the active limit and the lateral 

effective stress Ph in front of the wall at depth x below the excavation level was given by 

the expression 

Pb = mrxy / d (3.1) 

where d is the embedment depth of the wall, y is the deflection and mr is a soil stiffness 

parameter. Rowe presented his results in a single reduction curve, which shows the 

bending moment as a percentage of the free earth support value plotted against the 

logarithm of mr p. The parameter mr p is known as the flexibility number and is given the 

symbol R. Powrie (1997) multiplied Rowe's values by 144 and redrew Rowe's curve 

with mr p convelied in consistent units (Figure 3.4). According to Rowe, the theoretical 

critical flexibility number mr p in consistent units (S 1) is generally approaching 1000 for 

dense sand and is in agreement with his expelimental data. However, in the case of 

stiffer walls in loose sand, the clitical flexibility number derived from the experiments 

was approximately 2500 in consistent units (S 1) and thus considerably higher than the 

theoretical value. 
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Figure 3.4: Moment reduction curve as a function of soil/wall flexibility (Powrie, 1997). 

The wall deflection can be analysed in a component due to a rigid body rotation and a 

component due to wall bending (Figure 3.5). 

Component of 
deformation due 
to wall bending 

Deflection at / . 

I 
I 
I 
I 
I excavated 

soli surface oe I 

\D~flexion at toe, 81 

Figure 3.5: Components of wall displacements (Powrie, 1997). 

Rowe's results are of importance because he quantified the effects of the bending 

component of wall defonnation and therefore the effects of the bending stiffi1ess of the 

wall. The figures he produced were simple and the influence of the retained height ratio 

a, the depth to the anchor level divided by the overall height f3 and the surcharge 

coefficient q was taken into account (Table 3.1), so his results can be used for a range of 

cases. 

There are many parameters that should be taken into account when the relative soil/wall 

stiffi1ess is investigated. In Table 3.1 the values of some parameters that Rowe used in 
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his experiments are listed. The values of some parameters are not given, because it is not 

clear which values he adopted. This makes comparison with other work difficult. 

Moreover, the ranges of the values he considered are small, so that the application of his 

method can not be considered safe for all the cases. The doubts about the wall and soil 

characteristics he chose will be amplified below. 

Rowe modelled an excavated wall, so the validity of his results is uncertain for backfilled 

walls. The retained to overall height ratio, h / H, investigated is in the range of O.6~O.8. 

However, this may not be suitable for walls where the groundwater level in the retained 

soil is high, because smaller values of h / H would be required. The curves he presented 

were for the case of a slightly yielding anchor, so they are not reliable for pre-stressed 

anchors, which would be expected to result in slightly higher bending moments and 

anchor loads. Moreover, the units Rowe used for the calculation of the wall flexibility p, 

are ft 5
/ Ib x in2, so its application is not easy and calculations are required to convert it to 

consistent units. 

Rowe's tests were can-ied out in dry sand, so the effect of the pore water pressures, 

which can be very significant for wall stability, were not considered. In addition, the 

definition of mr in expression (3.1) as a soil stiffness parameter is unusual. If y / d is 

taken as indicative of the magnitude of the linear strain, then mr x would be the Young's 

modulus of the soil and mr a measure of the rate of increase of Young's modulus with 

depth, E*. The operational values of E and hence of E* will decrease with increasing 

shear strain, but this variation is not easily defined in Rowe's analysis. Powlie (1997) 

argued that the use of G*, which is the rate of increase of the shear modulus G with 

depth, may be more appropliate. This will be discussed later. Moreover, the pre­

excavation lateral earth pressure coefficients in Rowe's tests were low. Although this is 

reasonable for sandy soils, in the case of overconsolidated clays with high pre-excavation 

lateral earth pressure coefficients, the applicability of his reduction curves is open to 

question. 

Rowe compared the anchor loads and the bending moments measured in his experiments 

to the values calculated in the free earth suppOli method with the passive pressures 

reduced by a factor of safety, Fp. This procedure was suggested in the fonner UK code of 

practice CP2 but, as already mentioned, modem codes of practice require the application 
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of a factor of safety to the soil strength directly. Therefore, Rowe's figures cannot easily 

be used directly in current design. 

Another analysis of the effect of the bending stiffness on wall movements, bending 

moments and prop loads was carried out by Potts and Fourie (1985). In this analysis, the 

pre-excavation emih pressure coefficient K i, which is the ratio (J'h / (J'l' after wall 

installation and immediately prior to excavation of the soil in front of the wall, was given 

values of Ki = 2.0 and 0.5. It is impOliant to mention that K i, is different from the in situ 

emih pressure coefficient Ko, due to the lateral stress relief that occurs during wall 

installation. The behaviour of four walls with different stiffnesses, varying from a rigid 

to a soft wall, was investigated. 

Potts and Fourie's results indicate that for the two more flexible walls, the calculated 

bending moments were lower than those derived from limit equilibrium calculations, 

using a factor of safety, F,., defined by Burland, Potts and Walsh (1981), for both Ki = 

0.5 and Ki = 2.0. In this case, their results are in agreement with Rowe's analysis. 

However, for the two stiffer walls the bending moments were lower at Ki 0.5, but 

greatly exceeded the limit equilibrium values at Ki = 2.0. For this last case it was found 

that the earth pressures behind the wall were far from linearly distributed. A similar 

conclusion was made for the prop loads, so that a divergence from Rowe's analysis is 

obvious. The wall and soil characteristics that Potts and F omie (1985) adopted 1 are 

presented in Table 3.1. Their results refer to a single value of the retained height ratio h / 

H, a specific depth of anchor (j3=0) and a specific type of soil. Therefore, their results 

may not be valid for other cases. 

Potts and Fourie did not take into account the difference between the pre-excavation 

earth pressure coefficients after wall installation Ki and the in situ earth pressure 

coefficient Ko, although wall installation will tend to reduce the lateral stresses below 

their initial values in the soil close to the wall. In Potts and Fourie's analysis the wall 

with E* p = 420, where E* 6000 kN / m3 is the rate of increase of soil Young's modulus 

with depth, was characterised as stiff although the deflection at the excavation level 

exceeded the deflection at the toe. This is not consistent with Rowe's flexibility criterion, 

I In Potts and F ourie (1985) analysis the bending stiffnesses of the walls are given in (kN / m\ However, this 
is believed to be a typographical error, since the bending stiffness should be in (kN 11/ / m) units. 
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which infers that in this case the critical flexibility number E*p is less than 420. In the 

calculation of bending moments in limit equilibrium, Potts and Fourie (1985) used a 

factor of safety, F r, defined by Burland, Potts and Walsh (1981), which is different from 

the factor of safety, Fp , that Rowe used and the factor of safety, Fs used in modem codes 

of practice. 

The review of the two methods of characterising the relative soil/wall stiffuess indicates 

that a direct comparison between them may give misleading results. An attempt to list 

the parameters involved in the problem in consistent units for ease of compmison is 

presented in Table 3.1. 

It is obvious from results of previous research as presented above that a change in the 

relative soil/wall stiffness can alter significantly the bending moments and prop loads; 

thus its effects on the design of retaining walls should not be neglected. However, the 

values of the parameters in previous research were not varied over wide ranges of values, 

which is necessary if a general understanding is to be obtained. The influence of the pore 

water pressures should also be considered. Finally, to quantify the relative soil/wall 

stiffness and study its effects on a design calculation, a more consistent and clearer 

definition of soil stiffness is required. 

35 



I Rowe I Potts& Fourie 

Type of waH Excavated • Excavated 
• Backfilled 

I Anchor / prop yield No No 

r 1 up ~uffness rNo data 

hIH(m) • 0.6 • 0.7 • 0.8 110.765 

P (ratio: depth to anchor level / • 0 • 0.1 • 0.2 ·0.3 0 
overall height 

rJ (surcharge pressure / y H) • 0 ·0.1 • 0.2 No data 

all flexibility,p=H 4/EI -1.29 ~ 0.96 • -4.16 • -1.16 • 0.31 
3/v l\J) • 0.84 

lfJ' (degrees) 30° ~ 50° 25° 

~actjFe I 2/3 <p' 0 

~ , e ! <p' I <p' 

Void ratio 0.53 ~1.76 No data 

IE (kN/m2
) No data 16000 z 

fl (Poisson's ratio) II No data 0.2 

J' (soil unit weight in kN/m'') II No data 20 

v ( angle of dilation in degrees) No data <p' 

c' (soil's cohesion) • l\.Tr> rlClta 110 

ter wall installation) Low • 0.5 • 1.0 • 1.5 °2.0 

J(a No data 0.33 

~ water pressures 

Kp/ Fp (Fp=1.5) 3.9 

0 0 

Method of prediction Free ·emih support Free emih suppOli with 
with application of application ofFr 

F" to the nassive 
Method of analysis Experiments I Finite element analysis 

Table 3.1 

Ki denotes the emih pressure coefficient before excavation and after installation of the 
wall 
Ka denotes the active earth pressure coefficient 
Kp denotes the passive earth pressure coefficient hlH denotes the retained height ratio 
j3 denotes the ratio: depth to anchor level/overall height 
bact denotes the angle of soil/wall friction behind the wall 
bpass denotes the angle of soil/wall friction in front of the wall 

I 
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3.2.1 Flexibility number 

Rowe defined a flexibility number R m P = m it / EI, where m is a rather ambiguous 

parameter used to express the soil stiffness. He also defined the critical wall flexibility Pc 

as the value at which the deflection at the excavation level is equal to the deflection at 

the toe. In this definition the influence of the soil stiffness on the wall deformations is not 

considered. Li (1990) introduced a different definition of a flexibility number quantifying 

the relative importance of wall deflections due to rigid body rotation and bending. This 

approach is presented below. 

Figure 3.6: Mohr circle of stress. 

From the geometry of the Mohr circle of stresses shown in Figure 3.6 the mobilised soil 

strength is defined by the relationship 

, . -/ [ / '} rp mob = sm t s (3.2) 

where t is the maximum shear stress and is equal to the radius of the Mohr circle 

(3.3) 

and s' is the average effective stress which is located at the centre of the Mohr circle 

(3.4) 
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In Equations (3.3) and (3.4) (J'J and (J'3 are the major and mmor effective stresses 

respectively. The maximum shear stress can be expressed as 

t Gy (3.5) 

where G is the secant shear modulus of the soil and y is the shear strain. 

Therefore, from Equations (3.2) and (3.5): 

, . -J [G / '] tp mob=Szn Y S (3.6) 

The use of a single tp'mob-y curve on one side of the wall is equivalent to the assumption 

of an increasing shear modulus with average effective stress s' and hence with depth. If 

G* is the rate of increase of the shear modulus G with depth, Li (1990) used the 

geostructural mechanism for an initial earth pressure coefficient Ko = 1 to show that the 

rigid body rotation is governed by Ys / G*, where Ys is the unit weight of the soil and that 

in undrained conditions the bending defollnation is dependent on )Is J-t / E 1, where H is 

the overall height and E1 the bending stiffness of the wall. Figure 3.5 shows that the 

deflection of a retaining wall is due partly to a rotation as a rigid body and partly due to 

the effects of bending. Therefore, Li (1990) defined a flexibility number quantifying the 

relative importance of wall deflections due to rigid body rotation and bending 

(3.7) 

This definition of a flexibility number seems similar to Rowe's definition mr J-t / E 1. 

However, the use of the rate of increase of the shear modulus G* instead of mr is 

considered a more direct and clear desCliption of the soil stiffiless. 
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3.2.2 Critical flexibility ratio 

The flexibility number as identified by Li (1990) and Rowe's definition of the critical 

flexibility of the wall can be combined to distinguish a stiff from a flexible system. To 

take into account both the wall flexibility and the soil stiffness, the telID flexible or stiff 

system is used instead of one referring merely either to the wall or to the soil. The critical 

flexibility ratio is defined as the specific value of G* If' / E I at which the deflection at 

the excavation level of a retaining wall is equal to the deflection at the toe and is denoted 

by Rcrit. If a system has values of G* If' / E I greater than Rail, it is characterised as a 

flexible system, whereas if the values of G* If' / E I are less than Rcril , the system is 

regarded as stiff. 

The calculations for the critical flexibility ratio that are presented later in this chapter are 

aimed at providing a general solution for soils with different initial earth pressure 

coefficients, in drained or undrained conditions and for walls propped at the crest with 

different retained height ratios h / H . Moreover, the variation of the values of Rcril with 

other parameters is investigated. However, since the geostructural mechanism is used to 

quantify Rcrit , its application is restricted to stiff walls. An attempt to apply the geostructural 

mechanism to flexible walls also, will be discussed in Chapter 4. 

3.3 STRESS DISTRIBUTIONS 

3.3.1 Behind the retaining wall 

The total stresses behind the retaining wall before excavation are assumed to be linear 

and proportional to the depth, with a pre-excavation horizontal total stress coefficient: 

(3.8) 

Then, at a depth z below ground level 

(3.9) 

39 



where (Tvo the vertical total stresses and Y5 is the bulk unit weight of the soil and 

(Tho Ko Ys Z (3.10) 

where (Tho the horizontal total stresses. 

The initial shear stress is 

(3.11 ) 

where (TI, (T3 are the major and minor principal stresses respectively. If we assume that 

(T1O= (TI and (Tho= (T3 (i.e., Ko < 1), then: 

whenKo < 1, 

(3.12) 

whenKo > 1, 

To 112 (1 - Ko) Ys Z < 0 (3.13 ) 

when Ko = 1, 

To 112 (1 - Ko) Ys Z = 0 (3.14) 

After a small rotation of the retaining wall be into the excavation, the veliical total 

stresses will remain the same whereas the horizontal stresses will be reduced below thcir 

initial pre-excavation values: 

(3.15) 
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The shear stress TJat this stage, assuming that ()V= ()j and ()h= ()3 (i.e. ,Ko < 1), is: 

(3.16) 

In Equation (3.16) TJ > 0 since the horizontal stresses will approach their active values. 

Hence the incremental shear stress is 

(3.17) 

which gives: 

(3.18) 

According to the geostructural mechanism (Bolton & Powrie 1988), the rigid body 

rotation of a stiff wall propped at the crest can be related to the maximum shear strain in 

the soil behind the retaining wall via the relationship 

(5y 2 (50 (3.19) 

where (50 is the rotation of the wall towards the excavation taken to be positive and (5y is 

the shear strain in the soil. The incremental shear strain can then be related to the 

incremental shear stress required for equilibrium assuming that the concepts of elasticity 

theory still hold. Hence, 

(5T = G (5y (3.20) 

where G is the soil shear modulus. Since the soil shear modulus is not a constant but 

depends on the shear strain and the stress state, the rate of increase of G with depth is 

usually used: 

G=G* z---+ G* G/z (3.21 ) 
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So from Equations (3.19), (3.20) and (3.21): 

bT = 2 G * z be (3.22) 

In Equation (3.22) bT and c5e represent absolute values. Assuming that the final shear 

stress TJ is greater than the initial shear stress To and substituting Equation (3.22) in 

equation (3.18): 

(J11 = Ko Ys z - 4 G* z c5e (3.23) 

The above Equation relates the total horizontal stresses behind the wall after a small wall 

rotation to the initial in situ earth pressure coefficient Ko, the wall rotation be and the soil 

stiffness, which is expressed as the rate of increase of the soil shear modulus with depth 

G*. If To > TJ: 

(3.24) 

From equations (3.22) and (3.24): 

(Jil = Ko Ys z + 4 G* z c5e (3.25) 

Equation (3.25) indicates that as the rotation of the wall towards the excavation 

increases, the hOlizontal stresses behind the wall increase as well. However, the wall 

rotation will cause a relief in the horizontal stresses behind the wall, which will decrease 

towards their active values; hence, the assumption To > TJ cannot be correct. The 

distribution of the total horizontal stresses behind the wall is therefore derived from 

Equation (3.23). The Mohr circles of total stresses when Ko < 1, Ko > 1 and Ko = 1 are 

presented in Figures 3.7,3.8 and 3.9 respectively. 
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A. If Ko < 1, then (J1'O > (JI/O -+ To > 0 and Tf > O. Assuming (J1' = (J1'O > (JI/O > (J/z : 

T 

Tf 

To 

Tf- To >0 

uv u 
uvo 

Figure 3.7: Mohr circle of total stresses behind a retaining wall before and after 

excavation (Ko < 1). 

B. If Ko > 1, then (Jvo < (JI/O -+ To < 0 and Tf > O. Therefore Tf- To >0 since (JI/O > (J1' 

Tf 

To L --
I 
I 

if 

Figure 3.8: Mohr circle of total stresses behind a retaining wall before and after 
excavation (Ko > 1). 
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C. If Ko = 1, then To = 0, Tf > 0. Therefore: Tf- To >0. 

T 

/ 

! 

__ ...... //J 
i avo 

/ aha 
/ 

a 

Figure 3.9: Mohr circle of total stresses behind a retaining wall before and after 
excavation (Ko = 1). 

3.3.2 In front of the retaining waH 

The total stresses at a depth z below the ground level before excavation are agam 

assumed to be linear and propOliional to the depth 

(3.26) 

(f/zo Ko Ys Z (3.27) 

where (flO. (fllO are the vertical and horizontal stresses in front of the wall respectively. If 

we assume that (fvo= (fl, (fllO= (f3, then the initial shear stress is: 

whenKo < 1, 

(3.28) 
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whenKo > 1, 

To = 1/2 (1 - Ko) Ys Z < 0 (3.29) 

whenKo 1, 

T = 1/2 (1 - K ) v Z = 0 o 0 IS (3.30) 

After a rotation be of the retaining wall into the excavation, the total stresses and the 

shear stress are: 

(J, = Ys (z - h) (3.31) 

(3.32) 

In Equation (3.32) Tf < 0 since the horizontal stresses will approach their passive values. 

Following the same reasoning as before, the incremental shear stress is: 

whenKo < 1, 

(3.33) 

whenKo > 1, 

Therefore: 

(3.34) 

whenKo 1, 

To 0 and Tf < 0 -----t Tf~ To < 0 (3.35) 

Therefore: bT To - Tf > 0 -----t bT = 1/2 ((JIO - (J11O) - 1/2 ((J, - (J/z) 

1/2 [Ys z (1 - Ko) - Ys (z - h) + (JIJ = 1/2 ((J/z + Ys h - Ko Ys z) (3.36) 
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From the geostructural mechanism the shear strain at the excavated side is (1 + h / d) 

times that on the retained side ofthe wall, so: 

6y 2 (1 + h / d) 68 (3.37) 

where d is the wall embedment depth. Combining Equations (3.20), (3.21), (3.36) and 

(3.37): 

6r = 2 G * z (1 + h / d) 68 -----7 

J/2[Ysz-IC YsZ-Ys (z-h)+ (JIJ=2G* z(J+h/d)(58-----7 

(Jh = Ko Ys z - Ys h + 4 G* z (1 + h / d) (58 (3.38) 

The Mohr circles of total stresses in front of the wall when Ko < 1, Ko > 1 and Ko = 1 are 

presented in Figures 3.10, 3.11 and 3.12 respectively. The horizontal stress distributions 

behind and in front of the retaining wall are plotted in Figure 3.13. 

A. If Ko < 1, then To > 0, Tf < ° and To~ T[>O. 

a. If (J11O < (J, < (Jm < (Jh the Mohr circle of total stresses may be drawn as: 

Oh 

(a) 
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b. If (Jv < (J11O < (J\,O < (Jh the Mohr circle oftota1 stresses may be drawn as: 

T 

To 

Tf 

(b) 

Figure 3.1 Oa & b: Mohr circles oftota1 stresses in front of a retaining wall before and 
after excavation (Ko < 1). 

B. If Ko > 1, then To < 0, Tf < ° and (Jh > (Jho > (Jvo > (Jv Therefore, To Tf > 0 and the 

Mohr circle of total stresses may be drawn as: 

To 

Tf 

Figure 3.11: Mohr circles of total stresses in front of a retaining wall before and 

after excavation (Ko > 1). 

47 



C. If Ko = 1, then To 0, Tr < ° and To- Tf>O. 

Tj 

j Guo 
! Oho 

Figure 3.12: Mohr circle of total stresses in front of a retaining wall before and after 
excavation (Ko 1). 

1 

Uh = KO l 52 Ish 
4C* (1-t-h/d)Cn9 

----~ 

" 

Uh = 1) 
+4G*h{11 h/cI)ov 
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J • __ 

Uh = Kols( h Ish 
-'-4G'(h-c-d)( 1·; h/cI) 019 

Uh = 

Uh = 

1C'2 chi 

4C*hMJ 

d)-
4Gx (h L d) cn9 

• 

Figure 3.13: Lateral total stress distributions behind and in front of a retaining wall. 
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3.4 WALL ROTATION 

Assuming that the total stress distribution behind and in fi-ont of the wall are described 

by Equations (3.25) and (3.38) respectively, the wall rotation b8 required to maintain 

stability can be calculated by considering the moment equilibrium about the prop: 

(58 = )is 111 [(2 Ko -3) nl+ 3J /8 G* (nl + 111 + 2) (3.39) 

where 111 is the retained height ratio, which is defined as the ratio of the retained height to 

the retaining wall's overall height. The detailed calculations are carried out in 

Mathematica and are presented in the Appendix. 

The above relationship specifies the wall rotation b8 in relation to the initial in situ emih 

pressure coefficient Ko, the retained height ratio 11'z and the ratio of the bulk soil unit 

weight to the rate of increase of the shear modulus )is / G *. In Figures 3.14, 3.15 and 3.16 

(58 is plotted against 111 for different values of )is / G* and Ko = 0.5, 1.0 and 2.0 

respectively. The values of Ys / G* vary from 0.005 to 0.02, whereas 111 varies from 0 to 1. 

In figures 3.17 and 3.18 b8 is plotted against Ko for different values of )is / G* and for 111 

0.6 and 0.7 respectively. Figures 3.19 and 3.20 show b8 against)is / G* for Ko 0.5, 

1.0,2.0 and 111 0.6 and 0.7. 

0.001 

0.0008 

0.0006 

0.0004 

0.0002 // 

/ 

j/ 
/ / 

/ 

0.2 0.4. 0.6 0.8 1 

ys/G*=5xlO -

ys/G*=8xlO 

ys/G*= 0.012 

ys/G*= 0.015 

ys/G*= 0.02 

Figure 3.14: Variation of the wall rotation b8 with 111 for Ko= 0.5 and Ys / G* = 0.005, 

0.008,0.012,0.015 and 0.02. 
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Figure 3.15: Variation of the wall rotation 6e with m for Ko= 1.0 and Ys / G* = 0.005, 

0.008,0.012,0.015 and 0.02. 
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Figure 3.16: Variation ofthe wall rotation 6e with m for Ko= 2.0 and)'s / G* =0.005, 
0.008,0.012,0.015 and 0.02. 
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Figure 3.17: Variation ofthe wall rotation be with Ko for m= 0.6 and Ys / G* = 0.005, 
0.008, 0.012,0.015 and 0.02. 
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Figure 3.18: Variation ofthe wall rotation b8 with Ko for m= 0.7 and)ls / G* = 0.005, 
0.008, 0.012,0.015 and 0.02. 
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Figure 3.19: Variation of the wall rotation b8 with)ls / G* for 111= 0.6 and Ko = 0.5,1.0 
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Figure 3.20: Variation of the wall rotation ()8 with )'5 / G* for m= 0.8 and Ko = 0.5, 1.0 
and 2.0. 

51 



According to the Figures, the wall rotation about the prop increases with decreasing soil 

stiffness and increasing earth pressure coefficient. The rate of the increase in the wall 

rotation with increasing Ko is less for high soil stiffness than for low. The relationship 

between the wall rotation and the retained height is approximately linear for Ko=2. It 

would be expected that as the retained height ratio, m, approaches unity the wall would 

fail. However, this is not obvious in Figures 3.14 and 3.15. An explanation could be that 

maybe there is a failure cut off at some value of m, indicated by a dashed line in Figures 

3.14 and 3.15, that depends on the maximum principal stress difference; hence, the 

results for bigger values of m than this wouldn't apply. Moreover, it should be noted that 

the assumption of a perfectly rigid wall is followed herein; in reality retaining walls may 

not exhibit such a stiff response. 

3.5 PROP LOADS 

From the condition of horizontal equilibrium, the stress distributions and the wall 

rotation r50 deduced from equation (3.39), the prop force can be calculated: 

F = Ys m H2 [_m3 
- 2 /1/ (Ko - 3) + m (4 Ko - 7) + 2] /4 (/1/ + m + 2) (3.40) 

The nonnalised prop load is given by: 

F /y, H2 [_m3 
- 2 /1/ (Ko -3) + 111 (4 Ko -7) + 2] /4 (m2 + 111 + 2) (3.41 ) 

In Figure 3.21 the normalised prop load F / Ys H2 is plotted against 111 and Ko, with 111 

varying from 0 to 1.0 and Ko from 0.5 to 4.0. Figure 3.22 shows the variation of the 

normalized prop load with 111 for Ko = 0.5, 1.0 and 2.0. In Figure 3.23 the nonnalized 

prop load is plotted against Ko for 111 = 0.6, 0.7 and 0.8. 
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Figure 3.22: The variation of the normalised prop load F / W H2 with In for Ko = 0.5, 1.0 
and 2.0. 
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Figure 3.23: The variation of the normalised prop load F / W H2 with m for Ko = 0.5, 1.0, 
and 2.0. 
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From the Figures, the normalized prop load increases with increasing Ko and m. For very 

low Ko values, negative prop loads are shown in Figure 3.23. The physical meaning of 

this might be that very low Ko values could result in a backward wall movement instead 

of a movement into the excavation. From the empirical relationship Ko= l-sinrp, for very 

low values of Ko the soil strength rp would be significantly increased; however, such high 

values of soil strength might not be realistic. 

3.6 BENDING MOMENTS 

The normalised bending moments along the wall at a depth z from the ground surface is: 

M / )'S H3 = A (z / H) + B (z / Hi + c [z / H - m/ + D [z / H - m/ (3.42) 

where A, B, C and D are constants that depend on the retained height ratio m and the 

initial in situ earth pressure coefficient Ko. and they are defined by equations (3.43), 

(3.44), (3.45) and (3.46). Ifz / H < m, then [z / H - m] = O. 

A = -{m [m3 + 2 n/ (Ko - 3) + m (7- 4 Ko) -2]) / (4 [m2 + m + 2]) (3.43) 

B = - Ko/ 6 + {m [n/ (2 Ko 3) + 3]) / [I2 (n/ + m + 2)] (3.44) 

C {m [m3 
- 5 m + 4 + 2 Ko (m - 2)]) / [4 (m3 + 11"1 - 2)] (3.45) 

D = [ 2 Ko (m 2) + 3 m (n/ I)] / [I2 (m 3 + m - 2)] (3.46) 

3.7 DEFORMATIONS 

The wall deflection (5 is calculated from the differential equation: 

d2r5 / dz2 = -M / E I (3.47) 

After double integrating equation (3.47) the nomlalised wall deflection is: 
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() I H = - Ys J-t lEI [A 16 (z I Hi + B (z I H/ + C I 12 (z I H - m/ + D 120 

(z IH - m/ + J/ (z I H) + J2 } (3.48) 

Where E 1 is the retaining wall flexural rigidity and J/, h are constants of integration. 

From the boundary condition at the prop at z=O -7 (5=0, h can be calculated: 

(3.49) 

According to the geostructural mechanism, the maximum deflection for a rigid wall 

propped at the crest is at the toe of the wall and is related to the wall rotation (58 required 

to maintain stability by the relationship: 

(5loe I H = r58 = Ys m [(2 Ko - 3) m2+ 3] 18 G* (m2 + m + 2) (3.50) 

Therefore, the boundary condition at the toe at z = H -7 (5 r5toe defines J( 

J/ = -E 1 ()8 I Ys J-t -A 16 - B 120 - C (1 - m/ I 12 + C m4 I 12 - D (1 - m/ I 20 

- D m5 120 (3.51) 

By substituting the integration constants J] and J2 in equation (3.48): 

(5 I H = - }'s J-t I E I[A 16 (z I Hi + B 120 (z I H/ + C I 12 (z I H - m/ + D I 20 

(z IH - m/ - E 1 (58 I}'s It (z I H) - A 16 (z I H) - B 120 (z I H) - C (1 - m/ I 12 (z IH) 

+ C m4 I 12 (z I H) - D (1 - m/ I 20 (z I H) - D 711
5 I 20 (z I H) - C n/ I 12 + D m5 I 20} 

(3.52) 

Equation (3.52) enables the calculation of the deformations of a rigid wall for different 

initial earth pressure coefficients Ko and retained height ratios m, if the wall flexibility E 

1 and the rate of increase of the soil shear modulus G * are known. 
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3.8 CRITICAL FLEXIBILITY RATIO 

Considering the definition of the critical flexibility ratio Rcril , the deflection at the dredge 

level should be equal to the deflection at the toe of the retaining wall: 

(3.53) 

From the geostructural mechanism the wall rotation 6e will be related to the deflections, 

so: 

6dredae I H = 610 e I H = 6e 
b 

(3.54) 

At the dredge level the depth z equals the retained height h, so: 

z h---+zlH =hIH=m (3.55) 

From equations (3.52), (3.54) and (3.55): 

6e m 6e - Ys It I E 1 [A 16m3 + B I 20 m5 
- A 16m - B I 20 m - C I 12 m 

(J - m/ + C m5 112 - D m (J - m/ 120 - D m6 120 - C m4 I 12 + D m5 I 20J 

---+ (m -1) (5e- Ys It I E1 {A m (m2 -1) 16 + B m (m4 - J) 120 + em [m4 _m3 

(J - m/J 112+ D m [m4 - m5 
- (J - m/ J 120) 0 

(3.56) 

Equation (3.56) can be rewlitten in the form: 

(3.57) 

whereL= {m [(2 Ko - 3) m2 + 3]) I {8 (m 2 + m + 2)} (3.58) 
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From equations (3.56), (3.57) and (3.58): 

L (m-1) / {[ Am (m2 1) /6] + [B m (m4 ~ 1) /20] + [C m (m4 3 m ~ 

(3.59) 

Substituting A, B, C, D and L which are given by Equations (3.43), (3.44), (3.45), (3.46) 

and (3.58) respectively, Equation (3.59) can be rewritten in the form: 

30 (m 1) [m2 (2 Ko - 3) + 3] / {m [m6 (2 Ko - 3) - m 5 (2 Ko + 7) 22 m4 

,) 774 
(Ko - 3) + 2 m- (29 Ko - 65) + m- (-44 Ko + 83) - 3 m - 6]) G* 11 / EI = Rcril 

(3.60) 

Equation (3.60) specifies the value of the critical flexibility ratio for different initial earth 

pressure coefficients Ko and retained height ratios m. Therefore, depending on the values 

of Rcril obtained from the above equation a stiff system can be distinguished from a 

flexible one. The advantages of this solution are that both the wall flexibility and the soil 

stiffness are considered in the same calculation and it can be applied in a general manner 

if the retained height ratio and the initial em1h pressure coefficient are known. Moreover, 

a clear and consistent parameter for the soil stiffness is used, which can be obtained from 

laboratory tests on representative soil samples. Most of the calculations were carried out 

in Mathematica and can be found in the Appendix. 

Rail is plotted against m and Ko in Figure 3.24, against m for Ko 0.5, 1.0 and 2.0 in 

Figures 3.25 and 3.26 and against Ko, for m = 0.4,0.5,0.6, 0.7 and 0.8 in Figure 3.27. 
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Figure 3.24: The variation ofthe critical flexibility ratio Rail with m and Ko. 
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Figure 3.25: The variation of the critical flexibility ratio Rail with m for Ko = 0.5, 1.0 and 
2.0. 
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Figure 3.26: The variation of the critical flexibility ratio Rail with m for Ko = 0.5, 1.0 and 
2.0, where m is in the range of 0.4 to 0.8. 
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Figure 3.27: The variation of the critical flexibility ratio Rail with Ko for m = 0.4, 0.5, 
0.6, 0.7 and 0.8, where Ko is in the range of 0.3 to 4.0. 

The critical flexibility ratio Increases when Ko and In decrease. A system may be 

characterized stiff for values of G* Jt / EJ, Ko and m below the critical flexibility curve, 

whereas flexible for values of G* Jt / EJ, Ko and m above the critical flexibility curve. 

For a stiff system, the prop loads, bending moments, wall rotations and deformations 

may be calculated by the method presented in this Chapter. For a combination of values 

which lie on the clitical flexibility curve, the wall movement at the toe of the wall will be 

the same with the wall movement at dredge level. 

3.8. SUMMARY 

The critical flexibility curves presented in this Chapter enable the designer to distinguish 

a stiff from a flexible system taking into account the relative soil/wall stiffness, the in 

situ earth pressure coefficient and the retained height ratio. For stiff systems, curves and 

relationships are given for the estimation of the prop loads, bending moments, wall 

rotations and defomlations incorporating the relative soil/wall stiffness and the mobilized 

shear strength behind and in front of a retaining wall. For flexible systems, the 

application of the MSD method is examined in Chapter 4. Simple and reasonably 

accurate predictions may be obtained by this simple design framework. 

59 



4. ANALYSIS AND DESIGN OF FLEXIBLE RETAINING WALLS 

PROPPED AT THE CREST 

4.1 INTRODUCTION 

Some aspects of the soil behaviour and its theoretical modeling are reviewed and 

discussed in the beginning of this chapter. The hyperbolic relationship, introduced by 

Duncan and Cheng (1970) to represent the soil non-linear stress-strain relationship, is 

presented in detail and compared to other soil models. 

The mobilised strength method for stiff walls, as presented earlier in this thesis, is 

extended, modified and applied to flexible retaining walls propped at the crest. New 

defol111ation pattel11s are proposed, the mobilized shear strain is associated with the 

mobilized shear strength by a modified version of the hyperbolic relationship introduced 

by Duncan and Cheng (1970) and the wall flexibility is idealized into a simple 

mechanism. 

Finally, the potential of the method to serve as a design tool for flexible retaining walls 

propped at the crest in drained conditions is examined and the effects of the wall 

flexibility, the soil stiffness and the soil shear strength before excavation on the predicted 

deformations are investigated. 

4.2 SOIL BEHAVIOUR 

Soil behaviour is generally complicated and a substantial number of parameters may be 

required to describe it adequately. Previous research studies have been focused on 

investigating these parameters and developing constitutive models to achieve a better 

understanding of soil behaviour and its importance to the calculation of realistic ground 
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defom1ations. However, the complexity and extent of the problem allows only for a brief 

discussion here. 

4.2.1 Soil stress-strain behaviour 

The stress-strain behaviour of most soils is non-linear, with the soil stiffness depending 

on various parameters which are related to the type of soil, the soil current state and its 

stress history. Some of these parameters are real, whereas others are artifacts of the 

sampling process. The soil stiffness is quantified by means of the Young's modulus E or 

the shear modulus G, expressed as a tangent or secant, on a stress-strain curve. 

The type of soil may be described by the grading and plasticity. An example of the effect 

of these parameters on soil stiffness can be found in the results of undrained triaxial tests 

on various soils carried out by Jardine, Symes and Burland (1984) with the accurate 

measurement of local axial strains. Low plasticity clays were found to exhibit the most 

non-linear but stiff initial behaviour, whereas cemented chalk samples showed the 

nearest approximation to linear stress-strain behavior. A summary of their results is 

presented in Figure 4.1, where the stiffness is expressed as the undrained secant Young's 

modulus nOlmalized by the undrained shear strength, Eu / Cu, and plotted against the local 

axial strain GL. 
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Figure 4.1: Normalised secant stiffness Eu / Cu against axial strain for all the undrained 
triaxial tests (Jardine, Symes and Burland, 1984). 

The state of a soil may be described by its cunent stress state, which together with the 

cunent strain will affect the soil stiffness considerably_ JoviCic and Coop (1997) canied 

out undrained triaxial tests on different types of sand. Some of their results are shown in 

Figures 4.2a and b in which the dependence of the tangent shear modulus Gtan on the 

initial mean effective stress before shearing, p/, is obvious, particularly for very small 

strains. Soil stiffness is usually nonnalized with respect to the initial mean effective 

stress before shearing, Po' or p/_ 
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Figure 4.2: Variation of tangent shear stiffness with strain and initial effective stress for 
undrained triaxial tests on: (a) compacted samples; (b) overconsolidated samples (JoviCic 
and Coop 1997). 
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The graph in Figure 4.3 represents the typical soil stiffness-strain relationship which has 

been in use for many years and is referred to as the S-shaped curve. The soil stiffness is 

high at small strains and reduces at larger strains. Simpson (1992) redrew the S-shaped 

curve, as shown in Figure 4.4, to indicate what propOliion of the soil behaves elastically 

at each strain level. From this graph soil may be viewed 100% elastic at very small 

strains and the propOliion of soil that behaves plastically increases with reducing 

stiffness. 

~-----------------------------,o 

PlasUc 

100% 
log (strain) 

Figure 4.3: Proportions of elastic and plastic soil behaviour on the S-shaped curve 
(Simpson 1992). 

Georgiannou et al (1991) measured the soil stiffuess of several overconsolidated clays at 

very small strains using dynamic techniques. Figure 4.4, presented by Georgiannou et al 

(1991), shows that the typical stiffness-strain relationship for a monotonic loading path at 

any pmiicular strain, with G being the tangent shear modulus, could be divided into three 

different strain regions which correspond to very small, small and larger strain levels. 

The shear strains dividing each zone are approximately 0.001 % and 1 % respectively. The 

impOliance of the very small to small strain region is pronounced; Jardine, Potts, Fourie 

and Burland (1986) found that in footings and excavations, the small strain 

characteristics appear to have the greatest influence on the deflection profiles around a 

loaded boundary, while Burland (1989) showed that the strains around many 

geotechnical structures are usually within this range. 
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Figure 4.4: Typical shear stiffness-shear strain curve (Georgiannou et al,1991). 

At the range of very small strains, strains may be considered as recoverable and elastic 

(Atkinson and Salfors, 1991) and the soil stiffness is proportional to -0 Po', while at small 

to large stains G is proportional to Po'. This agrees with previous work for sands can-ied 

out by Wroth and Houlsby (1985), who related G to the mean effective stress p , by 

Equation (4.1) 

G / p,. A (p' / pj1 (4.1) 

where p,. is a reference pressure of 1 kPa, used to make Equation (4.1) dimensionless, and 

A and n are material parameters (constants) in the very small strain region. At the range 

of larger strains, strains are irrecoverable and may be considered as inelastic and A and n 

are not constants but will depend on the strain level and the stress path. Wroth et al 

(1979) found from experimental data that n is equal to 0.5 at small strains and increases 

to unity at large strains, while A decreased to zero. Allman and Atkinson (1992) 

investigated the basic behaviour of Bothkennar soil by drained and undrained triaxial 

tests. They rewrote Equation (4.2) between the shear stiffness and the initial mean 

effective stress in the form of Equation (4.3) 

G =Apo,11 (4.2) 

In G In A + n In po ' (4.3) 
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where the parameters A and n qepend on the soil, the overconsolidation ratio and the 

strain level. Their results from drained and undrained tests on normally consolidated 

samples are shown in Figure 4.5, where In G is plotted against In po ' for strain levels 

from 0.01 % to 1 %. The parameter n was again found to vary from 0.5 at small strains to 

unity at larger strains. 

3 

2 

Shear strain level 

• 0·01 % 
• 0·05.% 
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)l 1 % 

-2~--~----~----~----~----~--~ 
3·5 4·0 4·5 5·0 5·5 6·0 6·5 

In p': kPa 

Figure 4.5: Variation of stiffness with initial effective stress and strain for nonnally 
consolidated samples (Allman and Atkinson 1992). 

The soil consolidation history can be represented by the overconsolidation ratio OCR, 

and the soil stress-strain relationship is considered to be particularly dependent on it. 

J ardine, Symes and Burland (1984) found that the strain required to achieve peak 

strength steadily increased with increasing OCR, as shown in Figure 4.6, where Rl, RIA, 

R2, R4, R8 represent reconstituted samples of North Sea clay with OCR increasing from 

sample R 1 to R8. Figure 4.7 shows that the nonnalised secant stiffness Eu / Cu at 0.01 % 

axial strain is higher for lightly overconsolidated test conditions (e.g. tests Rl and RIA), 

while it is lower for heavily overconsolidated conditions (e.g. test 13). In this figure, 11, 

12,13 and RMI, RM2 correspond to intact and remoulded samples respectively of North 

Sea clay, LCl, LC2 represent intact samples of London clay, HRS 1, HRS2 are pluviated 

samples of Ham liver sand and CI, C2 are intact samples of upper chalk. However, these 

results could be influenced by the different values of Cu for each test and the dependence 
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of Cu on other parameters, such as stress history, sample disturbance and soil microfabric. 

The initial mean effective stress Po' may be a more appropriate parameter to normalise 

the secant stiffness, since it can be measured in the laboratory quite accurately. In Figure 

4.8, Eu which is normalized with respect to Po', is plotted against OCR for several test 

conditions. In this case, the difference between the lightly and heavily overconsolidated 

samples is less pronounced. 

40 
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-10·~~~~~~~~-
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Figure 4.6: Stress-strain data for reconstituted samples of North Sea clay with OCR 
increasing from sample R1 to R8 (Jardine, Symes and Burland, 1984). 
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Figure 4.7: Variation ofnonnalized secant axial stiffness with overconsolidation ratio 
for undrained triaxial tests on different soil samples (Jardine, Symes and Burland, 1984). 
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Figure 4.8: Variation ofnonnalized secant axial stiffi1ess with overconsolidation ratio for 
undrained triaxial tests on different soil samples (Jardine, Symes and Burland, 1984). 

The results from drained and undrained tests on Bothkennar soil obtained by Allman and 

Atkinson (1992) show a similar trend. Figures 4.9 and 4.10 depict the variation of the 

nonnalised secant shear modulus Gsec / po ' with shear strain for different over­

consolidation ratios (expressed as Rp on the graphs). 
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Figure 4.9: NOlmalised secant stiffness against shear strain for samples with different 
overconsolidation ratios in drained triaxial tests (Allman and Atkinson 1992). 
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Figure 4.10: Normalised secant stiffness against shear strain for samples with different 
overconsolidation ratios in undrained triaxial tests (Allman and Atkinson 1992). 

Viggiani and Atkinson (1995) suggested that the relationship between the initial tangent 

shear modulus Go and the overconsolidation ratio is given by Equation (4.4) 

(4.4) 

where Ao, no and m are parameters related to the soil plasticity. 

Atkinson, Richardson and Stallebrass (1990) investigated the effects of recent loading on 

the stiffness of overconsolidated soil by means of triaxial tests on reconstituted samples 

of London Clay. They suggested that the recent loading of a soil might consist of a 

relatively long period of time at constant stress state or a sudden change in the direction 

of the stress path and used the term "recent stress history" to describe both. Richardson 

(1988) found that stiffness increased logarithmically with time spent at constant stress, 

independently of any changes in stress path direction; therefore, these effects can be 

additive. Figure 4.11 shows the different stress paths followed at constant mean effective 

stress p' or constant deviatOlic stresss q, during triaxial tests carried out by Atkinson, 

Richardson and Stallebrass (1990). The samples had been brought to stress state 0 along 
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different stress paths from stress states P, Q, R or S, before they were loaded drained 

along stress paths OA or AB. The change in the direction of the stress path is denoted in 

Figure 4.11 by the symbol e, which can take positive or negative values. Stress paths OA 

represented a change in q with constant p'; stress paths OB represented a change in p' 

with b.q= O. 

p' 

(a) 

p' 

(b) 

Figure 4.11: Different stress paths for triaxial tests at (a) constant p' (b) constant q 
(Atkinson, Richardson and Stallebrass 1990). 

In Figure 4.12 d q / d Gs, which corresponds to 3 Glan , is plotted against shear strain for 

different rotations of the direction of initial stress path. The influence of the change in the 

stress paths on stiffness is obvious, especially at small strains. At 0.01 % strain level the 

stiffi1ess for e 180° is approximately an order of magnitude larger than the stiffness for 

e = 0°, while at 0.5% strain level there is almost no difference. Figure 4.13 illustrates the 

vmiation of 3 Gtan with the rotation of the stress path measured in constant p' tests for two 

stages of loading. At the beginning of the loading, when q / Po' = 0.05, a significant 

increase of stiffness is noticed as the change in direction of the stress path varies from e 
= 0° to e 180°. During the second stage of loading, when q / Po' = 0.40, the 

corresponding change in stiffness is very small. 
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Figure 4.12: Shear stiffness ofreconstituted London clay samples from triaxial constant p' 
tests (Atkinson, Richardson and Stallebrass 1990). 
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Figure 4.13: Variation of shear stiffness of reconstituted London clay samples with stress 
path rotation in triaxial constant p' tests (Atkinson, Richardson and Stallebrass 1990). 
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Powrie, Pantelidou and Stallebrass (1998) investigated the stress-strain relationship of 

clay soils appropriate to diaphragm walls by carrying out triaxial tests on samples of 

speswhite kaolin. Their results emphasize the importance of recent stress history during 

wall installation on the soil behaviour during excavation, which was found to be outside 

the influence of the soil geological or prewall-installation history. They suggested that 

during wall installation a reversal in the direction of the stress path in the soil behind the 

wall can result in a stiff response during excavation. For the soil in front of the wall, the 

change in the stress path direction during wall installation was smaller, resulting in a 

significantly less stiff response dUling excavation in comparison with the retained soil. 

Figure 4.14 shows the normalised stiffness G / Po' plotted against triaxial shear strain for 

elements K5, K7, K8, MIA, NKI in front the wall and KAI behind the wall. 
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Figure 4.14: N0l111alised shear stiffness against triaxial shear strain for different total 
stress path rotations (Powrie, Pantelidou & Stallebrass, 1998). 

Additionally, agemg or creep can affect soil stiffness. Allman and Atkinson (1992) 

plotted the variation of the nonnalized secant shear modulus G sec / Po' against shear 

strain for nonnally consolidated samples of Bothkennar clay that had been allowed 

different periods of rest before shearing. In Figure 4.15 sample B49 was sheared 

immediately, while samples B33 and B70 were sheared after 20 and 200 hours 

respectively. Sample B49 showed significantly lower stiffness than the other two 

samples. Allman and Atkinson (1992) noticed that the stress-strain behaviour of samples 

sheared after periods of rest was similar to that for a lightly overconsolidated soil. 
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Therefore, they suggested that the effects of creep or ageing might be equivalent to 

overconsolidation, at least for short periods of ageing. 
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Figure 4.15: The effect of ageing on nOl1nalized secant shear stiffness of nOl1nally 
consolidated samples (Allman and Atkinson 1992). 

It becomes obvious from the results of previous studies, as presented above, that the soil 

stress-strain relationship is rather complicated and depends on various parameters. The 

influence of even one parameter on soil stiffness may be difficult to evaluate accurately, 

due to the interaction with other parameters. Therefore, the values for each parameter 

should be selected carefully, allowing for possible uncertainty. 

4.2.2 Theoretical modeling of soil behaviour 

Roscoe and Schofield (1963) introduced a state boundary surface in stress space which 

embodies yield and is based on the concept of critical states. This model, which is known 

as Cam Clay, is shown in Figure 4.17. The yield locus is given by Equation (4.5) and 

separates elastic states inside the surface from elasto-plastic states on the boundary for a 

soil effectively preconsolidated isotropically to an average effective stress of Po '. The 

value of Po ' defines the size of the state boundary surface. More details can be found in 

Schofield and Wroth (1968). 
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Figure 4.16: Current state and isotropic consolidation history. 

q Critical state Ihie 
q=Mp' 

Yield locus M
q 

I + In ~' = 0 
/ P Po 

-;~-------+--------------~~-------p' 
Pa':::: Po' 12.72 Pol 

Figure 4.17: Cam Clay model (Osman, 2004). 

(4.5) 

Roscoe and Burland (1968) proposed a revised form of this model, known as Modified 

Cam Clay (Figure 4.18). In the yield locus expression, 1J stands for the stress ratio q / p'. 

In Figures 4.16 and 4.17 the vectors indicate the direction of the plastic strain increments. 
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Figure 4.18: Modified Cam Clay model (Osman, 2004). 

Al Tabaa (1987) and Al Tabaa and Wood (1989) introduced the "bubble" model using a 

single kinematic surface within the Modified Cam Clay state boundary surface. 

Stallebrass and Taylor (1997), based on the concept of multiple kinematic yield surfaces 

introduced by Mroz, Norris and Zienkiewicz (1979), employed three kinematic surfaces 

to take account of both the effect of recent stress history and yield at small strains or 

changes in stress. Simpson (1992) developed a blick analogue, known as the "brick 

model", to simulate the effect of non-linearity and recent stress history. 

q' 

pi 

Figure 4.19: Soil model with three kinematic yield surfaces 111 triaxial stress space 
(Stallebrass and Taylor, 1997). 

Jardine (1992) using a different experimental approach, observed two zones of behaviour 

in normalised stress space within a bounding yield surface which can be repositioned and 

modified if the soil is subjected to different stress histories. 
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Despite developments in theoretical soil modeling, soil behaviour still remains difficult 

to simulate acc\,rately with a single constitutive model. Some of the models are complex, 

have many parameters and the calibration of their values may be difficult. In addition, 

some models are inherently fitted to a certain sample preparation procedure and testing 

process (e.g. during isotropic compression the triaxial shear strain is defined at constant 

confining pressure); this factor should be taken into consideration when such soil models 

are used. Therefore, a simple soil model that takes account of the soil inelasticity and its 

input parameters could be easily determined would be a useful design tool; such a soil 

model is used to represent the soil stress-strain behaviour in this thesis since it is 

consistent with the objective of achieving a practical and reasonably accurate solution 

and is presented in the next Section. Other simple soil models (e.g. power law) may also 

be incorporated in the method developed herein. 

4.2.3 Hyperbolic stress-strain relationship 

Duncan and Cheng (1970) proposed a simplified, practical relationship for representing 

the non-linear, inelastic and stress dependent behaviour of soils. The simplicity of the 

relationship derives from the relatively straightforward detennination of the required 

parameters from laboratory triaxial tests. It is adopted in this project since it contributes 

to the objective of a practical design solution. According to this approach, the non-linear 

stress-strain relationship may be approximated by the hyberbolic equation proposed by 

Kodner (1963) 

(4.6) 

where U/ and U3 are the major and minor principal stresses respectively, E: is the axial 

strain and a and b are constants which can be derived from experimental data. In Figure 

4.20 where the hyperbolic Equation (4.6) is plotted, the physical meaning of constants a 

and b is illustrated. The constant a is the reciprocal of the initial tangent Young's 

modulus E; and the constant b is the reciprocal of the asymptotic value of stress 

difference, (u / - (3) II It, which the stress-strain curve approaches at infinite strain. 

Equation (4.6) can be written in the form of Equation (4.7): 
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(4.7) 

The values of the constants a and b may be derived from triaxial test results and can be 

fitted to the plot of Equation (4.7) on transformed axes as shown in Figure 4.21, where a 

is the intercept and b is the slope of the straight line. 

t _ _ ______ ( en C!3)vit_ ~ _ ~!b ___ _ 
i 
I 

I 

~ I 1/a 
b 

Figure 4.20: Hyperbolic stress-strain curve. 

--------- ----- ---- ----------- - -- --~ 

[; 

Figure 4.21: Transfonned hyperbolic stress-strain curve. 

The stress difference in the soil ((J] (J3) at failure is usually found to be slightly less than 

its asymptotic value ((J I ~ (J3)1I/1 at infinite strain and a factor Rr can be used to relate them 

in Equation (4.8): 
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(4.8) 

Duncan and Cheng (1970) found that factor Rf is generally in the range of 0.75 to 1.00 

and is independent of the confining pressure (J3. They derived an expression for the 

tangent Young's modulus in tenns of stresses 

Et [1 - RrU - simp) ((J] ~ (J3) / (2 c cosrp + 2 (J3 simp)/ K pa ((J3 / Pal 

(4.9) 

where c is the true cohesion, rp is the effective friction angle, (J3 is the confining pressure, 

pa is the atmospheric pressure expressed in the same pressure units as E t and (J3, K is a 

dimensionless modulus number and n is an exponent determining the rate of variation of 

the initial tangent Young's modulus Ei with (J3. The analytical calculations are presented 

in the Appendix. The advantage of equation (4.9) is that it facilitates the detennination of 

the tangent Young's modulus for any stress condition if data from triaxial tests are 

available. However, it was assumed that the soil might be characterised by a single 

constant value of Poisson's ratio and the volume changes were not related to shear 

stresses. 

It may be argued that the dilation of the soil due to shearing might be less significant than 

the dilation due to soil consolidation. Therefore, the approximation of zero volumetric 

strains may be allowed. In reality, pure volumetric strains might occur; these could be 

super imposed in the kinematic mechanism presented in this thesis assuming that they 

might not cause additional shear. The hyperbolic Equation (4.6), which relates the total 

principal stresses to axial strain, can then be transformed into the hyperbolic Equation 

(4.10) to relate the shear stress I to shear strain y: 

I = (y /3) / (a + by / 1.5) (4.10) 

In Equation (4.10) the parameters a and b are related to the initial shear modulus Gi and 

the shear stresses at failure Ir and at infinite strain Iuft respectively by appropriate 

substitutions. The shear modulus Gi is related to the Young's modulus by the expression 

G = E / [2 (1 + v)} (4.11 ) 
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where v is the Poisson's ratio. The shear stresses at failure T f are related to those at 

infinite strain T ult by the parameter Rf: 

(4.12) 

Therefore the parameters a and b in equation (4.10) may be defined as: 

a = 1 / Ei 1/[2 Gi (1 + v)J (4.13) 

(4.14) 

Following the necessary substitutions and calculations as presented in Appendix A, the 

tangent shear modulus G for drained conditions may be represented by an Equation 

similar to Equation (4.9) in the form 

G1an = [1 - Rf T (1 simp) / (c cosrp + (}3 sinrp)/ [G;(l + v) /1.5J ( 4.15) 

where Gi is the initial tangent shear modulus. In relationships (4.13) and (4.15) a single 

value of Poisson's ratio has been chosen, v=0.5, in an effOli to keep consistent with the 

assumptions followed by Duncan and Cheng (1970). The tangent shear modulus Gtan can 

then be calculated fiom equation (4.15) for any stress condition if data from triaxial tests 

are available. 

4.2.4 Comparison with other soil nlodels 

In previous research, different stress-strain relationships have been adopted to represent 

non-linear soil behaviour. A comparison between some of these relationships and the 

hyperbolic relationship introduced by Duncan and Cheng (1970) is presented in this 

section to investigate the order of approximation when the simplified approach is 

adopted. 

79 



According to the generalized Hooke's law, a change in shear stress in an isotropic elastic 

material is related to the change in shear strain by Equation (4.16): 

(5r = G by (4.16) 

From Equations (4.10) and (4.16) and assuming that the Poisson's ratio is equal to 0.5 

(constant volume conditions), the secant shear modulus is given by the relationship 

(4.17). 

Gscc J / (3 a +2 b y) ( 4.17) 

If AJ = 3 a and BJ = 2 b, Equation (4.17) can be rewritten in the simpler form: 

( 4.18) 

Equation (4.18) is plotted in Figure 4.22 for the data presented in Table 4.1, which were 

obtained from triaxial tests on dense and loose silica sand carried out by Duncan and 

Cheng (1970) with constant confining pressure to examine whether it can provide a good 

approximation of the soil stiffness-strain behaviour in drained conditions. 
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Figure 4.22: Shear modulus-shear strain curves for dense and loose fine silica sand at 
different confining pressures (in kN/m2

. Data after Duncan and Cheng, 1970). 
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~ Loose 

Dr 
(Relative 100% 38% 

density) 

Rf 0.91 0.90 

K 2,000 295 

11 0.54 0.65 

(J3 

(KN/m2) 
• 98.1 • 294.3 • 490.5 • 98.1 • 294.3 • 490.5 

a • 1.315 10-5 • 6.796 10-6 • 1.059 10-4 • 5.097 10-5 

(m2/KN) • 2.273 10-6 • 1.223 10-5 

b • 3.092 10-3 • 1.019 10-3 • 4.587 10-.J • 3.202 10-3 

(nlIKN) .6.178 10-4 • 9.439 10-4 

• 3.945 10-5 
• 2.039 10-5 • 3.177 10=4 • 1.529 10-4 

A J=3a 
.6.819 10-6 • 3.669 10-5 

• 6.184 1O-.J • 2.038 10-3 .9.17410°. 6.405 10-3 

B J=2b 
• 1.236 10-3 • 1.888 10-3 

Table 4.1: Triaxial tests on dense and loose silica sand canied out by Duncan and Cheng 
(1970). 

To derive Equation (4.18), it was assumed that y = 1.5 Ga, where Ga is the axial strain and y 

is the shear strain, and the Poisson's ratio is equal to 0.5 which is valid for 

undrained conditions. For drained conditions, slightly different parameters of A I and B I 

may need to be applied. However, the shape of the diagram in Figure (4.22) is similar in 

shape to the S-shaped curve which is typically used to represent soil stiffness-strain 

relationship for a monotonic loading path (Figure 4.4). Therefore, the hyperbolic 

function may be used to characterize the soil stiffness-strain or mobilized shear strength­

strain behaviour in drained conditions with acceptable accuracy. Its applicability to other 

types of soils will be investigated by fitting data from triaxial tests canied out in previous 

research studies to the hyperbolic Equation (4.18) and comparing the results. 
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Jardine, Symes and Burland (1984) presented the results of undrained triaxial tests on 

reconstituted and intact soil samples with different overconsolidation ratios and initial 

mean effective stresses and detennined the axial stiffness by measurements of the local 

axial strain. The shear modulus G is related to the axial strain ea and Young's modulus E 

by Equation (4.11), whereas ea is related to y by Equation (4.19) 

(4.19) 

where elOl is the volumetric strain. In an undrained triaxial test era 1 0; hence, y= J. 5 Ca· 

Jardine, Symes and Burland (1984) measured the secant Young's modulus Esec; this is 

related to the secant shear modulus Gsec by Equation (4.11), taking the Poisson's ratio v 

equal to 0.5. Some of their results have been fitted to Equation (4.18) and are plotted in 

Figure 4.23. In Table 4.2 some of the parameters employed in their tests together with 

the values of A 1 and B 1, which appear in Equation (4.18), are presented. 

Tests 1 Z II 11 Iz i LCI LCz 

North North 
North Nmih 

London London 
Material 

Sea clay Sea clay 
Sea Sea 

clay clay 
clay clay 

Sample 
Reconsti Reconsti intact intact intact intact prepara-

-tuted -tuted 
tion 

IOCR 1.0 2.05 l.1 1.1 - -

Po' "'7 D~ 
,..An 226 199 

(KN/m2) I LU ~~~ 

T 
122 I 108 255 275 123 100 

II (KN/m2) 

AJ 1.540 8.390 4.810 3.961 2.103 1.760 
(m2/KN) 10-5 10-6 10-6 10-6 10-5 10-5 

BJ 7.787 8.800 3.730 3.450 7.720 9.501 
(m2/KN) 10-3 10-3 10-3 10-3 10-3 10-3 

Table 4.2: Summary of some of the triaxial tests calTied out by Jardine, Symes and 
Burland (1984). 
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Figure 4.23: Secant shear modulus-shear strain curves clays at different initial mean 
effective stresses (Po' ) and overconsolidation ratios (OCR) as indicated in Table 4.2 
(Data after Jardine, Symes and Burland, 1984) 

In Tables 4.3 the results of drained and undrained triaxial tests on Bothkennar soil are 

presented. The tests were carried out by Allman and Atkinson (1992) on one­

dimensionally normally consolidated and lightly overconsolidated samples, which were 

reconstituted from a slurry and compressed and swelled to different states. The drained 

tests were carried out with constant mean effective stress, p', while the undrained tests 

were carried out with constant cell pressure o"j'; an external displacement transducer was 

used to measure the axial strains. The results shown in Table 4.4 were presented by 

Smith, Jardine and Hight (1992) from triaxial tests on undisturbed Laval and Sherbrooke 

samples of Bothkennar clay. Plots of the secant shear modulus Gsec and tangent shear 

modulus, G" nOTInalized with respect to the mean effective stress at the start of shearing 

Po', against shear strain y were produced. In order to evaluate the hyperbolic stress-strain 

relationship proposed by Duncan and Cheng (1970), all the results are fitted to Equation 

(4.18) and are plotted in Figures 4.24 and 4.25a&b. The values of the parameters Al and 

B I are indicated in Tables 4.3 and 4.4. 
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Tests Bss BS7 B73 B7S 

Material 
Bothkennar Bothkennar Bothkennar Bothkennar 

clay clay clay clay 

Sample 
prepara- reconstituted reconsti tuted reconstituted reconstituted 
tion 

~ 1.14 1.33 4.0 1.0 '-' .......... 

Loading Compression I Compression Compression Compression 

Drainage Drained • Draineu Undrained Undrained 

II , 
po 175 150 50 200 

;TT"T m2) 

T 
115.06 99.75 38.16 144.7 

(KN/m2) 

(m~kN) II 1.520 10-
5 1.543 10-5 I 7.520 10-5 6.410 10-5 

BJ 8.256 10-3 9.254 10-3 2.490 10.2 6.57010-3 

(m2/KN) 

Table 4.3: Summary of some of the triaxial tests carried out by Allman and Atkinson 
(1992). 
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Figure 4.24: Secant shear modulus-shear strain curves for Bothkennar clay at different 
initial mean effective stresses (Po' ) and overconsolidation ratios (OCR) as indicated in 
Table 4.3. (Data after Allman and Atkinson, 1992) 
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I Tests 
II 

Bss 
I 

BS7 

Material Laval samples Sherbrooke samples 

Sample 
Undisturbed Undisturbed 

preparation 

Drainage Undrained Undrained 

Po' (KN/m2) 34 35.67 

T (KN/nl) 25.89 31.57 

BJ (m2/KN) 3.670 10-2 3.009 10-2 

AJ (mLIKN) 
5.882 10-5 5.61010-5 

(for Gsec) 

Al (mLIKN) 
6.077 10-5 5.792 10-5 

(for Gt) 

Table 4.4: Summary of some of the triaxial tests for the characterization of Bothkennar 
clay (Smith, Jardine and Hight, 1992). 
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Figure 4.25a: Secant shear modulus-shear strain curves for undisturbed Laval and 
Sherbrooke samples of Bothkennar clay. (Data after Smith, Jardine and Hight, 1992) 
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Figure 4.25b: Tangent shear modulus-shear strain curves for undisturbed Laval and 
Sherbrooke samples of Bothkennar clay. (Data after Smith, ] ardine and Hight, 1992) 

From Figures 4.22, 4.23, 4.24 and 4.25a&b the initial shear modulus at small strains is 

high. The shear modulus then decreases, following an S-shaped curve, to approximately 

zero at large strains. The shape of the diagram is similar for different types of soil, 

different sampling procedures and consolidation history as indicated by Tables 4.2, 4.3 

and 4.4 and is in agreement with the results of more recent research work on the soil 

stiffness strain behaviour, as discussed in the previous paragraph. Therefore, the 

hyperbolic Equation (4.18) may be used for a variety of soils with reasonable accuracy. 

In addition, Equation (4.18) has a relatively simple form and allows the determination of 

shear modulus for any stress condition if data from triaxial tests are available. 

I 
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4.3 APPLICATION OF THE MSD METHOD TO FLEXIBLE WALLS 

4.3.1 Assumptions 

The mobilized strength method, described in Section 2.4, idealizes soil behaviour by 

means of simplified kinematically admissible strain fields. The active and passive soil 

zones are subdivided into triangles, the verticals and horizontals of which are flictionless 

displacement discontinuities, while the hypotenuse of each is a zero extension line. 

Mobilisation of a uniform shear strength is assumed which is consistent with the 

development of a unifonn shear strain in each triangle. From a defOlmation geostructural 

mechanism, the mobilized strains are related to wall defOlmations. 

According to the simplified geostructural mechanism, the maximum wall deflection will 

be at the toe of a rigid wall propped at the crest. However, flexible walls deform in a 

more complicated mode and the maximum wall deflection will possibly be close to 

dredge level. In this case, fmiher kinematically admissible strain fields may be added to 

better represent the soil behaviour. Therefore, the active and passive soil zones are 

subdivided into a number oftriangles as shown in Figure 4.26. The soil is divided in four 

zones behind the wall and two zones in front of the wall for the analysis presented in the 

thesis. In principle, the soil may be divided into more zones to achieve higher accuracy. 

The soil behind the wall and above the dredge level is divided into triangles OAE and 

AEK with heights equal to half the retained height, h /2 and triangles BOF and BFJ with 

heights equal to the retained height, h. The soil behind the wall and below the dredge 

level is divided into triangles OPC and PCI, with heights equal to h + d / 2, where d is 

the penetration depth, and triangles ODG and DGH with heights equal to the overall 

height, h + d. For the soil in front of the wall two defonning triangles, FPL and LPN, are 

assumed with heights equal to half the penetration depth, d / 2 and two deforming 

triangles, FMG and MGQ, with heights equal to the penetration depth, d. 

The triangles are free to slide on vertical and horizontal surfaces, which are assumed to 

be frictionless and can be attached to the surrounding rigid zones through zero extension 

lines. Zero extension lines are at 45° to the principal axes of strain, since the angle of 

dilation is taken as zero. The mobilised shear strength and the shear strain are assumed to 
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be unifonn within each triangle. The use of additional kinematically admissible strain 

fields pennits the incorporation of different mobilised shear strengths and hence 

mobilized strains in each zone of the soil surrounding the retaining wall. Strains can then 

be related to the wall defonnations by a geostructural mechanism. The strain increment 

within a triangle should be consistent with the relative rotation of the same triangle and 

then the total strain is estimated by adding the strain increments of the adjacent triangles. 

The rotation of a triangle is related to the wall displacement by means of a geometrical 

relationship. The appropriate relationships, between the shear strains and the rotations, 

developed for each triangle will be presented later in this chapter. 

r D \J 

1 
! 

h/21 
I 

/ 
I ~ 

/ 

I hi /-+K / I / I 

I 
h/21 

f 
J 

- /--

d/2[ 
dl I 

t J 1 I 7 
I 

d/2i 

Q 

Figure 4.26: Admissible strain fields for a flexible retaining wall propped at the crest. 

4.3.2 Wall rotations 

Assuming that the wall movement takes place in four successive stages, then Figure 4.27 

depicts the first stage, which consists of the movement of triangle OGD behind the wall 

to its new position OG'D' and of triangle FMG in front of the wall to its new position 

FM'G'. 
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Figure 4.27: Stage 1 of the assumed wall movement rotation of triangles ODG behind 

the wall and FMG in front of the wall. 

The rotation of triangle ODG is 884 and its horizontal 8u(ODG) and vertical 8Y(ODG) 

movements, taking compression positive, are: 

(5U(ODG) -N}4 (h+d) (4.20) 

(4.21 ) 

Therefore, the increments in horizontal (u) and vertical (v) strains are: 

(4.22) 

(4.23) 
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661 /2 
! 

Figure 4.28: Mohr circle of strain increments. 

Inward rotation would cause the signs of the vertical and horizontal strain increments to 

reverse. If ()y is the shear strain increment, then from the Mohr circle of strain increments 

in Figure 4.28: 

(4.24) 

Triangle MFG in front of the wall will be compressed and the horizontal and vertical 

strain increments within it are related to the rotation of triangle ODG by Equation (4.25). 

&u (MGQ) + c5E:, (MGQ) 0 ~ 684 (h + d) / d - 684 (h + d) / d = 0 (4.25) 

Therefore, the maximum shear strain increment is given by Equation (4.26). 

(4.26) 
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Figure 4.29: Stage 2 of the assumed wall movement - incremental rotation of triangles 

ocp behind the wall and FLP in front of the wall. 

The second stage of the wall movement is illustrated in Figure 4.29. The shear strain 

increment 8Y3 within triangle ocp behind the wall is: 

(4.27) 

The horizontal and vertical strain increments within triangle LPN in front of the wall, 

which is compressed, are related to the rotation of triangle OCP by Equation (4.28) and 

the maximum shear strain increment is given by Equation (4.29). 

6E:u (FLP) = - 6E:v (FLP) = (583 (h + d / 2) / (d /2) - (583 (h + d / 2) / (d / 2) (4.28) 

bY(FLP) = bY6 = 2 b83 (h + d / 2) / (d / 2) (4.29) 
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Figure 4.30: Stage 3 of the assumed wall movement incremental rotation oftriangle 
OBF. 

During the third stage of the wall movement the incremental shear strain in triangle OBF 

behind the wall is: 

(4.30) 

Figure 4.31 shows the final stage of the wall movement. 

92 



B C D 
1 l 

h/21 
~-

/ 
/ 

P 

: C~ 
/ 

/ 

I 
h! 

f 
/B/J/ 

I 
I 

I / 

h/2i 
/ 

/ / 

I 
// 

I ;' / / 

I 
/ / 

I // 

I 
I 

_/ 

d/2! / / 

! dl 
d/J 

I 
J 

Figure 4.31: Stage 4 of the assumed wall movement - incremental rotation of triangle 
OAE. 

The shear strain increment 8Y1 within triangle OAE behind the wall is: 

(4.31 ) 

In Figure 4.31 the total wall movement is shown. The total shear strain associated with the 

upper triangles is assumed to be the sum of the incremental shear strains associated with 

this triangle during each stage. Therefore, for tliangles ODG, oCP, OBF and OAE behind 

the wall the total shear strains Y4, Y3, Y2 and YI are given by Equations (4.32), (4.33), (4.34) 

and (4.35) respectively: 

(4.32) 

(4.33) 

(4.34) 

(4.35) 
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For triangles MFG and LPN in front of the wall the total shear strains Y5 and Y6 are given 

by Equations (4.36) and (4.37) respectively. The smaller triangle LPN in front ofthe wall 

will first be sheared by c5Y5 = 2 c584 (h + d) / d, due to the rotation of triangle FMG during 

the first stage. An additional amount of shear strain will then develop within tIiangle 

LPN during the second stage. 

Y(MGQ) = Y5 = c5Y5 2 c584 (h + d) / d (4.36) 

Y(LPN) = Y6 c5Y5 + c5Y6 = 2 c584 (h + d) / d + 2 c583 (h + d / 2) / (d / 2) (4.37) 

4.3.3 Mobilised strength 

If the increments of strain in a soil zone are known, then the mobilized strength can be 

estimated by a constitutive relationship measured in an element test on a representative 

sample of the soil. Bolton and Powrie (1988) used plots of mobilized fhction angle (jJ'mob 

against shear strain y, derived from plane strain tests, as the means of expressing the 

mobilized strength and stiffness of the soil surrounding the wall. The rate of change of 

(jJ'mob with shear strain is a useful tool for expressing strength and stiffness at the same time, 

providing information on the soil state relative to its critical state. 

From the Mohr circle of stress (Figure 4.32) the mobilised angle of friction is given by 

relationship (4.38): 

, . -I [ / '} . -I [/' ') / / ' + ')17 (jJmob=Szn t S =SII1 {(}I -(}3 {(}I (}3j (4.38) 
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T 

Figure 4.32: The Mohr circle of stress. 

The use of the rp'mob - Y relationship, instead of the conventional way of presenting soil 

stiffness by the shear modulus G, has the advantage of being comparatively insensitive to 

small changes of OCR and initial effective stress (Bolton & Powrie, 1988) and will be 

adopted in the present project. Application of more kinematically admissible strain 

fields, as described in Sections 4.3.1 and 4.3.2, enables the use of different values of 

rp'mob for the active and passive soil zone and for different depths from the crest. 

The hyperbolic relationship introduced by Duncan and Cheng (1970) and desclibed in 

Section 4.2.2, can be rewritten in terms of rp'mob - y. Their results from triaxial tests on 

dense and loose unifom1 fine silica sand samples by Duncan and Cheng (1970) can be 

transfom1ed to fit this form (Equation 4.40) and are plotted in Figure 4.33a and b 

respectively, for different confining pressures. A list of the values of the parameters 

involved is presented in Table 4.5. 

From Equation (4.10) in section 4.2.2 and Equation (4.38): 

rp'mob sin-J {y / [3 a (J3 + Y (l + 2 (J3 b)]) (4.39) 

Equation (4.39) can be written in the simpler form 

rp'mob sin- J [y / (A + By)] (4.40) 
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where A = 3 a (J3, B (J + 2 (J3 b) and a, b are constants of the hyperbolic relationship as 

defined in section 4.2.2. As already mentioned, the parameters A and B might differ for 

drained conditions but the aim here is to show that Equation (4.40) can approximate 

satisfactorily the function of cp'mob - y. The analytical calculations are presented in the 

Appendix. 

Silica 1 Dense Loose 
sand 

Dr 
(Relative 100% 38% 
density) 

Rf 0.91 0.90 

IK I 2,000 295 

n 0.54 0.65 

(J3 
• 98.1 0294.3 • 490.5 • 98.1 • 294.3 • 490.5 

(KN/m2) 

a (m21 .1.315 10-5 06.796 10-6 02.273 10-6 .1.059 10-4 .5.097 10-5 .1.223 10-5 

KN) 

b (nll .3.092 10-3 01.019 10-3 06.178 10-4 04.587 10-3 .3.202 10-3 .9.439 10-4 

KN) 

A=3a (J3 03.87 10-3 06 10-3 ·3.35 10-3 00.0312 ·0.045 00.018 

B=1+2(J3b • 1.61 o 1.6 • 1.606 ·1.9 • 1.885 • 1.926 

Table 4.5: Tliaxial tests on dense and loose silica sand carried out by Duncan and Cheng 
(1970) together with the values of parameters A and B. 
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Figure 4.33: Mobilised friction angle against shear strain for (a) dense silica sand, (b) 
loose silica sand for results obtained from triaxial tests by Duncan and Cheng (1970). 

4.4 WALL FLEXURAL RIGIDITY ANALYSIS 

In Figure 4.34, the continuous curvature of the wall is idealized into a number of 

rotations at discrete points, corresponding to the triangles in the active and passive soil 

zones. The total length of the wall, h + d, is divided into four parts with lengths of h / 2, 
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h / 2, d / 2 and d / 2, where h is the retained height of the wall and d its embedment depth 

(Figure 4.31). 

Figure 4.34: Discretisation of wall into four rigid paIis connected by rotational springs. 

The flexural rigidity of the beam, E I, is modeled by rotational springs of stiffness kI, k2 

and kl, where k = A1 1 e, at points 1, 2 and 3 respectively. The first component at point 1 

has a value kI equal to E I divided by halfthe lengths of parts A-I and 1-2: 

kI Ell (h14 + h14) 2 Ell h (4.41) 

Component 1\"2 at point 2 is equal to E I divided by half the lengths of parts 1-2 and 2-3: 

k2 E J 1 ( h 14 + d 1 4) = 4 Ell (h + d) (4.42) 

Following the same approach, component k3 at point 3 has a value of: 

k3 = E J 1 (dI2) 2 E J 1 d (4.43) 

The assumption that the flexural rigidity of a beam can be represented by a number of 

rotational splings concentrated on different points with rotational stiffness equal to E I 

divided by half the lengths of the adjacent sections, will now be examined with reference 

to examples of beams with different boundary conditions subject to unifonn and 

triangular loads. 
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• Simply supported beam subject to uniform loading 

w 

A 

s 

2s 

Figure 4.35: Simply supported beam subject to unifonn loading. 

The simply supported beam in Figure 4.35 is divided into two parts of equal length s. 

According to standard beam theory, the bending moment at any distance x from the 

supp01i A is given by Equation (4.44), where w is the uniform load acting on the beam 

per meter of its length: 

M(x) = }v (2 s / {x / (2 s) - [x / (2 s)/) /2 (4.44) 

If k is the component of flexural rigidity concentrated on point 1 and 81 is the rotation at 

this point, then the bending moment at the same point is: 

(4.45) 

From Equations (4.44) and (4.45) 81 can be calculated: 

8J = w l/ (2 k) (4.46) 

From standard beam theory, the deformation at any distance x from the suppOli A is 

given by Equation (4.47): 

(5~'() [w (2 sf /24 E IJ {[x / (2 s)J 2 [x / (2 s)/ + [x / (2 S)J4) (4.47) 

If 80 is the rotation at point A, then the defonl1ation at point 1 is: 
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( 4.48) 

From Equations (4.47) and (4.48): 

8o=5ws3 1(24El) ( 4.49) 

Consideling the symmetry of the beam: 

(4.50) 

From Equations (4.46), (4.49) and (4.50), component k can be calculated: 

k 1.2Ells (4.51) 

35 

Figure 4.36: Simply supported beam subject to uniform loading with two rotational 

spnngs. 

In Figure 4.36 a beam with the same loading and boundary conditions is divided in three 

pmis of equal lengths s and its flexural rigidity is assumed to consist of two equal 

components, k, at points 1 and 2. The bending moments at any distance x from suppoli A 

and at point 1 are given by Equations (4.52) and (4.53) respectively: 

) 2 
M(x) = w (3 sf {x I (3 s) - [x I (3 s)] } 12 (4.52) 

(4.53) 
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Then, the rotation at point 1, e], can be calculated: 

e] w / / k (4.54) 

From the standard beam theory, if eo is the rotation at point A, the deformations at any 

distance x from suppOli A and at point 1 are given by Equation (4.55) and (4.56) 

respectively: 

6~'() [w (3 s/ / (24 E J)] {x / (3 s) - 2 [ x / (3 s)/ + [x / (3 s)/J (4.55) 

6(s) = ()] = eo s (4.56) 

From Equations (4.55) and (4.56), eo is calculated: 

eo JJ 1;\' s3 / (J 2 E J) (4.57) 

From the symmetry of the beam: 

(4.58) 

From Equations (4.54), (4.57) and (4.58): 

k 1.09 E J / s (4.59) 

.S s 

n- 1 

Figure 4.37: Simply supported beam subject to unifoll11 loading with n rotational splings. 
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Figure 4.37 shows a simply suppOlied beam subject to unifonn loading, divided in (n+ 1) 

parts of equal length s; hence its total length is (n+ 1) s. Its flexural rigidity is assumed to 

consist of n equal components, k. In equations (4.60) and (4.61) the bending moments at 

any distance x from support A and at point 1 according to standard beam theory are 

respectively: 

M(x) w (n+ 1/ s 2 {2 x / [(n+ i) s] - [x / ((n+ 1) S)]2) /2 (4.60) 

(4.61 ) 

The rotation at point 1, fh is: 

fh = -w n i / (2 k) (4.62) 

The general expression for the defomlations at any point along the beam is given by 

Equation (4.63) and the defoTIllations at points 1 and 2 are calculated by Equations (4.64) 

and (4.65): 

r5(x) = w (n+ i/ S4 / (24 E I) {x / [(n+ i) s] ~ 2 [x / ((11+ 1) s)/ + 

{x: / ((11+ 1) s)/} (4.63) 

(5(5) (5 J = eo s ----+ eo 3 ) 
W S 11 (n-+ 3 11 + i) / (24 E J) (4.64) 

(4.65) 

Substituting Equation (4.62) into Equation (4.65): 

). 3 2 eo = w s- [k S (11 +3 n - 5 n + 1)+ 6 E 1 n] / (24 k E J) (4.66) 

From Equations (4.64) and (4.66): 

k = 6 n E 1/ [s (6 n - i)] ----+ k s / E 1 = 611 / (611 - i) ( 4.67) 
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It is obvious from Equation (4.67) that k depends on the number of points that the 

flexural rigidity is assumed to be concentrated on, n, and the distance, s, between these 

points. In Figure 4.38, where k s / (E J) is plotted against n, k s / (E J) tends to unity as the 

number of components of flexural rigidity increases. Hence, the assumption k = E J / s is 

justified for 11 > 1. 

ks lEI 
1.2 

1. 

1. 

ii 
1.05 i \ 

.1 '~.=. ===~~~~ n 
20 40 60 80 100 

Figure 4.38: Plot of the quantity k s / (E J) against the number of flexural rigidity 
components 11. 

Following the same approach the quantity k s / (E J) is given by Equations (4.68) to 

(4.74) and is plotted against 11 in Figures (4.39) to (4.52) for beams with different 

boundary conditions subject to unifonn and triangular loads. The analytical calculations 

have been carried out in Mathematica and are presented in the Appendix. 

• Built in beam subject to uniform loading 

A 

(n+ 1)s 

Figure 4.39: Built-in beam subject to unifoTI11loading with n rotational springs. 
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k s / (E J) = (n2 
- 4 n + J) / (n2 

- 4 n + 2) (4.68) 

In Figure 4.40, k s / (E J) is plotted against n, for n > 4. As n increases, k s / (E J) tends to 

unity. Hence, k E J / s for n > 4. 

ks lEI 

0.95 
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i 
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i 
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Figure 4.40: Plot of the quantity k s / (E J) against the number of the flexural rigidity 
components n for a built in beam subject to unifOllli loading. 

• Cantilever beam subject to uniform loading 

1L 

-r kTT-
eJ 0-'-- J .. 

,n 

: chn 1 ) 

Figure 4.41 : Cantilever beam subject to uniform loading with n rotational splings. 

(4.69) 
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Figure 4.42: Plot of the quantity k s / (E 1) against the number ofthe flexural rigidity 
components n for a cantilever beam subject to uniform loading. 

• Built in - simply supported beam subject to uniform loading 

A 

s ------
7· k 
/~ 

Figure 4.43: Built-in simply supported beam subject to unifonn loading with n 
rotational springs. 

k s / (E 1) 
) 

3 n (n - 3) / (3n- - 9n +2) (4.70) 

From Figure 4.44, where k s / E 1 is plotted against n for n > 3, as n increases k s / E 1 

tends to unity. 

ks lEI 

0.9 
I 

0.8! . 
I I 
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Figure 4.44: Plot of the quantity k s / (E 1) against the number of the flexural rigidity 
components n for a built in - simply supported beam subject to unifonn loading. 
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• Simply supported beam subject to triangular loading 

A 

s -----

Figure 4.45: Simply suppOlied beam subject to triangular loading with n rotational 

spnngs. 

For the beam shown in Figure (4.45): 

ks/(£J)=2n(n+2)/(2n2+4n J) (4.71) 

In Figure 4.46, where k s / (E J) is plotted against 71, k s / (E J) tends to unity as n 

1l1creases. 

ks lEI 
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Figure 4.46: Plot of the quantity k s / (E J) against the number of the flexural rigidity 
components n for a simply supported beam subject to triangular loading. 
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• Built in beam subject to triangular loading 

1)5 i 
--

Figure 4.47: Built-in beam subject to triangular loading with n rotational splings. 

k s / (E J) (2113 
- 3112 

- J 211+ 3) / (2n 3 
- 3112 J 2n + 8) (4.72) 

In Figure 4.48 k s / (E J) is plotted against n, for 11 > 4. According to this plot, k s / (E J) 

tends to unity as 11 increases. 
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Figure 4.48: Plot of the quantity Ie s / (E J) against the number of the flexuralligidity 
components n for a built in beam subject to triangular loading. 
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• Cantilever beam subject to triangular loading 
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Figure 4.49: Cantilever beam subject to triangular loading with n rotational springs. 

The quantity k s / (E 1) is given by Equation (4.71) and is plotted against n in Figure 4.50. 

2 7 
k s / (E 1) = 2 n / (1 + 2 n) 

ks lEI 
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50 

Figure 4.50: Plot of the quantity k s / (E 1) against the number of the flexural rigidity 
components n for a cantilever beam subject to tliangular loading. 
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• Built in - simply supported beam subject to triangular loading 

iV!A 

s 
--~--~~--~-----

Figure 4.51: Built-in beam subject to triangular loading with n rotational splings. 

ks / E 1 
) ) 

2 (2 n- - 6 n - 3) / (4 n- - 12 n - 1) (4.74) 

In Figure 4.52 k s / E 1 is plotted against n for n > 4. It is obvious from the graph that k = 

E 1 / s for n > 4. 
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Figure 4.52: Plot of the quantity k s / (E 1) against the number ofthe flexural rigidity 
components n (n>4) for a built in - simply supported beam subject to triangular loading. 

The behaviour of a retaining wall propped at the crest is likely to resemble the behaviour 

of a simply supported or cantilever beam, since the point at the crest, where the prop 

force acts, can be considered as a simple support and the toe of the wall is free to move 

laterally. The discretised flexural rigidity approach, as described in this section, has been 

applied both to a cantilever and a simply supported beam and it has been shown that their 

flexural rigidity can be analysed in components with values of k = E 1 / s. Therefore, the 

flexural rigidity of a retaining wall propped at the crest can be approximated in this way. 

More examples of beams are presented in the Appendix. 
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4.4.1 Flexural rigidity analysis for a retaining wall propped at the crest 
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Figure 4.53: Rotations and displacements at discretised points along a retaining wall 
propped at the crest. 

Figure 4.53 shows the rotations and displacements of a retaining wall propped at the crest 

according to the discretised flexural rigidity approach presented in the previous section. 

The continuous curvature of the wall is idealized into three rotations at discrete points, 

cOlTesponding to the tIiangles in the active and passive soil zones. 

The horizontal displacement at point G is (5U4 and at point P it is (5Uj. From the 

geostructural mechanism described in section 4.3.1, the displacements (5U4 and (5Uj are 

related to the wall rotations (584 and (58 j by Equations (4.75) and (4.76): 

(4.75) 

(4.76) 
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From Figure 4.53, OJi is the rotation of the wall at the i1h discrete point from its vertical 

position, while If!i is the rotation of the (i+ l)t/I discrete point relevant to the rotation of the 

it/I discrete point. Hence, Equation (4.76) may be written: 

(4.77) 

From Equations (4.76) and (4.77): 

(4.78) 

The displacement at point F, 6U2, is given by Equations (4.79) and (4.80): 

(4.79) 

(4.80) 

From Equations (4.76), (4.79) and (4.80), the angle OJ3 may be calculated: 

(4.81 ) 

Similarly the horizontal displacement at point E, (5u/, is given by Equations (4.82), (4.83) 

and (4.84): 

(4.82) 

(4.83) 

(4.84) 

Therefore, the angles OJ/and OJ2 may be calculated and are given by Equations (4.85) and 

(4.86) respectively: 

(4.85) 
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(4.86) 

The rotation of the wall at the (H 1hz discrete point along its length relative to the 

rotation of the irh discrete point, If!], 1f!2 and 1f!3, can be calculated geometrically from 

Figure 4.53: 

(4.87) 

1f!2 OJ2 + OJ3 [Eh (h + d I 2) ~ a] d12] I d (4.88) 

(4.89) 

In the previous section it was shown that the flexural rigidity of a retaining wall, E I, can 

be modelled by three rotational springs of stiffness k], k2 and k3, where k i = Mi I ~Ji' 

Therefore, considering Equations (4.41) and (4.87) the bending moment M] at point E at 

the retaining wall shown in Figure 4.53 is given by Equation (4.90): 

k1 M] I 1f!1 = 2 E I I h ---7 M/ = 2 ba] 2 Ell h ---7 M1 = 4 ba, E I I h 

( 4.90) 

Similarly, the bending moments at points F and P are given by Equations (4.91) and 

(4.92) respectively: 

k2 = M2 I 1f!2 = 4 E I I (h + d)---7 

---7 M2 2 [a2 (h + d I 2) ~ a, d12] 4 E I I [d (h + d)]---7 

---7 M2 = 4 E I [a2 (2 h I d+ 1) a]] I (h + d) (4.91 ) 

k3 = M3 I 1f!3 = 2 E I I d ---7 M3 = 2 (2 E I I d) [a3 (h + d) a2 h] I d ---7 

(4.92) 
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The normalized bending moments are: 

(4.93) 

(4.94) 

(4.95) 

The normalised bending moments can be rewritten in the form of Equations (4.96) to 

(4.98) where p is the wall flexibility defined by Rowe (1952): 

( 4.96) 

(4.97) 

(4.98) 
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4.5 ULS CALCULATIONS FOR A RETAINING WALL PROPPED 

AT THE CREST IN CONDITIONS OF ZERO PORE WATER 

PRESSURES 

In Figure 4.54 the horizontal stress distributions together with the pore water pressures, 

assuming linear seepage, are shown behind and in front of a retaining wall, which is in 

limiting equilibrium. The active and passive stresses at the toe of the wall are wlitten in 

Figure 4.54. 

h/2 

cl/2! 
I 
~-

a = Kp (ysd-- u) 
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a'fw=Ka[ys(hld) u] 

Figure 4.54: Stress and pore water pressure distribution in limit equilibrium behind and 
in front of a retaining wall propped at the crest. 

Conditions of steady state seepage are often assumed; hence, the pore water pressures at 

the toe are given by Equation (4.99), where Zl and Z2 are the distances between the 

ground surface and the ground water level behind and in front of the wall respectively: 

(4.99) 

For simplicity and to emphasize the effect of soil stresses, since u is unaffected by 

soil/wall stiffness, the analysis is now focused on conditions of zero pore water 

pressures. Therefore: 

Zj = h + d and Z2 = d (4.100) 
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From the condition of horizontal stress equilibrium, the prop force F may be calculated: 

'" 1) 2) LPh = 0 ---7 1 / 2 Ka )Is (h + d) = 1 / 2 Kp )Is d- + F ---+ 

F = 1 / 2 Ka )Is (h + d/ - 1 / 2 Kp )Is d2 (4.101) 

If m is the retained height ratio (m = h / H), the nOlmalized prop force F / )Is H2 , where H 

is the overall height of the wall, is given by Equation (4.102): 

(4.102) 

Taking the moments at the point 0 at the crest, m may be calculated by Equation (4.103): 

LMh = 0 ---7 1 / 2 Ka )Is (h + d/ 2/3 1 / 2 Kp )Is d2 (h + 2/3 d) ---7 

(4.103) 

According to Eurocode (EC7, 1997) the design soil strength rp'design should be equal to 

tan- i {(tan rp) / 1.25}, where rp' is a moderately conservative estimate of the effective 

angle of friction relevant to the ultimate limit state. Taking into account wall friction, the 

active and passive emih pressure coefficients are given by Equations (4.104) and (4.105) 

1[1 .' / A .'\ II) / (1 +. . J) -((,d-(5) /antp'design I, szn rp design COS f LJ -u/ szn rp design e (4.104) 

v -i[1 ,. /A 811) /(1 . . J) -{(,d-(5)/antp'desigl1 
J\.p-/' - Sln rp design COS fLJ-u/ + Sln rp design e (4.105) 

where sin L1 = sin 6/ sin rp'desion, c, 

Equations (4.103), (4.104) and (4.105) relate the design soil strength rp design to the 

retained height ratio m. Therefore, if the retained height ratio is known, the soil strength 

required to maintain stability may be calculated. Similarly, if the design soil strength is 

known, the retained height ratio required to avoid collapse of the wall may be derived 

from the Equations above. 
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4.6 SLS CALCULATIONS FOR A RETAINING WALL PROPPED 

AT THE CREST IN CONDITIONS OF ZERO PORE WATER 

PRESSURES 

The design of a retaining wall should not merely ensure avoidance of collapse but should 

also meet specific criteria in terms of displacement, damage and appearance. The required 

retained height ratio m may be calculated from the ULS calculations using the factored 

(design) strength, as shown in Section 4.5, and the soil and wall defonnations can be 

estimated using the mobilised strength method. 

Figures 4.27, 4.29, 4.30 and 4.31 in section 4.3.2 show four successive stages of a small 

wall movement into the excavation. According to the mobilised strength method for a 

wall with a retained height ratio m calculated from the ULS calculations, wall rotation 

about the crest will mobilise different amounts of soil strength, rp'mobi, in each soil zone. 

The transformed form (Equation 4.40) of the hyperbolic relationship introduced by 

Duncan and Cheng (1970) and described in Section 4.2.2, is used to relate the mobilised 

soil strength rp'mobi to the shear strain Yi developed in each soil zone. The shear strain Yi 

can be related to the wall rotations 68i as shown Section 4.3.2. The active and passive 

earth pressure coefficients, Kai and Kpi will be different in each soil zone because the 

mobilised strengths rp'mohi are different and may be calculated by Equations (4.1 04) and 

(4.105) (Powrie, 1997), assuming full wall fliction (rp '= (»): 

Kal
. = f[J .' I A 'I} / (J . , I I ·{(LJ.(5) raJ1(p 'mob} 

I, szn rp mob COS ILl-c)) + SlJ1 rp mob).! e (4.106) 

Kpl
'= f[J .' I A .\ II} / (J +. , J I ·((L1·(5) rail I" 'mob} 

I, SlJ1 rp mob COS ILl-U/ szn rp mob j e (4.107) 

The distribution of the active and passive pressures behind and in front of the retaining 

wall is assumed to be different but linear in each soil zone as shown in Figure 4.55. 

116 



~t 

h/2[ 
I 

i 
h/2i 

I 
i 

d/2! 
I 
I 

d/2 1 

1 
I 

I 
~ 

J 
4 

Figure 4.55: Redistribution of the active and passive stresses after a small movement of a 
retaining wall propped at the crest. 

The mobilised soil strength, rp'mob;, is assumed to be unifom1 within each soil zone. For a 

wall with a retained height ratio m calculated fi'om the ULS calculations using factored 

(design) strength, the soil strength mobilised in the soil zones 0-1, 1-2, 2-3 and 3-4 

behind the wall and 2-3 and 3-4 in fi'ont (Figure 4.55) after a small wall rotation at the 

crest is given by Equations (4.108), (4.109), (4.110), (4.111), (4.112) and (4.113) 

respectively: 

rp'mobl sin- I [YI / (A + B )l1)J ---7 

---7 rp'mobl = sin- I {2 [1584 + 683 + (582+ 68d / [A + 2 B (684 + 1583 + 682+ 1581 )J) 

(4.108) 

rp'mob3 sin- I [Y3 / (A + B )'3)J ---7 

(4.110) 
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(4.111) 

rp'mob5 = sin- l [Y5 / (A + B Y5)J ---7 

rp'mob5 = sin- l {[2 (584 (h + d) / dj/ [A + 2 B (584 (h + d) / d)J) (4.112) 

rp'moM =sin- l {2 [(584 (h + d)/d + (583 (h + d/2) / (d/2)J / 

[(A + 2 B [(584 (h + d)/d + (583 (h + d/2) / (d/2)J) (4.113) 

It is shown in the Appendix that parameters A and B are given by: 

A=Ys/G* (4.114) 

B 1 + 0.5 (1 ~sin rp) / sin rp (4.115) 

where G* is the rate of increase of the shear modulus with depth and rp is the angle of 

shearing resistance at failure. The analytical calculations for the derivation of Equations 

(4.114) and (4.115) are presented in Appendix B. 

The active and passive stresses just above and below each of the points along the wall, 

with a retained height ratio m calculated from the ULS calculations using the unifol1n 

factored (design) strength, can then be determined: 

(Jhla = Kala Ys Z 1/2 Kala )Is h (4.116) 

(JhJu = KaJu Ys Z = 1/2 KaJu Ys h ( 4.117) 
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(Jh2a = Ka2a Ys z Ka2a Ys h (4.118) 

(Jh2u = Ka2u Ys z = Ka2u Ys h (4.119) 

(J1i3a Ka3a Ys z = Ka3a Ys (h + d/2) (4.120) 

(Jh3u = Ka3u Ys Z Ka3u Ys (h + d/2) (4.121) 

(J1z4 = Ka4 Ys Z Ka4 Ys (h + d) (4.122) 

(4.123) 

(J1z6u = Kp6l/ Ys Z Kp6u Ys d / 2 (4.124) 

(Jh6a' Kpoa)ls Z = Kpoa )Is d / 2 (4.125) 

If we assume that after a small wall rotation into the excavation a new equilibrium 

condition is reached, the prop force is equal to the sum of the stresses behind and in front 

of the wall: 

F + (J1z6a d / 4 + ((J1z5a + (Jh 6u) d / 4 - (Jlzla h /4- ((J1z2a + (Jlzl,,) h /4 - ((J/Z3a 

+ (J/Z211) d / 4 - ((Jh4a + (J1i3u) d / 4 0 (4.126) 

If m is the retained height ratio (m= h / H), Equation (4.126) can be rewritten in the fOlm: 

(4.127) 

Taking the moments about the crest 0: 

22) 0---7 1 / (24 )Is H) [ 2111 (J/Zla + 4 m (Jhlu + 5 m- (Jh2a + (1-m) (5 m+ J) 
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(Jh2u + (J-m) (4 m+ 2) (J1z3a + (J-m) (2 m+4) (Jh3u + (l-m) (m+ 5) (Jh4a - (J-m) 

(m+ 5) (Jh5a - (J-m) (4 m+ 2) (Jh6a - (J -m) (2 m+4) (Jh6u = 0 (4.128) 

The normalized bending moments at points 1, 2 and 3 along the wall are given by 

Equations (4.129), (4.130) and (4.131) respectively. 

(4.129) 

(4.131) 

Combining Equations (4.129), (4.130) and (4.131) with Equations (4.96), (4.97) and 

(4.98) from Section 4.4.1, where p is the wall flexibility p defined by Rowe (1952) and is 

equal to it / £1: 

( 4.132) 

) ) 

m F / (Ys H) - m- / (24 Ys H) (4 (Jlzla + 4 (Jhlu + 5 (Jh2a) = 

=4/ (Ys p) [(502 (J +m) / (J -m) - (50d (4.133) 

71/ / (24 Ys H) ((Jh6u + 2 (Jh5a- 2 (Jh4a (J/131J 

=4/ [Ys P (J -mil ((503 - m (502) (4.134) 

The active and passive pressures are related to the wall rotations at discrete points by 

Equations (4.108) to (4.125). Substitution of their values into Equations (4.127), (4.128), 

(4.132), (4.133) and (4.134) gives a system of five unknowns: (501, b02, (503, (504 and F. 

The solution of this system requires the determination of parameters A and B. Parameter 

B can be easily obtained from triaxial tests on soil samples and parameter A depends on 

G*, the rate of increase of the shear modulus G with depth. To explore the rotations of a 

retaining wall propped at the crest for a range of wall flexibility numbers embedded in a 
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variety of soil conditions, the system of five unknowns is solved numerically for values 

of cp' from 20° to 40°; values of log (Ys p) from -4 to 2, where the quantity (Ys p) is 

dimensionless and values of log (Ys I G*) from -6 to -1, where the quantity (Ys I G*) is 

dimensionless, assuming full wall fI-iction (b = cp '). The in service nonnalized maximum 

bending moments Mmax I (Ys H-) and prop loads F I (Ys H2) and the nOlmalized 

defonnations at points 1 (b/H), 2 (b2IH), 3 (b3IH) and 4 (b4IH) along the wall can then be 

detennined. The in service maximum bending moments and prop loads are divided by 

the respective values Mmax.EC7 I(ys H 3
) and F Ec7 I()'s H2) calculated from the ULS 

calculations according to Eurocode 7 (1995). The programming of the numerical 

calculations was carried out in Mathematica and can be found in the electronic copy of 

the Appendices. The results are presented in tables in Appendix C. Some of the 

numerical results are plotted in Figures 4.56 to 4.91. 

The ratio of the serviceability maXImum bending moments to the bending moments 

calculated according to Eurocode 7 (1995) (M,nax I M max,EC7), the ratio of the serviceability 

prop loads to the prop loads calculated according to Eurocode 7 (1995) (FIFEc7) and the 

normalised displacements (b/H, b21H, b31H, b41H) are plotted in Figures 4.56 to 4.61 when 

A is equal to 10-4 and in Figures 4.62 to 4.67 when A is equal to 10-3 against (Ys p) for 

different values of cp'; in Figures 4.68 to 4.73 when )'5 p is equal to 10-1 and in Figures 4.74 

to 4.79 when )'S p is equal to 10 against the parameter A for different values of cp'; in 

Figures 4.80 to 4.85 when cp' is equal to 20° and in Figures 4.86 to 4.91 when cp' is equal to 

25° against )'S p for different values of A. Tables and figures for a wider range of values can 

be found in Appendix D. 
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Figure 4.56: The ratio of Mmax I Mmax,EC7 against (Ys p) for different values of rp' when A 
=10-4. 
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Figure 4.57: The ratio of F I FEe7 against (Ys p) for different values of rp' when A = 10.4. 
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Figure 4.58: Normalized defonnations at depth hl2 from the crest against (Ys p) for 
different values of rp'when A = 10-4. 
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Figure 4.59: NonnaIized deformations at depth h from the crest against (Ys p) for different 
values of cp' when A = 10-4. 
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Figure 4.60: Normalized deformations at depth h+d/2 from the crest against (Ys p) for 
different values of cp' when A 10-4. 
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Figure 4.61: NonnaIized deformations at depth H from the crest against (Ys p) for different 
values of cp' when A = 10.4 . 
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Figure 4.62: The ratio of Mmax I Mm{lx,EC7 against (Ys p) for different values of q/ when A 
10-3. 
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Figure 4.63: The ratio of F I FEC7 against (Ys p) for different values of 1fJ' when A = 10-3
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Figure 4.65: Normalized defonnations at depth h from the crest against (Ys p) for different 
values of cp' when A = 10-3
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Figure 4.66: Nonnalized defomlations at depth h+d/2 from the crest against (Ys p) for 
different values of qJ' when A = 10-3
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Figure 4.67: Nonnalized defonnations at depth H from the crest against (Ys p) for 
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Figure 4.68: The ratio of Mma/Mmax,EC7 against parameter A for different values of rp' when 
(Ysp)=10- 1
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Figure 4.69: The ratio of FIFEc7 against parameter A for different values of rp' when (Ys 
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Figure 4.70: Normalized deformations at depth hl2 from the crest against parameter A for 
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Figure 4.71: Nonnalized defonnations at depth h from the crest against parameter A for 
different values of <p' when (y, p) 1 O~I. 
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Figure 4.72: Nonnalized defonnations at depth h+d/2 from the crest against parameter A 
for different values of <p' when (Ys p)=l O~I. 
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Figure 4.73: Normalized deformations at depth H from the crest against parameter A for 
different values of <p' when ()',p)=lo~l. 
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Figure 4.74: The ratio of Mma./Mmax,EC7 against parameter A for different values of cp' when 
(Ys p)=10. 
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Figure 4.75: The ratio of FIFEc7 against parameter A for different values of cp'when 
(ysp)=10. 
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Figure 4.76: NODnalized deformations at depth hl2 from the crest against parameter A for 
different values of cp' when (Ys p)= 10. 
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Figure 4.77: Nonnalized defoffi1ations at depth h from the crest against parameter A for 
different values of cp' when (Ys p)=l O. 
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Figure 4.78: Normalized deformations at depth h+d/2 from the crest against parameter A 
for different values of cp' when (Ys p)=l O. 
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Figure 4.79: Normalized defonnations at depth H from the crest against parameter A for 
different values of cp' when (Ys p)=l O. 
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Figure 4.80: The ratio of MmaxlMmax,Ec7 against (Ys p) for different values of A when rp' = 

20°. 
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Figure 4.81: The ratio of FI FEel against (Ys p) for different values of A when rp' 20°. 
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Figure 4.82: Nonnalized defoTInations at depth hl2 from the crest against (Ys p) for different 
values of A when rp' 20°. 
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Figure 4.83: Normalized defonnations at depth h from the crest against (Ys p) for different 
values of A when rp' = 20°. 
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Figure 4.84: Nonnalized deformations at depth h+d/2 fi·om the crest against (Ys p) for 
different values of A when rp' = 20°. 
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Figure 4.85: Nonnalized deformations at depth H from the crest against (Ys p) for different 
values of A when rp' 20°. 
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Figure 4.86: The ratio of Mma./Mmax,Ec7against (Ys p) for different values of A when rp' 
= 25°. 
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Figure 4.87: The ratio of FI FEU against (Ys p) for different values of A when rp' = 25°. 
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Figure 4.89: Nonnalized defoTI11ations at depth hl2 from the crest against (Ys p) for different 
values of A when rp' = 25°. 
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Figure 4.90: Nonnalized def01111ations at depth h from the crest against (Ys p) for different 
values of A when 9' = 25°. 
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Figure 4.91: Normalized deformations at depth h+d/2 from the crest against (Ys p) for 
different values of A when 9' = 25°. 
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Figure 4.92: Nonnalized deformations at depth H from the crest against (Ys p) for different 
values of A when 9' = 25°. 
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The origin of axes for the Mmax / Mmax,EC7 and F / FEc7 graphs is at (0, 1). The x-x' axis 

represents the case when the maximum bending moments and prop loads calculated 

according to the mobilized strength method is equal to the respective magnitudes 

calculated according to Eurocode 7 (1995). For the parts of the curves above the x-x' axis 

Eurocode 7 (1995) might underpredict, whereas for the parts of the curves below the x-x' 

axis might overpredict the maximum bending moments and the prop loads compared with 

the mobilized strength method. The figures show that as the wall flexibility or the soil 

stiffness increases, the maximum bending moments and the prop loads reduce below their 

limit equilibrium values. The pattern of the reduction is similar for different values of q/. 

At very high or very low values of wall flexibility or soil stiffness there is insignificant 

change in the ratios lv/max / Mmax,EC7 and F / FEC7 and they tend to similar values. However, 

it should be noted that very high or low values of wall flexibility or soil stiffness might not 

be realistic, but are included to represent extreme conditions. According to the curves, as 

the soil becomes stiffer, the wall should be stiffer to get the same reduction in the bending 

moments. This is in agreement with the definition of Rcrit= G* It / EI as presented in 

Chapter 3; as G* increases, p= It / EI should decrease to maintain the same value of Rcril. 

Moreover, greater values of soil stiffness or wall flexibility are needed for a given 

reduction of Mmax / Mmax,EC7 and F / F EC7 when rp I is high (40°) than when it is low (20°). 

The nonnalized displacements increase with decreasing soil stiffness or increasing wall 

flexibility, with the exception of b,/H which decreases with increasing wall flexibility. This 

may be explained by attributing 64/H to rigid body rotation about the prop. Moreover, there 

is insignificant change in the values of the nOlmalized displacements when log A<-2. 

It should be noted that the accuracy of the MSD method as presented in this Section may 

be improved if the soil behind and in front of the retaining wall is divided into a larger 

number of soil zones and a more complex model of the soil behaviour is adopted. In this 

thesis, the number of soil zones and the soil model incorporated in the MSD method can 

achieve reasonable accuracy and meet the objective for a simple approach. 
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4.7 SUMMARY 

In Chapter 4, new kinematically admissible soil displacement fields have been introduced 

to apply the MSD method to flexible retaining walls propped at the crest in conditions of 

zero pore water pressures. The wall flexibility has been idealised into a simple mechanism 

and the hyperbolic relationship, introduced by Duncan and Cheng (1970), has been 

modified and is used to associate the mobilized shear strain with the mobilized shear 

strength. The ratios of the MSD maximum bending moments and prop loads to those 

calculated according to Eurocode 7 (EC7, 1995) and the displacements at characteristic 

points along the wall are plotted against the shear strength before excavation, wall 

flexibility and soil stiffness. According to the MSD results presented in this Chapter, the 

maximum bending moments and prop loads are significantly reduced from the values 

suggested by Eurocode 7 (EC7, 1995) for flexible walls or stiff soils. However, Eurocode 7 

(EC7, 1995) might underpredict the maximum bending moments and prop loads for rigid 

walls or less stiff soils. Regarding the displacements, little change is noticed for large 

values of soil stiffness or small values of wall flexibility. 
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5. ANALYSIS AND DESIGN OF FLEXIBLE RETAINING WALLS 

PROPPED AT THE CREST IN CONDITIONS OF PORE WATER 

PRESSURES CORRESPONDING TO LINEAR SEEPAGE 

5.1 INTRODUCTION 

The pore water pressures may have a considerable effect on retaining structures. 

Therefore, their influence when excavating or constructing retaining walls should not be 

neglected. In this chapter, the MSD method is applied to flexible retaining walls propped 

at the crest in conditions of pore water pressures corresponding to an approximate state 

of linear seepage from an original ground water table at the ground level and at half the 

retained height level. Initially, the retained height ratio, m, is determined from the ULS 

calculations according to Eurocode 7 (EC7, 1995). The maximum bending moments and 

prop loads are calculated according to Eurocode 7 (EC7, 1995) and according to the 

MSD method. The ratios of the maximum bending moments and prop loads derived from 

the MSD method to those detennined by Eurocode 7 (Mmax IMmax,EC7, F IFEC7) and the 

nonnalized bending moments at characteristic points along the wall «(5/H, (5/H, (531H, 

r'54IH) are plotted for different values of initial shear strength, wall flexibility and soil 

stiffness, similarly to the procedure described in Chapter 4. 

5.2 ULS CALCULATIONS: ORIGINAL WATER TABLE AT 

GROUND LEVEL 

Figure 5.1 shows the horizontal stress distributions together with the pore water 

pressures, assuming linear seepage from a water table at ground level, behind and in 

front of a retaining wall which is in limiting equilibrium. The n0D11alized pore water 

pressures u I (Ys H) at the toe are given by Equation (5.1) and the normalized effective 

active (J'/w I (Ys H) and passive stresses (J'hp I (Ys H) at the toe of the wall are given by 
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Equations (5.2) and (5.3) respectively, where Ys is the soil unit weight and H is the 

overall height of the wall. 

F 

1 
hi 
I 

-+----~ 
dl 

I 

j L~~_~_.~-L~~~~ 
U (J'ha 

Figure 5.1: Stress and pore water pressure distribution in limit equilibrium behind and 
in fi'ont of a retaining wall propped at the crest in conditions of pore water pressures at 
ground level. 

u = Yw d [1 + h /(2d + h)] ---+ u / (Ys H) = 2 Yw (1-m) / [ys (2-m)] (5.1) 

(J'lza / (Ys H) = Ka [ 1 - u / (Ys H)] Ka {1- YlV (1-m) / [Ys (2- m)J) (5.2) 

(f'hp / (Ys H) = Kp [1-m- u / (Ys H)] = Kp {1-m-yw (1-m) / [Ys (2-m)]) (5.3) 

From the condition of horizontal stress equilibrium, the nOll11alized prop force F / (Ys H) 

may be calculated 

) 

F / (y, H) =1 / 2 Ka [1- U / ()Is H)] 1 / 2 (1-m) Kp [1 m - U / ()Is H)] 

+ 1 / 2 m U / (Ys H) (5.4) 

where m is the retained height ratio (m = h / H). 

Taking the moments at the point 0 at the crest, m may be calculated by Equation (5.5): 

LMh =0 ---+ 1/3 (f'lza / ()Is H) -1/6 (f'hp / (Ys H) (1-m) (2+m) + 1/3 U / ()Is H) 

- 1/6 (1-m) (2+m) U / (Ys H) = 0 (5.5) 
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Assuming full wall friction, the active and passive earth pressure coefficients are given 

by Equations (4.104) and (4.1 OS). The detennination of the retained height ratio m, 

enables the calculation of the maximum bending moment along the wall assummg a 

unifonn value of qJ 'mob according to Eurocode 7 (EC7, 1997). 

5.3 SLS CALCULATIONS: ORIGINAL WATER TABLE AT 

GROUND LEVEL 

For a wall with a retained height ratio m calculated from the ULS calculations using 

factored (design) strength and pore water pressures corresponding to a linear seepage from 

a water table at ground level, the distribution of total stresses in each soil zone is similar to 

that shown in Figure 4.SS and their nODnalised values are given by Equations (S.12) to 

(S .21). The nOlmalised pore water pressures in each soil zone are detem1ined by Equations 

(S.7) to (S .11), where ul(ys H) are the pore water pressures at the toe of the wall given by 

Equation (S.6) and Yw the unit weight of water: 

u I(ys H)= Yw d I Ys [I +hl(2d+h)] (1- m) Yw I [y (2-m)] (S.6) 

u] I(ys H)= hl2 IIH ul(ys H)= 112 m ul(ys H) (S.7) 

u21(ys H)= hlH ul(ys H)=m ul(ys H) (S.8) 

U3 I(ys H) (h+dI2)/H ul(ys H)= 112 (J +m) ul(ys H) (S.9) 

U5 I(ys H) ul(ys H) (S.10) 

U6 I(ys H)= dl2 I d ul(ys H) =112 ul(ys H) (S.11) 

(51110 = I 12 Kala (Ys h - Ul)+ Ul----7 
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= J 12m Kala+ 112 m ul(ys H) (1- Kala) (5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(Jh3u l(YsH) =JI2(1+m)Ka3u+ JI2(l+m) ul(YsH) (1-Ka3~J (5.17) 

(5.18) 

(5.19) 

(Jh6a I(ys H) J 12 (l-m) Kp6a + J 12 ul(ys H) (1- Kp6a) (5.20) 

(5.21) 

Substituting the values of total stresses into Equations (4.127), (4.128), (4.132), (4.133) 

and (4.134), gives a system of five unknowns which is solved numerieally for a range of 

values of cp', log (y, p) and log (Ys 1 G*) as deseribed in Section 4.6. 

The results are presented in tables and figures in the Appendix. To enable comparison of 

the eurves for zero pore water pressures to those with the original water table at ground 

level, some of the numerieal results are presented in Figures 5.2 to 5.37 similarly to 

Figures 4.56 to 4.91 in Section 4.6. 

139 



Mrax 
MrraxEC7 

,~~~ lDg [ys p] 
1 2 

,--------~ 
-+- ¢=20 I 

I 
., ¢=25 I 

I III ¢ 30 

I~ .=35 I 
_. ¢=40 

Figure 5.2: The ratio of Mmax I Mmax,EC7 against (Ys p) for different values of <p'when A = 
10-4 and the original water table is at ground level. 
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Figure 5.3: The ratio of F I FtD against (Ys p) for different values of <p' when A = 10-
4 and 

the original water table is at ground level. 
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Figure 5.4: Nom1alized deformations at depth hl2 from the crest against (Ys p) for 
different values of <p I when A 10-4 and the original water table is at ground level. 
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Figure 5.5: Normalized deformations at depth h from the crest against (Ys p) for different 
values of q/ when A = 10-4 and the original water table is at ground level. 
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Figure 5.6: Normalized defOlmations at depth h+d/2 from the crest against (Ys p) for 
different values of cp' when A 10-4 and the original water table is at ground level. 
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Figure 5.7: Nonnalized deformations at depth H from the crest against (Ys p) for different 
values of cp' when A = 10-4 and the original water table is at ground level. 
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Figure 5.8: The ratio of Mmax I Mmax,EC7 against (Ys p) for different values of 9' when A = 

10-3 and the original water table is at ground level. 
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Figure 5.9: The ratio of F I FEC7 against (Ys p) for different values of 9' when A = 10-3 and 
the original water table is at ground level. 
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Figure 5.10: Nonnalized defonnations at depth hl2 fi·om the crest against ()Is p) for different 
values of 9' when A 10-3 and the original water table is at ground level. 
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Figure 5.11 Nonnalized defonnations at depth h from the crest against (Ys p) for different 
values of q/ when A = 10-3 and the original water table is at ground level. 
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Figure 5.12: N0l111alized deformations at depth h+d/2 from the crest against (Ys p) for 
different values of rp' when A 10-3 and the Oliginal water table is at ground level. 
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Figure 5.13: Nonnalized def01111ations at depth H from the crest against ~vs p) for different 
values of rp' when A 10-3 and the original water table is at ground level. 
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Figure 5.14: The ratio of Mmax / Mff/ax,EC7 against parameter A for different values of cp' 
when (Ys p) 10-1 and the original water table is at ground level. 
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Figure 5.15: The ratio of F / FECl against parameter A for different values of cp' when (Ys 
p) 10-1 and the original water table is at ground level. 
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Figure 5.16: Nonnalized deformations at depth h/2 from the crest against parameter A for 
different values of cp' when (Ys p) 10-1 and the original water table is at ground level. 
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Figure 5.17: Normalized defonnations at depth h from the crest against parameter A for 
different values of rp' when (Ys p) 10.1 and the original water table is at ground level. 
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Figure 5.18: Nonnalized deformations at depth h+d/2 from the crest against parameter A 
for different values of rp' when (Ys p)= 10.1 and the original water table is at ground level. 
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Figure 5.19: Normalized defonnations at depth H from the crest against parameter A for 
different values of rp' when (Ys p)= 10.1 and the original water table is at ground level. 
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Figure 5.20: The ratio of M I11GX I M l11l1x,EC7 against parameter A for different values of q/ 
when (Ys p) 10 and the original water table is at ground level. 
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Figure 5.21: The ratio of F I FEel against parameter A for different values of ip' when (Ys 
p)= 10 and the original water table is at ground level. 
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Figure 5.22: Normalized defom1ations at depth hl2 from the crest against parameter A for 
different values of ip' when (Ys p) = 10 and the original water table is at ground level. 
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Figure 5.23: NOffilalized defonnations at depth h from the crest against parameter A for 
different values of rp' when (Ys p)= 10 and the original water table is at ground level. 
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Figure 5.24: Normalized deformations at depth h+d/2 from the crest against parameter A 
for different values of rp' when (Ys p) = 10 and the original water table is at ground level. 
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Figure 5.25: Nonnalized deformations at depth H from the crest against parameter A for 
different values of rp' when (Ys p) = 10 and the original water table is at ground level. 
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Figure 5.26: The ratio of Mmax I MmaX,EC 7 against (Ys p) for different values of A when rp' = 
20° and the original water table is at ground level. 

Figure 5.27: The ratio of F I FEC7 against (Ys p) for different values of A when rp' 20° 
and the original water table is at ground level. 
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Figure 5.28: NOlmalized defOlmations at depth hl2 from the crest against (Ys p) for 
different values of A when (P' = 20° and the original water table is at ground level. 

148 



0.14 

0.12 

62 
H 

-._ •• IB-IIII •.••.•• 1R&. ____ ~~~~ 

-4 -3 -2 -1 1 2 
[ys pJ 

-~ A=10-

* A=10 

III A=10-

A=10 

A=10 1 

Figure 5.29: Normalized defonnations at depth h from the crest against (Ys p) for different 
values of A when q/ 20° and the original water table is at ground level. 
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Figure 5.30: Normalized defonnations at depth h+d/2 from the crest against (Ys p) for 
different values of A when q/ = 200 and the original water table is at ground level. 
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Figure 5.31: N0TI11alized defonnations at depth H from the crest against (Ys p) for different 
values of A when q/ = 200 and the original water table is at ground level. 
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Figure 5.32: The ratio of Mmax I Mmax,ECl against ()Is p) for different values of A when cp' = 
25° and the original water table is at ground level. 
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Figure 5.33: The ratio of F I FECl against ()Is p) for different values of A when cp'= 25° and 
the original water table is at ground level. 
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Figure 5.34: Nonnalized defOlmations at depth hl2 from the crest against ()Is p) for different 
values of A when cp' 25° and the original water table is at ground level. 
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Figure 5.35: Nonnalized defonnations at depth h from the crest against (Ys p) for different 
values of A when q/ 25° and the original water table is at ground level. 
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Figure 5.36: Nonnalized defonnations at depth h+d/2 from the crest against (Ys p) for 
different values of A when ((J' = 25° and the original water table is at ground level. 
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Figure 5.37: Nonnalized deformations at depth H fi·om the crest against (y, p) for different 
values of A when ((J' = 25° and the original water table is at ground level. 

From the figures, the curves for Mmax / Mmax,EC7 tend to a value of 0.8, while F / FEC7 

tend to a value of 0.85 for large values of Ys P or very small values of A. The ratios Mmax / 

M lIlax,EC7 and F / F EC7 are generally closer to unity, the influence ofthe different values of 

151 



rp' becomes less important and the rate of the reduction is slightly lower when the pore 

water pressures are included in the calculations; however, the pattern of the reduction is 

similar to the one presented in Chapter 4 for zero pore water pressures. The calculation 

of the maximum bending 1?10ments and prop loads for very stiff walls based on the 

Eurocode 7 (1995) might be more accurate when the pore water pressures are considered. 

The normalized displacements (6/H, r521H, 631H and 641H) are larger when the original 

water table is at ground level than in conditions of zero pore water pressures. Some of the 

results for a retaining wall with the water table at ground level are presented in Tables in 

Appendix D. 

5.4 ULS CALCULATIONS: ORIGINAL WATER TABLE AT HALF 

THE RETAINED HEIGHT LEVEL 

The effective stress distribution and pore water pressures for a retaining wall propped at 

the crest in limit equilibrium when the original ground water table is at a distance hl2 

from the ground surface, where h is the wall retained height, are shown in Figure 5.38. 

The normalized pore water pressures u I (Ys H) at the toe of the wall are given by 

Equation (5.22) and the nonnalized effective active (J"'hal I (Ys H), (J"'ha2 I (Ys H) and passive 

stresses (J"'hpl (Ys H) are given by Equations (5.23), (5.24) and (5.25) respectively. 
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Figure 5.38: Stress and pore water pressure distribution in limit equilibrium behind and 
in front of a retaining wall propped at the crest with the original water table at half the 
retained height level. 
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u I (YsH) = Yw(1-m) (2-m) I [Ys (2-1.5m)] (5.22) 

(J'ha] = Ka Ys hl2 -----+ (J'ha] / (y, H) = 1 12m Ka (5.23) 

(J'/lG2/ (Ys H) = Ka [1 -0.5 m- u I (Ys H)] (5.24) 

(J'hp=Kp(Ysd u)-----+ (J'hp/(YsH)=Kp[l-m- ul(YsH)] (5.25) 

The nonnalized prop force F / (Ys H) and the retained height ratio m may be calculated 

from Equations (5.26) and (5.27): 

F I (Ys H2) = 118 nl Ka + (1-112 m) 112 m Ka + 112 (1-112 m) Ka [1-0.5 m- u I (Ys 

H)] - 112 (1-m) Kp [1-m- u I (Ys H)] + 114 m u I (Ys H) (5.26) 

LMh =0-----+ 1112 m2 (J'/w] I (Ys H) + 112 (1-112m) (1 + 112m) (J'/lG] I (Ys H) 

+ 116 (1-112m) (112m+ 2) (J'/lG21 (Ys H) 116 (l-m) (m+ 2) (J'hpl (Ys H) 

+ 116 (1-112m) (112m+2) u I (Ys H) -116 (l-m) (m+2) u I (Ys H)=O 

(5.27) 

The maximum bending moment along the wall may then be detennined according to 

Eurocode (Ee7, 1995). 
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5.5 SLS CALCULATIONS: ORIGINAL WATER TABLE AT HALF 

THE RETAINED HEIGHT LEVEL 

The nonnalised pore water pressures at the toe and in each soil zone for a wall with a 

retained height ratio m, calculated from the ULS calculations using factored (design) 

strength are detennined by Equation (5.22) and Equations (5.28) to (5.33) respectively; the 

nonnalised total stresses along the wall are given by Equations (5.34) to (5.43): 

Ul I(ys H)= 0 (5.28) 

U2 I(ys H)= hl2 l(hI2+d) ul(ys H) = 0.5m I (1-112m) ul(ys H) (5.29) 

U31(ys H) (h+dI2)/ (hI2+d) ul(ys H) =112 (1+m) I (1-112m) ul(ys H) (5.30) 

U5 I(ys H) = ul(ys H) (5.32) 

U61(ys H)= dl2 I d ul(ys H)= 112 ul(ys H) (5.33) 

a/dal(ys H) = 0.5 m Kala (5.34) 

ah2a I(ys H)= m Ka2a+ 0.5m I (1-0.5m) ul(ys H) (1- K a2a) (5.36) 

ah2u I(ys H)= m Ka2u+ 0.5m I (1-0.5m) ul(ys H) (1- Ka2~J (5.37) 

ah3a I(ys H) =0.5(1 +m)Ka3a+ 0.5(1 +m) I (1-0.5m) u/(Ys H) (1- Ka3a) (5.38) 

ah3ul(YsH)=0.5(1+m)Ka3u+ 0.5(1+m) I (1-0.5m) u/(YsH) (1-Ka3LJ (5.39) 
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(5.40) 

(5.41) 

(5.42) 

(5.43) 

Substitution of the total stresses into Equations (4.127), (4.128), (4.132), (4.133) and 

(4.134) given in Section 4.6, gives a system of five unknowns: b81, (582, b83, b84 and F. The 

system is solved numerically in Appendix D and some of the results are plotted in Figures 

5.39 to 5.74 for the same range of parameters A, Ys P and cp' as in Section 4.6 and 5.2 for 

comparison between the different conditions of pore water pressures. 
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Figure 5.39: The ratio of MI11G.\ / Mmax,EC7 against (Ys p) for different values of cpr when A = 
10-4 and the original water table is at half the retained height level. 
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Figure 5.40: The ratio of F / F EC7 against (Ys p) for different values of cp' when A=l 0-4 and 
the original water table is at half the retained height level. 
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Figure 5.41: Nomlalized defoTI11ations at depth hl2 from the crest against (Ys p) for 
different values of cp' when A = 10-4 and the original water table is at half the retained 
height level. 
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Figure 5.42: NOTI11alized defoTI11ations at depth h from the crest against (Ys p) for different 
values of cp' when A = 10-4 and the original water table is at half the retained height level. 

63 
H 

0.1 

0.08 

o .06 !~ 
.; 

0.04 l;tl 
0.02 AN 

-------~~~--4 -3 -2 -1 1 2 
Log [ys p] 

-.- cjJ=20 

,.. cjJ=25 

III cjJ=30 

A cjJ=35 

cjJ=40 

Figure 5.43: Nonnalized defonnations at depth h+dl2 from the crest against (Ys p) for 
different values of cp' when A = 10-4 and the original water table is at half the retained 
height level. 
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Figure 5.44: Nonnalized defonnations at depth H from the crest against (Ys p) for 
different values of cp' when A = 10-4 and the original water table is at half the retained 
height level. 
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Figure 5.45: The ratio of Mmax / Mmax,Ee7 against (Ys p) for different values of cp' when A = 
10-3 and the original water table is at half the retained height level. 
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Figure 5.46: The ratio of F / FEc7 against (y, p) for different values of cp' when A 10-3 and 
the original water table is at halfthe retained height level. 
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Figure 5.47: Nonnalized defonnations at depth hl2 from the crest against (Ys p) for 
different values of cp' when A = 10-3 and the original water table is at half the retained 
height level. 
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Figure 5.48: Nonnalized defonnations at depth h from the crest against (Ys p) for different 
values of cp' when A = 10-3 and the original water table is at half the retained height level. 
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Figure 5.49: Nonnalized defOlmations at depth h+dl2 from the crest against (Ys p) for 
different values of cp , when A = 10-3 and the original water table is at half the retained 
height level. 
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Figure 5.50: Nonnalized defonnations at depth H from the crest against (Ys p) for 
different values of cp' when A = 10-3 and the original water table is at half the retained 
height level. 
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Figure 5.51: The ratio of MmGx / ~l1ax,EC7 against parameter A for different values of cp' 
when (Ys p) = 1 0-1 and the original water table is at half the retained height level. 
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Figure 5.52: The ratio of F / FEe7 against parameter A for different values of cp' when (Ys p) 
10-1 and the original water table is at half the retained height level. 
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Figure 5.53: Nonnalized defonnations at depth hl2 from the crest against parameter A for 
different values of tp'when (Ys p) =10-1 and the original water table is at half the retained 
height level. 
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Figure 5.54: Normalized defonnations at depth hl2 from the crest against parameter A for 
different values of tp' when (Ys p) =10-1 and the original water table is at half the retained 
height level. 
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Figure 5.55: Normalized deformations at depth h+dl2 from the crest against (Ys p) for 
different values of q/ when (Ys p) = 1 0-1 and the original water table is at half the retained 
height level. 
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Figure 5.56: Nonnalized defonnations at depth H from the crest against (Ys p) for 
different values of cp' when (Ys p) =10- 1 and the original water table is at half the retained 
height level. 
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Figure 5.57: The ratio of Mmax / Mmax,EC7 against parameter A for different values of cp' 
when ()Is p) = 1 0 and the original water table is at half the retained height level. 

Log [AJ 

Figure 5.58: The ratio of F / FEel against parameter A for different values of cp' when (Ys p) 
= 1 0 and the original water table is at half the retained height level. 
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Figure 5.59: Nonnalized defonnations at depth hl2 from the crest against parameter A for 
different values of rp' when ()Is p) =10 and the original water table is at half the retained 
height level. 
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Figure 5.60: Nonnalized defonnations at depth hl2 from the crest against parameter A for 
different values of rp' when ()Is p) = 10 and the original water table is at half the retained 
height level. 
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Figure 5.61: N0l111alized defonnations at depth h+dl2 from the crest against ()Is p) for 
different values of rp' when ()Is p) = 10 and the Oliginal water table is at half the retained 
height level. 
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Figure 5.62: Nonnalized defonnations at depth H from the crest against (Ys p) for 
different values of rp' when (Ys p) =10 and the original water table is at half the retained 
height level. 
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Figure 5.63: The ratio of Mmax / M J1l {[x,EC7 against (Ys p) for different values of A when rp' 
20° and the original water table is at half the retained height level. 
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Figure 5.64: The ratio of F / FEn against (Ys p) for different values of A when rp' = 20° and 
the original water table is at half the retained height level. 
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Figure 5.65: Normalized deformations at depth hl2 from the crest against (Ys p) for different 
values of A when cp' = 20° and the original water table is at half the retained height level. 
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Figure 5.66: Normalized defOlmations at depth h from the crest against (Ys p) for different 
values of A when cp' 20° and the original water table is at half the retained height level. 
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Figure 5.67: Nonnalized defonnations at depth h+dl2 fi-om the crest against (Ys p) for 
different values of A when cp' = 20° and the original water table is at half the retained 
height level. 
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Figure 5.68: Normalized defonnations at depth H from the crest against (Ys p) for different 
values of A when cp' 20° and the original water table is at half the retained height level. 
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Figure 5.69: The ratio of Mmax / Mmax,EC7 against (Ys p) for different values of A when cp'= 
25° and the original water table is at half the retained height level. 
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Figure 5.70: The ratio of F / FEcl against (Ys p) for different values of A when cp' = 25° 
and the original water table is at half the retained height level. 
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Figure 5.71: Nonnalized defonnations at depth hl2 from the crest against (Ys p) for 
different values of A when q/ = 25° and the original water table is at half the retained 
height level. 
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Figure 5.72: Nonnalized defonnations at depth h from the crest against (Ys p) for different 
values of A when cp' 25° and the original water table is at half the retained height level. 
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Figure 5.73: Nonnalized defonnations at depth h+dl2 from the crest against (Ys p) for 
different values of A when cp' = 25° and the original water table is at half the retained 
height level. 
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Figure 5.74: NOTIl1aIized defonnations at depth H from the crest against ()is p) for 
different values of A when rp' = 25° and the original water table is at half the retained 
height level. 

From the figures, the ratios Mn/ax I M l1Iax,EC7 and F I F EC7 are closer to unity than in 

conditions of zero pore water pressures and slightly higher for small values of )is p and 

large values of A, but slightly lower for large values of )is p and small values of A than 

those with the water table at ground level; however, the pattern of the reduction is similar 

for all cases. The calculation of the maximum bending moments and prop loads for very 

stiff walls according to the Eurocode (EC7, 1995) might be more accurate when the 

water table is assumed to be at the ground level. When the water table is at half the 

retained height level the normalized displacements (r5/H, 152IH, r531H and (j4IH) are 

slightly higher than when the water table is at ground level. 

5.6 REDUCTION CURVES FOR STIFF CLAYS AND SANDS 

In Figures 5.75 and 5.76 the ratios Mn/ax I M l11ax,EC7 and F / F EC7 are shown for values of A 

and rp' that are typically found in sti ff clays, while in Figures 5.77 and 5.78 these values are 

chosen to represent the behaviour of sandy deposits. It should be noted that the selection of 

parameter A is not that straightforward and usually varies; however, the scope herein is to 

limit the number of curves to those that may be typical in CUlTent engineering practice in 

UK; hence, the selection of these values is based on the results of triaxial tests on samples 

from different locations as found in the literature. 
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In the Figures, curve 1 is drawn for conditions of zero pore water pressures, while curves 2 

and 3 represent a water table at the ground surface and at half the retained height level 

respectively. The lines perpendicular to axis x-x show the typical wall flexibility values 

(Log [Ys pj) for a rigid, diaphragm, sheet pile and soft retaining wall with a total length of 

20m. The rigid and soft walls are included to represent extreme cases. 
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Figure 5.75: The ratio of M I11GX I M11l{lx,EC7 against (Ys p) when A=l 0-23 and cp'= 20 0
• 
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Figure 5.76: The ratio of F / FEC7 against (y, p) when A=l 0-23 and rp' = 20°. 
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Figure 5.77: The ratio of M,nax / M,lIax,EC7 against (Ys p) when A=10-21 and rp'= 30°. 
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Figure 5.78: The ratio of F / FEc7 against (Ys p) whenA=10-21 and (P'= 30°. 
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According to the figures, the pattern of the reduction is similar in each case. Eurocode 7 

(EC7, 1995) might underpredict the bending moments and prop loads for a rigid wall and 

the bending moments for a diaphragm wall embedded in sand assuming zero pore water 

pressures, while it might overpredict both the bending moments and prop loads for the 

other types of walls. For a diaphragm wall, the MSD results are in very good agreement 

with those derived from Eorocode 7 (EC7, 1995), while for a sheet pile wall the maximum 

reduction in the bending moments is about 23% in clays and 20% in sands. Regarding the 

prop loads of a sheet pile wall, a maximum reduction from the Eurocode 7 (EC7, 1995) 

results of about 20% in clays and 21 % in sands is noticed. If these reduction curves are 

taken into account in engineering practice, together with a safe selection of parameter A as 

discussed, more economic designs might be feasible. 

5.7 SUMMARY 

In Chapter 5 the bending moment and prop load reduction curves together with the 

normalised displacements at characteristic points along a retaining wall are presented 

assuming a natural water table at the ground surface and at half the retained height level. 

The pattern of the reduction is similar to that presented in Chapter 4 for conditions of zero 

pore water pressures, but the magnitudes differ. A reduction in both the bending moments 

and the prop loads can be achieved when sheet pile walls are embedded in stiff clays or 

sands, while for diaphragm walls the MSD results are in good agreement with those 

calculated following Eurocode 7 (EC7, 1995). The advantage of the MSD method is that 

incorporates the effect of both the wall flexibility and soil stiffness in the design of 

retaining walls. The degree of safety in the design depends significantly on the selection of 

the appropriate value of parameter A for different types of soil. 
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6. COMPARISON BETWEEN THE MSD METHOD AND OTHER 

METHODS OF ANALYSIS 

6.1 INTRODUCTION 

In an early analysis, Rowe (1952) presented a number of reduction curves based on the 

results of a series of model tests on anchored sheet pile walls retaining loose and dense dry 

sand varying the flexibility p for various surcharge, anchor levels, anchor yield and dredge 

levels. In a later analysis by Rowe (1955) more reduction curves are presented based on an 

analytical solution in which both the wall flexibility and the soil stiffness are taken into 

account. The soil stiffness is described by means of a soil parameter m,., which is assumed 

to increase linearly with depth. For the reasons discussed in Chapter 2 the soil parameter 

mr may be considered as equivalent to the rate of increase of the Young's modulus with 

depth, E*. However, a direct comparison between the reduction curves presented by Rowe 

and the curves showed in Chapter 4 could lead to misleading conclusions, since Rowe 

compared the anchor loads and the bending moments measured in his experiments or 

calculated theoretically to the values calculated by the free earth support method with the 

stress distributions estimated using Coulomb's theory and the passive pressures reduced by 

a factor of safety, Fp. This procedure was suggested in the fonner UK code of practice CP2 

but, as already mentioned, modern codes of practice require the application of a factor of 

safety to the soil strength directly. Moreover, in Rowe's analysis the wall flexibility p is 

calculated in/i5 I Ibxin2 and the soil parameter mr in fblfr). Therefore, Rowe's results for 

bending moments and prop loads need to be compared to values derived from calculations 

based on the current codes of practice and his curves need to be redrawn in consistent units 

to facilitate a valid comparison. In Section 6.3, an MSD analysis is carried out for stiff 

walls and the results are compared to values predicted by the geostructural mechanism 

proposed by Bolton and Powrie(1988), to check the consistency of the MSD method. 
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6.2 COMPARISON BETWEEN THE MSD METHOD AND ROWE'S 

ANALYSIS 

6.2.1 Transformed axes 

a. x-x' axis 

Rowe (1952) plotted the ratio of the experimental maximum bending moments per unit 

of model height (Mma./H3) to the free earth support value against the logarithm of wall 

flexibility p for retained height ratios (h/H) in the range 0.6 to 0.8, surcharge coefficients 

(q/YsH) in the range 0 to 0.2 and anchor levels in the range 0 to 0.3H. The values for Log 

p varied from -4.5 to -2. If P is converted in S1 units (m3/kN), then the x-x' axis should be 

redrawn for values of Log p in the range -1.54 to 0.96. The friction angle qJ' is taken by 

Rowe(1952) as 30° for loose and 40° for dense dry sand. 

In his later analysis, Rowe (1955) plotted the ratio of the theoretical maximum bending 

moments to the free eatih support value against the logarithm of parameter mr p, where 

mr is the soil parameter as defined by Rowe (1955), as already discussed. If mr p is 

converted in S1 units, then the x-x' axis should be redrawn for values of Log(mr p) in the 

range 2.16 to 6.16. For a specific soil, the parameter mr is given by Rowe (1955); 

therefore, for loose sands Logp is in the range -1.79 to 2.21 and for dense sands Logp is 

in the range -2.79 to 1.21. 

b. y-y' axis 

The ratios Mj;,s = Mmax,feslH3, F'!es 

F/eslKaR)'sH2 (Rowe, 1955) based on the free emih support method are convelied to those 

according to Eurocode 7 (1995) in the calculations presented in this section. 

In Rowe's analysis, the free earth suppOli calculations were carried out with an active 

earth pressure coefficient, KaR, equal to the Coulomb value (Equation 6.1) for soil/ wan 

friction 6 equal to 2/3 qJ' and a passive earth pressure, (J'/zpR, equal to the Coulomb value 
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for soil/wall friction b=O and divided by a factor Fp = 1.5. The active and passive stresses 

for a wall in limit equilibrium according to Rowe are given by Equations (6.2) and (6.3), 

where m is the retained height ratio. 

KaR = coi(jJ I {I + [sin ((jJ+b) sin (jJ I cos b] O.5) 

(J'haR 

= coi(jJ I {I + [sin (513(jJ) sin (jJ I cos (213 (jJ)] O.5) 

2 
KaR YsH 12 

Taking the moments about the crest: 

IMh =0-7 

(6.1) 

(6.2) 

(6.3) 

(KaR Ys H2 12) 213 H - KpR Ys (l-m/H2 1(2 Fp) [m H + 213 (l-m) H]=O-7 

2 KpR (l-m) I (KaR Fp)= 2 I (2+m) (6.4) 

From the condition of horizontal stress equilibrium, the normalized prop force Ffe/KaR 

may be calculated 

=112 Ys m I (2+m) (6.5) 

In Rowe's analysis it is assumed that the maximum bending moments will occur above 

dredge level. If Zo is the depth where the maximum bending moment occurs divided by 

the wall height H, then for Zo :::; m = hlH, the nonnaliscd maximum bending moments are: 

M~res =Mmaxfes I H3= 113 KaR Ys [m I (2+m)] 1.5 -7 (6.6) 
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MfesIKaR=Mmax,jes 1 KaR H3 = 113 Ys [m 1 (2+m)] 1.5 (6.7) 

The normalised bending moments in the form of Equation (6.6) are used in Rowe's earlier 

analysis (1952), whereas in his later analysis (1955) they are presented in the form of 

Equation (6.7) and are independent of the values of qJ '. 

The ULS calculations for zero pore water pressures according to Eurocode 7 (1995) are 

presented in Chapter 4. Taking the moments about the crest, Equation (6.8) is derived and 

the normalised prop loads and maximum bending moments are given by Equations (6.9), 

(6.10) and (6.11). 

KIKa = 1 1 [(1-m/ (1+0.5m)] (6.8) 

(6.9) 

M 'ECl = Mmax.EC7 1 H3 = F EClIH2 Zo - 116 Ka Ys z} + 116 Kp Ys (zo m/ (6.10) 

(6.l1) 

The earth pressure coefficients Ka and Kp are given by Equations (4.104) and (4.105) in 

Chapter 4. 

In Table 6.1 the ratio of the fi'ee earth support maXImum bending moments to the 

respective values calculated according to Eurocode 7 (1995), Mfes 1 M'EC7, and the ratio 

(A1fe/KaRJI( M'EC7IKaJ are calculated for different values of qJ' and m and are plotted in 

Figures 6.1 and 6.2. The ratio (Mfe/KaRJI( M'LT7IKa) is independent of qJ '. 
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lfJ' m Mjel M'EC7 (MjeIKaJJ/(M' EC/KaJ 

20 0.6 0.879255 1. 02176 
20 0.65 0.900429 1. 04636 
20 0.7 0.93645 1.08822 
20 0.75 0.996409 1.1579 
20 0.8 1.0982 1.27618 
25 0.6 0.853864 1. 02176 
25 0.65 0.874426 1. 04636 
25 0.7 0.909407 1.08822 
25 0.75 0.967634 1.1579 
25 0.8 1. 06648 1. 27618 
30 0.6 0.831575 1. 02176 
30 0.65 0.851601 1. 04636 
30 0.7 0.885669 1.08822 
30 0.75 0.942376 1.1579 
30 0.8 1.03865 1. 27618 
35 0.6 0.812201 1. 02176 
35 0.65 0.83176 1. 04636 
35 0.7 0.865034 1.08822 
35 0.75 0.92042 1.1579 
35 0.8 1.01445 1. 27618 
40 0.6 0.795669 1. 02176 
40 0.65 0.81483 1. 04636 
40 0.7 0.847427 1.08822 
40 0.75 0.901685 1.1579 
40 0.8 0.993798 1. 27618 

Table 6.1: Comparison between the maximum bending moment ratios derived from the 
Free Earth Support method (Rowe, 1952) and those derived from Eurocode 7 (EC7, 1995). 
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o 
1.1 

M' fes 1M' EC7 

Figure 6.1: The ratio Mfesl M'EC7 against qJ' and m. 

7 

Figure 6.2: The ratio (M~re/KaRJI( M'EC7IKa) against qJ' and m. 
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In Table 6.2 the ratio of the free earth support prop loads to the respective values 

calculated according to Eurocode 7 (1995), Fjesl F'EC7, and the ratio (Fje/KaId I (F'EC7IKaJ 

are calculated for different values of qJ' and m. The ratio Fjes I F'EC7 is plotted in Figure 6.5 

and is independent of m. The values for (F jeslKaId are the same as those calculated 

according to Eurocode 7 (1995). 

f[J' m Fje/ F'EC7 (F'je/KaR/(F' Ec/KaJ 

20 0.6 0.860534 1. 

20 0.65 0.860534 1. 

20 0.7 0.860534 1. 

20 0.75 0.860534 1. 

20 0.8 0.860534 1. 

25 0.6 0.835683 1. 

25 0.65 0.835683 1. 

25 0.7 0.835683 1. 

25 0.75 0.835683 1. 

25 0.8 0.835683 1. 

30 0.6 0.813869 1. 

30 0.65 0.813869 1. 

30 0.7 0.813869 1. 

30 0.75 0.813869 1. 

30 0.8 0.813869 1. 

35 0.6 0.794907 1. 

35 0.65 0.794907 1. 

35 0.7 0.794907 1. 

35 0.75 0.794907 1. 

35 0.8 0.794907 1. 

40 0.6 0.778728 1. 

40 0.65 0.778728 1. 

40 0.7 0.778728 1. 

40 0.75 0.778728 1. 

40 0.8 0.778728 1. 

Table 6.2: Comparison between the prop load ratios derived from the Free Earth Support 
method (Rowe, 1952) and those derived from Eurocode 7 (EC7, 1995). 
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Figure 6.3: The ratio Fjes / F'EC7 against rp' and m. 

If M'exp, F'exp and M'th' F'th are the experimental and theoretical maXImum bending 

moments and prop loads according to Rowe, then the y-y' axis in Rowe's curves can be 

multiplied by Mfe/ M'Ec7and Ffe/ F'EC7 according to Equations (6.12) to (6.15): 

(6.12) 

M'th / M'res x Mjes / M'EC7= M'th/ M'EC7 (6.13) 

(6.14) 

F'th / Ffes x F / F'EC7= F"h/ F'EC7 (6.15) 
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6.2.2 Experimental curves 

Rowe's reduction curves based on experiments are redrawn on transformed axes for dense 

and loose sands and for retained height ratios hlH from 0.6 to 0.8 in the Figures presented 

in this Section. Rowe used values of (jJ '=30° and Logmr=4.75 Ib/fi3 for loose sands, while 

(jJ '=40° and Logmr=5.75 Ib/fi3 for dense sands. As already discussed in Section 3.2, the 

definition of parameter mr is quite unusual and might be considered as a measure of the 

rate of increase of Young's modulus with depth, E*. Analyses according to the MSD 

method is carried out for (jJ '=30° and LogA =-2.25 for loose sands and (jJ '=40° and LogA =-

3.33 for dense sands to compare with Rowe's results. For the values of parameter A=ysIG*, 

it is assumed that parameter mr in Rowe's analysis is equal to E*; hence, G* may be 

estimated. It should be noted that in the MSD analysis the retained height ratio hill is equal 

to 0.73 for (jJ '=30° (loose sands) and equal to 0.82 for (jJ '=40° (dense sands); this is because 

a unique value of hill can be correlated to a specific value of (jJ' in the ULS calculations 

according to Eurocode 7 (EC7, 1995) as shown in Section 4.5 (Equations 4.103-4.105). 

The results based on the MSD method are presented in Figures 6.7, 6.1 0,6.13 and 6.15. 
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" 64 
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-1.29 -1.04 -0.54 -0.04 0.46 0.96 

Log P 

Figure 6.4: Rowe's experimental reduction curves for hlll=0.6 for dense sands on 
transfoffi1ed axes. 
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Figure 6.5: Rowe's experimental reduction curves for hIH=0.7 for dense sands on 
transformed axes. 
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Figure 6.6: Rowe's experimental reduction curves for hIH=0.8 for dense sands on 
transformed axes. 
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Figure 6.7: MSD reduction curve for hIH=0.8 for dense sands. 
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Figure 6.8: Rowe's experimental reduction curves for hIH=0.6 for loose sands on 
transfonned axes. 
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Figure 6.9: Rowe's experimental reduction curves for hIH=0.7 for loose sands on 
transfonned axes. 
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Figure 6.10: MSD reduction curve for hIH=0.7 for loose sands. 
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Figure 6.11: Rowe's experimental reduction curves for hIH=0.8 for loose sands on 
transfonned axes. 
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Figure 6.12: Rowe's experimental reduction curves for prop loads for dense sands for hlH 
from 0.6 to 0.8. 
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Figure 6.13: MSD reduction curve for hIH=0.8 for dense sands. 
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Figure 6.14: Rowe's experimental reduction curves for prop loads for loose sands for hlH 
from 0.6 to 0.8. 
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Figure 6.15: MSD reduction curve for hIH=0.7 for loose sands. 

From Rowe's curves on transformed axis, the reduction in the maXImum bending 

moments and prop loads is greater when the design procedure suggested in the Eurocode 

(EC7, 1995) is followed rather than the free ealih suppOli method. In Figures 6.7, 6.10, 

6.13 and 6.15 the pattern of the reduction according to the MSD method is the same with 

that derived from Rowe's experiments. However, for increasing wall flexibility Rowe's 

experiments show larger reduction than the MSD method in both the maximum bending 

moments and the prop loads. According to the MSD method, Eurocode 7 (EC7, 1995) 

might underpredict the maximum bending moments and prop loads for stiffer walls; this 

is not noticed in Rowe's results. Rowe presented mean curves for the prop loads with 

surcharge coefficients (qlYsH) in the range from 0 to 0.2, whereas in the MSD method the 
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surcharge was assumed to be equal to 0; this might be a reason for the difference in the 

results. It should be noted that the soil parameter mr used in Rowe's analysis is quite 

unusual and it is assumed to be equivalent to the rate of increase of the Young's modulus 

with depth, E* to enable the comparison with the MSD results; however there might be 

some uncertainty in this assumption. Moreover, Powrie, Pantelidou and Stallebrass 

(1998) suggested that for the soil in front of a retaining wall propped at the crest, the 

change in the stress path direction during wall installation might be smaller, resulting in a 

significant less stiff response during excavation in comparison with the retained soil. 

Therefore, a more rapid rate of mobilisation of soil strength with mobilized strength may 

be used for the retained soil. This was not taken into account in the MSD method; hence 

it might be another reason for the divergence in the results. 

6.2.3 Theoretical curves 

Rowe's (1955) mean theoretical curves for the maximum bending moments and prop loads 

are redrawn on transformed axes in Figures 6.16 and 6.19 respectively, where M'th , F'th 

and M'LD, F'EC7 are the normalised maximum bending moments and the nOffi1alised prop 

loads according to the Free Earth Support method and Eurocode 7 (EC7, 1995) 

respectively. 

M'tJ/M'EC7 

xlOO% 
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67.8 

50.8 
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2.16 3.16 4.16 

Log (111 r P) 
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5.16 6.16 

Figure 6.16: Rowe's theoretical mean reduction curve for dense sands on transformed axes. 
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Figure 6.17: Rowe's theoretical mean reduction curve for loose sands on transformed axes. 
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Figure 6.18: Rowe's theoretical mean reduction curve for dense sands on transfonned axes. 
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Figure 6.19: Rowe's theoretical mean reduction curve for loose sands on tranfonned axes. 

The theoretical curves presented by Rowe (1955) and redrawn in transfonned axes in the 

Figures are mean curves for walls with retained ratios from 0.6 to 0.8, anchor levels from 0 

to 0.2 and surcharge coefficients from 0 to 0.2. According to Rowe's (1955) theoretical 

curves the reduction in the maximum bending moments and prop loads is greater when the 

design procedure suggested in the Eurocode (EC7, 1995) is followed rather than the free 

earth support method. Rowe (1955) notes that there is a wide divergence between his 

experimental and theoretical curves for stiff walls in dense and loose sands. This may be 

explained by the uncertainty in the soil parameter mr used in the theoretical approach. 

6.3 COMPARISON OF THE MSD METHOD BETWEEN STIFF AND 

FLEXIBLE WALLS 

Bolton and Powrie (1988) introduced the mobilised strength method for stiff walls as 

described in Chapter 2. According to this approach, the active and passive soil zones are 

subdivided into two triangles, the mobilised soil strength, rp'mob, is assumed to be uniform 

with depth and consistent with the development of a uniform shear strain in each triangle. 

For a wall propped at the crest, the shear strain on the retained side is equal to 2 Je and on 

the excavated side is equal to 2 Je (1 + hid), where be is the rotation at the crest and the 

pattern of the deformations is presented in Figure 2.12. 
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The mobilised strength method for flexible walls, as presented in Chapter 4, assumes that 

the active soil zone is subdivided into four triangles and the passive into two triangles. 

The use of additional kinematically admissible strain fields permits the incorporation of 

different mobilised shear strengths and hence mobilized strains in each zone of the soil 

surrounding the retaining wall. The shear strains are related to the wall rotations at the 

crest as described in Chapter 4 and the pattern of the rotations and defonnations is 

presented in Figure 4.31. 

For a flexible wall, mobilisation of four different values of shear strength would be 

expected on the retained side of the wall and two on the excavated side. However, as the 

wall flexibility decreases the rotations 681, 682 and 683, which are attributed to wall 

bending, should decrease, while 684, which is attributed to ligid body rotation should 

increase. Ideally, for a very stiff wall the rotations 68], 682 and 683 would approach zero, 

the shear strains and mobilized shear strengths would become uniform in the active and 

passive soil zone and reach the values suggested by Bolton and Powrie (1988) and the 

pattern of deformations would resemble that shown in Figure 2.12; this is checked in the 

following examples. 
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6.3.1 Example 1 

In Table 6.3 the mobilised shear strength in each triangle and the wall rotations at the crest 

are shown for a value of A equal to 10-2 and different values of Log p and cp', The mobilised 

strengths within the triangles OAE, OBF, OCP, ODG, FGM and FPL, as showed in Figure 

4.31, are cp'mobl, cp'mob2, cp'mob3, cp'mob4, cp'mob5 and cp'mob6 respectively. From Table 6.3, it is 

obvious that for low wall flexibility values (Log p= -6) the mobilised strength becomes 

unifOlm on the retained and excavated side of the wall and the rotations (5e], (5e2 and (5e3 

tend to zero and are significantly lower than (5e4. For higher wall flexibility values different 

values of soil strength are mobilised and the rotations (5e], (5e2 and (5e3 become higher than 

(5e4 . 

In the case of A=10-2, cp'= 20° and Log p= -6, the mobilized strength on the retained side is 

unifOlm and equal to 0.219, while on the excavated side is equal to 0.333. For the same 

case, the shear strains behind (Yb) and in front (Yj) of the wall according to Bolton and 

Powrie (1988) are given by Equations (6.16) and (6.17) 

(6.16) 

Yj= 2 (5e4 (1 +hld) = 2 6e4 / (1-m) = 0.0091 (6.17) 

where m is the retained height ratio and is equal to 0.582. The shear strains are related to 

the mobilised strengths behind (cp 'mob,b) and in front (cp 'mobf) of the wall by the relationship 

(4.40) in Chapter 4. 

cp'mob.b = sin-] [Yb I (A + B Yb)] = 0.219 (6.18) 

cp'mob.! = sin-! [i'Jl (A + B y;J] 0.333 (6.19) 

Therefore, for low wall flexibility values the mobilized strength method as developed in 

Chapter 4 gives the same results with the geostructural mechanism proposed by Bolton and 

Powrie(1988). 
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A=wIG*=10-2 

f(J' Log p , 
f(J /IIobl 

, 
f(J /IIob2 

, 
f(J l1Iob3 

, 
f(J /110M 

, 
f(J 1110b5 

, 
f(J /110M 001 002 003 004 

20 6 0.257 0.257 0.257 0.2 0.303 0.303 4.403x10-8 3.444 x 10-8 2.622 x 10-8 0.0049 

20 -4 0.257 0.257 0.257 0.257 0.304 0.304 4.402x10-6 3.443x10-6 2.621x10-6 0.005 
20 -2 0.268 0.263 0.259 0.255 0.3026 0.308 0.0004 0.0003 0.0003 0.0048 
20 0 0.342 0.337 0.323 0.219 0.279 0.341 0.0341 0.0259 0.0192 0.003 

30 6 0.374 0.374 0.374 0.374 0.473 0.473 6.002x10-8 1.902 x 10-8 1. 563 x 10-8 0.0068 

30 -4 0.374 0.374 0.374 0.374 0.473 0.473 6.001x10-6 1.902 x 10-6 1. 566 x 10-6 0.0068 
30 2 0.385 0.377 0.374 0.372 0.472 0.473 0.0006 0.00019 0.00015 0.0066 
30 0 0.504 0.477 0.4418 0.3004 0.4365 0.507 0.044 0.0137 0.0111 0.0036 

40 6 0.484 0.484 0.484 0.484 0.652 0.652 6.394 x 10-8 8.591x10-9 7.563 x 10-9 0.0084 

40 -4 0.484 0.484 0.484 0.484 0.652 0.652 6.393x 10-6 8.59x10-7 7.562x10-7 0.0084 
40 -2 0.495 0.484 0.483 0.481 0.651 0.652 0.000633 0.000085 0.000075 0.0082 
40 0 0.659 0.569 0.511 0.389 0.619 0.671 0.0478 0.0064 0.0055 0.0046 

Table 6.3 
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6.3.2 Example 2 

In Table 6.4 the mobilised shear strength in each triangle and the wall rotations at the crest 

are shown for a value of cp' equal to 20° and different values of Log p and Log A From 

Table 6.4, as the soil becomes stiffer (Log A decreases), the wall has to become stiffer for 

the mobilised strength to become uniform on the retained and excavated side. 

In the case of cp'= 20°, A=1 0-4 and Log p= -7, the mobilized strength on the retained side is 

unifonn and equal to 0.22, while on the excavated side is equal to 0.333. For the same 

case, the shear strains behind (Yb) and in front (Yj) of the wall according to Bolton and 

Powrie (1988) are given by Equations (6.20) and (6.21) 

(6.20) 

(6.21) 

where m is the retained height ratio and is equal to 0.582. The mobilised strengths behind 

(cp'mob,b) and in front (cp'mob,f) of the wall are: 

cp'mob,b sin-
i [Yb / (A + B Yb)] = 0.22 (6.22) 

(6.23) 

The values calculated in Equations (6.22) and (6.23) are the same as those shown in Table 

6.4 for the specific case examined. 
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lfJ '=20 

Log A Log P lfJ'mob] 
, 

lfJ l11ob2 
, 

lfJ mob3 
, 

lfJ mo/)4 
, 

lfJ mobS 
, 

lfJ moM J8] J82 J83 J84 

-6 7 0.258 0.258 0.258 0.257 0.304 0.304 4.3955 x 10-9 3.4386 x 10-9 2:617xl0-9 4.97 xI 

-6 -6 0.2575 0.2575 0.2575 0.2575 0.3038 0.3038 4.403xl0-8 3.444 x 2.622xl0-8 4.84 x 

6 -4 0.268 0.263 0.259 0.256 0.303 0.306 4.331 x X 3.39xl0-6 2.58xl0-7 0.000048 
-6 2 0.268 0.263 0.259 0.255 0.303 0.306 0.00043 0.00033 0.00026 0.00484 

6 0 0.349 0.349 0.351 0.211 0.274 0.349 0.0322 0.0241 0.0177 2.685 x 10-7 

-4 -7 0.257 0.257 0.257 0.257 0.303 0.303 4.403xl0-9 3.444xl0-9 2.622xl0-9 0.0000499 

-4 6 0.258 0.258 0.257 0.257 0.3037 0.3038 4.402xl 3.443xl0-8 2.621xl0-8 0.00005 

-4 4 0.268 0.263 0.259 0.256 0.3027 0.3058 4.331xl0-6 x 0.000657708207 2.581 x 10-6 0.000048 
4 -2 0.342 0.337 0.323 0.219 0.279 0.341 0.00034 0.00026 0.00019 0.00003 

-4 0 0.349 0.349 0.348 0.211 0.274 0.349 0.0323 0.0241 0.0177 0.000027 

2 -7 0.257 0.257 0.257 0.257 0.304 0.304 4.4032 x 10-9 3.444xl 2.622 xI 0.005 

2 -6 0.257 0.257 0.257 0.257 0.304 0.304 4.403xl 3.444xl0-8 2.622xl0-8 0.005 

2 4 0.2 0.2 0.257 0.257 0.303 0.303 4.402xlO-6 3.443xlO-6 2.621xlO-6 0.005 
2 2 0.268 0.263 0.259 0.255 0.302 0.305 0.00043 0.00033 0.00026 0.0048 
2 0 0.342 0.337 0.323 0.219 0.278 0.341 0.0341 0.0259 0.0192 0.003 

Table 6.4 
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6.4 SUMMARY 

Rowe's (1952, 1955) experimental and theoretical curves are redrawn on transformed 

axes to show the reduction in the maximum bending moments and displacements when 

the design procedure suggested in the Eurocode 7 (EC7, 1995) is followed; the reduction 

is generally greater compared to the free earth support method. The MSD curves display 

a similar reduction pattern; however, Rowe's experiments show larger reduction in both 

the maximum bending moments and the prop loads than the MSD method for increasing 

wall flexibility. According to the MSD method, Eurocode 7 (EC7, 1995) might 

underpredict the maximum bending moments and prop loads for stiffer walls; this is not 

noticed in Rowe's analysis. However, this may be justified to a certain extent since 

Rowe presented mean curves and used a rather ambiguous parameter to represent the soil 

behaviour. Furthermore, the change in the stress path direction dming wall installation, 

which might result in a less stiff response of the soil in front of the retaining wall during 

excavation, has not been incorporated in the MSD method. This might be another reason 

for the divergence in the results. 

To assess the consistency of the MSD method as presented in this thesis, an analysis for 

low wall flexibility values was carried out. For stiff walls, the MSD method tends to values 

predicted by the geostructural mechanism proposed by Bolton and Powrie( 1988). 
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7. VALIDATION OF THE MSD METHOD FOR FLEXIBLE WALLS 

WITH CASE HISTORIES 

7.1 INTRODUCTION 

The validity of the MSD method for flexible walls is assessed by comparison with data 

from five monitored case histories of deep excavations. In recent engineering practice, 

detailed data for singly propped at the crest embedded retaining walls are limited. 

Therefore, one case history of a singly propped retaining wall at Bell Common is 

presented. The rest of the case histories are retaining walls suppOlied by temporary props 

near the crest and a penn anent reinforced concrete prop slab at dredge level. The data used 

for comparison with the MSD method are those obtained during the period that followed 

the installation of the temporary props and before casting of the pennanent prop slab; 

hence, for these stages the walls act as singly propped at the crest. 

The MSD method is a simple and practical design framework which may also be used to 

check whether a further more complicated analysis is required. Therefore, the following 

simplifications are made in the calculations according to the MSD method: 

• Lower bound parameters are used. 

• The soil profile in the case histories IS variable; hence the selection of a 

representative value for the soil parameter A =ys/G * used in the MSD calculations is 

complicated. In some case histories deposits of sand and gravel overlying clay are 

found, and London Clay extends to a greater depth than the other soil layers; 

therefore, it is assumed that the properties of clay will govern the behaviour, and the 

value of parameter A=y/G* is chosen to be representative of the London clay. 

Jardine et al (1984) presented results of the ratio Ejcu against the axial strain, where 

Eu is the undrained Young's modulus and Cu the undrained shear strength, obtained 

from triaxial tests on London clay samples with different overconsolidation ratios. In 

this Section, parameter A =y/G * is calculated from the results provided by Jardine et 

al (1984) for axial strains equal to 0.01 % in conjunction with the undrained shear 

strength profile of the London Clay given in each case history with the exception of 
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case history 4. In case history 4, Atherfield Clay was found to extend to a great 

depth; hence, different values of parameter A were used as described in Section 7.5. 

• In order to provide general results, the MSD method has been developed for conditions 

of pore water pressures at ground level or at half the retained height level as described 

in Chapter 5. Hence, for the case histories examined two solutions are presented and 

compared; the ground water table in the first one is assumed to be at ground level, 

while in the second one at a distance ofhalfthe retained height from the ground level. 

• The temporary props are assumed to be installed at the crest, although in some case 

histories they were installed at a small distance from the crest. 

• The value of the factor of safety applied to the soil strength and employed in the MSD 

calculations is derived from the limit equilibrium calculations according to Eurocode 7 

(EC7, 1995), since the excavation geometry is already known. 

7.2 CASE HISTORY 1: Propped contiguous bored pile wall at 

Walthamstow 

The first case study is a propped contiguous bored pile retaining wall constructed as part of 

the A406 North Circular Road improvement scheme between Chingford Road and Hale 

End Road in Waltham stow , London (Project Report 10, E468A/BG, TRL, 1993). The 

instrumented section of the wall was fonned from 17m deep by 1.5m diameter bored piles, 

spaced at 1.7m centres with a retained height of 8m, sUPPOlied by temporary props at 

distance of 0.7m below the crest and a pennanent prop slab at dredge level. Measurements 

of the wall bending moments and movements were obtained during and after construction. 

Ground instrumentation in the vicinity of the wall was installed before commencement of 

construction. The site location and the instrumented sections are shown in Figure 7.1. 

The ground in the vicinity of the instrumented section comprised 1.5m made ground and a 

silty clay with coarse gravel overlying London Clay, which is weathered to a depth of 

between 5 and 6m. The ground water table is at a distance of 1.5m below the original 

ground level. The soil profile and the undrained shear strength from consolidated 

undrained triaxial tests are shown in Figure 7.2. 
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BH10,11 
SS1 
C4,C5,C6 
D3 
Gl, G2 

Location of boreholes 10 and 11 from original site investigation,1983 
Borehole location for TRL soil samples (1 OOmm 'I> triaxial specimens, 1992) 
TRL Camkometer test locations (C4 -1989; C5/6 -1992) 
TRL Marchetti Dilatometer tesllocation (1989) 
Geomensor pillars 

BH10 

~ 

London Medical College 
University of London 

Sports Ground 

C6~A2 
Gl+ 

Figure 7.1: Location of site and instrumented sections (Project Report 10, E468A1BG, 
TRL, 1993). 
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Figure 7.2: Soil profile and undrained shear strength (Project Report 10, E468A/BG, 
TRL, 1993). 

The MSD results are validated against bending moment and movement data obtained after 

bulk excavation and just before the casting of the pemlanent prop slab. The values of the 

parameters used in the MSD calculations are listed in Table 7.1. For the parameter A= 

y/G* a range of values is given. According to Jardine et al (1984), for intact samples of 

London Clay with initial mean effective stress equal to 226 kPa (sample LC 1) and 199 kPa 

(sample LC2), the values of Euku at 0.01 % axial strain were found equal to 1010 and 1200 

respectively. The profile of the undrained shear strength with depth is given in Figure 7.2. 

Hence, the rate of increase of Eu with depth, Eu*, can be determined. Assuming that the 

Poisson's ratio, Vu is equal to 0.5 (undrained conditions) the rate of increase of the shear 

modulus with depth can be calculated from the relationship: 

(7.1) 

Therefore, for a value of Ys equal to 20 kN/m3
, parameter A is in the range of values shown 

in Table 7.1. 
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p=dlEI A=y/G* ffJ ~eak ys yw 

(m 3/KN) (dimensionless) (degrees) (KN 1m3
) (KN/m3

) 

values lO-l.IJ 1 O-L4) ~ 1 0-2:)} 22° 20 10 

Table 7.1 

The bending moments as measured by vibrating wire strain gauges are showed in Figure 

7.3. It has been checked and confinned by the original authors that a negative sign is 

equivalent to a convex outwards bending of the wall towards the excavation. 

After bulk excavation (day 643) 

Retained ground level 

T~ 
prop 

. 
Excavation 

I"'" 

Wal~ 

10 

]: 
- 5 c:i 

ci 
.i. 

o 

_l 5 

2000 1000 0 - 1 000 -2000 

Bending moment (kN m m- 1) 

Figure 7.3: Bending moments measured by vibrating wire gauges after bulk excavation 
(Project Report 10, E468A/BG, TRL, 1993). 

In the first column in Tables 7.2a & b the maximum bending moments estimated according 

to the MSD method and according to Gaba et al (2003), as described in Section 2.3.2, 

together with the measured values are showed. The displacements at characteristic points 

along the wall (Figure 4.55) are also presented. The pore water pressures are assumed to be 
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at ground level for the results in Table 7.2a, while at half the retained height level for the 

results in Table 7.2b. 

Ground water Mmax <>1 <>2 <>3 <>4 
table at z = 0 (KNm) (mm) (mm) (mm) (mm) 

Estimated (MSD) 1590~1610 15.3~16.9 28.4~30.1 26.2~27.5 8.2~9.5 

Estimated 
1784 

(Gaba et al,2003) 

Measured 1000 6.8 7.7 6.6 4.9 

Table 7.2a 

Ground water Mmax <>1 <>2 <>3 <>4 
table at z = 0.5 h (KNm) (mm) (mm) (mm) (mm) 

Estimated (MSD) 1505~1521 15.5~ 16.9 29.1~31.4 22.4~23.8 17~19.4 

Estimated 
1207.8 

(Gab a et al,2003) 

Measured 1000 6.8 7.7 6.6 4.9 

Table 7.2b 

The estimated maximum bending moments according to the MSD method is closer to the 

measured values when the pore water pressures are at half the retained height level. The 

empirical method suggested by Gaba et al (2003) gives a good estimation when conditions 

of pore water pressures at half the retained height level are assumed, but overestimates the 

maximum bending moments for conditions of pore water pressures at ground level; the 

MSD results appear to be closer to the measured ones in this case. 

The displacements are over predicted by the MSD calculations. However, the 

measurements on the inclinometers were examined only for a short period of time until 

casting of the pennanent prop slab. Higher horizontal movements would possibly develop 
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m the long tenn. Moreover, the displacements were obtained from the inclinometer 

readings assuming base fixity; hence, these values are possibly underestimated in 

comparison to those that occurred in reality. General1y, the MSD method gives a 

conservative estimation of the maximum bending moments and the displacements when 

compared to the measured values. 

7.3 CASE HISTORY 2: Propped diaphragm wall at the A406/AIO 

junction 

The second case study is a diaphragm retaining waIl embedded in over-consolidated clay 

constructed as part of the A406 N0l1h Circular Road, Great Cambridge Road Junction 

improvement scheme in N0l1h London (Research Report 331, RR331, TRL, 1991). Field 

instrumentation was instaIIed prior to any construction work to detennine the initial ground 

conditions and instruments were instaIled in two of the wal1 panels to record measurements 

during and immediately after construction as showed in Figure 7.4. 

At the instrumented section, made ground at the surface overlies a 1.3m thick deposit of 

finn sand and gravel, while fiml silty clay, charactelistic of the London clay fonnation was 

encountered below. The ground water table is at the top of the London clay layer which is 

at a distance of 2.6m from the original ground level. The soil profile together with the 

undrained shear strength obtained from triaxial tests is showed in Figure 7.5. 
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Figure 7.4: Plan of instrumentation (Research Report 331, RR331, TRL, 1991). 
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Figure 7.5: Soil profile and undrained shear strength (Research RepOli 331, RR331, TRL, 
1991). 

For the construction of the instrumented section of the wall, T-panels penetrated from 

original ground level to a depth of about 13.5m and excavation in front of the wall 

followed. Temporary props were installed near the crest retaining a height of 6m and a 

permanent reinforced concrete slab was later cast below the final caniageway level at 

] 2. 7m. The data obtained at the commencement of excavation and just before the casting 
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of the pemlanent slab are used for comparison with the MSD results. The construction 

sequence is shown in Table 7.3. 

Construction sequence at instrumented section of south wall 

Stage Description Period Schematic 

Installation of guide walls 14-7-87 

1 
Installation of wall panels 

11-9-87 to 11-4-88 N S 
under bentonite --r--r rr-~ 

I I 

Temporary excavation to 2 m 
I I 
I I 

on both sides of wall: panels 5-2-88 to 9-2-88 I End of stage 1 I 
reduced to cut off levels. I I 

L..J.. L 

Retained side backfilled 12-4-88 

~J f 

2 
Capping beam and parapet built 16-5-88 to 14-8-88 I I 

I I 
I I 

Construction of slip road on I End of stage 3 I 

retained side 
30-9-88 to 11-10-88 I I 

--L .i-

Slip road opened 16-10-88 

-----f.l 
Excavation to 1.7 m 21-2-89 

I I 

3 
I I 
I I 

Temporary props installed 
! 10-3-89 to 17-3-89 I End of stage 4 I 

and concreted to wall I I 
-'- u-

Excavation to 5 m 20-3-89 

I 
=7' 

4 Excavation to 6 m 21-3-89 
I I 
I JI 
I I 

Excavation to 6.3 m 22~3-89 I End of stage 5 I 
I I 

l......L. c!.-

Excavation comp~ted to 
5-4-89 

north wall 
5 

~) r'l"-== 
Prop slab with hinges cast 12-7-89 .,-. 

I I 
I JI 

6 Temporary props released 
I I 

2-8-89 to 3-8-89 I I 
I 

End of stage 6 I 
l......L. -L-

Carriageway construction 14-12-89 

7 

Road opened 25-2-90 

Table 7.3: Construction sequence (Research Report 331, RR331, TRL, 1991). 
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In Table 7.4 the values of the parameters used in the MSD calculations are listed. The 

values of the parameter A= y/G* were obtained similarly to the procedure described in 

Section 7.2. 

values 

Table 7.4 

10 

p=d/EI A=y/G* 

(m3/KN) (dimensionless) 

10-3u6 1 0-234~ 10-227 

-1000 o 1000 --,.-----...1---..' 

estimated 
moments 

-H- vibrating 
wire gauges 

After bulk excavation (stage 4) 

ffJ ~eak ys yw 

(degrees) (KN 1m3
) (KN/m3

) 

24° 20 10 

Figure 7.5: Bending moment distribution after bulk excavation (Research Report 331, 
RR331, TRL, 1991). 

The bending moments determined from measurements on the vibrating wire strain gauges 

are showed in Figure 7.5. It has been checked and confirmed by the original authors that a 

negative sign is equivalent to a convex outwards bending of the wall towards the 

excavation. Some of the vibrating wire gauges stopped functioning after a specific stage; 

hence measurements were only available for the lower part of the wall. The estimated 

bending moments assuming a linear distribution of em1h pressures corresponding to an 

earth pressure coefficient of unity on the retained side together with the prop load 

measured by the Contractor are shown in the same figure. The estimated values are 

reasonably close to those measured except for the maXImum value; the maximum 

measured value was substantially different from the maXImum estimated and it was 

considered suspect. However, the small number of measured values results in uncertainty. 
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Therefore, an average of the measured and estimated assuming K=1 values for the 

maximum bending moment was considered appropriate for comparison with the MSD 

results and is listed in Tables 7.5a & b, together with the maximum bending moments 

estimated according to the MSD method and according to Gaba et al (2003). The 

displacements at characteristic points along the wall (Figure 4.55) are also presented. The 

original water table is assumed to be at ground level for the results in Table 7.5a, and at 

half the retained height level for the results in Table 7.5b. 

Ground water Mmax J] J2 J3 J4 
table at z = 0 (KNm) (mm) (mm) (mm) (mm) 

Estimated (MSD) 804.8~804.9 12.9~13.5 21.4~22.7 25.2~26.7 20.7~21.9 

Estimated 
627.8 

(Gaba et ai,2003) 

Average value for 
measured and 

689.2 2.25 1.34 0.8 0 
estimated with 
K=l 
Table 7.5a 

Ground water MI/wx J] J2 J3 J4 

table at z = 0.5 h (KNm) (mm) (mm) (mm) (mm) 

Estimated (MSD) 735.5~735.8 8.4~9.6 16.2~18.9 25.6~27 19.8~2l.4 

Estimated 
412.3 

(Gaba et ai,2003) 

A verage value for 
measured and 

689.2 2.25 l.34 0.8 0 
estimated with 
K=l 
Table 7.5b 

The MSD values for the maximum bending moments are reasonably close to the measured 

ones. However, the horizontal displacement profile is different from the one assumed in 

the MSD calculations and the values are overpredicted. This difference could be due to the 

assumption of a rigid prop in the MSD calculations. Moreover, the measurements were 
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examined only for a short period of time and higher hOlizontal movements would possibly 

develop in the long term. 

7.4 CASE HISTORY 3: Propped secant pile wall at Hackney to MIl 

link 

The secant pile wall being examined forms part of the south wall on the George Green 

tunnel which is located on the new alignment of the A12 to MIl link road. The 

instrumented wall section lies between Wanstead underground station and Blake Hall Road 

(Report 188, TRL, 1996). 

The ground near the instrumented section consists of made ground to a depth of 1m and a 

4.8m thick band of sandy gravel overlying a deposit of London clay. The London clay 

becomes stiffer with depth and some evidence of weathering was noticed in the upper 

O.3m. The ground water table is at a depth of 4.5m below the ground level. The soil profile 

and the undrained shear strength measured from 100mm diameter triaxial specimens are 

shown in Figure 7.6. 

Secant bored piles of 1.2m diameter were installed at 1m centres with a penetration depth 

of 18m at the instrumented part of the wall. A reinforced concrete capping beam was 

constructed on the pile tops. Temporary steel props were installed and bulk excavation was 

carried out. At completion of excavation the retained height was 7.5m. A reinforced 

concrete slab was constructed at the carriageway centre during a later stage. The main 

stages of the construction are given in Table 7.6. For comparison with the MSD results, the 

data obtained at Day 414 are examined. 
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Figure 7.6: Soil profile and undrained shear strength (Report 188, TRL, 1996). 

Construction sequence at instrumented area 

Stage Description Period Day Number 

Installation of piles S209-S217 8nt94 - 21/7194 100-113 

2 Capping beam constructed 30/9/94-17111194 184-232 

3 Excavation to 4m depth 16112194-19112194 261-264-
Temporary props installed 23/1/95-10/2/95 299-317 

4 Excavation to 6.5m depth 21/3/95-28/3/95 356-363 
Excavation to formation (8m depth) 11/4/95 377 

5 Reinforced concrete slab cast 19/5/95-25/5/95 415-421 

6 Jacks inserted in props 10/7/95-21/7/95 467-478 

7 Temporary props released 21/7/95 478 

Table 7.6: The construction sequence (Report 188, TRL, 1996). 

The values of the parameters used in the MSD calculations are listed in Table 7.7. The 

values of the parameter A= y/G* were obtained similarly to the procedure described In 

Section 7.2. 

p=ntiEI A=/,/G* ffJ 'peak /,s )'w 

(m3/KN) (dimensionless) (degrees) (KN 1m3
) (KN/m3

) 

values 10-1.39 1 0-227 ~ 10-21 '} 25.1 0 20 10 

Table 7.7 
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The bending moments as measured by vibrating wire strain gauges are showed in Figure 

7.7. It has been checked and confinned by the original authors that a negative sign is 

equivalent to a convex outwards bending of the wall towards the excavation. 

28 

24 

18 

16 

14L---L---L-~~~~ 

-1500 -1000 -500 0 500 

Bending moments (kNmlm) 

Figure 7.7: Bending moment distribution after excavation to fonnation and before casting 
of the reinforced concrete slab (Report 188, TRL, 1996). 

In Tables 7.8a & b the maximum bending moments estimated according to the MSD 

method and according to Gaba et al (2003), as described in Section 2.3.2, together with the 

measured values are showed. The displacements at characteristic points along the wall 

(Figure 4.55) are also presented. The initial water table is assumed to be at ground level for 

the results in Table 7.8a, and at halfthe retained height level for the results in Table 7.8b. 
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Ground water Mmax d] d2 d3 d4 
table at z = 0 (KNm) (mm) (mm) (mm) (mm) 

Estimated (MSD) 1736~1787 21.9~23.5 29.8~31.2 35~36.7 33~35.9 

Estimated 
1394.8 

(Gaba et al,2003) 

Measured 667 2.5 4.8 3.2 2.9 

Table 7.8a 

Ground water M I1111X d] d2 d3 d4 
table at z = 0.5 It (KNm) (mm) (mm) (mm) (mm) 

Estimated (MSD) 1559~1596 18.8~ 19.9 32.1~35.3 37.2~39.5 35~36.7 

Estimated 
908.7 

(Gaba et al,2003) 

Measured 667 2.5 4.8 3.2 2.9 

Table 7.8b 

It is obvious from Tables 7.8a & b that the MSD calculations overpredict the maximum 

bending moments for both solutions. The estimated values according to Gaba et al (2003) 

are less than the MSD results for conditions of pore water pressures at the ground level, but 

are significantly different when the ground water table is assumed to be at half the retained 

height level. However, it should be mentioned that the magnitude of the bending moments 

is quite uncertain. The measured values were determined from the bending strains given by 

each pair of gauges based on the flexural rigidity (EI) per metre run of the secant pile wall 

and the same value of EI was employed in the MSD calculations. The value of parameter A 

was based on the experimental results on London clay presented by Jardine et al (1984). 

Therefore, the difference between the measured and the MSD values could possibly be 

caused by a slight divergence in the values of the parameters A or p used in the analysis. If 

the bending moments were estimated from the total lateral stress distribution as read from 
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spade pressure cells and piezometers before construction and summarised in Figure 7.8, 

higher values would be expected. 

The MSD calculations result in overpredicted values oflateral displacement. However, it is 

noted in the relevant report that wall movement measurements were not taken at the 

extremes of temperature and larger movements may have actually occurred. 
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Figure 7.8: Total stress distribution measured by spade pressure cells and piezometers 
before and after construction (Report 188, TRL, 1996). 
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7.5 CASE HISTORY 4: A contiguous bored pile waH on the Channel 

Tunnel Rail Link at Ashford 

The Channel Tunnel Rail Link (CTRL) consists of 109 km of high speed track linking the 

Channel Tunnel at Folkstone, Kent to the London tenninus at St Pancras. At Ashford, Kent 

the railway runs through approximately 1.8km of cut and cover tunnels and associated 

retained cuttings to minimise the impact of noise and to avoid crossing existing road and 

rail routes at grade. The sides of the tunnels and propped retained cuttings were 

constructed between contiguous bored pile retaining walls (Richards et aI, 2006). An 11m 

long section of a retaining wall that f01111S part of a propped cutting between Gasworks 

Lane to Beaver Road constructed has been comprehensively instrumented. The 

instrumented section has been constructed from bored pile walls using 1.05m diameter 

piles approximately 20m long and spaced at 1.35m centres. Preliminary assessment of the 

geology in the area was collected from borehole records and laboratory tests. The location 

of the examined section together with the instrumentation in the area is showed in Figure 

7.9. 
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Figure 7.9: Site location and plan of instrumentation (Clark, 2006). 
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Made ground of 2.8m thickness overlying a lAm thick deposit of Hythe Beds was present 

at the instrumented section. High and lower plasticity Atherfield Clay of 11.9m thickness 

overlying Weald Clay was present at greater depths. The soil profile is shown in Figure 

7.10. The soil characterisation, design and estimated in situ earth pressure parameters are 

listed in Table 7.9. The Atherfield Clay deposit was thicker than the rest and it is assumed 

in the MSD calculations that its properties govern the behaviour. Therefore, the value of 

parameter A =y/G * is representative of the Atherfield Clay and is derived from results 

presented by Clayton et al (2006). Figure 7.11 shows the variation in the undrained secant 

Young's modulus with axial strain for an undisturbed sample of Atherfield Clay. From 

Figure 7.11, Ejp '0 is equal to 800 for small strains and combining Equations (7.2) and 

(7.3), Equation (7A) is derived: 

(7.2) 

(7.3) 

6 G (1+ v~J / [u',o (1 +2 K o)J=800 (7A) 

From Equation (7A), the values of the rate of increase of the undrained shear modulus with 

depth are calculated for Ko=1 and Ko=1.5. Assuming a value of Ys equal to 20.6 kN/m
3

, 

parameter A is in the range of values shown in Table 7.9. The ground water table was at 

1 m below the ground surface. However, the data collected at the dewatered section 

approximately 100m away from the instrumented section indicate that the lower Atherfield 

and Weald clays have been subjected to a drawdown of5m (Clark, 2006). 

stratum unit ~' estimated estimated Ko hydraulic 
weigbt OCR = (1 - sin~') x conductivity 
Mglm3 OCRsin$' (permeability) 

k, rn/s 
Hytbe Beds 1.95 27° 7.3 to 9.3 1.35 to 1. 5 2 X 10-4 
Atberfield 2.1 22° 3.5 to 10.3 1..0 to 1.5 2 X 10-9 

Clay 
Weald Clay 2.1 21° 4.5 to 10.7 1.1 to 1.5 2 x.lO-6 

Table 7.9: Soil parameters (Clark, 2006). 
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Line denoting change Approx. 
In plasticity"" casing d 
__ ~ _______ M __ ~ ____ ~. _______ • _______ ~~_ 

I 11.6 m bgl:'iZ 1.3 11 

I 15.3 m bgl 2 

20.3mbgl 

• Spade cell 
Horizontal dimensions in mm 
bgl - below ground level 

, , , 
: 171:2 • 

Figure 7.1 0: Soil profile (Clark, 2006). 
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Figure 7.11: Nonnalised undrained Young's modulus Eu/p'o against the logatithm of the 
axial strain for the Atherfield Clay (Clayton et al, 2006). 

At the instrumented section, installation of the contiguous bored pile wall was followed by 

construction of reinforced concrete props at the crest and commencement of bulk 

excavation beneath them. Temporary props were installed at a depth of 6m, further 

excavation took place and a base slab was constructed at dredge level. The construction 
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sequence is shown in Table 7.10. For comparison with the MSD results, the data obtained 

before commencement of further excavation are used; at that point the wall had a retained 

height of 5.4m and an overall height of 20.25m. 

Stage Name Schematic Day Date 

1 Spade Cell 1-13 8th _20th October 1999 
Installation 

2 Pile Installation 

T 
47-71 23rd November to 1 yth 

December 1999 

3 Sand Drain 

T 
349- 20th -23rd September 

Installation 352 2000 

"'~'" 

4 Capping Beam 

T 
440- approximately 20_22nd 

Construction 442 December 2000 

... ·1n .. 

5 RC (reinforced 

T 
465 Props 1 & 2: 14th 

concrete) Prop 467 January 2001 
Construction Prop 3: 16th January 

2001 
."~., .... 

6 Excavation 

~ 
483- 1st_2yth February 2001 

Phase 1 509 (no work 7th_21st Feb 
inclusive) 

.~Ji.,~ .. 

7 Temporary Prop 

~ 
512 Prop 1: 2nd March 2001 

Installation 522 Props 2 & 3: 12th March 
2001 

... "i-,. ... 

8 Excavation 

F 
530- 20th_27th March 2001 

Phase 2 537 

-'1'-
9 Base Slab 

F 
579 8th May 2001 

Construction 

~f'"'' 
10 Temporary Prop 

~ 
581 Prop 1: 10th May 2001 

Removal 595 Props 2 & 3: 24th May 
2001 

..... r::~,. 

Table 7.10: Construction sequence (Clark, 2006). 
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The values of the parameters used in the MSD calculations are listed in Table 7.11. It 

should be noted that the upper part of the piles had a different flexural rigidity than the 

lower part (Clark, 2006); hence, in the MSD calculations p is given a range of values. 

p=lf'IEI A=y/G* qJ ~eak )'s y", 

(m3/KN) (dimensionless) (degrees) (KN 1m3
) (KN/m3

) 

values 1 0-O\l4~ 10-0 \1 1 O-Ub ~ 1 O-L.I~ 22° 20.6 10 

Table 7.11 

The bending moments as measured by vibrating wire strain gauges and calculated from 

curve fits to the inclinometer data (Clark, 2006) are shown in Figure 7.12. In Figure 7.13 

the inclinometer measurements taken following the first phase of excavation are presented. 
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Figure 7.11: Bending moments measured by vibrating wire strain gauges after the first 

phase of excavation (Clark, 2006). 
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Figure 7.13: Inclinometer data after the first phase of excavation (Clark, 2006). 

The MSD calculations are calTied out for conditions of zero pore water pressures, since a 

drawdown of 5m was noticed in the clays and the retained height is taken equal to 5.4m. In 

Table 7.12 the maximum bending moments estimated according to the MSD method and 

according to Gaba et al (2003), as described in Section 2.3.2, together with the measured 

values are showed. The displacements at characteristic points along the wall (Figure 4.55) 

are also listed. 

As indicated in Table 7.12, the MSD method calculated slightly higher values of maximum 

bending moments than those measured; this is expected since conservative assumptions 

were adopted in the MSD calculation. The maximum bending moments according to Gaba 

et al (2003) are substantially below those measured. The measured values of lateral 

displacements are reasonably close to those calculated by the MSD method. However, the 

displacement profile is different since a rigid prop was assumed in the MSD calculations. 
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Ground water M 11l (Ll; ~J ~2 ~3 ~4 
table at z = 6m (KNm) (mm) (mm) (mm) (mm) 

Estimated (MSD) 583~597 8~9.5 13.5~14.3 10.8~12.2 4~5.3 

Estimated 
188.1 

(Gaba et ai,2003) 

Measured by 
vibrating strain 433 
gauges 

Calculated from 
301 7.8 8.3 5 0.5 

inclinometers 

Table 7.12 

7.6 CASE HISTORY 5: A secant pile embedded retaining wall at Bell 

Common Tunnel in Essex 

A 470m long cut and cover tunnel was constructed in the early 1980's at Bell Common to 

take the M25 London motorway through the nOlihern edge of Epping Forest in Essex. The 

tunnel is fonned by a central line of piles and two embedded retaining walls propped at the 

crest by a simply supported roofing slab. A section of the retaining wall and the adjacent 

ground was extensively instrumented to monitor the behaviour of the structure (Tedd et aI, 

1984). Figure 7.14 shows a cross section of the tunnel and the instrumentation in the 

vicinity are showed. 

The soil profile in the area comprises of a 1.5m thick deposit of Older Head, similar in 

nature to the Claygate Beds which lie underneath it. The Claygate Beds deposit has a 

thickness of 5.5m and overlies London Clay. The soil profile and the undrained strength 

detennined from triaxial tests and Camkometer self-boring pressuremeters are shown in 
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Figure 7.15. The initial ground water table was at a distance of 3m below the ground 

surface. 

• Spade ceil and piezometer * Surface station 

I IncUnomelar x Plate gauge and senlement cell 

Older Head 

Claygate 
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S Levelling station ____________ .:J:~I:... __ _ 

• 
• 

/Formauon level 

/ Oralnage t,enell 

----g-------

Access manhole 

Scale of metres 
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Figure 7.14: Plan of instrumentation (Tedd et aI, 1984). 
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Figure 7.15: Soil properties (Tedd et aI, 1984). 
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The instrumented section of the wall has been fonned by 1.18m diameter bored piles 

spaced at 1.08m centres. Firstly, a number of primary piles were bored to a depth of 21 m 

and secondary piles were bored in between to a depth of 19m. An initial excavation of 

3.5m took place to construct the cill beam and the thrust wall and temporary shoring was 

placed between the secant pile wall and the closest surface instrumentation to retain the 

ground. Further excavation to 5m and construction of the roof beam followed. Between the 

roof beam and the thrust wall a compressible material 75mm thick was introduced. The 

final excavation to fonnation level was down to about 8m. 

The values of the parameters used in the MSD calculations are representative of the 

London clay and are listed in Table 7.13. 

p=ut/EI A=y/G* ffJ ~eak )'s yw 

(m3/KN) (dimensionless) (degrees) (KN 1m3
) (KN/m3

) 

values lO-'lbJ 10-U)~10-21~ 22° 20 10 

Table 7.13 

The bending moments as measured by vibrating-wire strain gauges and the horizontal 

defonnations measured by inclinometers are shown in Figures 7.16 a & b. In the bending 

moment diagram a negative sign represent a concave curvature towards excavation. Tedd 

et al (1984) note that both the bending moment and deformation profile depend heavily on 

the magnitude of the prop load which is only an approximate estimate. According to Figure 

7.16a, the wall rotated about its toe and the maximum displacement at the end of the 

construction period occurred mainly at the crest; however, this can be explained by the 

compressible prop creeping at a very high rate. The bending moments appear to be very 

small possibly because of their sensitivity to the complex time-dependent stress-strain 

behaviour of the compressible material at the roof prop which caused fluctuations in the 

prop load. If the bending moments are estimated from the emih pressures, considerably 

larger magnitudes would be obtained (Tedd et aI, 1984). Bolton and Powrie (1985) 

presented a bending moment diagram estimated from the earth pressure distributions as 

shown in Figure 7.17, where positive values represent concave curvature towards the 

excavation. The magnitudes in this case are far greater than those measured directly. In an 

elastic finite element analysis carried out by Hubbard et al (1984) the bending moments 

were also found much higher than those measured. 
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Figures 7.16: (a) Horizontal movements and (b) bending moment profile of the secant pile 
wall during various stages of excavation (Tedd et al, 1984). 
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Figures 7.17: Bending moment profile of the secant pile wall as calculated from the 
measured earth pressures distribution (Bolton and Powrie, 1985). 

In Tables 7.14 a & b the maximum bending moments estimated according to the MSD 

method and according to Gaba et al (2003), and measured directly (Tedd et aI, 1984) and 
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calculated from the earth pressure distribution (Bolton and Powrie, 1985) are shown 

together with displacements at characteristic points along the wall (Figure 4.55). For the 

values in Table 7.14 a the pore water pressures are at ground level, while in Table 7.14 b 

the water table is at half the retained height level. 

Ground water table M lllax £5] £52 £53 £54 
at z= 0 (KNm) (mm) (mm) (mm) (mm) 

Estimated (MSD) 1609~1620 33.2~34.5 41~43.8 44.3~45.4 39~42.1 

Estimated 
1692.1 

(Gab a et ai,2003) 

Measured from 
strain gauges 262.5 18.4 12.9 7.8 0 
(Tedd et aI, 1984) 
Calculated from the 
earth pressures 

1378 
(Bolton and Powrie, 
1985) 

Table 7.14a 

Ground water table M lllax £5] £52 £53 £54 

at z = 0.5 h (KNm) (mm) (mm) (mm) (mm) 

Estimated (MSD) 1127~1142 8~9.6 13.8~16 10.8~13.3 4.6~6.1 

Estimated 
1207.76 

(Gaba et ai,2003) 

Measured from 
strain gauges 262.5 18.4 12.9 7.8 0 
(Tedd et aI, 1984) 
Calculated from 
the earth pressures 

1378 
(Bolton and Powrie, 
1985) 

Table 7.14b 
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The MSD method gives a reasonably close prediction of the maximum bending moments 

when compared to those calculated from the earth pressures for a water table at half the 

retained height level, while the empirical method (Gaba et aI, 2003) might be unsafe in this 

case. When the water table is at ground level, the MSD results may be conservative; 

however, the assumption of a water table at half the retained height level is closer to the 

case study since the water table was at 3m from ground level. The measured values are 

close to those calculated by the MSD method assuming a water table at half the retained 

height level. A big divergence is noticed between the directly measured magnitudes and 

the rest of the values presented in Table 7.14 when the water table is at ground level. 

Moreover, the displacement profile differs from the one assumed in the MSD calculations. 

However, the accuracy of the directly measured values is uncertain for the reasons 

discussed in this Section. A finite element analysis for the Bell Common singly propped 

wall (Potts and Day, 1991) is presented and discussed in the next Section for further 

companson. 

7.6.1 CASE HISTORY 5: Finite element analysis for a propped retaining 

wall at Bell Common Tunnel in Essex 

A finite element analysis for a propped retaining wall at Bell Common Tunnel has been 

perforn1ed by Potts and Day (1991). The purpose of the analysis was to assess whether 

flexible sheet pile walls can provide a viable alternative to concrete diaphragm or secant 

pile walls retaining stiff clays; hence, four different values of wall stiffness, ranging from 

an extreme value attributed to a very soft wall to a value equivalent to 1m thick concrete 

wall, as listed in Table 7.15, were used. The soil profile and properties employed in the 

analysis are shown in Figure 7.18. The original ground water table is at a distance of 3m 

from the ground surface. However, the maximum bending moments were calculated in the 

long term when excess pore water pressures had dissipated. During the dissipation stages 

of the finite element analysis the bulk modulus of the pore water was set to zero. 
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Figure 7.18: Soil properties employed in the finite element analysis (Potts and Day, 1991). 

In the MSD calculations the same values of wall stiffness are used for comparison with the 

finite element analysis, while conservative values for the soil parameters are chosen as 

listed in Table 7.15. The MSD calculations are carried out assuming a water table at half 

the retained height leveL 

p=Jt'/EI A=y/G* ffJ 'peak ')'s yw 

(m3/KN) (dimensionless) (degrees) (KN 1m3
) (KN/m3

) 

1 st case 10Ll'! 10-13 25° 19.6 10 

2nd case 10un 10<u 25° 19.6 10 

3rd case 1 O-u 35 10-23 25° 19.6 10 

4th case lQ-LUg 10-25 25° 19.6 10 

Table 7.15 
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Cases MmlL'C 

(kNm/m) 

1 st case 1325 

2nd case 1419 
Estimated (MSD) 

3rd case 1458 
4th case 2054 

1 st case 120 

Finite Element Analysis 
2nd case 170 

(Potts&Day,1991) 3rd case 305 
4th case 635 

Estimated 
1080.5 

(Gaba et ai,2003) 

Table 7.16 

In Table 7.16 the results obtained from the finite element analysis are compared to those 

detennined from the MSD method and those according to Gaba et al (2003). For the two 

stiffer walls the MSD results are reasonably close, while for the two more flexible walls 

the MSD method overpredicts the maximum bending moments compared to finite element 

analysis. It should be mentioned that the assumption of a rigid prop was followed in the 

MSD calculations, whereas in the finite element analysis the propping slab was modelled 

by a spring with a linear stiffness of 10MN/m per metre; hence the difference in the results 

may be explained. The values estimated according to Gaba et al (2003) are higher than the 

finite element results results. It should be noted that the first case is equivalent to a very 

soft wall which is not likely to be used in practice, but was included in the analysis to 

represent an extreme case. 

7.7 SUMMARY 

The comparison between the MSD results and the data obtained from five case histories 

show that the MSD method can provide a useful prediction of the maximum bending 

moments and the displacements at characteristic points along the wall for preliminary 

design. In all the case histories examined in this Chapter, the MSD method gives slightly 
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overpredicted values; however, this would be expected since conservative assumptions and 

lower bound parameters were employed. Moreover, in the MSD calculations the wall 

flexibility and soil stiffness and shear strength are taken into account, which is an 

improvement for preliminary design when compared to the limit equilibrium calculations 

or the empirical method suggested by Gaba et al (2003). A further more complex analysis 

(i.e. finite element analysis) could be carried out for a detailed design ifneeded. 

Furthennore, it should be noted that due to the limited number of detailed case studies of 

embedded retaining walls propped at the crest, it was assumed that the data obtained after 

installation of the temporary props and before casting of the pennanent base slab could 

resemble the behaviour of walls propped singly at the crest for some of the case histories 

presented herein. Even so, the accuracy of the measurements is uncertain in some cases. 

Some divergence between the MSD results and the measurements could be justified by 

these reasons. 
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8. CONCLUSIONS AND FURTHER WORK 

8.1 CONCLUSIONS 

Review of the different methods used in cunent engineering practice and the codes of 

practice for the design of retaining walls has indicated that complex and time consuming 

analysis is often required to model the soil behaviour. Alternatively, empirical or simple 

methods based on linear elasticity can be used, but their limitations are significant. The 

potential of the mobilised strength method to serve as a simple design framework that 

incorporates the real nature of soil behaviour for retaining walls propped near the crest has 

been investigated in this thesis. 

In Chapter 3, the maximum principle stress difference failure criterion has been used to 

derive the total stresses behind and in front of a stiff retaining wall propped at the crest 

incorporating the initial emih pressure coefficient, Ko, and the rate of increase of the shear 

modulus with depth, G*. The rotation of the wall at the prop and the normalized prop 

loads, bending moments and defonnations have been calculated for different values of 

retained height ratios, initial emih pressure coefficients and soil stiffness. The soil/wall 

flexibility is characterized by a flexibility number, the critical value of which differentiates 

stiff from flexible walls. The clitical flexibility ratio has been found to increase when the 

initial emih pressure coefficient and the retained height ratio decrease. The advantages of 

this solution are that both the wall flexibility and the soil stiffiless are considered in a 

simple calculation and it can be applied in a reasonably general manner. 

In Chapters 4 and 5, the mobilized strength method has been applied to flexible retaining 

walls for conditions of zero pore water pressures and linear seepage respectively. New 

kinematically admissible soil displacement fields have been introduced to associate the 

mobilized shear strain with the mobilized shear strength in each soil zone by a modified 

version of the hyperbolic relationship introduced by Duncan and Cheng (1970) and the 

wall flexibility has been idealised into a simple mechanism. Curves have been presented to 

illustrate the divergence in the maximum bending moments and the prop loads when the 

wall flexibility, soil stiffness and initial shear strength are taken into account from those 

calculated according to Eurocode 7 (1995). To estimate the effect of each of the wall 
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flexibility, soil stiffness and initial shear strength independently, a variation in one 

magnitude has been allowed while constant values were employed for the rest. According 

to the curves, a significant reduction in the maximum bending moments and prop loads is 

noticed when the wall flexibility or the soil stiffness increases. The reduction is more 

pronounced for retaining walls embedded in clays than in sands. The normalised 

displacements at characteristic points along the wall have been also plotted for different 

values of wall flexibility, soil stiffness and initial shear strength. 

In Chapter 6, Rowe's (1952,1955) experimental and theoretical curves have been redrawn 

on transformed axes in consistent units to show the reduction in the maximum bending 

moments and the prop loads when the design procedure suggested in the Eurocode 7 (EC7, 

1995) is followed and moreover, to enable the comparison with the MSD curves. The 

reduction in Rowe's curves is greater when the design procedure suggested by Eurocode 7 

(EC7, 1995) is followed than the free earth support method. However, Rowe's results were 

derived for sheet pile walls embedded in sands with low Ko and were based on a rather 

ambiguous soil parameter; hence, their general application might not be appropriate. 

Rowe's reduction curves and those derived from the MSD method are in good agreement 

when are both compared to Eurocode 7 (EC7, 1995) regarding the maximum bending 

moments, but a difference is noticed in the prop loads. However, Rowe (1952, 1955) took 

also account of the surcharge, whereas in the MSD method zero surcharge was assumed. 

Furthermore, comparison between the MSD method, as presented in this thesis, and the 

geostructural mechanism presented by Bolton and Powrie (1988) has showed that the same 

results are found for low wall flexibility values; hence the MSD method is consistent. 

Comparison of the MSD results with data obtained fi-om five monitored case studies has 

been presented in Chapter 7. Conservative assumptions and lower bound parameters were 

employed to derive the MSD results and this may have led to slightly overpredicted values 

of maximum bending moments and prop loads compared to the measurements. Even so, 

the MSD method is an improvement to linear elastic soil models or empirical techniques 

and may be a simple and useful design tool. Its accuracy may be increased if more 

kinematically admissible soil displacement fields are introduced and different rates of 

mobilized strength with strain are allowed for behind and in front of a retaining wall to 

take account of the recent stress history. 
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8.2 FURTHER WORK 

Simple soil-structure interaction analysis (i.e. using software like FREW or W ALLAP) is 

commonly used in engineeling practice for the preliminary design of retaining walls and 

could be compared to the results derived from the MSD method. The MSD method has 

been presented in this thesis in tenns of an effective stress analysis; its validity could also 

be assessed for a total stress analysis. Moreover, the soil behind and in front of a 

retaining wall may be divided into a greater number of triangles with unifonn but 

different mobilized strength within each one to approach the realistic soil/wall 

movements. The soil arching may be included in the stress distribution on the retained 

side when flexible retaining walls are analysed. The relationship for the derivation of the 

mobilized strength with the mobilized strain may also be improved to achieve better 

accuracy; however, the key point might be to retain its simplicity. Powrie, Pantelidou and 

Stallebrass (1998) emphasized the importance of recent stress history during wall 

installation on the soil behaviour during excavation; they suggested that for the soil in 

front of a retaining wall, the change in the stress path direction during wall installation 

was smaller, resulting in a significant less stiff response during excavation in comparison 

with the retained soil. Therefore, a more rapid rate of mobilisation of soil strength with 

mobilized strength may be used for the retained soil in the MSD method to incorporate 

the recent stress history. 
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APPENDICES 

A. HYPERBOLIC STRESS-STRAIN RELATIONSHIP 

Duncan and Cheng approximated the non-linear stress-strain relationship by the 

hyberbolic equation proposed by Kodner (1963) 

(A1) 

where aj and a3 are the major and minor principal stresses respectively, G is the axial 

strain and a and b are constants which can be derived from experimental data. Constant a 

is the reciprocal of the initial tangent Young's modulus E1 and constant b is the reciprocal 

of the asymptotic value of stress difference, (aj - (3)ult, which the stress-strain curve 

approaches at infinite strain. Equation (A1) can be written in the fonn of Equation (A2): 

(A2) 

The stress difference in the soil (a1 - (3) at failure is usually found to be slightly less than 

its asymptotic value (aj - (3)ult at infinite strain and a factor Rfcan be used to relate them 

in Equation (A.3): 

(A.3) 

Substituting the constants a and b and the factor Rfin Equation (A.2): 

(AA) 

] anbu (1963) found from expelimental studies that the initial tangent Young's modulus 

El is related to the confining pressure a3 by Equation (A.5) 

(A.5) 
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where pa is the atmospheric pressure expressed in the same pressure units as Ei and (J3, K 

is a dimensionless modulus number and n is the exponent determining the rate of 

variation of Ei with (J3. In Figure A.I the determination of the parameters K and n from 

drained triaxial tests is shown. 
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Figure A.I : Determination of parameters K and n from drained triaxial test data (Duncan 
and Cheng, 1970). 

The stress difference at failure can be related to the confining pressure (J3 

((Jj (J3)r (2 c cosrp + 2 (J3 sinrp) / (l ~ sinrp) (A.6) 

where c is the soil cohesion and rp is the friction angle. 

The tangent Young's modulus may be expressed by Equation (A.7): 

(A.7) 

Duncan and Cheng (1970) rewrote Equation (AA) in the form of Equation (A.S): 

(A.S) 

The expressIOn for the tangent Young's modulus can be independent of strain by 

substituting Equation (A.S) in Equation (A.7) 
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(A. 9) 

where S is the nonnalized stress level and is given by Equation (A. I 0) 

(A.IO) 

Duncan and Cheng (1970) substituted Equations (A.S), (A.6) and (A.1 0) in Equation 

(A.9) 

E/ = [J - Rf(l - simp) (rIj ~ rI3) / (2 c cosrp + 2 rI3 sinrp)/ K pa (rI3 / Pat 

(A.1I) 

where c is the soil cohesion, rp is the friction angle rI3 is the confining pressure, pa is the 

atmospheric pressure expressed in the same pressure units as E/ and rI3, K is a 

dimensionless modulus number and n is the exponent detennining the rate of variation of 

the initial tangent Young's modulus Ei with rI3. 

After canying out additional tests on sands to investigate the effect of unloading and 

reloading on the proposed relationship, Duncan and Cheng (1970) found that the 

unloading-reloading Young's modulus Eur may be expressed by Equation (A.12) 

(A.12) 

where Kur is a dimensionless modulus number for unloading and reloading and was found 

to be higher than for plimary loading 

The tangent shear modulus G may be represented by an Equation similar to the one 

(Equation A.II) proposed by Duncan and Cheng (1970). The radius of the Mohr circle of 

total stresses is: 

(A.13) 

Equation (A.13) can be rewritten as: 
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(51 = 2 t + (53 (A.l4) 

The average total stress is given by Equation (A.I5): 

(AI5) 

Substituting Equation (A.14) into Equation (A.I5): 

s = t + (53 (AI6) 

The maximum shear strain is 

y = 112 (3 Ga - GvaJ (A.I7) 

where Gva/ and Ga are the volumetric and axial strain. In an undrained triaxial test Gva! = 0, 

hence: 

y = 1.5 Ga (AI8) 

Considering Equations (AI3) and (AI8), Equation (AI) can be rewritten in the fonn: 

t = (y 13) I (a + b )' I 1.5) (AI9) 

The initial shear modulus Gi is related to the initial Young's modulus by the expression 

(A20) 

where v is the Poisson's ratio. Therefore the parameters a and b in Equation (AI9) may 

be defined as: 

a I lEi = I 1[2 Gi (1 + v)] (A.2I) 

(A22) 
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If tf and tul t are the shear stresses at failure and at infinite strain respectively, then: 

(A.23) 

Substituting a and b in Equation (A. 19): 

t = y / (1.5 / [Gdl +v) + y Rf / tfJ} (A.24) 

From Equations (A.5) and (A.20): 

Gi = [K pa (U3 / PalJ / [2 (1 + v)J (A.25) 

Equation (A.6) can be rewritten in terms of shear stress: 

Ij= (c coscp + U3 sincp) / (1 sincp) (A.26) 

The tangent shear modulus Gt can be defined by the differentiation: 

G1 = dt / dy -7 G1 = 1.5/ [Gdl + v)J / {[1.5 / [Gdl + v)J + Y Rf / Ij} 
2 

(A.27) 

Equation (A.24) can be rewritten as: 

y = 1.5 t / [Gdl + v) (1 - Rf t / Ij) (A.28) 

Substituting Equation (A.28) into Equation (A.27): 

2 G1 = Gi (1 + v) (1- S Rr) / 1.5 (A.29) 

whereS t/Ij (A.30) 

From Equations (A.26), (A.27), (A.28), (A.29) and (A.30): 

G1 [1 - Rf t (1 - sincp) / (c coscp + U3 sincp)/ [G i (1 + v) /1.5J (A.31) 
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The advantage of Equation (A.31) is that it facilitates the determination of the tangent 

shear modulus Gt for any stress condition if data from triaxial tests are available. 

B. MOBILISED STRENGTH 

The rate of change of the mobilized friction angle rp'mob with shear strain y is a useful tool 

for expressing strength and stiffness at the same time, providing information on the soil 

state relative to its critical state. The mobilized friction angle rp'mob is given by Equation 

(B.l). 

, . -I [ / '] rp mob szn t s (B.1) 

Equation (A.16) can be rewritten in terms of effective stresses 

s' = t + a3' (B.2) 

Substituting Equations (A.19) and (B.2) into Equation (B. 1 ): 

rp'mob= sin-! [(,v /3) / (a + by / 1.5) / (t + a3)J ~ 

rp'mob = sin- I {(y / 3) / (a + by / 1.5) / [a3 + (y /3) / (a + by / 1.5)J ~ 

rp'mob sin-! {l / [1 + a3 (a + by / 1.5) / (y / 3)J ~ 

rp'mob = sin-! [(I' /3) / (y /3 + a3 a + a3 by / 1.5)J ~ 

rp'mob sin- I {I' / [3 a a3 + (1 + 2 a3 b) yJ} ~ 

rp'mob = sin- I {I' / [A + B yJ} (B.3) 

239 



In equation (B.3): 

A = 3 a (53 (B.4) 

where a =] lEi =] 1[2 Gi (i + v)J (B.5) 

If v = 0.5, Gi = G* z where G* is the rate of increase ofthe shear modulus with depth 

and (53 = )Is z assuming that the initial emih pressure coefficient Ko is greater than unity, 

then from Equations (B.4) and (B.5): 

A = 3 Ys z 1[2 G* z (i + 0.5)J ~ A = Ys I G* (B.6) 

In equation (B.3): 

(B.7) 

where b = Rf l2 Tf (B.8) 

and Tf is the shear stress at failure and is equal to 2 (53 sin (jJ / (i-sin (jJ). 

Duncan and Cheng (1970) used a value of Rr equal to 0.95, because their experiments 

were not continued long enough to reach failure. In this research it is assumed that the 

tests will be carried out long enough to reach failure and therefore a value of Rfequal to 1 

is appropriate. From Equations (B.7) and (B.8): 

B = ] + 2 (53 (i-sin rp) 14 (53 sin rp ~ 

B =] + 0.5 (i-sin rp) I sin (jJ (B.9) 

In Equation (B.9), (jJ is the angle of shearing resistance at failure. 
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Co TABLES: MSD RESULTS FOR CONDITIONS OF ZERO PORE 

WATER PRESSURES 

In Tables C.1 and C.2 the value of A (A = Ys / G *) is kept constant and equal to 10-4 and 

10-3 respectively, while (Ys P = Ys It / E J) is in the range of 10-4 to 102 and !p' is in the 

range of 20° to 40°. In Tables C.3 and CA the value of Ys P is kept constant and equal to 

10-1 and 10 respectively, while A is in the range of 10-6 to 10-1 and !p' is in the range of 

20° to 40°. In Tables C.5 and C.6 the value of !p' is kept constant and equal to 20° and 

25° respectively, while A is in the range of 10-6 to 10-1 and Ys P is in the range of 10-4 to 

102
. 

A= 'lsi G* =10-4 

fjJ' Log (Ysp) M l11ax I M1I1I.nEC7 FIFEC7 

20 -4 1. 08101 1. 06398 
20 3 1. 07332 1.0553 
20 -2 1. 01526 0.995155 
20 -1 0.860657 0.859888 
20 0 0.785284 0.799719 
20 1 0.774229 0.791035 
20 2 0.773068 0.790124 
30 -4 1. 3101 1.15552 
30 3 1. 30366 1.14748 
30 -2 1.25028 1. 08718 
30 -1 1.03678 0.903707 
30 0 0.860457 0.77512 
30 1 0.82634 0.791035 
30 2 0.822549 0.790124 
40 -4 1.92168 1. 31701 
40 -3 1.91524 1.30907 
40 -2 1. 86179 1.24769 
40 -1 1.6016 1.03982 
40 0 1.l7265 0.796894 
40 1 1.03502 0.723693 
40 2 1. 01718 0.714249 

Table C.1 
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A=ys IG*=10-3 

rp' Log (Ysp) Mmax I Mlt/a.-uEC7 FIFEc7 

20 4 1. 08181 1. 06489 

20 -3 1. 08101 1.06398 

20 -2 1.07332 1.0553 

20 1 1. 01526 0.995155 

20 0 0.860657 0.859888 

20 1 0.785284 0.799719 

20 2 0.774229 0.791035 

30 4 1.31075 1.15636 

30 -3 1.3101 1.15552 

30 2 1.30366 1.14748 

30 -1 1.25028 1.08718 

30 0 1. 03678 0.903707 

30 1 0.860457 0.77512 

30 2 0.82634 0.751015 

40 -4 1.92234 1. 31783 

40 3 1. 92168 1. 31701 

40 -2 1. 91524 1.30907 

40 -1 1. 86179 1.24769 

40 0 0.860657 1. 03982 

40 1 0.785284 0.796894 

40 2 0.774229 0.723693 

Table C.2 
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Log(A) 

20 -6 0.786869 0.791035 

20 -5 0.805628 0.799719 

20 -4 0.919407 0.859888 

20 3 1.10323 0.995155 

20 -2 1.15934 1.0553 

20 1 1.16635 1. 06398 

30 6 0.82634 0.723693 

30 5 0.860457 0.796894 

30 -4 1. 03678 1.03982 

30 -3 1.25028 1. 08718 

30 -2 1. 30366 1.14748 

30 1 1. 3101 1.15552 

30 6 1.03502 1.06489 

30 5 1.17265 1. 06398 

30 -4 1. 6016 1.0553 

30 3 1. 86179 1.24769 

30 -2 1.91524 1.30907 

30 1 1.92168 1. 31701 

Table C.3 
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(')'s p)=10 

'1" Log(A) 

20 -6 0.772951 0.790032 

20 -5 0.773068 0.790124 

20 -4 0.774229 0.791035 

20 -3 0.785284 0.799719 

20 -2 0.860657 0.859888 

20 1 1. 01526 0.995155 

30 6 0.822165 0.748075 

30 5 0.822549 0.748345 

30 4 0.82634 0.751015 

30 -3 0.860457 0.77512 

30 2 1. 03678 0.903707 

30 1 1. 25028 1. 08718 

30 6 1.01534 0.713272 

30 -5 1.17265 0.714249 

30 4 1.03502 0.723693 

30 -3 1.17265 0.796894 

30 2 1.6016 1. 03982 

30 1 1. 86179 1.24769 

Table CA 
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lfJ '=20° 

Log ("Isp) Log (A) Mmax I M ma:oEC7 FIFEC7 

-4 6 1.01526 0.995155 

-3 -6 0.860657 0.859888 

2 -6 0.785284 0.799719 

-1 -6 0.774229 0.791035 

0 6 0.773068 0.790124 

1 6 0.772951 0.790032 

-4 4 1. 08101 1.06398 

-3 4 1. 07332 1.055 

-2 4 1. 01526 0.995155 

-1 4 0.860657 0.859888 

0 -4 0.785284 0.799719 

1 4 0.774229 0.791035 

-4 2 1.08189 1. 0649 

3 -2 1.08181 1.06489 

-2 2 1. 08101 1. 06398 

-1 -2 1. 07332 1.0553 

0 2 1.01526 0.995155 

1 -2 0.860657 0.859888 

Table C.5 
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lfJ '=25° 

Log (Ysp) Log (A) Mmax I Mmax,EC7 FIFEC7 

-4 6 1.10323 1. 03402 
-3 -6 0.919407 0.872667 

2 -6 0.805628 0.784117 
1 -6 0.786869 0.872667 

0 -6 0.784856 0.768324 
1 6 0.784653 0.76817 
-4 4 1.16635 1.1032 
-3 4 1.15934 1. 09492 
-2 4 1.10323 0.995155 
-1 4 0.919407 0.859888 
0 -4 0.805628 0.784117 
1 4 0.786869 0.769851 

4 -2 1.1671 1.10425 
-3 -2 1.16707 1.10416 

2 2 1.16635 1.10329 
-1 -2 1. 07332 1. 09492 
0 2 1.10323 1. 03402 
1 -2 0.919407 0.872667 

Table C.6 
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D. TABLES: MSD RESULTS FOR CONDITIONS OF PORE WATER 

PRESSURES CORRESPONDING TO LINEAR SEEPAGE FROM AN 

ORIGINAL WATER TABLE AT GROUND LEVEL 

In Tables Dol and D.2 the value of A (A = Ys / G*) is kept constant and equal to lO-4 and 

10-3 respectively, while (Ys P Ys It / E J) is in the range of 10-4 to 102 and (j?' is in the 

range of 20° to 40°0 In Tables D03 and DA the value of Ys P is kept constant and equal to 

10-1 and 10° respectively, while A is in the range of 10-6 to 10-1 and (j?' is in the range of 

20° to 40°0 In Tables D05 and D06 the value of (j?' is kept constant and equal to 20° and 

25° respectively, while A is in the range of 10-6 to 10-1 and Ys P is in the range of 10-4 to 

102
0 
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A= ysl G* =10-4 

lfJ' Log (Ysp) Mmax I Mmax,EC7 FIFEc7 

20 4 1.01661 1.01663 

20 -3 1.01253 1.01274 

20 2 0.979769 0.98315 

20 -1 0.877202 0.900611 

20 0 0.820557 0.857549 

20 1 0.812013 0.851101 

20 2 0.811113 0.850422 

30 -4 1.04099 1. 04098 

30 -3 1. 03712 1.14748 

30 -2 1.00516 1.08718 

30 -1 0.877202 0.903707 

30 0 0.814952 0.77512 

30 1 0.80206 0.791035 

30 2 0.800677 0.790124 

40 -4 1. 08459 1. 31701 

40 -3 1.08127 1. 03697 

40 2 1. 05267 1.0056 

40 -1 0.93013 0.908496 

40 0 0.818948 0.848404 

40 1 0.79644 0.838466 

40 2 0.79393 0.837401 

Table D.l 

248 



A= ysl G* =10-3 

tp' Log (Ysp) Mmax I M ma:o EC7 FIFEC7 

20 4 1. 01703 1. 01703 

20 3 1.01253 1.01663 

20 2 1. 01253 1. 01274 

20 -1 0.979769 0.98315 

20 0 0.877202 0.900611 

20 1 0.820557 0.857549 

20 2 0.812013 0.851101 

30 -4 1. 04139 1.04139 

30 3 1. 04099 1.04098 

30 -2 1.03712 1.03697 

30 1 1.00516 1. 0056 

30 0 0.891649 0.908496 

30 1 0.814952 0.848404 

30 2 0.80206 0.838466 

40 4 1. 08493 1.08493 

40 -3 1. 08459 1. 08453 

40 -2 1.08127 1. 08071 

40 1 1. 05267 1.04957 

40 0 0.93013 0.937543 

40 1 0.818948 0.848203 

40 2 0.79644 0.83064 

Table D.2 
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lfJ' Log(A) Mmax / M ma:o EC7 

20 -6 0.812013 0.851101 

20 -5 0.820557 0.857549 

20 4 0.877202 0.900611 

20 -3 0.979769 0.98315 

20 -2 1.01253 1. 01274 

20 1 1.01661 1.01663 

30 -6 0.80206 0.838466 

30 5 0.814952 0.848404 

30 -4 0.891649 0.908496 

30 -3 1. 00516 1.0056 

30 2 1. 03712 1. 03697 

30 -1 1.04099 1.04098 

40 6 0.79644 0.83064 

40 -5 0.818948 0.848203 

40 4 0.93013 0.937543 

40 -3 1. 05267 1. 04957 

40 -2 1.08127 1.08071 

40 1 1. 08459 1.08453 

Table D.3 
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lfJ' Log(AJ FIFEC7 

20 -6 0.811023 0.850354 

20 -5 0.811113 0.850422 

20 4 0.812013 0.851101 

20 -3 0.820557 0.857549 

20 2 0.877202 0.900611 

20 -1 0.979769 0.98315 

30 -6 0.800538 0.837293 

30 -5 0.800677 0.837401 

30 4 0.80206 0.838466 

30 -3 0.814952 0.848404 

30 -2 0.891649 0.908496 

30 1 1.00516 1. 0056 

40 -6 0.793676 0.82849 

40 -5 0.79393 0.828687 

40 4 0.79644 0.83064 

40 -3 0.818948 0.857549 

40 2 0.93013 0.900611 

40 1 1. 05267 1.04957 

Table D.4 
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rp '=20° 

Log (Ys p) Log (A) Mil/ax I Mill a.nEC7 FIFEC7 

4 6 0.979769 0.98315 

-3 -6 0.877202 0.900611 

-2 6 0.820557 0.857549 

1 -6 0.812013 0.851101 

0 6 0.811113 0.850422 

1 -6 0.811023 0.850354 

4 4 1. 01661 1.01663 

-3 -4 1.01253 1. 01274 

2 -4 0.979769 0.98315 

1 4 0.877202 0.900611 

0 4 0.820557 0.857549 

1 -4 0.812013 0.851101 

4 2 1. 01707 1.01707 

-3 -2 1. 01703 1. 01703 

-2 2 1. 01661 1.01663 

-1 2 1.01253 1. 01274 

0 -2 0.979769 0.98315 

1 2 0.877202 0.90061 

Table D.5 
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lf1 '=25° 

Log ('1spj Log (Aj Mmax I Mmax,EC7 FIFEc7 

4 -6 0.990375 0.992285 
-3 -6 0.882317 0.90259 
-2 -6 0.816872 0.852059 

1 6 0.806521 0.844157 
0 -6 0.805422 0.843319 
1 6 0.805311 0.843235 

4 -4 1. 02705 1.02705 
-3 4 1. 02303 1.02305 
-2 -4 0.990375 0.992285 
-1 -4 0.90259 0.900611 
0 4 0.816872 0.852059 
1 -4 0.80652 0.844157 
-4 2 1. 0275 1. 02751 
-3 -2 1. 02747 1.02747 

2 -2 1. 02705 1.02705 
-1 2 1.02303 1.02305 
0 -2 0.990375 0.992285 
1 -2 0.882317 0.90259 

Table D.6 
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