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The 21st century has seen a boom of the application of individual-based models for 

the simulation of infectious disease transmission. How to consider the contact patterns 

and spatial effects at the individual level are two of the key questions. Considering the 

contact patterns and spatial effects, ISTAM (Individual space-time activity-based 

model) was designed and developed. The model is based on the integration of an 

individual-based model and GIS under the framework of time geography. ISTAM is a 

bottom-up model in which the transmission network is built on the physical contacts 

between individuals at a fine space-time scale. At this scale, human social behaviors, 

the environment's physical conditions and specific infectious disease's transmission 

modes are considered. The two-level structure of ISTAM (between-AB and 

within-AB levels) makes the model flexible to be applied to different circumstances. 

At the within-AB level, raster space AB simulation, vector space AB simulation and 

role-based AB simulation were designed and applied to different application cases. 

Activity bundle (AB) simulation is a method to obtain a specific contact network 

(specific to target infectious disease) from the space-time dynamics of individuals at 

fine scales constrained by both the individuals' social activity and the space's physical 

condition. Parameters of raster space AB were explored. The human contact network, 

a by-product during the simulation, was used for model calibration and validation. 

ISTAM was applied to simulate hypothetical influenza outbreaks in the campus of the 

University of Southampton and the city of Eemnes (the Netherlands), respectively. 

Different control measures were tested. The results show that the model behavior is 

approximately consistent with expectations. By the simulation of ISTAM, simulated 

data can be accumulated at micro-level and aggregated to several different higher 

levels. This can be used for the model validation and calibration purposes. Also 

further analyses can be based on these simulated data. 
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Chapter 1 

Introduction 

1.1 Background of this research 

To predict the future is very hard, even for Lord Kelvin (1824-1907). In 1900, some of 

his words in his lecture titled "Nineteenth Century Clouds over the Dynamical Theory of 

Heat and Light" to the Royal Institution of Great Britain may seem funny now: "There 

is nothing new to be discovered in physics today. All that remains is more and more 

precise measurement". However, this is probably unfair, since the two dark clouds (the 

problem of the ether and the problem of specific heats) predicted by him proved to be 

so dark that they were beyond his imagination (Kleppner 1998). In the middle of the 

last century, similar and improper optimism about infectious diseases happened again 

in the field of medicine and public health. Unfortunately, even today we humans still 

do not know how many dark clouds are on the way. 

Infectious diseases afflict humans at all times. The impacts of infectious diseases on 

humans are enormous, both in terms of suffering and in terms of social and economic 

consequences. From the 1950s, a period that saw unprecedented development of new 

1 



Chapter 1 : Introduction 2 

vaccines and antimicrobial agents, the optimistic view that infectious diseases were no 

longer threats (at least to developed countries) kept growing and was boosted by the 

eradication of smallpox in the late 1970s (Fenner et al. 1988). The Surgeon General of 

the United States (1965-1969), William H. Stewart, declared that it was time to close 

the book on infectious diseases (Patlak 1996) and chronic ailments such as cancers and 

heart diseases should be paid more attention to. This encouraged a transfer of resources 

and public health specialists away from infectious disease control. 

The above optimistic view proved to be wrong. Even in the same decade, Acquired 

Immune Deficiency Syndrome (AIDS) emerged as a pandemic disease. West Nile virus, 

Ebola and Severe Acute Respiratory Syndrome (SARS) kept emerging. Old diseases like 

measles, malaria and influenza still threaten large numbers of human beings. Besides 

humans themselves, livestock are affected severely by foot-and-mouth disease (FMD), 

Bovine Spongiform Encephalopathy (BSE, also known as 'mad cow disease') and avian 

flu, and crops and plants are infested by pests. Prevention of bio-terror (such as an

thrax or smallpox) is also a concern of governments and the public. Population growth, 

increasing mobility, changes of geographic distribution of the human population, and 

other global changes such as land conversion, agricultural intensification and climate 

change, all have an impact upon the epidemiological environment (Mayer 2000, Daily 

& Ehrlich 1996). At the same time, immune suppression, the loss of biodiversity and 

indigenous knowledge, and the evolution of antibiotic resistance, all decrease human 

ability to defend against diseases (Daily & Ehrlich 1996). 

Simulating the processes of infectious disease transmission amongst the human popu

lation, both in time and in space, can not only lead to better understanding of the 

transmission mechanisms, but also provide practical utilities such as building and test

ing of theories, design and analysis of epidemiological surveys, forecasting trends and 

testing of control measures (Hethcote 2000). Faced with diseases such as AIDS, SARS, 

FMD and avian flu, powerful simulation models for infectious disease transmission are 

becoming increasingly important tools for public health researchers and practitioners. 
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The transmission of an infectious disease amongst the human population is a complex 

process. The time lines of infectious diseases, the infection probability, the contacts 

between individuals, the demographic dynamics that determine the contact pattern and 

the occasional imported infection can all be considered as stochastic. It is hard to build a 

satisfactory model. The reasons rest with two aspects: theory and data (Koopman 2005). 

On one hand, human knowledge at both the micro and macro levels of the infectious 

disease transmission process is insufficient. At the micro level, the exact process of a 

single infection of most types of infectious diseases is not clear, even today (Koopman 

2004). At the macro level, disease diffusion amongst the human population is a complex 

process, as many factors from both social and physical aspects can affect this process 

with different magnitudes. On the other hand, it is hard to get all the data that the 

model requires in terms of model building, validation and application. 

Considering the above difficulties, it is crucial to choose appropriate tools for modelling 

the diffusion of a certain infectious disease amongst the human population within a target 

study area. Mathematical models and computer simulations are two general categories 

of tools for simulating the processes of infectious disease transmission (Koopman 2004, 

Hethcote 2000). Mathematical models have been used from the earlier part of the 20th 

century, and both their merits and weaknesses have been identified (see Section 2.1). 

Individual-based models (IBM), as one sub category of computer simulations, have been 

paid more attention recently (see Section 2.2.3). 

The most important advantages of IBMs are that an IBM can consider the heterogeneity 

of both individuals and their environment and incorporate the stochastic nature of in

fectious disease transmission. However, this advantage also means that the applications 

of IBM for transmission of infectious disease are strongly data-dependent. And quite 

a number of assumptions have to be made to make the simulation plausible. How to 

consider the contact patterns and spatial effects at the individual level are two of the 

key questions. 
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During this PhD research, ISTAM (Individual space-time activity-based model) was 

designed and developed to simulate the transmission of airborne infectious disease (in

fluenza) amongst the human population based on individuals' space-time activities. The 

model is based on the integration of an individual-based model and GIS under the frame

work of time geography. ISTAM is a bottom-up model in which the transmission network 

is built on the physical contacts between individuals at a fine space-time scale. At this 

scale, human social behaviors, the environment's physical conditions and specific infec

tious disease's transmission modes are considered. The two-level structure of ISTAM 

(between-AB and within-AB levels) makes the model flexible to be applied to different 

circumstances. At the within-AB level, raster space AB simulation, vector space AB 

simulation and role-based AB simulation were designed and applied to different applica

tion cases. Activity bundle (AB) (Hiigerstrand 1975) simulation is a method to obtain 

a specific contact network (specific to target infectious disease) from the space-time dy

namics of individuals at fine scales constrained by both the individuals' social activity 

and the space's physical condition. Parameters of raster space AB were explored. The 

human contact network, a by-product during the simulation, was used for model calibra

tion and validation. ISTAM was applied to simulate hypothetical influenza outbreaks in 

the campus of the University of Southampton and the city of Eemnes (the Netherlands), 

respectively. Different control measures were tested. The results show that the model 

behavior is approximately consistent with expectations. By the simulation of ISTAM, 

simulated data can be accumulated at micro-level and aggregated to several different 

higher levels. This can be used for the model validation and calibration purposes. Also 

further analyses can be based on these simulated data. 

1.2 Infectious disease transmission 

The traditional model of infectious disease causation can be expressed by the epidemi

ological triad (Last 1988). It includes three components: an external agent (infectious 

disease), a susceptible host (human), and an environment that brings the host and agent 
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FIGURE 1.1: Epidemiological triad 

together to make the infection possible (see Figure 1.1). Possible control measures are 

applied to target populations or the environment. The classification of infectious dis-

eases can be by causative organism, means of transmission or disease reservoir. The 

causative organism is the main way to classify infectious diseases: pathogenic organism, 

bacteria, viruses, fungi, and parasites have properties to cause disease and infection. 

Using the means of transmission, infectious diseases are classified as contact, food or 

water, airborne, vector-borne or perinatal (see Table 1.1). 

TABLE 1.1: Means of transmission. 

(see http://bioterrorism. stu. edu/bt/products/bio_epi/ scripts /mod3. pdf) 
Means Descriptions 
Contact Requires direct or indirect contact (fomite, 

blood, or body fluid) 
Food or Water Ingestion of contaminated food or water 

Airborne Inhalation of contaminated air 
Vector-borne Dependent on biology of vector as well as infec

tivity of organism 
Perinatal Similar to contact infection, however, the con

tact may occur inutero or during delivery 

A set of parameters to express disease transmission and disease control measures are 

presented in this Section. 
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1.2.1 Parameters for infectious disease transmission 

1.2.1.1 Time lines 

The time lines of infection within the host can be described in terms of the dynamics of 

infectiousness and disease (see Figure 1.2). 

• Latent period is the time interval from infection to development of infectiousness. 

• Incubation period is the time interval between infection to the development of 

clinical disease (i.e. the appearance of signs and symptoms of the diseases). 

• Infectious period is the time during which the host can infect another susceptible 

host or vector they come in contact with. The infectious period may not necessarily 

be associated with the presence of clinical signs or symptoms (e.g. AIDS). 

DYI13mics of 

Infectiousness 

Susceptible 

Susceptible 

Dynamics of 

Disease 

Time of infection 

Non-infectious 

Latent lnfcctious ./ 

./ 

period period ./ 

Incubation Symptomatic 

period period 

FIGURE 1.2: Time lines of infectious diseases 

(Halloran 1998) 

removed 

dead 
recovered 

Non-diseased 
./ dead 
./ recovered 
./ immune 
./ carrier 

Time 

The latent period reflects the pathogen's perspective and the incubation period reflects 

the host's perspective. These two time periods are seldom the same (i.e. humans may 

become infectious to other humans before they show symptoms themselves) and the 

latent period can be longer or shorter than the incubation period. 
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1.2.1.2 Transmission probability 

The transmission probability of infection refers to the chance that there is a successful 

infection from one host to another. The secondary attack rate (SAR) is a measure 

of transmission probability and is defined as the ratio of individuals who develop an 

infection to the total number of susceptible individuals. It is calculated by identifying 

the infective hosts, tracking which healthy hosts come in contact with them, and then 

noting which become infective as well. SAR is a static figure that is averaged over the 

entire epidemic (Halloran 1998). 

1.2.1.3 Basic reproductive number 

The basic reproductive number (Ro) is a measure of infectivity. It is defined as "the 

average number of secondary infections produced when one infected individual is intro

duced into a host population where everyone is susceptible" (Anderson & May 1992, pp 

17). In person-to-per13on transmission, Ro is a measure of the ability of a disease agent 

to cause infection. The meaning of Ro is the expected number of new infectious hosts 

that one infectious host will produce during his or her period of infectiousness in a large 

population that is completely susceptible. Ro does not include new cases produced by 

the secondary cases, or further down the chain. Ro equals the product of the number of 

contacts per unit time c, the transmission probability per contact p and the duration of 

infectiousness d (Halloran 1998). 

Ro = cpd (1.1) 

Ro is taken as the threshold quantity that determines whether an epidemic will occur or 

not. In a population, if Ro = 1, each person who becomes infected with the disease will 

pass it on to exactly one other person (on average). Thus, the infection is maintained 

in the population without the need for external inputs. This is said to be endemic; if 
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Ro > 1, the infection will grow in a population, and there is Some possibility of a major 

epidemic; if Ro < 1, disease transmission will terminate. 

Generally, the larger the value of Ro, the harder it is to control the epidemic. Ro may 

vary considerably not only for different infectious diseases but also for the same disease 

in different populations or during different time periods. For example, Ro of measles was 

between 13.7 and 18.0 in the infant population in England and Wales between 1944 and 

1979, and the value was about 12.5 in the infant population in parts of North America 

between 1919 and 1928 (Anderson & May 1982). Another example is that the Ro for 

mumps varied between 4.3 and 7.1 (Anderson & May 1982). Especially for some 'new' 

infectious diseases, the value of Ro varies significantly, such as SARS, Figure 1.3 is from 

Bauch et al. (2005) which shows Ro estimated from various studies for SARS and other 

diseases. 
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FIGURE 1.3: Ro estimated from various studies for SARS and other diseases. 

(Bauch et al. 2005) 
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1.2.1.4 Proportion of infections before the onset of symptoms 

The proportion of infections that occur before the onset of symptoms is defined to be e 
(Riley & Ferguson 2006). For interventions that rely on the recognition of symptoms to 

reduce transmission, such as case isolation and contact tracing, the smaller e, the more 

likely the intervention to be successful. 

1.2.1.5 Virulence 

Virulence refers to the severity of the disease after infection occurs. It is measured by 

the case fatality rate or the proportion of clinical cases that develop severe disease. 

1.2.2 Control measures 

All control measures should try to control the infectious individual, control the sus

ceptible individual or prevent the contact between them. The basic control measures 

are vaccination, isolation, quarantine and so on. The target population for control 

are symptomatic individuals and the individuals who have had contact with the symp

tomatic cases. Most of the control measures may be undertaken voluntarily or compelled 

by public health authorities. 

It is generally assumed that an individual is protected from an infectious disease when 

he or she has the requisite disease immunity. Immunity can be present due to either 

genetic makeup, vaccination or past exposure. Vaccination is the primary policy of public 

health departments in combating the spread of infectious diseases. Since it is hard (if 

not impossible) to control all susceptible individuals, tracing the individuals who have 

contacts with infectious individuals can be an alternative. Control tracing is one form of 

target control focusing on the potential cases of the next generation. Contact tracing is 
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a successful strategy when the number of infectious cases is low (Eames & Keeling 2003). 

Ring vaccination, one form of spatially explicit contact tracing, controls an outbreak by 

vaccinating and monitoring a ring of people around each infected individual. In practice, 

this means the vaccination of all susceptible individuals in a prescribed area around an 

outbreak of an infectious disease (Kretzschmar et al. 2004). 

Both the isolation and quarantine aim to control exposure to infected or potentially 

infected persons. The two measures differ in that isolation applies to persons who are 

known to have an illness, and quarantine applies to those who have been exposed to an ill

ness but who mayor may not become ill (see http://www.cdc.gov/ncidod/dq/facts.htm). 

The movement of people who under controls are restricted to stop the spread of the 

disease. People in isolation or quarantine may be cared for in their homes, in hospitals, 

or in designated health care facilities. 

1.3 Thesis outline 

Chapters 2 and 3 provide a literature review on the modelling of infectious disease 

transmission and humans' dynamics in space and time, respectively. The concept of 

an individual space-time activity-based model (ISTAM) is presented in Chapter 4, and 

its implementation in Chapter 5. Activity bundle (AB), as a key concept in ISTAM, 

is introduced. Within-AB and between-AB simulations are also discussed. Chapter 

6 provides one example case study of ISTAM: application to a hypothetical influenza 

outbreak in the campus of the University of Southampton. Raster-based AB simulation 

and its parameters are explored in Chapter 7. Another example case study of ISTAM, 

a hypothetical influenza outbreak in the city of Eemnes, is presented in Chapter 8. 

Discussions and conclusions are made in Chapter 9 and 10, respectively. 



Chapter 2 

Modelling Infectious Disease 

Transmission 

In this chapter, mathematical models for infectious disease transmission are introduced. 

Then, the definition, application and implementation of individual-based models are 

elaborated. Sections 3 and 4 provide a discussion of simulation methods at the individual 

level in terms of contact patterns and spatial effects, respectively. 

2.1 Mathematical models 

Traditional mathematical models of disease transmission are population-based and ex

pressed by deterministic mathematical equations (Anderson & May 1992). From the 

most classic mathematical model, susceptible-infectious-recovered (SIR) (Kermack & 

McKendrick 1927), many mathematical models such as susceptible-exposed-infectious

recovered (SEIR) and susceptible-infectious-susceptible (SIS) have been presented. They 

11 
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all share the same basic idea as the SIR model (separate the population into several 

compartments and use differential equations to express the flow patterns between the 

compartments) (Anderson & May 1992). 

2.1.1 SIR models 

Based on the following basic assumptions: (1) population size is large arid constant (no 

birth, death, immigration or emigration); (2) no latency (the latency period is omitted); 

(3) homogeneous mixing (i.e., each pair of individuals has equal probability of coming 

into contact with one another), the SIR (susceptible-infected-removed) models divide 

the population into three fundamental compartments as: (1) susceptible (S), that is, 

subjects susceptible to contracting the infection or those who may catch the disease 

but currently are not infected; (2) infected (1), that is, subjects that have already 

contracted the infection, to the stage of full development or incubation, so they are 

vectors of contagion or those who are infected with the disease and currently contagious; 

(3) removed or recovered (R), that is, subjects that have died or that have developed 

immunity to the contagion and, therefore, are no longer able to infect or to contract 

infection. 

Then the expressions of the SIR model are: 

fJS(t)jfJt = -(3S(t)I(t), S(O) = So 2: 0 (2.1) 

fJI(t)jfJt = (3S(t)I(t) od(t),I(O) = 10 2: 0 (2.2) 

fJR(t)jfJt = ctI(t), R(O) = Ro 2: 0 (2.3) 

(where (3 is the rate of new infections in the unit time and cy is the rate of mortality or 

immunity in the unit time. S(t), I(t), and R(t) are the numbers in these classes, so that 

S(t) + I(t) + R(t) = N, N is the total number of individuals in the population). 
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2.1.2 SEIR models 

The SEIR (susceptible-exposed-infectious-recovered) models include four compartments 

represented by the susceptibles (S), exposeds (E) (or infecteds), infectious (1), and 

recovereds or immunizeds (R) (Anderson & May 1992). The SEIR model accounts for 

of the infecteds (E). This means that the model accounts for the latent period of the 

disease. This model is needed. when infected individuals (exposed) go through a latent 

period before becoming infectious. 

8S(t)/8t = -(3S(t)I(t) (2.4) 

8E(t)/8t = (3S(t)I(t) - aE(t) (2.5) 

8I(t)/8t = aE(t) - "(I(t) (2.6) 

8R(t)/8t = "(I(t) (2.7) 

(where {3 is the rate of infection per unit time, a is the rate at which an infected individual 

becomes infectious per unit time, "( is the rate at which an infectious individual recovers 

per unit time. S(t), I(t), E(t) and R(t) are the numbers in these classes, so that 

S(t) + E(t) + I(t) + R(t) = N, N is the total number of individuals in the population). 

2.1.3 SIS models 

The SIS (susceptible-infected-susceptible) models describe diseases for which the infec

tions do not confer any long lasting immunity. Thus, infected individuals do not have 

a recovered state and become susceptible again after infection. Two compartments are 

represented by the susceptibles (S) and infected (1). 

8S(t)/8t = -8I(t)/8t (2.8) 

(where S(t) + I(t) = N, N is the total number of individuals in the population). 
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2.1.4 Reed-Frost epidemic models 

Lowell Reed and Wade H. Frost, developed a mathematical model to describe how 

diseases spread through populations in the 1920s. The model known as the 'Reed-Frost 

Epidemic Model' is described by Abbey (1952) as follows: 

Model assumptions: 

• The infection is spread directly from infected individuals to susceptible individuals 

by a certain kind of contact ('adequate' or 'effective' contact) and in no other way. 

• Any susceptible individuals in the group, after such contact with an infectious 

person in a given period, will develop the infection and will be infectious to others 

only within the following time period, after which he or she is wholly immune. 

• Each individual has a fixed probability of coming into adequate contact with any 

other specified individual in the group within one time interval, and this probability 

is the same for every member of the group. 

• The individuals are wholly segregated from others outside the group. 

• These conditions remain constant during the epidemic. 

In other words, each individual in the study population is in one of three possible states 

during any time period. These are: susceptible state, infectious state and immune 

state. Susceptible individuals change to infectious if and only if they come into 'effective 

contact' with infectious individuals. Infectious state always changes to the immune state 

in subsequent time periods. Immune individuals remain immune and are sometimes 

omitted from consideration. The notation for the model is as follows: 

(2.9) 
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(where p is the probability of an individual making effective contact, q = 1 - p, t is the 

time period, It+l is the number of infectious cases in time period t + 1, St is the number 

of susceptible individuals in time period t). 

The Reed-Frost model is population-based. In fact, the SIR model can be simplified to 

the Reed-Frost model if the infectious period is assumed to be constant. 

2.1.5 Problems of mathematical models 

Recently, mathematical models have been devised that divide the heterogeneous popu

lation into several sub populations or groups. This division can be based on the purpose 

of the model, the specific disease being modelled, the process of transmission, the age 

structure of the population or on the environmental heterogeneity and spatial structure 

(Hethcote 2000). One example is the meta-population models (Hanski 1998) which in

crease heterogeneity in the population by dividing the population amongst a number of 

distinct patches, as well as a coupling term allowing influence proportional to the magni

tude of infection at the other sites. However, the conventional 'mixing homogeneously' 

assumption is still retained within patches and there is no a priori way of assigning 

the coupling magnitudes between patches (Rhodes & Anderson 1997). This makes the 

stochastic property of the transmission process difficult to model well. 

Another problem of mathematical models are the rapid growth of the mathematical 

complexity of the models used to describe in sufficient detail various phenomena and 

the difficulty in solving them in an analytical form (Bagni et al. 2002). "The complexity 

of differential equations increases exponentially as the complexity of behavior increases" 

(Bonabeau 2002, pp 7281). 
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2.2 Individual-based models 

Computer simulation models emerged later than mathematical models because the for

mer rely on evolving computer technology. With sufficient knowledge and data and 

by faithful modelling and model space exploration, computer simulation can provide 

detailed insights on complex and realistic social systems (Prietula et al. 1998). The 

common steps for computer simulation are: (1) set up a computer model to mimic part 

of the real world; (2) use random number generators to simulate the random compo

nents of the model; (3) simulate repeatedly to observe outcomes on average, and the 

variability in outcomes. Individual-based models (IBM), one sub category of computer 

simulation, have been applied increasingly due to the advance of computer technology. 

2.2.1 Definition of individual-based models 

IBMs are simulations based on the global consequences of local interactions of members 

of a population (see http://www.red3d.com/cwr/ibm.html). IBMs originate in mathe

matics and computer science, especially in artificial intelligence, and are also affiliated 

with complex adaptive systems. IBMs provide a means to connect interactions be

tween individuals and environmental and other influences, taking account of differences 

between individuals (Gimblett 2002). IBMs can be used to estimate phenomena at 

different organizational levels from the actions of individuals. 

An agent-based model (ABM) is defined as "a system is modeled as a collection of 

autonomous decision-making entities called agents. Each agent individually assesses its 

situation and makes decisions on the basis of a set of rules" (Bonabeau 2002, pp 7280). 

IBMs and ABMs are similar concepts used in different fields. IBMs are applied widely in 

ecology and biology. Important related literatures are DeAngelis and Gross (1992) and 

Grimm (1999, 2005). ABMs are used commonly in social science and computer science 

(Epstein & Axtell 1996). The ABMs are distinguished from IBMs by the fact that 
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'agents' in ABMs are autonomous and have flexible behavior (e.g., reactive, proactive 

and social) (Wooldridge 2002) and 'individuals' in IBMs do not necessarily do so. In 

this specific sense, IBMs are used in this thesis. 

An individual person is not necessarily an 'individual' within an IBM. It may be conve

nient in concept or computation to "break up an individual into the different stages of 

its life cycle" or to take a group of individuals to be an 'individual' (Ginot et al. 2002, 

pp 24). 

Overlap exists between IBMs and cellular automata (CA). CAs are similar to spatially 

explicit, grid-based, immobile individual-based models. But CAs are homogeneous and 

dense, and a grid-based IBM might occupy only a few grid cells, and more than one dis

tinct type of individual may live on the same grid (see http://www.red3d.com/cwr /ibm.html). 

IBMs have been applied to many fields, such as to simulate vehicles and pedestrians 

in traffic, people in crowds, artificial characters in computer games, agents in financial 

markets, and humans and machines in the battlefields. In the context of spatial or 

geographic models, IBMs are popular for urban study, transportation, tourism and so 

on. 

2.2.2 General benefits and limitations of individual-based models 

Major advantages of IBMs are the possibility to incorporate individual behaviors and 

micro processes in the models. The heterogeneity of information can be represented fully 

in the model and maintained during simulation. The output will consequently contain 

a great variety of information about general and specific conditions at the micro level; 

information that can be aggregated easily to the level suitable for answering research 

and applied questions. This facilitates a detailed analysis of micro process or sequences 

of individual's actions and provides opportunities for a more thorough understanding 
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of the mechanisms behind the macro processes and of the consequences at aggregate or 

disaggregate levels (Fotheringham & Wegener 2000). 

Generally, the benefits of application of IBMs (or ABMs) (Bonabeau 2002) are as follows: 

1. IBMs can capture emergent phenomena. Emergent phenomena result from the 

interactions of individual entities. For a complex system, the whole is more than 

the sum of its parts because of the interactions between the parts. 

2. IBMs provide a natural description of a system. 

3. IBMs are flexible. For example, the category of agents, the complexity of the 

agents and the levels of description and aggregation can be changed. 

4. IBMs can contain both deterministic and stochastic relations (Holm et al. 2000). 

Deterministic relations are the unavoidable rules or strong logical or structural 

constraints. Deterministic relations produce the same result in each simulation if 

the initial conditions are same. Stochastic relations are the unknown part of the 

study, so the outcome of each simulation is different even with the same initial 

conditions. The simulation is executed many times with different random seeds to 

obtain the distribution of the results. 

IBMs are especially useful within the following context (Bonabeau 2002): 

1. When the interactions between the agents are complex, nonlinear, discontinuous, 

or discrete. 

2. When space is crucial and the agents's positions are not fixed. 

3. When the population is heterogeneous, that is, when each individual is (poten

tially) different. 

4. When the topology of the interactions is heterogeneous and complex. 
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5. When the agents exhibit complex behavior, including learning and adaptation. 

6. When the model includes soft factors that are difficult to quantify, calibrate, and 

sometimes justify (examples are human intelligence). 

Obvious limitations of IBMs are as follows (Nagel & Marchal 2003): 

1. IBMs require many simulations to evaluate any particular situation as it is based 

upon an underlying stochastic model. Simulating the behavior of all of the units 

can be extremely computationally intensive and, therefore, time consuming (Bonabeau 

2002). 

2. Knowledge at the micro level, for example, about human behavior, may not be 

sufficient. IBMs typically require assumptions about what aspects of behavior are 

important and what can be ignored. 

3. The necessary input data for all the details, in many circumstances, are not avail

able. 

2.2.3 Individual-based models for the simulation of infectious disease 

transmission 

For infectious disease transmission modelling, the individual-based model is not a new 

concept. Elveback et al. (1976) presented a highly agent-specific stochastic simulation 

epidemic model. The population in this model was highly structured, allowing for five 

age groups and for sub-group mixing in families, neighbourhoods, schools, and preschool 

playgroups as well as total community mixing. Partly due to the lack of both data and 

advanced computation ability, the potential of IBMs was not applied widely (Koopman 

2002). 
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The 21st century has seen a boom of the application of IBMs for the simulation of infec

tious disease transmission from different disciplines, such as computer science (Aschwanden 

2004, Carley et al. 2004, Brouwers 2005), geography (Bian 2004, Bian & Liebner 2005, 

Dibble & Feldman 2004), epidemiology (Eichner 2003, Ferguson et al. 2003, Ferguson 

et al. 2005, Ferguson et al. 2006, Longini et al. 2005, Riley & Ferguson 2006) and in

terdisciplinary fields (Eubank 2002, Eubank et al. 2004, Halloran et al. 2002, Huang 

et al. 2004). Many advantages can be achieved by IBMs simulation, but the most 

important advantage is that it can consider the heterogeneity of both individuals and 

environment, and also the stochastic essence of infectious disease transmission. IBMs 

can express explicitly the differences between individuals in terms of the attributes that 

influence the process of disease transmission such as physical, social, economic and envi

ronmental characteristics. For example, age, gender, occupation and lifestyle variables 

all contribute to the subsequent disease experience of an individual (Elliott et al. 2000). 

The interaction between individuals, which is one of the key components determining 

infectious disease transmission, can be expressed explicitly in the model. By IBMs, the 

time lines of infectious diseases, the infection probability, the demographic dynamics 

that determine the contact pattern, and the occasional imported infection, can all be 

considered as stochastic. 

For infectious disease transmission, individual-based models have the following advan

tages over the traditional population-based models (Eubank 2002): (1) subpopulation 

is based on a few demographics while individuals can carry many demographics; (2) 

subpopulation mixing rate is unknown while individual contact rates can be estimated 

independently; (3) reproductive number is not directly observable for traditional models 

while it can emerge from the simulation of individual-based transmission; (4) the com

plex interaction between individuals (or 'agents') is out of the reach of pure mathematical 

methods (Bonabeau 2002, Epstein & Axtell 1996). 
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2.3 Contact patterns 

Transmission is the most fundamental characteristic of infectious diseases distinguishing 

them from non-infectious diseases. The occurrence of infection in individuals depends on 

the occurrence of that disease in other members of the population (Halloran 1998). This 

dependence of disease events in infectious diseases was called 'dependent happening' 

by Sir Ronald Ross (1916), that is, implying the need for contact between susceptible 

and infectious individuals, even if indirect. Infectious diseases with different transmission 

modes require different kinds of contact between individuals. For example, some diseases, 

such as AIDS, require blood-to-blood or sexual contacts. In the context of this thesis, 

interest is confined to those airborne diseases transmitted by droplet, such as influenza 

and measles. 

Airborne diseases (like many other infectious diseases) transmitted between humans are 

spread through populations via the networks formed by physical contacts amongst in

dividuals (Meyers et al. 2005). Such networks channel the transmission of infections 

through the host population (Wallinga et al. 1999). Although the network assumption 

is radically simplifying and unrealistic (Koopman 2004), it is a great advance on math

ematical models which assume individuals mix homogeneously and every individual has 

the same probability of coming into contact with another. A model of the contact net

work between individuals can be an important component in a model of an infection 

transmission system. Significant benefits of modelling the contact pattern are: 

• The ability to assess the effects of the network on infectious disease propagation 

at the whole population level (Yahja 2002). 

• The ability to assess how the location of individuals with different risks within 

the contact structure alters their importance on the population level of infection 

(Koopman 2004). 

• The ability to evaluate specific disease control measures such as contact tracing 

(Eames & Keeling 2003, Read & Keeling 2003, Eichner 2003). 
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For infectious diseases that are transmitted between individuals, changing the pattern of 

connections between exposed and unexposed individuals can often affect infection levels 

more than changing the exposure status of individuals (Koopman & Lynch 1999). 

IBMs are bottom-up models that require a profound understanding of the low-level 

processes and elements to generate aggregate system behavior by simulating the indi

vidual entities in the system (Epstein & Axtell 1996). Understanding of the transmission 

process at individual level is crucial for building an IBM. Spatial adjacency and social 

relations are the two most prevalent bases for building a contact network at the indi

vidual level. Spatial adjacency assumes that individuals come into contact with other 

individuals who are physically adjacent (e.g., based on their residential addresses). Ex

amples of models that utilize spatial adjacency are the lattice model and CA model 

(Rhodes & Anderson 1997, Sirakoulis et al. 2000, Fuks & Lawniczak 2001). Individuals 

perhaps have greater probability to come into contact with the people who are spatially 

adjacent but individuals can also come into contact with other individuals over a wide 

range of distances. Firstly, there is no accepted positive relation between the proba

bility of contact and the distance between residential addresses. Secondly, residential 

addresses themselves reflect only partially the spatial location of the activities of most 

of the population. In reality, humans are dynamic not static, as reflected in their social 

activities. Therefore, geographical distance (e.g., spatial adjacency or distance between 

residences) alone is inadequate to measure infection risk amongst humans (Eames & 

Keeling 2003, Bian 2004). The latter basis for building a contact network assumes 

that individuals come into contact with their social relations (e.g., family, colleagues 

or friends). Social relations alone are also inadequate to build the contact network. 

Firstly, individuals do not make physical contact with all their social relations (people 

can retain their social relations by email or telephone). Secondly, individuals also come 

into contact with other individuals (not social relations) by chance (e.g., strangers on 

the public bus or tube; individuals sit in proximity in the theatre). In conclusion, the 

contacts between individuals are functions of social behaviors while infection per se is 

a physical process. The consideration of both social and physical dynamics is, thus, a 

prerequisite for modelling the contact network. 
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Age is an important variable that indicates the risk of acquiring and transmitting a 

disease (Anderson & May 1992). Besides age-specific infectiousness and susceptibility, 

age-specific contact rate is another important concept. The study by Pool and Kochen 

(1978) showed that contact patterns tend towards being assortative with respect to age. 

It is obvious that people have more contacts with people similar to their own ages. 

The population consists of groups that have frequent contacts within groups (local con

tacts) and relatively rare contacts between groups (global contacts) (Wallinga et al. 

1999). Separating the population into smaller sub populations is a way of investigating 

the role of global and local contacts. Meta-population models are based on this idea. 

The point is: individuals do not belong to only one group; they can belong to different 

groups at the same time. For example, one person belongs to his or her family and 

his or her company or school. And sometimes the separation between local and global 

contacts is not obvious. 

2.4 Spatial effects 

There are two types of diffusion: expansion diffusion and relocation diffusion (Cliff 

et al. 1981, Kuby et al. 2004). The difference is that during the former process, the 

item being diffused remains, and often intensified, in the originating region, but new 

areas are also occupied by the item in subsequent time periods; while during the latter 

process, the items being diffused leave the areas where they originated as they move to 

new areas. Cliff et al. (1981) took the contagious spread (that places near the origin are 

usually affected first) and hierarchical spread (the spread that occurs through an ordered 

sequence of classes or places) as two ways in which expansion diffusion occurs. Kubyet 

al. (2004) summarized that the above two types of spread have two spatial regularities 

which can be exhibited by all diffusion processes, and named them as contagious effect 

and hierarchical effect. 
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"The spread of disease is unavoidably spatial" (Holmes 1997, pp 111), and yet most tra

ditional transmission models are non-spatial. Traditional geographical models treat the 

dispersion of disease like wildfire or are wavelike (Haggett 2000). In reality, the spread 

of infectious disease amongst humans is different from the spread of wildfire or disease 

amongst plants or vegetables because humans are not static in terms of their spatial 

locations. The movement patterns of individuals, together with infection processes and 

the disease evolution process within an individual make the spread of infectious disease 

amongst humans exhibit complex spatial effects at different regions, different spatial 

levels and different infectious diseases. In fact, the spatial spread of infectious diseases 

amongst humans can not be classified to be expansion or relocation diffusion and it can 

exhibit both contagious effect and hierarchical effect as discussed above. As reviewed by 

Bian (2004), the disease spreading process can be separated into both local transmission 

and long-distance dispersion (Holmes 1997). Local transmission exhibits the dynamics 

of expansion diffusion and long-distance dispersion exhibits the dynamics of relocation 

diffusion. So the whole dynamics may involve the integration of both of them. Conta

gious diffusion is valid at the micro-scale. At the macro-scale, such as the regional level, 

the hierarchical diffusion pattern may be exhibited. In conclusion, infectious disease 

transmission is a dynamic process involving interactions between people both spatially 

and temporally, and different space-time dynamics are exhibited at different space-time 

levels such as the global level, regional level, city level, community level and individual 

level. 

The geographical space represented in an individual level simulation needs to be sim

plified to express humans' daily activities well. The humans' activities are restricted 

by both the physical landscape and human-made structures so it is not appropriate 

to consider the space where the activities of humans occur as a Euclidean continuous 

space without constraints. Rather, the simulation should be confined to the space where 

transmission of a specific disease is most likely to occur. Contacts between individuals, 

along with other conditions, can be used to delimit such a space. It needs to be pointed 

out that a likely infection space is specific to one infectious disease. For example, a high 

mobility pavement can be part of the likely infection space if the targeted infectious 
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disease has a shorter attack duration but can not be part of the likely infection space if 

the targeted infectious disease has a longer attack duration. 

The probability of contact varies throughout the most likely infection space. For exam

ple, the probability of effective contact amongst elementary school children in a class

room can differ from amongst the same children on a soccer field or from the same 

number of adults in an office setting. As Koopman pointed out one needs to consider 

"how often and when individuals go to specific places where they might become infected 

from other individuals" (Koopman et al. 2000, pp 317) and "geographic or social loca

tions where contacts are made could be used to reflect many different types of contact" 

(Koopman & Lynch 1999, pp 1171). To express the variation in the probability of con-

tact, both the dynamics of individuals and the space's physical condition need to be 

considered. 

2.5 Summary 

This chapter provides a review about the mathematical models and individual-based 

models in terms of their application to the transmission of infectious disease. At the 

individual level, the contact patterns and spatial effects are discussed. This review can 

be taken as the traditional theory background and research methods which is part of 

the foundation of this PhD research. Besides, theories and research methods from other 

fields were imported as another part of the foundation which are presented in the next 

chapter. 



Chapter 3 

Modelling Humans' Space-Time 

Dynamics 

In this chapter, Section 3.1 introduces the classic framework for humans' space-time 

dynamics: time geography. Then a concept from time geography, the activity bundle, 

is elaborated in the following section. Section 3.3 describes between-AB simulation, 

while Section 3.4 describes within-AB simulation and the properties of humans' space

time dynamics at fine scales. Sections 3.5 and 3.6 give a brief introduction of two 

related techniques: geographical information systems (GIS) and network theory. In this 

research, the former is used for spatial display and spatial analysis and the latter is used 

to analyse and display the physical contacts between individuals. 

3.1 Time geography 

Time geography describes and defines how individuals perform activities under the con

straints of time and space, and these activities are conditioned not only by physical but 

26 
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also by social constraints that prevent individuals from doing certain things but enable 

them to do others (Hagerstrand 1975). It introduces a conceptual framework for analyz-

ing social micro-level interactions in time-space. Time geography offers a set of visual 

tools. The environment in which activities are performed is taken as a cube, with the 

two horizontal axes representing the two spatial dimensions of x and y, and the vertical 

axis representing the time dimension t. Hagerstrand has termed this an 'aquarium', 

within which are placed time geography elements such as lifelines, stations, bundles, 

domains and prisms (see Figure 3.1). A lifeline represents the path taken by an indi-

domain 

x 

FIGURE 3.1: Elements of time geography 

(Moore et al. 2003) 

vidual in time-space. Stations are spaces when individuals stay some time in the path. 

If individuals congregate with other individuals, bundles will be created (Miller 2005). 

Domain is a concept to describe the physical boundaries within which an individual's 

movements are constrained. Another concept of prism represents the total area of space 

reachable by an individual during the available time. 

Individuals are not uniformly distributed in space and time. They move through space 

as part of their daily lives or because of migration. During these movements, indexed by 

time, individuals will travel through numerous exposure surfaces. The characteristics of 

individuals, such as age, gender, occupation and generic factors, lifestyle variables such 
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as smoking and diet, and the lifelong dose due to an exposure of interest, all contribute 

to the subsequent disease experience of an individual (Elliott et al. 2000). The activity 

pattern can be obtained from tracking data which normally consist of a sequence of 

tuples (x, y, t) ordered by t, indicating the location (x, y) of a moving individual at 

intervals of time denoted by t. Time geography can provide the necessary intellectual 

framework for the time-space lag effect because of human mobility: many diseases are 

believed to show symptoms after periods of latency, ranging from seconds to decades 

(Schaerstrom 1996). 

Individual space-time activity data can be collected by questionnaire. One data collec

tion example is to ask respondents to recall their mobility over a 24-hour period, and this 

day should not be a holiday or a special day of the week (Meade et al. 1988). Since 1978 

in Finland the national health institute has been sending out annually a postal question

naire to a random sample (5000) of the Finnish adult population between the ages of 15 

and 64. This survey is designed to elicit information on health behavior, such as dietary 

habits, smoking, alcohol consumption, physical exercise and health status, together with 

a set of individual background factors describing the respondents (Antikainen 1999), and 

importantly locational coordinates at the spatial resolution of one metre. 

The advance of information technology makes it possible to obtain data on individ

ual's daily movements. A location based service (LBS), is an information service that 

exploits real-time positioning in individual level decision-making. LBS can provide abun

dant tracking data on the daily movements of people. This means that is it possible 

to analyze the space-time characteristics of an individual's recent movements to build 

epidemiological models at the individual level. 
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3.2 Concept of activity bundle and its relation to infec-

tious disease transmission 

In the movie Turn Left Turn Right (see http://en.wikipedia.org/wiki/Turn_Left, _ Turn_Right, 

2003), two lovers live in adjoining apartment buildings separated by one wall. They never 

meet because every day one turns right and the other turns left. For infectious disease 

transmission, it means these two lovers have no contact even though they live right next 

door because their daily activities do not overlay in space and time. From the view of 

time geography, airborne disease infection can occur only inside and during the bundle. 

If lifelines of every individual in the population are available, their potential interaction 

within a bundle can be aggregated. Thus, it is possible to simulate the transmission of 

specific infectious diseases (Forer 2002). 

Although from the time of Hippocrates, it has been known that location can influence 

disease and health, the importance of 'place', 'location' or 'venue' in the study of trans

mission has not been recognized widely. Some studies have been undertaken on the 

probabilities of infection at particular 'places' such as within an airplane (Mangili & 

Gendreau 2005), but generally, few studies have considered the roles that 'place' plays 

in the disease spreading process (Le., transmission between 'places' by the movements 

of humans). Klovdahl et al. (2001) discussed the importance of 'place' in a study of 

a community-level tuberculosis outbreak. They suggested that 'person-oriented' meth

ods should be supplemented by 'place-oriented' methods. Koopman stated that "data 

on how often and when individuals go to specific places where they might get infected 

from other individuals can be used to describe contact patterns by making assump

tions or by gathering data regarding the nature of contact at these different places" 

(Koopman 2004, pp 317). It is well known that commonly people repeat similar daily 

activities and certain activities occur at certain 'places'. Thus, the patterns of people 

present over time also exist for 'place'. Based on the simulation model TRANSIMS (see 

http://transims.tsasa.lanl.gov/), Eubank et al. (2004) displayed the changing number 
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of people present within locations such as the home, workplace, school and so on during 

a whole day. 

To model humans' contacts which could cause infections at fine spatial scales, the concept 

of activity bundle (AB) is defined as a semantic space where contact probability varies 

as a function of the dynamics of humans inside. To avoid confusion, the following thesis 

uses 'activity bundle' to replace 'place', 'location' or 'venue'. 

The process of infectious disease transmission and its corresponding study can be divided 

into two stages: the occurrence of an AB in space-time and the occurrence of infections 

inside and during the AB. The former involves studies related with human activity 

patterns (between-AB) while the latter involves studies of dynamics of humans at the 

fine-scale (within-AB). 

3.3 Between-AB simulation 

Individuals' movements between ABs are restricted by both locational supply and in

dividuals' choices. The subset of all locations within which an individual has direct 

contact as a result of his or her daily activities is defined as an activity space (Golledge 

& Stimson 1997). As stated by Golledge and Stimson, the activity space of a typical 

individual is composed of three parts: 

• Movements within and near the home. 

• Movements to and from regular activity locations, such as journeys to work, to 

shop, to socialize and so on. 

• Movements in and around the locations where those activities occur. 
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o Locations 

Travel 

FIGURE 3.2: Simplified activity space. 

(adopted from Schonfelder and Axhausen (2002) and Maier et al. (1977)) 

Figure 3.2 represents one individual's simplified activity space. Schonfelder and Ax

hausen (2002; 2003) described and discussed three methods for describing individual 

activity spaces: (1) confidence ellipses, (2) kernel densities and (3) minimum span

ning trees (networks). A similar concept of 'personal network for usual places' was 

presented by Flamm and Kaufmann (2006) to identify a certain number of daily life 

centers. A large amount of research has been undertaken on individuals' daily activ-

ities at between-AB level, especially in the fields of transportation and urban plan

ning. Both utility maximisation (Bowman & Ben-Akiva 2001) and rule-based ap

proaches (Pendyla & Kitamura 1998, Arentze & Timmermans 2007) have been used 

to describe how households and individuals decide about their daily 'lifeline' includ-

ing decisions about which activities to undertake, at what locations, at what times, 

with which persons and how to travel to those locations. These decisions are made 

subject to space-time constraints as defined by time-geography (Hiigerstrand 1975). 

Activity-based models at this level have been applied widely in transportation (Miller 

et al. 2004, Batty 2005a, Batty 2005b, Ettema 2006). These models provide a starting 

point for modelling individuals' presence in ABs, in which diseases are transmitted. 
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3.4 Within-AB simulation and properties of humans' space

time dynamics 

Although it is well known that the transmission probabilities in different types of places 

may be different, factors such as environmental conditions and the spatial locations of 

individuals that affect transmission probabilities at particular places are poorly under

stood (Koopman 2004). It is natural to begin from the infection process at fine level: 

within-AB level. 

In approximate terms, the infection process of airborne infectious disease is as follows: 

infectious individuals shed infectious substance to the air, the substance stays and/or 

diffuses up to a certain distance and until a certain duration according to the AB's 

physical condition (such as ventilation and sanitation conditions), and then if suscep

tible individuals happen to be within the 'contaminated' air and absorb the infectious 

substance, then infection is possible. 

In the above process, the space-time dynamics of the infectious substance depends on 

airflow rates, heating and cooling, and the architectural properties of the AB. The more 

challenging question here is, at the within-AB level, how best to model humans' space

time interactions (or to be more precise, the space-time relations between susceptible 

individuals and infectious individuals or the infectious substance) which are crucial for 

infection. 

Research on the dynamics of humans inside a small space can be traced to 'room ge

ography' (JackIe et al. 1976) which studied how individuals distribute across a specific 

small area. But research at fine-scales has been slow due to the lack of systematic data 

and corresponding tools and methods (Batty et al. 2003). Recently, IBMs and object

oriented technology have facilitated further study. One example is the pedestrian model 

proposed by Batty and his colleagues (Batty 2003, Batty et al. 2003, Batty 2005a) to 
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study how behavior emerges from the aggregated interactions between fine-scale ob

jects. Applications include traffic modelling, disaster evacuation and the spreading of 

infectious diseases. 

Sommer (1983) claimed that: "when people interact, their spacing is regulated by many 

factors, including their relationship, amount of previous contact, their backgrounds, the 

activities in which they are engaged, and environmental factors including the size and 

layout of the room, noise, lighting levels, and other sources of background stimulation" . 

A similar statement from Batty (2003) is " ... behavior in human systems is not simply 

determined by preferences, intentions, desires but by the environment which reflects the 

spatial or geometric structure in which the agents function as \vell as variability bet¥leen 

agents, in terms of their intrinsic differences and the uncertainty that they have to deal 

with in making any response". In this section, reviews are focused on factors such as 

the air and space in an AB, the distances between individuals and individuals' roles in 

their activities. 

3.4.1 Air within an AB 

The work of Wells (1955), which assumes complete air mixing, is the basis for models 

such as the Mass Action model (Riley 1974), Riley, Murphy and Riley's model (Riley 

et al. 1978) and Gammaitoni and Nucci's model (Gammaitoni & Nucci 1997, Beggs et al. 

2003). In the above models, the infectious substances are evenly distributed throughout 

the place so that the proximity of susceptible individuals to infectious individuals, and 

the duration of exposure are neglected. But in reality, the air in confined spaces is 

seldom mixed completely. 

One example is provided by the EpiSims model (Eubank 2002) which maintains a list of 

individuals who are present and a disease load for every AB. Load here means the viral 

concentration in an individual or AB. The load grows or decays with time depending on 
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the specific infectious disease. Contamination by shedding from infectious individuals 

may be restricted to a small region near the infected person, or may spread to the 

entire location. Due to the lack of data for the proximity of people, Eubank et al. 

(2004) split a large location into sub-locations which are small enough to assume that 

all individuals within the same sub-location are within the distance for infection. One 

problem is that this split assumes that no infection can Occur between individuals in 

adjacent sub-locations even when they are close enough for infection. Another problem 

is that the allocation of individuals to these sub-locations cannot be avoided. 

3.4.2 Space within an AB 

If internal physical information of an AB such as its geometry and spatial layout are 

available, the geographical space inside an AB can be represented using either (1) the 

raster data model (e.g., a rectangular or hexagonal grid) or (2) the vector data model 

(i.e., a continuous space involving the movement of individuals). Figure 3.3 is an example 

of the former and Figure 3.4 is an example of the latter. Further, the raster or vector 

space can be two or three dimensional. 

One example of within-AB simulation was provided by Epstein et al. (2002). In this 

model, spaces of all ABs are structured as raster spaces and the whole day is discretized 

into a specific number of rounds. In each round and each social unit, one infectious agent 

interacts with one of their Moore neighbour agents. The locations of individuals within 

an AB change every day. Fewer contacts are assumed to occur at the workplace or school 

than at the home or hospital. The likelihood of an interaction resulting in a contact at 

home is 1.0 and at work is 0.3. These values were based on intuition instead of estimated 

from data. In fact, the cell occupied by an individual does not reflect the individuals' 

spatial location within an AB since there is no 'spatial distance' meaning between cells. 

It can be taken as a graph to describe possible contacts between individuals in different 

types of AB (with different weights such as the above values of 1.0 and 0.3). 
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FIGURE 3.3: Raster space of a homeless shelter (The shelter contains mats and beds, 
with the mats shown in light-grey and the beds shown in dark-grey. People are shown 

by dots with different colours for different states). 
(Patlolla et al. 2006) 

FIGURE 3.4: Vector space of a hospital ward (comprised of nine rooms visited by three 
nurses three times per day. Patients are shown as squares and nurses as triangles. 

Patients and nurses have different states shown by different colours). 
(Jacquez et al. 2005) 
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Beltran, Quera and their colleagues (Quera et al. 2000, Beltran et al. 2006) presented the 

minimum-dissatisfaction (MD) model to study the spatial behavior of a small group of 

people interacting in a closed space. In the MD model, individuals move on a lattice in 

order to minimize their dissatisfaction which was defined as a function of the discrepancy 

between the real distance and the ideal or desired distance between agents. A computer 

programm P-Space was implemented. 
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3.4.3 Distance between individuals within an AB 

It is accepted that the possibility of infection for susceptible individuals increases with 

proximity to infectious individuals (Hutton et al. 1990, Noakes et al. 2006, Oppong 

et al. 2006). There are social rules about how close humans can approach each other. Hall 

(1966) identified four distances: intimate distance, personal distance, social distance 

and public distance (see Table 3.1). It needs to be pointed out that the values of the 

above distances vary between populations from different cultures, ages, genders and etc. 

Although the above reviews are general they provide a basis for within-AB simulation: 

focusing on the changing distances between individuals, specifically the circumstance 

when the distances are less than the distance required for infection. 

Distance Value 
type 
Public >3 m 
Social 3-1.5 

m 

Personal 1.5-0.6 
m 

Intimate <O.6m 

2~leal1i1tg 

TABLE 3.1: Distance rules. 

(Hall 1966) 

The range of non-involvement 
The range in which most public interactions are observed. This is a comfortable distance for 
people who are standing in a group. but maybe not talking directly with one another. People 
sitting in chairs or gathered in a room will tend to prefer this distance 
This is a protected area, where strangers would not be welcome. At its inner limit it holds other 
people "'at arms length" 
This range is reserved for lovers, family, small children and VCIY close friends 

3.4.4 Two kinds of contacts within an AB 

The contacts between individuals are driven by social purposes or constrained by phys-

ical conditions or both while infection per se is a physical process. Some contacts are 

indispensable for undertaking some activities. For example, an individual who goes 

shopping will generally make contact with the salesperson when checking out. Some 

contacts, although not purposeful, occur because of the restriction of the environment. 

For example, in a crowded bus, passengers have to be close to each other when there 

is no spare space. The first type of contact is voluntary and determined wholly by the 
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individuals. Such contacts are explicit to the individuals, that is, individuals are awar~ 

of these contacts. The second type of contact is not voluntary and is determined only 

partially by the individuals. Individuals may be or may be not aware of such contacts. 

As reviewed by Ellegard, concepts of 'series' and 'group' were pointed out by Jensen and 

Vestergaard (1979). A number of individuals "who occasionally meet at the same place 

where they intend to do the same thing constitute a series" and individuals in a 'group' 

"form a social entity which persists over a period of time and in which the individuals 

share a long-term purpose" (Ellegard 1999, pp 167). Most of the contacts between 

individuals within a series are the second type contacts while most of the contacts 

occurring within a group are the first type contacts. 

3.4.5 Individual's role in their activities 

It is believed that role performance and social involvement are influenced by the spa

tial environment (Baldassare 1978). Baldassare claimed that "individuals must obtain 

varying degrees of physical separation or closeness to others in order to engage in their 

activities" (Baldassare 1978, pp 46). Similarly, Gatrell claimed that "the spacing of 

individuals depends not only on how the environment has been designed but also on the 

task or nature of interaction that the individuals must perform" (Gatrell 1983, pp 75). 

3.4.6 Properties of humans space-time dynamics within an AB 

Three properties of humans' space-time dynamics within ABs which have been observed 

in reality are suggested to be considered when modelling the space-time dynamics of 

individuals within ABs: (1) individuals' static spatial distribution pattern, (2) individ

uals' movement pattern and (3) minimum distances between individuals. The spatial 

distribution pattern of individuals can be observed in most types of AB. One example 
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is provided by a restaurant: people sit in clusters which reflect the existence of different 

groups. Another example is provided by individuals visiting a library: they try to find 

an empty table and sit as far as possible from each other (Given & Leckie 2003). In 

some ABs, individuals are assumed to remain static during the simulation time unit, 

such as in a lecture room. In other ABs, movements must be considered. At fine spatial 

scales, individuals' movement patterns are strongly confined by the physical condition 

of the current AB and the status of other individuals. 

3.5 Geographical information systems 

A geographical information system (GIS) is a tool that allows the processing of spatial 

data into information, generally information tied explicitly to, and used to make decisions 

about, some portion of the Earth (Demers 2000). GIS is useful in all areas of health 

research, from the description and explanation of spatial variation of disease and illness 

to the planning and use of health services (Gatrell & Senior 1999). 

GIS provides an excellent means for visualizing and analyzing epidemiological data, 

revealing trends, dependencies and inter-relationships. The power of GIS to combine 

data from many sources, using many different scales, projections and data models is one 

of its major strengths. The second advantage of GIS over traditional cartographic and 

statistical techniques, besides the obvious speed advantages for handling large volumes 

of data, is in the improvement of hypothesis generating capabilities (Peuquet 1999). 

This power makes it possible to assess and account for even some rather complicated 

causal relationships between disease and different kinds of environmental and societal 

factors (Antikainen 1999). 

Both spatial and temporal information is crucial to get meaningful inference about the 

causes of disease (Jacquez 2000), but GIS is not good at providing a dynamic repre

sentation of spatial phenomena at a micro level (Holm et al. 2000). One of the major 
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challenges of GIS is to formulate a conceptual framework and to integrate theories of in

dividual's behavior, micro-level interaction and space-time constraints in order to model 

spatial micro-level dynamics. Another difficulty is to generate and analyze empirical 

data of micro processes in order to specify and calibrate dynamic spatial micro models 

(Fotheringham & Wegener 2000). 

Integration of IBM and GIS is an issue (Brown et al. 2005, Gimblett 2002). The object

oriented nature of IBMs and GIS means they can complement each other, considering 

IBMs' temporal representations and GIS' spatial data representations (Brown et al. 

2005). Brown (2000) pointed out four relationships between IBMs and GIS: (1) identity 

relationships, (2) causal relationships, (3) temporal relationships and (4) topological 

relationships. 

3.6 Network theory 

Complex networks describe a wide range of systems in nature and society. Social net

works are complex networks. Technically, most individual-based models are based on 

some pre-defined (always computer-generated) contact network, and others build this 

network from real data. In the latter case, a sample is used because a real human trans

mission network would require a vast amount of detailed sociological data, and would 

be difficult to collect, analyze and understand. However, even a sample can require 

a huge effort. EpiSims (see http://www.ccs.lanl.gov/ccs5/projects/episims.shtml) is a 

good example of using real contact data. EpiSims takes advantage of human mobility in

formation derived from TRANSIMS (see http://transims.tsasa.lanl.gov/). TRANSIMS 

estimates the movement of people as constrained by transportation infrastructure based 

on census data and activity surveys taken from a small sample (2000 households) of 

the population. Computer-generated simulation can, in certain circumstances, present 

a viable alternative. 
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Random graphs, small world models (Moore & Newman 2000, Small & Tse 2005) and 

scale free models (May & Lloyd 2001, Pastor-Satorras & Vespignani 2001) are the most 

widely used network models. Random graphs can be built as follows: start with N nodes 

and connect each pair of nodes with probability p, just a graph with approximately 

pN(N - 1)/2 edges distributed randomly. In scale free networks, some nodes act as 

"highly connected hubs" (high degree), although most nodes are of low degree. Scale 

free networks' structure and dynamics are independent of the system's size, the number 

of nodes the system has. In other words, a network that is scale free will have the 

same properties no matter what the number of its nodes is. Their defining characteristic 

is that their degree distribution follows a power law relationship. Watts and Strogatz 

(1998) defined the small world network: "As highly clustered, like regular lattices, yet 

having small characteristic path lengths, like random graphs". The most important 

properties of the small world network are as follows: 

• Average vertex-to-vertex distances increase only logarithmically with the total 

number N of vertices. 

• Two neighbours of a vertex will often also be neighbours of one another. 

Watts and Strogatz (1998) designed a rewiring procedure to construct a small world 

network between regular and random networks: starting from a ring lattice with n 

vertices and k edges per vertex, rewire each edge at random with probability p (p = 0, 

regularity; p = 1, disorder; 0 < p < 1, small world network), see Figure 3.5. As Newman 

(2000) stated: "Disease spreading on a small world graph reaches a number of people 

which increases initially as a power of time, then changes to an exponential increase, and 

then flattens off as the graph becomes saturated" (Newman 2000, pp 839), see Figure 

3.6. 

Infectious diseases spread rapidly on both the small world and scale free networks because 

of the short average vertex-to-vertex distances along the links of the networks. Further, 
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FIGURE 3.5: Random rewiring procedure for interpolating between a regular ring lattice 
and a random network 
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FIGURE 3.6: The percentage of people infected as a function of time by a disease which 
starts with a single person and spreads through a community with the topology of a 

small world graph 
(Newman 2000) 
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spreading is accelerated in scale free networks because of the power-law distribution of 

connections per individual. 

Three network characteristics have an important bearing on the spread of infectious 

diseases (Wallinga et al. 1999): 

• The average number of people contacted per person indicates how many secondary 

cases might potentially acquire the infection from one index case (Wallinga et al. 

1999). Edmunds et al. (1997) made a questionnaire survey on a sample of staff and 

students at two British universities and their family and friends to get their daily 

number of contacts. It was observed that the average number of daily contacts 

was 17. In the study by Pool and Kochen (1978), the participants had an average 

of 23 daily contacts (including telephone conversations and letters) but the total 

new contacts over 100 days was only 360. 
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• The network's transitivity. Transitivity is the average proportion of secondary 

contacts that also contact each other (i.e. how many of your friends are also friends 

of each other) and is a measure of how clustered a network is. Pool and Kochen 

(1978) estimated that any person contacted by one of their study participants 

knew between 8% and 36% of the other people contacted by that participant. Of 

course, the exact value will depend on the period over which contacts are recorded 

and the degree of intimacy of the contact. 

• The characteristic path length. The characteristic path length of a network is 

defined as the average number of contacts in the shortest route between two indi

viduals in the network, with the average taken over all possible pairs of individuals. 

The characteristic path length describes the global network structure. 

Read and Keeling (2003) pointed out the four properties of human disease transmission 

networks: 

• The finite number and variability of potential contacts. 

• Small world property (on average, any two individuals are connected by a small 

number of social or transmission steps) (Watts & Strogatz 1998). 

• The clustering of social contacts such that adjacent individuals in contact space 

are likely to have many shared social contacts. 

• The existence of local networks (highly clustered networks where connected in

dividuals are likely to share common contacts) and global networks (unclustered 

networks with a high proportion of long-range connections). 

3.7 Summary 

This chapter introduced the modelling of humans' space-time dynamics, especially at 

fine space-time scales. Time geography provided a framework, and theories and concepts 
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were borrowed from social science. Geographical information systems and network the

ory were introduced as related tools. The basic idea behind this review was that the 

physical contact between individuals is a prerequisite condition for the transmission of 

airborne infectious diseases. The concept of the activity bundle, key to linking individ

uals' activity and the environment, is used throughout this thesis. 



Chapter 4 

Conceptual Model of ISTAM 

An individual space-time activity-based model (ISTAM) was developed, which integrates 

the contact patterns of individuals, an infectious disease process model and a stochastic 

infection model together by simulating ABs. The model is stochastic and time-discrete. 

In this chapter, firstly, key objects within ISTAM, such as infectious disease, individual 

and activity bundle are introduced. ISTAM's two-level (between-AB and within-AB) 

structure is presented later. At within-AB levels, three different simulation approaches, 

that is, raster space AB simulation, vector space AB simulation and role-based AB 

simulation, were adopted during the application of ISTAM to different cases. Vector 

space AB simulation is introduced in terms of its concept, implementation, running 

and initial analysis results and the other two approaches are introduced only at the 

conceptual level (because the applications of the other two approaches are presented 

fully in other related Chapters). At last, the input and output ofISTAM are presented. 

44 
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4.1 Objects in ISTAM 

As reviewed by Bian (2003), four components should be represented explicitly in an IBM: 

(1) individuals, (2) environment, (3) interactions between individuals in the environment, 

and (4) interactions between individuals and the environment. In ISTAM, it is assumed 

that interactions between individuals and the environment have no direct effects on 

the transmission of infectious diseases. The other three components are represented in 

ISTAM. 

The structure of ISTAM is shown in Figure 4.1. Original data sources about infectious 

diseases, the population and the environment are used to 'feed' the model for different 

application cases. Parameters can be changed to suit different simulation scenarios to 

answer 'What-If' questions. Statistics can be generated by aggregation at different levels. 

4.1.1 Infectious diseases 

In ISTAM, three parameter groups are defined to describe a specific infectious disease: 

(1) evolution of the infection and disease within the host, (2) disease severity and (3) 

effective contact. 

Different infectious diseases need different groups of time lines to describe the evolution 

of the infection and disease within the host. Generally, time lines include the latent 

period, infectious period, incubation period and symptomatic period. There are no 

widely accepted distributions for the time lines for one specific infectious disease because 

these parameters are dependent on age, race and many other differences within the 

human population and on variation in the infectious disease itself. In ISTAM, the time 

lines are simplified to be uniformly distributed between the minimum and maximum 

value (see Table 4.1). 
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In ISTAM, infectivity and virulence are two properties used to describe the severity of 

a specific disease. Infectivity means the ability of a disease agent to cause infection. An 

infectivity index is used in ISTAM to measure infectivity. For one contact, the larger the 

infectivity index, the greater the likelihood of transmission between a pair of infectious 

and susceptible individuals. Virulence refers to the severity of the disease after infection 

occurs. It is measured by the case fatality rate or the proportion of clinical cases that 

develop severe disease. In ISTAM, mortality is used to measure virulence. 

There is no clear and widely accepted definition of effective contact, since infection is a 

complex process and different infectious diseases have different transmission modes. The 

definition of an effective contact depends on the current understanding of the infection 

process for the specific disease. For airborne diseases, Edmunds et al. (1997) defines 



Chapter 4 : Conceptual Model of ISTAM 

TABLE 4.1: Model parameters in ISTAM. 

Sub-group 
Infectious disease Time lines 

Parameter name 
Latent min period 

Latent max period 
Incubation min period 
Incubation max period 

In fectious min period 

__ ._. _________ .___ __ _ ____ ........ ___ I:::n"f_e"-c:::t.i:OL1~~1~ax p_~lj()<! _____ _ 
Severity 

Effective contact 

Activity bundle Geometry 

Dynamics 

Individual Disease dynamics 

Activity pattern 
Health level 
Personal information 

Infectivity index 

Attack dmation (minutes) 

Attack distance (metres) 
Width (metres) 

Spatial distribution type 
Minimum X (metres) 

Minimum Y (metres) 

Movement lrequency 
Movement proportion 

Movement pattern 
Latcnt period 
Incubation period 

Accommodation 

School 
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the at risk contact as a two-way conversation. Essentially, if two individuals are close 

enough to have a conversation then they are probably close enough to transmit disease. 

This is easy to understand but hard to quantify. For some diseases such as measles, 

the virus in droplets sprayed by infectious people can remain active and contagious for 

up to two hours (see htip://www.cdc.gov/nip/diseases/measles//aqs.htm). In ISTAM, 

it is assumed that transmission probability is inversely related to the distance between 

the infectious and susceptible individuals if there are no obstacles between them and 

also is directly related to the duration of the contact. Thus, if an infectious individual 

stays within a specific distance (attack distance R) of another susceptible individual 

longer than a specific period (attack duration T), the two individuals come into effective 

contact (i.e., infection is possible). In ISTAM, the contact index CA,B is used to express 
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the degree of effective contact between individual A and individual B, as follows: 

( 4.1) 

Where: f(t) = 1, if t >= T; f(t) = 0, if t < T(r=distance between two individuals, 

t=duration). The concepts of effective contact and contact index are applicable directly 

to airborne infectious diseases. 

If individual A is infectious and individual B IS susceptible, then the probability of 

infection P A,B is as estimated as: 

(4.2) 

Where fA is the infectivity index of individual A, HB is the health level of individual B, 

and C A,B is the contact index between them. Thus, the process of disease transmission 

is separated into the occurrence of contact and occurrence of infection: the two key 

factors that need to be captured in a disease transmission model (Zheng et al. 2005). 

4.1.2 Activity bundles 

Space in ISTAM is divided into a number of ABs where most human interactions occur. 

An AB can be one room, a whole building or a building complex. According to the type 

of human activities and the function of the space, ABs can be categorized into different 

groups described by a set of parameters. 

The basic parameters required to describe an AB are the geometry of the space (such 

as size and spatial layout) and space-time dynamics of individuals within it (see Table 

4.1). The space can be a two or three-dimensional grid (raster) or a continuous space 

(vector) depending on need and the availability of data. 
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In ISTAM, the parameters required to describe individuals' space-time dynamics are: 

(1) the minimum possible distance between individuals in the x and y directions (i.e., 

MinX and MinY); (2) spatial distribution types: four types of individuals' spatial distri

bution within an AB were implemented in ISTAM (see Table 4.2); (3) movement. The 

minimum distance can vary with direction to reflect such differences in reality (e.g., in 

a lecture room or computer room, the distance between individuals side by side may 

be less than that between adjacent rows). In some ABs, individuals are assumed to 

remain static during the simulation time unit, such as in a lecture room. In some other 

ABs, movements must be considered. Three parameters are used to describe individuals' 

movements inside an AB during one time unit: movement frequency, movement propor

tion and movement pattern. Movement frequency (Mf) refers to how often individuals 

move while movement proportion (Mp) refers to the proportion of the individuals who 

choose to move instead of staying where they are. Movement pattern (Ma) is used to 

describe how individuals choose their next position inside the AB (currently, only one 

option is implemented, i.e., randomly). 

4.1.3 Individuals 

In ISTAM, one individual has three groups of properties: static, dynamic and intelligent 

properties. Static properties include health level, disease dynamics, activity pattern 

or other related personal information which does not change during the simulation and 

should be input at the initial stage of one simulation (see Table 4.1). Dynamic properties 

can be changed and the change can affect the simulation. Examples are current AB 

and current disease state. Intelligent properties include the individual's reaction to the 

current situation. Currently, intelligent properties include changing their daily activities 

after control measures (such as isolation) have been triggered, and it is assumed that 

one individual will stay at home during his or her symptomatic period then come back 

to their normal daily activity after this period. 
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In ISTAM, an individual's space-time model is expressed at two levels. At the between

AB level, an individual's space-time model consists of a sequence of 2-tuples (AB, t), 

where t can be a discrete time variable (currently, one time unit is 15 or 30 minutes). At 

the within-AB level (i.e., during one time unit), one individual's position within an AB 

is described by one tuple (x, y, t) (if static) or a sequence of tuples (x, y, ti) (if dynamic, 

where ti is a sub-period within the time unit). 

The specific time lines of disease and infection within a host (infected individual) within 

ISTAM are obtained by drawing a realization from the distributions for the time lines. 

It needs to be pointed out that dependency exists between the time lines. For example, 

the incubation period for influenza within a host is modelled as one day longer than the 

latent period (Longini et al. 2005). 

4.2 Two levels of simulation 

AB simulation is a process by which the contact network (specific to a target infectious 

disease) is generated from the space-time dynamics of individuals constrained by both 

the individuals' activities and the space's physical condition. Through AB simulation, 

the activity pattern, contact network and spatial effect are considered at two levels: 

(1) between-AB and (2) within-ABo At the between-AB level, the expectation is that 

individuals are more likely to visit locations nearby their current location. This can be 

reflected by their activity patterns: for example, individuals prefer to visit buildings with 

particular functions (e.g., shops) near to their household. At the within-AB level, the 

concept of effective contact is applied. In short, space-time co identity at the between-AB 

level is a prerequisite for effective contact at the within-AB level, which is a prerequisite 

for infection occurring. 

At the between-AB level, individuals are placed into their residential accommodation at 

the beginning of the simulation. Each individual has an activity pattern to determine 
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his or her whole day activity. At each time step, the individual moves to the next AB 

or stays in the current AB. As an example, Figure 4.2a shows the activities of student 

A and student B between 11:30 until 13:30 during a particular weekday. Student A was 

at the library while student B was in an accommodation room before they both went 

to the same lecture room. After a one-hour lecture (between 12:00 and 13:00), Student 

A returned to the library and student B went to a bar. If student B is infectious, then 

infection is possible depending on the AB simulation inside the lecture room and bar. 

At the within-AB level, such as during the lecture, student A and student B can come 

into contact or not depending on the simulation inside the lecture room (see Figure 

4.2b). Figure 4.2c shows an example of the spatial position of student B amongst other 

students inside the bar between 13:00 and 13:30. It is clear that 17 students sit as five 

clusters. Effective contact is still possible from student B to student C or student D, 

even though they are not in the same cluster, because the minimum distance between 

students in a bar is modeled as only 0.5 m with the attack distance modeled as 2 m. 

It is clear that in the bar student B came into contact with more students than in the 

lecture room at the same attack distance (2 m) because of the clustered distribution and 

the smaller distances between students inside the bar than in the lecture room. 

4.3 Within-AB simulation 

It is obvious that for infection to be possible, the physical activities of the infectious and 

susceptible individuals must overlay in both space and time. If all the physical activities 

(at the space-time scale required by the infection model) of all individuals belonging 

to the population are traced in the model, all possible infections are captured. While 

straightforward in theory, such physical activities, which are driven by social purpose and 

constrained by the physical world, are complex. Thus, such knowledge is rarely possible 

in practice because it is difficult to trace all such physical activities at a meaningful 
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space-time scale. It is, therefore, important to identify the factors that play primary 

roles and choose appropriate simulation tools. 

Three types of within-AB simulation approaches were designed and applied as raster 

space AB simulation, vector space AB simulation and role-based AB simulation. 

By raster space or vector space AB simulation, individuals' spatial locations within an 

AB are explicit and both the first and the second types of contacts can be simulated 

directly and no need to consider them separately. Under most circumstances, internal 

physical information of ABs is not available, role-based AB simulation is the choice. The 

spatial pattern of individuals is explicit but individuals' spatial locations are not. And 

the first and second types of contacts need to be simulated separately. 

4.3.1 Raster space AB simulation 

For raster space AB simulation in ISTAM, the space inside an AB can be represented 

using a rectangular or hexagonal grid. Although research has shown that the shape of 

the grid can affect disease transmission (Morris 1994), to simplify, a rectangular grid 

was used to represent the space inside each AB, and consequently, the position of one 

individual is represented as an explicit discrete grid coordinate (integer values for x and 

y) at one snapshot in time. 

Four types of space-time dynamic inside an AB were implemented in ISTAM (see Ta

ble 4.2). An exploration of the effect of the parameters required for raster space AB 

simulation is provided in Chapter 7. 

4.3.2 Vector space AB simulation 

The space within an AB can be represented as continuous and the simulation can be 

based on the vector data model. Continuous vector space allows representation of indi-
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TABLE 4.2: Four types of spatial distribution of individuals within an AB 

Distribution Distribution Example Mathematical description Parameter value 
type description 

I Try to place Computer L - RI «L",-L»rmin) \::1m L is the spatial position of a new 
each individual room individual; 
outside the Lm is the location of each already 
neighbourhood allocated individual m; 
of all others. r min is the neighbourhood distance 

(here, rmin =2 m). 
2 Individuals are Lecture L" = (mod (n, W), nlW) WisWidth; 

located room n is an individual index (in this 
sequentially, by model, n=I,2,oo.,N); 
row and column. N is the total number of current 

individuals inside an AB. 
3 Clustered Bar Ln -R, g is the expected cluster size (here, 

L", -RI (L",-Lo)=min, g=2); 
where Lo-R(L1• L2 •.• LN1g ) nand m represent individuals (in 

this model, n=I,2, ... ,Nlg and 
m=«NIg)+I), ... ,N) . 

4 Random Gym L-R 

R means random spatial distribution (x ER[O, ... ,Width-I], Y ER[O, .. . ,Length-I]); R(L 1L 2 , ••. ,L,) means that the spatial 
position is selected from LI.L2 ••. L,randomly 

54 

vidual movements at a finer spatial scale than raster space. In vector space, the distance 

between any two individuals within an AB can be represented as a real value of a con

tinuous variable (rather than in terms of pixels). Importantly, the distance rules can be 

applied directly. 

A continuous-space model was built to represent a more general AB. The target area 

is a 10 x 10m2 continuous space, where a certain number of persons (one of them is 

an infectious individual, all others are susceptible individuals) stay or move around 

inside the AB for 10 minutes. The time unit of the simulation is 5 seconds and the 

total simulation lasts 120 time steps. For influenza, this duration is far less than the 

duration for one individual to change from infected to being infectious and from being 

infectious to being immune, so during the simulation the only possible state change is 

from susceptible to infected. Three parameters were used to describe the interaction 

between individuals (see Table 4.3). The result of the simulation is the final number of 

infected individuals or the rate of infected individuals at the end (i.e., number of infected 

individuals divided by the total number of susceptible individuals at the beginning). 

The vector space AB simulation model was used to determine the effect of total number 

of individuals and mobility index on the relation between the rate of infection and 
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Parameters 

TABLE 4.3: Parameters for vector space AB simulation. 

Description 

The total number of individuals 

Public, social, personal, intimate 
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Number of individuals (IV) 

Distance type (D) 

Mobility index (M) The probability for individuals to move (it is assumed that the next spatial 

position is assigned randomly if a move is made). The higher the value, the 

higher the average pereentage of individuals that move durihg the next step. 

distance between individuals (Figure 4.3). The results show that the mobility index 

is the primary factor affecting the rate of infection. If the total number of individuals 

and mobility index are not too high such that people inside the AB can maintain larger 

distances between each other, the effect of the total number of individuals is small. It is 

clear that the infection rate falls abruptly when the distance type changes from personal 

to social distance. The reason is that the diffuse distance parameter is assumed to be 2 

m. The practical meaning is that if people can maintain separations of more than this 

distance, the infection rate decreases remarkably. 
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FIGURE 4.3: Proportion infected plotted against the distance between individuals for 
different values of the mobility index. In (a) the total number of individuals is 10 and 

in (b) it is 5. 

Vector space simulation highlights the effect of the mobility index. The model can be 

used to adjust the parameters of the mobility index, the total number of individuals 

and the distance type. However, the size and spatial layout of each AB can also be 
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expressed and individuals inside can have different movement patterns to express the 

activities that they are involved in or the different roles that they play. 

An example is provided here which is used to model influenza transmission amongst 

customers and salespeople inside one shopping mall (Figure 4.4). The lines show the 

outer and inner wall of this shopping mall. 13 salespeople are placed (ordered in an an

ticlockwise direction) and move only inside their sales zone of responsibility. Customers 

enter into the shopping mall from the entrance at the left-top corner and cross all sales-

people's sales zones clockwise or anticlockwise. During each simulation step, customers 

can stay or move within the current sales zone or move to the next sales zone. The 

exact spatial location of each individual within each sales zone is assigned randomly. 

One person is assigned randomly to be infectious from the beginning. The AB-based 

infection simulation model for influenza is then applied. The smaller circular attack 

zone which is built by the release of the infectious virus from the infectious individual 

will diffuse to be a larger circular diffuse zone which can persist for a short duration. 
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FIGURE 4.4: Spatial display of a shopping mall by vector space AB simulation. 

The example above, although simple, shows two merits of vector space simulation: (1) 

the spatial layout can be expressed explicitly by the use of vector data (e.g. , within a 

geographical information system, GIS); (2) the individuals' movement patterns inside the 
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AB can be as detailed as required such as to reflect their activities and roles. However, 

a fundamental question is: how much detail is needed for this simulation such as to 

generate a valid conclusion which can be applied to more general situations? Both the 

raster space and vector space simulations are used to generate individuals' contacts based 

on their space-time relations at a fine spatial scale which requires an individual space

time model to be defined at fine space-time resolutions. Unfortunately, such models are 

seldom available. 

4.3.3 Role-based AB simulation 

Individuals' roles within their joint activity are the basis for role-based AB simulation. 

The assumption of role-based simulation is that when people come together for a cer

tain joint activity, their interactions will depend strongly on the different roles which 

individuals play. For example, it is obvious that in a shop, the contacts between sales

people, between salespeople to customers and between customers are different not only 

in frequency but also in intensity. 

The infection process between two individuals, as discussed before, can be separated into 

two stages: coming into contact and becoming infected. The probability of coming into 

contact (Pc) and probability of infection during one contact (Pi) were used to express 

the random properties of these two processes. As discussed before, different distance 

rules can be applied to determine the distances between individuals who are involved in 

a variety of activities and play different roles. It is assumed that Pc can be determined 

by individuals' roles in their joint activities. 

The procedure for simulating interactions within an AB can be summarized as follows: 

(1) all individuals presented within the same AB are divided into a certain number of 

groups based on each individual's role in the joint activity; (2) a certain spatial pattern 

(without explicit spatial location at fine spatial scales) is assumed to exist within groups. 
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Interactions between individuals within a group are simulated based on these spatial 

patterns. Table 4.4 lists a few general spatial patterns within a group and Figure 4.5 

shows four of these spatial patterns; (3) interactions between individuals from different 

groups are simulated based on the activity properties. Table 4.5 lists a few general 

interaction types between two individuals belonging to different groups within the same 

AB. 

Five levels of Pc were used to represent different probabilities of coming into contact. 

The lowest level was assumed to be a constant value F, and the ratio between two 

adjacent levels were fixed to be 2. That is: pl = 2P; = 4Pg = 8Pd = 16Pg. For each 

specific application, the value of F will be calibrated by simulation according to related 

research. An example can be found in Section 8.5.1. 
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Pattern 
name 

Full 
Loop 

Queue 

Static 

random 

Static even 

Dynamic 

random 

Cooperation 

Service 

Care 

Random 
contact 

TABLE 4.4: Spatial patterns within 

ValueofP; 

p2 
11 P; with first above 

and below, and 
p;2 with second 

above and below. 
p2 

1 

p2 
1 

pI 
1 

p3 
1 

Description 

Evcry person is in contact with all other persons 
Static. Fixed before the simulation, and does not change. Individuals 

distribute like a loop, so one person contact with persons first and 
second above or below with himself! hersclf in the loop 

Static. Fixed linear distribution. One person makes contact with another 
person just before or after him / her in the queue 
Persons are distributed randomly. Each individual comes into contact 
with her! his four Von Neumann neighbours. One additional 
parameter: Density 

Persons are distributed evenly in a grid space. Each individual comes 
into contact with her I his four Von Neumann neighbours 
Every person comes into contact with a number of randomly selected 
other persons. This process repeats a number of times. Two additional 
parameters: Density and Mobility 

TABLE 4.5: Interaction types. 

Social distancc 

Public distance 

Social distance, 
Personal di stance 

Public distance 

Contact distance 

Personal distance 

Personal distance 

Intimate distance 

Social distance, 
Personal distance 

Teamwork or teachers and students, 
managers and workers 
Service environment. One individual 

serves another 
Health care facilities. Patients and nurse 

Restriction by physical environment 

Three levels of Pi were used to represent different probability types of getting infection 

with the contact distance set to be intimate, personal and social distance. The lowest 

level was assumed to a constant value I, and the ratio between two adjacent levels were 

fixed to be 2. That is: pf = 2pl = 4pl. For ea,ch specific application, the value of I 

will be calibrated by simulation according to related research. An example can be found 

in Section 8.5.1. 

As an example, let us consider the possible contacts within a restaurant. According to 

their roles, the individuals inside the restaurant can be classified to groups such as the 

manager, kitchen staff, waiters and customers. The customers can be divided further 
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into several customer groups (Figure 4.6). Alternatively, to simplify the computation, 

the above individuals could be divided into only two groups (Le., workers and clients). 

Different types of contacts (with different values of Pc) could occur between and within 

different groups (see Table 4.6). For example, it can be assumed that all customers 

belonging to the same customer group prefer to maintain personal distances or intimate 

distances between each other while the waiters prefers to maintain a social distance 

with customers when they are not providing service and personal distance when they 

are providing service. As the customers belong to different customer groups, they prefer 

to maintain public distances to retain privacy, but in many circumstances this cannot 

be satisfied due to the restriction of the physical environment of the restaurant. 

[ c;;;;c;;;;c;;;;c;;;; 
J Kitchen ( J 

C;;;;C;;;;C;;;;C;;;; 
staff 

( ) C;;;;C;;;;C;;;; 

Customer group 1 

Customer group 2 

Manager C;;;; [ c;;;;c;;;;c;;;;c;;;; 
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J 
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FIGURE 4.6: Classification by roles of individuals inside a restaurant. 

TABLE 4.6: Possible contacts between individuals inside a restaurant. 
Contacts 

Within groups Between kitchen staff 
Between waiters 

Customers belong to the same customer group 
Between different groups Manager with kitchen staff 

Manager with waiters 

Waiter with customers 
Manager with customers 
Customers to different customer 

Spatial pattern I interaction type 

Full 

Static random 

Full 

Cooperation 
Cooperation 

Service 
Service 
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4.4 Input and output 

To simulate the transmission of a specific disease, information is needed on (1) the infec

tious disease, (2) the environment and (3) the population. In ISTAM, the corresponding 

parameters needed represent the infectious disease, activity bundles and individuals (Ta

ble 4.1). Parameters representing the infectious disease can be obtained from the relevant 

literature, while parameters representing the activity bundles and individuals have to 

be obtained from a survey targeted to the corresponding population and environment. 

After defining the model parameters, several running parameters need to be set for one 

simulation including the number of initial infected individuals, number of initial immune 

individuals, simulation duration, disease control measures and so on. 

Information on changes in the activity and disease state at both the individual level 

and AB-Ievel are recorded into a database during each ISTAM simulation. Therefore, 

subsequent analysis can be done after each simulation or based on a considerable number 

of repeated simulations. 

4.5 Summary 

In this chapter, the model of ISTAM and three within-AB simulation approaches were 

introduced at the conceptual level. The implementation is presented in next chapter. 



Chapter 5 

Implementation of ISTAM 

5.1 Tools for implementation of ISTAM 

The implementation of ISTAM is based partly on RePast (an agent-based simulation 

toolkit, see http://repast.sourceforge.net) and Java Topology Suite (JTS, an API which 

provides an implementation of the spatial data model, see http://www.vividsolutions.com/jts/). 

Java (an object-oriented language, see http://www.java.sun.com) was used for develop-

ment. 

5.1.1 IBM library of RePast 

The University of Chicago's Social Science Research Computing's Recursive Porous 

Agent Simulation Toolkit (RePast) is a software framework for creating agent-based 

simulations using the Java language (requires version Java 1.4 or greater). It provides 

a library of classes for creating, running, displaying and collecting data from an agent

based simulation. In addition, RePast can take snapshots of running simulations, and 
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create quick time movies of simulations. RePast borrows much from the Swarm simula

tion toolkit and can properly be termed 'Swarm-like'. 

Swarm (see http://www.swarm.org) is the earliest IBM software library and is a software 

package for multi-agent simulation of complex systems. The basic architecture of Swarm 

is the simulation of collections of concurrently interacting agents. Models are developed 

as object-oriented programs which give flexible ways of specifying model behaviors. 

Swarm is taken as the most exhaustive object-oriented modelling environment developed 

and one that is most commonly applied to social and urban simulations (Agarwal & 

Abrahart 2003). Swarm is provided in both C and Java. 

An evaluation of free Java-libraries for agent-based simulation by Tobias and Hofmann 

(2004) compared RePast, Swarm (Java version) and two other relatively less-used soft

ware platforms (Quicksilver and VSEit). The evaluation was based on official program 

documentation, statements by developers and users, and the experiences and impres

sions of the evaluators. The conclusion of the evaluation was that RePast was the most 

suitable simulation framework for the applied modelling of social interventions based on 

theories and data. 

In another evaluation, Railsback et al. (2006) compared software platforms for IBM 

including Netlogo, MASON, RePast, Swarm (Java version) and Swarm (Object C ver

sion). RePast was taken as "the most complete Java platform" and "its execution speed 

to be good compared to the other platforms" (Railsback et al. 2006, pp 624). Also, 

RePast includes classes for geographical information systems and network functions. 

5.1.2 Java Topology Suite 

The JTS is a Java API that implements a core set of spatial data operations using an 

explicit precision model and robust geometric algorithms. It provides a complete model 
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for specifying 2-D linear geometry. Many common operations in computational geom

etry and spatial data processing such as Boolean functions (equals, disjoint, intersects, 

touches, crosses, within, contains, overlaps), overlay, buffer, polygonization and merging 

a set of line strings functions are exposed in a clear, consistent and integrated API. JTS 

is intended to be used in the development of applications that support the validation, 

cleaning, integration and querying of spatial datasets. 

As stated in the previous chapter, space in ISTAM is considered as two levels. At 

between-AB level, JTS is used to compute the distances between ABs mainly. At within

AB level, JTS is used to compute and select a location for individuals according to the 

current AB's space-time dynamics. 

5.1.3 Object-oriented programming and Java 

The popularity of IBMs relies on the increases in computer power and the use of object

oriented languages (Ginot et al. 2002). IBM programming can be done in any language, 

but Object-Oriented Programming (OOP) languages are the most appropriate languages 

since the concept of an object is similar to the concept of an individual (or agent). 

OOP languages provide data structures which naturally allow for efficient individual

based modelling. An object is a software entity containing attributes plus methods 

that act on these attributes. An object controls access to its attributes and methods 

by declaring them as public, private or protected (which indicates different levels of 

accessibility by other objects). 

Fundamental concepts within OOP are inheritance, encapsulation and polymorphism. 

A class B can inherit the attributes and methods of another class A. The class B is then 

called the subclass of class A, and class A is called the superclass of class B. A subclass 

can include specialized attributes and methods that are not present in the superclass. 

Encapsulation is the process of determining which aspects of a class are not needed by 



Chapter 5 : Implementation of ISTAM 65 

other classes, and hiding these aspects from other classes. Polymorphism is the ability 

for two separate yet related classes to receive the same message but to act on it in 

their own way. In other words, two different (but related) classes can have the same 

method name, but they implement the method in different ways. The most popular 

OOP languages are C++, C# and Java. 

Java is an object-oriented programming language developed by Sun Microsystems in 

the early 1990s. One of the most important characteristics of Java is its platform in

dependence, that is, programs written in the Java language can run similarly on any 

supported hardware/operating-system platform. In Java, the 'class' is the key concept 

which defines the object's characteristics (named its attributes or properties) and its 

behaviors (named methods or features). Objects are created as instances of a class. In 

this chapter, all names of class are highlighted by bold font. 

5.2 Main packages and classes of ISTAM 

To facilitate code reuse, Java allows users to group several class definitions together in 

a logical grouping called a package. Figure 5.1 shows the main packages and classes 

within an example application ofISTAM (see Chapter 6). There are mainly three types 

of packages being applied within this application . 

• Packages from the RePast library for which names begin with 'uchicago.src.sim'. 

These packages are used mainly for schedule control (such as uchicago.src.sim.engine), 

within-AB space management (such as uchicago.src.sim.space) or the generation 

of random numbers (such as uchicago.src.sim.util and cern.jet.random) . 

• Packages from the Java language. The names of these packages begin with 'java', 

these general packages are used mainly for data input and output from file or 

database and some common utility functions. 
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II 
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66 
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__ -330 Schedule 

Simlnit 
SimMcdeI 

SimMcdellmpl 

uchicago .SI'C.sim .util 

--~ 
Random 

FIGURE 5.1: Packages and classes within an example application of ISTAM. 
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• Packages for which names begin with 'istam' were developed by the author of this 

thesis. The 'istam.model' package contains classes corresponding to the objects 

within the conceptual model (see Figure 4.1), the 'istam.view' package contains 

classes which are used for interface display, the 'istam.library' package contains 

classes for database input and output function (AccessDB), utility functions 

(Utility) and log information (Log). 

Three main classes InfectiousDisease, ActivityBundle and Person were imple

mented according to the description in Section 4.1. Here, other classes are described. 

5.2.1 Class of Student and Citizen 

Class of Person is the basic class for an individual, and Class of Student and Citizen 

extend the class of Person for different applicationss (for application of the former see 

Chapter 6 and for the latter see Chapter 8). Beyond properties of Person, Student 

has properties such as Department, Flat and Dorm, Citizen has properties such 

as Household, WorkPlace or StudyPlace. The classes of Student and Citizen 

are subclasses of the class of Person, and Person is the superclass of Student and 

Citizen. This is an example of the application of inheritance. 

5.2.2 Class of DiseaseEvolution 

The class of DiseaseEvolution was used to implement the process of infectious disease 

evolution with one specific individual. Three properties of DiseaseEvolution are la

tent, incubation and infectious periods. Each instance of Person (Student or Citizen) 

has an instance of DiseaseEvolution which has fixed values for the above three time 

lines (generated by InfectiousDisease). Along the simulation, if one individual gets 

infected, the DiseaseEvolution will begin to record her jhis disease state and the time 
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of staying in the current disease state. If staying in the current disease state is equal to 

the threshold (by the value of the time lines), her jhis state will be changed. Thus, the 

disease will evolve according to the time lines within an individual. 

5.2.3 Class of ActivityPattern 

As ISTAM is a time discrete model, the time unit was set to be a duration (15 or 

30 minutes), such that one day is divided into a number of units. ActivityPattern is 

used to assign each unit with certain activity types. The properties of ActivityPattern 

consist of two parts: some fixed activities and some non-fixed activities. Fixed activities 

are obligatory activities for individuals during certain times such as attending lectures for 

students, going to work for adult citizens and sleeping for all individuals. For example, 

Department has a property of lecture timetable (implemented by an array of integers. 

Non-fixed activities are optional activities and the probability of the occurrence of these 

activities is based on survey data. A multi-dimensional double array was used to express 

this part; it can be relatively simple (see Section 6.2) or relatively complex (see Section 

8.3.5). 

5.2.4 Classes for spatial and social environment 

ActivityBundle is the basic unit used to represent the whole spatial and social en

vironment within which the population lives. According to the different within-AB 

simulation methods, the subclasses of the class of ActivityBundle such as Lecture

Room and Student Union were implemented in different ways. This is an example of 

the application of polymorphism. 

Other classes are used to represent the environment, such as Accommodation, Flat, 

Department for the application in Chapter 6, PC6Zone for the application in Chapter 

8. All the instances of these spatial or social units have a collection of individuals. This 

is implemented by the class of Vector or HashMap. 
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5.2.5 Class of Contact 

Contact is a class to record all the contacts between individuals at fine levels. Each 

instance consists of six properties: two persons who came into contact, contact time, 

contact index, contact result and the activity bundle where this contact occurred. By 

this class, all information related to contacts can be recorded, and saved into a database 

for future analysis. 

5.2.6 Class of DiseaseControlStrategy 

The class of DiseaseControlStrategy allows the implementation of disease control 

measures. During the simulation, the summary disease information can be accumulated 

by class of Utility. If the number of individuals who are infectious with symptoms is 

larger than a certain threshold (Alert value), the disease control will be applied upon 

related individuals within the model depending on different control strategies. If one 

individual is set to be quarantined, her/his activity pattern will be changed. 

5.3 Simulation process of ISTAM 

Currently, all related data sources (original data sources, simulation information and 

simulated results) are saved in a Microsoft Access database. The class of AccessDB 

allows input and output data functions which are based on the package of 'java.sql'. The 

Table 5.1 shows the main database tables used by applications of ISTAM. 

5.3.1 Preparation stage 

As shown in Figure 4.1, before the main simulation, a series of tables (such as PRE_RAN_population, 

CON_activityBundles and CON_activityPatterns in Table 5.1) recording information 
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TABLE 5.1: Main tables within database used by ISTAM. 

Name of table 

SIMULATION INDEX 

Sll'vC compm1ments 

PRE_ *** _population 

CON_activityBundles 

CON _activityPatterns 

Description 

An index table. Each simulation is saved as a record. Parameters of the simulation are 

saved as columns. 

Simulation results table. For each simulation, the numbers of individuals belonging to 

different disease states (compartments, e.g., susceptible, latent) at certain time units is 

saved as a record. 

Simulation results table. Each contact is saved as a record. All contacts or part of contacts 

according to certain criteria (e.g., according to contact results or contact index) 

Constant table. Each individual is presented in the table as a record. There could be a few 

different strategies for synthesizing the population (indicated by ***). 

Constant table. Each activity bundle is presented in the table as a record. 

Constant table. Each type of activity pattern is presented in the table as a record. 

about individuals and ABs need to be built based on population data and activity sur

vey. Parameters about the target disease are obtained from statistical data about the 

previous epidemic outbreaks. 

5.3.2 Simulation stage 

In this Section, the process of the application of ISTAM within the first year under

graduate student body in the University of Southampton is given as an example of the 

simulation process. 

After the initial interface, the main interface will be shown. To begin a simulation, a set 

of parameters need to be set or chosen in the parameters interface. The population can 

be chosen from different synthesizing methods. Initial index cases can be set randomly 

or by users. By the latter, the different kinds of distribution of index cases can be tested. 

Related analysis can be seen in Section 6.4.4. 

Simulation duration can be set as: (1) a fixed value. After this duration, the simula

tion will be terminated; (2) limitless. The simulation will only be terminated by the 
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interruption of the user; (3) auto stop. The program can judge if there are no potential 

infections within the model (if all individuals are susceptible or immune), the simulation 

can be terminated automatically. This option makes the simulation flexible to the need 

of users. 

If the user chooses the display option then during the main simulation a spatial display 

for the whole environment or a certain AB can be shown dynamically (i.e., updated 

every unit). The example of dynamic spatial display at both between-AB and within

AB levels for the application of ISTAM to the campus of University of Southampton 

can be seen in Appendix A (see Figure A.5 and Figure A.6). Spatial display at both 

between-AB and within-AB level during the simulation is optional. 

After the setting of parameters, all information about this simulation will be saved into 

the table 'SIMULATION.lNDEX' before the main simulation. 

ISTAM benefits most from RePast in terms of its scheduling mechanism. RePast behaves 

as a discrete event simulator whose quantum unit of time is known as a tick. The tick 

exists only as a hook on which the execution of events can be hung, ordering the execution 

of the events relative to each other (Collier 2001). The schedule within ISTAM is run as 

tick by tick. A certain number of ticks makes up a day. The schedule for each day can 

be simplified as in Table 5.2. After the simulation, simulated results at individual level 

and AB-level are recorded into a database for future analysis. An example to display a 

certain student's activity during a certain day (see Figure A.7) and another example to 

display an infection tree (for one individual, the individuals who had been infected by 

him/her and the time and the AB of this infection are displayed, see Figure A.8) can be 

found in Appendix A. 

5.4 Summary 

The implementation of ISTAM was presented in this chapter. After the programming 

work, the entity of the model existed as a number of Java classes being organized within 
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TABLE 5.2: The schedule for each day within ISTAM. 

FOR each Person 
Make a day plan according to activity pattern 

2. IF meet the 
condition for 
control measures 

Control related Persons 
3. FOR each Person 

Move between Ails according to his/her day plan 
Update disease slate according to disease evolution time lines 

4. FOR each AB 
Interaction between all individuals within Ail 

5. Update summary information related to current tick and save to database 
6. Update graph or map according to updated summary information 
7. IF a day ends 

Update summary information related to current day and save to database 

a group of packages. These packages were used as the basic library. When ISTAM 

is applied to a specific application, additional application classes will be implemented. 

Two application cases of ISTAM, are presented in Chapters 6 and 8. 



Chapter 6 

i\pplication to the Campus of the 

University of Southampton 

6.1 Background and survey 

ISTAM was applied to simulate a hypothetical influenza epidemic in the University of 

Southampton. The University of Southampton is a research-led University with 13032 

undergraduate students during 2004-2005 (see http://www.soton.ac.uk). In ISTAM, the 

first year undergraduate students from the University of Southampton were taken as a 

hypothetical population. Why choose this population? Firstly, most of the first-year 

undergraduate students live in the accommodation provided by the University. Thus, 

the University, as a semi-closed system covering a small geographical space, provides 

a useful basis for model development and evaluation. Secondly, students live within 

a limited space with a semi-predictable daily activity pattern (especially for first year 

undergraduate students, most of their study activities involve taking lectures which are 

known) (Tomlinson et al. 1973, Huisman & Forer 1998) and relatively less interaction 
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with the outer world (weekends are neglected). Thirdly, age structure need not be 

considered and there are no births or deaths and marginal immigration and emigration. 

To acquire data on students' space-time activity patterns, a questionnaire survey was 

taken by the author in March 2005 at the University of Southampton. The questionnaire 

included three parts (see Figure C.1): (1) personal information, (2) time points and (3) 

activity preferences and durations. 315 valid questionnaires were collected from first 

year undergraduate students from ten University schools. These data were input into 

databases to build activity patterns per individual. According to the survey, most of 

the students prefer to visit the library, computer room or Student's Union between two 

discontinuous lecture periods. At night (no lectures), they prefer to go to the student's 

bar, gym or stay at accommodation more than go to the library or out of campus. 

During lunch (mid-day) and dinner (evening), some students cook in the accommodation 

kitchen, while others go to a refectory or buy food. 

6.2 Students and ABs 

4000 first year undergraduate students belonging to six accommodation houses and 26 

schools were modelled in ISTAM, and it was assumed that no other students or staff 

existed. The weekends and holidays were also ignored. For each student, one activity 

pattern was selected randomly from the surveyed 315 activity patterns. However, since 

the survey data represent only a small sample of the first year student population, some 

assumptions have to be made to build a complete student space-time activity pattern. 

The activity pattern includes two parts: (1) time points and (2) activity preferences 

and durations. Some time points are fixed such as the lecture times (it is assumed that 

every student takes part in every lecture on which he or she is enrolled) while other time 

points have a fluctuating range (such as the time for a student to leave or return to his or 

her accommodation). Activity preferences are weighted (for example, one student may 

have 75% probability to go to the library and 25% probability to go to the gym during 
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one hour's vacant time between two lectures). Again, some activities have a relatively 

fixed duration (such as lunch at refectory) while others do not (such as studying in the 

library or a computer room). 

Twelve types of AB were designed to describe the spatial environment (see Table 6.1). 

The spatial structure of the accommodation (building, flat, room, kitchen) and the 

TABLE 6.1: List of ABs in an example application of ISTAM. 
--. __ . -.-.-~----.. --.. -

Name Number Distribution Geometry 
type (L x W, ~Y1Jlin X Ymin) a 

Bar IS 3 5 x5, 0.5 xO.5 

Computer room 10 20 x20, I x2 

Gym 4 45 x45, 1.5 x 1.5 

In campus 4 1000xIOOO,2x2 

Kitchen 576 J 3 ><3, I x I 

Lccture room (a) 4 2 8 x 15, I x 1.5 

Lecture room (b) 9 2 15xJ8. I x 1.5 

Lccture room (c) 12 2 20 x20. 1 x 1.5 

Off campus 4 10000 x 10000, 2 x2 

Refectory 2 3 20x20, 1 x J 

Library room 10 4 20 x20, I x J 

Student union 4 40x40, 1 x I 

a All measures givcn in meters. 

b 1'v[( movcment frequency; J\1" : movement percentage. 

Movement b 

Mr=3, Mp =1 00% 

Mr=3, Mp =20% 

l"vl, =3, Mp =50% 

lecture timetables of schools were obtained from real data. Here, library room and 

student union are the two ABs that consider the movements of students inside. It was 

assumed that movement pattern inside the above two ABs can be modelled as random 

(i.e., the next position of one individual has no relation with the current position). 'Off 

campus' and 'in campus' are two special ABs here to include all other spaces where the 

interaction between students are possible but have not been covered by other ABs. 

6.3 Influenza 

This research focuses on the infectious diseases that can be transmitted by contact or 

airborne transmission, such as influenza, measles and mumps. ISTAM was applied to 
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simulate hypothetical influenza outbreaks. Influenza (commonly called 'the flu') was 

used to test the model and to compare different disease control measures. 

Influenza is a contagious respiratory illness caused by influenza viruses. There are three 

types of influenza virus: A, Band C. Influenza B almost exclusively infects humans 

(Hay et al. 2001) and influenza A is the most virulent human pathogen amongst the 

three types and causes the most severe disease. Infection with influenza viruses can 

result in illness ranging from mild to severe and life-threatening complications (see 

http://www.cdc.gov/fiu/pdf/keyfacts.pdf). Symptoms include fever, respiratory symp

toms, nasal discharges, cough, headache and sore throat. 

It is believed that time lines for influenza have been relatively invariant over the past half 

a century (Longini et al. 2005). The latent period of influenza varies from 1 to 3 days, 

and the incubation period is one day longer than the latent period (Steinhoff 2000). 

The infectious period varies from 3 to 6 days (Longini et al. 2004). Elveback et al. 

(1975) estimated the latent and infectious period of influenza as: latent period of 30% 

1 day, 50% 2 days, and 20% 3 days; infectious period of 30% 3 days, 40% 4 days, 20% 

5 days, and 10% 6 days. It is during the intersection of the incubation period and the 

infectious period where viruses spread the most (Scott & Duncan 2001). One reason may 

be because without symptoms the infectious individuals are unaware of their infectious 

status and continue normal contact with other susceptible individuals. 

For influenza, airborne spread predominates amongst crowded populations in enclosed 

spaces. It is generally accepted that influenza viruses are spread primarily by small

particle aerosols of virus-laden respiratory secretions that are expelled into the air (gen

erally up to 1 m) and deposited on the mouth or nose of people nearby by infected 

persons during coughing, sneezing, or talking (Cox & Subbarao 2000). It was assumed 

that the attack distance is 2 m the attack duration is 10 minutes (see Table 6.2). The 

infection may also be spread from person to person by direct contact with infected 

secretions. 
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TABLE 6.2: Parameters for influenza in an example application of ISTAM. 

Parameters 
Latent period 
Incubation period 
Infectious period 
Infectivity Index b 

Mortality C 

Attack distance 
Attack duration 
a 1 unit=O.5 hours 

Value 
48-144 units a 

96-192 units a 

144-288 units it 

0.04 
0.0008 
2.0m 
10 minutes 

b the infectivity index was calibrated from Ro [for influenza, Ro= 1.68 (Longini et ai., 2004)). 
C Mortality was estimated from CDC (2004). 
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Related studies demonstrated high rates of infection in school-age children and the 

importance of schoolchildren as vehicles of infection within families (Cox & Subbarao 

2000). Detailed statistics of an influenza epidemic at a boys' boarding school were 

reported in an article from the British Medical Journal (4th March, 1978). One infected 

boy initiated the epidemic on January 22 and it ended on February 4 with 512 of the 763 

boys in the school contracting the disease. The SIR model was applied by Murray (1989) 

to study the spread of the flu epidemic in this school and he found that Ro = 3.78. While 

within the whole population, the Ro was estimated to be less than 2 (Longini et al. 2004). 

Three pandemics have occurred in the twentieth century: the 1918 H1N1 pandemic, 

the 1957 H2N2 pandemic, and the 1968 H3N2 pandemic. A characteristic pattern for 

localized epidemics within a community is: begins abruptly, peaks within 2 to 3 weeks, 

ends within 5 to 10 weeks, and the overall attack rates are estimated to be 10-20%, or 

even 40-50% in populations such as schoolchildren or nursing home residents (Cox & 

Subbarao 2000). 

It is possible to be vaccinated against influenza. However, due to the high mutability 

of the virus a particular flu vaccine formulation usually only works for about a year. 

The World Health Organization co-ordinates the contents of the vaccine each year to 

contain the most likely strains of the virus to attack the next year. The flu vaccine 

is usually recommended for anyone in a high-risk group who would be likely to suffer 

complications from influenza. There are no effective measures to control the spread of 

influenza in schools except to keep students who are symptomatic at home. 
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As reviewed by Cox (2000), quantification of deaths caused by influenza is complicated 

by the fact that death can not only arise from pneumonia and influenza but also from 

cardiopulmonary and other chronic diseases that can be exacerbated by influenza. The 

mortality occurs primarily in the elderly, but it can occur in all age groups. As reviewed 

by Cox (2000), at the global level, influenza activity peaks during the winter months in 

temperate regions, and in tropical regions influenza can occur throughout the year. 

6.4 Simulation results 

6.4.1 Calibration by the basic reproductive number 

For diseases that have been studied extensively such as influenza and measles, Ro can 

be found from public sources. As Ro cannot be applied directly in an individual-based 

model, the infectivity index is used here to describe the infectivity of the disease agent 

in ISTAM instead. 

The number of contacts per unit time can be obtained by micro-simulation inside the AB, 

the duration of infectiousness as a parameter can be obtained from the literature, and the 

transmission probability per contact is in direct proportion to the infectivity index (see 

Equation 1.1 and Equation 4.2). This means that the infectivity index can be calibrated 

by Ro in ISTAM. For influenza, Ro is estimated to be 1.68 (Longini et al. 2004). Thus, 

by fixing the attack distance to be 2.0 m and simulating with different infectivity indices, 

then the corresponding Ro can be computed (see Figure 6.1). In reality, individuals who 

are infectious with symptoms will change their daily activities, such as staying home or 

visiting health care facilities. So in this application, the infectivity index was estimated 

to be 0.04 with a corresponding Ro of 1.84. 

When the infectivity index is fixed to be 0.04, simulated Ro from different attack dis

tances are shown in Figure 6.2. It is the clear the larger the attack distance, the larger 

of the basic reproductive number. 
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6.4.2 Base line simulation 

The conditions for base line simulation are with 5 randomly distributed index cases, 3995 

randomly distributed susceptible individuals, and no control measures, 0.04 infectivity 

index and 2 m attack distance. Figure 6.3 is an example plot obtained by base line 

simulation 
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FIGURE 6.3: Example plot of base line simulation. 

Due to the complexity of real world, it is almost impossible to predict precisely an 

epidemic outbreak, both the size and duration of the outbreak are highly variable 

(Kretzschmar et al. 2004). For one epidemic outbreak, five parameters are selected 

to describe its characteristics: (1) start day, the day when the number of infectious 

individuals with symptoms begins to exceed 10; (2) peak day, the day when the num

ber of infectious individuals with symptoms reaches a maximum value during the whole 
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outbreak; (3) peak number, the number of infectious individuals with symptoms at the 

peak day; (4) duration, the duration between the start day and the last day when the 

number of infectious individuals with symptoms is larger than 10; (5) remaining number, 

the number of susceptibles after the outbreak (see Table 6.3). 

TABLE 6.3: Value and description of five parameters for base line simulation. 
Parameters Description Min Max Mean Std. 

Deviatio 

Start day The day when the number of infectious individuals with symptoms 6 59 11.51 5.' 
begins to exceed 10 

Duration The duration between start day and the last day when the number of 62 ~4 70.14 3.~ 

infectious individuals with symptoms is larger than 10 
Peak day The day when the number of infectious individuals with symptoms 29 46 35.62 2.~ 

reaches a maximum value during the whole outbreak 
Peak number The number of infcctious individuals with symptoms at the peak day 545 722 645.95 31.7~ 

Rcmaining The number of susceptibles after the outbreak 919 1169 1052.9 41.; 

From Table 6.3, it is clear that the peak time is between 29-46 days, the whole period 

is around 70 days, and the overall attack rate is more than 70%. All these results are 

approximately higher (or longer) compared to the characteristic pattern above. Con

sidering the high density of the University student population and without any control 

measures, this difference is deemed acceptable. 

6.4.3 Number of index cases 

It is interesting to explore the effect of the number of index cases on the characteristics of 

an outbreak. Here, the five parameters for one outbreak are compared with the number 

of index cases from 1 to 5 (with 100 simulations). When the number of index cases 

was set to 1, 36% of the simulations were terminated without any infections, that is, no 

outbreak. When the number of index cases was set to 2, 12% of the simulations had no 

infections. When the number of index cases was set to be 3, 3% of the simulations had 

no outbreak. When the number of index cases was more than 3, an outbreak occurs 

within most of the simulations. 
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The distribution of each parameter for outbreaks are shown in Figure 6.4 based on the 

simulation results when the outbreak occurred. The most obvious difference are the 

parameters of start day and peak day: with the increase in the number of index cases, 

the start day and peak day come earlier. There are no significant differences in terms of 

the other three parameters: duration, peak number and remaining number. 

The conclusion is that when no control measures are applied, the smaller the number 

of index cases, the larger the probability of no outbreak. But if the outbreak occurred, 

the larger the number of index cases, the earlier the start and peak of the outbreak. 

The number of index cases has no significant effect on the duration, peak number and 

remaining number. 

6.4.4 Distribution type of the population and index cases 

The base line simulation assumes students' allocation within accommodation has no 

correlation with their allocation within schools, that is, the probability of the students 

belonging to the same school to be within the same accommodation is the same as that 

for students belonging to different schools. In this research, this student population is 

named the 'normal population'. In reality, some Universities may try to allocate the 

students from the same school to be within the same flat (the basic unit of accommo

dation) or at least same accommodation if possible for the convenience of management 

(such as most of the Universities in China). In this research, this student population 

is named the 'clustered population'. On the contrary, some Universities may encourage 

students to live with students from different schools for the purpose of widening their 

horizons (such as the University of Oxford and the University of Cambridge). In this 

research, this student population is named the 'dispersed population'. It is interesting 

to explore the effects of the above three types of population allocation on the infectious 

disease transmission. 
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The base line simulation assumes the five index cases are randomly distributed, that is, 

they are randomly selected from all students without considering their accommodations, 

schools and relations between each other. It is assumed that all index cases become 

infected from outside at the same time. In reality, it is also possible for these index 

cases to have 'linkages' between each other. In this research, another two distribution 

types were assumed: the index cases are from (i) the same fiat and (ii) the same school. 

It is interesting to explore the effects of the above three types of index cases allocation 

on infectious disease transmission. 

The combination of the allocations of population and index cases produced nine sets of 

simulations (3 x 3). Each set was repeat 100 times. 

For each of the five characteristic parameters, one way analysis of variance (ANOVA) 

(with 95% confidence) was used to test the differences in the means between different 

sets of simulation results (see Table 6.4). Interest is focused on the difference between 

different allocations of the population when the allocation of index cases is fixed (left 

part of Table 6.4) and the difference between different allocations of index cases when 

the allocation of the population is fixed (right part of Table 6.4). 

TABLE 6.4: ANOVA analysis of the five characteristic for the combination of population 
allocations and index cases allocations. 

Allocation of All types Normal 

I 
Clustered 

I 
Dispersed 

Jl!lIlIIiatio n 
Allocation of Random 

I 
Same school 

I 
Same flat All types 

index cases 
F ~ F ~ F ~ F ~ F ~ F ~ 

Start day 1.99 0.14 ~JJl:: IU)! 1.93 0.16 1.45 0.24 0.74 0.48 'f.O:! OJI2 
Duration !() vi ().U46 0.73 0.49 1.23 0.30 0.09 0.92 0.79 0.46 
Peak day O.!}O7 0.99 0.38 1.40 0.26 1.79 0.17 0.05 0.96 1.51 0.23 
Peak number Of) 1.93 0.16 0.31 0.73 1.18 0.32 0.27 0.76 
Remaining 

When the p value is < 0.05, the larger the value of the test statistic (F), the larger 

the significant difference in means for the parameter within related sets (highlighted by 

italic font for F and p). It is clear that there are significant difi'erences between difi'erent 

allocations of population when the allocation of index cases is fixed to be random or 

within the same school. 
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Figure 6.5 shows the boxplot of the four parameters for different allocations of population 

when the allocation of index cases is random. 

It seems when the index cases are randomly allocated, clustered population may be a 

little 'stronger' than normal population in terms of the resistance to disease outbreak as 

the former has a larger remaining number and smaller peak number. A likely explanation 

is that within a clustered population, students have less other students to contact during 

a day (their flatmates are also classmates) compared with a normal population. 

Figure 6.6 shows the boxplot of the four parameters for different allocations of popu-

lation when the allocation of index cases is within the same school. In terms of the 



Chapter 6 : Application to the Campus of the University of Southampton 

30 

25 

~20 
"0 
t 
.l!l 
(/) 15 

10 

690 

660 

Q; 
.c 
§ 630 
c 

"'" ro 
Q) 

CL 600 

570 

72 
0 

82 
0 

9 ~ 
Oustered Normal Dispersed 

Allocation of the population 

(a) 

Oustered Norrml Dispersed 

Allocation of the population 

(c) 

c 
o 

~ 
::l 

75.00 

070.00 

65.00 

1200 

1150 
~ 

Jl 
~ 1100 

0> 
c 
'c 
'm 1050 
E 
Q) 

0:: 
1000 

950 

Oustered Normal Dispersed 

Allocation of the population 

(b) 

Oustered 

115 

8114 

Normal Dispersed 

Allocation of the population 

(d) 

FIGURE 6.6: Distribution of (a) start day, (b) duration, (c) peak number and (d) 
remaining number for different distribution of population with same school index cases. 

86 

parameters of duration, peak number and remaining number, the difference patterns 

between different allocations of population when the index cases are within the same 

school is the same as when the index cases are randomly allocated, and the difference 

becomes a little more significant. A likely explanation is that when index cases are 

from the same school, this makes some effective contacts 'overlay', that is, there is more 

chance that one infectious student comes into contact with students who have just been 

infected by another infectious student (they all belong to the same school). 
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6.4.5 Control measure tests 

Contact tracing was tested by ISTAM. As Eames (2003) claimed, 'Contact tracing has 

proved to be a highly successful strategy when the number of infectious cases is low" .. 

Simple control measures have been implemented in ISTAM. ISTAM provides the option 

to quarantine the classmates or fiatmates of symptomatic individuals. The implemen

tation of the control measures is triggered by alert value (a pre-established value, when 

the number of symptomatic students is more than this value, this control measure will 

be applied). From the AB analysis in Section 6.4.7, it is clear that most of the infections 

occur in lecture rooms, bars, the student union, kitchens and refectories (see Table 6.5). 

A period of infectiousness without symptoms exists for influenza. This makes isolat

ing symptomatic students and tracing and quarantining their contacts (fiatmates and 

classmates here) a possible control measure. A 3-digit number is used to label different 

control measures, each digit indicating one target control population (from high to low 

sequence, the target control population is all individuals who are infectious with symp

toms, all fiatmates of individuals who are infectious with symptoms and all classmates of 

individuals who are infectious with symptoms). A value of 1 means quarantine control 

measure and value of 0 means no control measures. If one individual is quarantined, 

her/his activity pattern will be changed, she/he will stay within their accommodation 

for the whole day, and the only chance to come into contact with other students is to 

cook in the kitchen. 

Figure 6.7 shows the difference in five parameters between four types of control measures 

(i.e., 100, 110, 101 and 111). It is clear that the effect of control measures 100 and 110 

are similar in terms of almost all five parameters. The effect of control measures 101 

and 111 are also similar in terms of four parameters (the only exception is the start 

day). Generally, 111 and 101 are more effective than 100 and 110. By control measures 

111 and 101, the outbreak terminates earlier (between 10 to 15 days) than by control 

measures 110 and 100 (between 20-100 days). At the end of the outbreak, by control 

measures 111 and 101, the remaining number is higher (about 99% students were not 
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infected on average) than than by control measures 110 and 100 (about 97.5% students 

were not infected on average). These analyses also show that to quarantine all fiatmates 

of individuals who are infectious with symptoms is not as effective as to quarantine all 

classmates of individuals who are infectious with symptoms. A possible explanation is 

that students do not spend much time within their accommodation and the relatively 

smaller number of fiatmates (between 5 and 9) compared with the number of classmates 

(between 50 and 300). 

In reality, delays will occur between a patient becoming ill and being isolated. This 

delay obviously will reduce the efficacy of the control measures. To control an infectious 

disease outbreak, the earlier the control measure can be applied, the better. Different 

values of alert values (values as: 1, 5, 10, 15, 20 and 25) were tested (see Figure 6.8). 

The results are well matched with expectation. Generally, the larger of the alert value, 

the longer the duration, the later the start day and peak day, the larger the peak number 

and the smaller the remaining number. Also, the value of Ro when the alert value is 

set to be 1 was computed to be 0.41, which is consistent with an Ro value of 1.84 when 

no control measures were applied. The reason is from the time lines: average infectious 

period is assumed to be 4.5 days, average incubation period 3 days and average latent 

period 2 days. This means that the average infectious without symptoms period is 1 

day and average infectious with symptoms period is 3.5 days. So if any individuals 

who are infectious with symptoms will be quarantined at once, the decrease of Ro is 

in proportion to the decrease of the infectious period during which she/he can make 

contacts with other susceptible individuals. 

6.4.6 Contact network analysis 

The contact network can be obtained from ISTAM simulation. Taking individuals as 

nodes and the contacts between them as edges, a contact network can be built from 

ISTAM. There can be multiple-contacts with different times and contact indices between 
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two students. Therefore, the contact network is a dynamic network. Here, the sum of 

all contacts between two individuals is taken as the value for the edge and the network 

is simplified to a static network corresponding to one specific period. A key advantage 

is that the individual's activity can be simulated during any period to provide the 

contact network without the influence of infectious diseases (since a person's activities 

are affected by the disease situation, actively or passively). 

As Read and Keeling (2003) pointed out, the three most important properties of human 

disease-transmission are (1) finite number and variability of contacts, (2) small path 

lengths and (3) highly clustered contacts. Here an analysis (focusing on the three prop

erties above) of the contact network obtained from ISTAM simulation is provided as a 

method to validate the ISTAM simulation model (Huang et al. 2004). 

To describe the number of contacts (or degree) adequately, both the average and dis

tribution (characterized by a distribution function P(k), which gives the probability 

that a randomly selected node has exactly kedges) of number of contacts are required. 

One of the most accepted characteristic distribution patterns is provided by the scale 

free models with a power-law distribution (Albert & Barabasi 2002, Wong et al. 2006). 

Take a 50-day simulation result from ISTAM as an example: there are 2287189 con

tacts in total, so the average number of contacts for every individual every day will 

be 2287189/(50 x 4000 x 0.5) = 22.87 (including multi-contact between the same two 

students), which is close to the average contact number per day of 16.8 estimated by 

Edmunds (1997) from a survey of 92 adults by questionnaire, and average of 23 daily 

contacts (including telephone conversations and letters) by the study of Pool and Kochen 

(1978). The degree distribution for one day is given in Figure 6.9. The distribution has 

a right-sided power-law tail. 

Path length is the average number of contacts in the shortest route between two in

dividuals in the network, with the average taken over all possible pairs of individuals. 

Small path length is accepted as one property of human disease-transmission (Read & 

Keeling 2003, Watts & Strogatz 1998). From the simulation results ofISTAM, for a one 
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day period, characteristic path length was computed as 4.07 (averaged from 50 single 

days) amongst 4000 students. The value is relatively small, and therefore, consistent 

with the expectations of Read and Keeling (2003). 

The clustering of a network can be measured by the clustering coefficient (defined by 

Watts and Strogatz, 1998). For one single day, the average clustering coefficient was 

0.35 (range from 0 to 1, and standard deviation of 0.20); for a 50-day period, the 

average clustering coefficient was 0.35 (range from 0.10 to 0.96, and standard deviation 

of 0.13). Pool and Kochen (1978) estimated that any person contacted by one of their 

study participants knew between 8% and 36% of the other people contacted by that 

participant. This is consistent with the present study. 

The conclusion can be drawn that the contact network from ISTAM exhibits the char-

acteristic properties of a small world network of being highly clustered and having small 

characteristic path lengths (Watts & Strogatz 1998) and the characteristic properties 

of a scale free network as having degree distribution with a power-law tail (Albert & 

Barabasi 2002). This is consistent with most related research (Newman 2002, Newman 

et al. 2002, Keeling & Eames 2005). 
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6.4.7 AB simulation analysis 

Few disease transmission models consider the effects of individual contact within a small

scale space. The simplest approach is to assume individuals are distributed uniformly in 

small-scale space. Thus, the probability of contact is determined by the human density. 

For a continuous space with width of Wand length of L, if individuals are distributed 

randomly (assume that one individual's location does not affect others and the duration 

is longer than the attack duration and movements are not considered), the number of 

effective contacts is directly proportional to the number of susceptible and infectious 

individuals inside. To simplify the problem, if the number of infectious individuals is 

fixed to be 1 and the number of susceptible individuals is n, then the number of effective 

contacts P(n) is: 

P(n) = kn (6.1) 

Where: k = "[f}~ (R is the attack distance of a specific infectious disease). 

The above 'density' assumption is easy to understand and compute but overly simple 

compared with the real situation. Representing reality more closely, the AB simulation 

presented here considers the dynamics of individuals, physical structures and stochastic 

factors. Figure 6.10 shows the number of effective contacts plotted against the total 

number of individuals (with one index case, attack distance R is 2 m) within six types 

of AB obtained by within-AB simulation. Due to different width, length, and minimum 

x and y values, the gym, computer room, lecture room, bar, student union and library 

room have different capacities in ISTAM. To compare with the 'density' assumption 

made at the beginning of this section, in Figure 6.10, grey straight lines show the number 

of effective contacts against the number of susceptible individuals inside a continuous 

space of the same size as the corresponding AB under the same conditions. It is clear 

from Figure 6.10 that the simulation for a gym (Figure 6.10a) results in a plot that is 

closest to the grey line produced by the 'density' assumption (and for which the fitted 

line crosses the ordinate close to the origin) because it is assumed that individuals are 

distributed randomly. The simulation for a computer room (Figure 6.10b) results in 
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a plot that is lower than the grey line. Further, a threshold of susceptible individuals 

is needed for the occurrence of contacts. This can be accounted for by the decision 

to model the distribution of individuals based on individuals' trying to be as far as 

possible from each other. The simulation for a lecture room (Figure 6.lOc) results in a 

different plot to that for the density assumption because a special spatial distribution 

is applied for a lecture room. The simulation for a bar (Figure 6.lOd) is also similar 

with the grey line. However, the slope of the plotted points is less than that of the 

grey line. The reason rests with the modelling of individuals as clustered and the small 

minimum distance in both x and y directions. For the simulation for student's union 

and the library room (Figure 6.10e and 6.10f), the slope of the plotted points is greater 

than that for the density assumption line. This is because the value of Mf is 3. The 

movement of individuals increases the probability of effective contacts. 

The contact probability should be sensitive to both the attack distance and attack 

duration of the target disease in any disease transmission model. AB simulation can 

achieve more than this: changing the attack distance or attack duration has effects 

of different magnitude for different types of ABs. Taking influenza as an example, if 

the attack distance is set to be 1 m, 1.5 m, 2 m, 2.5 m, 3 m, 3.5m or 4 m, different 

infected numbers (including the latent and infectious without or with symptoms) over 

time are gained. The larger the attack distance, the more (and more quickly) that 

individuals are infected. It is interesting to see how the number of infections which 

result from different locations (ABs) vary as a function of attack distance (see Table 

6.5, Figure 6.11 and Figure 6.12), the most prominent characteristic is that when the 

attack distance increases from 1 m to 2 m, the percentage of infections occurring at a 

bar decreases while the percentage of infections occurring at a lecture room increases. 

When the attack distance is set to 1 m, no infections occurring in a gym. With any 

value for attack distance, infection seldom occurs in campus. 

The population consists of groups that have frequent contacts within groups (local con

tacts) and relatively rare contacts between groups (global contacts) (Wallinga et al. 

1999). In ISTAM, two kinds of social network exist between students: classmates and 
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FIGURE 6.10: Simulation plots of within-AB for six different ABs: (a) gym, (b) com
puter room, (c) lecture room, (d) bar, (e) student union and (f) library room. Black 
dots correspond to simulated points, straight black lines correspond to trend lines, and 
straight grey lines are computed on the basis of the 'density' assumption (see text). 

Simulation starts with one index case and an attack distance 2 m. 
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TABLE 6.5: Percentage of infections from different types of ABs with different attack 
distances. 

~ Activity bundle 1m 1.5 m 
Bar 0.547466 0.430082 

Computer room 0.003319 0.002876 
Gym 0 0.001607 

In campus 0 0 
Kitchen 0.043815 0.031639 

Lecture rOO111 0.248064 0.429659 
Refectory 0.071255 0.044328 

Library room 0.018809 0.014973 
Student union 0.067272 0.044835 

2m 
0.372247 
0.006875 
0.000924 
0.000205 
0.039746 
0.461759 
0.048331 
0.018436 
0.051478 

2.5 m 3111 
0.373264 0.375009 
0.00825 0.007865 
0.00161 0.001163 
6.71E-05 0 
0.039708 0.03878 
0.455363 0.458929 
0.049031 0.050544 
0.018512 0.016483 
0.054195 0.051228 
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6.8£-05 0.000268 

0.038684 0.039576 
0.4536 0.449021 

0.048814 0.047894 
0.016113 0.019453 
0.050513 0.053931 

FIGURE 6.11: Percentage of infections from different types of ABs with an attack 
distance of 2 m. 

fiatmates. Infection occurring within the accommodation (kitchen, shared by fiatmates) 

and the lecture room (shared by classmates) can be taken as infection from local contacts 

and other sources of infection can be taken as from global contacts. However, these local 

contacts account for only about 50% (Table 6.5, attack distance of 2 m) of all infections. 

This confiicts with common sense that most human contacts tend to remain in a limited 

social group (Walling a et al. 1999). The first possible reason for the discrepancy is in 

fact, that more social networks exist, such as friends, partners, or society generally. The 

second reason is that when students go to the bar or other places, they still prefer to go 

with the people within their network, but this has not been expressed in ISTAM. 
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FIGURE 6.12: Percentage of infections froill different types of ABs with different attack 
distances: (a) 1 ill, (b) 1.5 ill, (c) 2.5 ill, (d) 3 ill, (e) 3.5 ill and (f) 4 ill. 
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Understanding the main source of infection is a prerequisite to the design of effective 

control measures. From the analysis above, if not considering expense, control tracing 

should be extended to both the flatmates (with 4.0 % infections) and classmates (with 

46.2 % infections) of the symptomatic students and the bar (with 37.2 % infections) 

could be closed. 

6.5 Summary 

The first-year undergraduate student population body was chosen to be the first test 

bed of ISTAM. The speciality of the targeted population and environment make some 

of the assumptions plausible and 'simplifies' the complexity of the real world. On the 

other side, this speciality means the analysis results from the above application are hard 

to apply to the more general cases. In Chapter 8, another application case of ISTAM 

(to a city) is presented. 



Chapter 7 

Parameter Exploration of Raster 

space AB simulation 

7.1 Introduction 

The aim of this chapter is to explore the relation between transmission of airborne infec

tious diseases and humans' space-time dynamics at fine space-time scales by parameter 

exploration of raster space AB simulation which was implemented during the application 

of ISTAM to the campus of University of Southampton (see Chapter 6). To quantify and 

compare the significance of the properties of humans' space-time dynamics to infectious 

disease infection can further understanding of the transmission process at within-AB 

level and effective quantitative comparison of the infection probabilities within different 

types of AB can assist in the design and application of control measures before and 

during epidemics. Influenza, one common airborne infectious disease was used for this 

exploration. To simplify the question, some assumptions were made. It was assumed 

that if the contact distance between infectious and susceptible individuals was less than 
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2 m, then infection will occur. For example, if the MinX and MinY are set to be 1 

m, one infectious individual can have effective contacts with his or her eight neighbours 

within the Moore neighbourhood (see Figure 7.1 , location A). Here, the contact duration 

was assumed to be less than the duration of one step in the simulation, and, therefore, 

did not need to be considered further. To simplify, if two individuals come into contact 

more than once during a time unit (such as within a dynamic AB), it is taken as one 

effective contact. An AB is simplified to be a rectangular space and the effect of the 

physical conditions within an AB on the occurrence of infection was ignored, such as 

the air circulation, temperature and humidness. 

/' 1\ 
A 

"- V 
/ 

c 
"-

~ 
FIG URE 7.1: Different sizes of infection area based on the relative location of infectious 

individuals within an AB. 

Here, the output variable was set to be the proportion infected (Pi) which is the ratio 

of (1) the number of susceptible individuals who make effective contacts with infectious 

individuals (infection may occur) during the simulation duration to (2) the total num

ber of susceptible individuals before the simulation. The input variables (see Table 7.1) 

included the parameters required to describe individuals' space-time dynamics as men-

tioned in Section 4.3.1 and two additional variables; the number of index cases (N) and 

proportion occupied (Po) . Proportion occupied is the ratio of (1) the number of current 

individuals to (2) the maximum number of individuals that can be accommodated (which 

is determined by the size of AB and size of cell) . Proportion occupied is used to describe 

the saturation of the AB. To simplify, it was assumed that no immune individuals ex-

is ted within the target AB. To make the result of the analysis more generally applicable, 
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the parameters of Width (W), Length (L), MinX and MinY were transformed to be 

functions of the size of AD (W L), ratio of AB (r), size of cell (MinX x M inY) and 

ratio of cell (~~~~). Every simulation was repeated 1000 times to obtain the average 

value. 

TABLE 7.1: Input variables, their default values and value ranges. 

Variables (Symbol) 

Spatial distribution type (D 

Proportion occupied (Po) 

Number of index cases (JV) 

Ratio ofAB (RAS) 

Size orAB (S'B) 

Ratio of Cell (Re) 

Size of Cell (SJ 

Movement frequency (MJ) 

Movcmcl1l proportion (M,,) 

Default value 

0.5 

Width or Length = 10 III 

MinX or MinY= 1 111 

7.2 Proportion occupied 

Range of value 

1,2,3,4 

0.05. 0.1,0.15, .... 0.95 

1. 2 .... , 10 

Width or Lcngth: 1. 2 .... , 10, J 1. J3, 14, 17,20.25. 

33,50, J 00111 

MinX or MinY: 0.5, t, 1.5 m 

1,2, ... , 5 

0.1,0.2, ... , 0.9 

This section explores the relation between proportion occupied and proportion infected 

for all types of spatial distribution. The value of proportion occupied was varied from 

0.05 to 0.95 with a step value of 0.05. All other variables were fixed to the default values 

in Table 7.1. Figure 7.2 shows the relation of proportion infected with the proportion 

occupied with default values for all other parameters. 

7.2.1 Type 1 

It is clear that Type 1 AB (e.g., computer room) displays a positive asymmetric and 

non-linear relation which is quite straightforward to interpret: individuals in Type 1 

try to be as far as possible from each other and when the proportion occupied is large 
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FIGURE 7.2: Proportion infected plotted against proportion occupied with default 
values for other variables. 
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enough there is no space for individuals to avoid each other so the proportion infected 

approaches a constant asymmetrically. When Po < 0.15, individuals within the AB can 

always find a location where no effective contacts can occur, so Pi remains as O. When 

Po > 0.6, most individuals locate themselves randomly. When Po E (0.15,0.6), the 

percentage of individuals who can keep the neighbourhood distance decreases with an 

increase in Po. Regression analysis confirmed an inverse relationship between Pi and Po 

(with R2 = 0.992): 

g = 0.094 
0.016 

Po 
(7.1 ) 
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WBI 1111111 WJclllllllllllllllll~I~! 
(a) (b) (e) 

FIGURE 7.3: The relation of number of newly added effective contacts with the location 
of the nth individual (individual N is the nth individual and individual A, B, C and D 
are individuals whose effective contact numbers increase by 1 due to the newly added 

individual). 

7.2.2 Type 2 

Type 2 AB (e.g., lecture room) displays a periodicity which ranges between 0.10 and 

0.20 of the proportion occupied. The reason is that the width of this AB is 10 m and 

MinX is 1 m such that 10% proportion occupied implies ten individuals which take up 

just one row in a Type 2 AB. In fact, according to the mathematical definition of Type 

2, the plot can be computed without real simulation as following: If the total size of 

individuals within the AB is n, Cn is the total number of effective contacts. 

1. When n <= Width, this means all individuals are in a line one by one. Individuals 

who are at the front and the end of this line have one effective contact and all others 

have two effective contacts. So Cn = 2 + 2( n - 2) = 2n - 2. 

2. When n > Width, this means individuals are in at least two lines. For every time 

the total size of individuals increases from (n - 1) to n, the number of newly added 

effective contacts (i.e., Cn - Cn-d can be considered according to the location of 

the nth individual with the line (Figure 7.3): 

(a) At the front, Cn = Cn - 1 + 4; 

(b) In the middle, Cn = Cn - 1 + 8; 

(c) At the end, Cn = Cn - 1 + 6. 

3. For any values of n, the Pi(n) = ~n 

As this can be certified from theory, there is no need to calculate R2 for the simulated 

result. 
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7.2.3 Type 3 

Type 3 AB (e.g., a bar) displays a negative relation. This can be explained by the fact 

that it is easy for infectious individuals to infect susceptible individuals within his or 

her own cluster, but hard to infect individuals from other clusters. Regression analysis 

confirmed an inverse relationship between Pi and Po (with R2 = 0.992): 

Pi = 0.049 + 0.016 
Po 

(7.2) 

For Type 3 AB, firstly, the cluster number was computed as the total individual number 

divided by g. Each cluster was allocated one individual (selected randomly) as a key 

member. The location of the key member was selected randomly from the whole AB. 

Secondly, all other individuals were allocated randomly to a cluster, with a location 

within the Moore neighbourhood of the key member as shown in the sequence of Figure 

7.4. These two steps ensure that the average size of clusters equals g, and every cluster 

has at least one individual. 

11m21 45 

111kl21 

•

3 
1 k 2 

45 qm37 
1 k 2 

45 

6 3 7 
1 k 2 
8 4 5 

FIGURE 7.4: The shape of clusters with different 9 values (2-9) and the sequence of 
adding individuals around the key member. 

If Po is small enough that there are no effective contacts between different clusters, 

then all effective contacts occur between individuals within the same cluster. Based on 

the definition above, the shape of the clusters was determined by g (Figure 7.4). The 

average number of effective contacts (Cn ) can be computed based on the value of g. 

Table 7.2 lists the average number of effective contacts for individuals within clusters 

with different g values from 2 to 9. Pi can be computed as: 
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(7.3) 

TABLE 7.2: Average number of effective contacts for individuals within clusters with 
different 9 values (2-9). 

g Number o/effective colltacts (according the sequellce 0/ k, 1, 2 ... ) Average /lumber {Jf effective cOlltacts 

2 I, I I 

4 

5 

6 

7 

B 

2. I, I 1.33 

3,2.2,3 

4, 3, 3, 3, 3 

5,3,4, 3.4,3 
6, 4, 4, 4, 4, 3, 3 

7. 4, 5, 5, 4. 3, 3, 3 

2.5 

3.2 

3.67 

4 

4.25 

It is clear from Figure 7.5 that with an increase in g, the simulated data were closer to 

the theoretical curve provided by Equation 7.3. The reason is that with an increase in 

g, the rate of effective contacts between individuals from the same cluster to effective 

contacts between individuals from different clusters increases. 

7.2.4 Type 4 

For Type 4 AB (e.g., a gym), the proportion infected is approximately independent of 

proportion occupied. In this situation, the likelihood of one susceptible individual being 

within the infection distance of an infectious individual is determined only by the ratio of 

the infection area to the whole area ofthe AB (in this case the area of the AB is 100 m 2
). 

Figure 7.1 shows the difference in the size of infection area (the area where if individuals 

are present, effective contacts will occur with infectious individuals) according to the 

relative location of infectious individuals. Infection area is 8 m 2 when an infectious 

individual is not at the border or corner of the AB (e.g., the location A) with a probability 

of 64/100; Infection area is 5 m 2 when an infectious individual is at the border of the AB 

(e.g., location B) with a probability of 32/100; Infection area is 3 m 2 when an infectious 

individual is at the corner of the AB (e.g., the location C) with a probability of 4/100. 
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FIGURE 7.5: Proportion infected plotted against proportion occupied for a Type 3 AB 
with values of (a) g = 2, (b) g = 3, (c) g = 4, (d) g = 5, (e) g = 6, (f) g = 7, (g) 
g = 8 and (h) g = 9 (solid dots are the simulated results and the solid lines are based 

on Equation 7.3). 
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If the number of index cases is fixed to be 1, the probability of one susceptible individual 

having an effective contact will be 1~oO.64+ 19oO.32+ 19oO.04 = 0.0684. According to the 

definition of the proportion infected and proportion occupied, the proportion infected is 

also 0.0684 which is very close to the average value of Figure 7.2. This value was defined 

to be a constant k as it was used frequently in the following sections. More generally, for 

a Type 4 rectangular AB with 1 m for MinX and Min Y, the proportion infected will be 

computed by: (~L3 + 2((W -~t(L-2)) 5 + (W-~r-2) 8)(.J L)' The equation is as follows: 

R _ 8W L - 6W - 6L + 4 
2 - W2L2 (7.4) 

7.3 Number of index cases 

This section explores the relation between the number of index cases and proportion 

infected for all types of spatial distribution. The value of number of index cases was 

varied from 1 to 10 with a step value of 1 for the Type 4 AB (Figure 7.6) and varied 

from 1 to 5 with a step value of 1 for all other types (Figure 7.7). All other variables 

were fixed to the default values in Table 7.1. 

It is not surprising that for every type of AB, the proportion infected increases with an 

increase in the number of index cases. Also, Figure 7.7 shows the independent relation 

between proportion infected and proportion occupied for Type 4 AB. The interesting 

point here is the increase in magnitude of the proportion infected over the increase 

in the number of index cases. Omitting the irregularity of proportion infected when 

the proportion occupied is close to ° or 1, it is clear that in both Figure 7.6 and 7.7, 

the magnitude of increase in the proportion infected decreases for each increase in the 

number of index cases. 

The Type 4 AB was selected to be an example for the quantification of the relation 

between the proportion infected and the number of index cases. The value of proportion 



Chapter 7 : Parameter Exploration of Raster space AB simulation 108 

0.80-

0.60 

OAO 

0.20 

"
, "-, .... , , .... , , 

....... _--- ---.... ----- -----
................... .. .. .. .. .. .. .. : : : ::- :: -- .. - .. -.. - - - - - - - - . 

----.. ---_ .. - .. _-------- .. -- - ........ -- ...... _ ........ -_ .. -- ............ -- .. - .... -_ .. -_ .... -_ .. . 

0.00 '-----------------------l 
-g 0.80 -(.) 

~ 0.60 
r:::: 

§ OAO

t 
o 0.20-
C
o 

-- ................ , 
.... , .... 

.... _--- .... 
.............................. :.::.- .... : .. - .. - .. - :- -: --- :- --: 

.......... - .......... .. .. _---- ........ 

Ii. O.OO-'--__________________ ---l 

0.80-

0.60-

OAO 

----------
< .,<~s=::!-:. ~ :.~:~~: ~: ~.~:.:~ :-. :-::: .-:.= :.:.:. :. 

o .00 '----.,---r--r~__T___r__.__.r_'.....__,...._..___r_..,__.___r__r__,_---l 
T I I I I I I I I 

0.20 

.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90 

Proportion occupied 

Number of index cases 
-1 
..... 2 
. .. 3 
---4 
- -5 

FIGURE 7.6: Proportion infected plotted against proportion occupied with different 
numbers of index cases for Type 1, 2 and 3 ABs. 

infected was averaged over the proportion occupied (from 0.25 until 0.75) for each of the 

number of index cases from 1 to 10 (Figure 7.7). These values are displayed (solid dots) 

in Figure 7.8. Then, a mathematical relation was obtained for Type 4 ABs. The effect of 

an additional index case will make the Pi(N + 1) = Pi(N) + (1 - Pi(N))Pi(N = 1), and 

Pi(N = 1) = k (see Section (3.1.4). So the formula is deduced from theory as following: 

(7.5) 

Where N is the number of index cases, k is a constant with the condition that all other 

variables take the default values. The mathematical curve plotted based on Equation 7.5 

(Figure 7.8) fits the values obtained by simulation very well (with R2 equals to 0.9958). 
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FIGURE 7.7: Proportion infected plotted against proportion occupied with different 
numbers of index cases for Type 4 AB. 
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FIGURE 7.8: Proportion infected plotted against number of index cases for Type 4 AB 
(solid dots are the simulated results while the solid line is based on Equation 7.5). 
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7.4 Size of AB 

This section explores the relation between the size of AB and proportion infected for 

all types of spatial distribution. The RAE was set to be 1, and value of Width (W) 

and Length (L) varied from 3 to 15 m with a step value of 1 m (Figure 7.9). All other 

variables were fixed to the default values in Table 7.1. 
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FIGURE 7.9: Proportion infected plotted against size of AB with different numbers of 
index cases and proportion occupied for Type 1, 2, 3 and 4 ABs. 

Three properties are apparent from Figure 7.9: (1) for almost all types of AB, Pi de-

creased with an increase in the size of AB with 25 combinations of number of index 

cases and Po. One exception is when Po = 0.1 for the Type 1 ABs: individuals have 

enough space to keep away from each other, and Pi = 0; (2) in almost all circumstances, 
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Pi(Type2) >= Pi (Type3) >= Pi(Type4) >= Pi(Typel); (3) with an increase in Po, the 

differences between the different types decreases. Especially when Po = 0.9, all types 

have a similar Pi. It is clear that for the Type 4 AB, the plots of Pi against the size of 

AB are almost exactly the same for different Po with the same number of index cases. 

This demonstrates the independence of Pi on Po for Type 4 AB again. 

Equation 7.4 from the above section can be applied here for analysis of the Type 4 AB. 

When W = L, since S AB = W L, Equation 7.4 is transformed to be: 

p. _ 4(2SAB 3.JSAB + 1) 
- 2 - (SAB)2 

(7.6) 

A theoretical curve was computed and plotted in Figure 7.10 to compare with simulated 

data. It is clear that it fits very well, demonstrating a strong inverse relationship between 

Pi and the size of AB for Type 4 ABs. 

0.8 
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0.0 +----..-----r------,-----,.------, 
o 50 100 150 200 250 

Size of AB 

FIGURE 7.10: Proportion infected plotted against size of AB for Type 4 AB (solid dots 
are the simulated results while the solid line is based on Equation 7.6). 

For Po = 0.5 and number of index cases = 1, the regression analysis for Type 1, 2 and 

3 are as follows (Figure 7.11 and Table 7.3). The R2 value for the power curve model 
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is larger than for the inverse model. However, the power values for Type 1, 2 and 3 AB 

are -0.846, -0.817 and -0.905, which are close to -1 indicating that the inverse model fits 

the relation between Pi and size of AB for all types of AB well. 

TABLE 7.3: Regression analysis results between proportion infected and ratio of AB 
for Type 1, 2 and 3 ABs with Po equal to 0.5 and number of index cases to 1. 

Type First estimatioll Parameters 

model 

Power P; 3.033S4BO.846 
0.997 

2 Power 0.997 

3 Power 
5.425S4B09115 

0.999 

7.5 Ratio of AB 

Secolld estimatioll 

model 

Inverse 

inverse 

Inverse 

p = 0.028 + 3.831 
I S,w 

7.197 
P =0.063+--

, SAB 

6.311 
P =0.025+--

I S4B 

0.977 

0.974 

0.995 

This section explores the relation between the RAE and proportion infected for all types 

of spatial distribution. The size of AB was set to be 100. Since for Type 1, 3 and 4 

(see Figure 7.12), each AB's two dimensions are interchangeable, the value of W was 

varied from 1 to 10 m with a step value of 1 m. Thus, Widths of AB are no larger 

than Lengths of AB, and the ratio of AB was constrained within the range 0 and 1. For 

Type 2 ABs, since the AB's dimensions cannot be interchanged, the value of W was 

varied from 1 to 10 m with a step value of 1, 11, 13, 14, 17, 20, 25, 33, 50 and 100 m. 

Thus, when W < L, RAE is between 0 and 1; when W> L, RAE is between 1 and 100. 

To display the relation, a transformation was made: when W > L, RAE was replaced 

by RAE = (2 - R~B)' The range of RAE is from 1 to 2 and also RAE and R~B are 

symmetrical to the point of RAE =1. All other variables were fixed to the default values 

in Table 7.1. 
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FIG URE 7.11: Proportion infected plotted against size of AB for (a) Type 1, (b) Type 
2 and (c) Type 3 ABs (solid dots are the simulated results while the solid lines are 

based on regression formulae). 

From Figure 7.12, the first property of interest is that the relation between the proportion 

infected and ratio of AB is positive generally. The reason is that for rectangular ABs 

with a fixed size, the closer the ratio of AB to 1, the smaller the proportion of the 

border and corner area in the whole AB. As discussed before, index cases at the border 

or corner positions of an AB can infect fewer individuals than at other positions. Take 

the Type 4 AB as an example. Equation 7.4 can be transformed to: 

Pi = 8SAB - 6W - 6L + 4 
(SAB)2 

(7.7) 

It is clear that when SAB is fixed, the value of W + L reaches the minimum value 
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FIGURE 7.12: Proportion infected plotted against ratio of AB for Type 1, 3 and 4 ABs 
with different numbers of index cases and proportion occupied. 

when W = L. Secondly, almost in all circumstances, Pi(Type3) >= Pi(Type4) >= 

Pi (Type1). Thirdly, with an increase in Po, the differences between the different types 

of AB decrease. Especially when Po = 0.75, all AB types take a similar Pi value. 

For Type 2 ABs, with an increase in Po, the curve becomes more symmetrical to the 

point of SAB = 1 (Figure 7.13). The reason is that when the AB is full of individuals, 

the two dimensions can be interchanged. Secondly, when Po is small (5% or 10% which 

means 5 or 10 individuals in total in this simulation) and the width is large enough, all 

individuals arrange in a line and there is no difference, even when W is larger (the ratio 

of AB is larger). This accounts for the fiat tail which curves display when Po is smaller 

than 0.5. The size of the tail decreases within an increase in Po. 



Chapter 7 : Parameter Exploration of Raster space AB simulation 

05 

1-

1.00 
0.80 
0.60 
DAD 
0.20 
0.00 

1.00 
0.80 
0.60 

1- =0000000 

1-

1-

,-"0 DAD 
Q) 0.20 
t) 0.00 

~ 1.00 
c: 0.80 

c: 0.60 
o DAD 

t: 0.20 

&. 0.00 

o 1.00 a: 0.80 

-
-

-
-
-
j 

;:00000000 

'" 
° 

0 000°0 0 0 

'" 
0 

m 00» 

0 

'" 0"", 

0 

{} 0,,", 

0.60 
DAD 
0.20 
0.00 

1.00 
0.80 
0.60 
DAD 
0.20 
0.00 

0 0000 0 0 0 00 OO~ 

I I I I I 

I 

Proportion occupied 
10 25 50 75 

'<90
0 

o 0°0 
o 0 ~ ~a$ 

60°00°000 '0 

"0 ~oo 0000 ., 0 

0 '"'" 
00 

rJ90000000 0 

0 " 0 

CbJOo
o 

0 

0 o 0 0 'b'b~ 0($)0000000 
't 

00 or.:Poooooa o co 'boo 
0 "'" ~ooo 0000 

0 " 0 

1<»00
0 

0 

0 0
0 

0 'b '0000 ocoooooooo 

'" '0 rf90000000 
'" '0 0 """ °0 croooooooo 

0 " 0 

Iroooo 0 0 • ~.1 =00 

0 
0 

0 000 '0 'bow rSP°oooo 0 0 '0 

I I 
'0 

0 OX' rOQaOQO 

! 6"°0 

0 00000000::0 c;POo 00 0 0 0 00
0 

o 0"" Fe 00 0 0 0 0000Ct:w FOOCOOO 

I I I I I T I I 

Ratio of AB* 

115 

~ 'bC:O
o 
0 

.I:> Z 
Q) ~~ 

° 

c: 
3 
C" 
(1) .... 
0 -c,.) 
:::l 

co~~ Co 
(1) 

>< 
n 
II) 
I/) 
(1) 

J\) I/) 

"''''''''' 

..... 

"'~ 
T 

FIGURE 7.13: Proportion infected plotted against ratio of AB for Type 2 ABs with 
different numbers of index cases and proportion occupied. 

7.6 Size of cell and ratio of cell 

This section explores the relation between Pi and the size and ratio of cell for all types 

of spatial distribution. In the current raster-based AB simulation, possible values for 

minX or minY are 0.5, 1.0 and 1.5 m. Further, minX and minY are interchangeable. 

Thus, all possible shapes of cell (considering both the ratio and size of the cell) are 0.25 

m 2 (0.5 x 0.5),0.5 m 2 (0.5 xl), 0.75 m 2 (0.5 x 1.5), 1 m 2 (1 xl), 1.5 m 2 (1 x 1.5) and 

2.25 m 2 (1.5 x 1.5). 

From Figure 7.14, the most obvious characteristic to note is that all AB types for different 

proportions occupied show clearly two 'peaks' (i.e., smaller values when the size of cell is 

0.25,0.75 or 1.5 m 2 and larger values when the size of cell is 0.5, lor 2.25 m 2 ). This can 

be accounted for by the relation between the circular shape of the infection area with 
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the rectangular shape of the cells. The value of the circular infection area is determined 

only by the infection distance which is assumed to be 2 m for influenza. When applying 

this circular area to ABs with different shapes of cells, the sum area of all cells which 

overlays with the circular area is different since it is assumed that if only the center point 

of the cell is within the infection area then the whole cell is included (Table 7.4). Also 

almost in all circumstances, Pi(Type2) >= Pi(Type3) >= Pi(Type4) >= Pi(Type1). 

With an increase in Po, the differences between the different types decreases. 

Proportion occupied 
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FIGURE 7.14: Proportion infected plotted against size of cell for Type 1, 2, 3 and 4 
ABs with different numbers of index cases and proportion occupied. 
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TABLE 7.4: Different sum of covered areas for different shapes of cell. 

Size of cell 0.25 0.5 0.75 1 1.5 2.25 

Number of cells covered by the circular iI!fection area (not including the cell 28 

occupied by tlte infectious individual). 

Sum covered urea 7 

17 9 9 4 4 

8.5 6.75 9 6 9 

7.7 Movement proportion and movement frequency 

This section analyses the parameters of dynamic ABs. The spatial distribution type is 

assumed to be Type 4, that is, randomly distributed for a dynamic AB both for the first 

allocation and subsequent movements. W, L, MinX and Min Y take the default values 

from Table 7.1. Simulations were repeated based on the combination of the different 

values of four variables within Table 7.5. The simulation results showed again that Pi 

has no relation with Po. Figure 7.15 shows the relations of Pi with the other three 

variables. 

TABLE 7.5: Four variables and ranges of values for dynamic AB simulation. 
Variables Range ofl'alue 

Po 0.1, 0.2, ... , 0.9 
N 1,2, ... , 10 
iv!r 1,2, ... ,9 
!VII' 0.1,0.2, ... , 0.9 

Initial regression analysis between Pi and these three variables showed similar expo-

nential relations. It is straightforward to suspect that for dynamic ABs, the number 

of index cases affects Pi in the same way as it does for a static AB, as summaried in 

Equation 7.5. Mf and NIp are suspected to affect Pi jointly by their product form, that 

is, H(Mf)F(Mp). Here, the whole relation was suspected to be as following: 

Pi = 1 (1 G(n))l+H(Mf)F(Mp ), where G(n) = 1 - (1 - k)n (7.8) 



Chapter 7 : Parameter Exploration of Raster space AB simulation 

.10 .40 .70 .10.40 .70 .10.40 .70 .10.40 .70 .10.40 .70 .10.40 .70 .10.40 .70 .10 .40 .70 .10.40.70 

Movement proportion 

FIGURE 7.15: Proportion infected plotted against movement proportion with different 
numbers of index cases and movement frequency. 
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Firstly, it was assumed that H(Mf) = lvIf , then F(Mp) was generated from regression 

analysis. Simulated data with Mf = 1 and N = 1 were used for regression. The analysis 

generated Equation 9 with R2 = 0.996: 

(7.9) 

Figure 7.16 shows the regression curve and simulated data. 

Secondly, simulated data with N = 1 and IlIfp = 0.5 were used to compare with the 

mathematical curves based on Equations 7.8 and 7.9 (Figure 7.17). The value of R2 was 

computed to be 0.998. 
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FIGURE 7.16: Proportion infected plotted against movement percentage for dynamic 
ABs (solid dots are the simulated results while the solid line is based on Equations 7.8 

and 7.9). 
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ABs (solid dots are the simulated results while the solid line is based on Equations 7.8 
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Finally, for every case of the combination of different values of these four variables, the 

computed Pi was plotted against the simulated Pi (Figure 7.18). The result showed that 

Equation 7.8 and 7.9 fitted with the simulated result very well. 
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FIGURE 7.18: Simulated proportion infected plotted against the expected proportion 
infected based on Equations 7.8 and 7.9. 

7.8 Rank importance of parameters 

For static ABs, the correlation coefficients between the above six parameters and Pi 

were computed. The results show that the important sequences for any type of static 

ABs are very similar. That is: number of index cases is the most important one and the 

size of AB and the proportion occupied are the second and third (one exception is Type 

1 AB, for which the size of AB is the third and the proportion occupied is the second). 

Size of cell, shape of cell and ratio of AB are less important. Compared with static AB, 

movement within dynamic AB can increase the proportion infected significantly. For 

dynamic ABs, the correlation coefficient between movement frequency and Pi is larger 

than between movement proportion and ~. 
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7.9 Risk assessment for ABs within the application to the 

campus of the University of Southampton 

Raster space AB simulation was applied within ISTAM to simulate a hypothetical in

fluenza outbreak amongst the first year undergraduate student body in the University 

of Southampton. Twelve types of ABs (see Table 6.1) were designed to describe the 

spatial environment of the part of the campus relevant to these students. Students' 

daily activities were simulated at between-AB and within-AB levels. At between-AB 

level, during the simulation, the change in the numbers of individuals within a certain 

AB during the whole day can be recorded. Figure 7.19 shows hovv the number of in-

dividuals changes within nine types of AB during a whole day (based on 1000 days 

simulation). The computer room and library room have very similar patterns because 

in ISTAM, students were assumed to have the same probability to go to the computer 

room or library room. It needs to be pointed out that some of simulated results are not 

perfectly realistic. Examples are that University library may not open at 6 am and also 

the change in the numbers of individuals at the gym seems not consistent with reality. 

This need more detailed survey on the daily activities of students. 
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FIGURE 7.19: Simulated changing number of individuals within an AB during a whole 

day: (a) bar, (b) off campus, (c) refectory, (d) library room, (e) student union, (f) gym, 

(g) in campus, (h) kitchen and (i) computer room. 
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The change in the number of individuals within a certain AB can be converted to be 

proportion occupied since the size of AB and cell of AB are known. Figure 7.20 shows 

the averaged proportion infected (based on 1000 simulations) for seven ABs during the 

whole day (the proportion occupied is based on the average value from Figure 7.19, and 

it is assumed that one individual is infectious and all others are susceptible within the 

AB). In-campus and off-campus were omitted as the chance of infections at these two 

ABs is small. It is interesting to see that the computer room and library room have 
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the same patterns of number of individuals and same physical size, but the proportions 

infected during the whole day are quite different. 
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FIGURE 7.20: Simulated changing probability of infection for individuals within an AB 

during a whole day (assume one infectious individual present): (a) bar, (b) refectory, 

(c) library room, (d) student union, (e) gym, (f) kitchen and (g) computer room. 

7.10 Summary 
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The exploration of the raster space AB simulation's parameters and related analysis 

were presented. For static ABs, four types of spatial distribution were assumed to exist 

amongst individuals. The analyses were focused on the relations between proportion 

occupied, number of index cases, size of AB, ratio of AB, size of cell, ratio of cell and 

proportion infected respectively. For dynamic ABs, the analyses were focused on the 

relations between proportion occupied, number of index cases, movement proportion, 

movement frequency and proportion infected respectively. 

This chapter explored and discussed the parameters of raster space AB simulation within 

ISTAM. The parameter exploration showed that: 

1. For different types of AB, Po has a different effect on Pi. A negative inverse relation 

exists for Type 1 while a positive inverse relation exists for Type 3. A negative 
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relation exists for Type 2 while Po has no relation with Po for Type 4. With an 

increase in Po, the difference between different AB types decreases as the number 

of index cases increases. 

2. For all types of AB, Pi increases with an increase in the number of index cases 

while the magnitude of the increase decreases. 

3. For all types of AB, inverse relations exist between Pi and size of AB. 

4. The relation between the ratio of AB and Pi is positive generally for all types. 

5. For static ABs, number of index cases is most important and size of AB and 

proportion occupied are the second and the third parameters in terms of the effect 

on the proportion infected. 

6. For dynamic ABs, the relations between movement frequency, movement propor

tion and number of index cases with Pi are exponential and a regression model 

fitted the simulated data very well. 

Although the above analysis results were based on some assumptions which are not al

ways consistent with reality, this provides a starting point for future analysis. Some of 

the relations revealed by the above analysis do exist, while some others maybe depend 

on the simulation approaches (for example, simulation by raster space or vector space). 

Further understanding of the infection process at within-AB level and effective quanti

tative comparison of the infection probabilities for different types of AB may assist in 

the design and application of control measures before and during epidemics. 



Chapter 8 

Application to Eemnes 

By 2020, 55% of the world's population is projected to live in urban areas (Leautier 

2006). Fortunately, the epidemiological environment can be improved by urbanization. 

For example, urbanization processes can create improved nutrition, housing less vul

nerable to vermin and cleaner drinking water (Daily & Ehrlich 1996). However, the 

high density of population living in urban areas increases the probability of intimate 

contact between people. As reviewed by Daily and Ehrlich (1996), the urban area's 

'amplification' effect in terms of infectious disease transmission was noted by DeCock 

and McCormick (1988) and urban centers may be considered as 'graveyards of mankind' 

(Garrett 1994). The need to investigate the relationship between urbanisation patterns, 

individuals' space-time dynamics and infectious disease transmission has led to an inter

est in the development of simulation models of both disease transmission and space-time 

behaviour at the individual-level. 

129 
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8.1 Overview of Eemnes 

ISTAM has been applied to simulate a hypothetical influenza outbreak amongst a simu

lated first year undergraduate students within the campus of the University of Southamp

ton. This case provides an example which was relative simple in terms of daily activity 

patterns, population structure and AB structure. It is a very special case comparing with 

a general human community (e.g., the whole population within a city). Table 8.1 sum-

marizes the main difference between the above example and a general city. Considering 

TABLE 8.1: Comparison between the application ofISTAM to University of Southamp
ton campus and the city of Eemnes. 

Study case 

Individuals 

Activity 
pattel'l1s 
Spatial 
area 

ASs 

Within-AS 
Sim ulation 
methods 

Campus ofthe University of Southampton 
First year undergraduate students in the 
University of Southampton between 2004 and 
2005 
Assume only first year undergraduate students 
exist, only consider their genders 
Relatively simple: assume all students take 
lectures so their activities are semi-fixed 
Assume all students live in the accommodation 
provided by the University; the campus is semi
closed; assume no interaction with the outside; 
relatively small area; the travel time can be 
neglected easily 
Relatively small number of ABs. The spatial 
distTibution of all ADs and their physical 
condition is known or can be estimated 

Assume all students play the same role; raster 
space AD simulation is suitable 

City of Eem nes 
The whole population within a city 

Need to consider gender, age, family role, 
income level, employment and other propelties 
Complex: different groups of individuals have 
different types ofpattem 
Within the whole city; assume no interaction 
with the outside; the travel time spent within 
vehicles could be considerable 

A large number of ABs. the composition and 
spatial distribution of all ABs are hard to obtain 
or may be available only at a higher level. 
Physical conditions of all ABs are especially 
hard to obtain 
Role-based AD simulation 

these differences, to apply ISTAM at city level, four additional qllestions need to be 

answered: 

1. How to build the whole population in terms of their demographic, social and 

economic properties? 

2. How to build all ABs within a city in terms of their category, percentage and 

spatial distribution? 

3. How to assign daily activity pattern to each individual? 
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4. How to simulate individuals' activities at with-AB levels without detailed infor

mation about the these ABs' physical condition? 

This chapter explores the above four questions and attempts to provide answers through 

application of the ISTAM model to the city of Eemnes (see http://www.eemnes.nl). 

the Netherlands. The research aim was to apply ISTAM at the city level to model a 

hypothetical influenza epidemic outbreak amongst the population. 

8.2 Background and data sources 

The target city was Eemnes in the Netherlands. The municipality of Eemnes is located 

in the north of the province of Utrecht, it has less than 9000 inhabitants and covers 

about 3362 hectares. The Netherlands is one of the most densely populated countries in 

the world. A characteristic of ISTAM (and any epidemiologic model) is that it assumes 

a closed area, without individuals leaving or entering the area. Of course, this is not 

realistic, and future work will be devoted to solving this problem (e.g., by allowing 

visitors to enter and leave the area). In order to demonstrate the usefulness of ISTAM, 

Eemnes was selected since it is not located in the direct vicinity of larger cities, limiting 

the exchange with 'outside' areas. 

The main data sources used in this application are listed in Table 8.2. The activity survey 

data were assumed to be representative for people residing within Eemnes although 

in fact, it is not surprising that the people living in large cities such as Amsterdam 

or Utrecht have different activity patterns compared to people living in a rural area. 

The land use data was Pe6-based (in the Netherlands, a complete postcode contains 

6 positions and relates to an average of 17 addresses or delivery points, hence 'pe6'. 

The Netherlands has about 420,000 postcodes), while synthesized household data were 

grid-based. Preparation was needed to aggregate the household data to the pe6 level. 
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TABLE 8.2: Data sources for the application of ISTAM to Eemnes. 
Data source (with 
short name) 
Activity survey 
data (ACT) 

Synthesized 
household data 
(lIII) 

Land use data 
(Land) 

PC6 statistical 
data (PC6) 

Description 

One activity survey named AMADEUS was taken in 2000 (Ettema 2005). In this data 
collection, 1997 households (with 3499 people) (in the Amsterdam-Utrecht region) filled out a 
two-day travel/activity diary. 
Synthesized household data (at grid-space level), above 1,500,000 cases, cover the area of 
Amsterdam-Utrecht corridor. Every household within this area is recorded with propel1ies such 
as number of persons and workers, age ofthe head household member, household income and 
car availability (Ettema 2(06). 
PC6 based, 433689 cases, the whole Netherlands. for every PC, the numbers of people engaged 
with each vocation (such as Offices, Education, Healthcare, Industry. Transport and etc) are 
recorded. 
Statistical data about the age and household structure for every PC6 of the whole of the 
Netherlands. 

The general procedures were as follows: (1) preparation, that is, to build the population 

and the city of Eemnes. For the population, the key point was to assign properties such 

as family structure, number of cars and income level to every household, and assign 

properties such as age and gender and activity patterns to every individual. For the city, 

the social and spatial structures needed to be built. These simulated data were saved 

into a database for the next step; (2) simulation, that is, to generate individuals' daily 

activities from their activity patterns, then to model individuals' movements between 

ABs and the interaction of individuals within ABs. During the interaction, possible 

infection occurred from contacts between individuals. 

8.3 Preparation process of building the population and 

city 

The preparation processes is shown in Figure 8.1. Five sub processes are represented 

below. 
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FIGURE 8.1: Preparation process of building the population and city of Eemnes. 

8.3.1 Process 1: selection of activity types 

The selection of the activity types depends strongly on the activity data (i.e., the ACT 

data source). Here, it was assumed that the survey activity data were sampled from 

the whole population (in fact, the sample population did not include children less than 

10 years old). Some types of activity are neglected if they are not explicitly related to 

contact between individuals (and, thus, are not important for infectious disease transmis-

sion). Some other activity types need to be included even if their percentage contribution 

is small because these activities bring individuals into contact intimately (such as health 

care). It needs to be mentioned that trip activity was neglected in this study to simplify 

the research and also due to the limited availability of related data sources. All activity 

types which take more than 1 % in the average time distribution are listed in Table 8.3. 

TABLE 8.3: All activity types which take more than 1 % in the average time distribution. 

Activity type 
Sleep 
Work 

Others at home 
Trip 

Housekeeping 
Eating 

Waiting 
Personal care 

Social activity/family. friends 
Education (school, study .. .) 

Child care 
Tclc-community 

Receiving visitors 

Percentage (%) 
32.20 
14.40 
13.60 
7.50 
5.40 
4.40 
2.90 
2.70 
2.20 
1.80 
1.30 
1.30 
1.00 
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8.3.2 Process 2: selection of activity bundles 

Specific objects in this application (e.g., different land use units inside one PC6) were 

classified to reflect the relations between the types of individuals' activities and the 

types of land use. It was assumed that within one PC6, no more than one school or 

industry could exist. Individuals visit certain ABs such as office, industry and farm for 

work. Other ABs such as post office and bank, some individual work there and others 

visit for service. All ABs types and corresponding activity types within ISTAM for this 

application are listed in Table 8.4. 

TABLE 8.4: Activity bundle types within ISTAM for the application to Eemnes (The 
number in brackets is the expected number of staff working in this type of work place 

while * means one and only one AB of this type within the current PC6. 

AB type Activity type 
Office (5) Work 
Industry (*) Work 
Fann (5) Work 
Shop (3) Shopping! work 
Post office! Bank (3) Go to post office / go to bank/ work 
Healthcare place (3) Health care! work 
Sport place (3) Sport I work 
Household Sleep! activities within home I visit friend's home 
Social place (3) Dinner out or other social activities in caie. bar, club etc. 
Relax place Cultural or recreational activities 
Service place All other personal service 
School (*) Study I work 

8.3.3 Process 3: building of city 

Land use data record the numbers of individuals engaged with every vocation. It was 

assumed that the expected size of a work place of a given vocation type within all PC6 

of Eemnes is constant. Then from the number of individuals engaged with a given 

vocation within each PC6, the number of corresponding work places can be computed. 

For example, if the number of individuals engaged within the health care vocation within 

a given PC6 is ten, and the expected size of the health care work place is set to be five, 

then it is computed that there are two health care places within this PC6. 
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8.3.4 Process 4: population synthesis 

As the synthesized household data are grid-based, which are not compatible with PC6 

statistical data, all households within all grid cells of Eemnes were pooled together and 

then each household with its all family members were allocated randomly to all PC6 

zones of Eemnes as follows. 

Firstly, all individuals were classified according to age structure (Table 8.5). Different 

sub-classifications, and subsequently simulation of activities, were applied to the above 

four classifications. It is believed that daily patterns are related to individuals' socioeco-

nomic characteristics such as household role, lifestyle, and life cycle (Vaughn et al. 1997). 

In Janelle et al. (1998), the whole population was divided into 14 role groups based on 

dimensions of gender, marital status, job, child care, residence tenure and mobility. In 

Classificatioll 
Children under 5 

Children between 
5-10 
Children between 
11-18 
Adult 

TABLE 8.5: Age structure for the population of Eemnes. 

Descriptioll 
For children under 5, it is assumed that they do not have independent activities and always stay 
inside households 
Since the activity survey data do not cover children in this age range, their activity pattems are 
assumed to be simple: go to school at school hours and stay inside households at all other times 
Their activity pattems are based on survey data, but delete all work parts. They will be further 
sub-categorized by four dimensions 
Same with above, based 011 survey, but delete all study parts (their studies are taken as work), 
they will be further sub-categorized by four dimensions 

this research, average working (study) hours per day (Table 8.6), roles in household (Ta

ble 8.7), car availability index (1: no car; 2: yes and always; 3: yes and sometimes) and 

everyday in a week (Sunday to Saturday) are selected as four dimensions. Based on the 

above four dimensions, both children between 11-18 and adults in the population were 

further sub-classified, and their corresponding activity patterns were generated from the 

activity survey data. If the survey data cannot generate a corresponding activity pat-

tern from a specific value of these four dimensions, a replacement activity pattern was 

assigned at a more aggregated level, that is, the number of dimensions was decreased. 

The sequence of the dimensions to be excluded was car availability index, role in house-

hold and working (study) hours. For one individual, her Ihis daily activity pattern was 

further classified according to the seven weekdays. 
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TABLE 8.6: Working index according to the average number of working (study) hours 
per week. 

Index Number o{working (studv) hours per week 
o 0 
1 1-15 
2 16-30 
3 31-45 
4 >45 

TABLE 8.7: ROle types within household. 

Index Descriptioll 
I no family 
2 single parent with children 
3 child with single head 
4 parent in couple with no children 
5 parent in couple with children 
6 child in couplc with children 

8.3.5 Process 5: assign activity patterns to individuals 

136 

Within this application, the time unit was set to be 15 minutes, such that one day 

is divided into 96 units. Thus, the objective of simulating a person's daily activity is 

actually to assign the 96 units to certain activity types. 

For each value from the combination of the four dimensions mentioned in the above 

Section, aggregated data about the daily distribution of time spent on the main types 

of activity were computed from the activity survey data (if corresponding data exist), 

then these aggregated data were saved into the database for further use. This activity 

pattern included not only the average duration for every possible activity, but also the 

probability of the time of commencement for certain activities. Three types of activities 

were dealt with as exceptions: study time (applicable to children, assuming all children 

go to school during school hours), working time (applicable to all adult workers, assuming 

all workers go to work during working hours) and sleeping time. These three types of 

time were assigned to individuals as personal properties during the generation of the 

whole population. For the daily activity of one person of one week day, firstly, the above 

three special types of activities were fixed. Then from the beginning to the end of the 

time sequence, the vacant time units were assigned to activity types by the probability 

weights from the assigned activity pattern in relation to the socio-demographic segment. 
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For spatial location, for every person, her/his household and workplace (or school) were 

fixed from the beginning, and other locations (ABs) were selected randomly (or the 

spatially closest one was selected). At every time step, individuals can move between 

different locations. 

For both children between 11 and 18 and adults, their activity patterns are assigned 

according to their properties at the four dimensions. After these processes, the whole 

population of this city was built and all types of AB are distributed to all PC6 zone. 

Figure 8.2 shows the spatial distribution of households and schools at PC6 levels for the 

whole Eemnes city. It is clear that most of households are within the boundary of the 

city center, so in the chapter, the spatial displays are zoomed within the boundary of 

city center to highlight the area where most of contacts between individuals could occur. 

Figure 8.3 shows the spatial distribution of ABs for work (includes office, industry, farm 

and school), relaxation (includes sports, social and relaxation places) and maintenance 

(includes shop, post office, bank and healthcare places) at PC6 levels. 

8.4 Simulation process 

8.4.1 Simulation of individuals' movements between ABs 

As individuals' movement between ABs is not the focus of this work, a simple method was 

implemented. For every working individual, the locations (PC6) of her/his household 

and work place were fixed before the simulation and distributed randomly across the 

whole city. Due to the relatively small size of Eemnes, the locations of the only four 

schools with services for different stages of pupils were fixed before the simulation. Then, 

for others activities, two methods for selecting ABs were implemented. By the first 

method, during the simulation, an individual selects randomly from all ABs of specific 

types from all PC6s (including the current PC6) within a certain distance from the 
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current pe6 if she/he needs to take another activity. By the second method, before the 

simulation, for every type of activity, every individual is assigned to a fixed AB which has 

the minimum distance from her/his household. As mentioned before, trip activities are 

neglected in this research which means that there are no infections between individuals 

during the travel time. 
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8.4.2 Simulation of individuals' interactions within ABs 

139 

Eleven types of AB were defined for roles-based within-AB simulation. For each type 

of AB, its description and values of parameters are shown in Table 8.8. The simulation 

results can be recorded into a database during the simulation or after the whole sim-

ulation, Currently, simulation results can be recorded as individual-based, AB-based, 

contact-based and PC6-based. Further analysis can be based on these simulation data. 
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AB type 
Oftice 

Industry! 
Farm 

Shop 

Post oUice 
I Bank 

lIea 1th care 
place 

Sport place 

Household 

Social 
place 

Relaxation 
place 
Service 
place 
School 

TABLE 8.8: Contacts within AB. 
Descriptiol/ 
Loop between all staff 

The whole staff are divided into a few subgroups (with one 
as key subgroup, the size of the key subgroup is the same as 
the total number of other subgroups). Individuals within the 
same subgroup come into contact with each other as a Loop. 
Each individual from the key subgroup comes into contact 
with one key number of her / his cOITesponding subgroup 
Loop between workers 
Dynamic Random between all customers 
20% of customers come into contact with one staff member 
randomly 

Loop between workers 
Queue between clients 

One worker come into contacts with one client 
If clients> workers, then Static Random between the other 
clients; if clients < workers, then the other workers stay 
alone. 
Loop between workers 
Dynamic Random between customers 

Full between family members 

Loop (1) between workers 
Clients arc subgrouped, Loop (2) contact within each 
subgroup 
One client randomly selected from each subgroup to come 
into contact with one worker randomly selected. 

Static Random between both workers and clients 

Every client come into contact with one worker randomly 

Loop between supervisors (all teachers) 
Students are subgrouped. Static Even within every 
subgroup 
One teacher has a fixed subgroup and comes into contact 
with 5 students randomly selected from his I her subgroup 
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Values of parameters (default: P,) 

Loop (~4) 
Between key subgroup and other 

subgroup (~2, I::5) 

Loop lP;) 
Dynamic random (Density:O.5, 

Mobility= 1, ~4) 
Randomly selected 20% of customers 

eome into contact with one staff ( ~3 ) 

Loop (~4) 

Queue (Pc
l

) 

Worker with client (~I, ~I) 

P 2
) Static random (Density=1.0, c. 

Loop (F;4) 

Dynamic random (Density=0.2, 

Mobility=I.O, Pe2
) 

p2 
c 

Loop 1 (I::4) 
Loop 2 (I::2) 

. p3 p4 
Between chents and workcrs( i ' c) 

Static Random (Density= 1.0, I::5) 
Clients with workers ( p/ ' ~3) 
Loop (~4) 

Static Even (Density=l.O, ~.l); 
Teacher with five randomly selected 

students ( ~3 , F;] ) 
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8.5 Simulation results 

8.5.1 Calibration 

8.5.1.1 Calibration of the contact frequency index 

Since all contacts (whether infection is possible or not) can be recorded, the average 

contact number per person one day can be computed for comparison with related re-

search. According to the related researches by Pool and Kochen (1978) and Edmunds et 

al. (1997), F was calibrated to be 0.03, and at this value, the simulated average contact 

number for one person per day is 14.7. Figure 8.4 shows the distribution of the number 

of contacts of all individuals for one day. 

0.08 

.. 
0.06 

P(k) 0.04 

0.02 

'. 
' . 

0.00 

o 20 

. . . . . . . .. . .... .................. .......... . . 
•••• 0° •••••••••••••••••••••••• 0 •••• 

40 60 

k 

80 100 

FIGURE 8.4: Distribution of number of contacts for all individuals per day. 
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8.5.1.2 Calibration of the contact intimacy index 

All contacts during the simulation of ISTAM can be recorded. This provides the com

putation of Ro according to its definition (i.e., trace the number of new infections from 

all index cases). After calibration, I was fixed to be 0.03, and at this value the average 

Ro was 1.79. 

At the I value of 0.03, the simulated SIR plot is shown in Figure 8.5. The simulated 

epidemic peaked at about 30 days and ended at between 70-80 days, at which time 

40% population had been infected. The reason for this mismatch is in reality during 

the epidemic period, humans will change their behavior according to their own or other 

people's health state, such as staying at home or go to health care places when symptoms 

emerge to rest and avoid infecting other people. 

8.5.2 Dynamics of population during the whole day 

Individuals' daily activities are distributed according to certain patterns both spatially 

and temporally. Thus, their aggregate patterns (i.e., dynamics of the whole population 

within the whole city) also exhibit a certain structure during a whole day. This kind of 

research is especially interesting to the field of transportation, and also has implications 

for marketing, urban infrastructure and emergency response (Janelle et aL 1998). The 

word 'rush hour' is coined to express the time during this period when the number of 

individuals present peaks at locations such as transportation networks, shopping centers 

and other service facilities. The spatial distribution of all individuals at PC6-level and 

at a 15-minute interval can be generated from the simulation results. Figure 8.6 shows 

individuals' spatial distribution at 4 am, 10 am, 4 pm and 10 pm on a given day. It is 

clear that during 10 am and 4 pm, individuals are more concentrated within a few PC6 

where a few special ABs such as schools and industries are located. 
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8.5.3 Infection PC6 distribution 

143 

Traditional epidemiological studies take the address of a patient's household or the 

address of a health care facility where the patient is registered as the spatial location 

where infection occurred. Also, the 'lag' effect which exists between the time of infection, 

the time of showing symptoms and the time of visiting health care facilities is often 

not represented. Unfortunately, under most circumstances, these data sources are the 

main resources for research work (sometimes even such data are not guaranteed to be 

available) . 

From the simulation results of ISTAM, for every infection, information such as the 
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FIGURE 8.6: Individuals' spatial distribution at PC6 levels, at (a) 4 am, (b) 10 am, (c) 
4 pm and (d) 10 pm. 
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attacker, attackee, infection location, infection time and also the change of health state 

of each patient over time can be accumulated and traced. Figure 8.7 shows the spatial 

distributions of infections ((a) is for the ABs where the infections really occurred and 

(b) is for patients' household). It is clear that infections in Figure 8.7(a) concentrate 

within a smaller number ofPC6 than Figure 8.7(b), and there were no PC6 having more 

than 100 infections in Figure 8.7 (b ). The reason is that in reality during the daytime, a 

great number of individuals stay within a relatively small number of ABs such as school, 

industry and farm so that a great number of infections could occur. Figure 8.8 is an 
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FIGURE 8.7: Spatial distributions of infections at PC6 level: (a) based on the AB 
where infections occurred; (b) based on the households of infected persons 
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example to show the number of individuals in the latent stage (i.e., be infected but not 

infectious), the stage of being infectious without symptoms, the stage of infectious with 

symptoms and the total number of infected individuals changing over time. 

The 'lag' effect in time and 'misplace' effect in space within the practical epidemic data 

could be an interesting focus for research. The simulated results from ISTAM provided 

the possibility of further analysis, and deeper understanding could be gained in terms 

of the relation between the practical data sources and the real situation. 

8.5.4 Infection distribution at different types of AB 

In practice, the identification of key ABs for infection is important as this can assist 

possible infectious disease control measures. If enough information about individuals' 

activity patterns and ABs' physical condition is available, the percentage of infections 

at different types of AB for one epidemic out break can be generated by AB simulation. 

One example is Longini et al. (2005) mentioned earlier. They simulated that 28% 

of infections would occur within the family, 20% at household clusters and 21% at 
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school. Another example is Ferguson et al. (2005) who showed though simulation that 

infection risk comes from three sources with roughly equal proportions: (1) household, 

(2) workplace and school and (3) random contacts in the community. Table 8.9 is an 

example showing the percentage of infection at ABs generated by ISTAM. Practical 

statistical data are needed for comparison with the above simulation results for model 

calibration and validation purposes. 
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TABLE 8 .9 : Percentage of infections at different types of AB. 

AB Tvpe Percentage (%) 
Household 50.7 

School 19.3 
Indusny 9.2 
Office 8.7 

Social place 5.1 
Shop 2.8 

Cultural place 1.3 
Sport place 1.0 

Fann 0.8 
Post oflicelbank 0.5 
Health care place 0.4 

Other service place 0.1 

8.5.5 Network analysis 

Figure 8.9 is the contact network for one day's duration. Quite a few households exist 

for which the family numbers did not have contacts with outside persons during that 

day. Also from Table 8.9, we know that most infections occurred within households and 

at school. The arithmetic mean of clustering coefficients of this one day contact network 

is 0.52 with a standard deviation of 0.42. This certified the high number of 'clustered' 

contacts between individuals. 

/ ., 

l ... ". 

. . 
.. 

. ......• 

FIGURE 8.9: The contact network between individuals for one day. 
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8.6 Summary 

Cities or urban areas "represent large concentrations of diverse peoples living on rela

tively small parcels of land" (LaGory 1988). City has been taken as a complex system 

and complexity theory has been applied to study urban dynamics (Batty 2005b). Even 

within a rather small city such as Eemnes, the human population's demographic prop

erties, the landscape's physical condition and individuals' daily activity patterns can be 

very complex. Inevitably, problems exist within the application of ISTAM to Eemnes. 

Due to the shortage of practical data, humans' activities such as activities related with 

traffic and outdoor activities were neglected. In reality, humans' contacts within trans

portation vehicles, especially the public transportation, always play an important role 

in infectious disease transmission amongst the human population. Some ABs are out

door, and the weather condition should not be neglected in such a context. To include a 

climate and weather module is a good choice; an example is the BioWar model (Carley 

et al. 2004). 
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Discussion 

9.1 Reflection on two application cases of ISTAM 

Although it has been applied to two cases, ISTAM is still a conceptual model. For a real 

application, the data needed are infectious disease data (individual case), activity data on 

individuals and spatial data on the interior geometries of buildings. The individual case 

data problem is not only technological but also legal: often it is hard to acquire real data. 

However, sometimes, even when data exist, the usability is restricted (Armstrong 2002). 

To simulate the real world, an individual-based model can cover more detail than a 

mathematical model. But how much detail is required? There should be a balance 

(Bian 2004). Too much detail not only makes the model unwieldy but also makes 

the implementation too time-consuming. Most important of all, the model should be 

appropriate to the aim of the study. Further simulation within-AB, stochastic properties, 

intelligent individuals and further definition of effective contact will be the foci of future 

research. 

The emergent space-time pattern of disease in a given region depends on the parameters 

of both the disease transmission model and the spatial and social network structures in 

149 
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place in the environment in which transmission takes place. In particular, it is expected 

that changes in the parameters of the (simulation) model will lead to observable changes 

in the space-time pattern of disease. Simulation models provide an important means for 

evaluating the sensitivity of emergent patterns and their space-time character to changes 

in model parameters. 

The above introduction leads to two possible avenues for exploitation of the spatio

temporal information in emergent and possibly aggregated disease patterns: (1) it is 

hypothesised that statistical models fitted to the space-time patterns of aggregated dis

ease data can be used to infer parameters of the underlying disease transmission process. 

(2) it is hypothesized that specific changes in the spatial environment and social net

work structures in which transmission occurs will provide explanations for variations in 

disease dynamics from place to place (e.g., town to town). 

Demonstration of the above hypothesized linkages would have important implications 

for a range of applications. For example, recent emergent diseases (e.g., SARS, bird fiu, 

biological agents) can pose serious hazards to human health, with little known about 

their transmission characteristics. In such circumstances, it is extremely important 

to characterize their transmission properties early in an outbreak in order to plan early 

warning and containment strategies. To date, little use has been made of spatio-temporal 

information in this regard. 

If the association between particular elements of the environment and social network 

structure and disease outcomes can be quantified then it should be possible to map the 

vulnerability of settlements to specific diseases. For example, it is well-known that the 

behavior characteristics of individuals can be modified to reduce the likelihood of disease 

transmission. However, spatial elements such as the effects of public versus state school 

education for children and settlement structure (e.g., out-of-town supermarket versus 

local shop) are less well studied. Again, such knowledge would be useful in terms of 

planning containment strategies. 
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9.2 Calibration and validation of ISTAM 

The credibility and reliability of the model results are achieved by model calibration 

and validation. The process of calibration involves assigning appropriate values to de

fault input parameters according to existing knowledge. Model validation is defined as 

"substantiation that a computerized model within its domain of applicability possesses 

a satisfactory range of accuracy consistent with the intended application of the model" 

(Schlesinger 1979). 

For individual-based models, the model calibration and validation are very important 

(Ropella et al. 2002) as: 

1. The results of an IBM are the emergent properties from the interaction of indi

viduals that exist only in the model; unlike analytical model results, that is, the 

outcome of an IBM can be reproduced only by exactly reproducing its implemen

tation. 

2. The complex outcomes of an IBM make model errors difficult to identify. 

3. It is challenging to manage populations of multiple kinds of individuals. 

"A model should be developed for a specific purpose (or application) and its validity 

determined with respect to that purpose. If the purpose of a model is to answer a variety 

of questions, the validity of the model needs to be determined with respect to each 

question" (Sargent 2003). As reviewed by Rand et al. (2003), validation approaches 

include (Sargent 1988, Parker et al. 2003) (1) matching model output to measured 

variables in the system being modeled, and (2) matching a model's component structures 

and processes to structures and processes in the system being modeled. Rand et al. 

(2003) applied an IBM for land use change and tried to validate their model by matching 

the macro-level patterns generated by their model to those commonly found in the real 
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world, since their aim was at the macro level and not the micro level. The models need 

only be valid for the specific purposes to which they are applied (Koopman 2002). 

It is assumed that there are several levels of reality: at a microscopic level, interactions 

may be described by complicated potentials, but at a macroscopic level, the properties 

of the system are dominated by the aggregated effect of all microscopic interactions. 

ISTAM is a bottom-up model, the model is built from the individual (micro) level, 

the aim is to predict for the population (macro) level, between the micro and macro 

levels, there are other meso levels which can be aggregated from different dimensions or 

different angles. Existing knowledge can be applied for model calibration and validation 

from all these different levels (see Figure 9.1). 
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FIGURE 9.1: Process of calibration and validation of ISTAM. 

Validation 

As presented in Chapter 6 and Chapter 8, Ro and contact frequency were used to cali

brate infectivity index, contact frequency index and contact intimacy index. The existing 

research on contact networks and existing characteristics about influenza outbreaks were 

used to validate the simulation results. In fact, there are still more aggregated meso re

sults that can be used for this purpose. Examples are: the real data about the changing 
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numbers of individuals within a certain AB (also the human density at a certain PC6) 

can be surveyed to calibrate individuals' activity patterns. 

9.3 Selection of AB 

Eubank (2002) stated that one requirement for the simulation of infectious disease trans

mission is that the model can identify specific geographic and demographic pathways 

along which disease spreads. This highlights the importance of the selection of ABs in 

the design and implementation of a disease transmission model. Selection of ABs varies 

depending on the study target and data availability. 

When data on the space-time activities of individuals are difficult to obtain, the simplest 

method of AB selection is to include households, workplaces and schools. An example 

is given by Bian (2004) who simulated an influenza outbreak in 1000 individuals in a 

metropolitan area, and divided each individual's whole day into daytime and nighttime 

parts. Then, workplaces and households can be taken as two main types of AB. Another 

example is provided by the Ferguson et al. (2005) model which explicitly incorporates 

households, schools and workplaces for the simulation of an influenza pandemic of 85 

million people in Southeast Asia. To include other situations, random contacts in the 

community associated with day-to-day movements and travel were also modelled. 

A second method of AB selection is based on the interaction of between and within 

demographic groups of the target population. The theory behind this method is that 

people have most contact with people with similar ages and the same gender, and this 

method is consistent with traditional epidemiology and demography (Edmunds et al. 

1997, Eubank et al. 2004). In a study of an influenza epidemic in a small suburban 

community, Elveback et al. (1976) structured a population of 1000 persons into five age 

groups (pre-school, grade-school, high-school, young adult and old adult). Sub-group 

mixing in families, clusters of neighbourhoods, schools, and pre-school playgroups (see 
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Table 9.1) as well as total community mixing were assumed to occur randomly. In a 

study to contain bioterrorist smallpox within a community, Halloran et al. (2002) go 

further as they include more types of AB and define different transmission probabilities 

for different types of AB (see Table 9.2). For example, they assume that person-to-person 

transmission probabilities were highest in households; lower in the day care centers, play 

groups, and schools; and even lower in the neighborhoods and the community at large. 

TABLE 9.1: Subgrouping mixing. 

(Elveback et al. 1976) 
Age group (Mixing group) Families Clusters of Neighbourhoods Playgroups School Total community 

Prcschoo I * * * * 
School 

Youth adults 
Oldcr adults * 

* 

* 

* * 

* 

TABLE 9.2: Daily smallpox transmission probabilities in a simulated community. 

(Halloran et al. 2002) 
Children Adults 

Pre-School School YOlmgcr Older 

Contact centers [:lcmcntary Middle 

Small play groups 0.09 

Large day care ccntt"rs 0.05 

Elementary School 0.006 

Middle School 0.005 

High School 0.002 

Family: child 0.12 0.12 0.12 0.12 0.12 0.05 0.05 

Family: adult 0.05 0.05 0.05 0.05 O.OS 0.06 0'<)6 

Neighborhood 0.00004 0.00004 0.00005 0.00005 0.00005 0.00014 0.00014 

0.00004 0.00004 O.OOOOS O.OOODS O.OOOOS 0.00014 0.00014 

A third method of AB selection is based on individuals's daily space-time activities. The 

ABs where people are present for a long duration and with greater frequency are selected. 

An exception is given by hospitals and emergency wards. Although the percentage of 

health care activities for the whole population is of only marginal importance, the crucial 

roles that the hospital and emergency wards play in the process of transmission mean 

that they cannot be neglected. Examples are provided by Meyers et al. (2005), Epstein 

et al. (2002), Brouwers (2005), Longini et aL (2005) and Eubank et al. (2004). 
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The above methods of AB selection are not mutually exclusive. In fact, they are gener

ated from different viewpoints and reflect the different types of model they serve. 

9.4 Within-AB simulation 

Chapter 7 provides a detailed analysis of the parameters of raster space AB simulation. 

However, these parameters are still within the domain of theoretical discussion and far 

from application for practical use. A few problems existed as follows: 

1. The humans' space-time dynamics are too complex to be expressed by a number 

of parameters. In this research, it was assumed that the space-time dynamics 

patterns for individuals who are present within the same AB at the same time are 

the same at within-AB level. In fact, this assumes that the pattern is AB-based. 

In reality, humans' space-time dynamics depend strongly on the different roles that 

they play in their joint activity. 

2. The simulations are always based on the patterns that we already discovered or 

accepted. For example, the four spatial distribution types presented in this thesis 

may be not suitable or there may be other distribution types which the modeller 

does not know. The computational complexity is a related problem. For example, 

complex dynamic types of AB were not implemented within ISTAM (Figure 9.2). 

Random static: type 4 Other static: type 1, 2, and 3 

I 

Random dynamic 
._._._._._._._.Y._._._._._._._. 
I I 

---------~ Complex dynamic i 

FIGURE 9.2: Relation between different types of static AB and dynamic AB. 

3. The scale of space and time of the simulation may be not sufficiently fine to 

capture the real space-time dynamics of humans. For the spatial scale, raster 
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space AB simulation uses MinX and Min Y to express the minimum distances 

in two dimensions, while in reality, the space within an AB where humans can 

move freely is not always a rectangle (it is also necessary to consider the layout 

of facilities such as furniture). For the temporal scale, real-time patterns of the 

dynamics of humans are ideal for simulation of the infectious disease transmission, 

but such patterns are seldom available. 

4. Some types of public AB, although very small in number, can playa crucial role. 

Examples are sports stadia and marketplaces. A large number of individuals ag

gregate together periodically (e.g., weekends during league match season) or ape

riodically (e.g., celebrations during holidays). Within some types of AB such as 

shopping centres or main traffic stations, individuals are highly mobile and the 

structures of the AB can be complex. It is impossible to choose a space-time scale 

that is suitable for all types of AB. 

5. The process of infection is not clearly understood. Take influenza as an example. 

Although 2 m is taken as a normal distance for the infection to occur, the precise 

attack duration and attack distance are not known. 

Considering the problems above, vector space AB simulation and role-based AB simula

tion was applied within the framework of ISTAM. Vector space AB simulation takes the 

space within an AB as continuous. Vector space AB simulation allows representation of 

individual movements at a finer spatial scale than raster space and the distance between 

any two individuals within an AB can be represented as a real value (rather than in 

terms of pixels). Importantly, Hall's (1966) distance rules can be applied directly. An 

example of vector space AB simulation involving the simulation of influenza transmis

sion amongst customers and sales people inside one shopping mall is developed. This 

model, although simple, shows the two merits of vector space simulation: (1) the spatial 

layout can be expressed explicitly by the use of vector data (e.g., within a geographical 

information system, GIS); (2) the individuals' movement patterns inside the AB can 

be as detailed as required such as to reflect their activities and roles. Role-based AB 
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simulation assumes that individuals' physical distances (also their contact frequency and 

contact duration) between each other are determined mainly by their roles which they 

play in joint activities. 

To simulate effectively a set of individuals' space-time relations within an AB, different 

factors need to be considered for each type of AB. Distance rules can be applied to the 

situation where the physical space provides enough scope for individuals to adjust their 

distances between each other. In such a situation, the relations between individuals 

based on their roles in the joint activity are the primary factor to be considered. Thus, 

role-based simulation can be applied. When the physical conditions of the AB con

strain individuals from adjusting their spatial location freely, vector space simulation is 

a suitable choice. In such a circumstance, mobility and density are the most important 

factors. For some special ABs, such as lecture rooms or aeroplanes, where individuals' 

space-time locations are constrained by the layout of the seating, the distances between 

individuals are in fact the distances between seats and individuals are static most of the 

time. In these circumstances, raster space simulation is more convenient to apply, and 

the distribution of the individuals' spatial location is the primary factor to be considered. 

It needs to be pointed out that at a fine spatial scale, some factors which can be neglected 

in the general situation may play an important role. For example, during long-haul air 

travel, air circulation is limited and infectious droplets may persist for longer than 

normal. Thus, some parameters of an infection model such as the diffusion distance and 

diffusion duration may increase greatly. Although role-based simulation and raster and 

vector space simulation approach the same problem from different angles, these methods 

can be applied in combination even for a single AB (e.g., vector space and role-based 

simulation). One important decision when integrating models in this way is the relative 

contributions made by each component to the final model. Practical data are needed to 

guide this decision under different circumstances. 

For a certain number of people in a certain AB, it is hard (if not impossible) to quantify 

the probability of infection. However, contact probability is used here as a substitute, 
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with the assumption of a linear relation between contact and infection. Unfortunately, 

contact probabilities in different types of ABs are difficult to estimate as well. For ran-

dom contacts between individuals in different ABs, Meyers et al. (2005) used different 

probabilities: 1 for households; 0.03 for workplaces and 0.003 for other public places. 

The authors admitted that these parameters were based on intuition instead of estimated 

from data. Another example is Brouwers (2005)' MicroPox model for the simulation of 

smallpox transmission. In MicroPox, ABs were assigned different transmission prob-

abilities (see Table 9.3). It is possible to compare the probability of infection at two 

ABs if the primary factors which control the infection can be recognized and compared. 

In practice, the identification of key ABs for infection is important as this may assist 

control measures. If enough information about individuals' activity patterns and the 

ABs' physical condition is available, the percentage of infections at different types of 

AB for one epidemic outbreak can be generated by AB simulation. Figure 6.11 is an 

example showing the percentage of infection at ABs generated by ISTAM for a hypo

thetical influenza outbreak in the campus of the University of Southampton. Empirical 

data are needed for comparison with the above simulation results for model calibration 

and validation purposes. 

TABLE 9.3: Transmission probabilities for different types of AB 

AB types 
Dwelling 
Kindergarten, School, Hospital 
Oftlce 
Travel 
Emergency ward 
Neighborhood 

Transmission probabilities 
0.25 
0.15 
0.05 
0.l5 
0.25 
0.10 

9.5 Possibility of further analysis based on the simulated 

data of ISTAM 

The target of this PhD research changed over the course of its execution. The initial 

aim was to build a relatively simple pilot model for the simulation of the transmission 
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of infectious disease at the individual level. Then, geostatistical analysis was to be 

performed based on the simulated data from the above model (this part was supposed 

to be the focus of this PhD research). During the first two years, the author realized that 

the more complex the model, the more meaningful the following geostatistical analysis. 

Thus, the percentage of the modelling research in the whole PhD research increased. 

The turning point was at the end of the second year, when the author transferred from 

master of philosophy to PhD. After discussion with the internal examiner of the transfer: 

Prof. David Martin and PhD supervisor: Prof. Peter Atkinson, the author decided to 

delete the geostatistical analysis part and focus on the modelling research. 

Here, both the pilot model and following geostatistical analysis are presented as an 

example to show the possibility of further analysis based on the simulated data of ISTAM 

(of course, ISTAM is more complex and closer to the real situation than the pilot model). 

The point is: data resulting from ISTAM simulation can be accumulated at micro-level 

and aggregated to different higher organizational levels. These simulated data can be 

the base for further analytical research. 

9.5.1 Introduction to geostatistics 

Geostatistics is a set of tools for the analysis of spatial data treated as a realization of a 

random function (RF). Geostatistics has been used to explore the statistical relationships 

in data and to test hypotheses about disease patterns. During this PhD research, a 

tentative model was built to explore change in the geostatistical variogram as a function 

of changes in simulation model parameters. Geostatistics is concerned with spatial data. 

That is, each data value is associated with a location in space and there is at least an 

implied connection between the location and the data value. The main areas of concern 

within geostatistics for epidemiology are: disease mapping, ecological analysis, clustering 

and assessment of putative sources of health hazard. 
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Geostatistics has its basis in Matheron's (1963) theory of regionalized variables. The 

most important distinction to make in geostatistics is that between model and data. 

In most geostatistical analyses, the fist step is to compute some function such as the 

variogram to describe the spatial variation in a region of interest. This function must 

be obtained from sample data and, thus, it is a statistical function dependent on the 

data from which it is derived. On the contrary, if we are to use the sample function 

to infer further information about the region of interest then, generally, we need to 

adopt some formal model of the variation. Most commonly, the RF model is used. The 

variogram is then defined as a parameter of this model and may itself be comprised of 

several parameters. To relate the experimental variogram to the variogram defining the 

RF model, it is necessary to fit some continuous mathematical function to the observed 

values. Then, the fitted function estimates the model parameters. 

The variogram is defined as half the expected squared difference between the random 

functions Z(x) and Z(x + h) at a particular lag h (Matheron,1963). The mathematical 

expression is as follows: 

1 
p(h) = 2E[{Z(x) - Z(x + h)}2] (9.1) 

9.5.2 Pilot model description 

To simulate infectious disease transmission, a pilot model was created in which space 

is essentially discrete (raster) although the model is not a CA in the strict sense. The 

model was run with a diurnal time-step. The model included three separate sets of 

parameters: disease transmission, environment and population parameters. 

To keep the model simple in the first instance, 100 by 100 residences were distributed 

evenly over the raster space of 600 by 600 pixels. M = 25 schools were distributed using 

a stratified (5 by 5 cells, in this case) random sampling scheme. N companies were 

distributed randomly. 
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Population parameters included both the population structure and individual behav

IOr. The structure of each household was based on published statistical data (see 

http://www.statistics.gov.uk).Twoagegroupswereestablished(adults.children) with 

different behaviors. During the day, children attended their nearest school according 

to non-overlapping catchments as represented by the Thiessen polygon structure. This 

structure is not dissimilar to the state secondary school system in England. During 

the day, adults attended either their nearest or a randomly selected company in equal 

numbers per household. During the evening, some interaction (transmission) between 

neighbours was allowed. Related figures can be found in Appendix B. 

9.5.3 Initial analysis results 

From one simulation run the entire space-time data cube was extracted for further anal

ysis. Figure B.4 shows the plot of total number of cases against day number. The 

information in Figure B.4 is typically all that is used to characterise diseases. However, 

further spatio-temporal information may be gleaned from geostatistical and similar anal

yses of the space-time patterns of occurrences. Figure 9.3 shows three variograms ob

tained for days (a) 65, (b) 149 and (c) 308 (see Figure B.4). It is clear that the character 

of spatial variation changes through time in subtle ways. In particular, on day 65 there 

are two scales of spatial variation (3 pixels, 11 pixels; corresponding to local interactions 

between neighbours and the effect of school catchments). These patterns are evident 

in adults as well as children. On day 149, the local pattern has been subsumed by the 

more dominant pattern attributable to school catchments, and by day 308, a larger scale 

trend has emerged which subsumes the pattern induced by the initial school catchment 

structure (e.g., day 149). 

9.6 Scaling up and scaling down at different scales 

Epidemiological data can be distinguished as point data and count data (Elliott et al. 

2000). Point data are those that have associated exact spatial and temporal information, 
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FIGURE 9.3: Variograms for days (a) 65, (b) 149 and (c) 308 showing some of the 
changes in spatial structure which occurs through simulation sequences. 
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and count data are those that are available as aggregated summaries. Sometimes health 

records have been aggregated within a geographical area to a population large enough 

to ensure non-disclosure and to protect the privacy of the individual. Confidentiality 

constraints usually prevent data reporting at that level (Armstrong 2002) . 

Within epidemiological studies, much data, particularly on number of cases, are acquired 

at health facilities (e.g., hospitals, clinics, dispensaries) . Such data are often acquired 

without reference to geographical coordinates, and even where they are, disclosure and 

confidentiality restrictions prevent their full use. The geographical reference for a health 

facility is not a point (x, y), but a catchment defined using some two-dimensional func

tion. Catchments are often not equally weighted spatially and further may overlap. 

Often, catchments may be approximated using mathematical functions such that space

time distributions of disease rate can be estimated from health facility data. However, 
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such estimates are regularized (convolved) by the spatially varying catchments such that 

it is difficult to make inferences about the underlying processes of transmission. 

As discussed above, most of the available epidemiological or public health data are 

count data, and the areas on which they were aggregated are commonly administrative 

such as counties or districts. It cannot be denied that political frontiers have effects on 

the distribution of epidemiological cases but this division brings problems which have 

been named as the modifiable areal unit problem (MAUP) (Openshaw 1984, Cockings & 

Martin 2005). For a given set of data, different aggregations or zoning systems will often 

show apparently different spatial patterns in the data (Openshaw 1984). Relationships 

between variables which are observed at one level of aggregation may not hold at the 

individual, or any other level of aggregation (Blalock 1964). This is the so called 'ecology 

fallacy'. 

As pointed out by Grenfell and Harwood (1997), "A fruitful avenue for future work here 

is the analysis of hierarchical spatial data". It could be an interesting point to compare 

the individual-based, group-based, household-based or location-based transmission. The 

transform between these levels can be taken as scale-up and scale-down. Disease inci

dences have complex patterns of over a range of spatial and temporal scales (Graham 

et al. 2004). 

9.7 Changing of humans' daily activity patterns 

People who travel amongst different parts of the world may introduce infectious disease 

into other parts, and the transportation vehicles also can serve as mechanical vectors 

for the diffusion of diseases or disease vectors (Mayer 2000). As pointed out by Mayer 

(2000), "A well-known characteristic of contemporary society is the increasing speed 

with which individuals and transportation vehicles traverse the earth" (pp. 941). During 

the outbreak of SARS, the disease was transmitted quickly around the whole world by 
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airplane travel. Modern transport systems facilitate the spread of epidemics as the 

movement of potential vectors, disease reservoirs, and other organisms that might be 

involved in human disease are greatly facilitated by modern transport (Daily & Ehrlich 

1996). 

SchOfelder and Axhausen (Schonfelder & Axhausen 2002, Schiifelder & Axhausen 2003, 

Axhausen 2005) studied that change of activity space over long-term duration due to 

the changing expense of travel and telecommunication. It is a very interesting to study 

the effect of activity space change on infectious disease transmission over the long term 

for populations from different regions. 

9.8 Problems of current ISTAM and future work 

In ISTAM, both time and space are discrete. Important questions are how to choose the 

time unit of the whole model and how to choose the time unit of the activity pattern 

of an individual? This should depend mostly on the parameters of the target disease 

(especially the time scale of disease evolution and the time needed for infection). In 

RePast, the time behaves as a discrete event simulator whose quantum unit is known 

as a tick. In ISTAM, 15 or 30 minutes was set as one tick. The problem is: we assume 

the possibility of getting infection is in direct proportion to the time for the susceptible 

individual to be within the attack distance from an infectious individual. So given 

continuous time, P(2t) = 2 x P(t); given discrete time, P(2t) = P(t) + (1 - P(t)) x 

P(t) = 2P(t) P(t) x P(t) and P((n + l)t) = p(nt) + (1 - p(nt)) x p(t). If only the 

P(t) « 1, P(nt) is close to nP(t). The choice of time and space scale can affect the 

micro-simulation results, especially as the attack distance and attack duration for most 

infectious diseases are not precisely defined. More factors such as sanitation conditions, 

temperature and ventilation condition can affect the probability of transmission. 

In ISTAM, all ABs are indoor spaces. For outdoor ABs, factors such as weather condition 

and local natural environment also need to be considered. In reality, humans' activities 
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inside an AB not only determine the individuals' space-time dynamics, but also affect 

the probability of effective contact directly. For example, students are silent most of the 

time during lectures while they talk frequently in a bar. Such differences are important 

for airborne diseases. All of the above need to be added in further study. 

Stochastic properties have been applied widely in ISTAM. For example, the time lines of 

infectious diseases are drawn stochastically from distributions. However, there are many 

other components which need to be expressed stochastically such as the infectivity index 

(Bian 2004). In fact, this value is not constant, it changes over time. 

In ISTAM, the intelligent properties are overly simple and there is scope to include the 

individuals' reactions to the epidemic (Potash & Heinbokel 2003), as well as information 

transmission between individuals and the ability to change his or her activities under 

different situations. 

For airborne infectious disease, airborne bacteria may stay suspended in the air for 

an extended period of time. This suggests that an infectious individual can build "an 

infectious buffer zone" (both space and time) along his or her movement path and also 

the density of the airborne bacteria in the air will increase if the infectious individual 

stays longer. To apply a further definition of effective contact will be a challenge for 

future research. 



Chapter 10 

Conclusion 

In conclusion, AB simulation is an effective method to express small-level spatial effects. 

This concept bridges the gap between the spatial effect on an individual level and the 

individual's activity-based simulation. As shown by the application of ISTAM to a 

hypothetical influenza outbreak amongst a simulated first year undergraduate student 

population in the University of Southampton, raster space AB simulation could be an 

effective method to simulate infection at fine space-time scales and for a certain AB the 

proportion infected can be quantified. This makes the estimation and analysis of the 

infection risk for a certain AB possible. Given sufficient data (about both the physical 

structure of ABs and humans' social activities), within-AB simulation and ISTAM can 

be applied for practical use, for example, control measure testing for epidemics. As 

shown by the application of ISTAM to Eemnes, role-based simulation was demonstrated 

to be an efficient approach for within-AB simulation especially in the circumstances 

when detailed spatial structure information for the AB is not available. 

ISTAM is a novel model for simulating the transmission of infectious disease. The two

level structure (separating the between-AB and within-AB activities) makes ISTAM 

flexible such that it can be applied to novel circumstances. The concept of AB plays a 
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key role: both the building of individual activity patterns and simulation within ABs 

depends on how well the ABs are defined and classified. In conclusion, the merits of 

simulation by ISTAM are: 

1. ISTAM is straight forward and allows a process based representation of the real 

world. 

2. Using ISTAM, it is easy to take into account the important factors, neglect the 

less important factors and include random factors in the model. 

3. Using ISTAM, it is easy to consider human reactions (both active and reactive) 

and simulate the interaction between humans at fine scales. 

As the simulation results are individual-based, AB-based and PC6-based, this provides 

more aspects for the calibration and validation of ISTAM. Research is currently un

derway to validate the model by comparison of the simulated results of the number 

of individuals present at different types of AB over time with related research such as 

Eubank et al. (2004). 

ISTAM (by AB simulation) provides a new way to build a contact network based on 

the activity patterns of individuals. Most importantly, the contact model is a dynamic 

model: the contacts between individuals change over time and the order of these contacts 

also influences disease transmission. Further research, such as how to include the ABs 

as nodes, is underway. 

The application of ISTAM to a hypothetical influenza outbreak amongst the population 

of Eemnes, a city in the Netherlands, provided an example of the simulation of the 

individual-based transmission of infectious disease at the city level. This involved the 

building of a population and spatial and social structure of a city based on limited qual

ity data sources, and the simulation of contact processes from individuals' movements 

between ABs and interactions within ABs. ISTAM, if fed with activity pattern data, 
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can simulate effectively individuals' movements at between-AB and within-AB levels. 

Providing data sources are sufficient, this model can be extended to larger study areas. 

Dynamic simulation models of infectious disease provide an important experimental 

environment for evaluating and quantifying the effects of changes in disease transmis

sion probabilities as well as environmental and social parameters on space-time disease 

outcomes. ISTAM, although still in development, can be used to test disease control 

measures. In fact, this is a major advantage of a simulation model: the parameters can 

be changed to build and study 'What If' scenarios. 



Appendix A 

Interfaces of the applications of 

ISTAM 

FIGURE A.I: Initial interface of ISTAM. 
(The picture shows policemen in Seattle, Washington, December 1918, wearing masks 

made by the Seattle Chapter of the American National Red Cross during the influenza 
epidemic, adopted from Grosby (2003)) 
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FIGURE A.2: Main interface of ISTAM. 
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FIGURE A.3: Parameters interface of ISTAM. 
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FIGURE A .5: Spatial display of ISTAM application to the campus of University of 
Southampton. 
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l , _. 

FIGURE A.6: Spatial display within fiat of ISTAM application to the campus of Uni
versity of Southampton. 
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Interfaces of the pilot project 
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FIGURE B.l: Main interface of the variogram program. 
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FIGURE B-2: Spatial display of the variogram program (for a cell, the darker the color, 
the more infected cases) . 
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Yong Yang. PhD student. School of Geography. University of Southampton 

Student Activity Survey 

This form will be used for PhD study only . Your identity is not recorded, and information on individuals will be 
kept confidential. If you have any queries or suggestions, please email meat:yv@soton.ac.uk 

Please answer the following questions (by circling or specifying the correct answer): 

1. Your gender 

A. Male B. Female 

2. Your hall of residence 

A. Glen Eyre Complex B. Chamberlain C. South Hill D. Hartley Grove 
E. Aubrey House F. Romero G. Gateley Hall H. Bencraft 
I. Wolfe House 1. Connaught K. Montefiore L. Other accommodations 

3. When do usually you get up? 

A. 7:00am B. 7:30 am C. 8:00am D.8:30am E.9:00am F. 9:30am G. 

4. When do you usually leave your room? 

A. 8:00am B. 8:30 am C. 9:00am D.9:30am E.10:00am F. 10:30am G: __ 

5. When do you usually go back to your room in the afternoon or evening (approximately)? 

A.14:00 B. 15:00 C. 16:00 D.17:00 E.18:00 F. 19:00 G: __ 

6. Where do you usually stay when "between" lectures during the daytime? 

A. Library B. Residence C. Student's Union D. 

7. Where do you usually stay when you have no lectures during the daytime? 

A. Library B. Residence C. Student's Union D. 

8. How many times do you visit the library during the daytime (Monday to Friday)? 

______ times How long is a typical visit? _______ hours 

9. How many times do you visit or do the following during the evening (Monday to Friday)? 

A. Stay in 
B. Library 
c.Gym 
D. Bar 
E. 

10. LUNCH: 

______ times 
______ times 

______ times 
______ times 
______ times 

A. Cooking B. Refectory C. Buyingfoods D. 

11. DINNER: 

A. Cooking B. Refectory C. Buyingfoods D. __ 

When your lecture has finished, please hand your completed form to the person outside the lecture room. 
Thank you very much for your help! 

FIGURE C.l: Questionnaire of survey on students' activity pattern. 
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