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An artificial neural network (ANI"!), was developed to predict storm surge 
magnitudes and arrival times at selected locations in the North Sea. The model 
predicts storm surges based solely on past measured water level residuals at one 
or more tidal stations. The research focuses on the performance of the model at 
the Sheerness tide station near the entrance of the River Thames in the UK. To 
take advantage of the specificity of surge propagation in the North Sea, the ANN 
uses input from both the target station and an additional station located where the 
peak of the storm surge has just passed. The ANN is trained to relate surge at the 
primary station from measured surge at a secondary station. The optimal 
secondary location is correlated to the forecast interval and the storm surge's 
propagation time between the secondary and primary station. 

ANN performance is analyzed on an annual basis and on a 72-hour window 
centred on individual storm events which focuses the evaluation on a time when it 
is most critical. Performances are also compared at the times of both maximum 
surge and maximum water elevation during the passage of individual storm events. 
The simplest ANNs developed uses data from Sheerness only and predict surges 
with an absolute average error of 0.11 m for 3-hour predictions when analyzed on 
an annual basis. Models were systematically made more complex in an attempt to 
increase model performance by changing the both the size of the models, and the 
number of inputs used to train the ANN. A new ANN modelling method using input 
from several possible secondary stations was developed, decreasing the error to 
0.08 m. This ANN model was compared to the continental shelf model (CS3) for 1, 
3, and 5-hour predictions. The ANN model performed better than the CS3 model 
on an annual basis, but results were mixed when evaluating performance over the 
shorter 72-hour storm intervals. 

This research further explores new forecasting methods using ANN 
ensembles to reduce variance and minimize error. The ensemble forecasting 
method averages results from multiple ANN models trained based on different 
model initializations. The use of ensemble forecasting with ANNs was found to 
significantly reduce variance when analyzed over a 72-hour storm window, but not 
model accuracy. The average absolute error for an ensemble ANN using 5 
repetitions had 50% of the variance of a single ANN model. An ensemble model 
using 50 repetitions had 5% of the variance of a single ANN model. 

A significant result of this research is the ANN's ability to accurately predict 
maximum water elevations. A single ANN model had a 4-hour forecast error of 
0.017 m, while a simple [1,1] ensemble model using 20 repetitions performed 
better with an average 4-hour forecast error of 0.008 m. When over-training is 
included to reduce the model bias, the error is further reduced to 0.004 m. ANN 
ensemble model performances for predicting maximum storm surge were however 
less impressive. Best results were obtained for ensembles of [30,1] models with 
an average 4-hour forecast error of 0.68 m. 
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Chapter 1 - Introduction 1 

1 Introduction and Dissertation Overview 

1.1 Introduction 

The United Kingdom has experienced its share of devastation from storms in the 

past, most notably the great storm of 1953. During this event, flood defences were 

breached, and 307 lives were lost in the U.K. Over 150 km2 of London was 

flooded, but Central London was spared. With the increased threat of global 

warming and the possible associated increase in storms, coastal regions of the 

United Kingdom are under an ever increasing threat from the sea. Several 

methods are available today to help predict storm surge heights and arrival times 

to help protect and aid in evacuation of low-lying areas. Numerical models are 

used today to predict tidal elevation and currents for large areas at a time, relying 

in part on input from additional large scale meteorological models for forcing. 

While the predictions are of great help, the models are based on initial conditions 

and broad scale forcings that are difficult to know precisely and are very 

computationally expensive. This research explores the use of artificial neural 

networks for forecasting storm surge elevations. Artificial neural networks are 

computationally inexpensive, requiring only historical sea-level information for 

training and are a sub-second process once trained. 

Although a relatively new science, artificial neural networks (ANNs) have 

been successfully used for the last 20 years for numerous applications including 

storm surge prediction. Artificial neural network storm surge models have been 

implemented in various locations around the world, but none have the advantage 

of the unique spatial configuration of sequential tide gauges along the eastern 

coast of the United Kingdom. For this location, a typical storm path would enter 

the North Sea from the North Atlantic Ocean; the earth's rotation would force the 

surge against the coast which would act as a wave guide, as the surge moves 

southward it would pass each of the tide station sequentially, offering a "pre-view" 

of potential storm surge for each subsequent location to the south. This 

favourable regional setting promises a unique opportunity to take advantage of a 

multiple station artificial neural network for early warning and prediction of storm 

surge events. 
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1.2 Hypothesis 

Decimetre level prediction of storm surge in the North Sea and 

Thames Estuary can be made using artificial neural networks (ANNs). 

The use of multiple potential secondary station locations will enable 

an artificial neural network to predict accurate storm surge elevations 

for different forecast intervals, with longer term forecasts aided using 

secondary stations progressively further away. 

1.2.1 Basis for hypothesis 
Artificial neural networks use historical and current sea level data, as a basis on 

2 

which to develop reasonable expectations about the future sea levels. Historical 

sea level data are used to train artificial neural network's, and then tested against 

other data sets. Results are compared to actual measured sea levels to determine 

model validity and performance. There exists need for an inexpensive (resource 

wise) method to predict sea levels that can be used stand-alone or to complement 

or test existing models. 

1.3 Research Aims 

The aim of this research is to prove that an artificial neural network can predict 

accurate storm surge elevations with warning times from 1 to 24 hours in the North 

Sea and Thames estuary. Ideally this model should: 

• Use minimal data resources (using only historical tidal records and current 

water-level measurements). 

• Minimize computational time. (short training times < 24 hours) 

• Be easy to implement after training. (Final model can easily be 

implemented in any programming language or format) 

• Accurate (compete with similar level of accuracy) with existing numerical 

models) 

Research programme: 

• Develop a artificial neural network storm surge Forecast Model for use in 

the North Sea 

• Evaluate artificial neural networks storm surge prediction accuracy at the 

Sheerness Tide station 

i. Optimize secondary station location. 

ii. Optimize amount of data used for training. 

iii. Optimize size and structure of network. 
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• Evaluate artificial neural networks performance vs. Storm Tide Forecasting 

Service (STFS) model. 

• Evaluate artificial neural networks performance with ensemble forecasting 

• Evaluate artificial neural networks performance at the Thames Barrier 

This research will develop several Artificial Neural Network models to achieve 

objectives. Numerous programs have been written to process/import data sets. 

1.4 Research Objectives 

This research will: 

• Construct a database for UK tide gauges in the North Sea. 

• Build artificial neural network models for surge prediction at Sheerness. 

• Optimize the artificial neural network size and structure. 

• Optimize the secondary station selection based on forecast interval. 

• Develop an artificial neural network using Ensemble forecasting methods. 

• Compare the artificial neural network model to Proud man Oceanographic 

Laboratory's Continental Shelf Model (CS3). 

• Use Port of London Authority tide data to judge accuracy of artificial neural 

network models near the Thames Barrier. 

1.5 Research Scope 

(Limitations) 

• Use sea-level data only for input variables to the artificial neural network. 

(To better understand North Sea artificial neural network basics) 

• Limit the artificial neural network analysis to UK tide gauges locations only. 

(To simplify artificial neural network training process) 

• Limit the locations of the North Sea tide gauges to be used as input to the 

artificial neural network to Sheerness, Immingham, North Shields, and 

Wick. (To simplify artificial neural network training process) 

• Restrict the total number of tide gauge stations to be used as input to the 

artificial neural network to two stations per model. 

1.6 Dissertation Organization 

The Dissertation is organized into 8 Chapters. The following is a short description 

of the chapters and their contents: 

3 
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1. Introduction and Dissertation Overview - An introduction to the research, 

Hypothesis, Aims, Objectives, and scope (This chapter) 

4 

2. Background - essential scientific background information concerning storm 

surges and neural networks. 

3. Literature Review - A general review of literature of water level forecasting 

methods, artificial neural networks in environmental forecasting, and using 

artificial neural networks for water-level forecasts. 

4. Materials - Description of data sources, hardware and software used in the 

research. 

5. Methods - General discussion of methodology used for the experiments. 

6. Results and Analysis - Results and analysis from experiments discussed in 

Chapter 5. 

7. Discussion - General discussion on the research and results from each 

experiment. 

8. Conclusions - overall conclusions, future work. 
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2 Background 

2.1 Regional setting 

The North Sea is a relatively shallow body of water located on the European 

continental shelf between Great Britain, Norway, Sweden, Denmark, Germany, the 

Netherlands, Belgium and France (Figure 2-1). It has a surface area of 750,000 

km2, and spans approximately 960 km north-south, and 580 km east-west. The 

depth varies from about 200 m in the north to about 30 m in the south, averaging 

around 95 m. The Norwegian trench traverses the north-western portion of the 

North Sea with a maximum depth of 700 m. The maximum tidal range is about 8 

m. The North Sea is one of the most frequently traversed sea areas of the world 

and contains two of the world's largest ports, Rotterdam, and Hamburg. 
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Figure 2-1 North Sea and regional bathymetry (Depths in Meters) 

2.2 Tidal circulation in the North Sea 

The primary tidal circulation in the North Sea rotates counter-clockwise around an 

amphidromic point located in the centre of the southern half of the North Sea 
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(Figure 2-2). This circulation causes tides to propagate from north to south along 

the East coast of the United Kingdom. The circulation is shown for the largest tidal 

constituent (M2) in Figure 2-2, where Co-tidal lines (radiating outward from 

amphidrome) connect points experiencing the same phase of the tide. Co-range 

lines (circling amphidrome) connect points of equal tidal range. Figure 2-2 shows 

that by counting the number of co-tidal lines it takes approximately 15 hours for a 

tide to travel from Wick to Sheerness. The other tidal constituents are smaller and 

have different circulation patterns. Cross-correlation analysis of sea level records 

show that a typical storm surge averages 14 hours to traverse this distance, and 

indicates that tidal and storm surges propagate at approximately the same speed, 

allowing several hours interaction between the two phenomena. 

Figure 2-2 Tidal circulation in the North Sea, M2 Constituent. (Adapted from An Introduction to 
Oceanography, http://www.es.flinders.edu.au/-mattom/lntroOc/) 

2.3 North Sea storm surges 

Storm surge events are meteorologically induced water level changes, and are 

defined as the difference between measured water level and tidally predicted 

water levels. These surge events are caused by regional differences in 

barometric pressure and associated wind stress on the water surface (Pugh 1987). 
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There are two types of surge events that can occur in the North Sea. 

Internal surge events are surges generated within the North Sea Basin itself, and 

external surge events created in the North Atlantic over deep waters that then 

move onto the shallow continental shelf regions (Pugh 1987). The North Sea is 

open to the North Atlantic Ocean at its northern end, but is essentially a closed 

basin at its southern end. Surges that enter the North Sea from the North Atlantic 

are affected by Coriolis forces and rapidly decreasing depths. These forces 

cause the surge to increase in height and move southward along the eastern 

coastline of Britain. Internal surges occur less frequently than external surges, but 

generally produce more severe surges (Pratt 1995). 

One of the most intense surge events ever recorded in the North Sea 

occurred between January 31 and February 1, 1953 (Rossiter 1954) and (Royal 

Society A 2005). Unlike other surge events before or since, the 1953 storm 

appears to have combined the external and internal forcings (Ishiguro 1976). This 

storm entered the North Sea north of Britain, and then moved southeast towards 

the western European coast (Figure 2-3). 

~ l ' Jan 31, 00:00 

NORTH 

ATLANTIC 

Figure 2-3 Path of the 1953 storm in the North Sea. The Large L's indicate the location of the 
centre of circulation at the date and time given. The large arrows show the storms anti-clockwise 
rotation and the small arrows indicate direction of the storms travel. 

The surge event itself has two generating forces, (1) regional barometric pressure 

differences which can cause an increase in sea-surface elevation near the low 
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pressure centre, and (2) wind stress along the surface of the water generating 

surface waves which can cause additional set-up of the sea surface. 

8 

A comparison of harmonically predicted water levels, and measured water 

levels are presented in Figure 2-4 for a 1993 storm event recorded at the 

Sheerness tidal station. The predicted or harmonic component of water level is 

indicated by the dotted line, and the surge component is indicated by the solid line 

at the bottom of the figure. The total measured water level is therefore the 

combination of the two components and is indicated by a solid line at the top of the 

figure. During this storm, a maximum storm surge elevation of 3.0 m occurred 

approximately 3-hours before high tide, and then decreased to 1.2 m at the time of 

high tide, resulting in a maximum measured water level of 6.5 m above Ordinance 

Datum (which approximates mean sea level). 
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Figure 2-4 Illustration of water level changes during a February 21, 1993 storm passage. The 
total water level (top solid line) and its components, the harmonic (dotted line) and surge (bottom 
solid). 

Figure 2-5 Illustrates the progression of a December 1990 storm and its 

associated storm surge recorded at four tide stations: Wick, North Shields, 

Immingham and Sheerness. When the storm surge passed Wick, the most 

northerly station, the storm surge peak was 0.3 m above predicted harmonic water 

level. As the storm surge moved southward, the maximum surge levels at North 
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Shields and Immingham occurred respectively 6 hours and 8 hours later, and 

peaked at 1.2 m and 1.7 m above the harmonic predicted water level. The storm 

surge reached Sheerness approximately 16 hours later, with a peak elevation of 

2.1 m above predicted harmonic water level. The growing size of the storm surge 

can be explained by a combination of the North Sea bathymetry relative to the 

storm path, and meteorological influences. When moving southward, the relative 

depth of the North Sea shallows and its width (measured East -West) narrows. As 

a consequence, the storm surge height increases to compensate for the 

decreased volume of the basin (this can also be exacerbated by a deepening low 

pressure from a strengthening storm). 
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Figure 2-5 Map showing the propagation of the December 12, 1990 storm surge for Wick, North 
Shields, Immingham, and Sheerness Tide stations. The Time (hrs) elapsed since peak water level 
occurred at Wick tide station and the corresponding surge elevation (m) is displayed above an 
arrow for each tide station. 

Storm surge propagation along the coast is illustrated for five of the largest storms 

found in the 1990 - 2004 data sets (Figure 2-6). These figures were created by 

determining the peak surge elevation at Wick, then subtracting it from each 

station's peak surge elevation to give a relative change in height as the surge 

moved down the coast. As can be seen from Figure 2-6a, the time lag in storm 

surge, as well as the sizes of the storm surges at each location (Figure 2-6b), are 

relatively consistent between storms. The development of the ANN models used 

in this project are in large part premised on taking advantage of the relatively 
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consistent storm characteristics and time delay between the storm surges at the 

northern stations as compared to the surge at the targeted Sheerness station. 
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Figure 2-6 Dynamics of the 5 largest storm surges between Wick and Sheerness (years 1990 -
2004). a) Shows the time lag in hours since the maximum water level was recorded at Wick. b) 
Shows the change in maximum residual for each station relative to the maximum elevation 
recorded at Wick. 

2.3.1 Storm surge impact on Europe and the United Kingdom. 

Historically storm conditions on the North Sea have produced large surge events 

(Flather et a!. 1998). Every year storm surges propagate southward along the 

UK's North Sea coastline. These events are meteorologically driven and are not 

predicted by harmonic models. After the floods of 1953, the UK government set 
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up a committee, led by Lord Waverly to investigate and report on the event 

(Wordie et al. 1953). The Committee recommended that a national flood warning 

system be established. This resulted in the creation of the Storm Tide Warning 

Service, today known as the Storm Tide Forecasting Service and a national 

network of sea level gauges. The Tide Gauge Inspectorate at Proud man 

Oceanographic Laboratories is responsible for maintaining the network, and 

archiving the data (NTSLF 2005). 

2.3.2 Implications of sea level rise on future storm surge events 

Global warming has caused sea levels to rise (IPCC 2007). Since the end of the 

last ice age 11,000 years ago, sea levels have risen about 120m. Recent sea 

level rise rates have been measured by the TOPEXI Poseidon (TOPographic 

EXperiment) satellite, a joint project between CNES (France) and NASA (United 

States). The TOPEXlPoseidon project has provided accurate sea level 

measurements using radar altimetry from 1993 to 2005. Leuliette et al.(2004} 

used TOPEXlPoseidon data to calculate a current global rate of sea level change 

of +2.8 mm +/- 0.4 mm, while Nerem (1999) calculated a change of +3.1 mm/year. 

Glacial isostatic adjustment can also playa large part in local sea level 

changes. By the end of the last ice age large portion of North America and 

northern Europe were covered by ice sheets up to 3 km thick. In Great Britain, the 

ice covered all of Scotland, Wales, and all of England north of London. The weight 

of this ice depressed the lithosphere and caused it to sink into the asthenosphere. 

This caused the southern portion of England to rise in response. As the ice 

retreats, the load on the lithosphere and asthenosphere is reduced and they 

rebound back towards their equilibrium levels. This rebound can cause a local 

increase of sea level of up to 0.9mm/yr for the London area (Shennan and Horton, 

2002). When this local subsidence rate is combined with the current global sea 

level rise rate (Nerem 1999) of 3.1 mm, changes of up to +4 mm per year can 

occur, which can cause substantial increase in flood risk in the future. While long 

term sea level rises are of great importance to the impact of storm surges, the 

present work is focused on the prediction of short term events. 

2.4 Tide-Surge Interaction 

Tide-surge interaction can also influence the magnitude and arrival times of large 

surge events in the North Sea. The tidal range of the North Sea and its relatively 

shallow depth causes the speed of propagation of both the surge and tide to 
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interact. Rossiter (1961) suggested, and more recently confirmed by Horsburgh 

and Wilson (2007), that a key mechanism of interaction between tide and surge is 

one of mutual phase alteration. 

Storm surges can be interpreted as coastally trapped long waves (Tang, 

Holloway, and Grimshaw 1997). These waves move counter clockwise along 

coasts in the northern hemisphere, and using the coastline as a waveguide. 

Traditionally storm surge modelling has been based on shallow water wave 

equations in which the speed of propagation is independent of their period, and 

depends only on water depth, in the form 

c=j"ih (2.1 ) 

where c = wave speed, h = water depth, and g = gravity. The speed of 

propagation of the storm surge varies as the water depth changes during the tidal 

cycle. The presence of a storm surge alters the propagation speed of the tide by 

changing the water depth (As-Salek and Yasuda 2001). This interaction can 

cause the high tide to accelerate and arrive before its predicted arrival time (Pugh 

1987). This early arrival time of the tide will be interpreted as "surge", since surge 

is defined as the difference between observed and predicted water levels. 

Superimposed on (or in addition to) this accelerated tide, can be the 

meteorologically induced, water level changes themselves. Prandle and Wolf 

(1978) investigated the tide-surge interaction in the North Sea and Thames 

Estuary. They and found that positive surge peaks are not coincident with times of 

high water, and usually occur on the rising tide. Horsburgh and Wilson (2007) 

found that surge generation is modulated by the state of the tide. Their work 

indicated that enhanced surge is generated during low tides, and this effect is less 

pronounced during times of high tides. Horsburgh and Wilson (2007) have also 

shown that for all realistic situations, a delay between the time of high surge and 

high tide will always occur. This project will not attempt to distinguish what 

proportions of the surge are attributable to acceleration of the tide or due to 

meteorological influences, and will treat all differences between observed and 

predicted as storm surge. A detailed analysis of tide and surge interaction at 

Sheerness is given in Appendix 1. 

2.5 Methods of prediction water levels. 

In the United Kingdom, several methods for predicting water levels are being used 

today. Tidal analysis is computed by harmonic analysis of previous water level 
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records and is therefore primarily based on periodic astronomical forcings 

(Schureman, 1958). The method works well for large portions of the year but 

meteorological effects can significantly influence water levels and can introduce 

substantial errors in tidal predictions. These additional major forcings on water 

levels are fundamentally different in their variability with tidal influences being 

periodic, while weather forcings are fast changing, and mostly aperiodic. To 

include these additional forcings Proud man Oceanographic Laboratories have 

developed finite difference models (NTSLF, 2005). These model predictions 

provide substantial improvements over harmonic forecasts but also require large 

amounts of meteorological and oceanographic data, computer time and are 

updated only 4 times per day. 

2.5.1 Using Artificial Neural Networks to help predict Storm surge. 

13 

This research investigates the potential of an alternate methodology to the 

numerical methods based on artificial neural networks to predict water levels and 

storm surges at the Sheerness Tide Station located at the entrance of the River 

Thames Estuary. Surge events are to be predicted at the Sheerness station, 

because of its importance on the decision to open or close the Thames Barrier. 

The model development for this project takes advantage of the large set of 

observations archived by the National Tidal and Sea Level Facility (NTSLF) for 

stations along the UK coastline, and storm propagation characteristics in the North 

Sea. Measurements from these tide stations provide information on the advancing 

storm. The model uses the non linear modelling capability of ANNs (Rumelhart et 

al. 1995) to predict future water levels at the target station. This thesis also 

reports on the use of more complex ANNs and in particular ensemble ANN models 

to improve forecasting during the largest storms. The performance and 

robustness of these larger models are studied as the size of the ANN hidden layer 

and the number of ensemble members is increased. The continuing development 

of accurate predictive models is important for the safety of growing coastal 

communities and navigation. This thesis investigates the use of Artificial Neural 

Networks (ANNs) as a tool to predict storm surge propagation in the North Sea. 

2.6 Artificial Neural Network Methods 
An Artificial Neural Network (ANN) is an information processing method that is 

inspired by the way biological nervous systems, such as the human brain, process 

information (Rumelhart et al. 1995, Hecht-Nielsen 1989). The key element of this 

method is the structure of the information processing system. It is composed of a 
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number of highly interconnected processing elements (neurons) working in unison 

to solve specific problems. ANNs, like people, learn by example. An ANN can be 

configured for a specific application, such as pattern recognition or data 

classification. Learning in biological systems involves adjustments to the synaptic 

connections that exist between the neurons. Artificial neural networks work in a 

similar way with the ANN parameters, weights and biases, being adjusted as part 

of a learning process supervised or unsupervised (Hagan et al. 1996). This 

modeling methodology does not attempt to understand explicitly the underlying 

physics. The physics of the problem is captured in the choice of the input data 

sets and the choice of the ANN structure (with larger number of hidden neurons 

enabling more non-linear relationships). If the input data sets do not contain the 

physical forcing parameters associated with the event being forecasted, the ANN 

will not be able to establish a relationship between inputs and outputs. 

2.7 ANN Structure 

The artificial neural network model used in this study is a feed-forward back­

propagation model. The ANN structure consists of an Input layer consisting of 

previous water level residuals from a primary and/or a secondary station, a hidden 

layer using 1 to as many as 60 neurons, and an output layer using only one 

neuron (Figure 2-7). Square bracket notation will be used for designating the size 

of ANN structures during this research. For example [2,1] indicates the model 

uses 2 hidden neurons, and 1 output neuron. 

Input Layer Hidden Layer Output Layer 

Primary Station 
Observed ~-.... 

Water Level 
Residuals 

Secondary 
Station 

Observed 
Water Level 
Residuals Transfer 

Function #1 
(Logsig) 

t---. H (t+i) 

Water 
Level 

f (X3+b3) Forecast 

Transfer 
Function #2 

(PUffin) 

Figure 2-7 Artificial neural network schematic - showing two hidden neurons and one output 
neuron. 
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2.7.1 Input Layer 
The input layer consists of inputs from a primary station (the location where the 

water levels will be predicted) and for most experiments, a secondary station. 

These inputs are time series of water level residuals from 1 to 48 hours of past sea 

level data. A water level residual is defined as predicted water level minus 

observed water level. Information from the input layer is used as input for the 

hidden layer. Each component of the ANN is described in more detail below. 

2.7.2 Hidden Layer 
Within the hidden layer, are the hidden neuron(s). Each hidden neuron is 

connected to all inputs. For example when using a single station ANN with 24-

hours of previous water level measurements (for each forecast), each of the 24 

inputs are multiplied by a weight (au) (initially randomly generated number), 

summed, and finally a bias b1 is added to the previous sum. 

X1 = I (a1,ixj)+b1 

This requires data storage of 24 weights and one bias, one for each of the 24 

previous water level measurements used for each forecast. Output from the 

hidden layer is used for input for the transfer function. 

2.7.3 Transfer function #1 

(2.2) 

Next, a bias (b1) is added, and a transfer function is applied to the result from each 

hidden neuron (this requires data storage of 1 bias to be used for each forecast). 

y = f (X I + b I) (2.3) 

For this project logsig transfer functions were used for the hidden layer transfer 

function (Figure 2-8). The result from transfer function #1 is used as input for the 

output layer. The use of a sigmoid type transfer function for the hidden layer 

allows for the non-linear capability of the ANN. 

1 
y = l+e-x 

(2.4) 

-1 

Figure 2-8 Logsig transfer function 



Chapter 2 - Background 16 

2.7.4 Output Layer 
The output layer consists of a single output neuron forecasting a single water level 

forecast value. The output neuron uses the results from transfer function as input. 

These inputs are multiplied by a weight (a2,i) (initially an arbitrary number), and 

then summed. 

For a single station ANN with one hidden neuron, this operation requires data 

storage of one weight for the output layer. 

2.7.5 Transfer function #2 

(2.5) 

Results from the output layer are used as input for the transfer function #2, where 

a bias (b2 ) is added, and a transfer function is applied to the result from each 

neuron 

y=f(X 2 +b 2 ) (2.6) 

(this requires data storage of 1 bias to be used for each forecast). For this project 

purlin transfer functions were used for the output transfer functions (Figure 2-9). 

After applying transfer function #2, the result is the forecasted water level once the 

ANN is trained. 

y=x 

Figure 2-9 Purlin transfer function 

2.8 Training and Application of the Artificial Neural Network 

Model 

(2.7) 

There are two phases in artificial neural network processing. They are the training 

phase and the testing phase. In the training phase, a training data set is used to 

(determine) find an optimum set of the weights and biases to be used later in the 

testing phase to predict water levels using additional data sets. It is important to 

note that the results of the optimization are not unique and that for each training 

run a slightly different result can be expected. 
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2.8.1 Training Phase 
All ANN models are trained using the Levenberg-Marquardt algorithm as 

implemented within MATLAB unless otherwise indicated. Training times varied 

between a few minutes and several hours depending on the size of the ANN. It is 

important to note that although training times can be lengthy, generating water 

level forecasts is a sub-second process once the models are trained. Once the 

ANN models are trained, they are ideally suited for streamed forecasting (an 

automatically generated, real-time forecast based on streaming data). 

When initializing an ANN, all weights and biases are assigned random 

values. During the training phase, the weight and biases are adjusted after each 

iteration until a pre-set goal is reached. During the first iteration, the network 

produces an output which has no relationship to the target data. This output is 

then compared to the target data, and an error is calculated for each set of inputs. 

The error is then back propagated through the hidden layer, and the weights are 

updated in a direction that will decrease the overall error. After several iterations, 

the network begins to adapt to the given model target, and typically gives outputs 

close to that which was expected. 

Training - When to stop 
During training the network might over-learn the training data set. This problem is 

referred to as over-fitting, and is of special concern for ANNs using a large number 

of hidden layers or neurons. This is analogous to over fitting a set of data points 

when performing a polynomial non-linear regression. Given a polynomial with a 

high enough order, any data set can be fitted almost exactly. However excessive 

noise will usually appear when applying the model to other related data sets. In 

the same manner, large structure ANNs have the tendency to over-train more 

easily than small structure ANNs. If not stopped during training, they will over train 

and start forcing a fit to the training data set. At this point, the ANN starts to 

memorize the training data set rather than capturing the underlying relationship 

between input and output. When an ANN is over-trained it can predict very 

accurately the original training data set, but performs poorly when using "other" 

data sets. Numerous methods are used stop training and prevent over-fitting, 

they include: 

1. Manually - Visually watch root mean square error (RMSE) levels and 
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manually stop when error level "flattens out". This method was not used, it 

was found to produce inconsistent results especially when training networks 

with large number of neurons. 

2. Training Parameter Goal - Training is automatically stopped by the 

program when the error level (RMSE) meets a pre-defined target goal. 

3. Maximum number of epochs - Training is stopped when a set number of 

training epochs has been reached. 

4. Cross-validation - An independent data set is used to stop training. As 

training proceeds, error values are tracked for both the training data set and 

the validation data set. Training is stopped when the validation set error 

starts to increase. This is an independent data set, usually a different year 

than was used for training or testing. If training continued, error levels for 

the training data set would continue to decrease, however the ANN would 

likely become over-trained and not perform as well on data sets other than 

the training year. For this project over-training was avoided using the 

cross-validation technique. 

2.8.2 Testing phase (ANN Implementation) 
After the network is trained, the weights and biases are fixed; the ANN can then be 

used to compute water level predictions for other data sets as a simple matrix 

operation. When using the MATLAB neural network toolbox this can be performed 

automatically after the training is finished. The trained network is applied to the 

new data with the following command: y = sim(net,ANNlnput). The ANN is then 

applied to the testing set and statistics are computed to assess and compare the 

performance of the ANNs. 
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3 Literature Review 

This literature review has three parts. First, the literature review starts by 

examining the different modelling strategies, past and present, developed for the 

prediction of water levels with a particular emphasis on their relevance for the 

present work. Second, the review focuses on one of these methods, artificial 

neural networks, and their broad use and application for forecasting environmental 

time series. Finally the review will concentrates specifically on the use of artificial 

neural networks for modelling of storm surges. 

3.1 Water level forecasting methods 

Several methods/models are currently being used to predict water levels, tides, 

and surges, these include: 

• Harmonic analysis and prediction of tidal water levels 

• Persistence model 

• Statistical regression models (linear) 

• Chaos Theory models (non-linear) 

• Numerical models 

• Artificial neural network Models (non-linear) 

• Self organizing feature maps (artificial neural network) 

• Neuro-Fuzzy Inference Systems 

• Data fusion 

• Ensemble averaging 

These models are discussed in more detail below. 

3.1.1 Harmonic model 

One of the earliest uses of harmonic analysis to predict tides is reported by 

Thomson (1867) and expanded by Darwin (1883), Harris (1897), and Doodson 

(1921). The tidal signal is primarily the result of influences from the Sun and the 

Moon, combined with the response of the basin. These influences can be divided 

into separate harmonic constituents. A tidal constituent is composed of three 

parts: amplitude, phase and angular speed or frequency. The amplitude and the 

phase for each constituent can be determined from the water level records using 

least squares. Each constituent has a different angular speed, which is comprised 
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of integral multiples of the five basic astronomical speeds shown in column three 

of Table 3-1. 

Table 3-1 Basic astronomic speeds 

Symbol Description Speed 
( degrees/hour) 

~(~1)~ ___ ~(2~)~~~~-.-~ __ ~~ ____ ~~=-____ ~(3~)~ ____ __ 
T Rotation of the Earth on its axis, with respect to the Sun 15.0 
h Rotation of the Earth about the sun 0.04106864 
s Rotation of the Moon about the Earth 0.54901653 
p Precession of the Moon's perigee 0.00464183 
N Precession of the plane of the Moon's orbit 0.00220641 

After the phase and amplitude of each constituent is calculated, a synthetic tidal 

level can be calculated as the sum of harmonic terms: 

N 

Y(t) = An + Lh; cos(m/ + EJ (3.1 ) 
;=1 

where Y(t) = water level at time t; Ao = mean height; N = total number of 

constituents; hi ,= amplitude of the constituent; m; = speed of the constituent; and 

E; = phase of the constituent. The angular speed is given in degrees/hour, and 

the phase in degrees. The number of constituents needed varies, depending on 

location and application. The National Oceanic and Atmospheric Administration 

(USA) typically use up to 37 constituents (Schureman, 1958), and Proud man 

Oceanographic Laboratories (UK) uses 26 for its Storm surge model (Flather and 

Williams, 2000). Ten of the largest constituents and their angular speed 

(degrees/hour) are given in Table 3-2 column 4. The amplitude and phase of each 

constituent (Table 3-2, columns 5 and 6) vary depending on the location. 
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Table 3-2 Major tidal constituents 

Symbol Description Formula Speed Amplitude Phase 
degrees/ (referenced 
hour from a fixed 

date/time) 
(1 ) (2) (3) (4) (5) (6) 
M2 Principle Lunar 2T-2s+2h 28.984 Varies for Varies for 
N2 Larger lunar 2T-3s+2h+p 28.439 Each Each 

semi-diurnal Location Location 
S2 Principle Solar 2T 30.000 

semi-diurnal 
K1 Lunisolar T+h 15.041 Determined Determined 

diurnal by by 
L2 Smaller lunar 2T-s+2h-p 29.528 Harmonic Harmonic 

semi-diurnal Analysis Analysis 
01 Lunar diurnal T-2s+h 13.943 
Sa Solar Semi- h 0.041 

annual 
NU2 Larger Lunar 2T-3s+4h-p 28.512 

elliptic semi-
diurnal 

K2 Lunisolar semi 2T+2h 30.082 
diurnal 

Mm Lunar Monthly s-p 0.544 

Harmonic analysis can be used to reconstruct or "predict" water levels at any 

location to a fairly high degree of accuracy, but does not take into account 

meteorological influences, and is therefore ineffective for the prediction of storm 

surges. Ideally 18.6 years of tidal data is needed to include all of the major 

astronomic effects of tidal variation (The precession of the axis of the Moon's 

elliptical orbit around the Earth takes 18.6 years). 

3.1.2 Persistence model 
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The persistence model is a very simple model that assumes the difference 

between the latest measured water level and the tidally forecasted water level will 

persist, or remain unchanged. Tissot et al.(2004) compared forecasts using the 

persistence model with the harmonic model and found that it can improve 

considerably upon harmonic forecasts in some locations. The persistence model 

is predictable in its shortcomings: always lagging meteorologically driven water 

level changes. The persistence model will always under-predict a rising storm 

surge and over-predict a falling surge event. The persistence model is included as 

a reference because of its excellent performance in low tidal range/ inland bay 

systems, such as the Texas coast studied by Tissot et al. (2004). The regions 

small tidal range leads to little tide/surge interaction, a significantly different setting 

than the North Sea. 
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3.1.3 Statistical regression models (Linear) 

The mechanisms affecting water level changes include gravity, and meteorological 

forcings. Weather forcings such as wind are non-linearly related to water level 

changes. It is difficult to model such non-linear systems, but acceptable results 

can sometimes be obtained with linear approximations. Of all the papers 

reviewed, the most common linear forecast model was the AutoRegressive 

Integrated Moving Average (ARIMA) model (Sfetsos (2002), More and Deo (2003), 

Solomatine et al. (2000), and Bazartseren et al. (2003)). The ARIMA model is a 

generalization of an AutoRegressive Moving Average or (ARMA) model. The 

ARMA model consists of two separate models, an AutoRegressive (AR) model 

and a Moving Average (MA) model. The AutoRegressive model is essentially an 

Infinite Impulse Response filter (a fundamental element in digital signal 

processing). The impulse response is "infinite" because there is feedback in the 

filter. For example: if the input to the filter was a single impulse (a single "1" 

sample followed by many "0" samples), an infinite number of non-zero values will 

be output (the output signal will gradually decay and approach zero). The Moving 

Average (MA) part is essentially a Finite Impulse Response filter (also a 

fundamental element in digital signal processing). The impulse response is "finite" 

because there is no feedback in the filter. For example: if the input to the filter was 

a single impulse (that is, a single "1" sample followed by many "0" samples), 

zeroes will eventually come out after the "1" sample has made its way in the delay 

line past all the coefficients. 

The following is a list of papers using statistical linear regression models 

(ARIMA, ARMA, or AR) in their comparison to artificial neural network models. 

The papers are reviewed individually in their appropriate sections and are shown 

here only to compare ARIMA methods with artificial neural networks. 

• Sfetsos (2002) wind speed forecasts ARIMA comparison with artificial 

neural networks (see section 3.2.2). 

• More and Deo (2003) wind speed forecasts ARIMA comparison with 

artificial neural networks (See section 3.2.2). 

• Deo and Naidu (1999) wave height forecasts AR comparison with artificial 

neural networks (See section 3.2.3). 

• Solomatine et al. (2000) Water level forecast ARIMA comparison with 

Chaos (See section 3.1.4). 



Chapter 3 - Literature Review 23 

• Bazartseren et al. (2003) Long-term (15-hour) water level forecast ARMA 

comparison with artificial neural networks and ANFIS. (See section 3.1.8). 

• Bazartseren et al. (2003) Short-term (15-min) water level forecast ARMA 

comparison with artificial neural networks and ANFIS. (See section 3.1.8). 

Linear models were outperformed by non-linear models in all of the above 

examples with exception of the (Bazartseren et al. 2003) where short-term (15-

min) linear water level forecasts outperformed artificial neural networks. Perhaps 

this is because in very short-term forecasts the behaviour of the system is 

essentially linear. 

3.1.4 Chaos theory models (non-linear) 

Solomatine et al. (2000) were interested in predicting surge water levels in the 

coastal waters of the Netherlands near the entrance to the port of Rotterdam. 

Chaotic features were identified in the surge data and methods of chaos theory 

applied. The average mutual information function was used to estimate the time 

delay and the method of false nearest neighbour was used to find the extent of the 

input time series. Results showed that for short-term forecasts, the chaos theory 

models had a root mean square error of 2.3 cm for a 20-min to 1-hour forecasts, 

and 6.1 cm for a 3-hour forecast. Solomatine et al. (2000) concluded that non­

linear chaos theory models performed much better than linear (autocorrelation and 

ARIMA) models, although they did not publish the linear results for comparison. 

The authors did not produce any forecasts intervals longer than 3 hours for 

comparison with other models, or show results for the other methods, making it 

difficult to fully assess their results. 

3.1.5 Hydrodynamic Numerical models 

Hydrodynamic numerical models are usually based on integration of several 

different models, such as atmospheric and hydrodynamic models. These models 

have to solve non-linear shallow water equations, bottom stress, boundary 

conditions, and bathymetry must be accurately known. In addition, current 

atmospheric pressure and wind fields need to be known to accurately predict 

storm behaviour. Numerical solutions have several advantages over analytical 

solutions. First, the equations are much more intuitive than statistical methods, 

and can solve for multiple locations at the same time. Unfortunately, numerical 

models require considerable computational resources, take long times to run, 
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require additional data for driving or forcing the model and detailed bathymetric 

models of the domain. Examples of hydrodynamic numerical models and there 

primary uses are shown in Table 3-3. 

Table 3-3 Hydrodynamic numerical models and their primary uses. 

Model Name / reference Type of Model Uses 
United Kingdom Continental Shelf Model Finite Tidal circulation/currents and 
(CS3) (Flather and Proctor 1983) difference elevations 
Dutch Continental Shelf Model (DCSM) Finite Sediment transport / 
(Verlaan et al. 2005) difference hydrodynamics 2D/3D !Water 

levels / Storm surges 
Princeton Ocean Model (POM) Finite Sediment transport / 
(Blumberg and Mellor 1987) difference hydrodynamics 2D/3D !Water 

levels / Storm surges 
Sea Lake an Overland Surges from Finite Define flood prone areas for 
Hurricanes model (SLOSH) (Jelesnianski et difference hurricane evacuation 
a1.1984) 
ADvanced CIRCulation (ADCIRC) (Gica and Finite Element Model for Coastal Oceans, 
Teng 2002) Inlets, Rivers and Floodplains 
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The continental shelf model (CS3 model) is currently used by the Storm 

Tide Forecasting Service in United Kingdom to predict tidal water levels and 

currents around the British Isles (Flather and Williams 2004). The model is a finite 

difference model based on the conservation of volume, also known as the 

continuity equation, and the law of conservation of momentum. Flather and 

Proctor (1983) presented these two equations respectively where Eq. 3.2 is the 

equation of continuity which represents conservation of volume resulting in a 

change of surface elevation, and Eq. 3.3 equates the acceleration of water (left 

side of the equation) to the forces acting on it (right side of equation). These 

forces are wind stress, and horizontal forces of surface atmospheric pressure. 

~; + V.(Dij) = 0 (3.2) 

8ij -n- jk-- nr In 1 (- -) An2 - (33) fit + q. v q - xq = - g v '":J - P v P a + pD rs - r b + v q . 

where: t = time; s = elevation of the sea surface; ij = depth mean current; is = 

stress on the sea surface; ib = bottom stress; Pa = atmospheric pressure on the 

sea surface; 0 = total water depth; p = density of sea water; g = acceleration due 

to gravity; f = Coriolis parameter; k = unit vector in the vertical; and, A = 

coefficient of horizontal diffusion. 
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The wind stress in Eq. 3.4 is divided by water depth, indicating that wind 

stress becomes increasingly important in shallow water. Wind stress is 

parameterized for the mean wind velocity at 10m above the surface 
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Ts = CDPawlwl (3.4) 

where W = wind velocity; CD = drag coefficient; Pa = density of air. The current at 

mean depth is related to bottom stress by the following formula 

Tb = Kpqlql (3.5) 

where K = a friction parameter, assumed constant at 0.0025. 

Initial boundary conditions are defined as a coastal boundary given by 

qn = 0 (3.6) 

where qn is the component of depth mean current normal to the boundary or, 

open sea boundary where a radiation condition is used: 

where c = .fih (3.7) 

Whereq~, t;M andq~, t;T describe the input of meteorological (M) and tidal (T) 

origin. This allows perturbations generated within the model to propagate freely 

across the boundary. 

The equations are solved by finite differences method using a time-stepping 

procedure within the area of interest, with Pa (atmospheric pressure at the sea 

surface) and W (surface wind velocity) defined as functions of time and position, 

and t; (sea surface height) as a function of time and position along the open sea 

boundaries. 

The present operational model is composed of a continental shelf ocean 

model (12 km grid with coverage extending from 48°N to 63°N and from 12°W to 

13°E) forced by wind and pressure data from the Met Office's 50 km grid 

Mesoscale model of wind speed and direction at the 10m level. The model is run 

four times a day for the Storm Tide Forecasting Service (STFS) to predict storm 

surge along the UK coastline. 

The surge component of the water level is obtained by running the CS3 

model twice. Initially the model is run with open boundary surge input, and 

meteorological and tidal forcing to produce a total solution (tide + surge). The 

model is then run a second time with tides only. The difference between the two 

runs ((tide+surge)-(tide only)) gives the surge estimate. Table 3-4 shows the 
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model results indicating the number of surge events over 1.0 m and error levels for 

years 2002, 2003, and a 13-year average at Sheerness (STFS 2004). 

Table 3-4 CS3 Model results at Sheerness for years 2002 - 2003. Source: STFS (2004). 

Year No. of Surge Mean Error Max. Max. RMSE SO of 
Events> 1m (m) Positive Negative (m) Errors 

Error (m) Error (m) (m) 
~1 ~ ~2~ ~3l ~4~ ~5l ~6l !7l 
2003/4 22 -0.13 0.15 -0.47 0.21 0.17 
2002/3 14 -0.04 0.26 -0.43 0.19 0.20 
13-Year 24 -0.10 0.20 -0.51 0.20 0.18 
Mean 

The Princeton Ocean Model (POM) is a three-dimensional primitive-equation 

model that uses sigma coordinates in the vertical (sigma coordinate systems 

conform to natural terrain, which allows the model to better define boundary-layer 

processes), and curvilinear orthogonal coordinates and an "Arakawa C" grid 

scheme in the horizontal. The Arakawa C grid is a staggered grid, which give a 

much better dispersion of gravity waves which are a closer approximation to the 

real solution. One of the models features is its use of an embedded turbulent 

closure sub-model which yields realistic Ekman surface and bottom layers (flow 

direction rotates as one moves away from the boundary). The governing 

equations along with the boundary conditions are solved with finite difference 

techniques. The model integrates into its equations the three components of 

velocity, temperature, salinity, and turbulence (Blumberg and Mellor 1987). 

Several independent groups have utilized the POM model for use in storm 

surge prediction. Liu et al. (2006) coupled the POM model with the Simulating 

Waves Near-shore (SWAN) model to produce a three-dimensional wave-current 

model that can be used for storm-surge and inundation prediction during 

hurricanes. Xie et al. (2003) utilized a mass conserving inundation and draining 

scheme into a three-dimensional hydrodynamic model (POM). Bargagli et al. 

(2002) used a high resolution pressure and surface wind model to serve as input 

to a wave model (WAM) and a shallow water model (POM-2D) for prediction of 

storm surge in the Northern Adriatic Sea. The numerical experiments that were 

performed cannot be considered as a forecast, but rather as a hindcast simulation. 

Results are shown in Table 3-5 for 2 domains; the first called "Arc2" is a polar, 

non-uniform grid covering the Adriatic Sea and a portion of the Mediterranean 

Sea, and the second is called "MED" a rectangular latitude-longitude grid with 
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non-uniform spacing encompassing the entire Mediterranean Sea. The model 

output was divided into a High frequency (>18h) and low frequency «18h) 

components to separate the first Adriatic mode characterized by a period of 22 

hours from modes of shorter periods. The models low-frequency (> 18h) output 

performed better than the high-frequency « 18h) output, which was expected 

because the storm events were in the high frequency part of the water level 

spectrum. The Broader "MED" Domain model (which extends the integration 

domain over the entire Mediterranean basin) performed best in both the High and 

low frequency models. This could be due to the better representation of the 

barotropic oscillation of the Mediterranean Sea caused by pressure forcing. 

Table 3-5 Princeton ocean model results for Venice, Italy, October 1998. Source: Liu et al. (2006). 

Domain Driving High Frequency >18hrs Low Frequency <18Hrs 
Type Met. Data 

RMSE Correlation Amp RMSE Correlation Amp 

(1 ) (2) 
Coefficient Ratio Coefficient Ratio 

(3) (4) (5) (6) (7) (8) 
Arc2 Bologna 7.32 -0.12 0.19 16.49 0.61 0.81 

Limited 
Area 
Model 

MED Bologna 7.83 -0.16 0.20 12.12 0.91 0.80 
Limited 
Area 
Model 

MED European 4.53 0.24 0.18 19.17 0.81 0.82 
Centre for 
Medium-
Range 
Weather 
Forecasts 
Model 

Arc2 - Domain covering the Adriatic basin and the central part of the Mediterranean Sea. 
MED - Domain covering the entire Mediterranean Sea. 

The Sea, Lake and Overland Surges from Hurricanes (SLOSH) model is a two­

dimensional numerical model where the computed surge is designed to reproduce 

a long-period gravity wave. This model uses generalized shallow sea dynamic 

equations in curvilinear coordinates. The model utilizes a moving boundary 

(wet/dry) which corresponds to changes in tidal elevation and its principle use 

would be for shallow water flow in wide tidal-flat areas and/or areas with large tidal 

ranges (which is ideal for hurricane storm surge of low lying coastal areas). 

The SLOSH model must be tailored to a geographical area before it can be 

run (terrain height, water-depth, water barriers, and river channels). Imbedded 

within SLOSH is a hurricane wind model. The user must input the storms central 
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pressure and radius of maximum winds. Finally the user must input the storm's 

latitude and longitude at 6-hour intervals from 48 hours before landfall until 24-

hours after landfall. 
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SLOSH models have been used by several research groups studying storm 

surge flooding. Shi et al (1998) compared SLOSH model results to a fixed 

boundary model with 1/12 degree lat/long spacing. Both models were used to 

simulate the storm event of April 7, 1994 in Huanghe Delta in China. Results 

showed that the fixed boundary model over-predicted the water levels presumably 

because the un-realistic piling up of waters at the fixed vertical side-wall boundary, 

while the SLOSH model allowed the water to spill over to adjacent areas. 

Jelenianski et al. (1984) compared SLOSH models for nine storms in eight basins. 

A total of 542 tide gauge, staff gauge, and high water mark observations were 

compared to SLOSH forecasts, and found the SLOSH model was within +/- 20% 

for all significant surge heights. 

The ADvanced CIRCulation (ADCIRC) model was developed by Luettich et 

al. (1992). ADCIRC can be used in a 3D or 2DDI (two dimensional Depth 

Integrated) mode. Elevation of the sea surface is obtained from the solution of 

the depth-integrated continuity equation in Generalized Wave-Continuity Equation 

(GWCE) form. Velocity is obtained from the solution of either the 2DDI or 3D 

momentum equations. ADCIRC can use conservative and non-conservative 

momentum equations. ADCIRC has been used to calculate a combined tide and 

storm surge forecast for sites along the US East and Gulf coasts for large storm 

surge events such as hurricane landfall (Luettich et al. 1996) and (Blain 1997). 

Gica and Teng (2002) used an ADCIRC model to simulate a storm surge 

generated by Hurricane Iwa in Hawaii on November 24, 1982. Two different Wind 

models, the modified Rankine and the Holland models were applied to generate 

wind and pressure fields. The maximum recorded surge height at Nawiliwili was 

0.42 m. The model simulated a maximum surge height for the same location of 

0.29 m for both the modified Rankine and Holland models. The difference was 

most likely due to the wave set-up that was not included in the shallow water 

equations of ADCIRC. It is interesting to note that by using the barometric 

pressure recorded at Nawiliwili and the recorded pressure at the same time period 

a distance of 74km away, Gica and Teng (2002) calculated a static storm surge 

height of 0.32m. By comparing this value to the simulated surge height it is 

evident that the storm surge generated by Iwa was mainly due to the barometric 
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pressure drop. This is also probably due too the very steep bathymetric slopes 

around the Hawaiian Islands. 

3.1.6 Artificial Neural Network Models 
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Several features make artificial neural networks attractive and valuable for 

forecasting applications. Artificial neural networks are data-driven, self-adaptive, 

and learn from examples. They also can capture subtle functional relationships 

even if the underlying relationships are unknown. Artificial neural networks can 

generalize, even if the sample data contains noisy information. Artificial neural 

networks are universal approximators, and can approximate any function to any 

desired accuracy. Artificial neural networks are non-linear, an advantage for long­

term forecasting when the underlying mechanism is non-linear. 

3.1.7 Self-organizing Feature Maps 

Self organizing feature maps are a data visualization technique developed by 

Professor Teuvo Kohonen which reduces the dimensions of data through the use 

of self-organizing neural networks (Ultsch and Roske 2002). Kohonen networks 

consist of only two layers (input and output) with the major difference from 

conventional artificial neural networks, that the neurons in the output layer are 

connected. This allows Neurons with similar tasks to communicate over short 

pathways. This corresponds to an abstracting capability which suppresses 

unimportant details and maps the most important details along the map 

dimensions (Ultsch and Roske 2002). 

3.1.8 Neuro-Fuzzy Inference Models 

Neural networks can learn from data, but cannot be interpreted i.e. they are 

essentially black boxes to the user. Fuzzy Systems consist of interpretable 

linguistic rules, but they cannot learn. Combinations of the two systems can take 

advantage of the learning ability of the neural networks to create fuzzy systems 

from data. The learning algorithms can learn both fuzzy sets, and fuzzy rules, and 

can also use prior knowledge. This was one of the methods used by Bazartseren 

et al. (2003) in their study comparing artificial neural network, neuro-fuzzy, and 

statistical methods for forecasting short term water levels. Bazartseren et al. 

(2003) predicted water levels at two successive gauging stations up-stream on the 

Oder River. For the artificial neural network portion of the project, a three layer 
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artificial neural network was used with one input neuron, one hidden neuron and 

one output neuron. Training utilized the Levenberg-Marquardt algorithm, and 

validation vectors were used for early stopping to prevent overtraining. The neuro­

fuzzy portion of the project utilized the Adaptive Neuro Fuzzy Interference System 

(ANFIS) model. The Auto Regressive Moving Average (ARMA) model and Auto­

regressive exogenous (ARX) models were used as the linear models for 

comparison Table 3-6 shows the Neuro-Fuzzy model performances for different 

forecasting intervals. The ARMA model performed best for short forecast intervals 

(15 min and 2-hour) with a root mean square error of 0.38 cm. For longer forecast 

intervals (5-10 hours) non-linear models (artificial neural network and ANFIS) 

performed better than the linear models, with a root mean square error of 4.5cm. 

Table 3-6 Neuro-Fuzzy Performances at Frankfurt (Oder River) root mean square error (cm). 
Source: Bazartseren et al. (2003). 
Model 

15 min 
(1 ) (2) 

ANN 1.39 
ANFIS 1.61 
ARMA 0.38 
ARX 1.27 

Forecast interval 
2-hour 5-hour 
(3) (4) 
1.52 
1.75 
1.08 
1.61 

2.37 
2.66 
2.81 
2.59 

10-hour 
(5) 

4.58 
5.09 
9.25 
6.05 

ANN - Artificial neural network model; ANFIS-Adaptive neuro fuzzy interference system model; 
ARMA-AutoRegressive integrated moving average model; ARX-AutoRegressive eXogenous model 

3.1.9 Data fusion 

Data fusion combines forecasts from numerous models to provide a better solution 

than could be achieved from the use of a single source alone. The concept is 

analogous to the way that humans use a combination of senses and the ability to 

reason to improve their chance of survival. 

See and Abrahart (2001) used data fusion to model river levels; combining 

results from four independent models (neural networks, fuzzy logic, statistical, and 

persistence models) to produce a single forecast output. This type of approach is 

effective when individual model residuals follow a consistent pattern of over and 

under prediction. The four individual model outputs are used as input to a single 

hidden layer of a feed forward network trained to produce a single final forecast. 

Four individual forecasting models were used. 

• Hybrid neural network (HNN) model - uses a fuzzy logic model to combine 

two different types of neural networks: first a self-organizing map (SOM) 

and second a multi-layer perceptron (MLP). 
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• Rule based fuzzy logic (RBFL) model - uses simple linguistic rule-based 

fuzzy logic. Used 5 inputs with 3 fuzzy sets for each, producing 125 rules 

defining changes in water levels. 
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• Autoregressive moving average (ARMA) model - Box and Jenkins (1970) 

was fitted to the first 60% of the data and validated with the remaining 40%. 

• Persistence model- the current value is used as the forecast value. 

Four Data fusion strategies were constructed from the results of the individual 

models. Two statistical approaches were used: 

• DF1 - the mean of the four individual forecasts was used as the final 

forecast. 

• DF2 - the median of the four individual forecasts was used as the final 

forecast. 

Two neural network solutions were trained to learn the optimal solution and then 

produce a weighted fusion. 

• DF3 - Absolute values of each forecast was used as inputs to a feed 

forward network trained to forecast future river levels at t+6. 

• DF4- the difference between the original forecasts of each model and the 

current value are used as inputs trained to forecast future river levels at t+6. 

Results are shown in Table 3-7 for training and validation data sets. The Hybrid 

Neural Network did a very good individual performance with a correlation 

coefficient of 0.997. Only the data fusion models DF3 and DF4 were able to 

better this performance with a correlation coefficient of 0.999 each. Although data 

fusion technique used in this example did improve on individual models, the 

individual models would be much easier to implement, and the small amount of 

improvement would have to be weighed against the much larger amount of work. 
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Table 3-7 Correlation Coefficient statistics for individual models and data fusion solutions. Results 
are for both trainin~ ~T~ and validation ~V~ data sets. Source: See and Abrahart ~2001 ~. 
Specific Method Type of Solution River Ouse 

(1 ) (2) 
T60% 

{3} 
HNN Individual Model 0.997 
RBFL 0.988 
ARM A 0.992 
Persistence 0.956 
DF1 Data Fusion 0.992 
DF2 0.992 
DF3 0.999 
DF4 0.999 
HNN-Hybrid neural network model; RBFL-Rule based fuzzy logic model; ARMA 
AutoRegressive moving average model; DF(x); Data fusion model(s) 

3.2 Artificial Neural Network Applications 

V40% 
{4} 

0.995 
0.979 
0.989 
0.972 
0.987 
0.987 
0.999 
0.999 

An Artificial Neural Network (ANN) is an information processing method that is 

inspired by the way biological nervous systems, such as the human brain, process 

information. The concept of artificial neurons was first introduced by McCulloch 

and Pitts (1943), but little research was done in the field until the back-propagation 

algorithm was introduced (Rumelhart et al. 1986). The key element of artificial 

neural networks is the structure of the information processing system. It is 

composed of a number of highly interconnected processing elements called 

neurons, working in unison to solve specific problems. Artificial neural networks, 

like people, learn by example. An artificial neural network can be configured for a 

specific application, such as pattern recognition or data classification. Learning in 

biological systems involves adjustments to the synaptic connections that exist 

between the neurons. Artificial neural networks work in a similar way with the 

artificial neural network parameters, weights and biases, being adjusted as part of 

the learning process, supervised or unsupervised. The use of neural networks for 

time series forecasting has been studied and proven successful for a number of 

cases. Chakraborty et al. (1992) used non-linear modelling of multivariate time 

series to predict future prices which consistently outperformed statistical models. 

Their work was shown to be quite useful in solving other problems in the fields of 

dynamical system modelling, recognition, prediction and control. 

3.2.1 Environmental Systems 

Neural networks have been applied successfully to a number of coastal and 

riverine cases, such as the forecasting of physical or water quality parameters. 
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Brion and Lingireddy (1999) used artificial neural networks with bacterial 

concentrations and weather data as inputs to predict the source (type) of water 

contamination of a drinking water reservoir for Lexington Kentucky. Fecal 

Coliforms/fecal streptococci ratios were measured at seven locations around the 

reservoir for a total of 106 days. The seven sampling sites were identified as 

urban, agricultural or a mixture of the two. Meteorological conditions of each 

sampling day were also recorded for each sample consisting of 0 or 1 for rain or 

non-rain. These data were used as input for the model. The identification of the 

source location was identified though case study and used as the desired output. 

If the source of contamination was urban runoff it was assigned the output value of 

1.000. If the source of contamination was predominantly agricultural it was 

assigned the output value of 0.000. If the source was a mixture of urban and 

agricultural it was assigned the output value of 0.500. Table 3-8 shows an 

example of random selected data points as they were used for input into the 

artificial neural network model during training. 85 of the 106 data points were used 

for training and the remainder was used to verify the efficacy of the trained neural 

network model. The output of the predicted model is shown in Table 3-9. There 

are small differences between the predicted and expected values, which can be 

attributed to the small training set and the crude classification of rainfall. 

Table 3-8 Example of training data used as input to the artificial neural network model. Source: 
Lingireddy (1999). 

Rain Log Fecal 
Coliforms 

(1 ) 
1.0 
1.0 
0.0 
0.0 
1.0 
0.0 

(2) 
2.415 
2.602 
2.602 
2.000 
1.740 
3.720 

Log Fecal 
Streptococci 

(3) 
2.857 
3.017 
2.892 
1.678 
1.752 
3.623 

Known 
Output 
Type 
(4) 
0.500 
0.000 
0.000 
1.000 
0.500 
0.000 

Sampling Site 
Location 

(5) 
Overflow 
Horse 
Horse 
Andover 
Boat Dock 
Jacobson 

Table 3-9 Model predictions at all sites. Agricultural = 0; Urban = 1; Mixed = 0.5. Source: 
Lingireddy (1999). 
Site Name Source of Expected Output Model Prediction 

(1 ) 
Jacobson 
Boat Dock 
Cattle pond 
Horse 
Andover 
Squires 

Contamination 
(2) 
Agricultural 
Mixed 
Agricultural 
Agricultural 
Urban 
Urban 

(3) 
0.000 
0.500 
0.000 
0.000 
1.000 
1.000 

(4) 
0.090 
0.660 
0.140 
0.000 
1.000 
0.990 
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Recknagel et al. (1997) modelled coastal algal blooms using up to 11 water 

quality parameters as inputs nodes. The output layer consisted of cell numbers of 

dominating algal species. The artificial neural network used was a feed-forward 

with back propagation during training. The results showed that artificial neural 

network's can fit the complexity and non-linearity of ecological phenomena to a 

high degree. It is unclear in the reporting what the model's prediction method was 

(fore-cast, now-cast, or hind-cast) 

Moatar et al. (1999) used river discharge and solar radiation level as inputs 

in an artificial neural network to estimate the daily pH levels of rivers. Under acidic 

conditions pH is directly related to flow. Under alkaline conditions the pH is 

principally related to photosynthesis. The authors needed a method for detecting 

instrumentation errors for pH measurement. A significant difference between the 

modelled pH and measured pH could be used for error detection (abnormal 

values, discontinuities, and recording drifts) of instrumentation used to monitor 

river conditions down-stream from nuclear power plants. 

Moatar et al. (1999) used the classical Multilayer Perceptron Model. In a 

multilayer perceptron model, extra hidden layers, are used in addition to input and 

output layers the Levenberg-Marquardt algorithm was used for training, and 

validation as a method to prevent over-training. The artificial neural network 

model was compared to a linear Auto-Regressive Moving Average with 

eXogenous inputs (ARMAX) model. A comparison was made of the performance 

of the models using different individual variables as inputs. This was performed to 

see which variables had the best relationship to the predicted pH value. The 

results are shown in Table 3-10, and indicate that the artificial neural network 

performed the best using the discharge as input with a standard deviation of 0.34 

compared to the ARMAX model which had a standard deviation of 0.50. 

Discharge also performed best in terms of the efficiency criterion. Next a 

comparison was made of the performance using different combinations of multiple 

variables. The model that performed best used discharge and solar radiation as a 

combination of inputs and are shown in Table 3-11. The artificial neural network 

model performed best with a standard deviation of 0.30 vs. 0.41 for the ARMAX 

model. 
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Table 3-10 Comparison of ARMAX and ANN using single input variables. Source: Moatar et al. 
(1999). 

ARMAX ANN 
Efficiency Standard Efficiency Standard 
Criterion Deviation (pH Criterion Deviation (pH 

units) units) 
(1) (2) (3) (4) (5) 
Discharge 0.45 0.50 0.72 0.34 
Discharge Log 0.69 0.39 0.71 0.34 
Solar Radiation 0.37 0.53 0.42 0.53 
Temperature 0.33 0.54 0.26 0.55 
ARMAX-AutoRegressive moving average with eXogenous inputs; ANN-Artificial neural 
network 

Table 3-11 Comparison of ARMAX and ANN using multiple input variables. Source: Moatar et al. 
(1999). 

(1 ) 
Discharge, Solar 
Discharge, Temp 
Log(Discharge), Temp 
Log(Discharge), Temp 
Discharge, Solar, Temp 
Log(Discharge), Solar, 
Temp 

ARMAX 
Efficiency 
Criterion 
(2) 
0.60 
0.61 
0.73 
0.74 
0.62 
0.76 

Standard Deviation 
(pH units) 
(3) 
0.41 
0.41 
0.31 
0.33 
0.41 
0.32 

ANN 
Efficiency 
Criterion 
(4) 
0.77 
0.73 
0.73 
0.77 
0.71 
0.74 

Standard Deviation 
(pH units) 
(5) 
0.30 
0.34 
0.33 
0.31 
0.35 
0.33 

ARMAX-AutoRegressive moving average with eXogenous inputs; ANN-Artificial neural network 

The artificial neural network model performed slightly better than the ARMAX time 

series approach. Mortar et al. (1999) found the best results were obtained when 

using an artificial neural network structure with two input neurons, three hidden 

neurons with one output neuron. 

3.2.2 Wind 

Sfetsos (2002) used artificial neural networks to forecast mean hourly wind speed 

data. The author compared auto-regressive integrated moving average (ARIMA) 

models with artificial neural networks. The Levenberg-Marquardt algorithm was 

used for training, and validation vectors were used as a early stopping method to 

prevent over-training. The artificial neural network structure which resulted in the 

least error used 2 input neurons, 3 hidden neurons, and 1 output neuron. This 

model used a structure identical to Moatar et al. (1999) and the same training 

algorithm (Levenberg-Marquardt). The comparison of performances showed that 

artificial neural networks had the smallest root mean square error of 0.72 m/s 

compared to 0.73 m/s for the ARIMA and 0.74 m/s for the persistence model. 
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More and Deo (2003) used artificial neural networks to forecast daily, weekly and 

monthly wind speed at two locations. The authors used a feed-forward neural 

network (FFNN) with two training methods, back propagation and cascade 

correlation. Also recurrent neural networks (RNN) were used using the Jordan 

Elman training algorithm. Recurrent neural networks (RNN's) are dynamic in 

structure and are fully interconnected. For every new input, the state of the 

previous network is used as a term in the current network. This makes the output a 

function of everything the network has seen so far. In other words the network 

behaviour is based on its own history. Results for the different training methods 

are shown in Table 3-12. The model with the best performance was the Recurrent 

Neural Network with a 4.3 % error. The feed forward neural network using 

cascade correlation training finished second with a 4.5 % error, and feed forward 

neural network using back propagation finished third with a 4.7% error. The linear 

ARIMA model finished last with a 5.9% error. 

Table 3-12 Wind speed forecasting schemes and their performances. Source: More and Deo 
!2003l· 

Scheme Network Training Topology used Percent Error 
Used Type Algorithm (Predicted vs. 

Observed) 
{1 } {2} P} {4} {5} 
Neural Network Feed Back (2,3,12,3,1) 4.7% 

Forward Propagation 
Neural Network Feed Cascade (3,1) 4.5% 

Forward Correlation 
Neural Network Recurrent Jordan Elman (3,6,7,6) 4.3% 
Time series ARIMA ARIMA !2,3665,2l 5.9% 
ARIMA-AutoRe~ressive inte~rated movin~ avera~e 

It is interesting that the authors found optimum neural structures used 3 

hidden layers and up to 12 hidden neurons. In contrast Tissot et al. (2001) found 

that 1 or 2 hidden neurons performed best for predicting water levels. This could 

be because of more complex driving parameters for wind forecasting than for 

water level forecasts. 

Barbounis and Theocharis (2006) used locally recurrent neural networks for long­

term (2-3 days or more) wind speed and power prediction in Eastern Crete, 

Greece using Greek National Meteorology Service forecasts as training. Three 

different architectures were used: 

1. Multi-Layer Perceptron (MLP) using Infinite Impulse Response (IIR) filters 

(MLP-IIR), 
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2. Local Activation Feedback - Multi-Layer Network (LAF-MLN) and 

3. Output Feedback Multi-Layer Network (OF-MLN). 

Six different training methods were used; the first two are based on the gradient 

decent method of error minimization. 

1. Back Propagation Through Time (BPTT), and 

2. Real Time Recurrent Learning (RTRL). 

The authors noted that these two training methods required long convergence 

times because of the small learning rates required, and often become trapped in 

local minima of the error function. 
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A second set of training methods were based on Recursive Prediction Error 

algorithm (RPE), and consist of four main algorithms. 

1. Global Recursive Predictive Error algorithm (GRPE) where all weights are 

handled simultaneously 

2. Decoupled Recursive Predictive Error algorithm (DRPE), a simplification of 

the global into a set of decoupled algorithms. 

3. Neuron Linear Model RPE (NLM-RPE) 

4. Neuron Non-Linear Model RPE (NNM-RPE) 

The results are shown in Table 3-13 where the mean absolute error (MAE) and 

normalized mean square error (NMSE) are displayed in columns 3, 4, 5 and 6. 

The MLP-IIR Model performed best in all learning approaches. The best learning 

approach was GRPE, which had the lowest normalized mean square error of 0.21 

m/s. 
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Table 3-13 Model performances forecasting wind power and speed, evaluated using Mean 
Absolute Error (MAE) and Normalized Mean Squared Error (NMSE), using 3 model types and four 
training methods. Source: Barbounis and Theocharis (2005) 

Model Learning Wind Power (MW) Wind Speed (m s-') 
Type Approach -M:-:-:-A=E----'-:-N-::-M-;:s::-::E=----~M:-:-A-=E:------:-:N:-:M:=:S-=E---

(1) (2) (3) (4) (5) (6) 
MLP-IIR GRPE 1.12 0.21 1.95 0.25 

DRPE 
NNM-RPE 
NLM-RPE 
RTRL 
BPIT 

LAF-MLN GRPE 
DRPE 
NNM-RPE 
NLM-RPE 
RTRL 
BPIT 

OF-MLN GRPE 
DRPE 
NNM-RPE 
NLM-RPE 
RTRL 
BPIT 

1.22 
1.19 
1.27 
1.40 
1.39 
1.21 
1.27 
1.28 
1.31 
1.40 
1.45 
1.20 
1.26 
1.27 
1.32 
1.46 
1.43 

0.26 
0.23 
0.28 
0.31 
0.32 
0.23 
0.27 
0.28 
0.30 
0.33 
0.34 
0.23 
0.26 
0.27 
0.28 
0.33 
0.32 

2.09 
2.05 
2.15 
2.37 
2.40 
2.14 
2.28 
2.25 
2.41 
2.45 
2.46 
2.10 
2.22 
2.27 
2.31 
2.49 
2.47 

0.28 
0.27 
0.30 
0.35 
0.36 
0.30 
0.34 
0.34 
0.36 
0.40 
0.39 
0.31 
0.34 
0.35 
0.36 
0.40 
0.39 

MLP-IIR-Multilayer perceptron using infinite impulse response filter; GRPE-Global recursive 
predictive error; DRPE-Decoupled recursive predictive error; NNM-RPE-neuron non-linear 
model recursive predictive error; NLM-RPE-Neuron linear model recursive predictive error; 
RTRL-Real time recurrent learning; BPTT-Back propagation through time; LAF-MLN-Local 
activation Feedback-multi layer network; OF-MLN-Output feedback-multilayer network 

Their results showed that artificial neural networks trained using IIR­

Recurrent neural networks are more difficult to train than traditional artificial neural 

networks with hidden layers using back propagation. When training Recurrent 

neural networks the training algorithm could become unstable; the error between 

the target and the output of the RNN may not be monotonically decreasing; the 

gradient computation is more complicated; there may be long-range dependencies 

and the convergence times may be long. 

3.2.3 Waves 

Deo and Naidu (1999) presented a technique to make real-time forecasts of wave 

heights directly from observed waves. The network they used is a feed forward 

back propagation. Input values varied from 3, 12, and 24-hours of previous 

measurements, forecast varied from 3 to 24 hours. back propagation, Conjugate 

gradient and Cascade correction algorithms were used for training and were 

configured as follows: Back propagation - 1 input neuron, 5 hidden neurons, and 1 

output neuron; Cascade correction - 1 input neuron 0 hidden neurons and 1 

output neuron; Conjugate gradient - 1 input neuron 2 hidden neurons and 1 output 
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neuron. One of the main foci of the paper was determination of training times for 

the different training algorithms. This may have been important at the time the 

paper was written (algorithms were tested on a PC-AT 486). The results showed 

that cascade correlation was the quickest training algorithm with a time of 4 

seconds, and back propagation was the slowest with a performance of 62,050 

seconds (17.2 hours). Results for model performance comparing the artificial 

neural network method and the auto-regressive method are shown in Table 3-14. 

The artificial neural network model performed better than the auto-regressive 

model in all three forecast intervals. The authors noted that the correlation 

coefficient did not vary significantly between the training algorithms, but the 

individual results for the different training algorithms were not published. 

Table 3-14 Model performances forecasting wave heights. Comparison of artificial neural network 
vs. auto-regressive models using correlation coefficient. Source: Deo and Naidu (1999). 
Model Forecast Interval 

(1 ) 
ANN 
AR 

3-hour 12-hour 
(2) (3) 
0.81 0.78 
0.78 0.72 

ANN-Artificial neural network; AR-AutoRegressive 

24-hour 
(4) 
0.71 
0.70 

Oeo et al. (2001) used wind speed and direction to forecast wave height and 

period. The experiment was conducted at three locations, the first used an 

offshore wave buoy and a land based wind recording station, the second used 

wave rider buoy with on-board wind recording, the third utilized TOPEX satellite 

radar altimeter derived wave heights. The artificial neural network used was a 

three layer feed forward architecture. Best results were found when using 2 inputs 

nodes (current wind speed and previous time step wind speed); the number of 

hidden neurons was fixed at 4. Two output neurons were used for forecasted 

values of significant wave height and wave period. The three different algorithms 

were used for training were back propagation, cascade correction, and conjugate 

gradient. Individual results for the training methods were not published. The final 

results are given in Table 3-15. The TOPEX satellite performed best with a 

correlation coefficient of 0.77. The wave rider buoy performed second best with a 

correlation coefficient of 0.68. The land based anemometer performed the worst 

with a correlation coefficient of 0.52. The results are a little misleading because 

the TOPEX model was forecasting a weekly mean instead of a 3-hour forecast. 
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Table 3-15 Model performance for forecasting wave heights using correlation coefficient. Source: 
Deo et al. (2001 ). 
Wind measurement location 
(1 ) 
Land based anemometer and wave buoy 
Wave rider buoy with wind speed and direction 

TOPEX satellite (Weekly Mean) 

Wave Height (Hs) 
(2) 
0.52 
0.68 

0.77 

Wave Period (Tz) 
(3) 
0.55 
NA 

NA 

Makarynskyy (2004) used two approaches to predict wave heights and periods. 

The first approach used eight separate neural networks to forecast wave 

parameters, varying the amount of input neurons from 2 to 4 then 8 neurons, a 

single forecast interval at a time. The second approach used a fixed artificial 

neural network structure two neural networks to simultaneously forecast 4 intervals 

(1,6,12, and 24-hours). Table 3-16 shows the results of the first approach. For 

wave-heights using the 8 previous hours of measurements resulted in best short­

term forecasts (3 and 6-hours) but for long-term forecasts (12 and 24-hours) 4 

previous hours of measurements performed best, with forecasts using only 2 

previous hours of measurements performing worst. For wave periods using only 

the last 2 hours of previous measurements performed best in all forecast intervals, 

with networks using the last 8 hours of measurements performing worst. 

Table 3-16 Model performances for forecasting wave heights and periods while varying network 
structure. Source: Maka nsk 2004. 

Forecast Period Network Structure Wave Height 
(2) RMSE(m) R 

(1 ) 3 4 
+3 2x5x1 0.15 0.97 
+6 !2x5x1 0.21 0.94 
+12 !2x5x1 0.34 0.84 
+24 2x5x1 0.53 0.69 
+3 4x9x1 0.15 0.97 
+6 !4x9x1 0.21 0.94 
+12 !4x9x1 0.31 0.89 1.45 0.70 
+24 4x9x1 0.53 0.74 1.71 0.55 
+3 8 x 17 x 1 0.14 0.97 0.88 0.89 
+6 !8x17x1 0.20 0.94 1.13 0.81 
+12 18x17x1 0.37 0.82 1.56 0.64 
+24 18x17x1 0.77 0.40 1.93 0.41 

In a second approach Makarynskyy (2004) used several different artificial 

neural network structures, varying the number of inputs and the number of nodes 

in the hidden layer. The optimum network structures were 6 input neurons 17 

hidden neurons and 4 output neurons (wave height) and 12 input neurons, 21 

hidden neurons and 4 output neurons for wave period. The results are shown in 

Table 3-17. This model produced 4 simultaneous forecasts from a single run of 
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the network. The network was trained using three different training algorithms, the 

resilient back-propagation (RBP), conjugate gradient (CG), and the Levenberg­

Marquardt (LM) training algorithms. Comparison of the results for wave heights 

show the conjugate gradient method worked slightly better for all forecast intervals 

(RMSE and R). For wave periods the conjugate gradient method worked slightly 

better for 3,6 and 24-hour forecasts. 

Table 3-17 Model performances for forecasting wave heights and periods for 4 simultaneous 
intervals (Wave heights use (6x17x4) network, Wave periods use (12x21x4) network.). Source: 
Maka!i:nsk~ (2004~. 
Training Method Forecast Period Wave Height Wave Period 
(1 ) (hours) RMSE(m) R RMSE(s) R 

(2) (3) (4) (5) (6) 
Resilient Back- +3 0.20 0.95 1.03 0.87 

Propagation +6 0.23 0.93 1.30 0.79 
+12 0.66 0.64 2.01 0.49 
+24 0.91 0.38 2.33 0.23 

Conjugate +3 0.17 0.96 0.89 0.89 
Gradient +6 0.23 0.93 1.30 0.75 

+12 0.46 0.79 2.16 0.35 
+24 0.75 0.53 2.31 0.23 

Levenberg- +3 0.21 0.95 1.08 0.85 
Marquardt +6 0.29 0.90 1.50 0.73 

+12 0.59 0.72 2.84 0.31 
+24 0.91 0.50 3.51 0.17 

Examination of the results for the two tests indicates that, an artificial neural 

network with one output neuron forecasting one interval will perform better than an 

artificial neural network with four output neurons forecasting 4 simultaneous 

intervals. 

3.2.4 River flood forecasting 

Thirumalaiah and Deo (1998) used artificial neural networks to forecast river stage 

at a specific target station. Two separate artificial neural networks were used, the 

first used data from the target station, and the second used data from a station up­

stream of the target station to forecast water levels at the target station. The 

network structure used 1 input neuron, 3 hidden neurons and 2 output neurons. 

The two output neurons produced a 24 and 48-hour forecast. Three different 

training algorithms were used, Back Propagation, Conjugate gradient, and 

Cascade correlation. Table 3-18 shows that when a station used its own input for 

training, that Cascade correlation provided the best training method, with a value 

of 0.973 for a 24-hour forecast, and 0.885 for a 48-hour forecast. Better results 

were found when using a station upstream from the target station for training, with 
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a correlation coefficient of 0.995 for a 24-hour forecast, and 0.980 for a 48-hour 

forecast when using the Back-propagation training algorithm. 

Table 3-18 Model performances for forecasting river stage using correlation coefficient using 
different training algorithms. Source: Thirumalaiah and Deo (1998) 
Training ANN using data from Target ANN using data from station Up-
Algorithm used station stream from Target 

(1 ) 
Back propagation 
Conjugate gradient 
Cascade correlation 

24-hour 48-hour 24-hour 48-hour forecast 
forecast forecast forecast (5) 
(2) (3) (4) 
0.875 0.950 0.995 
0.957 0.895 0.954 
0.973 0.885 0.956 

0.980 
0.981 
0.885 
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Data sets up-stream from the target station provided a better view of future 

conditions because they measured actual "future water" coming towards the target 

station instead of a forecast derived from measurements of water that has already 

flowed past the target station. This introduces spatial information into the model, 

using knowledge from one location to influence results at a second. The numbers 

in the tables are slightly counter intuitive because several 48-hour forecasts have 

better results than 24-hour forecasts. The authors also reported different numbers 

in the text as compared to the tables. 

Kim and Barros (2001) used neural networks to forecast flooding along rivers. 

This model uses rain-gauge, stream-flow, radiosonde, and satellite data. Several 

pre-configured artificial neural network models were used. The artificial neural 

network selection depended on the current weather classification. The model 

constructed uses 3 different modules. The first module (#1) uses a network of 160 

rain-gauges to monitor for rain. Next a classification and decision module (#2) is 

used to classify current weather conditions using satellite or radiosonde data. A 

second rain/no rain forecast is issued based of the likelihood of rainfall occurring 

within the region during the forecast interval. If positive a specific neural network is 

chosen depending upon regional weather conditions. Finally a forecast module 

(#3) selects one of four different neural networks, each configured for a specific 

weather classification as shown in Table 3-19. 
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Table 3-19 Criteria used for selection of neural network model. Source: Kim and Barros (2001 ). 
Model Current weather Conditions and rain gauge state 
(1) (2) 
C4 Convective weather systems are present and 100% of predictor rain 

gauges are wet. 
C3 Convective weather systems are present and 75% of predictor rain 

gauges are wet. 
R4 Convective weather systems are not present and 100% of predictor rain 

gauges are wet. 
R3 Convective weather systems are not present and 75% of predictor rain 

gauges are wet 

Five quantitative measures of forecast skill were used to evaluate the model 

performance. 

• Skill Score (SS) defined as percentage reduction in mean-squared error 

with respect to the persistence forecasting method. 

• The correlation coefficient (CC) between forecasts and observations. 

• The bias defined as the degree of correspondence between the mean 

forecast and the mean observation. 

• The root mean square error (RMSE), defined as the sum of the square of 

the differences of the forecasts and the observations. 
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• The threat score, a categorical verification measure equal to the number of 

correct event forecasts divided by the total number of forecasts. 

Table 3-20 shows values for forecast skill at Williamsburg, three other locations 

were included in the study. The results show large percentage reduction in mean­

squared error in respect to the persistence model (from 96% with the C4 model to 

32% with the R3 model). This corresponds to higher reduction when rain is likely 

(C4 classification - convection systems present and 100% predictor gauges are 

wet) less reduction when rain chances are less (R3 classification - convection 

systems not present 75% of predictor gauges are wet). This project shows that 

expert systems such as neural networks can lead to significant gains in forecasting 

rainfall and flood events. 
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Table 3-20 Statistical performance measures for forecast skills at Williamsburg. Source: Kim and 
Barros ~2001~. 

Name Model RMSE SS CC Bias Threat scores 
25% 20% 15% 10% 5% 

(1 ) (2) (3) (4) (5) (6) (7} (8} (9} (10} (11 } 
Williams- C4 11 0.96 0.97 3 0.79 0.94 1.00 1.00 0.71 
burg R4 33 0.62 0.62 -1 0.69 0.63 0.60 0.47 0.50 
18-hour R3 23 0.32 0.32 5 0.71 0.69 0.64 0.58 0.38 
Forecast 

Com- 23 0.54 0.54 3 0.72 0.71 0.67 0.60 0.44 
bination 

Williams- C4 28 0.48 0.65 3 0.85 0.90 0.89 0.84 0.57 
burg R4 20 0.17 0.71 5 0.75 0.69 0.64 0.73 0.40 
24-hour R3 22 0.25 0.68 3 0.67 0.59 0.54 0.59 0.38 
Forecast Com- 24 0.36 0.65 4 0.71 0.67 0.62 0.64 0.39 

bination 

3.3 Use of Artificial Neural Networks in Sea Level Forecasts 

For water level modelling, Tsai and Lee (1999) used neural networks to predict 

hourly tidal levels up to one year using only fifteen days of training at Tanshui 

Harbour in Northern Taiwan. The authors claim that "hourly tidal levels over a long 

duration can be efficiently predicted using only a very short-term hourly tidal 

record". Results are interesting but the interval for each forecast is only one hour 

and has limited applicability for forecasting purposes. A major shortcoming in their 

paper is that the authors say they are predicting tidal levels over these long 

intervals, when in fact they are only predicting a 1-hour forecast. For example, the 

authors state they used one day (24 hours of data) of training data to predict water 

levels for one month (720 hours), but for each new prediction interval, their model 

makes requires one additional hour of information provided by the observation 

data. Hence, the model only predicts water levels one hour in the future, and 

never actually predicts water levels 30 or 365 days in the future as stated by the 

author. 

Tissot et al. (2001) modelled water levels along the Texas Gulf Coast region. 

Tidal and weather induced water level components were modelled separately. 

Since the tidal components for a specific location can be modelled quite 

accurately, they were removed from the model, which then only required a simple 

artificial neural network structure for accurate water level forecasts. This 

simplification allowed a more direct relationship between short-term forcing and 

changes in water levels. This model compares quite differently with models used 

by Makarynskyy et al. (2004), who used total water levels (combining tide and 
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surge components) which required large artificial neural network structures (using 

25-145 hidden neurons) to predict total water levels in Western Australia. The 

model by Tissot et al. (2001) compared very similarly to those used by Sztobryn 

(2003), who predicted surge levels on the tide-less portion of the Baltic Sea. 

Sztobryn (2003) found that the optimum model used 3 layers with 2-6 hidden 

neurons. 

Tissot et al. (2001) used several variables as inputs for training the artificial 

neural networks including: water levels, wind stress, barometric pressures tidal 

forecasts, and wind forecasts. The optimized model used for the study was found 

to use: 1 hidden neuron, 1 output neuron, included 5-hours of wind speed, wind 

direction, water level measurements, 20-hours of barometric pressures and a wind 

forecast at the time of the forecast. 

The authors found that although Artificial neural networks using water levels 

only (no winds or barometric pressure) initially performed substantially better then 

Harmonic forecast water levels (for forecasts from 1 to 24-hours), they approached 

similar error levels after increasing the forecast time to 48-hours. Substantial 

improvement in the artificial neural network model was then found after including 

wind speed and direction as an additional input at the forecast time, even when 

including forecast intervals of up to 48-hours. 

In a related application along the south shore of Long Island, New York Huang et 

al. (2003) developed a regional neural network to predict water levels at a 

temporary location based on water levels measured at permanent National 

Oceanic and Atmospheric Administration (NOAA) tidal stations located about 60 

km-100 km away from the inlets. The model was developed to re-construct long­

term historic water levels using remote temporary sea level measurement stations 

and provided very good results for both tidal and non-tidal historical water levels. 

Sztobryn (2003) was looking to improve upon existing numerical models for the 

forecasting of sea levels in the Baltic Sea. Tides are virtually non existent in the 

region, enabling storm-surge models to be applied directly to total water levels. 

While their existing models performed well during average conditions, 

performance was poor during storm events. Four different artificial neural network 

models were tested and are described below: 

• Radial Basis Function (RBF) (22 neurons in hidden layer); 
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• Generalized Regression (GRNN) (Number of neuron varies); 

• Multilayer Perceptrons with 3 layers (MLP3) (2-6 neurons in hidden layer); 

• Multilayer Perceptrons with 4 layers (MLP4) (8 neurons in first hidden layer, 

7 in second). 

The testing data was divided into 3 sets used for training, validation, and testing. 

Results from 3 alternative methods (Method 1, Method 2 and Method 3) were 

given, but descriptions were not included in the paper. 

Two experiments were run. The first experiment used a continuous data 

series. This experiment used the following variables for the input data vector: the 

daily mean sea level value from the previous day, and the 6-hour forecast of wind­

speed and direction generating sea level changes in the western part of the Polish 

coastal waters. The results are shown in Table 3-21 and indicate the neural 

network methods resulted in correlation coefficients ranging from 0.80 to 0.82, 

while the previous alternative methods gave values between 0.67 and 0.86. 

RMSE errors for the previous forecasting methods were from 17 - 42 cm while 

ANN forecasts did not exceed 14 cm. 

Table 3-21 Model performances for forecasting sea level heights using continuous data series, 
evaluated using correlation coefficient (R) and root mean square error (RMSE). Source: Sztobryn 
(2003). 
Training 
Algorithm Used 

(1 ) 
Observed 
Method 1 
Method 2 
Method 3 
MLP3 
RBF 
MLP4 

Sea Level Values 

Max (cm) Min (cm) Mean (cm) 
~--~~--~~~--~--~~--

(2) (3) (4) 
562 432 497 
558 460 504 
573 467 500 
571 476 523 
542 467 496 
551 458 493 
547 461 494 

MLP-Multilayer perceptron; RBF-Radial basis function 

Correlation 
Coefficient 
R (m2

) 

(5) 
1 
0.67 
0.73 
0.86 
0.82 
0.80 
0.81 

Root mean 
square error 
RMSE (cm) 

(6) 

35 
17 
42 
13 
13 
14 

The second experiment used data from 150 storm events. These events 

were selected by (1) applying the standard Holland genetic algorithm, (2) 

calculating the correlation coefficients, and (3) by checking the sensitivity of the 

model to successive input data introduction, by first checking the quality of the 

performance the model with the examined data series, then without. The results 

are shown in Table 3-22 were the correlation coefficient for ANN methods vary 

from 0.27 to 0.58, while the previous alternative methods values range from 0.22 
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to 0.48. The RMS values for the ANN ranged from 13 to 34 cm, and 10 to 39 cm 

for the previous alternative methods. The model that gave the best performance 

was the multilayer perceptron model with 3 layers and 2-6 hidden neurons. This is 

the same optimum structure found by Cox et al. (2003) for neural network 

structures predicting water levels using the surge component only. 

Table 3-22 Model performances for forecasting sea level heights using data from 150 storm 
events, evaluated using correlation coefficient (R) and root mean square error (RMSE). Source: 
Sztobryn (2003). 
Training 
Algorithm Used 

(1 ) 
Observed 
Method 1 
Method 3 
MLP3 
RBF 
MLP4 

Sea Level Values 

Max (cm) Min (cm) Mean (cm) 
~--~~--~~~--~~~~--

(2) (3) (4) 
600 565 580 
575 571 573 
542 541 542 
581 566 571 
620 548 578 
650 544 586 

MLP-Multilayer perceptron; RBF-Radial basis function 

Correlation 
Coefficient 
R (m2

) 

(5) 
1 
0.22 
0.48 
0.58 
0.27 
0.31 

Root mean 
square error 
RMSE (cm) 

(6) 

103 
39.3 
12.7 
23.4 
34.1 

Tissot et al. (2003) used a three step procedure to optimize an artificial neural 

network used to predict storm-surge levels at Bob Hall Pier on the Texas Coast 

near Corpus Christi. The first step was to determine the optimum number of 

previous water level differences used to forecast storm surge. They found that as 

the forecasting time increases, the importance of previous water levels decreases. 

The second step in the optimization process was the inclusion of past wind 

measurements. For 3-hour forecasts, including the last 6 hours of wind records 

leads to the best performance. For forecasts longer than 3 hours, only 3 hours of 

past wind records are needed. The third step of the optimization process was to 

add wind forecasts. Wind forecasts were extracted from the National Centre for 

Environmental Predictions (NCEP) Eta-12 model, where they are provided in 3-

hour increments. Significant improvements were found when including forecast 

winds when the forecast interval is 12 hours or greater; however the overall 

computational efficiency of the model is significantly impacted by including 

atmospheric model predictions. For 24-hour forecasts, the model performance as 

measured by average absolute error improves from 6.4cm to 6.0 cm, or a 6% 

improvement. Finally the number of neurons in the hidden layer was varied from 1 

to 3. The increase in the number of hidden layer did not lead to significant 
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increases in performance and in fact the performances decreased in all cases 

when testing ANN's with 3 neurons in the hidden layer. 
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Makarynskyy et al. (2004) computed total water levels including both tidal and 

meteorological components as output from a single artificial neural network. A 

saliency analysis was performed to determine the optimum number of neurons to 

be used. This technique allows an estimation of the relative importance of the 

input and processing nodes of the network. This resulted in the various size 

networks as shown in Table 3-23. Because this technique is predicting total water 

levels (a combination of astronomical and meteorological signals) a relatively large 

artificial neural network structures were required just to interpret the tidal portion of 

the signal. This is unlike artificial neural network structures used by Cox et al. 

(2002), who found that very simple structures (one or two input neurons and one 

hidden neuron) were the optimal size needed to accurately forecast storm surge 

levels. This is because the Cox et al. (2002) separated the harmonic and surge 

components which greatly simplified the signal, and therefore required a much 

simpler artificial neural network to interpret it. Makarynskyy et al. tested artificial 

neural networks varying sizes, using up to 72 inputs, 145 hidden and 24 output 

neurons. The models used log-sigmoid for the transfer function in the hidden 

layer, and linear transfer function in the output layer. The results are shown in 

Table 3-23 where R = the correlation coefficient, RM8E = root mean square error, 

and 81 = scatter index. The best model used 24 input neurons, 49 Hidden 

neurons and had a RM8E of 111 mm. For this study it was determined that an 

overcomplicated network can degrade the quality of the forecasts. 

Table 3-23 Model performances for forecasting sea levels while varying number of input and 
hidden neurons. Source: Makarynskyy et al. (2004 ). 
Input Hidden Averaged 
Neurons Neurons R 
(1) (2) (3) 
72 145 0.816 
60 121 0.830 
48 97 0.859 
36 73 0.859 
24 49 0.875 
12 25 0.823 

Averaged 
RMSE(mm) 
(4) 
139 
130 
118 
119 
111 
122 

Averaged 
SI 
(5) 
0.195 
0.182 
0.165 
0.166 
0.155 
0.172 

The method of using artificial neural networks for forecasting total water 

levels may be desirable for cases when a harmonic analysis has not been 

performed. Because of their large size these models can be time consuming to 
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train, and are susceptible to poor generalization, especially when training relies on 

relatively small data sets. 

Tissot et al. (2004) used tidal measuring stations along the Texas coast to predict 

storm surge events for inland bay regions. Artificial neural networks were used to 

predict surge events for two Texas bay systems, Corpus Christi Bay and 

Galveston Bay. Bob Hall Pier tide gauge is located in the Gulf of Mexico on a 

barrier island protecting Corpus Christi Bay. Any storm surge event occurring in 

the Gulf of Mexico will be measured or detected at the Bob Hall Pier gauge first, 

before moving into Corpus Christi Bay (Location of the Packery Channel gauge) or 

similarly at the Pleasure pier at Galveston before moving into Galveston Bay. The 

tidal lag period for The Bob Hall Pier to Corpus Christi Bay (Packery Channel 

gauge) is approximately 4 hours and The Galveston Bay time lag is approximately 

7 hours. 

One of the principle skill assessments used by the National Ocean Service 

(NOS) to assess the adequacy of water level forecasts is the Central Frequency of 

15cm (CF15). For a model to be considered operational it must perform equal to 

or greater than 90% of the time within +/-15cm. Table 3-24 shows the central 

frequency for stations used in this study. Initially, none of the stations satisfied the 

NOS's 90% central frequency criteria using sea level data alone. 

Table 3-24 Surge level forecast central Frequency (Percentage of time forecasts values are within 
0.15 m of observed values) for selected Texas tide stations. Source: Tissot et al. (2004 ). 

Bay System Station Station Description Central 
Frequency (%) 

(1 ) (2) (3) (4) 
Corpus Christi Bob Hall Pier Gulf of Mexico Station 84.2 

Port Aransas Ship Channel Station 83.7 
Packery Channel In-bay Station 85.1 

Galveston Bay Pleasure Pier Gulf of Mexico Station 72.8 
Morgans Point In-bay Station 67.3 

To improve the models Tissot et al. (2004) included secondary water level 

measuring stations and winds to be used as additional input variables, depending 

on the station selected. The results of this optimization are shown in Table 3-25. 

For example, when using Bob Hall as a primary station Galveston Pleasure Pier 

was added to help with frontal boundaries arriving from the North. When using 

Packery Channel as a primary station Bob Hall Pier is added because of its strong 

correlation and long lag period with Corpus Christi Bay waters. When using 
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Morgan's point as a primary station, Pleasure Pier is added because of its strong 

correlation and long lag period with Galveston Bay waters. 

Table 3-25 Secondary station location and optimum input time series used for each primary station 
location. Source: Tissot et al. (2004 ). 
Primary Station Forecast Secondary 

Interval Station 
(1 ) (2) (3) 
Bob Hall Pier 24 Pleasure Pier 

Bob Hall Pier 48 Pleasure Pier 

Port Aransas 24 None 
Port Aransas 48 None 
Packery Channel 24 Bob Hall Pier 

Packery Channel 48 Bob Hall Pier 
Pleasure Pier 24 None 
Pleasure Pier 48 None 
Morgans Point 24 Pleasure Pier 

Morgans Point 48 Pleasure Pier 

Input Time Series 

(4) 
Previous water levels and winds for 
both stations (48 hrs) 
Previous water levels and winds for 
primary station (past 48 hrs) 
Previous water levels (48 hrs) 
Same as 24 hr forecasts 
Previous water levels at primary station 
(4 hrs) and previous water levels and 
winds at secondary station (24 hrs) 
Same as 24 hr forecasts 
Previous water levels (48 hrs) 
Same as 24 hr forecasts 
Previous water levels at primary station 
(24 hrs) and previous water levels and 
winds at secondary station (3 hrs) 
Same as 24 hr forecasts 

After inclusion of secondary stations and wind as inputs to the artificial 

neural network, significant improvements in Central Frequency 1Scm is evident. 

ANN model performances are compared to harmonic, Persistence, and Linear 

Regression models for each of the stations and are shown in Table 3-26. Stations 

in the Corpus Christi Bay system show the best improvement with all ANN models 

performing above 90 % for Central Frequency. Stations in the Galveston Bay 

area also show significant improvement with the models for both stations now 

reporting a Central Frequency (1Scm) of over 80%. 
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Table 3·26 Comparison of model performances after optimization (ANN model performances are 
shaded grey) for selected Texas locations. Source: Tissot et al. (2004). 

Station / Model Root mean square error Central Frequency (15cm) % 
(RMSE) 

(1) (2) (3) 
Bob Hall Pier 
Harmonic 
Persistence (24 hr) 
Linear Regression (24 hr) 
ANN (24 hr) 
Persistence (48 hr) 
Linear Regression (48 hr) 
ANN (48 hr) 
Port Aransas 
Harmonic 
Persistence (24 hr) 
Linear Regression (24 hr) 
ANN (24 hr) 
Persistence (48 hr) 
Linear Regression (48 hr) 
ANN (48 hr) 
Packery Channel 
Harmonic 
Persistence (24 hr) 
Linear Regression (24 hr) 
ANN (24 hr) 
Persistence (48 hr) 
Linear Regression (48 hr) 
ANN (48 hr) 
Pleasure Pier 
Harmonic 
Persistence (24 hr) 
Linear Regression (24 hr) 
ANN (24 hr) 
Persistence (48 hr) 
Linear Regression (48 hr) 
ANN (48 hr) 
Morgans Point 
Harmonic 
Persistence (24 hr) 
Linear Regression (24 hr) 
ANN (24 hr) 
Persistence (48 hr) 
Linear Regression (48 hr) 
ANN (48 hr) 

0.114 
0.086 
0.224 
0.075 
0.114 
0.188 
0.102 

0.112 
0.075 
0.172 
0.010 
0.103 
0.208 
0.093 

84.2 
92.0 
93.2 
94.6 
84.3 
76.6 
88.2 

0.108 85.1 
0.055 97.5 
0.101 97.3 

....... __ --'o;..;,;.o:-:4:-::4 _________ 99.2 --~...,..,---.-., 

0.078 93.0 
0.124 93.3 
0.068 96.0 

0.149 72.8 
0.146 79.6 
0.149 83.7 
0.123 84.6 
0.172 71.2 
0.137 71.5 

----~--~~------~I---~--- ------~ 0.140 79.0 

0.174 67.3 
0.178 71.2 
0.110 55.6 
0 . 142~----.,.--~--~80.4 

0.219 61 .6 
0.173 64.5 
0.175 71.3 

3.4 Ensemble averaging 

A major method for improving ANNs is the use of ensemble averaging. Ensemble 

forecasting utilizes the results from multiple training runs to create different sets of 

weights and biases. After the training period, prediction is deterministic. Naftaly 

et al. (1997) demonstrated that averaging the results from multiple training runs 

can have a significant effect in the reduction of variance of a forecast. They found 

that ensemble averaging requires a special training methodology and can be even 
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more effective when not combined with training constraints such as weight decay 

and early stopping. 

It was found that typically the bias decreases and the variance increases as 

the number of training epochs is increased. When training neural networks, the 

variance arises from two terms. The first comes from inherent data randomness, 

and the second comes from the "non-identifiably" of the model, namely the fact 

that for a given set of training data, there may be several local minima of the error 

surface. During the training period one aims to stop when the sum of their error 

reaches a minimum. Since we are able to reduce the variance via ensemble 

averaging, one should therefore search for a point with a smaller bias (longer 

training time) as the optimal trade off as the ensemble predictor. 

Naftaly et al. (1997) tested their models using sunspot statistic data 

gathered since 1700. Their training set consisted of the data from the years 1701 

- 1920 and the test data was the years 1921 to 1955. The network used 12 

inputs, 1 sigmoidal hidden layer with 4 neurons, and one linear output layer. This 

network was enlarged to form a simple recurrent network in which the input layer 

is increased by adding the previous point in the time series. Back propagation 

was used as the training algorithm. Average relative variance (ARV) was used as 

an error indicator and was defined as the Mean Square Error of the data set 

divided by its variance. 

The training procedure of each ANN starts out with a given set of 

connection weights. The authors considered an ensemble of ANNs that differ 

only by these connection values. Since the number of possible networks is quite 

large, they developed a technique that allowed approximate averaging over the 

whole space. Their technique consisted of constructing groups of fixed number of 

networks, O. Several groups were chosen with the same size 0, and then 

averaged, defining a finite size average. The authors then estimated the limit 

0---+00 • They regarded the specific choice of initial conditions to be equivalent to a 

random error added to the predictor, therefore expected the error to decrease as 

1/0. A simple regression in 1/0 was then used to obtain this limit. The results are 

shown in Figure 3-1. The highest curve corresponds to 0=1 or the case of a 

single network. Below are the curves of the larger size ensemble networks, with 

the bottom curve extrapolated to 0---+ 00 • The extrapolation method used is shown 

in Figure 3-2. 
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Figure 3-1 Average relative variance of test data set. Results show a shallow 0->00 curve, and the 
two minima. The curves are shown for different size ensemble groups: 0 = 1, 2, 4, 10, 20, and the 
lowest curve is the extrapolation to 0->00. Figure adapted from (Naftaly et al. 1997). 
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Figure 3-2 Extrapolation method used for extracting the 0->00 prediction. The results for two 
different 0 at two different training periods are shown. t = 70 kilo epochs (open Circles) and t :;:: 
140 kilo epochs (closed circles). Extrapolated values were obtained where each line crosses 1/0 :;:: ° on the horizontal axis. Figure adapted from (Naftaly et al. 1997). 

The authors concluded that when a portion of the variance from the initial 

conditions is large, ensemble averaging is very effective, and by using large 

ensembles it can be eliminated altogether. The variance of the ensemble is 

inversely proportional to its size. The authors also concluded that early stopping 

may not be useful to the ensemble. In fact, that ensemble performance may 

improve if single ANN models are over-trained. Over-training reduces the bias 

portion of the error, while paying the price of higher variance for individual 
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networks. Later the variance portion of the error is reduced by the ensemble 

averaging, with no effect on the bias itself. 

3.5 Summary 

54 

The review of the existing literature provided a guide for the direction and methods 

that were to be used for the project. The following are the primary guidelines 

developed after review of the literature. 

• Artificial neural networks were selected as the modelling method because: 

o While numerical models provide simultaneous spatial data at any 

point within the model's domain, they require excessive information 

apart from historical observations and are complex and tedious to 

apply when point-forecasts at specific locations are needed. 

o Artificial neural networks can model non-linear phenomena. 

o Artificial neural network's can work with limited data sets (one or two 

years of historical data) (although ideally data should be broken up 

into training, validation, and testing data sets). 

o Artificial neural network's can accurately forecast surge levels using 

only historical and current water level data from a single station. 

There is no need for extensive hydrodynamic data sets to drive 

model. 

o Artificial neural network's can model data where bathymetry and 

meteorological data is poor or unknown. No need for bathymetric 

data sets describing the regional environment or wind forcing data 

sets. Although use additional data sets can significantly increase 

accuracy, if they include data that has a relationship to the parameter 

being modelled. 

o Spatial relationships for data inputs are not needed. The model does 

not need to know the distances between data stations, or if the 

numbers represent bacteria counts or storm water levels. The 

artificial neural network is able to establish a relationship between 

the input data sets (including tidal lag periods) without knowledge of 

position. 

o Artificial neural network's ability to model data where underlying 

relationships are unknown. 

o Artificial neural network's can model noisy data. 
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o Computational efficiency when the method is utilized to provide real 

time predictions (once trained computing predictions is virtually 

instantaneous once the input is available) 

• This project will model weather-induced water level changes only, using the 

same methodology of Tissot et al. (2001) and others. Some researchers 

forecast total water levels, requiring larger and more complex artificial 

neural networks to predict the harmonic components in addition to the 

meteorological component. 

• For this project the artificial neural network will use a feed forward back 

propagation structure. The majority of the research projects reviewed used 

this type of artificial neural network structure. Its greatest strength is in non­

linear solutions to ill-defined problems. The typical back-propagation 

network has an input layer, an output layer, and at least one hidden layer. 

• Three layer artificial neural network was chosen because most artificial 

neural network's modelling similar environmental data sets had best results 

using 3 layers (1 input layer, 1 hidden layer, and 1 output layer) 

o This project will also investigate the forecast accuracy when varying 

number of neurons used in the hidden layer as previously 

investigated by Tissot et al. (2004) and Rajasekaran et al. (2005) 

• Levenberg-Marquardt (LM) Algorithm for training. The LM algorithm was 

the primary training algorithm used for most of the artificial neural networks 

investigated, and the fastest for artificial neural network's trained with 

moderate number of network parameters. 

• Two-station artificial neural network will be used (primary and secondary 

station) utilizing information from a source "up-stream" from the primary 

station to help forecast. This method of using a secondary station was 

investigated by Thirumalaiah and Deo (1998), Tissot et al. (2004), and 

Huang et al. (2003). This method takes advantage of storm propagation in 

the North Sea, since most storms track from north to south, allowing 

northern stations to "see" the effects of a storm before southern stations. 

• Validation used as an early stopping method to prevent overtraining. 

• Ensemble averaging can be used to significantly reduce variance in a 

forecast. 
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4 Materials 

4.1 Data sources 

Three different data sets are used in this project. The first is a sea level data set 

consisting of 9 tide gauge locations in the United Kingdom along the North Sea 

coastline. The second is also a sea level data set consisting of:4 tide gauge 

locations along the Thames Estuary. The last data set is composed of data 

extracted from a numerical model data set for the Sheerness tide station location 

from the CS3 model output. For an overview of the data sources used within the 

project organization see Figure 4-1. 

4.1.1 North Sea Data - National Tidal and Sea Level Facility 

The primary data set used for this project comes from the National Tidal and Sea 

Level Facility (NTSLF) through the British Oceanographic Data Centre (BODC). 

This data set contains a selected group of stations from the UK Tide Gauge 

Network. The network, run by the Tide Gauge Inspectorate, includes 45 gauges 

as illustrated in Figure 4-2. These gauges are tied together through a national 

leveling network to Ordnance Datum Newlyn for vertical reference (NTSLF, 2006). 

Tide data are collected, processed and archived by BODC. Tidal data sets were 

downloaded from the Internet via the BODC web site found at the following 

location: http://www.bodc.ac.uk/data/online delivery/ntslf/ . The data is archived in 

1-year data files at 1 hour intervals. The Cycle number, Date, Time, ASVBG02 

(measured water-elevation), and residual (POL calculated harmonic water 

elevation - measured water elevation) values are logged at 10 minute intervals. 

Format for the National Tidal and Sea Level data sets are shown in Figure 4. 
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Figure 4-2 UK Tide Gauge Network (http://www.pol.ac.uklntslf/tgi/ukmap.html) 

Port: 
Site: 
Latitude: 
Longitude: 
Start Date: 
End Date: 

P015 
Sheerness 
51. 4456 
0.7434 
01JUN2006-00.00.00 
30JUN2006-23.45.00 

Contributor: Proudman Oceanographic Laboratory 
Datum information: 
Parameter code: 
sensor) 

The data refer to Admiralty Chart Datum (ACD) 
ASLVBG02 = Sea lev el, Bubbler tide gauge (second 

Cycle Date Time 
Number yyyy mm dd hh mi ssf 

1) 2006 / 06 / 01 00:00:00 
2) 2006 / 06 / 01 00:15:00 
3) 2006 / 06/01 00:30:00 
4) 2006/06 / 01 00:45:00 
5) 2006/06/01 01:00:00 
6) 2006/06/01 01:15:00 

ASLVBG02 
f 

2.5760 
2.8010 
3.0230 
3.2510 
3.4790 
3.7100 

Residual 
f 

0.2163 
0.2011 
0.1762 
0.1521 
0.1246 
0 . 0988 

Figure 4-3 Example of National Tidal and Sea Level Facility data set for Sheerness. 
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Data sets were obtained for the following stations: Wick, Aberdeen, Leith, 

North Shields, Immingham, Com mer, Lowestoft, Felixstowe, and Sheerness. The 

completeness of the tide data sets is shown in Table. The percentage of 

complete data for each station is shown below the indicated year. The percent 

complete for each station for the 1990-2003 interval is shown in column 15, with 

each station's rank in column 16. Immingham had the highest level of % of 

complete data for the period 1990-2003 with 98.2% of data recorded. The 

percentage of complete data for all stations for each year is indicated on the 

bottom (indicated by "Year %"). The years are also ranked in the order of the most 

complete. The year with the most complete data was 1992 with 99.1 % of data 

recorded. 

T bl 41 Cit a e - omple eness 0 f d t f th N rth S fd t f a a or e 0 ea I e s a Ions 
Station 19901991199219931994199519961997199819992000200120022003 Total% Rank 

(1 ) (2) (3) (4) (5) (6) (7) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 
Wick 99 100 98 100 99 77 100 99 97 98 98 96 99 100 97.1 4 

Aberdeen 100 100 100 88 85 100 100 100 99 96 98 99 96 98 97.1 4 
Leith 100 77 94 100 100 100 100 100 100 98 76 100 70 100 93.5 7 

North Shields 95 92 100 82 93 99 100 100 100 100 100 100 92 99 96.6 5 
Immingham 100 99 100 100 100 100 87 99 96 98 96 100 100 100 98.2 1 

Com mer 85 100 100 100 100 100 95 100 100 85 92 99 99 96 96.5 6 
Lowestoft 100 99 100 100 100 98 80 94 90 98 94 100 99 99 96.5 6 
Felixstowe 100 99 100 100 99 100 98 100 100 96 93 90 100 99 98.1 2 
Sheerness 100 100 100 100 99 100 98 98 100 98 95 97 83 99 97.6 3 

Year % 97.4 96.2 99.1 96.7 97.2 97.1 95.3 98.9 98 96.3 93.6 97.9 93.1 98.9 
Rank 6 10 1 5 7 8 11 2 3 9 12 4 13 2 

4.1.2 Thames Estuary Data - Port of London Authority 
The Port of London Authority (PLA) is a public trust established in 1908 to 

'Administer, preserve and improve the Port of London'. PLA archives tide gauge 

information at their office at the London River House in Gravesend. Station name, 

date, time, water-elevation, and surge residual are logged in 10 minute intervals. 

The format is shown in Figure 4-4. 

SILVERTOWN,Ol/01/2004 00:10:00,1.733602,-0.3848932 
SILVERTOWN,Ol/01/2004 00:20:00,1.609902,-0.4100389 
SILVERTOWN,Ol/01/2004 00:30:00,1.496614,-0.4379637 
SILVERTOWN,Ol/01/2004 00:40:00,1.395898,-0.4667445 
SILVERTOWN,Ol/01/2004 00:50:00,1.31036,-0.4940104 
SILVERTOWN,Ol/01/2004 01:00:00,1.242621,-0.517379 
SILVERTOWN,Ol/01/2004 01:10:00,1.193689,-0.5360842 

Figure 4-4 Example of Port of London Authority data set for Silvertown. 
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Port of London Authority data sets were obtained for the following stations: 

Herne Bay, Silvertown, Southend, and Walton. For locations of these stations see 

Figure 4-5. The completeness of the tide data sets is shown in Table 4.2. The 

percentage of complete data for each station is shown below the indicated year. 

The percent complete for each station for the 2000-2004 interval is shown in 

column 7, with each station's rank in column 8. Southend had highest level of % 

of complete data for the period 2000 - 2004 with 99.8% of data recorded. 

\ 

Figure 4-5 Port of London Authority tide gauge locations. 

T bl 42 C a e - ompleteness 0 f d f Th ata or ames E t 'd s uary tl e stations 
Station 2000 2001 2002 2003 

(1 ) (2) (3) (4) (5) 
Herne Bay 84,0 99.3 100 99.4 
Silvertown 100 99.8 99.7 99.4 
Southend 100 99.4 100 99.4 

Walton 100 99.2 100 99.4 

/ ., 
14)Wallon 

NORTH 

SEA 

J11) Shivering Sands 

13) Margate \.. ~, 
12) Heme Bay ...... '- ., 

... 
" , 

1., 

2004 Total% Rank 
(6) (7) (8) 
100 96.5 4 
96.4 99.1 3 
100 99.8 1 
100 99.7 2 

4.1.3 Continental Shelf Model (CS3) Data - Proudman Oceanographic 
Laboratories 

The Continental Shelf Model (CS3) was developed at Proud man Oceanographic 

laboratories and is used to model the storm surge and tidal currents (Flather and 

Proctor 1983). Proudman Oceanographic Laboratories also archive the CS3 

model data. This CS3 model is used by the Storm Tide Forecasting Service 

(STFS) to predict storm tides and currents around the British Isles. The STFS is 

operated by the United Kingdom's Meteorological Office (Met Office) on behalf of 
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the Department for Environment, Food and Rural Affairs (DEFRA), and supplies 

storm surge forecasts to the Environment Agency (EA) four times per day. 

The CS3 model's forcing data is derived from a suite of atmospheric and 

ocean models that are run as part of an automated schedule. The primary 

atmospheric model used by the Met office is the Unified Model which has several 

components; the first is the Global Model with a resolution of about 60 km; the 

second is the Mesoscale model which has a resolution of about 12 km 

(Meteorological Office, 2006). The Domain of Mesoscale model covers all of the 

British Isles, North Sea and English Channel. 

The CS3 model has approximately the same domain as the Mesoscale 

model and is driven by the wind and atmospheric pressure data from the 

Mesoscale model. The model is run 4 times a day and is comprised of hourly 

hindcasts from T-06 to T +00, and hourly forecasts from T +00 to T +36 hours. Post 

processing extracts data from the models at specific grid points to make up 

standard surge residual port tables. Data from the CS3 model are archived for all 

of the "A class" tidal stations in the United Kingdom at Proudman Oceanographic 

Laboratories. Data for the T +00 thru T +05 hour forecasts are archived at 0:00, 

06:00, 12:00, and 18:00 hours. This format archives 6 different forecast intervals 

from T +00 to T +05 hours, 4 times a day. An example of the archived surge 

forecast data is shown in Figure 4-5. Each line of data consists of 12 hourly 

measurements, requiring 2 lines for each day. Forecast intervals (T +00, T +01 ... ) 

and times are highlighted in grey and are shown for the first 24-hours for purposes 

of clarity only. Unfortunately, the CS3 model's archived format limits comparison 

of the model to a maximum of T +05 hours. 

T+OO T+01 T+02 T+03 T+04 T+05 T+OO T+01 T+02 T+03 T+04 T+05 
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 
0.05 0 . 04 0.03 0.03 0.02 0.03L 0 . 04 0.04 0 . 06 0.07 0.08 0.06H 
T+OO T+01 T+02 T+03 T+04 T+05 T+OO T+01 T+02 T+03 T+04 T+05 
12:00 13:00 14:00 15:00 16:00 17:00 18:00 19 :00 20:00 21:00 22:00 23:00 
0.03 0 . 02 0 . 03 0.05 0.06 0.05L 0.02 -0 . 01 0.00 0 . 04 0 . 06 O.OlH 

-0.06 -0.07 -0.05 -0.01 0 . 02 0.01L- 0.05 -0 . 08 -0.09 -0.05 0.01 0.02H 
-0.03 -0.06 -0.05 -0.01 0.02 0.06 0.07L 0.09 0 . 10 0.08 0.07 0.07H 

0.08 0.10 0.11 0.10 0.09 0.08 0 . 08L 0 . 16 0.23 0.22 0.17 0.13 
0.12H 0.11 0.14 0 . 17 0.17 . 0.16 0.19L 0.26 0.37 0.39 0.34 0.23 

Figure 4-6 Example of archived CS3 model data for Sheerness. 

Archived CS3 Model data for the Sheerness Class A tide station was obtained for 

the years 1993 - 2003. Table 4-3 shows the months the data was archived 

marked by an 'X'. 1999 and 2002 were the only complete years where all the 

months were archived. 
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T bl 43 D C a e - ata ompleteness - CS3 M d I o e 
Month 

J F M A M J J A S 0 N D 
1993 X X X X 
1994 X X X X X X X X 
1995 X X X X X X X X 
1996 X X X X X X X X 
1997 X X X X X X X X 
1998 X X X X X X X X 
1999 X X X X X X X X X X X X I 
2000 X X X X X X X X 
2001 X X X X X X X 
2002 X X X X X X X X X X X X 
2003 X 

4.2 Computers Used 
The following computers were used for this project: 

• 1 - Dell Dimension 5000 PC with a 3.0 GHz Pentium 4 processor, 1 GB 

RAM and Microsoft Windows XP Professional operating system. (Primary 

computer used during the project) 

• 1 - Dell Precision 380 PC with a 3.2 GHz Pentium D processor with 2 GB 

RAM Microsoft Windows X64 operating system (Used during the ensemble 

forecasting portion of the project). 

• 4 - Dell Dimension 2400 PCs with a 2.66 GHz Pentium 4 processor with 

512mb of RAM and Microsoft XP Professional operating system (Used 

during the ensemble forecasting portion of the project). 

4.3 Software Used 

The Artificial Neural network used for this project was implemented using MATLAB 

Version 7.2.0.232, Release 2006a, utilizing the neural network toolbox. 
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5 Methods 
The methodology for this project has been divided up into six sections: 

1. Data Preparation Methods - This section describes the methodology used 

to process the raw data before its use for input to the artificial neural 

network models. The preprocessing includes separation of the water level 

time series into its tidal and surge components. See Section 5.1. 

2. Artificial Neural Network Methods - This section describes the choice of 

structure for the artificial neural networks and the methodology used to train 

and test the models. See Section 5.2. 

3. Model Performance Assessment - This section describes the methods 

used to assess model performance. See Section 5.3. 

4. ANN Optimization Methods - This section describes the optimization 

procedures involving structure, design, and selection of inputs used to 

minimize forecasting errors produced by the artificial neural networks. See 

Section 5.4. (Experiments 1, 2, and 3) 

5. Model Comparison Methods - This section compares the results of the 

optimized ANN models with the CS3 numerical model. See Section 5.5. 

(Experiment 4) 

6. Ensemble Forecasting Methods - This section uses Ensemble models to 

reduce variance, or the instability of the neural network. See Section 5.6. 

(Experiment 5) 

7. Engineering Application Methods - This section applies lessons learned 

from previous experiments to a new location, and develops an optimal ANN 

model. See Section 5.7. (Experiment 6) 

5.1 Data Preparation Methods 
Before raw water level data can be used in the artificial neural network, it must be 

processed. This processing is performed in several steps and has been divided 

up into two main sections. The first section uses tools developed as part of the 

Texas Coastal Ocean Observation Network (TCOON) Database (Tissot et al. 

2005). These tools enable a harmonic analysis of the data to be performed and 

the data to be separated into its tidal and surge components (See Section 5.1.2). 

The second section uses MATLAB programs that are used to analyze, linearly 

interpolate missing data, and format the data for use by the ANN (See Section 



Chapter 5 - Methods 

5.1.2). For an overview of the data preparation module within the overall project 

organization, see Figure 4-1 (page 53). 

5.1.1 Texas Coastal Ocean Observation Network Database 
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The Texas Coastal Ocean Observation Network (TCOON) is a network of 35 tide 

gauges located on the Texas gulf coast (Tissot et al. 2005). TCOON has several 

built-in features used to help maintain and process tidal records. Web based tools 

were developed as part of TCOON to help during the preliminary processing of 

tidal data. This section describes how data is entered into the TCOON database, 

how harmonic analysis is performed, and how a synthetic harmonic tide and 

measured tide file is generated. The primary feature used for this project is 

HarmAN, a harmonic analysis program and HarmPred, a program which 

generates a synthetic tidal prediction. For more general information about the 

TCOON network see Appendix 2. 

Database import 
To be able to use the TCOON tools the project data had to be first stored in the 

database. To do so, a location data key was constructed for each project water 

level data series. The data key for this project is shown in Figure 5.1. Each water 

level measuring station used in this project is assigned a unique TCOON station 

number, and the latitude and longitude was entered for later use during the 

harmonic analysis. 

1990001+0000 2004168+0000 name wick, Scotland ##( dgrouty) 
1990001+0000 2004168+0000 abbr WIC ##( dprouty) 
1990001+0000 2004168+0000 loc 58.4413,-3.0849 ##( dQrouty) 
1990001+0000 2004168+0000 name Aberdeen, Scotland ##( dprouty) 
1990001+0000 2004168+0000 abbr ABE ##( dprouty) 
1990001+0000 2004168+0000 loc 57.1441,-2.0787 ##( dprouty) 
1990001+0000 2004168+0000 name Leitn, Scotland ##( dQrouty) 
1990001+0000 2004168+0000 abbr LEI ##( dprouty) 
1990001+0000 2004168+0000 loc 55.9898,-3.1803 ##( dprouty) 
1990001+0000 2004168+0000 name North Shields, England ##( dprouty) 
1990001+0000 2004168+0000 abbr NSH ##( dprouty) 
1990001+0000 2004168+0000 loc 55.0073,-1.4383 ##( dprouty~)~~ 
1990001+0000 2004168+0000 name Immingham, England ##( dprouty) 
1990001+0000 2004168+0000 abbr IMM ##( dprouty) 
1990001+0000 2004168+0000 loc 53.6330,-0.1869 ##( dprouty) 

Figure 5-1 Data-key for entry into the TCOON database. 

Harmonic analysis 
Harmonic analysis is performed for two primary reasons. The first reason is to aid 

in the calculation of the storm residual. An accurate harmonic analysis is needed, 

because any harmonic constituent that is not included in the analysis will then be 
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considered part of the surge component, and will cause errors later for the ANN. 

The second reason is to fill gaps in the data record with approximate water levels 

for use during training of ANNs. 

This project uses water level data from two different sources, the British 

Oceanographic Data Centre (BODC) and the Port of London Authority (PLA). 

Both data sets provide measured water levels and surge residuals and small gaps 

are flagged and filled. Unfortunately, large gaps can still be found in these records 

due to gauge maintenance or other reasons. The use of artificial neural networks 

for gap filling has been used for data recovery in other applications (Gorban and 

Rossiev 2002), but were not used here, because of the selection method. Testing 

years were selected because they contained only small gaps (less than 6 hours), 

and storms were selected for analysis only if they contained no gaps. The 

synthetic harmonic data derived at this stage are used to interpolate missing data 

which is performed later and is described in Section 5.1 .2. To do this, a new 

harmonic analysis is performed for all data sets and a new set of surge residuals 

are calculated. 

The Harman program is implemented as a web based program and was 

designed by Mostella et al. (2002). Harman is a Perl/POL program developed to 

determine harmonic constants from previously collected data sets. Harman uses 

three files as input; a file of constituent names to be used in the analysis; a file of 

constituent names speeds, node factors and equilibrium arguments; and a file 

containing water level observations. To use HarmAn, the user logs into the web 

site: 

http://lighthouse.tamucc.edu:4001/harman 

where a form appears (See Figure 5.2). The user then enters the station number 

and the date range to be used in the analysis (in the "New Analysis" area at the 

bottom of form), then selects the "Analyze" button at the bottom of the form. It is 

important to note that at least one year of hourly data is required , preferably with 

less than 2% missing, however up to 10% missing may be adequate. After the 

analysis is performed, the user is presented with the same form but with the 

Amplitude and Phase components displayed for each of the constituents (See 

Figure 5.2). The user can then automatically save these constituents to the 

TCOON database by filling in the name field at the top of the form with "hcset" and 

selecting the "Post" button at the bottom of the form. If the text "hcset" is used as 

the name, then those constituents will be used in the future to generate harmonic 
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tidal predictions. As seen in Figure 5-2, various size data sets for each station 

were analyzed. Ideally, 17.6 years of data are needed to encompass most of the 

astronomical influences seen in the tidal record, but acceptable results can be 

obtained with as little as one year of measured water level records. Tests 

performed comparing 1, 5, and 10 year harmonic analysis show little differences 

between them. For this project, 10 years of data is used for all BODC data sets, 

and 5 years of data was used for all POL data sets. 

Name ~ 
~= 

15year !10-year Sheerness Hcset 11yea~ 
= 

DescriPtioi 2000 

1

1990 11990-1994 11990-1999 1990-1999 

Time Offset 0 

1
0 '0 0 0 

I I 

I 
I 
I 
I 

I 

HO 3065.5 3008.76 976.15 2989.17 12989.17 

J1 4.23 I -91 .36
1 

10.461 81 .131 6.351 81 .101 8.631 97.591 8.631 97.59 

K1 105.661 11 .21 116.57 18.52 114.33 11.14 114.261 10.961114.261 10.96 

K2 171 .831 54.62 171.76 49.58 168.30 50.98 167.67 51.22 167.67 51.22 

L2 ~ 124.891 7.39 1117.361 -5.761129.451 5.00 133.82 8.15 133.82 8.15 

M1 10.09 I 125.87 4.73 107.991 5.06 169.64 2.49 135.41 2.49 135.41 
I 

N2 336.03 j -27.88 348.19 -27.96 339.57 -29.58 338.77 -30.38 338.77 -30.38 

2N2 78.56 I -61 .92 80.20 -99.401 46.30 -63.43 42.85 -57.01 42.85 -57.01 

I ~ lEd it Graph jEdit Graph IEdit Graph Ed it Graph 

New Analysis: 

Station: I 958 

Dates: 1 
2000 

Analyze 1 

Figure 5-2 Example of input form for HarmAn, a web-based Harmonic analysis program 
(Note: only a first 7 constituents are displayed in this example) 

When the user requests harmonic water levels for a specific station from the 

TCOON database, a harmonic tidal prediction program (HarmPred) is run 

automatically. HarmPred is a Perl/POL program used to build a synthetic tide from 
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the tidal constituents generated when using the HarmAn program. HarmPred 

uses three inputs: first a file of constituent names, amplitudes, and phases for the 

target station, second, a file of constituent speeds, equilibrium arguments, and 

node factors, and finally, the desired time of prediction. A water level prediction 

can be made by using the following formula: 

hi = "HJ, cos(aJ + ej 1 - kJ L...J l , t ' 
(5.1 ) 

where ht = water level at time t; 8i = speed of constituent /; Hi = amplitude; and ki = 
phase for constituent i from the harmonic constants, ~, t = node factor for 

constituent i at time t; and ei,t = equilibrium arguments for the constituent i at time t. 

Data extraction 
After water level data has been entered into the TCOON data base, and a 

harmonic analysis is performed, the data is extracted in preparation for the 

statistical analysis and gap filling programs that follow. The data is extracted via 

the web using the following http command: 

http://lighthouse.tamucc.edu/pd/stnlist=950&serlist=pwl,res,offswl,harmwl&when=1 

990?-action=c&na=9999&interval=3600 

Where stnlist = station id number; serlist = list of output parameters requested; pwl 

= primary water level; res = residual water level; offswl = offset water level; harmwl 

= harmonic water level; when = time range for output (year of 1990); action = type 

of output format; c = column output format; na = no data available; flag designator 

for output; interval = interval in seconds between output values. An example of the 

output is shown in Figure 5-3. 
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# DISCLAIMER: The data described below have been collected by automated 
# equipment and are furnished "as is". DNR makes no warranties (including 
# no warranties as to merchantability or fitness) either expressed or implied 
# with respect to the data or their fitness for any specific application. 
#-------------------------------------------------------------------------------
#printcols: start 
# 950-pwl: generated Tue Jul 25 15:17:37 2006 UTC 
# 950-pwl: Wick, Scotland (58.4413,-3.0849) 
# 950-pwl: Primary Water Level (rom) 
# 950-pwl: Elevations above Station Datum (stnd) 
# ------------------------------------------------------------------------------
# 950-res: generated Tue Jul 25 15:17:37 2006 UTC 
# 950-res: Wick, Scotland (58.4413,-3.0849) 
# 950-res: Residual Water Level (rom) 
# ------------------------------------------------------------------------------
# 950-offswl: generated Tue Jul 25 15:17:37 2006 UTC 
# 950-offswl: Wick, Scotland (58.4413,-3.0849) 
# 950-offswl: Offset from Predicted Water Level (rom) 
# 950-offswl: hcset=hcset 
# 950-offswl: Elevations above Station Datum (stnd) 
# ------------------------------------------------------------------------------
# 950-harmwl: generated Tue Jul 25 15:17:37 2006 UTC 
# 950-harmwl: Wick, Scotland (58.4413,-3.0849) 
# 950-harmwl: Harmonic Predicted Water Level (rom) 
# 950-harmwl: hcset=hcset 
# 950-harmwl: Elevations above Station Datum (stnd) 
# ------------------------------------------------------------------------------
# date+time 950-pwl 950-res 950-offswl 950-harmwl 
1990274+0000 1781 12 54 1727 
1990274+0100 1411 
1990274+0200 1162 
1990274+0300 1084 
1990274+0400 1225 
1990274+0500 1549 
1990274+0600 1992 
1990274+0700 2455 
1990274+0800 2821 

23 
26 
10 

-22 
-45 
-40 
-20 

14 

58 
30 

-13 
-23 
-18 
-12 

-8 
7 

1353 
1132 
1097 
1248 
1567 
2004 
2463 
2814 

Figure 5-3 Example TCOON database output file 

Output from the screen is then saved to a text file and named in the following 

format: 

1990 A WIC.txt 
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Where 1990 = year of data set, _A_ = text to indicate data was processed, WIC = 
Wick or 3-letter station identifier, .txt = file extension. 

5.1.2 Data Interpolation, Formatting and Preliminary Analysis 
As in most environmental data sets, gaps are found in these time series. As 

continuous time series are desirable for input into the neural networks the gaps 

are filled by linearly interpolating the surge component of the water level time 

series harmonic data before it is used by the artificial neural network. Gaps of one 

month or smaller were found to have relatively small effects on harmonic 

predictions (Mostella et. al 2002). A MATLAB program was written to process the 

data exported from the Texas Coastal Ocean Observatory (TCOON) database and 

format, analyze and condition the data before its input into the Neural Network. 

The actual MATLAB code used to do the preliminary processing and gap filling is 
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called Convert_DNR_NN and is shown in Appendix 3. This program formats and 

calculates the following: 

• Harmonic water level (calculated using TCOON HCSET values) 

• Observed water level (from original BODC or PLA values + Gaps filled) 

• Surge water level (Calculated from Observed water level - Texas Coastal 

Ocean Observatory (TCOON) harmonic) (Contains no gaps) 

• Residual water level (Values from input file (calculated by the BODC (With 

gaps)) this value is not used. 

The program identifies: the number of records in each data series; their starting 

and ending times; and the number, size, and location of gaps. The program fills in 

the gaps found in the observed water levels by linearly fitting the missing data from 

the surge component and adding this to the harmonic component (since Observed 

water levels = Harmonic water levels + Surge water levels). The preliminary 

analysis and gap filling program produces two output files, an Analysis file and a 

NN file. The Analysis file reports the following statistics: 

• Data input file name 

• Number of records processed 

• Title of data series read 

• Number of points per series 

• Total days of data in series 

• Starting day and time of series 

• Ending day and time of series 

• The number of missing data for each series and percent of total 

• Longest gap for each time series (before being filled) 

• All Skill assessment statistics for the harmonic model 

The following Skill assessment statistics (with the error being defined as the 

difference between model results, harmonic predictions and the measured water 

levels): 

• Average Error: Eavg = (1/N) L ej 

• Average Absolute Error: 

• Standard Deviation of the Error: 

• Root Mean Square of the signal: 

• Root Mean Square Error: Erms = ((1/N) L e?)1/2 

• Normalized RMS Error: 
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• Central Frequency (X=15 cm): Central Frequency or percentage of 

forecasts within X cm of the actual measurement 

• Positive Outlier Frequency (X=30 cm): Positive Outlier Frequency or 

percentage of the forecasts X cm or more above the actual measurement 

• Negative Outlier Frequency (X=30 cm): Negative Outlier Frequency or 

percentage of the forecasts X cm or more below the actual measurement 

• Maximum Duration of Positive Outlier (X=30 cm): 

• Maximum Duration of Negative Outlier (X=30 cm): 

• Worst Case Outlier Frequency (X=15 cm): 

• Worst Case Outlier Frequency (X=30 cm): 

An example of an Analysis file is shown in Figure 5-4. 

Data originating from BODC raw data file: 1990_A_wic 
Number of data series read from the raw data file including date and hour time 
series: 8760 
Name of data series read from the raw data file: 
time 
pwl (primary water level) 
res (residual water level) 
offswl (offset water level) 
harmwl (harmonic water level) 

Number of data points per series: 8760 
Representing 365 days of data 
Starting time of the data series: Day 1990001 @ 0 
Ending time of the data series: Day 1990365 @ 1990001 
Ending time of the data series: Day 2300 @ 0 
Missing data for time series "pwl ": 63 data points or 0.72 percent 
Missing data for time series "res ": 63 data points or 0.72 percent 
Missing data for time series "offswl ": 0 data points or 0 percent 
Missing data for time series "harmwl u: 0 data points or 0 percent 
Longest gap for time series "pwl ": 44 data points 

Starting at data point 8089 and ending at data point 8132 
Longest gap for time series "res ": 44 data points 

Starting at data point 8089 and ending at data point 8132 
Longest gap for time series "offswl ": 0 data points 

Starting at data point 0 and ending at data point 0 
Longest gap for time series "harmwl ": 0 data points 

Starting at data point 0 and ending at data point 0 
Skills for Harmonic model for year **************************************** 
Skill Tide Tables 
Average Error: -64.6144 
Average Absolute Error: 153.9295 
Standard Deviation of the Error: 190.8561 
Root Mean Square of the signal: 2242.8246 
Root Mean Square Error: 201.4867 
Normalized RMS Error: 0.0898 
Central Frequency (X=15 cm): 59.8858 
Positive Outlier Frequency (X=30 cm): 1.7466 
Negative Outlier Frequency (X=30 cm): 10.2055 
Maximum Duration of Positive Outlier (X=30 cm): 63.0000 
Maximum Duration of Negative Outlier (X=30 cm): 64.0000 
Worst Case Outlier Frequency (X=15 cm): 0.0000 

Figure 5-4 Example of Preliminary Data Analysis File. 

70 



Chapter 5 - Methods 71 

The second output file created by the preliminary analysis and gap filling program 

is the NN file. The NN file is automatically named by the program and in the 

following format: 

1990 A WICNN.txt 

where 1990 = year of data set; _~= text to indicate data was pre-processed; 

WIC = Wick or any 3-letter station identifier; NN = processed and ready for entry 

into Neural Network; .txt = file extension. An example of the preliminary processed 

data output file is shown in Figure 5-5. This file is in the proper format for use as 

an input file for the artificial neural network. 

#Date Time Pwl Hwl Res 
1990001 0 2683 2793 -49 
1990001 100 3071 3145 -42 
1990001 200 3174 3222 -36 
1990001 300 2928 2979 -29 
1990001 400 2459 2488 -15 
1990001 500 1917 1917 11 
1990001 600 1448 1433 36 
1990001 700 1195 1163 64 

Figure 5-5 Example of a NN data file 

5.2 Artificial Neural Network Methods 
For all experiments, the ANN models were developed, trained, and tested within 

the MATLAB R13 computational environment and the related Neural Network 

Toolbox (The MathWorks, Inc., 2002). For an overview of the ANN module within 

the overall project organization, see Figure 4-1 (page 53). The primary computer 

used was a 3.0 GHz Pentium 4 PC running Windows XP. The models were 

trained using the Levenberg-Marquardt back-propagation algorithm as 

implemented within the MATLAB Neural Network Toolbox. 

5.2.1 Application of the Artificial Neural Network Model 
Several different training algorithms were tested, and the results are shown in 

Table 5-1. The Levenberg-Marquardt had the lowest error level of all the 

algorithms tested with an average absolute error of 0.125 m for the one-year test. 

The next best performing algorithm tested was the gradient decent method with 

adaptive learning rate with an average absolute error of 0.146 m. The Levenberg­

Marquardt algorithm was selected as the training algorithm to be used for this 

project because it had the lowest average absolute error. 
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Table 5·1 Trainin methods tests 
Training 
AI orithm 
Trainlm 

traingda 

traingdx 

traingdm 

Description 

Levenberg-Marquardt back­
propagation 
Gradient descent with adaptive 
learning rate back-propagation 
Gradient descent with 
momentum & adaptive learning 
rate back-propagation 
Gradient descent with 

Training Times 
Sec 

197 

185 

183 

356 

Average Absolute Error 
m 

0.125 

0.146 

0.157 

0.148 
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All ANN models will initially be trained using the Levenberg-Marquardt algorithm 

as implemented within MATLAB. Training times vary between a few minutes and 

several hours depending on the size of the ANN. It is important to note that 

although training times can be lengthy, generating water level forecasts is a sub­

second process once the models are trained. Once the ANN models are trained, 

they are ideally suited for streamed forecasting (an automatically generated, real­

time forecast based on streaming data). 

Training algorithm used 
Levenberg-Marquardt was selected for the training algorithm in this project. Tissot 

et al. (2001) and Cox et al. (2002) both selected the Levenberg-Marquardt 

algorithm because it was found to be the fastest when processing large data sets, 

and gave the best results. The Levenberg-Marquardt algorithm processes the 

whole matrix (96x8760 (48 hours for each station x 8760 hours per year)) at a time 

(one epoch or iteration), during which it calculates new weights and biases for 

each column of data inputs. The Levenberg-Marquardt algorithm improves the 

convergence speed of the standard back-propagation algorithm by modifying the 

rate changes are made to the search direction and size of the step, with initial step 

sizes being large and using smaller size steps when approaching a minimum. It is 

important to note that the Levenberg-Marquardt algorithm is implemented in batch 

mode, which processes all weights and biases for all cases at one time. A 

simplified example for training a single station ANN using 48 hours of previous 

water level data with a 6-hour forecast is shown next. 

Training Example 
The entire training year surge residuals are loaded into a single vector. 

A second matrix for use by the Levenberg-Marquardt algorithm is formed; each 

row is incremented by one hour and contains the following data: 
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• 48 water level residuals or surge heights (from T -48 hours to T -00 

hours) 

• 48 weights, and 1 bias for the hidden layer (initially randomly 

chosen) 

• 1 weight and 1 bias for the output layer (initially randomly chosen) 

• Predicted water level ( at T +6 hours given by ANN algorithm) 

• Measured water level (at T +6 hours, for a 6-hour forecast.) 

• Error (Predicted - Measured) 
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This step is repeated until all 8760 data points (one year) are loaded (requiring 

8760 Rows). The Levenberg-Marquardt algorithm as implemented in MATLAB is 

done in batch mode i.e. for all weights and biases and for an entire year at the one 

time. This algorithm utilizes a combination of methods for minimizing RMSE. 

During the first part of the process the steepest descent decent method was 

used to determine the direction and size of the next step to look for the minimum 

RMSE. The values of the derivatives of the error are computed individually for 

each weight then the error is back propagated through the network until it reaches 

each weight or bias. Note: This step is modified as the training progresses; large 

steps are taken at the beginning and getting smaller at the end. 

During the second part of the process the step values are computed 

through a Newton chord technique and become smaller as the ANN converges 

towards a minimum error level. At the end of each iteration step, a value for root 

mean square error is calculated. The root mean square error (defined as the 

square root of the sum of the errors squared) is calculated by comparison of the 

predicted water levels (ANN output) and the measured water levels (ANN target) 

for the entire year. This completes the first iteration. 

The Levenberg-Marquardt algorithm calculates a direction and step size 

and back propagates the error using the inverse of each transfer function to 

calculate new weights and biases. This process is repeated until the number of 

iterations reaches a preset limit or a pre-defined RMSE is reached. At this point 

the training is over and the current weights and biases are saved, and can be used 

to process data. 
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5.3 Model Performance Assessment 
The performances of the models in this work are assessed based on criteria used 

by NOAA for the development and implementation of operational nowcast and 

forecast systems (NOAA, 1999). A single forecasting error is defined as the 

difference between the predicted value and the observed value. The models are 

assessed by averaging the individual errors over the full data sets, often one year 

of water level residuals or surge heights and forecasts. The statistical parameters 

used to evaluate the models performance for this paper are the Average Absolute 

Error (AAE) between predictions and measurements and the Central Frequency 

(CF) of 150 mm. The Central Frequency (CF) is the percentage of predictions that 

are within 150 mm of the measured water levels. The 150 mm selected for the 

Central Frequency (CF) measure is the requirement typically used by NOAA and 

is based on NOAA's estimates of pilots' needs for under keel clearance value 

(NOAA 1999). In the UK the Storm Tide Forecasting Service (STFS) model 

performance is measured by a similar method, but is called a "skill measure". This 

is similar to the CF described by NOAA, but uses a less stringent value of 200 

mm. This paper will use the AAE and CF (150 mm) for performance analysis. 

Several other skill assessment statistics are tracked during the project and are 

described below: 

• Average Error: Eavg = (1/N) L ej 

• Average Absolute Error: 

• Standard Deviation of the Error: 

• Root Mean Square of the signal: 

• Root Mean Square Error: Erms = ((1/N) L e?)1/2 

• Normalized RMS Error: 

• Central Frequency (X=15 cm): Central Frequency or percentage of 

forecasts within X cm of the actual measurement 

• Positive Outlier Frequency (X=30 cm): Positive Outlier Frequency or 

percentage of the forecasts X cm or more above the actual measurement 

• Negative Outlier Frequency (X=30 cm): Negative Outlier Frequency or 

percentage of the forecasts X cm or more below the actual measurement 

• Maximum Duration of Positive Outlier (X=30 cm): 

• Maximum Duration of Negative Outlier (X=30 cm): 

• Worst Case Outlier Frequency (X=15 cm): 
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• Worst Case Outlier Frequency (X=30 cm): 

These skill assessment statistics are produced for every artificial neural network 

model that is produced, and enables an accurate assessment of the models 

performance. 

5.4 Artificial Neural Network Optimization Methods 
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The general optimization scheme used for this project is to start with the simplest 

configuration, then optimized after each new parameter is added. The initial 

artificial neural network model for this project used only one station. The final 

configuration uses a primary station and a secondary station, varies the amount of 

data used for each, depending on the forecast interval, varies the size of the ANN 

structure, and varies the number of individual forecasts used in an ensemble 

forecast. Each of the optimization steps is run as a separate experiment. Each 

experiment uses the optimal number of parameters or structure configuration set­

up found during the previous experiment. To better understand the behavior and 

potential of ANN models for storm surge predictions, six suites or groups of related 

experiments were conducted. The following is a short description of each suite. 

Suite #1 - Training data selection 

1. Determination of optimum size of training data set. A single station artificial 

neural network model is run varying the size of the training data set from 1 

to 10 years. This test determines how performance varied using larger 

training data sets and determined if performance gains were worth the 

longer training times. This test is called Experiment 1.1 

2. Selection of training year. A single station artificial neural network model is 

trained on each year individually, and then tested on every other year. This 

experiment is conducted to see if any particular year is better than others 

for use as a training year. Individual results are automatically saved in 

output files then tabulated and compared. This test was called Experiment 

1.2. 

Suite #2 - Optimize number of inputs and secondary station location 

1. Determining the optimum number of inputs for a single station ANN. The 

model was trained varying the number of previous water level residuals or 

surge heights used for input for a single station ANN. Individual results 

were automatically saved in output files then tabulated and compared. This 

test is called Experiment 2.1. 
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2. Determining the optimum number of inputs for a dual station ANN. The 

model was trained varying the number of previous water levels used for the 

primary and secondary stations. Individual results were automatically 

saved in output files then tabulated and compared. This test is called 

Experiment 2.2. 

3. Determining the optimum location for a secondary station was performed by 

varying the location of the secondary station for each forecast interval. This 

test was done to determine the optimum secondary station location for each 

forecast interval. Individual results were automatically saved in output files 

then tabulated and compared. This test is called Experiment 2.3. 

Suite #3 - ANN topology and performance 

1. Varying structure size. This test is called Experiment 3.1. 

2. ANN performance variability. This test is called Experiment 3.2. 

The training is conducted by selecting at least one full year of water levels and by 

assembling input vectors, each consisting of a time series of previous storm surge 

levels from one or more tide stations. Weights and biases are randomly assigned 

at the beginning of each training session and their values were updated during 

each iteration such that the error between ANN output and target (or observed) is 

progressively minimized. Training times vary between a few minutes and several 

hours depending on the size of the ANN. Although training times can be lengthy, it 

should be emphasized that for real-time applications, generating water level 

forecasts is a sub-second process. Once the ANN models are trained, they are 

ideally suited for streamed forecasting (an automatically generated, real-time 

forecast based on streaming data). 

5.4.1 Experiment Suite #1: Training data selection 
The first part of Experiment Suite 1, Experiment 1.1, concentrates on how the 

training year is selected and on the impact of the training set length on ANN 

performance. In Experiment 1.2, input to the ANN models was constructed by 

using data from a single primary station, while varying the number of previous 

water level residuals or surge heights used for each forecast from 1 to 48 hours. 

For Experiment 1.3 additional previous water level residuals or surge heights from 

a secondary station were added. The numbers of previous water level residuals or 

surge heights used at both the primary and secondary station were varied from 1 
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to 48 hours. The focus of Experiment 1.4 was to explore the changes in model 

performance while selecting secondary stations at different locations along the UK 

North Sea coastline. A full year was selected as the minimum data set length for 

the training of the ANNs to include seasonal variations of water levels. The early 

stopping method used to prevent over-training in Experiment Suite 1 is to stop 

training when a preset error level is reached (1 mm). 

Experiment 1.1 Varying training data set lengths 
A schematic of a typical ANN model used for this study is presented in Figure 2-7 

(page 14). The structure used for the first suite of experiments is a two layer ANN, 

using one output neuron, one hidden neuron. The optimum ANN topology 

including number of hidden neurons will be discussed as part of the second suite 

of experiments. The lengths of the training sets were varied from 1 year (1990), 3 

years (1990-1992), 5 years (1990-1994), and 10 years (1990-1999). All ANNs 

were trained using 48 hours of previous water level residuals or surge heights for 

each forecast. Models were then tested on the 2001 data set. A substantial 

disadvantage of using a large training set is that computational time increases 

from 20 minutes (using a one-year data set) to 20 hours (using a 1 O-year data set) 

for the computer used for this study. 

Experiment 1.2 Selection of training year 
Testing was performed to evaluate the importance of the selection of a particular 

training year including the possible impact of year to year variability in the 

frequency and magnitude of storms. Testing was also performed to assess 

potential improvements when including longer training periods. A series of basic 

models making 3-hour predictions were successively trained, using each year of 

water levels at the Sheerness station from 1990 to 1999 with an input consisting of 

48 hours of previous water levels. For each of the training years the model was 

then tested on all other years. 

5.4.2 Experiment Suite #2: Optimize number of inputs and secondary 
location 

Experiment 2.1 Single-Station ANN 
The ANN was first trained using Sheerness as the only (or primary) station. The 

forecast time periods used were: 3, 6, 12 and 24 hours. The number of previous 

water levels included during training varied, using 1, 3, 6, 12, 24, 36, and 48 hours 
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for each forecast period. No secondary station was used in this experiment. The 

models were trained on the 1997 data set, and tested on the 1993 data set. 

Experiment 2.2 Two-Station ANN 
For this experiment, additional data from a second water level measuring station is 

included in the ANN training set. This secondary station, is located north of the 

primary station (a direction towards the approaching coastally trapped 

wave/surge), and provides the ANN with additional information of a surge's 

presence before it can be measured at the primary station. The ANNs were trained 

on the 1997 data set, tested using the 1993 data set. In this experiment the 

number of previous residuals or surge heights used for the primary station 

(Sheerness) is maintained constant at 24-hours, while the number of previous 

water level residuals or surge heights from the secondary station, Immingham is 

incremented from 1 to 24 hours. 

Experiment 2.3 Two-station ANN, varying secondary location 
Before the selections of a secondary station are made, a cross-correlation analysis 

of the surge data from each of the potential secondary station is performed. This 

analysis will determine the approximate time lags needed for the surge component 

to travel to Sheerness from each secondary station location. The cross-correlation 

analysis program was written in MATLAB and the source code is included in 

Appendix 6.3 

The performance of the ANN is analyzed after varying the location of the 

secondary station. Three secondary station locations Immingham, North Shields 

and Wick are selected for each test. The stations are respectively 337 km, 510 km 

and 945 km north of Sheerness. For each test, 24 hours of secondary station data 

was used, and the number of previous water level residuals or surge heights used 

from the primary station varied from 1 to 48 hours. 

5.4.3 Experiment Suite #3: ANN topology and performance 
This suite of experiments we investigates how model performance is affected by 

changes in ANN topology. While the performance is tracked for both yearly 

averages and during storms, the discussions will focus primarily on the storm 

performance because of its importance for safety and commerce. Experiment 3.1 

varies the ANN structure size, by changing the number of hidden neurons used. 

Experiment 3.2 tests the robustness (or repeatability) of the ANN model. For all 

experiments in Suite 3, Sheerness is used as the primary station, and Immingham 
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as the secondary station. The training year used is 1997, testing year 1993, and 

validation year 1999. 24-hours of previous water level residuals or surge heights 

are used for training for each station. During initial runs of Experiment suite #3, 

models that used more than 5 hidden neurons experienced overtraining problems, 

causing large variations in predictions. To avoid over-training, a verification data 

set is used for all Suite 3 experiments as a early stopping method. 

Experiment 3.1: ANN performance varying structure size 

In this experiment, the variability of ANN models with different number of hidden 

neurons was determined. 3-hour ANN forecasts were calculated for each of the 

following size models: 1,2,5,10,20, and 50 hidden neurons. 

Experiment 3.2: ANN performance variability. 
The tests performed for experiment 3.1 were repeated 20 times with random 

starting values for the weights and biases. The variability arises from MATLAB's 

Levenberg-Marquardt algorithm, which assigns random values when initializing 

weights and biases during training. This variability was found to only be significant 

when using larger ANNs (greater than 5 hidden neurons). 

5.5 Model comparison methods 
This test compares yearly performances of the artificial neural network with the 

Continental Shelf Model (CS3) designed by the Proudman Oceanographic 

Laboratories for use by the Storm Tide Forecasting Service for the Met Office. 

The numerical model used by the STFS is called the continental shelf model or 

CS3. The CS3 model was designed by Proud man Oceanographic Laboratories 

(POL) to forecast tidal elevations and currents around the British Isles. The model 

is run four times daily, producing hourly forecasts from T-12 to T +36. The short­

term forecasts for T +00 to T +05 are archived for each run by appending these 

values to a monthly file that is saved at POL. Data was archived for the storm 

season only (September - March) until 1999, after which time it was archived for 

the entire year. For this project only 2 years of complete data were received 

(years 1999 and 2002) for the CS3 model. For an overview of the ANN / CS3 

Comparison module within the overall project organization, see Figure 4-1 (page 

53). 

The artificial neural network model used for this comparison uses 

Sheerness as the primary station and Immingham as the secondary station. 24-

hours of previous water level residuals or surge heights were used for each 
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station. The network was trained using year 1997 data, validated using year 2001 

data and tested on years 1999 and 2002 (Testing and validation years had to be 

changed for this experiment because of the limited archived data was available 

from Proudman oceanographic laboratories). The ANN model was run using 3 

different forecasting intervals, a 1-hour, 3-hour and 5-hour. The ANN hourly 

forecast data was saved to a file for each forecast interval for both test years 

(1999 and 2002). 

5.5.1 Experiment Suite #4: ANN CS3 Comparisons 

Experiment 4.1: Model comparison using yearly performance 

A MATLAB program was written to parse the archived CS3 data sets into 6 

different forecast files from T +00 to T +05. Each file contained forecasts at six­

hour intervals, and is offset one hour from the previous file. The program then 

compares the selected forecast interval values from the CS3 model and ANN 

model to the actual measured data from the tide station. The root mean square 

error (RMSE), central frequency (CF(150 mm)%), and Average Absolute Error 

(ME) are calculated for the CS3 and ANN models for each test year. The source 

code for the yearly forecast comparison program can be seen in Appendix 5. 

5.5.2 Experiment 4.2: Model comparison using storm performance 
The program also selected from each 6-hour data-sets (T +00 to T +05), all data 

points with surge elevations greater than 1.0 m above the predicted harmonic 

water elevation. 36 hours of data or 6, 6-hour data points, before and after the 

peak values are used to define a 72-hour "storm window". The program then 

calculates a RMSE, CF (150 mm)%, and a ME for the ANN and CS3 models, 

restricting the data used to a 72-hour window for each storm found in the yearly 

data set. The source code for the 1-hour forecast comparison program can be 

seen in Appendix 6. 

5.6 Ensemble Forecasting Methods 
Previous experiments hinted that larger structures gave better peak water level 

predictions than small structures. One of the problems found is that the variance 

or instability of the neural network increases substantially as the complexity of the 

ANN structure increases. The error surface of neural network training is full of local 

minima. These error surfaces have two primary causes: 
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• Trainings with different initial weights are usually trapped in different local 

minima. This is a result of the random initialization of the weights and 

biases when the ANN is started. 
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• Noise in the actual data itself. The data is sampled once an hour, and is 

only a single point, but represents an entire hour of changing water levels. 

During this hour the tide may be falling, rising, or reaching a maximum, or 

minimum. To reduce this noise the data sampling interval would have to 

be decreased. 

A solution for this problem is to use ensemble forecasting. Ensemble averaging 

lets the noise portion of the solution cancel itself out, thus allowing a more 

accurate fitting of the data. Ensemble forecasting involves running the ANN model 

several times and averaging the results. Before each iteration, of the ANN, the 

weights and biases are initialized to random numbers. This causes the model to 

compute a slightly different solution each time. The idea behind ensemble 

forecasting is that forecast errors will average out and approach the true value 

after several iterations. 

5.6.1 Experiment Suite #5: Ensemble Forecasting 
This experiment is divided into 3 different parts: 

• Experiment 5.1 Tests the model performance when varying the number of 

repetitions used for each ensemble forecast. 

• Experiment 5.2 Tests the model performance when holding the number of 

runs used and varying the number of hidden neurons used in the hidden 

layer. 

• Experiment 5.3 Tests to see if better peak water and surge levels can be 

forecasted using ensemble models with more complex structure. 

• Experiment 5.4 Tests the amount of variance reduction obtained when 

allowing/not allowing the network to over-train. 

For all the models tested, Sheerness was used as the primary station, and 

Immingham was used as the secondary station. All models are trained on year 

1997 data, verified on year 2001 data, and tested using year 1999 data. 

Experiment 5.1: Ensemble forecasts, varying the number of repetitions 
During this test the number of repetitions an individual ensemble used was varied 

from 1 to 50. For each size of ensemble tested, 20 individual ensembles were run. 

The work load for this test was distributed to 6 individual PC's. 
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• Main program - ANN code that trains and tests a single ANN model. 

• Ensemble Program - A looping program that runs the Main program 

several times and generates a "Averaged" forecast value for every data 

point. The program sums up all individual forecast values for every hour of 

the year and divides by the number of forecasts. This is then saved as the 

ensemble forecast. 

• Multi-Ensemble Program - A looping program that runs multiple copies of 

the Ensemble program. 

Each computer was assigned to test a 1, 5, 10, 20, or 50 repetition ensemble 

model. The models with a larger number of repetitions (20 and 50 repetition 

ensembles) were assigned to the 3.0 GHz PC's and models with few repetitions 

(1,5, and 10 repetition ensembles) were assigned to the 1.0 GHz PC's. Each PC 

ran its own copy of the Multi-Ensemble program to generate 20 individual 

ensemble models. The duration of each test varied from approximately 1 to 10 

days depending on the test size and speed of the processor. PCs that finished 

early were re-assigned to help finish tests still in progress. During this test, the 

statistical results are restricted to a pre-defined 72-hour storm window. 

Experiment 5.2: Ensemble forecasts, varying the structure size 
During this test structure size of individual ensembles used was varied to use from 

1 to 30 neurons. Each ensemble forecast used 20 repetitions for each run. The 

work load for this test was also distributed to 6 individual PC's. 

• Main program - ANN code that trains and tests a single ANN model. 

• Ensemble Program - A looping program that runs the Main program 

several times and generates a "Averaged" forecast value for every data 

point. The program sums up all individual forecast values for every hour of 

the year and divides by the number of forecasts. This is then saved as the 

ensemble forecast. 

• Multi-Ensemble Program - A looping program that runs multiple copies of 

the Ensemble program. 

Each computer was assigned to test a [1,1], [5,1], [10,1], [15,1], or [30,1] ensemble 

model. The larger structure ANN models ([15,1] and [30,1] ensembles) were 

assigned to the 3.0 GHz PC's and the smaller structure models (1, 5, and 10 run 

ensembles) were assigned to the 1.0 GHz PC's. Each PC ran its own copy of the 

Multi-Ensemble program to generate 20 individual ensemble models. The 
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duration of each test varied from approximately 1 to 10 days depending on the test 

size and speed of the processor. PCs that finished early were re-assigned to help 

finish tests still in progress. During this test, the statistical results are restricted to 

a pre-defined 72-hour storm window. 

Experiment 5.3: Ensemble forecasts, effect of structure size on model 
accuracy during periods of maximum water and surge elevation 

This test is used to determine the effect of ANN structure size on the accuracy 

during maximum water level and surge events. This test focuses on the two most 

critical periods during a storm; the maximum water level (which usually occurs 

near the time of high tide) and maximum surge-level (Figure 5-6). Several 

different sized ANN structures were tested to see how the size of the ANN 

structure affects the accuracy of peak water and surge prediction. All ensemble 

forecasts used during this test used 20 repetitions per ensemble. Individual or 

single ANN forecasts were included as reference. 
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Figure 5-6 Maximum surge level, water level and their components. 
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Experiment 5.4: Ensemble forecasts, effect of overtraining on forecast 
variance. 
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Naftaly et al. (1997) demonstrated the effect of variance reduction for ensembles 

of networks. They found that ensemble averaging can be more effective when 

"not" combined with training constraints such as early stopping. During this 

experiment, two ensemble models were set up identical to those used in 

Experiment 5.3, with one exception. The first model used the validation method 

developed for experiment 3 for early stopping to prevent over-training. The 

second model was set-up to stop training only after 3000 epochs were reached. 

The first model was run using a 20 repetition ensemble model. The second model 

was run using 20, 40, and 100 repetition ensemble models. The models that were 

using no early stopping methods took on average -2 hours to complete a single 

network and -40 hours to complete a single 20 repetition ensemble. The 

motivation for the second model is that over-training reduces the bias portion of 

the error, at the cost of increasing the variance. Later when the ensemble 

forecasts are averaged, the variance portion of the error is reduced with no effect 

on the bias itself. 

5.7 Engineering Application 

Experiment #6: Engineering Application 

This experiment applies the lessons learned from the previous experiments to 

demonstrate an engineering example at a new location. Optimal configurations 

and model parameters found during previous experiments are used to forecast 

surge levels for this new location. 

5.7.1 Experiment Suite #6: Appling the model at a new location 
The location selected for this example is Silvertown, a water level measuring 

station located on the River Thames approximately 0.5 km downstream from the 

Thames Barrier. Sea level records from this station were obtained for the years 

2000 - 2004. Historical records of when the barrier was closed for water level 

control purposes are shown in Appendix 6. 

Experiment 6.1 Engineering application 
From the results found during Experiment #1, it was determined that selection of a 

training year is not critical, and that large multiyear training data sets are not 



Chapter 5 - Methods 85 

necessary for accurate forecasts. Because of this, the validation, training, and 

testing data sets for this experiment are somewhat arbitrarily selected. The 

validation data set uses year 2000 data, the training data set uses year 2001 data 

and the testing data set uses year 2002 data. 

The results from Experiment #2 show that using a secondary station 

significantly reduces forecasting error. ANN forecasts using more than 24-hours of 

previous water level did not provide significant improvement in forecasting 

accuracy. Experiment #2 also showed that the optimal selection of a secondary 

station depended on the forecast interval. For these reasons, this experiment will 

use a secondary station with 24-hours of previous water level data from both 

stations for each forecast, and the selection of the secondary station will depend 

on the forecasting interval. 

The results from Experiment #3 show that for single run ANN models, 

simple [1,1] structures have much less variability than more complex structures. 

On average, simple [1,1] ANN structures have lower error levels than complex 

ANN structures, but complex ANN models were more accurate when examining 

results from an individual model run. The results from Experiment #5 show that 

ensemble forecasting can greatly reduce the variance problems found when using 

complex ANN structures, and that by using an ensemble model the variance can 

be significantly less than single run ANN models. Experiment #5 also showed 

that by using ensemble forecasting with complex ANN structures, the model error 

at the time of maximum surge elevation can be reduced. These results guide the 

selection of the optimal structure used for this experiment. This experiment will 

use an ensemble ANN model because of the significant reduction in variance over 

the single ANN model. This ensemble model will use a complex [10,1] ANN 

structure, to take advantage of the complex ANN structure's ability to better predict 

maximum surge elevations. 

The station selected for Experiment #6 is Silvertown. Its location is 56 km 

from the Sheerness tide station used in Experiments 1-5. Cross-correlation 

analysis of the surge components from tidal records for the years 2000 - 2004 

show a lag period of 1-hour for surge events to reach Silvertown after being 

recorded at Sheerness, and a 2-hour lag period for the tide. These lag periods are 

added to those found in the results for experiment 2.3 to help determine optimum 

secondary station location for use at Silvertown for each forecast interval. 
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The final model will be tested using two conditions, when the barrier is open 

and when the barrier is closed. The closure events are tested only to see how 

significant the model results are affected. This experiment will give an indication 

of how well an artificial neural network using only water levels as input performs in 

a complex hydrodynamic environment near the Thames Barrier. 
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6 Results and Analysis 

To better understand the behaviour and potential of ANN models for storm surge 

predictions, six suites of experiments are conducted. The first suite of 

experiments is concerned with the selection of a training data set. Tests are run to 

determine the effect on performance of an ANN when changing the size and 

selection of data sets used for training. The second suite determines the optimal 

design of a neural network for predicting water levels and the performance of the 

resulting model as compared to other standard models. The third suite of 

experiments focuses on how varying the structure of an ANN impact upon the 

robustness and storm performance of the model. The fourth suite of experiments 

compares performances of the ANN with the Continental Shelf Model (CS3) 

designed by the Proud man Oceanographic Laboratories for use by the Storm Tide 

Forecasting Service for the Met Office. The fifth suite of experiments examines 

the performance of artificial Neural Networks utilizing ensemble forecasting. 

Finally an engineering application is presented, demonstrating an ANN application. 

6.1 Experiment Suite #1: Model performance varying training 
data 

6.1.1 Experiment 1.1 Varying training data set lengths 

The lengths of the training data sets are varied from 1 year (1990),3 years (1990-

1992), 5 years (1990-1994), and 10 years (1990-1999) for the Sheerness tide 

station. One year is considered as the shortest data set length to be used for the 

training of the ANNs so that seasonal variations of water levels are included. All 

ANNs are trained using 48 hours of previous water level residuals used for each 

prediction. The models are then tested on the 2001 data set (a year selected 

because it was excluded from the training data sets). The results of this 

experiment are shown in Figure 6-1. Although the average absolute error 

decreased from 0.153 m when 1 year of training is used to 0.146 m when 10 years 

of training is used, an average absolute error of 0.146 m for year 2001 can also be 

obtained by training on the year 1997 data set alone. A substantial disadvantage 

of using a large training set is that computational time increases from 20 minutes 

for a 1-year training data set to 20 hours for a 1 O-year training data set for the 

computer used for this study. Based on these results, training is conducted using 
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a 1 year data set (1997), for the remainder of the study, determining which year to 

use as the training data set is the objective of the next experiment. 
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Figure 6-1 Multiple-year training tests. (12-hour forecast using 48 hours of previous data). 

6.1.2 Experiment 1.2 Varying the training year selected 

A series of basic ANN models using one input neuron and one output neuron are 

successively trained to predict a 3-hour forecast of water levels at Sheerness. 

The models are trained using historical water level data sets for years 1990 to 

1999. For this model, each 3-hour forecast uses 48 hours of previous water level 

residuals for each prediction. This is done sequentially for every hour for the 

entire 1 year data set. 

For each training year selected, the model was tested on all other years. 

The results are displayed in Table 6-1. For each training year, the average 

absolute error for each testing year was computed. Individual yearly results varied 

only 0.01 m, with the smallest average absolute error measured using year 1997 

data (0.15 m) and the largest was measured using year 1991 data (0.16 m). For 

all test cases the 1997 training year lead to the lowest average absolute error 

when applying the model to the test years. 
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Table 6-1 Training Year Test (3-hour forecast using 48 hours of previous data at Sheerness) 

Test Year Training Year 
Absolute Average Error (m) 

1990 1991 1992 1993 1994 1995 1996 1997 1998 
(1 ) (2) (3) (4) (5) (6) (7) (8J (9) (10) 

1990 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 
1991 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.16 
1992 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.16 
1993 0.16 0.16 0.16 0.15 0.16 0.16 0.15 0.16 
1994 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.16 
1995 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.16 
1996 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.15 
1997 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.14 
1998 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 
1999 0.16 0.17 0.16 0.16 0.16 0.16 0.16 0.15 0.15 
2000 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.15 

Average 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 
Rank 8 10 9 6 3 4 2 1 5 

6.2 Experiment Suite #2: Model performance varying input 
parameters 

6.2.1 Experiment 2.1 Single-Station ANN 
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1999 
(11] 
0.17 
0.17 
0.16 
0.17 
0.16 
0.16 
0.15 
0.14 
0.15 

0.15 
0.15 

7 

The ANN is first trained using Sheerness as the primary station; no secondary 

station is used in this experiment. The forecast time periods used for each model 

vary from 3, 6, 12 to 24 hours. The number of previous water level residuals to be 

used as the input set for each model varies from 1, 3, 6, 12, 24, 36, to 48 hours. 

The models are trained on the 1997 data set, and tested on the 1993 data set. 

Figure 6-2 shows changes in ANN yearly performance for a [1,1] ANN trained for 

various forecasting times, and number of previous water levels used for each 

forecast. Each data point represents an individual ANN model's average absolute 

error for an entire year. For clarity points with the same forecast intervals are 

connected. 
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Figure 6-2 Performance of single station ANN model. Each data point shows the average 
absolute error of a single ANN model. 
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Model improvement is the largest for the 3-hour forecasts. When increasing the 

number of previous water level residuals in the input from 1 to 24 hours, the 

average absolute error decreases from 0.18 m to 0.12 m, an improvement of 0.06 

m. The improvements are modest for 6 and 12-hour forecasts with a performance 

improvement of 0.04 m and 0.03 m respectively. For the 24-hour forecasts, only 

0.01 m of improvement is observed. In all cases, very little improvement is found 

when including more than 24 hours of previous water level residuals from the 

primary station. It is important to note that the longer term forecasts are less 

influenced by local history. This is because any significant water level changes 

that occur locally travel away from the site during the forecast interval. Important 

future water level information is not found locally, but in stations of increasing 

distance as the forecast time increases. This concept is covered in the next 

section. 

6.2.2 Experiment 2.2 Two-Station ANN 

For this experiment, additional data from a second water level measuring station is 

included for training and testing the ANN. Immingham is used as the secondary 

water level measuring station. This secondary station, is located north of the 

primary station (a direction of travel of a coastally trapped wave), and provides the 
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ANN with additional information of a storm's presence before it can be detected at 

the primary station. The ANNs were trained on the 1997 data set and tested using 

the 1993 data set. The number of previous water level residuals used for each 

forecast at the primary station at Sheerness is fixed at 24-hours, while the number 

of previous water level residuals used for each forecast from the secondary station 

(Imming ham), and is changed for each model from 1 to 24 hours. The results for 

this experiment are presented in Figure 6-3, where each data point represents an 

individual ANN model's average absolute error for an entire year. For clarity, 

points with the same forecast intervals are connected. For short-term forecasts 

(both the 3 and 6-hour) the average absolute error decreases significantly when 

increasing the number of previous water level residuals of the secondary station. 

When comparing a single-station ANN (from Experiment 2.1) to a two-station 

ANN, the average absolute error decreases from 0.10 m to 0.08 m for a 3-hour 

forecast, and from 0.10 m to 0.09 m for a 6-hour forecast. 

The 12-hour and 24-hour forecasts show little improvement when including 

information from Immingham as a secondary station. This result is not surprising 

given that storm surge propagation time from the Immingham to Sheerness is 

approximately 5 to 7 hours. For both the 12-hour and 24-hour forecasts, the storm 

surge has yet to reach the Immingham station and therefore the data from 

Immingham is of little help for the forecast of a storm surge at the Sheerness 

station. 
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Figure 6-3 Yearly Performance of a two-station ANN model - varying the secondary station input 
data. Each data point shows the average absolute error of a single ANN model. Note the 
significant improvement of the 3 and 6-hour forecasts. 

6.3 Experiment 2.3 Two-station ANN, varying secondary location 
The performance of the ANN is analyzed by varying the location of the secondary 

station. Three secondary stations Immingham, North Shields and Wick are 

selected. The stations are respectively 337 km, 510 km and 945 km north of 

Sheerness. For each test, 24 hours of previous water level residuals from the 

secondary station data was used, and the number previous water level residuals 

used from the primary station varied from 1 to 48 hours. The results are shown in 

Figure 6-4 where each data point represents an individual ANN model's average 

absolute error for an entire year. For clarity, points with the same forecast 

intervals are connected. From Figure 6-4a and 6-4b it can be seen that for a 3-

hour or 6-hour forecast at Sheerness, Immingham which is located 337 km north 

of Sheerness is the best choice for a secondary station as it produced the lowest 

average absolute error. From Figure 6-4c it can be seen that for a 12-hour 

forecast at Sheerness, North Shields, which is located 510 km North of Sheerness 

is the best choice for a secondary station. From Figure 6-4d it can be seen that for 

a 24-hour forecast as Sheerness, Wick, which is located 945 km north of 
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Sheerness, performed the best, although only marginally better than using no 

secondary station. 

93 

It is important to note that during each experiment, the inclusion of a 

secondary station always improves model performance. The amount the 

performance is improved is related to the position of the secondary station relative 

to the storm at the time of the forecast. The station that is located closest to the 

surge peak at the time of the forecast was found to have the best performance. 

For the 3 and 6-hour forecasts, the closest station to the surge peak at the time of 

the forecasts was Immingham, which had the best performance (Figures 6-4a and 

6-4b). For the 12-hour forecast, the station closest to the storm surge peak at the 

time of the forecasts was North Shields, which performed best (Figure 6-4c). 

Finally, for the 24-hour forecasts, the station closest to the peak of the storm surge 

at the time of the forecast was Wick, which had the best performance (Figure 6-

4d). In this case, although Wick had the best performance, it was only marginally 

better the other secondary station locations. A surge located 24 hours away from 

the primary station will have not peaked yet at any of the secondary station 

locations at the time of the forecast, but Wick performed best because it had the 

best information on the changing surge of the approaching storms. 
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Figure 6-4 Performance of a two-station ANN model - varying the secondary location. Square­
No secondary station, Diamond - Immingham, Circle - North Shields, Triangle - Wick. Each data 
point shows the average absolute error of a single ANN model. 

The effectiveness of a secondary station location is determined by its proximity to 

the primary station. The selection of the secondary station should be based on the 

forecast interval and its distance from the primary station. This effective range 

varies with the forecast interval. For example, in Figure 6-4c when using 

Immingham for a 12-hour forecast, the average absolute error is 0.15 m; this error 

drops to 0.13 m when switching the secondary station to North Shields. 
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Cross-correlation comparison 

To help explain the results found using the ANN model a cross-correlation analysis 

test was run to determine typical lag periods between stations for surge and tide 

events. The tidal and surge lag periods were determined for each station from the 

tide records archived by the National tidal and sea level facility. Both the tide and 

the surge behave as long waves and their propagation times can be found by a 

simple cross correlation analysis tests. The tests were run for the years 1990 -

2002, and the results are shown in Table 6-2. The tidal lag and surge lag periods 

indicate the best correlated time-lag found during the test interval. This amount of 

time was different for each indicating that the surge component travels at a faster 

speed than the tidal component of the change in water level. Also as expected the 

lag period increases as the distance to Sheerness increases. 

Table 6-2 Cross-correlation analysis test for Sheerness station (Average for Years 1990 - 2002). 

(1 ) 
Immingham 
North Shields 
Wick 

Tidal Lag Period(hrs) 
(2) 
8 
10 
15 

Surge Lag Period(hrs) 
-(3) 

6 
9 
14 

Figure 6-5 shows how the correlation coefficient (vertical axis) varies for each 

station while changing the time offset from Sheerness (horizontal axis). These 

offset values indicate why a specific secondary station location worked best for a 

particular forecast interval. It should be noted that the station closest to 

Sheerness has the best correlation coefficient with a value of 0.79 compared to 

Wick with a value of only 0.02. This suggests that the closer a secondary station 

is to the primary station, that the ANN will derive a stronger relationship and use 

this to better predict water levels. It is also important to note that cross­

correlations can be misleading in part because linear relationships are implied 

when using them and this project has chosen to use ANNs because the 

relationships involved are non-linear. 
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Figure 6-5 Cross-correlation analysis test for Sheerness and the selected tide stations comparing 
surge elevations (1992 data). 

In conclusion, for a secondary station to be effective in predicting a storm surge 

event, it must provide some information about the storm surge's existence at the 

time of the forecast. With this additional information represented by an increase 

in surge height at the secondary station, the secondary data set can then be used 

by the ANN to more accurately predict the surge height and arrival time at the 

primary station. The optimal secondary station location is one where the distance 

between primary and secondary stations is similar to the distance a typical storm 

surge would take to travel between the stations. 

6.4 Experiment Suite #3: ANN topology and performance 

This suite of experiments investigates how model performance is affected by 

changes in ANN topology. While the performance is tracked for both yearly 

averages and during storms, the discussions will focus primarily on the storm 

performance because of its importance for safety and commerce. Experiment 3.1 

varies the ANN structure size, by changing the number of hidden neurons used. 

Experiment 3.2 tests the robustness of the ANN model. During initial runs of 

Experiment 3, models that used more than 5 hidden neurons experienced 
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overtraining problems, causing very large variations in predictions. Because of 

this, an additional data set called the validation data set is used as an early 

stopping method to prevent overtraining. The validation data set is composed of 

data from a different year than those used in the training and testing data sets. 

During the training of the ANN, the current weights and biases are updated based 

on the training set error but the decision to stop or continue training is based on 

the validation set. After each iteration, the model calculates the current error level 

using the validation data set, if the error level decreases, training continues, 

otherwise the training is stopped. This early stopping method is used for all 

experiments that are part of Suite #3 experiments. For the Suite 3 experiments, 

Sheerness is used as the primary station, and Immingham as the secondary 

station. The training year used is 1997 because it had the lowest average 

absolute error in experiment #1.2. The testing year chosen was 1993 because it 

contained several large storm events. The year 1999 was selected for use as a 

validation arbitrarily. 24-hours of previous water level residuals are used for 

training for each station. 

6.4.1 Experiment 3.1: ANN performance varying structure size 

In this experiment, the performance of ANN models with different numbers of 

hidden neurons is investigated. 3-hour ANN forecasts were calculated for each of 

the following size models: 1,2,5,10,20, and 50 hidden neurons. Figure 6-6 shows 

the results for different size ANN models for the February 19, 1993 storm. The 

increase in the number of hidden neurons leads to a better maximum storm surge 

prediction than a [1,1] ANN structure (1 hidden neuron, 1 output neuron). 

However the use of 10 or more hidden neurons also leads to increased noise and 

variability in the predictions, primarily during storm events. 
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Figure 6-6 Performance of ANN for an example storm - varying the number of hidden neurons. 
Dashed line - ANN Model, Solid line - Measured Surge elevation. (72-hour window centred on the 
February 19, 1993 storm event) 

6.4.2 Experiment 3.2: ANN performance variability. 

The tests performed for experiment 3.1 were repeated 20 times with random 

starting values for the weights and biases. Figure 6-7 shows the results of four 

ANN test runs using the same initial starting parameters, and illustrates visually, 

the variability of individual ANN forecasts. The variability arises from the 

Levenberg Marquardt algorithm, which assigns random values when initializing 

weights and biases during training (such is the case for most ANN training 
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algorithms). This variability was found to only be significant when using larger 

ANNs (greater than 5 hidden neurons). 
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Fgure 6-7 Performance of ANN during multiple runs using the same ANN structure (20 hidden 
Neurons). Dashed line - ANN Model, Solid line - Measured Surge Elevation. (72-hour window 
centered on February 19, 1993 storm event). Differ.ences observed between each run are due to 
random initialization of weights and biases during the training period. 

The results of these experiments show that larger ANN topologies can have a 

considerable impact on the variability of an ANN when measured during a storm. 

Quantitatively very little change is observed for the yearly averages, but significant 

differences are observed for the short-term evaluation of storm events. The 

varying model performance with an increasing number of hidden neurons is further 

illustrated in Figure 6-8. While small ANNs have the best average performance, 

the overall best performance is always reached by an individual instance of a large 

ANN. However the repeatability and variability of large ANN predictions during 

storms is a concern. The error bars in the Figure 6-8 illustrate the range of 

average absolute error and central frequency (15cm) % obtained for the 20 runs 

for each case, using 1, 2, 5, 10, 20, and 50 hidden neurons. The average 
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performance decreases (increase in the average absolute error and decrease in 

the average central frequency (15cm) %) when increasing the number of hidden 

neurons. The variance of the predictions also increases significantly with the 

number of hidden neurons. Based on this experiment, selecting smaller ANNs 

and in particular [1,1] ANNs leads to better average performance during the 

selected storm. However the best performance based on both average absolute 

error and central frequency (15cm) % was obtained for one of the [10,1] models 

and at least one of the implementations of each of the larger models had a 

performance better or equivalent to the small [1,1] model. 
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Figure 6-8 ANN performance and variation during the storm event of Feb 19, 1993. Squares mark 
the average value for each size ANN. Bars show the range of variation of the forecasts. 

6.5 Experiment Suite #4: Artificial Neural Network model I eS3 
model comparison 

Experiment suite #4 compares the performance of the Artificial Neural Network 

(ANN) model to the CS3 model on a yearly basis and using a 72-hour storm 
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window. The artificial neural network model used for this comparison uses 

Sheerness as the primary station and Immingham as the secondary station. 24-

hours of previous water level residuals were used for each station. The network 

was trained using year 1997 data, validated using year 2001 data and tested on 

years 1999 and 2002. The data set years used for this experiment were changed 

for two reasons. First, the CS3 archived model (full year sets) were limited to 

years 1999 and 2002; this restricted testing to these two years. Second, since 

testing was on year 1999, it could not be used as a validation year (2001 was 

used). 

The CS3 model predicts new water levels every 6 hours for time periods 

designated T +00 to T +36 (Figure 6-9a). The data is archived only for times T +00 

to T +05 for each forecast (Figure 6-9b). This archived format only allows 

comparison of the 1, 3, and 5-hour forecasts at 6-hour intervals as shown in Figure 

6-9c, Figure 6-9d and Figure 6-ge. When the CS3 model is used for surge 

forecasts at a location with a tide gauge, the model bias can be removed by 

calculating the model error at time T +00 and subtracting it from future forecasts. 

Three statistical methods were used for comparing the accuracy of the forecasts in 

this experiment, root mean square error (RMSE), average absolute error (AAE), 

and central frequency (CF). 

6.5.1 Experiment 4.1: Model comparison using yearly performance 

For the years 1999 and 2002 the yearly performances of both models were 

compared using the root mean square error, central frequency, and average 

absolute error. The results are shown in Table 6-3. The ANN model out-performs 

the CS3 model in all forecast intervals for both testing years. The one hour 

forecast for the ANN model was 0.05 m compared to 0.12 m for the CS3 model 

with the bias removed. For 5-hour forecasts, the ANN model performs only slightly 

better, with a RMSE of 0.15 m compared to 0.18 m for the CS3. It is interesting to 

note that the CS3 model performed less well with its bias removed for the 3 and 5 

hour forecasts than without removing it. Removal of the bias in the CS3 model 

only helps in short -term forecasts. When comparing the Central Frequency 

(15cm), The ANN model out-performs the CS3 model in short 1-hour forecasts 

with a CF (15cm) of 98.2% for the ANN model compared to only 64.2% for the 

CS3 model with bias removed. For 5-hour forecast intervals, the ANN model 

performed with a CF of 83.6% compared to 64.3% for the CS3 model alone. 



Chapter 6 - Results and Analysis 102 

When comparing the average absolute error (ME). the ANN model out-performs 

the CS3 model in short 1-hour forecasts with an ME of 0.03 m for the ANN model 

compared to 0.10 m for the CS3 model with bias removed. For 5-hour forecast 

intervals the ANN model performed at 0.10 m compared to 0.14 m for the CS3 

model alone. Similar results were found when comparing results from the year 

2002 data set. 
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Figure 6-9 CS3 model archived data format. a) Shows original data and how each additional forecast overwrites the T +06 - T +36 forecast intervals 
from the previous forecast. b) Shows the final archived data format. c) Shows location of 1-hour forecast samples. d) Shows location of 3-hour 
forecast samples. e) Shows location of 5-hour forecast samples. 
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Table 6-3 Yearly comparison, Artificial Neural Network (ANN) vs. Storm Tide Forecasting Service 
(STFS). Models with the best performances are shaded in grey. 

Year Forecast Root Mean Square Central Frequency Average Absolute 
Interval Error(m) (±15cm)% Error (m) 

ANN CS3 CS3 ANN CS3 CS3 ANN CS3 CS3 
(Bias (Bias (Bias 
Rem- Rem- Rem-
oved) oved) oved) 

(1 ) (2) (3) (4) (5) (5) (6) (5) (7) (8) (5) 
1999 1 0.05 0.18 0.12 98.22 59.45 64.23 0.03 0.15 0.10 

3 0.15 0.18 0.22 84.59 61 .10 59.36 0.09 0.14 0.17 
5 0.15 0.18 0.22 83.63 64.32 61.48 0.10 0.14 0.18 

2002 1 0.09 0.24 0.1 2 97.88 52.81 65.25 0.04 0.18 0.09 
3 0.13 0.24 0.23 82.19 54.32 55.36 0.09 0.18 0.17 
5 0.15 0.23 0.24 82.60 53.49 51.88 0.10 0.18 0.19 

6.5.2 Experiment 4.2: Model comparison using storm performance 

Another, more important comparison of the respective model performances can be 

made when analyzing individual storm events. Because most of the time water 

levels are near normal elevations, most surge models can be expected to perform 

well when a high percentage of the time no storms are present. Yearly statistics 

do not show how well a model performs at the time we are most interested, i.e. 

during a storm event. Because of this, the performance of the models is analyzed 

during storm events. For the purpose of this research, a storm event is identified 

when surge elevations exceed 1.0 m. These storm events were evaluated using 

the archived CS3 model results and a simple [1,1] ANN model using 24-hours of 

previous water level residuals from the primary and secondary stations. The 

results are shown in Table 6-4 for a 1-hour forecast comparison, Table 6-5 for a 3-

hour forecast comparison, and in Table 6-6 for a 5-hour forecast comparison. 

Note that 1-hour forecasts are of little value for public safety and shipping 

concerns, and are presented here for purposes of model comparison only. 

1-hour forecast comparison 

Performances of the two models were compared using the root mean square error 

(RMSE) and the average absolute error (ME) of each model during a 72-hour 

storm window. For the year 1999, seven storms with surges greater than 1.0 m 

were found in the CS3 model's 1-hour forecast data-set (Figure 6-9c), and three 

storms were found for the year 2002. The results are shown in Table 6-4. The 

model's performance for individual storms and their averages are shown for each 

year. The models with the lowest error levels are shaded in grey. For the 7 storm 

events in 1999, the ANN model had the better performance with a RMSE of 0.08 

m compared to 0.13 m for the CS3 model with bias removed. When using ME as 
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a reference the ANN model also had the better performance with a value of 0.07 m 

compared to 0.11 m for the CS3 model with bias removed. For the 3 largest storm 

events in 2002, the CS3 model with bias removed had the better average 

performance with a RMSE of 0.18 m compared to 0.21 m for the ANN model. 

When using AAE as a reference the ANN model had the better performance with a 

value of 0.12 m compared to 0.14 m for the CS3 model with bias removed. 

Table 6-4 Comparison of 1-hour forecasts using ANN and CS3 models. Results are from values 
sampled during a 72-Hour Storm window. Models with the best average performance are shaded 
grey. P kif dr· d· t d . I 9 d 10 ea surge e eva Ion an Imes are In Ica e In co umns an 

Year Storm ANN CS3 CS3 ANN CS3 CS3 Elev Time 
# RMSE RMSE RMSE ME ME ME (m) (Hrs) 

(m) (m) (Bias (m) (m) (Bias 
Remo Remo-
ved) ved) 

_(1 ) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
1999 1 0.18 0.18 0.10 0.11 0.15 0.07 1.57 853 

2 0.07 0.24 0.16 0.05 0.21 0.13 1.20 913 
3 0.08 0.18 0.10 0.07 0.12 0.08 1.06 1135 
4 0.05 0.20 0.16 0.04 0.15 0.14 1.14 1273 
5 0.08 0.29 0.14 0.06 0.24 0.11 1.67 7435 
6 0.08 0.35 0.13 0.06 0.28 0.10 1.01 7933 
7 0.12 0.22 0.13 0.09 0.14 0.10 1.38 8419 

Average 0.08 0.24 0.13 0.07 0.18 0.11 
2002 1 0.10 0.30 0.22 0.08 0.24 0.18 1.61 1225 

2 0.09 0.36 0.17 0.07 0.28 0.12 1.18 1267 
3 0.43 0.30 0.15 0.20 0.24 0.12 1.85 7201 

Average 0.21 0.32 0.18 0.12 0.25 0.14 

3-hour forecast comparison 

For the year 1999, six storms with surges greater than 1.0m were found in the 

CS3 model's 3-hour forecast data-set (Figure 6-9d), and three storms were found 

for the year 2002. The results are shown in Table 6-5. The model's performance 

for individual storms and their averages are shown for each year. The models with 

the lowest error levels are shaded in grey. For the six storm events for 1999, the 

CS3 model with bias removed had the best performance with a RMSE of 0.21 m 

compared to 0.23 m for the ANN model. When using average absolute error 

(AAE) as a statistic, the ANN and the CS3 model with bias performed equally, with 

both models performing with a value of 0.17 m. For the 3 largest storm events for 

2002, the CS3 model with bias had the better performance with a RMSE of 0.32 m 

compared to 0.35 m for the ANN model. When using AAE as a reference the CS3 

model with bias had the better performance with a value of 0.26 m compared to 

0.30 m for the ANN model. 
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Table 6-5 Comparison of 3-hour forecasts using ANN and CS3 models. Results are from values 

sampled during a 72-Hour Storm window. Models with the best performance are shaded grey. 

Peak surge elevation and times are indicated in columns 9 and 10. 

Year Storm # ANN CS3 CS3 ANN CS3 CS3 Elev Time 
RMSE RMSE RMSE ME ME ME (m) (Hrs) 

(m) (m) (Bias (m) (m) (Bias 
Rem- Rem-
oved) oved) 

(1 ) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
1999 1 0.32 0.17 0.21 0.24 0.15 0.18 1.14 849 

2 0.16 0. 19 0.18 0.10 0.15 0.15 1.12 1113 
3 0.22 0.20 0. 17 0.15 0.16 0.15 1.60 1137 
4 0.21 0.23 0.32 0.18 0.18 0.26 1.23 7437 
5 0.16 0.23 0.26 0.13 0.18 0.21 1.32 8019 
6 0.31 0.27 0.33 0.22 0.22 0.28 1.16 8085 

Average 0.23 0.22 0.21 0.1 -n 0.17 0.18 
2002 1 0.35 0.32 0.38 0.32 0.27 0.30 1.36 1227 

2 0.38 0.33 0.43 0.35 0.26 0.39 1.02 1263 
3 0.32 0.31 0.35 0.23 0.24 0.31 1.46 7197 

Average 0.35 0.32 0.39 0.30 0.26 0.33 

5-hour forecast comparison 

For the Year 1999, seven storms with surge values greater than 1.0m were found 

in the CS3's 5-hour forecast data-set (Figure 6-ge), and three storms were found 

for the year 2002. The results are shown in Table 6-6. The model's performance 

for individual storms and their averages are shown for each year. The models with 

the lowest error levels are shaded in grey. For the six largest storm events for 

1999, the CS3 model with bias had the best performance with a RMSE of 0.19 m 

compared to 0.31 m for the ANN model. When using ME as a reference the CS3 

model with bias had the best performance with a value of 0.15 m compared to 

0.22 m for the ANN model. For the 3 largest storm events for 2002, the CS3 

model with bias had the best performance with a RMSE of 0.23 m compared to 

0.48 m for the ANN model. When using ME as a reference the CS3 model with 

bias had the best performance with a value of 0.20 m compared to 0.28 m for the 

ANN model. 
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Table 6-6 Comparison of 5-hour forecasts using ANN and CS3 models. Results are from values 
are sampled during a 72- Hour Storm window. Models with the best performance are shaded grey. 
Peak surge elevation and times are indicated in columns 9 and 10. 

Year Storm # ANN CS3 CS3 ANN CS3 CS3 Elev Time 
RMSE RMSE RMSE AAE AAE RMSE (m) (Hrs) 

(m) (m) (Bias (m) (m) (Bias 
Rem- Rem-
oved) oved) 
(m) (m) 

(1 ) (2) (3) (4) (5) (5) 6) (5) (7) (8) 
1999 1 0.56 0.15 0.22 0.29 0.11 0.16 1.09 371 

2 0.36 0.13 0.17 0.27 0.10 0.14 1.80 839 
3 0.36 0.15 0.19 0.28 0.12 0.16 1.82 851 
4 0.21 0.12 0.20 0.18 0.09 0.15 1.01 1139 
5 0.18 0.26 0.26 0.13 0.20 0.21 1.24 7433 
6 0.29 0.32 0.27 0.24 0.25 0.21 1.09 7931 
7 0.21 0.20 0.27 0.17 0.17 0.22 1.06 8423 

Average 0.31 0.19 0.23 0.22 0.19 0.18 
2002 1 0.42 0.19 0.28 0.29 0.18 0.23 1.08 1223 

2 0.37 0.30 0.45 0.24 0.25 0.39 1.50 1265 
3 0.65 0.19 0.34 0.31 0.17 0.30 1.74 7199 

Average 0.48 0.23 0.35 0.28 0.20 0.31 

In conclusion, for the forecast intervals studied, the ANN performed better than the 

CS3 model with or without a bias correction when comparing yearly statistics. 

When measuring storm performances, the statistical analysis show that the ANN 

model performs better in the short 1-hour forecasts, results were mixed with similar 

model performances in the 3-hour forecasts but the CS3 model without bias 

removed performs better in the longer 5-hour forecasts . In general the CS3 

model performance was consistent, with the size of the forecast errors 

independent of the forecast interval , while the ANN performance always 

decreased when the forecast interval was increased. Forecast performances for 

the CS3 model were significantly improved by removal of the bias for short 1-hour 

forecasts, but were actually reduced for most of the 3-hour forecasts, and all of the 

5-hour forecasts. 

6.6 Experiment Suite #5: Ensemble Forecasting 

Experiment suite #5 is designed to explore how using ensemble forecasting can 

increase forecasting accuracy. This is done by running the following four 

experiments: 

• Experiment 5.1 will determine how the accuracy and variability of a model 

changes as the number of repetitions are increased in an ensemble. 

• Experiment 5.2 will determine how the accuracy and variability of a model 

changes as the size of an ANN structure is increased. 
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• Experiment 5.3 will determine the effect of structure size on peak water and 

surge elevations 

• Experiment 5.4 will determine the effect of over-training on forecast 

variance. 

All Ensemble forecasts are reported to the 0.001 m accuracy in this case to better 

illustrate the case to case variability. Each forecast can include up to 50 individual 

repetitions of a single ANN model. 

6.6.1 Experiment 5.1: Ensemble forecasts, changing the number of 
repetitions used per ensemble 

Experiment 5.1 is performed to see how changing the number of repetitions used 

for an individual ensemble forecast effects the variance. All models in this 

experiment used the same [5,1] structure. The storm event selected for this 

experiment was November 5, 1999. This storm was selected because it was a 

typical moderate size storm with a maximum water level residual (or surge height) 

of 1.24 meters. Sheerness was used as the primary station, and Immingham was 

used as the secondary station, 24 hours of previous data was used from each 

station. The data sets that are used for this experiment are: test year 1999, 

training year is 1997, and validation year is 2001. 

For reference, 20 individual ANN models were run and their average 

absolute error and variance is calculated, and the results are shown in Table 6-7, 

column #2. These 20 individual or single run ANN models are used as a reference 

to measure the performance of the ensemble models. The ensemble models were 

run using 5, 10, 20, and 50-repetitions of the original ANN model. Each of the 

ensemble models was run 20 times. This resulted in a total of 1720 runs of the 

original ANN model. The average absolute error (AAE) of each run is shown in 

Table 6-7, columns 3 - 6. The average of the AAE for all 20 runs is shown for 

each model in Table 6-7. Values are for a 4-hour forecast, and sampled during a 

72-hour storm window. The results show that the average AAE for 20 single runs 

used for reference is 0.207 m. The average AAE for the 5-repetition ensemble 

models is 0.207 m, and decreases to 0.202 m for a 50-repetition ensemble 

forecast. The results also show that the variance of the ensemble models 

decreases as the number of repetitions used for each ensemble is increased. 

The variance of each model is calculated and also expressed as a percent 

of the reference model. The reference model (essentially an ensemble model with 

only one repetition) had a variance of 5. 7x1 0-5 m2
. The 5 repetition ensemble 
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model has a variance of 2.7x10-6 m2 or 47.8% of the variance of the reference 

model. The 50 repetition ensemble model has a variance of 3.0x1 0-6 m2 or 5.1 % 

of the variance of the reference model. This shows a significant decrease in the 

variance of the ensemble model when compared to the simple or single ANN 

model. The reference models average absolute error ranges from 0.195 m to 

0.222 m, compared to the 50-repetition ensemble models average absolute error 

ranges from 0.198 m to 0.205 m. 

Table 6-7 Average absolute error (m) for 4-hour Ensemble forecasts changing the number of 
repetitions used per model. 72-hour storm window, November 5, 1999, Primary station: 
Sheerness, Secondary station: Immingham, Test Year 1999, Training Year 1997, Validation Year 
20 01 . Note: All forecasts used a [5,1] structure. 

Ensemble Run Number of Repetitions Per Ensemble 
Number .... Few (Repetitions) Many~ 

1 5 10 20 50 
(1 ) (2) (3) (4) (5) (6) 

1 0.211 0.205 0.209 0.207 0.205 
2 0.209 0.213 0.206 0.205 0.202 
3 0.212 0.201 0.207 0.206 0.202 
4 0.197 0.212 0.204 0.199 0.203 
5 0.213 0.207 0.209 0.202 0.203 
6 0.205 0.208 0.206 0.203 0.203 
7 0.210 0.206 0.207 0.201 0.201 
8 0.195 0.203 0.204 0.205 0.198 
9 0.211 0.204 0.203 0.207 0.204 
10 0.209 0.204 0.212 0.205 0.203 
11 0.212 0.218 0.199 0.206 0.203 
12 0.197 0.211 0.200 0.199 0.201 
13 0.213 0.199 0.206 0.202 0.205 
14 0.205 0.202 0.199 0.203 0.202 
15 0.210 0.208 0.202 0.201 0.202 
16 0.195 0.209 0.205 0.205 0.202 
17 0.203 0.206 0.205 0.202 0.203 
18 0.222 0.208 0.198 0.204 0.201 
19 0.195 0.217 0.206 0.202 0.202 
20 0.212 0.200 0.206 0.206 0.199 

Average 0.207 0.207 0.205 0.204 0.202 
Variance (m") 0.000057 0.000027 0.000013 0.000006 0.000003 
% of 
Reference 
(Single 100.00 47.82 23.27 10.60 5.09 
repetition 
model) 

Real time use of ensemble forecasting requires saving of the weights and biases 

during each training iteration. These can be saved as an ASCII text file or in Excel 

format. These values can be re-applied later using any programming language 

and real-time sea-level data to predict surge elevations in a sub-second process. 
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6.6.2 Experiment 5.2: Ensemble forecasts, varying the ANN structure 
size 

Experiment 5.2 was performed to see how the structure size is related to the 

variance of a forecast. This experiment used the same storm as experiment 5.1. 

Sheerness was used as the primary station, and Immingham was used as the 

secondary station. 24 hours of previous data was used from each station. The 

test year was 1999, the training year was 1997, and the validation year was 2001. 

The average of the AAE for all 20 runs is shown for each model in Table 6-

8. The reference forecast (column #2) is the intermediate results from a single 20 

repetition [1,1] ensemble forecast. Values are for a 4-hour forecast, and sampled 

during a 72-Hour Storm window. The average AAE for 20 single [1,1] ANN 

models is 0.206 m. The average AAE for the [1,1] ensemble models is 0.204 m. 

The error decreases as the models become more complex, with a minimum 

average AAE of 0.201 m when using the [10,1] ensemble model. As the models 

become more complex, the average AAE increases, with the most complex model 

having an average AAE of 0.204 m. 

The variance of the ensemble models increases as the ANN structure 

becomes more complex. The 20 single ANN models used for reference had a 

variance of 2.83x1 0-4 m2
. The [1,1] ensemble model had the lowest variance of 

4.00x10-6 m2 or 1.29% of the variance of the reference model. The variance 

increased as the models grew more complex with the [30,1] ensemble model 

having a variance of 3.40x1 0-5 m2 or 11.8% of the reference model. 

The results show that the use of the ensemble approach decreases 

considerably model variance for all ANN structures. The smallest variance is 

obtained for the smallest ANN structures [1,1] at 1.4% of the reference variance 

and increases with ANN structure size up to 11.8% for the [30,1] structure. The 

best performance as measured by the absolute average error is reached for the 

[10,1] structure at 0.201 m with the error increasing to 0.204 m for the largest and 

the smallest ANN structures. The best modelling strategy will be to select a rather 

small ANN [1,1] to [10,1], with the final selection using the more robust model with 

the lowest variance. 
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Table 6-8 Average absolute error (m) for 4-hour Ensemble forecasts changing the number of 
neurons used in the hidden layer. 72-hour storm window, November 5, 1999, Primary station: 

111 

Sheerness, Secondary station: Immingham, Test Year 1999, Training Year 1997, Validation Year 
2001 N t All bl f t d 20 tT h o e: ensem e orecas s use repe I Ions eac . 
Ensemble Reference Structure Size 

Run Forecast ... Simple Complex~ 

Number (Single run) Ensemble Ensemble Ensemble Ensemble Ensemble 
[1 ,1] [1 ,1] [5,1] [10,1] [15,1] [30,1] 

(1 ) (2) (3) (4) (5) (6) (7) 
1 0.245 0.206 0.207 0.204 0.203 0.205 
2 0.198 0.202 0.205 0.206 0.199 0.199 
3 0.228 0.202 0.206 0.204 0.202 0.199 
4 0.207 0.204 0.199 0.198 0.205 0.200 
5 0.204 0.201 0.202 0.199 0.190 0.196 
6 0.192 0.205 0.203 0.201 0.199 0.197 
7 0.194 0.203 0.201 0.197 0.205 0.210 
8 0.198 0.205 0.205 0.202 0.198 0.207 
9 0.198 0.203 0.207 0.200 0.201 0.203 
10 0.245 0.206 0.205 0.199 0.203 0.208 
11 0.198 0.202 0.206 0.203 0.201 0.215 
12 0.228 0.203 0.199 0.203 0.204 0.210 
13 0.207 0.204 0.202 0.205 0.200 0.198 
14 0.205 0.201 0.203 0.196 0.210 0.212 
15 0.192 0.206 0.201 0.198 0.202 0.198 
16 0.195 0.203 0.205 0.205 0.201 0.205 
17 0.199 0.206 0.202 0.201 0.202 0.206 
18 0.198 0.203 0.204 0.198 0.204 0.204 
19 0.193 0.203 0.202 0.200 0.202 0.214 
20 0.193 0.208 0.206 0.207 0.201 0.203 

Average 0.206 0.204 0.203 0.201 0.202 0.204 
Variance 

0.000283 0.000004 0.000006 0.000010 0.000014 0.000034 
(m2

) 

%of 
Reference 100.00 1.29 2.14 3.65 5.11 11 .84 
Forecast 

6.6.3 Experiment 5.3: Effect of Ensemble ANN structure on accuracy 
of maximum surge and water levels predictions 

Experiment 5.3 evaluates the error of the model at the instant of maximum surge 

height and maximum total water level during a storm. For people living along the 

coast, the peak or maximum water level reached during a storm is a very 

important concern. Also of interest to ocean scientists and engineers is the 

maximum storm surge elevation, which is very critical if it occurs near or during a 

high tide. These events are identified and compared separately in this experiment. 

Experiment 5.3.1 is evaluates the model performance during the instant of 

maximum surge height during a storm. This experiment uses ensemble forecasts 

of the ANN models and varies the number of hidden neurons from 1 to 30. This 

experiment uses the same storm examined in experiments 5.1 and 5.2 and was 

selected because it was a typical November storm with a maximum surge height 
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of 1.24 m. Sheerness was used as the primary station, and Immingham was used 

as the secondary station. 24 hours of previous data was used from each station. 

The test year was 1999, the training year was 1997, and the validation year was 

2001. 

For this experiment, 20 [1,1] ANN models are run and the error of the 

model at the time of maximum surge is calculated. The results are shown in Table 

6-9. The Reference Forecast (column #2) is the intermediate results from a single 

20 repetition [1,1] ensemble forecast. These 20 individual or single run ANN 

models are used as a reference to measure the performance of the ensemble 

models. Next, five different size ensemble models are tested using [1,1], [5,1], 

[10,1], [15,1] and [30,1] sized ANN structures. For the five different ensemble 

models each used 20 repetitions for each run, and each ensemble model was run 

20 times. Each ensemble model calculated a surge elevation at the time of 

maximum surge. The results for these models are shown in columns 3-7 in Table 

6-9. The average value for each model type is shown at the bottom of Table 6-9. 

The average error decreases with the size of the models as the models become 

more complex, with a minimum error of 0.677 m when using the [30,1] ensemble 

model. 

In general, the variance of the forecasted maximum surge elevation 

increases with the number of hidden neurons as the ANN structure becomes more 

complex. The 20 single ANN models used for reference had an average variance 

of 1.48x1 0-1 m2
. The [1,1] ensemble model had the lowest average variance of 

2.51 x1 0-4 m2 or 1.69% of the variance of the reference model. Although variance 

grew as the model complexity was increased, there is an anomaly with the [30,1] 

structure, where the variance decreased. 
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Table 6-9 4-hour forecast Ensemble model error (m) during time of maximum surge, 13:00 UTC 
November 5, 1999. Primary station: Sheerness, Secondary station: Immingham, Test Year 1999, 
Tra·· Y 1997 V rd f Y 2001 N t All bl f t 20 ff h mmg ear , al a Ion ear o e: ensem e orecas s use repe I Ions eac . 

Ensemble Reference Structure Size 
Run Number Forecast 

Single run ..... Simple Complex~ 

[1,1 ] [1 ,1 ] [5,1] [10,1] [15,1 ] [30,1] 
(1 ) (2) (3) (4) (5) (6) (7) 
1 1.044 0.829 0.778 0.721 0.752 0.694 
2 0.753 0.799 0.760 0.752 0.713 0.625 
3 1.007 0.806 0.744 0.748 0.719 0.646 
4 0.896 0.812 0.722 0.750 0.697 0.597 
5 0.787 0.791 0.746 0.699 0.534 0.556 
6 0.712 0.835 0.752 0.711 0.707 0.658 
7 0.723 0.806 0.773 0.685 0.733 0.739 
8 0.766 0.804 0.769 0.722 0.690 0.694 
9 0.787 0.788 0.778 0.687 0.700 0.675 
10 1.045 0.829 0.760 0.721 0.667 0.778 
11 0.753 0.799 0.744 0.716 0.690 0.700 
12 1.007 0.806 0.722 0.765 0.719 0.747 
13 0.895 0.812 0.746 0.746 0.693 0.655 
14 0.787 0.790 0.752 0.673 0.747 0.711 
15 0.712 0.835 0.773 0.808 0.665 0.677 
16 0.723 0.806 0.770 0.750 0.704 0.675 
17 0.766 0.803 0.703 0.751 0.689 0.680 
18 0.73 0.806 0.706 0.697 0.858 0.680 
19 0.678 0.842 0.753 0.701 0.740 0.655 
20 0.71 0.799 0.744 0.699 0.534 0.700 

IAveragel (m) 0.814 0.810 0.750 0.725 0.698 0.677 
Variance(m2

) 0.014843 0.000251 0.000498 0.001100 0.004800 0.002516 
%of 

Reference 100.00 1.69 3.35 7.41 32.34 16.95 

It is apparent from these results that ANNs have difficulties predicting 

maximum surge elevations during large storm events. This poor performance 

during maximum surge is thought to occur because of the acceleration of the tide 

due to increased water depth due to the storm surge. Since the tide behaves as a 

coastally trapped long wave, its speed of propagation is determined by the water 

depth. The increase in water depth caused by the surge accelerates the tide 

signal, causing it to arrive sooner than anticipated which is interpreted as surge. 

Prediction of maximum surge is not as important as maximum total water elevation 

which is required by engineers and flood managers and is discussed next. 

Experiment 5.3.2 determines the effect of ANN structure size on model 

performance during the instance of maximum total water elevation during a storm. 

The maximum total water elevation event occurs when the tidal and surge 

components combined reach the maximum elevation during a storm. The storm 
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event selected for this experiment was again November 5, 1999. Sheerness was 

used as the primary station, and Immingham was used as the secondary station. 

24 hours of previous data was used from each station. The test year was 1999, 

the training year was 1997, and the validation year was 2001. All ensemble 

models use 20 repetitions. 

For this experiment, 20 single run [1,1] ANN models were run and the error 

of the model at the time of maximum water level was calculated. The results are 

shown in column 2 of Table 6-10. The Reference Forecast (column #2) is the 

intermediate results from a single 20 repetition [1,1] forecasts. These 20 individual 

or single run ANN models are used as a reference to measure the performance of 

the ensemble models. Next, five different size ensemble models were tested 

using [1,1], [5,1], [10,1], [15,1] and [30,1] sized ANN structures. Each of the five 

different ensemble models used 20 repetitions for each run, and each ensemble 

model was run 20 times. Each ensemble model calculated a water level value at 

the time of maximum water level and its error calculated. The results for these 

models are shown in columns 3-7 in Table 6-10. The average error for each 

model type is shown at the bottom of Table 6-10. The size of the average error 

increases as the models become more complex, with a minimum average error of 

0.008 m when using the [1,1] model, increasing to a maximum error of 0.102 m 

when using the [30,1] ensemble model. 
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Table 6-10 4-hour forecast Ensemble model error (m) during time of peak water elevation, 21 :00 
UTe November 5, 1999, Primary station: Sheerness, Secondary station : Immingham, Test Year 
1999, Training Year 1997, Validation Year 2001. Note: All ensemble forecasts use 20 repetitions 
each 

Ensemble Reference Structure Size 
Run Number Forecast 

Single run ~Simple eomplex~ 

[1 ,1 ] [1,1] [5,1] [10,1] [15,1 ] [30,1] 
(1 ) (2) (3) (4) (5) (6) (7) 
1 0.048 0.007 0.033 0.016 -0.025 -0.160 
2 -0 .015 0.006 -0.004 0.009 -0.027 -0.128 
3 0.030 -0.002 -0.011 -0.022 -0.051 -0.120 
4 0.005 -0.006 0.005 -0.015 0.027 -0.081 
5 0.004 0.003 -0.005 -0.025 -0.017 -0.068 
6 -0.025 0.009 0.033 0.034 -0.024 -0.086 
7 -0.018 -0.012 0.024 -0.033 -0.022 -0.078 
8 -0.014 0.016 0.002 -0.001 -0.056 -0.013 
9 -0.013 -0.013 0.033 -0.025 -0.053 -0.1 89 
10 0.048 0.007 -0.004 -0.033 -0.007 -0.141 
11 -0.015 -0.006 -0.011 0.000 -0.114 -0.018 
12 0.030 -0.002 0.005 -0.035 0.006 -0.082 
13 0.005 -0.006 -0.005 -0.017 -0.016 -0.049 
14 0.004 0.003 0.033 -0.061 -0.001 -0.108 
15 -0.025 0.009 0.024 -0.004 -0.035 -0.1 34 
16 -0.018 -0.012 0.002 -0.054 -0.046 -0.093 
17 -0 .013 0.016 0.012 0.009 0.003 -0.160 
18 -0.025 -0.008 0.020 -0.018 -0.027 -0.123 
19 -0.041 -0.006 0.004 -0.019 -0.084 -0.116 
20 -0.019 -0.002 0.005 0.034 -0.053 -0.093 

IAveragel (m) 0.017 0.008 0.014 0.025 0.037 0.102 
Variance(m2

) 0.000622 0.000079 0.000241 0.000649 0.001048 0.002068 
%of 

Reference 100.00 12.72 38.71 104.45 168.57 332.57 

The variance of 20 [1,1] ensemble models was significantly less then 20 

individual [1,1] ANN models and was the smallest of all the ensemble forecasts. 

The 20 single ANN models used for reference had a variance of 6.22 x 10-4m2, 

while the [1,1] ensemble model had a variance of 7.90 x 10-5 m2 or 12.7% of the 

variance of the reference model. The variance grew rapidly as the complexity of 

the models increased to 2.068 x 10-3 m2 or 332% of the variance of the reference 

model. 

It is apparent from the results shown in Table 6-10 that ensemble 

forecasting methods predict peak water elevations very well. The simple [1,1] 

ensemble model performed best with a average error of 0.008 m. As the models 

became more complex, the average error increased from 0.014 m for the [5,1] 

model to 0.102 m for the [30,1]. 
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6.6.4 Experiment 5.4: Ensemble forecasts, effect of overtraining on 
forecast variance. 

To determine the effect of over-training when using ensemble averaging, two sets 

of networks were set up. The first used the same training method and set-up used 

in Experiment 5.3. This set-up uses the validation technique for early stopping 

used in experiment suite #3 to prevent over training. Networks trained with this 

method rarely exceed 15 epochs before stopping. The second ensemble ANN is 

set up to stop training only after 3000 epochs. The purpose of the over-training is 

to reduce the bias portion of the error; the variance portion of the error is reduced 

later by the ensemble averaging. The results of the experiment are shown in 

Table 6-11 . It is immediately obvious that the error levels are reduced by using 

the overtraining technique. The model using early stopping method performed the 

worst with an AAE of 0.203 m compared to the model using no early stopping 

method and 20 repetitions performance of 0.181 m. 

This experiment was only used to test the performance of the method, and 

not to find an optimal solution at a particular station. Many more models would 

need to be tested to determine which ensemble modelling method/set-up actually 

has the best performance. It is important to note that the method of using over­

training to reduce the variance while averaging ensembles was found after all the 

experiments for this project were completed. It is obvious now that this technique 

is quite useful in reducing modelling errors when using ensemble averaging and 

will be incorporated in future experiments. 

Table 6-11 Effect of over-training in ensemble forecasting. 4-hour forecast, 72-hour storm 
window, November 5,1999, Primary station: Sheerness, Secondary station: Immingham, Test Year 
1999, Training Year 1997, Validation Year 2001 (when used). 
Method of Number of ME (m) RMSE (m) CF(%) Error Error during 
early repetitions during maximum 
stopping maximum water 

surge (m) Elevation (m) 
(1 ) (2) (3) (4) (5) (6) (7) 
Validation 20 0.203 0.282 47.9 0.721 0.015 
None 20 0.181 0.259 57.5 0.578 0.004 
None 40 0.181 0.263 57.5 0.610 0.048 
None 100 0.190 0.277 57.5 0.631 0.072 

6.7 Experiment Suite #6: Engineering Application 

This experiment utilizes the results from the previous experiments to apply an 

ANN model at a new location. Silvertown was selected for the location because of 

its close proximity to the Thames Barrier (the Silvertown tide gauge is located only 
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500m downstream from the Thames Barrier). Models at this station have to cope 

with the changing stage height elevation of the estuary due to fresh water flow, 

hydrodynamic effects of the Thames Barrier, and the constricting effects of the 

Thames as it changes from wide estuary to a narrow estuary. The mean spring 

tidal range changes from 5.27 m at Sheerness, to 6.50 m at Silvertown, an 

increase of 1.23 m. The mean neap tidal range changes from 3.28 m at 

Sheerness, to 4.40 m at Silvertown, an increase of 1.12 m. 

This experiment will examine the accuracy of an ANN forecast at this new 

location without taking into account the barrier closures, and river stage height. 

This experiment was performed at this location to see how a simple ANN using 

water level data only would cope with a very complex hydrodynamic location. 

Because data availability for Silvertown was limited to the years 2000 - 2004, this 

prohibited using the same storm events which had been focused on during the 

previous experiments. 

For this experiment, the validation, training, and testing data sets are 

selected arbitrarily as Experiment #1.1 showed no model dependence on such 

selection. The validation data set uses year 2000 data, the training data set uses 

year 2001 data and the testing data set uses year 2002 data. 24 hours of previous 

data is used for the primary and secondary stations based on results from 

Experiment #1.2. The optimum secondary station location varies depending on 

the forecast interval, based on results from Experiment #2.3. A complex [10,1] 

20-repetition ANN ensemble model is used, based on results from Experiment 

#3.1 to reduce forecast variance, and for better prediction of peak storm surge 

elevation. The models are tested using both the early-stopping and over-training 

methods. 

A cross-correlation analysis was run to estimate the additional tidal and 

surge lag periods for changing water levels travelling from Sheerness to 

Silvertown. These lag periods were compared to the results from experiment 2.3. 

The 56 km of additional distance up the Thames Estuary from Sheerness to 

Silvertown increased the tidal lag period -2 hours and the surge lag period -1 

hour. The results for the Silvertown cross-correlation tests are shown in Table 

6-12. 
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Table 6-12 Cross-correlation analysis test for Silvertown station (Years 2000 - 2002). 

Station Name 
(1 ) 

Sheerness 

Immingham 
North Shields 
Wick 

Tidal Lag Period(hrs) 
(2) 
2 

11 
12 
17 

Surge Lag Period(hrs) 
-(3) 

7 
10 
16 
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3, 6, 12, and 12 hour forecasts were calculated using information obtained from 

experiment 2.3 to select the optimal secondary station locations. It was 

determined that the additional 1-hour required for the surge to travel up the 

Thames Estuary did not alter the optimal location for the secondary stations when 

restricting the selection to Immingham, North Shields, or Wick. 

The location was modelled during two different storm events. The first 

selected is February 20,2002, an event chosen because the Thames Barrier was 

open. The second event selected is April 27, 2002, an event chosen because the 

Thames Barrier was closed and presented only to see how the model would 

perform. These storm events are shown in Table 6-13, where maximum water 

level and maximum surge-level are also indicated. During the February 20,2002 

(2 days after neap tide minimum) storm event, a 1.184 m increase in maximum 

water level occurred during the surge's 56 km travel up the Thames Estuary 

between Sheerness and Silvertown (close to normal for a neap tide), and a 1.781 

m water level increase occurred during the April 27, 2002 (1 day before the spring 

tide maximum) storm event. The water level increases can be further broken 

down into a normal tidal increase, and an increase in the surge elevation. For the 

barrier open case the surge increased 0.52 m while for the closed barrier case the 

surge increased 0.01 m. 

Table 6-13 Comparison of storm surge statistics for Sheerness/Silvertown. 

Storm Date Barrier Sheerness Silvertown IJ. Max IJ. Max 
# open/closed Max Max Max Max water surge-

water Surge- water Surge- level Level 

level level level level ( difference ( difference 

(m) (m) (m) (m) between between 
stations) stations) 

1 February Open 5.203 1.623 6.387 2.141 +1.18 +0.52 
20,2002 

2 April 27, Closed 6.238 0.855 8.019 0.867 +1 .78 +0.01 
2002 

The model performances for an event when the Thames Barrier was open are 

shown in Table 6-14. 24 previous water level residuals are used from each station 
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for each forecast. During this event the maximum water elevation was relatively 

low (6.39 m), but the maximum surge level was 2.14 m. During testing, it was 

soon evident that the model using validation as an early stopping method to 

prevent overtraining performed much better than the model using no early 

stopping method. For the 3-hour forecasts the validation method had an average 

absolute error of 0.36 m compared to the model using no early stopping 

performance of 0.40 m. For the 24-hour forecast interval, the validation method 

had an average absolute error of 0.57 m compared to 1.43 m for the model using 

no early stopping. 

It was found that the over-training technique for reducing bias in ensemble 

forecasts used in Experiment 5.4 performed very poorly at the Silvertown location 

during large surge events. The model performed reasonably well for the short 

term 3 - 6 hour forecasts, but the overtraining caused extreme and erratic model 

behaviour during the large storm events, especially during the 12 and 24 hour 

forecasts. During the longer term forecasts, the model would perform normally 

during the period up to and including the surge event peak, but then would exhibit 

large erratic behaviour for several hours afterward before returning to normal. 

Table 6-14 Barrier Open - Silvertown/lmmingham using a 20 repetition ensemble [10,1] ANN. IMM 
= Immingham, NSH = North Shields, WIG = Wick. Storm #1 date: February 20, 2002 (Hrs: 1188-
1260~ 

Early Forecast Station ME RMSE GF(15cm) Error Error 
Stopping Interval Name (m) (m) % during during 
Method maximum maximum 
Used surge water 

level (m) level(m) 
(1) {2) {3) {4) {5) {6) {7) {8) 

Validation 3 IMM 0.356 0.433 24.66 0.986 0.054 
6 IMM 0.410 0.509 21.92 1.323 0.104 
12 NSH 0.529 0.684 13.70 1.980 0.467 
24 WIG 0.586 0.772 12.33 1.928 0.429 

None 3 IMM 0.395 0.543 26.03 0.982 0.072 
3000 6 IMM 0.615 1.185 28.77 0.949 0.141 

Epochs 12 NSH 0.805 1.332 17.80 1.873 0.205 
24 WIG 1.432 3.424 12.33 1.923 0.391 

For comparison purposes, the model results for Sheerness are presented in 

Table 6-15 before the surge's 56 km travel up the River Thames. 24-hours of 

previous water level residuals are used from each station for each forecast. 

Analysis was performed using a 72-hour storm window. For this experiment, data 

from year 2002 was used for testing, year 2001 for training , and year 2000 was 

used for verification. The model at Silvertown performed similarly to that at 

Sheerness. The most notable difference between the two locations was the 
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performance of the model when predicting the maximum surge levels. For a 12-

hour forecast, the model error during maximum surge increased from 1.38 m at 

Sheerness to 1.98 m at Silvertown. Since the barrier was open during this test, 

the difference between the locations can probably be attributed to acceleration of 

the tide due to the increased water depth from the surge. 

Table 6-15 Comparison - Sheerness/lmmingham, using a 20 repetition ensemble [10,1] ANN. 
IMM = Immingham, NSH = North Shields, WIC = Wick. Storm #1 date: February 20, 2002 (Hrs 
1188-1260) 

Early 
Stopping 
Method 
Used 

(1 ) 
Validation 

Forecast 
Interval 

(2) 
3 
6 
12 
24 

Station 
Name 

(3) 
IMM 
IMM 
NSH 
WIC 

AAE 
(m) 

(4) 
0.286 
0.434 
0.530 
0.499 

RMSE 
(m) 

(5) 
0.349 
0.515 
0.636 
0.622 

CF(15cm)% 

(6) 
30.1 
19.2 
11.0 
19.0 

Error 
during 

maximum 
surge 

level (m) 
(7) 

0.754 
1.159 
1.380 
1.640 

Error 
during 

maximum 
water 

level(m) 
(8) 

0.128 
0.260 
0.230 
0.431 

The results of the model performance for when the Thames Barrier was closed are 

shown in Table 6-16. 24-hours of previous water level residuals are used from 

each station for each forecast. Analysis was performed using a 72-hour storm 

window. For this experiment, data from year 2002 was used for testing, year 2001 

for training, and year 2000 was used for verification. Although the maximum 

water levels were very high during this test (8.019 m), the maximum surge level 

was only 0.867 m. During this event, the 3-hour forecasts from both models had 

an average absolute error of 0.210 m. For the longer 24-hour forecasts the model 

using validation clearly performed better with an average absolute error of 0.290 m 

compared to 0.328 m for the model using over-training. 
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Table 6-16 Barrier Closed - Silvertownllmmingham using a 20 repetition ensemble [10,1] ANN. 
IMM = Immingham, NSH = North Shields, WIC = Wick. Storm #2 date: April 27, 2002 (Hrs: 2785-
2857~ 

Early Forecast Secondary ME RMSE CF(15cm)% Error Error 
Stopping Interval Station (m) (m) during During m 
Method Name maximum maximum 
Used surge water 

level (m) level (m) 
(1 ) (2) (3) (4) (5) (6) (7) (8) 

Validation 3 IMM 
0.210 

0.298 53.4 0.556 0.556 

6 IMM 0.219 0.287 43.8 0.566 0.566 
12 NSH 0.244 0.316 42.5 0.384 0.384 
24 WIC 0.290 0.385 38.4 0.862 0.862 

Overtraining 3 IMM 0.210 0.304 52.43 0.530 0.530 
6 IMM 0.233 0.327 50.68 0.573 0.573 
12 NSH 0.295 0.418 36.99 0.393 0.393 
24 WIC 0.328 0.420 30.14 0.832 0.832 

It is interesting to note that the ANN model performed better during storm #2 with a 

closed barrier than it did during storm #1 when the barrier was open. This is due 

to the fact that the size of the surges associated with the two storms was more a 

factor than the hydrodynamic effects caused by the closed barrier. Also it is 

interesting to note that the maximum surge level and maximum water elevation 

occurred at the same time. This is because when the barrier is closed , the 

location becomes a terminus or ending station for all water moving up the Thames, 

causing the surge to remain until the tide withdraws. 

In conclusion , the results from the previous five experiments have allowed 

the construction of an acceptable working model at this new location much more 

quickly than if the model was developed from scratch. However, the new model is 

far from optimal. Much more analysis of the model's performance using different 

storms is needed with the barrier in open and closed positions. A proper ANN 

model would need much more historical data than was available at the time of this 

project. 
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7 Discussion 

Researchers working with the Texas Ocean Observation Network have often 

commented on the potential benefit that would be gained from additional offshore 

tide gauge stations located in the path of approaching surges from storms and 

hurricanes. In the North Sea, the tide gauges are aligned such that the storm 

surge propagation follows the gauges in a path along the coastline. Due to the 

unique configuration of these gauges, the researcher selected this area to model 

storm surge movement. Given the non-linear relationships between forcings and 

surges, using ANN's seemed a promising methodology to predict surge 

movement and growth. 

One of the main goals of the research was to show that artificial neural 

networks can be used to accurately predict storm surge elevations in the North 

Sea. This research has successfully demonstrated that a simple ANN model can 

accurately predict storm surge elevations at the Sheerness tide station. The 

research has further demonstrated that including secondary station information as 

additional input to the model significantly improves ANN forecast accuracy. The 

ANN model was to use minimal data resources, and be computationally efficient. 

The most accurate model currently available (CS3) requires input from very large 

and computationally expensive meteorological models. This research uses only 

historical sea level data and does not require input from any other data source. 

The current ANN model is able to compete with the more computationally 

expensive numerical models for 3-hour or shorter forecast intervals. Several 

different model configurations were developed for this research each 

systematically increasing in complexity. The first model was a single station ANN 

model used primarily to test possible differences between training data sets. 

Model complexity was then increased to include a secondary station, and larger 

ANN structures. Finally ensemble models were developed to reduce variance, 

and overtraining was used to minimize bias and overall forecast errors. The 

results will now be discussed in the context of each experiment. 

Experiment Suite #1 tested the artificial neural network models performance 

while varying the amount and selection of data used for training. 

Experiment 1.1 tested the performance of the ANN while varying the size 

and selection of the training data set. It was concluded that although increasing 
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the size of the training data set does improve ANN performance, it is insignificant 

in proportion to the substantial increase in training time. Hence one year data sets 

can be used to train an ANN model without a significant reduction in performance. 

Experiment 1.2 found that the performance of the ANN does not change 

significantly with the selection of a specific or individual training year when 

analyzed on a yearly basis. Note that the influence of the training year on 

performance during individual storms was not tested, and is reserved for future 

work. 

Experiment Suite #2 tested the performance of an ANN using different 

configurations for the inputs. These inputs consisted of different numbers of 

historical or previous water level residuals measured either at a single tide gauge 

location, or at two tide gauge stations, utilizing the secondary tide gauge station to 

provide additional information to the model. 

Experiment 2.1 used a single or primary tide gauge station only. The 

number of previous water level residuals used for each forecast was varied from 1 

to 48 hours. The results indicated that although including more information from 

previous water level residuals increases performance, little benefit is found when 

including more than 24-hours. For a 3-hour forecast the AAE decreases from 0.18 

m to 0.12 m when increasing the number of previous water level residuals used 

from 1 to 24 hours. Increasing the number of previous water level residuals used 

to 48 hours decreases the AAE to 0.11 m but has the negative effect of increasing 

training times by a factor of two. The conclusion is that very little useful 

information is contained in this "older data" and it contributes little to short-term 

forecasts. Because of this, later models included only 24-hours of previous water 

level residual data, significantly reducing training times, without a significant 

sacrifice in performance. 

Experiment 2.2 tested the performance of an ANN using two tide gauge 

stations. The results indicated that this significantly increased the ANN 

performance. The addition of a second tide gauge station gives the ANN 

important information about the approaching surge. This information allows the 

ANN to correlate peak surge and water levels at the secondary station to future 

surge and water levels at the primary station. This additional information from the 

secondary station reduced the average absolute error of the 3-hour forecast found 

in experiment 2.1 from 0.12 m to 0.08 m. 



Chapter 7 - Discussion 124 

Experiment 2.3 found that for a secondary station to be effective in 

predicting a storm surge event, it must provide information of the storm surge 

existence at the time of the forecast. The optimal secondary station location is 

one where its distance to the primary station is similar to the distance a storm 

would travel during the forecast interval. For the 3 and 6-hour forecasts, the 

optimum secondary site location was Immingham with a minimum AAE of 0.08 m 

and 0.09 m respectively. Immingham is located 337 km north of sheerness 

resulting in a typical surge travel time of 6 hours; the other stations, North Shields 

and Wick were located further north resulting in longer surge travel time of 6 to 14 

hours. For the 12-hour forecast North Shields was the best secondary station 

location with a minimum AAE of 0.13 m. For a 24-hour forecast, Wick performed 

best as the secondary station location with a minimum AAE of 0.16 m. If the 

selected station is located too close to the primary station for the forecast interval, 

it will not include any new significant information from the approaching surge, and 

the information it does supply will be very similar to that of the primary station, 

adding little knowledge to the ANN to increase performance. If the selected 

station is located too far away from the primary station for the forecast interval, the 

information it contributes applies best only to longer forecasts, and has little 

correlation on what happens at the primary station in the short term. 

Experiment Suite #3 investigated how model performance is affected by changes 

in ANN topology. The topology of the ANN was changed by varying the number of 

hidden neurons used in the model. It was hypothesized that increasing the size of 

the ANN structure would allow it to predict a more complicated time series. Note 

that increasing the size of an ANN structure can substantially increase training 

times. 

Experiment 3.1 found that more complex models have the potential to 

better capture large surges. Unfortunately as the number of hidden neurons is 

increased, the variability of the ANN model also increases. 

Experiment 3.2 tested the variability of individual ANN model runs. It was 

found that variability increases as the size of the ANN structure increases. 

Although the average performance decreased as the structure size is increased, 

the best overall performance was always obtained by an individual instance of a 

large ANN structure. The potential for large structure ANNs to better model surge 
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events is further explored through the use of ensemble models in Experiment suite 

#5. 

Experiment Suite #4 compared the performance of a simple ANN model with the 

CS3 model used by the Storm Tide Forecasting Service (STFS). The archived 

STFS data format limited comparisons to 1 - 5 hour forecast intervals. Since the 

CS3 model forecasts were observed at location with a tide gauge and included a 

T +00 (or NOW) observation, a bias could be calculated and removed to improve 

the CS3 model performance. 

Experiment 4.1 showed that when analyzing the "yearly performance" of the 

models the ANN always performed better than the CS3 model. Although the 

removal of the bias significantly improved the CS3 model performance on 1-hour 

forecasts, this was not enough to beat the performance of the ANN model. It is 

interesting to note that removal of the bias actually degraded yearly performances 

of the longer 5-hour forecasts, and that the bias correction at T +00 is only helpful 

for short term predictions. 

Experiment 4.2 analyzed the ANN/CS3 performances using a 72-hour 

storm window. For 1-hour forecasts the results were mixed, with the ANN model 

performing better than the CS3 model for 1999 but not in 2002 where the CS3 

model with the bias removed performed best. For the 3-hour forecasts all the 

models (ANN, CS3, and CS3 with bias removed) had virtually identical 

performances, with differences of 0.02 m or less. For the 5-hour forecasts the 

CS3 model performed best. Perhaps one of the reasons that the CS3 performed 

better was that meteorological forcing may become more important with the 

increasing size of the surge event (which is included in the CS3 model's forcing 

parameters). It was also noted that the CS3 model was very consistent, with error 

values very similar, independent of the forecast interval, while at the same time the 

ANN error values always increased with an increase in the forecast interval. 

Future work that includes additional information such as tides and/or real time 

meteorological data should lead to improvements in ANN model performance for 

longer forecast intervals. 

Experiment Suite #5 was designed to assess the potential of ensemble 

forecasting methods used to reduce forecasting errors. The model assessment in 

this area was concentrated on the storm events only. The first part of the 
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experiment was concerned with changing the number of repetitions used for each 

ensemble. The experiment also tested the effect of changing the number of 

hidden neurons on performance. Ensemble forecasting techniques were used to 

improve the performance of ANN models during maximum water level and surge­

level events. 

Experiment 5.1 tested the model performance for several ANN structure 

sizes while also changing the number of repetitions for each ensemble. The 

results showed that ensemble ANN models have significantly less variance than 

single ANN models, with the variance decreasing as the number of repetitions per 

ensemble is increased. 

Experiment 5.2 tested the accuracy of an ANN ensemble as the size of its 

structure or number of hidden neurons is increased. The results showed that 

increasing the size of an Ensemble structure had no significant effect on accuracy. 

Variance was found to be reduced to 1.3% of the original single ANN model [1,1] 

ensemble, and then increased in proportion to the number of hidden neurons 

used. 

Experiment 5.3 tested the effect of ANN structure size on prediction 

accuracy for both peak surges and peak water levels. The results showed that the 

more complex models performed best when predicting peak surge levels while the 

simpler models performed best when predicting peak water levels. The results 

also showed that ANN models perform poorly in predicting peak surge-level 

elevations, but very well in predicting peak water level elevations. It is thought that 

one of the reasons the ANN performed so well in predicting peak water level 

elevations is that for the relatively short 4-hour forecasts, the model has seen both 

the peak surge at the secondary and primary stations. The knowledge that the 

peak surge has already passed both stations and the knowledge of the peak surge 

elevation increase between secondary and primary station likely provides the ANN 

with the additional information necessary to make very accurate peak water level 

predictions. 

Experiment 5.4 tested the use of overtraining to reduce the bias portion of 

the error of individual ANN models, combined with the use of ensemble techniques 

to minimize the variance of the error. This combination of techniques produced 

the lowest individual forecast errors when forecasting water or surge peaks during 

this research. In previous ANN models early stopping was used to prevent over­

training of the models. While over-training is generally viewed as a condition that is 
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to be avoided when using a single ANN model, (because it increases variance), it 

has been found to be beneficial when used with ensemble averaging (where the 

variance is removed). During the period of maximum surge, the average absolute 

error for a 20-repetition ANN ensemble was decreased from 0.721 m for a model 

using validation compared to 0.578 m using overtraining. During the period of 

maximum water elevation, the average absolute error was decreased from 0.015 

m for a single 20-repetition ensemble model using validation to 0.004 m for a 20-

repetition ensemble model using overtraining. This level of improvement was 

unexpected, and shows great potential and need for further testing. 

Experiment Suite #6 was designed to assess the performance of an ANN model 

at a new location using only the techniques used to those developed in 

experiments 1 - 5. Silvertown was selected as the new location for this 

experiment because of its location 500 m downstream from the Thames Barrier. 

By virtue of this location, accurate surge level forecasts would be challenging at 

Silvertown. When the barrier is closed during low tide, incoming waters that 

normally flow past the barrier have nowhere to go, causing higher tide levels than 

with the barrier open. Conversely when the barrier is closed during a high tide, 

water levels down-stream from the barrier are lower than they would have been if 

the barrier remained open. This research trains the models with the assumption 

that the barrier is closed only for a very small percentage of the time during the 

year. 

Cross-correlation analysis at Silvertown found that lag periods for surges 

and tides were only increased by 1-2 hours compared to the lags for the 

Sheerness tide station. The results show that the optimal secondary station 

locations used for the various forecast intervals at Sheerness were indeed directly 

applicable to the new location. 

The model was tested during open and closed barrier conditions. The 

results showed that when using the methods refined in experiments 1-5, accurate 

surge elevation predictions at Silvertown are difficult, whether the barrier is open 

or closed. The results show that the ANN model under-predicts maximum surge 

levels when the Thames Barrier is closed, with errors ranging from 0.530 m for a 

3-hour forecast, to 0.832 m for a 24-hour forecast. This is expected because 

incoming storm surges would normally pass through the barriers, but now have 

nowhere to go, thus causing higher surge levels than expected. However, results 
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show that even when the Thames Barrier is open, the model also significantly 

under predicts the maximum surge elevation and surge component at the time of 

maximum water level. This under-prediction was also found to a lesser extent for 

the other cases treated in this research. The under-prediction is attributed to the 

acceleration of the tide caused by the increased water depth resulting from the 

surge that occurs during its 56 km journey up the Thames Estuary from 

Sheerness. This additional water depth accelerates the tidal signal, leading to its 

early arrival and early peak of the surge. This feature is not currently captured by 

the ANN model, possibly because tides and meteorological information are not 

included in training. 

Although the ensemble method that utilized over-training to reduce bias 

was very promising in experiment 5.4, no significant performance improvements 

were observed at the Silvertown location. The large storm events that were 

selected to test the model caused it to behave very erratically after experiencing 

large surge events. This behaviour lasts for several hours after the peak surge 

event and adversely affects the model performance as compared to validation 

trained models. It is thought that a selective procedure that removes significantly 

different ensemble member prediction(s) from the computation of the forecast 

could be used to control this behaviour in the future. 

Future work 

Most of the ANN models used in this research "under predicted" the maximum 

storm surge elevations. The primary cause for this prediction error is thought to be 

the acceleration of the tide caused by the increase in water depth in the region of 

the storm. It has been shown that the amount of surge generated by a specific 

storm event is modulated by the current state or elevation of the tide (Horsburgh 

and Wilson 2007). Artificial neural networks will not be able to predict a variable if 

the forcings that are driving this variable are not included in the training data set. 

By including the tidal elevation as an additional input, the artificial neural network 

model may learn to better predict maximum surge heights. 

Other future work could include the use of additional or tertiary tide stations. It 

is hypothesized that training an artificial neural network using three or more 

stations may reduce forecast errors by detecting a change in the rate of surge 

growth during its propagation. This change in growth rate could be caused by 
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strengthening of a storm system, and be better modelled using additional 

information from a third tide gauge station. 
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The inclusion of real time wind and barometric data in the training and 

operation of the ANN models could also significantly increase the performance of 

the models by providing the latest storm information without a substantial 

decrease in computational efficiency. Atmospheric predictions could also be 

added, but with a negative effect on the overall computational efficiency of the 

method. 

Future work should compare ANN / CS3 performance for longer forecast 

intervals. Currently CS3 model data is archived to only T +5 hours. Future 

comparisons should also include peak surge and water elevations. Finally future 

work should test the significance of training year selection on ANN storm 

performance. It is thought that training with a dataset that includes several 

significant storms could increase ANN performance in forecasting such events. 
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8 Conclusions 

A model based on artificial neural networks was developed to predict storm surge 

magnitudes and arrival times at selected locations in the North Sea. This research 

was first to use artificial neural networks to predict surge elevations in the UK. The 

research explored the significance of the selection of a training year and the size 

of the training data set has on model performance when predicting surge 

elevations. No significant difference in performance was found when changing the 

training year when testing on a yearly basis. Also no significant benefit was found 

when increasing the size of the training data set to include more than a single 

year. 

This research pioneered the use of multiple secondary station locations to 

predict surge elevation for different forecast intervals. It was found that an artificial 

neural network's performance for prediction of storm surge was greatly increased 

by the use of a secondary station that has already measured the effects of the 

approaching storm. The optimal location of the secondary station is found where 

the distance from the primary station is the same as the distance the storm will 

travel during the forecast interval. 

This project was the first to use Ensemble forecasting for prediction of 

storm surge elevations. Several types of ensemble model configurations were 

tested. First, the number of repetitions used for each ensemble was varied . It was 

found that the ensemble model variance was directly proportional to the inverse of 

the number of repetitions used. Next, the number of hidden neurons was 

changed, and it was found that performance accuracy was increased, but at the 

expense of an increase in variance. Finally, the bias of the ANN forecast error 

was reduced by using an over-training technique. The overtraining led to an 

increase in variance which was subsequently removed by ensemble averaging. 

The results showed a significant increase in accuracy, particularly when predicting 

maximum water levels during storm events. 

The evaluation method used in this research uses a more critical method 

for measuring model performance than what is typically used in the literature. This 

method assesses the performance of the models using a 72-hour window centred 

on individual storm events rather than over a full year. This method was used 

because it was felt that previous assessments did not focus enough on the time 

when model performance is most critical, during storms. 
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The current artificial neural network model developed for this research is 

able to achieve similar level of accuracy as the more computationally expensive 

numerical model (CS3) at forecast intervals up to 3-hours. The accuracies were 

evaluated based on yearly datasets, and using 72-hour storm windows. These 

accuracies varied by year and for each storm system tested. Yearly forecasts at 

Sheerness had an average absolute error which varied from 0.08 m for a 3-hour 

forecast to 0.17 m for a 24-hour forecast. The 72-hour storm window forecasts 

had an average absolute error which varied from 0.08 m for a 1-hour forecast, to 

0.31 m for a 5-hour forecast. The ensemble model accuracies were measured at 

the instance of peak surge and peak water elevation. The best 4-hour forecast of 

peak surge elevation was 0.677 m with a [30,1] model using 20 repetitions during 

a 1.67 m surge on November 5th
, 1999. This poor performance was likely related 

to acceleration of the tide due to increased water depth caused by storm surge, 

and was not learned by the ANN as the tide level itself was not included in the 

training. One of the most significant results of this research was the ANN's ability 

to accurately predict peak water elevations. A simple [1,1] ensemble model using 

20 repetitions had an average 4-hour forecast error of 0.008 m. When over­

training is included to reduce the model bias, the error is further reduced to 

0.004 m. 
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Appendix 1 

1.1 Tide-surge analysis at Sheerness 

Analysis of tide and surge was performed at the Sheerness station using MATLAB 

surge analysis tools developed by Haigh (2005). This analysis allows a better 

understanding of the tide and surge interaction and how to develop new tools used 

to predict them. 

1.1.1 Tidal Data 

The tidal data collected at the Sheerness gauge was obtained from the Proud man 

Oceanographic Laboratory (POL) web site (http://www.pol.ac.uklntslf/data.html). 

The years used are indicated in 

Table A1 -1. The data also included the surge residual component of the levels 

derived from harmonic analysis performed by POL. 

Table A1-1 General tidal data information 

Chart datum / 

Ordinance Datum 

Conversion 

2.90 

Data Length (years) 

38 

1.1.2 Analysis of the Surge Component 

Start Date - End Date 

1952, 1958,1965-1975, 

1980-2005 

A frequency distribution of surge levels for Sheerness was calculated and can be 

seen in Figure A 1-1. To a first approximation the distribution of the surge 

residuals shows a classic bell-shaped appearance of the normal or Gaussian 

distribution. This is expected for a large sum of random variables. However, there 

are important differences between this and the theoretical normal distribution, 

(Pugh, 1987). The plot of the distribution shows extended positive and negative 

tails which include major surge events. The distribution also indicates the tendency 

for the more frequent occurrence of larger positive surge residuals than negative 

residuals, shown by the positive skew in the distribution. This observation matches 

previous findings for other British Ports, (Pugh, 1987). 
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Figure A1-1 Surge frequency plot for sheerness station 1990. 

1.2 Extreme Water Levels 

Extreme water levels occur when surges and tides combine to give high water 

levels. The timing of the surge is of particular importance, as a large surge event 

that occurs during low tide can go unnoticed. Extreme water levels generally 

occur when moderate to high surges occur over mid to high tidal heights. An 

improved understanding of the causes of extreme sea levels at a site can be 

obtained by determining whether a site is either tide or surge dominated (Dixon 

and Tawn, 1994). 

Plotting surge levels against the corresponding predicted tidal level can be 

used to determine whether or not a site is surge or tide dominated. Such a plot for 

the Sheerness water-level data can be seen in Figure A 1-2. This plot was created 

using the 100 highest water-level events (Blue/dark circles) in the data record 

(years 1952, 1958, 1965-1975, 1980-2006) and the 100 highest surge events 

(Red/light circles). For both type of events, the predicted tidal component is 

plotted against the surge component at the time of maximum water level. The 

diagonal lines that cross the plot are contours of equal total water level and also 

indicate the total measured water-level or harmonic + surge components. Along 
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each of these lines the combination of surge and tide gives the same water level. 

Moving to a higher line corresponds to combinations of surge and tide that yield 

higher still water levels. Figure A 1-2 highlights the interesting characteristics of 

extreme water level and surge events occurring at Sheerness. The plot illustrates 

that the extreme water levels at this site are being caused by small to moderate 

surges (0.5 to 1.25 m) superimposed on a tidal signal with a large tidal range. 

With the exception of one event the 100 largest water levels were all caused by 

surges of less than 1.25 m in height with a predicted tide of greater than 2.5 m 

(Note the lone event at -1.5, 2.0). Figure A 1-2 also shows that the heights of the 

100 largest surge events (Red/light circles) over the data record (years 1952, 

1958,1965-1975,1980-2006). All these events occurred with harmonic 

components heights of less than 2.5 m. The majority of the surge events occurred 

with elevations that correspond with the low-water stage of the tidal cycle. This 

figure indicates that during the years tested, the largest surges have always 

occurred at times other than at high water. 
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Figure A 1-2 100 Largest surge and extreme water-level events. 
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1.2.1 Characteristics of Extreme Events 

Mean spring and neap values, along with LAT (lowest astronomical tide) and HAT 

(highest astronomical tide) values for Sheerness are presented in Table A1-2. 

Extreme water-level and surge return period intervals were calculated for the 

Sheerness tide station for 2, 5, 10, 20, 50, 100, 200, and 500 year events. This 

was done using SHARDS, a statistical hydraulic analysis program created by 

Saunders R.D. and Clarke, D.C. (1998) using the Annual Maximum Method. The 

results can be seen in Table A 1-3. 

Table A1-2 Tidal levels at Sheerness (Chart Oatum) 

LAT 

-0.07 

-2.97(00) 

MLWS 

0.54 

-2.36(00) 

MLWN 

1.46 

-1.42(00) 

Table A1-3 Return periods for Surge at Sheerness 

Return Period (years) AEP(%) 

2 50 

5 20 

10 10 

20 5 

50 2 

100 

200 0.5 

500 0.2 

1000 0.1 

MHWN 

4.74 

1.84(00) 

MHWS 

5.81 

2.91(00) 

HAT 

6.25 

3.35(00) 

Surge Component (m) 

1.70 

2.07 

2.23 

2.40 

2.56 

2.68 

2.77 

2.90 

2.99 

By subtracting the mean spring high water level and the HAT level at Sheerness 

(2.91 m & 3.35m, respectively) from these extreme return period levels we can 

calculate the height of surge required to increase the predicted tide to these 

extreme levels. These values can be seen in Table A1-4. 
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Table A1-4 Surge heights required to raise high water of a mean spring and a HAT tide to specific 

return period levels 

Return Period (years) 

2 
5 
10 
20 
50 
100 
200 
500 

Of A Mean Spring Tide To 
Return Period Level (m) 

0.91 
1.10 
1.22 
1.32 
1.45 
1.54 
1.63 
1.74 

Of A HAT Tide To Return 
Period Level (m) 

0.21 
0.40 
0.52 
0.62 
0.75 
0.84 
0.93 
1.04 

In order to try and understand some of these features of extreme surges and water 

level events further, the characteristics of the 20 highest water level and surge 

events were examined in more detail over the data length (years 1952, 1958, 

1965-1975, and 1980-2005). The dates of the 20 highest water level events can 

be seen in Table A1-5 and surge events in Table A1-6. The table shows the 

maximum water levels experienced with these events and the corresponding 

predicted tide and surge levels that combined to achieve these observed water 

levels. 
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Table A1-5 Highest recorded water level events at Sheerness for years 1952, 1958, 1965-1975, 

1980-2005 

Event Date and Time of Measured Predicted Corresponding Return 

Extreme Water Extreme Harmonic Surge Level Interval 

Level Water Level Water Level (m) 

(m OON) (m OON) 

1 10/12/196513:00 4.023 2.884 1.139 100 

2 14/12/1973 03:00 3.903 2.872 1.031 20 

3 14/12/1993 00: 15 3.866 2.806 1.060 20 

4 29/10/1996 13:30 3.865 2.868 0.997 20 

5 15/11/199300:45 3.830 3.065 0.765 10 

6 24/12/1988 13:00 3.818 2.641 1.177 10 

7 16/12/200513:00 3.817 2.605 1.212 10 

8 25/11/1973 00:00 3.803 2.620 1.183 10 

9 22/02/2004 14:30 3.785 2.896 0.889 10 

10 20/02/199601 :00 3.784 3.050 0.734 10 

11 28/02/1998 13:45 3.783 3.244 0.539 10 

12 25/01/199314:00 3.772 2.578 1.194 5 

13 08/10/199814:00 3.753 3.339 0.414 5 

14 28/01/199412:45 3.735 2.790 0.945 5 

15 02/02/1983 03:00 2.786 0.946 5 

16 07/10/1990 14:00 3.144 0.582 2 

17 08/02/2001 12:30 3.724 2.999 0.725 2 

18 11/01/199314:00 3.718 2.912 0.806 2 

19 18/09/2001 01 :00 3.690 3.210 0.480 2 

20 12/02/2001 15:45 3.689 2.987 0.702 2 

Of the 20 largest water-level events, the 5 smallest events exceeded the 1 in 2-

year return period; 4 events exceeded a 1 in 5 year return period; 7 events 

exceeded a 1 in 10 return interval; 3 events exceeded a 1 in 20 year return period; 

and the largest event exceeded a 1 in 100 return interval. 9 events occurred as a 

result of a combination of a surge with a tide with a predicted high water height 

larger than that of the MHWS value (2.91 m), and the remaining 11 events were 

within 0.30m of predicted MHWS value. The largest surge level at the time of high 

water was 1.139m, indicating that extreme water level events at Sheerness are 

indeed being caused by moderate surges with larger astronomic tidal levels. The 

20 largest surge events are given in Table A1-6 which shows the maximum surge 

height that was experienced during the event and the corresponding measured 
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and predicted water levels at this time. The largest surge height experienced at 

Sheerness over the data 

interval was 2.94m, which corresponds to a 1 in 500 year return interval event. 

Table A1-6 Highest recorded surge events at Sheerness for years 1952, 1958, 1965-1975, 1980-

2005 

Event Date and Time of Measured Predicted Corresponding Return 

Extreme Water Extreme Harmonic Surge Level Interval 

Level Water Level Water Level (m) 

(m ODN) (m ODN) 

1 21/02/199308:45 1.943 -0.998 2.941 500 

2 14/02/1989 11 :00 1.153 -1 .368 2.521 20 

3 29/09/1969 10:00 1.123 -1 .131 2.254 10 

4 06/03/1968 12:00 1.096 -1 .116 2.212 5 

5 01/02/198323:00 1.108 -1 .055 2.163 5 

6 12/12/1990 16:00 0.569 -1 .510 2.079 5 

7 05/02/1999 11 :45 1.045 -0.987 2.032 2 

8 24/11/1981 19:00 0.616 -1.280 1.896 2 

9 26/12/1985 18:00 0.065 -1 .831 1.896 2 

10 08/02/200421 :30 0.531 -1 .351 1.882 2 

11 30/01/200003:45 1.933 0.054 1.879 2 

12 13/12/197407:00 0.253 -1.619 1.872 2 

13 21/11/1971 22:00 0.907 -0.940 1.847 2 

14 02/04/197320:00 -0.576 1.829 2 

15 19/02/1996 08: 15 -1.783 1.829 2 

16 06/04/196707:00 1.131 -0.640 1.771 2 

17 04/01/198409:00 0.644 -1 .121 1.765 2 

18 30/01/2003 18: 15 0.238 -1 .502 1.740 2 

19 10/01/199510:00 1.323 -0.384 1.707 2 

20 27/10/2002 23:00 0.523 -1.178 1.701 2 

It is important to note that only 2 of these extreme surge events led to or 

contributed to the 20 largest extreme water levels experienced in at Sheerness. 

The 5th largest surge event resulted in the 15th largest extreme water level event 

on record, and the 15th largest surge event resulted in the 10th largest water-level. 

On the later, the surge event reached a maximum height of 1.8m at 08:15 on the 

19th of February 1996 around the time of low water. 17 hours later the surge had 

decreased to 0.73m but when combined with a large astronomic tide of 3.05m 

resulted in an extreme water level event equivalent to a 1 in 10 year event. With 
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each of the other 19 largest surge events although the surge level was still 

moderately large when high water occurred, high water levels were not 

experienced because the astronomical tide ranges were much lower. 

A1 - 8 

It is also interesting to note that if any of these 20 surge events had 

occurred in such a way that the time of maximum surge was around high water of 

a mean spring tide, a 1 in 1000 year or larger extreme return period event would 

have occurred. If the 20 events had occurred in such a way that the time of 

maximum surge was around high water of a tide about the same height as Highest 

Astronomical Tide the resultant events would have all been greater than a 1 in 

1000 year extreme return period event. 

Tide and surge interaction 

Tidal/surge interaction plays a large part in the magnitude of and arrival times of 

large surge events in the North Sea. The speed of propagation of storm surge and 

is proportional to the water-depth. The tidal range of the North Sea and its 

relatively shallow depth causes the speed of propagation of a surge to be affected 

by tidal phase. Tidal circulation in the North Sea rotates counter-clockwise around 

the primary amphidromic point, causing tides to propagate from north to south 

along the East coast of the UK. The circulation is shown for the largest tidal 

constituent (M2) in Figure A1-3 where Co-tidal lines (radiating outward from 

amphidrome) connect points experiencing the same phase of the tide. Co-range 

lines (circling amphidrome) connect points of equal tidal range. Figure A1-3 also 

shows that it takes approximately 15 hours for a tide to travel from Wick to 

Sheerness. Analysis of storm data from tidal records show that a typical storm 

surge would take 12 to 20 hours to traverse this distance, and indicates that tidal 

and storm surges propagate at approximately the same speed, allowing interaction 

between the two phenomena. 
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Figure A 1-3 Tidal circulation in the North Sea (M2 Constituent) 

Tide-surge interaction is caused by frictional resistance, associated with 

strong currents, and variations in the speed of wave propagation, which modify a 

surge in the presence of the tide (Walden et aI., 1982) Changes in water level, due 

to the tide, alter the propagation and generation of surge events. Analysis of tide 

and surge was performed at the Sheerness station using MATLAB surge analysis 

tools developed by Haigh (2004). This analysis allows a better understanding of 

the tide and surge interact and how to develop new tools used to predict them. 

1.3 Profile Analysis 

To better understand a typical storm surge profile at the Sheerness tidal station it 

is important that not only the height and timing of the surge on the astronomical 

tide are included accurately but also the shape and duration of the surge profile. 

The shape and duration of extreme water levels and surge events have been 

examined by plotting the observed water levels, predicted tide and surge profiles 

over the duration of the extreme events. 
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The following figures are presented: 

• Individual plots showing conditions during the 10 highest recorded water 

level events (Figure A1-4); 

• Individual plots showing conditions during the 10 largest recorded surge 

events (Figure A 1-5); 

• A figure showing the conditions of the 100 highest recorded water level 

events overlain. (Figure A 1-6); 

• A figure showing the conditions of the 100 highest recorded surge events 

overlain. (Figure A 1-7); 

• A figure showing the conditions of the 10 highest recorded surge events 

overlain. (Figure A1-8); 

In each of these figures the timing of the highest water level or largest surge has 

been offset to zero so that the shape, duration and timing of the surge relative to 

tidal phase can be compared. Figure A 1-4 highlights the fact that the largest water 

level events tend to be caused by small to moderate surges occurring around high 

water of a relative large tide. For the majority of the 100 largest recorded water 

level events the surge profile is very noisy and lacks any definite shape. This is 

clear from Figure A1-6, where the 100 largest surge events are overlain. This 

corresponds with similar work undertaken in the English Channel (Haigh, 2004). 

At a number of sites within the English Channel the moderate surge levels 

experienced around the extreme water level event were caused by local wind 

arfects or a number of weak low pressure systems over the area. 

Another interesting feature of these plots is that for a number of events the 

time of extreme water level occurs a few hours after the peak of the surge. This 

backs up the point made earlier, that some sort of interaction seems to be 

occurring similar to that of the southern North Sea, which tends to result in the 

peak of the surge occurring on the rising tide. The 10 largest surge events 

recorded are plotted individually in Figure A 1-5. In these figures the surge profiles 

although all different do appear to show a general shape. This is more clearly 

seen in Figure A1-8 where the 10 events are overlain. Previous research (Haigh, 

2004) has shown that these larger surge events tend to occur primarily as a result 

of large strong low- pressure systems and not local meteorological conditions. 

Figure A 1-5 shows that the peak of the surge in the majority of the 10 largest 
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events occurs around low water, again indicating that some sort of tide/surge 

interaction process appears to be occurring. 

It is clear from these plots for the extreme water level and surge events that 

the shape of the surge profile is different for each event. This is to be expected as 

weather effects are present at all time and space scales, and small changes in 

weather can lead to large changes in water levels. However, as previously 

mentioned there does appear to be a general shape that can be identified for large 

surge events. Before the surge event there is generally a small negative surge. 

Over the next 15 hours the surge increases up to a maximum level. Over the next 

15 hours the surge tends to decrease, then again increase in height slightly at 

about 10 hours after the peak, and then decrease down to zero. In total the event 

last for about 30 hours. 

For the majority of the 10 largest surge events on record, the peak of the 

surge tends to occur within ±3 hours either side of low water. The secondary small 

peak in surge appears to then occur around the next low water. This feature of the 

surge shape can also be seen in Figure A1-7, for the surge profiles experienced 

during large water level events, although on a smaller scale. The surge events 

tend to reach a peak around the time of low water before or after the extreme 

water level is experienced, again suggesting interaction between the surge and 

tide. 

In order to examine in more detail the typical shape, duration, and timing of 

the surge profile experienced during the extreme water level and surge events, the 

100 largest water-level and surge events were plotted (Figure A 1-6 and Figure A 1-

7). As before, the plots show a large variation in their surge profile, but they 

emphasize the point that extreme water level events tend to be caused by smaller, 

weaker surges. Whereas the larger strong surge events tend to occur around the 

time of low water and do not tend to lead to extreme water levels. These large 

events do appear to have a general surge shape that has duration of 

approximately 30 hours. 
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Figure A 1-5 10 highest surge events 
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Figure A 1-6 100 highest extreme water level events 

sue 

Astronomic tidal level: 

Surge level: 

Figure A1-7 100 highest extreme surge events 
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1 Texas Coastal Ocean Observation Network (TCOON) 

In 1989 the Conrad Blucher Institute for Surveying and Science (CBI) at Texas 

A&M University-Corpus Christi commenced the installation of a modern state-of­

the-art water-level measurement system along the Texas coast. The first 

measurement systems installed by CBI were intended to provide real-time water­

level and meteorological information to the City of Corpus Christi to assist local 

officials with preparations for incoming hurricanes and tropical storms. From this 

initial work, other state agencies such as the Texas General Land Office and the 

Texas Water Development Board began contracting CBI to provide similar 

information for other areas along the Texas coast. Following a Texas Legislative 

mandate in 1991, this network of water level gauges became the Texas Coastal 

Ocean Observation Network (TCOON). As a result, TCOON expanded from an 

initial three stations in Corpus Christi in 1989 to over forty stations by 1992. 

Currently the Texas Coastal Ocean Observation Network (TCOON) 

maintains 36 water-level monitoring platforms along the Texas coast including 7 

for the National Ocean Service. This network provides real-time or near real-time 

coastal measurements such as water levels, wind speeds and wind directions, 

barometric pressures as well as other variables such as dissolved oxygen, salinity, 

water currents and wave climates depending on the station. The primary use of 

the data has been to establish tidal datums, but increasingly the network has 

provided data for many other uses including the commercial shipping industry, 

recreational boaters, sailors and windsurfers, the shrimp and fishing industry, 

marine construction, and decision-makers responsible for marine safety and 

emergency evacuation in the event of an approaching hurricane. 

A distinctive feature of the TCOON network is its unique data management 

software which provides data in real-time or near real-time to its sponsors and the 

community through the World Wide Web and through automated phone services. 

The software and procedures were developed on the principle that all user 

interaction with the data management system takes place via web-based 

interfaces. Such interactions include for example site visit and maintenance 

reports and chain-of-custody records. Sponsors, scientists and other potential 

users can access all TCOON data in a variety of graphic and text-based formats 

from http://lighthouse.tamucc.edu/. The TCOON software and hardware were built 

and combined with a primary goal of reliability. The data are housed in ordinary 
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PC-base computers rather than sophisticated proprietary systems such that parts 

or whole systems can be replaced quickly if needed. The software is based on 

open source technologies such as Linux and Perl such that TCOON is not subject 

to changes in proprietary systems and has the flexibility to replace software 

components as new technologies become available or as the needs of TCOON's 

sponsors evolve. TCOON has started providing access to all its software under the 

General Public License and aims at co-developing future versions of the web­

based software and procedures. 
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%******************************************************************** 

% Copyri ght Daniel B . Prouty 2007 . Code used for reading directly 
% one year of raw data extracted from the British Oceanographic 
% Data Centre (BODC) . The time is in UTC and the metric 
% system is used fo r all measurements . The code first removes 
% t h e 1 2 comment l ines at the top of the file then creates 
% a nd intermediary file where only the data is stored with no 
% comments or titles . The data in the i n termediary file is then 
% l oaded into a matr i x . The code first determines what percentage 
% of the data i s missin g(NaN ). The code then looks for gaps and 
% spikes i n t he data . The mi ssing data is interpolated linearly 
% across the gaps and the sp i kes are smoothed linearly . In this 
% vers i on , the water level gaps are filled in by interpolating 
% linear ly the water level difference . 
%******************************************************************** 
tic; 
clear; 
fprintf( ' ------------- - - - - Starting Program - ------- - ----------- \n ' ); 

% ! Remember to set all mi ssing da t a to ' 9999 ' i . e . both NA data and RM 
data 

Station = ' WIC '; 
Year ' 200 1 ' ; 

Year a = strcat(Year, ' _A_ '); 
format 

% Adds ' A ' to match new file name 

Path = strcat( ' C:\AAA\ ',Station, ' \ '); 
FileName = strcat(Year_a,Station); 
InputFileName = strcat(FileName); 
OutputFileName = strcat(FileName, ' NN '); 
DataAnalysisFileName = strcat(Path,FileName, ' Analysis . txt '); 
LoadFileName = strcat (Path, InputFileName, '. txt '); 
SaveFileName = strcat(Path,OutputFileName,' . txt '); 
TempFile = ' TempFi l e ' ; 
FID1 = fopen(LoadFileName, ' rt ' ); 
Comment= ' # ' ; 
StationNumber = 999; 

ONE= ' END ' ; 
% ****************************************************** 

% Transfers the actual data to a temporary working file 
% ****************************************************** 

FID1 = fopen(LoadFileName, ' rt ' ); % Open Input fi l e 
[YearDay, Time, pwl, res, offswl, harmwl] =textread (LoadFileName, ' %d+ %d %d 
%d %d %d ', ' headerlines ',l); 
YearOne = [YearDay, Time, pwl, res, offswl , harmwl]; 
Status = fclose(FID1); % Close Input file 
fprintf( ' - ------ - -- - - - - Data Loaded into Matrix - - - --------- - - -- \n '); 
% ********************************************************************* 

% Analyzes each data stream check for missing data and data gaps and 
% prints a report 
% ********************************************************************* 

FID4 = fopen(DataAnalysisFileName, ' wt '); 
DataSetLength = size(Time); 
%Id = [ ' YearDate '; ' Time 
, ] ; 

%Identifiers = cellstr(Id); 
for i=1:6 

Identifiers(i, :)=' 

, . , ' pwl 

I. , 

, . , ' res , . , ' offswl , . , ' harwl 



end 
Identifiers (1, :)= ' YearDate ' ; 
Identifiers (2, :) = ' Time ' ; 
Identifiers (3, :)= ' pwl ' ; 
Identifiers (4, :)= ' res ' ; 
Identifiers (5, :)= ' offswl ' ; 
Identifiers (6, :)= ' harmwl ' ; 

fprintf(FID4, ' Data originating from BODC raw data file : %s 
\n\n ' ,InputFileName); 
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fprintf(FID4, ' Number of data series read from the raw data file including 
date and hour time series : %i \n ' ,DataSetLength(l)); 
fprintf(FID4, ' Name of data series read from the raw data file : \n ' ); 
f or i =2:6 

e nd 

ColumnHeader = Identifiers(i); 
CH = char(ColumnHeader); 
fprintf(FID4, ' %s\n ' ,Identifiers(i)); 

fprintf(FID4, ' \nNumber of data points per series : %i 
\n ' ,DataSetLength(l)); 
fprintf(FID4, ' Representing %i days of data\n ' ,DataSetLength(1) /2 4); 
fprintf(FID4, ' Starting time of the data series : Day %d @ 
%d\n ' ,YearDay(l),Time(l)); 
fprintf(FID4, ' Ending time of the data series : Day %d @ 
%d\n ' ,YearDay(size(YearDay)),Time(size(Time))); 

% Analyzes the missing data for each data series starting with the 
percentage of missing data 

for i = 1:6 

end 

Flagged(i)=O; 
LongestFlagged(i) =0; 
ConsecutiveFlagged(i)=O; 
LongestFlaggedStart(i)=O; 
LongestFlaggedEnd(i) =0; 
DataSetStatus(i)=O; 

for i 3:6 

end 

for j = l:DataSetLength 

end 

i f YearOne(j,i) == 9999 
Flagged(i)=Flagged(i)+l; 

end 

ConsecutiveFlagged (i) =ConsecutiveFlagged(i) +1; 
if j == DataSetLength 

else 

end 

if ConsecutiveFlagged(i) > LongestFlagged(i) 
LongestFlagged(i) = ConsecutiveFlagged(i); 
LongestFlaggedStart(i) = j-LongestFlagged(i)+l; 
LongestFlaggedEnd(i) = j; 

end 

i f YearOne(j+1,i) -= 9999 

end 

if ConsecutiveFlagged(i) > LongestFlagged(i) 
LongestFlagged(i) = ConsecutiveFlagged(i); 
LongestFlaggedStart(i) = j-LongestFlagged(i)+l; 
LongestFlaggedEnd(i) = j; 

end 
ConsecutiveFlagged(i) = 0; 
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f o r i = 3:6 
fprintf(FID4, ' Miss i ng data for t i me ser i es " i s "~: %i data points or 

%5 . 2g 
p ercen t \ n ' ,Identifiers(i, :),Flagged(i),100*(Flagged(i) / DataSetLe ngth(1))) 

end 

i f (100* (Flagged(i) / DataSetLength(1))) > 10 
DataSetStatus(i)=O; 

else 
DataSetStatus(i)=1; 

end 

% Identifies t h e longest missing data set for the time series 

fprintf(FID4, ' \ n ' ); 
for i = 3:6 

fprintf(FID4, ' Lon ges t gap for t ime ser i es " %s ": %i data points 
\n ' ,Identifiers(i, :),LongestFlagged(i)); 

fprintf(FID4, ' Star t i ng a t d a t a po in t %i and endi ng at data point 
%i \ n ', LongestFlaggedStart(i),LongestFlaggedEnd(i)); 
end 

% ******************************************************************* 

% Interpolates linearly accross the data gaps for the relevant series 
% (not for data sets with more than 10 % of the data mi ssing). Also 
% builds a time series of the i nterpolated points . 
% ******************************************************************* 

for j = l:DataSetLength(1) 
if pwl(j) == 9999 

GapStart=j; 
whi l e pwl(j) 9999 & j<=DataSetLength(1) 

j =j +1; 
end 
i f j<DataSetLength(1) 

GapEnd=j -1; 
slope=(offswl(GapEnd+1)-offswl(GapStart-1)) / (GapEnd­

GapStart+2); 

e nd 
end 

end 

for k=GapStart:GapEnd 

end 

offswl(k)=offswl (GapStart-1) + (k-GapStart+1) *slope; 
pwl(k)=harmwl(k)+offswl(k); 

% ********************************************************** 

% Computes and prints the statistitics for the haronic 
% model 
% ********************************************************** 

HarmSkill = SkillSet(harmwl,pwl,harmwl,150,300); 

SkillLabel(1, :)= ' Average Error : 
SkillLabel(2, :)= ' Average Absol u te Error : 
SkillLabel(3, :)= ' Standard Deviation of the Error : 
SkillLabel(4, :)= ' Root Mean Square of the signal : 
SkillLabel(5, :)= ' Root Mean Square Erro r : 

, . , 
, . , 
, . , 
, . , 
, . , 



SkiIILabel(6, :)= ' Normalized RMS Error : 
SkiIILabel(7, :)= ' Central Frequency (X=15 cm) : 
SkiIILabel(8, :)=' Positive Outlier Frequency (X=30 cm): 
SkiIILabel(9, :)=' Negative Outlier Frequency (X=30 cm) : 
SkiIILabel(IO, :)=' Maximum Duration of Positive Outlier (X=30 cm) : 
SkiIILabel(ll, :)= ' Maximum Duration of Negative Outlier (X=30 cm): 
SkiIILabel(12, :)= ' Worst Case Outlier Frequency (X=15 cm ) : 
SkiIILabel(13, :)= ' Worst Case Outlier Frequency (X=30 cm ): 

fprintf(FID4, ' \n\nSkills for Harmonic model for year 
%i : \n ' ,str2num(Year)); 
fprintf(FID4, ' ****************************************\n\n '); 

A3 - 4 

, . , 
, . , 
, . , 
, . , 
, . , 
, . , 
, . , 
, . , 

fprintf(FID4,' Skill Tide Tables\n' ); 
for i=1:13 

fprintf(FID4, ' %s %6 . 4f\n ' ,SkillLabel (i,:) , HarmSkil1 (i)); 
end 

status = fclose(FID4); 

% ********************************************************** 

% Saves the interpolated data sets into a NN ready data file 
% ********************************************************** 

FID5 = fopen(SaveFileName, ' wt '); 
for i=l:DataSetLength 

count = fprintf(FID5, ' %d %d %d %d 
%d\n ',YearDay(i),Time(i),pwl(i),harmwl(i),res(i)); 
end 
status = fclose(FID5); 
toc; 
plot_all V5; 
fprintf('---------------- Done I I I ----------------- \n ' ); 
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%************************************************************************ 

** 
%* Copyr i ght 2007 Daniel Prouty 
%* Th i s program performs a correlation ana l ysis using two tide gauge 
%* stat ions . The max i mum time shift used to correlate the tide 
%* stations is 24 hours (See MaxLagShift) . The program can also be 
%* used to correlate other columns of data in the same files (See 
%* note on Surgel and Surge2 ) 
% ************************************~**************** ******************* 

** 
%c l f 
Station1 = ' she ' ; 
Station2 = ' nsh ' ; 
Year = ' 1 992 ' ; 
MaxLagShift = 24 ; 

% Clear active figure (comment out to over- plot ) 
% Primary Stat i on 
% Secondary station 
% Testing year 
% The Maximum time offset to use +/ -

fname1 
fname2 

strcat( ' C : \AAA\ ' ,Station1 , ' \ ' , Year , ' _A_ ' ,Station1, ' NN . t xt ' ); 
strcat(' C: \AAA\ ' ,Station2 , ' \ ' ,Year , ' _A_ ' ,Station2 , ' NN . txt '); 

A load (fname1); 
B load (fname2 ); 

Surge1 A ( : ,5) ; 

Surge2 B ( : ,5) ; 

% Load 
% Load 

%Note use 3 
%residua l s 
%Note use 3 
%residu a l s 

Primary data 
Secondary data 

for Total water - levels and 5 for surge 

for Total water- l evels and 5 for surge 

[c,lags] = xcorr (Surge1 ,Surge2,MaxLagShift , ' coeff ' ); % Run Correlation 
% and Normalize to 
% 1 . 0 

%[c , lags] = xcorr (Surge1 , Surge2 , MaxLagShift ); 

[Y, I] = max (c) ; % Find maximum correlation 
c lc; % clear console 

% Run Correlation 
% only 

fprintf( ' The best lag period = %d\n ' ,I-MaxLagShift ); % print lag period 
fprintf(' The Cross - Covar i ance at peak = %3.3f\n ' ,Y); % print corr value 

figure(100); % start new fig 
Result = num2str(I-MaxLagShift); % Convert result to string 
plot(lags,c); % Plot lag Period 
hold on ; % Keep graph and plot more 
plot (I - MaxLagShift - 1, Y, ' . " ' MarkerFac eColo r ' , ' k ' ); % Plot Marker on 

% max 
text(I-MaxLagShift - 1, Y, Result); % Plot Max text 
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%********************************************************************** 

%* Copyright 2007 Daniel Prouty 
%* This program compares CS3/ANN models and requires Matlab export 
%* f iles from the ANN program. This program also requires POL Archived 
%* data sets . 
%* This program compares CS3 and CS3 model with bias (at T+OO) 
%* correct i on to The ANN model . This program extracts storms with 
%* surges greater than the value given by PEAK and compares common 
%* values dependi ng on the forecast interval . Th i s program also 
%* computes model performances for yearly intervals also . 
%* 
%********************************************************************** 

% PEAK Storm surge he i ght for storm selection 
PEAK = 1. 0; 
% f Forecast interval +1 (since data starts at T+OO) 
f = 1 + 1; 

%------------------

%load 1 hour ANN model forcast 
load 1 2002 SHE IMM.mat 

%conver to metres 
Data = (new_matrix') / 1000; 

%Surge = water level - astronomica l tides 
Mann = Data(:,3) - Data(:,l); 
Measured = Data(:,2) - Data(:,l); 
%------------------

%------------------

%load in POL Data 
Mpol = load( ' sheerness/JAN DEC 02 . txt ') ; 
[a,b] = size(Mpol); 

Mpol = Mpol'; 
Mpol2 = reshape (Mpol, a*b, 1); 
Ie = length(MpoI2); 

%Just want to compare 1 hour forecast 
%------------------

%------------------

1 hour forecasts %Just 
tsl 
ts2 = 

0:1: (Ie-I); % TIME STAMP for using every value 
(f-l) :6:le; % TIME STAMP for using every 6th value 

%subset 
Mann_6 = Mann(f:6:le); %subset for ANN - Measured 
Mpo12_6 = MpoI2(f:6:le); %subset for POL - Measured 
Measured_6 = Measured(f:6:le); %subset for every 6th measured 
POL_Zero Forecast = MpoI 2 (1:6:le); %POL value at zero forecast 
************* 

Mea s ured at Zero = Measured(1:6:le); 
************* 

%Actual measurement at zero 

Bias = Measured at Zero - POL Zero Forecast %Bias 
*********************************** 
%------------------

%plot data 

figure(l); 
subplot(2,1,1) 
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plot(ts2, Mann_6, ' sr '); 
hold on 
plot(ts2, Mpo12_6, ' ob ' ); 
plot (ts1, Measured (1: le), '-+k '); 
grid 
xlabel ( , Hours ' ) ; 
ylabel( ' Surge Elevation (m) ') 
ti tle ( ' One - Hour Forecast ' , ' fontweight ', ' bold' ); 
legend( ' ANN ', ' STFS ', ' Measured ') 
%Difference plo t 
subplot (2, 1,2) 
plot(ts2, Mann 6-Measured 6, '- r ' ); 
hold on 
plot(ts2 , Mpo12 6- Measured_6, '-b ' ); 
grid 
xlabel ( 'Hours ' ) ; 
ylabel(' Surge Elevation (m) ' ) 
ti tle (' All Forecast Values ' , ' fontweight ', ' bold ') ; 
legend ( ' ANN- Measured ', ' STFS - Measured ' ) 
set (gcf, ' Color ' , [1,1,1]) 
%------------------

A5 

% RMSE FOR YEAR --------------------------------------------------­
RMS ANN 1 sqrt((sum((Mann_6-Measured_6) . A2)) / (le / 6)); 
RMS POL 1 sqrt((sum((Mpo12_6-Measured_6) . A2))/(le / 6)); 
AAE ANN 1 (sum(abs(Mann_6-Measured_6)))/(le/6); 
AAE POL 1 (sum(abs(Mpo12_6-Measured_6)))/(le/6); 
AAE_POL_BIAS_CORRECTED = (sum(abs(Mpo12 6 - Measured 6 + 
Bias))) / (le/6) ; %*************** 
RMS_POL_BIAS_CORRECTED = sqrt((sum((Mpo12 6 - Measured 6 + 
Bias) . A2)) / (le/6)); %********* 
%------------------------------------------------------------------

%Central frequency computing area --------------------------------­
Atotal = 0; 
Aover = 0; 
for q = l:size(Mann 6) 

end 

if (abs(Mann_6(q)-Measured_6(q)) <=0.15) 
Atotal = Atotal +1; 

else 
Aover = Aover+1; 
end 

ANN CF = 100*(Atotal/(Atotal+Aover)); 
%-----------------------
Ptotal = 0 ; 
Pover = 0; 
for q = 1 : size(Mpo12 6) 

end 

if (abs(Mpo12_6(q)-Measured_6(q)) <=0.15) 
Ptotal = Ptotal +1; 

else 
Pover = Pover+1 ; 
end 

POL CF = 100*(Ptotal / (Ptotal+Pover)); 
%---------------------------------------- - --------------------- - ---

%------------------------------------------------------------------

% RNSE FOR STORM 

%find events greater than peak 
i = find(Measured_6 >PEAK); 

%loop th roug h each event a nd calculate RMS ' s 
f or j = l :length(i) 

2 
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ts2 SS = ts2(i(j)-6:1:i(j)+6); 

Mann SS = Mann_6(i(j)-6:1:i(j)+6); 

Mpo12 SS = Mpo1 2 6(i(j)-6:1:i(j)+6); 
BiasPol SS = (Mpo12 6(i(j)-6:1:i(j)+6)) + (Bias(i(j)-

6:1:i(j)+6)); %**************** 
Measured SS = Measured_6(i(j)-6:1:i(j)+6); 

AAE_ANN_SS(j) = (sum(abs(Mann_SS-Measured_SS)))/13; 
AAE POL SS(j) = (sum(abs(Mpo12_SS-Measured_SS)))/13; 
AAE_BiasPol SS(j) =(sum(abs(Bias Pol SS-

Measured_SS)))/13; %*************************** 
RMS_ANN_SS(j) = sqrt((sum((Mann_SS-Measured_SS) . ~2))/13 ); 

RMS POL_SS(j) = sqrt((sum((Mpo12_SS-Measured_SS) . ~2))/13 ); 

RMS_BiasPol_SS(j) =sqrt((sum((BiasPol_SS-
Measured_SS) . ~2 )) / 13) ; %********************** 

%--------------PLOT STORM +36 and - 36 HOURS-------- - ---­
subplot (2, 1, 1) 
plot (ts 2 SS , Measured_SS, 'drn ', ' markerfacecolor ', ' k '); 
%------------------------------------------------------ -

end 

subplot(2,1,1) 
plot(ts2(i), Measured_6(i), ' ok ', ' markerfacecolor ', ' k '); 
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%------------------------------------------------------------------

clc; 
fprintf(' \n\n\nOne - Hour Forecast - Yearly Stastistics' ); 
fprintf(' \nANN RMSE for I - year = %5 . 4f ',RMS_ANN_l); 
fprintf( '\nPOL RMSE for I - year = %5 . 4f ',RMS POL 1); 
fprintf(' \nPOLB RMSE for I - year = 

%5 . 4f ',RMS_POL_BIAS_CORRECTED); %********************** 
fprintf(' \nANN AAE for I - year = %5 . 4f' ,AAE_ANN_l); 
fprintf(' \nPOL AAE for I - year = %5.4f' ,AAE POL 1); 
fprintf(' \nPOLB AAE for I - year = --

%5 . 4f' ,AAE_POL_BIAS_CORRECTED); %********************** 
fprintf(' \nANN CF%% (15) for I - year %5 . 2f %% ',ANN_CF); 
fprintf(' \nPOL CF %% (15) for I - year = %5 . 2f %% ',POL CF); 
fprintf(' \n\nStorm Statistics '); -
fprintf(' \nNumber of events found> %2 . 2f meters = %d ', PEAK, length(i)); 
for j = I:length(i) 
fprintf(' \nStorm #%d RMSE for ANN %5 . 4f POL = %5.4f POLBIAS = %5 . 4f 
Storm Peak of %5 . 3fm @ %d 
Hours ',j,RMS_ANN SS(j),RMS POL_SS(j),RMS_BiasPol SS(j),Measured_6(i(j)),i 
(j) *6-5); 
end 
for j = I:length(i) 
fprintf(' \nStorm #%d AAE for ANN = %5 . 4f POL = %5.4f POLBIAS = %5.4f 
Storm Peak of %5 . 3fm @ %d 
Hours' ,j,AAE_ANN_SS(j),AAE POL_SS(j),AAE_BiasPol SS(j),Measured_6(i(j)),i 
(j)*6-5); 
end 
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Closure dates 
Year Month Day Year Month Day 
1983 2 1 2000 12 16 
1985 12 26 2001 1 10 
1987 3 29 2001 1 11 
1988 12 24 2001 2 8 
1990 2 20 2001 2 8 
1990 2 27 2001 2 9 
1990 2 28 2001 2 9 
1990 3 2 2001 2 10 
1990 9 19 2001 2 11 
1990 10 7 2001 2 12 
1992 10 25 2001 3 10 
1993 1 11 2001 3 11 
1993 1 25 2001 3 12 
1993 2 21 2001 2 13 
1993 10 13 2001 4 10 
1993 10 14 2001 9 17 
1993 10 15 2002 1 31 
1993 10 16 2002 3 1 
1993 11 14 2002 4 27 
1993 12 13 2002 11 7 
1994 1 28 2003 1 1 
1995 1 1 2003 1 2 
1995 2 1 2003 1 3 
1995 2 1 2003 1 3 
1995 2 2 2003 1 4 
1995 12 23 2003 1 4 
1996 2 19 2003 1 5 
1996 2 19 2003 1 5 
1996 2 20 2003 1 6 
1996 10 29 2003 1 6 
1998 2 28 2003 1 7 
1998 10 8 2003 1 7 
1998 11 6 2003 1 8 
1999 12 3 2003 1 8 
1999 12 25 2003 1 21 
1999 12 26 2003 1 22 
1999 12 26 2003 1 22 
1999 12 27 2003 1 23 
1999 12 27 2003 1 23 
2000 11 13 2004 2 22 
2000 12 11 2004 11 13 
2000 12 12 2005 2 13 
2000 12 13 2005 14 2 
2000 12 14 2005 4 8 
2000 12 14 2005 12 16 
2000 12 15 2005 12 17 
2000 12 15 2006 2 28 
2000 12 16 
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Abstract: 
A model based on Artificial Neural Networks (ANNs) was developed to predict 

storm surge magnitudes and arrival times at selected locations in the North Sea. 

The model predicts storm surges based on past measured water levels using one 

or more tidal stations along the North Sea. The work presented focuses on the 

application and performance of the model at the Sheerness tide station near the 

entrance of the River Thames in the United Kingdom. Model performance is 

analyzed for single station input as well as with the addition of inputs from other 

stations. These secondary stations are located at baseline distances of 337 to 

945 km from the Sheerness Station. The selection of an optimal secondary station 

location depends primarily on the forecast interval and correlates with the storm 

propagation time between the secondary and primary station. The ANN model 

performance is analyzed on a yearly basis as well as based on a set of individual 

storms to better understand the performance and the potential of the model during 

extreme events. The absolute average errors for a 3-hour prediction at 

Sheerness using Immingham as a secondary station range from 84 to 102 mm for 

the years 1990 - 2002 and the Central Frequencies of 150 mm range from 79.1 % 

to 89.9%. For the same years the absolute average error for a 12-hour prediction 

using North Shields as a secondary station range from 110 to 143 mm and the 

Central Frequencies of 150 mm range from 68.1 % to 75.9%. While training 

times for an ANN can be substantial, model application can be virtually 

instantaneous; making ANNs well suited for real-time emergency management 

situations. 
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Storm surge events are meteorologically induced water level changes, and are 

defined as the difference between measured water level and tidally predicted 

water levels (Komar 1998, Pugh 2004). These surge events are caused by 

regional differences in barometric pressure and associated wind shear on the 

water surface. Every year numerous storms enter the North Sea and effect 

Western Europe including the United Kingdom (Komar 1998). Rising sea levels, 

regional subsidence, and increasing storminess are all increasing the risk and 

impact from storm surge events. The continuing development of accurate 

predictive models is important for the safety of growing coastal communities and 

navigation. This paper investigates the use of Artificial Neural Networks (ANNs) 

as a tool to predict storm surge propagation in the North Sea. 

In the United Kingdom, several methods for predicting water levels are 

being used today. Tidal analysis is computed by harmonic analysis of previous 

water level records and is therefore primarily based on periodic astronomical 

forcings (Schureman, 1941). The method works well for large portions of the year 

but meteorological effects can significantly influence water levels and can 

introduce substantial errors in tidal predictions. These additional major forcings on 

water levels are fundamentally different in their variability with tidal influences 

being periodic, while weather forcings are fast changing, and mostly aperiodic. To 

include these additional forcings the United Kingdom's Meteorological Office have 

developed finite element models (NTSLF, 2005). These model predictions provide 

substantial improvements over harmonic forecasts but also require large amounts 

of meteorological and oceanographic data, computer time and are updated only 4 

times per day. 
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This paper investigates the potential of an alternate methodology based on 

Artificial Neural Networks (ANNs) to predict water levels and storm surges at the 

Sheerness Tide Station located at entrance of the River Thames. Sheerness is 

the primary tidal station used to help determine when to open or close the Thames 

Barrage, an important decision with a substantial economic impact. The model 

development takes advantage of the large set of observations archived by the 

National Tidal and Sea Level Facility (NTSLF) for stations along the UK coastline 

and storm propagation characteristics in the North Sea. Measurements from 

these tide stations provide information on the advancing storm. The model uses 

the non linear modeling capability of ANNs (Rumelhart et al. 1995) to predict future 

water levels at the target station. Finally this paper reports on the use of more 

complex ANNs to improve forecasting during the largest storms and studies the 

performance and robustness of the models as the size of the ANN hidden layer is 

increased. 

Review of Relevant ANN Applications 
An Artificial Neural Network (ANN) is an information processing method that is 

inspired by the way biological nervous systems, such as the human brain, process 

information (Rumelhart et al. 1995, Hecht-Nielsen 1989). The key element of this 

method is the structure of the information processing system. It is composed of a 

number of highly interconnected processing elements (neurons) working in unison 

to solve specific problems. ANNs, like people, learn by example. An ANN can be 

configured for a specific application, such as pattern recognition or data 

classification. Learning in biological systems involves adjustments to the synaptic 

connections that exist between the neurons. Artificial neural networks work in a 

similar way with the ANN parameters, weights and biases, being adjusted as part 
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of a learning process supervised or unsupervised (Hagan et al. 1996). In the past 

15 years the number of ANN applications has expanded to include environmental, 

financial and engineering problems. The use of neural networks for time series 

forecasting has been studied and proven successful for a number of cases. 

Chakraborty et al. (1992) used non-linear modeling of multivariate time series to 

predict future prices which consistently outperformed statistical models. Their 

work was shown to be quite useful in solving other problems in the fields of 

dynamical system modeling, recognition, prediction and control (Tang et al. 1991). 

Neural networks have been applied successfully to a number of coastal and 

riverine cases, such as the forecasting of physical or water quality parameters 

(Brion and Lingireddy 1999), modeling of coastal algal blooms (Recknagel et al. 

1997), and estimation of daily pH levels of rivers (Moatar et al. 1999). Neural 

networks are also increasingly used for the forecasting of flooding along rivers 

(Kim and Barros 2001) and have been incorporated into multi-model data fusion 

techniques for hydrological forecasting (See and Abrahart 2001). 

For water level modeling, Tsai and Lee (1999) used neural networks to 

predict hourly tidal levels over long durations (up to one year) using very short 

term (one day) hourly tidal record for training. Results are interesting but the lead 

time for each forecast is only one hour and has limited applicability for forecasting 

purposes (Kumar et el. 2001). This type of model may be well suited for the initial 

operation of new or temporary water level monitoring stations. In Australia, 

Makarynskyy et al. (2004) computed total water levels including both tidal and 

meteorological components as output from a single ANN. This approach required 

large ANN structures to interpret the combined astronomical and meteorological 

signals. The method may be desirable for cases when existing historical data is 
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too limited to generate accurate tidal coefficients but require complex ANN 

structures. Such models can be time consuming to train, and are susceptible to 

poor generalization, especially when training relies on relatively small data sets. 

Researchers in the Baltic Sea, (Sztobryn 2003) were looking to improve upon 

existing numerical models for the forecasting of sea levels. While their existing 

models performed well during average conditions, performance was poor during 

storm events. Four different ANN models were tested using 24 hours of previous 

sea level values as well as 6 hour forecasts of wind speed and direction. The 

ANN models provided significant improvement over previous models during 

storms. Cox et al. (2002) modeled the tidal and weather induced water level 

components separately and showed that ANNs provided an effective approach to 

model the non-linear relationship between weather induced forcings and water 

levels. This work will follows the same methodology of Cox et al. (2002) and 

model tidally and weather induced water level changes separately. 

In a related application along the south shore of Long Island, New York 

Huang et al. (2003) developed a regional neural network to predict water levels at 

a temporary location based on water levels measured at permanent National 

Oceanic and Atmospheric Administration (NOAA) tidal stations located about 60 

km-100 km away from the inlets. The model was developed to re-construct long-

term historic water levels using remote temporary sea level measurement stations 

and provided very good results for both tidal and non-tidal historical water levels. 

The present work is following a similar approach but focuses on predictive 

modeling with an emphasis on storm events and deals with larger distances of 337 

km to 945 km between project stations. 
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The structure and training methodology of ANNs for the modeling of water 

levels is also a significant concern of this work. Researchers (Rajasekaran et aI., 

2005) compared the accuracy of sequential learning neural networks and 

functional networks for tide prediction along the coast of Taiwan based on short 

historical data sets (30 days). Sequential learning neural networks allow the 

researcher to determine the optimum number of hidden neurons as part of the 

training process by adding neurons sequentially one at a time and minimizing the 

error. The addition of neurons continues until a minimum error is reached. For 

both methodologies (sequential and functional networks) the predicted tidal levels 

correlated well with the measured tidal levels. Lee (2004) also showed that small 

ANN structures, using 1 neuron in the hidden layer had the best performance for 

the forecast of water levels. Similarly Tissot et al. (2003) showed that very simple 

ANN structures consisting of one hidden layer with one or two hidden neurons, led 

to significant improvements over harmonic forecasts for intervals up to 48 hours in 

the Gulf of Mexico. These studies also showed that the choice of transfer 

functions did not lead to significant changes in performance (Tissot et al. 2003) 

and showed promising results for the prediction of water levels during tropical 

storms (Tissot et aI., 2004). This project uses small ANN structures as described 

by Tissot et al. (2004) and Rajasekaran et al. (2005), and further explores the 

potential of more complex ANN structures to model large storm events. Also, the 

tidal regimes of the North Sea are very different from locations examined in other 

works, including the Gulf of Mexico and the Taiwan Strait. As described in 

subsequent sections the characteristics of storm propagation are also unique to 

the North Sea. The models described in this work were designed to take 

advantage of the local dynamics. 
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Storm Propagation and Storm Surge Forecasting in the UK 
Most large storms affecting the North Sea originate in the North Atlantic Ocean 

and move southward affecting locations along the coastlines of both the UK and 

Continental Europe. As these low-pressure systems move, the associated storm 

surge (water level difference between the measured and harmonically predicted 

water level) moves with them. These surges can cause large scale flooding and 

numerous casualties, as in the 1953 storm (Met Office, 2003) in the United 

Kingdom and Europe. After the floods of 1953, the UK government set up a 

committee, led by Lord Waverly to investigate and report on the event. The 

Committee recommended that a national flood warning system be established. 

This resulted in the creation of the Storm Tide Warning Service, today known as 

the Storm Tide Forecasting Service (STFS). The Tide Gauge Inspectorate at the 

Proud man Oceanographic Laboratories (POL) United Kingdom is responsible for 

maintaining the network of gauges, and archiving the data (NTSLF, 2005). 

A comparison of harmonically predicted water levels, and measured water 

levels are presented in Fig. 1 for a 1993 storm event recorded at the Sheerness 

Station. The surge component or the difference between measured and 

harmonically predicted water levels is also presented at the bottom of Fig. 1. A 

storm surge peak value of 3000 mm occurred approximately 3 hours before the 

high tide, resulting in an overall maximum water level of only 1500 mm above peak 

harmonic water levels for the tidal cycle. 

Fig. 2 Illustrates the progression of a December 1990 storm and its 

associated storm surge recorded at four tide stations: Wick, North Shields, 

Immingham and Sheerness. At Wick (the most northerly station) the peak storm 

surge is 300 mm above predicted harmonic water level. As the storm moves 

southward, the maximum surge levels at North Shields and Immingham occur 
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respectively 6 hours and 8 hours later, and 1200 mm and 1700 mm above the 

harmonic predicted water level. The storm surge reaches the Sheerness station 

approximately 16 hours later with a peak elevation of 2100 mm above predicted 

harmonic water level. The growing size of the storm surge can be explained by a 

combination of the North Sea bathymetry relative to the storm path, and 

meteorological influences. When moving southward, the relative depth of the 

North Sea shallows, and its width (EastlWest) narrows. As a consequence, storm 

surge height increases to compensate for the decreased volume of the basin (this 

is also exacerbated by deepening low pressure from a strengthening storm). 

Storm surge propagation along the coast is illustrated for several other cases in 

Fig. 3. These figures were created by determining the peak water levels at each 

station, then subtracting the peak water level height at Wick (giving the relative 

change in storm surge elevation). As can be seen from Fig. 3a, the time lag in 

storm surge, as well as the sizes of the storm surges at each location (Fig. 3b), are 

relatively consistent between storms. The development of the ANN models is in 

large part premised on taking advantage of the relatively consistent storm 

characteristics and time delay between the storm surges at the northern stations 

as compared to the surge at the targeted Sheerness station. 

Artificial Neural Network Modeling of Storm Surges 
To better understand the behavior and potential of ANN models for storm surge 

predictions, three suites of experiments were conducted. The first suite of 

experiments dealt with the selection of a training year. Tests were run to 

determine the affect on performance of an ANN when changing the size and 

selection of data sets used for training. The second suite of experiments is 

concerned with determining the optimal design of a neural network for the 



Appendix 7 - Paper as submitted for review ASCE Journal of 
Waterway, Port, Coastal, and Ocean Engineering. 
(December 2006) 

A7 - 10 

prediction of water levels and the performance of the resulting model as compared 

to other standard models. The third suite of experiments focuses on ANN 

performance and in particular how varying the structure of an ANN impact upon 

the robustness and storm performance of the model. Finally an engineering 

example is presented, demonstrating ANN application using optimal configurations 

found in the previous experiments. 

For all experiments, the ANN models were developed, trained, and tested 

within the MATLAB R13 computational environment and the related Neural 

Network Toolbox (The MathWorks, Inc., 2002). The computer used was a 3.0 GHz 

Pentium 4 PC running Windows XP. The models were trained using the 

Levenberg-Marquardt back-propagation algorithm as implemented within the 

MATLAB Neural Network Toolbox. The training was conducted by selecting at 

least one full year of water levels and by assembling input vectors, each consisting 

of a time series of previous storm surge levels, i.e. the difference between water 

level measurements and harmonically predicted water levels, from one or more 

tide stations. Weights and biases were randomly assigned at the beginning of 

each training session and their values were updated during each iteration such 

that the error between ANN output and target (or observed) is progressively 

minimized. Training times varied between a few minutes and several hours 

depending on the size of the ANN. Although training times can be lengthy, it 

should be emphasized that for real-time applications, generating water level 

forecasts is a sub-second process. Once the ANN models are trained, they are 

ideally suited for streamed forecasting (an automatically generated, real-time 

forecast based on streaming data). 
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The performances of the models in this work are assessed based on criteria 

used by NOAA for the development and implementation of operational nowcast 

and forecast systems (NOAA, 1999). A single forecasting error, or ei is defined as 

the difference between the predicted value Pi and the observed value, ri or ei = Pr 

n. The models are assessed by averaging the individual errors over the full data 

sets, often one year of water level measurements and forecasts. The statistical 

parameters used to evaluate the models performance for this paper are the 

Average Absolute Error (AAE) between predictions and measurements and the 

Central Frequency (CF) of 150 mm. The Central Frequency (CF) is the 

percentage of predictions that are within 150 mm of the measured water levels. 

The 150 mm selected for the Central Frequency (CF) measure is the requirement 

typically used by NOAA and is based on NOAA's estimates of pilots' needs for 

under keel clearance value (NOAA 1999). In the UK the Storm Tide Forecasting 

Service (STFS) model performance is measured by a similar method, but is called 

a "skill measure". This is similar to the CF described by NOAA, but uses a less 

strict value of 200 mm. This paper will use the NOAA AAE and CF (150 mm) for 

performance analysis. 

The overall impact of the storms and the differences in storm impact at the 

different study stations can be observed in an analysis of the yearly performance 

of the tide tables presented in Table 1. In Table 1, the AAE of the harmonic 

prediction is compared with the measured water levels and the CF (150 mm) for 

the tide tables with respect to the measured water levels. The lower AAE at Wick 

is due to its proximity to deep water compared to Sheerness (Pugh, 2004). The 

high AAE at Sheerness provides a large target for the ANN model to improve 

upon. Table 1 also shows the completeness and availability of water level data for 
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the project stations. While the data is of excellent quality with less than 3% 

missing for most years, gaps must be removed or filled prior to ANN modeling as 

ANNs typically have difficulties handling gaps (Agapkin et al. 2003). The gaps 

were filled by adding to the harmonic prediction a linearly interpolated surge 

component of the water levels. The linear interpolation was computed based on 

the surge component of the water level on each side of the gap. 

Tissot et al. (2001) have suggested tidal and weather components should 

be modeled separately, the former using harmonic models, the later using ANN. 

This work follows that suggested principle. For this work, the computation of the 

harmonic component was based on the United States National Ocean Service 

(NOS) model. The computations followed the National Oceanic and Atmospheric 

Administration (NOAA) standards as described by Schureman (1941). The 

harmonic analysis was implemented with Harman/Harmpred (Mostella et aI., 

2002), a web based harmonic analysis program. The data sets were obtained on-

line through the National Tidal and Sea Level Facility (NTSLF), with the original 

data collected by the National Tide Gauge Network, supported by the Proud man 

Oceanographic Laboratory (POL). 

Experiment Suite 1: Model performance varying training data 
The first part of Experiment Suite 1, Experiment 1.1, concentrates on how the 

training year is selected and on the impact of the training set length on ANN 

performance. In Experiment 1.2, input to the ANN models was constructed by 

using data from a single primary station, while varying the number of previous 

water level measurements used for input from 1 to 48 hours. For Experiment 1.3 

additional previous water levels from a secondary station were added. The 

numbers of previous water level measurements used at both the primary and 
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secondary station were varied from 1 to 48 hours. The focus of Experiment 1.4 

was to explore the changes in model performance while selecting secondary 

stations at different locations along the UK North Sea coastline. 

Experiment 1.1 Selection of training year 

A schematic of a typical ANN model used for this study is presented in Fig. 4. The 

structure used for the first suite of experiments is a two layer ANN, using one 

output neuron, one hidden neuron. The optimum ANN topology including number 

of hidden neurons will be discussed as part of the second suite of experiments. A 

full year was selected as the minimum data set length for the training of the ANNs 

to include seasonal variations of water levels. Testing was performed to evaluate 

the importance of the selection of a particular training year including the possible 

impact of year to year variability in the frequency and magnitude of storms. 

Testing was also performed to assess potential improvements when including 

longer training periods. A series of basic [1,1] models making 3-hour predictions 

were successively trained, using each year of water levels at the Sheerness 

station from 1990 to 1999 with an input consisting of 48 hours of previous water 

levels. For each of the training year the model was then tested on all other years. 

The early stopping method used to prevent over-training in Experiment Suite 1 is 

to stop training when a preset error level is reached (1 mm). The results are 

displayed in Table 2. For each training year, the average absolute errors over all 

testing years were computed. These errors were all within a 9 mm range, varying 

from 146 mm (1996) to 155 mm (1991). For all test cases the 1997 training year 

led to the lowest AAE. 

Experiment 1.2 Varying training data set lengths 
The lengths of the training sets were varied from 1 year (1990), 3 years (1990-

1992), 5 years (1990-1994), and 10 years (1990-1999). All ANNs were trained 
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using 48 hours of previous water levels. Models were then tested on the 2001 

data set. Although the AAE decreased from 153 mm (1 year) to 146 mm (10 

years), virtually the same average absolute error of 146 mm for year 2001 can 

also be obtained by training on the year 1997 data set alone. A substantial 

disadvantage of using a large training set is that computational time increases 

from 20 minutes (one-year data set) to 20 hours (10 year data set) for the 

computer used for this study. Based on these results, training was conducted 

using a 1 year data set (1997), for the remainder of the study. 

Experiment Suite 2: Model performance varying input parameters 

Experiment 2.1 Single-Station ANN 
The ANN was first trained using Sheerness as the only (or primary) station. The 

forecast time periods used were: 3, 6, 12 and 24 hours. The number of previous 

water levels included during training varied, using 1, 3, 6, 12, 24, 36, and 48 hours 

for each forecast period. No secondary station was used in this experiment. Fig. 

5 shows changes in ANN performance for a 1x1 ANN trained for various 

forecasting times. The models were trained on the 1997 data set, and tested on 

the 1999 data set. 

Model improvement is the largest for the 3-hour forecasts. When 

increasing the number of previous water level measurements in the input from 1 to 

24 hours, the AAE over the testing set decreases from 170 mm to 109 mm an 

improvement of 61 mm. The improvements are modest for 6 and 12-hour 

forecasts with a performance improvement of 39 mm and 18 mm respectively. For 

the 24-hour forecasts, only 13 mm of improvement is observed. In all cases, very 

little improvement is found when including more than 24 hours of previous water 

level measurements from the primary station, indicating that little additional 

information is included in this "older data". 
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For this experiment, additional data from a second water level measuring station is 

included in the ANN training set. This secondary station, is located north of the 

primary station (a direction towards most approaching North Sea storms), and 

provides the ANN with additional information of a storm's presence before it can 

be measured at the primary station. The ANNs were trained on the 1997 data set, 

tested using the 1999 data set. 

In this experiment the number of previous measurements used for the 

primary station (Sheerness) is maintained constant at 24-hours, while the number 

of previous measurements from the secondary station (Immingham), and is 

incremented from 1 to 24 hours. Results are presented in Fig. 6. For short 

forecast intervals (3-6 hours) the AAE decreases significantly when increasing the 

length of the secondary station input time series. In comparison the best 

performance of the previous ANNs (from Experiment 2.1) using only one station as 

input, with the 3-hour forecasts using two stations, the AAE decreases from 115 

mm to 84 mm (with 24 hours of previous water level measurements from both 

stations), and the 6-hour forecasts improving from 141 mm to 96 mm. The 12-

hour and 24-hour forecasts show little improvement when including information 

from Immingham as a secondary station. This result is not surprising given that 

storm surge propagation time from the Immingham to Sheerness is approximately 

5 to 7 hours. For a 12-hour and 24-hour forecast, the storm surge has yet to reach 

the Immingham station and therefore the data from Immingham is of little help for 

the forecast of the upcoming Sheerness storm surge. 

Experiment 2.3 Two-station ANN, varying secondary location 
The performance of the ANN is analyzed by varying the location of the secondary 

station. Three secondary stations Immingham, North Shields and Wick are 
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selected. The stations are respectively 337 km, 510 km and 945 km north of 

Sheerness. The results are shown in Fig. 7 for each forecast interval. For each 

test, 24 hours of secondary station data was used, and the number of 

measurements used from the primary station varied from 1 to 48 hours. For a 3-

hour or 6-hour forecast at Sheerness, Immingham (337 km north) was the best 

choice for a secondary station (Fig. 7a and 7b), as it produced the lowest ME. 

For a 12-hour forecast at Sheerness North Shields (510 km North) was the best 

choice for a secondary station (Fig. 7c). For a 24-hour forecast, Wick (945 km 

North) performed the best, although only marginally better than using no 

secondary station (Fig 7d). 

The effectiveness of a secondary station location is determined by its 

proximity to the primary station. The selection of the secondary station should be 

based on the forecast interval and its distance from the primary station. This 

effective range varies with the forecast interval. For example, in Fig. 7c when 

using Immingham for a 12-hour forecast, the ME is 150 mm, this error drops to 

130 mm when switching the secondary station to North Shields. For a secondary 

station to be effective in predicting a storm surge event, it must provide some 

information about the storms existence at the time of the forecast. With the 

addition of the storm's information (a recorded increase in surge height) from the 

secondary station, this secondary data set can then be used by the ANN to help 

predict the surge height and arrival time at the primary station. The optimal 

secondary station location is one which its distance from the primary is the same 

as what a typical storm would travel during the forecast interval. 
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Experiment Suite 3: ANN topology and performance 
In this suite of experiments we investigate how model performance is affected by 

changes in ANN topology. While the performance is tracked for both yearly 

averages and during storms, the discussions will focus primarily on the storm 

performance because of its importance for safety and commerce. Experiment 3.1 

varies the ANN structure size, by changing the number of hidden neurons used. 

Experiment 3.2 tests the robustness (or repeatability) of the ANN model. For all 

experiments in Suite 3, Sheerness is used as the primary station, and Immingham 

as the secondary station. The training year used is 1997, testing year 1993, and 

validation year 1999. 24-hours of previous water level measurements are used for 

training for each station. During initial runs of Experiment 3, models that used 

more than 5 hidden neurons experienced overtraining problems, causing large 

variations in predictions. Because of this, verification vectors were used for all 

Suite 3 experiments. 

Experiment 3.1: ANN performance varying structure size 

In this experiment, the variability of ANN models with different number of hidden 

neurons was determined. 3-hour ANN forecasts were calculated for each of the 

following size models: 1,2,5,10,20, and 50 hidden neurons. Fig 8 showing ANN's 

performance varying the number of hidden neurons used. The increase in the 

number of hidden neurons leads to a better maximum storm surge prediction than 

a [1,1] ANN structure (1 hidden neuron, 1 output neuron). However the use of 10 

or more hidden neurons also leads to increased noise and variability in the 

predictions, primarily during storm events 
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The tests performed for experiment 3.1 were repeated 20 times with random 

starting values for the weights and biases. Fig. 9 shows the results of four ANN 

test runs using the same initial starting parameters, and illustrates visually, the 

variability of individual ANN forecasts. The variability arises from Matlab's 

Levenberg Marquart algorithm, which assigns random values when initializing 

weights and biases during training. This variability was found to only be significant 

when using larger ANNs (greater than 5 hidden neurons). 

The results of these experiments show that ANN topology can have a 

considerable impact on storm performance. While very little change is observed 

for the yearly averages, significant differences are observed during short-term 

evaluation of storm events. The performance of different size ANNs are further 

illustrated in Fig. 10. Small ANNs have the best average performances, but 

overall the best performances are reached for individual instances of large ANNs. 

However the repeatability and variability of large ANN predictions during storms is 

a concern. The error bars in the figure 10 illustrate the range of AAE and CF 

obtained for the 20 runs for each case using 1, 2, 5, 10, 20, and 50 hidden 

neurons. The average performance decreases (increase in the average AAE and 

decrease in the average CF(150mm)) when increasing the number of hidden 

neurons. The performance range of the predictions also increases significantly 

with the number of hidden neurons. Based on this experiment, selecting smaller 

ANNs and in particular [1,1] ANNs leads on to better average performance during 

the selected storm. However the best performance based on both AAE and CF 

was obtained for one of the [10,1] models and at least one of the implementations 
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of each of the larger models had a performance better or equivalent to the small 

[1,1] model. 

Engineering Application - Model performance during storm 
events 
The most important use of the ANN model in this project is the forecast of water 

levels and peak timing during a storm event. This section uses the best model 

developed in the previous sections to demonstrate an ANN application in storm 

forecasting. The largest storm event of the Sheerness data set for years 1990-

2003 was selected as an example (Feb 21, 1993). Fig. 11 Shows comparison of 

measured water levels and the 3-hour ANN forecast. During the 72-hour storm 

window, the maximum residual of the ANN forecast was 1004 mm; which occurred 

approximately 3-hours before high tide. This was also the time of maximum storm 

surge which measured 3041 mm. The ANN forecast lagged behind the measured 

water levels during the flood portion of tidal-cycle and essentially matched the 

measured water levels during the ebb tide. As the storm surge peak approached, 

the ANN forecast soon reduced this error to only 72 mm during the water level 

maximum, and matched the storm's arrival time precisely. 

Conclusion 
The United Kingdom coastline provides a data-rich location for testing and training 

ANNs in the North Sea. Numerous long-term water level measuring stations are 

available on the North Sea coastline. This large data set enables ANNs to be 

trained and optimized for many different forecast intervals and locations. The UK's 

North Sea coastline is ideally suited for using ANN applications to predict storm 

surge heights and arrival times. Large North Sea storms events normally originate 

in the North Atlantic then turn into the North Sea and propagate southward. The 

long linear progression of tidal stations along the UK coastline allows data to be 
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gathered during many parts of a storm's lifetime. Typically, Large North Sea 

storms move parallel to or at low angles with the coastline. This combination of 

regional coastal orientation, typical North Sea storm tracks, and high density of 

tidal measuring stations allows the use of secondary station data to provide a 

significant improvement in short term forecasts (3-12 hours). 

Tests using North Sea data indicate that increasing the size of the training 

data set from 1 to 10 years increases prediction accuracy, but can significantly 

increase training times. Tests also indicate that although using more previous 

water-level measurements when training ANNs increases the accuracy of 

forecasts, little improvement is found when using more than 24 hours. The 

addition of secondary stations can significantly increase forecast accuracy, but the 

selection of a secondary station is very important in optimization of an ANN 

forecast. Secondary stations must be selected depending on the forecast interval, 

and based on the range to the primary station. The optimal secondary station 

location is one whose distance is approximately the same distance from the 

primary station that a typical storm would traverse during the forecasting interval. 

Future work needs to be done to test the use of more than two stations. 

When restricting analysis to an individual storm event (72-hours), this work 

shows that on average, small ANNs (1-2 neurons in the hidden layer) perform 

better than larger ANNs. The use of large ANNs (10 or more neurons in the 

hidden layer) can provide more accuracy (during an individual training event), but 

with an increase in variability. This variability can be significant, and on average, 

large networks do not perform as well as small networks. Ongoing work is testing 

techniques such as ensemble forecasting, where the predictive output of several 
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large ANNs are combined, and variability "averaged out" to better predict storm 

surge peak heights while reducing error overall. 

ANNs can provide significant forecast accuracy at new installations where 

archived data is in the order of 1-year in size. This project has shown that little 

difference is found in which year is selected for training of an ANN. Although 

differences of 40 mm were found in performances for yearly averages of ANN's, 

any year can be used to obtain acceptable results. Remarkably, this includes 

events beyond the range of the training data set. For example, in this paper the 

ANN was able to forecast a 3 m storm surge (a 1/100 year storm event) within 

0.1 m after using a training year data set with a maximum storm surge of only 

1.2m. Normally using standard statistical methods this would not be possible 

without a much larger data set. The ANN is able to (with the help of a secondary 

station) scale measurements beyond what it is trained on. 
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Table 1. Tide station availability statistics and performance of harmonic predictions for years 1990 -
2000. 

Wick North Shields Immingham Sheerness 

Central AAE % Data Central AAE % Data Central AAE % Data Central AAE % Data 
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Avail- Freq % (mm) 

Avail- Freq % 
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Avail- Freq % (mm) 
Avail-

(150 mm) able (150 mm) able (150 mm) able (150 mm) able 

1990 59.9 154 99 67.8 135 95 59.3 167 100 49.6 205 100 

1991 I 61.7 145 100 61.0 145 92 I 57.7 163 100 46.9 202 100 

1992 

I 
66.6 132 98 I 68.8 124 100 

I 
59.6 154 100 51.0 189 100 

1993 66.4 130 100 I 52.8 154 78 59.1 167 98 51.4 198 100 
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Table 2. Avera e Absolute Error mm 
Trainin Year 

1990199119921993199419951996199719981999 
1990 170 165 169 166 167 172 166 172 176 
1991 159 150 149 148 150 148 150 162 170 
1992 156 151 153 150 152 153 150 159 163 

L... 1993 1164 160 158 154 156 158 154 163 168 co 
Q) 1994 1156 154 152 149 148 149 148 155 160 >-- 1995 157 159 155 153 152 154 152 157 161 CJ) 
Q) 

1996 149 142 143 139 137 138 137 145 151 r 
1997 142 143 139 137 135 136 134 139 143 
1998 157 162 159 153 152 152 150 148 148 
1999 159 168 164 158 156 156 155 152 149 

Avera e 153 155 153 148 147 148 147 146 148 151 
Rank 8 10 9 6 3 4 2 1 5 7 
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