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MODELLING COCHLEAR MICROMECHANICS 

by Robert Henryk Pierzycki 

An active mechanism, the cochlear amplifier, enhances the response of the cochlea 

to low-level stimuli and is assumed to be controlled by the action of the outer hair 

cells (OHCs) located within the organ of Corti. Because it is difficult to infer the 

dynamics of the organ of Corti from physiological data, a number of models have 

been proposed. However, the micromechanical behaviour of the organ of Corti is 

still not well understood. 

Classical models of the cochlea use an array of isolated lumped parameter 

systems along its length, coupled through the cochlear fluid. These models em­

ploy active feedback loops between the basilar and tectorial membrane (TlVI) for 

the mechanism of the cochlear amplifier. Several such models are reviewed and 

their underlying dynamic behaviour examined, in order to compare the predicted 

response with recent measurements of the relative motion within the organ of 

Corti. Their stability is also tested to establish reliability of calculated frequency 

responses. The models are conditionally stable and operate close to instability 

to achieve high sensitivity of the cochlear amplifier. COl11.pressive nonlinearity is 

also included in one of the classical models using a quasi-linear approach. 

It has recently been suggested that wave motion within the organ of Corti 

may also playa role in the cochlear amplifier. The behaviour of two possible 

types of wave between the reticular lamina and the TM is examined, one in 

which the TlVI is assumed to behave as a plate in bending and another in which 

it is assumed to behave like an elastic half-space. The propagation speed is very 

low for both waves and incorporation of the losses induced by viscosity causes 

the waves to decay significantly within a wavelength. Feedback from the OHCs 

coupled into these waves overcomes the effects of viscosity and enhances waves' 

resonant response supporting this form of amplification in the cochlea. 
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Chapter 1 

Introduction 

1.1 Why model the cochlea? 

The cochlea is thought to be the main structure responsible for the processing 

and analysis of sound in the periphery of the hearing system. Therefore, it is of 

great importance to understand its underlying processes, since they determine 

its performance. These processes appear to be very complex however, involving 

mechanical, electrical and chemical interactions, and are thus difficult to analyse. 

Not only is access to the cochlea, deeply embedded in the temporal bone and 

of a very small size, very difficult, but also the physiological processes within it 

are extremely vulnerable. Any interference within the cochlear environment may 

cause the cochlea to work in a different manner than normally. For example, 

to measure the cochlear response or its mechanical properties under realistic 

conditions, the cochlea is often excised, unsealed and artificially preserved in 

conditions similar to those within the body. After such a treatment the cochlea's 

state and physiological processes deteriorate rapidly until its behaviour resembles 

that of a dead cochlea. Secondly, even the most modern techniques introduce 

many artefacts, which may deform the cochlear response and reveal difficult to 

analyse or unrealistic features. Finally, since the response of a dead cochlea 

significantly differs from that of a live one, the measurements have to be carried 

out on cochleae in a very good condition, e.g. immediately after the death or 

under deep anaesthesia. Therefore the experiments are conducted on mammalian 
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1 Introduction 

or other species to find analogies with human hearing, which may itself confuse 

interpretation. 

Cochlear models are generally built to explain and interpret the results of these 

difficult cochlear experiments. The models attempt to gather all information 

obtained experimentally into one functional representation of the real structure. 

Cochlear models enable analysis and interpretation of the experimental results 

but may also stimulate the physiological research. Since the models are built on 

the experimental data, the lack or inaccuracy of the data can stimulate further 

research. The ultimate goal of each cochlear model is to reproduce the results of 

the experiment, so that the behaviour of the real system could be predicted when 

new conditions are applied. For example, cochlear models might be helpful when 

predicting the impact of damage or disorders to cochlear function, and may even 

provide information useful to compensate for them. 

The cochlea is an organ that possesses many remarkable characteristics. The 

astonishing filtering ability, dynamic range, and the analysis and recognition of 

speech signals by human hearing under very adverse conditions, are all achieved 

thanks to the cochlea. It seems therefore that a knowledge of cochlear physiology 

could be used in many engineering applications. 

1.2 Aims 

Cochlear models could describe some processes within the cochlea, but cur­

rently fail to give a realistic or comprehensive picture of the full cochlear function. 

For example, the mechanism of the cochlear response amplification, the so-called 

cochlear amplifier [13], is still not well understood. The literature of the subject 

reveals significant inconsistency between different approaches. Though some au­

thors have postulated that some active models can be thought of as equivalent 

[16], they are difficult to analyse and compare [82]. Furthermore, there is a lack 

of common ground in describing some aspects of the cochlear micromechanics, for 

example there is no complete and consistent set of mechanical and geometrical 

parameters, due to sparse experimental data. Finally, some researchers argue 

that a high dimensional complexity (3D) of the cochlear models is necessary to 
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1 Introduction 

obtain a realistic model's response [50]. On the other hand, simplified ID models 

are often used to explain cochlear function [68], and it can be argued that the 

complex models do not seem to give more insight into the dynamics of the cochlea 

than the one-dimensional models. 

Therefore, in this thesis we aim to investigate the basic concepts of microme­

chanical modelling, initially concentrating on the example of a classical model of 

the cochlea proposed by Neely and Kim in [68]. The objective in this case is to 

gain insight into the model's assumptions and properties, through the analysis of 

its modes of vibration, parameters and active components. This model is then 

developed so that its predictions can be used to compare with experimental data 

such as that measured, for example, by Gummer et al. [40]. 

Another objective of the present work, was to investigate a distributed para­

meter model, i.e. the 'squirting wave' model proposed by Bell and Fletcher [9], 

as another mechanism for cochlear response amplification. The objective was to 

extend the model by introducing an active component in the form of a feedback 

loop from the outer hair cells, in order to examine whether this could overcome 

the very significant damping within the system. 

1.3 Contributions 

The main contributions of the present work are: 

l. The analysis of the dynamics, modes of vibration, active mechanism and 

stability of the Neely and Kim [68] and Neely [66] cochlear models. 

2. Comparison of the mobility responses of the above two degree of freedom 

models with the experimental data of the response of basilar and tectorial 

membrane measured by Gummer et al. [40] and Hemmert et al. [43]. 

3. An analysis of the active quasi-linear model of the cochlea with an investi­

gation of stability in positive feedback models. 

4. Extension of the 'squirting' wave mechanism, proposed by Bell and Fletcher 

[9] for the model of amplification of fluid motion in the subtectorial space, by 
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1 Introduction 

introducing and investigating of the effects of viscosity to the propagation 

of the 'squirting' waves and incorporation of an active feedback loop from 

the outer hair cells. 

5. Development of a fluid-elastic wave model proposed by Elliott [20] for am­

plification of fluid motion in the subtectorial space, with incorporation of 

active feedback from outer hair cells. 

Some of the results presented here were published and presented in: 

• Elliott S.J., Pierzycki Rand Lineton B. (2005) "Incorporation of an active 

feedback loop into the squirting wave model of the cochlear amplifier," Proc. 

Int. Conf. Sound and Vibration (ICVS12), Lisbon. 

• Pierzycki R, Elliott S.J. and Lineton B. (2005) "Active 'squirting wave' 

model of cochlear amplifier," IEEE, EMBSS, UKRI Postgrad. Conf. on 

Biomed. Eng. and Medical Phys. (PGBIOMED'05), Reading, UK 

• Pierzycki R, Elliott S.J. and Lineton B. (2005) "'Squirting wave' model 

of the cochlear amplifier with active feedback," BSA Short Papers Meeting 

on Experimental Studies of Hearing and Deafness, Cardiff. 

f!II Pierzycki R, Elliott S. J. and Lineton B. (2006) "Two models for fluid­

structural waves in the organ of Corti," Institute of Acoustics Spring Confe­

rence, Southampton. 
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Chapter 2 

The Cochlea 

This chapter summarizes some facts about cochlear anatomy and physiology, 

and briefly describes the cochlear innervation at the hair cells. Some sections 

(2.1, 2.2.1 and 2.3) are presented to give the basis for general understanding of 

the cochlear function. However, an attempt is made to explain cochlear processes 

as thoroughly, and consistently with recent findings, as possible (Sections 2.2.2, 

2.2.3), although without moving too much into the details beyond the scope of the 

thesis. It has to be remembered that many uncertainties, especially corresponding 

to the physiology of the cochlea, are still present and are subject of ongoing 

research. 

Section 2.1, describes the anatomy of the cochlea, referring mainly to a 11U­

man cochlea. In the following section the cochlea's mechanics, specifically, the 

so-called macro- and micromechanics and the outer hair cell mechanics, are cha­

racterised. The chapter concludes with a brief description of cochlear nonlinea­

rities. 

2.1 Anatomy 

The cochlea is a small bony structure, coiled around a bony tube called the 

modiolus and embedded deep in the temporal bone [90]. Its shape is similar to 

the shell of a snail with a number of coils and dimensions different for particular 

species, e.g. the overall dimensions of a human cochlea coiled into 2 and 3/4 
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2 T h e Cochlea 2.1 Anatomy 

coils, amount to about 5 mm in height and 9 mm in diam eter at t he base [35]. 

For better visualisation, the cochlea is often presented as an uncoiled system 

like in Fig. 2.1 , or in its cross-sectional view where a single slice of t he uncoiled 

structure is taken to describe the structures within as depicted in Fig.2.2. It can 

be seen from Fig. 2.1 that t he cochlea tapers along t he whole length from its base 

to t he apex. Two membranes, the Reissner 's membrane and basilar membrane 

(BM), which run t hrough almost ent ire length of t he cochlea, divide it into t hree 

compartments: t he scala vestibuli , scala media and scala tympani , as the cross­

sectional view in Fig.2.2 reveals. The two outermost scalae, t he scala vestibuli 

(upper) and scala tympani (bottom) are joined by a sm all opening at the apex 

of the cochlea called the helicotrema. T he third , scala m edia, shown in Fig.2.2, 

located between scala vestibuli and tympani , creates an inner closed compart­

ment . Furt hermore, at the base of the cochlea, t he upper cochlear channel, t he 

scala vestibuli , is terminated wit h a membraneous oval window, which connects 

with the stapes of the middle ear ossicles (Fig.2. 1), while the scala tympani is 

terminated by the membranous round window, which connects with the cavity 

of the middle ear. 

Oval ~----\--) 

Stapes 
Round 
window 

Figure 2. 1: Schematic view of an uncoiled cochlea. 

The scalae are filled with two kinds of fluids, which differ in the ionic compo­

sition. The scala vestibuli and scala tympani are filled wit h perilymph which has 

a high sodium ion content , whereas the scala media is filled with endolymph, a 

fluid with high potassium ion content [90J. The properties of t he cochlear fluids 

are often assumed to be similar to t hose of t he sea water because of the N a + 
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2.1 Anatomy 

Figure 2.2: Cross-sectional view of the cochlea with indication of the cochlear 

channels. Reused with permission from Hallowell Davis, The Journal of the 

Acoustical Society of America, 34, 1377 (1962). Copyright 1962, Acoustical So­

ciety of America. 

ion content1 [35 , 79, 96]. Furthermore, the endolymph exhibits a high resting 

potential (endocochlear potential) of about +80 m V, whereas the perilymph has 

a nearly zero potential, being +5 m V and +7 m V in scala vestibuli and tympani, 

respectively [79]. It should be also noted that the perilymph is able to diffuse 

beyond the BM, so that it is the tight arrangement of the apices of the sensory 

and supporting cells that creates the actual boundary for the perilymph-like fluids 

and therefore the bodies of some cells are bathed in them [90]. 

One of the most physiologically important structures of the cochlea is the 

BM, the length of which is different in different species. In the human ear the 

BM length is equal to approximately 35 mm. The structure of the BM differs 

along the length of the cochlea, so that , although the cochlea's width tapers from 

the base to the apex, the BM widens from its narrow base, about 0.1 mm, to the 

1 Although the cochlear fluids are assumed to have properties simi lar to the properties of the 

sea water, the fluid's density equal to lOOOkgm- 3 , which is approximately the density of the 

fresh water, i.e. 99Skgm- 3 [48], is often used in the models of the cochlea [9 , 68J. 
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2 The Cochlea 2.1 Anatomy 

wide apex end of about 0.5mm [35]. The thickness of the BM is often represented 

as changing reciprocally to its width in such a way that it is thick at the base 

and thin at the apex of the cochlea, as can be seen e.g. for chinchilla cochlea 

measurements of Lim2 [57, 58]. 

In the radial aspect the BM can be divided into two separate regions. The 

first, extending from the spiral limbus to the foot of the outer pillar cells, is 

called the arcuate zone (due to the arch of Corti formed by the pillar cells), while 

the second, extending from the foot of the outer pillar cells to spiral ligament, is 

called the pectinate zone. Also in the radial dimension the BM exhibits structural 

complexity. For instance the chinchilla cochlear measurements reveal that the 

proportion of the arcuate and pectinate zones' width changes along the cochlea 

with the arcuate zone being narrower than the pectinate zone near the base and 

almost equal at the apex of the cochlea [57, 58]. Furthermore, the thickness of 

both of these regions is thought to decrease from base to apex as presented by 

Lim [57, 58]. 

The width and thickness changes of the EM have in1plications for the struc­

ture's mechanical properties. Though it is hard to measure the mechanical pa­

rameters of the EM, it is widely accepted that the properties of the EM are 

dominated by its elasticity, such that its stiffness is highest in the basal region of 

the cochlea and decreases exponentially towards the apex [79]. Furthermore, the 

logarithmic slope of the BlVI's stiffness gradient along the cochlea was found to 

agree reasonably with the slope of the so-called place/frequency maps of a dead 

cochlea of e.g. human [39]. Thus, to span the frequency range of human hearing 

from 20 Hz-20 kHz and assuming a constant mass along the length of the BM, 

the stiffness must decrease a millionfold from the base to the apex. However, 

it has to be noted that although the mass of the BM is often assumed constant 

2S1epecky [90J reports that the total 13]'1,11 thickness depends on the comhination of the so­

called homogenecJ1ls ground substance, the 13:\11 filaments and cells of the tympanic border 

(mesothelial cells). Since the population of mesothelial cells increases with the distance from 

the base. the total thickness of the 13M increases, though the thickness of the homogeneous 

ground substance and tbe filaments decreases over the length of the cochlea. Therefore, in 

present considerations when referring to the thickness of the 13]'v1 we refer to the thickness of 

the homogeneous ground substance and the filaments. 
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2 The Cochlea 2.1 Anatomy 

(e.g. [68]), in reality it must increase from base to apex due to the width and 

thickness changes along the cochlea [90J. 

It is often assumed that the BM stiffness changes longitudinally, and hence 

stiffness is a function of position along the cochlea [68J. However, because some 

experimental data suggests no, or insignificant, longitudinal coupling in the BM 

[78J, and the BM fibres are spanned between the spiral limbus and the spiral 

ligament, each segment of the BM can be considered as an independent bar of 

which the point impedance could be inferred [17J. 

A specialised structure, called the organ of Corti, is shown in Fig.2.3. The 

organ of Corti rests on the BM and contains receptor cells, the hair cells, that 

innervate the cochlea through the connection with the synaptic ends of the audi­

tory nerve fibres. The size of the organ of Corti is thought to change continuously 

along the cochlea, so that it increases from the base to the apex together with the 

increasing size of its cells [58, 90J. Several types of cells, of different physiological 

function, have been identified in the organ of Corti. The most important of them 

are two types of sensory cells called the hair cells due to the bundles of hair-like 

projections from their apical surfaces, the stereocilia. 

There are about 3,500 of the first type of hair cells, the flask-shaped inner 

hair cells (IRCs), which are innervated mainly by the afferent (centripetal) nerve 

fibres and formed in one row running along the cochlea [35, 90J. The dominance of 

the afferent innervation in the IRC suggests that the IRCs have a predominantly 

sensory role in transduction [90J. The body of the IHC does not contact the 

BM. In the direction from the spiral limbus to the spiral ligament, the IRCs are 

tightly packed between the inner border and inner phalangeal cells (not indicated 

in figures), with their tops separated by supporting cells, but the basal parts of 

the cells' bodies (region of the nucleus) not separated from one another [90J. 

The second type of hair cells are the cylindrically shaped outer hair cells 

(ORCs), of which there are about 12,000 [35J. The ORCs are supported by the 

Deiters cells, hence not in direct contact with the BM, and innervated mainly by 

the efferent (centrifugal) nerve fibres. Although providing some sensory input, 

the ORCs are therefore rather thought to modify the mechanical response of the 

organ of Corti [90J. They form three to five rows along the cochlea, and their 

9 



2 The Cochlea 

Inner Spiral Blind Ie 

TEC10AlAL MEMBRANE 

loner Hai; eel! 

Zona Afcuata ( Bastlar 
MembfBflC} 

2.1 Anatomy 

. Otner Hair Call 

Zot',a PeC!iralia 
(B.a s:dnr Membrane) 

Figure 2.3: Schematic view of the organ of Corti. Reprinted from Hearing Re­

search, 22, Lim, D. J ., "Functional structure of t he organ of Corti: a review," 

117-146, Copyright (1986) , with permission from Elsevier. 
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2 The Cochlea 2.1 Anatomy 

bodies are not in contact with each other due to their embedding in the Deiters 

cells and separation at their apices by the phalangeal processes of the Deiters 

cells. The OHCs are smaller in diameter than the IHCs [90J. However, the OHC 

cell bodies increase their length with the distance from the base of the cochlea, 

where no such size distribution was observed for the IHCs [58J. 

As in the case of the scala media fluid, the hair cells are DC-polarised (resting 

potentials) by about -40 mV and -70 m V for the IHCs and OHCs, respectively 

[11, 35J. Furthermore, both kinds of cells exhibit AC-receptor potentials, i.e. the 

responses of the hair cell after stimulation [35J. These responses are frequency 

and level-dependent [11 J. 

It was said that the hair cells owe their name to the bundles of stereocilia 

protruding from the cuticular plates of the cells' apices. It can be seen from 

Fig.2.4 that the hair bundles, similar to the cells' bodies, are arranged in rows. 

There are three rows of the stereocilia, which differ in length, as shown in Fig.2.4, 

and are organised in a bundle in such a way that the shortest row is on the 

modiolus side, whereas the tallest row is on the lateral wall side of the organ of 

Corti. The bundles of both types of hair cells reveal differences in their shape 

and arrangement. The bundles shape a shallow 'u' on the tops of the IHCs, 

but form a '\\1' or 'V' on the OHC's apical surfaces [35, 58, 90J. The cilia3 are 

able to pivot about their rootlets, which are embedded in the cuticular plate, 

where the embedding of the OHC's rootlets into the shaft of the stereocilium is 

deeper than that of the IHC's [26, 33J. Furthermore, the cilia of the OHCs are 

longer and thinner than those of the IHCs [33, 90]' and their length increases 

with the distance from the base in the OHCs but varies only slightly for the 

IHCs [98, 58J. It was reported by Lim [57, 58J that the number of OHC's cilia is 

inversely proportional to their height along the cochlea, i.e. as the height of the 

cilia increases, their number decreases towards the apex. 

The cilia of the hair cells form tight bundles due to their cross-links on their 

lateral walls, connecting the adjacent cilia within and between the rows, so that 

the bundle moves as a single unit when the tallest row of cilia is deflected. Addi-

3rt should be noted that the stereocilia are not true cilia [44, 79]. However, for the sake of 

cOlllpatibility with previolls 5t udies (e.g. [68]), will be also referred to as cilia. 
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2 The Cochlea 2.1 Anatomy 

Figure 2.4: Rows of stereocilia in a hair bundle of a guinea pig outer hair cell 

(the arrow indicates a cilia tip link; scale bar 200 nm). Reprinted from Pickles, J. 

0., » An Introduction to the Physiology of Hearing," Second Edition, Copyright 

(1988), with permission from Elsevier. 

tionally, the tip of each shorter stereocilium is connected with the wall of the taller 

cilia by the so-called 'tip links ' as shown in Fig.2.5 [90]. Finally, the mechano­

sensitive ion channels, thought to take part in the transduction process, appear 

to be located near the tip links in the cilia walls [90]. 

Figure 2.3 shows that the IHCs and the OHCs are separated by the pillar 

supporting cells, which together with the phalangeal processes of the Deiters 

cells form a close knit layer at their tops, the reticular lamina (RL) depicted in 

Fig.2.6. Furthermore, the RL is angled along the cochlea and the angle relative 

to the BM increases from the base to the apex [58]. The inner and outer pillar 

cells form Corti's tunnel (Fig.2.3), and the Deiters cells are assumed to-provide 

a rigid support to counteract the mechanical stress during the organ's vibrations 

as well as to mediate in the transfer of vibrations from and to the BM [90]. It 

has been suggested that the high level of energy consumption within the Deiters 

cells indicates an additional role of these cells, other than just as a mechanical 

support [90]. 

The remaining supporting cells, which have a functional role that is less un­

derstood, are the Hensen cells, considered to be a part of organ of Corti, with 

microvilli on the apical surfaces assumed to facilitate the ion exchange [90]. The 

Claudius cells , resembling Hensen 's cells but smaller in size, and Boettcher cells , 
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Figure 2.5: Tip links connecting the cilia of the neighbouring rows in a hair bundle 

(arrows). Also the cross-links between the cilia rows are visible (arwwheads; 

double arrowhead: upper point of the tip link attachment; scale bar 200mn). 

Reprinted from [79J after Hearing Research, 35, Osborne, 1\'1. P., Comis, S. D. and 

Pickles, J. 0., " Further observations on the fine structure of tip links between 

stereocilia of the guinea pig cochlea," 99-108, Copyright (1988), with permission 

from Elsevier. 

on which the Claudius cells rest in the basal part of the cochlea, are the sup­

porting cells on the lateral wall side of the organ of Corti, but structurally not 

recognised as the part of the organ [90J. The Boettcher cells are assumed to have 

a transport function due to their large area relative to the volume, whereas the 

Claudius cells (and Hensen cells) may play an important role in homeostasis as 

reported recently in [36J . Finally, the lateral wall and the leftmost (in Fig.2.3) 

boundary of the BM, are covered with the external and inner sulcus cells, res­

pectively. 

The last structure to be described here, is the tectorial membrane (TM) cove­

ring the organ of Corti as can be seen in Fig.2.3. It is a gelatinous structure with 

the mass increasing from the base to the apex of the cochlea, and composed of 

two types of fibres, A and B. The fibres, due to their distribution and packaging 

arrangement of the B fibres, divide the TM in the radial aspect into the limbal, 

middle and marginal zones [58, 90J. 

The first of these zones connects the TM with the spiral limbus, and hence it 
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DC 

Figure 2.6: The view of the main structures of the organ of Corti after unco­

vering the t ectorial membrane (DC-Deiters ' cells , SC-stereocilia, TlVl-tectorial 

membrane, see text for others). Reprinted from "Human IVlicroscopic Anatomy. 

An Atlas for Students of Medicine and Biology," 1991, p. 554, Chapter: Sensory 

Systems, by R. V. Krstic, Figure 1 of Plate 265, Copyright Springer-Verlag Berlin 

Heidelberg 1991, with kind permission of the author and Springer Science and 

Business Ivledia. 
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2 The Cochlea 2.2 Cochlear mechanics 

is called the limbal zone (Fig.2.3). The third zone, the marginal zone, together 

with the marginal band covering the body of the TM, connects the membrane 

to the supporting cells below through the marginal net [90], but only partially 

closes the subtectorial space due to the holes in this outer insertion to the organ 

of Corti [36]. The thickest part, the middle zone, forms the main body of the TM 

covering the sensory cells. The tops of the tallest row of the OHC stereocilia are 

embedded in the TM, whereas the IHC cilia are thought to be freely projecting 

from the cell's body or weakly attached to the TM, although the opinion on the 

IHC's attachment is more controversial [58, 90, 98]. The slanted arrangement 

of the fibres of the amorphous under-surface of the TM, referred to as Kimura's 

membrane (Fig.2.3), which coincides with the slanted arrangement of the stereo­

ciliary bundle formation [58], and the imprints of the cilia in this layer, prove 

their strong coupling with the TM [36, 58]. It is the stereocilia's attachment to 

the TM that suggests the membrane's importance in the transduction process. 

Furthermore, the fibrous network arrangement of the TM is thought to contri­

bute to its tensile strength and stretch resistance, which may be important when 

the stiffness of the membrane is to be estimated [90]. 

2.2 Cochlear mechanics 

The mechanics of the cochlea will be described in the following sections. It 

is convenient to divide the functional analysis of the cochlea into two separate 

classes. Firstly, the so-called macromechanical vibrations, which describe the 

interactions of the cochlear fluids with the flexible partition (see Fig.2.1), often 

referred to as the cochlear partition and resembling the BM in its mechanical 

properties, will be discussed. Secondly, the vibrations on the 'micro' level, called 

the cochlear micromechanics and elucidating the interactions of the structures 

within the organ of Corti, will be addressed. 

2.2.1 Macromechanics 

The macromechanics of the cochlea describes the interactions of the cochlear 

fluids with the cochlear partition. Two main assumptions are posed when dealing 
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2 The Cochlea 2.2 Cochlear mechanics 

with the macromechanical behaviour of the cochlea. Firstly, the organ of Corti 

and all specialised structures, are thought to constitute a homogeneous partition, 

the cochlear partition (CP) [78]. Secondly, the impedance of thin Reissner's 

membrane [90], is assumed to be small, so that it can be neglected and the scala 

vestibuli and scala media will form one compartment. Therefore, the flexible CP 

of specified impedance, divides the cochlea into two, the upper and the lower 

cochlear chambers, as presented in Fig.2.1. 

When the sound wave reaches our ears it is transmitted via the vibrations of 

the tympanic membrane to the chain of the ossicles of the middle ear, of which the 

last one, the stapes, connects to the oval window in the wall of the cochlea. The 

vibrations of the stapes cause pressure changes in its vicinity and a propagating 

fluid wave, which induces a propagating transverse displacement of the CP. 

It is assumed that the cochlear fluids are incompressible, so that the inward 

displacement of the stapes results in the outward (towards the middle ear cavity) 

displacement of the round window. In other words, if the oval and the round 

windows are replaced with pistons which move inward and outward with regard 

to the cochlear chambers, then only the so-called 'push-pull' condition, that is 

the pistons' displacements in opposite directions, would cause the transverse dis­

placement of the CP [78], known as the travelling wave. It is worth emphasising 

that the pressure wave does not propagate from the stapes, through the helico­

trema, towards the round window, as often suggested. The pressure in the two 

chambers is able to equalise through the helicotrema only for low frequencies, ho­

wever, mass and viscosity of the fluid have more of an effect at high frequencies 

[78]. At these higher frequencies the pressure is equalised through a region of the 

CP that has a high mobility at that frequency. 

The travelling wave on the partition slows down along the length of the co­

chlea, until some specified point along the cochlea, where it reaches its maxi­

mum transversal displacement and after which it rapidly decays as depicted in 

Fig.2.7. The point for which the maximum of the travelling wave occurs is called 

the characteristic place and corresponds to a particular stimulus frequency. In 

the same manner, the frequency for which the maximum displacement at one 

place on the CP is observed, is called the characteristic frequency (CF). This 
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place-frequency dependence of the partition's maximum displacement defines the 

tonotopic character of the cochlear response and is derived experimentally in the 

form of the cochlear frequency-to-place maps, which are individual to particular 

species [39 , 56]. 

round _ 
window 

Figure 2.7: The cochlear partition's travelling wave propagating in the cochlea. 

The arrows indicate the local fluid flow along the cochlea. Redrawn after Trends 

in Neurosciences, 21, Nobili, R., Mammano, F. and Ashmore, J., "How well do 

we understand the cochlea?," 159-167, Copyright (1998), with permission from 

Elsevier. 

The experiments on the cochlear response of different species show that the 

basal portion of the partition responds to high frequencies, whereas the apical po­

sition responds to low frequency stimuli [87]. This can be seen from the CF /place 

map derived for the human cochlea after [39], presented in Fig.2.8. Additionally, 

the response curve is more sharply tuned near the base and broadens with the 

distance along the cochlea [79]. 

Experiments of von Bekesy, carried out on cadavers' ears, revealed large accu­

mulations in the phase response [8]. This led to rejection of the theory of simple 

o~cillators existing within the cochlea, so that the travelling wave mechanism was 

proposed. However, the amplitude responses observed by von Bekesy for the dead 

cochleae were much broader than those measured more recently in live cochlea, 

which also have the characteristic place moved towards the apex for given tonal 

stimulus [87]. The difference between the response of a dead and live cochlea, 

presented in terms of the displacement of the BM as a function of position along 

the cochlea, is depicted schematically in Fig.2.9. The broad tuning of t he passive 

response is also not consistent with the fine frequency selectivity of the human 
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after [39]. 

hearing [62]. 
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Figure 2.9: Schematic of a passive (dashed) and active (solid) basilar membrane 

response curve as a function of position along the cochlea. 

To explain the subtleties of the cochlear response, a more complicated me­

chanics, often referring to as the cochlear micromechanics, must be considered. 

It was postulated that an active process, later named as the cochlear amplifier 

[13]' must be present within the cochlea in order to obtain responses as sharp 

as those observed in the live specimens [14, 78, 79, 87]. In general, the cochlear 

amplifier was assumed (i) to pump energy to the system, and (ii) acting against 
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the viscous forces of the CP, to enhance the displacement of the travelling wave 

close to the characteristic place. However, only with the discovery of the OHC's 

electromotility was a candidate for triggering and controlling the active mecha­

nisms within the cochlea found. Furthermore, because the OHCs are situated 

within the organ of Corti, the interactions of the structures within the organ are 

of great importance. 

2.2.2 Micromechanics 

The vibrations of the BM induced by the pressure difference in the fluids of 

the upper and lower cochlear chambers, are thought to displace the organ of Corti 

in the transversal direction. The geometrical and anatomical analysis suggests 

that the organ of Corti is pivoting at the feet of the inner pillar cells, where it 

is thought to be fairly rigid. This is shown schematically in Fig.2.10. Because 

the TM is also thought to pivot around a hinge (or, in some models, to pivot 

and vibrate in the radial direction [1, 68]), the upward displacement of the BM 

causes shearing forces between the reticular lamina (RL) and the under-surface 

of the TM, in which the tallest row of the OHC's stereocilia is embedded. 

The cilia of the hair cells thus pivot around their rootlets' anchoring in the 

apical surface of the cell's body, the cuticular plate. The shearing forces between 

the RL and the TM lead to the deflection of the OHC's stereocilia, and during 

the upward displacement of the BM, they are displaced towards the lateral wall 

of the cochlea [35, 79]. The tight arrangement of the OHC's stereocilia within 

the bundle enables the deflection of the whole hair bundle and is thought to open 

the mechano-sensitive ion channels (transduction channels) due to the tip links 

connections of the neighbouring stereocilia. Although the total excursion of the 

bundle is estimated to be smaller than the radius of the stereocilium itself [28], 

it is sufficient to open the ion channels, so that the potassium ions flow into 

the cell body, causing depolarisation, and in turn its shortening. The shortening 

of the OHC's soma is thought to exert forces, which pull the BM towards the 

scala vestibuli, and therefore its displacement becomes bigger than just due to 

the pressure difference from the cochlear fluids. Thus, the OHCs are thought 

to enhance the mechanical response of the cochlea during their electromotile 
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IHC OHCs 

Figure 2.10: Schematic of the basilar membrane positions during the displacement 

towards the scala vestibuli (top) and scala tympani (bottom). The dashed line 

indicates the position of the basilar membrane at rest (acronyms as in the text). 

action. Furthermore, due to the contractile forces from the ORCs, the fluid in 

the subtectorial space between the TM and the RL is thought to move towards the 

cavity of the spiral limbus side of the cochlea, the internal spiral sulcus, deflecting 

the cilia of the IRCs on its way. The deflection of the IRe's ciliary bundle leads to 

the closing of the ion channels, which after changing the electrochemical potential 

of the cell causes ions of calcium to flow into the basal, synaptic pole of the cell 

initiating release of the neurotransmitters, so that the information about the 

sound is sent via the afferent nerves to the higher auditory pathways coded in 

the neural impulses [35J. 

When the BM is displaced downward , the shearing force between the TM 

and the RL causes the cilia of the hair cells to move towards the modiolus. In 

this case the tip links of the stereocilia are thought to be compressed, and hence 

the transduction channels closed. This leads to the hyperpolarisation of the hair 

cell. For the ORCs, which were shown to possess the electromotile properties in 

vitro [87], the hyperpolarisation leads to the elongation of the cell 's body, during 

which the BM is thought to be displaced even more towards the scala tympani. 

Figure 2.11 shows schematically the stereo ciliary deflection during the excitation 

20 



2 The Cochlea 

and inhibition of the hair cells. 
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Figure 2.11: Deflections of the outer hair cell's stereocilia. Deflections towards 

the lateral cochlear wall cause the excitation, whereas deflections towards the 

modiolus, cause inhibition. The tip links are stretched in the first case and com­

pressed in the latter. Reprinted and adapted from Hearing Research, 15, Pickles, 

J. 0., Comis, S. D. and Osborne, M. P., "Cross-links between stereocilia in the 

guinea pig organ of Corti, and their possible relation to sensory transduction," 

103-112, Copyright (1984), with permission from Elsevier. 

The processes described above only outline the complex micromechanics of 

the cochlea. For instance, some recent data on the mechanics of the organ of 

Corti exhibit two positions about which the organ pivots. The first of them was 

found to be located below the feet of the inner pillar cells, as shown in Fig.2.10, 

or beneath the fibres of the IHCs, while the second one, being the pivot point of 

the RL, was localised inside the IHC or on the line extrapolating the RL's long 

axis [31J. Furthermore, the OHCs undergo deformations during the BM motion, 

i.e. the basal part of the cell's body exhibits displacements in directions different 

from the apical part, implying that there is no single point of rotation, as observed 

by Fridberger and de Manvel [31J. Such compound motion of the organ of Corti, 

in which the BM and the RL are capable of independent rotations, suggests that 

the rigidity of the organ may be questioned. 

An even more complicated picture of the micromechanics of a live cochlea 

was shown by Nilsen and Russell [71, 72J. These authors reported a complex 

pattern of the BM displacements in the radial dimension. For the in vivo guinea 

pig preparations, the largest displacements of the BM to characteristic frequency 
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tones were observed under the Deiters cells, and were thought to be amplified by 

the action of the OHCs. The displacements under the Deiters cells led in phase, 

by about 900
, the regions under the outer pillar cells and those adjacent to spiral 

ligament [72]. Furthermore, Nilsen and Russell argued that the OHCs' amplifi­

cation is highest when the velocity of the BM vibrations reaches its maximum 

[71, 72]. VVith sinusoidal stimulation, the velocity of the BM vibration is maxi­

mal when the membrane passes through the resting position and thus has zero 

displacement, which also implies that the action of the ORCs must be delayed in 

time with respect to the BM upward deflection. This delay time must therefore 

correspond to the time in which the cell undergoes the electrochemical processes 

described before. 

The post mortem responses measured by Nilsen and Russell lack the OHC's 

amplification, being reduced by more than 50 dB in comparison with the in vivo 

responses [71]. Furthermore, the regions of the BM width vibrate in phase in 

response to the characteristic tones exhibiting a flat radial profile, and exceeded 

the noise floor after the sound level was increased by more than 65 dB SPL [72]. 

This resembles the situation of von Bekesy's experiments on dead cochleae [8]. 

Studies on the TM's mechanical properties also suggest a more advanced role 

of this structure in the micromechanics of the cochlea. If the TM is a resonant 

structure with its own inertia and stiffness, its vibrations may well contribute 

to the response of the cochlea. The primary function of the TM, in the light 

of the active processes, is to provide shearing forces to the RL/cilia complex to 

activate the electromotility of the OHCs. However, some researchers suggest that 

a secondary resonance is needed within the organ of Corti to explain the shape of 

the cochlear tuning curve [1, 68]. This resonance, suggested to be half an octave 

below the resonance of the BM [61], would constitute a second vibrational degree 

of freedom, as proposed in various cochlear models [1, 68], and would contribute 

to the response of the CPo 

2.2.3 Outer hair cell's mechanics 

Recent experiments on the dynamics of the cochlea put emphasis on explai­

ning the mechanism of the cochlear amplifier, so that explaining the OHC's be-
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2 The Cochlea 2.2 Cochlear mechanics 

haviour becomes of great importance. One of the unknowns is the behaviour of 

the hair cell in vivo, since its motile response was mainly described in vitro under 

external electrical stimulation [97]. 

The so-called motor forces, responsible for producing the electromotile forces 

fed back to the vibrations of the BM, are connected with the OHC's lateral plasma 

membrane [6, 45]. The OHC's basolateral membrane contains a high density of 

particles, occupying over 40% of the membrane's area, which were identified as a 

motor protein and named prest in [4, 5]. The prestin molecules are integral mem­

brane proteins and act as a motor, which extracts the electrical field's energy to 

generate lateral forces in the plane of the OHC's basolateral membrane. Tight 

packing of the prest in molecules ensures the force generation along the longitudi­

nal OHC axis after molecular conformational changes occur [5]. In other words, 

the membrane's potential changes cause the molecules to contract (depolarisa­

tion) or expand (hyperpolarisation) within the plane of the membrane, resulting 

in the OHC's length changes [45]. This is called somatic motility. However, the 

tight coupling of the motor forces to the plasma membrane and their indepen­

dence of the underlying cytoskeleton, suggests that the dynamical response of the 

motor seems to be affected when it is isolated mechanically from the cell (patch 

recordings) and may behave in a different manner than in the intact cell [6]. 

The character of the interactions between the radially adjacent OHCs is also 

not well understood. For instance, in the experiments of Reuter and Zenner, 

where the half-turn explants of the guinea pig cochlea (in situ preparation) were 

exposed to an electrical field, the excitation normally resulted in the synchronous 

radial and transversal motile responses of the three rows of the OHCs [84]. Ho­

wever, in some cases an antiparallel movement of the neighbouring OHCs was 

observed. If the antiphase motion of the adjacent ORCs occurred in vivo, it 

would be consistent with a recently proposed cochlear aIl1plifier model, in which 

the out of phase motility between the second and neighbouring first and third 

rows of the OHCs, was suggested to facilitate the RL and TM's oscillations and 

sustain the motion of the subtectorial fluid towards the IRC's cilia in the form of 

so-called 'squirting' waves [9]. 

Ashmore and GelE30c also point out that the OHCs are situated in the matrix 
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of cells of the organ of Corti so that the length changes could be limited in the 

intact cochlea, and they argue that, although there is sufficient force generated 

to distort the neighbouring portions of the organ, the behaviour of its individual 

components is not clear [6]. These authors propose a secondary loop of OHC's 

feedback, and suggest that its forces oppose the BM vibration (see Fig.2 in [6]). 

This secondary loop represents the interactions between cells with an indication 

of how the potential and displacements of the OHC's of one section may be affec­

ted by the displacements in the adjacent section, due to the mechanical coupling 

between them [6]. It was shown by Zhao and Santos-Sacchi [102] that the elec­

trical motility stimulated in one OHC can induce a change in potential of the 

adjoining hair cell. This interaction appears to act to oppose the changes in the 

contiguous cell [102]. Because Zhao and Santos-Sacchi report that the potential 

in the cell adjacent to the stimulated one is opposite, which may indicate lateral 

inhibition, the phase difference between these cells would amount to 1800 [102]. 

However, the phase difference under the OHCs (Deiters' cells) in the experiments 

of Nilsen and Russell, does not reach such a value in any of the measured cases 

[71,72]. On the other hand, it has to be noted that in the experiment of Zhao and 

Santos-Sacchi the interactions of only a pair of the clamped OHCs were investi­

gated, whereas Nilsen and Russell measured the acoustically-evoked response of 

the BM in the whole organ of Corti where the OHCs were arranged in three rows 

across the BM width [71, 72]. 

The interactions between the OHCs in the secondary loop of the overall OHCs' 

feedback proposed in [6] are thought to generate forces to oppose the BM motion. 

However, the first loop of the feed back mechanism refers to the mechano-electrical 

transduction (MET) of the cell leading to a change of the OHC's length and en­

hancing the response of the BM [6]. Recent results suggest that the amplification, 

and thus the active processes might be controlled by the MET channels them­

selves, so that the cochlear amplifier would reside within the hair bundles of the 

hair cells [5, 28, 52, 97] via so-called 'bundle motility'. 

It has been shown that the OHCs can be driven to high frequencies with the 

somatic motility producing constant force up to 50 kHz under in vitro experi­

mental conditions [29]. However, in the real cochlea, the electrical time constant 
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of the cell's membrane may reduce any potential changes such that they become 

insufficient to drive the motor [5]. In other words, although prest in is a quick reac­

ting protein, the membrane's potential changes in vivo may not be fast enough 

over the period of a sound wave4 [52]. 

One possible mechanism for the active forces from the hair cell bundle is that 

the tension on the tip links during the deflection of stereocilia, is the source of the 

force, which is transmitted to the mechanoelectrical transducer (lVIET) channel 

through elastic elements, the so-called gating springs [28]. The tension of the tip 

links is thought to be increased due to the contraction of the myosin molecules 

with which the tip links are associated [45]. However, this motor protein is 

thought to have too slow kinetics in order for the proposed 'myosin motor' to 

work at acoustic rates [5]. 

Another potential mechanism of transduction assumes binding of the Ca2+ 

ions near the ion channel's interior aspect [45]. Entering of the calcium ions into 

the ion channels is thought to cause the channels' reclosure and increase in the 

tip link's tension, thus controlling the forces which act on the bundle and deflect 

it in the negative (inhibitory) direction [5, 45]. The forces of this fast acting 

mechanism were proposed to contribute to the mechanics of the cochlea [5]. 

The mechanisms of adaptation within the OHCs, manifested by a decline of 

the probability of opening of the MET during maintained hair bundle's displa­

cement, correlate with the two types of the bundle motility [28]. Although not 

found to exist in one cell at the same time, the slow and fast adaptation processes 

(the latter being most conspicuous in the mammalian hair cells), having different 

time constants but both having effect on the intracellular concentration of the 

Ca2+ ions by reducing their influx, seem to connect with the described types of 

bundle motion, i.e. the slow myosin motor and fast Ca2+ direct interactions with 

the transduction channels (calcium binding mechanism) [28]. 

Finally, it should be noted that if the fast mechanism observed in the mam­

malian cell [28]' is sufficient to drive the cochlear amplifier, the somatic motility 

4 Ashmore argues that the now of current around the cells is different in vivo, so that it 

cannot be precluded that in this situation the potentials across the molecule of prestin could 

still be maintained in the hearing range 
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which is mediated by prest in and seems to be necessary to supply energy for 

amplification processes [28, 52], may refer to a slow n1.echanism which controls 

the noise of transduction and shifts the hair bundle's operating point [52]. On 

the other hand the fast, calcium binding mechanism could provide tuning on the 

MET channels together with mediating the cochlear frequency selectivity and 

generating forces sufficient to drive the cochlear amplifier [28, 52]. Further ex­

perimental evidence is still needed, however, to support the above hypotheses 

[52]. 

2.3 Cochlear nonlinearities 

In the theory of cochlear mechanics discussed so far, the system described was 

tacitly assumed to be linear. Specifically, the macromechanical response of the 

cochlea can be described using the mechanical impedance of the CP, assuming 

the system is linear. Many studies of models of the cochlea suggest that a linear 

model is a good starting point [34, 64, 65, 67, 68]. However. the real cochlea, 

in a pristine physiological condition, exhibits a nonlinear nature of its response 

[46, 85, 86, 87]. 

Only a few nonlinear phenomena, being the ones mostly referred to in the 

literature, will be described in the following section. Among these are: the non­

linear growth of the EM response, the two-tone suppression and generation of 

distortion products, where the last two are connected with the so-called intermo­

dulation processes. Patuzzi identifies five separate stages of transduction, which, 

to some extent, exhibit nonlinearity and therefore may contribute to the 'ove­

rall' nonlinear behaviour of the cochlear mechanics [78]. These stages include: 

transformation from the macro mechanical vibration to displacement of the hair 

bundle (1), transformation to current (2), to voltage (3), to the OHCs length 

changes (4), and finally, to forces exerted in the CPo Since the 0 H Cs are involved 

in all mentioned stages, the nonlinear processes combined with the OHC action 

will be also briefly characterised. 

The nonlinear EM response to tones of different levels, as shown by the chan­

ging frequency response as a function of stimulus level in Fig.2.12 [46, 79], were 
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first discovered from the measurements of Rhode and confirmed by results of ex­

periments using modern techniques [85, 86, 87]. It can be seen from the figure 

that the BM displacement becomes broader with the increase of the stimulus 

level, i.e. the tip-to-tail ratio of the response curve becomes smaller as the level 

ll1creases from 20 to 60 dB SPL. For the stimulus level of 80 dB it is hard to 

distinguish the tip from the tail of the observed response curve. Although it is 

hard to indicate a distinctive peak of the broadly tuned displacement response to 

a 80 dB stimulus level, it can be seen that the maximum of the curve shifts to the 

region of lower frequencies, which is another characteristic of the BM's response 

nonlinearity. Thus, not only is the frequency selectivity in this case poorer but 

also the CF of the response at a particular BM location is lowered. 
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Figure 2.12: Basilar membrane amplitude responses as a function of frequency, 

observed in the basal end of the cochlea of the guinea pig (18kHz site) at four 

different stimulus levels. Reprinted from [79] after Hearing Research, 22, Johns­

tone, B.IvL Patuzzi, R. and Yates, G.K., "Basilar membrane measurements and 

the travelling \vave," 1t17-153, Copyright (1986), with permission from Elsevier. 
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Another way of presenting the nonlinearity of the EM response is to show 

input-output curves for characteristic frequency tones, as shown schematically in 

Fig.2.13. The stimulus of frequency below or above the CF gives a nearly linear 

response of the BM [87], however, for CF stimuli the response increases linearly 

at low levels, to about 30 dB SPL and grows, on average, as 0.2 dB/dB (measured 

for 40-90 dB) at higher levels [87] as can be seen in the figure. For the levels above 

90 dB the displacement response becomes linear again, which can be compared 

to the dashed line corresponding to a linear response [87]. 
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Figure 2.13: The input-output curve revealing the cmnpressive nonlinearity in 

the live cochlea. The dashed line denotes the linear input-output function as 

observed in the dead cochleae. Reprinted and adapted from [79J after Hearing 

R.esearch, 22, Johnstone, B.M.\ Patuzzi, R. and Yates, G.K., "Basilar membrane 

measurements and the travelling wave," 147-153, Copyright (1986), 'with permis­

sion from Elsevier. 

Changes of the BM amplitude response relative to the changes of the input 

stimulus level, are also accompanied by changes in the phase responses of the 

BM. The dependence of the BM phase responses on the intensity of the stimu­

lus measured e.g. for chinchilla and guinea pig, and normalised to a stimuli of 

moderate intensity reveal three different regions of specific phase behaviour [87J. 

For the stimuli of frequencies just below the CF increasing phase lags can be 

observed with an increase of the stimulus intensity. On the other hand, a phase 

lead, increasing with an increase of the stimulus intensity, can be observed for 
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frequencies little above the CF. At the CF, however, phase remains relatively 

constant [87]. This is indicative of a changing phase slope with the stimulus le­

vel, so that the group delays decrease with the level increase around the CF, and 

at the base of the chinchilla cochlea for instance, they aIl10unt to a drop of about 

380 flS (990-610 flS) with the increase of the stimulus level from 10 to 90 dB SPL 

despite the phase lag accumulation remains almost constant at the CF [87]. 

Nonlinearity of the BM response is often thought to be connected with the 

active mechanisms of the cochlea, the cochlear amplifier. If the compression of 

the BM displacement is to result from the action of the cochlear amplifier, it 

will deteriorate not only with the increase of the stimulus level, but also with 

the deterioration of the cochlea's condition. Thus, the linearisation of the input­

output relationship may be indicative of the damage to the cochlea [87]. 

The OBC's action displays its nonlinear behaviour by four main relationships 

[78]. The first two of these nonlinearities represent relationships between the dis­

placement (angle of deflection) of the bundle and its stiffness as well as with the 

electrical conductance of the hair cell's apical membrane [78]. Firstly, the trans­

fer curve, defined by the sigmoidal Boltzmann junction, characterises the OBC's 

receptor current correlated with the number of the opened MET channels and 

dependent on the cilia deflection5 [78]. Secondly, cilia of the hair cells change 

their compliance during their deflection, which is connected with the opening 

and closing of the MET channels, and hence distorted to give rise to a nonlinear 

process termed as the gating stiffness [78]. The adaptation of the hair bundle 

stiffness may be indicative of the bundle's contribution to the nonlinear nature 

of transduction [78]. The mechanism of adaptation refers to the bundle's displa­

cement, which causes only a transient increase (excitory deflection towards the 

lateral wall of the cochlea) or decrease (inhibitory deflection towards modiolus) 

in the receptor potential of the hair cell, and adapts to an intermediate level 

after tens of milliseconds [78]. This process is suggested to be connected with the 

migration of the tip links through the cell membranes, due to their attachment 

50pening of the :"IIET channels is described in a statistical sense, because cilia deflection 

modulates the probability of channel's opening [281, i.e. displacement of the cilia induces rapid 

changes between opening and dosing states of the MET channels [78]. 
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to the slow myosin motor, which appears to be capable of shifting the operating 

point of the Boltzmann function and thus contributes to mechanical nonlinearity 

[78]. 

Thirdly, the OHC's basolateral wall exhibits a nonlinear current-voltage (I/V) 

relationship at low frequencies, due to the nonlinear flux of the K+ ions through 

the voltage-dependent membrane channels [78]. However, although nonlinear at 

low frequencies, above approximately 1 kHz the relation between the injected cur­

rent and the potential changes is dominated by a current charging and discharging 

the membrane capacitance on a cycle-by-cycle basis, and the nonlinearity in the 

I/V curve appears to be irrelevant [78]. Finally, the fourth of the nonlinear pro­

cesses associated with the OHCs refers to the length changes of the OHC's body, 

which are not proportional to the voltage changes across the cell's membrane 

[78]. Although to observe significant nonlinearity in this case tens of millivolts 

potential changes are required (which cannot occur for frequencies above 1 kHz 

as described above), this type of nonlinearity may be capable of modifying the 

sensitivity of force generation at low frequencies [78]. 

Evidence for cochlear nonlinearity can be also found in the so-called two-tone 

suppression or generation of the distortion tones, which are both products of the 

process within the cochlea called intermodulation [78]. For the compressive non­

linearity, illustrated in Fig.2.13, two stimuli of different frequencies observed at 

the characteristic place will be compressed in a way depending on their proximity 

to the CF in the frequency domain, frequency difference between them or levels. 

This can be observed for tones at relatively high frequencies in the phenome­

non of two-tone suppression, where two tones presented to the ear may mutually 

or one-sidedly suppress each other [78]. The distortion products, often referred 

to as the combination tones, occur when frequency components, which were not 

present in the input stimulus, are generated and present in the response [78]. One 

of the distortion products, which can be mostly obtained from the expansion of 

the nonlinear transfer function, is the cubic intermodulation frequency 2h - 12, 
where hand 12 are the stimulus frequencies [101]. 

30 



Chapter 3 

Lumped parameter 

micromechanical models 

Recent literature on cochlear modelling shows that there are two different 

approaches to the modelling of the cochlear micromechanics. In most cases a 

lumped parameter model is used [34, 68], whereas in the other, a distributed 

parameter model is proposed [3, 50]. This chapter reviews the formulation of 

most widely-used lumped parameter models, whereas the distributed parameter 

micromechanicalmodels are discussed in Chapters 6 and 7. 

In the lumped parameter models all components of the system are treated 

as moving as rigid bodies, when vibrating due to the cochlear fluid pressure 

difference excitation. For example, the BM and the organ of Corti are moving in 

unison and their mechanical parameters are lumped into mass, spring and damper 

components. The mechanical parameters are chosen to represent the distribution 

along the real cochlea as obtained empirically, although in the literature they 

often appear to be chosen and adjusted to give best model results [64, 66, 68]. 

The passive lumped parameter models exhibit a broad response that is char­

acteristic to the response of a dead cochlea. It has been suggested therefore 

[14, 34, 65, 67, 68] that, in order to model a realistic response like that of a live 

cochlea, the models must include active components. These active models also 

involve more complicated mechanics because it is postulated that the outer hair 

cells within the organ of Corti are responsible for the amplification processes in 
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the cochlea. Lumped parameter micromechanicalmodels investigate the interac­

tions of the structures within the active organ of Corti. Although they employ 

similar modelling techniques, many of them show substantial differences in the 

approach. 

In this chapter a brief overview of the lumped parameter models of cochlear 

mechanics, with the explanation of the basic physical concepts, is presented. This 

includes the classical models proposed by Allen in 1980 [1], Neely and Kim in 

1986 [68], and the model of Neely of 1993 [66] with their original assumptions 

and notation. Furthermore, the analysis of the modes of vibration of the Neely 

and Kim [68] and Neely's [66] model are investigated in detail. \Ve also propose 

a modified model of Neely [66], to investigate the effects of the TM inertial load 

on the model's dynamics. 

3.1 Background macromechanics 

The macromechanical behaviour of the cochlea has been thoroughly described 

theoretically, as reviewed, for example, by de Boer [14], so that the propagation 

of the travelling waves can be simulated using the wave equation solved for the 

pressure difference between the pressures in the lower and upper chamber of the 

cochlea. In a number of cochlear models, the wavelength is assumed to be much 

greater then the typical height of the cochlear chamber (long-wave assumption), 

H. Thus, all variables become a function of only the longitudinal position from 

the base to the apex of the cochlea [14, 17, 78]. 

The long-wave assumption is respected through almost the entire length of 

the cochlea, apart from the point of the maximum partition displacement [14, 

17, 55, 68]. The shape of the cochlear partition (CP) transverse vibrations across 

the width of the CP is often assumed to be sinusoidal and constant along the 

cochlea, where the peak magnitude occurs in the centre of the CP's width. Thus 

the vertical displacement of the CP used in the theory, is averaged over its width 

[65, 68]. Finally, the geometry of the cochlea is generally simplified and presented 

as a rect;:tngular box, divided by the CP and terminated by the oval and round 

windows, as presented schematically in Fig.3.1. 

32 



3 Lumped models 

oval 
window 

round 
window 

l.. ..... 

radial 

3.1 Basic concepts 

basilar membrane 

transverse 

~x 
y longitudinal 

Figure 3.1: Schematic: of the simplified geometry of the cochlea, with the indi­

cation of the dimensions, cochlear partition displacement, t;p (x), and pressure 

difference, Pd (x) (L, lV denote the cochlear partition length and width, respecti­

vely, and H the height of the cochlear chambers). Redrawn after Neely and Kim 

[68]. 

The CP is generally discretised into a number of independent mass-spring­

damper systems like the one shown schematically in Fig.3.2. It represents a slice 

of the CP, which is thought to be physically independent of its neighbours but 

coupled via the cochlear fluid in which they are immersed [17, 78]. The evidence 

to support this assumption comes from the measurements on the longitudinal 

coupling in the BM. It was shown by Voldfich [95], that probing of the BM 

produces only a local deformation with the adjacent regions relatively unmoved, 

suggesting that there is no significant coupling of the neighbouring sites of the 

BM in the longitudinal direction. Recent BM stiffness measurements have also 

shown relatively little longitudinal coupling within the BM [25]. However, the 

issue of the longitudinal BM coupling remains controversial [63]. 

The mechanical system shown in Fig.3.2, possesses specific mass, m(x), stiff­

ness, k( x), and damping, c( x), usually defined per unit area and depending only 

on the distance from the stapes, x. The mass is usually assumed to be constant 

over the length of the cochlea, whereas the stiffness and damping are assumed to 

have an exponential form [17] . Spanning the length of the cochlea to cover the 
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distribution of the mechanical impedance parameters in the real CP (BM), each 

system is assumed to have its natural frequency tuned to a particular stimulus 

frequency and thus maximally excited at this frequency. 

The mechanical impedance is coupled into the homogeneous wave equation 

for the macromechanical behaviour of the cochlea, which in the long wavelength 

limit can be written as 

(3.1.1) 

where Pd(X, w) denotes the pressure difference, Zp(x, w) the partition impedance 

at position x and frequency w, p the density of the cochlear fluid, and H is the 

height of the upper cochlear chamber [14, 17, 55, 59, 82]. 

m 

c 

Figure 3.2: A single degree of freedom system representing a single cross-section 

of the cochlear partition with its mass, m, stiffness, k, and resistance, c, lumped 

into a mass, spring and dash pot component. The partition is displaced, due to 

the pressure difference Pd, by ~p. 

For a place below the characteristic place, that is where the stimulus fre­

quency, w, is lower than the resonance frequencies Wr (CFs) , i.e. W<Wr , the 

partition impedance is stiffness controlled, so that Zp(x, w)~k(x)fjw, thus the 

wave equation takes the form 

(3.1.2) 

with the corresponding propagating solution of the form, for slowly varying k( x), 

(3.1.3) 
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where c(x)=JHk(x)/2p denotes the wavespeed which drops to zero approaching 

the characteristic place. It should be noted that a n1.ore complex solution is 

required to account for the dependency of the stiffness k on x since the \;vavespeed, 

c, (or the wavenumber w / c( x)) is also dependent on x [17J. 

Above the characteristic place, where W>Wr , the partition impedance, Zp is 

mass controlled, so that Zp(x, W )~jwm(x), and the homogeneous wave equation 

can be expressed as 

82Pd(X,W) 
8x2 

and the solution has the form 

2p 
( )

Pd(X,W) 0, 
Hmx 

(3.1.4) 

(3.1.5) 

where l(x)=JHm(x)/2p is the decay length, being almost constant due to little 

variation of the partition's mass, m( x), along the cochlea and the cochlear upper 

chamber height assumed constant [21 J. 

A complete solution of the one-dimensional, frequency-domain cochlear mo­

del, requires a general expression for the mechanical impedance of the partition, 

Zp(x, w). To define Zp, the longitudinal distribution of its stiffness, inertial and 

resistive components must be known, though these are hard to estimate theore­

tically or obtain experimentally [78J. 

The CP can be represented by a number of single (Fig.3.2) or two degree of 

freedom (DOF) independent, mechanical systems, which are coupled and ex­

cited by the cochlear fluid to give rise to the travelling wave in the cochlea 

[11, 14, 17, 64, 78, 79J. In the cochlear models which represent the CP as a 

single unit, with lumped mass, stiffness and damping, only one set of mechani­

cal parameters is needed to define the impedance Zp. For the micro mechanical 

models that employ two DOF mechanical systems for the CP, where two of the 

constitutive components are usually resonant systems with their own masses, 

stiffnesses and damping, and are connected to each other by spring or spring 

and damper components, the x-distribution of all the components' mechanical 

parameters must be derived to define Zp. 
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In a single DOF model, the CP is often functionally identified with the BM [17] 

in a sense that the CP behaves as a flexible partition vibrating in the transverse 

direction. However, when estimating the Bl'vimass, which might be insignificant 

in comparison with the mass of the overlying organ of Corti, the structures and 

inertia of the fluid within the organ are often included [17, 78]. Furthermore, 

knowing the mass of the BM, its stiffness can be estimated from the characteristic 

frequency (CF) /place maps formulated from physiological experiments on the 

cochlea (see Fig.2.8 in Section 2.2.1) [39,56]. Direct stiffness measurements prove 

to be dependent on the methodology of the measurement [78]. For example, the 

stiffness measurements with small actuated probes that indent just a small area 

of the BM, give only localised information about its stiffness, whereas in reality 

the pressure acting on the BM is distributed across its width [78, 88]. It is thus 

difficult to compare the stiffness values inferred from the CF place maps with 

direct measurement. 

The response of the BM has a tonotopic characteristic, which means that a 

particular place along the cochlea is 'tuned' to a particular stimulus frequency at 

which the maximum of the response occurs [79, 87]. Therefore, the condition for 

the natural frequency of an undamped, freely vibrating system, w~=k/m, can be 

used to specify the stiffness when the mass and natural frequency are known. 

The remaining parameter of the impedance is the BM's resistance, assumed to 

be the only factor that generates losses if the cochlear fluids are incompressible 

and inviscid. It is hard to estimate the damping of the BM, and it is often 

assumed to be of an exponential form varying with the distance from the stapes 

[17], so that the single DOF system has a constant damping ratio. 

In reality it is generally difficult to obtain a complete and consistent set of 

mechanical parameters from the physiological experiments. Hence many models 

use data extracted for various species, often extrapolated to resemble the human 

cochlea characteristics (or other species) because the shape of the corresponding 

CF /place map functions do not differ significantly [39, 56, 82]. 

The stiffness, k1(x) [Nm-3], and resistance, Cl(X) [Nsm-3] are assumed to 

decrease exponentially from base to apex as e-ax and e-ax/ 2
, respectively [14, 
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17, 55]. Therefore, assummg a one DOF model, the mechanical impedance l 

representing the partition impedance, Zp(x, w) will take the form 

k -QX 

Z () 
-Qx/2 ~o e . 

p x, w = Co e +. + Jwmo, 
JW 

(3.1.6) 

where mo is the constant BM mass. The value of ko specifies the stiffness for 

x=O (stapes). The radian resonance frequency of an undamped system, with the 

mass mo and stiffness koe-QX
, as described above, thus takes the form 

(3.1.7) 

and depends on the longitudinal position in the cochlea [17]. 

The damping constant in Eq.3.1.6, Co, is defined as 2(0v'moko, where (0 de­

notes the damping ratio equal to the reciprocal of twice the Q-factor of the BM 

resonance bandwidth [17, 55]. Thus 

c(x) 
((x) = 2Jm(x)k(x) 

and (0 is independent of position along the cochlea in this model. 

(3.1.8) 

The above expression for the partition impedance (Eq.3.1.6), characterises a 

single DOF system (Fig.3.2), an array of which models the CP and gives response 

similar to the passive response of the cochlea. However, the cochlear tuning curves 

measured in vivo show a much sharper response at the place of the maximum 

partition displacement [87] than the calculated response in this simplified case. 

Hence it was postulated that, in order to model a realistic response of the cochlea, 

cochlear models require an active component, referred to as the cochlear amplifier, 

which is thought to enhance the model's response. The active cochlear models 

involve more complicated mechanics, describing vibrations on a 'micro' level i.e. 

of the structures within the organ of Corti [34, 66, 67, 68J. 

In a passive mechanical system the magnitude of the impedance at the re­

sonance frequency, wr /27r, is controlled by the amount of damping [78, 94]. To 

reduce the passive damping in the CP, the cochlear amplifier can be assumed 

1The CP impedance is often referred to as the mechanical impedance, but because its com­

ponents are usually defined per unit area, it has the dimension of a specific acoustic impedance. 
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to have a form of negative damping, acting locally at the site of (or near) the 

partition's resonance. Practically, the active element in the lumped parameter 

cochlear model is implemented by introducing into each mechanical system a 

feedback loop that senses the motion of the CP and introduces an active force 

that serves to overcome the frictional forces within the system [78]. 

The mechanism of activity appears to depend on the motility of the ORCs 

being controlled by the secondary resonator, widely assumed to be associated 

with the TM [1, 34, 68]. Since, the BM and the TN1 resonators are coupled by 

the stereocilia of the ORC and the cilia deflection triggers the motile action of 

the ORCs, the electromotile forces in the system are assumed to arise due to the 

relative shearing displacement between the reticular lam.ina (RL) and the TM 

[68]. The cochlear amplifier is also often assumed to possess an internal phase 

shift [34, 68]. This frequency dependent phase shift can result from the low-pass 

filtering of the ORC's membrane caused by its resistance and capacitance, and is 

often assumed to result in about 90 degrees phase delay between the deflection 

of the hair bundle cilia and the cell's motile force in the high frequency range [2]. 

The active component may be formulated in the form of impedance function 

and the assumed geometrical arrangement or the motion of the structures within 

the organ of Corti may be defined in various ways. Thus, it is convenient to for­

mulate the partition impedance of a micromechanical nlOdel in the more generic 

form 

(3.1.9) 

where Zpass denotes the passive impedance and gathers all components contri­

buting to the overall impedance of the two DOF system, and Zact corresponds 

to the impedance containing the impedance components of the assumed active 

element of the model [47, 55]. The constant r is specific to the active element and 

can be thought as an amplification factor [55] that controls the gain of the force 

generated by the cochlear amplifier. This cochlear amplification constant usually 

takes the values from 0 to 1, where setting it to zero reduces the partition impe­

dance to the passive term, so that the model gives a response like that of a dead 

cochlea, and setting to one is meant to give an active response like that observed 
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in the live cochlea [17, 55, 68]. Some authors show also that setting the value 

of the gain factor higher than one leads to instability within the system giving 

an unstable solution of the model, and thus predicting self-oscillations, which 

may correspond to the mechanism of generation of the spontaneous otoacoustic 

emissions [68]. 

3.2 Review of the 1980 model of Allen 

A classical lumped parameter micromechanical model of the cochlea, which 

includes both the BIvl and TM, was proposed in 1980 by Allen [1]. Although 

it is a passive model, it introduces some key ideas which were used and further 

developed in the later model of Neely and Kim [68]. 

The model was developed to provide a connection between the experimental 

and neural data and to provide a framework for better understanding of cochlear 

mechanics [1]. As pointed out by Allen, the crucial point to bridge the gap 

between the experimental and neural data appears to correspond to the processes 

involving the hair cells, i.e. during the mechanical to neural transduction. Thus, 

the model assumes a radial shearing motion between the RL and the TM of 

the organ of Corti, which induces deflection of the OBC cilia. Furthermore, 

the author reports that the neural phase response and the phase response of a 

spectral zero model reveal a positive, 'if radians phase shift relative to the input 

phase when the CF is above the frequency of the stimulus, so that a second order 

transduction filter, the zeros of which could be adjusted to fit the neural and 

model curve, is required in the cochlear model [1]. Finally, taking into account 

the microstructure of the organ of Corti, Allen extends the single DOF model by 

introducing a fully resonant TM as the second DOF. 

A schematic of a simplified geometry of the organ of Corti, as proposed by 

Allen [1], is shown in Fig.3.3. The BM of width l¥ is displaced transversally 

by ~ towards the TM, which is presented as a rigid bar in the first instance. 

Assuming that the separation between the RL and the TM is constant2
, and 

2This would imply that the transverse stiffness of the OHC's cilia is high enough to preserve 

a constant height of the subtectorial space. 

39 



3 Lumped models 3.2 Model of Allen 

amounts to E, the upward displacement of the BM will cause a proportional 

radial shearing displacement between the RL and TM, 6. The constant E was 

assumed to correspond to the height of the tallest OHC stereocilia row, which are 

also embedded in the TM, thus enabling a parallel motion of the BM and TM. 

Furthermore, the BM and TM are pivoting around some hinge connections, so 

that the distance between these structures remains constant and equal to h+E, 

where h is the height of the overlying organ of Corti. 

Figure 3.3: Schematic of a cross-sectional view of the organ of Corti, where the 

basilar membrane (BM) is displaced by ~ around two hinges , causing a proportio­

nal, radial shear displacement, .6. . TM tectorial membrane, TV basilar membrane 

width, TV1 basilar membrane width to the point of maximum vertical displace­

ment, h height of the organ of Corti , E height of the subtectorial space, e angle 

of deflection from the resting position, y and z transverse and radial direction, 

respectively. Redrawn after Fig.6 in [lJ. 

The geometry of such a simplified system implies that the two right-angled 

triangles indicated in Fig.3.3 are similar, and for the angle e indicated in the 

figure 

and also 

~ 
tane = W

1
' 

.6. 
tane = --h' E+ 
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so that 

(3.2.3) 

Furthermore, Allen defines a new variable, the shear gain g(x)3, which depends 

on the position in the cochlea, x, so that 

( ) _~(x)_E+h 9 x - ~ (x) - W
1 

. 

Allen also assumed that vVl~W/2, and E«h, hence 

( ) 
~ 2h(x) 

9 x ~ W(x)" 

(3.2.4) 

(3.2.5) 

It should be noted that the relation between the relative radial shear dis­

placement ~ and the BlVI displacement, ~, is linear and frequency independent 

[1]. 

The parallel transverse motion of the BlVI and TlVI, which are locked by the 

lever gain 9 defined in Eq.3.2.5, can be considered as the first DOF of the model. 

However, to introduce a spectral zero into the model's transfer function, a second 

DOF is introduced by Allen by allowing a radial motion of the TlVI. The TlVI's 

mass, mT, is assumed to have an elastic connection, kT' with the spiral limbus, 

and an internal loss within the tissue of the TlVI is represented by the damping 

element, rT. The masses of the BlVI and TlVI are concentrated at the ends of the 

bars which represent these structures in Fig.3.4, and are denoted mB and mT, 

respectively. The BlVI stiffness is represented by a spring K B , although Allen 

argues that the restoring force in this case corresponds to the bending rigidity of 

the membrane [1]. Finally, the BlVI and TlVI are connected by the cilia stiffness, 

ke, which opposes the radial shear motion between the TlVI and RL, and the 

viscous damper, re, due to the viscous forces within the narrow subtectorial 

space. A block diagram representing this new, two DOF system is shown in 

Fig.3.4 [1]. 

The TlVI, represented by a mass-spring-damper system, is capable of inde­

pendent vibrations, having a resonance separate from that of the BlVI [1]. As 

:J For better comparison the lever gain was denoted by 9 in the thesis. 
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3 Lumped models 3.2 Model of Allen 

Figure 3.4: Schematic of the two degree of freedom model proposed by Allen [1 ]. 

The lower block corresponds to the basilar membrane (BM) with its mass, mB 

and stiffness, K B , whereas the upper block to the tectorial membrane (TM) with 

its mass, mT, stiffness, kT' and damping, IT- These masses are connected by a 

spring ke corresponding to the stiffness of the outer hair cell cilia. The viscous 

damping in the subtectorial space is represented by the dashpot Ie. The basilar 

membrane is displaced in the transverse direction by ~ and in the radial direction 

by 6.BM due to the force fm.,f , RL reticular lamina, y and z transverse and radial 

direction, respectively. 
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pointed out by Allen, under specific conditions the TM and RL can move in 

phase and with equal magnitude to produce zero relative motion, and thus intro­

duce the spectral zero in the transfer function [1]. Furthermore, the OBC cilia are 

assumed to be displaced only by the radial forces, so that the neural excitation 

is related to the radial shear. 

Assuming that a transverse force, iBM, is acting on the BM due to the pressure 

difference across the CP, the transverse response of the system will be formulated 

by 

(3.2.6) 

where s is equal to jw for a stable system, and is the symbol used by Allen. The 

shear motion of the BM at the RL can be described using the analogy for the 

parallel motion, such that according to Eq.3.2.4 

(3.2.7) 

where .0.BlII is an auxiliary variable used to denote the radial displacement of the 

BM, and 9 is the shear gain defined in Eq.3.2.5. Note that for transverse motion 

mE and mT are locked together as in the single DOF system (Fig.3.3), but that ke 

and re are not subject to the force fm,r, responding only to the shearing forces 

between the RL and TM. The equation of motion for the second DOF, which 

represents the radial motion of the TM due to the radial force between the RL 

and TM, feR, takes the form 

(3.2.8) 

where .0.TM denotes the radial displacement of the TM. The radial force, feR, also 

acts on the cilia stiffness, ke and the damping re, which respond to a relative 

displacement .0.Blvr-.0.TM, so that 

(3.2.9) 

Thus, using Eqs.3.2.8 and 3.2.9, the radial displacement of the TM, .0.TM, can 
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be expressed in terms of the radial displacement of the BM, .6.BM , i.e. 

ke + sre 
.6.TM = ( 2 .6.B!vr. 

(kT + ke ) + s rT + re) + s mT ' 
(3.2.10) 

so that the relative shear displacement .6.e, amounts to 

(3.2.11) 

and therefore the shear transfer function, HT(x, s), as denoted by Allen [1], which 

relates the relative shear displacement .6.e to the displacement of the EM, ~, can 

be derived from the above equation and Eq.3.2.7, and 

(3.2.12) 

Allen refers to HT(x, s) as the transduction filter, whose transfer function 

consists of a zero and a pole at frequencies, fz and f p, respectively, where 

(3.2.13) 

(3.2.14) 

and by this definition fp> fz, as it was required for the spectral zero model [1]. It 

is also worth noting here, that the relative displacement .6.e is thought to produce 

deflection of the OHCs cilia, however, the velocity s.6.e is assumed by Allen to 

produce the deflection of the IHCs cilia, and thus stimulate the neural response 

to which the response of the present model was fitted [1]. 

It was shown by Elliott et al. [24], that in the absence of the shear motion 

of the TM, Fig.3.5, a transverse force, say feT, must react off fBM (due to the 

hinge connection of the EM), and feT is related to feR by 

fCT = 9 feR. (3.2.15) 
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TM 

,.-L-----t;-,--t ""8M 

BM 

Figure 3.5: Schematic of the two degree of freedom system with the indication 

of the forces and displacements produced after the displacement of the basi­

lar membrane (B1!J) , ~. fmvI , force acting on the basilar membrane, fCR radial 

shearing force acting all the spring kc, .6.BM radial shearing displacement of the 

basilar membrane. The roller connection indicates that the subtectorial gap is of 

constant height , f, but enabling sliding motion between the reticular lamina and 

tectorial membrane (TM). y and z denote transverse and radial directions (NB 

the second degree of freedom has been omitted). 

Eq.3.2.6 can be therefore revised to give 

(3.2.16) 

Thus, after substituting Eqs.3.2.15 and 3.2.9 for fCT into Eq.3.2.16, 

(3.2.17) 

and using the relationship between ~ and .6.c , i.e. the transduction filter HT(x, s) 

in Eq.3.2.12, and substituting for .6.c in Eq.3.2.17, the total BM impedance can 

be formulated by 

as derived by Allen in [1]. Note that the system described by the impedance in 

Eq.3.2.18, has two distinctive zeros at radian frequencies of JKB/(mB + mT) and 
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JkT/mT' and a pole at J(kT + kC)/mT. However, if the mobility, YmvI=ZB~I' 
of the BM is considered, as usually presented for the experimental data [40], then 

the system described above will be characterised by two distinctive poles, and a 

zero at the respective frequencies given above. 

3.3 Review of the 1986 model of Neely and Kim 

A micromechanical model of the cochlea, which is still widely used, was pro­

posed in 1986 by Neely and Kim [68]. It was developed from the earlier studies 

of Neely [64, 65] and Neely and Kim [67] on a linear model of the cochlea. The 

passive model of cochlear macromechanics proposed in 1981 [64] did not refer to 

the micromechanics of the cochlea. However, the two later models, proposed in 

1983 [67] and in 1985 [65], are active models, and discuss the organ of Corti mi­

cromechanics. The calculated response of these models was more sharply tuned 

and exhibited better frequency selectivity than the first model in [64]. 

In the first of the active models [67], Neely and Kim introduced the notion of 

the OHCs negative dampers acting against the damping of the CP, and suggested 

a secondary resonator (a mass-spring-damper system) being the cilia oftheOHCs 

[67]. In the next model [65], the active component was presented in the form of 

bidirectional electromechanical transduction in the ORCs, and driven by the 

deflection of their cilia. Similarly to the secondary resonator in [67], a second, 

frequency-dependent element, with output being a low-pass filtered version of 

the BM's output (displacement), was added [65]. However, although this second 

element was defined as if it was a mechanical system, it was not physiologically 

identified. In addition, the secondary element was coupled into an OHC filter in 

the feedback model despite the fact that the character of the OHC tuning was not 

clear (mechanical, electrical or both) [65]. Furthermore, it was suggested in [65] 

that, according to the BM displacement analysis, the tuned secondary element 

is required for the active cochlear model to add stiffness to the impedance of the 

BM at each position at low frequencies, and negative damping at intermediate 

frequencies. At high frequencies, however, the secondary resonator was assumed 

to have a negligible influence. 
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3 Lumped models 3.3 Neely and Kim model 

The 1986 model [68] assumed the existence of a secondary resonance, which 

was identified with the TM, which possessed its own mass, stiffness, and damping. 

In addition, the TM was assumed, as in the model of Allen [1], to be capable 

of independent radial motion, which constituted the second vibrational DOF 

and caused shearing forces between the TM and RL leading to the deflection 

of the ORCs' cilia bundles [68]. Similar to previous active models [67, 65], the 

active sites within the cochlea, which under specific conditions supply energy to 

the system, were assumed in this model, and the electromotility of the ORCs, 

triggered by the deflection of their stereocilia, was proposed for the motor of 

activity [68]. 

Although in the first approach [64]' Neely proposed that the cochlear fluid's 

pressure varied in two, longitudinal and vertical, dimensions, in the 1986 model 

[68], all dependent variables, due to the long-wave assumption, depend only on 

the longitudinal direction, x. The vertical displacement of the CP, averaged over 

its width, VV, was denoted as ~p(x). The transverse CP displacement in the radial 

dimension was assumed to have a uniform shape (bending mode), independent 

of the longitudinal position x and with the peak in the ll1iddle of the partition's 

width [68]. 

Each segment of the CP, characterised by the impedance Zp (x), is presented 

in the 1986 Neely and Kim model [68] as a two DOF system comprised of two 

subsystems with the mass, ml (x), stiffness, kl (x), and resistance, Cl (x), for the 

BM4 , and m2(x), k2(X), C2(X) for the TM. Furthermore, both resonators are 

coupled by stiffness k3 and resistance C3, representing the coupling between the 

organ of Corti and the TM. A schematic of this two DOF micromechanical system, 

redrawn after the block diagram proposed by Neely and Kim in [68], is shown in 

Fig.3.6. 

Although Fig.3.6 suggests that the displacements g~b, and ~t, represented 

by the upward arrows, are vertical (transverse) displacements, in reality these 

are radial displacements causing a radial shearing displacement of the cilia, ~c, 

as defined by Neely and Kim [68]. The actual motion of the structures of the 

organ of Corti can be represented by the diagram of Fig.3.4, in which the TM's 

4:\feely and Kim refer often to inl (:r) as to the mass of the organ of Corti cross-section [68]. 
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St mz 

C3 
Pa 

gSb 
m) 

c) 
Pd 

Figure 3.6: Two degree of freedom system representing the basilar membrane 

with its mass, ml, stiffness, kl' and resistance, Cl, the tectorial membrane with 

mass, m2 , stiffness, k2 , and resistance, C2, coupled by the stiffness and resistance, 

k3 and C3, respectively. The cochlear fluid pressure difference, Pd , produces radial 

displacements of the reticular lamina, g6, and the tectorial membrane, ~t. An 

additional active pressure source, Pa , connected with the electromotility of the 

outer hair cells, acts on the basilar membrane from within the organ of Corti 

(block diagram redrawn after Fig.3 in [68]). 
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components mT, kT' and TT, correspond to m2, k2' and C2, whereas kc and TC to 

k3 and C3, respectively, in the model of Neely and Kim5
. The BNI subsystem's 

stiffness KB is replaced by kl although ml is equal to mB+mT, and additionally 

the BM damping, Cl, is considered in [68]. However, the multi-axial block diagram 

of Fig.3.4 can be transformed into a single-axis one with entirely transverse or 

radial motion leaving the formulation for the BM/CP im.pedance unaffected, as 

shown by Elliott et al. [24]. Thus, the block diagram proposed by Neely and Kim 

(Fig.3.6) is a two DOF system moving in the radial direction, though confusingly 

shown as moving in the transverse direction. 

Neely and Kim specify a ratio, b, of the CP's displacement, ~p(x), averaged 

over the CP's width, to the maximum displacement over the BM, ~b(X), so that 

b6(x) (3.3.1) 

and b<1 by this definition6 . 

The vibrations of the CP are induced by the pressure difference, Pd(x), bet­

ween the pressures of the incompressible and inviscid cochlear fluid in the upper 

and the lower cochlear chambers. Furthermore, the pressure difference, Pd(x), is 

coupled with the partition impedance, Zp( x), into a formulation describing the 

macromechanical vibrations by means of the partition's acceleration, i.e. 

.. jwPd(X) 
~p(x) = Zp(x) (3.3.2) 

where the dots indicate the second derivative with respect to time, j, the imagi­

nary unit and w, the angular frequency. It has to be emphasised that, although 

the model's variables are explicitly shown to be dependent on x only, in fact they 

5Strict ly speaking the mechanical components of the micromechanical model of Allen, shown 

in Fig.3.4, have to be divided by the square of the lever gain i.e. g2(J;) (Eq.3.2.7), to be equal 

to the mechanical components of the Neely and Kim micromechanics [24]. 
GIn the 1985 model [65], Neely assumed a centered half-cosine function ( for the shape of 

the CP vibration in the radial direction. This suggested a simply supported beam-like ~lice 

of the BM, although one may argue that the fixed-fixed boundary condition would be more 

appropriate from the anatomical point of view (Section 2.1). HmveveL though more complicated 

mathematically [94]' it would only slightly change the numerical value of the ratio b. 
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are dependent on both, x and w. The w was omitted remembering that the model 

was solved in the frequency domain. 

The cochlear fluid's pressure difference, Pd(x), drives the B"M causing an up­

ward displacement, 6 (x), in the vertical direction. This vertical displacement 

is assumed to lead to a radial shearing motion between the RL and the Tl'v1. 

1\ eely and Kim define a lever gain, g( x), between the displacement of the organ 

of Corti, ~b(X), and the radial displacement of the RL (conlpare Eq.3.2.7), so that 

the relative shearing displacement between the RL and the TM, ~c(x), takes the 

form 

(3.3.3) 

where ~t(x) denotes the radial displacement of the TM. 

The equation of motion for the first DOF of the system presented in Fig.3.6, 

in the frequency domain, will take the form 

(3.3.4) 

ances representing the mechanical impedance of the organ of Corti and coupling 

between the organ and the TM. Pa denotes an acoustical pressure source located 

within the OBC and represents the active component of the model. 

The equation of motion for the second DOF is formulated by 

(3.3.5) 

where Z2(x)=k2(X)jjW+C2(X) + jwm2(x) represents the mechanical impedance of 

the TlV1. 

The activity in the organ of Corti is thought to be connected with the motility 

of the OBCs, which contract and elongate due to the deflection of their cilia. The 

shearing displacement, ~c(x), leads to the deflection of the OBC stereocilia with 

a positive direction towards the tallest row of the cilia. Such a deflection leads 

to the depolarisation of the hair cell and subsequently contraction of the cell's 

body. Neely and Kim assume that ~c(x) describes the displacement of both, outer 

and IBC's bundle. Furthermore, the generator of the active mechanical force is 
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assumed to be internal to the OHC and the neural rate threshold occurs at a 

constant peak displacement of ~c(x) at the IHCs [68]. 

The active force generator, which produces the active pressure, Pa(x), ac­

ting in this model only on the BM as shown in Fig.3.6, is not an additional, 

independent source but is thought to be controlled by the displacement ~c(x), 

and consistent with the observations of the OHCs in vitro [68]. Neely and Kim 

suggest that the pressure decrease within the OHC, transferred isometrically to 

the surrounding fluid, occurs when the hair cell body is contracting i.e. after 

being depolarised when the cilia of the OHCs are deflected towards their tallest 

row. Thus, according to Eq.3.3.3, decrease in Pa(x) must occur when the ~c(x) 

increases, so that it is formulated by 

(3.3.6) 

where / denotes a gain control parameter and Z4(X) (X)jjW+C4(X) was 111-

troduced to provide a phase shift between the Pa(x) and ~c(x). The stiffness k4 

and the damping C4, are not physiologically identified7
. Finally, the overall gain 

control parameter /, independent of x and w, is assumed to demonstrate the 

effects of global changes in the active components to the model, since setting / 

to zero gives a passive, and one a 'fully' active response [68]. 

Having formulated the equations of motion and relative shear displacement, 

~c(x), for the system shown in Fig.3.6, the driving-point impedance of the CP 

can be derived 

Z - Pd 
p - . 

~p 
(3.3.7) 

where all quantities, excluding band /, depend on x and w, and the lever gain, 

g, is a function of only position in the cochlea, x. The above equation can be 

7:\lore explanation on the origin of these components and the active impedance will be given 

in 8ec:.3.3.1. 
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rewritten as 

(3.3.8) 

in which form it resembles the generic form given in Eq.3.1.9. Thus, it can be 

seen that setting I to zero reduces the impedance to the passive component, the 

response of which is predicted to have a broad tuning. 

Solving the above equation enables us to calculate the BM displacement, ~b(X), 

Pd(X) 
jwbZp(x) , 

and the relative shearing displacement, ~c(x) (cilia deflection), as 

(3.3.9) 

(3.3.10) 

The model of Neely and Kim attempts to gather the experimental (physiologi­

cal) observations and their physical interpretation in the most consistent manner 

[68]. However, though the diagram shown in Fig.3.6 may seem to have a neat 

form, it has to be remembered that it is just an equivalent mechanical represen­

tation of the actual mechanics of the organ of Corti. Furthermore, l'\eely and 

Kim state that the major difference between theirs and the Allen [1] or Zwislocki 

and Kletsky [104] models is the introduction of the pressure source, Pa [68]. The 

physical interpretation of the active component in the Neely and Kim model is 

that the pressure source Pa(x) introduces negative damping sites in the overall 

partition impedance, which supply energy locally to the cochlear fluid enhancing 

the response of the cochlea at these sites. However, this aspect of the model 

requires some clarifying comments. 

3.3.1 Negative damping 

Negative damping in the 1986 model of l'\eely and Kim [68]' is thought to be 

explicitly introduced through the impedance Z4(X). Z4(X) provides a phase shift 

between the active pressure Pa(x) and the shear velocity ~c(x) (Eq.3.3.6), and 
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thus in the time domain, a time delay between the cilia displacement and the 

active pressure, due to the OHCs contractions (Pa(x) decrease) after their cilia 

undergo deflection in the tallest cilia row direction (increase in C;c (x), Eq.3.3.6). 

Considering a situation where the elastic force, j(t), lags the displacement, 

x(t), i.e. 

j(t) = k x(t - T), (3.3.11) 

where k is a stiffness and T a delay term, the time delay becomes the phase lag 

in the frequency domain [76] 

or equivalently 

F(jw) = k X(jw)e- jwT
, 

k -
F(jw) = -. V(jw)e-JWT

, 

JW 

where V(jw) denotes velocity. 

The mechanical impedance in this situation will take the form 

Z( 'w) = F(jw) = ~ e-jwT . 
J V(jw) jw . 

which after expanding the right-hand side gives (for small jWT)[51] 

. k 
Z(Jw) = -. - kT. 

JW 

(3.3.12) 

(3.3.13) 

(3.3.14) 

(3.3.15) 

It can be seen from the above equation that the kT term is real and has di­

mension of damping, so that the mechanical impedance in the case where reactive 

force lags applied displacement comprises of two components, a stiffness and a 

negative damping. Thus, defining the stiffness and damping per unit area proves 

the mechanical impedance Z(jw) to be analogous to the impedance Z4(X) in the 

Neely and Kim model, and that Z4(X) effectively introduces negative damping 

to the system. Furthermore, for high frequencies the stiffness term in Z4 (x) be­

comes negligible and does not influence the BM impedance and the response of 

the cochlea, whereas for intermediate frequencies (near resonance), the negative 
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damping term has significant influence to the impedance Zl, acting against the 

damping Cl (x) and enhancing the response. 

However, the signs of the damping kT in Eq.3.3.15 and of the impedance Z4 

in the Neely and Kim model, i.e. C4, are opposite. Thus, assuming that k in 

Eq.3.3.15 is equal to k4' and knowing that Z4=k4jjw+C4, then 

(3.3.16) 

and hence the assumed distribution of the delay T along the CP can be found 

from 

(3.3.17) 

3.3.2 Calculated response 

To conclude the review of the ::'\eely and Kim model [68] the calculated mobi­

lity (velocity per unit force) of the CP is presented. The responses were calculated 

for the parameters shown in Table 3.1 (converted to S1 units), which were selec­

ted by Neely and Kim [68] to simulate the mechanics of the cat cochlea and used 

to calculate the response of their models. vVe also show the values of each para­

meter at x=O, Lc/2 and Lc, where Lc is the average length of a cat cochlea, for 

comparison with Table 3.2 in Section 3.5. 

Note that in this model the mass of the BM and TM is constant over the length 

of the cochlea, where the BM mass is about one order of magnitude higher than 

that of the TM, since the ratio of mdm2 is equal to six. Figures 3.7(a) and 

3. 7(b) show a comparison of the stiffness and damping components, respectively, 

as a function of position in the cochlea. It has to be noted that the distance from 

the stapes to the helicotrema was set to x=O-O.035 m (which will be referred 

8The mass of the 1':\;1, 1712, given in Table I of [68J amounts to O.OO,Sex gcm 2 , which in SI 

units equals to O.005e100x kgm- 2 . The model's response, solved using this value, is significantly 

different from the one presented by Neely and Kim in [68]. However, the results of Neely and 

Kim could be reproduced using a constant value of O.005kgm- 2 (see Table 3.1). Furthermore, 

the 'I'M damping should exhibit an exponential decrease with the distance from the stapes, 

hence c2(x)=1 [Nsm-3J and not lOe2.2x [dyns as given in [68]. 
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I PARAlVIETER I VAL DE II :r:=0 

k1(x) [Xm-3] I 1. lOx 101Oe-400x I 

1.10x 1010 7.41x 107 4.99x 10.5 I 
I 

k2 (:7:) [Nm-3] 7x 107 e- 44OT 7x107 2.86x 105 1.17x103 

k3 (;c) [K m -3] I 108e-400:r 108 6.74x 105 4.54x 103 

k4(1:) [Nm 3
] 6.15x10ge iOOx 6.15x 109 4.14x 10' 2.79x105 

c} (:r) [Nsm-a] 200+ 1.5 x 103e-200.r 1.52x 104 1.43x 103 3.01 x 102 

C2(X) [Nsm-3] I 
102e-220x 102 6.39 0.41 

C3 (:r: ) [Nsm-:3] 20e 8Ox II 20 7.;36 2.71 

C4 (;c) [J\' SIn -3] 1.04x 104e-2OO:£ 1.04x 104 8.54x 102 7.01 x 101 

m} (1:) [kgm-2] I 3xlO-2 3x 10-2 3x10-2 :3xlO-2 

m2(x) [ku m- 21 
b J 

5xlO-3 5x 10-:3 5x10-3 5x10-:3 

1 I 1 1 1 9 

b 0.4 0.4 0.4 0.4 

Table ;:U: Mechanical parameters (SI units) proposed by Neely and Kim in [68]. 

The values at .T=O, Lc/2 and Le, where Lc=25 mm is the length of the basilar 

membrane, corresponding to the average length of a cat's cochlea [56], are shown 

for better comparison with Table 3.2. 

,-r-oo 



3 Lumped models 3.3 Neely and Kim model 

to as the BM or cochlear length, L), whereas Neely and Kim use the average 

BM length measured for a cat cochlea found to be equal to Lc=25mm (subscript 

'c' refers to the cat cochlea) [56]. We use the BM length of 35 mm (average 

length of the BM in a human cochlea [39]), since the preliminary results of the 

coupled frequency response of the Neely and Kim model calculated at 1 kHz and 

for L=25 mm, exhibit reflections in the low frequency region due to the 'zero­

pressure' apical boundary condition chosen for the coupled model (see Appendix 

C). Thus, by extending the length of the cochlea in our simulations, the responses 

to 1 kHz stimulus frequency, are sufficiently remote from the apex of the cochlea 

and appear to be less affected by the apical boundary condition. It should be 

also noted that the trend of the dependence of all mechanical parameters cochlear 

position, is preserved after extrapolation of the BM. Thus, the model's CF /place 

map does not change its slope as the BM length is extended. 

10' 

10
2 

" 

10
2 

10° '-----'---'---'---'----'-----'----' 
o 0.005 0.Q1 0.015 0.02 0.025 0.03 0.035 

1O"2L---l_--L_-L_--"-_..L.-_L---.--J 
o 0.005 0.Q1 0.015 0.02 0.025 0.03 0.035 

x [m] x [m] 

(a) (b) 

Figure 3.7: Distribution of stiffness (a) and damping (b) components along the 

cochlea (Table 3.1), chosen by Neely and Kim to simulate the response of a cat 

cochlea (NB the length of the cochlea is extended to ~35 nun in our simulations) 

[68]. kI, Cr, solid; k2' C2, dashed; k:3, C;:l, dot-dashed; k4' el, dotted lines. 

The slope of the stiffness curves is the same for kl' k3 and k4 and slightly stee­

per for the stiffness of the TM, k2 (cxe-440x ; Table 3.1), as shown in Fig.3.7(a). 

The stiffness of the BM, kl' dominates over the entire length of the BM and is 

slightly higher than the stiffness of the active component, k4 . However, the stiff-
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ness of the TM, k2' and the stiffness k3 are about two orders of magnitude lower 

than k1 . Despite different absolute values of the particular stiffness components, 

it is worth noting that the gradient of all curves amounts to about six decades 

per length of the cochlea. 

Figure 3.7(b) shows that the damping of the TM, C2 (dashed) and the active 

component's damping, C4 (dotted) have almost the same slope (i.e. cx:e-220x and 

e-200x , respectively), with the gradient of about three decades per cochlea length. 

The slope of the BM damping, Cl, is changing almost two decades per cochlea 

length, and unlike C2 and C4, it is approaching asymptotically a constant value 

of 200 N sm -3. The damping C3 (dot-dashed), is less steep than the remaining 

damping components, and has a gradient of about one decade along the length of 

the cochlea. Although it has the smallest value at the base, i.e. c3(0)=20 Nsm-3 , 

C3 intersects with the TM damping C2 at x~0.01l5 m and becomes higher than 

the latter one towards the apex. Like the stiffness, kl' the damping of the Bl\1, 

Cll is the dominating damping component of the CP's impedance. 

The lever gain, g, is thought to be dependent on the position in the cochlea, x, 

but is set equal to one and is constant along the BM length. Hence, it appears that 

the cilia displacement ~c is a difference between the transverse BM displacement 

~b and radial displacement of the TM, ~t (Eq.3.3.3). The distribution along the 

cochlea of the angle of inclination of the RL with respect to the BM, is shown 

e.g. in [58] (derived for chinchilla cochlea). Knowing that the tangent of the RL's 

inclination angle is equal to the ratio of the RL's height to the BM width at the 

place of the measurement, and thus corresponds to a half of the relationship in 

Eq.3.2.5, distribution of g(x) along the cochlea could be estimated. 

The partition mobility responses (Yz,=Z;l) as a function of position, calcula­

ted for the stimulus frequency of 1 kHz are shown in Fig.3.8, and the mobility as 

a function of frequency calculated at x=0.0186 m is shown in Fig.3.9. The mo­

bility is plotted since the velocity response per unit driving force can be directly 

compared with the form of the coupled responses calculated in Chapter 4, and 

also because it seems a more natural way of representing the micromechanical 

response of the CP than the force response per unit driving velocity, i.e. the 

mechanical impedance. The solid lines represent the active, ,=1, and the dashed 
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lines the passive, ,=0, mobility response of the cochlea. The frequency range in 

the Yp(j) plots was set from 100 Hz to 10 kHz. Although frequency range of the 

CF /place function for a cat cochlea obtained by Liberman spans from 90 Hz to 

57kHz [56], the range used here is sufficient for the response where the maximum 

is predicted at 1 kHz (predicted CF for x=0.0186 m used in the simulations). 
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Figure 3.8: Magnitude/phase (a, c) and real/imaginary parts (b, d) of the co­

chlear partition mobility, 1j;, calculated for the Neely and Kim model [68], as a 

function of position at f=l kHz. Solid lines represent the active, \vhereas dashed 

lines the passive response of the model, i.e. ~j=l and 0, respectively. 

The magnitude of the passive partition's mobility has no specific maximum, 

whereas the maximum of the active mobility curve occurs at xR:!0.0186 m and 

defines the characteristic place of the isolated micro mechanical model, as shown 
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Figure 3.9: Magnitude/phase (a, c) and real/imaginary parts (b, d) of the co­

chlear partition mobility, y~, calculated for the Neely and Kim model [68], as 

a function of frequency at ;r=O.()186m. Solid lines show the active, r/=l, and 

dashed lines the passive, response of the model. 
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in Fig.3.8(a). The corresponding phase response of the active model, shown in 

Fig.3.8( c) exhibits a phase lead in the vicinity of the characteristic place, whereas 

the phase of the passive model exhibits only a phase lag along the length of the 

cochlea. Similarly, the magnitude of the frequency responses shown in Fig.3.9(a), 

reveals a significant enhancement of the response of the active model at the 

frequency of about 1 kHz in comparison with the broad tuning of the passive 

model's response, and the phase response of the active nl.odel exhibits a phase 

lead below the characteristic frequency, while no phase lead can be observed in 

the phase of the passive model, as depicted in Fig.3.9(c). 

The magnitude peak in the active models' responses coincides with the nega­

tive real part of the active models observed in the vicinity of the characteristic 

place in Fig.3.8(b) and CF in Fig.3.9(b). In the region where the damping is 

negative the cochlear amplifier undamps the CP vibrations, which leads to the 

enhancement of the response of the model. The negative real part of the mobility 

just basal of the characteristic place, indicates that the real part of the mecha­

nical impedance also has a negative real part at this position, as predicted from 

the shape of the BM response using inverse methods by Zweig [103], de Boer [15] 

and Talmadge et al. [92]. 

3.4 Modes of vibration in the Neely and Kim 

model 

A dynamic system is characterised by its natural frequencies and principal 

modes, the number of which equals the number of the DOF [94]. To find the 

principal modes of vibration for the Neely and Kim model [68], an undamped 

free vibration of the system in Fig.3.6, will be assumed. Thus, all damping 

components will be removed from the equations of motion, so that the dashpots 

in the block diagram in Fig.3.6 are omitted to give a simplified, two degree of 

freedom system with stiffnesses kl - 3 and masses ml,2, as depicted in Fig.3.10. 

Furthermore, because the free vibration implies no excitation (forces/pressures) 

acting on the system, the pressures Pd and Pa are ignored. 

The equations of motion describing the system shown in Fig.3.10 are fOrl11U-
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~, 
m2 

k3 

g~b 
1111 

kl 

Figure 3.10: Two degree of freedom system proposed by Neely and Kim in [68], 

simplified to represent a freely vibrating, undamped mechanical system. All 

parameters same as in Fig.3.6. 

lated by 

(3.4.1) 

Since g=1 in the Neely and Kim model [68], it can be omitted, so that the 

equations of motion, after rearrangement , will take the form 9 

(3.4.2) 

9Note that eliminating the lever gain 9 in the equations of motion implies physically a 

multiaxis motion of the system in Fig.3.1O, with ~b and ~t being a transverse and radial displa­

cements, respectively [24]. However, since g=l it does not influence the numerical result of the 

present analysis and can be adequately ignored. 
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Equation 3.4.2 can be rewritten in matrix notation as 

(3.4.3) 

or, equivalently, 

M e+K e = 0, (3.4.4) 

where 

(3.4.5) 

(3.4.6) 

(3.4.7) 

(3.4.8) 

where M and K are real, symmetric and positive mass and stiffness matrices, 

with the off-diagonal terms representing the dynamic (mass) and static (stiffness) 

coupling, respectively [94]. t and e are the acceleration and displacement vectors 

respectively. 

Assuming time-harmonic solutions of the form ~b=:::bejwt and ~t=:::tejwt, the 

equations of motion in Eq.3.4.2 will be formulated by (see Appendix A for details) 

(3.4.9) 

(k2 + k3 - w2m2):::t - k3:::b = O. 

Using the first relationship in the above equation we obtain a solution of the 

form 

(3.4.10) 
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which after substitution to the second relationship gives 

(3.4.11) 

Note that setting 8b=O gives the trivial solution 8b=8t=O, which implies no 

motion. Equating the bracketed term in Eq.3.4.11 to nought gives a quadratic in 

w2 with two real and positive values for w2 [94], i.e. 

from which the natural (angular) frequencies, of the first and second mode, Wl 

and W2, respectively, can be calculated as two roots of quadratic in w2
, i.e. 

(3.4.13) 

and 

(3.4.14) 

where 

(3.4.15) 

Using the set of parameters in Table 3.1, suggested by Neely and Kim to simu­

late cat cochlea biomechanics [68], the natural frequencies h,2=Wl,2/27f and the 

separation between hand il, i.e. log2(h/ il), were calculated lO
. Furthermore, 

although the system in Fig.3.10 is a coupled system, we estimate the resonance 

frequencies of the BM, fmvI, and the TM, hM, as if it were two separate systems. 

\iVe assume that the lower mass, ml and stiffness kl form a single DOF BM/organ 

of Corti mechanical system, whose resonance frequency would amount to 

1fk; 
fmvI = 27f V ~. (3.4.16) 

1O\Ve calculate log2 (h/./J) according to the definition of an octave hi II =2 [48] to represent 

the ;;eparation between 12 and Il in terms of an octave. 
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For the parameters selected by :'-Jeely and Kim (Table 3.1), 

i - 1 f!!1 (0) -200x 
BM - -2 --e , 

7r m1 
(3.4.17) 

where k1 (0) is the value of the BM stiffness at x=O. Equation 3.4.17 is analogous 

to Eq.3.1.7 derived for a single DOF cochlear model described in Section 3.1. 

The TM mass, m2 with its stiffness k2 and cilia stiffness, k3, will account 

for the second subsystem in Fig.3.10. According to the second relationship in 

Eq.3.4.2 

(3.4.18) 

where the term on the right-hand side, k36, can be treated as a forcing term due 

to the displacement of the base (BM), ~b, acting on the spring k3 . Both separate 

subsystems are presented in Fig.3.11 (NB 9=1, Table 3.1). Thus, in the absence 

of the forcing term, i.e. k3~b=0, the natural frequency of the second subsystem 

will take the form 

_ ~Jk2 + k3 
hM - 2 ' 

7r m2 
(3.4.19) 

which for the parameters given in Table 3.1 is approximately equal to 

k2(0) + k3(0) -200x ------'---'-e , (3.4.20) 
m2 

and will have almost the same slope as the slope of !B':-iI as a function of position 

x. Figure 3.12(a) depicts the comparison of frequencies i1,2 with the estimated 

resonance frequencies for BM, iBM, and TM, in,,!, whereas the comparison of 

10g2(12/ h) and 10g2(fBIvI! in,,!) ratios is shown in Fig.3.12(b). 

The plots reveal that the Bl\1 natural frequency, 12, is higher than the one of 

the TM, h, for all positions in the cochlea. The values of frequency i2, equal to 

about 97 kHz at the base (x=O) and about 650 Hz at x=Lc=25mm (cat cochlea 

length), and about 90 Hz at the model's apex, x=L=35111111. The frequencies of 

97 kHz and 650 Hz are significantly larger than the ones estilnated for cat cochleae 

by Liberman [56], or as calculated from the CF /place relationship for a cat cochlea 
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~b 
111 1 

Figure 3.11: Separation of the system in Fig.3.10 into two subsystems with their 

resonant frequencies iBM (lower) and h~d (upper) . NB lever gain g=1 according 

to Table 3.1 and the displacement for the lower subsystem is thus ~b. 

given by Greenwood in [39J (dotted line in Fig.3.12(a)), i.e. 57kHz and 90Hz 

at the base and the apex, respectivelyll. However, it should be noted that the 

resonance frequencies 11,2 are derived for isolated, two DOF systems which are not 

coupled longitudinally, whereas the CF /place maps given by Liberman [56J and 

Greenwood [39J were derived for real 'coupled' systems and hence are not expected 

to match the distribution of the natural frequencies along the cochlea obtained 

from the present model. Additionally, frequency h calculated from Eq.3.4.14, is 

almost equal, for all positions x, to iBM calculated using Eq.3.4.16 and k1 and 

m1 from Table 3.1. The natural frequency of the system, 11 (Eq.3.4.13), ranges 

from about 29 kHz at the base, through about 170 Hz at x=Lc=25 mm, to about 

22 Hz at the apex (x=35 mm), and is almost equal to the frequency of the TM 

calculated from Eq.3.4.19 and parameters in Table 3.1. Hence, the lines of hand 

llAccording to Greenwood [39], CF=A(10ax/ L_k), where for a cat cochlea A=456, a=2.1 , 

and the length of the cochlea, L, is estimated to 25mm [56], so that k=O.B . Because the 

CF /place map is formulated for the position from the apex to base, values of vector x were 

reversed to calculate CF distribution from the base to apex of the cochlea. 
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Figure ~i.12: Natural frequencies of the system presented in Fig.3.10 as a func­

tion of position :D (a). .h (solid) and 12 (dashed), are plotted together with 

the estimated resonance frequencies for the basilar. fm\l /r~~ and tectorial, 

j ·TM= 21 J k2+k3 membranes (dot-dashed: covered bv the j·2 and fl line. res1)ecti-
• 1\ -rn2 !.] I 1 

vely), and the CF Iplace map (dotted) derived according to the formula given by 

Greenwood in [39] for the cat cochlea length L c=25111m. (b) comparison of the 

ratios log2(121 h) (solid) and log2(fB:vx! }n.1) (dashed). 
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imd as well as of II and h},'I in Fig.3.12(a), cover each otherl2. As predicted; the 

slopes of h,m'l and h,T'Nl are almost the same with the distance from the base. 

l'\ote that the resonance frequency incl is defined in the same way as the 

frequency of the pole, ip , in the model of Allen (Eq.3.2.14), which is, by definition, 

greater than the frequency of the zero, iz, (Eq.3.2.13). Allen also derives the 

cochlear map for his model as WCF=vKB/(mB + mT) [1] which is slightly smaller 

than the B1VI resonance frequency, im'!, estimated for the Neely and Kim model 

since the TM mass is not included in the iBM estimate (Eq.3.4.16). The frequency 

of the zero, iz, is smaller than WCF for all positions along the cochlea in the Allen 

model (see Fig.2 in [1]). This is also the case for the Neely and Kim model since 

iz<in1 and hlvI is smaller than im.!. However, it should be noted that the i p 

is greater than iCF=WcF/27r along the cochlea in the model of Allen, whereas 

the estimated hM (~:::,jp) is smaller than imiI (~iCF) for all positions along the 

cochlea in the model of Neely and Kim. 

Ratios 10g2(fd il) (solid) and 10g2(fm,'!/ hM) (dashed) are not constant but 

increase with position x, as shown in Fig.3.12(b), where the second ratio is slightly 

lower than the first one because 12 is slightly higher than iBM and II is slightly 

lower than in,'I' Figure 3.12(b) shows that the ratio 10g2(12/ II) ranges from 

roughly 1.73 at the base to about 2 at the apex of the cochlea, so that the 

difference between the resonance frequency 12 and II is higher than one octave 

at the base and equals about two octaves at the apex of the cochlea. Also the 

second ratio, 10g2 (fmv:r/ hM), is higher than one and increases from about 1.72 

at the base to about 1.98 at the apex, and hence the difference between iBM 

and iTM is higher than one octave at the base and equals almost two octaves 

at the apex of the cochlea. This appears to be inconsistent with the results 

in e.g. [40, 61], where the lower resonance frequency (TM) was found to be 

about half an octave below the higher frequency (BM). However, it has to be 

emphasised that the distribution of the resonance frequencies is presented here 

as a continuum of frequencies derived for each single, independent element of 

the CP, whereas physiological measurements are conducted on a fully coupled 

n:Vlean ratios hi iBM and fr l.fTM' averaged along all positions .r, arc equal to 1.(]()4 and 

0.997, respectiY8ly. 
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( continuous) cochlear partition. 

According to the relations in Eq.3.4.9 the ratio of the am.plitudes is formulated 

by 

(3.4.21) 

thus, for the two natural frequencies, after substituting WI 

(3.4.22) 

2b2 k3 k2 + k3 W5 m 2 

2t2 kl + k3 Wiml k3 
(3.4.23) 

where the second index of 2 denotes the natural frequency WI or W2. 

Equations 3.4.22 and 3.4.23 express the amplitude ratios, hence we choose the 

amplitudes of the BM displacement, ~b, 2bl (at wd and 2b2 (at W2) as equal to 

one, so that the amplitude ratio will be normalised to this value and the normal 

modes ¢1,2(~) will be obtained as 

¢, ~ { 
1 } 2t1 

(3.4.24) 

{ 1 }, ¢2 
2t2 

where 2t1 and 2t2 can be derived from Eq.3.4.22 and 3.4.23. 

Finally, because we assumed a time-harmonic motion, hence the motion at 

the first mode will amount to 

{ ~bl }~{ 1 
} eJw

", (3.4.25) 
~t1 2t1 

and at the second mode 

{ ~b2 }~{ 1 
} ejw

, ' , (3.4.26) 
~t2 2t2 
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or, equivalently 

U::} { 
U:: } ~ { 

3.4 lVtodes: Neely & Kim 

3~' } (AsinwlL + Bcosw,t) , 

1 } (C sin W2 t + D cos W2 t) , 
::::t2 

(3.4.27) 

(3.4.28) 

where A, B, C and D are real constants of integration, determined by the initial 

conditions [94], and equal to 

(3.4.29) 

B (3.4.30) 

D = 1003tl 
~ ~, 

::::tl - ::::t2 
(3.4.31) 

assuming that at t=O: 6=100, ~t=O, ~b=~t=O and taking 3 b1 =3b2 =1 (Appendix 

A). 

The actual motion is time-harmonic at two natural frequencies WI and W2, 

and is defined as 

(3.4.32) 

where B cos (WIt) and D COS(W2t) are the principal coordinates at frequencies WI 

and W2, respectively, where Band D are the amplitudes of the first and se­

cond mode, respectively. The terms in curly brackets on the right-hand side of 

Eq.3.4.32, are the eigenvectors or the mode shapes at WI and W2, respectively 

(compare Eq.3.4.24) [94]. 

Five periods of harmonic displacements 61,tl and ~b2,t2 for the first and second 

mode of vibration (Eq.3.4.32) were calculated for the parameters chosen by Neely 

and Kim [68] (Table 3.1), as shown in Fig.3.13. The amplitudes, Band D were 

chosen for the location of around x=0.0186 m in the cochlea, corresponding to 

the place where the maximum of the CP mobility magnitude in Fig.3.8(a) was 
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observed (derived for stimulus frequency equal to l=lkHz). However, it should 

be noted that according to Fig.3.12(a) at the site of x=0.0186m h~621Hz, 

whereas 12~2.3 kHz (1kHz occurs at about 0.0163 m for 11 and x=0.0229 m for 

12): 

150 
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1 \ ' \ I \ I \ 
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I \ I I C \ I 
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Figure 3.13: Displacements 10~b1 (solid) and ~tl (dashed) at the first mode of 

vibration, wl~21TX621 Hz (a), and ~b2 (solid) and ~t2 (dashed) at the second mode 

where w2~21Tx2.:3kHz (b), calculated for parameters selected by Neely and Kim 

(Table 3.1) [68] (NB ~bl multiplied by a factor of ten to facilitate comparison). 

Figure 3.13 reveals two separate modes of vibration of the system, where the 

BM and the TM are vibrating in phase and out of phase. At the first mode, 

Fig.3.13(a), the BM and TM are vibrating in phase and the amplitude of the 

BM is significantly smaller than the amplitude of the TM vibrations (maxima of 

~b1 to ~tl as 0.06 to 6, respectively. NB 61 was multiplied by a factor of ten in 

Fig.3.13(a)). However, in the second mode of vibration, Fig.3.13(b), the BM and 

TM vibrate out of phase, and the vibration amplitude of the BM is much higher 

than that of the TM (maxima of ~b2 to ~t2 as 100 to 6, respectively). Furthermore, 

the period of vibrations shown in Fig.3.13(a) amounts to about 1.61 ms and in 

Fig.3.13(b) to about 0.43 ms, which corresponds to the frequencies of h ~621 kHz 

and 12~2.3 Hz, respectively, which agrees with the frequencies obtained at the 

site of about x=0.0186 m shown in Fig.3.12(a). 

To finish the vibration analysis the point mobility of the BM and the transfer 
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mobility of the TM, Yb and 1';, respectively, being the ratio of their velocities and 

a unit force excitation acting upon the BM, will be derived. vVe assume that the 

lower mass of the system in Fig.3.10, mI, is excited by a unit force 1, which, 

like the displacements E,b and ~t, is time harmonic of the form J=Fe jwt
. Thus, 

equations of motion for such a forced system will be similar to those in Eq.3.4.9, 

but with an additional force term on the right-hand side of the first relationship, 

I.e. 

(3.4.33) 

(k2 + k3 - w2m2Pt - k33b = 0, 

where the amplitude of the force F=1 (the initial phase of the complex amplitude 

is assumed zero). 

From the above equations the ratios of 3 b / F and 2t / F (receptance) of the sys­

tem can be derived, or knowing that jw3=V, where V is the velocity (Appendix 

A), \ve have 

(3.4.34) 

where Yb and 1'; are the mobilities of the forced system. in Fig.3.10. 

The denominators of the relationships in Eq.3.4.34 have the same form as 

the quadratic in w2 in Eq.3.4.12, and here define the frequencies of the reso­

nance peaks (poles) in the mobility functions, which are the same for both Yb 
and 1';. However, the numerators in Eq.3.4.34 define the frequencies of the anti­

resonances (zeros) in the mobility plots, where there is one antiresonance in Yb 
at JOb=-21 J k2+k3. and there are no antiresonances in yt. The relationship for 

7r m2 I 

fOb is the same as for In,,! in Eq.3.4.19, so that the antiresonance frequency can 

be read from the plot in Fig.3.12(a), and at x=0.0186m it amounts to about 

JOb= hM~623 Hz (NB h~621 Hz). At this frequency the upper mass, m2 acts as 

a perfect vibration absorber so that there is no motion at ~b, whereas, since there 
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is no antiresonance frequency in Yt there is some measure of ~t at all frequencies 

in this response [70]. 

It can be noted that all parameters in Eq.3.4.34 are defined per unit area 

(see Table 3.1). Hence the effective dimension of the Inobility is [m3N-1s-1
], 

which could be treated as one for a two DOF system (Fig.3.10) with an external 

pressure excitation and is consistent with the one that the BM undergoes in the 

real cochlea, i.e. cochlear fluid's pressure difference acoustic excitation. More 

interestingly, taking into account the damping in the model, we could determine 

the mobility of the passive Neely and Kim model [68], after rewriting relationships 

in Eq.3.4.34. In such a case the two DOF system in Fig.3.10 will be modified to 

resemble the block diagram proposed by Neely and Kim (Fig.3.6), however, with 

no active forces acting in the model and unit force excitation upon the BM. The 

corresponding equations of motion for a passive, damped (acoustically driven) 

two DOF system will be extended by adding the respective damping components 

(see Appendix A) 

(3.4.35) 

so that the point BM and transfer TM mobility will take the form 

Yb = Vb = jw[k2 + k3 + jW(C2 + C3) w2m2] 
F n 

(3.4.36) 

where 

n [k1 + k3 + jW(Cl + C3) - w2ml][k2 + k3 + jW(C2 + C3) w2m2]- (k3 + j WC3? 

(3.4.37) 

It is noteworthy that using the formulae in Eq.3.4.36, the ratio of the TM to 
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BM velocity, independent of the excitation used for the model, can be determined 

as 

(3.4.38) 

thus, if the velocity of the BM is known, it can be multiplied by the Vi/Vb ratio 

to calculate the velocity of the TM. It can be seen from Fig.3.6 that it is only 7nl 

that is driven by both the fluid and active pressures so the relative motion of the 

TM and BJVI is described by Eq.3.4.38 for both the passive and active Neely and 

Kim model. 

The left panel of Fig.3.14 shows the magnitude and phase of the point, Yb 
(solid), and transfer mobility, Yt (dashed) for the undamped case. Both response 

curves have two resonance peaks, first at the frequency of fr ~621 Hz and the 

second at h~2.3 kHz (at x=0.0186 m), since the denominator of Eq.3.4.34 is 

defined in the same way as the frequency equation in Eq.3.4.12, the roots of 

which determined the natural frequencies of the system. in Fig.3.lO. There is 

no antiresonance in the Yt mobility curve; however, a shallow antiresonance at 

the frequency of about 623 Hz occurs in the curve of Yi, as it was predicted. 

Furthermore, each of the resonances coincides with a phase lag of half of a cycle. 

However, since the magnitude of the antiresonance in Yi, is very small (and very 

close to the resonance peak at fr) the predicted half of a cycle phase lead is not 

visible in the phase response plot (solid line in Fig.3.14(c)). Both curves have 

asymptotic slopes of 20 dB / decade at low frequencies. However, since Yt is a 

transfer mobility of the ~t output to the input at the lower mass 7nl, its asymptotic 

slope at high frequencies amounts to -60 dB/decade and not -20 dB/decade as 

in the case of Yb. 
The right panel of Fig.3.14 depicts the BM point mobility and transfer mo­

bility of the TM calculated for the damped Neely and Kim model [68], using 

Eqs.3.4.36-3.4.37. It can be noted that the BM point mobility in Fig.3.14(b) 

matches the CP mobility calculated for the passive Neely and Kim model pre­

sented in Fig.3.9(a) (dashed line), with a minor difference in magnitude, which is 

slightly higher in Fig.3.14(b) due to the big factor (Eq.3.3.7) not taken into ac­

count in Eq.3.4.36. The phase response in Fig.3.14(d) has exactly the same char-
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Figure 3.14: l'vlagnitude (a, b) and phase (c, d) of the point mobility of the basilar 

membrane (solid), and the transfer mobility of the tectorial membrane (dashed), 

derived for the passive, undamped system in Fig.3.10 (left panel) and the passive, 

damped t\VO degree of freedom system in Fig.3.6 (right panel), calculated at 

:r;=O.0l86 m. Both systems were excited by a unit force acting upon the basilar 

mernbrane, and the parameters proposed by Neely and Kim [68] (Table :3.1) were 

used for calculations. 
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acteristic as the one of the passive model of Neely and Kim shown in Fig.3. 9( c). 

The magnitude and phase of the complex TM velocity to EM velocity ratio 

defined in Eq.3.4.38, are plotted as a function of stimulus frequency in Fig.3.15. 

The cochlear location was fixed to 0.0186m, which corresponds to the maximum 

of the active ((=1) CP mobility for 1 kHz stimulus frequency. The magnitude 

of the TM/EM velocity ratio is negative at low frequencies, up to about 300 Hz, 

thus the velocity of the EM is higher than the velocity of the TM in this re­

gion, as shown in Fig.3.15(a). Above 300 Hz the magnitude of vt/Vb increases 

to about 8 dE (re 1) at 610 Hz (near the maximum of the TIvI's transfer mo­

bility ~623 Hz) beyond which it decreases rapidly and becomes negative again 

above about 800Hz. The phase of the vt/Vb ratio shown in Fig.3.15(b), is almost 

constant in the low frequency region and decreases rapidly above approximately 

500 Hz until about 1 kHz reaching a total phase lag of about 0.38 cycles. Above 

1 kHz the phase increases until the high frequency limit. 
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Figure 3.15: The magnitude (a) and phase (b) of the ratio of the tectorialm<3m­

branc to basilar membrane velocity, 1/~/1~), as a function of stimulus frequency 

for the Neely and Kim model [68]. The ratio ,vas calculated using parameters in 

Table ;3.1 evaluated at x=0.0186 m. 
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3 Lumped models 3.5 Model of Neely 

3.5 Review of the 1993 model of Neely 

In this section the lumped parameter model proposed by Neely in 1993 [66], 

will be discussed. It is a model that was developed from the one of Neely and Kim 

proposed in 1986 [68], and described in Sections 3.3 and 3.4. The basic concepts 

concerning the macro- and passive micromechanics of the cochlea remain the 

same and are generally consistent with the earlier model [68], and the model of 

Allen [1] discussed in Section 3.2. 

The model assumes a two DOF system for the micromechanics, in which the 

first DOF corresponds to the transverse motion of the EM, whereas the second 

DOF to the radial motion of the TM. Furthermore, the parallel motion of the BM 

and TM results in a relative radial shearing motion, which is thought to deflect 

the stereocilia of the OHC and produce the cell's depolarisation. However, the 

action of the OHC is not modelled as an active pressure component, Pa , as in 

the model of Neely and Kim, but as an internal displacement which causes the 

upward displacement of the RL. Although Neely uses an electrical analogy in 

his paper, here we present an equivalent mechanical system to describe model's 

dynamics, as shown in Fig.3.16. 

The two DOF system in Fig.3.16 depicts a mechanical block diagram, in 

which equivalent radial motions of the EM and the organ of Corti are considered, 

similarly to Fig.3.6 in Section 3.3. Note that all mechanical parameters of the 

lower subsystem, i.e. Nh, Kb and Rb, are divided by g2, whereas the pressure 

difference, Pj, is divided by 9 to give equivalent model with single-axis (only 

radial) motion [24]. Also, g~b and g~c denote now radial displacements. The 

figure is proposed by the present author according to Neely's electrical circuit 

diagram and the equations of motion for the model given in [66]. 

The lower block of the system in Fig.3.16, is assumed by Neely to correspond 

to the mass of the EM, M b, which is connected to the bony wall of the cochlea by 

the spring Kb and damper Rb, corresponding to the EM stiffness and damping, 

respectively [66]. The upper block of the system corresponds to the mass of the 

TM, lVit , which is connected to the bony wall of the cochlea by the spring K t 

and damper Rt , corresponding to the TM's stiffness and damping. The spring 

Ko and damper Ro, in Fig.3.16 correspond to the stiffness of the OHC stereocilia 
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M, 

M,/g' 

Figure 3.16: Block diagram of a two degree of freedom system proposed for the 

model of Neely [66J. NB All motion is in the radial direction. 

and viscous damping of the subtectorial fluid [66J . 

The system is excited by the pressure difference of t he cochlear fluid across 

the CP, Pf, which leads to the t ransverse displacement of the BM, 6. Assuming 

the distance between t he RL and TM is constant , t he relative shearing mot ion 

between these structures leads to the deflection of the ORC's st ereocilia, ~T) and 

the cell 's contraction, which is depicted by an addit ional radial displacement g~e 

in Fig.3.16. Finally, the TM undergoes a radial displacement, ~t, which affects 

the radial RL displacement ~r and the active displacement g~e. 

To begin with , we consider the displacements of th e part icular components 

as defined by Neely [66J . The amount of the t ransverse OBC contraction, ~e, is 

related to the deflection of t he hair bundle, ~o, in t he radial direction 

(3 .5. 1) 

where He is t he OBC gam function and will be described lat er. The radial 

displacement of the hair bundle, ~o, is defined as the difference between t he 
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radial RL, ~T' and TM, ~t, displacements, so that 

~o = ~T - ~t. (3.5.2) 

Furthermore, the radial displacement of the RL, ~T) proportional to the trans­

verse BM displacement, 6, minus the transverse OHC contraction, ~c, takes the 

form 

(3.5.3) 

where 9 is a lever gain coupling the BM and TM [66], and is analogous to the 

lever gain 9 in the model of Neely and Kim (compare Eq.3.3.3) [68]. Finally, the 

relation between the CP's volume velocity, ~p, and BM's velocity, ~b' is expressed 

as13 

(3.5.4) 

where Ap is the effective area of the CP, and 

(3.5.5) 

where bw =10-4 m and 6=5 x 10-5 m are the effective width of the CP and the 

longitudinal thickness of the CP's slice, respectively, and hence Ap=5 x 10-9 m2
. 

It is interesting to note that Neely defines the BM displacement ~b as positive 

towards the scala vestibuli, whereas the CP displacement, ~p, as positive towards 

the scala tympani, thus the minus sign appears in Eq.3.5.4 [66]. 

It is clear from the above definitions, that the model of Neely proposed in 

[66], assumes a transverse parallel motion of the BM and TM, which produces 

a relative shear displacement of the cilia of the OHC. Thus, 6 is a transverse 

displacement, acting on the BM mechanical components, ~c is a transverse dis­

placement corresponding to the active component of the model, which together 

J:
3It is rather mi~leading that Neely u~es, ~p, to define the CP volume velocity in the 1993 

model [66], since it referred to the CP velocity in th.e 1986 lflodel [68]. The qp symbol would be 

more appropriate here and would avoid confusion, However, as pointed out at the beginning 

of this chapter, the original notation of the papers' authors will be used throughout. 
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with ~b defines the radial motion of the RL via the lever gain 9 (Eq.3.5.3). The 

second degree of freedom, however, corresponds to the radial motion of the TM. 

Therefore, similarly to the model of Allen and Neely and Kim, ~t is a radial 

displacement acting on the TM components, which together with the radial dis­

placement of the RL, ~n defines the radial displacement, ~o, i.e. deflection of the 

OHC stereocilia. 

The expressions for the BM and TM mechanical admittance given by Neely, 

I.e. 

[
K ]-1 

Yb = j~ + Rb + jw1\1Ib , (3.5.6) 

[
K ]-1 

yt = j~ + Rt + jwl\1It , (3.5.7) 

can be expressed in terms of the impedance Z=y-1, so that the BM impedance 

takes the form 

(3.5.8) 

and corresponds to the BM impedance Zl in the 1986 Neely and Kim model (see 

Section 3.3), and for the TM 

K t . , 
Zt = -.- + Rt + JwJV!t, 

JW 

which corresponds to Z2 in the 1986 model. 

The impedance coupling the BM and TM, is formulated by Neely as 

Zo 
K o -.- +Ro, 
JW 

and corresponds to Z3 in the 1986 model [68]. 

(3.5.9) 

(3.5.10) 

Having defined the impedances and displacements of the particular model's 

mechanical components, we derive the equation of motion for the first DOF of 

the system in Fig.3.16 as 

(3.5.11) 
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thus according to Eq.3.5.2 

(3.5.12) 

or in the frequency domain 

. . 
Pf = Zb~b + gZoE,O. (3.5.13) 

For the second DOF we have 

(3.5.14) 

so that according to Eq.3.5.2 

.,. . 

o = KtE,t + RtE,t + A1t~t - Ko~o - Ro~o, (3.5.15) 

which in the frequency domain gives 

(3.5.16) 

Dsing Eqs.3.5.1-3.5.3 it can be found that 

(3.5.17) 

and 

(3.5.18) 

Knowing from Eq.3.5.16 that 

. Zo· 
E,t = Zt E,o, (3.5.19) 

and substituting for ~t in Eq.3.5.18, so that 

C (1 H Zo) = c (Zt+gHcZt+Zo) = c 
,,0 + 9 c + Zt ,,0 Zt g"b, (3.5.20) 

~o can be expressed solely in terms of the BM velocity ~b, and will take the form 

(3.5.21) 

80 



3 Lumped models 3.5 Model of Neely 

Substituting the above result into the equation of motion for the first DOF, 

i.e. Eq.3.5.13, gives 

(3.5.22) 

or 

. . 
Pf Zb~b + gZoHo6, (3.5.23) 

where 

(3.5.24) 

The transfer function, H o, introduced by Neely relates ~o to ~b, and after 

rewriting Eq.3.5.24 

Ho = ~o = gZt g(l + gHc + Zoyt)-l, 
~b Zt(l + gHc + Zoyt) 

(3.5.25) 

where yt=Zt-1
, it is consistent with the definition of Ho given in [66]. 

Finally, rewriting Eq.3.5.23 such that 

(3.5.26) 

where Yb=Zb 1
, and using Eq.3.5.4, gives 

Pf = - ;; [Zb(l + gHoZoYb)], 
p 

(3.5.27) 

so that the CP impedance can be defined as 

(3.5.28) 

or in terms of the partition's admittance 

(3.5.29) 
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It should be noted that Eq.3.5.29 is not an exact form of equation (18) defining 

the CP admittance in the Neely's paper [66]' i.e. 

(3.5.30) 

\iVe could not deduce unequivocally the difference in the form of the effective 

CP's area, i.e. -Ap in Eq.3.5.29 and A; in Eq.3.5.30 as given by Neely [66]. The 

CP volume velocity, ~p, is defined as [66] 

(3.5.31) 

which implies that the effective dimension of the partition admittance Yp is 

[m5N-1s-1], and is consistent with the dimension of Yp in Eq.3.5.30, if Yb, de­

fined as in Eq.3.5.6, has dimension of mechanical mobility, i.e. [mN-1s-1], and 

the dimension of Ap is [m2
]. 

However, since each of the parameters of Yb, i.e. K b , Rb and .~1b, is specified 

per unit area Ap in [66], and it appears from Eq.3.5.13 that the BM impedance is 

a ratio of the pressure difference Pf and linear velocity C,b, the effective dimension 

of Yb is [m3N-1s-1]. Thus, to obtain the correct dimensions for the partition 

admittance for the' Ap-scaled' parameters, the square of Ap in Eq.3.5.30 has to 

be ignored. 

Finally, the analysis of the model's macromechanics implies that the parti­

tion's volume velocity and the pressure difference must have the same direction 

to satisfy Eq.3.5.31 and the minus sign should be omitted in the definition of the 

partition's admittance Yp. Hence, taking into account the above considerations 

and the results of preliminary calculations, we suggest that the CP admittance 

should be defined as 

(3.5.32) 

where the BM mechanical admittance, Yb, has dimension of [m3N-1s-1] and all 

mechanical parameters are Ap-scaled, so that the dim.ensions of Yp and the CP 

volume velocity ~p are [m5N-1s-1] and [m3s-1], respectively. 

Note that in the absence of the OHC activity i.e. c'c=O (Eq.3.5.3), the defi­

nition for the relative shearing displacement of the cilia, c'o (Eq.3.5.2), is of the 
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same form as the corresponding displacement ~c in the rHodel of Neely and Kim 

(see Eq.3.3.3). Furthermore, the passive partition impedance of Neely's model 

[66] is of exactly the same form as the passive impedance (Eq.3.3.7 for ,=0) of 

;'\eely and Kim's model proposed in 1986 [68], i.e. 

= ~f = Z + ZtZO . Zpassive C b Z + Z ' 
l"p t 0 

(3.5.33) 

according to Eq.3.5.22 for Hc=O (since ~c=O, Eq.3.5.1), and neglecting the factors 

9 and b, as well as 9 and Ap in the Neely and Kim [68] and Neely models [66], 

respectively. Finally, to compare the mobility of the Neely and Kim model with 

the mobility of the model of Neely, the Ap factor in the definition of the partition 

admittance in Eq.3.5.32 will be neglected, so that the expression for Yp [m3N- 1s-1
] 

in the model of Neely used for the numerical simulations will take the form 

(3.5.34) 

and the mechanical parameters will be defined per area Ap , similarly to the 

parameters chosen by Neely and Kim shown in Table 3.1. 

3.5.1 Outer hair cell gain 

The active component in the Neely and Kim model was represented by the 

active pressure Pa [68]. In the model of Neely [66], the active component is 

controlled by the deflection of the hair bundle of the ORC, ~o, causing contrac­

tion of the cell's body, ~c [66]. The OHC contraction is related to the radial 

displacement of the cilia by OHC gain function, He, which was assumed to be 

a product of two separate transduction processes, i.e. the forward and reverse 

transduction, Tf and Tn respectively [66]. 

The forward transduction function, also referred to as mechanoelectric trans­

duction, refers to the ratio of the receptor potential to the displacement of the 

hair bundle, and is defined by Neely [66] as 

9f (3.5.35) 
1 + jWTf' 
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where 9f is a place-dependent forward transduction gain expressed in mV /nm, 

and Tf [s] is the forward transduction filter's time constant, also dependent on 

the position in the cochlea. 

The reverse (electromechanic) transduction, defined at the lateral membrane 

of the OBC, is thought to describe the ratio between the OBC contraction and 

its receptor potential [66]' and takes the form 

9r Tr =. (3.5.36) 
1 + jWTr ' 

where 9r is the reverse transduction gain expressed in nm/m V and Tr [s] reverse 

transduction filter's time constant, both place-dependent. 

Thus, the OBC gain function, He, is formulated by 

where r is a dimensionless factor, which was used in the same manner as in the 

Neely and Kim model to demonstrate the physiological condition of the OBC 

motility (compare Section 3.3). 

Each of the OBC transduction functions is a first-order, low-pass filter, where, 

as pointed out by Neely, their place dependence along the CP was determined 

to simulate the neural tuning curves by specifying a place-dependent low-pass 

characteristic of the decrease in cell length relative to the deflection of the hair 

cell's bundle [66]. 

3.5.2 Calculated response 

To calculate the partition mobility of the Neely model [66] the model's para­

meters first have to be derived. Table 3.2 presents some of the model parameters 

(converted to S1 units), which were selected by Neely to calculate the response 

of the model. The parameters are specified for three locations along the cochlea, 

i.e. x=O, x=Le/2 and x=Le, where Le denotes the length of the cat cochlea CP, 

equal to 25mm as in the case of Neely and Kim's model (Section 3.3). The va­

lues for the remaining positions along the cochlea were interpolated after fitting 

a quadratic polynomial to the logarithm of the values at locations specified in 
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the table (see Appendix B). The BM/CP length was extended to L=35 mm in 

the present simulations to improve the smoothness of the coupled response in the 

low frequency region. Thus, the mechanical parameters were also extrapolated 

to find their cochlear distribution between 25 and 35 mm of the model's CPo 

I PARAMETER I :1:=0 I x=L, c 

Kbl Ap [N111- 3
] l.14x 109 4.19x 107 5.97x 105 

Kt!Ap [Nm-3] l.99 x 105 2.21 X 105 3.16x 105 

i KolAp [Nm-<'] l.05 x ICY' 9.23x104 l.25x 105 

RblAp [Nsm-3] 2.08x 1O- l I 
2.03x 10-1 l.88x1O-1 

I Rtf Ap [N sm -3] 1.49x103 6.:34x 102 2.70x 102 

I R 14 [N -:,] i ,0" P 1 sm 20.37x 103 2.82x 103 3.80x 102 

ilfdllp [kgm-2
] 9.14x 10-5 9.60x 10-5 l.06x 10-4 

111ft! Ap [kgm--2] 5.64x 10 3 l.02x 10 2 1.06x10 1 

9f [mVnm-1j l.42 x 103 l.05x104 3.68x102 

9r [nmmV-1] 0.1 0.1 0.1 

i Tf [s] l.40x 10 ,1 6.92x10'1 5.29x10 :3 

T,. [s] l.35x 10-4 3.61xlO-4 2.50 X 10-3 

Ap [m2
] oX 10-9 5x 10-9 oX 10-9 

9 1 1 1 

Table 3.2: Mechanical parameters (S1 units) proposed by Neely in [66]. 

Figure 3.17(a) depicts Neely's assumed variation along the CP of the BM 

and TM mass, whereas Fig.3.17(b) shows the stiffness of the BM, TM and the 

ORC's cilia and Fig.3.17(c) the BM, TM and subtectorial fluid damping. Figure 

3.18(a) shows the CP-place dependence of the forward, gl, and reverse, gr; trans­

duction gain, whereas Fig.3.18(b), the time constant of the forward and reverse 

transduction filters, Tf and Tr · 

The BM mass, A1b , is almost constant along the cochlear length, whereas the 

mass of the TM, 1\11t, is significantly higher than that of 1\11b in this model, by 

about two orders of magnitude at the base and four orders of magnitude at the 

apex, as shown in Fig.3.17(a). The stiffness of the BM, K b , dominates over the 
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Figure 3.17: Distributions assumed in Neely's 1993 model [66] for (a) mass of the 

basilar membrane, Ah (solid) and tectorial membrane j\lt (dashed); (b) stiffness 

of the basilar membrane I-{b (solid), tectorial membrane, Kt (dashed) and the 

outer hair cell cilia Ko (dotted); (c) damping of the basilar membrane Rb (solid), 

tectorial membrane, R t (dashed) and the subtectorial fluid Ro (dotted). Parame­

ters were fitted by a quadratic polynomial according to values given in Table 3.2 

(NB parameters are scaled by the Ap factor). 
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Figure 3.18: Assumed distribution along the cochlea of the forward and reverse 

transduction gain (a): o9f (solid) and o9r (dashed), respectively; and the time 

constant of fonvard and reverse transduction filter (b): Tf (solid) and Tr (dashed), 

in the model of ]'\eely [66]. Parameters were fitted by a quadratic polynomial 

according to values given in Table 3.2. 

stiffness of the TIVI, Kt , up to about 26 mm and the cilia Ko up to about 28 mm, 

and decreases with x by about five orders of magnitude. Kt and Ko have almost 

the same, constant slope with x and Kt has values almost twice that of Ko at the 

base and about three times at the apex. Figure 3.17( c) shows that the damping 

of the BM, Rb, has the lowest value and is almost constant along the cochlea. 

Damping of the TM, Rt , and the subtectorial fluid, Ro) vary with the position x by 

about one order and more than two orders of magnitude, respectively, decreasing 

from the base to the apex. Rt is higher than Rb by about four and three orders of 

magnitude at the base and the apex respectively, whereas Ro dominates over Rb 

by about five and less than three orders of magnitude at the base and the apex of 

the CP, respectively. Finally, the difference between Rn and Rt is equal to about 

one order of magnitude at the base and decreases with the position along the 

cochlea up to about 28 mm, above which Ro becomes slightly smaller than Rt · 

It can be seen from Fig.3.18(a) that the reverse transduction gain, gr (dashed), 

is constant and smaller than the forward transduction gain, gf, by about six and 

two orders of magnitude at the base and apex of the cochlea, respectively. gf 
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decreases with position along the cochlea by about four orders of magnitude. The 

time constants of the forward and reverse transduction filters, Tf and Tn both 

increase with the distance from the stapes by more than two orders of magnitude, 

where Tf increases faster and is higher than Tr , as shown in Fig.3.18(b). 

Once the distribution of the model's parameters along the CP is derived, the 

mobility of the partition, Yp at each position, can be calculated using Eq.3.5.34. 

Similarly to Section 3.3.1, where the mobility of the CP was plotted for the 1986 

model of Neely and Kim, the mobility of Neely's 1993 model [66], is presented as 

a function of position in the cochlea in Fig.3.19, and frequency in Fig.3.20. In the 

first case, the frequency was set to f=l kHz, while in the latter case the position 

was set to x=0.0189 m, which corresponds to the site of maximum displacement 

for the Yp(x) plot. Furthermore, the CP mobility was plotted for a passive, 

(dashed line in the plots), and a 'fully' active, ,=1 (solid lines), model. 

Figures 3.19(a), 3.19(c) and 3.20(a), 3.20(c) depict the magnitude and phase of 

Yp, whereas the real and imaginary parts of Yp are presented in Figs.3.19(b), 

3.19(d) and 3.20(b), 3.20(d), for Yp(x) and Yp(J) plots, respectively. 

A sharply tuned peak of the magnitude response of the active model of 

Neely [66] can be observed at about 0.0189 m in Fig.3.19(a) and about 1 kHz 

in Fig.3.20(a). The peak in the active magnitude response coincides with a ra­

pid phase lag accumulation in the characteristic place or CF region, as shown in 

Figs.3.19(c) and 3.20(c). The real part of Yp in the Neely model becomes negative 

in the vicinity of the characteristic place in Fig.3.19(b) and CF in Fig.3.20(b), 

which enables the cochlear amplifier to undamp the vibrations of the CP in these 

regions. It can be noted that all responses shown in Fig.3.19 are somewhat 

different from those derived for the model of Neely and Kim shown in Fig.3.8. 

However, both models predict a negative value of the real part of the partition 

mobility just basal to the characteristic place, as required for the sharp tuning of 

the cochlear response [15]. 
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Figure 3.19: The magnitude (a) and phase (c) (left panel), real (b) and imaginary 

(d) parts (right panel) of the passive (dashed) and active (solid) cochlear partition 

mobility, Yp, as a function of position along the cochlea, calculated for the original 

model of Neely [66]. The frequency was set to j=lkHz, andi was set to 0 and 

1 for the passive and active model, respectively. 
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Figure 3.20: The magnitude (a) and phase (c) (left panel), real (b) and imaginary 

(d) parts (right panel) of the passive (dashed) and active (solid) cochlear partition 

mobility, Y;») as a function of frequency, calculated for the original model of Neely 

[66]. The position along the cochlea was chosen as ;r=O.0l89m, and I was set to 

o and 1 for the passive and active model, respectively. 
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3.6 Modes of vibration in the model of Neely 

Equation 3.5.33 shows that the passive (r=O) impedance of the 1993 model of 

Neely is consistent with the impedance of the passive Neely and Kim model, since 

the lever gain g=1, and constants band - A;l are neglected in the formulations 

of the impedance, Eqs.3.3.8 and 3.5.28, respectively. Thus, assuming the two 

DOF system shown in Fig.3.16 is freely vibrating and the active displacement 

~c=O, it will take the same form as the freely vibrating system proposed for the 

Neely and Kim model depicted in Fig.3.10. Furthermore, the modes of vibration 

of such a system were analysed in Section 3.4, where using Eqs.3.4.13-3.4.15 

distribution of the natural frequencies, il,2=Wl,2/27f, along the cochlea, for the 

freely vibrating, undamped system, was found. These equations can be applied 

to the 1993 model of Neely to derive the x-distribution of II and 12, for the set 

of parameters proposed by Neely and gathered in Table 3.2. 

Figure 3.21 depicts a free, undamped system representing the passive two 

DOF system proposed by Neely [66] shown in Fig.3.16. The lever gain 9 is equal 

to one and thus it was neglected when the displacement of the lower mass, Ivh 
was taken into account. 

Equations of motion for such a system will be of the same form as for the 

system in Fig.3.1O, i.e. 

l\1[t~t = - Kt~t - Ko (~t - ~b), 

and the natural frequencies (Eqs.3.4.13-3.4.15) 

2 1\1h(Kt + Ko) + AIt(Kb + Ko) - v;s,. 
W - --~----~~--~------~-----

1 - 21VhlV[t ' 

at the first mode, and 
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K t 

~t 
~ 

Ko 

~b 
M b 

Kb 

Figure 3.21: Simplified block diagram of the two degree of freedom system pro­

posed by Neely in [66] (Fig.3 .16) , representing a freely vibrating, undamped me­

chanical system. All parameters same as in [66] (see Table 3.2) . 

at t he second mode, where 

Similar to Section 3.4, h,2=Wl,2/27f, can be compared with t he estimated 

resonance frequencies corresponding to the BM and TM, i.e. 

(3.6 .5) 

j _ ~JKt + Ko 
™ - 27f M t ' 

(3.6.6) 

and the one from the cochlear CF /place map of a cat, iCF derived from t he 

formula of Greenwood [39]. 
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Assuming time-harmonic motion, the ratio of the amplitudes 3bl,2/3t1,2, for 

the undamped, freely vibrating model of Neely will take the form 

Ko 

at WI, and 

Ko 

K t + Ko - wi1\1t 

Ko 

K t + Ko w~1\1t 
Ko 

(3.6.7) 

(3.6.8) 

at W2, according to Eqs.3.4.22 and 3.4.23. Thus, the motion at the first mode 

is expressed in the same way as in Eq.3.4.27, whereas at the second mode as in 

Eq.3.4.28 and constants A, B, C and D are defined in Eqs.3.4.29-3.4.31. 

Figure 3.22(a) shows the distribution of the natural frequencies fI and 12 along 

the cochlea for the set of parameters proposed by :-Jeely [66]. The estimated 

frequencies of the EM and TM, iml and hNI, as well as the cat's CF /place 

map derived from the formula proposed by Greenwood [39], are also plotted in 

the figure (NB the average cat's cochlea length is equal to about 25 mm, thus 

the CF /place map is calculated for Lc=25 mm and not L=35 mm as for h,2 or 

im.·!,TIvr). Figure 3.22(b) depicts the ratios of 10g2(h/ fI) and 10g2(fBM/ inr). 

The natural frequency fI (solid) is lower than 12 (dashed) through the entire 

length of the cochlea, from more than two and a half decades at the base to less 

than two orders of magnitude at the apex for parameters chosen by Neely in 

the 1993 model [66]. The frequency fI spans from about 1.2 kHz at the base to 

about 316 Hz at 25 mm place and about 87 Hz at the apical end of the cochlea, 

i.e. 35 mm place. The line of fI covers the line of hM (dot-dashed) estimated 

for the TM up to about 25 mm site, where hM is almost equal to fI at the base 

and just about 14 Hz higher, i.e. iTIvI~73 Hz, than fI at the apex. 

The 12 ranges from ~562 kHz at the base, through ~13 kHz at Lc=25 mm 

(cat cochlea length), to ~7kHz at the apex (L=35mm) of the cochlea. The 

estimated EM frequency iBM (dotted line, mostly covered by the line of h), 
equals also about 562 kHz at the base, ~12 kHz at Lc=25 mm, however, about 

1.5 kHz at the apex (L=35 mm). It should be noted that the estimated EM 

resonance frequency, iBM, decreases monotonically from the base to the apex of 

the cochlea (likewise im..! in the Neely and Kim model in Fig.3.12(a)), whereas 
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Figure 3.22: Natural frequencies of the system presented in Fig.3.21 plotted as 

a function of position, :r (a) . . h (solid) and h (dashed); plotted together with 

the estimated resonance frequencies for the basilar, fBl\·r = iT( /¥i and tectorial, 

hhl= 2~ [(t
1
::;:<o membranes (dot-dashed; covered by the hand f1 lines below 

x=25 mm, respectively), and the CF /place map (dotted) according to Greenwood 

[:39]. (b) comparison of the ratios 10g2(f2/ fr) (solid) and log2(JBh.r/ inx) (dashed). 

h decreases until about 33 mm site along the cochlea, above which it increases 

by about 100 Hz till the cochlear apical end is reached. 

Similarly to the natural frequencies calculated for the model of Neely and 

Kim in Section 3.4; hTM and h,BM, are well below and above, respectively, the 

CF /place map of a cat, derived according to the fon11.ula of Greenwood [39], for 

almost the entire length of its cochlea (Lc=25 mm). Finally, the slopes of hmvl 

are generally steeper, than those of fl,TM. 

The log2(h/ fr) and log2(Jmvr/ hM) ratios, shown in Fig.3.22(b), match each 

other up to about 20 mm place from the base, both decreasing from the value of 

about 8.9 at the base to about 5.8 at x~20 mm. Above the 20 mm site, the ratio 

of the natural frequencies, fr and h; decreases up to about 27 mm site, after 

which it increases and reaches about 6.6 value at the apex. However, the ratio 

of the estimated BM, iBM; and TM, iTM; frequencies decreases to about 4.1 at 

the cochlear apex. Thus; according to the definition of the ratios, the separation 

between the frequencies fr,TM and h,B:vr; equals about 9 octaves at the base of 
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the cochlea, and more than 6 octaves between II and i2 and about 4 octaves 

between in.'I and iB"NI at the cochlear apex. 

Figure 3.23 shows five periods of the harmonic motion, ~b1,t1 and ~b2,t2, at 

the first and the second natural frequency calculated for x=0.0189 m along the 

cochlea, i.e. II ~575 Hz and h~37 kHz, respectively. It can be noted that at the 

first mode ~b1 and ~t1 move in phase, where the amplitude of ';b1 is much smaller 

than that of ~t1 (maxima of 61 and ';t1 as about 10-4 to 0.007. NB ~b1 multiplied 

by factor of ten to facilitate the comparison). However, at the second mode ~b2 

and ~t2 move out of phase and the amplitude of ';b2 is higher than the amplitude 

of ';t2 (maxima of ';b2 and ';t2 as 100 to 0.007. NB ~t2 nmItiplied by factor of 103 

to be visible together with ~b2 in the plot). 
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Figure 3.23: Displacements 1O';b1 (solid) and ~t1 (dashed) at the first mode of 

vibration, wl~27fx575Hz (a), and ~b2 (solid) and 1O:3';t2 (dashed) at the second 

mode where w2~27f x 37 kHz (b), calculated for parameters proposed by Neely 

(Table 3.2) [68] (NB 61 and ~t2 were multiplied by a factor of ten and 10:>, 

respectively, to facilitate comparison). 

\Ve finish the analysis of the modes of vibration of the 1993 model of Neely 

[66] by plotting the point mobility of the BM, Y/" and the transfer mobility of 

the TM, yt, derived due to the excitation of the BM by a unit force and for the 

parameters proposed by Neely (Table 3.2). Similar to the analysis of modes of 

vibration of Neely and Kim model in Section 3.4, we assume that the lower mass, 
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j\!h, of the system in Fig.3.21 is excited by a time-harmonic force of the form 

f=Fe jwt
, thus 

Yb=\It, 
F 

(3.6.9) 

according to Eq.3.4.34, for the parameters proposed by Neely [66]. Furthermore, 

likewise for the Neely and Kim model in Eqs.3.4.36 and 3.4.37, the BM point 

mobility and TM transfer mobility of the damped system proposed by Neely in 

[66]' will be defined as 

Yb = \It, = .Jw[Kt + Ko + .Jw(Rt + Ro) w
2 Aftl 

F D 
(3.6.10) 

where 

D = [Kb+KO+jw(Rb+RO) -w2111b][Kt+Ko+jw(Rt+Ro) _w2 Aftl-(Ko+jwRo?, 
(3.6.11) 

and hence the ratio of the BM and TM velocities for the passive model, will take 

the form 

Vt Ko + jwRo 
\It, Kt + Ko + jw(Rt + Ro) - w 2 NIt 

(3.6.12) 

so that the velocity of the TM can be calculated by multiplying known BM 

velocity by the Vt/\It, ratio. 

Referring back to Fig.3.16 it should be noted that the ratio of Vt to \It, will 

not be given by Eq.3.6.12 when the Neely model is active, since in addition to 

the BM excitation, the TM is also forced into motion by the active displacement 

~c. This is in contrast to the analysis for the Neely and Kim model in Section 

3.4. 
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The left side of Fig.3.24 shows the magnitude and phase of point, Yb (so­

lid), and transfer mobility, yt (dashed) derived for the system in Fig.3.2l and 

parameters in Table 3.2. Because the natural frequencies, hand 12, derived for 

the model of Neely [66]' are higher than those in the model of Neely and Kim 

[68], also the frequency range of the mobility response plots was extended to 

100 Hz-l03 kHz. 

There are two resonance peaks in each response curve in Fig.3.24(a), because 

the denominators of Eq.3.6.9 define the frequency equation (compare Eq.3.4.l2) 

and have two distinctive poles. The roots of the frequency equation define the 

natural frequencies of the system in Fig.3.l0; thus the first peak in mobility 

curves occurs at 12~576 Hz and the second at h~37kHz, and are almost equal 

to the estimated frequencies fTM and fm.r, respectively, at x=0.0189 m (compare 

Fig.3.22(a)). The yt mobility curve exhibits no antiresonance, however, the pre-

dicted antiresonance at the frequency of about 577 Hz, as for hM= 21 Kt,+1Ko 
1T 11 t 

(compare numerator of Yb in Eq.3.6.9 and Eq.3.6.6), occurs in the curve of Yb. 
The resonances coincide with the phase lag of half of a cycle and the antireso­

nances with a half of a cycle phase lead. However, the antiresonance of Yb is 

too close to the resonances of Yb and yt to be visible in the phase response plot 

(solid line in Fig.3.24(c)). The low-frequency asymptotes have slopes of about 

20 dB/decade for both response curves. However, the high-frequency asymptotes 

have slopes of about -20 dB/decade for Yb point mobility and -60 dB/decade 

for the transfer mobility yt. 

The magnitude and phase response of the point BM nlObility and TM trans­

fer mobility defined using Eq.3.6.10 and 3.6.11 for the damped two DOF system 

proposed by Neely [66] (Fig.3.l6), are shown on the right-hand side of Fig.3.24. 

The BM point mobility Yb matches the passive partition mobility Yp plotted in 

Fig.3.20(a) (dashed curve) and similarly the phase response of Yb is consistent 

with the phase of the passive Yp in Fig.3.20( c). The magnitude of the TM trans­

fer mobility does not differ qualitatively from the BM point mobility up to the 

responses' maxima, both increasing about 20 dB / decade. However, for frequen­

cies higher than the frequency of the maximum, the TM mobility decreases with 

a constant slope of about -20 dB / decade, while the slope of the BM mobility 
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Figure 3.24: Magnitude (a, b) and phase (c, d) of the point mobility of the basilar 

membrane (solid), and the transfer mobility of the tectorial membrane (dashed), 

derived for the passive, undamped system in Fig.3.21 (left panel) and the passive, 

damped two degree of freedom system in Fig.3.16 (right panel), calculated at 

:c=0.0189 m. Both systems were excited by a unit force acting upon the basilar 

membrane and the parameters proposed by ::--Jeely [66] (Table :3.2), ,"vere used for 

the calculations. 
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decreases with an increase in frequency. Furthermore, the TM's mobility ma­

gnitude is smaller than that of the BJ\1 in the entire frequency range, and the 

response maxima are only 100 Hz apart, i.e. about 2.8 and 2.7 kHz for the BM 

and TM response, respectively. 

The phase of the BM mobility shown in Fig.3.24( d), decreases by about 0.3 of 

a cycle through the entire frequency range, where the slopes below about 1 kHz 

and above about 4 kHz are very small, so that the phase lag accumulation can 

be observed mainly in the frequency region around the maximum of the BM's 

magnitude response. The phase of the TM mobility ranges from about 0.3 of 

a cycle at 100 Hz to about -0.2 of a cycle at 10 kHz, which gives a total phase 

lag of about half of a cycle in the examined frequency range. Also in this case 

the highest phase lag accumulation can be observed in the neighbourhood of 

the maximum of the TM's mobility amplitude. However, the phase of the TM 

mobility exhibits a decrease of about 0.08 cycle per decade in the low and high 

frequency region, instead of an almost constant slope as in the case of the BM's 

mobility phase. 

An interesting feature of the mobility of the damped two degree of freedom 

system shown in Fig.3.24(b), is a large shift of the maxima of the Bl\1 and TM 

mobility to about 2.8 and 2.7 kHz, respectively, in comparison with the frequency 

of the maximum of the undamped system's mobility 12 of about 37 kHz, shown in 

Fig.3.24(a). Since Rb«Rt<Ro at the 0.0189 m position along the cochlea, as can 

be seen in Fig. 3.17( c), it appears that the vibrations of the upper subsystem of the 

system in Fig.3.21 are heavily damped and thus only a single broad resonance 

peak at 2.7kHz can be observed in the TM mobility in Fig.3.24(b). Adding 

damping to the system causes changes also in the mobility response of the BM, 

as if the lower subsystem were coupled with a vibration absorber which damps 

the resonance at 12 in Fig.3.24(a) and introduces a broad resonance, the broad 

maximum of the BM mobility at about 2.8 kHz shown in Fig.3.24(b), between 

the peaks at !I and 12. 
Figure 3.25 shows the magnitude and phase of the complex TM/BM velocities 

ratio formulated in Eq.3.6.12, calculated at 0.0189 m position along the cochlea. 

The magnitude of the ratio shown in Fig.3.25(a) is negative in the whole frequency 
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range, so that the velocity of the TM is lower than the velocity of the BM at all 

stimulus frequencies, as can be seen in Fig.3.24(b). The lit/Vb ratio until about 

3 kHz is roughly constant, above which it decreases rapidly with frequency until 

the 10 kHz limit, which is consistent with the increasing amplitude difference 

between the BM and TM mobility shown in Fig.3.24(b) for the damped case. 

The phase of the TlVI/BM velocity ratio shown in Fig.3.25(b), exhibits a little 

variation over the entire frequency range showing overall phase lag of about 0.2 

of a cycle. The low slope of the phase is consistent with the lack of a distinctive 

resonance of the magnitude curve in Fig.3.25(a). 
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Figure 3.25: The magnitude (a) and phase (b) of the ratio of the tectorial mem­

brane to basilar membrane velocity, \;~/Vb, as a function of stimulus frequency 

for the model of l'Jeely [68]. The ratio was calculated using parameters in Table 

3.2 evaluated at :c=0.0189 m. 

3.7 Tectorial membrane inertia in the model of 

Neely 

The cochlear model proposed by Neely in 1993 [66], represented graphically 

by a block diagram in Fig.3.16, employs an active displacement between the BM 

and the RL, due to the action of the OHCs as the mechanism of the cochlear 
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amplifier. This approach contrasts with the model proposed by Neely and Kim in 

[68] which introduced an additional active force acting on the BM block, as shown 

schematically in Fig.3.6, counteracting the resistive forces from the cochlear fluids 

and undamping the BM vibrations. Although, the passive micromechanics of 

both models is generally the same, as shown in the present section, both models 

fail to take account for the inertial load of the TM mass in the first degree of 

freedom, as it was done for the passive model of Allen [1] discussed in Section 

3.2. 

\Vhile the model of Neely and Kim would not be significantly affected by the 

incorporation of the TM inertial effects [24], which could be accounted for by 

choosing a suitable modified value of the Bl\1 mass, the model of Neely seems to 

be significantly affected by the TM's load on the organ of Corti. In the model of 

Neely and Kim the impedance of the BMjorgan of Corti component would just 

be modified by the TM's inertia, whereas the active force, being an external force 

exerted on the BMjorgan of Corti block, would not be affected by the mass of 

the TM. However, in the model of Neely, the active displacement ~c is internal to 

the organ of Corti and could be thought of as acting between the flexible RL and 

the mass of the Bl'v1. Thus, the load of the TM exerted on the RL, would affect 

the active displacement that would have to be sufficient enough to 'overcome' the 

TM loading in order to undamp the motion of the BM. 

In Fig.3.26 we present a modified block diagram for the micromechanical 

model of Neely [66], with the TM mass, 1Vlt , incorporated between the BM mass 

and the cilia stiffness and damping, represented by the lower block 1Vh, the spring 

Ka and dashpot Ra, respectively. Figure 3.26 shows a single-axis motion diagram 

of the system, where all motion is in radial direction, as it was shown in Fig.3.16. 

The load of the TM is inherently connected with the parallel transverse motion 

of the BM and TlVt as described in the model of Allen for the first vibrational 

DOF [1]. However, it seems to have been ignored in the analysis of t.he model in 

[66]. 

The motion of the BM block is induced by the pressure difference in the 

cochlear fluids, PI, which leads to the transverse displacement of the BM, 6. As­

suming that the distance between the RL and the TM remains constant [1, 24], 
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3 Lumped models 3.7 Effect of the TM inertia 

the transverse motion of the BM/organ of Corti leads to the shearing displace­

ment ~r of the RL, leading to the displacement of the ORCs cilia. Furthermore, 

assuming radial resonant motion of the TM, ~t, the net radial displacement of 

the cilia, ~O=~r-~t (Eq.3.5.2) , deflects the hair cell stereocilia, which leads to the 

depolarisation and motility of the OBC, and hence active displacement between 

the RL and the BM. Therefore, the total, transverse displacement at the surface 

of the RL will amount to ~b-~c (depolarisation and contraction of the OHC) , so 

that the TM inertia will also influence the active displacement ~c in this modified 

model. 

M, 

M, /g' 

MJg' 

R, 

P/g 
Rb/g' 

Figure 3.26: Block diagram of a two degree of freedom system of the Neely 

model [66J, modified by incorporating the mass of the tectorial membrane due to 

its inertial effect on the model's lower subsystem. All the motion is in the radial 

direction, similarly to the block diagram in Fig.3.16. 

We derive the equation of motion for the first DOF of the modified system in 
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Fig.3.26 as 

which can be rewritten as 

.. .. 
Since ~c=Hc~o according to Eq.3.5.1, and using Eq.3.5.2 we have 

(3.7.3) 

or 

. . 
Pj = ZOC~b + gZA~o, (3.7.4) 

where 

(3.7.5) 

and 

(3.7.6) 

It can be noted that the equation of motion for the first DOF in the model of 

Neely [66], with the additional mass accounting for the effect of the TM's inertia 

to the motion of the lower subsystem in Fig.3.26, is significantly different from 

the one for the original model of Neely defined in Eq.3.5.13. Firstly, the effect of 

the TM load is taken into account in the organ of Corti impedance, Zoc, which 

could be described as the sum of the EM impedance Zb and some load impedance, 

say ZL=jwNIt , due to TM's mass l\;ft, as shown in Eq.3.7.5. Secondly, the inertia 

of the TM affects the active mechanism in this modified model, since the mass 

NIt is connected with the active displacement ~c in Eq.3.7.1. The effect of the 

TM mass on the cochlear amplifier is expressed by the active impedance ZA in 

Eq.3.7.6, in which the TM mass impedance and the ORe gain transfer function, 

i.e. jwlVlt Hc/ g, appear to be acting against the impedance of the cilia Zoo 
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The equation of motion governing the second DOF of the system in Fig.3.26 

will take the same form as in Eq.3.5.16, which implies that the relationship bet­

ween the radial displacement ~o and the BM transverse displacement ~b is also 

unaffected by the modification to the original model of Neely, and remains the 

same as in Eq.3.5.21. Therefore, Eq.3.7.4 will take the form 

(3.7.7) 

or using Eq.3.5.24 

. . 
Pf = Zoe6 + gZAHo~b. (3.7.8) 

Thus, the CP impedance for the model of Keely [66] with the incorporation 

of the T1VI mass inertia, will be defined as14 

Pf Zp = -. = Zoe + gZAHo, 
6 

(3.7.9) 

or similarly to the expressions given by Neely in [66] 

(3.7.10) 

which in terms of the CP's mobility gives 

(3.7.11) 

Setting the TM inertial term Mt(~b-~c) in Eq.3.7.1 to zero, leads to the defi­

nition of the CP mobility derived by ::Jeely formulated in Eq.3.5.34. 

It is interesting to note the implications of setting the gain of the cochlear 

amplifier I in the modified model of Neely. Using Eq.3.7.6 we can write Eq.3.7.9 

as 

(3.7.12) 

14"We omit again the Ap factor in the formulation of modified ZP) similarly to Eq.3.5.34. 

However, the mechanical parameters used for simulations ilfe Ap-scalecl as shown in Table 3.2, 

so that the dimensions of calculated impedances/mobilities in the present chapter are consistent. 
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or 

(3.7.13) 

which could be expanded using Eq.3.5.24 to give 

(3.7.14) 

The cochlear amplifier's gain i, is introduced to the above equation via the 

OHC gain He (Eq.3.5.37), i.e. 

H = T T = ~(g f gr 
e i f r (1 + jWTf)(l + jWTr ) , 

(3.7.15) 

and is assumed to take the values between zero, corresponding to the passive 

cochlea, and one for a fully active cochlea. By setting i to zero so that He=O, 

Eq.3.7.14 reduces to 

(3.7.16) 

which is similar to the passive partition impedance in the model of Neely [66] de­

fined in Eq.3.5.33. It is worth noting that Eq.3.7.16 differs mainly from Eq.3.5.33 

by incorporation of the TM inertia through the additional load impedance, ZL, 

into the BM impedance. However, the passive partition impedance of the modi­

fied model of Neely has exactly the same form as the one formulated in Eq.3.2.18 

for the passive cochlear model proposed by Allen in [1] if we neglect the BM 

damping R b. 

A 'fully' active response of the model is predicted for i equal to one, for 

which the partition impedance will take the form as in Eq.3.7.14. In this case Zp 

consists of the impedance of the CP of the original model of Neely, and the load 

impedance, ZL, due to inertial component of the TM mass, lVt , reduced by an 

additional active impedance -jwMtHeHo, say Zadd, which could be written as 

(3.7.17) 
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according to Eq.3.7.14, or by extracting gZtHc from the denominator on the 

right-hand side of Zadd, i.e. 

(3.7.18) 

The partition impedance of the modified active model of Neely can be also 

expressed using the partition impedance of the original model of Neely in [66]. 

Using Eq.3.7.12 and Eq.3.7.5 we can write 

where Z;; is the partition impedance of the original model of Neely derived in 

Eq.3.5.34 in Section 3.5. The last term in the above equation can be referred to 

as a modifying partition impedance, Z;od, which can be written explicitly, after 

substituting for Ho, as 

zmod 
p (3.7.20) 

which after dividing the numerator and denominator by the sum of Zt and Zo 

gives 

1 
Z;od jw1Vlt z . (3.7.21) 

1 + z~+~oHc 
Note that the gZt!(Zt+Zo) term in the denominator of Eq.3.7.21, which we 

will call Tshcan defines the 'shear transfer function' between the transverse dis­

placement of the RL, er =~r / 9 (the difference of the transverse BM displacement 

6 and the active displacement ~c, Eq.3.5.3) and the radial shear displacement of 

the cilia, ~o [24], i.e. using Eq.3.5.3 and 3.5.1 

~o ~o 
Tshear = ~;r = 6 - ~c (3.7.22) 

which after substituting for ~b/~O from Eq.3.5.21, gives 

(3.7.23) 
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Thus, the CP impedance of the modified model of Neely can be generally 

defined as 

Z ZN + zmod = ZN + jwA1t 
p p p p l+T H' 

shear c 

(3.7.24) 

which again shows that for ,=0 (passive model), the impedance of the CP takes 

almost the same form (i.e. the difference due to the extra term from TM load 

impedance jwMt ) as the one proposed by Neely [66] defined in Eq.3.5.34, and is 

exactly the same as the total BM impedance defined in Eq.3.2.18 for the passive 

model of Allen in [1] if the BM damping Rb is neglected. 

In Fig.3.27 we show the magnitude and phase of the CP mobility of the 

modified model of Neely calculated using Eq.3.7.11 and parameters in Table 3.2. 

Figures 3.27(a), 3.27(c) show the mobility as a function of position at 1 kHz 

stimulus frequency and figures 3.27(b), 3.27(d) show the frequency response of the 

partition mobility at the position of 0.0193m along the cochlea. For comparison, 

the mobility of the original model of Neely calculated from Eq.3.5.34 (Ap factor 

neglected in the calculations comparing to Eq.3.5.32, however the parameters are 

Ap-scaled) is plotted with thin lines at the same stimulus frequency and cochlear 

site. The dashed lines show the magnitude and phase of the passive model (,=0) 

and the solid lines the response of the active model 1). 

The effect of the TM inertia is visible in the apical region of the magnitude 

response of the modified model shown in Fig.3.27(a), where the mobility above 

the characteristic place decreases with the position along the cochlea, different 

from the mobility of the original model of :'\eely, where Yp(x) increases from 

the characteristic place towards the cochlear apex. The effect of the TM load 

is also visible in the high frequency region of the frequency response magnitude 

in Fig.3.27(b), where the response decreases above the CF, unlike the mobility 

of the original model, which starts decreasing from about 3 kHz until it reaches 

the 10 kHz frequency limit. Furthermore, the magnitude of the mobility in both 

Yp(x) and Yp(f), is significantly more enhanced, with a shift of the characteristic 

place/CF towards the apical end and higher frequencies, respectively, for the 

modified active model than for the original model of Neely. 

It should be pointed out however, that instead of the characteristic increase of 
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Figure 3.27: The magnitude (a, b) and phase (c, d) of the passive (thick dashed) 

and active (thick solid) cochlear partition mobility, Yp , as a function of position 

along the cochlea (left) and stimulus frequency (right), calculated for the modified 

model of Neely [66], in which the inertial eflects from the tectorial membrane mass 

were incorporated. The frequency was set to f=lkHz in (a) and (c), whereas 

the cochlear site to 0.0193m in (b) and (d). Thin lines represent the partition 

mobility of the original model of Neely. I' was set to 0 and 1 for the passive and 

active model, respectively. 
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the phase lag's slope as for the active response in the original model, the modified 

model exhibits a phase lead in the vicinity of the characteristic place/CF, as 

shown in Fig.3.27(c) and 3.27(d). Such a behaviour 111ay indicate instability of 

the system, which may be due to the decrease of the critical value of the cochlear 

amplifier's gain for which the system is still stable, and for the responses shown 

in Fig.3.27 it seems to be lower than one15 . Therefore we plot the responses 

of the modified model of Neely for a lower value of gain in the active case, i.e. 

[=0.7, as shown in Fig.3.28(a) and 3.28(c) for the modified partition mobility as 

a function of position along the cochlea at 1 kHz, and in Fig.3.28(b) and 3.28(d) 

as a function of frequency at 0.0186 m cochlear site. For comparison we also plot 

the mobility of the original model of Neely with and 0.7 (thin lines). 

The slopes of the magnitude responses of the modified model calculated for 

[=0.7, are negative in the apical region unlike for the original model of Neely 

where the responses above the characteristic place increase with position along 

the cochlea. The enhancement of the magnitude of the active response of the 

modified model is approximately 8 dB, higher than for Neely's original active 

model. Also a shift of the characteristic place towards the apex in comparison 

with the characteristic place of the magnitude response of the original model can 

be seen in Fig.3.28(a). 

About 8 dB higher magnitude of the active response of the modified model in 

comparison with the original model of Neely, and a shift of the CF of about 100 Hz 

towards higher frequencies for the modified model of Neely, can be seen in the 

frequency responses in Fig.3.28(b). Also high frequency slope of the amplitude 

responses of the modified model is slightly higher than the slope of the original 

model's mobility. 

ISIt was obberved that the critical value of the cochlear amplifier's gain in the modified model 

is equal to about 0.91 since the phase response exhibits a lead instead of a phase lag at the 

characteristic place/CF for i=O.92. It is also interesting to note that the magnitude of the 

modified model calculated for the active gain of 0.9 was higher than the magnitude of the same 

model calculated for the gain of one (results not shown here). This can be regarded as another 

evidence for the active responses plotted in Fig.3.27 as being computed for an unstable system, 

but a more thorough stability examination must be carried out to support this hypothesis. 

Stability of the isolated lumped p:wameier models will be examined in Chapter 5. 
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Figure 3.28: The magnitude (a, b) and phase (c, d) of the passive (thick dashed) 

and active (thick solid) cochlear partition mobility, Yp, as a function of position 

along the cochlea at 1 kHz (left panel) and as a function of stimulus frequency 

at 0.0186 m position along the cochlea (right panel), calculated for the modified 

model of Neely [66]. Thin lines show the partition Inobility of the original model 

of Neely. ry was set to 0 and 0.7 for the passive and active model, respectively. 
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3 Lumped models 3.7 Effect of the TlVI inertia 

The phase responses, shown in Fig.3.28, of the active n1.odified model of Neely 

computed for ,=0.7 exhibit a lag instead of the lead observed for the phase 

response in Fig.3.27 calculated for ,=1. The increased slope of the active phase 

near the characteristic place/frequency point with respect to the phase of the 

passive model, is consistent with the phase behaviour of the original model of 

Neely. It is also interesting that the total phase lag of the phase in the modified 

model's response amounts to about half of a cycle along the cochlea as shown in 

Fig.3.28(c), and about 0.45 of a cycle in the examined frequency range as shown 

in Fig.3.28(d), whereas the phase responses calculated for the original model of 

Neely in these figures reach a total phase lag of about quarter and 0.3 of a cycle, 

respectively. Because the phase of the partition mobility is the same in the basal 

and low frequency region in the original as well as modified models, the additional 

phase lag must be connected with the extra load of the TM. 

In the present section we have examined the influence of the TM inertial 

loading to the mobility of the cochlear model of Neely [66]. The effect of the TM 

load appears to have been ignored in the original model of Neely. Only the mass 

of the BM is taken into account \vhen considering the first DOF of the original 

Neely's model, unlike in the model of Allen [1], but similarly to the model of 

Neely and Kim [68]. 'While the effect of the mass of the TM in the equations of 

motion for the first degree of freedom in the model of Neely and Kim could be 

neglected and 'compensated for' by increasing the mass of the BM appropriately, 

it should not be neglected in the model of Neely since it affects the action of the 

cochlear amplifier as shown here. 

It should be noted that by the incorporation of the TM mass, NIt, the mass 

of the BM/organ of Corti complex in the modified model is Ajb+A1t, which at 

0.0186m site along the cochlea is equal to about 0.026 kgm-2 that is approxima­

tely equal to the mass of the BM (ml =0.03 kgm-2) in the model of Neely and 

Kim given in Table 3.1. Thus, effectively the mass of the organ of Corti is higher 

than the mass of the BM itself in the modified model of Neely. 

Secondly, the TM load affects the cochlear amplifier while the TM mass is 

connected with the active displacement from the ORCs, ~c. As a result the mo­

bility responses of the modified model are 'sharper' than those observed for the 
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original model. Furthermore, the magnitude of modified mobility is higher than 

the magnitude of mobility functions derived according to the original Neely's 

model. Another implication of the enhanced mobility responses, seems to be a 

higher sensitivity of the modified model. In the model of Neely and Kim [68] and 

the original model of Neely [66], a gain of one is thought to generate a 'fully' ac­

tive response of the model, which is assumed to be still stable. However, a lower 

gain of the active component is needed to produce the fully active response, i.e. 

/criticaz=0.91 , in the modified model of Neely. For / higher than 0.91 the magni­

tude of the mobility starts to decrease with the increase of the active gain and 

the phase response of mobility exhibits a lead above the characteristic place/CF, 

which may indicate that the model is no longer stable. 

3.8 Discussion 

In the present chapter the basic concepts for modelling the cochlear micro­

mechanics and the lumped parameter micromechanical models of the cochlea 

proposed by Allen [1], Neely and Kim [68] and Neely [66] were analysed. Fur­

thermore, the modes of vibration of the model of Neely and Kim and Neely were 

analysed in Sections 3.4 and 3.6, respectively, and the effect of the TM load to 

the dynamics of the model of Neely was discussed in Section 3.7. 

Firstly, a secondary resonator, which must be present in the cochlea [17], 

is localised within the organ of Corti and assumed to be linked to the TM in 

the described models [1, 34, 68]. In the models of Allen [1 ], Neely and Kim 

[68] and the model of Neely [66], the TM is a fully resonant structure16 with 

its independent motion, specified mass, stiffness and damping, which correspond 

to the mass of its body and attachments to the bony structures of the cochlea, 

respectively. Thus, in these models a two DOF mechanical system was defined, 

with two structures, the BM and TM, described by their mechanical impedances. 

Furthermore, the BM and TM resonators were coupled by the stereocilia of the 

OHC, which add a stiffness component that together with the damping from the 

l6By fully l"e~onant system we mean a system that possesses a mass and stiffness component 

and hence is capable of resonance when forced into motion. 
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3 Lumped models 3.8 Discussion 

cochlear fluid introduces additional impedance into the partition impedance Zp 

[1,66, 68]. 

Secondly, in their 1986 model Neely and Kim [68] use the idea of Allen [1], who 

defined the first DOF as the parallel, locked motion of the BM and TM leading to 

shearing forces acting on the OHC's cilia. Also the second DOF, corresponding 

to the radial motion of the TM, was employed after the passive model of Allen. 

However, the displacements in the model of Neely and Kim were defined as if the 

motion were purely radial, and an active component, represented by an active 

pressure source acting within the organ of Corti, was added to account for the 

mechanism of the cochlear amplifier. Furthermore, the 1986 model was developed 

by Neely in 1993 [66], in which an active displacement between the BIvI and the 

RL due to the electro motility of the OHC, was proposed as the cochlear amplifier. 

However, the basic concepts concerning the micromechanics of the organ of Corti 

remained unchanged in the 1993 model [66]. 

Although it was shown that the models of Neely and Kim and Neely exhi­

bit differences regarding the selection of the models' pararneters, which leads to 

discrepancies in the characteristics of the mobility responses plotted for these 

models, the definition of the passive partition impedance is the same in these 

models. However, ignoring the inertial load of the TM significantly affects the 

response of the original model of Neely, as shown in Section 3.7. Furthermore, 

taking account of the TM load in the dynamics of the model of Keely leads to a 

definition of the CP impedance consistent with the one derived for the model of 

Allen [1], but also appears to affect the sensitivity of the cochlear amplifier. 

Finally, the overall partition impedance proposed by Neely and Kim [68] and 

Keely [66] is consistent with the generic form shown in Eq.3.1.9, where the ac­

tive impedance is defined differently in both models. Thus, the idea of de Boer 

[16], who argued that locally active models could be converted into a general, 

equivalent form with the difference in the choice of the n1.eaning of particular pa­

rameters, is justified for the example of the lumped parameter models presented 

here. 
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Chapter 4 

The coupled response of lumped 

parameter models 

In the previous chapter the micromechanics of three widely known lumped 

parameter models was examined. Each of these models described the passive 

mechanics of a single, cross-sectional slice of the CP, i.e. the interactions within 

the organ of Corti and of the organ with the overlying TM, by means of the 

CP mobility functions. Furthermore, the mechanism of the cochlear amplifier 

in the active models of Neely and Kim [68] and Neely [66], was discussed, so 

that an active partition mobility was also formulated for these models, and its 

dependence on the cochlear position and stimulus frequency was examined and 

compared with that derived for a passive model. 

I t has to be remembered however, that the CP is in1mersed in the cochlear 

fluid, which is assumed to couple the isolated micromechanical, lumped parame­

ter systems, and induce the CP's travelling wave [17]. Therefore, to compare 

the cochlear models with the experimental results, a coupled, macromechanical 

response must be derived. 

In the present chapter the CP mobility, Yp, defined for the model of Neely 

and Kim [68] and Neely [66]' will be implemented into the macromechanical 

formulation for the travelling wave propagating in the cochlea, and the coupled 

response of these models will be calculated and compared with experimental 

results. Furthermore, the ratio of the passive TM and BM velocities, \it/Vb, 
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4 Coupled response 4.1 Travelling Waves 

derived in Sections 3.4 and 3.6, will be used to calculate the passive coupled 

response of the TM in order to compare with the passive coupled CP response 

and experimental results obtained by Gummer et al. [40] and Hemmert et al. 

[43]. 

4.1 Travelling waves 

4.1.1 The wave equation 

To facilitate the description of the cochlear macromechanics a number of sim­

plifications are usually assumed as discussed in Section 3.l. Firstly, the cochlea 

is uncoiled and represented by a rectangular box as in Fig.3.l. The pressure 

difference across the CP, Pd 1, propagating due to the sinusoidal oscillations of 

the stapes at the cochlea's oval window, leads to the CP's propagating transverse 

displacement (travelling wave), ~p. Secondly, the cochlear fluids are assumed in­

compressible and inviscid and, due to the long-wave assumption, the propagation 

of the travelling wave is considered only in the longitudinal direction, x (the wave 

equation in Eq.3.l.1). Furthermore, due to symmetry and because the displace­

ment of the CP is caused by the pressure difference, only the upper chamber of 

the cochlea needs to be considered, which can be geometrically represented as in 

Fig.4.1. 

In the figure, the CP is discretised into a number of two DOF systems, the 

impedance of which can be defined in ways described in Chapter 3. Although 

each of the segments forming the CP is independent of its neighbours, they are 

assumed to be coupled by the fluid within the cochlear chamber. The apical end 

of the cochlear chamber is terminated by the helicotrema and thus not connected 

to the CP in this model. 

The coupled response of the cochlea can be derived by coupling the partition 

impedance Zp into the second-order differential equation for the travelling wave, 

1 'Ve will use a uniform, small letter notation for the pressure difference in this section. 
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4 Coupled response 4.1 Travelling Waves 

L 

- cochlear fluid -
H 

x 

Figure 4. 1: Schematic of the cochlea's upper channel of length L and height H , 

'where the cochlear partition (CP) is represented by a number of independent 

two degree of freedom systems. These systems are coupled via the cochlear 

fluid, excited by the oscillations of the stapes (S) inducing partition's vertical 

displacement , which travels in the longitudinal direction, x, from the base (B) to 

the apex (A) of the cochlea. 

I. e. 

(4.1.1) 

where H is the upper chamber's height and p is the density of the cochlear 

fluid2 [14, 17J . Redefining the above equation into a form of a one-dimensional, 

homogeneous Helmholtz equation gives 

(4.1.2) 

where 

2 2jwp 
ktw(x ,w) = - Zp(x,w)H ' (4.1.3) 

is the wavenumber of the travelling wave, and hence the wavespeed of the travel­

ling wave, Ctw=w/ktw , can be expressed as [59J 

1 

( ) _ (jWZp(x ,W)H) 2" 
Ctw X, W - 2p , ( 4.1.4) 

2F\11l derivation of the travelling wave equation can be found e.g. in [1 7, 59J. 
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4 Coupled response 4.1 Travelling Waves 

and like k tw is both frequency- and place-dependent. 

The boundary conditions for the travelling wave at the stapes and helicotrema, 

respectively, are defined as 

(4.1.5) 

(4.1.6) 

where Ust is the velocity of the stapes [55, 59]. Note that the basal boundary 

condition is expressed in terms of the stapes velocity Ust, the value of which 

is imposed in our model. In the model of Neely and Kim [68] and Neely [66], 

the stapes velocity is coupled with the middle ear impedance and is expressed 

in terms of the pressure at the eardrum. Furthermore, we assume in Eq.4.1.6 

that the pressure difference at the helicotrema is equal to zero. Alternatively, a 

damping element, which represents the passage of the cochlear fluid through the 

helicotrema, could be introduced into the helicotrema boundary condition as in 

[66, 68]. However, the model response is thought to be not sensitive to the apical 

boundary condition provided the characteristic place is located basally to the he­

licotrema, i.e. the travelling wave decays before reaching the helicotrema, so that 

the condition in Eq.4.1.6 is justified [55, 59]. Furthermore, preliminary results of 

the coupled models evaluated at the cochlear site corresponding to the 1 kHz CF 

(i.e. 0.0186 m and 0.0189 m for the Neely and Kim [68] and Neely [66] models, 

respectively), have shown that the lowest frequency for which the frequency res­

ponses appear not to be affected by the boundary condition in Eq.4.1.6, amounts 

to about 600 Hz. Therefore, in our simulations the length of the BlVI was set to 

35 mm (with appropriate extrapolation of the models' mechanical parameters), 

so that the lmvest frequency was shifted from 600 Hz to about 10 Hz, and the 

responses could be plotted from 100 Hz (see Appendix C for details). 
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4 Coupled response 4.1 Travelling Waves 

4.1.2 Finite difference approximation of the wave equa­

tion 

In 1981 Neely [64], proposed a direct method of solving the travelling wave 

equation numerically by using its finite difference approximation, and a one­

dimensional representation of this method can be found in e.g. [55]. 

The CP is divided into N components, thus the length of each CP's segment 

is equal to 6,=L/(N-1), where L is the CP's length. Using the Taylor series 

expansion for the second derivative of Pd with respect to x, Eq.4.1.1 can be written 

as 

Pd(i + 1) - 2Pd(i) + Pd(i 1) 
6,2 

(4.1.7) 

where i denotes the number of the element of the CP and here i=2, 3, ... , N-1. 

For i=l and N, the boundary conditions in Eqs.4.1.5 and 4.1.6 are applied, thus 

(4.1.8) 

at the base, and 

(4.1.9) 

at the apex [55]. 

After discretising the wave equation, the coupled response of the cochlear 

model can be calculated from a matrix equation of the form 

(C - M)Pd = q, (4.1.10) 

where 

-6, 6, 

1 -2 1 0 
1 

C = 6,2 (4.1.11) 

0 1 -2 1 

0 6,2 
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4 Coupled response 4.1 Travelling Waves 

is the matrix corresponding to the coupling with the cochlear fluid, M is the 

mobility matrix 

M = 2jwp 
H 

o 
Yp(2) o 

o Yp(N - 1) 

is the pressure difference vector, and 

q= 

is the input source vector [55]. 

-2jwpUst 

o 

o 

Introducing a tridiagonal, NxN matrix T, such that 

T C-M, 

allows Eq.4.1.10 to be written as 

o 

so that the pressure difference distribution can be derived, since 

T - 1 
Pd = q. 

119 

( 4.1.12) 

(4.1.13) 

(4.1.14) 

(4.1.15) 

(4.1.16) 

(4.1.17) 



4 Coupled response 4.2 Neely and Kim's coupled model 

The CP velocity ~p is related to the pressure difference Pd as [66, 68] 

. Pd 
E.p = z = YpPd, 

p 

(4.1.18) 

thus calculating the Pd distribution along the cochlea according to Eq.4.1.17, 

allows the CP velocity, ~p, and hence the partition's displacement, E.p=~pjjw, to 

be derived. 

4.2 Coupled response of the model of Neely and 

Kim 

The wavenumber, ktw , and the wavespeed, CtW) of the travelling wave are de­

fined in Eqs.4.1.3 and 4.1.4, so that using the parameters proposed by Neely 

and Kim [68] gathered in Table 3.1, the cochlear chamber's height H=10-3 m 

and the density of the cochlear fluid p=103 kgm-3 , the distribution along the co­

chlea and the frequency dependence of these quantities as well as the wavelength, 

Atw=271/ktw , can be derived. Figure 4.2 shows the wavespeed and the wavelength 

of the travelling wave (Re{ Ctw} and Re{Atw}) as a function of position x calcula­

ted for the stimulus frequency of 1 kHz. The dashed lines in the figure correspond 

to the 'passive' case of the travelling wave, i.e. ,=0 and Zp=Zpass (Eq.3.3.8), and 

the solid lines to the 'active' travelling wave, i.e. ,=1. 

The wavespeed of the 'passive' travelling wave decreases rapidly towards the 

apex of the cochlea, from R:::117.5 to 0.6ms-1, with an exponential characteristic, 

as shown in Fig.4.2(a). However, the speed of propagation of the 'active' travelling 

wave can be divided into two regions. In the first region, the wave decreases 

rapidly from R:::103.2 ms- 1 at the base to a short 'plateau' region in the vicinity 

of the characteristic place, R:::6.6 ms- 1 at about 16 mm. In the second region, that 

is after the 16mm site, the 'active' wavespeed decreases even faster to reach a 

plateau of about 1.1 ms- 1 at the characteristic place, x=0.0186 m. Above the 

characteristic place the wavespeed is nearly zero until the apex of the cochlea. 

The plateau in the apical region in Fig.4.2(a), is consistent with the experi­

mental data, in which a travelling wave plateau can be observed apically from 
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4 Coupled response 4.2 Neely and Kim's coupled rnodel 
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Figure 4.2: The wavespeed, Ctw (a) and the wavelength Atw (b) of the travelling 

wave as a function of position in the cochlea, calculated at 1 kHz for the model 

of Neely and Kim [68]. Solid and dashed lines represent both quantities derived 

for the active and passive partition impedance, respectively. 

the characteristic place (or high frequency from the CF) [87]. It should be also 

noted that in theory the wavespeed should decrease to zero since the wave does 

not travel beyond the characteristic place. However, this can be accomplished 

only if the real part of the model's partition mobility (CP's damping) is equal to 

zero and the imaginary part of the partition's mobility is negative, according to 

Eq.4.1.4. This condition is not satisfied in the investigated model for any position 

along the cochlea as shown in Figs.3.8(b)-3.8(d), and any stimulus frequency, as 

shown in Figs.3.9(b)-3.9(d). 

The travelling wave's wavelength, Atw, Fig.4.2(b), reveals that the wavelength 

decreases exponentially towards the apex of the cochlea in the passive case, from 

~1l7.5-0.6 mm (dashed line), whereas it decreases slightly faster for the active 

case, from about 103.2 mm until it reaches almost a constant value of ~6.6 mm 

at the site of about 16 mm. From this place, like the wavespeed, the wavelength 

of the 'active' travelling wave decreases even more reaching almost a zero plateau 

towards the apex. Therefore, as the travelling wave approaches the characteristic 

place, it slows down rapidly and its wavelength becOIl1es short, Atw~O.6 mm, 

which implies that the long-wave assumption is not satisfied at this place. 
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4 Coupled response 4.2 Neely and Kim's coupled model 

To calculate the coupled response of the Neely and Kim model [68], the for­

mulation for the CP impedance, and hence the partition's mobility since Yp=Z;l, 

given in Eq.3.3.7, \vas implemented into the matrix M in Eq.4.1.12. Thus, we 

derive the pressure difference according to Eq.4.1.17. Once the pressure difference 

is calculated, also the partition velocity for the model of Neely and Kim, ~p, can 

be derived according to Eq.4.1.18. Knowing the relationship between ~p and ~b 

in Eq.3.3.1, we can write 

(4.2.1) 

so that the BlVI velocity will take the form 

c = ~p = Pd = YpPd 
<"b b bZ b' 

p 

(4.2.2) 

and the BlVI displacement 

c'b (4.2.3) 

The magnitude and phase response of the pressure difference, Pd, and the 

BlVI velocity, C,b, were calculated for the parameters in Table 3.1 and plotted as a 

function of position in the cochlea, as shown in Fig.4.3. Stimulus frequency was 

set to 1 kHz and the gain, to zero and one corresponding to the passive and fully 

active model. 

It can be seen from Fig.4.3(a) that the passive (/=0, dashed) and fully active 

(/=1, solid) pressure difference magnitude curves are almost equal up to about 

15 mm from the base of the cochlea. After the 15 mm point the pressure diffe­

rence of the active model, exhibits a tuned peak with the maximum of about 

200 dB (re 2x 10-5 Pa) at x=0.0185 m. There is no peak in the corresponding 

passive, ,=0, response curve. However, the magnitude of the passive pressure 

difference at x=0.0185 m equals to approximately 170 dB, so that in this model, 

the cochlear amplifier enhances the pressure difference by about 30 dB at the 

characteristic place for 1 kHz stimulus frequency. Both, the passive and active 

pressure difference responses roll off rapidly from the characteristic place site, 

where the slope of the apical side of the active response is slightly steeper. Since 
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Figure 4.3: Magnitude and phase of the pressure difference Pd (a, c) and the 

basilar membrane velocity 6 (b, d) as a function of position in the coupled 

cochlea for stimulus frequency of f=l kH,,; and parameters chosen by Neely and 

Kim [68]. Solid lines show the active, ~f=l, and dashed lines the passive, ,=0, 

response of the model. 
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4 Coupled response 4.2 Neely and Kim's coupled rnodel 

there is no peak in the passive curve, the passive response resembles that of a 

heavily damped resonant system. 

The phases of the passive and active pressure difference shown in Fig.4.3( c), 

have almost the same value from the base until the vicinity of the characteristic 

place, i.e. up to about 17.5 mm. After this point the active model's phase lag 

begins to accumulate faster than that of the passive model reaching about one 

cycle difference beyond about the 20 mm site. The overall phase lag of the pres­

sure difference amounts to about seven and eight cycles for the passive and active 

case, respectively. 

The passive BM velocity amplitude response depicted in Fig.4.3(b), has its 

maximum of about 16 dB re U st=l ms-1 at x=0.0169m. The maximum of the 

active velocity amplitude response is shifted towards apex by about 1.6 mm, with 

respect to the maximum of the passive curve, and is observed at x=0.0185 m 

and equals approximately 63 dB. Thus, the enhancement of the amplitude of the 

active velocity at 1 kHz stimulus frequency amounts to about 47 dB. The passive 

and active amplitude curves are almost equal in the basal region of the response, 

up to about the 13.5 mm place. A notch can be observed below the peak of the 

active response, which does not occur in the passive response. However, after the 

maxima in the amplitude velocity responses, a fast roll-off can be observed in the 

passive and active case, where the passive response decays slightly slower with 

position along the cochlea. 

The phase responses of the BM velocity, are almost equal in the basal region 

of the cochlea, until around 15 mm, for both the passive and active model, as 

shown in Fig.4.3(d). Both curves exhibit about one cycle phase lag up to around 

15 mm place after which the active phase response begins to lead the passive one, 

reaching about 0.3 of a cycle lead at around 17 mm site. The passive and active 

phase curves reach the same value again in the vicinity of the characteristic place 

(~0.0182m), beyond which the phase lag accumulation of the active response 

becomes larger and reaches almost constant, about one cycle, difference from the 

passive phase above about 20 mm cochlear site. The overall phase lag of the 

velocity response amounts to approximately 7.5 and 8.5 cycles for the passive 

and active case. 
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4 Coupled response 4.2 Neely and Kim's coupled model 

Figure 4.4 shows the frequency response of the pressure difference ]Jd and 

BlVI velocity 6. The frequency responses were calculated at x=0.0185 m and the 

cochlear amplifier's gain was set to ,=0 (passive) and ,=1 (active). 
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Figure 4.4: l\Iagnitude and phase of the pressure difference ]Jd (a, c) and the 

basilar membrane velocity ~b (b, d) as a function of stimulus frequency, calculated 

at the cochlear site of ;r=0.0185 m and for paTameters chosen by Neely and Kim 

[68]. Solid lines, active model (-y=1) and dashed lines, passive model (,=0). 

The amplitudes of the pressure difference, ]Jd, of both the passive and active 

model of Neely and Kim, plotted in Fig.4.4(a), are almost equal and increase 

about 5 dB (re 2 x 10-5 Pa) with the increase of the stimulus frequency from 

100 Hz to about 400 Hz. The passive response reaches its maximum at 420 Hz, 

above which it decreases gradually. There is no distinctive maximum peak in the 
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4 Coupled response 4.2 Neely and Kim's coupled model 

frequency response of the passive model. 

Hmvever, the magnitude of the active model's pressure difference increases 

rapidly above about 400 Hz, and reaches a maximum peak of about 201 dB at 

1.02 kHz, about 25 dB higher than the maximum of the passive pressure diffe­

rence observed at 420 Hz. It is worth noting that the frequency of the amplitude 

maximum of the active model is shifted by 600 Hz towards higher frequencies, in 

comparison with the maximum of the 'passive' Pd. Above 1.02 kHz, the magni­

tude of the 'active' pressure difference decreases rapidly. 

The phase of Pd shown in Fig.4.4( c), exhibits a total phase lag of about 5.5 and 

6 cycles for the passive and the active model, respectively. Up to about 800 Hz, 

the phase of both passive and active model, are almost equal and lag the stapes 

velocity by about one cycle. Above 800 Hz the slope of the phase of the active 

response becomes steeper, exhibiting about 5 cycles phase lag accumulation until 

about 4 kHz, roughly one cycle bigger than the phase lag accumulation of the 

passive model between 800 Hz and 4 kHz. Both passive and active phase change 

little above 4 kHz. 

The passive and active basilar membrane velocity, 6, shown in Fig.4.4( c), 

increase with the same rate at low frequencies and are nearly equal up to ap­

proximately 400 Hz. The velocity of the passive model is highest at 700 Hz, and 

decreases above this frequency. The velocity of the active model however, in­

creases rapidly above about 400 Hz and reaches a sharp peak of about 63 dB (re 

ms-1) at 1020 Hz. For frequencies higher than the CF, the velocity of the 

active model decreases rapidly. The enhancement of the BM velocity due to the 

action of the cochlear amplifier, amounts to about 47 dB with respect to the ma­

gnitude of the velocity of the passive model, where the peak of the active response 

is shifted by 320 Hz towards higher frequencies with regard to the maximum of 

the passive response. It is interesting to note that this upwards shift in the peak 

response only occurs in the coupled model, and that the uncoupled response of 

the Neely and Kim model, shown in Fig.3.9, exhibits a downward shift in the 

frequency of the peak response when the system is active. 

The phase of the BM velocity of the passive model is almost equal to the phase 

of the velocity calculated for the active model until approximately 500 Hz, where 
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4 Coupled response 4.2 Neely and Kim's coupled lHodel 

both curves exhibit a phase lag of about -0.5 of a cycle. Above 500 Hz, the passive 

phase response lags even more so that the total phase lag of the Bl\I velocity of 

the passive model amounts to about six cycles in the examined frequency range. 

However, a short phase plateau can be seen in the phase response of the active 

model between about 500 Hz and 700 Hz. After the plateau region, the phase lag 

increases again, and the overall phase lag of the 'active' BM velocity amounts to 

about 6.5 cycles. It should be noted that the slope of the active model's phase 

lag is higher in the CF region, outside which the phase slopes of both models 

differ little. 

Figure 4.5 depicts the amplitude and phase of the passive (left panel) and 

active (right panel) BM and TlV! velocity of the coupled Neely and Kim model 

[68]. The TM velocity was calculated by multiplying the velocity of the BM, ~b, 

derived for the passive and active coupled model of :;\feely and Kim at 0.0185 m, 

shown in Fig.4.4(b), by the ratio \it/Vb defined in Eq.3.4.38, computed at the 

same cochlear place. 

The magnitude of the 'passive' TM velocity in Fig.4.5(a) is smaller than the 

magnitude of the BM velocity response almost over the entire frequency range 

but the narrow frequency region around the maximum of the TM's velocity. 

However, the magnitude difference is not large and both velocity responses are 

qualitatively comparable. The maximum of the BM velocity response can be 

observed at frequency of 700 Hz, whereas the peak of the TM velocity response is 

at 630 Hz. Thus, the BM damped resonance frequency is higher than the damped 

resonance frequency of the TM in this passive model, similarly to the undamped 

or damped case for the BM point and TM transfer mobility depicted in Fig.3.14 

for the isolated two degree of freedom system proposed by Neely and Kim [68]. 

The difference between the maximum amplitude of the passive B1\1 and TM 

velocity amounts to about 8 dB, i.e. IVblmax~16 dB and IVtlmax~24 dB, respec­

tively. Furthermore, the slope of the TM velocity shown in Fig.4.5(a) is almost 

equal to that calculated for the BM in the low and high frequency regions. 

The phase of the BM and TM velocity shown in Fig.4.5(c) are almost equal 

up to frequency of about 400 Hz. Above 400 Hz, the slope of the TM velocity 

phase becomes steeper so that the TM phase lag becomes slightly higher than 
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Figure 4.,): Magnitude and phase of the frequency response of the basilar mem­

brane, ll, (solid), and tectorial membrane velocity, 1;; (dashed), calculated for the 

passive, A(=O CV;Ja88; a, c), and active, A(=l (Vact ; b, d), coupled model of Neely 

and Kim [68] at .7;=0.018,) m along the cochlea. 
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4 Coupled response 4.2 Neely and Kim's coupled model 

that of the BM, reaching a difference of about quarter of a cycle at about 700 Hz. 

This quarter of a cycle difference between the phase of the BlVI and TM velocity 

remains almost constant until the upper frequency limit, hence the total phase 

lag of the BM velocity amounts to about six cycles and that of the TM velocity 

to about 6.25 cycles. 

The TM velocity response shown in Fig.4.5(b), calculated for the active case, 

has roughly the same characteristics as the velocity of the BM calculated for the 

active coupled model of Neely and Kim [68]. The peak of the TM velocity can be 

observed at 1 kHz, which is 20 Hz below the frequency at which we observe the 

peak of the BM velocity in the active case. The low and high frequency slopes of 

the BM and TM velocity are almost equal. However, the low-frequency 'shoulder' 

(or a shallow antiresonance) in the BM velocity response cannot be seen in the 

TM velocity curve. Assuming that the shoulder on the low frequency side of 

the BM velocity corresponds to the heavily damped lower resonance connected 

with the TM, which is even more heavily damped in the Tl\I velocity response, 

the lack of the shallow antiresonance implies that the Tl'vl velocity response is a 

transfer response, as was the case for the TM mobility response of the isolated two 

degree of freedom system, shown in Fig.3.14. The BM velocity can be considered 

therefore as a point response. This is also consistent with the fact that there is 

no excitation on the TM, as shown in Fig.3.6, and although the model is active, 

still only the BM is forced into motion. 

In Fig.4.5(d) we show the phase of the BM and TM velocity of the active 

coupled model of .:"Jeely and Kim, which are almost equal up to about 400 Hz 

stimulus frequency, above which the phase of the BM velocity exhibits a short 

plateau in the frequency region of the shallow antiresonance in the BM velocity's 

amplitude in Fig.4.5(b). No such phase plateau can be seen in the TrvI velocity 

phase curve. The phase of the BM velocity leads the phase of the TM velocity by 

more than quarter of a cycle from about 700 Hz, and this phase difference remains 

almost constant with the increase of the stimulus frequency up to 10 kHz. 
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4 Coupled response 4.3 Coupled model of Neely 

4.3 Coupled response of the Neely model 

In the present section we calculate the coupled responses of the 1993 model 

of Neely [66] by implementing the formulation of the CP's mobility, derived in 

Section 3.5, into the finite difference formulation of the wave equation, and using 

the set of mechanical parameters chosen for the simulations by Neely (cochlear 

chamber height is equal to H =10-3 m and the density of the cochlear fluid to 

p=103 kgm-3 as for the coupled model of Neely and Kim. [68]). 

Firstly, we calculate the wavespeed and the wavelength of the 'passive' and 

'active' travelling wave for the partition impedance Zp=Y;-l, where Yp is given in 

Eq.3.5.34, and plot it as a function of position at the stimulus frequency of 1 kHz 

as shown in Fig.4.6. 

Figure 4.6( a) shows the phase speed of the travelling wave of the passive, ,=0, 

and active, ,=1, model of Neely. The wavespeed of the passive model ranges from 

about 23.9ms-1 at the base to about 0.4ms-1 at the apex of the cochlea and is 

almost equal to the wavespeed of the active model at the corresponding cochlear 

positions. As the distance from the stapes increases, both curves decrease expo­

nentially with the same slope below about 15 mm and above about 24mm along 

the cochlea. Between these locations the active travelling wave slows down signi­

ficantly and reaches a local minimum at about 19mm site. Above this position 

the wavespeed of the active wave increases slightly to match the passive curve 

with which it decreases with position towards the apex. 

The wavelength of the travelling wave ofthe passive model ((=0) also exhibits 

an exponential decrease along the cochlea from about 23.9mm at the base to 

about 0.4mm at the cochlear apex, as shown in Fig.4.6(b). The wavelength of 

the active model ((=1) is equal to the wavelength ofthe passive model at the base 

and the apex of the cochlea, and decreases with the same slope until about 15mm 

position along the CPo Beyond the 15mm site the wavelength of the active model 

decreases faster than that of the passive model and reaches a local minimum at 

about 19mm position in the cochlea. Similarly to the phase speed's behaviour, 

for cochlear positions higher than the place of the local minimum, the wavelength 

of the passive travelling wave increases slightly to become roughly equal to the 

wavelength of the passive wave at about 24mm site. From the position of 24mm 
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Figure 4.6: The wavespeed, Clw (a) and the wavelength Atto (b) of the travelling 

\vave as a function of position in the cochlea calculated at 1 kHz for the model 

of Neely [66]. Solid and dashed lines represent Ctw and Atw derived for the active 

and passive partition impedance. respectively. 

towards the apex, both curves decrease again with the same slope. 

It can be noticed that the characteristics of the active and passive phase speed 

and wavelength of the travelling wave along the cochlea are generally similar to 

those observed for the coupled Neely and Kim model shown in Figs.4.2(a) and 

4.2(b). However, at the cochlear base both the wavespeed and the wavelength 

calculated for the model of Neely, are significantly lower than those calculated 

for the model of Neely and Kim, which can be attributed to the difference of the 

mechanical parameters chosen for both models. 

There is no observable difference between the wavespeed and the wavelength 

characteristics of the passive and active model of Neely apart from near the 

characteristic place. Furthermore, while the wavespeed and wavelength of the 

active travelling wave exhibit a short plateau in the vicinity of the characteristic 

place in the model of Neely and Kim, a small, local minimum can be observed in 

the model of Neely below the characteristic place. These discrepancies between 

the Neely and Kim and the Neely model must be due to the different definitions 

of the active CP's mobility. 

To derive the coupled responses of the model of Neely [66], we first calculate 
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4 Coupled response 4.3 Coupled model of Neely 

the pressure difference Pi using Eq.4.1.17 (Pi refers to Pf in the model of Neely), 

after implementing the partition's mobility Y; calculated according to Eq.3.5.32 

into the matrix Min Eq.4.1.12. Having calculated the pressure difference, Pi, we 
. . 

derive the partition's velocity ~p using Eq.4.1.18 and the relationship between ~p 

and (b defined in Eq.3.5.4. Thus, the BlVl velocity takes the form 

(4.3.1) 

and hence the BlVl displacement will be defined as 

~b = - Y;Pi. 
JW 

(4.3.2) 

Note that the dimension of the CP's admittance in Eq.3.5.32 is [m5N- 1s-1
] 

(ratio of volume velocity and pressure difference; the mechanical parameters are 

scaled by the effective area of the CP), hence before irnplementing into the ma­

trix M, Y; was divided by the factor of Ap to obtain consistent dimension of 

[m3N-1s-1
] (ratio of linear velocity and pressure difference; the mechanical para­

meters scaled by the effective area of the CP). Consequently, the BlVl velocity (b 
was not divided by Ap despite the relationship in Eq.3.5.4, however, the minus 

sign was taken into account due to the opposite directions of (b and (p [66]. 

The magnitudes of the pressure difference, plotted as a function of cochlear 

position, of the passive and active b=O and I, respectively) coupled model of 

Neely [66] derived for the set of parameters in Table 3.2, are shown in Fig.4.7(a). 

Both curves are almost equal in the basal region of the cochlea and decrease up 

to about the 10 mm point along the cochlea. Beyond the 10 mm site, the 'passive' 

pressure difference drops further with gradually increasing slope until about the 

20 mm cochlear site after which it decreases rapidly with almost constant slope. 

However, the pressure difference calculated for the active model decreases until 

about 15 mm place along the cochlea, above which it increases towards a peak 

at around 18.8 mm place, close to the characteristic place calculated for the CP 

mobility of Neely's model. The apical side of magnitude of the pressure difference 

of the active model falls rapidly with position along the cochlea. 

The phase of the pressure difference of the passive model of Neely decreases 

with a gradually increasing slope and reaches about nine cycles phase lag at about 
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Figure 4.7: Magnitude and phase of the pressure difference Pf (a, c) and the 

basilar membrane velocity ~b (b, d) as a function of position in the cochlea for 

stimulus frequency of f=l kHz a.nd parameters chosen by Neely [66]. Solid lines, 

active model b=l) and dashed lines, passive model b=O). 
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4 Coupled response 4.3 Coupled model of Neely 

25.2mm along the cochlea, as shown in Fig.4.7(c). Similarly, the phase of the 

pressure difference of the active model decreases with gradually increasing slope, 

and is almost equal to that observed for the passive Tnodel up to about 15 mm 

along the cochlea. For positions beyond the 15 mm site the active model's phase 

lag increases faster than that of the 'passive' phase, and around the place of the 

maximum in the magnitude response of the active model they reach a difference 

of about half of a cycle, which remains roughly constant towards the more apical 

positions. 

The distribution of the BlVI's velocity along the cochlea calculated for the mo­

del of Neely, is shown in the right panel of Fig.4.7. The magnitude of the velocity 

of both the passive (r=0) and active (r=1) model shown in Fig.4. 7(b) increase 

with position along the cochlea, being almost equal up to about the 10 mm site 

in the cochlea. The passive response has a broad maximum at about 16.5 mm, 

after which it decreases on the apical side of the response. The magnitude of 

the BM velocity of the active model starts to increase rapidly as it approaches 

the characteristic place and reaches its maximum, about 30 dB higher than the 

maximum velocity of the passive model, at 18.9 mm, that is the characteristic 

place predicted from the mobility functions calculated in Section 3.5.1. Beyond 

the characteristic place velocity of the active model decays rapidly with position 

along the cochlea. 

In Fig.4. 7( d) \ve show the phase of the BM velocity as a function of position 

in the cochlea. The phase of the BM velocity of the passive and active model are 

almost equal up to about 18.5mm along the cochlea where they both reach about 

-3.5 cycles phase lag. However, the slope of the active model's phase response 

increases before the characteristic place (18.9 mm), so that about a quarter of 

a cycle difference can be observed between the phase of the passive and active 

model at the characteristic place. The difference between the phase of the passive 

and active velocity response equals roughly a half of a cycle on the apical side of 

the cochlea. 

The magnitude and phase of the pressure difference calculated for the cou­

pled model of Neely [66] at 0.0185 m along the cochlea as a function of stimulus 

frequency, are shown in Fig.4.8 and 4.8( c), respectively. Both, the passive, ,=0, 
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and the active, ,=1, amplitude response of PI increase with an increase of the 

stimulus frequency at low frequencies, and are almost equal up to about fre­

quency of 300 Hz. There is no distinctive maximum in the magnitude of the 

passive response, which starts to decrease for stimulus frequencies higher than 

about 500 Hz. However, the pressure difference of the active model exhibits a 

peak at about 1kHz, above which it decreases rapidly with increasing stimulus 

frequency. 
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Figure 4.8: Magnitude and phase of the pressure difference PI (a, c) and the 

basilar membrane velocity ~b (b, d) as a function of stimulus frequency, at the 

site of :r=0.0189 m in the cochlea and for parameters chosen by Neely [66]. Solid 

lines, active model b=l) Rnd dashed lines, passive model (r=0). 

The phase of the pressure difference, shown in Fig.4.8( c), decreases with in-
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4 Coupled response 4.3 Coupled model of Neely 

creasing stimulus frequency for both passive and the active model, and the slope 

of the phase increases as the frequency approaches the CF. In the vicinity of 

1 kHz, the phase lag of Pj of the active model accumulates faster than that of 

the passive model and the difference between the phase of the passive and active 

model equals more than a quarter of a cycle. For frequencies above 1 kHz, the dif­

ference between the phase of Pj of the active and passive Neely model increases 

to about a half of a cycle and remains almost constant in the high frequency 

regIOn. 

Figure 4.8(b) shows the magnitude of the BM velocity of the coupled Neely 

model as a function of stimulus frequency. The passive BM velocity, calculated for 

,=0, increases for low stimulus frequencies and decreases in the high frequency 

region. The passive amplitude response has a broad tuning with a maximum 

of about 13 dB (re 1 ms-1) at 590 Hz. When the active gain is set to ,=1, the 

BM velocity becomes sharply tuned with the maximum at 1.01 kHz stimulus 

frequency and the amplitude enhanced to about 40 dB. In the low frequency 

region the amplitude of the active model's BM velocity increases with almost the 

same slope as that observed for the passive model, whereas for frequencies above 

1.01 kHz the BM velocity response decreases rapidly. 

Accumulation of the phase lag of the BM velocity depicted in Fig.4.8( d) in­

creases with the same rate for the passive and active case at low frequencies. 

Just below the CF, the phase lag of ~b derived for the active model of Neely, 

accumulates faster than for the passive model and the relative difference between 

the two phase responses increases from about a quarter of a cycle around the CF 

to more than a half of a cycle at high stimulus frequencies. 

It is interesting to note that the pressure difference and the BM velocity 

responses calculated for the coupled model of Neely [66] have generally the same 

characteristics as those derived for the coupled model of Keely and Kim [68]. 

Setting the active gain ,=1 causes a significant enhancement of the amplitude 

of the response, which also becomes more sharply tuned in comparison with 

the passive responses calculated for ,=0. However, the low-frequency shoulder 

or a local 'dip' below the characteristic place or CF in the BM velocity, and the 

corresponding phase plateau in the same cochlear/frequency region, was observed 
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only for the model of Neely and Kim, as shown in FigA.3 and 4.4. The phase 

lag of the pressure difference and the BM velocity, accumulates gradually in the 

basal region of the cochlea or at lower stimulus frequencies in the Neely model, as 

shown in Fig.4.7 and 4.8, respectively. However, the phase accumulation of the 

pressure difference and the BM velocity calculated for the Neely and Kim model, 

exhibit a fast accumulation in the narrow region around the characteristic place 

or the CF, being roughly constant outside of that region. 

The passive (,=0) velocity responses of the BM and TM of the coupled co­

chlear model of Neely [66], are shown in Fig.4.9. The TM velocity was derived 

in a similar way as for the plot in Fig.4.5 (a, c) for the Neely and Kim model 

[68], i.e. by multiplying the passive BM velocity shown in Fig.4.8(b) by the ratio 

of the TM and BM velocities, \It/Vb, defined in Eq.3.6.12 for the model of ;.Jeely. 

Both responses were plotted as a function of frequency for the fixed position along 

the cochlea, equal to 0.0189 m. Note that because the TM is forced into motion 

by the displacement ~c, we cannot easily predict the TM velocity of the coupled 

model when the Neely model is active. 

Figure 4.9(a) reveals that the velocity amplitudes of the BM and TM are qua­

litatively comparable in the entire examined frequency range, but the magnitude 

of the TM velocity is slightly lower than the magnitude of the velocity of the 

BM. The peak of both the BM and TM velocity occurs at the same stimulus 

frequency of 590 Hz. The phase responses of the BM and TM velocity shown 

in Fig.4.9(b) remain almost equal through the whole frequency range and reach 

about two cycles phase lag at the frequency of the maximml1 velocity amplitude 

shown in Fig.4.9(a). 

4.4 Comparison with the results of experimen­

tal measurements 

Measurements of the relative motion of the BM and the TM have been pre­

sented by Gummer et al. [40] and Hemmert et al. [43]. In both experiments the 

BM and TM vibration response was measured in the apical turn of the guinea 

pig cochlea. Gummer et al. used a novel measurement set-up to measure the res-
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Figure 4.9: Magnitude and phase of the frequency response of the basilar mem­
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ponses to electrical and acoustic stimulation in the radial and vertical directions, 

while Hemmert et al. developed a measurement set-up to allow vibration res­

ponse measurements in three dimensions, i.e. longitudinal, radial and vertica13 , 

and used only acoustical stimuli [40, 43]. 

The vibration responses obtained experimentally can be compared with those 

calculated using the models considered above. Because only the acoustical stimu­

lation was considered in the previous sections, we will concentrate on comparison 

with the results for acoustic stimuli in the experiments of Gummer et al. To 

begin with we describe the experimental protocol and results presented in [40]. 

4.4.1 Experiment of Gummer et ai. [40] 

In their 1996 experiment Gummer et al. [40] used two paradigms. Firstly, 

they measured the transverse component of vibrations in response to electrical 

stimulation by current injection just above the site of measurement in the scala 

vestibuli of the cochlea, to investigate the resonant motion of the TM and lo­

cate the resonant frequency of the BM. In this case the stimuli corresponded to 

sinusoidal forces, exerted by the OHCs on the cilia/TM and Deiters' cell/BM 

complexes. The positive current injection was thought to simulate the hyperpo­

larisation of the hair cell, hence its elongation, so that the BM and the TM were 

displaced in the scala tympani and vestibuli directions, respectively. 

Secondly, an acoustic stimulation, corresponding to the excitation by the co­

chIem' fluid pressure difference between the cochlear chambers that induces the 

vibrations of the CP, was used to excite the velocity in the transverse direction 

and displacement in the radial direction of the cochlea [40]. Gummer et al. note 

that the acoustic responses, which were referred to the sound pressure near the 

tympanic membrane, were not corrected for the middle ear response because mea­

sured response of the stapedial crux was found to be frequency-independent up 

to 2kHz. 

Isolated temporal bone preparations of the guinea pig cochleae were used in 

30nly measurements in the radial and transverse directions were simultaneous, whereas 

the measurement set-up was rotated by 90 degrees to allow measurements in the longitudinal 

direction [4:3]. 
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the experiments. The helicotrema remained intact and the Reissner's membrane 

was opened to place reflective microspheres on the TM for all measurements and 

on the BM for measuring the electrically induced vibration response [40]. The 

vibrations were recorded about 20 minutes post mortem, usually in the fourth 

cochlear turn at the site of about a quarter of a turn distance from the third 

turn or approximately 2.3 mm from the apex of the cochlea4 [40]. Figure 4.10(a) 

shows the measurement conditions in the experiment of Gummer et al., where 

the angles indicated in the figure can be seen in the organ of Corti in the basal 

part of the fourth turn of the guinea pig cochlea, a cross-section of which is shown 

in Fig.4.10(b) [40]. 

The RL of the preparation was reported to be inclined about 35° relative to 

the BM, the long axes of the OHC's about 55° relative to the RL, and the optical 

measurement system, which measured the vertical and radial vibrations and was 

constructed of a Laser Doppler Velocimeter (LDV in Fig.4.10), photodiode (PD) 

and a microscope (1Vl) , that was located above the organ of Corti. However, the 

data were not corrected to account for the nonparallel arrangement of the RL 

with the radial direction [40]. Furthermore, in the velocity measurements, the 

response of the TM was reported to be coupled with the response of the Hensen 

cells due to the TM attachment to these cells. 

As reported by Gummer et al., major differences in the responses of the BM 

and the TM were revealed in the results of current injection experiments, but 

were not observed in the acoustic stimulation case [40]. The acoustically induced 

motion of the TM was observed to have a larger amplitude response than that of 

the BM, however, the frequency response curves had sin1.ilar forms for frequencies 

up to 1kHz, as reproduced in Fig.4.l1 A. The best frequency, defined by the 

largest response in the acoustic paradigm, was equal to 660 Hz. It was assumed 

to correspond to the resonance frequency of the BM, and it was estimated from 

the frequency at which the amplitude response started to decay rapidly. The TM 

resonance frequency was identified from the maximum at 450 Hz in the electrical 

4 According to the formula of Greenwood for the CF /place map of a guinea pig [39], 

CF=350(102.1x/ L _O.85) [Hz], where :); and L are the distance from the apex and the length of 

the cochlea in llun, the 2.3 mm site fi'om the apex corresponds to a CF of about 341 Hz. 
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Figure 4.10: Schematic of t he experimental set-up (a) and illustration of the cross­

section of t he guinea pig organ of Corti observed at the basal part of the fourth 

cochlear turn in the preparation used for the measurements of Gummer et al. [40] 

(b). 'I'he angles in (a) show the relative geometrical arrangement of the organ 

of Corti structures. The optical system consisting of the microscope (M), photo­

diode (PD) and the laser Doppler velocimeter (LDV) is located above the organ 

(BIVI-basilar membrane; DCs-Deiters' cells} Figure (b) reprinted from Fig.1 in 

Gummer, A. W., Hemmert , W. and Zenner, H.-P. (1996) "Resonant tectorial 

membrane motion in the inner ear: Its crucial role in frequency tuning," Pro­

ceedings of the National Academy of Sciences of the U.S.A., 93 , 8727-8732, with 

permission from the publisher. Copyright (1996) National Academy of Sciences, 

U.S.A. 
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stimulation response, Fig.4.l1C, which is half an octave below the best frequency. 

The phase of the BIVI and TM velocity due to acoustical stimuli did not show 

a significant difference, apart from the region around the best frequency and 

around 1 kHz where a difference of about half of a cycle can be observed, as 

shown in Fig.4.11 B. However, the phase response to electrical stimuli exhibited 

a half cycle difference between the BM and the TM motion at frequencies below 

250 Hz and above 900 Hz as depicted in Fig.4.11 D. Therefore, Gummer et al. 

argue that the mechanical resonance associated with the TM-cilia complex is 

responsible for the electrically induced tuning of the Tl'vl [40]. Furthermore, the 

electrical stimulation phase measurements were used to justify the definition of 

the best frequency corresponding to the site where the BM motion lagged the 

TIVI motion by a quarter of a cycle, as can be seen at the 600 Hz site in Fig.4.11 

D [40]. 

A minimum or antiresonance after the best frequency of 660 Hz, and the 

890 Hz maximum, can be observed in acoustically stimulated responses in Fig.4.11 

A. The second minimum, at 1 kHz, coincides with the phase plateau at this 

frequency as shown in Fig.4.11 B, and was assumed to indicate the end of the 

travelling wave motion [40]. However, the first antiresonance was assumed to be 

connected with the maxima at the best frequency and at 890 Hz, as could be 

predicted for a two resonator system of TM-cilia and BM-Deiters cells complex, 

or it could account for an internal antiresonance in the organ of Corti as suggested 

by Gummer et al. [40]. 

The displacement or velocity response of the cochlea to tonal stimuli measured 

by other authors, usually decays rapidly after the peak in the response, with 

no additional antiresonances or resonances beyond that point (see e.g. [87]). 

The rapid fall-off of the travelling wave coincides with a phase plateau observed 

in this corresponding frequency region [85, 86]. However, in the responses to 

acoustical stimuli recorded by Gummer et al., a phase plateau can be observed 

in Fig.4.11 B above around 1 kHz which coincides with the frequency of the 

secondary antiresonance observed in Fig.4.11 A. The antiresonances in Fig.4.l1 

A are probably the result of opening the cochlea when the hole in the cochlear wall 

was made for the vibration recordings. This was pointed out in the later paper 
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Figure 4.11: Experirnental results of Gummer et oJ [40]. The upper panels, 

A-B, show the transverse velocity response of the basilar membrane (BIVl, 0) 

and the tectorial membrane (TJ'd, \7) for the acoustic stimulation, whereas the 

lower, C-D. show results for the current injection paradigm. The arrows indicate 

the estimated basilar (solid) and tectorial membrane's (dashed) resonance fre­

quencies. R.eprinted from Fig.2 in Gummcr, A. \V., Hemmert, \V. and Zenner, 

H.-P. (1996) "R.esonant tectorial membrane motion in the inner ear: Its crucial 

role in frequency tuning," Proceedings of the National Academy of Sciences of 

the U.S.A., 93, 8727-8732, with permission from the publisher. Copyright (1996) 

National Acaderny of Sciences, GSA. 
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of the same authors, Hemmert et al. [43], where the vibration recordings were 

corrected, using a technique described in [42], for the open cochlea condition. 

Such antiresonances, also referred to as the 'mid-frequency notches', were also 

observed by other authors in the displacement responses to acoustic stimulus 

measured in an unsealed cochlea [10, 18]. 

A second series of experiments was carried out by Gummer et al. [40] to 

measure the two-dimensional motion of the TM. The velocity and displacement 

of the acoustically driven TM vibrations were measured in the transverse and 

radial directions, respectively. The amplitude and phase response revealed at 

least two DOF of the TM vibration as can be seen in Fig.4.12 A. However, only 

a single DOF was said to be observed in the BM vibration in this experiment5
. 

The trajectories plotted in Fig.4.12 A show that the dominating radial com­

ponent is almost parallel to the RL, and assumed by Gun1.mer et al. to correspond 

to the radial (translational) motion of the TM for frequencies from 360 to 670 Hz 

[40]. Additionally, the peak observed at about 500 Hz coincides with the antire­

sonance in the transversal component, about 0.4 octave below the best frequency 

for this experiment, which was reported to be about 735 Hz [40]. Similarly, the 

second peak in the radial component's response curve was observed together with 

a shallow antiresonance of the transverse component at the frequency of 908 Hz. 

The observed mid-frequency notches, as well as any additional resonance peaks 

and antiresonances in the above results, are probably the effect of the unsealed 

cochlea condition [43]. Finally, it was reported that the recording angle influenced 

the depth of the antiresonances in such a way that an anticlockwise, 30° rota­

tion of the preparation gives a shallower antiresonance of the velocity response in 

the transverse direction together with an increased accumulation of phase in the 

corresponding phase response [40]. This is shown by the dotted lines in Fig.4.12. 

5Tlle 13M vibration was reported to be orthogonal to the BlVr [40]' hence we assume it was 

the transverse vibration that was measured in this series of experiments. However, the data of 

the BlVI vibrations recording were not illustrated, nor were the results discussed in the paper. 
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Figure 4.12: The amplitude and phase of the transverse (T) and radial (R, 0) 

motion of the tectorial membrane measured by Gummer ct at. [40] for acoustic 

excitation. The arrow indicates the best frequency, equal to 735 Hz, and the inset 

in sllbfigure A shows the trajectories calculated from the amplitudes and phases 

of both components. Dotted lines indicate the TII.I transverse response if the 

preparation ,;vas rotated .30 0 counterclockwise. Reprinted from Fig.3 in Gummer, 

A. \V., Hemmert, VV. and Zenner, H.-P. (1996) "Resonant tectorial membrane 

motion in the inner ear: Its crucial role in frequency tuning," Proceedings of the 

National Academy of Sciences of the U.S.A., 93, 8727-8732, 'with permission from 

the publisher. Copyright (1996) National Academy of Sciences, U.S.A. 
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4.4.2 Experiment of Hemmert et al. [43] 

Hemmert et al. used the same experimental set-up as in [40], however, the 

measurement system could be rotated by 90 degrees to allow recordings in the 

third, longitudinal direction (orthogonal to radial and transversal directions in 

Fig.4.10). The temporal bone preparations of the guinea pig cochlea were used 

for the measurements. The cochlea was opened at a distance of 2.3 mm from the 

apex of the cochlea and the vibrations were recorded after delivering a sound sti­

mulus to the ear canal [43]. The responses were corrected for the sound pressure 

measured near to the eardrum and given relative to 60 dB SPL, and polystyrene 

micro spheres were placed on the TM and BNI because of the low contrast of these 

structures. Finally, contrary to the measurements of Gummer et al. that contai­

ned unsealed cochlea condition artefacts, the recordings in [43] were corrected 

off-line, using a procedure described in [42], to account for the opening in the 

apex of the cochlea. This was done to remove a so-called fast-wave component 

from the recordings, so that the characteristics of the response refer only to the 

slow-wave component, which corresponds to the travelling wave response of the 

CP [18,43]. 

Hemmert et al. measured the vibrations on microspheres, which were attached 

to either: the Claudius cell on the surface of the BM, the Hensen cell located 

close to the OHC and another Hensen cell (to examine differences in recordings 

from different animals), and the top of the TM [43]. However, we will consider 

only the results of measurements on the BM and TM, as relevant to the models 

investigated in Sections 3.4 and 3.6. 

Figure 4.13 depicts the velocity amplitude and phase of the BM measured in 

three orthogonal directions, longitudinal (full squares), radial (full circles) and 

transversal (open symbols). Note that the transversal component was measured 

three times during the whole recording session, i.e. once at the beginning of the 

measurement (inverted triangles) and hvice at the end, after all three orthogonal 

components were measured. This was done to document the preparation's 'sta­

bility', where the final control measurements of the transversal component were 

carried out using a multitone signal (diamonds) and band-limited white noise (tri­

angles). After the first measurement of the BM transversal component (inverted 
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triangles in the figure; using LDV and band-limited white noise), the longitudinal 

(full squares; PD and multitone signal), radial (full circles; PD rotated by 900 

and multitone signal) and two control transverse (1. diamonds; LDV and mul­

tit one signal, 2. triangles; LDV and band-limited white noise) components were 

measured after 5, 7, 12 and 14 mins, respectively [43]. 

The phase responses were plotted against the linear frequency range, to em­

phasise pure delays as straight lines in the response [43]. The magnitudes of all 

velocity components shown in Fig.4.13 A, reveal a single resonance peak. The 

transversal and radial components were reported to be tuned to about 590 Hz 

(indicated by the arrow in the figure), and the longitudinal component to about 

700 Hz (arrowhead in the figure) 6 , where the frequency of 590 Hz was estimated 

as the one from which the response began to decay rapidly [43]. 590 Hz is referred 

to as the characteristic frequency (CF), and Hemmert et al. reserved the term 

'CF' for the transversal component7
. There is no significant difference between 

the three transversal magnitude curves. However, a difference of about 15 dB can 

be noticed between the magnitude of the radial and transversal components, and 

the magnitude of the longitudinal component is about 6 dB lower than that of 

the transversal component, for frequencies below the CF [43]. The trajectory of 

the motion, which was reconstructed from the amplitude and phase data of the 

BM vibration in three directions, is presented in Fig.4.14. 

Elliptical projections of the motion in the radial-transversal plane are almost 

rectilinear with the major axis of about 80 0
• The projections in the longitudinal­

transversal plane (Fig.4.14 B) were more opened, with the axis of 1160 for all 

frequencies [43]. Because, the BM was inclined at _60 to the radial axis and at 

6Hemmert et a/. state that the distance of 2.3 rnm from the apex corresponds to the cochlear 

location of 16llHl1 according to von Bekesy [8], so that the length of the guinea pig cochlea is 

equal to L=18 .. 3 mm and lJot 18.5lTlUl as given in [39]. Thus, the CF at 2.:3 mm from the 

apex is equal to 350(102. b) L -0.85 );::::;:345 Hz [:39], which is not signitlcantly diff'erent from the 

CF calculated for L=18.:5 mm, ;::::;:3/10 Hz, especially at the apical side of the cochlea where the 

tuning is broader compared to that in the basal region. However. it is still signitleantly smaller 

than the rnaximum of the transversal velocity component, i.e. 5DO Hz measured in [43]. 
7Xote that the travelling wave is a longitudinally propagating transverse difiplacement of the 

CP, and thus corresponds to the measured transversal velocity component at a fixed position 

along the cochlea. 
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Figure 4.13: Amplitude (A) and phase (B) of the transversal (inverted triangles, 

diamonds, triangles), radial (full circles) and longitudinal (full squares) com­

ponents of the basilar membrane velocity, measured by Hemmert et al. [43]. 

Additional transversal component's magnitude curves (diamonds and triangles), 

were plotted to document the 'stability' of the preparation (L167). Note that the 

phase was plotted against a linear frequency range, to emphasise pure delays by 

straight lines. The arrows indicate the assumed characteristic frequency of the 

transversal and radial component, ~590 Hz, and the arrowhead the frequency of 

the maximum of the longitudinal component ~700 Hz. Reprinted from Fig.3 in 

Hemmert, \V., Zenner, H.-P. and Gammer, A. W. (2000) "Three-dimensional 

motion of the organ of Corti," Biophysical JournaL 78, 2285-2297, with perrnis­

sion from the publisher. Copyright (2000) Biophysical Society. 
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Figure 4.14: Trajectories of the basilar membrane motion in the radial-transversal 

(A) and longitudinal-transversal plane (B) for different stimulus frequencies, re­

constructed from the velocity's amplitude and phase data in Fig.4.13 [43]. The 

symbols on the ellipses denote (circles) and !;=T / 4 (triangles), which were 

used to determine the direction of motion. The dotted lines on the coordinate 

systems show the inclination of the basilar membrane with respect to the radial 

(A, _6°) and longitudinal (B, 8°) axis. Reprinted from FigA in Hemmert, VV., 

Zenner, H.-P. and Gummer, A. VV. (2000) "Three-dimensional motion of the 

organ of Corti," Biophysical .Journal, 78, 2283-2297, with permission from the 

publisher. Copyright (2000) Biophysical Society. 
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8° to the longitudinal axis in this preparation, the motion was almost orthogonal 

to these axes, which implies that the motion was orthogonal to the EM surface 

for all frequencies [43]. 

The transverse and radial component of the TM vibration, measured at the 

same position in the cochlea but in a different preparation, is shown in Fig.4.15. 

The transverse component was measured three times, where the second (control, 

multitone) and third (control, band-limited white noise) measurement was done 

after the measurement of the radial component. The transversal component was 

measured first using the LDV and band-limited white noise (triangles), then, 

after 13 min, the radial component (PD, multitone; full circles), and finally, after 

15 min and 16 min, the control transverse components (LDV; diamonds, inverted 

triangles) [43]. 

It can be seen from Fig.4.15 A, that the amplitude of control measurements 

of the transversal component (diamonds, inverted triangles) decreased over the 

entire frequency range by about 7.6 dE relative to the first measurement, although 

the phase is relatively unchanged. Hemmert et al. report that the transverse 

vibration was tuned to 650 Hz, whereas the maximum of the radial component was 

observed at 550 Hz. For frequencies well below the CF, the relative phase between 

the radial and transversal components was small. About half an octave below 

the characteristic frequency of the transversal component (~490 Hz), however, 

the relative phase began to increase reaching 60 0 around the CF, 608 Hz. Thus, 

the motion trajectories, reconstructed from the TM's velocity magnitude and 

phase data, change from being almost rectilinear well below the CF, to become 

nearly circular in the vicinity of the CF as shown in Fig.4.16. Therefore, there is 

a component of motion at higher frequencies, almost parallel to the RL (ellipses' 

major axis to the radial axis ranged between 60 and 700 for 200-700 Hz, where 

the RL was inclined about 1450 with regard to the radial axis). This mode of 

vibration is assumed to appear for frequencies from above half an octave below 

the CF [43]. 
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Figure 4.15: Anlplitude (A) and phase (B) of the transversal (triangles, diamonds, 

inverted triangles) and radial (full circles) components of the teetorial membrane 

velocity, measured by Hemmert et al. [43]. Additional transversal component's 

magnitude curves (diamonds and inverted triangles) were measured after 1.:5 and 

16 minutes to document the 'stability' of the preparation (L131). Likewise in 

FigA.13 the phase was plotted against a linear frequency range, to emphasise 

pure delays by straight lines. The arrows indicate the assumed characteristic 

frequency of the transverse component, ;:::;650 Hz, and the arrowheads indicate 

the frequency of the maximum of the radial component, .;:::;550 Hz. Reprinted 

from Fig.9 in Hemmert, ,V., Zenner, H.-P. and Gummer, A. \V. (2000) "Three­

dimensional motion of the organ of Corti," Biophysical Journal, 78, 228.5-2297, 

with permission from the publisher. Copyright (2000) Biophysical Society. 
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Figure 4.16: Trajectories of the tectorial membrane motion in the radial­

transversal plane for different stimulus frequencies, reconstructed from the ve­

locity's amplitude and phase data in FigA.15 [43]. The symbols on the ellipses, 

used to determine the direction of motion, denote (circles) and t=T / 4 (tri­

angles). The dotted line on the coordinate system shmvs the inclination of the 

reticular lamina, 145°, the ba::;ilar membrane was almost horizontal in this pre­

paration. Reprinted from Fig.10 in Hemmert, \V., Zenner, H.-P. and Gummer, 

A. \V. (2000) "Three-dimensional motion of the organ of Corti," Biophysical 

Journal, 78, 2285-2297, with permission from the publisher. Copyright (2000) 

Biophysical Society. 
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Comparison with the models 

Although, the results obtained by Gummer et al. appear to be contaminated 

by the artefacts due to the unsealed cochlea condition [18], the same authors state 

in their later article [43] that the main conclusion of their experiment remains the 

same, i.e. a second vibrational degree of freedom can be observed in the TM's 

motion, and that this result is consistent with that obtained in [43]. Hemmert et 

al. conclude that the organ of Corti is vibrating as a rigid body, whose motion 

is driven by the BlVI, at least up to the CF [43]. Furthermore, the rigid organ of 

Corti rotates about the point near the spiral limbus in the way shown in Fig.2.1O. 

However, a somewhat different observation was made by Reuter and Zenner 

111 1990 [84], who excited the organ of Corti of pigmented guinea pigs with an 

electrical field and reported that active forces from ORC induced a transverse 

motion of the RL, but also a radial displacement of the cuticular plates of the 

OHC. Additionally, Reuter and Zenner found that the coupling between the OHC 

and IHC is weak due to compliance in the RL region [84]. Rigid body motion of 

the organ of Corti also contradicts the results of Fridberger and de Monvel [31], 

who observed different points of rotation for the RL (point close to the IHC or on 

the prolongation line of the RL's long axis) and for the Bl'vf (feet of the inner pillar 

cells or under the fibres contacting the IHC) after the sound stimulation of the 

guinea pig cochlear explants. The results of Reuter and Zenner and Fridberger 

and de Monvel reveal an internal shearing within the organ of Corti, in opposition 

to the rigid body motion observed by Hemmert et al. 

Despite the open cochlea condition artefacts and inconsistency with results of 

other experiments, the BM and TM vibration measurements of Gummer et al. 

[40], and Hemmert et al. [43], seem to be suitable for comparison of the BM and 

TM vibrations examined for the models of Neely and Kim [68] (Section 3.4) and 

Neely [66] (Section 3.6). 

In the first instance, it has to be emphasised that the experiments of Gummer 

et al. and Hemmert et al. were carried out on the guinea pig cochlea, whereas 

the model of Neely and Kim and the model of Neely simulate the mechanics of a 

cat cochlea. Thus the comparison will be mainly qualitative, indicating the main 

features of the observed frequency responses. Also the rneasurements were taken 
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close to the apex of the cochlea, whereas the predictions were calculated for a 

position some way along the cochlea. 

The calculated responses of the ::'-J eely and Kim model and the Neely model are 

relevant only to the responses obtained for the acoustic stimulation paradigms 

in the experiments of Gummer et al. shown in Figs.4.11 A, Band 4.12 [40]. 

Although some active component of the OHC activity is presumably still present 

in the preparations, since they respond to electrical stin1Ulation, the lack of a 

sharp peak in the responses suggests that measurements would be best compared 

with the passive cochlea simulations. 

To begin with, we compare the experimental results of Gummer et al. in 

the transverse direction with the BM and TM velocity responses derived for the 

passive model of Neely and Kim [68], shown in Fig.4.5 (a, c), and the passive 

model of Neely [66], shown in Fig.4.9. 

The BM and TM velocity calculated from the models differs significantly 

from the acoustically stimulated responses measured by Gummer et al., shown in 

Fig.4.11 A, since the responses fall off rapidly after the main peak. No additional 

peaks and notches were observed in the modelled response, which supports the 

idea that those in the measured responses are due to the artefact of the unsealed 

cochlea preparation. 

The phase curves of the modelled BM and TM velocity shown in Fig.4.5(c) are 

nearly equal at low frequencies, as are the phase responses measured by Gummer 

et al. shown in Fig.4.11 B. For frequencies higher than the TM resonance in the 

passive Neely and Kim model, the phase of the modelled TM velocity becomes 

lower than the phase of the modelled BM velocity, which can also be seen in 

the measured phase responses to sound stimulation above the estimated TM 

resonance frequency as shown in Fig.4.11 C. The phase response of the Neely 

model, Fig.4.9, does not show this phase difference. 

The modelled responses of both the passive model of Neely and Kim and that 

of Neely are in better qualitative agreement with the result obtained by Hemmert 

et al. [43], in Figs.4.13 and 4.15, because the measured responses were corrected 

for the open cochlea condition. 

The velocity of the TM calculated for the Neely and Kim model seems to 
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be more sharply tuned than that of the BM as can be seen in Fig.4.5(a), which 

can be also seen for the transversal components of the BM and the TM measured 

response in Fig.4.13 A and 4.15 A. The amplitude of the TM's velocity transversal 

component shown in Fig.4.15 A appears to be slightly smaller than the amplitude 

of the BM one in Fig.4.13 A (although these measurements were not made on the 

same preparation), which is comparable with the modelled responses shown in 

Fig.4.5(a) for all frequencies except the region of the TM's response maximum. 

It appears from Figs.4.13 Band 4.15 B, that the BM and TM phase responses 

measured by Hemmert et al., are almost equal in the low frequency region up to 

between 400-500 Hz beyond which the TM phase lag is smaller than the phase lag 

ofthe BM until the high frequency limit. Figure 4.5( c) shows also a relative phase 

difference from about 400 Hz to the upper frequency limit, but in the modelled 

case the TM phase lag is larger than that of the BM phase response. 

The BM and TM velocity calculated for the Neely model, shown in Fig.4.9(a), 

are broadly tuned and the frequencies of the maxima in these curves are equal. 

The phase of the BM and the TM velocity of the Neely model shown in Fig.4.9(b) 

are also almost equal for all stimulus frequencies. 

From this limited comparison it would appear that the Neely and Kim [68] 

model more accurately predicts the measured results than that of Neely [66]. 

The comparison does, however, highlight the difficulties of defining the conditions 

under which the measurements are made, to ensure that the modelled conditions 

are similar. 

4.5 Discussion 

In this chapter the coupled responses of Neely and Kim's [68] and Neely's [66] 

models were examined. The coupled TM velocity was calculated using the BM 

velocity responses and the ratio of mobilities derived for both models in Chapter 

3. The coupled velocity of the BlVl and TM was compared with the velocity 

responses of these structures measured by Gummer et al. [40] and Hemmert et 

al. [43]. 

The pressure difference and the BlVl velocity of the Neely and Kim model and 
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the model of Neely, exhibit a sharply tuned peak at the characteristic place or 

CF when the model is active. The tuning of the passive models is broad and 

the maximum of the passive responses is shifted towards basal positions along 

the cochlea or lower frequencies with respect to the maxima of the active models. 

Also the phase lag accumulation for the active models is faster than that observed 

for the passive models above the characteristic place and CF. 

It was shown that the tuning of the active Neely model is sharper than that of 

the active Neely and Kim model. This coincides with a steeper phase responses 

in the Neely model with regard to the phase responses of the Neely and Kim 

model. Also the phase of the active Neely and Kim model exhibits a pha3e lead 

in the vicinity of the characteristic place or CF which coincides with a notch 

in the active BM velocity below the peak. This was not observed in the Neely 

model due to the fact that the damped resonances in the passive mobility of the 

Tl\l and BM of the Neely model (Fig.3.24(b)) occur at alnlOst the same stimulus 

frequency, whereas the maxima of the passive mobility of the TM and BM of the 

Neely and Kim model (Fig.3.14(b)) are well separated and must produce a local 

notch when the coupled response is calculated. 

Comparison of the BM and TM coupled velocities reveals that both responses 

are broadly tuned and comparable in magnitude in the whole frequency range 

in the passive Neely model. The amplitude maxima of the BM and TM velocity 

nearly coincide with each other. This is in contrast to the BM and TM velocity 

responses observed for the passive Neely and Kim model in which the BM ma­

gnitude has no distinctive peak but a broadly tuned peak can be observed in the 

TM velocity. The maximum of the BM velocity is at higher frequency then the 

maximum of the TM velocity in the passive Neely and Kim model. There is no 

observable difference in the passive phase responses of the Neely model. However, 

the phase of the TM velocity lags that of the BM velocity for frequencies higher 

than the frequency of the magnitude peak of the TM velocity for both the passive 

and active model of Neely and Kim. 

The agreement of the passive coupled BM and TM velocity responses with the 

results of Gummer et al. [40] is poor since their measurements were contaminated 

by the unsealed cochlea artefact. However, the calculated BM and TM velocities 
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are in good qualitative agreement with the velocities of these structures measured 

by Hemmert et al. [43]. It was shown that the Neely and Kim model predicts 

the results obtained by Hemmert et al. more accurately than the model of Neely. 

However, the accuracy of such a comparison depends on compatibility of the 

model's and measurement's conditions. 
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Chapter 5 

Stability and nonlinearity in 

lumped micromechanical models 

Classical models of cochlear micromechanics often represent the active mecha­

nism using a form of control system operating within the cochlea [32, 34, 65, 68] as 

first suggested in 1948 by Gold [37]. An important feature of a feedback controller 

is its stability [69], which is considered here for various isolated micromechanical 

models. 

The response of the cochlea is also known to possess nonlinear properties (as 

discussed in Section 2.3). Although it is difficult to reproduce all nonlinear phe­

nomena in one comprehensive model, these phenomena have to be taken into 

account in any model to give a complete picture of cochlear function [1, 68]. The 

quasi-linear model of Kanis and de Boer [47] provides a simple method of ac­

counting for the compressive nonlinearity of the micromechanics and is extended 

in this chapter to include the model of Neely and Kim [68], for consistency with 

the work above. 

5.1 Stability in the model of Neely and Kim 

In the model of Neely and Kim [68], active processes (the cochlear amplifier) 

responsible for the sharp tuning and high sensitivity of the cochlea are represented 

by an additional pressure source. After being stimulated by the deflections of the 
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OHCs cilia, the active pressure source pumps energy locally into the system, 

i.e. undamps the BM vibrations by adding negative damping to the partition's 

impedance close to (just basal to) the characteristic place [68]. Neely and Kim 

assume a frequency-dependent phase shift between the active pressure Pa and the 

velocity of the OHCs stereocilia, ~c [68], which is represented by the impedance 

Z4 in Eq.3.3.6. The displacement ~c, and hence the velocity ~c, of the OHC 

stereocilia is a consequence of shearing between the TM and the BM, driven by 

the acoustic pressure Pd. In other words the cilia velocity ~c is the output of the 

passive two DOF system subject to an input of cochlear pressure difference Pd. 

Thus, the active force, Pa , which is also dependent on the output ~c and 'fed back' 

to the system with a phase shift of Z4, will close a loop of the active two DOF 

system. This can be represented by a classical feedback diagram as shown in 

Fig.S.I, in which G is the passive response from the cochlear pressure difference 

to cilia velocity, and H is the feedback path corresponding to the impedance Z4 

in the Neely and Kim model [68]. It should be noted that the proposed diagram 

represents a system with a negative feedback loop, since the active pressure has 

the opposite direction to that of the pressure difference Pd. 

Pd+~ 
- , 

G 
~c 

Pa 

H 

Figure S.l: Block diagram of the feedback loop representing the active component 

in the model of Neely and Kim [68]. The acoustic pressure difference excitation, 

Pd , is the input and the stereocilia velocity ~c the output of the feedback loop. 

G and H denote the plant and the controller, respectively, which can be derived 

from the equations of motion for the t.wo degree of freedorn micromechanical 

model in Fig.3.6. 

Figure 5.2 depicts the block diagram of the two DOF system proposed by 

Neely and Kim with indication of the feedback loop acting between the BM and 
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5 Stability and nonlinearity 5.1 Neely and Kim model 

TM. In the figure the shear velocity between the RL and TM, ~c , is 'sensed' and 

delivered to the input of t he impedance Z4 which feeds back the active pressure 

to the system. Thus, the active pressure Pa is controlled and shifted in phase 

with regard to the radial shearing velocity ~c by the impedance Z4, and either 

counteracts or reinforces the transverse pressure difference Pd' 

~t 

--w-----, t ?+ I· .... ·T ....... ] 

:----' l .. ::::Y.:?:~ .. 
.---'-__ ..L-----.C''-----'';' -p: -----

Figure 5.2: Lumped component system proposed by Neely and Kim [68] with 

indication of the feedback loop. The element - I' Z4 accounts for the phase shift 

between the active pressure Pa and output velocity ~c, where ')' represents the 

control of the model in a 'global ' sense corresponding to the condition of the 

cochlea [68] . 

To derive the expressions for the plant G and the controller H of the feedback 

loop in Fig,5.l we use the equations of motion, Eqs.3.3.4 and 3.3.5, for the two 

DOF micromechanical system proposed by Neely and Kim in Fig.3.6 [68]. Since 

the shear velocity ~c(x) is the output of the control loop we differentiate Eq.3.3.3 

with respect to time, so that 

(5.1.1) 
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5 Stability and nonlinearity 5.1 Neely and Kim model 

(0.1.2) 

From the equation of motion for the second degree of freedom, Eq.3.3.0, we 

know that 

. Z3 . 
~t(x) = Z2 ~c(x), (0.1.3) 

which after substituting to Eq.o.1.2 gives 

(0.1.4) 

Substituting the above equation and the expression for the active pressure Pa 

in Eq.3.3.6 to the equation for the first degree of freedom of the system (Eq.3.3.4), 

gIVes 

. Zl(Z2 + Z3) . . 
Pd(x) - (-IZ4)~c(X) = Z2 ~c(x) + Z3~c(X), (5.1.5) 

or equivalently 

Pd(X) - (-IZ4)~C(X) = Zl(Z2 + ~:) + Z2
Z

3 ~c(x). (5.1.6) 

Dividing Eq.5.1.6 by the fraction on the right-hand side gives 

Z2 Z2 ., ~ 
Zl(Z2 + Z3) + Z2 Z3 Pd(X) - Zl(Z2 + Z3) + Z2 Z3 ~ ~c(x) = ~c(x), (0.1.7) 

" v I , V ,/ H 
G G 

where G denotes the plant and H the controller of the feedback loop. Thus, 

(5.1.8) 

therefore 

(5.1.9) 

1 For clarity, \ve only write explicitly the dependence of variables on :£ although. apmt from 

the lever gain g, they also depend on the stimulus w. 
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5 Stability and nonlinearity 5.1 Neely and Kim model 

which appears in the form of a classical negative feedback system [19], where G 

and H are functions of wand x, and are formulated in Eq.5.1.7. 

\Ve will examine the stability using the Nyquist stability criteTion, i.e. by 

plotting the polar plot of the open loop response G(jw)H(jw), only for single 

isolated systems. In general, since both G and H are functions of x, the stability 

of each closed feedback loop representing particular place along the cochlea has 

to be tested separately to give reliable mobility responses as those calculated in 

Chapter 32
• 

The closed loop under investigation is a negative feedback system, and it 

can be seen that it becomes unstable when the denominator on the right-hand 

side of Eq.5.1.9 is equal to zero, that is when G(jw)H(jw) is equal to -1. In 

terms of the Nyquist stability criterion, the denominator of the transfer function 

in Eq.5.1.9 reaches its root when the Nyquist plot of the open loop response 

encircles the point (-1,0) in the complex plane [69]. The :"Jyquist plots are plotted 

at three chosen positions along the cochlea and for frequencies, w, ranging from 

109 rad S-l to 109 rad S-l. Furthermore, since the controller's gain depends on 

the active gain /, the Nyquist plots at each chosen position, have been calculated 

for four values of gain, i.e. /=1, 1.1, 1.2 and 1.3. 

The Nyquist plots shown in Fig.5.3 reveal that the negative feedback systems 

in the Neely and Kim model [68], are conditionally stable, that is, the systems are 

only stable below some gain limit, specific to each position along the cochlea. It 

can be noted that the gain limit increases with the distance from the stapes, i.e. 

the Nyquist plot evaluated at 0.0135 m, 0.0185 m and 0.0235 m almost enclose the 

(-1,0) point for the gain of 1.11, 1.21 and 1.49, respectively. Furthermore, the 

:"Jyquist plots evaluated at the cochlear sites and for corresponding gain limits 

given above, cross the real axis, i.e. I m{ G(jw )H(jw )}=O, at frequencies of about 

3.26kHz, 1.11 kHz and 374Hz, going from the base towards the apex of the co­

chlea. Thus, the frequency responses of the Neely and Kim model [68], calculated 

at these positions and their corresponding gains, will reach their maximum. The 

cochlear amplifier thus operates closer to instability near the base than the apex 

2 All models considered earlier in the thesis were checked as stable, apart from the modified 

model of .\feely solved for as shown in Fig.3.27. 
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Figme 5.3: Nyquist plots of the isolated feedback loops calculated at ;[=0.0135 

(more basal site; a), 0.0185 (dmracteristic place [or 1 kH~ stimulus frequency; b) 

and 0.023.5m (apical site; c), derived for the Neely and Kim model [68]. The 

active gain. " was set to 1 (fully active; bold solid), 1.1 (feint solid), 1.2 (dashed) 

and 1.3 (dotted). The cross indicates the (-1,0) point of singularity and the 

arrows the direction of the increasing positive and negative frequency. 
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5 Stability and nonlinearity 5.2 Model of Neely 

for a fully active, , Neely and Kim model, hence the enhancement of the 

model's response is highest at the base of the cochlea or for high stimulus fre­

quencies. Such behaviour of the model is consistent with the cochlear responses 

measured experimentally, where the highest sensitivity of the cochlea is observed 

in its basal regions or for high CFs [87]. 

The existence of spontaneous oscillations in the inner ear, known as sponta­

neous otoacoustic emissions, accompanied by the corresponding BNI vibrations 

[87], suggests that the cochlea is not always stable. It has to be noted that in 

reality the response of a healthy cochlea was found to be profoundly nonlinear in 

the basal (high CF) regions (see Section 2.3), so that the amplitude of any insta­

bility would not continue to grow exponentially, as it would in a linear system, 

but would be limited to a low amplitude. 

5.2 Stability in the model of Neely 

In this section the feedback loop for the model of Neely [66] is first defined, 

followed by the derivation of the corresponding equations defining the loop's 

components. Finally, the Nyquist plots calculated for the parameters selected by 

:Neely, as shown in Table 3.2, are examined. 

The major difference between the two models discussed here is that the acti­

vity in the model of Neely [66] is represented by an active displacement due to 

the contraction of the ORC and not the active pressure as in the Neely and Kim 

model [68]. The contraction of the hair cell body is triggered by the shearing dis­

placement of the cilia ~o, therefore the output of the feedback loop in this model 

is the shearing velocity ~o. This velocity controls the somatic motility, where we 

assume that the positive direction of the cilia motion, towards the tallest cilia 

of the bundle, produces the contraction of the ORC body and thus the active 

displacement ~c subtracts from the displacement of the BM, E,b. 

We use the equations of motion as derived in Section 3.5 to formulate the 

transfer function of the closed loop response in the II:lOdel of Neely [66]. From 
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Eq.3.5.3, we know that 

(5.2.1) 

however, 

E,r = E,o + ~t, (5.2.2) 

according to Eq.3.5.2, and hence, knowing that 

. Zo' 
~t = Zt ~o, (5.2.3) 

from Eq.3.5.16 for the second degree of freedom, substituting to Eq.5.2.1 gives 

Zt + Zo' . 
Z ~o + ~c· 

9 t 
(5.2.4) 

From the relationship between the active displacement E,c and the shearing 

displacement of the cilia ~o in Eq.3.5.1 we can write 

(5.2.5) 

so that 

(5.2.6) 

Substituting the above equation to the equation of motion for the first degree 

of freedom of the system in Fig.3.16 (Eq.3.5.13), gives 

(5.2.7) 

and 

(5.2.8) 

thus 

(5.2.9) 
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It can be seen that the second term on the left-hand side of Eq.5.2.9, can be 

treated as the controller gain of the negative feedback loop, i.e. ZbHe controlled 

by the output shear velocity ~o. However, to eradicate the cascade of the Zb and 

He components we divide both sides by Zb, therefore 

(5.2.10) 

and 

gZbZt Pf 
Zb(Zt + Zo) + g2ZtZO Zb 
~ ~ 

v 

gZbZt .. 
Zb(Zt + Zo) + g2ZtZO ~~o = ~o, 

..... v j H 

(5.2.11) 

G G 

so that we arrive to the expression for the negative feedback formulated by 

~o(x) (5.2.12) 

vVe have chosen to write the system's closed loop response in a form presented 

above, to emphasise that the active displacement, ~c, contributes to the amount of 

the BM displacement 6 in the model of Neely [66], and an additional component 

of Z;;l is present between the loop and the pressure difference input, Pf. This is 

shown schematically in a block diagram in Fig.5.4. 

To examine the stability of the feedback loop in Fig.5.4, we calculate the ::-Jy­

quist plots ofthe open loop G (jw) H (jw) at the characteristic place corresponding 

to the stimulus frequency of 1 kHz, which in the model of Neely is equal to about 

0.0189 m. The Nyquist plots have also been plotted for two different positions 

basally, x=0.0139 m, and apically, x=0.0239 m, from the characteristic place. In 

all cases the open loop responses were calculated for three different values of 

the gain i, i.e. , 1.4 and 1.8 and the frequency, w, from 10-9 rad S-l to 

10-9 rad S-l. 

The amplitude of the frequency response of the model of Neely [66] is highest 

at the basal positions in the cochlea and decreases with the increase of the position 

towards the apex, according to Fig.5.5. The Nyquist contours derived for the 

negative feedback in the model of Neely are shown after magnification around the 

point of singularity (-1,0) in Fig.5.6. They are seen to enclose this point for the 
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G 

H 

Figure 5.4: Block diagram of the feedback loop representing the active component 

in the model of Neely [66]. The acoustic pressure diiIerence excitation, Pf , is the 

input to the ZiJl block which precedes the feedback loop in this model. The 

actual input to the loop is the displacement of the basilar membrane, 6, whereas 

the stereocilia velocity ~o is the output of the feedback loop. G and H denote 

the plant and the controller, respectively, which are derived from the equations 

of motion for the two degree of freedom micromechanical model in F'ig.3.16. The 

output of the control loop is the active displacement ~c which appears due to the 

contraction of the outer hair cell body. 

gain of .4 and 1.8 at 0.0139 m and for ,=1.8 at 0.0189m, whereas the (-1,0) 

point is not enclosed for any of the chosen gains at 0.0239m. Thus, the system is 

only stable for gains not larger than a place-dependent limit of the feedback gain, 

so that the system exhibits conditional stability. The gain limit increases with 

the distance from the base and can be estimated to about 1.37, 1.71 and 3.09 at 

x=0.0139m, 0.0189m and 0.0239 m, respectively. Furthermore, the Nyquist plot 

crosses the real axis in the vicinity of the (-1,0) point (Im{G(jw)H(jw)}p::,O) 

at frequency of about 4.21 kHz at x=0.0139 m and ,=1.37, 1.37kHz at 0.0189m 

and ,=1. 71 and 410 Hz at 0.0239m and for ,=3.09. These frequencies therefore 

specify the frequencies at which the frequency responses of the model of Neely 

[66] will reach their maximum when evaluated at the sites along the cochlea and 

corresponding gains given above. 

It is interesting to note that the Nyquist plots, and thus the cochlear responses 

of the model of Neely [66], are much larger than those of the model of Neely and 

Kim [68] discussed in the previous section. Also, the gain limits estimated for the 

model of Neely are much higher than the ones estimated for the model of Neely 
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Figure 5.5: ~yquist plots of the isolated feedback loops calculated at :r=O.0139 m 

(basal from the characteristic place; a), C).0189m (characteristic place for 1kHz 

stimulus frequency; b) and at T=O.0239 m (apical from the characteristic place; 

c), derived for the model of ~eely [66]. The active gain, ~(, was set to 1 (fully 

active; solid), 1.4 (dashed) and 1.8 (dotted). The cross indicates the point of 

singularity (-1,0) and the arrows the direction of the increasing positive and 

negative fi'equency. 

168 



5 Stability and nonlinearity 5.2 l\1odel of Neely 

3' = I 
<.9 
.§ 

0.5,-----.------,,----,------, 0.5,---,----.,----.....,.-------, 
x=0.0139m 

, ' .... 
.... -- - "':",. 

~ 3' 
= 
I 
<.9 
E 

x=0.0189m 

-0.5L-__ ..-L... __ ----'L-__ --L-__ ----' -0.5L---..-L...---.l.----'----~ 
-1.5 -1 -0.5 0 0.5 -1.5 -1 -0.5 0 0.5 

Re GHUOJ) Re GHUOJ) 
(a) (0 ) 

0.5,----,----,-----.-------, 
x=O.0239m 

" , .... 

Ol-·················+············,··,·-·:~·· ." 

-0.5'------'----'-----'------' 
-1.5 -1 -0.5 0 

Re GHUOJ) 
(c) 

0.5 

Figure 5.6: I\yquist plots of the isolated feedback loops magnified in the vicinity of 

the point of singularity (-1,0), calculated for the model of Neely [66] at 1:=0.0139 

(a), 0.0189 (b) and 0.02.39m (c). The active gain, " was set to 1 (solid), 1.4 

(dashed) and 1.8 (dotted). The cross indicates the point of singularity (-l,O) 

and the arrows the direction of the increasing positive and negative frequency. 
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and Kim and so the Neely model is inherently more stable. 

5.3 Stability in the model of Koiston 

In 1999 Kolston discussed a three-dimensional (3D) model of the organ of 

Corti [50], based on the Finite Element 3D model of the cochlear micromecha­

nics proposed by Kolston and Ashmore in 1996 [49]. The results in this paper led 

to the argument that an increase in the generation of the OHCs force which was 

exerted on the Bl'v1, leads paradoxically to a decrease of the cochlear amplifier's 

gain and therefore to a decrease of the BM displacement [50]. This paradoxical 

behaviour of the BM response may be the effect of the model becoming unstable 

after the active gain was nearly doubled. \Ve have shown in Sections 5.1 and 

5.2 that only a small increase in the active gain, expressed either as an active 

force/pressure or displacement, is needed for the active feedback loop to become 

unstable at basal positions in the cochlea. Once a linear system has become 

unstable its calculated frequency response has no physical meaning since the res­

ponse never settles to a steady state. Therefore, in this section we will investigate 

the calculated frequency response of the feedback loop examined for the Neely 

and Kim model in Section 5.1 for the conditions proposed by Kolston in [50]. 

Although the model of Kolston [50] is a distributed parameter model, it re­

sembles in many aspects the model of Neely and Kim [68]. The cochlea in the 

model of Kolston is represented by 10/1om sections in the longitudinal, radial and 

transverse directions, which discretise the physical equations represented by their 

finite difference formulations [50]. The length of the modelled organ of Corti was 

taken as 30 mm, whereas its width and the height as 1 mm and 0.5 mm, respec­

tively. Each cross-section of the model consists of the solid structures of the 

CP, which were divided into several elements connected by elastic or viscoelastic 

elements in one or two dimensions and were coupled by the surrounding fluid of 

density 103 kgm3 [50]. Apart from the BM, TM and the OHC cilia, which were 

modelled by Neely and Kim in [68], the model of Kolston also takes into account 

the structures like the RL, OHCs, pillar cells and Deiters' cells. Kolston also 

assumes rotation of the pillar cells about the spiral lamina, which leads to the 
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radial motion of the tops of the pillar cells due to the transverse motion of the 

BM. The radial motion of the pillar cells' apices is determined by the ratio of the 

cell's height to the cell's width [50], which resembles the lever gain g proposed 

by Allen [1] - the concept used also by .:.Jeely and Kim [24, 68]. 

The density of all solid structures was equal to l.3 x 103 kgm3 excluding the 

TM. To take into account the TM's assumed height of 40 /-Lrn, the density of the 

TM mass elements was increased four times (5.2 x 103 kgm3 ) since the discretisa­

tion step was equal to 10 JLm [50]. Thus, knowing that the volume of each element 

was equal to 10JLmx10JLmxlO/H11=1O-15 m3 , the mass of a single element of the 

TlVl amounts to 5.2 x 10-12 kg and of all the remaining structures to l.3 x 10-12 kg. 

It is interesting to note that the mass of the Bl'vI is four times smaller than the 

mass of the TM in the model of Kolston [50], unlike in the model of l'\eely and 

Kim [68] for instance. However, it has to be remembered that for the estimate of 

the BM mass, .:.Jeely and Kim took into account the mass of the structures (and 

probably the fluids) in the organ of Corti, thus the effective mass of the BM/ organ 

of Corti is higher than the mass of the TM in their model. Assuming the length 

of the BM in Kolston's model spanned the width of the cochlea, 1:V =1 mm, the 

membrane would be discretised by 100 elements radially. Thus, the BlVI mass in a 

single cochlear slice of 1mmx10/-Lm would be equal to 1.3x10-10 kg, or specified 

per slice's unit area of 10-8 m2 , it would amount to 0.013 kgm-2
. Furthermore, 

assuming the length of the TM in the model of Kolston is half that of the cochlear 

width, the model would require 50 elements to model the TM, which implies the 

mass of the TM would amount to 2.6x 10-10 kg, or 0.026 kgm2 . It would appear 

therefore, that the mass of a single slice of the TlVI in the model of Kolston [50] 

is more than five times bigger than the TM mass in the model of Neely and Kim 

[68] (almost equal to the BM mass of 0.03 kgm2 in the Neely and Kim model), 

whereas the mass of a single slice of the BM in the model of Kolston would be 

more than two times smaller than the BM mass proposed by Neely and Kim. 

The stiffness of the BM was reported to decrease by a half of its value every 

2.5 mm from the base, where the stiffness of all other structures decreased by a 

half every 7.5mm from the base of the cochlea. Hence, the distribution of the 
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stiffness along the cochlea will take the form 

k (x) - k 2-xlo.025 - k 2-400x 
Bl'vI - 0 -0 , (5.3.1) 

for the BM, where x is expressed in metres and ko [Nm- 1] is the stiffness at the 

base, and 

k (x) - k 2-xlo.075 ~ k 2-130x 
TtvI -0 ~o , (5.3.2) 

for the TM and all other modelled structures, where x is expressed in metres and 

ko [Nm- 1
] denotes the stiffness at the base. 

The transverse BM point stiffness at the base (measured at the radial centre 

of the BlVI) was chosen by Kolston to be equal to 5 I\' m -1, after measurements of 

Olson and Mountain [75], who estimated the CP stiffness from the ratio of the 

measured partition's restoring force to the sinusoidal excursion of a force transdu­

cer with a 20 /-Lm diameter probe tip deflecting the CP at different radial positions 

in the basal turn of a gerbil cochlea. The transverse stiffness of the TM, assumed 

to be equal to 0.05 Nm- 1 [50], was taken from the results for the second turn of a 

Mongolian gerbil cochlea estimated by Zwislocki and Cefaratti who measured the 

displacement of the TM due to a force exerted on it by downward movements of 

an elastic micropipette inserted into the membrane's margin (almost parallel to 

the TM's top surface) [105]. The BM resistance was set to 1.4xlO-6 Nsm-l, in 

order to obtain correct response when there was no OHC motility3, and the OHC 

stereocilia bending stiffness, according to measurements of Strelioff and Flock in 

the guinea pig cochlea [91], to 0.1 Nm-1 [50]. 

A resistance of 6 x 10-8 Nsm- 1 , corresponding to the separation of 5/-Lm bet­

ween the stereocilia bundles, was added to each bundle to account for the effects 

of the subtectorial fluid's viscosity [50]. It has to be noted that the model of 

Kolston also assumes a finite axial stiffness of the Deiters cells and axial and 

transverse stiffness of the RL and the pillar cells. However, the transverse RL 

stiffness was set high to assure the rotation of the RL/pillar cells complex as a 

single unit [50]. 

3\Ve deduce the resistance was constant over the length of the cochlea (and remaining 

orthogonal directiolls), although it was not stated explicitly in the article. 
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The motility of the OHC was modelled by assuming axial, counterphasic (with 

respect to the ends of the cell) forces exerted by the cell, which were controlled by 

the cell's membrane potential [50]. The potential is related to the displacement 

of the hair cell bundle, which undergoes radial displacement due to the shearing 

motion of the RL and TM. Thus, the mechanism of active force excitation is 

similar to that assumed in the model of :'-Jeely and Kim [68], which further justifies 

the use of their model for examination of the conditions used by Kolston in [50]. 

The magnitude of the motile force, referred to as the 'normal motility' [50], 

expressed in terms of the ratio of the axial force to the stereocilia bundle deflec­

tion, was set to 330 pNnm-1 . Furthermore, Kolston reported that the phase of 

the OHC motility, which was defined as the lag between the force exerted down­

wards on the Deiters cells with regard to the deflection of the stereocilia in the 

inhibitory direction (towards the short stereocilia of the bundle), was equal to 

1350 [50]. 

Two types of excitation were assumed by Kolston in his 1999 model [50]: 

first, sinusoidal stimuli provided by the stapes motion and second, a localised 

excitation of a single OHC row at 3mm from the base (40 kHz) with the force of 

magnitude 50 pNnm- 1 and no stapes motion. The response of the model excited 

by the stapes motion at stimulus frequency of 30 kHz, was calculated for three 

values of the OHC motility magnitude, i.e. zero, 330 p:'-Jnm-1 ('normal motility') 

and 560 pNnm- 1 (,enhanced motility'). Therefore, in our lumped parameter ap­

proximation of Kolston's model, we will use the model of Neely and Kim [68] 

excited at the stapes (ust=lms- 1
) at the frequency of 1 kHz and 30 kHz, for 

which the active gain " corresponding to the OHC motility magnitudes assumed 

by Kolston [50], is 0 (passive), 1 (,fully active') and 1.7 (,enhanced motility'). 

Figure 5.7 shows the magnitude and phase response of the coupled Neely and 

Kim model [68] as a function of position, calculated for parameters in Table 3.2. 

The model was evaluated at stimulus frequency of 1 kHz (left) and 30 kHz (right) 

for four values of the active gain ,=0 (dotted), 0.5 (dot-dashed). 1 (dashed) and 

1.7 (thick solid). For both 1 kHz (Fig.5.7(a)) and 30 kHz (Fig.5.7(b)) stimuli, the 

magnitude of the velocity responses increases with the increase of the gain from 

o to 1, which is in agreement with the behaviour of the responses of the Neely 
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and Kim coupled model discussed in Section 4.2. However, increasing the gain 

of the cochlear amplifier to 1.7 leads to reduction of the amplitude of the BM 

velocity, consistent with Kolston's observation [50]. The phase responses shown 

in Fig.5.7 (c, d), exhibit an increasing phase lag along the cochlea when the gain 

, is set to 0, 0.5 and 1. For ,=1.7 however, the phase of the response at 1 kHz 

increases up to about 20 mm in the cochlea beyond which it lags again until it 

reaches the cochlear apex. The response calculated at 30 kHz for ,=1.7 exhibits 

a phase lead up to about 10 mm position on the CP above which it decreases very 

slowly along the remaining length of the cochlea. The phase leads observed in 

responses to 1 kHz and 30 kHz stimuli indicate that the model is unstable when 

.7. 

The Nyquist plots in Fig.5.8, evaluated using the theory derived in Section 

5.1 at positions where the amplitude of the BM velocity at 1 kHz and 30 kHz 

reaches a maximum for ,=1, i.e. x=0.0185 m and 0.0023 m, respectively, show 

that for ,=1.7, the Nyquist plots enclose the point of singularity (-1,0). Thus, 

when the gain of the cochlear amplifier is increased to 1. 7 the velocity responses 

can no longer be trusted since the system becomes unstable. In Section 5.1 the 

gain limit for which the cochlear response at 1 kHz is still stable was estimated to 

about 1.21, whereas the gain limit for the response at 30 kHz, which corresponds 

to the basal portion of the cochlea, should be much smaller (cf. Fig.5.3(a)) and 

was estimated here to about 1.04. Thus, in both cases the active gain of 1.7 

significantly exceeds the gain limits estimated from Nyquist plots at 0.0185 m 

and 0.0023 m for which the cochlear responses are still stable. The increase 

of the OHC gain, corresponding to the increase of the motility in the model of 

Kolston [50], thus does indeed lead to a reduction of the amplitude of the cochlear 

response, however, the model of Kolston lacks an examination of stability and 

most probably the calculated responses at high OHC motilities cannot be trusted. 

In Fig.5.9 we plot the dependence of the magnitude of the maximum of the BM 

velocity, I~blmax' on the level of gain, " calculated for the model of Neely and Kim 

at 30 kHz. It can be seen that with the increase of the gain up to about ,=1.029, 

the magnitude of the maximum of the BM velocity (peak magnitude) increases, 

but begins to drop for higher gains. In principle the maximum magnitude would 
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Figure 5.7: Magnitude (a, b) and phase (c, d) of the basilar membrane velocity 

(b as a function of position, :r, calculated for stimulus frequency of 1 kHz (left) 

and 30 kHz (right), and parameters chosen by Neely and Kim [68]. The active 

gain, ~(, was set to zero (dotted), 0.5 (clot-dashed), 1 (dashed), and 1.7 (solid). 
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Figure 5<8: ::'\yquist plots of the isolated open feedback loops calculated at 

x=().0185m (a) and 0.0023m (b), derived for the model of Neely and Kim [68]. 

The active gain, 7, was set to 0.5 (dot-dashed), 1 (fully active; dashed) and 1.7 

(,enhanced activity'; solid). The crosses indicate the point of singularity (-1,0) 

and the arrows the direction of the increasing positive and negative frequency. 

tend to infinity if we were to select exactly the right value of " but any plot 

with a finite resolution of , will give a finite maximun~ value. For values of , 

above 1.03 the system is unstable and so the calculated frequency response is 

spurious. This example reinforces again the need for a stability test to establish 

the reliability of the frequency response of a cochlear model. 

5.4 Quasi-linear model of Neely and Kim 

Improvement of the BM response measurement techniques led to the discovery 

of the BlVI nonlinearity (Section 2.3). The BM displacement observed by Rhode 

in 1971 [85] revealed a nonlinear dependence on the stimulus level, so that the 

normalised BM response was sharply tuned at low levels but started to decrease in 

magnitude and broaden with the increase of the stimulus level. The compressive 

nonlinearity of the BM response appears to be most pronounced in the region of 

its highest sensitivity (in the close vicinity of the response peak) [87]. 

The cochlear amplifier is thought to be the source of the level-dependent 
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Figure .5.9: l'vlaximum magnitude of the basilar membrane velocity, I~blrnax' cal­

culated for the Keely and Kim model at 30 kHz for different values of gain T The 

curve marked with crosses \vas calculated for larger number of values of ~f than 

the curve marked with circles. 

compressive nonlinearity, since it is most pronounced in the vicinity of the char­

acteristic place. Thus, a comprehensive active model of the cochlea requires 

compressive nonlinearity to be taken into account. 

In the present section we will extend the quasi-linear approach proposed by 

Kanis and de Boer [47], in which an iterative calculation of the amplitude response 

and hence the active nonlinear gain leads to a compressive nonlinear response, to 

include the cochlear micromechanical model of Keely and Kim [68]. 

The motivation for this work is to illustrate the generality of the quasi-linear 

approach, and to calculate some nonlinearly compressed frequency responses 

which are consistent with the micromechanical model used elsewhere in the thesis 

and can be compared with physiological measurements. 

5.4.1 Nonlinear positive feedback system 

A nonlinear cochlear model can be considered as a sequence of coupled posi­

tive feedback systems with a nonlinear element in the feedback path between an 

energy input source and some sort of output, as suggested by Yates [99, 100]. This 

feedback controller model can be represented by a block diagram, as depicted in 

Fig . .5.l0, in which the feedback path consists of a plant G (feedforward gain), non-
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linear network cP and a frequency-selective network, (3 (a bandpass filter selecting 

the fundamental component of the loop output v(t)). The frequency-selective 

network provides a gain which we also denote as (3, to the input signal. Hence, 

when the input is tonal the network (3 amplifies the fundamental frequency after 

attenuating the harmonics [23]. 

G 
yet) 

+ 

z(t) 

f3 
vet) 

cD 

Figure 5.10: Block diagram of the positive feedback loop proposed by Yates [99]. 

G denotes the plant, the response of the output y(t) to the input x(t), \vhere y(t) 

is fed back to the nonlinear net\vork CPo The output of (j), vet), is connected with 

the frequency-selective network /3 leading to the control loop output z(t). 

According to Yates [99], the input of the feedback loop is analogous to the 

pressure difference in the cochlear fluids, the plant, G, to the BM with its mo­

tion, whereas the reduction of the gain of the frequency-selective network, ,8, 

can account for the changes in the cochlear sensitivity corresponding to the da­

mage within the cochlea. However, the nonlinear network (j) is assumed to be a 

saturating function with an input/output characteristic of the form 

Ay(t) 
v(t) = A + y(t)' (5.4.1) 

where y(t) denotes the input of CP, v(t) its output and A is a threshold amplitude 

[100]. 

Thus, the instantaneous gain, cp(t), can be explicitly expressed by 

cp( t) 
v(t) 
y(t) 
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The overall gain of the nonlinear feedback system depicted in Fig.5.10, G closed, 

can be formulated in the frequency domain by 

Y(jw) G 
Gclosed = X(jW) = 1 - P<!>DG' (5.4.3) 

where G and /3 are linear constants, chosen to give a product of pG slightly less 

than unity, typically p=0.999 [100], and <!>D (D stands for 'describing') is a real 

number that reflects the average value of <!>(t) depending on the amplitude of the 

output signal [23J. 

Since y(t) is a time-varying waveform, the instantaneous gain <!>(t) will be hi­

gher or lower than unity through one cycle of the sinusoidal variation of Y, which 

will cause distortions in the output of <!>, v(t). However, only the fundamental 

component of v(t) will be delivered to the summing point in Fig.5.1O due to the 

selective network P [23J. 

5.4.2 Positive feedback in the model of Neely and Kim 

We will apply the theory of the positive feedback nonlinear model proposed 

by Yates [99, 100], to a single micromechanical element using the model of Neely 

and Kim [68], so that the formulations for the plant and controller of the positive 

feedback loop will be derived in a similar way as in Section 5.1. We assume that 

the input to the feedback loop is represented by the pressure difference Pd , which 

refers to x(t) in Fig.5.10, whereas the output of the feedback loop is the velocity 

of the BM, ~b (y(t) in Fig.5.10). 

Notice that the assumed output of the system is the BM velocity, ~b, ins­

tead of the relative velocity between the BM and TM, ~c in Fig.5.1, so that the 

interpretations of G and H are slightly different and need to be re-derived. 

Rearranging Eq.5.1.4, derived from the equations of motion for the Neely and 

Kim model [68J for the shear velocity ~c in terms of the BM velocity ~b, gives 

(5.4.4) 

thus the equation of motion for the first DOF in the model of Neely and Kim 
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Pd+~ G 
~b 

+ 

P a 

H 

Figure 5.11: Block diagram of the positive feedback loop for the ::\'eely and Kim 

model [68]. The acoustic pressure Pd represents the input, the basilar membrane 

velocity, E.I)) the output of the loop. G and H denote the phmt and the controller, 

respectively. 

will read 

or 

(5.4.6) 

After dividing the above equation by the term in the square bracket on the 

right-hand side we have 

(5.4.7) 

or 

(5.4.8) 
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where G denotes the plant, and H the controller of the closed feedback loop. 

The pressure difference in Eq.5.4.8 is divided by the lever gain g, so that we 

introduce an equivalent pressure difference P/f=Pd/ g, where the superscript E 

stands for 'equivalent'. For consistency we also define the active pressure Pa as 

an equivalent active pressure p/!. Kote, however, that the equivalent definitions 

do not affect the numerical result since the lever gain was assumed by Keely and 

Kim to be equal to one as shown in Table 3.1. 

Rewriting Eq.5.4.8 in terms of G and H gives 

G Pd((X)) + GH~b(X) 
gx 

E . . 
GPd + GH6(x) = 6(x), (5.4.9) 

which leads to the classical formulation for a positive-feedback system of the form 

[19] 

. G E 
~b(X) = 1 _ GH Pd . (5.4.10) 

To introduce the nonlinear element into the feedback path of the Keely and 

Kim model, we replace the gain of the active component, " with the level­

dependent gain which is assumed to take the form 

BA 
, = ;tJ<I>D = ' .. 

A+I';bl' 
(5.4.11) 

where I~bl denotes the magnitude of the velocity response of the BM at the 

frequency of interest. Note that for very low excitation levels, for which I~bl 

is much less than A, then, is equal to fJ. Therefore, the feedback path gain H 
defined in Eq.5.4.8, will be rewritten to take the form 

H = ( fJA ) Z2 Z
4 

A+I~bl Z2+ Z3' 
'---v---" 

,6i!>D=7 

(5.4.12) 

and the diagram in Fig.5.11 will be modified to a positive feedback system shown 

in Fig.5.12, in which P/f is the equivalent pressure difference input, G is the plant, 

and H is the controller whose gain is now dependent on the amplitude of the BM 

velocity, ~b' 
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PdE+~ 
G 

~h 

+ 
pE 

(/ 

? 

H 

/ cD ~ 

Figure 5.12: Schematic of the positive feedback loop for the Neely and Kim 

model [68] with the nonlinear network CP scheduled on the output, the basilar 

membrane velocity ~b, and adapting the controller gain H. The output of the 

feedback path is an equivalent active pressure, p'~, summing to the equivalent 

pressure difference, Pl. 

It should be noted that the active gain I m Eq.5.4.11 is a positive, real 

number which is initially assumed to be the same for all positions in the cochlea at 

particular stimulus frequency. In this case, I may be referred to as a 'global' gain, 

say Iglobal' which at single stimulus frequency demonstrates global changes to the 

cochlear amplifier, in which case I~bl is calculated as the peak at the characteristic 

position along the cochlea. If we assume, however, that each positive feedback 

system in the quasi-linear model acts locally, that is the nonlinear network CP is 

scheduled at the local response of the BM, we can also define a place/frequency 

specific 'local' active gain Ilocal (x) 

Ilocal (x) 
,SA 

,SCPD(X,W) = A+I~b(x,w)I' (5.4.13) 

where l~b(X, w)1 is now the magnitude of the velocity response of the BM calcu-

lated at the particular place along the cochlea and stimulus frequency. Hence, H 
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will be defined as 

(5.4.14) 

5.4.3 Coupled response of the quasi-linear model with 

glo bal gains 

Having formulated an expression for the gain of the quasi-linear model, based 

on the micromechanical model of Neely and Kim [68], we can calculate the res­

ponse of the model using the theory for coupled cochlea discussed in Chapter 4. 

To begin with, we analyse the response of the quasi-linear model with a global 

active gain, 'global' computed according to Eq.5.4.11, where the constant A was 

set to 1.5x10-5 and /3 was set to 5/6 (~0.83)4, both estirnated after preliminary 

results in [82]. 

The peak BM velocity at any point along the cochlea, was calculated by 

solving the Neely and Kim model for the pressure difference Pd with the gain 

of ,=1 when excited by a tone at 1 kHz, which was substituted to Eq.5.4.10 

to calculate the BlVI velocity and find its maximum value. This was used to 

calculate the new global value of gain according to Eq.5.4.11, and the coupled 

cochlea model was solved again for this value of T This was repeated in an 

iterative loop of ten steps (not counting the gain of ,=1, which we will refer to 

as step 0) to stabilise the gain and converge the BM velocity. The convergence 

behaviour of this iterative procedure is described in Appendix D. 

The model was solved for different magnitudes of the stapes velocity, Ust, 

corresponding to the stimulus level of 20, 40, 60, 80 and 100 dB re 2 x 10-5 Pa. 

The stapes velocity was calculated for OdB, as U~t~9.15x10-11ms-l (the upper 

index denotes the desired stimulus level), and for stimulus levels increasing in 

20 dB steps Ust was calculated from the expression 

4The convergence of the model was improved wben the vaille of ,3 was made equal to 5/6 

instead of 0.999 or 0.99 as assurned by e.g. Yates [100], or other trial values. 
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where L denotes the desired stimulus level. It has to be emphasised that the 

stimulus levels do not refer to the sound pressure levels measured at the eardrum 

but to the maximum pressure difference inside the cochlea at the frequency of 

1kHz. 

The BM velocity calculated from the quasi-linear model, was divided by a 

factor of jw to obtain the BM displacement ~b, which was plotted as a function 

of position in the cochlea and stimulus frequency for different stimulus levels, as 

shown in Fig.5.13. Additionally, the normalised BlVI displacement as a function 

of position along the cochlea and stimulus frequency is shown in Fig.5.14. 

The magnitudes of the displacement of the quasi-linear model increase with 

the increasing stimulus leveL as depicted in Fig.5.13. The responses increase 

almost linearly outside the characteristic place (characteristic frequency), where 

the response curves are parallel, that is equal magnitude increments occur below 

::;::0.015m (Fig.5.13(a)) and 600Hz (Fig.5.13(b)). However, compressive nonlinea­

rity can be observed in the close vicinity of the characteristic place/CF, where the 

active enhancement decreases with the increase of stimulus level. Figure 5.13(b) 

resembles the measured frequency response of the guinea pig cochlea shown in 

Fig.2.12. Such behaviour indicates the connection between the compressive non­

linearity and the action of the cochlear amplifier in the present model, since 

the model's response changes from active at 20 dB to almost passive at 100 dB. 

The active-to-passive response change can be also observed in the phase plots in 

Fig.5.13(c) and 5.13(d), in which the phase lag accumulation decreases slightly 

with the increase of the stimulus level and the characteristic, short phase lead in 

the proximity of the characteristic place/frequency, disappears for high levels of 

the input stimuli. 

An interesting feature of the quasi-linear displacement response is the shift 

of the characteristic place towards the basal end of the cochlea when the stimu­

lus level is increased. In the response of the quasi-linear model with the global 

active gain Iglobal' the characteristic frequency shifts towards lower frequencies 

in Fig.5.13(b) between the response for 20 and 100 dB stimulus level, which is 

consistent with the responses to single tones in experiments carried out on mam­

malian species discussed e.g. by Robles and Ruggero in [87]. 
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Figure 5.13: IVlagnitude (upper panel) and phase (1O'wer panel) of the basilar 

membrane displacement (t;b) response of the quasi-linear model solved using glo­

bal active gain, , and parameters chosen by Keely and Kim [68], for stimulus 

levels of 20 dB, thick solid; 40 dB, solid; 60 dB, dashed; 80 dB, dot-dashed and 

100dB (re 2x10 5 Pa), dotted. The left panel (a, c) shows the responses as a 

function of position along the cochlea where the stimulus frequency was set to 

1 kHz, whereas the right panel (b, d) shows the responses as a function of stimulus 

frequency at the site of :(;=0.0182 Hl. 
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Figure 5.14: Normalised magnitude o[ 1he basilar membrane displacement 

(~b/1L8t) of 1he quasi-linear model solved using global active gain, , and 

parameters chosen by Xeely and Kim [68], for stimulus levels of 20 dB, thick so­

lid; 40dB, solid; 60dB, dashed; 80dB, dot-dashed and 100dB (re 2x10 5 Pa), 

dotted. Particular displacement response (t was plotted with reference to corres­

ponding stapes displacement at 1 kHz. (a) responses as a [unction of position 

along the cochlea at the stimulus frequency of 1 kHz; (b) responses as a func:­

tion of stimulus frequency at the site of :r=0.0182 III (NB corresponding phase 

responses are the sarne as in Fig.5.13(c) and 5.13(d), respectively). 
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Figure 5.15 shows input/output, i.e. velocity/intensity curves at a single 

position in the cochlea, x=0.01S2 m, which corresponds to the model CF of 1 kHz 

for 20 dB excitation. The left panel of the figure shows the velocity of the BM 

6 for stimulus frequencies lower to equal to the CF, i.e. 0.5-1 kHz, whereas the 

right panel of Fig.5.l5 shows the velocity/stimulus level curves for frequencies 

equal and higher than the CF, that is from I-2kHz, with 100 Hz steps in both 

cases. The compressive gl'owth of the BM velocity is nl0st prominent at the 

CF and it diminishes outside this frequency approaching almost 1 dB/l dB, as 

indicated by the auxiliary dotted lines in the figure. For the data shown in 

Fig.5.l5 the compression in the input-output curve at 1 kHz was approximately 

equal to O.S in the range from 20-40 dB, 0.4 dB/dB for 40-60 dB, 0.6 dB/dB 

for 60-S0dB and 0.7dB/dB for SO-lOOdB. We can also deduce that for OdB 

and 120 dB stimulus levels the response would have been closer to that of a fully 

active and passive model, respectively and the input-output curves in the ranges 

of 0-20dB and 100-120dB stimulus level would grow with a rate even closer 

to that of 1 dB/dB justifying no or insignificant compression in these regions. 

Such behaviour would be also consistent with the schematic input-output curve 

in Fig.2.l3, and reasonably consistent with the measured data [S7]. 

5.4.4 Coupled response of the quasi-linear model with lo­

cal gains 

The responses of the quasi-linear model were also calculated using the formula 

for the local active gain ~(local in Eq.5.4.l3. In this case the value of each of the 

gains was scheduled on the response magnitude computed at corresponding place 

along the CP so that it was frequency and place specific. The constant A and gain 

/3 in Eq.5.4.l3 were again chosen to be 1.54x 10-5 and 0.S3 and stapes velocities 

were derived in the same way as described above. 

Figure 5.16(a) shows the magnitude of the BM displacement ~b as a function of 

the position along the cochlea, calculated for the quasi-linear model with locally 

changing active gain [local at 1 kHz stimulus frequency and stimulus levels of 20 dB, 

40 dB, 60 dB, SO dB and 100 dB. The corresponding results for x=0.OlS2 m as a 

function offrequency are shown in Fig.5.l6(b). Both of these results are extremely 
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Figure 5.15: Input-output relationship between the magnitude of the basilar 

membrane velocity and stimulus levels for the quasi-linear model with global 

active gain, , solved at 0.0182 m using parameters chosen by Neely and Kim 

[68] at the characteristic frequency of 1 kHz and frequencies below (a) and above 

(b) that frequency. The auxiliary dotted lines have slope of 1 dB/dB. 

similar to those obtained with the global gain (Fig.5.13). 

The phase response in Fig.5.16( d) is not entirely 'smooth' in the high fre­

quency region, above about 3 kHz, however, and some ripples occur mainly in 

the response curves to 40 dB and 60 dB stimulus level. However, the correspon­

ding magnitude of the frequency response function has fallen by several hundreds 

of decibels in this high-frequency region, so that the ripples in the phase responses 

are not significant. 

The normalised amplitude of the BM displacement, depicted in Fig.5.17, was 

calculated for the locally active quasi-linear model using the same normalisa­

tion method as in the case of globally active model and has almost the same 

characteristics as that with the globally active case shown in Fig.5.14. 

The input-output curves of the quasi-linear model with the locally changing 

gain were also plotted as shown in Fig.5.18 and again these are similar to the 

global model in Fig.5.15. The input-output curves calculated for frequencies 

higher than the CF, depicted in Fig.5.18(b), however, exhibit some features of 

expansive nonlinearity. At frequencies above 1. 7 kHz the input-output curves have 
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Figure 5.16: Magnitude (upper panel) and phase (lower panel) of the basilar 

membrane displacement (~b) response of the quasi-linear model solved using local 

active gain, , and parameters chosen by Neely and Kim [68]. Stimulus levels 

were set to 20 dB, thick solid: 40 dB, solid; 60 dB, dashed; 80 dB, dot-dashed and 

100 dB (re 2 x 10-.5 Pa), dot ted. T'he left panel (a, c) shows the responses as a 

function of position along the cochlea ,vhere the stimulus frequency was set to 

1 kHz, whereas the right panel (b, d) responses as a function of stimulus frequency 

at the site of x=O.0182 m. 
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Figure 5.17: Normalised magnitude of the basilar membrane displacement of the 

quasi-linear model solved using local active gain, , and parameters chosen 

by Neely and Kim [68], for stimulus levels of 20 dB, thick solid; 40 dB, solid; 

60dB, dashed; 80 dE, dot-dashed and 100dB (re 2x10:Spa), dotted. Particular 

displacement response ~{" ,vas plotted with reference to corresponding stapes 

displacement X~t at 1 kHz. (a) responses as a function of position along the 

cochlea at the stimulus frequency of 1 kHz; (b) responses as a function of stimulus 

frequency at the site of .1:=0.0182 m (NB corresponding phase responses are the 

same as in Fig.5.16(c) and 5.16(d), respectively). 
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a clear tendency to increase their slopes with each 20 dB step of the stimulus leveL 

to as high as approximately 1.3 dB/dB at 2 kHz. This is a counter-intuitive result, 

although a single case of expansive nonlinearity was observed in the apical site 

(CF~300-400 Hz) of the guinea pig cochlea [87]. 
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Figure 5.18: Input-output relationship between the magnitude of the basilar 

membrane velocity and stimulus levels for the quasi-linear model with local active 

gain, , solved at 0.0182 m using parameters chosen by Neely and Kim [68] 

at the characteristic frequency of 1 kHz and frequencies below (a) and above (b) 

that frequency. The auxiliary dotted lines have slope of 1 dB/dB. 

It is worth noting, that in the global quasi-linear model the active gain is indi­

rectly dependent on both place and frequency, since I depends on the maximum 

velocity anywhere on the BM. Thus, the quasi-linear model acts as if the non­

linear phenomena in the cochlea were conditioning the OHC's force magnitude 

(active gain) on the 'global' response in the cochlea. 

Although the overall result of the local model are consistent with the one 

for the global model, that is, the main features of the compressive nonlinearity 

in the BM displacement response and the input-output curves are reproduced 

almost identically, care needs to be taken with both quasi-linear models to avoid 

convergence problems during the iterative determination of the gain, as described 

in Appendix D. Such problems prevent the method being used for high frequency 

excitation. 
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, calculated for the local 

quasi-linear model Hsing parameters chosen by Neely and Kim [68], on the posi­

tion along the cochlea (at f=l kHz, a) and stimulus frequency (at x=(H1182 m, 

b), for stimulus levels of 20 dB (thick solid), 40 dB (solid), 60 dB (dashed), 80 dB 

(dot-dashed) and 100 dB (dotted). 

The local active gain flocal converges to a different value at each particular 

position x or stimulus frequency f when the stimulus level is varied from 20 dB 

to 100dB, as can be seen in Fig.5.19(a) and 5.19(b), respectively. In particular, 

at 20 dB stimulus level (thick solid lines) the gain appears to be almost constant, 

approximately equal to (3, at all positions and stimulus frequencies. As the stimu­

lus level is increased, flocal starts to deviate from the constant value, first in the 

vicinity of the characteristic place/CF for 60 dB input level, and above 80 dB sti­

mulus level in the region basal to the characteristic place in Fig.5.19(a) and lower 

than the CF in Fig.5.19(b). It should be noted that the gain is almost constant 

apically from the characteristic place and above the CF, because the amplitude 

of the response decays with a very high rate, which enables fast stabilisation of 

gain. 
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5.5 Discussion 

In the present chapter the stability of the isolated models of Neely and Kim 

[68] and Neely [66] was examined. We have also analysed the stability of the Neely 

and Kim coupled model using gains corresponding to those chosen by Kolston 

[50]. Finally, a quasi-linear model with global and local active gains was proposed 

to include compressive nonlinearity in the Neely and Kim model. 

It was shown that the model of Neely and Kim and the ='Jeely model are condi­

tionally stable, i.e. there is a gain limit for which the Nyquist plots calculated 

for these models still do not enclose the point of singularity. The estimated gain 

limits increase with an increase of the position along the cochlea, and the gains 

estimated for the Neely model are larger than those estimated for the model of 

Neely and Kim. Thus the Neely model is inherently more stable. 

It was also shown that for gains larger than the gain limit at a particular 

cochlear position, the magnitude of the coupled response of the Neely and Kim 

model starts to decrease rather than increase when the gain is increased, as 

observed by e.g. Kolston [50]. Since the model is no longer stable in such a 

case, the calculated responses cannot be trusted, and hence we conclude that the 

stability of the model should be ensured before analysing the response plots. 

The quasi-linear model of Neely and Kim exhibits con1.pressive nonlinearity 

around the characteristic place and CF when the stimulus level of the model's 

input is increased. This was observed for both global and local active gain. 

In both cases the model gives about 30 dB difference between the maxima of 

responses at 20 dB and 100 dB stimulus level. The input/output curves become 

nearly linear outside the CF for both models, and an expansive nonlinearity can 

be observed at frequencies higher than l. 7 kHz in the quasi-linear model with 

local gains. However, the expansive nonlinearity is thought to occur solely due 

to the model's convergence conditions at these frequencies, so that it does not 

have any physical meaning in this case. 
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Chapter 6 

'Squirting' waves in the 

subtectorial space 

Within the lumped parameter micromechanical models described above, the 

TM and RL were assumed to move as rigid bodies. The fluid in the subtectorial 

space between them is then sheared by their parallel motion. Due to the extreme 

difficulty of taking direct measurements of the fluid in this gap in a living cochlea, 

this assumption has rarely been tested. It is thus possible that a more complicated 

dynamic interaction may occur between the fluid in the gap and the surfaces of 

the RL and TM that face it. This possibility has been emphasised by Bell and 

Fletcher [9], who also point out that unless a more subtle interaction does occur 

there appears to be little point in there being three rows of outer hair cells in the 

radial direction, or for them to be arranged in such an orderly way. 

In this chapter we examine the dynamics of the 'squirting' wave model pro­

posed by Bell and Fletcher in [9]. Firstly, we derive the wave equation for the 

waves propagating in the subtectorial space of the organ of Corti and investigate 

their dynamics. We extend the published theory for the 'squirting' waves by 

incorporating the effects of the subtectorial fluid's viscosity. Finally, we propose 

a feedback controller model connected with the electromotile action of the ou­

ter hair cells to overcome the viscosity of the fluid and undamp the resonances 

predicted in the duct of the subtectorial space. 
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6 Squirting wave model 6.1 Introduction 

6.1 Introduction 

A form of cochlear amplification, involving a 'squirting' wave, the symmetric 

Lloyd-Redwood wave [GO], has been proposed recently by Bell and Fletcher [9]. 

The 'squirting' wave, propagating in the radial direction of the subtectorial space 

within the organ of Corti, is a subtectorial fluid wave which arises due to vertical 

vibrations of the TM and RL. Thus, the TM and the RL constitute a duct 

comprised of two vibrating, thin plates, whose stiffness is coupled to the inertia 

of the fluid propagating in the very narrow gap in between. 

This model can suggest another form of amplification in the cochlea, as the 

electromotile responses of the outer hair cells could transfer forces needed to 

induce the vibrations of the duct and if the conditions were right, the interactions 

between the fluid and the duct might amplify the natural motion. The transfer 

of force from the tops of the OHCs attached in the lower plate (RL) to the 

upper plate of the duct (TM), can be achieved via the tallest rows of the OHC's 

stereocilia, which are embedded in the TM [58]. Furthermore, knowing that the 

OHCs are assumed to respond to the Bl\lI displacement, the 'squirting' model 

may add more insight into the overall micro mechanics of the cochlea. 

There are many issues that still need to be clarified in such a model, however, 

like the anatomical and physiological validation of the model's components. For 

instance, although the RL could account for the lower, stiff plate of the duct, as 

it is thought to be a tight lattice made of the tops of the sensory and supporting 

cells constituting a boundary for separation of the cochlear fluids, the TM, on 

the contrary, is usually described as a gelatinous, nonhomogeneous structure [11]. 

However, it could be assumed that a segment of the layer-like arrangement of the 

TM may refer to the upper plate of the duct in the 'squirting' wave model and a 

possible candidate for the plate is the fibrous layer known as Kimura's membrane 

[58] as depicted in Fig.G.1. 

The influence of damping on the properties of the waves propagating in the 

duct and response of the model should also be examined. While Bell and Fletcher 

argue in their article that the 'squirting' wave would be attenuated by the fluid's 

viscosity [9] this viscosity is not explicitly accounted for in their formulation. 

Furthermore, Bell and Fletcher [9] consider mainly the fluid motion in the 
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Subtectorial space Tectorial membrane 

Kimura's membrane 

Figure 6.1: Schematic of the organ of Corti anatomy with the inner (IHC) and 

three rows of outer hair cells (OHCl-3) indicated. The reticular lamina and 

Kimura's membrane are thought to constitute a duct in \'i'hich the 'squirt ing' 

waves are propagating. 

duct, which drives the response of the inner hair cells (IRCs) . This is crucial 

since the stereocilia of the IHCs are not attached to the TM and are thought 

to be deflected by the subtectorial fluid flow in response to the BM velocity. 

However, this flow appears also in the passive responses of the cochlea as shown 

e.g. by Raftenberg [83], so that more interest should be put into the actual 

mechanism of the excitation of the duct plates, in other words to the mode of 

coupling of the ORC's force with the plate's vibrations and the resulting fluid 

flow, which was again not considered by Bell and Fletcher. 

To investigate these issues , a new model is introduced, in which the nature 

of the plate-fluid-plate interactions is investigated and the viscosity of the fluid 

is included into the wave equation to examine its effect on the 'squirting' waves. 

The action of the OHCs is then incorporated into a feedback loop to enhance 

the response of the system and justify the potential role of the 'squirting' waves 

mechanism in the cochlear amplifier. 

6.2 Plate dynamics 

The 'squirting' wave model was first suggested by Lloyd and Redwood [60] but 

was studied most comprehensively by Hassan and Nagy [41]. It can be considered 

as the oscillation of a fluid layer in a solid-fluid-solid trilayered structure [41]. 
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To work out the input characteristics of the 'squirting' wave in the duct, the 

equations concerning a plate's bending deformations will be introduced using the 

notation of Hassan and Nagy. 

A vertical displacement, w(y, t), of a plate of thickness equal to 2hs (NB hs 

refers to the semi-thickness of the plate in this section), the Young's modulus, 

E, and the Poisson's ratio, v, as depicted in Fig.6.2, due to the external fluid 

pressure, p(y, t), can be derived from the equations governing plate dynamics (or 

a beam if only a cross-section of the organ of Corti is considered) [94]. 

The bending moment of the beam, 1\11 takes the form (for clarity we omit the 

dependants y and t in the equations), 

EPw 
j1,;1 = -E1-

8y2 ' 

the force, F, acting on the beam 

F 
83w 

-E1 83, 
y 

(6.2.1) 

(6.2.2) 

and finally the pressure, p, assumed to act against the stiffness of the plate, 

namely 

84 w 
p=-E1-

8y4' 

where the moment of inertia, I, is expressed as 

I 
3(1 - v 2 )' 

(6.2.3) 

(6.2.4) 

Taking the conservation of momentum equation for the fluid with density, p, 

and longitudinal displacement l ,u(y), 

(6.2.5) 

INote that the fluid motion is considered along the width of the CP (radial direction y), 

orthogonally to the travelling waves propagating in the longit.udinal direction along the cochlea. 

Thus in the present chapter the fluid displacement is referred to as longitudinal with respect 

to the subtectorial duct ill a single cross-section of the cochlea. 
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t he continuity equation of an incompressible fluid 

d2 au 
W=--

2 ay' 
(6.2.6) 

where d2 denotes the thickness of the fluid layer (distance between the plates), 

and combining them with Eq.6.2.3 gives a sixth-order wave equation of the form 

(6.2.7) 

F 
L 

J "J - u 

Figure 6.2: Schematic of the subtectorial duct comprising two thin plates cor­

responding to the reticular lamina (bottom) and the tectorial membrane (top) 

with the subtectorial fluid confined in between. The displacements, vertical of 

the plate, w, and longitudinal of the fluid , U, are shown with the arrows indi­

cating positive directions. The excitation forces, F, acting on the plates due to 

the external driving pressure or internal forces from the outer hair cells, are also 

shown. d2 duct's height, 2hs thickness of the plates, L the length of the plate. 

Assuming harmonic vibration of the plate of a form w=Aej(wt- kx) , and differ­

entiating with respect to y and t, Eq.6.2.7 can be written as 

2_Eld2k6 
W - 2p , (6.2.8) 

and hence, k, the wavenumber is equal to 

(6.2.9) 
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The coordinate system ofthe plate-fluid-plate system in the considerations of 

Hassan and Nagy was located in the centre of the fluid layer, thus the 'squirting' 

wave is symmetric with respect to the horizontal axis in the middle of the fluid 

film [41], as shown in Fig.6.2. Using the symmetry about the centre line in Fig.6.2, 

it can be seen that a similar fluid mode to that of a 'squirting' mode will exist in a 

fluid film confined between a bending plate and a solid substrate [41]. Therefore, 

we introduce a modified model in which the 'squirting' waves propagate in the 

fluid layer between an elastic plate undergoing vertical oscillations and a rigid 

surface, where the thickness of the fluid layer, say dduct, is equal to half that 

assumed originally by Hassan and Nagy. This is likely to be a more realistic 

model of the subtectorial gap since the RL is considerably more rigid than the 

TM [20,88]. 

The thickness of the plate is redefined to be h=2hs and the overall thickness 

of the fluid layer is redefined as d=2d2 to be consistent with [41]. Therefore, we 

rewrite the wave equation in Eq.6.2.7 for a wave propagating between two elastic 

plates, to obtain the wave equation of the lossless 'squirting' wave propagating 

between a rigid surface of the RL and an elastic plate of the TM under-surface 

of thickness h, located d above the rigid surface. The modified duct is shown in 

Fig.6.3. 

The wave equation will now take the form 

8
2w(y, t) _ E1d 86w(y, t) = 0 

P 8t2 8 6 ' Y 
(6.2.10) 

so that 

k (~:J' (6.2.11) 

and the moment of inertia, 1, will be equal to 

1 
12(1 - v 2 )· 

(6.2.12) 

Since k is not directly proportional to w the wave is dispersive, i.e. its wave-

speed is a function of frequency. The wavenumber, k, propagation speed, c=w/k, 
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F 

y 

Figure 6.3: Schematic of the subtectorial duct comprising a rigid surface cor­

responding to the reticular lamina (bottom), a thin plate corresponding to the 

under-surface of the tectorial membrane, with the subtectorial fluid confined in 

between. The vertical displacement, w, and longitudinal displacement of the 

fluid, 11. , are shown wit.h the arrows indicating positive directions. The excitation 

force, F, acting on the plate due to the external pressure excitation or internal 

forces from the outer hair cells, is also shown. The duct's height, d, is equal now 

to half that assumed by Hassan and Nagy [41] and the thickness of the plates is 

equal to h. L is the length of the plate. 

and the wavelength, )..=2n/k, were calculated according to Eq.6.2.11 for parame­

ters chosen by the present authors2 gathered in Table 6.1. The thickness of the 

plate, with Young's modulus E=8 kPa [30, 89] and Poisson's ratio 11=0.49, was 

set to h= l f.lm. The thickness of the layer of fluid (duct's height) of density that 

of water p=1000kgm- 3 , was set to d=3f.lm [98]. The plots of the propagation 

speed and the wavelength as a function of frequency are shown in Fig.6.4. 

The Young's modulus used in the present work is equal to 8 kPa which can be 

derived from the TM stiffness measurements of Shoelson et al. [89] and Freeman 

et al. [30] (see Chapter 7). However , Bell and Fletcher [9] assumed a Young's 

modulus of the TM and RL plates to be equal to 2 kPa. 

Figure 6.4(a) shows that the 'squirting' wave is very slow and at the frequency 

2 All quantities examined in this section, were first calculated for the parameters given by 

Bell and Fletcher in [9]. The values of most parameters were changed to ensure that the values 

were more consistent with the literature, but the value of h was adjusted to tune the vibration 

of the plate to the fourth mode at 1 kHz, as in [9]. 
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h [pm] 1 

d [pm] 3 

E [kPa] 8 

lJ 10.49 

P [kgm-:3] 1000 

Table 6.1: Parameters used for simulations of the 'squirting' \vaves. 

of 1 kHz its propagation speed amounts to ;:::::40 mms-1 , which corresponds to 

a wavelength of ;:::::40 pm in this lossless case. The wavespeed of the lossless 

'squirting' wave increases by more than a decade in the examined frequency range 

(ccx:w 1/ 3 ) from about 8.6mms-1 at 100Hz to 185.7mms-1 at 10kHz, whereas its 

wavelength, A, decreases by less than a decade, from about 86.2 pm at 100 Hz to 

18.6 pm at 10 kHz. Note that at 1 kHz, the wavelength of the loss less 'squirting' 

\vave is equal to half that of the duct length L=80 pm, so that the vibrations of 

the plate are tuned to the fourth mode at this frequency. 

() 

1 10 
f [kHz] 

(a) (b) 

Figure 6.4: The phase speed (a) and wavelength (b) of the 'squirting' wave wi­

thout losses taken into acconnt, as a function of frequency. 
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6.3 Incorporation of the effects of viscosity 

In the following section the viscosity of the fluid will be introduced into the 

wave equation to examine damping effects to the model's behaviour. Recalling 

Eq.6.2.5 (the conservation of momentum equation for the fluid), defining the 

force per unit distance which acts on the fluid in the duct in the absence of any 

losses, an additional term, due to the fluid drag, will be introduced assuming 

that the fluid is viscous. In such conditions the fluid flow in the duct will have 

approximately parabolic, Poiseuille velocity profile [54]. 

The fluid drag depends on its layer thickness, d (duct's height), and the viscous 

boundary layer defined by [48] 

(6.3.1) 

where 7] is the coefficient of viscosity, which for water at body temperature is 

equal to about 6.6x 10-4 kgm-1s-1 [81], p is the density of the fluid and w is the 

radian frequency. The force, which is required to overcome the viscosity of the 

fluid is equal approximately to [54] 

(6.3.2) 

which, after incorporating into Eq.6.2.5 will determine the fluid force equation 

for the viscous waves, i.e. 

(6.3.3) 

where the fluid displacement, u, is now to be interpreted as the average displace­

ment over the fluid layer confined in the duct. Thus, the wave equation for the 

viscous 'squirting' waves propagating between the RL and the TM modelled as 

a plate, will take the form (Appendix E.4) 

a2w(y, t) 47] aw(y, t) _ Eld a6w(y, t) = 0 
p at2 + d2 at ay6' (6.3.4) 

Assuming a harmonic vibration of the plate of the form w=Aej(wt-ky) , the 
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6 Squirting wave model 6.3 Viscosity effects 

wavenumber of the viscous 'squirting' wave, kv, will take the form 

k = (pw 2 

vEld 
. 47]w ) ~ 

J Eld3 
(6.3.5) 

The propagation speed, cv=w/Re{kv}, and the wavelength, Av=27T/Re{kv}, 

were calculated using the wavenumber defined in Eq.6.3.5, for the parameters 

given in Table 6.1 and viscosity 7]=6.6x10-4 kgm-1s-l, as shown in Fig.6.5 . 

............ , ~' 

( a) (b) 

Figure 6.5: The phase speed (a) and wavelength (b) of the viscous 'squirting' 

,vaves (solid) as a function of frequency. Dotted lines show the phase speed and 

wavelength of the lossless 'squirting' ,vave for comparison. 

It can be seen from Figure 6.5(a) that after adding viscous terms into the wave 

equation, the 'squirting' wave, which \vas already very slow for the undamped 

case (dotted line), was slowed even more, and equals nearly a half that of the 

wavespeed of the lossless case at the frequency of 1 kHz, ~21.8 mms- 1
. This 

corresponds to a wavelength, Av , of ~21.8 /-Lm at 1 kHz, which is also almost a half 

of the wavelength of the lossless 'squirting' wave at the corresponding frequency 

and nearly a quarter of the duct's length assumed to be equal to 80/-Lm in this 

model. The wavespeed increases by less than two decades, from about 3.2 mms-1 

at 100 Hz to about 146.9 mms-1 at 10 kHz and the slope of Cv is somewhat steeper 

than the slope of the wavespeed of the lossless wave, c. The wavelength of the 

viscous 'squirting' wave Av , decreases slower than the wavelength of the lossless 
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6 Squirting wave model 6.4 Response of the model 

wave, and it amounts to about 32.04 11m at 100Hz and about 14.70p,m at 10kHz. 

It should be noted that as well as reducing its wavespeed, the effect of viscosity 

is also to severely attenuate the wave, such that at 1 kHz the wave is attenuated 

by about 14 dB as it travels a distance equal to a wavelength. 

6.4 Response of the model to OHC excitation 

The plate's deformation and fluid's displacement properties are described in 

Appendix E. We now consider the effect of an active model on t he 'squirting' 

wave, initially by examining its excitation by an OHC. The standing nearfield 

described in Appendix E is neglected and only propagating waves are taken into 

account. The response will be evaluated for the finite duct with viscosity effects 

included, in which a single OHC at position y=O is introduced as depicted in 

Fig.6.6 . The OHC is assumed to drive the plate with a force f. 

f 
w 

I . __________ .. __ 
r- If y=O 

- - -- - -- , , , 
-] 

Figure 6.6: Schematic of the sub tectorial duct with a single outer hair cell at 

y=O. The tallest stereocilia of the outer hair cell are embedded in the plate. The 

smaller stereocilia are subject to the fluid displacement, U, whereas the tallest 

cilia produce the wall displacement, w. f is the input force from the outer hair 

cell at a distance lj from the inner hair cell along the duct (NB dimensions 

exaggerated and proport ions not preserved). 

The more general relationship between the governing equations for a complete 

system, where three rows of the OHCs are giving feedback is shown in the block 

diagram of Fig.6.7. All inputs and outputs to the duct are presented on the left 
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6 Squirting wave model 6.4 Response of the model 

side of t he figure and represented in control system block diagram on the right. 

Duct responses 

p u 

G 

---+ ---
f lV 

I H I 
I L 

OHC responses 
(b) 

Figure 6.7: Schematic of the subtectorial duct with the internal inputs from t he 

outer hair cells, fl -3, and internal outputs being the plate's displacements, WI - 3 · 

The external input , the pressure of t he endolymph, p , and the external output, 

subtectorial fluid displacement, U, are also shown. The fourt h mode of vibrat.ion 

of t.he plates is sketched on the plate . The 'squirting' wave, active cochlear model 

represented as a control block diagram is shown on the right. 

It is assumed that the fluid is driven by an external pressure of the endolymph 

of the scala media, p. The resulting response is t he output of the IHC, which is 

dependent on the flow of the fluid in t he subtectorial space, u. The OHCs exert 

forces, h -3 , on the upper duct plate3 , and depend on the plate's displacements , 

W I - 3. The excitation of the OHC is due physically to the shearing motion of the 

sterocilia, as described in Chapter 2. The bending motion of t he plate will induce 

shearing motion as a consequence of its out of plane mot ion, and for simplicity 

these are assumed to be proportional to each other. The out of plane plate 

displacements, fed back to the OHC's forces through the matrix of gains, H, are 

gathered in a vector w , whereas t he resulting ORC forces h -3 are contained in 

the vector f. The response of t he duct is a generalised plant represented by the 

matrix, G , as shown in the control diagram. 

:lThe reactive forces exerting on the bottom wall of the duct due to the OIles electromotility 

are not considered here. 
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6 Squirting wave model 6.4 Response of the model 

The equations for the system in which the OHCs are assumed to behave 

linearly are defined in the frequency domain as 

(6.4.1) 

(6.4.2) 

where the individual responses are defined to be: Cup, response at the IHC due to 

the external pressure; Cuj, response at the IHC due to each OHC excitation; Cwp , 

response at the OHC positions due to the external pressure and Cwj , response 

at the OHC positions due to each OHC excitation. 

Furthermore, the forces of the OHCs are defined to be 

f=Hw, (6.4.3) 

where, since each OHC is assumed to act locally, the matrix of gains, H, is 

diagonal and defines a decentralised control system. 

Assuming the feedback loops are stable, the overall response can be derived 

from Eqs.6.4.1-6.4.2. and formulated by 

(6.4.4) 

Equations for the individual responses within the duct are derived in Appen­

dix E. 

6.4.1 Overall response with and without feedback 

The overall response between the external pressure and the IHC velocity, 

jwu/p according to Eq.6.4.4, is denoted Ctotal here, and is plotted for the passive 

and active cases below. 

The active part of the system is driven by the linear, electromotile responses of 

the OHCs after their stereocilia are deflected as a consequence of the BM motion. 

The elongation of the OHC applies force to the upper plate, however, which is 
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6 Squirting wave model 6.4 Response of the model 

assumed to be delayed in time with regard to the deflections of the stereocilia, 

so that, in the time domain, 

f(t) = ,w(t ,), (6.4.5) 

where, denotes the active gain, having the dimension of stiffness [Nm-1], and, 

is the delay. 

The Fourier transform of Eq.6.4.5 will give 

and hence 

F(jw) 
H1 (jw) 

(6.4.6) 

(6.4.7) 

The delay was chosen to be equal to 1ms in order to obtain positive feedback 

at 1 kHz and for which there is a whole cycle of phase shift at this frequency. Note 

that the reaction force lags the applied displacement and thus the mechanical 

impedance has a negative real part, which is characteristic for an active system 

as discussed in Section 3.3.1. 

After formulating all the individual responses of Eq.6.4.4 in Appendix E.5, 

the overall velocity responses, Gtotal, were calculated for parameters in Table 6.1 

and the coefficient of viscosity 7,7=6.6 x 10-4 kgm-1s-1. In the first instance we 

calculate the passive response, i.e. the duct velocity response GtotaZ=jwGup since 

,=0 and hence H =0, for the 'squirting' waves without and with viscosity taken 

into account, as shown in Fig.6.8. 

Figure 6.8(a) shows sharply tuned resonances in the passive duct response for 

the lossless 'squirting' waves, but these resonances are heavily damped when the 

viscosity of the subtectorial fluid is taken into account, as it was predicted by 

Bell and Fletcher [9]' and the overall level of the response along the duct drops 

by about 80 dB due to the viscosity. However, after introducing feedback from 

only a single OHC, the predicted resonances are undamped, as shown in Fig.6.9, 

where the velocity response Gtota.l was calculated for the active viscous 'squirting' 

wave model with the electromotility from the OHC2 (Fig.6.7(a)) and the active 
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Figure 6.8: IV[agnitude (a) and phase (b) of the passive duct velocity response for 

lossless (solid) and viscous (dashed) 'squirting' waves, as a function of frequency. 
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6 Squirting wave model 6.4 Response of the model 

gain (=30. The active OHC force enhances the response at about 1 kHz. In fact, 

the first resonance frequency in Fig.6.9(a), is somewhat below 1 kHz since the 

viscosity slows the wave, thus lowering the resonance frequency. 

-90 
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'" -95 
'z 

ME -100 

~ -105 

~-110 
r;[ 
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o 
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Q) 

~ -1 
~ 

~ -15 0- . 

'J 
-2 

-2.5 

1 10 
f [kHz] 

(a) 

1 10 
f [kHz] 

(b) 

Figure 6.9: Magnitude (a) and phase (b) of the active h=30; solid) and passive 

({=O; dashed) duct velocity response of the 'squirting' wave model with only 

single active outer hair cell (OHC2), as a function of frequency. 

The standing wave resonances in the subtectorial duct are also undamped 

when all three OHCs are active, (OHCl-3 in Fig.6.7(a)), as shown in Fig.6.1O. 

However, feedback gain of only (=15 is needed to nearly match the resonance am­

plitudes in the velocity response with the single OHC active shown in Fig.6.9(a). 

In this case the gains from all three OHCs were equal, i.e. Hll =H22=H33 in the 
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H matrix in Eq.6.4.4. 
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Figure 6.10: Magnitude (a) and phase (b) of the active 15; solid) and passive 

h=O; dashed) duct velocity response of the 'squirting' \vave model with all three 

outer hair cells active (OHCl-3), as a function of frequency. 

In Fig.6.11(a) we show the Nyquist plots for the model with single OHC 

active, GW2hH22, for the gain of '1=30, and in Fig.6.11(b) for the largest eigen­

value of the model with all three OHCs active, eig(GwfH), for which '1=15 and 

Hll =H22=H33 , both evaluated for the frequency range from 100 Hz to 10 kHz4. 

4The Nyquist point is on the right-hand side of the origin here since a positive feedback 

convention is implicitly used in Fig.6.7, instead of on the left-hand side of the origin in Section 

5.1, where a negative feedback convention was used. 
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6 Squirting wave model 6.5 Discussion 

The eigenvalue analysis of the open loop system for the model with the multi­

channel feedback, calculating the eigenvalues and eigenvectors of the system at 

each frequency, was carried out in the same way as described in [7]. 
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(b) 

+ 
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Figure 6.11: The Nyquist plots for the active 'squirting' \vave model with only 

second outer hair cell active (OHC2) and ~!=30 (a) and for the largest magnitude 

eigenvalue of the model with all three outer hair cells (OHCl-3) active and 

(b). The' sign indicates the Nyquist point and the arwws indicate the direction 

of increasing frequency. 

It appears that for both the single channel and multichannel feedback active 

models, the system is stable since the point (+ 1,0) is not enclosed, but the Nyquist 

plot passes in its vicinity. Therefore the system enhances the disturbances at this 

frequency and the response of the system is increased. 

6.5 Discussion 

In this chapter, the properties of the 'squirting' wave rnodel, proposed by 

Bell and Fletcher in [9], were investigated. The model was also extended by 

incorporating the viscosity of the subtectorial fluid into the wave equation and 

implementing the motility of a single and three OHCs in the feedback loop to 

give the response of the active model. 
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6 Squirting wave model 6.5 Discussion 

It was shown that, because the waves in the duct are attenuated due to the 

viscosity of the fluid, resonances in the passive response of the duct are very well 

damped. It was also shown, however, that incorporating the feedback of just a 

single OHC significantly enhances the overall response of the system, and this 

effect can also be observed when all three OHCs are active for significantly lower 

gains. The activity of the OHCs thus provides an efficient and perhaps a sufficient 

mechanism to overcome the damping in the model. 

The OHC stereocilia attached to the TM enable the transfer of the OHC 

active forces to the TM plate in the 'squirting' wave active model. Because the 

feedback gains in the active model have dimension of stiffness, reduction of gain 

could be interpreted as a reduction of the stereocilia stiffness. This reduction 

would lead to a reduction of the vertical displacement of the upper wall of the 

subtectorial duct and hence the overall model's response. However, when all 

three OHCs are active they must collectively force the TM into motion due to 

the structural coupling in the TM plate, so that the am.plitude response of the 

model is enhanced similarly as in the case with only a single OHC active, even 

though the gains are halved. 

The feedback gain has a phase lag associated with it. It can be understood 

as 'timing' of the OHC forces transfer to the TM plate, vibrating due to the 

external pressure alone, in order to obtain most efficient amplification at each 

frequency. Thus, apart from the correct amplitude of the gain in a model with 

three OHCs active, to match the response of the model with a single active OHC 

also the phase of each of the OHCs must be correct. However, the relative phases 

between the OHC1-3 forces are not studied here. 

Finally, it was shown that the system achieves the best performance when 

operating close to instability, which is thought to be a vital condition for the 

cochlear amplifier to gain the highest sensitivity in the cochlea [55, 82]. However, 

significantly lower gains are needed to enhance the response of the model with 

three OHCs feedback, so that the loops of the Nyquist plots for this model are 

further away from the Nyquist point than the loops obtained for a single OHC 

feedback. Thus, the responses of both models are comparable for the gains used 

here, but the model with three OHCs active is more stable than the model with 
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only a single active ORC. 
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Chapter 7 

Fluid-elastic wave model 

7.1 Elastic half-space model 

A model of fluid-structural waves propagating in the radial direction of the 

subtectorial space within the organ of Corti, that relies on the bulk elasticity of 

the tectorial membrane, rather than its bending stiffness in the model of Bell and 

Fletcher [9]' was recently suggested by Elliott [20, 22]. Experimental evidence 

for the elastic model of the tectorial membrane comes from measurements of the 

mechanical impedance of the TM by Freeman et al. [30]. These measurements 

provide evidence that the dynamic behaviour of this structure, when excited by 

a force probe, could be represented by a lossy stiffness, which could be modelled 

reasonably well by a complex stiffness 

K = Ko(1 + j/-L), (7.1.1) 

where Ko denotes the magnitude of the stiffnE2..s.s ,and. /-L i12 .. a loss factor [20]. 1he 

measurements of Freeman et al. show that the phase of the mechanical impe­

dance of the tectorial membrane, ZTlvI, has a nearly constant frequency depen­

dence, and in the transverse direction amounts to about -600
• Thus, accor­

ding to Eq.7.1.1 the phase of the mechanical impedance can be evaluated as 

LZn1=Kjjw=- tan-l~, so that the loss factor /-L in the transverse direction 

will be approximately 0.5 [20]. Additionally, the measurements of the organ of 

Corti by Scherer and Gummer [88] revealed viscoelastic properties of the struc-
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7 Fluid-elastic model 7.2 Fluid-elastic waves 

ture, where both the stiffness and damping of the organ could be reasonably well 

represented by a lossy spring defined in equation 7.1.1 and the loss factor j1 equal 

to 0.5 [20]. 

The fluid-elastic wave model assumes that longitudinal fluid waves propagate 

in the subtectorial space due to the vertical vibrations of the TM. However, be­

cause of the experimental results described above, the fluid-elastic model assumes 

that the waves are sustained by the elasticity of an elastic half-space rather than 

a thin bending plate, as in the model of Bell and Fletcher [9]. Furthermore, since 

the stiffness of the RL appears to be much stiffer than that of the TM [88] it is 

again considered as being rigid in the fluid-elastic model. 

For such a model, the predicted mechanical stiffness, according to 8hoelson 

[89], is approximately equal to 

Ea 
K=---

2(1-v)' 
(7.1.2) 

where E and v are the Young's modulus and Poisson's ratio of the elastic half­

space and a is the effective radius of the indenter used in the measurements. 

The Young's modulus of the elastic half-space can be estimated from the above 

equation and the stiffness measurement of Freeman et al. [30], who reported that 

the dynamic behaviour of the TM measured with a force probe of diameter of 

50j1m (=2a) can be represented by a stiffness of approximately 0.2 Nm-l, up to 

several kilohertz. Thus, assuming the Poisson's ratio of the gelatinous Tl'v1 to be 

0.49, its Young's modulus will be equal to approximately 8 kPa. 

7.2 Fluid-elastic waves 

In this section the wave equation for the fluid-elastic waves will be derived [22]. 

A schematic of the subtectorial duct in which the bottom surface corresponds to 

the rigid RL and the top surface to the TM modelled as an elastic half-space, 

is presented in Fig.7.1. The height of the duct (thickness of the fluid layer) 

is assumed to be equal to d=3 j1m and the length of the subtectorial duct to 

L=80 j1m similar to the values assumed for the 'squirting' wave model. The 

coordinate system x, y, z corresponding to the longitudinal, radial and transverse 
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7 Fluid-elastic model 7.2 Fluid-elastic waves 

directions in the cochlea are indicated in t he figure. The vertical displacement 

of the wall of the elastic half-space, w(y , t) , and the fluid pressure, p(y, t) are 

assumed to be functions of the radial position y (position a long the duct) , whereas 

the fluid displacements in the y and z directions denoted by u(y, z, t) and v(y, z, t) , 

respectively, are functions of both y and z (position across the fluid layer) . All the 

variables are considered to be constant in the x direction. For clarity of notation, 

all the variables will be written without their dependence on y, z and t. 

L=80flm 

Elastic 
half-space (TM) 

Fluid layer 

Rigid 
surface 

(RL) 

Figure 7.1: Fluid-elastic model of t he organ of Corti. The tectorial membrane 

(TM) is represented by an elastic half-space and the reticular lamina (R.L) by 

a rigid surface both forming a duct of height d and length L. The vertical 

displacement of the elastic layer is w, whereas the transverse and radial (with 

respect to the cochlea) fluid displacements are respectively v and v .. The fluid's 

pressure within the duct , p , is also indicated. 

Assuming incompressibility of the fluid , the conservation of its mass gives 

AU ov _ 0 
oy + oz - , (7.2 .1) 

and ignoring the viscous effects in t he first instance, if the fluid's density equals 

p, then the conservation of the fluid momentum is expressed as 

(7.2.2) 

Assuming linear variation of the fluid displacement in t he transverse direction, 
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and knowing that v(y, 0, t)=O and v(y, d, t)=w(y, t) 

z 
v=-w d . (7.2.3) 

However, the momentum in the vertical direction z can be ignored assuming 

that d«).. [14, 17]. 

Differentiating Eq.7.2.3 with respect to z and substituting into Eq.7.2.1 gives 

ou 
oy 

w 
d' 

and after differentiating the above equation twice \vith respect to time 

and comparing with Eq.7.2.2 differentiated with respect to y, i.e. 

02p 03U 

oy2 = -p oyot2' 

a second-order wave equation can be obtained 

(7.2.4) 

(7.2.5) 

(7.2.6) 

(7.2.7) 

Assuming that both the elastic half-space displacem.ent and the pressure are 

of the complex, time-harmonic form, i.e. w(w, k)ej(wt-ky) and p(w, k)ej(wt-ky), 

where w is the radian frequency and k is the wavenumber, we can write Eq.7.2.7 

as 

pw2 

_k2p(W, k) + d w(w, k) = O. (7.2.8) 

According to Graff [38], the ratio of p(w, k) and w(w, k), which we will refer 

to as the wall stiffness, can be expressed as 

p(w, k) 
w(w, k) 

E [4k2(k2 - ki)~(k2 kD~ - (2k2 - k3)2] 

2 (1 + v) k3 (k2 - ki) ~ 
(7.2.9) 

where kl =W / Cl and k2=w / C2, where Cl and C2 are the compressional and shear 

wave speed in an infinite medium, respectively. 
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For a value of k such that, for a gIven w, w j k is equal to the speed of a 

Rayleigh wave, the wall stiffness in Eq.7.2.9 falls to zero [38]. For materials with 

v~0.5 (gel-like materials similar to that of the TlVI) k2 is l11.uch larger than kl and 

the speed of a Rayleigh wave is nearly the same as the speed of the bulk shear 

wave. However, assuming that the fluid-elastic wave is travelling slower than the 

Rayleigh wave, k 2 will be much larger than k~ [22]. Thus, taking into account 

the above conditions, i.e. k2»k~»kf, Eq.7.2.9 can be reduced to 

lim 
k2»k~»ki 

p(w, k) 
w(w, k) 

kE 
(1 + v) = Swall, (7.2.10) 

Using the relationship between the elastic half-space displacement, w, and the 

pressure, p from the above equation, after differentiating twice with respect to 

time and substituting into the wave equation in Eq.7.2.7 we have 

or taking 

p [Pp 
---2 =0. 
Swalld at ' 

c ~ tw;"d, 

(7.2.11) 

(7.2.12) 

the wave equation will take a second order form widely used to describe the 

compressional waves, i.e. 

(7.2.13) 

It is worth noting here that although the derived wave equation appears in 

a concise form, the phase velocity of the fluid-elastic wave, using Eq.7.2.12 and 

Eq.7.2.10 for the wall stiffness in which we substitute for k=wjc, will be defined 

by 

(7.2.14) 

Thus the wavespeed of the fluid-elastic wave is dispersive and for the lossless 

case it is proportional to w l / 3 and so the wavelength Acxw-2
/

3
. Figures 7.2(a) 

and 7.2(b) depict the phase speed and the wavelength of the lossless fluid-elastic 
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wave calculated according to Eq.7.2.14 for E=8 kPa [30], v=0.49, d=3 fLm [9] and 

p=1000kgm-3 (compare Table 6.1). 

,. 
(}) 

g 
() 

(a) (b) 

Figure 7.2: The phase speed (a) and wavelength (b) of the lossless fluid-elastic 

wave as a function of frequency. 

The speed of the fluid-elastic wave when the losses in the subtectorial fluid and 

the elastic half-space are ignored increases with frequency from about 0.22 ms-1 

at 100 Hz to about 1 ms- 1 at 10 kHz, that is by less than a decade in the examined 

frequency range (an increase of a decade per three decades of frequency according 

to Eq.7.2.14), as shown in Fig.7.2(a). It can be noted that, for the assumed set 

of parameters, the lossless fluid-elastic waves propagate with a phase speed of 

about 466 mms-1 at 1 kHz which is very slow comparing to e.g. speed of sound in 

water, but relatively fast taking into account that the distance these waves have 

to travel along the subtectorial gap amounts to 80 fLm in this model. As predicted 

from Eq.7.2.14, the wavelength of the loss less fluid-elastic wave decreases with 

increasing frequency (two decades per three decades of frequency increase), such 

that at 100 Hz it amounts to about 2.2 mm and to about 0.1 mm at 10 kHz for 

the assumed parameters. At 1 kHz the wavelength of the lossless wave is equal 

to about 466 fLm, which is roughly six times bigger than the assumed length of 

the subtectorial duct, L=80 fLm. 
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7 Fluid-elastic model 7.3 Lossy fluid-elastic waves 

7.3 Fluid-elastic waves with losses 

The viscosity of the subtectorial fluid was shown to affect significantly the 

propagation of the 'squirting' waves. Because the fluid-elastic waves are assumed 

to propagate in the gap of the same size, the fluid flow also occurs within the 

viscous boundary layer in this model and the same force as defined in Eq.6.3.2 

for the 'squirting' wave is needed to overcome viscosity effects. Furthermore, 

according to the measurements of Freeman et al. [30], who observed that the 

local stiffness of the TM reveals a loss, where the loss factor was estimated to be 

about 0.5, the structural damping in the elastic half-space also has to be taken 

into account in the propagation of fluid-elastic waves. 

Introducing an additional term due to the viscosity of the fluid into the loss less 

fluid force equation in Eq.7.2.2 gives the same expression as in Eq.6.3.3 obtained 

to derive the 'squirting' wave equation with losses, \vhich can be also written as 

op 167] ou 
-----

oy d2 ot' 
(7.3.1) 

and thus, after differentiating the above equation once with respect to y, 

02p 167] 02u 
-----
oy2 d2 oyot' 

(7.3.2) 

Hence, according to the relation in Eq.7.2.4 and Eq. 7. 2.5, 

(7.3.3) 

which leads to a modified version of Eq. 7.2. 7 in which the viscosity effect is taken 

into account, and 

(7.3.4) 

Assuming again sinusoidal, complex variations of the pressure, p(y, t), and the 

elastic half-space displacement, w(y, t), Eq.7.2.8 will now take the form 

2 jw167] pw2 

-k p(w, k) -~ w(w, k) + d w(w, k) = O. (7.3.5) 
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It was shown in Eq.7.2.10 that the ratio of the pressure and the wall displace­

ment, the wall stiffness Swall, is directly proportional to the Young's modulus and 

inversely proportional to the wavelength. However, to take the losses in the local 

stiffness into account, the lossy wall stiffness will be modified by including the 

lossy version of the Young's modulus Eo(1+jp), where Eo denotes the magnitude 

of the Young's modulus (compare Eq.7.1.1), and since AcxRe{k} where Re{k} is 

the real part of the wavenumber, it will be formulated by 

S _ p(w, k) _ Re{k}Eo(1 + jfL) 
wall - w(w, k) - (1 + v) (7.3.6) 

where p is the damping factor of the elastic half-space. Thus, in the frequency 

domain, 

2 jw161](1 + v) pw2 (1 + v) 
-k p(w, k)- Re{k}Eo(1 + jfL)d3P(w, k)+ Re{k}Eo(1 + jfL)dP(w, k) 0, (7.3.7) 

so that the dispersion relation for the fluid-elastic waves with the losses taken 

into account takes the form 

(7.3.8) 

which can be solved to give a complex wavenumber at each frequency using the 

method described in Appendix F. 

Figure 7.3 depicts the phase speed, wavelength, the real part of k, and the 

imaginary part of the wavenumber (or attenuation coefficient), for the fluid-elastic 

wave with losses taken into account. The light solid line represents the quantities 

with the losses set to zero, i.e. P=1]=O, for comparison. The dashed, dotted and 

thick solid lines correspond to waves with the losses only in the elastic half-space 

(p=0.5, 1]=0), losses only in the fluid (p=O, 1]=6.6x10-4 kgm- 1s-1 ) and losses in 

both the elastic half-space and the fluid (p=0.5, 1]=6.6x 10-4 kgm-1s- 1 ). All the 

parameters used for calculation are listed in Table 7.1. 

Figure 7.3(a) reveals that the wavespeed of the fluid-elastic wave in which the 

losses in the elastic half-space were taken into account, is almost parallel to and 

slightly higher than that of the wave with no losses in the whole examined fre­

quency range. However, when only the viscosity of the fluid is taken into account 
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Figure 7.3: The phase speed (a), wavelength (b), the real part of the wavenumber, 

(c) and the attenuation coefficient, 0', (d) of the fiuid-elastic wave with no losses 

(P=T/=O: light solid), losses only in the elastic half-space (11=0.5 and T/=O; da­

shed), losses only in the fiuid (~t=O and 17=6.6xlO- 4 kgm-- 1s-\ dotted) and with 

losses in both elastic half-space and the fiuid (11=0.5 and n=6.6x 10-4 kgm-1s-\ 

thick solid) plotted as a function of frequency. 
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7 Fluid-elastic model 7.3 Lossy fluid-elastic waves 

I PARAlYIETER I VALVE I 
Eo [kPa] 8 

d [11m] 3 

1/ 0.49 

p [kgm-:3] 1000 

Tl [kgm -1 s- 1] 6.6x 10-4 

/-L 0.5 

Table 7.1: Parameters used for the simulations of the fluid-elastic "waves. 

the magnitude of the phase speed of the fluid-elastic wave is significantly redu­

ced in comparison with the lossless wave, but it increases faster with frequency. 

\Vhen the losses from both the elastic half-space and the fluid are considered, the 

speed of the wave increases slightly in comparison with the one calculated for the 

wave with only viscosity taken into account. Thus the slope of the wavespeed in 

this case is still higher than the slope of a lossless fluid-elastic wave. The losses 

in the subtectorial fluid thus have a bigger influence on the propagation of the 

fluid-elastic waves than the losses in the elastic half-space. 

The wavelength of the fluid-elastic wave for which the damping in the elastic 

half-space was taken into account, dashed line in Fig.7.3(b), decreases with an 

increase of frequency, and it is slightly higher than the one of the lossless wave 

though both curves have nearly the same slopes. \Vhen the fluid-elastic wave is 

attenuated by the viscosity of the fluid only, the wavelength of the wave decreases 

with frequency significantly slower than the wavelength of the lossless wave. 

The wavelength of the fluid-elastic wave at 1 kHz, when fluid and elastic losses 

are accounted for, is equal to about 130/-Lm, which is roughly one and a half times 

the assumed duct length, L. The attenuation coefficient in Fig.7.3(d) is also 

most strongly affected by the fluid viscosity and is about 105 m- 1 at 1 kHz, which 

corresponds to an attenuation of about 54 dB per wavelength travelled. Thus the 

viscosity of the fluid has the major effect on the propagation of the fluid-elastic 

waves, slowing the waves significantly in comparison with the lossless waves, and 

adding significant attenuation. 
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7 Fluid-elastic model 7.4 Response of the model 

7.4 Response of the model to ORC excitation 

In the previous sections, the fluid viscosity was shown to severely attenuate the 

fluid-elastic wave. The action of the outer hair cells, however , might again help 

to overcome the effect of these losses (and so enhance the response at particular 

frequencies), as it was shown to do for the 'squirting' wave model. 

The assumed geometry of the subtectorial space in the fluid-elastic model 

can be represented schematically as in Fig.7.4. The length of the subtectorial 

duct is again assumed to be equal to L=80 /lm with the IRC located at y=O, 

and the first, second and third row of the ORCs located at positions y equal to 

h =30 pm, l2=50 /lm and l3=70 /lm , respectively. The duct is again driven by an 

external pressure, Pext, which displaces the thin fluid layer at the position of the 

IRC by u. The ORC is assumed to contract and elongate, and hence produce 

a fluctuating area displacement into the duct, s, which is assumed to produce 

a localised pressure, p , that displaces the wall of the elastic layer by w, and 

enhances the displacement of the subtectorial fluid, u at y=O. 

1,=50JllIl 30~m 

w -u p d 

y 

Figure 7.4: Schematic of the subtectorial space duct of length L=80 pm in the 

organ of Corti 'with indication of the inner (IRC) and second outer ·hair Gell 

(ORC2). A volume displacement, s, due to the action of the outer hair cell, the 

pressure load, p, the elastic layer's displacement , w, and the displacement, u, of 

the subtectoria.l fluid , are also shown. 

The control block diagram used for the active 'squirting' wave model, shown 

in Fig.6.7, can again be used to calculate the overall active response of the fluid­

elastic model. The modified control system is shown in Fig.7.5(b), where the 

224 



7 Fluid-elastic model 7.4 Response of the model 

external pressure p and the ORC area displacements, s, drive the fluid displace­

ment, U, at the end of the duct and the duct wall displacements, W, to constitute 

the duct response G. 

Fluid-elastic responses 

P u 

G 

u P 
ts~ s 

,----+ f---+-
w 

OHC1 OHC2 OHC3 
(a) 1 H I' 

OHC responses 
(b) 

Figure 7.5: Schematic of a duct comprising of a rigid surface (bottom) and an 

elastic half-space (top) with the internal inputs from the outer hair cells, 81 - 3, and 

outputs being the elastic layer's wall displacements, Wl - 3. The external input, 

the pressure of the endolymph, p, and the external output, subtectorial fluid 

displacement, U, are also shown. The active fluid-elastic wave model represented 

as a control block diagram is shown on the right. 

The governing equations for the fluid and wall displacement, assuming the 

system in Fig. 7.5(b) is linear, are similar to those for the 'squirting' wave active 

model and take the form 

(7.4.1) 

(7.4.2) 

where Gup is the response at the IRC due to the external pressure excitation, Gus 

relates the fluid displacement at the IRC to the internal source area displacement, 

Gwp specifies the elastic half-space wall displacement due to the external pressure 

input, and finally Gws relates the wall displacement due to the internal area 
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7 Fluid-elastic model 7.4 Response of the model 

displacement excitation. The area displacement due to the outer hair cell motility 

and the displacement of the elastic layer are assumed to be related by 

s=Hw, (7.4.3) 

where the controller matrix, H, is again diagonal because each of the components 

of the vector of sources, s, is thought to only act locally. However, the controller 

gain is formulated in a different way than that of the 'squirting' wave model, in 

which H(jw) had a constant, unit magnitude and a linear phase lag. Here, a 

second-order low-pass filter function of the form 

H ·w _ S(jw) _ ( 1 ) 2 

(J ) - W(jw) -, l+jwT ' (7.4.4) 

is used for the OHC gain, where, denotes a gain term. with units of [m] and T 

is a time constant. A second-order, low-pass filter is also used in the model of 

Neely [66] discussed in Section 3.5, although the gain function defined in Eq.7.4.4 

is a simplified version of that used by :-Jeely, He, since r=T and 9j=9r=1. 

The overall response of the system shown in Fig. 7.5 (b), can again be derived 

according to Eqs.7.4.1-7.4.3, and will take the form 

(7.4.5) 

To solve for the constitutive responses of the overall system response, expres­

sions must again be derived for the pressure in the duct of the subtectorial space, 

and the elastic half-space and subtectorial fluid's displacements due to the ex­

ternal pressure and area displacement source excitation. The derivations of the 

individual responses in Eq.7.4.5, are set out in Appendix G. 

7.4.1 Response with and without feedback 

Equation 7.4.5 can be used to define the total response, Gtotal, from external 

pressure to velocity at the IHC, jwu/p. Figure 7.6 shows the overall velocity 

response of the passive fluid-elastic wave model without and with the losses taken 

into account, i.e. for {L=Tj=O, and {L=O.5 and Tj=6.6x 10-4 kgm-1s-1, respectively. 

A single, sharp resonance can be observed in the response of the lossless model 
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7 Fluid-elastic model 7.4 Response of the model 

at about 5 kHz for the examined frequency range. However, this resonance is 

damped when the losses are taken into account and the level of the response 

again drops by about 80 dB. 
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Figure 7.6: IVIagnitude (a) and phase (b) of the passive duct velocity response for 

lossless (solid) and lossy (dashed) fiuid-elastic Vlaves, as a function of frequency. 

The OHC gain, defined in terms of a second-order, low-pass filter (Eq.7.4.4), 

is assumed to have the same form for all three OHCs, and it is shown as a function 

of frequency in Fig. 7. 7 for the time constant 7=45 fls and the gain of 1=22.5 flm. 

When only the middle outer hair cell, OHC2, is active, a resonance is again 

observed as shown in Fig.7.8, which is now at about 1 kHz due to the effects 

of viscosity and the low-pass OHC filter characteristics, i.e. the time constant 

7=45 fls, which was chosen by trial and error to tune the resonance to 1 kHz. The 
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Figure 7.7: ]Vlagnitude (a) and phase (b) of the outer hair cell gain function, 

H(jw), c('llc1l1ated for the gRin of ~(=22.51an and the time constant /-LS-
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active gain was set to 22.5 f-Lm for the single channel feedback. 
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Figure7.S: I\Jagnitude (a) and phase (b) of the active b=22.5 pm; solid) and 

passive (1'=0; dashed) duct velocity response of the fluid-elastic wave model with 

only single outer hair cell active (OHC2), as a function of frequency. 

A slightly lower gain of ,=20 pm is needed to undamp the resonances within 

the subtectorial gap when all three OHCs (OHCl-3) are active, as shown in 

Fig.7.9. However, the main resonance peak is shifted in this case to about 700 Hz, 

and a second damped resonance can be observed above 1 kHz. The response of 

the multichannel feedback controller in the fluid-elastic rnodel requires almost 

the same value of gain to achieve this resonance in the subtectorial space as in 

the single OHC case. This situation contrasts with the 'squirting' wave model 
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111 which the duct dynamics more strongly influenced the overall response of 

the model. .i'\evertheless, it is clear that the ORC local action can enhance the 

response of the model if its dynamics are correctly tuned. 
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Figure 7.9: lVIagnitudc (a) and phase (b) of the active h=20 fLm; solid) and 

passive (1=0; dashed) duct velocity response of the fluid-elastic wave model with 

all three outer hair cells active (OHCl-3), as a function of frequency. 

Figures 7.10(a) and 7.10(b) show the Nyquist plots of the single channel feed­

back controller GW2S2H22 for {=22.5 fLm and T=45 fLS, and for the largest eigenva­

lue of the multichannel feedback controller, GwsH, calculated for {=20 fLm and 

T=45 fLS. The frequency used for the calculation of the Nyquist plots was set to 

100 Hz-lO kHz. 
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Figure 7.10: The Nyquist plots for the active fluid-elastic wave model with only 

second outer hair cell active (OHC2) and r=22.5 fill (a) and for t.he largest 

magnitude eigenvalue of the model with all three outer hair cells (OHCl-3) active 

and pm (b). The' +' sign indicates the Nyquist point and the arrows 

indicate the direction of increasing frequency. 

It can be seen from Fig.7.10 that both the single channel and multichannel 

feedback models are stable since the corresponding Nyquist plots do not enclose 

the (+1,0) point. However, in both cases the Nyquist plot passes in the vicinity 

of (+1,0), at about 1kHz in the single channel model and about 700Hz in the 

multichannel model, so that the overall responses, Gtotal, are enhanced at these 

frequencies. 

7.5 Discussion 

The use of the fluid-elastic model proposed by Elliott [20] in an active model, 

was examined in this section. The physics of the fluid-elastic waves in the sub­

tectorial space of the organ of Corti were investigated and a feedback controller 

model was proposed by incorporating the motility of a single and three OHCs to 

overcome the effects of viscosity of the subtectorial fluid and undamp the overall 

response of the modeL 

As for the 'squirting' wave model discussed in Chapter 6, feedback from only a 
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7 Fluid-elastic model 7.5 Discussion 

single OHC is required to enhance the overall response of the fluid-elastic model. 

If all three OHCs are active, the enhancement of the modelled overall velocity 

response can be also observed for a slightly lower gain, although a shift of the first 

resonance peak towards lower frequency and a second, damped resonance could be 

observed in this case. Nevertheless, if the controller model is tuned correctly, the 

activity of the OHCs appears to provide sufficient means to overcome damping 

in the model. It was also shown that to achieve this, the system must again be 

operating close to instability. 

The OHC gain in the fluid-elastic model is of the form of a second-order low­

pass filter which is a simplified version of the OHC gain function proposed by 

Neely [66]. It can be physiologically identified with the filtering properties of the 

OHC as it was done for the Neely model. However, the OHC gain and phase in 

the fluid-elastic model were tuned to obtain positive feedback at 1 kHz and may 

not be physiologically realistic. 

The dimension of the OHC gain in the fluid-elastic wave model is that of a 

displacement since it is defined by the ratio of the TM displacement to the area 

displacement of the RL due to the OHC motility. The transfer of force via the 

tallest row of stereocilia embedded in the TM is neglected in this case, and it is 

assumed that the local area displacement of the RL is transferred to the TIVI via 

the incompressible fluid in the subtectorial space. 

The TM in the fluid-elastic model does not possess the bending stiffness as 

it was in the case of the 'squirting' wave model, so that the displacements of the 

TM are local and decrease significantly when the gain of the OHC feedback is 

reduced. Thus, we can obtain comparable amplitudes of the overall responses 

of the fluid-elastic model with three OHCs active to those of the model with a 

single OHC active, only when the OHC gains have comparable magnitudes. This 

also causes the Nyquist plots to pass very close to the point of instability in both 

cases. 

The model of the TM considered as an elastic half-space seems to be more 

physiologically plausible, than the plate model of the TM proposed by Bell and 

Fletcher [9], since the TM is usually described as a gelatinous structure (Chapter 

2). However, both models require feedback from the OHCs to amplify the motion 
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of both types of waves in the subtectorial space. This is in agreement with the 

measurements of Nowotny and Gummer [74], who observed more complex dyna­

mics of the subtectorial space, than those suggested by the lumped parameter 

models of the organ of Corti, as a result of the ORC sOIIlatic motility. 

The complex, counterphasic motion of the RL and TM was observed by No­

wotny and Gummer for frequencies up to about 3 kRz [74]. Above this frequency 

these authors suggest that the ORC somatic motility couples mainly with the 

BlVI motion inducing the shearing motion between the RL and TM, as it was 

shown for the classical lumped parameter models in Chapter 3. Therefore, the 

'squirting' or fluid-elastic mode of fluid motion in the subtectorial space should 

be interpreted as an additional mechanism of amplifying the transduction at the 

IRCs and contributing to the cochlear amplifier observable at the level of the 

BM. 

A number of assumptions have had to be made to obtain numerical results 

for both of these models, which remain to be tested, and so this study must only 

be considered as preliminary. It is hoped that a combination of modelling and 

direct observation could be used to refine our knowledge of the dynamics in the 

subtectorial space, and thus better understand the mechanisms of amplification 

in the cochlea. 
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Chapter 8 

Conclusions and suggestions for 

future work 

8.1 Lumped parameter cochlear models 

8.1.1 Microlnechanical models of the cochlea 

Three micromechanical models of the cochlea were analysed in Chapter 3. 

The model of Allen proposed in 1980 [1] introduces the second vibrational degree 

of freedom into the formulation of the CP impedance, which corresponds to the 

radial motion of the TM and introduces a spectral zero in the model's response. 

Although the model of Allen is passive it provides important insight into the 

dynamics of the organ of Corti structures. 

The micromechanics in the models of Neely and Kim [68] and Neely [66] 

employ the idea of the secondary resonator connected with the radial motion of 

the TM and include a local feedback loop to account for the mechanism of the 

cochlear amplifier. The analysis of the modes of vibration of both models carried 

out in Sections 3.4 and 3.6 reveals two separate modes of vibration for the basilar 

and tectorial membranes, which vibrate in and out of phase with each other, 

respectively. 

The mobility of the CP in the micromechanical models of Neely and Kim 

[68] and Neely [66] is modified by an additional, active component modelling the 
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electromotile action of the OHCs. This component causes the real part of the CP 

mobility to become locally negative, so that the model's response is undamped. 

However, the active component in the model of Neely and Kim [68] is modelled 

as a pressure source acting on the BM, whereas in the later model of ::Jeely [66], 

it is modelled as a displacement source between the BM and RL, that is inside 

the organ of Corti. Also, the model of the OHCs is represented by a negative 

damper in the model of Neely and Kim, while it is of the form of a second-order 

low-pass filter in the model of Neely, which is thought to represent the low-pass 

filtering properties of the OHC membrane. 

Although the response of the active models of Neely and Kim and Neely re­

semble the responses observed for a real cochlea, we note that the active pressure 

in the model of ::Jeely and Kim is not reacted by any other structure, which 

does not seem physically plausible. On the other hand, we argue that the active 

contribution to the BM displacement in the model of Neely would be affected 

by the TlVI's inertia, an effect not accounted for by Neely. Therefore, in Section 

3.7 the original model of Neely has been extended by adding an additional mass 

component to his two DOF system, and the effects of such a loading on the action 

of the cochlear amplifier and response of the model have been investigated. The 

CP mobility of the modified model of Neely exhibits a roll-off in the region above 

the characteristic place or CF in contrast to increasing mobility for the original 

model of Neely in these regions. Also the active gain for which the modified mo­

del of Neely is still stable is reduced with respect to that observed for the original 

Neely model. 

Finally, the mechanical parameters used for the simulations of the model of 

Neely [66] differ significantly from those used by ::Jeely and Kim in 1986 [68]. 

The ratio of BM and TM masses are physiologically unrealistic in the model of 

Neely [66], since it suggests that the mass of the TM is a few orders larger than 

that of the BM. This choice of parameters causes the distribution of the natural 

frequency corresponding to the BM component of the two DOF system to be 

shifted to frequencies well above the distribution of the corresponding natural 

frequency calculated according to parameters chosen by Neely and Kim in 1986 

[68], though the passive micromechanics of both models were found to be similar. 
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The parameters chosen for the simulations are fitted to obtain coupled responses 

comparable to those observed from a cat cochlea, rather than being based on the 

real mechanical properties of the cochlear structures. 

8.1.2 Coupled responses of the cochlear models 

The mobility functions of the cochlear micromechanical models of Neely and 

Kim [68] and Neely [66] were incorporated into the finite difference approximation 

of the wave equation of the cochlear travelling wave and the coupled responses 

of these models were calculated in Chapter 4. The activity and tuning of the 

models was examined, and it was observed that setting the gain parameter r to 

zero gives a broad, passive response like the one observed for a dead cochlea. 

However, for r equal to one the responses were sharply tuned with a peak at 

characteristic place or frequency similarly to the responses of a live cochlea. 

The acoustically stimulated passive B"M and TM velocity responses were also 

derived to compare with experimental results of Gummer et al. [40] and Hemmert 

et al. [43]. It was found that the modelled responses resemble quite well the BM 

and TM velocity responses measured by Hemmert et al. The agreement with the 

measurements of Gummer et al. was much poorer, although the main features of 

the modelled responses could be found in the experimental ones. This discrepancy 

can be attributed to the likely contamination of the measurements of Gummer 

et al. due to the unsealed cochlea artefacts. 

8.1.3 Stability and quasi-linear cochlear models 

The ~yquist criterion has been used to assess the stability of various micro­

mechanical models in isolation. These models are closer to instability, and hence 

give more enhancement, near the base than the apex of the cochlea. It is shown 

that frequency responses calculated from these models can be misleading unless 

stability is ensured, and can erroneously lead to a conclusion that increasing the 

cochlear amplifier gain can lead to decreases in the BM response as in [50]. 

The quasi-linear technique is a simple method of incorporating compressive 

nonlinearity into the calculated frequency response. The method has been ex-
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tended to include the micromechanical model of Neely and Kim [68], as used 

elsewhere in the thesis, with both global and local variation of the cochlear am­

plifier gain. Results are in qualitative agreement with the EM responses measured 

at different amplitudes. 

It was noted that under some conditions the quasi-linear approach can lead 

to unrealistic frequency responses, which are thought to be due to instability in 

the coupled model. There is thus clearly a need for analysis tools which allow 

the stability of the coupled models to be analysed. 

8.2 Distributed model for the fluid in the sub­

tectorial space 

Two fluid-structural ''lave models have been examined for the fluid in the 

subtectorial space, the 'squirting' wave model of Bell and Fletcher [9] and the 

fluid-elastic model of Elliott [20], to investigate their possible contribution to the 

amplification of the cochlear response. The original model of Bell and Fletcher 

has been extended by incorporating the viscosity of the subtectorial fluid into the 

wave equation for the 'squirting' wave to examine its effect on the wave dynamics. 

It was shown that both types of waves are slow and dispersive, and that 

the subtectorial fluid's viscosity damps the standing wave resonances that are 

predicted in the duct. However, it was also shown that implementing feedback 

from only a single OHC into the fluid-structural wave model is sufficient to over­

come the effects of viscosity and undamp the resonances in the duct. Feedback 

from all three OHCs acting simultaneously enhances the response of these models 

even more. This observation suggests that local motion in the subtectorial space 

could provide another mechanism for cochlear amplification by providing direct 

coupling of the OHC motility to the transduction at the IHC and contributing 

to the cochlear amplification at the level of the BM. 

It would appear that the fluid-elastic model is more plausible and consistent 

with the measurements of the organ of Corti and the TM impedance, since it 

would appear more reasonable to model the TM as a gel-like structure than a 

bending beam. It has to be noted, however, that significant assumptions have 
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been made about the geometry and material properties of the TM and the action 

of the ORCs, which require validation. 

8.3 Suggestions for future work 

8.3.1 Further comparisons between the measured and mo­

delled motion of the BM and TM 

Although some initial comparisons have been made between the micromecha­

nical model of Neely and Kim [68] and the measurements of Hemmert et al. [43], 

uncertainty over the conditions of measurements makes it difficult to draw clear 

conclusions. 

The vibration pattern of the BM and TM measured by Gummer et al. [40] 

was distorted by an artefact of the cochlear preparation used in their experiment, 

the so-called unsealed cochlea condition. It was shown by Cooper and Rhode [10] 

and Dong and Cooper [18] that the hole drilled in the cochlear wall to enable an 

optical measurement of vibration of the organ of Corti structures, must be sealed 

properly to avoid contamination by fast travelling waves in the cochlea. These 

fast travelling waves are thought to distort what would be a classical pattern 

of the BMjCP vibration as observed by e.g. von Beh§sy [8], referred to as a 

slow travelling wave in [10, 18] or [42], by introducing additional resonances and 

antiresonances in the vibration pattern. Alternatively, an off-line mathematical 

procedure, described e.g. by Hemmert et al. [42], can be used to correct the 

measured vibration response for the fast travelling wave component. 

Instead of correcting the experimental results, it may be possible to simulate 

the conditions under which the actual measurements were taken. The measured 

fast travelling component could be modelled using a lumped parameter macrome­

chanical model in which the cochlear chamber was assumed to have a hole in its 

wall as the one drilled in the cochlear wall in the physiological experiments. The 

size of the hole, say the area being the product of the CP's width and assumed 

number of CP longitudinal slices, could be modelled by a local change in the 'wall' 

boundary conditions of the cochlear chambers. Furthermore, two separate cases 
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of such a model can be considered due to the methodology of the physiological 

experiments. The hole could be defined in the apical portion of scala vestibuli 

(upper chamber of the macro mechanical model) or in basal region of scala tym­

pani (lower chamber of the macromechanical model) wall of the cochlea, enabling 

a comparison of the model's results with the measurements in the apical or ba­

sal, respectively, regions of the cochlea. Additionally, the generation of the fast 

travelling wave and its effect on the cochlear response could be modelled by the 

so-called push-push (pull-pull) condition at the oval and round windows of the 

cochlea [59], to compare with experimental results and the model with the hole 

in the cochlear chambers. 

8.3.2 Estimation of the shear gain 

The shear gain 9 defined in the model of Allen [1], was assumed to be equal 

to one in the simulations of the models of Neely and Kim [68] and Neely [66]. 

According to Eq.3.2.5 the shear gain can be estimated from the ratio of the 

height of the organ of Corti, h, and the width of the BM, VV. In his 1986 paper 

Lim [58] refers to the measurements of the dimensions of the organ of Corti and 

inclination of the RL with respect to the BM in the chinchilla cochlea (Fig.2 and 

3 in [58]). Knowing the dimensions of the organ of Corti or the angle of the RL's 

inclination and the BM width at a certain longitudinal position in the cochlea we 

can estimate the height of the organ of Corti at this position (and perhaps certain 

radial position), and hence g. The estimate of 9 could be also compared with an 

estimate in which the height of the cilia, was taken into account, according to 

Eq.3.2.4. 

More importantly, knowing the height of the organ of Corti at a specific 

radial, W1 , and longitudinal, x, position in the cochlea from such a geometrical 

derivation, as well as measuring the magnitude of the BM displacement ~ at the 

same longitudinal and radial position, and the height of the subtectorial space, 

we could indirectly derive the amount of the radial shear displacement from 

Eq.3.2.3 and examine the assumptions of Allen about the geometry of the shearing 

mechanism. On the other hand, having measured for example the transverse 

motion of the BM and the radial motion of the TM simultaneously as it was done 
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e.g. by Hemmert et al. [43]' and knowing the radial position of the measurement, 

Wi; using Eq.3.2.3 we can also examine if the sum of E+h is constant, which could 

provide some information about the rigidity of the organ of Corti or the OHC 

stereocilia. 

8.3.3 Modelling the dynamic properties of the ORC 

Many different models of the OHC's overall dynamics, from stereocilia de­

flection to somatic length change, have been used in the literature, and different 

models are used at various places within the thesis reflecting this diversity. The 

models generally have a low-pass characteristic, but the cut-off frequency of the 

filter is currently adjusted by different authors, including this one, to give the 

best results with their particular models rather than being based on direct phy­

siological measurements. These measurements are very difficult and depend on 

the mechanical as well as the chemical environment of the cells, but are very 

important if the plausibility of any model is to be established. 

8.3.4 Comparisons between the measured and modelled 

fluid motion in the subtectorial space 

More detailed comparison of the model predictions with measurements of 

motion of individual parts of the organ of Corti can be carried out using results 

of e.g. Nowotny and Gummer [74]. Nowotny and GUIl1mer have measured the 

dynamics of the subtectorial space, which was modelled by the fluid-structural 

models presented in the thesis. The shape changes of the subtectorial gap during 

external electrical field stimulation in the measurements of Nowotny and Gummer 

could give information about the relative phases of the OHCs action, and could 

be modelled using the fluid-structural wave models. These shape changes could 

be also used to compare with the assumed motions between the RL and the TM 

in the micromechanical models. Of even greater importance would be to compare 

the measured and predicted OHC action under acoustic excitation, although such 

measurements would be very difficult to take. Finally, the boundary conditions 

assumed for the fluid-structural models could be analysed with regard to the 
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results obtained by Nowotny and Gummer in [74]. 

8.3.5 Incorporation of the Iniddle and outer ear model 

The coupled models presented in the thesis assume sinusoidal excitation at the 

stapes. The coupled models could be thus extended by incorporating a middle 

and outer ear model as it was done in e.g. [55], [68] or [66]. In such a case 

the stimulation of the coupled model could be expressed in terms of the sound 

pressure level at the eardrum and so could be the responses of the quasi-linear 

model of the cochlea presented in this work. 

8.3.6 Physical parameter esthnation 

Further work regarding the estimation of the physical parameters used in the 

models should be carried out. Although it is hard to obtain these parameters 

directly from the physiological measurements, so that they are usually fitted to 

the model, the analysis of the modes of vibration could be done for any lumped 

parameter cochlear model to assess the plausibility of the assumed mechanical 

parameters. A more physiologically realistic and uniform set of geometrical and 

mechanical parameters is also required for the fluid-structural models. 

8.4 Conclusions 

In this thesis the basic concepts of the micromechanical modelling of the co­

chlea were investigated. The dynamics of two classical cochlear models proposed 

by Neely and Kim [68] and Neely [66] was examined in terms of the models' 

original assumptions and the mechanism of the cochlear amplifier. An analysis 

of the modes of vibration of the above models was shown here for the first time. 

The stability analysis was also carried out for these models in order to ensure the 

validity of their CP mobility responses, which was not done in the original work 

of Neely and Kim [68] and Neely [66]. 

Another novel aspect of the present thesis is the derivation of the coupled 

velocities of the BM and TM using the CP mobility responses for both the Neely 
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and Kim model and the model of Neely, and comparison with the relative motion 

of these structures measured by Gummer et aZ. [40] and Hemmert et aZ. [43]. 

Furthermore, the model of Neely and Kim was extended to include the compres­

sive nonlinearity in the cochlea and the original model of Neely was modified to 

investigate the effect of the TM inertia on the model's dynamics and the active 

contribution to the BM displacement. 

The dynamics of the 'squirting' wave model proposed by Bell and Fletcher [9] 

were examined here. The model was extended by incorporation of viscosity into 

the wave equation for the 'squirting' waves to examine its effect on their propaga­

tion in the subtectorial space. Finally, a feedback controller model was proposed 

for coupling the OHC motility with the IHC transduction and investigating the 

role of the 'squirting' waves in the amplification of the cochlear response. 

A new model for amplification of fluid waves in the subtectorial space, the 

fluid-elastic wave model [20], was developed here. The dynamics of the lossless 

and viscous fluid-elastic waves were investigated and a feedback controller model 

was implemented to examine the coupling of the OHC behaviour to the response 

at the IHC. 
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Derivation of the principal modes 

of vibration of the Neely and 

Kim model [68] 

The block diagram in Fig.3.6, proposed for the micromechanical model of 

Neely and Kim [68], can be represented as a freely vibrating, undamped two 

DOF system as shown in Fig.3.10. For such a system the equations of motion 

will take the form 

(A.l) 

Hmvever, the lever gain 9 is equal to one according to Table 3.1, so that 

.. 
rnlc'b -k1c'b -k3 (C,b - ~t), 

(A.2) 

which can be expressed equivalently, after rearrangement, as 

(A.3) 
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The above equations can be written in matrix notation as 

or 

M ~+K ~ = 0, (A.5) 

where 

(A.6) 

is the mass matrix, 

(A.7) 

is the stiffness matrix, and 

.. = { ~b } ~ .., 
~t 

(A.8) 

and 

(A.9) 

are the acceleration and displacement vectors respectively. 

Assuming time-harmonic solutions of the form ~b=3be-iwt and ~t=3te-iwt, so 

that 

c· - _w2 ,;:;, e-iwt 
"b - ~b , 

c· - _w2 ,;:;, e jwt "t - ~t , 
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substituting the above relationships to Eq.A.3 gives 

(A.11) 

-w2m2Ctejwt + (k2 + k3)Ctejwt - k3cbejwt = 0. 

After dividing by the ejwt terms, the relationships in Eq.A.11 take the form 

(A.12) 

or after rearrangement 

(A.13) 

(k2 + k3 w2m2)Ct k3Cb = o. 
First relationship in Eq.A.13 gives the solution of the form 

(A.14) 

so that the second relationship becomes 

(A.15) 

Taking Cb=O gives the trivial solution Cb=Ct=O, which implies no motion and 

the system stays at rest. However, equating the bracketed term in Eq.A.15 to 

nought (expanding the characteristic determinant), gives a quadratic equation in 

w 2 with two real and positive values for w2 [94] 

(A.16) 

and 

(A.17) 
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from which the natural frequencies, of the first and second mode, WI and W2, 

respectively, can be calculated as two roots of quadratic in w2 , i.e. 

and 

where 

ml(k2 + k3) + m2(kl + k3) - ViS: 
2mIm2 

(A.18) 

(A.19) 

(A.20) 

Using the relationships in Eq.A.13 we can specify the ratio of the displacement 

amplitudes, i.e. 

::::b k3 

::::t kl + k3 w2mI 

thus, at the natural frequency of WI 

and at W2 

k2 + k3 - wim2 

k3 

(A.2I) 

(A.22) 

(A.23) 

where the second index of :::: refers to the natural frequency WI and W2, respecti­

vely. 

Choosing one of the amplitudes equal to some arbitrary value, the amplitude 

ratios in Eqs.A.22-A.23 will be normalised to this value, and the normal modes 

¢1,2(~) can be obtained. We choose the amplitudes of the BM displacement, ~b, 

::::bl (at WI) and ::::b2 (at W2) to be equal to one, so that the normal modes will be 

246 



Appendices Appendix A 

formulated by 

(A.24) 

where Btl and Bt2 can be derived from Eq.A.22 and A.23. 

Because a time harmonic motion of the system was assumed, the motion at 

the first mode will amount to 

and at the second mode 

{ c'b2} {I} ejw2t , 
~t2 -- =:t2 

or, using a general solution of the form 

we have 

ejwt A sin wt + B cos wt, 

{ ~:: } ~ { 
U:: } ~ { 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

where A, B, C and D are real constants of integration, determined by the initial 

conditions [94]. 

The general free vibration is represented by the superposition of independent 

free vibrations in each of the two modes expressed in Eqs.A.25-A.26 (A.28-A.29) 
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thus 

{ ~b} {3bl} . = ';:::;' (A S111 WIt + B cos WIt) 
~t ~tl 

Assuming the initial conditions at 

and 3b2 equal to one, and I 

after applying to Eq.A.30, we have 

and from Eq.A.31 

Thus 

Appendix A 

{ 

::::"b2 } + ';:::;' ( C sin W2 t + D cos W2 t) . 
~t2 

(A.30) 

6=100, ~t=O, ~b=~t=O, taking 3 bI 

} W2 (CC08W2t - Dsinw2t) , 

(A.31) 

(A.32) 

(A.33) 

B+D = 100, (A.34) 

(A.35) 

(A.36) 

(A.37) 

Solving Eq.A.36 for A and substituting to Eq.A.37 gives 

(A.38) 

1 "We set ~b= 100 to facilitate comparison of the displacernellts in the figures of Chapter 3. 
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Because W2; 8tl and 8t2#0 and 8tl #8t2, then Eq.A.38 can be satisfied only 

for C=O, and thus according to Eq.A.36 A=O. However, from Eq.A.34 we have 

B = 100 D, (A.39) 

and hence from Eq.A.35 

(A.40) 

so that 

D = 1008tl 
~ ~, (A.41) 
'::t1 - '::t2 

which we substitute into Eq.A.39 to derive B. Therefore, the constants A, B, C 

and D are equal to 

A=O, (A.42) 

B = 1008t2 
~ ~, (A.43) 
'::t2 - '::t1 

C=O, (A.44) 

D = ~1008~ . (A.45) 
'::t1 - '::t2 

In summary, the actual motion will be time harmonic at two natural frequen­

cies, WI and W2, and defined as 

{ ~:} {3~'} B cos w,/. + { 3~2 } DCOSW2t. 
(A.46) 

Knowing the equations of motion for the free, undamped system, the re­

ceptance, and hence mobility, of the system can be derived to a known input. 
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Assuming that the lower mass, ml, of the two DOF system in Fig.3.10 is excited 

by a time-harmonic force of the form J=Fejwt , Eq.A.ll can be rewritten as 

-w2m23tejwt + (k2 + k3)3tejwt - k33bejwt = 0, 

and after dividing by the ejwt terms 

or in the matrix form 

and hence 

(_W2~ + K) { ~ } ~ g } 

(A.47) 

(A.48) 

(A.49) 

(A.50) 

where M and K are defined as in Eqs.A.6-A.7, and V =jw3 where V denotes 

velocity, where Vb and Vi are the BM and TM velocities, respectively. Thus, 

defining the BM point mobility and the TM transfer mobility as the ratio of 

respective velocities to the unit force, we obtain 

(A.51) 

More rigorously, from the second relationship in Eq.A.48 we have (compare 

with Eq.A.21) 

k3 ~ 
8t k k 2 8b, 

2 + 3 - W m2 
(A. 52) 

which after substituting to the upper expression in Eq.A.48 gives 

(A.53) 
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so that 

and 

..:...( k_l_+_k_3 _---:-W_2 m_l..:...) (..:...k_2 _+_k-=-~3_---,-w_2_m_2--,-)_-",--k~ 2b = F, 
(k2 + k3 - W2m2) 

Appendix A 

(A.54) 

(A.55) 

which defines the point receptance, the displacement 6 due to the unit force 

excitation on the lo\\'er subsystem in Fig.3.10. 

Substituting the above equation to Eq.A.52 for 3 b gives 

(A. 56) 

which defines the transfer receptance for the displacement ~t due to the unit 

force exerted on the lower subsystem in Fig.3.10. Knowing that jw3=V, we can 

formulate the explicit expressions for the mobility Yb and yt as 

Yb = Vb = jW(k2 + k3 w
2
m2) 

F (k1 + k3 - w2ml)(k2 + k3 - w2m2) 

(A.57) 

where the denominators of the above relationships have the same form as the 

frequency equation in Eq.A.17 and define the resonance frequencies (poles) of 

the mobility functions. The numerators of the above equation determine the 

frequencies at which the antiresonance (zero) in the mobility functions can be 

found, and for the system considered here there is a single antiresonance in the 

BM point mobility, Yb, at the frequency of J(k2 + k3)/m2/27f. 

Taking into account the damping within the system we arrive to a two degree 

of freedom system in Fig.3.6, as proposed by Neely and Kim [68], where there 

are no active forces acting in the system and the lower mass, ml is excited by a 

unit force. Knowing that the damping is proportional to velocity, ~b or ~t, the 
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corresponding equations of motion can be written as 

-w2m2=tejwt + jW(C2 + C3)=tejwt + (k2 + k3)=tejwt (k3 + jWC3)=bejwt = 0, 

(A.58) 

so that after dividing by ejw terms and rearranging we have 

(A. 59) 

Since 

(A.60) 

and 

(A.61) 

according to the second relationship in Eq.A.59, substituting Eqs.A.60-A.61 into 

the first relationship of Eq.A.59 and taking jw== V, gives respectively 

y; _ Vb _ jw[k2 + k3 + jW(C2 + C3) - w2m2l 
b - F - D ' 

(A.62) 

y; = \It = jW(k3 + j WC3) 
t F D ' 

where Yb and Yt are now the point BM and transfer TM mobility of the passive, 

damped two DOF system, and 
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Alternatively, we can write Eq.A.62 analogously to Eq.A.51, so that 

(A.64) 

where 

(A.65) 

is the damping matrix. 
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Derivation of the parameters for 

the model of Neely [66] 

IVlodel parameters for three specified locations on the CP, i.e. x=O, L/2 and 

L, used to solve the partition admittance of the Neely's model [66], are given 

in Table 3.2. However, the values for the other sites of the CP were not given 

explicitly in [66]. Neely reported that a quadratic polynomial curve fitting to the 

logarithm of the three locations specified in the table, was used to interpolate 

the remaining values of the x-dependent parameters [66]. Thus, the theory for 

interpolation of the model's parameters, is presented here. 

\rVe use a quadratic polynomial of the form 

Y = ax2 + bx + c, (B.1) 

where a, band c are the polynomial's coefficients. Because the polynomial was 

fitted to the logarithm of the parameter, thus substituting for x=L/2 and 

x=L, gives 

log Yo c, 

log YL/2 (B.2) 

10gYL = L 2a + Lb + c, 
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where subscripts 0, L/2 and L denote the position along the cochlea. 

Using the first relationship in Eq.B.2, we substitute for c into remaining two 

relationships, so that 

{ 

logYLj2 = ~2 a + ~b + log Yo, 

10gYL = L2a + Lb + log Yo, 

(B.3) 

and after multiplying the first relationship in Eq.B.3 by two and subtracting from 

the second relationship, we have 

210g YLj2 - log YL (B.4) 

Hence 

L2 
2a = log Yo + 10gYL - 2 log YLj2 , (B.5) 

and 

2 
a L2 (log Yo + log YL - 210g YLj2) . (B.6) 

Substituting for a into the second expression of Eq.B.3 gives 

10gYL = L2 [:2 (log Yo + 10gYL - 210gYLj2)] + Lb + log Yo, (B.7) 

so that 

10gYL = 2 log Yo + 210gYL - 410gYLj2 + Lb + log Yo, (B.8) 

Lb = 410gYL/2 - 310gyo -logYL, (B.9) 

and hence 

431 
b = -logYL/2 - -logyo - -logYL. 

L L L 
(B.10) 
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Knowing 

b = -t (410gYL/2 - 310gyo -logYL) , (B.1l) 

c log Yo, 

the quadratic polynomial can be obtained. Finally, it has to be noted that the 

quadratic was fitted to the log of the parameter, i.e. 

so that 

For example, if 

log Y = ax2 + bx + c, 

Y 
_ KbO 

.0- Ap' 

_ K bL / 2 
YL/2 -~, 

YL 

where K bO , K bL/ 2 and KbL are specified in Table 3.2, then 

21 KbL/2) og Ap , 

bK = 1. (4 log KbL/2 - 310g KbO - log KbL) , 
b L Ap Ap Ap 

c -log KbO 
Kb - Ap' 

from Eq.B.ll. Thus, according to Eq.B.13 

Kb = loaKbx2+bKbx+cKb 

A ' p 

and analogously for all other parameters dependent on x. 
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Appendix C 

Effect of the helicotrema 

boundary condition on the 

response of the coupled models 

The frequency response plots shown in Fig. C.1, show an example of prelimi­

nary calculations of the magnitude and phase responses of the BM velocity. The 

figures are plotted for the passive and active model of Neely and Kim [68] (a, c) 

and the model of Neely [66] (b, d), in which the length of the BM was set to 25mm 

(average length of a cat cochlea). It can be seen that all curves are not smooth 

in the low frequency region, and this low frequency behaviour is thought to be 

connected with the zero pressure boundary condition at the helicotrema. As it 

was discussed in Chapter 4, in the 1986 model of Neely and Kim and 1993 model 

of Neely, a damping component at the helicotrema was introduced to account 

for the helicotrema boundary condition. However, the model of macromechanics 

presented in this work assumes that the pressure difference at the helicotrema is 

equal to zero. 

Such a choice of the apical boundary condition does not affect the responses, 

provided they are calculated at the site located sufficiently away from the apex 

or for sufficiently high stimulus frequencies. The responses in Fig.C.1 appear to 

be affected by the reflections from the helicotrema for frequencies up to about 

400 Hz. According to the CF /place map obtained by Liberman [56], the low 

257 



Appendices Appendix C 

80 80 
x=O.0185m x=O.0189m 

60 60 

, 40 
,. 

40 
<fl <fl 

E E 

" 20 " 20 
'" 

c;; 
::J ::J 

~ ~ 
en en 
~ ~ 

-20 
7 

.;) -20 
7 

-40 -40 

-60 -60 
0.01 0.1 1 10 25 0.01 0.1 1 10 25 

f [kHz] f [kHz] 

(a) (b) 

x=0.0185m x=O.0189m 
0 - -- .... 

-1 , -5 , 

"' 
-2 \ "' '" \ '" 

-10 
U -3 \ U 
>, \ >, 

.!o!. \ .!o!. -15 
.Q -4 .Q 

'}J.J' '>'.1' 
\ 

" " 
-20 

-5 \ 

-6 
-25 

-7 -30 

-8 
0.01 0.1 1 10 25 

-35 
0.01 0.1 1 10 25 

f [kHz] f [kHz] 

(c) (d) 

Figure c.l: Magnitude and phase response of the hasilar membrane velocity ~b 

as a function of stimulus frequency, calculated at the cochlear site of .T=O.0185 m 

for the model of ~eely and Kim [68] (a, c) and at :r=0.0189 m along the cochlea 

for the model of Neely [66] (b, d). In both cases the length of the cochlea was 

assumed to be equal to 25 mm. Solid lines, active model (r=1) and dashed lines, 

passive model (r=0). 
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frequency limit for the cat cochlea amounts to about 97 Hz, therefore we can 

neglect the response characteristic below 100 Hz. Nevertheless, the preliminary 

results (also pressure difference responses not shown here) had shown consistently 

that the response of the coupled model with the zero pressure difference apical 

boundary condition becomes reliable only above 400 Hz, which corresponds to 

the place of approximately 0.021m when the BM length is set to 25 mm. 
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Convergence of the iterative 

procedure used in the 

quasi-linear model 

The quasi-linear model discussed in Section 5.4, was solved for the coupled 

model of Neely and Kim [68] with the active gain 1 derived using either Eq.5.4.11 

for the global model, or Eq.5.4.13 for the local model. In the first instance we 

describe the derivation of the global active gain Iglobal. 

To calculate Iglobal in the quasi-linear modeL we need to know the velocity 

of the EM, ~b, since the active gain is scheduled on I~b I, according to Eq.5.4.11. 

Thus, the Matlab code used for calculation of the responses in Section 4.2, was 

firstly used to calculate the pressure difference Pd in the Neely and Kim model 

at particular stimulus level, stimulus frequency and for 10=1 ('zero-step', fully 

active model). After the pressure difference at a single frequency was solved for 

the active gain of one, it was substituted to Eq.5.4.10 (where G and H are defined 

in Eq.5.4.8 and 5.4.12) to derive the velocity of the EM. The maximum value of 

I~bl was taken to compute the new value for the active gain at single stimulus 

frequency, i.e. 

(5/6) . 1.5 x 10-5 

1.5 X 10-5 + l~bOlpcak' 
(C.1) 

where the subscripts 0 and 1 refer to the step number. The gain derived from the 
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above equation is then substituted to the expression for the partition impedance 

in Eq.3.3.8 to calculate new pressure difference, Pd , used again in Eq.5.4.10 so 

that the BM velocity can be recalculated. The whole sequence is repeated ten 

times, after which the last value of the BM velocity is stored, and new ten-step 

active gain iteration begins for the next stimulus frequency. Thus, in the present 

model both stimulus frequency and ( were changing iteratively in 2500 steps 

(10 Hz-25 kHz, frequency range with 10 Hz steps) and ten steps (1-10, respecti­

vely. lJsing the method described above a 2500x 1024, frequencyxposition (the 

length of the BM, L, was discretised into 1024 elements) velocity matrix was 

derived for imposed stimulus level. Also the pressure difference and BM dis­

placement frequency-positions matrices were stored, where the BM displacement 

was obtained by dividing ~b(X, w) matrix by the factor of jw. 

The constant A and the gain f3 in Eq.5.4.11 were derived by a trial-and-error 

method to obtain an optimally converging active gain [ and 'smooth' quasi­

linear BM responses at 1 kHz stimulus frequency and different excitation levels, 

as shown in preliminary calculations in [82]. A was estilnated to be 1.5x10-5 and 

f3 was set to 5/6~0.83 to advance the convergence of the gain, and both remained 

constant for all computations. 

Table D.1 presents the values of the global active gam, [global' at each step 

of computation and stimulus level, derived from the global quasi-linear model 

solved at 1 kHz using the parameters chosen by Neely and Kim, and A and f3 
estimated as discussed earlier. Furthermore, Fig.D.1 shows [global as a function of 

the iteration step for different stimulus levels. 

The convergence of gain is fast at 20 dB and 100 dB stimulus levels and slower 

at 40 dB. The gain at 60 and 80 dB however, still oscillates when the end of the 

iteration is reached. It can be also noted that the last value of (global calcula­

ted at 60 dB is slightly higher than that calculated at 40 dB as shown in Table 

D.l. Nevertheless, the overall trend of a decreasing gain with the increase of the 

stimulus level is still noticeable, which leads to the con1.pression of the response 

from almost fully active at 20 dB to almost passive at 100 dB level of excitation. 

In the second paradigm of the quasi-linear model calculation, the active gain 

was not only changing with stimulus frequency but was also place-dependent. 
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STIMULUS LEVEL [dB Ie 2x 10-5 Pal 

STEP 20 40 60 80 I 100 

0 1 1 1 1 I 1 
f 

1 0.0741 0.0081 0.0008 O.OOCll 8x 10-6 

2 0.8331 0.8314 0.8143 0.6760 0.2505 

3 0.7911 0.5487 0.1691 0.1003 0.1288 

4 0.8108 0.8121 I 0.8014 0.6;344 0.1871 

5 II 0.80.34 0.6042 0.1973 0.138:3 . 0.1583 fglo'bal 

6 0.8065 0.8018 0.7980 0.6141 0.1724 ! 
i 

7 I 0.8053 0.6292 0.2050 0.1587 0.16.55 

8 0.8058 0.7951 0.7970 0.6021 0.1689 

9 I 0.8056 0.6440 I 0.2073 0.1712 I 0.1672 

10 II 0.8057 0.7902 I 0.7966 0.6944 I 0.1680 

Table D.l: Active gain calculated in ten steps for stimulus levels from 

20-100dB (re 2xl0-5 Pa) in the quasi-linear model discussed in Section 5.4. 

The step of zero refers to the iteration step in which the gain was set to unity. 
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Figure D.l: Active gain as a function of the iteration step for 20 dB (tri­

angles), 40 dB (circles), 60 dB (squares), 80 dB (inverted triangles) and 100 dB 

(diamonds) stimulus level. 
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The local gain Ilocal was solved using Eq.5.4.13 in which A and f3 have the same 

value as in the global case, i.e. 1.5 x 10-5 and 5/6, respectively. Firstly, we 

solved the Neely and Kim coupled model at single frequency with the active 

gain equal to one, for Pd which was substituted to Eq.5.4.10 to calculate the 
. . 

BM velocity ~b. Subsequently, each local value of ~b was used to derive the local 

active gain Ilocal' used to recalculate the pressure difference, BNI velocity, and 

finally to derive new distribution of active gains Ilotal along the cochlea. The 

whole sequence was repeated ten times (not counting the first step in which the 

gain was set to one) and the same procedure was followed for the next stimulus 

frequency. Therefore, we derived the frequencyxposition (2500x1024) matrix 

of the BM velocity, ~b, BM displacement, ~b=6jjw, and pressure difference Pd. 

Additionally, a 3D matrix of gains, Ilocal (step, x, w), was also derived to plot the 

distribution of the local gain. 

The calculated values of Iloeal at 1 kHz, which are equal in this model to those 

calculated at 0.0182 m along the cochlea (corresponding characteristic place to 

the CF=1 kHz), are presented in Table D.2 for different stimulus levels at each 

step of iteration (including the 'zero-step'). Furthermore, the convergence of the 

gain, i.e. the locally active gain as a function of the iteration step, is plotted in 

Fig.D.2. Both the table and the figure show that the convergence of the gain at 

1 kHz was fast and by the ninth iteration step it reached a steady value, with 

accuracy of the second decimal point, for all stimulus levels. 

The convergence of the local gain plotted as a function of position and stimulus 

frequency in Fig.D.3 and D.4, respectively, reveals that for low stimulus levels, i.e. 

20-40 dB, the changes of gain are localised around the CF / characteristic place, 

where the gain is almost constant outside this frequency/place, as depicted in 

Figs.D.3(a)-D.3(b) and Fig.D.4(a)-D.4(b). However, with the increase of the 

stimulus level to 60 dB, as well as for higher levels, the gain changes become 

less localised and extend to almost the whole frequency region below the CF, 

as shown in Fig.D.4(c)-D.4(e), or basal to the characteristic place in Fig.D.3(c)­

D.3(e). Thus, some distortions on the low frequency side or basal portion of the 

response may occur, and they were observed in the BJ\'1 displacement response 

curves for 10 kHz stimulus frequency and 0.007 m position along the cochlea in 
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STIMULUS LEVEL [dB re 2x 10 SPa] 

STEP I 20 40 60 80 100 

0 I 1 1 I 1 1 1 

1 I 0.7889 0.5331 0.1257 0.0145 0015 

2 0.8229 0.7693 0.7141 0.4413 0.1480 

3 0.8221 0.7742 0.4941 0.3447 0.1349 

4 0.8221 0.7552 0.6445 0.3783 O.B58 

5 0.8221 I 0.7657 0.5675 0.3641 0.1358 'local 

6 0.8221 0.7624 0.6120 0.3709 0.1358 

7 
i 

0.8221 0.7630 0.5877 0.:3679 0.1358 

8 0.8221 0.7631 0.6017 0.3691 0.1358 

9 I 0.8221 0.7629 0.5940 0.3687 O.B58 

10 0.8221 0.7630 0 .. 5983 0.3688 I 0.1358 ! 

Table D.2: Active gain flocal (:c, f) calculated in ten steps at stimulus frequency 

f=lkHz or at CJ.0182m site in the cochlea and stimulus levels from 20-100dB 

(re 2 x 10~5 Pa) in the local quasi-linear model discussed in Section 5.4. 

1.4 
-A- 20dS 

1.2 --B- 40dS 
-e- 60dS 
-'V- BOdS 
-+- 100dS 

0.8 

ro 
'-' 0.6 0 
~ 

0.4 

0.2 

0 

-0.2 
0 2 4 6 8 10 

Step 

Figure D.2: Active gain calculated at 1 kHz stimulus frequency (or 0.0182 m 

site along the cochlea), as a function of the iteration step for 20 dB (triangles), 

40 dB (circles), 60 dB (squares)) 80 dB ( inverted triangles) and 1 00 dB (diamonds) 

stimulus level. 
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Fig.D.5 and D.6 (right panels), respectively. 

The amplitude and phase response curves computed at SOO Hz shown in 

Fig.D.5(a) and D.S(c), and 0.0214m shown in Fig.D.6(a) and D.6(c), are smooth 

on the low frequency as well as the basal side, respectively, which implies 'sta­

bility' of the local gain !local at frequencies lower than 1 kHz or positions higher 

than 0.0182 m. It was observed that !local converges quickly during the iterative 

procedure (Fig.D.2) and to the same value at particular step and stimulus level 

in the iteration for both CF=l kHz and characteristic place of 0.0182 m chosen 

in the simulations (Table D.2). 

However, significant 'instabilities' can be observed, as evidenced by the ripples 

on their basal/low frequency slopes, in Fig.D.S(b) and D.S(d), which show the 

magnitude and phase responses, respectively, as a function of cochlear position 

for the local quasi-linear model calculated at 10 kHz, and the responses calculated 

at the corresponding site of 0.007 m, as a function of stimulus frequency, shown 

in Fig.D.6(b) and D.6(d). Therefore, the quasi-linearly compressed responses at 

higher frequencies than 1 kHz or at positions basal to the characteristic place of 

0.0182 m (20 dB excitation level), are not 'stable' on the low frequency/basal side. 

Some remarks concerning the stability of the quasi-linear model can therefore 

be drawn here. It is interesting to note that active gain ~I converges always to 

values lower than one in the present model. Thus, we could assume that the model 

is stable for all stimulus frequencies and stimulus levels for which the quasi-linear 

response was calculated, similar as for the coupled responses derived for the gain 

lower than one for the linear model of Neely and Kim [68]. However, it was shown 

that for the case where the gain of the model was place-dependent (!local (x)), the 

gain was not stable at all positions/frequencies as shown in Fig.5.19, and some 

oscillations could be observed in the calculated responses as it was shown in 

Fig.D.S(b) and D.6(b). It seems that a possible solution to the stability problems 

is to introduce a place-dependent gain (3. However, even if a realistic cochlear 

distribution of (3 could be derived and would help to stabilise the gain of the 

model at particular isolated sites on the CP (i.e. micromechanical models), it 

does not guarantee stability of the overall, coupled system. 
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, solved for the local 

quasi-linear model at 1kHz for stimulus levels of20dB (a), 40dB (b), 60dB (c), 

80dB (d) and 100dB (e), as a function of position along the cochlea. The thick 

dashed line for the first step, thick solid line for the tenth step, other thin dashed 

lines for steps 2-9. 
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Figure D.4: Iteration steps of the local active gain, , solved for the local quasi­

linear model at :r=0.0182m for stimulus levels of 20dB (a), 40dB (b), 60dB (c), 

80dB (d) and lOOdB (e), as a function of stimulus frequency. The thick dashed 

line for the first step, thick solid line for the tenth step, other thin dashed lines 

for steps 2-9. 
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Figure D .. S: Magnitude and phase of the basilar membrane displacement, E,b, as a 

function of position along the cochlea, calculated for the local quasi-linear model 

using parameters chosen by Neely and Kim [68] Bt f=500Hz (a) and 10kHz (b). 

The stimulus levels were set to 20 dB (thick solid) 1 40 dB (solid), 60 dB (dashed), 

80 dB (dot-dashed) and 100 dB (dotted). 
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Figure D.6: Magnitude and phase of the basilar membrane displacement, (In as a 

[unctjon of stinmlus frequency, calculated for the local quasi-linear model using 

parameters chosen by Neely and Kim [68] at :c=0.0214 m (a) and 0.007 m (b) 

along the cochlea. The stimulus levels were set to 20 dB (thick solid), 40 d.B 

(solid) 60 dB (dashed), 80 dB (dot-dashed) and 100 dB (dotted). 
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Derivation of responses in the 

'squirting' wave model 

E.l The wavenumber 

In the present appendix we derive the expressions for the forced responses of 

the 'squirting' wave model discussed in Chapter 6. The input excitations acting 

in this model, are the external pressure in the scala media Pext and a force due to 

the electromotile action of the ORCs, which both lead to transverse oscillations 

of the plate and longitudinal oscillations of the subtectorial fluid in the duct space 

of the plate-fluid-plate system shown schematically in Fig.6.2. 

It should be noted that the wave motion for both the plate and the fluid, is 

considered only in the radial direction, y, that is along the duct (across the CP). 

The transverse displacement of the BM and TM plates will be denoted by w(y, t), 

whereas the particle displacement in the subtectorial fluid by u(y, t). To begin 

with we write the equations governing bending deformation of the plates. 

The bending moment, Nf(y, t), of a plate is described by [27] 

1Vf(y, t) -EI EPw(y, t) 
8y2 ' 

(E.1.1) 

where E denotes the Young's modulus and I is the moment of inertia defined as 

1= 2h~ 
3(1 - v 2)' 

(E.1.2) 
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for a plate of thickness 2hs (where subscript's' denotes a semi-thickness) and 

Poisson's ratio v. Note that the negative sign in the bending moment definition, 

implies that the curvature of the deformation w, is positive in the transverse 

direction, i.e. the plate is deflected upwards [27]. 

The shear force acting on the plate is formulated by 

F( ) = _ E1 l]3w(y, t) 
y, t ay3 ' (E.1.3) 

and the relationship between the load applied on the beam, which is the fluid 

pressure in this case, and the displacement w is expressed as 

p(y, t) -E1 a4
w(y, t) a 4 . 

Y 
(E.l.4) 

It should be noted that E and 1, and hence h and v, in Eqs.E.1.1-E.1.4, are 

assumed constant along the duct in a single slice of the organ of Corti. 

We use Eq.E.1.4 as the starting point for the derivation of the wave equation 

for the 'squirting' wave model, similarly to that presented by Hassan and Nagy in 

[41]. The conservation of momentum equation for the fluid of density p is given 

by 

ap(y, t) 
ay 

and the continuity equation for an incompressible and inviscid fluid by 

( ) 
_ d2 au(y, t) 

w y, t - 2 ay , 

(E.1.5) 

(E.1.6) 

where d2 is the thickness of the fluid layer, which is equal to the height of the 

subtectorial duct in this model. After differentiating Eq.E.1.4 with respect to y 

and substituting to Eq.E.1.5, we have 

a2u(y, t) a,5w (y, t) 
p at2 = E 1 ay5 . (E.1.7) 

Differentiating Eq.E.1.6 twice with respect to time gives 

(E.1.8) 
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so that differentiating Eq.E.1.7 with respect to y and substituting (J3u(y, t)/8y8t2 

from the above equation, leads to 

82w(y, t) 
P 8t2 

EI d2 86w(y, t) 
2 8y6 

(E.1.9) 

Therefore, the wave equation of the loss less 'squirting' wave can be written as 

(E.1.10) 

Assuming a complex, harmonic plate displacement w(y, t)=Aej(wt-ky), where 

A is a complex amplitude, (;) is the radian frequency and k is a wavenumber, 

Eq.E.1.10 can be solved, to give the dispersion relationship between the angular 

frequency and the wavenumber to be 

(;)2 = EId2 k6. 
2p , (E.1.11) 

and hence the wavenumber k is equal to 

(E.1.12) 

An interesting feature of the 'squirting' wave mode arises due to the symmetry 

of the solid-fluid-solid trilayer. The coordinate system of the plate-fluid-plate 

system in considerations of Hassan and Nagy was located in the centre of the fluid 

layer (see Fig.l in [41]), so that the 'squirting' wave is symmetric with respect to 

the horizontal axis in the middle of the fluid film. Hassan and Nagy also report 

that a similar fluid mode can be observed in a fluid film. confined by an elastic 

plate and a solid substrate [41]. Therefore, the choice of system coordinates in 

the present model implies that the 'squirting' waves can propagate between an 

elastic plate undergoing vertical oscillations and a solid surface at the distance 

d=d2/2 apart, where d2 is the original fluid layer thickness used by Hassan and 

Nagy in [41]. 

Furthermore, Hassan and Nagy used a semi-thickness of the plates, hs ) so that 

the plate thickness, h is equal to 2hs , twice that proposed by Hassan and Nagy. 

Therefore, for convenience we rewrite the wave equation of the lossless 'squirting' 

wave for a wave assumed to propagate between a rigid surface of the RL and an 
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elastic plate of the TM under-surface, d above the rigid surface and of thickness 

h. 

Taking Eq.E.1.10 and replacing d2 by 2d the wave equation of the lossless 

'squirting' wave takes the form 

82w(y, t) _ EI d 86w(y, t) 
P 8t2 8y6 

0, (E.1.13) 

for which the wavenumber will take the form 

(E.1.14) 

and the moment of inertia I, after replacing hs by h/2 in Eq.E.1.2, will be defined 

by 

I 
12(1 - v 2 )· 

(E.1.15) 

In the following derivations we consider a duct formed by a rigid surface and 

an elastic plate with a fluid film confined in between, where the duct's height is 

equal to d and the thickness of the plate to h. 

Note that there are six distinctive roots of Eq.E.1.12, say ka. to kf , which 

form a hexagon in a complex plane of k lying on the circle of radius ka. [51], as 

shown in Fig.E.1 where k was calculated for parameters in Table 6.1 at 1 kHz. 

Two of the roots of k are real and correspond to lossless waves propagating in the 

subtectorial duct in the positive and negative y direction, i.e. ka. and kd' whereas 

the remaining four, i.e. kb,c,e,! are complex and would form a standing nearfield 

in an infinite duct. 

The hexagon in Fig.E.1 is symmetric with respect to the real and imaginary 

axis and the angle between each of its two neighbouring vertices is equal to 600
• 

Assuming that the wavenumber is of the form k=(3-jo: we note that ka. and kd 

are both real, equal and opposite and hence equal to (31 and -(31, respectively. 

Each of the complex wavenumbers kb,c,e,! can be described by two real and imagi­

nary components corresponding to the propagating, ±(32, and decay terms, ±0:2, 

respectively. Due to the symmetry of the hexagon, we can express (32 and 0:2 in 

terms of /31 , which we now denote as ko, so that ka.=ko and kd=-ko, and since 

27:3 



Appendices 

1.5 

0.5 

o 

E -0.5 

-1 

-1.5 

, , 

I 
I 

kc ;< _________ _ :x kb 

I ' 
I 

, , , 

/ 

/ 

, I , / 
, I 

x.----------x' 
kB \ 

Appendix E 

1.5 

0.5 

"" 
E -0.5 , / 

, I 

\ I 

-1 , I 

\ ; / 

x.----~-----x' 
-1.5 

_2L-~~-L--~--~~L-~---L--~ 
-2 -1.5 -1 -0.5 0 0.5 1.5 2 

-2L-~~-L--~--~~L-~--~--~ 
-2 -1.5 -1 -0.5 0 0.5 1.5 2 

Rek [m- 1
] x105 Re k [m- 1

] x 105 

(a) (b) 

Figure E.1: The roots, ka - f (crosses 'x'), of the wavenumber k at 1kHz (a), and 

the hexagon, whose vertices arc the roots of k, (dashed line). Symmetry of the 

hexagon and the real, kl' and imaginary, k'J,) parts of the root kb ) are indicated in 

(b). ko is the root corresponding to the travelling waves in the subtectorial duct. 

f3 k 0 ko k 
2 0 cos 60 = 2 = ~1: 

0:2 ko sin 600 = V; ko k2, 

we have 

k~ ko, 

k~ = -ko, 

(E.1.16) 

(E.1.17) 

(E.1.18) 

(E.1.19) 

for the waves propagating (upper index 'p') along the duct in the positive and 

negative direction, respectively, and 

k~ ±k1 jk2' 

k~ = ±k1 + jk2) 
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for the nearfield components (upper index 'n') in the positive and negative direc­

tion. 

E.2 Wave motion in an infinite duct 

The assumed time-harmonic complex plate displacement for the nearfield com­

ponent of the squirting wave at t=O, will thus take the form 

and 

so that 

w~(y) = Ce-jk"!-y = Ce-j(k1-jk2)Y = Ce-jklYe-k2Y, 

w~(y) = Ce-jk"!-y Ce- j(-k1-jk2)Y CejklYe-k2Y, 

w~(y) = De-jk~y = De-j(kl+jk2)Y = De-jklYek2Y, 

w~(y) De-jk~y = De-j(-k1+jk2)Y DejklYek2Y, 

w~ (y) = C( e-jk1Y + ejklY)e-k2Y = 2C cos(k1y )e-k2Y , 

w~ (y) = D(e-jk1Y + ejklY)ek2Y 2D COs(kly)ek2Y , 

in the positive and negative Y direction. 

(E.2.1) 

(E.2.2) 

(E.2.3) 

(E.2.4) 

(E.2.5) 

(E.2.6) 

:Note that in Eqs.E.1.20-E.1.21, we assume that the complex roots in the near­

field wave components with the common decay term (imaginary part of k), have 

the same amplitude, i.e. kb with kc in the positive, and ke with k f in the negative 

direction. Pairing kb with k f for example, according to the common propagating 

term kl (real part of k), would lead to a physically unrealistic solutions in which 

the wave propagating in the direction away from the excitation would increase 

instead of evanesce. 

In general the plate displacement, W, can thus be written as 

W(y) = Ae-jkoY + BejkOY + C cos(k1y)e-k2Y + D COS(klY )ek2Y , 
\. .I " .I 

PTopagat'fng waves evanesc;nt waves 

(E.2.7) 
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where A and B are the amplitudes of the travelling waves propagating in the 

positive and negative direction (NB since ICI and IDI are assumed constant, 

21CI and 21DI are also constant and the factors of two were omitted in Eq.E.2.7). 

The constants A, B, C and D can be derived applying the boundary condi­

tions for the duct. These are, however, difficult to infer due to the complex 

anatomy of the organ of Corti. 

In order to get an idea of the idealised form of the solution, we initially assume 

that the duct is infinite. If excited by a force at position y, the amplitudes of 

waves propagating in the positive and negative direction from the input will 

be equal, so that A=B and C=D in an infinite duct. Hence, Eq.E.2.7 can be 

simplified to give 

(E.2.8) 

in general, where in this case the solutions on either side of the force can be 

written as 

w+(y) = Ae-jkOY + C cos(k1y)e-k2Y , 

w_(y) AejkoY + C COs(kly)ek2Y , 

for y > 0, 

for y < o. 

(E.2.9) 

(E.2.10) 

The slope of the plate displacement at the point of excitation must be equal 

to zero, by symmetry, so that 

(E.2.11) 

and, choosing the coordinate system such that the input force is at y=O, 
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Therefore 

so that 

.ko 
C= -J-

k 
A, 

ft2 

or using the relationship between ko and k2 in Eq.E.1.17 

c 

Appendix E 

(E.2.12) 

(E.2.13) 

(E.2.14) 

(E.2.15) 

Knowing the relative amplitude of the evanescent wave, Eqs.E.2.9 and E.2.10 

can be rewritten as 

w+(y) A (e- jkOY j ~ cos(kly)e-k2Y) , 

w_(y) = A (ejkOY - j ~ COS(kly)ek2Y) . 

(E.2.16) 

(E.2.17) 

The plate displacements in an infinite duct were calculated at 1 kHz using ex­

pressions for w±(y) in Eqs.E.2.16-E.2.17, for parameters in Table 6.1, as shown in 

Fig.E.2. The figure shows the displacement, w(y), derived from the formula inclu­

ding the effects of the nearfield (dashed) and the equation without the nearfield 

components (travelling wave only, solid). For convenience, the assumed relative 

positions of the three outer hair cells OHCl-3 (compare Fig.6.1) are marked with 

the vertical lines. We assume that the OHCs are separated by 20 f.1m from each 

other. 
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o 
Y [flm] 

( a) (b) 

Figure E.2: Real (a) and imaginary (b) part of the vertical plate displacement, 

w(y), at 1 kHz propagating in an infinite plate as a function of radial position in 

the sub tectorial duct. The solid and dashed lines show the waves without and 

with the neadield component, respectively. Additionally, the relative positions 

of the outer hair cells are indicated by the vertical lines. 

Note that according to Eq.E.1.6, the fluid particle displacement, u, can be 

derived straightforward using Eqs.E.2.16 and E.2.17, since 

(E.2.18) 

Thus the fluid particle displacement in the positive direction will be equal to 

u+(y) = ~ J w+(y) = ~ J A (e- jkOY - j ~ COS(k1y)e-k2Y) dy = 

= 2: [J c-~kWd~ -j ~ J COS(kl~)e-k'Yd~] . (E.2.19) 

h h 

The first integral on the right-hand side of the above equation can be solved 

straightaway, so that 

I - J -jkOYd - j -jkoy 1- e y-k
o

e , (E.2.20) 
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where we omit the constant of integration (as in all the remaining solutions of 

integration). Solving by parts the second integral in Eq.E.2.19 gives 

Thus, the expression for the fluid particle displacement in the positive direc­

tion, takes the form 

or knowing that 2/ V3=ko/k2 according to Eq.E.1.17 

j2A [~e-jkOY + 2 ko 2 (COS(kly)e-k2Y _ kl sin(kly)e-k2Y)] . 
d ko kl + k2 k2 

(E.2.23) 

The particle displacement of the subtectorial fluid in the negative direction, 

can be calculated using Eq.E.2.18 and Eq.E.2.17 defining the plate displacement 

of the negative-going waves. Hence 

u_(y) = ~ J w_(y) = ~ J A (ejkOY - j ~ COS(kly)ek2Y) dy = 

= 2: [J ej:"'r1~ ~ J COS(k~y)ek'Yr1~] . (E.2.24) 

h I4 

Solving the first integral in the above equation, h, we have 

1 - J jkOYd - j jkOY 
3 - e Y - - ko e . 

Solving the integral 14 in Eq.E.2.24 by parts, gives 
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so that, using the relationship 2/ V3=ko/k2 and Eq.E.2.25, the subtectorial fluid's 

particle displacement propagating in the negative direction, can be formulated 

by 

_j2A [~ejkOY + ko (COS(kly)ek2Y + kl Sin(kly)ek2Y)] . 
d ko ki + k§ k2 

(E.2.27) 

Figure E.3 shows the real and imaginary part of the fluid particle displacement 

in an infinite duct calculated using the expressions in Eq.E.2.23 and E.2.27 for 

the parameters in Table 6.1. The solid and dashed lines show the fluid displace­

ment for a wave with the nearfield component neglected and taken into account, 

respectively. 
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Figure E.3: Real (a) and imaginary (b) part of the fluid particle displacement, 

Ll(Y), at 1 kHz propagating ill an infinite snbtectorial duct as a function of radial 

position in the duct. The solid and dashed lines show the waves without and 

with the nearfielcl component, respectively. Relative positions of the outer hair 

cells are indicated by the vertical lines. 
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E.3 Wave motion in a finite duct 

In the present section we derive the expressions for the wave motion due to 

'squirting' waves in a finite duct. We assume pressure release boundary conditions 

at the ends of the duct, since the subtectorial fluid travels from a very narrow 

to a relatively wide cavity of the internal sulcus at the IHC end and the scala 

media. 

The travelling wave component of the 'squirting' wave will be reflected from 

the ends of the duct and will travel back towards the excitation source creating 

a standing wave resonance. However, the nearfield components of the 'squirting' 

wave do not travel very far in the duct, so that they are assumed not to be 

reflected at the ends of the duct, and hence do not contribute to the standing 

wave resonance in the subtectorial space. Therefore, we neglect the nearfield 

components in the following considerations1 . 

It should be also noted that the subtectorial duct is not symmetric with regard 

to the positions of the OHC rows at which the input forces will be considered. 

Thus, the length of the duct from the IHC end to the position of the 'OHC input' 

will be denoted as lj, whereas the length of the duct as L. \V'e also introduce the 

reflection coefficients for the waves reflected from the ends of the duct, defined 

by the ratio of amplitudes of the reflected and incident waves [48, 93]. 

Assuming the pressure wave propagating in the positive and negative direc­

tions from the force input within the duct, p+ and p_ respectively, are of the 

form 

p+(y) = Ae-jkOY + BrejkOy, 

p_(y) = CiejkOy + Dre-jkOY, 

(E.3.1) 

(E.3.2) 

where Ai and Ci are the amplitudes of the incident waves and Br and Dr are the 

amplitudes of the reflected waves, and applying the pressure release boundary 

conditions, we have 

1The subtectorial fluid's effect of which will be described later, attenuates the 

waves in the duct even more, so that the simplification by neglecting the nearfield terms is 

further justified. 
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p+(L lj) = Aie-jko(L-lj) + Brejko(L-lj) 0, 

p_ (-lj) = Cie-jkOlj + DrejkOlj 0, 

Appendix E 

(E.3.3) 

(E.3.4) 

where p( L lj) denotes the pressure at the end of the duct to the right from 

the input, whereas p( -lj) is the pressure at the duct's end to the left from the 

position of the input. Thus 

so that 

Br = - Aie-2jko (L-lj) , 

D - -C e-2jkolj r - 1, , 

(E.3.5) 

(E.3.6) 

(E.3.7) 

(E.3.8) 

and we denote Rl as the reflection coefficient for the reflected wave travelling in 

the right-hand side region from the input, and R2 for the reflected wave travelling 

in the left-hand side region from the input. Hence, using Eqs.E.2.9-E.2.10, the 

plate displacement in a duct of a finite length can be expressed as 

w+(y) = A+(e-jkOY + RlejkOy), 

w_(y) = A_(ejkoy + R2e-jkOY) , 

(E.3.9) 

(E.3.10) 

where the nearfield components were neglected and A+ and A_ are the amplitudes 

of the waves travelling in the positive and negative direction from the input 

source. Furthermore, there cannot be any discontinuity of the plate displacement 

at the point of excitation, which we choose to be at y=O, and we can assume that 

w+(O)=w_(O). Therefore, Eqs.E.3.9-E.3.10 give 

w+(O) = A+(l + Rd, 

w_(O) = A_(1 + R2 ), 
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and hence 

(E.3.13) 

Assuming that the input force is acting at the positions of the OHCl-3 

(Fig.6.1), i.e. h =30 pm, l2=50 pm· and l2=70 pm from the IHC position, which 

also define the origin of the coordinate system within the duct, we calculate the 

plate displacements in a finite duct according to Eq.E.3.9-E.3.10, where Rl and 

R2 are defined in Eqs.E.3.7-E.3.S for different positions of the OHC input. The 

magnitude and phase of A+ are set to 1 and 0, respectively, and A_ is defined 

in Eq.E.3.13. The length of the duct L is equal to SO pm and the parameters 

used for calculating the wavenumber are gathered in Table 6.1. The real and 

imaginary part of the plate displacement due to the excitation at the position 

of the first OHC along the subtectorial duct, are shown in Fig.E.4, whereas the 

plate displacements due to the excitations at the second and third OHC along 

the subtectorial duct, are shown in Fig.E.5. 
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Figure E.4: Real (a) and imaginary (b) part of the vertical plate displacement, 

w(y), at 1 kHz propagating in a fInite plate due to the excitation at the first 

outer hair celL as a function of radial position in the subtectorial duct. Relative 

positions of the outer hair cells are indicated by the vertical lines. 
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Figure E.5: Real and imaginary part of the vertical plate displacement, w(y), at 

1 kHz propagating in a finite plate due to the excitation at the second (a, c) and 

the third (b, d) outer hair cell, as a function of radial position in the subtectorial 

duct. Relative positions of the outer hair cells are indicated by the verticallil1es. 
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Using Eq.E.2.18 and Eqs.E.3.9-E.3.10, the fluid particle displacement in a 

finite duct can be derived as 

u+(y) ~ J w+(y)dy = 2~+ (J e-jkOYdy + Rl J ejkOYdY) , 

u_(y) = ~ J w_(y)dy 2~_ (J ejkOYdy + R2 J e-jkOYdY) , 

(E.3.14) 

(E.3.15) 

for the positive- and negative-going waves. The solutions of the integrals in the 

above equations are given in Eq.E.2.20 and E.2.25, so that 

(E.3.16) 

(E.3.17) 

hence given the position of the excitation in the finite duct, the resulting fluid 

displacement can be calculated. 

The fluid particle displacements in a finite duct were calculated according to 

the above equations where all conditions and parameters used for the calculations 

are the same as for the calculation of the plate displacements. The real and 

imaginary part of the fluid displacement due to the excitation at the position 

of the first OHC along the subtectorial duct, are shown in Fig.E.6, whereas the 

plate displacements due to the excitations at the second and third OHC along 

the subtectorial duct, are shown in Fig.E.7. 

E.4 Viscous 'squirting' waves 

In the following section we derive the wave equation for the 'squirting' waves 

with the viscosity of the subtectorial fluid taken into account. For a viscous fluid 

an additional term due to the resistive forces acting against the propagation of 

the fluid, appears in the wave equation. These forces depend on the thickness of 

the viscous boundary layer, i.e. 

6 (277) ~ , 
pw 

(E.4.1) 
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Figure E.6: Real (a) and imaginary (b) part of the fluid particle displacement, 

l1(Y), at 1 kHz in a finite d.uct due to the excitation at the first row of the outer hair 

cell, as a function of radial position in the subtectorial duct. Relative positions 

of the outer hair cells aTe indicated by the vertical lines. 

where 1] is the coefficient of viscosity, p is the density of fluid, and w is the angular 

frequency [48, 81]. The force, F, required to overcome the resistive forces due 

to the fluid's viscosity is proportional to the fluid layer thickness, d2 , through a 

coefficient of resistance 161]/d~ [54], such that 

F( ) = 161] al1(y, 
y,t d2 at 

2 

(E.4.2) 

Incorporating the above equation into the fluid force equation defined in 

Eq.E.1.5, we have 

a211(Y, t) 161] al1(Y, t) 
p at2 + 7 at = 

2 

ap(y, t) 
ay 

(E.4.3) 

where 11 is now interpreted as the mean particle displacement over a section of 

the duct [54]. 

As for the derivation in Section E.l, we differentiate Eq.E.1.4 with respect to 
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Figure E.7: Real and imaginaTY part of the fluid particle displacement, l1(Y), at 

1 kHz in a finite duct due to the excitation at the second (a, c) and the third 

(b, d) outer hair cell, as a function of radial position in the subtectorial duct. 

Relative positions of the outer hair cells are indicated by the vertical lines. 
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y and substitute for Dp(y, t) / Dy in Eq.E.4.3, so that 

D2u(y, t) 161] Du(y, t) 
P Dt2 + d2 Dt 

2 

(E.4.4) 

and after differentiating the above equation with respect to y and substituting 

for D3U (Y, t)/DyDt2 from Eq.E.1.8, we have 

2p D2w(y, t) 161] D2u(y, t) = EI D6w (y, t) 
d2 Dt2 + d~ DyDt Dy6 ' 

(E.4.5) 

or 

(E.4.6) 

Finally, differentiating the continuity equation for the incompressible fluid 

defined in Eq.E.1.6 with respect to time gives 

Dw(y, t) 
Dt 

d2 D2u(y, t) 
2 DyDt ' 

(E.4.7) 

which after substitution for D2u(y, t)/DyDt in Eq.E.4.6, leads to the formulation 

of the wave equation for the viscous 'squirting' waves, i.e. 

D2w(y, t) 161] Dw(y, t) Eld2 D6w(y, t) 
P Dt2 + d~ Dt - -2 - Dy6 = O. (E.4.8) 

Assuming the plate displacement, w, in Eq.E.4.8 is complex and harmonic, 

i.e. w(y, t)=Aej(wt-ky ), we write 

EI d2 k6 = pw2 _ _ j1_6_1]_w 
2 v d2 

2 

(E.4.9) 

where kv denotes the wavenumber of the viscous 'squirting' wave, and the dis­

persion relationship for the 'squirting' waves with viscosity takes the form 

1 

k = (2Pw
2 

_ . 321]W) 6" 

v Eld2 J Eld~ (E.4.10) 

Note that the fluid force equation in Eq.E.4.3 is defined for the model with 

the fluid layer of thickness d2 , confined between two elastic plates of thickness hs · 

Thus, we rewrite the expressions for the wave equation and the wavenumber as 
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for the viscous 'squirting' waves in the fluid layer of thickness d=d2/2 confined 

between a rigid surface and a plate of thickness h=2hs . Replacing d2 by 2d in 

Eq.E.4.8 we have 

f]2w(y, t) 47] 8w(y, t) _ EI d 86w(y, t) _ 
P 8t2 + d2 8t 8y6 - 0, (E.4.11) 

and the corresponding wavenumber will take the form 

k"~(~>j~j~3)' (E.4.12) 

where the moment of inertia, I, is defined in Eq.E.1.15. 

It should be noted that again there are six distinctive roots, ka - f, of the 

dispersion relation that form a hexagon in the complex plane of kv, as shown 

in Fig.E.8 for kv at 1 kHz, evaluated for the set of parameters in Table 6.1 and 

fluid's viscosity 7]=6.6x 10-4 kgm- 1s-1 . However, now also two wavenumber com­

ponents corresponding to the waves travelling along the duct, ka and kd' have 

imaginary parts and so the travelling waves are decaying with the distance from 

the source. The remaining four roots of the above equation, kb,c,e,f, form the stan­

ding nearfield in an infinite duct and are predicted to decay even faster than in 

the case without viscosity. Therefore, the nearfield components will be neglected 

in the analysis of the wave motion so that we consider only the wavenumber so­

lutions for the travelling waves, which we denote as kvo and -kvo for the positive­

and negative-going direction, respectively. Also note that setting 7] to zero in 

Eq.E.4.10 reduces the wavenumber to its real part, which is equal to the wave­

number derived for the loss less 'squirting' waves, and hence kvo becomes equal to 

ko· 

Note that the hexagon lying on a circle of radius ka [51], is rotated clockwise 

with regard to the hexagon obtained for the lossless case. Since 

where ¢ is the phase of the wavenumber kv equal to tan -1 (I m{ kv} / Re{ kv} ), as 

Re{ kv} decreases ¢ approaches 'if /2 so that the maximum angle of rotation of the 

first vertex kvo, and hence the hexagon, amounts to 'if /12=15° according to the 

above expression. 
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Figure E.8: The roots, ka - f (crosses 'x '), of the wavenumber of the viscous 

'squirting' wave, . at 1 kHz. 

The travelling transverse displacement of the finite plates will take the same 

from as for the case with no viscosity, Eqs.E.3.9 and E.3.10, where we replace ko 

by kvo 

wv+(y) = A+(e-jkuOY + R1ejk,;OY) , 

wv-(y) A_(ejkuoy + R2e-jkvOY), 

(E.4.13) 

(E.4.14) 

where the index 'v' refers to the 'viscous case' of wave propagation, and Rl and 

R2 are now defined as (compare Eqs.E.3.7-E.3.8) 

Rl = _e-2jkvo(L-lj) , 

R2 = _e-2jkvolj. 

(E.4.15) 

(E.4.16) 

Analogously, the fluid particle displacement in a finite duct takes the form 

j2A+ 'k 'k U (y) = --(e-J voy - R eJ ~vOY) v+ k d 1, 
vO 

(E.4.17) 

j2A_ 'k 'k U (y) = ---(eJ vOY - R e-J vOY) 
v- k d 2 , 

vO 
(E.4.18) 

according to Eqs.E.3.16 and E.3.17. 
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The real and imaginary parts of the vertical plate displacement, wv(y), and 

the fluid particle displacement, 'uv(y), due to the excitation from the OHCl-3 at 

1 kHz in a finite subtectorial duct of the 'squirting' wave model with viscosity 

taken into account, are shown as a function of position in the duct in Fig.E.9-

E.ll, respectively. The model was solved for the parameters in Table 6.1 and 

viscosity of 7]=6.6 x 10-4 kgm-1s-1. 
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Figure E.9: Real and imaginary part of the vertical plate displacement, wu(y) (a, 

c), and the fluid particle displacement, 1Ll,(Y) (b, d), at 1 kHz due to the excitation 

at the first outer hair celL as a function of radial position in a finite subtectorial 

duct of the 'squirting' wave model with viscosity. Relative positions of the ollter 

hair cells are indicated by the vertical lines. 
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Figure E.I0: Real and imaginary part of the vertical plate displacement, wv(y) 

(a, c), and the fluid particle displacement, I1v(Y) (b, d), at 1 kHz due to the 

excitation at the second outer hair cell, as a function of radial position in a. finite 

sub tectorial duct of the 'squirting' wave model 'Ivith viscosity. Relative positions 

of the outer ha.ir cells are indicated by the vertical lines. 
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Figure E.11: Real and imaginary part of the vertical plate displacement, wv(y) 

(a, c), and the fluid particle displacement, uly) (b, d), at 1 kHz clue to the 

excitation at the third outer hair celL as a function of radial position in a finite 

sllbtectorial duct of the 'squirting' wave model with viscosity. Relative positions 

of the outer hair cells are indicated by the vertical lines. 
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E.5 Calculation of the individual responses 

In the present section we define the constitutive responses of the feedback 

controller model shown in Fig.6.7. According to Fig.6.7 we have four individual 

types of responses that have to be calculated to derive the overall response of 

the active 'squirting' wave model. These include two external responses due to 

the external pressure in scala media, the fluid particle displacement at the IRC 

end of the duct and the plate displacement at the ORCs positions, Gup (duct 

response) and Gwp , respectively. Also, there are two internal responses, i.e. the 

fluid particle displacement at the location of the IRC and the plate displacements 

at locations above the ORC rows, both caused by the ORCs electromotile force 

excitation and referred to as GUf and Gwf , respectively. 

E.5.1 The duct response Cup 

To begin with we define the fluid particle displacement at the IRC end of the 

duct in response to the external pressure excitation at the scala media end of the 

duct. Choosing y=O at the scala media end of the duct (position of the input), 

the IRC end is located at y=-L, where L is the length of the duct, as shown 

in Fig.E.12. Thus, at the IRC the fluid particle displacement will be denoted by 

u( -L), while the driving pressure at the scala media end by p(O)=Pext, and we 

can write 

G
up 

= u(-L) = u(-L). 
p(O) Pext 

(E.5.1) 

Furthermore, we assume that p( -L)=O, due to the pressure release condition. 

Note that the pressure wave is propagating in the left-hand side region of the duct 

from y=O. Therefore, using the relationship between the pressure load and the 

plate displacement in Eq.E.1.4 and Eq.E.4.14 for the damped plate displacement 

in a finite duct, we derive the expression for the pressure wave propagating in 

the left hand-side region of the duct 

(E.5.2) 
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Figure E.12: Schematic of the subtectorial duct for the calculation of the duct 

response Gup . The origin of the coordinate system is chosen at the scala media 

end of the duct of length L , where the external pressure Pext is exciting the 

subtectorial fluid particle displacement, which is measured at the inner hair cell 

(IHC) end of the duct, i. e. u( - L). The three rows of the outer hair cells, OHCl-3, 

are also shown. 

so that at y=O 

(E.5.3) 

where R2 is equal to _e-2jkvoL according to Eq.E.3.8, since the pressure wave 

travels along t he length of the duct before it is reflected at the IHC end boundary. 

Hence 

(E.5.4) 

The fluid particle displacement for the lossy 'squirting' waves propagating in 

a finite duct is given in Eq.E.4.18, hence at y=- L it will take the form 

u (-L) = - j2A_ (e - jkvoL _ R ejkvOL) 
v- k d 2, 

vO 
(E.5.5) 

where R2 is again _e- 2jkvoL, and 

(E.5.6) 
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Therefore, after rearrangement and knowing that 

(E.5.7) 

the response of the duct, Cup, will be defined by 

Cup = 
uv-( -L) j4A_ e-jkvoL 

Pv- (0) kvod( -EIk;oA_) 1 - e-2jkvoL 

j4 e-jkvoL j4 1 

2 1 
EIk~od sin kvoL· 

(E.5.8) 

The magnitude and phase of the response Cvp calculated for the parameters 

in Table 6.1 and viscosity of 7]=6.6x 10-4 kgm-1s-1, are shown in Fig.E.13. 

E.5.2 The Cui response 

We have defined the ratio of the fluid displacement at the IHC end of the 

subtectorial space, and the internal force due to the motility of the OHC, as the 

response CUj. Note that since there are three rows of OHCs, i.e. three inputs, 

and only one output, the general expression for the response Cuj according to 

the schematic in Fig.E.14, will take the form 

(E.5.9) 

where the index j denotes the number of the input, i.e. number of the OHC row 

counting from the position of the IHC as shown in Fig.6.1, and thus GUh _3 is a 

1 x 3 row vector. Also note that fj (0) is a line force, since the geometry assumes 

uniform displacement in the x (longitudinal) direction, with dimensions [.:'-Jm -1]. 

It was also assumed that y=O is located at the site of the input force (OHC row), 

so that the position of the IHC, is denoted by -lj, where lj was defined as the 

length of the duct from the IHC end to the location of the input. 
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Figure E.13: MRgnitude (a) and phase (b) of the response, Cup, RS a function of 

frequency. 
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11_ (y) 11 . ()') 

£1(-1) ~'(O) 

~--.--.......... --....... -.----........ -------~. y = 0 
If 

Figure E.14: The idealisation of the response G1Lfj within the subtectorial duct. 

The outer hair cell (OHC) electromotile force located at a distance lj from the 

inner hair cell (IHC), causes an upward displacement of the plate and travelling 

waves of the fluid. The origin of the coordinate system, y=O, is chosen at the 

position of the outer hair cell excitation, thus the fluid particle displacement 

measured at the inner hair cell position is u( - lj) . 

Since for each of the GUh _
3 responses the input is considered at y=O, we begin 

with t he derivation of the forces from the OHCs. We assume that a segment of 

the upper plate is displaced upwards due to the elongation of the OHC body. We 

also assume that the elongation of the hair cell body displaces the rigid surface 

of the RL only locally, so that it could be still considered as rigid outside the 

positions of t he OHCs. 

The forces acting on the left- and right-hand side of the plate's segment are 

opposite, so that the net force at y=O will be equal to 

(E.5.10) 

according to Eq.E.l.3, and since 

83
wv+ 3kk --(y) = )'k A (e - J vOY - R eJ vOY ) 8y3 vO + 1 , (E.5.11) 

8
3
wv _ (y) = _)'k3 A ( ejkvOY _ R e - jkvo y) 8y3 vO - 2 , (E.5.12) 

according to Eqs.E.4.13-E.4.14, where Rl and R2 are defined in Eqs.E.4.15-E.4. 16, 

so that 
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(E.5.I3) 

(E.5.I4) 

and therefore 

(E.5.I5) 

Solving the relationship behveen A+ and A_ in Eq.E.3.I3 for A+ in terms of 

A_; because the fluid waves are propagating" in the negative direction towards 

-Ij, and substituting into Eq.E.5.I5 gives 

1(0) (E.5.I6) 

The expression for fluid particle displacement at the IRe end of the duct, 

u( -Ij), can be found using Eq.E.4.IS for the waves propagating in the negative 

y direction, and takes the form 

(E.5.I7) 

where R2 is defined in Eq.E.4.I6. Thus, according to Eq.E.5.9, the response Gu.!j 

can be written as 
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Substituting for Rl and R2 and simplifying the bracketed expressions on the 

right-hand side of the above equation, gives 

2j sin kvo(L - lj) sin kvo(L - lj) 

2j sin kvoL sin kvoL 

hence 

(E.5.19) 

or explicitly 

G _ _ 2 sin kvo (L - h) 
viI - Elk~od sin kvo L 

(E.5.20) 

G _ _ 2 sin kvo (L - l2) 
vh - Elk;od sin kL'oL 

(E.5.21) 

2 sin kvo(L l3) 

Elk;od sin kvoL 
(E.5.22) 
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for the corresponding positions of the ORCl-3, i.e. h, l2 and h equal to 30 flm, 

50/)/m and 70 flm, respectively. 

Figure E.15 shows the magnitude and phase of the response GUJj due to the 

excitation force at the position of the first (GuJJ, second (Cuh ) and third (GuJJ 

ORC, located at a distance of h =30 flm, l2=50 flm and l3=70 /JlTI from the IRC, 

respectively. The responses were calculated for the parameters in Table 6.1 and 

viscosity of 1]=6.6 x 10-4 kgm-1s-1. 
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Figure E.15: IVlagnitude (a) and phase (b) of the response, GuJ;, as a function 

of frequency. Response G1Ih (solid), GUh (dashed) and Cur, (dotted) due to 

excitation at the first, second and third outer hair cell, respectively. 

301 



Appendices Appendix E 

E.5.3 The Gwp response 

In the following section we derive the G wp responses , being the ratio of the 

upper plate displacement w at positions of the ORC rows , to the external pres­

sure, Pext, excitation at the scala media end of the duct. Note that in this case 

t here are three outputs at positions li away from the IRC and just a single input , 

and we choose the origin of the coordinate system at the right-hand side end of 

the duct as shown in Fig.E.16, so that the positions at which the displacement 

output is 'sensed ' are -(L - li)=li-L (for the ORCI-3). Thereby 

W(li - L) W(li - L) 
G w;p = p(O) = Pext ' 

(E.5.23) 

where i= l , 2 and 3 and t hus G w;p is a 3xl column vector. 

Figure E.16: The GWiP response, i. e. the plate displacement w( -(L -li))=w(li ­

L), where L is the duct length and li is the distance from the inner hair cell 

(IHC), as a result of the external pressure excitation, Pext, at y=O. ORC denotes 

t he outer hair cell. 

The plate displacement for a viscous 'squirt ing' wave travelling in a finite duct 

in the negative direction from y=O , is defined in Eq.EA.14, and at y=(li - L) it 

will take the form 

(E.5.24) 

where, since the duct length from the position of the input to the position of the 

wave refiection at the IRC end is equal to L , R2 is equal to _e- 2jkvoL according 

to definition in Eq.E.4.16. 
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Hence, using the expression for Pv-(O) in Eq.E.5.4, we have 

A_(ejk"O(li-L) + R2e- jk"o(li-L)) 

-EIk;oA_(1- e-2jk~,oL) 

1 e-jkvoL[ejkvoLejkvo(li-L) - e-jkvoLe-jk,;o(li-L)] 

EIk;o e-jkvoL 2j sin kvoL 

1 ejkvoli _ e-jkcoli 1 2j sin kvOli 
- EIk;o 2j sin kvoL 

---
EIk;,o 2jsinkvoL 

1 sin kvOli 
E I k;o sin kvo L . 

(E.5.25) 

Thus, the responses GWiP 'sensed' at the positions of the OHCl-3 rows, i.e. 

h-3, will be formulated by 

1 sin kvOll 

EIk;,o sin kroL' 
(E.5.26) 

(E.5.27) 

G = __ 1_ sin kvoh (E - 28) 
W3P EIk4 ' k L ' -i •

0. 
~'L'O Sin vO 

where h, l2 and l3 are equal to 30 ~m, 50 ~m and 70 ~m, respectively. 

Figure E.17 shows the magnitude and phase of the response GWiP due to the 

external pressure p at positions of the first (GW1P )' second (GW2P ) and third (GW3P ) 

OHC, located at a distance of h =30 ~m, l2=50 ~m and l3=70 ~m from the IHC, 

respectively. The responses were calculated for the parameters in Table 6.1 and 

viscosity of 17=6.6 x 10-4 kgm- 1s-1 . 

E.5.4 The forced response GWf 

In the last section we derive the forced responses of the duct, Gw;Jj' where 

the input forces, ij, are exerted on the upper plate by the electromotile OHCl-3, 
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Figure E.17: I'vlagnitude (a) and phase (b) of the response, GWiP ; due to the 

external pressure excitation, as a function of frequency. Response GW1P (solid), 

GW2P (dashed) and GW3P (dotted) at positions of the first, second and third outer 

hair cell, respectively. 
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respectively, causing an upward displacement of the plate Wi, where i=l, 2 and 

3 corresponds to the sites above the respective ORC rows. GWdj will be defined 

by 

(E.5.29) 

where by such definition we assume that the input force is always located at the 

origin of the coordinate system, i.e. at y=O. Note that GWdj is a 3x3 matrix 

where the diagonal terms correspond to the point receptances of the system, 

since i= j, which dominate the overall response, and for i=/= j we have the transfer 

receptances of the system. To begin with we derive the expressions for the point 

receptances of the forced response, i.e. Gwjfj , according to the schematic in 

Fig.E.lS. 

w(y) w, (y) 

Ii 
wi(D) 

-- --
1;(0) 

Figure E.lS: Schematic for the internal point response Gtvdj where i=j. The 

local outer hair cell (ORC) force, j , at lj distance from the inner hair cell (IRC) 

causes an upward displacement , w, of the plate above and li away from the inner 

hair cell position. Note that both the force and the displacement are chosen to 

be located at the origin of t he coordinate system and li = lj in this case. 

Knowing that j(O) is defined in Eq.E.5.16 using the amplitude of the negative­

going wave, A _, and at y=O wv+(O)=wv- (O), we use also the expressions for the 

plate displacement of the wave propagating in the negative direction defined in 

Eq.E.4.14, i.e. 

(E.5 .30) 
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where R2 is defined in Eq.E.4.16. 

In such a case the forced response will be expressed as 

(E.5.31) 

According to the derivation for Eq.E.5.18 we can rewrite the above equation 

as 

J (1 + R 1 )(1 + R2 ) 

Elk~o 2(1 - R1R2) 
(E.5.32) 

so that substituting for Rl =_e-2jkvo(L-lj) and R 2=-e-2jk"olj from Eqs.E.4.15-

E.4.16, we have 

J e-jkvo(L-lj) [ejk"o(L-l j) - e-jkvo(L-lj)]e-jkvolj [ejkuOlj - e-jkvOlj] 

2Elk~o 1 - e-2jkvoL 

2Elk3 
vO 

(E.5.33) 

which using trigonometric relationship in Eq.E.5.7, can be written as 

J e-jkvoL[2j sin kvo(L - lj)2j sin kvolj] 
GWjfj = - 2Elk~o e-jkvoL[2j sin kvoL] 

1 sin kvo(L - lj) sin kvolj 

Elk~o sin kvoL 
(E.5.34) 
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Renee, the point receptances of the plate due to the outer hair cell electro­

motile forces will take the form 

G __ 1_ sin kvo(L - h) sin kvoh 
WI h - Elk3 . k L ' "vo SIn" vO 

(E.5.35) 

G __ 1_ sin kvo(L -12) sin kvO l2 

W2!2 - Elk3 . k L ' 
vO SIn "vO 

(E.5.36) 

(E.5.37) 

where h =30 fLm, I2=50 fLm and h=70 pm denote again the position of the ORC 

row along the duct measuring from the IRC location. 

Figure E.19 shows the magnitude and phase of the point responses GWjfj 

at positions of the first (GWlil )' second (Gw2fJ and third (Gw3h ) ORC, loca­

ted at a distance of II =30 pm, I2=50 fLm and l3=70 ~Ll11 from the IRC, respec­

tively, due to the excitation of each ORC at the same corresponding positions. 

The responses were calculated for the parameters in Table 6.1 and viscosity of 

7]=6.6 x 10~4 kgm~ls~l. Note that after substituting for II and I2 into Eqs.E.5.35 

and E.5.36, the responses GWIh and GW2h are equal and the corresponding lines 

in the figure cover each other. 

The transfer receptances of Gw;fj' i.e. for i=!=j, of the duct system with multi­

channel feedback can be divided into two groups. The first group of the transfer 

responses will be defined for the case where the input force from the ORC is 

located at Ij (measured from the IRC site) and to the left from the output dis­

placements of the TM plate. Furthermore, we will refer to the plate displacement 

at the neighbouring ORCs positions as to Ii (measured from the IRC site) and 

hence i> j in this case. This is shown schematically in Fig.E.20. 

Assuming that the input force is at y=O, for GW;jj where i> j, the plate 

displacement will be defined as for the positive-going waves, so that 

for i > j, (E.5.38) 
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Figure E.19: IVlagnitucle (a) and phase (b) of the point responses, GWjjj ' as a 

function of frequency. Response Gwlfl (solid), GW2h (dashed) and GW3h (dotted) 

at positions of the first, second and third outer hair cell, respectively. NB GWdl 

and GW2h are equal. 
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w (y) w. (y) 

Ii 
Wi (li- I) 

Figure E.20: Schematic of the internal response GW;Jj for which i> j, i. e. the 

plate displacement, 1D , measured at the distance li from the inner hair cell (IRC), 

is located to the right of the input force from the outer h air cell (ORC), f. The 

input force is assumed to be located at y=O , and lj away from the inner hair cell 

position. Thus the output displacement is measured at li -lj. 

where W v+ and 1(0) are defined in Eqs.E.4.13 and E.5.16, respectively. Therefore 

_ A +(e-jkvo(li - l j) + R1 ejkvo(li- l j» ) [(1 - R 1)(1 + R 2 ) _ ]-1 
GWdj - . E I k3 A (1 + R ) + (1 R 2 ) J vO - 1 

(E.5.39) 

and R 1,2 are defined in Eqs.E.4.15-E.4.16. Knowing the relationship between A+ 

and A _ from Eq.E.3.13, we rewrite the above equation as 

A_(e- jkvO(li -lj) + R1ejkvo(li- l j») (1 + R 2 ) 

GWdj = jEIk~oA- (1 + R 1 ) 

Thus, 

e- jkvo(li-lj) + R1ejkvo(li - lj) 

jEIk~o 
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e-jkvo(li-lj) e-2jkuo(L-lj)ejkvo(li-lj) 1 _ e-2jkvolj 

2jElk~0 1 - e-2jkvo(L-lj)e-2jkvolj 

e-jkvo(L-lj) [ejkvo (L-lj) e-jkvo(li-lj) e-jkvo(L-lj) eJkvo(li-lj)] 1 _ e-2jkvolj 

2jEIk~0 1 - e-2jkvoL 

e-jkuo(L-lj) [ejkvo(L-li) _ e-jkvo(L-l;)] e-jkvolj [ejkvOlj _ e-jkvOlj] 

2J'Elk3 e-jkvoL[ejkvoL e-jkvoL] 
vO 

e-jk1JO(L-lj)2j sin kvo(L - li) eJkvo(L-lj)2j sin kvolj 

2jElk~0 ejkuoL - e-jk'ioL 

sinkvolj 1 sinkvo(L -li) sinkvolj 

2j sin kvoL - Elk~o sin kvoL 
(E.5.41 ) 

Thus, for i> j, the transfer responses will take the form 

(E.5.42) 

G _ 1 sinkvo(L l3) sinkvoh 
W3!l - Elk3 . k L 

-f vO SIn ~vO 
(E.5.43) 

G _ 1 sin kvo(L - l3) sin kvO l2 
w3h - Elk3 . k L ' vO SIn ~vo 

(E.5.44) 

where II =30 f-Lm, l2=50 f-Lm and l3=70 f-Lm. 

The magnitude and phase of the transfer responses GW;Jj for the case where i 

is greater than j, i.e. at l2=50 f-Lm and l3=70 f-Lm from the IRe due to the ORe 

force located at a distance of II =30 f-Lm: GW2 !l and Gw3h , respectively, and at 

l3=70 f-Lm from the IRe due to the ORe force located at a distance of l2=50 f-Lm: 

Gw3h , are shown in Fig.E.21. The responses were calculated for the parameters 

in Table 6.1 and viscosity of 7]=6.6x 10-4 kgm-1s-1 . 

The second group of the transfer responses Gw;fj will be derived for i<j, that 

is for the situation when the plate displacement is 'measured' on the left-hand 

side from the input, as shown in Fig.E.22. 
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Figure E.21: Magnitude (a) and phase (b) of the point responses, GW;!j for i>j, 

as a function of frequency. Response Gw2il (solid), GW3h (dashed) at positions 

of the second and third outer hair cell due to the force at the first outer hair cell, 

and at the third outer hair cell due to the force at the second outer hair cell, 
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w (y) 

Ii 
-------

Wi (-(l;-l,) 

/;(0) 

~----"----""-"-.-c-------~ y=O 
J 

Figure E .22: Illustration of t he GW;Jj response within the duct, where i<j. The 

outer hair cell (OHC) force, 1, acting locally at y=O, is at a distance lj from 

the inner hair cell (IHC). The output plate displacement located to the left from 

the input force and at a distance li away from the inner h air cell, and hence the 

relative distance between the input and the output is equal to -(lj - li)=l·i- lj in 

this case. 

We assume again that the excitation is located at y=O, so t hat the plate 

displacement waves t ravelling in the negative direction, i.e. W v - , are taken into 

account. Hence 

for i < j. (E.5.45) 

Using Eq.E.4. 14 for W v - at li- lj and Eq.E.5.16 for 1(0), we can write 

A _ (ejkvO(li- lj) + R2e- jkvo(li - l j)) 

GW;Jj = jEIk~oA-
(1 + R 1 ) 

2(1 - R 1 R2 ) , 

where Rl and R 2 are defined in Eqs.E.4.15-E.4.16. 

Thus 
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e-jkvolj [ejkvo(l;-lj)ejkvOlj _ e-jkvo(li-lj)e-jkvOlj] 1 e-2jkvo(L-lj) 

2jElk~o 1 - e-2jkvoL 

e-jkvOlj(ejkuoli _ e-jkvoli) e-jkvo(L-lj)[ejkuo(L-lj) _ e-jkvo(L-lj)] 

2jElk~o e-jkvoL[ejkvoL - e-jkuoL] 

2jsinkvoli e-jkvOL2jsinkvo(L -lj) 1 sin kvo (L - lj) sin kvOli 
2jElk~o e-JkvoL2j sin kvoL Elk~o sin kvoL 

(E.5.47) 

Using the above result, we can define the transfer responses for i<j as follows 

(E.5.48) 

(E.5.49) 

1 sinkvo(L l3)sinkvol2 

Elk~o sinkvoL 
(E.5.50) 

where again h, l2 and l3 are equal to 30 pm, 50 pm and 70 pm, respectively. 

Note that GWd2 ' GWd3 and GW2 /3 are equal to Gw2h , GW3h and Gw3h , res­

pectively, so that the matrix Gwf is diagonally symmetric and the responses for 

i<j are the same as the corresponding responses for i>j shown in Fig.E.21. 

\;\Ie gather the expressions for all the constitutive responses of the feedback 

controller model in Fig.6.7 in Table E.1. 
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I RESPONSE I 

C [- :)"!\T~l] 
;r1J.p In 1 ~ 

C- [211.'--1] 
wdj In", 

I 

I 

EXPRESSION 

2 sinleuo(L~lj) 

Elk~od sin Iceo D 

sin kroli 
sink"oL 

1 sinkuo(L~lj) sinle vol1 

E I k;;o sin levo L 

1 sin levo (Ll j ) sin levol i 

EIIc~o sin leuoL 

Appendix E 

for i J 

fori> j 

for i < j 

Table E.1: Constitutive responses of the feedback controller proposed for the 

active 'squirting' wave rnodel. 
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Derivation of the expressions for 

the wavenumber of the lossy 

fluid-elastic waves 

To derive the explicit expressions for real, /3, and imaginary, 0:, parts of the 

wavenumber, k, we take Eq.7.3.8 

k2 Re{k} = pw
2
(1 + v) _j l61]w(1 + v) . 

Eo (1 + j J-L) d Eo (1 + j J-L) d3 ' 
(F.l) 

~" V J 

A B 

and group the real and imaginary components, so that 

and similarly 
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B = 16T)w(1 + 1/) ( 1 1 - jf-L) 
Eod3 1 + jf-L 1 - jf-L 

"-----v--'" 
D 

16T)w(1 + 1/) . [ 16T)w(1 + I/)f-L] 
= Eo(l + f-L2)d3 +) - Eo(1 + f-L2)d3 . 
~ '- v ~ 

Re{B} Im{B} 

Therefore, 

k2 Re{k} = A - jB = (Re{A} + jlm{A}) j(Re{B} + jlm{B}) = 

= (Re{A} + Im{B}) +j (Im{A} Re{B}), 
'----v ./ \, V '" 

R X 

hence 

which can be simplified to give 

Setting k=(3-ja to solve the above equation, where (3 corresponds to the real 

part of the wavenumber, thus to the propagating component of the wave, and 

a, being the imaginary part of k, to the wave's attenuation coefficient, and the 

right-hand side of Eq.F.2 to R+jX gives 

(F.3) 
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and hence equating the real and imaginary parts of the above equation gives 

and 

20;(32 = -X. 

Thus, the attenuation coefficient will be equal to 

X 
a = - 2/32 ' 

which after substituting to Eq.F.4 leads to a quadratic in (33 

(F.4) 

(F.5) 

(F.6) 

(F.7) 

Solving Eqs.F.6 and F.7 gives the expressions for (3 and a, so that the waves 

propagating and decaying in two directions can be calculated since k=±((3-ja). 

Let 
1 o :. (3 = 0 3, 

so that Eq.F.7 takes the form 

(F.8) 

thus 

(F.9) 

and hence 

(F.1O) 

and, according to Eq.F.6, 

a = _~ = _ X (R± y'R2 +X2) 
1,2 2(32 2 2 1,2 

(F.ll) 
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C1,2 = -(3 . 

1,2 

Appendix F 

(F.12) 

Four conditions for the fluid-elastic waves in the subtectorial space of the 

organ of Corti are considered here: 

1) 7]=0 [Pa s], /1=0; no losses, 

2) 7]=0 [Pas], /1=0.5; losses only in the elastic half-space, 

3) 7]=6.6 X 10-4 [Pa s], /1=0; losses only in the fluid, 

4) 7]=6.6 X 10-4 [Pa s], /1=0.5; losses in both elastic half-space and the fluid. 

Thus, it can be seen that for condition 1) the imaginary part of Eq.F.2 is 

equal to zero and hence D2=0, (32=0, and C2=OO, i.e. 

1 R - JR2 + X2 
D2 = 2 = 0, for (F.13) 

where the upper index denotes the loss condition. On the other hand for condi­

tions 2), 3) and 4) the root D2 is always negative and thus (32 is complex, i.e. 

n 2,3,4 _ R - VR2 + X2 
H2 - = -canst., 

2 
for all R,X B X =1= 0 (F.14) 

Therefore we reject D2 taking only D1 solution for simulations. 
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Derivation of the responses in 

the fluid-elastic model 

G.l The subtectorial fluid pressure, elastic half­

space and fluid displacements due to the 

external pressure excitation Pext 

In the first instance waves in the duct, due to the external pressure at y=L, 

Pext=p(L), producing the fluid displacement u at position y=O as shown in 

Fig.G.1, will be considered and described in a way similar to that of Nelson 

and Elliott [69] for compressional waves and fluctuating volume flow. However, 

for the fluid-elastic waves in the subtectorial duct the characteristic impedance 

will take a different form than the PoCo for compressional waves. Therefore, the 

relations between the pressure, p(y, t) and the fluid displacement, u(y, t) must be 

formulated. 

\Ve assume that the subtectorial fluid pressure and the wall and fluid dis­

placements are of the form p(y, t)=p(w, k)ej(wt-ky ), w(y, t)=w(w, k)ej(wt-ky ) and 

u(y, t)=u(w, k)ej(wt-ky ) , respectively. The lossy version of the relationship bet­

ween the complex pressure and the wall displacement is given in Eq.7.3.6 and is 

inversely proportional to the wavelength [22]. 

Taking the wave equation for the fluid-elastic waves with losses (fluid force 
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equation, Eq. 7.3.1), and solving for the complex harmonic fluid pressure and 

displacement in an infinite duct, gives 

l61]W 
-jkp(w, k) = pw2u(w, k) - j-----;[2 u(w, k), (G.l.l) 

so that the ratio p(w, k)/u(w, k) for a single wave takes the form 

p(w, k) jpw 2 l61]w 
u(w, k) = k + kd2 = Swave· (G.l.2) 

The above equation defines the 'dynamic wave stiffness', which relates the 

fluid pressure to its displacement for the fluid-elastic waves, analogously to the 

characteristic impedance for the compressional waves, POCo. Specifically, for the 

particle velocity, jwu, the characteristic impedance, in the absence of viscosity, 

I.e. 1]=0, and for k=w/c, can be defined according to Eq.G.l.2 as 

p(w, k) 

jWu(w, k) 
= pC. (G.l.3) 

It should be noted, however, that C=VSwalld/ P (Eq.7.2.l2) for the lossless 

case, where the wall stiffness Swall is defined in Eq.7.2.l0, and not V,Po/ Po as 

for the sound waves in fluids, where, is the ratio of specific heats, and Po and 

Po are the ambient pressure and density of the fluid, respectively [48]. 

The subtectorial duct shown in Fig.G.l, is driven by the external pressure, 

Pext, at its right-hand side end, i.e. y=L, which produces elastic half-space dis­

placement, W, at the positions of the ORCs (second row of ORCs at l2 shown 

in figure), as well as the fluid particle displacement, u, at the left-hand side 

end of the duct, i.e. y=O. Furthermore, the boundary conditions, p(O)=O and 

p(L)=Pext, are indicated in the figure, together with an area displacement s, which 

is modelled by a loudspeaker, and idealised by a plane acoustic monopole. The 

monopole shown in Fig.G.l, can be represented by two Inassless pistons vibrating 

apart due to the displacement s between them and producing plane waves in the 

downstream and upstream directions in the duct [69]. 

Assuming the boundary conditions for the duct excited at y=L by Pext to be 
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30llm 
/-------------+----_._._- --

w 

~ 
_Pext 

p+ 

p(O)=O 

y 

Figure G.1: The subtectorial duct in which the fluid displacement at the inner 

hair cell end of the duct , u, and the elastic half-space d isplacement , w , occur 

due to t he external pressure in the scala media, Pe:ct. The dimensions of the duct 

of the subtectorial space are shown for comparison wit h Fig.7.4 along with the 

indication of the boundary conditions at the ends of the duct. An idealised plane 

monopole source, 8, due to the action of the outer hair cells is depicted at the 

position of the second row of these cells. 

p(O) = 0, 

p(L) =Pext, 

and complex harmonic pressures and fluid particle displacements , at t=O, of the 

form 

p(y) = p+e- jky + p_ ejky
, 

u(y) = u+e- jky + u_ejky
, 

(G.1.4) 

where the '+' and ' - ' indices refer to the amplitudes of t he positive- and 

negative-going pressure and fluid displacement waves, so t hat 

(G.1.5) 

and 
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(G.1.6) 

Pext JPext 
P+ = (e-jkL - ejkL) = 2sinkL' 

The pressure at any position in the duct will be equal, according to Eq.G.1.4 

and Eq.G.1.6, to 

thus, since e-jkY-ejkY=-2j sin ky, 

() JPext ( 2' . k) Pext . k P Y = - J sm y = -- S111. ~y. 
2 sin kL sin kL 

(G.1.7) 

The dynamic wave stiffness, Swave (Eq.G.1.2), is defined for positive- and 

negative-going waves as 

(G.1.8) 

thus, according to Eq.G.1.8 and knowing that P_=-P+ (Eq.G.1.5), 

(G.1.9) 

P- P+ 

Swave Swave' 

According to Eqs.G.1.4 and G.1.9, the expression for the fluid displacement 

u(y) will take the form 

(G.1.10) 

hence using G.1.6, and since e-jkY+ejkY=2 cos ky, 

u(y) JPext k JPext ----- 2 cos ~y = cos kyo 
2Swave sin kL Swave sin kL 

(G.1.11) 
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Figure G.2 depict the distribution along the duct of the Il1agnitude an phase of 

the pressure, p(y), and fluid particle displacement, u(y), formulated in Eqs.G.1.7 

and G.1.11, at 1 kHz due to the external pressure driving at the right-hand side 

end of the duct, Pext. The external pressure from the scala media was set to 

Pext=2x 10-5 Pa and the length of the duct was assumed to be equal to L=80 j-Lm. 

All the remaining parameters are listed in Table 7.1. 
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Figure G.2: The magnitude and phase of the pressure p (a, c) and the fluid 

particle displacement u (b, d) at 1 kHz due to the external pressure in the scala 

media, Pe:tt=2x 10-5 Pa, as a fUllction of position along the duct, y. Horizontal 

lines indicate the positions of the outer hair cell rows. 

Knowing that the elastic half-space displacement, w(y), is related to the com-
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plex pressure p(y) by the lossy version of the wall stiffness Swall defined in Eq.7.3.6, 

I.e. 

1 (1 + v) 
w(y) = Swall p(y) = Re{k}Eo(1 + ;"/1) p(y), (C.1.12) 

thus taking the expression for the subtectorial fluid pressure in Eq.C.1.7, the wall 

displacement due to the external pressure, Pext, will be formulated by 

w(y) Pext . k ---. -- sm AY, 
Swall sm kL 

(C.1.13) 

where Swall is again defined in Eq.7.3.6. 

G.2 The subtectorial fluid pressure, elastic half­

space and fluid displacements due to the 

area displacement of the outer hair cell Si 

To calculate the internal responses of the feedback controller system, the 

pressure within the duct p(y), fluid displacement v(y) at the inner hair cell end 

of the duct and the elastic half-space wall displacement, w(y) in response to 

the area displacement source modelled as an acoustic plane monopole, shown 

schematically in Fig.C.3, will be derived in this section. 

In this case we assume pressure release boundary conditions at the ends of 

the duct, namely 

p(O) = 0, 

p(L) = 0, 

thus the complex pressure and particle displacement of the fluid in the finite duct 

shown in Fig.C.3 can be formulated by 
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I, 

w 

p 

p(O)=O 

L 
y 

Figure G.3: Schematic of the subtectorial duct for the calculation of the wall, 

W(li), and fluid displacement,u(O), responses due to the internal area displa­

cement excitation at the position of the outer hair cell , 8(lj). The boundary 

conditions at the ends of the duct are also indicated. 

(G.2.1) 

for the waves propagating in the left-hand side region from the source, and 

(G.2.2) 

for the waves in the right-hand side region from the source, where Swave is the 

dynamic wave stiffness defined in Eq.G.1.2, and li denotes the position in the 

duct at which the pressure or the particle displacement is measured. 

For the assumed pressure release conditions at the ends of the duct from 

Eq.G.2.1 we have 

pdO) = 0 = A + B , (G.2.3) 
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and from Eq.G.2.2 

(G.2.4) 

therefore 

B=-A, 
D _Ce-2jkL . 

(G.2.5) 

Since the pressure across the source must be continuous, and the difference 

in the particle displacement of the massless pistons at their positions, ij, equals 

to the source strength, s / d (NB because we consider a 2D problem, the source 

is linear and corresponds to an area displacement divided by the height of the 

duct, d) [69], thus from Eqs.G.2.1 and G.2.2, we have 

(G.2.6) 

C Oklo D °kl = -- e-J J - __ eJ j 

Swave Swave 

hence, taking into account expressions in Eq.G.2.5, 

(G.2.7) 

Note that the position of the source in the duct was denoted as ij; so that the 

constitutive responses of the feedback controller model in Fig.7.5 can be expressed 

in a generalised form of the ratio of the output at position li to the input source 

at position lj, similarly as for the responses of the 'squirting' wave model derived 

in Appendix E.5. Specifically, when then a point response is specified, that 

326 



Appendices Appendix G 

is the output is located at the same position as the input along the subtectorial 

duct. 

The constants A and C can be derived using the equations in G.2.7, so that 

e-jklj _ ejklj 

C = A ---;-----,--:--:-:----:-c:----:-~ 
e-jkL (e-jk(lj-L) _ ejk(lj-L») , 

which after substituting to the second expression in Eq.G.2.7, gives 

_ [( e-jklj _ ejklj ) (e-jk(lj-L) + ejk(lj-L») 

- A e-jk(lj-L) _ ejk(lj-L) 

_ (e- jklj + ejklj ) (e-jk(lj-L) - ejk(lj-L») 1 
e-jk(lj-L) _ ejk(lj-L) 

_ [ e-2jklj e jkL + e-jkL _ ejkL _ e2jklj e- jkL 

- A e-jk(lj-L) _ ejk(lj-L) 

2(e- jkL _ ejkL ) 

= A e-jk(lj-L) _ ejk(lj-L) , 

e-2jkljejkL _ e-jkL + e jkL _ e2jklje-jkL] 

e-jk(lj-L) _ ejk(lj-L) 
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and knowing that 

we can write 

e-je + eje = 2 cos e, 
e- je - eje = -2jsine, 

Swaves(lj) = 2A -2j sin kL = 2A sin kL . 
d -2jsink(lj - L) sink(lj - L) 

Appendix G 

(G.2.9) 

From the above relationship the constant A can be obtained and is equal to 

A = Swaves(lj) sink(l - L) 
2dsin kL J , 

(G.2.I0) 

so that, according to Eq.G.2.8, 

c 
e-jklj _ e jklj 

L) e-jkL (e-jk(lj-L) _ ejk(lj-L)) 

thus the constant C is equal to 

C = Swaves(lj) sin klj . 
2d sin kL cos kL - j sin kL 

(G.2.11) 

Using the expreSSIOn m Eq.G.2.I, and knowing that B=-A according to 

Eq.G.2.5, where A is given in Eq.G.2.I0, the complex acoustic pressure wave 

propagating in the left-hand side region from the source, i.e. OSYS li, takes the 

form 

jSwaves(lj). (l ). jSwaves(lj). ( ) . k 
= - sm k . - L sm ky = sm k L - l· sm Ay 

dsinkL J dsinkL J' 
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and using Eqs.G.2.2, G.2.5 and G.2.11 for PR(Y), D and C, respectively, for the 

right-hand side region, i.e. li"5.y"5. L, we have 

PR(Y) = Ce-jky + Dejky = Ce-jkL (e-jk(y-L) - ejk(y-L)) = 

Swave s( lj) sin klj [k ------"--'-- -----"---- cos ~ L 
2d sin kL cos kL - j sin kL 

jsinkL][-2jsink(y - L)] = 

jSwaves(lj) . kl . k( = - sm '; . sm ~ y 
dsin kL J 

L) ,jSwaves(lj). kl . k(L ) 
= d' kL sm j sm - y , sm ~ 

and hence 

() 
jSwaves(lj). ( ) . 

PL Y = d' kL sm k L - lj sm ky, sm ~ 

jSwaves(lj) . kl . k(L ) sm ~ . sm ~ - y . 
dsinkL J ' 

(G.2.12) 

(G.2.13) 

Combining Eq.G.1.12 with Eqs.G.2.12 and G.2.13 gives the relations between 

the wall displacement w(y) and the pressures in two regions away from the ORC, 

i.e. PL(y) and PR(y), so that taking 

1 
WL(y) = s PL(y), 

wall 

we have 

() 
jSwaves(lj). ( ) . k 

WL Y = S d' kL sm k L - lj sm ~y, 
wall SIn 

() jSwaves(lj). kl . k(L ) 
WR Y = S d' kL sm j sm· - y , wall SIn ~ 
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It is interesting to note that the ratio of the dynamic wave stiffness and the 

lossy version of the dynamic wall stiffness can be written, according to Eqs.7.3.6 

and G.1.2, as 

Swave (jPW 2 167]W) (1 + v) 
Swall = -k- + kd2 Re{k}Eo(1 + JIL) = 

j (PW 2 (1 + v) . 167]w(1 + v) ) 
= kRe{k} Eo(1 + JIL) - J Eo(1 + jIL)d2 = 

but the term in brackets on the right-hand side of the above equation is equal to 

Eq.7.3.8, i.e. 

hence 

Swave 

Swall 

Thus, substituting the above ratio into Eqs.G.2.15-G.2.16 gives 

ks(l) 
-=---kJ sin k( L - lj) sin ky, 
sm AL 

ks(l) 
__ ._J_ sin kl sin k(L - y), 

smkL J 

(G.2.17) 

(G.2.18) 

(G.2.19) 

(G.2.20) 

Furthermore, using the relationships for the fluid particle displacement given 

in Eqs.G.2.1 and G.2.2, and substituting for A, B, C and D (Eqs.G.2.5, G.2.10 

and G.2.11) we have 
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( ) _ A -jky B jky _ A (e-jky + ejky ) __ 11,L Y - -- e - -- e ---
Swave Swave Swave 

Swaves(lj) [ )][] s(lj) 
S 2d· kL sink(lj -L 2cosky = - d . k sink(L-lj)cosky, 

'lcave SIn" SIn L 

for the waves travelling in the left-hand side region from the source, i.e. O:;y:;li' 

and 

( ) _ C -jky D jky _ C -jky + C -2jkL Jky _ 
11,R Y - -- e - -- e - -- e -- e e-

. Swave Swave Swave Swave 

Swaves(lj) sin klj [ . . 
S 2d· kL kL .. kL coskL - J smkL][2cosk(y wave SIn COS - J SIn 

L)] = 

s(lj) . s(lj) 
d . kL sm klj COS k(y - L) = d . kL sin klj cos k(L - y), 

sm sm " 

for the waves propagating in the right-hand side region, i.e. li:;y:;L, so that 

s(l ) 
UL(y) = - d . J

kL 
sink(L-lj)cosky, 

sm " 

_s-,(lJ,-,-)_ sin kl cos k(L - y). 
dsin kL J ' 

(G.2.21) 

(G.2.22) 

Distribution of the magnitude and phase of the pressure, p(y), and fluid par­

ticle displacement, u(y), along the subtectorial duct at 1kHz, due to the fluctua­

ting unit area displacement at the position of the first, second and third OHC, 

SI, S2 and S3, respectively, was calculated using Eqs.G.2.12-G.2.13 and G.2.21-

G.2.22 and shown in Fig.G.4. The length of the duct was assumed to be equal 

to L=80 pm and the position of the first, second and third OHC to II =30 pm, 
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l2=50 In11 and l3=70 {Lm, respectively. The remaining parameters are presented 

in Table 7.1. 
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Figure G.4: The Inagnitude and phase of the pressure, p (a, c), and fluid particle 

displacement, 1.1 (b, d), at 1 kHz due to the unit area displacement from the outer 

hair cell source, 51, solid; 52, dashed and 83, dotted; as a function of position in 

the duct, y. Horizontal lines indicate the positions of the outer hair cell rO\vs. 
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G.3 External and internal responses of the feed­

back controller model 

Raving formulated the expressions for the pressure (Eq.G.1.7), fluid particle 

displacement (Eq.G.1.l1), and elastic half-space displacement (Eq.G.1.13) due 

to the external pressure, Pext, as well as the pressure (Eqs.G.2.12, G.2.13), elas­

tic half-space (Eqs.G.2.19, G.2.20) and fluid particle displacements (Eqs.G.2.21, 

G.2.22) due to the action of the ORC, we will derive the external and internal 

responses of the feedback controller model shown in Fig. 7.5(b) in a way similar 

to that presented in Appendix E. 

Because the feedback controller in Fig.7.5(b) is a Ilmltichannel system since 

there are three internal inputs and outputs, each of the constitutive responses, 

excluding the duct response Gup , forms again a vector or matrix. The rows of the 

vector /matrix elements will correspond to the output of each transfer function 

and will be indexed by i, whereas the columns will be denoted by index j and 

will correspond to the inputs of these functions. 

The duct response, Gup , which relates the fluid displacement output at the 

site of the IRC, i.e. y=O, due to the external pressure input Pext at y=L, is a 

scalar, and according to Eq.G.l.ll takes the form 

G - u(O) _ jPext _1_ J (G 3 ) 
up - - . . 1 

p( L) Swave sin kL Pext Swave sin kL 

The elastic half-space displacement at the site of the ORC, W(li) (Eq.G.1.13), 

due to the external pressure excitation, Pext, at y=L defined in Eq.G.1.7, will be 

formulated 

G 
= w( li) = Pext sin kli 1 sin kli 

w p , (G.3.2) 
i p( L) Swall sin kL Pext Swall sin kL 

where index i corresponds to the position at which the response is to be evaluated. 

Thus, at a single frequency, G wp will be a [3x 1] column vector such that 

(G.3.3) 
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where 

G = sinkh 
WIP S . kL' wall SIn 

(G.3.4) 

G = sin k12 
W2P S . kL' wall SIn . 

(G.3.5) 

G = sinkh 
W3P (G.3.6) 

Swall sin kL 
Figure G.5 shows the magnitude and phase of the responses due to external 

pressure excitation, Pext, i.e. Gvp at the position of the IHC (left panels), and 

GW1P ' GW2P and GW3P at the position of the first, II =30 pm, second, l2=50 pm, 

and third, 13=70 pm, row of the OHCs (right panels), as a function of frequency. 

The parameters used in simulations are shown in Table 7.1. 

The internal response GVSj ' relating the fluid particle displacement at the 

IHC site, u(O), to the area displacement s at position of the OHC (Fig.G.3), lj, 

can be evaluated using the expression for the fluid particle displacement for the 

waves propagating in the left-hand side region of the duct from the source, UL(O), 

according to Eq.G.2.21, so that 

U(O) s(lj). 1 sink(L-lj) 
GVSj = s(lj) = - dsinkL smk(L -lj) s(lj) = dsinkL (G.3.7) 

where index j corresponds to the position of the source, that is the OHC position 

along the duct, and while there is only a single position of the output, i.e. u(O) 

(position of the IHC), the response Gus is a [lx3] row vector. Therefore, at a 

single frequency 

(G.3.8) 

where 

G __ sin k (L - h) 
USI - d sin kL ' (G.3.9) 
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Figure G.5: The magnitude and phase of the fluid-elastic model responses due to 

external pressure excitation, Pe:rt, as a function of frequency. Goup (a, c) and GW]P' 

soliel; GW21" dashed; G
'
L'3Pl dotted (b, d), at the first, second and third outer hair 

cell row. 
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G = _ sink(L -l2) 
US2 dsin kL ' 

sin k(L - l3) 
dsin kL 

Appendix G 

(G.3.10) 

(G.3.11) 

Finally, we will derive the responses GW;Sj' being the ratio of the elastic half­

space displacement, Wi, due to the OHC source input, 8j, 

(G.3.12) 

where index i corresponds to the position of the output, I.e. Wl-3, whereas the 

second index, j, to the position of the source, 81-3, so that the response G ws will 

be a [3 x 3] matrix, such that 

(G.3.13) 

~ote that the components on the diagonal of G ws , correspond to the point 

responses, i.e. i= j, and the position of the resulting displacement of the elastic 

half-space coincides with the position of the input area displacement from the 

OHC. In such a case y=li in Eqs.G.2.19-G.2.20, and li=lj so that WL=WR, hence1 

k 
--.-- sin k(L - ll) sin kh, 

S111 kL 

k 
--.-- sin k(L -l2) sin kl2' 

S111 kL 

(G.3.14) 

(G.3.15) 

(G.3.16) 

(G.3.17) 

1T11e pressure at the position of the source is cOlltinuous, so that Jidlj)=pdZj), and thus 

the elastic half-space displacement. being proportional to the pressure (Eq.G.2.14), is also 

continuous, i.e. w£tlj)=wR(lj). 
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For the remaining components of the matrix G ws , i=l- j, and therefore these 

correspond to transfer responses where the displacement of the elastic-half space 

is due to the area displacement from the neighbouring ORCs. Note that the 

appropriate expression for W(li) has to be used, i.e. Wdli) (Eq.G.2.19) or wR(li) 

(Eq.G.2.20), depending on whether the output wall displacement is located in the 

left- or right-hand side region from the source, respectively. Thus, the remaining 

responses of the G ws matrix will take the form 

w(h) wL(ll) k. . 
G W1S2 = -(l ) = -(-)- = --'-k- sm k(L - l2) sm kh, 

5 2 5 l2 sm fi L 

W(l2) wR(l2) k. . 
G W2S1 = -(l ) = (l) = --'-k- sm kh sm k(L - l2), 

5 1 5 1 sm fi L 

k 
-'-k- sin kl2 sin k(L 
sm L 

(G.3.18) 

(G.3.19) 

(G.3.20) 

(G.3.21) 

(G.3.22) 

(G.3.23) 

It can be seen from the above expressions that GWiSj=GWjSi' and hence the 

matrix G ws is symmetric. We gather all the constitutive responses of the feedback 

controller model, proposed for the fluid-elastic wave model, in Table G.l. 

Figure G.6 depicts the magnitude and phase of the frequency responses to 

internal area displacement, 51-3 (y=30 Mm, 50 Mm and 70 Mm, respectively), i.e. 

GUSl) G US2 and G US3 at the IRC (left panel), as well as the point responses GW1Sl' 

G W2S2 and G W3S3 at the corresponding ORC positions, calculated for the para­

meters in Table 7.1. Note that after substituting for h =30 Mm and l2=50 Mm in 

Eqs.G.3.15-G.3.16, G W1S1 is equal to G W2S2 ' which can be seen in Fig.G.6(b). 

The magnitude and phase of the transfer responses G W .iSj for i> j, i.e. G W2S1 ' 

G W3S1 and G W3S2 are shown in Fig.G.7. Note that due to the symmetry of the 
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Figure G.6: The magnitude and phase of the frequency response of the fluid 

particle displacements, GUS1 : l (a, c) due to the area displacement input at the 

first (solid), second (dashed) and the third (dotted) outer hair cell; and the point 

responses G1I'1 8 1 (solid), GW282 (clashed) and G'lJ3 8 3 (dotted) at the first, second 

and third outer hair cell position, respectively (b, d). NB GW151 is equal to GW2S2 ' 
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G ws matrix, GW1S2 , GW1S3 and GW2S3 are equal to GW2S1 ' GW3S1 and GW3S2 ' respec­

tively, and have the same characteristics as the corresponding responses shown 

in Fig.G.7. 

85 

80 

" ' 
75 

,-
70 ------E 

~ 

~ 65 
OJ 
2- 60 "- , , 

3 , 
~ 

55 " , , 
50 " "-
45 "-

" 
40 

0.1 1 10 
f [kHz] 

(a) 

0.1 

0 , 

-0.1 
(j) 
<l) 

TI -0.2 " » 
~ , 

3 -03 " , CJ . , 
'l , 

-0.4 "- , , , , 
-0.5 , , 

" \ 
-0.6 

0.1 1 10 
f [kHz] 

(b) 

Figure G.7: The magnitude and phase of the transfer frequency responses GW2S1 ' 

GW3S ] due to the area displacement at the first outer hair cell and GW3S2 due to 

the area displacement at the second outer hair cell. 
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I RESPONSE I EXPRESSION 

Gup [m3)J 1] 1 
sinkL 

GUSj [nell 1 sin~tLlj) I -J sin kL 

G'IL'iP 
[m~i]'\ ..... l] I sinkli 

S\JJolf sinkL 

-k sin k(Llj ) sin kl j for I, =J sinkL 

G'LViSj 
[m~l] sin k(L~li) sin kl] for Z > J sinkL 

-Ie Sill k(L~lj) sin kl i for z <j sinkL 

Table G.l: Constitutive responses of the feedback controller proposed for the 

active fluid-elastic wave model. 
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