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\iVhen making predictions, analysing incomplete data from a medical trial or drawing 

inference from artificially altered data, one is required to make conditional proba

bility statements concerning unobserved individuals or data. This thesis provides a 

collection of statistical techniques for inference when data is only partially observed. 

An efficient reversible jump I\1arkov chain I\10nte Carlo algorithm for generalised lin

ear models is constructed. This provides a formal framework for Bayesian prediction 

under model uncertainty. The construction of the algorithm is unique, relying on a 

simple and novel reversible jump transformation function. The resulting algorithm 

is easy to implement and requires no 'expert' knowledge. 

An inference framework for multivariate survey data subject to non-response is pro

vided. Deviations from a 'close to ignorable' model are permitted through realistic 

a-priori changes in log-odds ratios. These a-priori deviations encode the prior belief 

that the non-response mechanism is non-ignorable. 

A current disclosure control technique is studied. This technique rounds partially 

observed data prior to release. A Bayesian assessment of this technique is given. This 

requires the construction of a Metropolis-Hastings algorithm, and the algorithms 

irreducibility is proven and discussed. 
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Chapter 1 

Introduction 

1.1 The Problem of Missing Data 

Even in well designed experiments the loss of data is a frequent occurrence. 

In a medical situation a patient may leave a clinical trial for reasons unconnected 

to the treatment received. 

There is frequently non-response in surveys. Personal income may be undisclosed 

by respondents of a household survey, or respondents to a public opinion poll may 

fail to reveal their political affiliation. 

Consider the issue of disclosure control where a statistical agency might release data 

that has been artificially altered to safeguard confidentiality. A table count may be 

rounded, or individual counts omitted prior to the release of the data. The agency 

might even release marginal counts alone, artificially creating missing counts. 

As a final example consider inference from a finite population. Let N individuals 

be characterised by some factor of interest taking values ¢i for i E {I, ... , N}. The 

population might be voters in an election where 1/Ji assumes the value 1 if individual 

i intends to vote for political party X and 0 otherwise. Data typically comprises of n 

individuals from the population and an estimate of the total p = 2:;:1 1fJi is required. 

Inference for p is achieved through the posterior distribution 7T(pl1fJ1 , ... , 1fJn). Since 
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the posterior expectation of p conditional on observing 

datal/Jl, ... , 1/Jn is given by 

n 

lG'[ Ii 1 ~ Ji:'..p1fJl,···,1fJnj = ~ 
N 

+L 
where the expectation is with respect to the posterior predictive density. Hence 

inference about p involves making conditional probability statements about the N -n 

unobserved s. 

\\Then making predictions, analysing incomplete data from a medical trial or drawing 

inference from artificially altered data, one is required to make conditional proba

bility statements concerning unobserved individuals or data. 

1.2 Aims and Outlines of the Thesis 

The aim of this thesis is to provide a collection of statistical techniques for inference 

when data is only partially observed. 

Some specific objectives are as follows. 

• Construct an efficient reversible jump ~1arkov chain ~10nte Carlo algorithm 

for generalised linear models. 

It Provide an inference frame"work for multivariate survey data subject to non-

response. 

• Provide a Bayesian assessment of rounding based disclosure control. 

The structure of this thesis is as follows. 

Chapter 2 provides an introduction to Bayesian statistics, missing data analysis and 

~larkov chain .Monte Carlo methods. The role of Chapter 2 is to provide a general 

overview of these subjects, and to introduce the concepts used throughout the thesis. 
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The construction of an efficient reversible jump l\1arkov chain l\10nte Carlo algo

rithms for generalised linear models is the focus of Chapter 3. A novel reversible 

jump transformation function is introduced and applied in numerous examples. 

Inference for survey data subject to non-response forms the basis of Chapter 4. An 

attempt to discriminate between non-response models is conducted using methods 

developed in Chapter 3. Uncertainty about ignorability of non-response is incorpo

rated by introducing sensitivity parameters into log-linear models. 

Statistical disclosure control is discussed in Chapter 5. A current disclosure limi

tation technique is extensively examined. A l\1arkov chain is required to assess the 

technique and a proof of irreducibility is given and discussed. 

The conclusions of this thesis are given in Chapter 6, and recommendations for 

future work are suggested. 
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Chapter 2 

Literature Review 

::\1aking inference is the fundamental problem of statistics. Having observed data we 

wish to make statements, or inferences, about unknown features of the data gener

ating process. This problem has received considerable attention since the rigorous 

study of statistical and probability theory began. Many different Theories of In

ference have been proposed often with considerable controversy and criticism. One 

theory is that of Bayesian Inference. 

2.1 Bayesian Inference 

Interest in Bayesian inference has grmvn substantially in recent years. This growth 

is due, in no small part, to recent advances in computational statistics and the 

ubiquity of fast computing machines. These advances have enabled the fitting of 

complex models with relative ease and minimal computational expense. That said, 

a valid explanation for the growth is that the Bayesian approach is fundamentally 

sound, and enables a researcher to produce clear and direct inferences making full 

use of all available information. 

From a Bayesian perspective observables and parameters of the statistical model are 

both considered random quantities. Denote y the observed data and let () denote 
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parameters of the statistical model. Then formal inference is concerned with the 

joint probability distribution f(y,8). This joint probability distribution can be 

factorised as follows 

f(y,8) = f(y[8)f(8). (2.1 ) 

The joint distribution comprises of tvv'O distinct parts: A prior distribution for the 

model parameters denoted f(8), and a likelihood f(y[8). Prior to observing any 

data full probability statements about 8 can be made through the prior distribution 

f (8). The likelihood function is regarded as a function of 8 fixed for the observed 

data y. Subjectively f(y[8) measures our belief in the data taking certain values 

given hypothetical values of 8. It is our subjective view about the data generating 

process. 

2.1.1 Bayes Theoren1 

Having observed data y, Bayes theorem is used to determine the posterior distribu

tion of 8. Bayes theorem in its continuous form is given below: 

8 _ f(y[8)f(8) 
f( [y) - J f(y[8)f(8)d8 

f(y[8)f(8) 
f(y) 

(2.2) 

The integral in the denominator is over the parameter space of 8 denoted 8. The 

posterior distribution f(8[y) encapsulates all that is known about 8 in light of 

observed data and other available prior information. Note that, in (2.2), the de

nominator f (y) does not depend upon 8 and so acts as a constant ensuring that 

J f(8[y)d8 = 1. 

As a result Bayes theorem is frequently written as follows: 

f(8[y) ex: f(y[8)f(8). (2.3) 
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In words we state 'the posterior distribution is proportional to the likelihood multi

plied by the prior distribution', 

It is clear how the two information sources are combined together to form the pos

terior distribution, The information we have concerning 8 has been updated from 

prior to posterior using the data, Full probability statements about 8 are now made 

through the distribution J(8Iy), 

Having calculated the posterior distribution we wish to make inferential statements 

concerning the conditional density of 8 given y, This is often straightforward as 

many features of the posterior distribution, such as moments or probabilities, can 

be expressed in terms of posterior expectations of functions of 8, The posterior 

expectation of a function g( 8) is given as follows 

E[ (8)1 ] = J g(8)J(yI8)J(8)d8 
9 Y J J(yI8)J(8)d8 

(2.4) 

If g(8) = 8 then lE[g(8)ly] = E[8IY] is simply the posterior mean, These expecta-

tions are an essential summary of the inference process, 

2.1.2 Posterior Inference 

Informal summaries of the posterior distribution can provide clear and meaningful 

answers to questions of interest. Initially we might plot the posterior distribution, 

but in many cases this fails to convey information in a useful form. This is particu

larly true if 8 is of high dimensions and only margins of 8 can be plotted. 

Quantitative summaries of the posterior, such as a measure of location or dispersion 

are useful. Point estimates of these measures are often given. The posterior mean 

given in (2.4), for example, is sometimes used as an estimate of the measure of 

location. 

\Ve can readily construct informal probability intervals from the posterior distribu-
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tion. For example a 95% credible interval for 8 is constructed by calculating the 

real values a and b such that P(8 < aly) = 0.025 and P(8 > bly) = 0.025. 

An informal hypothesis test that 8 lies in some region R, would be to calculate the 

probability that 8 E R given the observed data y. This is often an easy calculation 

if the posterior density for 8 is known. 

However, formal 'Bayesian inference' is concerned with deriving optimal probability 

statements from the posterior distribution. Using the posterior mean as an estimate 

of 8 is optimal in the sense that it minimises the expected squared error (where the 

expectation is taken with respect to the posterior distribution of 8). This is seen 

below 

JE[d2 IY] 2dJE[8IY] + JE[8 2 IY] 

(d - E[8Iy])2 vGr(8Iy). 

Since the above equation is a quadratic and var ( 8 I y) :2: 0 it is clearly minimised at 

d = E[8Iy]. 

Alternative error functions vwuld result in different estimates for 8. If absolute error 

Id - 81 is used the resulting estimate of 8 is the posterior median. In this framework 

the error function is vie·wed as a loss function. This loss function is a measure of how 

good or bad the estimate d of 8 is deemed to be if the true value of 8 is known. It is 

a random variable and allovv·s a decision to be made that maximises the subjective 

expected utility. 

Formal inferences can also take the form of intervals for 8. Here a loss function will 

penalise an interval if it fails to contain the true underlying value of 8, or if this 

interval is large. In practice, we fix the probability of the interval containing 8 and 

then find the smallest of all these intervals. I.e. the smallest interval given by 
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I = {8 : f(8IY) > c}, 

where c is chosen such that the interval satisfies the desired probability. This interval 

is called the highest posterior density interval, and may be a differ from the informal 

credible interval. 

vVe have now described all key elements to Bayesian inference. In summary, the first 

step it to describe the data generating process. That is 

1. Obtain the likelihood function f(YI8). 

2. Obtain the prior density f(8). \Vhat do we know about 8 prior to observing 

y? 

3. Apply Bayes' theorem in either its discrete or continuous form to obtain the 

posterior distribution f(8Iy). 

4. Derive appropriate inference statements either informally or formally. These 

statements often involve the calculation of an expectation with respect to 

posterior distribution. 

2.1.3 The Prior Distribution 

In order to assign a probability distribution to parameters we need to adopt a 

subjective interpretation of probability. According to this definition, probability is 

represented as a personal degree of belief. This has attracted considerable criticism 

from opponents of Bayesian statistics. These antagonists view science as objective 

with no room for individual opinion, and probability as logical. The prior distl'i

bution, often formulated using expert opinion or past data, suffers the full force of 

these critiques. 1\1any argue that two experts with identical prior information may 

formulate entirely different prior distributions in shape and form and that this may 
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lead to contradicting posterior distributions. A Bayesian would argue that if the 

data are strong and the prior is constructed on reasonable grounds this element of 

personal opinion will not matter, and inferences will be robust to slight differences 

in prior formulation. \iVhat is clear is that prior information exists and is often 

extremely useful. 

In the past prior distributions have often been chosen for their convenience and 

to facilitate the calculation of the posterior distribution. Suppose that data yare 

observed with likelihood given by J(yI8). Then a family of prior distributions F for 

8 is conjugate with respect to the likelihood if the posterior J(8Iy) ex J(yI8)J(8) 

is also a member of F. Since the family F is generally well known and understood 

posterior summaries can be easily evaluated. This might not have been the case had 

we selected J(8) from an alternative family of distributions. 

2.1.3.1 Informative Prior Distributions 

\Vhen there is genuine prior information available this needs to be formulated in 

terms of a prior density function for 8. This is not straightforward to do. If the 

prior information is the opinion of an expert it generally does not take the form of a 

complete density function J(8). In practice we specify values that explain important 

features of the prior information, such as a measure of location and spread, then 

simple choose a convenient and practical J (8) that has these properties. Since 

interpretations of the same prior information may differ the process is imperfect. 

\Ve should therefore perform sensitivity analyses to determine if posterior inferences 

are supported unequivocally by the evidence. A comprehensive discussion on the 

formulation of informative prior distributions can be found in Chapter 6 of O'Hagan 

and Forster (2004). 
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2.1.3.2 Non-Informative Prior Distributions 

As we have seen, the specification of the prior distribution plays an important role in 

the inference process. \Ve often have weak, or in many cases no, prior information 

for e. To specify a prior that represents no information, we often assume what 

is called a 'flat' or 'uniform' prior for e. I.e. we assume f(e) to be a constant. 

Essentially we let f(e) ex 1 implying f(ely) ex f(yle). This solution cannot be 

applied consistently. If we are completely ignorant about e then it is plausible to 

assume we are also ignorant about any function of e. In general a uniform prior for 

e translates to a non-uniform prior for any function of e. Jeffreys (1967) proposed 

a solution to this problem, but this has been criticised because features of the data 

which are not encoded on the likelihood can impact the posterior, hence violating 

the so called likelihood principle 

Furthermore, there may be no proper prior distribution with f (e) ex 1. This usually 

leads to a proper posterior if sufficient data are available. 

In general we have to be very careful when using non-informative prior distributions. 

2.1.4 Improper Prior Distributions and Lindley's Paradox 

Lindley's paradox is best illustrated through an example. \Ve consider the example 

presented in O'Hagan and Forster (2004). Let data y rv N(JL, 0"2). Suppose there is 

some prior probability p that JL = O. If JL 1= 0 then there is little prior information 

for how close to zero JL might be. \Ve represent this information by saying that if 

JL 1= 0 then JL rv N(O, w2
). The prior distribution for JL is therefore mixed. ,Ve now 

consider the posterior probability that JL = O. Using Bayes theorem is easily seen 

that: 

P(JL = Oly) = pf(YIJL = 0) 
pf(YIJL = 0) + (1 - p)f(YIJL 1= 0) 
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Now 

f(YIJ1 i 0) J f(J1IJ1 i O)f(ylJ1)dJ1 

J (21W2)-1/2(2JiW2) -1/2 exp( _{J12 / (2W2)} {(y - J1)2/ (2(J2)) )dJ1 

2 
- (2 (2 ,2))-1/2 ( -y ) 
-Ji (J + W exp (') 2). 

2 (J- + W 

Therefore f(YIJ1 i 0) ---) 0 as W ---) 00. Hence f(y) ---) pf(YIJ1 = 0) and P(J1 = Oly) ---) 

1 regardless of the observed data y. This result is known as Lindley's paradox and 

is not specific to this particular example. The same issue will arise when, in a given 

model, the prior distribution for the model parameters is improper over any part of 

the parameter space. Further examples of this paradox are gi,"en in this thesis. 

2.1.5 SUll1.lUary 

There has been considerable criticism regarding the subjective treatment of prob

ability required for a complete and full Bayesian analysis. In spite of this, interest 

in Bayesian inference has grown considerably. As we have seen Bayesian inference 

makes full use of all data and prior information where available. The main critique 

of the approach is the specification of a prior distribution. On one hand, it is pos

sible to create a prior distribution that overwhelms any data. This follows directly 

from (2.3), since if f(8 0 ) = 1 for some 80 and zero otherwise, then f(8IY) = 1 for 

8 = 80 regardless of any observed data. On the other hand, if an improper prior 

distribution is assumed for 8 then inference is based solely upon the data. In prac

tice we should therefore treat prior information as approximate and determine how 

sensitive posterior inferences are to realistic changes in these prior judgements. 

Comparisons between the various methods of inference have, and will, be frequently 

drawn. These comparisons generally compare sampling properties under Bayesian 

and classical inference. For example the Likelihood Principle states that inference 
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should be based only upon the likelihood. Consider possible observations denoted 

x and y arising from two different experiments X and Y. If f(xI8) DC f(yI8), 

then the likelihood principle states that we should make the same inference having 

observed x as \ve would having observed y. Clearly Bayesian inference satisfies the 

likelihood principle. This cannot be said of classical inference. 

For a detailed discussion see O'Hagan and Forster (2004). For an historical and theo

retical grounding in statistical inference that considers Bayesian, fiducial, likelihood, 

and frequentist approaches the reader is referred to 'Welsh (1996). 

2.2 Bayesian Model Determination 

2.2.1 Posterior Model Probabilities and the Bayes Factor 

Suppose that data y is believed to have been generated by model m from a set cU 

of plausible models. Each model specifies completely the distribution of Y, namely 

f(ylm, 8m ), where 8m is an unknown vector assumed to be in some parameter space 

8 m . "\iVe assume that 8 m C , where Pm is the dimension of 8 m . Under a Bayesian 

approach we are interested in the joint uncertainty of 

(m,8m ) E 8 = U ({m} x 8 m ), (2.5) 
mEJ'vl 

m light of the observed data y. This uncertainty is captured by the posterior 

distribution f(m, 8m IY), and is given by Bayes theorem as folluws 

(2.6) 

Here f(m,8m ) (= f(8m lm)f(m)) represents our belief in (m,8m ) prior to having 

observed y. The model specific prior distribution of 8m (conditional on m) is denoted 

f(8m lm), whilst f(m) is the prior probability that model m generated the data. vVe 
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are interested in the posterior model probabilities. These are given by 

where 

f(m)f(ylm) 
f(mly) = LkEM f(k)f(ylk) ' (2.7) 

f(ylm) = fem f(y, Ornlm)dOrn = 1m f(ylm, Orn)f(Ornlm)dOrn (2.8) 

is the marginal likelihood of y given model m. To compare model m to model m.' 

we calculate the Bayes factor in favour of model m denoted 

If we note 

f(Ylm) 
8 rn.rn! = f(ylm')' 

f(mly) 
f(m'ly) 

f(ylm) f(1T~) 

f(ylm') f(m') , 

it is easily seen that the Bayes factor is the ratio of posterior to prior odds. 

2.2.2 Prediction 

(2.9) 

An important goal in the inference process is prediction. Given observed data y 

we wish to predict future replicates of this data. \Ve denote these replicates Yf. A 

Bayesian approach to prediction vmuld often involve averaging predictions over dif

ferent models, requiring a method that accounts for model uncertainty. Let f (y fly) 

denote the model average distribution of the future prediction given the observed 

data y. This is given by 

L i f(Yf, m, Ornly)dOrn 
rnEM 8 m 

L i f(Yfl m , Om, y)f(Ornl m , y)f(mly)dOrn . 
rnE"~1 8 m 

If we assume that future and past data are conditionally independent given (m, Om) 

then 
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~1 fem f(Yfl m, 8m )f(8m lm, y)f(mly)d8m 

L f(mIY) r f(Yflm, 8m )f(8m lm, y)d8m : 

mEM J8m 

L f(mly)f(Yflm, Y), 
mEM 

(2.10) 

Where f(mIY) is given by (2.7). Averaging over all models in this fashion provides 

better predictive ability (measured by the logarithmic scoring rule) than any single 

model; i.e. 

E [lOg L f(mly)f(Yflm, y)] ~ E [log f(Yflk, y)] \;/k E _M, 
mEM 

where the expectation is with respect to the posterior predictive distribution. This 

is true by the non-negativity of the Kullback-Leibler distance (Jensen's inequality). 

2.2.3 The Need for Markov Chain Monte Carlo 

Posterior quantities of interest and predictive densities ((2.7), (2.9) and (2.10) re

spectively) require the evaluation of (2.8) for each model in our class of models "~1. 

This marginal likelihood is tractable in certain restricted situations only. Even if the 

marginal likelihood were tractable the size of most interesting model classes renders 

the exhaustive summation of (2.7) impractical. Thus, the resulting joint posterior 

distributions (2.6) cannot, in general, be calculated analytically. 

Various ad-hoc methods to approximate posterior model probabilities have been 

proposed. For example, if we assume each model to be a-priori equally likely then 

the posterior density is proportional to 
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If this density is highly peaked about its posterior mode, Om, we can expand 

10g(J(Ylm, Om)) as a quadratic about em as follo-ws 

"There Lm = f(ylm, em), f:- 1 is the observed information matrix and em is the 

maximum likelihood estimate of Om under model m. R is the remainder term in

volving third order and higher derivatives. Ignoring this remainder we exponentiate 

and integrate over the uncertainty of 0 yielding the Laplace approximation 

r f(yl1TL, Om)f(Omlm)dOm ~ n-p
/

2 (271)P/2 1f:11/2 Lmf(emlm). J8m (2.11) 

As an aside, note another example of Lindley's paradox occurs when comparing 

two nested models (m nested within m') using the Laplace approximation. Since 

f(emlm) appears in (2.11) the ratio 

n -p/2(271 )P/2IfI1/2 Lmf( em 1m) 

n -p' /2(271 )p' /212:1 1/2 Lm' f( O~ 1m') 

can be made arbitrarily large by choosing a suitable diffuse prior for (O~lm'). 

Clearly 

( 
f(Ylm)) Lm 

-210g f( I ') ~ -210g - + (Pm - Pm') log(n), 
Y 771 Lm' 

(2.12) 

which is known as the Bayes information criterion (BIC). Clearly this is an adjust

ment of the classical likelihood ratio to favour more strongly the model with fewer 

parameters. The Sclr,vartz criterion is given by 

log Lm - (1/2) (Pm - Pmt)log(n) 
L m , 

and can be thought of as approximation to the log of the Bayes factor. 

The approximation (2.11) must be made for all models in the set 111. If this set is 

large then the exhaustive summation in (2.7) will be computationally expensive. To 
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overcome this problem, I\ladigan and Raftery (1994) proposed averaging over a much 

smaller set of models using the principle of Occam's razor. Models are excluded from 

this set if they receive less support from the data than any simpler nested model. 

I\ladigan and Raftery (1994) provide a search algorithm for the construction of this 

set. This approach is again an ad-hoc solution to the problem in hand. 

I\lore recently I\larkov chains have been used to generate a sample from the posterior 

distribution f(8 m , mIY), and Monte Carlo samples generated by the Markov chain 

then used for posterior inference about the uncertainty of (8m , m). In the following 

section we introduce a method based on the reversible jump Markov chain Monte 

Carlo approach of Green (1995) for exploring this posterior model space. Alterna

tive Markov chain based methods for exploring model uncertainty exist and have 

been discussed in the statistical literature. For example Carlin and Chib (1995) 

introduced a method, based on the Gibbs sampler, to generate from the posterior 

distribution f( 8 m , mIY). Although computationally expensive, Dellaportas et al. 

(2002) showed a 'Metropolised' inexpensive version of the scheme 'was in fact a spe

cial case of the reversible jump algorithm. Other Markov chain based methods for 

exploring posterior model uncertainty can be found in Swendsen and YVang (1987), 

George and McCulloch (1993), Raftery et al. (1997), Damien et al. (1999), Nott and 

Green (2004) and Nott and Leonte (2004). For a review on Bayesian model selection 

using MCI\fC the reader is referred to Dellaportas et al. (2002). 

2.3 Markov Chain Monte Carlo Methods 

The importance of statistical models has long been recognised in many disciplines 

of science. These methods have contributed to a greater understanding of scientific 

problems which, in turn, has spurred research into new and improved statistical 

models. For many scientists the statistical conclusion is of greater importance than 

the statistical tools that helped them reach this end. There is therefore a great need 
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for powerful and flexible inferential techniques that can easily be used by scientists. 

Throughout this section we denote by 7i the statistical distribution which is of inter

est to the scientist. The distribution 7i may well be the posterior distribution f(ely) 

given in the previous section but it is not limited to solely this case. Therefore 'if 

denotes any target distribution of interest. 

I\1any problems resulting from the application of statistical models can be formed 

in terms of an integral containing the distribution 7i, where 7i is defined on a general 

state space which we denote X. Elements of X are denoted x. For example, the 

expectation of some real valued function his given by 

lE[h(x)] = L h(x)7i(dx). 

Further examples were provided in the previous section. These examples included 

the calculation of the constant of proportionality and the integration of a joint 

posterior distribution to obtain a marginal distribution. It is often the case that the 

explicit calculation of such integrals is not possible. Markov chain Monte Carlo, or 

MCI\1C, is a collection of computer intensive algorithms that permit the approximate 

computation of integrals that are analytically intractable. In this section we present 

some of the most common algorithms and discuss recent developments. 

Vie adopt a measure theoretic notation. This notation is essential to establish the 

validity of the methods presented. However, less formal explanations, discussion and 

practical examples of the method will be presented in later chapters. In following 

the notation of Green (1995) and Green (2003) one can cast the problem of I\ICI\lC 

outside of the Bayesian paradigm and provide a general description of MCl\IC. 

Throughout, we have assumed the reader is familiar ~with the notions of irreducibil

ity, aperiodicity, Harris recurrence, time homogeneity and invariance distributions. 

Further discussion of these issues will be provided when necessary. The reader 

is referred to Gamerman (1997) and Norris (1997) for reasonable introductions to 
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:r\IC:-,IC and :r..larkov chains respectively. 

The challenge behind MCMC is to construct an irreducible, aperiodic, Harris recur

rent, time homogenous Markov chain with one step transition kernel P that has 71, 

the distribution of interest, as its invariant distribution. The observations or iterates 

of this Markov chain are denoted Xl, x 2 , ... throughout this section. For any well 

behaved function h the ergodic theorem states that 

(2.13) 

Essentially, if we could construct a I'Ilarkov Chain which has our target distribution 

as its invariant distribution, then integrals listed above can be approximated using 

I\fonte Carlo awrages based on realisations of the Markov Chain. Clearly if we could 

sample directly from 71 then there is no need to construct the Markov Chain. The 

Monte Carlo approach still applies. 

The theory behind the most popular )\·fCMC algorithms was developed in the mid

dle half of the twentieth century C~letropolis et al. (1953), Hastings (1970) and 

Peskun (1973)). However it has not be until the last few years that the potential 

of the method has been realised. This can certainly be attributed to the ubiquity 

of fast computing machines. The increase in availability of computers and the the

oretical developments of the algorithms has enabled many statistical researchers to 

",;ork within the Bayes paradigm. The grmvth of theoretical and applied research 

of MCrvlC techniques has mimicked the growth in popularity of Bayesian statistics. 

For this reason the application of ~IC:-,!IC is almost ahvays linked with Bayesian 

statistics, but this is not its sole use. In fact, the practical application of :-,!IC:r\IC 

spans most areas of scientific research, and indeed its roots are not found in the 

Bayesian field. 
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In the following sections we discuss the two most popular algorithms. These are the 

Gibbs sampler and the 'well known ~1etropolis-Hastings algorithm. The Metropolis

Hastings algorithm is introduced in a general setting permitting the discussion of 

the reversible jump algorithm, an exciting technique used throughout the thesis. 

The presentation of the Gibbs sampler is brief. Although it is an important infer

ential tooL methodological developments presented within this thesis refer to the 

Metropolis-Hastings algorithm. Accordingly, references for further reading are pro-

vided. 

2.3.1 The Gibbs SalTIpler 

The Gibbs sampler originated in the field of image analysis, where researchers were 

required to sample from a Gibbs distribution. It assumes that 7i is n-dimensional 

distribution of interest and that is possible to sample from the full conditionals of 7i. 

Suppose x = (Xl, ... , xn) E Rn and that for each i it is possible to sample from the full 

conditional7i(xilx(i)). Here x(i) denotes the vector x with the i'th element removed. 

The (systematic s'weep) Gibbs sampler then moves from xt to xt+1 updating each Xi 

in turn by sampling from the conditional distribution 7i( .lxi+1
, ... , ;r:t~i, :r:1+1' ... , x~). 

Although each component update is reversible as a whole, due to the nature of the 

systematic sweep, the Gibbs sampler is not reversible (A discussion of reversible 

~larkov chains is provided in the following section). 

\Vith little additional vwrk it is possible to construct a reversible Gibbs sampler. 

The sampler is known is the random scan. The (random scan) Gibbs sampler moves 

from xt to xt+1 by randomly sampling if E {I, ... , n} and sampling from the full 

d·· 1 d' ,'b' ( I· t t ,t ,t ) con 1tlOna 1St11 utlOn7i. x 1"",X i '-1,X i '+1""'Xn , 

Further details of the Gibbs sampler can be found in Gelfand and Smith (1990) and 

Gamerman (1997), including the proof that 7i is indeed the stationary distribution. 
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2.3.2 The Reversible Jum.p and Metropolis-Hastings Algo

ritllllls 

In this section we introduce the reversible jump algorithm and the 11etropolis

Hastings algorithm. vVe follow closely the work presented in Green (1995) and 

Green (2003) 

Consider a general state space X and suppose we are interested in some distribution 

11 that is defined on X. \Ve are interested in constructing a Markov chain ·with one 

step transition P that has 11 as its invariant distribution. For 11 to be the invariant 

distribution of the Markov chain the following equation must hold 

L 1I(dx)P(x, dx') = 1I(dx'). (2.14) 

\\Te make the further requirement that the resulting Markov chain is reversible. In 

particular we require that for all Borel sets B, B' eX, 

r 1I(dx)P(x, dx') = r 1I(dx')P(x', dx). 
J(X,XI)EBXBI J(X,XI)EBXBI 

(2.15) 

The above equation is known as the integrated detailed balance equation. The 

~letropolis-Hastings algorithm and the reversible jump algorithm proceed by propos

ing a new state x' from a proposal measure q(x, dx') and accepting the new state 

with probability a:(x, x'). Otherwise the old state x becomes the new state. 

If we directly consider the transition kernel P(x, B') we note that 

P(x, B') = r q(x, dx')a:(x, x') + R(x)l{xEBI}, 
JB' 

(2.16) 

where In is the indicator function and R( x) is the probability the proposed move 

is rejected. This probability is given by 

R(x) = L q(x, dx')(1 - a:(x, x')). (2.17) 
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If we now substitute (2.16) into (2.15) yields 

r 7r(dx) r q(x, dx')a(x, x') + r 7r(dx)R(x) 
JB JBI JBnB' 

= r 7r(dx') r q(x/, dx)a(x', x) + r 7r(dx')R(x'). (2.18) 
JBI JB JB'nB 

The last terms on either side cancel. Hence (2.18) can be written as 

1 7r(dx)q(x, dx')a(x, x') = 1 7r(dx')q(x', dx)a(x', x). (2.19) 
(X,X')EBxB' (X.X')EBxB' 

This equation is given in Green (2003). Green (1995) considers the case where 

the transition kernel is a mixture over a number of different move types. vVhen the 

current state is x, a move of type j that would take the state to dx' is proposed with 

probability qj(x, dx'). Greens formulation allows the possibility of no move being 

attempted. He also notes that not all moves j will be available from all starting 

states x. 

Green shows that a sufficient condition for the reversibility of such an algorithm is 

that given in (2.19) but for each qj(x, dx'). That is, Green restricts his attention to 

Markov chains in which detailed balance is attained within each move type. 

Green then assumes the existence of a symmetric measure ft on X x X which dom

inates 7r(dx)q(x, dx'). Under this assumption 7r(dx)q(x, dx') has density denoted 

f(x, x') with respect to ft. In fact f(x, x') is known as the Radon-Nikodym deriva

tive. This means that (2.19) can now be written as 

1 a(x, x')f(x, x')ft(dx, dx') = 1 a(x', x)f(x', x)ft(dx', dx). 
(X.X')EBxB' (X,X')EBxB' 

(2.20) 

Noting that (2.20) holds provided that 
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a(x, x')f(x, X') = a(x', x)f(x' , x), 

which is satisfied for all Borel sets Band B' if 

sll1ce 

( ') f(x' , x) 
a x,x = f(x, x') 1\ 1 

a(x, x')f(x, x') { 
f ( x'. x) } ( ') 
f(x,'x' ) 1\ 1 f x, X 

f(x' , x) 1\ f(x, x') 

f( I ) f(x, x') (' ) 
, x, x 1\ f (x', x) f x , x 

{ 
f(x,XI)} (' ) 

1 1\ f ( x', x) f x , x 

a(x', x)f(x' , x) 

(2.21) 

(2.22) 

(2.23) 

As Green notes, if \ve express this ratio less formally then the expression can be 

written as the ratio of measures given by 

( 
') 7I(dx l )q(X' , dx) 

a x. x = 1\ 1 
. 7I(dx)q(x,dx' ) 

(2.24) 

Almost all authors note the abstract nature of the above formulation. However, the 

formulation presented above encompasses both the :0.1etropolis-Hastings algorithm 

and the reversible jump algorithm. Indeed, a possible move type considered by 

Green is simply a 'standard' Metropolis-Hastings update. 

\Ve follow closely the arguments presented by Green (2003) and provide a construc

tive representation in terms of random number generation. Initially we assume that 

;t' c IRP and that 71, our distribution of interest, has a density with respect to the 
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d dimensional Lebesgue measure. In an abuse of notation this density will also be 

denoted by 11. 

To propose a move from x E IR;.d to x' E IR;.d we firstly generate r random numbers 

denoted by U from a distribution with known density denoted by g. The proposed 

state is now given by x', where x' = t(x, u) where t is some known deterministic 

function. The left hand side of (2.20) can now be written as an integral with respect 

to (x, u) as 

1 II(X)g(U)O:(X, x')dxdu. 
(X.X')EBxB' 

The reverse move is made in a similar fashion so that x = t'(x', u'), where u' are 

r' random numbers generated from a distribution with density g'. The right hand 

side of (2.20) can now be written as an integral 'with respect to (x', u') as 

1 II(X')g'(u')o:(x', x)dx'du'. 
(X.X')EBxB' 

If the transformation from (x, u) to (x', u') is invertible and differentiable (implying 

that r = r') then (2.20) holds if 

II(X)g(U)O:(X, x') = II(X')g'(u')o:(x', x) j ~(~: ~/ j , (2.25) 

where the last term on the right hand side is the Jacobian of the transformation 

from (x, u) to (x', u'). Therefore a suitable and optimal choice for o:(x, x') is given 

by 

0: ( x, x ) = --'-:-':-"--:'-,.:-, lI(x')g'(u') jd(X"U')j 
. lI(x)g(u) d(x, u) 

(2.26) 

This is the well known ~fetropolis-Hastings algorithm. The Jacobian arises from the 

specification of x' and u' in terms of x and u. It is often the case that the proposal 

has been designed in such a way that the Jacobian factor is equal to 1. 
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Suppose now that we assume our state space X is no longer a subset of ]Rd but in 

fact a countable union of spaces with possibly different dimensions 

Clearly 71, the distribution of interest, no longer has a density with respect to the d 

dimensional Lebesgue measure. However we assume that for each k, 71 has a density 

over X k with respect to a dk dimensional Lebesgue measure. \Ve denote this density 

by 7I(x) whatever the dimension of x E X. The reversible jump algorithm then 

proceed as follows. 

To propose a move from x E Xk to x' E X k , we generate r random numbers denoted 

by u. from a distribution with known density denoted by g. The proposed state 

is now given by x', where x' = t(x, u) and where t : ]Rd X ]Rr -----t ]Rd' is some 

known deterministic function. The reverse move is constructed in a similar fashion. 

\Ve generate r' random numbers denoted by u' from a distribution with knovm 

density denoted by g'. The proposed state is now given by x, where x = t'(x', u') 

and t' : ]Rd' X ]Rr' -----t ]Rd. Provided that the transformation from (x, u) to (x', u') 

remains differentiable and invertible then the acceptance probability given in (2.26) 

still satisfies (2.20). For this transformation and its inverse to remain differentiable 

we need the following relationship to hold 

d + r = d' + r'. 

This equation is often referred to as the dimension matching constraints. Note the 

I\fetropolis-Hastings algorithm satisfies these constraints if and only if r = r'. It is 

worth noting that not only is this acceptance optimal, in the sense of minimising 

the autocorrelation of the I\1arkov chain, it is also such that we need only know 

the density 7I( x) up to a constant of proportionality, since 71 appears in both the 

numerator and denominator of (2.26). 
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Throughout this section we have assumed that the integrated detailed balance equa

tions are satisfied. The resulting Markov chain is therefore reversible. This assump

tion is not essential and work presented by Neal (2004) advocated the use of non 

reversible chains. We have also assumed the chain to be irreducible and aperiodic. 

These two conditions need to be verified in practical situations. 

In Chapter 3 we introduce the reversible jump algorithm without the direct con

sideration of measure. The method is demonstrated in the context of a general 

problem requiring jumps between models and is similar to the approaches taken by 

Dellaportas et al. (2002) or Ehlers and Brooks (2002). 

In the following section we discuss recent methodological developments of the re

versible jump algorithm. \Ve also provide a brief discussion of the problems to which 

reversible jump can be applied. 

2.3.3 Methodological Developlnents for Reversible Jun1.p Al

gorithm 

The statistical problems to which reversible jump can be applied are numerous . 

. tvfost applications involve the problem of Bayesian model choice or selection, where 

reversible jump provides a method of making combined inference about parameters 

(m, em) (71 then denotes the posterior model probability given by (2.7)). Examples 

of this application include Brooks et al. (2003), Dellaportas and Forster (1999) and 

Dellaportas et al. (2002). We provide a further example of the model jumping 

application in Chapter 3. 

Other applications include Bayesian analysis of a Poisson process with change points 

Green (1995), image analysis AI-Awadhi et al. (2004) and mixture models Richard

son and Green (1997). 
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Regardless of the application, almost all researchers have noted the difficulties of 

applying the reversible jump to practical situations. The difficulties incurred are 

almost always due to the construction of suitable proposal distributions for u and 

transformation functions t. The choice of these two components greatly effect the 

efficiency of the resulting chain. Inefficient proposals can lead to low acceptance 

probabilities and therefore poor mixing of the resulting Markov chain. This poor 

mixing in turn leads to slow convergence and therefore a greater numbers of iterates 

must be generated in order to make reasonable inference concerning the parameters 

of interest. Even with the ubiquity of fast computing machines this can be a burden. 

Standard methods of creating an efficient algorithm concern tuning. Here short 

runs (pilot runs) of the Markov chain are performed, each time some aspect of the 

proposal distribution is altered. For example one might alter the centring or scaling 

of the proposal distribution. One might consider a variety of blocking updates or 

reparameterisations. A final chain is then run using the information gathered from 

these pilot runs. 

This approach should be effective for simple problems. However, as the problems 

become more difficult the approach can be computationally expensive as a vast num

ber of pilot runs have to be performed. For example, the case of the reversible jump 

algorithm applied to the problem of Bayesian model determination might require 

pilot runs to be performed in order to obtain proposal distributions when consider

ing a move between two models. Since the number of models under consideration 

could be large this might be infeasible. 

A further difficulty encountered when applying the reversible jump algorithm is in 

determining the convergence of the :\1arkov chain. If we wish to make inference 

concerning some distribution 7f the we need to be assured that the l\1arkov chain 
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is indeed at the distribution 71. The difficulties in determining convergence arise 

because of the generality of the state space X. As there is no concept of closeness it 

is not possible to extend the vl'Ork of Roberts et al. (1997) or Roberts and Rosenthal 

(1998). A further reason why it is difficult to assess convergence is simply the 

vastness of the space we intend to explore and difficulties arise in assessing the 

convergence of the algorithm in parts of the space that are rarely explored. In 

practice, graphical techniques together with a variety of statistics are used to draw 

sensible conclusions. For example, we might include trace and autocorrelation plots 

together with standard errors of parameters estimates and acceptance probabilities 

of proposed moves. 

Perhaps the most important recent development of the reversible jump algorithm is 

the work of Brooks et al. (2003). This work aims to provide methods for selecting 

good choices for the parameters of the proposal densities g. The work assumes a 

known fixed transformation function t. 

Brooks et al. (2003) introduce two classes of methods and we summarise each in 

turn. 

The first class of methods are termed order methods. These methods proceed by 

analysing the acceptance probability of the proposed move which, following their 

notation, \ve denote by A(x, x'). The idea is that for the current state of the chain 

x = (m, em) it is possible to specify a centring point c( em) in a proposed new 

model m'. The authors provide methods for choosing this centring point including 

an approach called conditional maximisation. This approach sets c( em) = e":n" 

where e":n, is the value of e~l' that maximises 7I( ml, e~,), conditional on the current 

parameter values em. 

At the chosen centring point the order methods impose constraints on A(x, Xl) and 

its derivatives. Resulting equations are then solved to yield the parameters of 9 
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For example the Ith ordering method imposes the conditions that 

A(x, x')l x '=(m',c(8m )) = 1 

and that 

8j 

8ujA(x, x')l x '=(m',c(8m)) = 0, 

for j = 1, ... , J. The idea is that the acceptance probability is close to 1 at the 

chosen centring point. The higher order methods scale the proposal to maintain 

a high acceptance rate for a range of values. The order methods are appealing 

and numerical results from the practical examples presented in Brooks et a1. (2003) 

encouraging. 

The second class of methods introduced by Brooks et a1. (2003) is called the satu

rated state space approach. The idea here is to introduce auxiliary variables u to 

augment the state space, so that all models have the same dimension. The purpose 

of these auxiliary variables is to aid proposal design. The method uses deterministic 

proposal for the new state 8'm" the new model m' having been chose using a ran

dom kernel. These deterministic proposals are combined with within model updates 

of the variable 8m and auxiliary variables Um. The method seems promising as 

illustrated by the range of practical examples presented in Brooks et a1. (2003). 

A similar approach to the saturated state space approach is the product space ap

proach. Here, auxiliary variables are introduced to augment the state space so that 

a fixed dimensional sample (the l\fetropolis-Hastings algorithm or Gibbs sampler) 

can be used. A particular attraction of this approach is that now the state space is of 

fixed dimension and the density 7T is now with respect to a d dimensional Lebesgue 

measure. It is therefore possible to consider the work of Roberts et a1. (1997) or 
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Roberts and Rosenthal (1998) when assessing the convergence of the Markov chain. 

However, for each model m the method relies on the specification of a distribution, 

which they term a pseudo prior, for the variables that do not contribute directly to 

that particular model. The choice of pseudo priors has a critical effect on the effi

ciency of the resulting chain and we have therefore replaced the problem of selecting 

suitable proposals g \vith the problem of selecting suitable pseudo priors. 

The saturated state space approach and product space approaches introduce auxil

iary variables increasing the computational burden. This is particularly true of the 

product space approach if the number of variables and interactions under consider

ation is large. 

The interested reader is referred to Carlin and Chib (1995), Godsill (2001) and 

Godsill (2003) for additional information. 

Our discussion of recent methodological developments has not included recent work 

focusing on adaptive methods. The work in this thesis can be appreciated without 

direct consideration of such work. For the interested reader we therefore recommend 

Atchade and Rosenthal (2005) and references therein. 

To conclude this section we must note that although promising methodological de

velopments have been made the choice of the deterministic transition function t 

remains a challenging problem. In Chapter 3 we provide a novel transformation 

function for the reversible jump algorithm applicable for model Bayesian model 

determination for generalised linear models. 
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2.4 Statistical Analysis with Missing Data 

The problem of analysing data sets from which observations are missing is common. 

There may be many different reasons for these missing observations, for example 

measurement error or non-response, but the statistical goal remains the same. How 

should one approach inference that accommodates the possible, but unknown, be

haviour of the unobserved data? 

\A/hen analysing missing data the first assumption we make is that missing obser

vations contain meaningful information for analysis. If this were not the case then 

any missing observations could be discarded and the analysis would proceed using 

fully observed data alone. 

This assumption is made throughout this thesis. 

2.4.1 Missing Data Exan1ples 

It is useful to consider the situations where data sets might contain some missing ob

servations. Three such situations are listed below. By no means is this an exhaustive 

list, it merely contains situations discussed at a latter stage of this thesis. 

2.4.1.1 Non-Response in Surveys 

Consider what might happen when a statistical agency conducts a public opinion 

poll. The agency may ask individuals about how, and if, they will vote in a forth

coming election. Missing observations may arise here if a given individual does not 

want to reveal the party, or candidate, for whom they intend to vote. Perhaps 

the individual is yet to decide his, or her, voting intention. It is also a possibility 

that the individual is unsure whether he, or she, will vote. All of these possibilities 

might lead to missing observations. In Chapter 4 we consider methods for analysing 

electoral poll data. 
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2.4.1.2 Longitudinal Studies 

Longitudinal studies collect information on cases, or individuals, over a period of 

time. Consider a clinical trial where patients of a given hospital are given a particular 

drug. The patient may 'drop out' of the trial before the end date. Possible reasons 

for this dropout are: the patient may have suffered an adverse effect of the drug; 

the patient might have relocated during the trial: with luck, the patient may have 

been cured of the disease. 

2.4.1.3 Statistical Disclosure Control 

Statistical disclosure control concerns safeguarding the confidentiality of the infor

mation, or data, a statistical agency may hold about individuals or businesses. If 

data is to be released a variety of statistical disclosure techniques may be applied 

to reduce the risk of disclosure. For example, categorical variables may be recoded 

to reduce the number of levels or counts omitted from released data. The missing 

data has been artificially created. This issue is discussed in Chapter 5. 

2.4.2 A Review of Missing Data Methods 

There are a variety of techniques for handling missing data, which are summarised 

by Little and Rubin (2002). The four main approaches are as follows: 

1. Complete case analysis: The missing data is ignored and analysis proceeds 

using fully observed data only. 

2. Weighting methods: Data are weighted in an attempt to modify for non

response as if it \\'ere part of the surveyor sample design. 

3. Imputation methods: Missing values are estimated, and the data are then 

analysed as if there were no missing observations. 
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4. Model based methods: A broad class of methods that model the data gen

erating process alongside the missing data mechanism. This approach has 

several advantages. Firstly, unlike many other approaches, it is not an ad-hoc 

approach. Any assumptions underlying the model can be tested. Secondly, 

any estimate takes into account data incompleteness. l\!lodel based procedures 

form the main focus of work within this thesis. 

Before discussing each of the above ideas, it is important to note the objective of our 

analysis. The aim is not optimal point prediction of a given estimand (a function of 

the population data) \vith respect to some loss function. The goal is to make valid 

statistical inference, fully accounting for uncertainty in light of missing observations. 

'Ve must make full use of all available information contained in fully, or partially, 

observed observations. 

'Vith this in mind, a complete case analysis seems inappropriate. Potentially useful 

information is ignored without second thought, and nothing can be said with regard 

to the reason by which some observations are missing. The sole advantage of this 

method is the ease of its implementation. However, if a simple and quick implemen

tation is required then weighting is a more attractive alternative to complete case 

analysis. 'iVeighting methods can be effective in producing unbiased estimates of a 

given parameter. HO~'ever, this focus on reducing bias (in comparison to a complete 

case analysis) can come at a cost of increased variance (Little and Rubin (2002) 

page 50). For this reason, weighting methods are often used when the sample size is 

large and bias is a more serious issue than variance. Furthermore, it is unclear how 

this approach might be applied in a Bayesian setting. In conclusion, weighting has 

never really been considered a practical solution to the missing data problem. 

Imputation, and multiple imputation, methods have received considerable attention 

since the seminal vmrk of Rubin (1978). The method is siInple. l\1issing values are 

replaced by imputed values and analysis proceeds as if the data were fully observed. 
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For the case of multiple imputation the whole process is repeated several times. Re

sults from the multiple imputes, if generated, are then pooled and analysed together. 

The imputations are essentially repeated random draws from the predictive distri

bution of the missing values under a particular model. If we were to impute missing 

values from several non-response models, then combined inferences under the models 

can be contrasted to assess the sensitivity of inference to the non-response models. 

The imputation step provides the practical advantage of 'complete' data analysis 

and hence the use of standard readily available software. This key fact was, in part, 

the vision behind the original idea, see for example Rubin (1996). \iVe must note 

that this method is not model free, in the sense that the imputed values are based 

on the predictive distribution of a non-response model. 

:~vlodelling the missing data is by far the most sophisticated and complex approach. 

The idea has two real advantages as a pay-off for this complexity. Firstly, modeling 

may provide information about the missing-data mechanism. Secondly, we may 

be able to ascertain how assumptions about this missing data mechanism affect 

inference, or at least determine the sensitivity of inferences to these assumptions. 

\Ve discuss this approach further in Chapter 4. 
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Chapter 3 

Bayesian Model Determination for 

Generalised Linear Models 

A Bayesian approach to prediction should involve averaging predictions over different 

models thus providing a method that accounts for model uncertainty. ~1al'kov chain 

Monte Carlo methods for exploring this uncertainty have received a great deal of 

recent attention. In this chapter we focus upon one such method, the reversible jump 

algorithm (Green, 1995). We consider the difficulties associated with the algorithm, 

and offer an efficient and novel construction for model determination in generalised 

linear models. 

The structure of this chapter is as follows. \Ve begin with an introduction to model 

uncertainty and generalised linear models (Section 3.1). \iVe introduce the reversible 

jump Markov chain l'.10nte Carlo algorithm, Section 3.2. A reversible jump ~larkov 

chain Monte Carlo scheme for generalised linear models is constructed in Section 3.3 

and several examples follow, Sections 3.4-3.8. These examples include model and 

variable selection in log-linear and logistic regression models. 

\\Te consider a variety of methods for assessing convergence before concluding with 

recommendations for future ~work. 
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3.1 Introduction - Bayesian GLM's 

Let Y = (Yl, ... , Ynf be n independent observations each with density function of 

the form 

(3.1 ) 

for scalars e;, 1; and weights Wi. Assuming the dispersion parameter ¢ is known and 

fixed, (3.1) is the density function of a distribution belonging to the exponential 

family of distributions with parameter ei . Functions band c determine the specific 

parametric family of distributions. Common distributions that have this functional 

form are the binomial, Poisson and normal distributions. It is easily shown that 

if Yi has density given by (3.1), then = Pi = b'(ei ), and Var[Yil = bl/(ei )"'. w, 

That is the mean J.Li of Yi is directly related to the parameter e;. ]\10re importantly, 

the variance is permitted to be a function of 11;, the mean. For a more detailed 

examination of exponential families the reader is referred to McCullagh and NeIder 

(1989). 

For the ith observation Yi we define a linear predictor 1]i = xI/3, where Xi is the 

ith row of a matrix X containing data on explanatory variables for unit i, and /3 

is a vector of parameter values. The matrix X is termed the design matrix. The 

dependence of Pi on 1]; is then described through a differentiable and monotonic 

function Q, called the link function. This dependence is given by 

or in matrix notation 

Of particular interest is the canonical link which equates ()i to 1]i' 

A generalised linear model (GLM) can then be expressed as the pair m = b, S). 

Here , represents the explanatory variables and interactions present in the linear 
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predictor which, together with parameter constraints, determine matrix X. 

S is a set of structural properties. These properties include the error structure 

associated with the model (i.e. the response distribution and variance functions 

of the related exponential family), and the link function. Throughout this chapter 

these structural properties are assumed known and fixed. 

Suppose data y have been generated by model m from a set lU of plausible models. 

\Ve assume that all models m E III have identical structural properties S, but 

differ in composition of explanatory variables in the linear predictor. Each model 

specifies completely the conditional distribution of y given m and 13m. Here 13m is 

an unknown vector assumed to be in some parameter space 8 m C 

in the literature review we are interested in the joint uncertainty of 

(m,13m ) E 8 = U ({m} x 8 m ) 

mE.H 

. As stated 

(3.2) 

in light of the observed data y. Specifically, we require the posterior model proba

bilities. These probabilities are calculated via Bayes theorem and given by 

f(mly) = f(m)f(ylm) 
LkEM f(k)f(Ylk) 

(3.3) 

where f(ylm) is the marginal likelihood given in (2.8). This marginal likelihood 

is often intractable. It may be the case that I"UI is far too large for exhaustive 

computation. To overcome these two difficulties we intend to draw a sample, at 

least approximately, from the posterior distribution f(mly). This sample will then 

be used to make joint inference regarding parameters m and 13m. \Ve shall draw 

this sample using a reversible jump Markov chain. This algorithm was introduced 

in Chapter 2. In this chapter we describe an efficient construction of the reversible 

jump algorithm for generalised linear models. vVe compare this novel algorithm 

to alternative Markov chain based methods, and provide contrasts with alternative 

methods for model choice. 
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3.2 Reversible Jump Markov Chain Monte Carlo 

The reversible jump algorithm is an adaptation of the well known Metropolis

Hastings algorithm to a more general state space, and much of recent work on 

Bayesian model selection using Markov chains has focused on this method. Since 

its introduction by Green (1995), reversible jump has often been viewed as difficult 

to understand. This is likely due to the theoretical introduction provided in Green 

(1995) which considered the algorithm in a measure theoretical framework. In an 

attempt to provide an easier introduction we present the algorithm in a simpler 

way. \Ve consider the algorithm in the context of a general problem requiring moves 

(jumps) between models. 

\iVe construct a Markov chain on the state space 

U ({m} x 8 m ) 
mEM 

with stationary distribution f(m,f3mly) in the following vmy. 

In an abuse of notation let the parameter values of the ~1arkov chain at time T be 

(m,f3m) . The dimension of 13m is denoted by Pm. VvTe proceed as follows 

• Propose a new model m' with probability j(m, m'). 

• Generate u from a specified proposal density g( ulf3m, m, m'). 

• Set (f3'm" u') = t m.m,(f3m) u) for some invertible and differentiable function 

tm,m" 

III Accept this proposed move with probability Ctm •m ' given by 

f(m', f3'm,ly)~(m') n~)g'(u'l~m) m', 1~) 1 8tm .. m,((3'm" u') 1/\ 1, (3.4) 
f(m,f3mly)](m, m )g(ulf3m " m, m) 8((3, u) 
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which can be written as 

f(ylm', (3'rr" )f({3'rr"lm')f(m')j(m', m)g'( u'l{3m, m', m) I atm,m' ({3'rr", u') I /\ 1. 
f(ylm, (3m)f({3mlm)f(m)j(m, m')g( ul{3'rr", m, m') a({3, u) 

(3.5) 

• Or reject and remain in the current state. 

The subscripts of the transformation function tm,m' specifically allow the transfor

mation to depend upon the proposed move from m to m'. Since the transformation 

function must be invertible and differentiable it is clear that tm,m' = t::n7,m' Further

more, Pm + Pu = Pm' + Pu' which ensures the dimension matching constraints are 

satisfied). 

This is a general construction of the reversible jump algorithm which permits a wide 

variety of proposals. If m = m' and tm,m' is the identity function then the move is 

the standard I\1etropolis-Hastings step (If t is not the identity then we have a more 

general Metropolis-Hastings algorithm). Clearly reversible jump encompasses many 

other simpler algorithms. 

The two key ingredients of the reversible jump algorithm are the proposal distribu

tions 9 and g', and the transformation function tm,m" 

In the past proposal distributions for the reversible jump algorithm have been ob

tained through empirical tuning. Here a pilot chain is run to obtain suitable pro

posal distributions. This method can be computationally expensive and, for complex 

problems, difficult. This may result in low acceptance probabilities and a chain that 

mixes poorly. An alternative to this method is to use one step of the 'Iteratively 

Re-weighted Least Sum of Squares' algorithm (l'\ott and Green (2004)). The IRLSS 

algorithm is used to obtain maximum likelihood estimates of the parameters of a 

generalised linear model. Neither method uses the current state of the Markov 

chain as part of the proposal distribution. The flexibility of the reversible jump, 
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and Metropolis-Hastings, algorithm allows us to incorporate any such information. 

However, the real difficulty of the algorithm, and the key to its successful implemen

tation, lies in the choice of the transformation function tm,m" Here we can make 

explicit use of information regarding any nesting structure that exists. It may be 

possible to create powerful and efficient proposals. In particular, it may be possible 

to construct an algorithm whereby proposed transitions between spaces with large 

differences in dimensionality (in terms of the number of parameters of the statistical 

model) are accepted with reasonable probability. 

In many cases the transformation function tm,m' is chosen to be the identity func

tion. However this obvious choice may result in a :Markov chain that mixes poorly. 

Consider two linear models 171 and 171' such that 171' is nested within m. Model 171 

specifies that the data yare normally distributed with mean 0' + /3x and variance 

(J"2, where the vector x is an explanatory variable. l\lodel 171' also specifies that the 

data are normally distributed with mean and variance given by 0" and w respec

tively. Under model 171, 0' represents the intercept of the regression line whereas 

a' represent the mean under model 171'. It is straightforward to generated a data 

set such that the value of 0' is vastly different from that of 0". In fact it "would be 

straightforward to generate a data set such that a move from 171 to 171' that proposes 

to set a' = 0' will be rejected with probability 1. Although a trivial example it is 

clear that the choice of transformation function is of importance when constructing 

the reversible jump algorithm. 

Our current work is motivated by the need for efficient algorithm to explore model 

spaces, with the additional complexity that some data are missing. This work is 

presented in the following chapter (Chapter 4). Given the difficulty of achieving 

reasonable acceptance probabilities for even simple cases, it was decided to first 
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develop suitable algorithms when the data are fully observed. 

3.3 A Reversible Jump Scheme for GLM's 

There are many possible ways to propose moves between different models. As we are 

to make use of any nesting structure that exists we initially consider moves between 

models differ by only a single term, or an interaction between terms. That is if 

m' C m the columns of the design matrix X m' are contained within the columns of 

X m , and there is no intermediate model m* such that m' C m* em. \Ve term such 

a move a 'local' move. \Ve will consider alternative moves in due course. In what 

follows it is always the case that m' is nested within model m. 

3.3.1 A Novel Detern1.inistic Transformation Function 

Suppose the current state of the T\larkov chain is (m,f3m). Under the GLI\l assump

tions we have 

TIm = X mf3m, 

where X m is the design matrix corresponding to model 'In, and TIm is the current 

linear predictor corresponding to the canonical link. Suppose we propose a move to 

model m' where m' C m. For obvious reasons we term this type of move a 'Death 

Move'. A possible proposal for f3'm, would be to take the proposed value of the 

linear predictor to be the orthogonal projection of the current linear predictor onto 

the subspace defined by the proposed model (orthogonal with respect to an inner 

product W). That is 

f3'm, (X;;:, W X m' )-1 X;;:, W TIm 

(X;;:, W X m' )-1 X;;:, W X mf3m. 
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Then, when considering a move from m' to m, the proposed f3 m must be one for 

which the above equation holds. The transformation function is invertible and 

differentiable satisfying the dimension matching constraints. The chain is therefore 

reversible. 

The obvious W in the current example is an approximation to an inverse posterior 

covariance of TJ. An accurate approximation is given by the inverse of the Fisher 

information matrix given by 

[X m' (X~,D X m') -1 X~,l-l , 

where D is a diagonal matrix with i'th element given by 

( 3/Li)2 
31)i 

Var(Yi) . 

(3.7) 

This is obtained by direct consideration of the likelihood (e.g. Azzalini, 1996, p. 

233). To avoid matrix inversion we simplify the above expression and select W to 

have i'th element Wi given as 

(3fl.i )2 
31)i 

Wi=----'-'-:-----:-
Var(Yi)" 

Our approximation, equivalent if X m' is invertible, seems to be sufficiently good in 

practice. 

A suitable approximation for Wi in any generalised linear model may be obtained 

by considering the saturated model. Under this model we have poi = Vi. Any 

model that provides a reasonable fit should imply fJi ~ Yi' Therefore, we choose to 

approximate W at the start of the algorithm, and this approximation will remain 

fixed throughout. vVe thus approximate W with W, a diagonal matrix with i'th 
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element given by Wi + f. To avoid a singular TV, E is chosen to be a small positive 

real number. 

The proposed death move (3.6) can now be written as 

(3.8) 

If we note that the columns of X m' are also columns of the current design matrix 

X m, then the current linear predictor can be decomposed as follows 

rI X f.! rX IS'j (f3m.X m ,) '1m = mf-Jm = l m' , , 

f3m,S 
(3.9) 

where the additional columns in Xm not in X m' are denoted S. The parameters 

f3 X and f3 S are those that correspond to the columns of the design matrices 
m: m' m, 

X m' and S respectively and are contained in f3m' 

Replacing (3.9) in (3.8) we see that 

(3.10) 

This move is purely deterministic and we note once again that any reverse move 

must satisfy the above equation. 

Suppose now we wish to propose a move from model m' to model m (m' em) where 

the current parameter values are f3'm,. For obvious reasons we term such a move a 

'Birth Move'. \Ve are required to generate 

f3m = (f3m,Xm,) 
f3m,S 

such that 

42 



This is clearly satisfied if 

(3.11) 

\Vithout loss of generality we may assume 13m B = u. \Ve are free to generate 

u from a distribution of our choice. This distribution must be chosen to ensure 

irreducibility .. 

Clearly, (3.11) can be written as 

(Jm ~ ((J;~~m-) (~-(X~WX~')-lX;"WS) ((J~,) 
= tm,ml((f3ml) uf). (3.12) 

\Ve note this to be a linear and invertible transformation of f3'm, and u. The trans

formation is an upper triangular matrix and with all diagonal elements equal to 1. 

Hence 

TAT A 

I -(Xm,WXml)-l Xm,WS = 1. 
(3.13) 

o I 

Since the determinant of the inverse of a matrix is the reciprocal of the determinant 

of the matrix the Jacobian of the deterministic death proposal is also 1. 

3.3.2 A Suitable Proposal Distribution 

In order to obtain a suitable approximation to the posterior distribution of (ulf3'm" m', y) 

we approximate the posterior distribution of 13m using a normal distribution. \~Te 

centre our approximation at an approximate least squares estimate of 13m and ap

proximate the posterior covariance matrix with an estimate for the inverse Fisher 

information matrix; i.e. we let 

13 rvN((XTWX )-lXTWn (XTWX )-1) m m m m'" m m , 
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where i7 is the value of the linear predictor under the saturated model. This pro

posal distribution seems natural and follows from the work of Brooks et al. (2003). 

Indeed, the first and higher order methods of Brooks et al. (2003) (taking deriva

tives of the natural logarithm of the acceptance probability) correspond to matching 

derivatives of the log-proposal and log-conditional posterior density function at a 

centring point. This can lead to appealing proposals such as a normal distribution, 

centred at the posterior conditional mode with variance given by the negative inverse 

second derivative of the log-conditional posterior density at the mode. 

Having made this assumption to obtain the distribution for (f3'm" u) ,ve invert the 

transformation in (3.12). This inverted transformation is given by 

Since we assumed 13m = (13m. X m" f3m.S) to have a multivariate normal distribution 

it follows that (f3'm, , u) also has a multivariate normal distribution. The covariance 

matrix for this approximate joint posterior density of (f3'm" u) is then given by 

inverse of the covariance matrix is a block matrix given by 

T ' 
XmWXm (Xm'IS)TW(Xm'IS) 

( 
T ' T') Xm,WXm, Xm,WS 
TAT ' 

S WXm, S WS. 
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Appendix A gives the inverse and determinants of block matrices. Let C denote the 

Schur component of this matrix with respect to X~, W X m" Then C is given by 

C STWS - STWXm,(X~,WXm,)-IX~,WS 

STWS - STWPm,S 

STW(I - Pm,)S, 

where (I - Pm') is an orthogonal projection matrix. The covariance matrix, denoted 

V is a block matrix and is given by 

where 

ViI = (X~,WXm,)-I(I + X~,WSC-lSTWXm'(X~,WXm,)-I) 
Vi2 = -(X~,WXm,)-IX~,WSC-l 

1121 = -C-lSTWXm,(X~,WXm,)-1 

V22 = C- 1
. 

Combining all of the above the covariance matrix of the normal distribution for 

(f3'm, , u) is given by 

The elements of this matrix are as follows: 

45 



TA ITA T' ITA + (Xm,WXm,)- Xm,WSV22(Xm,WXm')- Xm'WS 

(X~, W X m,)-I(I + X~, W SC-1 STW Xml(X~, W X m,)-I) 

(X~, W Xm' )-1 X~, WSC- 1 STW Xmf(X~, W X m, )-1 

(X~, W X m') -1 X~, W S C-1 (X~, W X m' ) -1 X~, W S 

+ (X~, W X m, )-1 X~, W SC-l(X~, W X m, )-1 X~, WS 

(X~,Wxm'tl 
T A 1 T A 

V12 + (Xmlwxm,t X m'WSV22 

(x~, W X m') -1 X~, W S C- 1 

(X~,WXm,)-lX~,WSC-1 

o 
TAl T A \121 + V22 (Xm,WXm,)- Xm'WS 

C-1(X~,WXml)-lX~,WS 

C- 1 (X~, W X m' )-1 X~, W S 

o 

Therefore, the covariance matrix is simply the block matrix given by 

Through a similar argument it can be shown that we should centre this distribution 

at 
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This is intuitive. If we select Z to be a matrix whose columns form a basis for 

Vm n V'"*" where Vm is the vector space spanned by the columns of m and V'"*, is a 

vector space orthogonal to Vm " then Z can be obtained by projecting the columns 

of S onto the orthogonal complement of Vm' using the projection matrix (I - Pm')' 

1. e. let Z = (I - Pm') S. It is easily seen that 

and that 

Clearly u parameterises Vm n v;t;. \Ve thus have the following reversible jump 

algorithm. 

3.3.3 Death 1110ve 

Let the current parameter values of the T\farkov chain at time t be (m,f3m)' with 

the dimension of 13m denoted Pm. Proceed as follows 

• Propose a move to model m' (nested with m) with probability j(m, m'). 

• Partition X mf3m = [Xm,IS] (f3m.X m ,) . 

13m B 

• Set f3~l' = f3m.X
m

, + (X~,WXm,)-lX~,WSf3mB' 

• Accept this proposed move with probability 

J(ylm' , f3~" )J(f3~,lml)J(ml)j(m', m)g(f3m.S) 1\ 1 

J(ylm, f3m)J(f3mlm)J(m)j(m, m') , 
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where 9 is the density function for the normal distribution 

• Else reject this proposed move and remain at (m, f3m ). 

3.3.4 Birth move 

Let the current parameter values of the I\larkov chain be (m',f3m')' with the dimen

sion of 13m' being Pm" 

• Propose a move to model m (m' C m) with probability j(m', m). 

• Generate u from 

This distribution has density function denoted by g . 

• Accept this proposed move with probability 

f(ylm, f3~)f(f3~lm)f(m)j(m, m') 1\ 1. 
f(ylm', 13m, )f(f3m,lm')f(m)j(m', m)g(u) 

(3.15) 

• Else reject this proposed move and remain at (m', f3'm,). 

Note that in the acceptance probability of both birth and death moves there is no 

Jacobian. This is due the transformation being an upper triangular square matrix 

with diagonal elements equal to one. It is important to note that the transformation 

must still be made. This simple algorithm should alleviate any worries the Jacobian 

often causes. 
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Constructing the reversible jump algorithm in this fashion has several advantages. 

The algorithm is simple and inexpensive to implement. There is no need for in

efficient pilot chains used by many authors to determine a suitable proposal dis

tribution. \Ne are not required to tune the proposal variance prior to running the 

algorithm, or adapt this proposal variance during the algorithm. The algorithm 

can be viewed as quasi-adaptive as, at each iteration, proposal distributions for lo

cal (nested) moves are optimised. However, unlike adaptive algorithms, there is no 

difficulty ensuring stationarity or verifying ergodicity. 

Finally, we will show that using the above framework more general moves can be 

constructed. The moves would allow transitions between models that retain some 

common parameters but are not nested, together with a non-deterministic death 

move and an interesting Metropolis-Hastings update. Of course, since we are inter

ested in effectively using information contained in the current state of the ~1arkov 

chain, local moves are our main focus. The move types presented ,c,'ithin this chapter 

can be combined with standard :!\letropolis-Hastings to form a powerful and efficient 

algorithm. 

3.4 Example 1: Crime and Punishment 

In order to illustrate how this reversible jump scheme is applied to linear models we 

consider the data set on U.S. crime rates discussed by Ehrlich (1973) and analysed 

within a Bayesian framework by Raftery et al. (1997) and Nott and Green (2004). 

Ehrlich collected data from n = 47 U.S. States. He empirically tested his theoret

ical argument that the decision to engage in criminal activity is a rational choice, 

determined by its costs and benefits relative to other legitimate activities. Ehrlich's 

data was corrected by Vandaele (1978) who included three additional variables. The 

data can be found in Appendix E and consist of the 15 variables, details of which 

are given in Table 3.1. The response denoted y is the rate of crimes in a particular 
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category per head of population. As in the analysis of Raftery et al. (1997) all 

data were transformed logarithmically with the covariates additionally being cen

tred. The task is to determine which of the 15 predictors of crime rate are related 

to the response. 

Raftery et al. (1997) stated that standard diagnostic checks do not reveal any gross 

violations of the assumptions underlying the normal regression model. 

3.4.1 Notation and Prior Distributions 

Following the notation of ~tzoufras et al. (2001) we define a model m by the pair 

("'r,S) where 'Ym = hr, ... ,~(~) E {O,lP5 is a vector indicating which of the 

covariates are included in model m. Since q = 15, and we are not interested in 

interactions between covariates, there are 215 = 32, 768 possible models. Here S 

implies that 

and hence 

f(ylrn, 13m, a2
) = (27i:2)n/2 exp{ -l(y - X mf3mf(y - X mf3m)}· 

As in Raftery et al. (1997) we assume the conjugate normal-inverse-gamma distri

bution for f (13m , a2
). This prior density is given by 

f(f3m, a2 lm) = (a 2 )-(v+p m +2)/2 exp{ -(l(f3m - J-LmfV;;ll(f3m - J-Lm) + AV)}, 

for hyperparameters v, A, J-L and prior covariance V (see O'Hagan and Forster 2004, 

for full details). We follow Raftery et al. (1997) and set v = 2.58, A = 0.28 and J-Lm = 

(/30 ,0, ... , of where /30 is the ordinary least squares estimate of the intercept term 

under model m. The prior covariance matrix V m has diagonal elements 92 si2 for 

the continuous variables, where sf denotes the sample variance of the ith predictor, 

and ¢2(~xr Xi)-l for the sole categorical variable 'southern state'. vVe follow Raftery 

et al. (1997) in setting ¢2 = 2.852 and that all models are a-priori equally likely. 
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The marginal likelihood f(ylm) is tractable and is given below: 

f(ylm) 
7Tn/2f(v/2)II + Xm V mXT11/2 

x ((y - Xmf-Lm)T(I + Xm V mX~)-l(y - Xmf-Lm) + AVrv~n . 

Since q is relatively small we can compute f(mIY) exactly, obtaining the normalising 

constant by summing over all 215 = 32, 768 models. 

Clearly, posterior inferences and predictions will depend critically upon the choice 

of the prior distribution for parameters (f3m, m). Raftery et al. (1997) compare their 

prior for the non-categorical covariates with the actual distribution of coefficients 

from real data. They consider 13 data sets from several regression text books and 

provide a histogram of the 100 coefficients from standardised data. All coefficients 

lie within the interval [-2,2] and accordingly their prior gives reasonable support 

to this interval. The prior distribution is also fiat across [-1, 1] where most of the 

coefficients are observed. 

Assuming all models a-priori equally likely is also a strong assumption, as is the 

assumption that Pi is independent of Pj for all i I- j. However, there is little prior in

formation regarding the dependencies between the frs. There is also no information 

available to construct the prior model probabilities. Further arguments presented 

by Raftery et al. (1997) suggest that their prior is sensible and well formulated. 

The purpose of this section is to provide an example of the reversible jump algorithm 

that we have constructed. Had the purpose been to make posterior inference and 

prediction, then we would have to check the sensitivity of our inferences to any and 

every prior assumption that we make. 
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3.4.2 Reversible Jump and Results 

\iVe implemented the reversible jump scheme detailed in Section 3.3. \Ve proposed 

moves between nested models only, selecting to add or remove a term with equal 

probability. In addition to these moves the parameter (52 was updated by Gibb's 

sampling from the tractable posterior f((521!3m , y). In total, 8,142 different models 

were visited during 1,000,000 iterations of the algorithm. The ~1al'kov chain proved 

to be mobile with, on average, a change of model every four iterations (acceptance 

probability 0.27). The sample was thinned by taking every 20th iterate providing 

a sample of 50,000 points for analysis. For each of the 15 variables, we computed 

::-'10nte Carlo standard errors of the estimated marginal probabilities of inclusion 

(see George and McCulloch 1993). Let ii = Phi =1= Oly) be the sample mean of the 

Markov chain iterates. Then the Monte Carlo standard error of ii is given by 

where RJh) is the estimated autocovariance function for the Markov chain iterates 

for ~/i. The above sum must be truncated to ensure the consistency of the estimator, 

and this truncation point is chosen based on when the estimated auto-covariance 

function decays to zero. For more detail see Geyer (1992). 

Table 3.1 provides, for each variable, estimated posterior inclusion probabilities 

together with .1\10nte Carlo standard errors (The exact probabilities are given in 

parentheses). Figure 3.1 provides ~1arkov chain diagnostic plots of the output for 

the predictor 'Police expenditure in 1960'. \Ve see there is little evidence to suggest 

a lack of convergence. Table 3.2 displays models with a posterior model probability 

of 1% or greater. These are similar to those found in Raftery et al. (1997) but, on 
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Table 3.1: Crime data: Estimated posterior inclusion probabilities (The exact prob

abilities are given in parentheses) together with Monte Carlo standard errors. 

Predictor 

Number Predictor ii Standard Error 

1 Percentage of males aged 14-24 0.430 (0.565) 0.0032 

2 Indicator variable for southern state 0.132 (0.152) 0.0017 

3 Mean years of schooling 0.655 (0.814) 0.0036 

4 Police expenditure in 1960 0.657 (0.686) 0.0036 

5 Police expenditure in 1959 0.523 (0.522) 0.0037 

6 Labour force participation rate 0.091 (0.087) 0.0014 

7 Number of males per 1000 females 0.120 (0.108) 0.0017 

8 State population 0.154 (0.184) 0.0019 

9 Number of non-whites per 1000 people 0.267 (0.369) 0.0027 

10 Unemployment rate of urban males aged 14-24 0.073 (0.087) 0.0013 

11 Unemployment rate of urban males aged 35-39 0.1.52 (0.232) 0.0020 

12 Wealth 0.232 (0.265) 0.0022 

13 Income equality 0.955 (0.982) 0.0016 

14 Probability of imprisomnent 0.394 (0.553) 0.0032 

15 A vel' age time served in state prison 0.097 (0.126) 0.0015 

the whole, have fewer terms. They are almost identical to the exact posterior model 

probabilities given in Table 3.3, which can be calculated in this example. 

The probabilities illustrate the difficulty in assessing the convergence of the I\larkov 

chain. Although the diagnostic plots illustrate adequate mixing the posterior inclu

sion probabilities differ from the exact probabilities. These probabilities also differ 

from those presented in Raftery et al. (1997) and they are not reported in Nott and 

Green (2004). However, the four methods of calculating the posterior model proba

bilities (RJMCMC, MCI\1CMC, Nott and Green (2004) and complete enumeration) 
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Figure 3.1: MCMC output plots. P lot (a): Histogram of the posterior distribution 

of f34' Plot (b): A running mean of the inclusion probability for f34. Plot (c): 

Auto-correllelogram of /'4 . Plot (d): Part ial auto-correllelogram of /'4' 

would result in similar predictive inference. This lack of convergence is probably due 

to the number of models under consideration and the fact that there is considerable 

posterior uncertainty. The results of Raftery et al. (1997) for example, are based on 

a sample of 30,000 iterates and this may not suffice. 
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Table 3.2: Crime data: ~10dels with estimated posterior model probabilities of lo/c 

or greater. 

Posterior model 

Model probability (%) 

3 4 13 2.86 

1 3 4 13 2 .. 50 

4 13 2.30 

3 5 13 1.86 

5 13 1.65 

3 4 13 14 1.23 

1 3 4 13 14 1.22 

3 .5 13 14 1.18 

1 3 5 13 1.18 

1 3 4 11 13 1.06 

3 4 .5 13 1.01 

The standard errors of Table 3.1 are an improvement to those of Nott and Green 

(2004). Nott and Green (2004) argued that ~10nte Carlo standard errors should 

not be compared based on an equal number of iterates for all methods, but on 

differing numbers of iterates for each method produced within a given time. Thus 

the simplicity of our algorithm is favourable. As already mentioned, our algorithm 

requires no initial calculations, has no algorithmic parameters and needs no tuning. 

3.5 Example 2: Alcohol, Obesity and Hyperten-
. 

Slon 

In order to illustrate how the reversible jump scheme detailed in this chapter can 

be applied to hierarchical log-linear models we consider the data of Knuiman and 
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Table 3.3: Crime data: ~10dels with exact posterior model probability of 1 % or 

greater. The last row corresponds to the model with greatest posterior probability 

as stated by Raftery et al. (1997). 

Posterior model 

Model probability (%) 

1 3 4 13 2.40 

1 3 4 13 14 1..57 

3 4 13 1.54 

1 3 4 11 13 1.46 

3 4 9 13 14 1.19 

3 5 9 13 14 1.07 

1 3 4 9 13 14 1.05 

1 3 5 13 14 1.01 

1 3 4 11 13 14 1.01 

3 4 13 14 1.01 

1 3 4 9 11 13 14 0.40 

Speed (1988). The data, in the form of a 2 x 4 x 3 contingency table, can be found in 

Table 3.4. It concerns 491 subjects classified according to three categorical variables 

(factors) C = {H, A, O}, where Hypertension (H: Yes or No), Alcohol Intake (A: 

0, 1-2,3-5,6+ drinks per day) and Obesity (0: Low, Average, High). The data has 

been analysed by Dellaportas and Forster (1999). 

3.5.1 Notation and Prior Distributions 

If we assume the main effects (H, A, 0) are present in all models under consideration 

then there are nine models in the class of hierarchical log-linear models. These are 

{H +A+O,HA+O,HO+A,AO+H,HA+HO, 

HA + AO, HO + AO, HA + HO + AD, HAO}, 
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Table 3.4: Alcohol, obesity and hypertension data. 

Alcohol Intake 

Obesity Hypertension 0 1-2 3-5 6+ 

Low Yes 5 9 8 10 

Low No 40 36 33 24 

Average Yes 6 9 11 14 

Average No 33 23 35 30 

High Yes 9 12 19 19 

High 1\'0 24 25 28 29 

where the models are denoted by the sum of their generating terms. Here m denotes 

one of the 9 competing models given above. Each model corresponds to a set T' of 

factors, where T' is contained in the power set of C denoted 7-'(C). Each log-linear 

model specifies that each Yi is independently distributed according to a Poisson 

random variable ,vith mean E[Yi] = fJ,i' Thus each model posits 

and therefore the log-likelihood is given by 

As in Dellaportas and Forster (1999) and following Knuiman and Speed (1988) we 

assume that, for each term a E T' 

(3.16) 

In the absence of prior information about f3a, we set ()a to be a vector of zero's. 'Ve 

set 

(3.17) 
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where III = 24 is the number of cells in the contingency table and Ihl is the number 

of levels of factor b. J n is an n x n matrix of all 1 's, whilst In is the n x n identity 

matrix. For example, let a be the interaction term 0 : A. Then (3a is normally 

distributed with mean Ba , a zero vector of length 6. The covariance matrix is given 

by 
4 x 3 1 1 

V = -(h - -J3 ) rO\(h - -J2 ) 
a 24 3 ~ 2 

Thus, the prior distribution for (3m is normal, with covariance matrix the block 

diagonal matrix with elements Va for all a E m. This prior is invariant to arbitrary 

permutations of the levels of each factor. The prior is proper and a; can be chosen 

to reflect prior belief. Dellaportas and Forster (1999) advocate that the value of 

a; ::x: III since the above prior distribution depends on the number of levels of 

all factors (Iii appears in 3.17). They further note that the inverse of the unit 

information matrix, evaluated at the prior mean, where all cell probabilities are 

equal, is equal to III times the block diagonal matrix with elements Va. Thus in 

selecting 

a~ = kill 

they interpret k as the number of units of prior information at the prior mean. 

This is comparable to the g-prior of Zellner (1986) for linear regression models. 

Dellaportas and Forster (1999) suggest values of k = 1,2 and 4. 

3.5.2 Reversible J UIUP and Results 

A reversible jump t.farkov chain was constructed as detailed (3.3). \\Te proposed 

moves between nested models only, selecting to add or remove a term, or an in

teraction between terms, with equal probability. Posterior model probabilities for 

the four most probable models based on a 100,000 iterations can be found in Table 

3.5. These results are identical to those found in Dellaportas and Forster (1999). 

However, the algorithm of Dellaportas and Forster (1999) was less mobile, achieving 
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Table 3.5: Alcohol, obesity and hypertension data: Posterior model probabilities. 

Model Posterior probability 

0;2 = 24 0;2 = 48 0;2 = 96 

H+O+A 0.505 0.677 0.81 

HO+A 0.478 0.317 0.188 

HA+O 0.009 0.004 0.001 

HO+HA 0.008 0.002 0.001 

Acceptance probability 0.244 0.315 0.297 

a change in model, on average, once in every nineteen iterations. \Ve observed a 

change in model every three to four iterations. The exact acceptance probabilities 

are given in Table 3.5. Unlike Dellaportas and Forster (1999) we did not require 

time consuming pilot runs for proposal distributions, nor did we tune the ~1arkov 

chain. 

As an aside note the occurrence of Lindley's paradox. As the model specific param

eter prior distribution becomes more diffuse, greater weight is given to the model 

containing no interactions. This is seen in the first row of Table 3.5. 

3.6 Example 3: A Simulated Example for Poisson 

Response with Highly Collinear Regressors 

Our third example is based on an example described by George and .McCulloch 

(1997). They simulated a data set as follows. Let ZI, .... , Z15, Z be vectors of 

independent standard normal variables of length 180. Let X j 

j = 1,3,5,8,9,10,12,13,14,15. Set X j = X j
-

I + 0.15Z j for j 

zj + 2Z for 

2,4,6, X7 = 

x 8 + X 9 - XIO + 0.15Z7 and finally Xll = XI4 + X I5 _ XI2 _ X I3 + 0.15Z11 . 

This construction leads to a correlation of around 0.998 between xj and XJ+I, 
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i = 1,3,5 and complicated linear dependencies among the groups of variables 

{X7, X 8 , X 9 , XI0} and {Xll, X 12 , X 13 , X 14 , XIS}. 

Let X be the design matrix with columns xj for j = 1...15. Then xI is the ith row 

of X. We denote the mean of the ith response as {Ji. W'e simulate 180 independent 

Poisson variables Yi with 

where 

{3 = (0.15,0,0.15,0,0.15,0,0.15, -0.15, 0, 0, 0.15, 0.15, 0.15, 0, O)T. 

3.6.1 Notation and Prior Distributions 

As in example (3.4) define a model m by the pair ("r, S) where""r = bin, ... , irs) E 

{O, 1 p5 is a vector indicating which of the covariates are included in model m. 

Since q = 15, and we are not interested in interactions between variables, there are 

215 = 32, 768 possible models. Here S dictates that 

(3.18) 

and hence 

(3.19) 

\Ve assume a-priori that 

(3.20) 

where n = L.::i Yi and TV is the 180 x 180 diagonal matrix with i.th element Yi' We 

assume each model is equally likely. 

3.6.2 Reversible Jump and Results 

Using the reversible jump algorithm problems may occur if there are strong linear 

dependencies among the variables. To see this suppose we have two collinear terms 
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A and B. The models A, B and A + B may explain the data equally well, but a 

move from model A, or B, to model A + B would be rejected since model A + B 

lacks parsimony (This situation is easily remedied by allowing moves from model A 

to model B and vice-versa). These 'flip' proposals could allow simultaneous addition 

and subtraction of terms, which should improve standard errors and Markov chain 

mixing. 

\Ve compare two reversible jump schemes. In scheme A moves between nested 

models are proposed, selecting to add or remove a term with equal probability. In 

scheme B, in addition to the nested moves, we propose 'flip' moves detailed below. 

3.6.2.1 Flip move 

Let the current parameter values of the :\1arkov chain be (m, 13m), with the dimension 

of 13m being Pm. \Ve are to propose a move from model m to model m', where the 

models are only partially nested, in two stages. Let X denote the matrix composed 

of the columns that appear in both X m and X m'. Let Sand S' denote the columns 

unique to X m and X m' respectively. 

The first stage is a birth proposal to a model denoted m* with design matrix X m* = 

(XISIS'). The second is a death proposal to model 171/ 

• Propose a move to model m' with probability j(m', m), where X m ' = (XIS'). 

Birth stage 

• Generate u* from 

which has density function denoted g*. 

(

1 _(XTWX )-lXTWS') 
• Set f3~* = m m m 

o 1 
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Death stage 

Combined acceptance probability 

• Accept this proposed move with probability 

J(yim', f3~ll )J(f3~,im')J(m')j(m', m)g(f3 * s) 
m. 1\ 1 

J(yim, f3m )j(f3m im)J(m)j(m, m')g'(u*) , 
(3.21) 

where g is the normal distribution 

• Else reject and remain at (m, 13m ), 

The abm'e move types will be useful when collinearity exists between variables, as 

is the case here. 

,Ve ran the chain for a total of 50,000 iterations and observed an acceptance rate of 

0.260 for 'local' moves, and a rate of 0.201 for the 'flip' moves. 

Table 3.6 gives the posterior inclusion probabilities, ii, together with the associated 

standard errors. Including flip moves reduces the standard error of the posterior 

inclusion probabilities and thus improves mixing of the I\1arkov chain (all ratio's 

are greater than 1). ,Ve must note that the simple algorithm performed well which 

can be attributed to the construction of reasonable proposal distributions. These 

results differ to those described in George and McCulloch (1997) (The data were 

simulated. ) 
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Table 3.6: and Monte Carlo standard errors for "Ii for the simulated Poisson 

example for sampling schemes A and B 

Variable SEA SEE SEA/SEE 

Xl 0.7181 0.0119 0.0105 1.1284 

X 2 0.3467 0.0127 0.0112 1.1326 

X3 0.4466 0.0131 0.0117 1.1172 

X 4 0.5479 0.0132 0.0118 1.1154 

X5 0.4284 0.0118 0.0106 1.1124 

X6 0.4977 0.0122 0.0106 1.1485 

X 7 0.3521 0.0113 0.0111 1.0167 

Xs 0.4154 0.0113 0.0112 1.0071 

X g 0.3165 0.0085 0.0085 1.0073 

XlO 0.4456 0.0104 0.0103 1.0082 

Xn 0.2488 0.0099 0.009 1.0918 

X 12 0.0883 0.0044 0.0039 1.1109 

X l3 0.1714 0.008 0.0074 1.0828 

X l4 0.2759 0.0073 0.0073 1.0076 

X l5 0.7079 0.0103 0.0093 1.1061 
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3.7 Example 4: Low Birth Weight in Infants 

Our penultimate example considers applying the reversible jump algorithm to binary 

response data. Hosmer and Lemeshow (1989) provide a data set on 189 births at a 

U.S. hospital. The response variable is binary and corresponds to 1 for a child of 

low birth weight « 2.5kg) and a otherwise. Following Venables and Ripley (1999) 

and Nott and Leonte (2004), we construct the variables given in Table 3.7. 

Table 3.7: Low birth weight in infants data: Covariate information. 

Predictor Description 

age Age of mother in years (Centred) 

lwt "\;Veight of mother at last menstrual cycle (Centred) 

raceblack Indicator for race (black or other (0/1)) 

raceother Indicator for race other than white or black (0/1) 

smoke Smoking status during pregnancy (0/1) 

ptd Previous premature labours (0/1) 

ht History of hypertension (0/1) 

Ul Has uterine irritability (0/1) 

ftv1 Indicator for one physician visit in first trimester (0/1) 

ftv2+ Indicator for two or more physician visits in first trimester (0/1) 

3.7.1 Notation and Prior Distributions 

As in example (3.4) define a model m to be the pair ("r, 5), where , m 
= bf" ... , Ira) E 

{a, I} 10 is a vector indicating which of the covariates are included in model m. Since 

q = la, and we are not interested in interactions between covariates, there are 

210 = 1024 possible models. Here 5 implies that 

log(~) = 1]i = xTf3 
1 - f.Li 
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with corresponding likelihood given by 

n 

f(ylf3) ex II 7r;i(l - 7ri)l-Yi. 

i=l 

As in previous sections we are required to find an approximation for TV and derive 

an initial linear predictor fi to use in proposal distributions. \~Te note 

which we approximate using 

exp(xI/3) 
fli = -----'------::--

1 + exp( xI /3) 

obtained by fitting the logistic regression model containing an intercept and all 10 

variables given in Table 3.7. \Ve use fJ = X /3 in proposal distributions, obtained 

by fitting the same logistic regression. The saturated model cannot be used since 

the data is binary. Clearly the success of the algorithm depends critically upon this 

choice. \Ve advocate basing any approximation on the model containing all terms 

and interactions under consideration. 

As in previous sections we assume all models a-priori equally likely. \;Ve assume that, 

for each model m, f3 has a multivariate normal distribution with zero mean vector, 

and covariance matrix assumed to be the identity matrix multiplied by (J2 = 2.52
. 

3.7.2 Reversible Jump and Results 

\Ve implemented the reversible jump scheme detailed in Section 3.3. \Ve proposed 

moves between nested models. In total, 195 different models were visited during 

50,000 iterations of the algorithm. The }\·1arkov chain proved to be mobile with an 

acceptance probability of 0.18. Table 3.8 gives posterior inclusion probabilities and 
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Table 3.8: 

infants data. 

and l\10nte Carlo standard errors for ;Yi for the low birth weight in 

Predictor ;Yi Standard Error 

age 0.041 0.0015 

lwt 0.022 0.0011 

raceblack 0.067 0.0018 

raceother 0.054 0.0018 

smoke 0.081 0.0020 

ptd 0.862 0.0026 

ht 0.253 0.0030 

ui 0.128 0.0024 

ftvl 0.115 0.0033 

ftv2+ 0.20 0.0011 

Monte Carlo standard errors. Figure 3.2 provides '\1al'kov chain diagnostic plots. 

There is no suggestion that the chain has not converged to its stationary distribution. 

These results differ from those described in N"ott and Leonte (2004) as a result of 

the prior distribution placed on the model space. Nott and Leonte (2004) assume 

that each term is independently included in the model with probability p. That is 

This prior includes the uniform distribution over all models (p = 1/2). In the case 

of variable selection this uniform prior distribution induces a Binomial distribution 

on Pm, with prior expectation that q/2 terms will be included in the model. Kott 

and Leonte (2004) suggest that if we wish to control the expected number of terms 

within a model we assume 

f(Pmlp) = (P:) ppm (1 - pF-Pm 

66 



i?:' 
'iii 
c:: 
Ql 

U 

C! 
~ 

LO 
c:i 

0 
c:i 

N o 
c:i 

I 

-2.0 

o 

(a) 

A ~ 
I I T 

-1.5 - 1.0 -0.5 0.0 0.5 

ht 

(c) 

10 20 30 40 

Lag 

.E 

C! 

to 
c:i 

CD 
c:i 

v 
c:i 

N 
c:i 

N 
o 
c:i 

-

-

II< 

I 

0 

o 

I 

10 

T 

2 

(b) 

T 

3 

Iterate 

(d) 

20 

Lag 

30 

T 

4 

40 

Figure 3.2: MCMC output plots. Plot (a): Histogram of the posterior distribu

tion for the 'history of hypertension ' parameter. P lot (b): A running mean of the 

inclusion probability for the 'history of hypertension' parameter. P lot (c): Auto

correllelogram of inclusion indicator for the 'history of hypertension ' parameter. 

Plot (d): Partial auto-correllelogram of inclusion indicator for the 'history of hyper

tension' parameter. 

and place the following hyper-prior distribution on p 

pa-l(1- p)b- l 
f(p) = B(a, b) , 
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where B(.,.) is the beta function. The prior distribution of f(Pm) is easily obtained 

and given as follows: 

Parameters a and b (both strictly positive reals) are chosen to satisfy the following 

two equations: 

qlE[p] 

var[lE[Pmlp]] + lE[var[Pmlpll 

q(q - l)lE[/] + qlE[p](l - qJE[p]). 

Since p has a Beta distribution it is easily seen that 

a 

a+b 
a+1 

lE[pl a + b + 1 

(3.23) 

(3.24) 

Replacing (3.24) in (3.23) we obtain a and b by solving the following two simulta-

neous equations: 

aq 
qlE[p] = a + b 

a+1 
b 1 q( q - 1 )lErp] + qlE[p](l - qlE[p]) 

a+ + . (3.25) 

I\ott and Leonte (2004) set lE[Pm] = 8 and var[Pm] = 16. For q = 10 there are no 

solutions to (3.25) that satisfy the constraints a, b 2:: 0, and hence no beta-binomial 

distribution exists. Ho-wever, the following distribution for Pm satisfies lE[Pm] = 8 

and var[Pm] = 16 

0.2 if Pm = 0 

0.8 if Pm = 10 

o otherwise . 
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It is not a beta-binomial distribution. It is conceivable that Nott and Leonte (2004) 

made an error in their calculations. They state that the prior distribution placed 

upon the model space is bimodal, and conclude the model with largest posterior 

probability (assuming this bimodal prior distribution) contains only a term for the 

intercept. This is hardly surprising given the prior distribution. This demonstrate 

the critical issue of prior model probabilities. 

Nott and Leonte (2004) conclude their algorithm is inexpensive, which is true if 

f(PmIY) places considerable mass on the null model. In comparison to the reversible 

jump algorithm presented within this chapter the algorithm of Nott and Leonte 

(2004) requires a significant amount of expert knowledge to set algorithmic param

eters. The algorithm is difficult to generalise to model (as well as variable) selection 

pro blems. 

\Ve find, assuming a uniform prior on the model space, the model with largest 

posterior probability to contain an intercept term and a single coefficient for the 

parameter ptd (there is considerable model uncertainty however). As already stated, 

the reversible jump algorithm presented in this chapter is simple, easy and efficient 

to use. No pilot runs or tuning of the I\1arkov chain is needed, and no expert 

knowledge is required to implement this algorithm. 

3.8 Example 5: What Influences Political Atti

tude? 

Our final example is taken from 'Nermuth and Cox (1998) and concerns responses 

from two surveys taken in 1991 and 1992 in Germany. The counts are reproduced, in 

the form of a 4 x 5 x 5 x 2 x 2 contingency table, in Appendix E. The variables denoted 

A, B, C, D and E are also given in this appendix. In total 6039 individuals responded 
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to the two surveys, of which, we randomly sample 1000 and form a new contingency 

table. If all 6039 data points are included, the model AD + AE + Be + BE + DE has 

posterior probability close to 1. To obtain this estimate we simulated the reversible 

jump algorithm for a wide range of starting models and model parameters. This 

demonstrate the difficulty of assessing convergence as the model space is vast and 

alternative models are visited infrequently. 

The motivation of this example is to show that, using our algorithm, large dimen

sional moves are plausible and possible. 

\iVe use equivalent notation and prior distributions to that in example (3.4) and set 

a; = 2111 = 800. All models under consideration include the terms A, B, e, D and 

E. 

3.8.1 Reversible Jump and Results 

\Ve implemented the reversible jump scheme detailed in (3.3). \iVe proposed moves 

between nested models, attempting a 'birth move' or 'death move' with equal prob

ability. To aid mixing, parameters of the current model were updated every third 

iterate. The initial state 11arkov chain ·was the model containing terms A, B, e, D 

and E, and maximum likelihood estimates under this model used as starting values 

for 13m . On this occasion, and since we would not expect this model to have pos

terior support, we allowed a 'burn in' period. This is not our usual practice. \Ve 

believe that, if possible, a l'vlarkov chain should be started from a state we would 

happily include in any analysis. 

After this initial burn in we obtained 500,000 iterates for inference. In all 9 models 

were visited with one in every 25 proposed moves being accepted. Table 3.9 provides 

estimates of the posterior model pro ba bili ties. 

\Vermuth and Cox (1998) provide further information concerning the variables in-
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Table 3.9: Posterior model probabilities for political attitudes data 

1\10del 

AD+AE+BC+BE+DE 

AD+AE+BC+DE 

ADE+BC+BE 

AD+AE+BC+BE+CE+DE 

ADE+BC 

BCE+AD+AE+DE 

AD+AE+BC+CE+DE 

BCE+AB+AD+AE+DE 

AE+BC+BE+DE 

Posterior Probability 

0.524638 

0.474608 

0.000258 

0.000235 

0.000192 

0.000032 

0.000028 

0.000006 

0.000002 

volved. \rvhen the two separate states where formed different school systems were 

established in each state. Therefore, prior to their analysis, they suspect a strong 

BCE interaction. Furthermore, they reason one might expect B, C Jl.. D given E. 

If we used all 6039 individuals in our analysis, the model BCE + AD + AE + DE 

has a posterior probability of approximately 1. This model contains a strong BCE 

interaction in addition to B, C Jl.. DIE. There is strong posterior evidence that 

B, C Jl.. DIE based upon our sample of 1000 individuals. This example was chosen 

to really test our approach and the results seem promising. The interaction BCE, 

a 16 dimensional interaction, appears in Table 3.9. Had we based our proposal 

distributions on pilot runs this interaction would almost certainly not have been 

observed. 
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3.9 Possible Problems with RJMCMC 

It would not be wise to draw the chapter to a close without looking at possible 

pitfalls one might experience when implementing this technique. In the next two 

sections we consider potential dangers and offer some advice for their resolution. 

It is essential to check the fit of a model to data. \Ale propose to do this dynami

cally (within chain). \;Ve suggest posterior predictive model checking, an approach 

described in Gelman and I\1eng (1996). 

Denoting y as observed data and 13m unknown parameters of interest given model 

m, then f(ylf3m' m) is the likelihood under model m with f(f3mly, m) the posterior 

distribution of the parameters given the data. The reversible jump I\1arkov chain 

produces a sample of size n, denoted f3~, ... , f3':n, from this posterior distribution. 

For each i = 1, ... , n simulate a hypothetical replication of the data, denoted yr, 
from the sampling distribution given the parameters f3~. If the model is adequate 

the hypothetical replication should look similar to the observed data y. This can 

be formally written down as follows. Select a discrepancy variable T(y, 13m) which 

will have an extreme value if the data yare in conflict with the model, i.e. 

(3.26) 

If this varia ble is extreme for many i = 1, ... , n we might conclude that model m does 

not adequately describe the data. The discrepancy variable can be any function of 

the data and parameters, and choices for this are discussed in Gelman et al. (1996). 

The advantage of assessing predictive performance using this method is that the 

above inequality is easily verified within the Markov chain, and with little additional 

expense. \Ve would obviously not verify the inequality at every iterate. 

Poor prediction could result if assumptions underlying the likelihood (normality 

of errors and heteroscadicity in the linear model case) are not justified. These 

assumptions are easily verified. \;Ve would also question results if output from the 
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Markov chain indicated a particular model had reasonable posterior support but 

failed to predict the data well. If such a scenario occurred, we might question 

convergence of the I\1arkov chain. 

A real concern is that the !v1arkov chain is 'stranded' in some part of the model space, 

failing to explore an unconnected subspace containing models with good posterior 

support. 

As an example consider the simulated data, in the form of a 4 x 5 x 5 x 2 contin

gency table, given in Appendix F. For this data set and for selected models Shwartz 

criterion (see (2.12)) have been calculated. These are given in Figure 3.3. On the 

diagram a line between two models indicates nesting. ''''e see that three models 

(ACD + B, ACD + AB and ACD + BCD) have some posterior support but that 

there is no path, through nested models of posterior support, from AC D + B or 

AC D + AB to AC D + BCD. Therefore, any Markov chain using local moves alone 

will not explore the full model space. There are several potential remedies for this 

situation. 

One possible remedy is to generalise flip proposals outlined in Section 3.6. Suppose 

the current state of the Markov chain is model m. Form a transition kernel K in 

the following way. Generate nI, n2 rv Poisson(>..) where nI is the number of birth 

moves to be proposed and n2 the number of death moves. Propose the first birth 

move, conditional on m, from a randomly sampled transition kernel B I . If nI > 1 a 

second 'birth' is proposed from a randomly sampled transition kernel B2 conditional 

on the new model mE] and so on. Continue in this fashion, including death moves, 

to form kernel K given by 

73 



Figure 3.3: Schwartz criteria for the generated bimodal data (Appendix F). 

liCD + BCD (-288.34) liCD + BCD + liB (-313.09) 

liCD+BC+BD+liB 

liCD + BCD + BD (-302.32) ( -308.42) 

liCD + BC (-300.84) liCD + BC + liB (-302.90) 

liCD + B (-285.00) liCD + liB (-287.21) 

liCD + BD (-291.68) liCD + liB + BD (-295.43) 
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The value of ,\ should be chosen so that with reasonable probability ,ve have (nl' n2) = 

(0,1) or (nl' n2) = (1,0). These moves are formed of a single birth or death 

kernel and correspond to the local moves described in (3.2). Parameters are up

dated if (n1, n2) = (0,0), and a non-deterministic death move could be proposed if 

(n1, n2) = (1,2). Constructing a transition kernel in this fashion may improve mix

ing of the Markov chain, as in (3.6), along with overcoming the issue of bimodality. 

Again, the computational simplicity of both birth and death moves presented within 

this chapter, results in a simplistic form of the kernel K. The acceptance probability 

of such moves would also be simple and cheap to calculate. 

By far the most appealing solution to the multi-modality problem is tempering. 

Here the stationary distribution of the Markov chain is modified to facilitate between 

model moves. Of particular interest is ~![etropolis-coupled MCMC (Geyer, 1991). 

Geyer (1991) proposed running in parallel n different .Markov chains with different 

stationary distributions 1i for i = L ... , n. \Ve set 11 = 1 where 1 is the distribution 

of interest. Fori> 1 we set 1Ii = 1Illt; where ti is called the temperature. A value 

of ti greater than 1 will flatten the distribution of 1 . 'Ve would therefore expect 

samplers with ti > 1 to be more mobile. A Metropolis-coupled reversible jump 

MCMC algorithm will have 3 different updates. Firstly within each ~larkov chain 

we could choose to update current model specific parameter values. Secondly within 

each Markov chain we can propose a move to a new model using the birth and death 

steps already described. In addition to these two standard updates, ~1CRJMG\1C, 

proposes 'switches' between Markov chains. It is hoped these switches will allow the 

modified sampler to explore the full support of 11, and could overcome the issue of 

multi-modality. Suppose at iteration t a swap between chains i and j is proposed. 

Let current state of these chains be (mi' 13m;) and (mj, f3mj) respectively. Then this 

proposed move is accepted with the probability 
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(3.27) 

Posterior summaries are based solely upon the chain with the correct stationary dis

tribution. An obvious disadvantage to this scheme is the additional computational 

burden of running n :Markov chains. In practice n need only be 3 or 4. When select

ing temperatures there is a clear trade-off between accepting moves within a chain 

and accepting moves between a chain. The point is not to design a sampler that 

will accept a move to a sample point with no posterior support, but to aid the sam

pler to 'discover' areas of potential support. The algorithm is designed to explore 

bimodality in the joint (m,f3m ) given the data. \Ve are interested in uncertainty 

concerning mly, and we must therefore meet the additional expense in exploring 

potential, but unlikely, multi-modality in f3m lm, y. 

As an example, we applied the MCRJMCl\1C algorithm to the generated data given 

in Appendix F. Three chains were run in parallel with temperatures (1,2,100). A 

switch between chains was proposed with probability 1/5. At each iteration one 

of the three chains was selected with equal probability. Current parameters of this 

chain were updated, using a :\1etropolis-Hastings step, and then with probability 1/2 

a birth or death move proposed. All chains started at the model containing the terms 

A, B, C and D alone. The chain was run for a total of 2,000,000 iterations, taking 

several hours to complete. As we would expect, within chain acceptance probabilities 

of birth and death moves depended upon the chains temperature. These acceptance 

probabilities are given in Table 3.10. A probability on the diagonal represents the 

within chain acceptance probability. It is the probability of a birth, or death move, 

being accepted. As expected, we observed the greatest acceptance probability in 

chain three with t3 = 100. The off diagonal probabilities are those of between chain 

moves. Moves between chains 1 and 2 occurred one in every hundred and fifty 
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attempts. Moves between chains 2 and 3 were also frequent, whilst moves between 

chains 1 and 3 occurred rarely. 

Table 3.10: Metropolis coupled reversible jump J\1CI\1C acceptance probabilities. 

Chain 1 Chain 2 Chain 3 

Chain 1 0.001 0.0066 0.00001 

Chain 2 0.0066 0.005 0.0006 

Chain 3 0.00001 0.0006 0.382 

Table 3.11: Posterior model probabilities for simulated bimodal data 

Model Counts based 

on 2,000,000 iterates 

ACD+B 1,551,770 

ACD+AB 245,853 

AB+AC+AD 684 

ACD+BD 600 

ACD+BCD 515 

AB+AC+D 463 

ACD+AB+BD 102 

AB+C+D 10 

A+B+C+D 2 

Table 3.11 gives posterior model counts based upon a sample of 2,000,000 iterations. 

\Ve see that the full model space has been explored. Clearly more work is needed to 

enable good selection of the temperatures. Ideally, temperatures would be selected 

to facilitate mixing but with minimal computational expense. \iVe must note that 

the above algorithm is expensive to run and could be described as 'brutish'. One 
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would hope, given time, a more natural and elegant solution can be found. 

3.10 Closing Remarks 

In this chapter we have looked at the reversible jump l\1arkov chain Monte Carlo 

algorithm. In particular we have derived an efficient and practical construction of 

this algorithm for model determination in generalised linear models. Minimal expert 

knowledge is required for the algorithms implementation. \¥e are not required to 

run computationally expensive pilot chains to construct proposal distributions, nor 

are we required to fine tune these distributions. 

The scheme has successfully been applied to covariate selection in linear, log-linear 

and logistic regressions. \Ve have also applied the scheme to model determination 

in log-linear models. \¥e have shown the algorithm to be efficient. \Ve present a 

further example of the procedure in the following chapter. 

Vle must also note that for a generalised linear model the parameterisation plays 

a large part in accurate estimation. \Ve have not considered the parameterisation 

of generalised linear models in this thesis and the reader is therefore referred to 

Gelfand et al. (1996). 

The scheme has enormous scope for future ,vork, and this is discussed in the final 

chapter. 
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Chapter 4 

Analysis of Incomplete 

Contingency Tables 

The problem of analysing data sets from which observations are missing is com

mon. There are many different reasons for missing these observations, for example 

measurement error or non-response, but in all situations the statistical goal remains 

the same. How should one approach inference that accommodates the possible, but 

unknown, behaviour of the unobserved data? 

In the literature review we stated the goal of our analysis - to make valid, formal in

ference that incorporates all forms of uncertainty, in particular uncertainty resulting 

from missing observations. 

\iVe reviewed the four basic approaches to handling missing data now adopted in 

the statistical literature. These were weight, ignore (give zero 'weight to missing 

observations), impute and model. Vle argued that we should not proceed with a 

complete or available case analysis, and although weighting missing observations of

ten reduces the bias of an estimate, it does so at the cost of increase in mean squared 

error. Imputing missing observations has also been the subject of increasing criti

cism, often underestimating standard errors and overstating statistical significance. 

In fact imputation was designed for an entirely different situation, albeit a situation 
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involving missing data (Rubin, 1996). 

If we merely cast these methods aside we are left solely with the idea of model

ing the missing data. This idea has two real advantages making it an attractive 

option. Firstly, modeling may provide information about the missing-data mecha

nism. Secondly, we may be able to ascertain how assumptions about this missing 

data mechanism affect inference. These advantages come at a cost of increased 

difficulty and complexity. 

This chapter proceeds as follows. Data from the Slovenian plebiscite is introduced in 

Section 4.1. This data set is used to illustrate basic concepts, ideas and difficulties 

of analysing incomplete contingency tables. 

In Section 4.2 we discuss the approach of modeling non-response and form paramet

ric models for non-response mechanisms. In Section 4.3 'lye attempt to discriminate 

between 'competing' non-response models. Vie use techniques developed in Chap

ter 3. In particular, we attempt to apply the reversible jump algorithm for model 

determination in light of missing observations. 

\Ve develop a sensitivity analysis, Section 4.4, before closing with discussion and 

concluding remarks in Section 4.6. 

4.1 Introduction - The Slovenian Plebiscite 

On June 25th 1991 the Slovenian assembly passed the Fundamental Sovereignty act 

and proclaimed independence from Yugoslavia, the first republic of the federation 

to do so. In response to Slovenia's proclamation the Yugoslav Army sent in tanks 

commencing the 10-day war. By October of the same year Slovenia was declared 

an independent republic, which was recognised internationally in December after 

the passing of its first constitution. Many other former Yugoslav states have since 

declared independence. 

A critical step in the independence process was the plebiscite held exactly one year 
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before the constitution was adopted. To prepare for the results of the plebiscite the 

government of Slovenia conducted a survey to ascertain public opinion. \Ve focus 

our attention on three key questions asked during this survey. These three questions 

are given below. 

1. Are you in favour of Slovenian independence? (Yr) 

2. Will you attend the Plebiscite? (Y2 ) 

3. Are you in favour of Slovenia's secession from Yugoslavia? (Y3 ) 

Full details of the survey can be found in Rubin et al. (1995). Data for the 2074 

respondents can be found in Table 4.1. 

Table 4.1: Data from the Slovenian plebiscite - 3 questions 

Secession Attendance Independence 

Yes ~o Don't Know 

Yes Yes 1191 8 21 

~o 8 0 4 

Don't Know 107 3 9 

No Yes 158 68 29 

:\'0 7 14 3 

Don't Know 18 43 31 

Don't Know Yes 90 2 109 

No 1 2 25 

Don't Know 19 8 96 

Our primary interest is in estimating the proportion of the population planning to 

attend and vote in favour of independence. For simplicity we collapse across Y3 

yielding Table 4.2. 
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Table 4.2: Data from the Slovenian plebiscite - 2 questions 

Independence 

Attendance Yes No Don't Know 

yes 1439 78 159 

no 16 16 32 

Don't Know 144 54 136 

The plebiscite required the entire population to vote, with non attendance regis

tered as a 'no' vote. Don't Know responses can therefore be thought of as missing 

concealing the intended future behaviour of the voter. Of the 2074 respondents, 

1549 (74.7%) provided anS'ivers to both Yi and Y2 , 198 (9.5%) provided an answer 

solely to Yi, 191 (9.2%) to Y2 and 136 (6.6%) to neither question. The observed 

data denoted nabs corresponds to the 2 x 2 table of 1549 fully classified individuals, 

together with supplemental margins for both Yi and Y2 , and a supplemental margin 

for YI Y2 given in Table 4.2. 

vVe consider the mechanism by which some observations are missing as a random 

variable. \Ve therefore introduce the following indicator variable 

if Yi is observed 

if Yi is not observed. 

The full, but unobserved data, Y and R can be thought of as a 24 contingency table 

with cell counts n = {T1ijkl, i, j, k, l E {1,2}}, where T1ijkl is the count for the cell 

with Yi = i, Y2 = y, RI = k, R2 = l. Let 
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Hence ni+12, n+j21 and n++22 are the counts for the partially observed data corre

sponding to the supplementary margins. Our interest is the joint distribution of R 

and Y = (Yi, Y2 ). Specifically, denoting 1iijkl the probability P(Y1 = i, Y2 = y, Rl = 

k, R2 = I), then the quantity of interest is 

7111++ = L 1illkl· 

kl 

Clearly any estimate of 7111++ will depend critically upon assumptions made concern-

ing the 'Don't Know' responses. If we assume pessimistically that all 'Don't Know' 

responses are ways to avoid revealing an unpopular decision, i.e. voting against 

independence, then the corresponding estimate for 7111++ is 1439/2074 = 0.694. In 

contrast, an optimistic estimate for 1ill++ is 0.905. These simple calculations pro

vide a crude optimistic/pessimistic range of (0.694,0.905). The estimate of 7111++ 

based upon all 1549 complete cases lies outside this range (1439/1549 = 0.929). 

At the plebiscite 88.5% of eligible Slovenians explicitly voted for independence. 

4.2 Handling 'Don't Know' Survey Responses 

Clearly the crude optimistic/pessimistic range is wide, and any assumption concern

ing non-response can lead to vastly different estimates of the quantity of interest 

7111++. This raises the following issues: How should we treat the non-responses? 

Furthermore, what assumptions of non-response are verifiable? To begin, we de

scribe different types of non-response mechanisms as classified by Little and Rubin 

(1987). These non-response mechanisms are listed below: 

• Missing Completely At Random (l\JCAR): Here the response variable R is 

independent of all other variables in the survey including covariates if observed . 

• '!\lissing At Random (.!\!IAR): Here the response indicator R can depend only 

upon observed values. 
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• 'Non-Ignorable' response models (NI): Here R is allowed to depend upon un

observed values. 

A model which assumes the missing data mechanism is :'lIAR or MCAR is termed 

'ignorable' if the parameters for the missing data mechanism are distinct from those 

of the data model. This is not a necessary condition, see Lu and Copas (2004). In 

a Bayesian context, a model which assumes the missing data mechanism is MAR or 

MCAR is termed 'ignorable', if the parameters for the missing data mechanism are 

a-priori distinct from those of the data model. 

To distinguish between the 11AR and I\ICAR non-response mechanisms, suppose we 

also observed covariates X. Then MCAR specifies that R.L{X, Y} (R independent 

of both X and Y), but MAR specifies R..l.lYIX (R conditionally independent of 

Y given X). 

4.2.1 The Missing at Random Model 

The most widely used assumption about the response mechanism is that of MAR, 

Rubin (1976). Under this assumption the probability a response variable is observed 

can depend only upon those other variables which have also been observed. The 

missing at random model is not a log-linear model. In the case of the Slovenian 

Plebiscite, and for all 2 x 2 contingency tables with supplementary margins we form 

a parametric model corresponding to ?v1AR as fo11o"ws. Denote 

P(Y1 , Y2 ) = Jrij 

P(R1 = l,R2 = 21Y1 = i, Y2 = j) = Pi 

P(R1 = 2, R2 = 11Y1 = i, 12 = j) = qj 

P( Rl = 2, R2 = 21Y1 = i, Y2 = j) = r 

P(R1 = I, R2 = 11Y1 = i, Y2 = j) = 1 - Pi - qj - r. 
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The likelihood of the MAR model has the following parametric form: 

J(n) [II 71~ij II 71~t II 71~j+21] 
ij . j 

x [rn++22 II (1 - Pi - qj - r) nijll II p7i+12 II qJi+21 ] . (4.1) 
ij . j 

The J\1AR model is a saturated model for the observed data since there are as many 

parameters as data (saturated models may have more parameters than data). There 

are four parameters for the complete data (7111,7112.7121,7122), and five parameters for 

the missing data mechanism (lh, P2, q1, q2, r). If Pi = P for i = 1, 2 and qj = q for 

j = 1,2 then Y ~R and the model is MCAR. 

It is not possible to directly maximise the above likelihood but effective computa

tional methods for handling missing data under this assumption have been developed 

(the K'\1 algorithm Dempster et al. (1977) or SEl\1 algorithm of I\1eng and Rubin 

(1991)). Using these methods we obtain the maximum likelihood estimate, denoted 

irffi~, of 0.892. A 95% confidence interval for 7111++ is (0.887,0.896). These results 

are identical to those in Rubin et al. (1995). 

An interesting feature concerning likelihood (4.1) is, since :Lij 71ij22 = 1, individuals 

missing on both margins do not contribute to the estimate of 7111++' Furthermore, 

the probability of missingness on Y2 where Y1 is provided is allowed to depend on 

Y2 , and vice versa. However, the probability of missingness on both Y1 and Y2 is not 

allowed to depend on Yi or Y2 . 

4.2.1.1 Bayesian Estimation of MAR Using MCMC 

The estimation of 7111++ in a Bayesian setting is also straightforward. An estimate 

of 7111++ can be obtained using a data augmentation Markov chain Monte Carlo 

algorithm. Since our primary interest is the data generating process, which we 
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assume a-priori independent from the missing data mechanism, we need only assume 

a prior distribution for P(Y1, Y2 ) to estimate 7i11++' 

Prior to observing data nabs, \ve assume that P(Y1, Y2) has a Dirichlet distribu

tion denoted V( 0:11,0:12,0:21,0:22), Possible non informative prior distributions for 

P(Y1, Y2) are the symmetric Dirichlet distributions suggested by Forster and Smith 

(1998). This family of prior distributions divides a prior counts evenly across the 

4 cells. Setting a = 1, 2 and 4, hence O:ij = 1/4, 1/2 and 1 Vi, j, gives respectively 

Perks prior (Perks, 1946), Jeffreys prior (Jeffreys, 1967) and the 'uniform' prior dis

tributions. As a result marginal distributions for individual cell probabilities are 

beta distributions with parameters (1,3), (1/2,3/2) and (1/4,3/4) for Perks, Jef

freys and the uniform prior respectively. These marginal beta distributions are not 

symmetric and are positively skewed. 

\~Te proceed by treating the missing cell counts as parameters to be estimated. \Ve 

sample in turn from the conditional distribution of these missing counts given the 

current response parameters, then the response parameters given the current aug

mented cell counts. That is 

Stage 1: Update n 

n1i12 rv A1ultinomial(n1+12, (7i11++' 7i12++)) 

n2i12 rv A1ultinomial(n2+12, (7i21++, 7i22++)) 

nj121 rv lUultinomial(n+121 , (7i11++, 7i21++)) 

nj221 rv "~1 ultinomia l (n+221 , (7i12++, 7i22++)) 

We obtain augmented cell counts {n;jkZ} for all cells where (k, l) i- (1,1) which, 

together with counts {nij11}, form a 24 contingency table. 

Stage 2: Update 7i 
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The posterior distribution of P(Yi, Y2), given n*, is then the following tractable 

Dirichlet distribution: 

P(Y1, Y2) rv V(O:l1 + L nr1kl' 0:12 + L nr2kZ, 0:21 + L n;lkl, 0:22 + L n;2kl)· 
~ ~ ~ ~ 

By repeating, in turn, stages 1 and 2 we obtain a sample from the joint posterior of 7r 

and missing cell counts given the observed cell counts. Table 4.3 gives the posterior 

means and 95% credible intervals for all three prior distributions. Figure 4.1 provides 

a plot of the posterior density for 1T11++ under the three prior distributions, together 

with MCMC output plots indicating good convergence to the required posterior 

distribution. All results are based upon a generated sample of 25000 observations. 

Table 4.3: Posterior means and 95% credible intervals for Slovenian Plebiscite data 

under I\lissing at Random model. 

Uniform Prior Jeffreys Prior Perks Prior 

Posterior Mean 0.886 0.889 0.891 

2.5 percentile 0.872 0.875 0.876 

97 .. 5 percentile 0.900 0.903 0.905 

The posterior distributions are almost identical for all three prior distributions. All 

three credible intervals contain the maximum likelihood estimate, and posterior 

means are close to the actual result of the Plebiscite. 

4.2.2 Non-Ignorable Non-Response and Log-Linear Models 

A non-ignorable non-response model is one where the probability of an observations 

missingness is allowed to depend on the values of unobserved variables. That is Ri is 

permitted to depend on Yi. Using non-ignorable models we may be able to ascertain 

how assumptions about the response mechanism affect inference for 1T11++. In the 
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Figure 4.1: MCMC output plots. Plot (a): Posterior density of 'if11++ under MAR: 

- uniform prior distribution, - Perks prior distribution and - Jeffreys' prior 

distribution. Plot (b): A running estimate of the posterior mean for the distribution 

of'ifu++ under MAR: - uniform prior distribution, - Perks prior distribution and 

- Jeffreys ' prior distribution. Plot (c): Auto-correllelogram Of'ifl1++ Markov chain 

iterates under the uniform distribution. Plot (d) : Partial auto-correllelogram of 

'if11++ Markov chain iterates under the uniform distribution. 
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current example non-response of an individual to Yi may depend on the answer that 

individual would give to Yi. Hence we may wish to consider an interaction between 

Rl and Yl. A simple method of considering interactions between response and data 

variables is through log-linear models. Let nijkl be the count corresponding to the 

cell (Y1 = i, Y2 = j, Rl = k, R2 = l), and n = {nijkd be the vector of fully observed 

counts. If nijkl is a random variable from a Poisson distribution, with mean /1ijkl for 

all i, j, k and l, then modeling n using a log-linear model is the natural approach. 

As shown in Chapter 3 log-linear models are easy to specify, fit and generalise, and 

any missing data indicators can be incorporated in exactly the same way any other 

variable is incorporated. 

There are many non-ignorable models we could consider, however we begin by con

sidering two separate methods of parameterising these models 

4.2.2.1 Additive Paranl.eterisation of Bishop et al. (1975) 

The additive parameterisation is the classic parameterisation of log-linear, and gen

eralised linear, models. Suppose we are interested in the non-ignorable assumption 

that Y111.R1 1Y2, R2 and Y211.R2IY1 , R 1 , then in additive parameterisation this as

sumption has the follmving log-linear form. 

(3 + PY1 (i) + /3Y2 (j) + {3R/ (k) + PR2 (l) 

+ /3y1y2 (ij) + j3R1R2 (kl) + /3y1R2 (il) + PY2Rl(jk). 

In matrix notation we v;rite 10g(J-L) = X f3 and, for simplicity, write Y1 Y2 + RIR2 + 
YiR2 + Y2R1 . The latter notation defines a model in terms of its generators and 

thus implies all lower order terms. In order to obtain unique estimates for 7111++ 

we must constrain the parameters. \Ve use 'sum to zero' constraints. \iVe term this 

model 'Close to Ignorable' (CI) as the interactions YiR2 and Y2R 1 are present but 
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the model is not IvIAR. The CI model differs from IvIAR by allowing P(R1 = 2, R2 = 

21Y1 = i, Y2 = j) to depend on i and j. 

Not all log-linear models are non-ignorable. For example, in additive notation, the 

log-linear model for the two partially observed categorical variables corresponding 

to ~\ICAR is 

4.2.2.2 Bayesian Estimation of Non-Ignorable Models Using MCMC 

(Additive Parameterisation) 

Given a prior distribution for f3 we proceed by treating the missing cell counts as 

parameters to be estimated. 

Stage 1: Update n 

\Ve sample from the conditional distribution of these missing counts given the cur

rent response parameters f3 (note that given current parameters f3 conditional cell 

probabilities are easily obtained). 

nij21 rv Multinomial (n+j21, P(Y1IY2, Rl = 2, R2 = 1)) 

nij12 rv Afultinomial(nH12, P(Y21Y1' Rl = 1, R2 = 2)) 

nij22 rv Alultinomial(n++22: P(}2, lllRl = 2, R2 = 2)). 

Stage 2: Update f3 

Sample from the posterior distribution of the response parameters given the aug

mented cell counts n = {nijkl}. This posterior distribution may not be known, as 
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there is no tractable prior for general log-linear models, hence sample approximately 

using the Metropolis-Hastings algorithm. 

Propose a value (3* from an arbitrary proposal distribution with density function q. 

Accept this proposal with probability 

cx((3*, (3) = fj~~;~j~~;~~~:~;) II 1. 

and rejected (remain at (3) otherwise. 

Here f((3) denotes the prior density function of (3 and, since we assume each nijkl 

to have a Poisson distribution with mean j.1ijkl, the likelihood f (n J(3) is given by 

f(nJ(3) ex II e-/Lijl1j.1ijllnijl1. 

ijkl 

This is a standard j\·1C\1C algorithm with the addition of data augmentation to 

overcome the missing data problem. 

\\'e applied the above method and parameterisation to fit the ignorable }\1CAR 

model Yi12 + R1R 2 . Using the sum-to-zero constraints, Knuiman and Speed (1988) 

provided a prior distribution for the parameters of the log-linear model that is 

symmetric in the sense that it is invariant to arbitrary permutations of the levels of 

each factor. \Ve therefore assume the following prior distributions for f((3): 

1 {I T} f((3) = (21HT2)7/2 exp - 2(J"2(3 (3 . 

The variance parameter was set to (J"2 = 3, 5 and 20. These parameters have been 

chosen to reflect the range of a-priori plausible values for {3. 

Figure 4.2 displays the posterior distribution of 7T1l++ for each of the three prior 

distribution together with MCMC output plots. All results are based upon a sample 

of 25000 Markov chain iterates. The three diagnostic plots indicate excellent mixing. 

The posterior mean, assuming (J"2 = 3, is 0.892. A 95% credibility interval for 7T1l++ 

is (0.877,0.906). These results are similar to those obtained under the 1\IAR model. 
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Figure 4.2: MCMC output plots. Plot (a): Posterior density of 7[1 1++ under MCAR: 

- (T2 = 3, - (T 2 = 5 and - (T 2 = 20. Plot (b): A running estimate of the posterior 

mean for the distribution of 7[11++ under MAR: - (T2 = 3, - (T 2 = 5 and -

(T 2 = 20. P lot (c) : Auto-correllelogram of 7[11+ + Markov chain iterates (T 2 = 3. Plot 

(d): Part ial auto-correllelogram of 7[11+ + Markov chain iterates (T 2 = 3. 
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This is not surprising. Although the functional form of the two models differ, both 

impose that Yi is conditionally independent of R j for i =I j. Had additional covariate 

information been available this might not have been the case. 

4.2.2.3 Multiplicative Parameterisation of Baker et al. (1992) 

Baker et al. (1992) provided an alternative parameterisation of the log-linear model. 

Assuming sum-to-zero constrains they simplify the additive notation as follows 

mij exp{B + /3·yJi) + ;3y2 (j) + /3y1y2 (ij) + PRt(l) + PR2(1) + PY'iRt(i1) 

+;3y1R2 (i1) + PY2Rl(j1) + By2R2 (j1) + PRIR2(1l)} 

aij exp{ -2 [PR1 (1) + PYIRI (i1) +8Y2R1 (j1) + ,8R1R2 (ll)]} 

bij exp{ -2 [PR1 (1) + PY1Rl (i1) + ,8Y2R1 (j1) + PR1R2 (ll)]} 

v exp{4BR1R2 (1l)}, 

where mij 2: 0, aij 2: 0, bij 2: ° and v 2: 0, and Lij mij (1 + aij + bij + aijbijv) = 

Lijkl nijkl· Note that no three-way or four-way interactions are included. As before 

each cell count is assumed to have been generated from an independent Poisson 

distribution with means given in the follovv"ing table. 

mij 

mijbij 

mijaij 

mijaijbijv 

Under this parameterisation, closed form maximum likelihood estimates are some

times directly available. The assumption that 9 is independent of i and j means 

that we are limited to models which contain no three or four-way interactions. If 

'corner' constraints are used an alternative multiplicative parameterisation can be 

93 



constructed to include three and four-way interactions. This parameterisation is 

given below: 

mij exp{;3 + /3Y1 (i) + /3y2 (j) + PY1Y2(ij)} 

aij exp{PR/ (k) + PYiR/ (ik) + /3y2R/ (jk) + PYIY2RJijk)} 

bij exp{pR2(1) + PY1 R2(il) + PY2R2(jl) + ;3YIY2R2(ijl)} 

Vij exp{pRIR2(kl) + /3YIRIR2(ikl) + /3Y2RIR2(jkl) + i3YIY2RIR2(ijkl)}. 

Again we impose mij :::::: 0, aij :::::: 0, bij :::::: ° and Vij :::::: 0, with the baseline category 

of each parameter set to zero (corner constraints). Under this parameterisation 

log(mij) corresponds to 1, Y1 , Y2 , Y1Y2 

log(aij) corresponds to R 1 , R 1Y2 , R 1Y2 , R 1Y1Y2 

log(bij ) corresponds to R 2 , R 2Y1 , R 2Y2 , R 2Y1Y2 

log(vij) corresponds to R 1R 2 , R 1R 2Y1 , R 1R 2Y2 , R 1R 2Y1Y2 

The cell means are similar to before with the one exception in the case when Rl = 

R2 = ° which now has mean mijaijbijVij. 

As an example consider the non-ignorable non-response model with parameters aij = 

aj, bij = bi and Vij = v. In additive notation this model can be written as 

and corresponds to model CI of the previous section. The likelihood for this model 

is given as follows 
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L(nlmi.;,aj,b;,v) DC (g e~~m"(rn;.i)"'jH) 
x (If e -b,( m" +m,,) (b, (m,r + 11'2) )"" " ) 

X (If Co, (aj(mr, + rn2j) )"-''') 

X (e-"L.; m"n,b,( V ~ m,ja,bi)nH ") ~ (4.2) 

Taking logs, differentiating with respect to v, aj, bi and mij, and setting these 

derivatives to zero we see that 

8logL = 0 =? v = n++22 

8v ~ij lh;jfLjb;' 

This result is used to obtain fLj and bi as a function ofmij alone as follows: 

8logL 
--:--=--- = 0 =? 

8aj 

Through a similar argument it is easily seen that 

8logL = 0 =? b, = nH12 

8bj mi+ 

Using all three above results we obtain 
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Therefore the maximum likelihood estimates of these parameters are as follows 

Quantities of interest can readily be expressed in terms of these parameters. For 

example, the maximum likelihood estimate of the proportion planning to attend and 

vote in favour of independence is 

A _ 
17111(1 + flj + bi + o.yb(u) _ 0 867 

7111++ - -. . 
Lijkl nijkl 

An estimate of v close to 1 would imply that the two response variables, and hence 

missing data mechanisms, are independent. For this model we have 9 = 1.99. In 

many cases standard errors of estimates are readily available (Baker et al., 1992) 

4.2.2.4 Bayesian Estimation of Non-Ignorable Models Using MCMC 

(Multiplicative Parameterisation) 

\Ve assume a-priori mij, aj, bi and v to be independent and identically distributed. 

This strong assumption could greatly effect resulting inference and a sensitivity 

analysis should be performed. 

The prior distribution of these parameters is assumed to be a gamma distribution 

with shape and rate parameters a and ;!oj respectively. These prior parameters can 

be chosen as follows. If X rv f( a, ;3) then it can be shown, using moment generating 

functions, that 

lE[log(X)] = 1jJ'(a) log(;3) 

and 

var[log(X)] = 1jJ"(a), 

where 1jJ' and 1/J" are the di-gamma and tri-gamma functions respectively. yAle set 

the mean to zero and the variance to 3,5 and 20 and solve the above simultaneous 
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equations for 0: and /3. \iVe use the maximum likelihood values derived above as 

starting values for parameters (m;j, aj, b;, v). 

Stage 1: Update n 

The first stage in the model fitting process is to sample from the conditional distri

bution of the missing counts given the current response parameters (m;j: aj, b;: v): 

i.e we sample from the following multinomial distributions 

nij21 rv Multinomial(71+j21) P(Y1IY2, Rl = 2, R2 = 1)) 

71;j12 rv "Uultinomial(nH12, P(Y2IY1, Rl = 1, R2 = 2)) 

n;j22 rv lUu.ltinomial(71++22, P(Y2 , YlIRl = 2, R2 = 2)). 

The second stage is to Gibbs sample from the posterior distributions of the response 

parameters given the new augmented cell counts n. Assuming a gamma prior distri

bution for all parameters the posterior distribution are known, tractable and given 

as follows: 

m;j rv f(o: + L nijkl, /3 + 1 + aj + b; + ajb;g) 
kl 

aj rv f(o: + L n;j21,;3 + L m;j(l + big)) 
il 

b; rv r(o: + L nijk2,;3 + L m;j(l + ajg)) 
jk j 

V rv f(o: + L 71ij22,;3 + L m;jajb;). 
ij ;j 
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Sampling in turn from stages 1 and 2 produces a dependent sample from the joint 

posterior of the model parameters and missing cell counts given the observed data 

nabs' ,;Ve can readily produce point estimates of 7Tll++ together with a plot of the 

posterior density 7Tll++ given the observed data nabs. This plot is given in Figure 4.3 

for (]"2 = 3,5 and 20. For reference, MC\:JC output plots have also been plotted. All 

results are based upon a generated sample of 25000 iterations. The posterior means 

for the three prior distributions are 0.868, 0.865 and 0.856. As we would expect 

these means are in general agreement with the maximum likelihood estimate. 

4.2.2.5 A Comparison of the Parameterisations 

The above subsections illustrated the ease at which non-ignorable models are created 

and fit. ~·:Jaximum likelihood estimates are sometimes directly available. If this is 

not the case, then :\1LE's are easily obtained using the EI'v1 algorithm. Posterior 

distributions of parameters of interest are easily generated using simple, but effective, 

Markov chain ~10nte Carlo algorithms. 

The only advantage of the multiplicative parameterisation is the ease at which we 

can sample from the resulting tractable posteriors using the Gibbs sampler. 

\Ve adopt the additive parameterisation as it is more natural than the multiplicative 

parameterisation of Baker et al. (1992). This parameterisation allows us to use the 

techniques of Chapter 3 when attempting to discriminate between the competing 

non-ignorable non-response models. 

4.3 Model Selection with Missing Data 

There are many different non-ignorable models that can be fit to the Slovenian 

plebiscite data. Each model specifies both the data generating process and the 

missing data mechanism, and each model may provide vastly different estimates of 

the parameter of interest. Consider Table 4.4 containing estimates of the posterior 
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Figure 4.3: MCMC output plots. Plot (a): Posterior density of 7rll++ under Y1Y2 + 
RIR2 + Y1R 2 + Y2R1 : - (J2 = 3, - (J2 = 5 and - (J2 = 20. P lot (b): A running 

estimate of the posterior mean for the distribution of 7rll++ under Y1 Y2 + RIR2 + 
YiR2 + Y2R 1 : - (J2 = 3, - (J 2 = 5 and - (J2 = 20. Plot (c): Auto-correllelogram of 

7rll++ Markov chain iterates (J2 = 3. Plot (d): Partial auto-correllelogram of 7rll++ 

Markov chain iterates (J 2 = 3. 
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mean for 9 different log-linear models. These models are equivalent to those given 

in I\lolenberghs et al. (2001). 

Table 4.4: Estimates of the proportion 1f attending the plebiscite and voting for 

independence, following from fitting the models of Baker et al. (1992) within a 

Bayesian framework. 

Number I\10del 7r (a2 = 3) 7r (a2 = 5) 7r (a2 = 20) 

1 YiY2 + RIR2 0.892 0.892 0.892 

2 Y1Y2 + RIR2 + YiR2 0.882 0.881 0.881 

3 Yi Y2 + RIR2 + Y2R1 0.884 0.884 0.884 

4 Y1Y2 + RIR2 + Y2R2 0.832 0.82 0.827 

5 1~Y2 + RIR2 + YiRl 0.772 0.765 0.768 

6 Yi Y2 + RIR2 + YiRl + YiR2 0.769 0.764 0.767 

7 YiY2 + RIR2 + Y2Rl + Y2R2 0.812 0.81 0.805 

8 YiY2 + RIR2 + YiRl + Y2R2 0.742 0.715 0.736 

9 Y1Y2 + RIR2 + YiR2 + Y2Rl 0.868 0.868 0.868 

Modell is I\ICAR, and of the 9 models in Table 4.4 it is the only ignorable non

response model. I\10dels 8 and 9 are non-ignorable non-decomposable graphical 

models. Model 8 asserts that response to a question is due to the answer that 

would have been provided by that question. \Vhilst model 9 is CI asserting that 

the response to a question depends on the answers to other questions. The two 

models provide entirely different estimates of 1f11++' If we assumed a normal prior 

distribution for j3 with variance given by a 2 = 3 we obtain estimates 0.742 and 

0.868 for models 8 and 9 respectively. These estimates lie within the crude opti

mistic/pessimistic interval and indeed the election result (0.885) is contained within 

both 95% credible intervals. In the following section we attempt to discriminate 

between the competing non-response models. 
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4.3.1 Notation and Prior Distributions 

\Ve proceed as in Chapter 3. The four factors of interest here are Yl, Y2 , Rl and 

R2 . A saturated component for the data (Y1 Y2 and all implied lower order terms) 

is included in all models under consideration. \Ve also include the generator R1R2 . 

Thus the simplest model, in terms of numbers of parameters, is the ignorable model 

corresponding to I'vlCAR. These terms are included as we are interested in the in

teractions between Y and R. 

Each model, indexed by Tn, specifies that nijkl is independently distributed according 

to a Poisson random variable with mean IE [nijlk] = {LijkZ. For all models under 

consideration we use the logarithmic (canonical) link function 

The log-likelihood for observed and augmented counts n = {nijkl} is gi'ven by 

In the absence of any strong prior information we assume 

and all models equally likely. \\le assume that each of the non-response mechanisms 

is equally likely to have generated the data. Finally we set a2 = 3. 

4.3.2 Data Augmented Reversible JUlnp MCMC 

There are numerous difficulties associated with implementing the reversible jump 

scheme. The space we intend to explore is vast and strong correlations exist between 

augmented data counts, coefficients and model indicators. Proposal distributions of 

reversible jump algorithm discussed in Chapter 3 depend critically upon the data 

which in this instance is only partially observed. The task is onerous. If we were 
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required to fit a single non-ignorable non-response model a plausible move type, 

and one that would improve the mixing of the ?-.1arkov chain, is to simultaneously 

update both (3m and n. This move is illustrated below (stage 2). However, when a 

move proposes to simultaneously switch models and update n it is hard to ensure 

the reversibility condition as the proposal distribution for additional parameters is 

permitted to depend on n. After some experimentation the following scheme was 

adopted. 

Assume the state of the :~vlarkov chain at time t is ((3m, m, n), where n denotes a 

full cross classification of observed and augmented cell counts. Proceed as follows 

Stage 1: Update (3m using the I\1etropolis-Hastings algorithm 

Generate z uniformly from {I, 3} and generate a proposed value (3P from 

Npm ((3m, ;c(XTW X)-l). (4.3) 

Scaling of the proposal variance allows 50% of moves to be, on average, further away 

from the current parameter values of (3m' 

Define W to be a 16 by 16 matrix with diagonal n and zero otherwise. 

Stage 2: With probability 0.2 simultaneously update (3m and n 

Generate z uniformly from {1,3} and sample from the following distribution to 

obtain a proposed value (3fn 

Given (3fn calculate P(YlIY2,R1 = 2,R2 = 1),P(Y2IYl,R1 

P(Y2 , Y1IR1 = 2, R2 = 2). Using these probabilities sample from 

nfj21 rv Jfultinomial(n+j21, P(Y11Y2, Rl = 2, R2 = 1)) 

nfj12 rv Afultinomial(ni+12, P(Y2 IY1, Rl = 1, R2 = 2)) 

nfj22 rv "~lultinomial(n++22' P(Y2, Y1IR1 = 2, R2 = 2)). 
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Accept the proposed move to (j3fn, n P ) with probability 

where 7r is the multinomial distribution function. 

Stage 3: \Vith probability 0.1 perform a data augmentation step 

Given j3m calculate P(YiIY2, Rl = 2, R2 = 1), P(Y2/Yl, Rl = 1, R2 = 2) and 

P(Y2 , Y1IR1 = 2, R2 = 2). Using these probabilities sample from the above multino

mial distributions to obtain a new value of n = {nijkl}. 

Stage 4: Reversible jump birth or death move 

With equal probability propose a birth or death step as detailed in Chapter 3. 

The variety of above moves will improve the mixing of the Markov chain. 

4.3.3 Results and Discussion 

\Ve ran the Markov chain for a total of 10 million iterations. Since traversing the 

joint parameter space was extremely slow, we sampled every 500th iteration. This 

provided 20,000 generated l\farkov chain observations for analysis. 

In total 11,8% of proposed model moves were accepted with the Markov chain vis

iting 39 models. Twenty three of these models had a posterior probability greater 

than 0.02. The first 6 of these are given in Table 4.5. The 'close to ignorable' 

model has a posterior probability of approximately 0.01, The posterior distribution 

is fairly flat across the model space. This suggests there is little, or no, information 

with which to compare models and therefore missing data mechanisms. \Ve note 

that all models in Table 4.5 are over-parameterised and all provide a perfect fit to 
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Table 4.5: Posterior model probabilities for Slovenian plebiscite data 

~lodel Posterior Probability 

Y1't2R2 + YrR1R2 0.064 

Y1Y2R1 + YrY2R2 + YrR1R2 + YrR1R2 0.064 

Y1't2R1 + Y1 Y2R2 + Y1R1R2 0.052 

Y1't2R1 + YrY2R2 + Y2R1R2 0.051 

Y1Y2R2 + YrR1R2 + YrR1R2 0.041 

Y1't2R1 + Y2R1R2 0.040 

the observed data. Table 4.6 provides posterior inclusion probabilities for each of 

the interactions not in the ~\lCAR model. Since many of the models in Table 4.5 

contained a large number of terms, these inclusion probabilities are mostly greater 

than a half. 

Table 4.6: Slovenian plebiscite data: Posterior inclusion probabilities. 

Term Inclusion Probability 

YrR1 0.91 

't2R1 0.83 

Y1Y2R1 0.47 

Y1R2 0.85 

Y2R2 0.95 

Y1Y2R2 0.52 

Y1R1R2 0.50 

't2R1R2 0.49 

Figure 4.4 provides diagnostic plots for the parameter of interest 7111++. The poste

rior distribution is given in plot (a). This distribution covers a large range of values. 
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The model averaged posterior mean is 0.797, and a 95% credible interval is given 

by (0.698,0.892). The auto and partial correllelogram, plots (c) and (d), give an 

indication of the algorithms performance. \Ale observe a strong correlation between 

successive values of iTll++ produced by the ?v1arkov chain. This is in spite of heavy 

thinning. 

The plot of the running estimate of iTll++ is also a little ·worrying. It seems that the 

~vIarkov chain has taken considerable time to converge to a stationary distribution, 

if it has converged at all. 

Figure 4.5 provide plots for the augmented cell count n2112. The plots are fairly 

typical of all the augmented counts. Plot (c) (the auto-correllelogram) again hints 

at the poor mixing of the Markov chain in spite of the heavy thinning. The partial 

auto-correllelogram is slightly more promising. The posterior distribution of n2112 

is given in plot (a). The little information regarding the augmented count has come 

directly from the prior distribution (demonstrating the critical issue of the choice of 

prior distributions). This is reflected in the cell count histogram. The distribution 

of the cell counts gives posterior weight to large interactions hence the resulting 

posterior model probabilities. Had Ive any reasonable prior information, either in 

the form of prior model probabilities or prior cell probabilities, the abuve analysis 

may prove interesting. 

Most model selection procedures are based on a combination of parsimony and 

goodness of fit to the observed data. All models in Table 4.5 provide a reasonable 

fit to the observed data, and provide similar predictions for P(YIR1 = R2 = 1). 

This is also true for the :tvICAR and .:'lIAR models detailed earlier in the chapter. 
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However, \ve should not discard all models in Table 4.5 in favour of l'vlCAR on the 

basis of parsimony since, had we fully observed the data these less parsimonious 

models may have provided a better description of the full data. 

On the basis of the partially observed data, we are not able to distinguish between 

conditional independence structures defined by the non-ignorable models. \Ve are 

not able to describe the missing data mechanism. In particular, we have no infor

mation to determine if the missing data mechanism is ignorable or non-ignorable. 

These conclusion were also noted by Forster and Smith (1998) who questioned 

whether model comparison procedures based upon the observed data were appro

priate. 

4.4 A Model Based Approach to Sensitivity Anal-
. 

YSIS 

There is an enormous discrepancy in the way in which the models contained in Table 

4.4 treat the missing data. Each model specifies a different non-response mechanism, 

and each provides a different posterior estimate for the quantity of interest. These 

estimates range from 0.742 to 0.892 when (72 = 3. In the previous section we at

tempted to discriminate between competing models using a reversible jump Markov 

chain '\lonte Carlo scheme to provide approximations to the marginal likelihoods. 

\Ve concluded that there was insufficient information with which to compare mod

els and, in particular, we do not have the information to determine if the missing 

data mechanism is non-ignorable. The approach (comparing hierarchical log-linear 

models for the joint distribution of the data and response indicator) has been con

sidered by Baker and Laird (1988), Forster and Smith (1998) and l\lolenberghs et al. 

(2001), although in a less formal setting. Forster and Smith (1998) reached similar 

conclusions to those presented within. Since the data provide such little informa-
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tion concerning the non-response mechanism any additional information is useful. 

This information can take the form of previous poll and election results together 

with expert information. Our approach is therefore to introduce parameters which 

control the extent of non-ignorability into a single model for the observed data. The 

sensitivity of quantities of interest (7111++) is then considered relative to realistic 

a-priori changes in these parameters. Examples of this approach can be found in 

Little (1982), Kadane (1993) and Forster and Smith (1998). 

4.4.1 Incorporating Uncertainty about Ignorability 

Our starting point is not the MAR model of Rubin (1976), but instead the close to 

ignorable log-linear model with terms 

This model was introduced in Section 4.2.2.3. It states that response to a particular 

question is allowed to depend upon the answers to other questions. ,Ve would like 

to analytically compare this model to Rubin's ]'I1AR but, since \IAR does not have 

tractable likelihood estimates, a direct comparison is problematic. Both models 

provided an adequate fit to the Slovenian plebiscite data, and both models provide 

an estimate of 'if11++ close to the plebiscite result. To draw a meaningful comparison 

suppose we had observed the poll data table below. The data is identical to Table 

4.2 with the exception that marginal counts 111+12 and 111+12 have been set to zero. 

I'\ow, a tractable estimate for 7111++ is available under both models. Consider firstly 

the non-ignorable model. Through a similar argument to Section 4.2.2.3 it can be 

shown that 

11 + nllll (11 + n+ 121
11 ,) 

AMLE ·1111 nl+ll +121 n++21 ++22 
7111++ = 
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Independence 

Attendance Yes No Don't Know 

yes 1439 78 159 

no 16 16 32 

Don't Know 0 0 136 

Now, under the MAR assumption 

11 + nllll 11 
1111 n1+11+121 

11++11 + 11++21 

From which it is seen that 

;;,.MLE _ ,MAR + (1 ) 11,1111 11+121 
"11++ - a 7T11 ++ - a -----, 

111+11 11++21 
( 4.4) 

where 

11++22 1 - a = ------'--'-----

Clearly if 11,++22 = 0 then irffi~ = irff~~. The principal difference between the 

two models, is therefore the handling of individuals who did not respond to either 

question. These individuals contribute the following sum to the estimate of 7T11++ 

under the non-ignorable model when compared to l\lAR. 

P(R
1 

= R2 = 2) nlll1 11,+121 . 

111+11 11,++21 

This follows directly from (4.4). Had we observed data identical to Table 4.2 with 

marginal counts for 11,++22 set to zero, then irffi~ = 0.894 is almost identical to the 

approximation obtained under the MAR model. It is reasonable to believe therefore 

that the two models \\;"ill differ substantially when 11++22 is large in comparison to 
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other observed counts. If this were the case, it would not be sensible to completely 

ignore the majority who failed to respond to both questions and hence an estimate 

based upon ~1AR might be misleading. \Ve thus consider the model YlY2 + RIR2 + 

YlR2 + ~RI as our starting model. 

This 'close to ignorable' log-linear model has the following graphical representation. 
YI RI 

Since the graph contains a 4-cycle, it is not a decomposable graphical model. That 

said, maximum likelihood estimates for the parameters of the model are found easily, 

because of the missing data, and the model is easily fit within a Bayesian framework. 

This model implies the following conditional independence structures: 

Yd.l..R I IY2 , R2 

Y2JJ..R2 IYI, R I · 

The first conditional independence statement implies that V ~,R2 

with a similar expression for given as follow for the second statement. That is, 
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\Ve can use these log-odds ratios to represent the prior belief in non-ignorability. 

For example, any inference is going to be sensitive to the conditional independence 

assumption Ydl .. R 1!Y2 , R 2 . Allowing a departure from this assumption allows miss

ingness on Y1 to be dependent to the answer that would have been provided on 

Yr. We incorporate this departure from non-ignorability by including the terms 

YrRl + Rl Y1 Y2 + Y1R1R2 in the 'close to ignorable' model, indicated by dashed edge 

in the graph below. 

The augmented model is graphical and decomposable. This augmented model main

tains the second conditional independence (Y2Jl.R2 !Yl, Rd. 

4.4.2 Markov Chain Monte Carlo and Results 

Our augmented model specifies that nijkl is independently distributed according to 

a Poisson random variable with meanlE[nijlk] = /-lijkl. Again, we use the logarithmic 

link function together with the additive parameterisation. The augmented model 

can therefore be written as follows 

10g(J-L) = X(3 + Z,,/ (4.7) 

\Vhere X and Z are design matrices corresponding to the 'close to ignorable' and 

non-ignorable parameters respectively. Parameter vectors (3 and "/ are assumed 

unknown, and we assume that 

(3 '" Np(O, (j2Ip) 
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and 

(4.8) 

Again we set (}2 = 3. It is clear that ]J = 9 and q = 3. The parameter 0: controls 

the extent of non-ignorability. Since P(Yi. = 1, Rl = 1!Y2 , R2 ) is a product of log

normal variables it follows that P(Yi. = 1, Rl = 1!Y2, R2) is also log-normal. Thus 

exp(¢(Y1 ,R1 !Y2 ,R2 )) is log-normal and hence ¢(Y1 ,R1 !Y2 ,R2 ) is normal. In fact 

,\'here ()¢ = 40: is obtained by directly considering (4.7) and (4.8) above. The 

variance of ¢ is therefore controlled through the specification of 0:. \iVhen 0: = 0.345 

(}dJ = 1.38 and hence ¢ lies in the range [-2.71,2.71] with 95% probability. Since the 

posterior distribution is intractable we use the following Markov chain to generate 

dependent samples from the posterior distributions of f3 and 'Y. 

1. Metropolis-Hastings component-vv"ise update for each of the 11 parameters 

2. ;"'letropolis-Hastings block update of the close to ignorable parameters 

3. Metropolis-Hastings block update of the non-ignorable parameters 

4. Data augmentation step 

This scheme will produce a dependent sample of observations for our analysis. For 

0: fixed in the range [0,0.345] and hence ()¢ E [0,1.38]. The above scheme was run 

for a total of 2.5 millions iterations retaining every 50th iterate for analysis. Even 

for 0: = 0.345 (() ¢ = 1.38), diagnostic plots provided evidence of adequate mixing of 

the I\larkov chain. 
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F igure 4.6: P lot (a): Posterior density of 7r11++ for augmented model corresponding 

to ¢(YI , R I /Y2 , R 2) i= O. Prior parameters iJ2 = 3, iJ<I> = 0 - , iJ<I> = 0.35 - , 

iJ<I> = 0.7 - and iJ<I> = 1.38 - . Plot (b): Posterior density of 7rll++ for augmented 

model corresponding to ¢(Y2, R2 /Yl, R I ) i= O. Prior parameters iJ2 = 3, iJ<I> = 0 - , 

iJ<I> = 0.35 - , iJ<I> = 0.7 - and iJ<I> = 1.38 - . Plot (c): Sensit ivity of 7r11++ to ex for 

missingness on R I . Solid line represents the posterior mean , whilst the dashed line 

represent a 95% credible interval. Plot (d): Sensitivity of 7r1l++ to ex for missingness 

on R2 . Solid line represents the posterior mean , whilst the dashed line represent a 

95% credible interval. 
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Figure 4.6 presents the marginal posterior mean and 95% credible intervals of 1Tll++ 

plotted against O"¢ for the two augmented models. The means are stable across 

O"¢. As expected the posterior variances of 1Tll++ are highly sensitive to O"¢. The 

effect of increasing 0" ¢ on the posterior variance is most marked for the case where 

¢(Y1, R 1 1Y2 , R2 ) is allowed to vary from O. It is intriguing to note that as O"¢ varies 

from 0, the posterior density is no longer unimodal. 

4.5 Extension to the Three-Way Table 

We return to the original data set presented in Rubin et al. (1995) and given in Table 

4.1. For the third question of interest (Are you in favour of Slovenia's secession from 

Yugoslavia?) we introduce the response indicator R 3 . The fully observed data now 

forms a 26 table with counts nijklmn for i,j, k, l, 711, n E {1,2} where, for example, 

n111111 denotes the number of respondents with Y1 = 1. Y2 = 1, Y3 = 1, Rl = 1, R2 = 

1 and R3 = 1. Hence nll1111 = 1191. As before, we do not observe all 64 counts. 

Only 8 counts, corresponding to nijk11 1 , are fully observed together with 19 partial 

counts. 

The :MAR assumption does not correspond to a log-linear model for the three

way table, as is the case for the two-way table. The likelihood function has a 

similar parametric form to that given in Section 4.2.1. Again this model has the 

peculiar feature that the probability of missingness on Y1 , Y2 and Y3 is not allowed 

to depend on Yi, Y2 or }3, whilst the probability of missingness on Y1 where Y2 

and Y3 are provided is permitted to depend on Y2 and Y3 . The likelihood is easily 

maximised, using the EM algorithm, providing a maximum likelihood estimate of 

Tt111+++ = 0.883. 

The 'close to ignorable' is composed of the following terms 
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Once more, the model is saturated for the data. There are 8 parameters for the 

complete data and 19 parameters for the missing data mechanism. A corresponding 

multiplicative parameterisation is available and given in Appendix B. Using this 

multiplicative parameterisation it is possible to derive as analytical form of the 

maximum likelihood estimate of 7111+++++' This is also shown in Appendix B. Under 

this model the maximum likelihood estimate for 7111+++++ is 7T11+++++ = 0.8543. 

Figure 4.7 provides posterior distributions of 71111+++ obtained using a simple Markov 

chain Monte carlo algorithm. The posterior means are approximately 0.85 for the 

three prior distributions. It is our belief that the result for the 'CI' model differs 

from MAR primarily as a result of those individuals failing to provide an answer to 

all three questions. This is unverifiable due to nature of the ::\1AR assumption. 

It is also possible to obtain estimates of posterior model probabilities using RJl\·1-

CMC. \Ve do not implement this approach partly because of the computational 

expense, but moreover because there is little information contained in the missing 

counts with which to compare models. In the two way case we found that if a prior 

for the model space permitted almost any model then a posterior credible interval 

for 71 covered the pessimistic/optimistic range. \Ve thus proceed immediately with 

a sensitivity analysis. 

The 'close to ignorable model' has the following graphical representation 
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Figure 4.7: MCMC output plots for the Slovenian plebiscite data, three ques

tions, close to ignorable model. Plot (a): Histogram of the posterior distribu

tion of 71111+++' Plot (b): A running posterior mean of 71111+++' P lot (c) : Auto

correllelogram of 7Illl+++ ' Plot (d): Partial auto-correllelogram of 7Illl +++ ' 
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The graphical is not decomposable for the full data since there are three four-cycles. 

These four-cycles, {Yi. Y2 , RIR 2 }, {Yi, Y3, R IR3} and {Y2 , Y3, R 2R3}, induce the fol

lowing conditional independencies 

YdlRI !Y2, R 2 , Y3) R3 =? ¢(Yi, RI !Y2Y3R2R3) = 0 

Y2llR2!YI , RI , Y3) R3 =? ¢(Y2 , R2!YIY3R I R 3) = 0 

Y3llR3!Yi, R I , Y2 , R2 =? ¢(Y3, R3!YIY2RIR2) = o. 

To allow these conditional independencies to depart from zero, and hence a departure 

from ignorability, we consider the model with the additional edge (together with 

appropriate terms) corresponding to the log odds ratio. These edges are shown 

as dashed edges in the above graph. For example if we wished to allow the first 

log odds ratio to depart from zero we include the dashed edge corresponding to 

the terms RIYi, R 1YiY2 , RIYIY3 and RIYIY2Y3. This new model is not graphical 

since the YI R I R2 interaction is not included. If we assume these parameters are 

a-priori independent and identically normal with mean zero and variance a 2
, then 

the distribution of the log-odds ratios is also normal with 0" ¢ = 8a. This value for 
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CJrp is derived through similar reasoning to the two-way case. A Markov chain for 

exploring the posterior distribution was constructed in an identical fashion to the 

two-way case. Figure 4.8 presents the marginal posterior mean and 95% credible 

intervals of 7111++++ plotted against a for the all three augmented models. The 

means are stable across CJ¢. As expected the posterior variances of 7fll++++ are 

sensitive to CJ¢. The effect of increasing CJ¢ on the posterior variance is most marked 

for the case where ¢(Yi, R1 IY2Y3R2R3 ) is allowed to vary from 0, and least marked 

when Y3 ..l..lR3 1Y1, R1, Y2 : R2 f. O. 

4.6 Closing Remarks 

In this chapter we have presented a collection of statistical techniques for inference 

when data, in the form of a contingency table, is only partially observed. 'vVe 

have shown that the problem of inference under such circumstances to be hard and 

that any assumptions we make concerning the missing data mechanism and prior 

information are critical. 

Frequently a single model, hence an assumption concerning the missing data, is 

selected for inferential purposes. This essentially assumes a prior model probability 

of 1 for the selected model. As we have seen, this approach may fail to capture the 

uncertainty of parameters of interest and realistic deviations from this assumption 

can greatly affect inference. 

\Ve attempted to discriminate betv,;een competing models. By successfully applying 

a data augmented reversible jump algorithm we were able to provide a measure of 

model uncertainty. For the case of the Slovenian plebiscite data we have shown 

that there is little information available to discriminate between competing models. 

Incorporating model uncertainty (we calculated a model averaged poster for the pa-
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Figure 4.8: Plot (a): Sensitivity of 7rll++++ to CTif> for missingness on R I • Solid 

line represents the posterior mean, whilst the dashed line represent a 95% credi

ble interval. Plot (b): Sensitivity of 7rll++++ to CT if> for missingness on R 2 . Solid 

line represents the posterior mean, whilst the dashed line represent a 95% credible 

interval. P lot (c): Sensitivity of 7rll++++ to CTif> for missingness on R3 • Solid line 

represents the posterior mean, whilst the dashed line represent a 95% credible in

terval. P lot (d): Posterior density of 7rll++++ for augmented models with CTif> = 1.4. 

- ¢(Y1, R1 1Y2Y3R2R3) is allowed to vary from 0, - ¢(Y2, R2IYIY3RIR3) is allowed 

to vary from 0 and - ¢(Ys, R3!YIY2R1R2 ) is allowed to vary from O. 
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rameter of interest) greatly increased the width of a 95% credible interval compared 

to selecting any single model. 

\Ve then considered the sensitivity of quantities of interest relative to realistic 

changes of the missing data assumption. \Ve permitted a-priori changes in log

odds ratios, allowing deviations from conditional independencies specified by our 

'close to ignorable' model. Inference was extremely sensitive to even small changes 

in these log odds ratios. 

To conclude, we have shown inference when data, in the form of a contingency table, 

is only partially observed to be a difficult problem. 

If prior information is available the this is easily incorporated into the inference 

process. However, resulting inferences are critical to any assumptions made and a 

sensitivity analysis should therefore be performed. 

If little prior information is available the any inference should clearly state the 

uncertainty with which the inference has been made. 
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Chapter 5 

Missing Data and Disclosure 

Control 

Statistical agencies and other organisations conducting surveys or collecting data 

may release results of these exercises to third parties. For example, the Office for 

National Statistics' may release data files from the census to academic institutions 

for secondary analysis. 

These data releases are for statistical purposes only, i.e. for making inference con

cerning groups of people differentiated by some characteristic. Statistical disclosure 

arises if the third party can disclose confidential information about the individual 

units or people, which originally provided the data. 

Suppose a national statistical agency released to an academic researcher a table 

from a survey containing information, stratified by electoral ward, on occupation, 

income and gender. The researcher knows there is only one female dentist living in 

his electoral ward and is thus able to find the dentist's income. This is statistical 

disclosure although a trivial example. 
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Clearly statistical disclosure is undesirable as it usually violates the pledge, some

times legal, of confidentiality. Furthermore, the organisation risks the loss of co

operation in future surveys if negative publicity concerning disclosure were to arise. 

As a result statistical agencies and other organisations take seriously the issue of 

statistical disclosure controL hence the growth of interest in the subject over past 

twenty years. Statistical disclosure control takes two forms. 

Firstly organisation may restrict access to the data or place stringent legal conditions 

on its use. This is called Access Control. 

Secondly, a variety of Statistical Disclosure Protection Techniques may be applied 

to the data before release to reduce disclosure risk. Categorical variables may be 

recoded to reduce the number of levels or counts omitted from released data. De

terministic or stochastic perturbation mechanisms may also be applied to the data. 

Such a technique may reduce the risk of disclosure but potentially at the cost of 

information loss. 

Good introductions to statistical disclosure control and statistical disclosure tech

niques can be found Willenborg and de \Afaal (1996) and \Afillenborg and de Waal 

(2001) and the reader is referred to these texts. 

The research within this chapter was commissioned by the Office for National Statis

tics' Neighbourhood Statistics Service. 

5.1 Introduction - Disclosure Control 

The most common problem in the field of statistical disclosure occurs when a sta

tistical agency releases data, consisting of the values of a number of categorical 

variables, on a sample of individuals from a population. One form of identification 
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risk occurs when there are sample cell counts of 1 (uniques) in the marginal table 

representing the cross-classification of individuals by a subset of key variables (those 

variables whose values in the population are available to a potential intruder from 

a source external to the released data under consideration). If the intruder can 

determine, with confidence, that a sample unique in the contingency table of key 

variables, is also unique in the population, then this individual can be identified 

and the data release allows disclosure of the values of the remaining variables for 

this individual. A variety of risk measures for this problem have been proposed 

by Skinner and Elliot (2002) and an approach for the accurate estimation of these 

measures discussed in Forster and Webb (2007). 

\iVithin this chapter we examine a slightly different disclosure problem. 

Suppose a statistical agency makes publicly available a number of key data sets 

stratified by an area such as an electoral ward. Suppose these data sets take the 

form of a series of multi way margins of a larger cross-classification. 

For example, a statistical agency might release data concerning all recipients of 

a particular benefit living within a given electoral ward. Suppose further that this 

data is the table corresponding to the cross classification of these individuals by age, 

gender and marital status. One form of identification risk occurs when there are 

cell counts of 1. For example there may be a single female divorcee under 18 years 

of age receiving this benefit. Information regarding this individual has therefore 

been released to any person that can identify this individual by the cross classifying 

variables. 

In order to reduce this disclosure risk categorical variables may be recoded to re

duce the number of levels, or counts omitted from released data. Deterministic or 

stochastic perturbation mechanisms may also be applied to the data. A commonly 
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used rounding method was suggested by Nargundkar and Saveland (1972) and it is 

this method which we adopt throughout the remainder of the chapter. 

Let x be the observed count to be rounded and b be the rounding base assumed to 

be a small integer. Let l x J indicate the largest multiple of b \vhich is less than or 

equal to 1;, and r x l indicate the smallest multiple of b which is greater than or equal 

to x. Then if x =1= lxJ =1= rxl round, stochastically, to obtain the count for release y. 

The count is rounded 'up' to r xl with probability 

and down to l x J with probability 

x - lxJ 
b 

rx l - x 
b 

If .1: = l x J = r x l set y = x so if a value of the cell is an integer of the rounding base 

this value is unaltered. 

For example, let b = 5. Then the probabilities for unbiased rounding are given in 

Table 5.1. 

Table 5.1: A stochastic rounding mechanism: Probabilities for unbiased rounding 

(b=5). 

Residual after Probability Probability 

dividing by b to round to r·1: l to round to l x J 
1 1/5 4/5 

2 2/5 3/5 

3 3/5 2/5 

4 4/5 1/5 
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The mechanism is stochastic and is designed so that no 'bias' is introduced. I.e 

E(y) = x where the expectation is with respect to the perturbation mechanism. 

Alternative rounding mechanisms are described in \Villenborg and de \A/aal (2001). 

One such method is conventional rounding. Here a count is rounded to its closest 

multiple of the common base. \Villenborg and de \Vaal (2001) provide an example 

where a cell and marginal counts, from a 2 x 2 contingency table, have been rounded 

to their closest multiples of 5. This example is given below. The left table represents 

the un-rounded counts and the right the rounded. 

12 9 3 

8 6 2 

4 3 1 

10 10 5 

10 5 0 

5 5 0 

If it is known that conventional rounding was used then it is possible to obtain the 

original table directly from the rounded table. For this reason conventional rounding 

is not used. If it is believed that the rounding mechanism is that of Nargundkar 

and Saveland (1972) then there are 439 different tables that could have produced 

the rounded table. 

Rounded margins of a complete cross classification are often released to reduce the 

risk of disclosure. Consider Table 5.2 consisting of individuals receiving benefit B 

in ward 'IV cross classified by age and sex where marginal counts have been rounded 

to a common base taken to be 5. 

It is desirable to assess the resulting disclosure risk prior to release. Clearly if we 

could determine the exact counts from the release rounded data, and the covariates 

contained sensitive information, then ,ve might conclude the disclosure risk was 

great. 

Another approach to assessing this risk has been to compute upper and lower bounds 

of the true cell counts, based on the rounded counts. \Vhere the difference between 
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Table 5.2: A simple disclosure example. 

Age 

< 20 20 - 29 30 - 39 40 -49 50 - 59 60+ Total 

Female 35 
Sex 

:r'I1ale 10 

Total 0 0 5 0 5 30 45 

the upper and lower bounds is large, it might be concluded that significant uncer

tainty exists about the true cell counts and hence disclosure risk is low. HmveveL it 

is possible that even where this difference is large, the data may be informative about 

the true cell count because most of the range between the bounds has a negligible 

probability of having generated the rounded data. 

If the difference between the upper and lower bounds is small or the range of a 

95% posterior credible interval is small it is not right to conclude that the resulting 

disclosure risk is large. The interval may contain large counts and therefore ?? could 

still be small. 

In this chapter we attempt to quantify more precisely the uncertainty about the 

true cell counts, given the rounded data, and attemp to provide a more reliable 

assessment of disclosure risk. The approach we take is Bayesian. Given the rounded 

cell counts (data), we aim to provide a posterior probability distribution for the 

true cell counts (parameters). Disclosure risk can then be directly assessed in terms 

of the posterior probability that a given cell count can be determined to be in a 

sensitive range (typically zero or other small values). 
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5.2 Notation 

Let x = (Xl, ... ,Xn)T be the vector of true cell counts for a particular ward. Here 

x represents the complete cross-classification by all released variables, even if only 

certain margins are released. If age (6 categories) and sex (2 categories) are released 

either as individual margins, as a cross-classification, or both, then x has 12 com

ponents. \iVe use the p x n matrix D to denote the mapping between the true cell 

counts and the true values of the released margins. For example, if x represents the 

6 x 2 cross-classification by age and sex as shown in example (5.2), and let 

1 0 0 0 0 0 1 0 0 0 0 0 

0 1 0 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 1 0 0 0 

0 0 0 1 0 0 0 0 0 1 0 0 

D= 0 0 0 0 1 0 0 0 0 0 1 0 

0 0 0 0 0 1 0 0 0 0 0 1 

1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 

Then Dx is the true value of the margins released in Ti1ble 5.2. The disclosure 

control mechanism takes the true value Dx of the margins to be released, and 

applies a random perturbation to obtain the rounded margins y = (YI, ... , Yp), for 

release. The stochastic rounding mechanism in (5.1) can be formally written down 

as follows: 

l(Dx)d with probability1 - H(Dx)i mod b] 

r(Dx)il with probabilityi[(Dx)i mod b] 

where a mod b = ala J and YI, ... ,Yn are generated independently. 
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An alternative, but equivalent formulation for this rounding mechanism is 

(5.2) 

where Zi is an integer uniformly distributed on {O, 1, ... ,b - 1}. \iVe treat the vector 

z as an auxiliary variable. 

The likelihood for model (5.1) is given by 

p [ 1 
J(ylx) = g 1 - Z;[(DX)i 

] 

I(Y;=L(Dx);J) 

mod b] 

[

1 ] I(Yi=r(Dx);ll 

x Z;[(DX)i mod bj 

XJ(Yi E H(Dx)ill(Dx);J}) (5.3) 

where the indicator function J (.) is equal to 1 if . is true and 0 otherwise. The term 

J(Yi E H(Dx)il, l(Dx);J}) in each component of the product in (5.3) defines the 

bounds on which the proposed rounding method is based. 

Bayesian inference encapsulates the uncertainty about the unknown true cell counts 

x, given the perturbed margins y by a posterior distribution J(xly), given by Bayes' 

theorem as 

J(xly) ex J(ylx)J(x) 

where J(ylx) is given by (3), and J(x) is a prior distribution representing the 

uncertainty about x prior to obtaining the data y. 

\Ve might choose a vague prior distribution for x, representing a high level of un

certainty. In this case we assume in the absence of observed data, that 

1 n 

J(x) = (k + l)n g I(xi E {O, ... ,k}). (5.4) 

In other words, we assume that the cell counts Xi are independently uniformly 

distributed between 0 and k, where k is chosen to be large. Provided that k is 
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larger than any bound likely to arise as a result of the rounding process, then the 

constraint that Xi :::; k is irrelevant for practical purposes. Later in this chapter 

we describe a Bayesian approach where information available at higher geographical 

levels of aggregation may be incorporated into a more informative prior distribution 

for x. 

Assuming the prior density given by (5.4) it is easily seen that 

p [ 1 
f(xly) (X Dr 1 - b[(Dx)i ] 

I(y;=l(D:z:);J) 

mod b] 

[

1 ] I(Yi=f(D:Z:)ill 

X b[(Dx)i mod b] 

xI(Yi E H(Dx)ill(Dx)iJ}). (5.5) 

The posterior distribution (5.5) summarises uncertainty about the true cell counts 

x, in light of rounded data y. In particular, uncertainty about an individual cell 

count is summarised by its marginal distribution, for example 
k k 

f(xlly) = L ... L f(xly)· (5.6) 

Therefore, Bayesian disclosure risk assessment involves computing unnormalised 

joint (5.5) or marginal (5.6) probabilities for true cell counts, and then normal

ising. In principle, (5.5) or (5.6) can be calculated for every x which satisfies the 

bounds 
p 

II I(Yi E H(Dx)il, l(Dx)d}) = 1. (5.7) 
i=l 

These bounds can be constructed using the method described by Fienberg (1999) or 

Dobra and Fienberg (2001). However, the number of such x can be very large. Even 

for the simple 2 x 6 example presented in Table 5.2 there are more than 10,000,000 

possible x. Thus, complete enumeration is often infeasible for even moderate-sized 

examples. \iVe therefore construct a Markov chain on the state space consisting of 

all tables which satisfy (5.7). 
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5.3 Markov Chain Monte Carlo 

For most interesting cases complete enumeration of the state space is not feasible 

and therefore the exact calculation of the joint, or marginal, probabilities for the 

true cell counts is not possible. An alternative approach is to generate a sample from 

J(xly) and use sample proportions to estimate probabilities. We shall use MC:\1C 

to generate this sample. 

5.3.1 A Gibbs Sampler with Auxiliary Variables 

One possible approach for generating from J(xly) is based on the alternative formu

lation (5.2) for the rounding process. Here, we consider the (unknown) perturbations 

z as an auxiliary variable and part of our analysis. \Ve attempt to generate from 

the joint posterior distribution J(z, xly) using a Gibbs sampler. To achieve this, we 

note that the conditional distributions J(zlx, y) and J(xlz, y) are straightforward 

to generate from and hence a Gibbs sampler is immediately available. 

Starting from xo, we generate Zl from J(zlxO, y) and then Xl from J(xlz\ y). The 

method then proceeds by iteratively updating z and x in this fashion. In fact the 

x are updated component by component with each cell count Xi being generated 

conditionally given the current values of the other cell counts. 

Given x, Zi is distributed uniformly on {max{O,Yi - (DX)i}, ... ,min{b - 1,Yi

(DX)i + b - I} }. The conditional distribution of Xi given z and Xj, j T i is uniform 

over a constrained region where the constraints are detennined by examining those 

rows of D where the value in the ith column is greater than zero. For such a row, 

denoted D j , the corresponding constraint on Xi is derived from 

However, it is easy to construct an example where the Gibbs sampler is not irre

ducible. Suppose that just two margins of a 2 x 2 table are released, both rounded 
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to base 2, and that they are (0,0) and (2,2). The only two tables that could have 

generated these margins are (1,0,0,1) and (0,1,1,0). Transitions between these 

states is impossible using the Gibbs sampler as described above which only allows 

transitions which change a single Xi at a time. For this reason we focus on the 

~1etropolis Hastings algorithm. 

5.3.2 A Metropolis-Hastings Sampler 

It is possible to sample approximately from J(xly) using only the unnormalised 

expression (5.5) using the Metropolis-Hastings algorithm. This method generates 

dependent observations from J(xly) by simulating a Markov chain with equilibrium 

distribution J(xly). Starting with an arbitrary XO with f(xly) > 0, we represent 

the generated sample by {xO, X1X2 , ... } where Xt+l is generated from xt by first 

proposing a value x* from an arbitrary proposal distribution. Then, the proposal is 

accepted (Xt+l = x*) with probability 

(5.8) 

and rejected (Xt+l = xt) otherwise. Note that, as J(xly) appears m both the 

numerator and denominator of (5.8), the normalising constant is not required and 

(5.5) can be used. 

The difficulties are in finding a starting value XO with J(xOly) > ° and in ensuring 

that the resulting algorithm is irreducible. 

A starting value can either be identified by directly evaluating the bounds using the 

method of Fienberg (1999) or, if that is infeasible, by a stochastic search (applying 

successive proposal steps until a XO with J(xly) > ° is identified). 

To ensure irreducibility and aperiodicity, we suggest a distribution which proposes 

modest perturbations to x, through 

(5.9) 
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where E has a discrete distribution. The set of moves E can be constructed from a 

set of independent Poisson random variable as discussed in Section 5.7. 

5.4 An Artificial Example 

In order to illustrate the approach we return to example (5.2). Upper and lower 

bounds for cell counts are easily calculated for this table and are given in Table 

5.3. Although many of these bounds contain zero, the differences between upper 

Table 5.3: Upper and lower bounds for example (5.2). 

Age 

< 20 20 - 29 30 - 39 40 -49 50 - 59 60+ Total 

Female [0,4] [0,4] [0,9] [0,4] [0,9] [13,34] 35 
Sex 

?11ale [0,4] [0,4] [0,9] [0,4] [0,9] [0,14] 10 

Total 0 0 5 0 5 30 45 

and lower bounds are wide. Therefore, the table may be considered safe for release. 

However, for many cells there may be much more information available from the 

posterior distribution than from the bounds alone. \Ve calculate the posterior dis

tribution using the Metropolis-Hastings algorithm described in the previous section. 

In this case a starting value is easily identified. The posterior distributions for the 

female cell counts are give in Figure 5.1, and for males Figure 5.2. 

These probabilities are based on 1 million iterations which took no more than three 

minutes to produce, and with over 50% of proposed moves being accepted. In prac

tice 10,000 iterations for a table of this size may suffice. \Ve may only be interested 
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Figure 5.1: I\iarginal posterior distribution of cell counts, artificial disclosure exam

ple (5.2), female counts. 

in an estimate of the cell probabilities up to two decimal places, to decide whether 

releasing the table would be disclosive with respect to some measure. Hence this 

approach is practical. It is easily seen that posterior distributions are more informa

tive, and that using bounds alone may give a potentially misleading impression of 

the disclosure protection provided by rounding. For example, the probability that 

cell count 1, corresponding to females under twenty, is greater than two is around 
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0.1. 

Figure 5.3 displays typical I\1CI\1C output plots. The first 25,000 data points have 

been used only, with the data additionally being thinned so that only every 10th 
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Figure 5.3: MCMC output plots. Artificial disclosure example (5.2), female < 20 

cell. Plot (a): Trace [plot of cell count. (b): Trace plot of cell posterior mean. 

(c): Auto-correllelogram of cell count Markov chain iterates. (d): Partial auto

correllelogram of cell count Markov chain iterates. 

observation is used. All plots illustrate good mixing with no sign of poor conver-

gence. 

Table 5.4 gives the posterior bounds according to cells with a posterior probability 

greater than 0.05. In this example, posterior bounds are reasonably wide and this 
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Table 5.4: Posterior bounds for the simple disclosure example, cell counts with 

greater than 5% posterior support. 

Age 

< 20 20 - 29 30 - 39 40 -49 50 - 59 60+ Total 

Female [0,3] [0,3] [0,6] [0,3] [0,6] [22,30] 35 
Sex 

Male [0,3] [0,3] [0,5] [0,3] [0,5] [0,7] 10 

Total ° ° 5 ° 5 30 45 

can partly be attributed to large number of individuals in the table (a minimum of 

41). 

5.5 Incorporating Prior Information 

Prior information in the form of a released table at a higher geographical level may 

be available and easily incorporated into any analysis. Returning to example (5.2), 

suppose Table 5.5, consisting of individuals receiving benefit B in authority A, was 

also released (here "ward W is contained in authority A). Although the margins of 

Table 5.5 have also been rounded, the large cell counts in the table mean that the 

effect of this rounding is negligible when considering relative marginal proportions. 

An informative prior for the cell counts can be constructed in the following hier

archical way. At the first stage the Xi are assumed to have independent Poisson 

distributions with mean mHi. At the second stage m is assumed to be uniformly 

distributed on the interval [0, A1], for 111 large. A prior density for 7r = (HI, ... , iln) 

is given by 
p n 

f(7r) ex II(D7r)fi IIiI~i-1 (5.10) 
;=1 ;=1 
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Table 5.5: A Disclosure Example with information at a higher geographical level. 

Age 

< 20 20 - 29 30 - 39 40 - 49 50 - 59 60+ Total 

Female 4620 
Sex 

Male 2240 

Total 185 1030 1120 820 780 2915 6855 

where 0: = (0'1, ... , O'p ) reflect prior belief concerning the relative sizes of the released 

margins, obtained from the authority level data. u = ('III, ... ,un) reflect prior belief 

concerning the relative sizes of the cells. There is little information concerning the 

sizes of the cells in data from the authority level. For this reason we select 'IIi 

to be 1 resulting in a non-informative uniform Dirichlet prior. The overall prior 

density mimics a multinomial likelihood, with the O'i parameters representing 'prior 

counts' in the released margins. The overall magnitude of the O'i parameters reflects 

strength of prior belief. As we do not expect a ward to exactly reflect the authority, 

the values of the O'i parameters are generally set to be smaller than the released 

district-level counts, but with the relative values preserved, at least approximately. 

If the O'j are given integer values, with consistent sums over overlapping margins, 

then computation with this prior is particularly straightforward. It can be set up as 

a missing data problem where the O'i are thought of as aggregated prior cell counts, 

with the actual prior cell counts included in a MC}\1C sampling scheme. Let 

Dz = 0: (5.11) 

for pnor cell counts z = (Zl,"" zn). \Ve are interested in the joint posterior 

f(x, z, m, 7rJy) and margins thereof. This posterior density is given by 
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f(x, z, m, 7rIY) ex: f(Ylx)f(xlm,7r)f(m)f(7r)f(zl7r) 

ex: f(ylx) exp(m) [IT (m~:)~i 71~i+Zi-ll 
i=l Zz·X z· 

X I[Dz = a]l[m::; Ai]. 

This posterior density is not tractable, therefore ]\1C]\1C is used to generate from 

the posterior. Given current parameters x, 7r, m and z with data y and aggregated 

prior counts a our sampling scheme, in four stages, is as follows. 

Stage 1: Update x 

Propose a value x* from the proposal distribution described in Section 5.7. Then, 

the proposal is accepted with probability 

a(x* x) = f(Ylx*)f(x*lm,7r)q(xlx*) 1\ 1 
, f(ylx)f(xl77~, 7r)q(x*lx) 

and rejected otherwise. f(ylx) is given by (5.3), whilst f(xlm, 7r) is the likelihood 

of a Poisson distribution. 

Stage 2: Update m 

Propose a value m* = 1/1, ± 1. Then, the proposal is accepted with probability 

( 
* ) f(xlm*,7r) 

am, m = f( I ) lIm*>o 1\ 1 X1n,7r -

and rejected otherwise. Note f(mlx, 7r) ex: f(xlm, 7r) and lIm2:0 is equal to 1 if m ~ 0 

and 0 otherwise. 

Stage 3: Update 7r 

The conditional distribution of 7rIX, z, m, y is independent of m, y and has a Dirich

let distribution with parameters x + z + u. Sample 7r from this distribution 
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Stage 4: Update z 

The prior counts z have a product multinomial distribution with parameters derived 

from Q and 1r. z must be generated to satisfy the marginal constraints implied by 

Q. 

The above approach samples directly from the exact conditional distribution if 

known (Step 3), else a ~1etropolis-Hastings step is performed. This approach was 

applied to data of example 5.2 using the rounded ward margins displayed in Table 

5.5. Since the margins do not overlap we divide I:f=l Qi equally between the 2 one

way margins, age and sex. The Qi are chosen such that the marginal probabilities, 

at ward level, are preserved. The posterior distributions for the cell 'Male 50 - .59' 

are displayed in Figure 5.4. All results are based upon a run of 250,000 iterates 

storing every fifth. The black line represents the posterior distribution using the 

non-informative prior distribution given in (5.4). All other lines were obtained us

ing the informative prior distribution described above. The red line represents the 

posterior distribution with all prior aggregated cell counts set to 0 (Qi = 0). This 

is also a non-informative prior distribution hence the closeness of the black and red 

lines. The green, blue and purple lines were obtained using values of I:f=l Qi set to 

10, 20 and 40 respectively. Figure 5.4 illustrates the effect of placing a strong prior 

distribution on the cell counts. \Ve clearly see the posterior mode moving towards 

the center of the bounds, and the posterior probability of observing a zero change 

from 0.13 to 0.005 as I:f=l Qi goes from 0 to 40. For this example it is known that 

there are at least 41 individuals in the ward. In selecting I:f=l Qi to be close to 

40 we are giving equal weight to prior and observed data. As we would not expect 

a ward to exactly reflect the district, the values of Qi should in general be smaller 

than the released ward level counts. 
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Figure 5.4: Sensitivity to changes of the prior distribution of the posterior cell count 

distribution, males aged 50 - 59. Plot (a): Non-informative prior distributions. 

Plot (b): Informative prior distribution with 2:f=1 (Xi = 10. Plot (c): Informative 

prior distribution with 2:f=1 (Xi = 20. Plot (d): Informative prior distribution with 

2:f=1 (Xi = 40. 

5.6 A Real Example 

Consider the data available on the Neighbourhood Statistics website concerning 

Income Support claimants in 2000 for the Barningham and Ovington ward (Local 
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Authority Teesdale). The rounded counts are summarised in Table 5.6. \Ve assume 

the non-informative prior described in (5.4). The posterior distributions for the 

cells corresponding to coupled males, are displayed in Figure 5.5 (black line). The 

posterior distributions for the remaining 18 cells can be found in Appendix C. It can 

be seen immediately that for many cells there is much more information available 

from the posterior distributions than from the bounds alone. In particular for 5 of 

the 6 cells of Figure 5.5 the probability of a zero is approximately 0.9. Although the 

bounds indicate that the count in these cells could be as high as 4, the probability 

that it is greater than 1 is negligible (less than 1%). In this example, this behaviour 

can be partly attributed to the table being sparse. If only the rounded total (10) 

was released, the marginal posterior probability of any cell being zero, based on 

the same prior, can be calculated exactly to be 0.640. Hence, there is significant 

concentration of posterior probability at zero, due to the fact that we know there 

are relatively few individuals distributed through a larger number (24) of cells. 

For the informative prior detailed in (5.5) we considered the priors I'lith L ai values 

of (1,1,1) for the age, gender and family by working age margins. \Ve also considered 

a stronger prior where these values were doubled. \Ve would not advocate increasing 

the value of a above 6, the lower bound for the number of individuals in the table. 

There is more information concerning cell counts in the rounded marginal counts at 

ward level, than the rounded marginal counts at local authority level, and our prior 

should reflect this. The posterior distributions for these cells are also displayed in 

(5.5). The informative prior is represented by the red and green lines. It can be seen 

easily that the more informative prior has little impact on the posterior inferences. 

This is due to the fact that information is only available concerning margins, and 

that information concerning the interior of the table would need to be available for 

the prior to have a large impact. 
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Table .5.6: Income support claimants in 2000 for the Barningham and Ovington 

ward. The local authority count for Teesdale is given in brackets. 

Age 

< 20 20 - 29 30 39 40 - 49 50 - 59 60+ Total 

Female 5 (900) 
Sex 

!\1ale o (495) 

Total o (20) o (125) o (165) o (130) o (155) 10 (805) 10 

Family 

Single Couple 

:S; 60 o (485) o (110) 
Age 

2': 60 5 (660) o (145) 

10 (1140) o (260) 
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Figure 5.5: Marginal posterior cell counts for probabilit ies, male/couple in Barning

ham and Ovington. 

5.7 Markov Bases and Irreducibility 

In this section we construct the set of moves required such that the Metropolis

Hastings algorithm of Section 5.3.2 is irreducible. We begin by considering the case 

where margins, forming a decomposable graph, have been rounded to base 1. We 

then consider rounding to base b > 1. Throughout this section we shall assume that 
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any table in the support of the likelihood is also given prior support. 

5.7.1 Rounding to Base b = 1 (Dobra, 2003) 

The case for b = 1 was proven by Dobra (2003) and we therefore change our notation 

to describe his result. \Ve define a table of counts n as a k-dimensional array of 

non-negative integers. Each variable Xj, j = 1, ... , k, can take a finite number of 

values Xj E I j = {I, 2, ... , I j }. If we let I = Il X ... X I k , then a cell entry n(i) 

for i E I is the number (a non-negative integer) of individuals or units sharing the 

same attributes i. vVe denote ii a linear ordered list of these counts with respect to 

some ordering. Let D = {i 1, ... , it} be an arbitrary subset of K = {I, ... , k}, then 

nD forms a margin of n with cells iD E ID = IiI X ... X Iiz and counts 

nD(iD) = L n(iD' i). 
iEIK\D 

Margins Dl and D2 are overlapping if Dl n D2 f. 9, where ¢ is the empty set. 

Otherwise the margins are said to be non-overlapping. Clearly for k-dimensional 

tables nand n', both over Xj for j = 1, ... , k and margin D C K, we have 

(n + n')D = nD 

Furthermore if all counts of table n are zero then marginal counts of n D are zero. 

Definition 5.1. A Data Swap is an array f = f(i)iEI containing integer entries. 

That is f( i) E Z for all i E I. A data swap is not necessarily a table of counts as 

we allow f(i) < 0 for any i. 

Definition 5.2. Let D 1 , ... , Dr be subsets of K. A Data Move f is a Data Swap 

that preserves the marginal tables specified by the index sets. That is 

fD = 0 Vj E {l, ... ,r}. 
J 

A Primitive Data Move has two entries equal to 1, two entries equal to -1, with the 

remaining entries being O. 
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Denote T(D1' ... , Dr) the set of all tables that have their D1, ... , Dr marginals equal 

to the corresponding marginals of n. A data move is defined as admissible if n E 

T(Dlo ... , Dr) =? (n+ f) E T(D1' ... , Dr) and (n+ f)(i) 2: 0 for all i E I. Admissible 

moves maintain marginal counts and ensures all table counts are non negative. 

Definition 5.3. A Markov Basis MD1) ... ,Dr is a finite collection of moves that pre

serve the {D1, ... , Dr} marginals and connect any two tables that have the same 

{D1' ... , Dr}. In other words, for any table n' E T(D1: ... , Dr), there exist a sequence 

of data moves iI, ... , fs such that 

and is such that 

s 

n' -n = Lfj, 
j=l 

s' 

n + L fj E T(n)(D1, ... , Dr) 
j=l 

for 1 ::; s' ::; s. Since JH depends only on the index set IDll ... , IDr we say that 

111 is a Markov basis for T(D1' ... : Dr), where T(D1' ... , Dr) is the set of tables with 

corresponding marginal counts n Dl : ... : n Dr 

A 11arkov basis for T( D1: ... : Dr) connects any two tables with fixed marginal counts 

D1: ... , Dr through a path of tables all contained in T(D1: ... , Dr). 

To construct this ~1arkov Basis Diaconis and Sturmfels (1998) introduced an in

determinate for each cell n(i), and formed the ring of polynomials in these inde

terminates over some field. They then showed the mapping between the cell and 

marginal counts forms a ring homomorphism. Let 'P denote this mapping, and let 

Kcp be the set of tables n (elements of the ring) such that rp( n) = O. Then Kcp is the 

kernel of <p. Noting that the kernel of a ring homomorphism is an ideal, Diaconis 

and Sturmfels (1998) showed this ideal to be a Markov Basis for T(D1' ... : Dr). The 

Hilbert Basis theorem states this ideal exists and is finitely generated. Hmvever the 

union of pairwise differences of all tables in T(D1' ... : Dr) is finite and forms a non 
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minimal Markov Basis for T(D 1 , ... , Dr). Existence and finite generation is given. 

Computing a ?\1arkov Basis (finding this ideal) is very difficult (relying on results 

from computational algebra, Toric ideals and Grabner bases) and computationally 

expensive for multiway contingency tables. The basis must be constructed prior to 

running the Markov chain. vVe refer the reader to Diaconis and Sturmfels (1998) 

for further details of the construction. 

Dobra (2003) provided an alternative construction of this Markov Basis, and showed 

admissible primitive moves could be dynamically (vv'ithin chain) generated. vVe 

consider his approach in the remainder of this section before looking at applications 

to rounding based disclosure control. 

5.7.2 Decomposable Graphs 

viVe introduce some basic graph theory used throughout the remainder of this section. 

It is assumed that K = Dl U ... U Dr (All variables appear in at least one margin). 

and Drl 1;. Dr2 for all rl and r2· A graph G = (V E) has vertex set V and edge set 

E:= {(u,v) : {u,v} C Dj for some j}. 

viVe say that a set of vertices of G forms a complete subgraph of G if every pair of 

vertices in the set are connected by an edge. A graph G is complete if every pair 

of vertices is connected by an edge. A subset U E V is called a clique of G if it is 

maximally complete, i.e. if U is complete and if U C W, then lV is not complete. 

We denote by C (G) the set of cliques of a graph. 

Definition 5.4. A triple (A, B, C) of disjoint subsets of V is said to form a decom

position of the graph G = (V, E) if 

1. C separates A from B. 

2. C is a complete subset of V. 
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By recursively applying the above definition we can define a decomposable graph. 

Definition 5.5. A graph G = (V, E) is decomposable if it is complete or if there 

exists a decomposition (A, B, C) into decomposable subgraphs G AUG and G BuG 

This recursive definition ensures that a decomposable graph is one which can be 

successively decomposed into its cliques. \Ve say the set nD1 , •.• , nDr of marginals is 

decomposable if the corresponding graph G = G(D1, ... , Dr) is decomposable. The 

cliques of G denoted C (G) = {D1' ... ' Dr} form the minimal sufficient statistics of 

log-linear models. 

5.7.3 The SiInplest Decomposable Graph 

The simplest decomposable graph has two vertices and no edges. This graph is the 

independence graph associated with the 2 one-way marginal counts of a two-·way 

table. An example of such a table is given in Table 5.2. Let n = {n( i, j), (i, j) E 

I1 x I 2} be a two-way contingency table. Let f = {jil,i2,jd2 : i1 i= i2 E I 1, j1 i= 
j2 E I 2} be a primitive move defined by 

( 

-1 if (i,j) E {(i 1,j1), (i2,j2)} 

iil,i2,jd2(i,j) = 1 if (i,j) E {(i1,j2), (i2,j1)} 

o otherwise. 

(5.12) 

Then the set of all the above moves with 1 ::; i1 < i2 ::; hand 1 ::; j1 < j2 ::; h is a 

!\1arkov Basis, as defined in (5.3), for the class of tables with fixed row and column 

sums. The proof of this can be found in Diaconis and Sturmfels (1998). Of course 

we require more than just these moves to construct a Markov Chain on Table 5.2, 

since row and column sums have been rounded. 

In the following section we outline a proof (Dobra, 2003) that the set of primitive 

moves are the only moves that have to be included in a "~vlarkov basis that links all 

148 



tables with fixed marginal counts where the margins induce a decomposable graph. 

\Ve provide simple and informative examples to demonstrate this method. The proof 

is by induction, with the simple case described above the initial or base case. 

5.7.4 Dobra (2003) 

Consider a k-way contingency table with tlYO fixed marginals nDl and nD2' \\Te 

assume the graph G(Dl' D 2 ) is a decomposable graph. 

If the margins are non-overlapping (Dl n D2 = 0), the graph has vertex set {Dl' D 2 } 

and is edgeless. In this case we introduce two new variables Y1 and Y2 with level 

sets'ID1 and'ID2 respectively. The two way table that cross-classifies Y1 and Y2 has 

fixed row sums ii Dl and column sums ii D2 . Thus the set of moves described by 

Diaconis and Stunnfels (1998) and given in (5.12) for these fixed row and column 

sums is indeed a ~1arkov Basis for T(Dl' D2)' 

If the margins are overlapping (Dl n D2 f- 0) then for each jD1n D 2 E 'ID10D2 define 

a new two-way table 

which has cell entries 

for all k E Dl \D2 and l E D2 \D1. For each jD1nD2 E 'IDlnD2 this table has two fixed 

1 · . 1 jDlr'Do d jD1nD2 \1' 1 lIt t t non-over appmg margma s n Dl \D2- an n Dz \D1 ' 've lave s lown lOW 0 consruc a 

~Iarkov Basis for AfnjDlr'D2 njDlrD2 for T( njDlrD2) that preserves marginals n~r,;'2 
Dl \D2 ' D2 \Dl 

and n~XY;12. It follows therefore that a lUD1 .D2 for the set of tables T(Dl' D2 ) with 

fixed marginals D 1 , D2 is given by 

(5.13) 
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To illustrate the above idea we introduce a simple example. Consider the 2 x 2 x 2 

table that cross-classifies individuals by sex (male or female), age « 60 or 60+) and 

marital status (married or single). Firstly, suppose we release the two-way margin 

sex by age, and the one way margin marital status. A typical element of the ~1al'kov 

Basis for these released margins in given below. 

Married Single 

~1ale < 60 

Male 60+ 

Female < 60 

Female 60+ 

-1 

1 

1 

-1 

Such an element can be easily generated within the Markov chain. 'Ve would simply 

select tvm rows from the above table, and create the corresponding primitive move. 

Since the row and column totals will be maintained, the marginal counts of the 

two-way margin sex by age, and the one way margin marital status will also be 

maintained. There are 6 ways of choosing two elements from 4, hence the Markov 

basis has 12 elements. 

Secondly, suppose we release the two-way margins sex by age and sex by marital 

status. Then, the l\1arkov Basis for this set of overlapping margins is formed in 

the follOlving way. Create two new two-way tables, one for males and the other for 

females, of the cross-classification of age by marital status given below 

< 60 

60+ 

l\1arried Single 

1 

-1 

-1 

1 

Each of these tables has two fixed non-overlapping one way margins and it is thus 

easy to form a l\1arkov Basis for each individual table. A typical element of this 
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Markov Basis is given above. The l\1arkov Basis for the released margins is formed 

as the union of the Markov Bases for both male and female tables. It has 4 elements. 

Dobra's main result is proven by induction on the number of cliques of a decompos

able graph, with the above result forming the initial case. \Ve shall state, without 

proof, this result in due course. 

Definition 5.6. A tree is a connected and undirected graph without cycles. There 

is a unique path between each pair of vertices on a tree. 

Definition 5.7. Let T = (C(G),Ey) be a tree defined on the cliques of a graph G. 

Let 5 = Di n Dj for some (Di: Dj ) E E y . Let Ii = (Ki' E i) and T; = (Kj, E j ) be the 

two subtrees obtained by removing the edge (Di, Dj ) from the tree T with Di E Ki 

and D j E K j . Consider the vertex sets 

Vi = U D and V; = U D. (5.14) 

Then the tree T is said to have the star property for G and is called a junction tree 

if for every edge (Di: Dj ) E E y , (Vi \ 5: V; \ 5, 5) is a decomposition of G 

Blair and Barry (1993) proved that a graph G is decomposable if and only if there 

exist a tree on the cliques C (G) of G for which the star property holds. The following 

theorem is Dobra's main result. 

Theorem 5.1. Let C(G) = {Dl' ... , Dr} be the set of cliques of a decomposable 

graph. We let T = (C(G), Ey) be a tree having the star property on the set of 

cliques G. For every edge (Di' Dj ) E Ey consider the vertex sets defined in (5.14). 

Then the set of primitive moves associated with the decomposable graph G forming 

a Markov basis for "U{Dl •... ,Dr } is given by 

U M(Vi, Vj), (5.15) 
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where lU(Vi, Vj) is given by (5.13) 

The theorem states that it is sufficient to partition any tree with the required prop

erties in two pieces, that are further considered to induce a complete subgraph of 

G, for the purpose of generating a basis. \Ve treat these two pieces as the vertices 

of an edgeless graph. Vle construct a ~1arkov Basis for this edgeless graph using 

(5.13). Essentially (5.15) says that the set of primitive moves for a decomposable 

model with graph G is the union of the sets of primitive moves obtained from the 

two clique models induce by removing an edge (Di' Dj ) E Er . 

5.7.5 Rounding to Base b > 1 

The most trivial method for constructing an irreducible Markov chain is as follows. 

For each i E I generate two random variables. The first, denoted Ui, is generated 

uniformly from the set { -1, I}. The second, denoted ki' is generated from a Poisson 

distribution with mean given by A. The proposed move (table) is now given simply 

by 

n'=n j, 

where n is the current state (table) of the Markov chain and f(i) = Uiki Vi E I. 

Since In' - nl = In - n'l the proposal probabilities q cancel in the acceptance 

probability. If n'(i) < 0 for any i E I then this proposed move is immediately 

rejected. 

The resulting moves differ substantially from the primitive moves described by Dobra 

(2003). This is the result of relaxing the decomposability condition. If we consider 

rounding to base b = 1 and relax the decomposability condition then the resulting 

~larkov basis has a very different from to that described by Dobra (2003) (c.f. 
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Diaconis and Sturmfels (1998)). It is important to note that large ,\ may result in 

a low acceptance rate of proposed moves and chain that mixes poorly. Clearly if ,\ 

is small then we propose moves close to the primitive moves described above. 

\Ve can conjecture the type of moves the finite minimal Markov basis might contain 

by considering two tables, again denoted nand n', that differ in both marginal and 

total counts yet satisfy the same rounded bounds. In addition to the moves defined 

by Dobra we might expect two additional move types. Firstly, since the two tables 

differ in total one might expect the minimal basis to contain moves that alters a 

single table count by one. Secondly, we might also expect the minimal basis to 

contain moves that alter the marginal counts but maintain the table total. Semi

primitive moves where two table counts are altered by one (we simply add one to a 

count and subtract one from a different count) might complete the basis. However, 

proving this result has been elusive. 

To prove irreducibility, using only the three above move types, we are required to 

construct a path from a table n E T(Dl' ... , Dr) to a table n' E T(D~, ... , D~). We 

assume these tables differ in both marginal totals and table total but satisfies the 

rounding bounds. Any table that lies in the constructed path from n to n' must 

also satisfy the rounding bounds. The first stage of a proof might be to take two 

tables with differing totals and show a move between them is always possible. If 

two tables have the same table total we say these tables are 'total equivalent' and 

belong to the equivalence class [5], where 5 is the table total count. It would be 

enough to show that if n E [5] and [5 - 1] of 0 then we can construct a move from 

n to a table n' E [5 - 1]. vVe only need show one direction as reversibility of the 

Metropolis-Hastings algorithm ensures the reverse move is always possible. Consider 

the following two examples where the rounding base is assumed to be 5. The two 

examples show that it is not sufficient to augment simple ±1 moves to the primitive 

moves of Dobra (2003). However, it must be noted that the method proposed within 
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this chapter still works in both cases. 

The left hand table below, Table 5.7, represents the released marginal counts of a 

two-way table. The figures in brackets are the lower bounds of the marginal counts. 

The right hand table is the current state of the l'vfarkov chain. 

Table 5.7: An example illustrating the difficulties of constructing a 1farkov basis. 

10 (6) 

5 (1) 

10 (6) 5 (1) 6 2 

642 

220 

It is clearly not possible to subtract a count from any of the four cells without 

violating rounding constraints or creating a negative cell count. \A/e can add a single 

count to any of the four cells. However, if we add the following primitive move 

to form the table 

o 0 

o 1 -1 

o -1 1 

6 2 

651 

211 

then we can subtract 1 from the bottom right hand cell to form a new table that 

does not violate the rounding constraints. 

I t would also be sufficient to show a move from a table n E [s] to a table n' E [s + 1] is 

always possible. The following is a counter example. Consider the released rounded 

margins of the 2 x 2 x 2 x 2 given in Table 5.8 below. 
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Table 5.8: A second example illustrating the difficulties of constructing a ~1arkov 

basis. 

5 

5 

Then the following table satisfies all marginal rounding constraints. The table total 

is 26. 

Bl Bl 

Dl D2 Dl D2 

C1 1 1 1 1 
Al C2 1 1 1 1 

C1 1 1 1 1 
A2 C2 1 1 6 6 

It is not possible to add a single count to any of the cells without violating the 

rounding constraints. However the following table 

Bl Bl 

Dl D2 Dl D2 

C1 1 2 1 0 
Al C2 0 1 1 1 

C1 1 1 1 1 
A2 C2 1 2 7 6 

has a total count of 27 and satisfies the rounding constraints. Clearly the difference 

between the two tables is a move that could have been generated by the Poisson 

moves described in this section. 
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5.7.6 Algorithmic Implementation 

We adopted the following algorithm which resulted in ~1arkov chains which exhibited 

adequate mixing. At each iteration one of the following five moves was proposed 

I\10ve 1 

For each i E I generate two random variables. The first, denoted Ui, is generated 

uniformly from the set {-I, I}. The second, denoted ki' is generated from a Poisson 

distribution with mean given by A = ".4 1. Define a table f where f(i) = Uiki· 
0iEI 

Then the proposed move (table) is now given simply by n' = n + f. 

i\fove 2 

For each i E I generate two random variables. The first, denoted Ui, is generated 

uniformly from the set { -1, I}. The second, denoted k i , is generated from a Poisson 

distribution with mean given by A = 1. Define a table f where f(i) = Uiki. Then 

the proposed move (table) is now given simply by n' = n + f. 

1\10ve 3 

Generate iI, i 2 , i 3 , i4 uniformly from the set of all counts II x ... X Ik without re

placement. Then the proposed move (table) is now given simply by n' = n + f 
where 

(

-I if i = ill i2 

f(i) = lifi=i3,i4 

o otherwise. 

(5.16) 

1\'10ve 4 

156 



Generate iI, i2 uniformly from the set of all counts II x ... X Ik without replacement. 

Then the proposed move (table) is now given simply by n' = n + f where 

( 
-1 if i = i l 

J(i) = 1 if i = i2 (5.17) 

o Otherwise. 

~10ve 5 

Generate i* uniformly from the set of all counts II x ... X Ik without replacement. 

Generate 'U uniformly from the set {-I, I}. Define a table f where J(i*) = 'U and 

zero othen,,-ise. 

The probability of moves 1, 2, 3, 4 and 5 where 0.2, 0.05, 0.25, 0.25 and 0.25 

respectively. Moves 1 and 2 are differ only in the parameter A. 

5.8 Closing Remarks 

The method of rounding data for release using a stochastic mechanism has been 

studied extensively in this chapter. \iVe have introduced a novel Bayesian approach 

that can be used to quantify the disclosure risk of releasing the data. Our approach 

is to calculate the posterior cell probabilities using a l\1arkov chain. This I\1arkov 

chain produces a sample from the posterior distribution that can be further used to 

quantify measures of disclosure risk. The simple measure considered in this chapter 

was that of posterior bounds. 

The algorithm is computationally cheap to implement, and the variety of moves 

described above should result in a chain with adequate mixing properties. 

The construction of a minimal l\1arkov basis for the case where no rounding had 

been performed (rounding to base b = 1) formed the second half of the chapter. \Ve 

were unable to construct a minimal Markov basis for the case b > 1 although we 

conjectured its form. 
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Chapter 6 

Summary and Future Work 

In this final chapter, there are two questions to be considered. Firstly, what conclu

sions can be drawn from the research in this thesis. Secondly, how can the research 

be extended or applied to different statistical areas. 

6.1 Conclusions 

The aim of this thesis has been to provide a formal framework for Bayesian inference 

in several situations where data is partially observed. 

A Bayesian framework for future prediction was considered in Chapter 3. The key 

result of the chapter was the construction of an efficient reversible jump Markov 

chain Monte Carlo algorithm for generalised linear models. The algorithm enables 

the formation of a posterior predictive density and therefore the incorporation of all 

sources of uncertainty into future predictions. 

The construction of the algorithm is particularly interesting. A novel transformation 

function was introduced which resulted in a clear choice of proposal distribution. 

The resulting algorithm was not only simple to implement but also efficient and 

computationally inexpensive. Examples were presented to demonstrate these facts. 

Bayesian inference for survey data subject to non-response was the basis of Chapter 
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4. An attempt to discriminate between non-response models was conducted using 

methods developed in Chapter 3. This attempt demonstrated that a less cavalier 

approach to inference was required. 

Uncertainty about ignorability of non-response was then incorporated by introduc

ing parameters into log-linear models and integrating over the prior uncertainty 

associated with these parameters. The appeal of the method rests with the simple 

elicitation of prior information required for inference. 

Statistical disclosure control was examined in Chapter 5. In particular, we consid

ered the disclosure control technique of releasing rounded margins of a multi-way 

contingency table. A framework for posterior prediction of missing (non released) 

cell counts was constructed. Our approach was to calculate the posterior cell prob

abilities using a Markov chain. This ~![arkov chain produces a dependant sample 

from the posterior distribution which were used to quantify measures of disclosure 

risk. VvTe attempted to construct a minimal ~1arkov basis to ensure the irreducibility 

of this algorithm. This was not possible for the case where b > 1. 

6.2 Future work 

The work of Chapter 3 concentrated on the construction of an efficient reversible 

jump algorithm for generalised linear models. The ideas developed in this chapter 

can be applied in any modeling framework where a linear component is present. For 

example generalised linear models for longitudinal data or generalised linear mixed 

models. The results of Chapter 4 should also be applied to longitudinal data where 

missing data is often a common occurrence. The results pertaining to ~![arkov bases, 

presented in Chapter 5, are only valid for decomposable graphical models and for 

rounding base b = 1. For b > 1 we conjectured the form of the minimal ~larkov 

basis. Future work will attempt to prove this conjecture. 
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APPENDICES 

Appendix A: Block Matrices and Schur comple

ments 

Let lH be the following block matrix 

M = (An,n Bn,m) 
Cm,n Dm,m 

\Vhere An,n is an n x n matrix, Bn,m is an n x m matrix and so forth. The determinant 

of matrix A1 is given by 

(1) 

Let SA define the Schur complement of matrix A. This is given as follows 

The following result for the inverse of matrix 111 holds 

(2) 
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Appendix B: Supplementary Results for Missing 

Data Chapter 

Continuing with the notation of Chapter (4), section (4.2.2.3), for the 26 contingency 

table define cell means as follows 

R2 = 1 mijk mijkaijk 

R2 = 2 mijkbijk mijkaijkbijkgijk 

Of course we do not observe all 26 = 64 counts. Instead we observe the counts given 

in table (4.1). If sum-to-zero constraints are used 'we have the following equivalences 

gijl~ corresponds to RIR2 + RIR2Yr + R1R2Y2 + R1R2Y3 + R1R2YrY2 + R1R2Y2Y3 + 
R1R2Y1Y3 + RIR2YIY2Y3 

Vijk corresponds to RIR3 + R1R3Y1 + R1R3Y2 + R1R3Y3 + RIR3Yr Y2 + R1R3Y2Y3 + 
R1R3Y1Y3 + R1R3Y1YzY3 

]Jijk corresponds to R2R3 + R2R3Y1 + R2R3Y2 + R2R3Y3 + R2R3Y1 Y2 + R2R3Y2Y3 + 
R2R3Y1Y3 + R2R3YIY2Y3 

tijk corresponds to RIRzR3 + R1R2R3Y1 + R1R2R3Y2 + RIR2R3Y3 + RIR2R3YIY2 + 

RIR2R3Y2Y3 + RIR2R3YIY3 + RIR2R3YIY2Y3 
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Specific Result 

The following model has tractable maximum likelihood estimates. 

This additive notation is equivalent to specifying mijk = mijk, aijk = ajk, bijk = bik , 

d ijk = d ij , gijk = gk, Vijk = Vj, Pijk = Pi and t ijk = t in multiplicative notation. The 

likelihood for this model is therefore given by 

L ex II exp( -mijk) (mijk)nijkll1 

ijk 

+ II exp( -mijkajk) (mijkajkt+jk211 

jk 

+ II exp( -mijkbik) (mijkbjkti+k121 

ik 

+ II exp( -mijkdij) (mijkdij tiH112 

ij 

+ II exp( - L mijkbikdijPi)(L mijkbikdijPiti++l22 

jk jk 

+ II exp( - L mijkajkdijVj)(L mijkajkdijVj)n-d+212 

j ik ik 

+ II exp( - L mijkajkbikgk)(L mijkajkbikgk)n++k221 

k 0 0 

+ exp( -t L mijkajkbikdijgkPiVj)(t L mijkajkbikdijgkPiVj)n+++222 

ijk ijk 

Differentiating with respect to t and setting to zero 

a at log(L) = 0 =? 

Continuing systematically 

A ~ijk ii?-ijkCLjkbikdij(Jk'PiVj 
=? t=-~------

n+++222 
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a -a 10g(L) = 0 :::} 
Pi 

+ 

a -a 10g(L) = 0 :::} 
Vj 

a 

A n+H212 
Vj = A 

Lik mijkiijkdij 

-a 10g(L) = 0 
gk 

A n++k221 
:::} gk = A 

Lij ihijkiijkbik 

The second and third lines cancel on another. Results on lines 6 and 7 follow through 

a similar argument. 

a -a 10g(L) = 0 :::} 
ajk 

a 
-log(L) = 0 abik 

A ni+k121 
:::} bjk = -A--

mi+k 

a 
ad 10g(L) = 0 :::} 

ZJ 
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The second and third lines are zero and lines 4 and 5 cancel one another. Results 

on lines 8 and 9 follow through a similar argument. 

a 
-a--log(L) = 0 =} mijk = nijklll 

mijk 

The above result follows exactly as before. 
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Appendix C: Supplementary Disclosure Control Re

sults 

Posterior cell counts for probabilities, female/single in Barningham and Ovington. 

<Xl <Xl <Xl 

0 0 0 

g <!J ~ <!J ~ <!J 

ii 0 15 0 .0 0 
ro ro ro 
.0 .0 .0 
0 0 2 
Q. " 

Q. " 0. " is 0 is 0 .Q 0 

* 
2 ~ 

OJ 
W OJ OJ 

0 0 0 
a. 0 a. 0 a. 0 

0 0 0 

0 0 0 

<20 20-29 30-39 

<Xl <Xl 0 

0 0 C'l 
0 

§ <!J g <!J g 
.0 

0 ii 0 ii 0 

ro ro ro OJ 
.0 .0 .0 0 
2 

" 
2 

" 
2 

0. 0. 0. 

is 0 ,9 0 is 

* * * 
::: 

0 OJ 0 OJ 0 0 
a. 0 a. 0 a. 

0 0 I 
0 
0 

0 0 ,- -, 0 

0 1 2 3 4 

40-49 50-59 60+ 

165 



Posterior cell counts for probabilities, male/single in Barningham and Ovington. 
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Posterior cell counts for probabilities, female/couple in Barningham and Ovington. 
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Appendix D: Crime and Punishment Data 

y, 

791 

1635 

578 

1969 

1234 

682 

963 

1555 

856 

705 

1674 

849 

511 

664 

798 

946 

539 

929 

750 

1225 

742 

439 

1216 

968 

523 

1993 

342 

1216 

1043 

696 

373 

754 

1072 

923 

653 

1272 

831 

566 

826 

1151 

880 

542 

823 

1030 

455 

508 

849 

3 

151 91 

143 0 113 

142 1 89 

136 0 121 

141 0 121 

121 0 110 

127 111 

131 1 109 

157 1 90 

140 0 118 

124 0 105 

134 0 108 

128 0 113 

135 0 117 

152 87 

142 1 88 

143 0 110 

135 1 104 

130 0 116 

125 0 108 

126 0 108 

157 1 89 

132 0 96 

131 0 116 

130 0 116 

131 0 121 

135 0 109 

152 0 112 

119 0 107 

166 1 89 

140 0 93 

125 0 109 

147 1 104 

126 0 118 

123 0 102 

150 0 100 

177 87 

133 0 104 

149 88 

145 1 104 

148 0 122 

141 0 109 

162 1 99 

136 0 121 

139 88 

126 0 104 

130 0 121 

4 

58 

103 

45 

149 

109 

118 

82 

115 

65 

71 

121 

75 

67 

62 

57 

81 

66 

123 

128 

113 

74 

47 

87 

78 

63 

160 

69 

82 

166 

58 

55 

90 

63 

97 

97 

109 

58 

51 

61 

82 

72 

56 

75 

95 

46 

106 

90 

56 

95 

44 

141 

101 

115 

79 

109 

62 

68 

116 

71 

60 

61 

53 

77 

63 

115 

128 

105 

67 

44 

83 

73 

57 

143 

71 

76 

157 

54 

54 

81 

64 

97 

87 

98 

56 

47 

54 

74 

66 

54 

70 

96 

41 

97 

91 

Indicator Number 

6 

510 

583 

533 

577 

591 

547 

519 

542 

553 

632 

580 

595 

624 

595 

530 

497 

537 

537 

536 

567 

602 

512 

564 

574 

641 

631 

540 

571 

521 

521 

535 

586 

560 

542 

526 

531 

638 

599 

515 

560 

601 

523 

522 

574 

480 

599 

623 

7 

950 

1012 

969 

994 

985 

964 

982 

969 

955 

1029 

966 

972 

972 

986 

986 

956 

977 

978 

934 

985 

984 

962 

953 

1038 

984 

1071 

965 

1018 

938 

973 

1045 

964 

972 

990 

948 

964 

974 

1024 

953 

981 

998 

968 

996 

1012 

968 

989 

1049 

33 

13 

18 

157 

18 

25 

4 

50 

39 

101 

47 

28 

22 

30 

33 

10 

31 

51 

78 

34 

22 

43 

14 

3 

6 

10 

168 

46 

6 

97 

23 

18 

113 

9 

24 

36 

96 

4 

40 

29 

19 

40 

3 

168 

9 

301 

102 

219 

80 

30 

44 

139 

179 

286 

15 

106 

59 

10 

46 

72 

321 

6 

170 

24 

94 

12 

423 

92 

36 

26 

77 

4 

79 

89 

254 

20 

82 

95 

21 

76 

24 

349 

40 

165 

126 

19 

208 

36 

49 

24 

22 

10 11 12 

108 41 394 

96 36 557 

94 33 318 

102 39 673 

91 20 578 

84 29 689 

97 38 620 

79 35 472 

81 28 421 

100 24 526 

77 35 657 

83 31 580 

77 25 507 

77 27 529 

92 43 405 

116 47 427 

114 35 487 

89 34 631 

78 34 627 

130 58 626 

102 33 557 

97 34 288 

83 32 513 

142 42 540 

70 21 486 

102 41 674 

80 22 564 

103 28 537 

92 36 637 

72 26 396 

135 40 453 

105 43 617 

76 24 462 

102 35 589 

124 50 572 

87 38 559 

76 28 382 

99 27 425 

86 35 395 

88 31 488 

84 20 590 

107 37 489 

73 27 496 

111 37 622 

135 53 457 

78 25 593 

113 40 588 

13 

261 

194 

250 

167 

174 

126 

168 

206 

239 

174 

170 

172 

206 

190 

264 

247 

166 

165 

135 

166 

195 

276 

227 

176 

196 

152 

139 

215 

154 

237 

200 

163 

233 

166 

158 

153 

254 

225 

251 

228 

144 

170 

224 

162 

249 

171 

160 

14 

0.084602 

0.029599 

0.083401 

0.015801 

0.041399 

0.034201 

0.0421 

0.040099 

0.071697 

0.044498 

0.016201 

0.031201 

0.045302 

0.0532 

0.0691 

0.052099 

0.076299 

0.119804 

0.019099 

0.034801 

0.0228 

0.089502 

0.0307 

0.041598 

0.069197 

0.041698 

0.036099 

0.038201 

0.0234 

0.075298 

0.041999 

0.042698 

0.049499 

0.040799 

0.0207 

0.0069 

0.045198 

0.053998 

0.047099 

0.038801 

0.0251 

0.088904 

0.054902 

0.0281 

0.056202 

0.046598 

0.052802 

15 

26.2011 

25.2999 

24.3006 

29.9012 

21.2998 

20.9995 

20.6993 

24.5988 

29.4001 

19.5994 

41.6 

34.2984 

36.2993 

2L501 

22.7008 

26.0991 

19.1002 

18.1996 

24.9008 

26.401 

37.5998 

37.0994 

25.1989 

17.6 

21.9003 

22.1005 

28.4999 

25.8006 

36.7009 

28.3011 

21. 7998 

30.9014 

25.5005 

21.6997 

37.4011 

44.0004 

31.6995 

16.6999 

27.3004 

29.3004 

30.0001 

12.1996 

31.9989 

30.0001 

32.5996 

16.6999 

16.0997 



Appendix E: Political Attitudes Data 

A: How well does the political system function today? 

B: Type of formal schooling 

C: Age group 

D: Time of Survey 

E: Region of Survey 

Levels of A (i) Levels of B (j) Levels of C (k) 

1: Very poorly 1: Basic incomplete 1: 19-29 

2: Poorly 2: Basic 2: 30-34 

3: Well 3: Medium 3: 45-59 

4: Very Well 4: Upper medium 4: 60-74 

5: Intensive 5: 2': 75 

Levels of Level of E m=1 

A, C, D: Levels of B 

k 1 2 3 4 5 1 

1 1 1 1 5 10 3 8 0 

2 1 1 3 63 88 22 78 2 

3 1 1 1 25 18 5 9 1 

4 1 1 2 2 0 0 1 0 

1 2 1 0 24 17 3 11 0 

2 2 1 1 135 89 26 68 3 

3 2 1 1 34 14 1 10 4 

4 2 1 0 2 1 0 1 1 

1 3 1 0 26 4 2 5 0 

2 3 1 2 120 62 17 29 14 

3 3 1 1 27 10 2 3 13 

4 3 1 0 6 2 0 0 1 

1 4 1 2 41 12 1 7 0 

169 

Levels of D (l) Levels of E (m) 

1: 1991 1: West 

1: 1992 2: East 

Level of E m=2 

Levels of B 

2 3 4 5 

0 2 0 2 

13 103 6 29 

5 53 1 12 

0 4 0 3 

3 7 0 1 

39 198 7 52 

27 86 7 17 

7 9 0 1 

4 0 0 2 

134 50 5 32 

61 18 3 18 

7 3 0 2 

4 1 0 0 



2 4 1 6 107 32 4 26 7 81 15 1 12 

3 4 1 1 18 3 0 2 6 56 8 1 7 

4 4 1 1 3 0 0 0 1 5 0 0 0 

1 5 1 1 8 3 1 2 0 3 0 0 0 

2 5 1 1 28 8 3 6 5 16 1 1 3 

3 5 1 0 9 2 0 0 0 10 1 0 1 

4 5 1 1 0 0 0 0 0 1 0 0 0 

1 1 2 0 6 4 0 7 0 0 0 0 0 

2 1 2 2 68 101 17 100 1 8 58 1 13 

3 1 2 3 40 48 3 29 1 8 68 2 16 

4 1 2 0 6 8 2 1 0 1 13 0 1 

1 2 2 0 10 7 4 8 0 0 0 0 1 

2 2 2 4 186 100 47 99 0 25 104 5 26 

3 2 2 6 102 67 10 25 1 22 86 3 38 

4 2 2 1 14 .5 0 3 1 2 13 3 3 

1 3 2 1 19 11 2 9 1 2 0 1 0 

2 3 2 2 182 76 17 42 2 89 25 14 30 

3 3 2 6 102 24 6 13 3 74 27 14 7 

4 3 2 0 11 3 1 1 3 13 3 2 1 

1 4 2 1 11 7 0 4 0 0 0 1 0 

2 4 2 4 177 57 9 26 1 62 16 3 7 

3 4 2 5 82 10 1 6 2 46 9 5 6 

4 4 2 0 21 5 0 3 1 5 1 0 2 

1 5 2 0 12 2 0 1 0 3 0 0 0 

2 5 2 3 51 16 1 6 0 18 4 1 0 

3 5 2 1 22 6 1 4 0 14 1 1 0 

4 5 2 0 7 1 0 0 0 0 0 0 0 
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Appendix F: Simulated Bimodal Data 

Levels of Levels of 

A B C D count A B C D count 

0 0 

2 0 2 1 5 

3 3 1 0 

4 0 4 2 0 

1 0 2 0 

2 0 

3 0 0 

4 0 4 0 

0 2 

3 0 2 

3 0 0 

4 0 0 

14 4 0 

4 1 4 1 

4 0 4 0 

4 4 0 4 0 

1 5 0 

0 

0 3 0 

4 0 4 0 

0 0 

2 2 0 0 

0 4 0 

0 4 4 0 

0 0 

0 

3 2 4 4 0 

4 0 4 4 0 

4 0 

2 1 4 0 

3 3 0 4 0 

4 3 2 0 4 4 3 0 

2 0 4 4 0 

2 0 4 0 

4 0 4 0 

4 4 0 4 4 4 0 

1 0 0 

2 2 0 

3 2 0 4 2 

4 0 4 4 0 

0 4 0 

0 0 

3 0 4 0 

4 2 0 4 2 0 

2 4 0 

4 

0 4 1 

4 2 0 4 2 0 

0 4 0 

2 4 0 

4 0 

4 4 4 0 

4 4 4 0 

2 2 4 0 4 3 

2 4 0 4 4 2 

0 4 4 4 2 

1 0 4 0 

2 0 0 
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3 0 4 0 

4 5 0 4 4 0 

5 0 

2 2 2 1 

3 2 0 3 0 

4 0 4 1 0 

0 2 1 

0 5 

3 2 2 0 0 

4 2 2 0 4 2 0 

4 0 

2 3 5 0 

3 2 2 0 

4 3 2 0 4 3 0 

0 4 14 

4 5 4 1 

3 2 4 0 

4 4 2 4 4 4 0 

1 5 0 

2 5 0 

3 2 0 0 

4 2 0 4 0 

1 0 2 

2 0 

3 3 0 2 0 

4 0 0 

3 2 0 

9 2 

3 3 0 0 

4 3 2 0 0 

3 0 3 2 

2 3 1 3 1 

3 3 0 5 2 0 

4 4 2 0 

4 4 0 

4 0 4 0 

3 3 4 0 4 0 

4 3 0 4 2 0 

0 2 0 

0 0 

3 0 5 0 

4 0 4 5 5 0 
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