
UNIVERSITY OF SOUTHAMPTON

Improving the Process of Model

Checking through State Space

Reductions

by

Edward N anakorn Turner

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

November 2007

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Edward Nanakorn Turner

Model checking is a technique for finding errors in systems and algorithms. The tech

nique requires a formal definition of the system with a set of correctness conditions,

and the use of a tool, the model checker, that searches for model behaviours violating

these correctness conditions. The value of existing model checkers depends largely on

the complexity of the system being checked. Systems involving complex data structures

quickly encounter the problem of state explosion, and checking becomes intractable.

Furthermore, auxiliary feedback originally designed to aid the practitioner (e.g., process

automata) becomes less useful.

This thesis develops of a set of techniques to address these problems. The main contri

butions of this thesis are methods that improve model checking in the formal language

of B, by reductions in the size of a system's state space. Methods are described that

enable a user to view various succinct properties about a system's behaviour through

automatic analysis of reached state spaces, and a technique is developed to improve the

efficiency of generating state spaces during model checking using algorithms for identify

ing symmetries via graph isomorphism. Soundness proofs are shown using refinement in

B. Each technique has been implemented into the B model checker, called PRoB, and is

shown to be effective through experimentation and evaluation. This research has stim

ulated three complementary approaches for improving the generation of state spaces,

which are also presented and evaluated. Although this work concerns the context of B

and PRoB, the techniques could be generalised to verification tools of other languages.

Contents

Acknow ledgements

1 Introduction

1.1 Model Checking .

1.2 Two-Process Mutual Exclusion Problem in Promela
1.3 State-Space Explosion and Combative Methods

1.3.1 Partial Order Reduction ..
1.3.2 Symbolic Model Checking .

1.3.3 On-the-fly Model Checking
1.3.4 Abstraction

1.3.5 Symmetry Reduction. . . .
1.4 The B-Method

1.4.1 Introducing Refinement in B
1.5 Formal Verification in B . . .

1.5.1 Model Checking in B .

1.6 Contributions of this Thesis .

2 Graph Isomorphism and Symmetry Reduction
2.1 Introduction
2.2 Preliminaries

2.3 Partition Refinement
2.3.1 Automorphisms of a Graph

2.4 Stabilising Vertices
2.5 Discussion..............

2.6 Symmetry Reduction in Model Checking.
2.7 Classical Technique

2.7.1 The Modified Model Checking Algorithm
2.8 Related work

2.8.1 Mur¢ and Scalarsets
2.8.2 SymmSpin

2.8.3 Symmetry in RuleBase: A Symbolic Model Checker
2.8.4 Alloy Analyser

2.8.5 Recent Development in PRoB, 1: Permutation Flooding
2.8.6 Recent Development in PRoB, II: Symmetry Markers

ix

1

1

3
5

5
6

6

7

7

8

12

13

15

18

20
20
21

25
27
28
32

33
34
36

37
37
39

41
43

44
48

52 3 Visual State Space Reduction

3.1 Introduction and Motivation . 52

11

CONTENTS

3.2 Background................ ..

3.2.1 Reducing the Size of a State Graph.
3.2.2 Features of a Good Visualisation ..

3.3 The DFA-Abstraction Algorithm

3.4 Merge States with same Outgoing Transitions

3.5 Empirical Evaluation.
3.6 Complementary extensions

3.6.1 Diminishing the Abstraction function

3.6.2 Integrated Java/Swing Visualiser
3.6.3 User Defined Constraints

3.6.3.1 Subgraphs
3.7 Summary and Future Work .

4 Symmetry Reduction in PRoB
4.1 Introduction

4.2

4.3
4.4

4.5

4.6
4.7
4.8
4.9

4.1.1 Deferred Sets in B give rise to Full Symmetries

4.1.2 Motivation
Soundness of State Symmetries
Representing a State as a Graph

Relating Graph Isomorphism to State Equivalence
Computing Canonical Labels for Labelled, Directed Graphs

Symmetry Reduced Model Checking Algorithm

Collaborative Work: Canonical Labels + Symmetry Markers
Integrating Symmetry Reduction into the Architecture of PRoB
Summary

5 Empirical Evaluation

5.1 Performance Issues with Prolog Data Structures
5.2

5.3
5.4

5.5
5.6

Executive Summary
Machines used in Experimentation
Identifying the Absence of Errors
5.4.1 Canonical Labels versus Standard Model Checking

5.4.2 Canonical Labels versus Permutation Flooding . .
5.4.3 Canonical Labels versus Canonical Labels + Symmetry Markers

Identifying the Presence of Errors .
Summary

6 Correctness of Algorithms
6.1 Introduction

6.2 An Abstract Specification for Model Checking.
6.3 Refinement Levell

6.4 Refinement for Standard Model Checking . . .
6.5 Refinements for Symmetry Reduced Model Checking

6.5.1 Levell
6.5.2 Level 2

6.6 Summary . . .

7 Conclusions and Future Work

III

53

53
55
56

59
61

63

63
64
64

65
65

67

67

98
69
72
75
80
82

85
87
89
90

92
93
95
99

.101

· 101
· 106
· 108
.110
.114

117

.117

.118

.119

· 121
.124

.124

.128

· 130

132

CONTENTS iv

A Finding a Canonical Label: A Worked Example 136
A.1 A Worked Example · 136

B Detailed Results from Experimentation of Visualisation Algorithms 139

C Machines Used for Empirical Results
C.1 Process Scheduler 1
C.2 Process Scheduler 1 with Error
C.3 Process Scheduler 2 ..
C.4 Russian Postal Puzzle
C.5 Phonebook
C.6 Phonebook with Error
C.7 Windows NT File System
C.8 Windows NT File System with Error.
C.9 Dining Philosophers Machine
C.lO Peterson's Mutual Exclusion
C.lI Petersons Mutual Exclusion with Error
C.12 Hotel Key Card System

D Machines Used in Correctness of Algorithms
D.1 An Abstract Specification for Model Checking.
D.2 Refinement Level 1

D.3 Refinement for Standard Model Checking .. .
D.4 Refinements for Symmetry Reduced Model Checking

D.4.1 Level 2

143
.143
.145
.145
.147
.149

· 151
· 151
.160

· 161
· 162
.164

· 165

171

· 171
.172

.174

.177

· 180

List of Figures

1.1 Kripke structure for the two-process mutual exclusion problem 4
1.2 A PROlvlELA model for Peterson's mutual-exclusion algorithm 4
1.3 Example B Machine of a Phonebook 10

1.4 A Valid Refinement of the Phonebook Machine 14
1.5 Part of the state space for the phone book machine shown in PRoB 17

2.1 Two graphs: G1 is undirected, G2 is directed. 22

2.2 Three graphs: G1,G2,G3 contain automorphisms, G2,G3 are isomorphic.. 24
2.3 A simple graph , 30

2.4 An example search tree generated by stabilise([{a, b, c, d, e}]), for the
graph in Figure 2.3. 30

2.5 Kripke structure for the two-process mutual exclusion problem , 35

2.6 Symmetry reduced Kripke structure for the two-process mutual exclusion
problem. 36

2.7 Two equivalent states, each containing one array of scalarset type. 38

2.8 An example of a state-vector and it's split point. 39
2.9 An example of sorting the state-vector. 40
2.10 A Stack machine . 46

2.11 State Space of Stack machine (only push operation shown for clarity) . 47

2.12 State Space of Stack machine using Permutation Flooding (only push
operation shown for clarity) 47

2.13 The symmetry marker for state Sl 49
2.14 The symmetry marker for a state in the Stack machine. 50

2.15 State space of Stack machine using Symmetry Markers (only push opera-
tion shown for clarity) .. 51

3.1 Phonebook machine - Original State Space.
3.2 Non-equivalent reduction; all states have an 'a' transition.

3.3 Illustrating the DFA-Abstraction Algorithm.
3.4 Phonebook machine - DFA-Abstraction.

3.5 Phonebook machine - Signature-Merge
3.6 Screenshot of Java version of ProB ...

53
55
57

58

60
64

4.1 Examples of given sets: ExitMsg (enumerated set) and Proc (deferred set) 68

4.2 State Space of Phonebook (only add operation shown for clarity) 70

4.3 Reduced State Space of Phonebook . 71
4.4 Core syntax for expressions . . 73
4.5 Core syntax for predicates ...
4.6 A phonebook state as a graph .

v

73
76

LIST OF FIGURES

4.7 Graph for an atom

4.8 Graph for a set .
4.9 Graph for a pair .

Vl

76
76
76

4.10 Graph for pairs . . 76

4.11 The graph for variable, VI = { {SO}, {sd } 77

4.12 The graph computed by statcgraph((VI = {({SO}, {sd)}, 'V2 = {{ S2}} 1) 80
4.13 Example graph .. 84

4.14 Adjacency matrix corresponding to the canonical label of Gx 85
4.15 Integration of the Symmetry Reduction methods into the existing archi-

tecture of PROB. 90

5.1
5.2

5.3

6.1

6.2

Binary Relations Machine
The Dining Philosophers Machine.

Variation of speedups with cardinality of deferred sets

The Sets, Constants and Properties of the Abstract Machine, meO
The Operations of the Abstract Machine, meO

93
.103
.105

.118

.119

6.3 The Variables, Invariant and Initialisation of the mel refinement machine 120
6.4 The Operations of the mel refinement machine 120
6.5 The Variables, Invariant and Initialisation of the me2 refinement machine 121

6.6 The Operations of the me2 refinement machine 122
6.7 The Assertions of the me2 refinement machine ...

6.8 The Constants and Properties of the Machine, rmel
6.9 The Assertions of the rmel refinement machine ...

· 12;)

· 125

· 125
6.10 The Variables, Invariant and Initialisation of the rmel refinement machine126

6.11 The Operations of the rmel refinement machine 127
6.12 The Variables, Invariant and Initialisation of the rme2 refinement machine128

6.13 The Operations of the rme2 refinement machine . 129
6.14 The Assertions of the rme2 refinement machine. . 130

A.l A simple graph · 137
A.2 An example search tree generated by stabilise([{a, b, c, d, e}]), for the

graph in A.I. 137

List of Tables

2.1

3.1
3.2

5.1
5.2
5.3

5.4
5.5

5.6

5.7
5.8

5.9

Adjacency matrix of G2 in Figure 2.1

Sizes as percentage of original state space
Statistics from results in Table 3.1

Comparison of the number of different relations
Deferred set information for machines tested ..
Experimental results for eight B-specifications .

Comparison of speedups: flooding (pi) vs canonical labels (cl)
Comparison of speedups: canonical labels (cl) vs flooding (pi) vs canon
ical labels + symmetry markers (cl + 3m) .
Identifying errors using Standard Checking ..
Identifying errors using Canonical Labels

Identifying errors using Permutation Flooding .
Identifying errors using Symmetry Markers ..

23

61
63

94
· 101
.102
.107

· 109
· 111

· 112
.113
.113

5.10 Identifying errors using Canonical Labels + Symmetry Markers . 114

A.1 Adjacency matrix of [{b}, {c}, {e}, {el}, {a}] .138
A.2 Adjacency matrix of [{ b}, {e}, {c}, {el}, {a}] . 138

B.1 Numbers of States and Transitions in original and reduced state space. . 140

Vll

List of Algorithms

1 Model Checking in PRoB

2 refine(Jr, G): Refining a partition

3 stabilise(ll, G): Finding a canonical label of a graph

4 Standard Model Checking Exploration . . .

5 Model Checking with Symmetry Reduction

6 state_gmph(state)

7 assign_colour(val, vertex)

8 va, _gmph(Vparent, v, val)

9 set(Vparent) v, val)

10 atom(Vparent, v, val)

11 relation(Vparent) v, val)

12 refine (Jr: G): Extended partition refinement

13 Symmetry Reduced Model Checking in PRoB .

14 Canonical Labels and Symmetry-Markers in PRoB

Vlll

16
28

29

37

37

78

79

79

79

79

80
84

86

88

Acknowledgements

There are many people who have helped make this thesis happen. First of all, I would

like to thank my supervisor, Michael Butler, whose experience and enthusiasm in formal

methods and formed verification has made it easy for me to maintain and develop my

own interest in the subject. Also, I thank him for all the patient guidance and advice

he has given throughout the course of my study. I must thank Michael Leuschel, who

originally employed me as a research assistant working with PRoB, which initiated my

interest in model checking and B. Furthermore, I am very grateful to him for the Ph.D

studentship offered to me, which commenced after this period of work - and indeed the

nurnerous interesting discussions we have had since then, concerning the PRoB tool-set.

I also express gratitude to Corinna Spermann for her contributions to our collaborative

work studying McKay's partition refinement algorithm. Finally, and most of all, I would

like to thank my family; my mother, father, and two sisters, for their constant support,

enthusiasm and entertaining stories, no matter what and without whom, all of this

would not have been possible.

IX

Chapter 1

Introduction

As systems controlled by software increase in size and complexity, the importance of

error detection at design time increases. Some estimations suggest that up to 70% of

design time is spent performing simulations and tests, to minimise the risk of errors

being exposed at a later stage in production, which could require high compensation

costs [Schneider, 2003]. This thesis develops a set of automatic techniques used for

finding errors in systems and algorithms. The techniques concern the subject of model

checking; where, given a formal model of a system and its specification, all reachable

states of the system are automatically searched for those that violate the specification.

The techniques enable a user to view various succinct properties about the states reached,

and improve the efficiency of their generation. Each technique has been implemented

into the PRoB tool-set, a model checker of the formal specification language called B,

to produce a model checker with several novel features.

1.1 Model Checking

Model checking [Clarke et al., 1999] is an automatic strategy for finding errors in a system

or algorithm, which has gained popularity in recent years. The approach requires the

construction of a model of the system and the definition of its correctness conditions,

i.e., its specification. The goal of the model checking tool is to answer the question, "Is

there a trace/behaviour of the system that violates its specification?". This is answered

by an automatic procedure that searches the states in which the system can be, denoted

as its state-space, and verifying whether or not the given specification holds in each

state. If there is a violation, called a counterexample, a trace to it is reported to the

user. If no counterexample is found, the specification is said to hold for the model of this

system. Unfortunately, this question is undecidable in general, since a system may have

an infinite number of traces. Therefore in practice, the model checker places bounds on

the parameters of the system being checked. Often, most, if not all, behaviours of the

1

Chapter 1 Introduction 2

full system are checked within these limits, and so model checking can be viewed as a

sufficient verification technique; although safety critical systems may also use theorem

proving to ensure its correctness. Note that model checking can only show that a

specification holds for a model; if either is incorrectly defined, no guarantee can be

made for the behaviour of the real system.

Model checking has several advantages over sim'ulation and testing and theorem proving.

Simulation and testing requires the construction, usually manual, of test cases designed

to cover certain behaviours of a system - not necessarily all of them; errors could be

missed. Model checking, on the other hand, only requires the formal description of

the system and some specification, before automatic checking performs a much larger

coverage. Theorem proving is a technique where one proves that some conjecture is a

logical consequence of a set of axioms and deductive rules, for a system. In comparison

to theorem proving, model checking provides less guarantee an error does not exist,

since it checks a bounded model of the system. Although, it has the advantage that

when an error is found, a trace to it can be presented to the user. Also, far less effort

is required from the user, who need not be an experienced practitioner. For example,

an interactive theorem proving environment, e.g., Atelier-B [Ste, 1996] or PVS [Owre

et al., 19921, requires the user to guide inferences made by the prover, or determine

intermediate lemmas, in order to prove some conjecture; whereas model checking only

requires the user to specify the model and the specification, before automatic checking

can take place.

The correctness conditions analysed during model checking are typically represented as

a temporal logic formula, denoted cp. They are checked over the set of behaviours of

a concurrent system, its model, and it is usual to represent this system as a labelled

state transition system, called a K ripke stmci71re. which is now introduced (as defined

in Miller et al. [2006]).

Let V denote the variables of a system and, for each v E V, let D (v) be the domain of

v (its possible values). The set of atomic propositions over V is then:

AP = {(v = value) I v E V and value E D(v)}.

Given a set of variables V, a formal definition of a Kripke structure in terms of AP is

presented in Definition 1.1:

Definition 1.1. A Kripke structure M over the set of atomic propositions AP is a

four-tuple M (S, So, R, L) where:

S is a non-empty, finite set of states,

So £:;; S is a set of initial states,

- R £:;; S x S is a total transition relation, defining the 'steps' of system behaviour

from state s to s' such that s f--' s' E R, and

Chapter 1 Introduction 3

- L: S -7 2AP labels each state with the atomic propositions true in that state.

Given a Kripke structure M, a path is defined as an infinite sequence of states 11 =

So, Sl, . .. where So E So and vi> 0, Si-1 f--+ Si E R. A transition sequence is an infinite

sequence of transitions. Model checking analyses whether the temporal logic formulas

hold for the paths/states of a Kripke structure of a system.

Generally, the temporal logics used is either CTL * or one of its sublogics; CTL (com

putation tree logic) [Ben-Ari et al., 1983, Clarke and Emerson, 1981]' or LTL (linear

temporal logic) [Puueli, 1981]. CTL* is defined as a set of st<tte formulas, which may

include path formulas. Two quantifiers exist, A and E, denoting for all paths or for

some path respectively. Furthermore, there are five basic temporal operators: X (next

time), U (until), R (release - the dual of until), F (eventually) and G (always). In the

CTL sublogic, these temporal operators must be immediately preceded by some path

quantifier A or E. In LTL, formulas are constrained to be of the form Ap, where p is

a path formula in which the only state sub formulas permitted <tre atomic propositions.

It is usual to elide the A in an LTL formula, thus the previous path formula would

become, p. For a thorough reference to the precise syntax and semantics of CTL* and

its sublogics, see [Clarke et al., 1999, Chapter 3].

Regarding the construction of a Kripke structure, concurrent systems are typically de

fined using a modelling language such as PROMELA (PRocess MEta LAnguage) [Holz

mann, 1997b], the SIVIV (Symbolic Model Verifier) language [McMillan, 1993]' process

algebras such as PBC (Petri Box Calculus) [Best and Koutny, 1995], rule-based lan

guages such as Mur¢ [Dill et al., 1992]' or the formal language of B [Abrial, 1996]. Using

this description, most model checkers can induce automatically the Kripke structures

(or equivalent) representing the system behaviour.

1.2 Two-Process Mutual Exclusion Problem In Promela

This section presents a two-process mutual exclusion problem to highlight how model

checking can be used in practice. Let us consider two processes that require the read

ing/writing of shared memory, in addition to the condition that this memory can only

be accessed one process at a time.

A solution to the problem requires each process, Pi, where i E {O, I}, to only ever be in

one of three distinct states: i.) the non-critical state, denoted N i , where the process does

not require the critical resources, ii.) the trying state, denoted T i , where the process has

made a request for the critical resources (which it currently does not possess), and iii.),

the critical state, denoted Ci , where the request has been fulfilled and the process is

currently accessing the critical resources. In addition, a process must be holding a token

to enter the critical state, i.e., whenever a variable turn matches the process number.

Chapter 1 Introduction 4

The behaviour of the system is depicted using a Kripke structure in Figure 1.1 (as it

appears in [Miller et al., 2006, Figure 1]). The system has two start states, i.e., where

both processes are in the non-critical region, No, NI .

FIGURE 1.1: Kripke structure for the two-process mutual exclusion problem

Peterson's algorithm [Peterson, 1981] provides an implementation of a solution to the

problem, which uses a blocking scheme, where a process waits for the critical region

to become free (indicated by a certain condition) before entering. Figure 1.2 describes

the algorithm using PROIvIELA the input language to the SPIN model checker. The

encoding comes from the Spin distribution, Spin 4.3.0 [2007].

The PROMELA model makes use of three shared variables. turn and flag [2] are used

to control process blocking, and ncr i t records the total number of processes in the

critical region. Two processes are declared (act i ve [2]), whose behaviour is given in

bool turn;
boo 1 flag [2] ;
byte ncrit;

active [2] proctype user()

again:
flag [_pid] = 1;
turn _pid;
(flag [1 _pid]

ncrit++;
skip;
ncrit--;

flag [_pid]
goto again

0;

o I I turn

/* Trying */

1

/* Critical */

/* Non-critical */

FIGURE 1.2: A PROMELA model for Peterson's mutual-exclusion algorithm

Chapter 1 Introduction 5

the body of process type, user (). _pid is a special variable in PROlvIELA used as a

process identifier. The three states of the system (non-critical, trying and critical) are

indicated by comments in the code. Note that a process blocks at the location indicated,

until the disjunction (I I) evaluates to true.

Correctness conditions of the system may be specified and subsequently verified using

SPIN. Therefore, one can verify by model checking the mutual exclusion requirement,

"Can we guarantee that two processes are never inside the critical region at the same

time?". This can be achieved by specifying the linear time logic formula given below,

i.e., "For all computation paths, and all states along them, the value of ncrit is at

most 1".

AG (ncrit <= 1).

1.3 State-Space Explosion and Combative Methods

Model checking is made difficult by the state-space explosion problem. This is where, as

a formal specification of a system grows linearly in size, its state-space suffers combina

torial growth, quickly becOIning too large to feasibly check. Take for example, a system

with n variables, each having x possible values. Then, there are possibly xn states to

check. If a new variable with x possibilities is added, the number of states to check

increases to , i.e., an exponential growth.

Much research in model-checking investigates ways to tackle the state-space explosion

problem. A review is given of five popular strategies:

1.3.1 Partial Order Reduction

The first method, calleel paTtial order- reducicion [Emerson and Sistla, 1997] exploits the

independence of concurrent processes. Take for example, two concurrent, independent

processes that run from start to finish, each with a set of transitions that preserve the

truth value of the property being checked (invisible transitions). For checking purposes,

only one trace of execution of the composed system must be verified for correctness.

However, the standard model checking algorithm analyses every possible trace, and

consequently performs a large amount of redundant checking. Partial order reduction

aims to exploit such cases, and prevent redundant searches. In general, for each state

encountered, such techniques identify an appropriate subset of the enabled transitions

to consider, i.e., independent and invisible transitions. Thus, checking explores only a

constrained search space, which requires less memory and time for verification.

Chapter 1 Introduction 6

Note that for certain systems, partial order reduction cannot establish savings in the

cost of verification. For example, when no independent transition exists. However, in

many cases the technique can be very effective.

One successful approach to partial order reduction is that of the ample sets method

[Peled, 1997], which has been successfully implemented into the SPIN model checker

[Holzmann, 1997b]. Other successful approaches include the sleep sets and persistent

sets methods [Godefroid, 1996], which are applied to the VeriSoft tool [Godefroid, 1997].

In more recent work, [Bhattacharya et a1., 2005] presents a reduction approach for rule

based languages such as Mur¢, based on the observation that the necessary independence

conditions required for partial order reduction, for bounded systems, can be encoded

using boolean propositions and checked using methods for determining their truth values

(e.g., using SAT solvers), and [Pradubsuwun et a1., 2004] investigates and describes a

method for partial order reduction algorithm for timed circuit-based systems.

1.3.2 Symbolic Model Checking

In symbolic model checking, one combats the state space explosion problem by reducing

the amount of physical memory required to store states and transitions, so that larger

systems can be verified. This is achieved through the use of symbolic representations of

states and transitions, instead of explicit representations.

MclVlillan [1993] presents effective methods for verifying CTL properties of very large

hardware systems through the use of the SMV model checker; which is perhaps, cur

rently, the most successful symbolic model checker. There exists a range of other such

tools, such as the BEBOP model checker of Ball and Rajamani [2000]' which verifies em

bedded software systems encoded as boolean programs. It is usual for symbolic methods

to represent a search space using binary decision diagrams [Bryant, 1986] (BDDs), and

indeed, this is the case with SMV and BEBOP. [Hartonas-Garmhausen et a1., 1999] inte

grates symbolic model checking with the notion of probability, to produce the Prob Verus

model checker, which allows one to check whether CTL properties hold for some accept

able probability. More recently, [Gunter and Peled, 2003] investigates the application

of symbolic model checking to component based verification of software, and [Kahlon

et a1., 2006] combines symbolic methods with partial order reduction, and transforming

the system to be checked into a circuit-based model, which can have LTL properties

verified by either a SAT jBDD-based model checker.

1.3.3 On-the-fly Model Checking

On-the-fiy model checking is another strategy to reduce the amount of memory required

during verification. The premise is that the verification of a property does not always

Chapter 1 Introduction 7

require the construction of the entire state space. For example, should a counterexample

be present, model checking need only generate the part of the state space that leads to

the counterexample. Therefore, this method generates sections of the state space only

when required.

On-the-fiy model checking has been combined with symbolic model checkers with some

success [Bouajjani et al., 1997, Ben-David et al., 2003], although it is more commonly

used by tools with explicit state/transition representations, since this simplifies the

application of state space traversal methods such as depth/breadth first traversal [Vardi

and Wolper, 1986, Leuschel and Butler, 2003].

1.3.4 Abstraction

Abstraction is another strategy for reducing the state explosion problem. The general

idea is to construct a simplified representation of a system to simplify verification. The

abstracted system may not satisfy the same set of properties that hold for the original

system, however soundness is usually required: the set of properties that prove for the

abstraction also hold for the original system. One common abstraction technique is

to analyse a system description, and essentially eliminate those variables that are not

referred to by the specification. Consequently, the checked properties are preserved,

but the size of the model is reduced. This is called cone of influence abstraction. In a

second technique, called data abstraction, one determines a relationship between system

data values and an abstract set of data. By extending this relationship to states and

transitions, one may generate an abstraction that is smaller in size, yet sound with

respect to properties of the original system. An introduction to both techniques can be

found in Clarke et al. [1999].

1.3.5 Symmetry Reduction

Symmetries in systems often arise due to the presence of replicated structures. For ex

arnple, they can be found in the architecture of certain distributed database systems or

within particular data structures exhibiting geometric syrnmetry. When model check

ing such systems, exploration must take place over a state space containing replicated

(equivalent) regions. Symmet'ry 'reduction is a technique whose aim is to proactively

refuse making such redundant searches. The consequence is that one explores only a

constrained state space, the quotient model, which should require less memory and time

to cover, and therefore, larger systems may be verified.

In a na·ive approach to symmetry reduction, one may construct the model of a system,

and subsequently search for symmetries. However, there would be little benefit since the

full model still must be generated. Therefore, a symmetry reduction strategy generally

Chapter 1 Introduction 8

finds symmetries of a system without constructing its full model. It is then the identifi

cation of symmetries that presents the key challenge for methods of symmetry reduction,

especially since the problem is related closely to the graph isomorphism problem, for

which there is no known polynomial time algorithm [McKay, 1981].

To date, there are a range of successful strategies for symmetry reduction including the

Murr,b verifier [Dill et al., 1992]' which introduces a special data type, called a scalarset

[Ip and Dill, 1993], to indicate symmetries; SMC, the Symmetry based Model Checker

[Sistla et al., 2000]' which can perform verification of both safety and liveness condi

tions; the Bogor tool-set, for symmetry reductions when model checking Java programs

[Robby et al., 2003]; and the integration of symmetry reduction with symbolic methods

in [Emerson and Wahl, 2005], which shows how model checking can exploit a range

of symmetry groups. More recently, [Miller et al., 2007] investigates the relationship

between symmetry reduction and inductive reasoning with respect to model checking

networks of components, which may share symmetric properties. An approach is pro

posed for developing PROIvIELA specifications without affecting the natural symmetry of

a system, and a method is presented that analyses the process communication structure

and system architecture to identify symmetries, which are then exploited during model

checking.

The techniques developed in this thesis concern model checking in the formal language

of B. In the next section, the B language and its methodology are introduced.

1.4 The B-Method

The B-Ylethocl [Abrial, 1996] is a theory and methodology used for the formal specifi

cation and development of computer software systems. It includes a concise language,

called B, used to describe state-based systems and is suitably abstract for simple sys

tems, yet expressive enough for large safety critical systems. It has been used with

notable success in the Meteor project for controlling train traffic [Behm et al., 1999]'

and examining the PCI Protocol [Cansell et al., 2002] and the IEEE 1394 Tree Identify

Protocol [Abrial et al., 2003].

It is based on an abstract modelling framework called abstract machine notation, which

enables systems to be structured in a modular style, similar to the object-oriented ap

proach of some programming languages, allowing larger components to be constructed

from a set of smaller components.

The B notation tackles extra complexity introduced by low level programming state

ments by defining a high level language that forces the designer to use only well under

stood, concise statements. Systems specified in B are therefore relatively simple. The

effect is to shift attention to the design of the system.

Chapter 1 Introduction 9

The notation is based on Zermelo-Fraenkel set theory, with the axiom of choice. The

structure of a typical B system (machine) consists of three main parts:

i.) system data, using values from sets. This may include constants, which are named

in a CONSTANTS clause. Constraints on sets and constants are defined using

predicate logic in a PROPERTIES clause.

ii.) system state is defined through variables, given in the VARIABLES clause, and

an INVARIANT clause, which is a safety property expressed using set theory and

predicate logic over the variables of the system. For example, the invariant defines

the typing information of variables.

iii.) system behaviour- is defined through operations and their actions (e.g., assign

ments) in the INITIALISATION or OPERATIONS clauses. These enable deter

ministic or nondeterministic assignments to be made on state variables. Operations

in B may have input and/or output parameters.

A B specification is also accompanied with a set of mathematical proofs justifying any

necessary parts, such as the typing of variables and preservation of the invariant by

operations. These proofs also serve to convince the system specifier that the B system

is valid.

The concept of refinement [Back, 1981, Abrial, 1996] is the key notion for developing

B specifications of hardware/software systems in an incremental manner. The idea is

to fir::;t define a very ab::;tract ::;pecification of the system being developed. Details are

progressively added to this through the construction of a sequence, or chain, of more

concrete specifications. The relationship between neighbouring specifications in this

chain is that of refinement. For each such relationship, this means the more concrete

refinement machine preserves already proved system properties of its parent machine.

The underlying theory of the B-Method requires operations to satisfy some precondition

before any actions take place. However, this is not enforced. Should the caller wish, an

operation may be executed outside of its precondition. In such cases, future behaviour

of the system is undefined, and one cannot guarantee the preservation of any invariant

condi tions.

Note that in contrast to the languages checked by existing Tnodel checkers such as

PROIVlELA, the B language does not include temporal operators. Moreover, the cor

rectness conditions of a B machine is an invar-iant: a set of safety conditions expressed

using set theory and predicate logic. Instead, it is possible for a notion of liveness to be

defined through the refinement of B machines.

A simple example of a B machine of a phonebook is presented in Figure 1.3, which

defines four operations that allow one to add, delete, lookup, and request the number of

entries in the phonebook (size_phone book).

Chapter 1 Introduction

MACHINE phonebook
SETS Name; Code

VARIABLES db, active, activec
INVARIANT db E Name -H Code 1\

active E lP(Name) 1\

activec E lP(Code) 1\

dom(db) = active 1\

ran(db) = activec
INITIALISATION db := 0 II active := 0 II activec := 0

OPERATIONS
add(n , c) :;:

PRE
n E Name 1\ c E Code 1\ n 1:- active

THEN
db := db U {n r-'t c} II
active := active U {n} II
activec := activec U {c}

END;

delete(n , c) :;:

PRE
n E Name 1\ c E Code 1\ n f-'> c E db

THEN
db := db \ {n >-7 c} II
active := active \ {n} II
activec:= db[(active \ {n})]

END;

C f--- lookup(n) :;:
PRE

n E Name 1\ n E active
THEN

c := db(n)
END

S f--- size_phonebook :;:
BEGIN

s := card(db)
END

END

FIGURE 1.3: Example B Machine of a Phonebook

10

Chapter 1 Introduction 11

A brief explanation is given about the main parts of the phone book machine:

- MACHINE: The name of the machine, in this case phonebook.

- SETS: The sets used in this machine. Names in the phonebook are elements of

Name, and phone numbers are elements of Code.

- VARIABLES: The variables required to define the behaviour of this machine. In

this case, db is the database, or phonebook, that maps Names to Codes - modelled

as a partial function, denoted by the symbol, +>. Therefore, each Name can have

at most one Code. active is the set of names in the phonebook, and activec is the

set of numbers in it.

- INVARIANT: Contains the system invariant, i.e., a conjunction of conditions

that must hold in every state of the machine. It defines the variables' typing,

in addition to any extra conditions required. In this machine, db is defined as a

partial function from Names to Codes. The variable, active is a subset of Name.

Since it cont8,ins the nmnes in the phonebook, it (;8,n be specified as the domain of

the phonebook, using dom(db). Finally, activec is a subset of Codes, the mnge of

the phonebook, denoted ran(db). Note that we have expressed subsets as elements

of powersets, e.g., active E lP'(Name); equivalently, we could use the subset symbol,

such that active c::: Name.

- INITIALISATION: Defines an initialisation of the variables that satisfies the

invariant. Note that the opemtor, II, indicates the parallel evaluation of the three

assignment expressions.

OPERATIONS: Defines the system behaviour, through simple statements on the

variables. Applic8,tion of an operation should guarantee the invari8,nt is preserved.

This machine has four operations. Firstly, the operation, lookup, takes a Name

as parameter and returns (indicated by the corresponding Code. The add

operation adds entries into the phonebook, specified as maplets (ordered pairs)

such as n I-'t c, where n is a Name : and c is a Code. Conversely, the delete

operation deletes entries. Note that add and delete make use of set union (u),

set restriction (\), and relational image (db [(active \ { n }) 1 = {t I s I-'t t E db 1\

(active \ { n }) }). Finally, size_phone book enables one to query the current number

of entries in the phonebook, i.e., its cardinality, denoted card(db).

We now consider a modification to the phOlwbook machine given in Figure 1.:3, as an

example of an error in a machine. The change involves weakening the precondition of

the add operation as follows (the rest of the operation remains unchanged):

add(n , C) 0;:

PRE
n E Name 1\ c E Code

THEN ...

Chapter 1 Introduction 12

The add operation is now defined over any n E Name and c E Code: there is no

requirement that n rf:. active. Therefore, it is possible to add the same name with two

different numbers into the phonebook, db. This violates the invariant condition that

db is a (partial) function. Such errors can be easy to make during the development

phase of a machine, however, the machine invariant makes it possible for the presence

of these errors to be established, and subseqently resolved. The other type of error in a

B machine concerns refinement. Before presenting a refinement error, we first provide a

more detailed introduction to refinement in B.

1.4.1 Introducing Refinement in B

Refinement in B involves moving from abstract specifications to more concrete specifica

tions, through a transformation that enables the refining system to simulate the abstract

system. IVIoreover, a refinement machine must guarantee to provide the expectations a

user may have about the abstract machine. Given successive refinements of an abstract

machine, one can reach concrete systems that conform to their abstract specification,

and from which executable system implementations, e.g., C programs, may be derived.

A requirement of refinement is that refinement machines must use exactly the same

interface as their more abstract parent machine. This includes the same operations,

with the same input and output parameters, i.e., the same signatures. However, one may

introduce new data (e.g., variables or constants) into the more concrete specification,

providing that there exist expressions relating data in the refinement machine to data

in the abstract machine. Such expressions are called gl'uing invariants.

\lYe present the concept of refinement more formally using an adaptation of the descrip

tion given in [Leuschel and Butler, 20051, which makes use of the notion of forward

sinmlation [He et al., 1986]. For a reference to refinement in B in terms of guarded

commands, see [Abrial, 1996, Part 4]. Let m represent an abstract machine, and let

mR represent a specification that refines m. m and mR are comprised of distinct sets

of variables that are related via the gluing invariant, such that abstract states relate

to concrete states. This correspondence must be satisfied for the initial states of both

systems, in addition to the states reached via the application of operations of the sys

tems. Given m and mR, the operations are denoted mOp and mROp respectively; the

sets of initial states are denoted mI and mRI respectively; and R is the gluing invariant

between m and mR:

1. For every initial concrete state there is a related initial abstract state:

sR E mRI =} ::3 ·s E mI A sR f-+ s E R

Chapter 1 Introduction 13

2. If state sR in mR is related to s in m, then for every execution of opR E mROp

from sR to sR', written sR ~ sR', a corresponding execution s ~ s' exists,

where op E mOp and sR' is related to s':

sR ~ sR' 1\ sR f---7 s E R =?

::3 . s s' 1\ s' f---7 sR' E R

Figure 1.4, presents phonebookR as an example refinement of the phonebook machine. In

this example, one variable called, SZ, is introduced to store the current size of the phone

book. Hence, there exists the gluing invariant, card(db) = SZ, meaning the cardinality of

db equates to the value of sz. Now, by using sz, the size_phonebook operation need only

return sz each time a request is made. This is an improvement upon the method used

in the abstract machine, which evaluates card(db), on every request. Accordingly, sz is

either incremented or decremented each time one adds or deletes entries respectively.

Also, notice the refinement needs only retain the db variable from the abstract specifi

cation. The variables active and activec are discarded since their values can be inferred

from either the domain or range of db respectively.

\Ve now consider a change to phonebookR, which makes it an invalid refinement of

phonebook. The change is similar to the one introduced into the phonebook machine, to

provide an example of an invariant violation. On this occasion we weaken the guard of

the delete operation, as follows:

delete(n , c) :;c

IF n E Name 1\ c E Code

THEN ...

The error is caused by the possibility of the delete operation engaging at times other

than those specified in the abstract specification of delete. That is, the modified delete

is enabled for any n E Name and c E Code: there is no longer the restriction of

n f---7 c E db. Therefore, this modified phonebookR machine is not a valid refinement of

phonebook. Given that the body of delete remains the same, we can also see that the

change does not violate the invariant condition specifying that db is a partial function,

but does violate the invariant condition, card (db) = sz.

1.5 Formal Verification In B

Formal verification of B specifications can be split into two activities; consistency check

ing, used to show the operations of a machine preserve the invariant, and Tefinement

checking, used to show one abstract machine is a valid refinement of another. These

activities give rise to a number of pTOof obligations, which guarantee the correctness of

Chapter 1 Introduction

REFINEMENT phonebookR
REFINES phone book
VARIABLES db, sz
INVARIANT

sz E N 1\

card(db) = sz
INITIALISATION db := 0 II sz := 0
OPERATIONS

add(n , c) ~
IF n E Name \ dom(db) 1\ c E Code
THEN

db := db U {n >-7 c} II
sz := sz + 1

END;

delete(n , c)
IF n E Name 1\ c E Code 1\ n >-7 c E db
THEN

db := db - {n >-7 c} II
sz := sz -1

END;

C f- lookup(n)

S f- size_phonebook ~
s := sz

END

FIGURE 1.4: A Valid Refinement of the Phonebook iViachine

14

a system description. Such proof obligations are usually discharged using an interactive

theorem prover, such as Atelier-B [Ste, 1996] or the B-Toolkit [B-C, 1999].

In on going research, the RODIN project (Rigorous Open Development Environment for

Complex Systems) [RODIN]' is developing a suite of tools supporting complex system

development and verification using the next generation of the B-Method, called Event-B

[Abrial and Mussat, 2001, ~1etayer et al., 2005]. The fundamental difference concerns

the method of transitioning between states. That is, operations are replaced by the

notion of events. vVhen an operation is called in classical B, the caller must ensure its

precondition is satisfied, otherwise any state can be reached and the invariant is not

ensured. In contrast, an event has a guard and can only engage when the state of the

system satisfies the guard. It follows that events can either be observed or not observed,

and therefore, proof activities eliminate the potential for erroneous executions of events.

In addition, events do not include input or output parameters, unlike operations. Further

changes in Event-B include promoting decomposition and refinement of specifications,

in an attempt to simplify the sharing of data between specifications. For a thorough

Chapter 1 Introduction 15

introduction to the differences between classical Band Event-B, see Cansell and Mery

[2006].

The deliverables of the RODIN project also include a collection of reusable development

templates generated from case studies and a set of guidelines for the rigorous develop

ment of complex systems.

1.5.1 Model Checking in B

Currently, only one tool exists for model checking B specifications. This is called PRoB

[Leuschel and Butler, 2003], and it has been developed, using SICStus Prolog [SICStus].

The tool also enables B specifications to be animated (driven by the user through traces

of execution), allowing users to gain confidence in their specifications, and unlike the

animator provided by the B-Toolkit, the user need not guess the right values for the

operation arguments or choice variables. In its original releases, PRoB does not use

any strategy in Section 1.3 to combat state space explosion, although it uses a simple

normalisation scheme to ensure there exists only one representation of each state; so

states 31 = ({ a, b } I and S2 = ({ b, a} I have the same normal form.

Model checking in PRoB makes use of user defined bounds on system types (e.g., max

imum integer is 15, minimum integer is -10) to ensure algorithmic termination. The

procedure performs an exhaustive search of all states reachable from the initialised state

via successive applications of machine operations. Thus, the model is constructed incre

mentally. The procedure makes use of three key variables, Queue, Visited and SCraph,

and is formalised in Algorithm 1. Note that the (safety) properties that can be defined

for a system constitute an invariant, denoted ¢ in Algorithm 1. Therefore, model check

ing in PRoB corresponds to invariant checking. Also note that there is only one initial

state, denoted TOot, which represents the uninitialised machine.

The variable Queue, stores the states yet to be explored and checked, and Visited records

states already reached by checking. SCraph stores the section of the model explored so

far. lVlodel checking proceeds by successively removing the state at the head of Queue,

checking it (line 4), and (if it is not an error state) then adding any of its successor

states to Queue not yet encountered. Checking a state s constitutes analysing whether

the invariant (set of safety conditions) ¢ holds for the particular values of variables in

s (written s F 0, if this is true), or whether 3 is deadlocked and so has no enabled

operations. If checking encounters such an error state, a trace to the error is returned

to the user1. The use of the queue, Queue, gives control to the type of search that takes

place. Placing a new state at the front of it results in a depth-first search, whereas placing

it at the back results in a breadth-first search. A combination of these strategies are used

lBy default, PRoB checks for invariant violations and deadlocks. However, user options include
controls over whether these conditions are checked.

Chapter 1 Introduction

Algorithm 1 Model Checking in FROB
Require: An abstract machine M and invariant ¢

1: Queue := (TOot) ; Visited := {TOot}; SCraph := {root};
2: while Queue f- 0 do
3: state := pop(Queue);
4: if state F ¢ or state deadlocks then
5: return counterexample trace in SCraph from root to state
6: else
7: for all successor succ, and operation Op such that state -+~p succ do
8: SCraph := SCraph u {state -+ Op succ}
9: if succ tI Visited then

10: if random(1) < 0: then
11: add succ to front of Queue
12: else
13: add succ to end of Queue
14: end if
15: Visited := Visited U {succ}
16: end if
17: end for
18: end if
19: end while
20: return ok

16

during model checking. The choice of strategy is made randomly, whenever a mndom

value is less/greater than a u:)er defined value, 0: (line 10). In practice, this heuristic has

proven to be very effective. The breadth-first search is shown to be especially effective

at identifying systematic errors in operations, which lead to errors in most states; depth

first search is shown to be effective at finding errors that occur less frequently in a state

space [Leuchel and Butler, 2006].

Note that all elements of Que'ue and Visited have associated hash values. It is therefore

usually quite efficient to decide whether s'ucc tI Visited.

FROB also provides a graphical visualisation of certain aspects of the reached state space

of a B machine. Visualisation uses the graph drawing package called, dot [DOT]' which

analyses the search space recorded in SCraph, in Algorithm 1 (refer to line 8). This

alternate form of detailing the model of a B specification can be beneficial to the user,

especially since the human mind is adept at visual perception [Ham et al., 2001], such

as identifying cycles/symmetries. Original visualisations that FROB offers include the

reached state space, the current state, and the shortest trace to the current state. The

latter is particularly useful when analysing counterexamples.

Figure 1.5 depicts part of the state space that can be displayed in FROB when model

checking the phone book machine in Figure 1.3. The state space is represented as a

labelled transition system where system states are denoted by nodes, and operations

between states are denoted by labelled edges between nodes. For this example, the

Chapter 1 Introduction 17

Name and Code sets have a cardinality of 2 (specified using an options menu in PRoB).

Consequently, PRoB generates 2 abstract elements for each set for use during animation

and checking. So; for the Name set PRoB generates Namel and Name2. The current

state of the system in Figure 1.5 is indicated by a green octagonal ~ode: the initialised

machine. Hence, db, active and activec are all equal to the empty set. The green triangle

represents the uninitialised machine, and the red elliptical nodes depict successors of the

current state yet to be explored. Note that PRoB also has an option to turn on/off self

loops in such visualisations. This option is off for Figure 1.3; if it had been on, each state

would have a self loop representing the lookup and sizLphonebook operations (which

preserves the state of the system).

: initi.o.lise_machine{(),IJ.IJ)

add(Namel,Codel) add(Namc2.Code2)

FIGURE 1.5: Part of the state space for the phonebook machine shown in PRoB

PRoB can also perform constraint-based checking, where a state of the system is found

from which the application of a single machine operation leads to a state violating

the invariant. This is essentially a constraint satisfaction problem, for which there exist

mature programming packages that are accessible from PRoB (e.g., CLP(FD) in SICStus

Prolog). The advantage is that one can find errors of a B system without traversing

large state spaces. If an error is found, then it is not possible to prove the B machine

correct using the B proof rules. The disadvantage, however, is that a counterexample

may not be reachable from a valid initial state; in which case it may be discarded.

In related work, Legeard et al. [2002] present the BZ testing tool (BZTT). In contrast

to PRoB, this tool does not verify B specifications but instead automatically generates

a set of test cases. In addition, it provides an animator for the specification, which

Chapter 1 Introduction 18

maintains a set of constraints about the variables of the machine, rather than explicitly

enumerating possible values as with PRoB.

1.6 Contributions of this Thesis

This thesis presents a set of techniques that have been developed to address several of

the problems associated with model checking systems in B, which have been introduced

in the preceding parts of this chapter. The details of the precise contributions are listed

below.

i.) The goal of a model checker is to verify for a finite state model of the system

whether all states satisfy some set of correctness conditions. If this is not true, a

counterexample should be generated. Some tools provide certain visual feedback

to aid the user, such as process automata in SPIN. However, there is typically little

emphasis on visual feedback. Therefore, this thesis develops a set of techniques

that provide useful vis'ual feedback on the model of the system, which help the user

gain an improved understanding of the system being checked. The premise is that

the human mind is adept at processing visual feedback, such as identifying cycles

or symmetries, which could be very useful to system designers regardless of how

nmch experience they have. As a basic example, a SPIN user would gain a better

understanding of the system in Figure 1.2 if a Kripke structure resembling that

shown in Figure 1.1 could be automatically presented.

ii.) During the development of a symmetry reduction strategy, symmetric regions of

the state space of a system need to be identified. This task is closely related to the

graph isomorphism problem, for which there already exist established programs,

such as na'uty [McKay, 1981]. This thesis documents an extension to the underlying

algorithm of nauty that makes it suitable for identifying symmetries in B systems.

iii.) This thesis presents the algorithms that constitute the first strategy for symmetry

reduced model checking of systems in B, called symmetry reduction via canonical

labels, and their integration into the PRoB tool-set. The improvements in the tool

enable the verification of a larger range of B systems, including more complicated

systems, within practical time and memory constraints.

iv.) A detailed evaluation is presented documenting the effectiveness of the symmetry

reduction technique developed for B. This includes analytical details that provide

insights into ways to improve its performance, in addition to directions for future

work.

v.) Symmetry reduction in B via canonical labels has also stimulated works developing

three new techniques for symmetry reduction in B. These include the separate work

Chapter 1 Introduction 19

of symmetry markers [Leuschel and Massart, 2007], and the collaborative works

of permutation flooding [Leuschel et al., 2007] and canonical labels + symmetry

markers. The techniques are subjected to experimentation to establish the details

of their performance, in comparison to the canonical label approach.

vi.) The final contribution of this thesis is a proof of soundness for the symmetry

reduction method developed, with respect to standard model checking in PRoB.

The proof is achieved using refinement in B. Firstly, an abstract B machine is given

specifying the goal of model checking. From this, separate chains of refinement

are specified for the standard model checking algorithm, and the reduced model

checking algorithm. Background research suggests this is novel in the field of B.

Furthermore, the use of B and refinement provides an alternate reference for the

concepts used during model checking and symmetry reduction.

For the aid of the reader, the chapters of this thesis are organised as follows. Chapter 2

gives a background to the graph isomorphism problem, in addition to an algorithm that

can determine whether two graphs are isomorphic. This will be necessary in Chapter 4

later, in which a technique for identifying symmetric B states is described. Chapter 2

also provides a background to symmetry reduction, and a review of several model check

ers that use symmetry reduction. The chapters presented next constitute the research

contributions of this thesis. Initially, research focussed on improving the visualisation of

state spaces via reductions in their size. The methods developed are given in Chapter 3.

This work provided the inspiration for the next line of research, where the aim is to

develop the first methods for symmetry reduction in B, so that larger B specifications

can be model checked. The culminations of this work, presented in Chapter 4, are two

techniques for symmetry reduction in B that use a method for identifying isomorphic

graphs. Chapter 5 presents an empirical evaluation of the methods for symmetry reduc

tion in PRoB and illustrates their effectiveness. Chapter 6 form.alises the algorithms of

standard model checking and symmetry reduced model checking in B, and shows the

correctness of the reduced approach. Finally, Chapter 7 provides conclusions for the

research presented in this thesis, and gives directions for future work.

Chapter 2

Graph Isomorphism and

Symmetry Reduction

2.1 Introduction

A major component of the B Method's expressivity is the relation, i.e., powersets of

ordered pairs. Subsets of relations define different types of frequently used functions,

such as partial/total functions, injections, bijections etc. In fact, it is shown later in

Chapter 4 that relations can be used to encode any state in B. If it can be detected that

two relations are symmetric, it is necessary to store only one; the redundant relation

can be discarded. This idea can be used to improve the efficiency of a model checking

procedure in terms of memory used and time to find a counterexample, if any, and is the

focus of Sections 2.6 - 2.8. First, however, this chapter presents the fundamental ideas

behind exploiting such symmetries, which will be used later in Chapter 4 in a technique

for symmetry reduced model checking of B systems. Since relations can be represented

as directed graphs, this chapter concentrates on finding symmetries between directed

graphs.

A nai've approach to detect symmetries between graphs during model checkillg is to usc

a function f that can explicitly test two graphs for symmetry on-the-fly (e.g., using an

intelligent vertex relabelling scheme). During nlOdel checking, relations may constitute

any number the state variables; so each relation must first be extracted from the state,

and then compared using f with the corresponding relation in every other reached state.

This approach would be very wasteful on computing resources since the computations

made by f are repeated many times. An improvement is to label each relation with

some value, such that relations have the same label if and only if they are symmetric.

These labels are called canonical labels. Then, the test for graph symmetry, and state

symmetry in this case, is reduced to a simple test for equality. Techniques that produce

20

Chapter 2 Graph Isomorphism and Symmetry Reduction 21

canonical labels for graphs are therefore preferred to other methods, and they are the

subject of the first part of this chapter (Sections 2.2 2.5).

Section 2.2 introduces the preliminary definitions used throughout this thesis. Sections

2.3 and 2.4 describe the steps used in a successful strategy to compute canonical labels

of graphs.

2.2 Preliminaries

First, we shall introduce several concepts of group theory that will be used throughout

this thesis. Given a set, G, a group is defined to be G together with a binary operation,

o acting on G, called the group multiplication. This group, denoted (G, 0), satisfies

certain conditions and is presented formally in Definition 2.1.

Definition 2.1. Given a set G and a binary operation 0, (G, 0) is a group, where:

1. The multiplication of two elements of G is itself an element of G: G is said to be

closed under o.

2. The multiplication operation is associative, such that for any g, h, i E G, we have

go (h 0 i) = (g 0 h) 0 i.

3. There exists an identity element, e E G, such that for any 9 E G, eo 9 = go e = g.

4. For each 9 E G, there exists an inverse element, g-l, where go g-l = g-l 0 9 = e.

Note that it is usual to omit the binary operation symbol and let G denote the group

(G, 0), when the binary operation is clear from the context. Also, concatenation is often

used to denote multiplication. A subset H of G is subgroup of G if H also forms a group

under the multiplication operation.

A permutation (J on a finite set A is a bijection over A, denoted (J E A >--* A. The set,

Sym(A) is the set of all permutations on A, which forms a group under the composition of

functions, and which is sometimes referred to as a full symmetric group. A permutation

group is defined to be a subgroup of Sym(A).

Having introduced the basic notions used within group theory, we now introduce some

key concepts of graph theory, which will also be used throughout this thesis.

The term 'graph', referred to in the previous section, is a node-link diagram where the

nodes are called vertices and the links are called edges. We can distinguish between two

types of graphs, undirected and directed graphs. Preliminary concepts are now given in

Definitions 2.2 - 2.8, as found in Gross and Yellen [1999].

Chapter 2 Graph Isomorphism and Symmetry Reduction 22

Definition 2.2. An undirected graph consists of a finite set V of vertices and a finite

set E of edges, such that each edge is a two element subset of vertices. It is customary

to write a graph as an ordered pair, (V, E).

Definition 2.3. A directed graph is the same as an undirected graph, except that each

edge is an ordered pair of vertices - indicating the direction of the edge.

01 02

01 = (VI,El), 02 = (V2,E2)

FIGURE 2.1: Two graphs: Gl is undirected, G2 is directed.

In Figure 2.1, G1 = (VI, E1), where VI =

{b, c },{ b, d}}, and G2 (V2, E2), where V2

(b, a),(b, c), (c, b),(d, b)}.

{a,b,c,d} and E1 = {{a,b},{a,c},

{a, b,c, d} and E2 = {(a, b),(a, c),

A vertex y is said to be adjacent to another vertex x, if x can reach y via some (possibly

directed) edge, e.g., c is adjacent to a in both G1 and G2 in Figure 2.1. An undirected

edge {i, j} is said to be incident with i and j; a directed edge ('i, j) is said to be incident

from i, and incident to j. The degTee of a vertex p is the number of edges that are

incident with p; for directed graphs, and if there could be confusion, we may refer to

the in-degree of p as the number of edges incident to p, and the out-degree of p as the

number of edges incident from p.

Directed graphs naturally model relations: each relational maplet corresponds to a di

rected edge in the graph. This idea will be used later in Chapter 4. In addition, note

that we can represent an undirected graph by a directed graph if every undirected edge

{u, v} is represented by two directed edges, (u, v) and (v, u). Therefore, for the conve

nience of this presentation, we refer to directed graphs simply as 'graphs', unless stated

otherwise.

A useful representation of a graph is the adjacency matrix. Given a list of n graph

vertices, an n x n matrix is constructed whose [x, y] entry is a 1 if (x, y) E E, and 0

otherwise. For example, they can easily be implemented in a C-program with a 2-D

array. Table 2.1 shows the adjacency matrix for graph G2 in Figure 2.1.

Note that the vertex ordering used to draw the matrix determines the positions of the

Os and Is. Two orderings of the vertices of a graph can produce two different matrices,

e.g., the matrices corresponding to the orderings (a,b,c,d) and (b,a,c,d) in Table 2.1 are

different. However, the graph that they represent remains invariant.

Chapter 2 Graph Isomorphism and Symmetry Reduction 23

a 0 1 1 0
b 1 0 1 0
c 0 1 0 0
d 0 1 0 0

TABLE 2.1: Adjacency matrix of G2 in Figure 2.1

In many applications, it is useful to know whether two graphs have the same structure,

indicating that they may be related in some way, e.g., two graphs are symmetric, there

fore the program needs only to store one of them. A structural symmetry is called an

isomorphism:

Definition 2.4. Two graphs GI (VI, E I) and G2 = (V2, E2) are isomorphic if there

is a bijection, f : VI >-» V2, such that:

(f (x) ,f (y)) E E2 iff (x, Y) E EI

The function f is said to be an isomorphism between GI and G2 .

A special case of an isomorphism, f is when the two graphs are identical, in which case

f is a symmetry of the graph, called an a?~tomorphism. Figure 2.2 shows three graphs.

G1 is not isomorphic to any of the other graphs. G2 and G3 are isomorphic, since

they have the same structure, regardless of their vertex labels. G L G2 and G3 all have

automorphisms, e.g., (a,b) and (f,g) in G1, (i,j) and (m,n) in G2, (a,b) and (e,f) in G3.

The set of all automorphisnls of a graph G is denoted Aut(G), which forms a group

under composition of mappings. Given 'if, T E Aut(G), which are permutations (i.e.,

bijective mappings from the vertices of G onto the same set of vertices), then the result

of applying 'if to a vertex v is denoted v7r. For example, if 'if = {(a, b): (b, c)} and v = b,

then v7r c. Permutations are usually composed left to right; v 7rT means apply 'if to v

first; and then apply T to the result. It is usual to say that isomorphic vertices, such as

v and v7r where 'if E Aut(G), belong to the same orbit. Furthermore, the orbit problem

asks whether two vertices belong to the same orbit.

Definition 2.5. Given automorphism group, Aut(G) acting on a set S, then for s E S

the set {sP I P E Aut(G)} is called the orbit of sunder Aut(G), and is usually denoted

[S]Aut(G), or just [s], when it is clear from the context that it refers to Aut(G).

Finding isomorphisms between graphs is a very well known problem in mathematics,

where it is known as the graph-isomorphism problem. A polynomial time algorithm is

yet to be found that solves it, although many researchers believe that it is not NP

complete [Gross and Yellen, 1999]. However, there is also no proof for this belief.

Chapter 2 Graph Isomorphism and Symmetry Reduction 24

GI G2 G3
a b 1 J a b

FIGURE 2.2: Three graphs: Gl,G2,G3 contain automorphisms, G2,G3 are isomorphic.

Definition 2.6. The graph-isomorphism problem is to devise a practical general algo

rithm that decides whether two graphs are isomorphic.

A step towards finding a strategy to find if two graphs are isomorphic is to compute some

property about them that does not depend on how the graphs are presented, called an

invariant. For example, a list of the degrees of each vertex in a graph is not an invariant

because the resulting list depends on the order that vertices are examined. However, if

this list is sorted into ascending order, it is an invariant.

Definition 2.7. Let F be a family of graphs, and G1 , G2 E F. An invariant on F is a

function e such that Q(G1) = Q(G2) if G1 is isomorphic to G2 .

If e(Gd -# Q(G2), then it is possible to conclude that G1 and G2 are non-isomorphic.

However, if Q(G1) = e(G2), no conclusion can be made, e.g., two non-isomorphic graphs

can have the same degree sequence. Hence, graph invariants cannot be used directly to

solve the graph isomorphism problem. However, they do have the benefit of potentially

being computationally inexpensive, e.g., counting vertex degrees and sorting is inexpen

sive. So, for exarnple, they could be used as a pre-process to a true graph isomorphism

algorithm, which can quickly compute whether two graphs are not isomorphic. Indeed,

this approach is explored later in Section 2.8.6.

A naIve approach that does solve the graph isomorphism problem may attempt to find an

isomorphism function by examining all n! vertex pairs. However this is very inefficient

for larger graphs. Another approach is to find an algorithm that labels isomorphic

graphs with the same label, called their canonical label, and non-isomorphic graphs with

different labels. Then two graphs can be tested for isomorphism with an equality test. If

a polynomial time algorithm exists for this, then the graph isomorphism problem can be

solved in polynomial time. Unfortunately, again, no such algorithm has been found; but,

in practice some extremely efficient algorithms exist for most classes of graphs [Kocay,

1996] that may contain several thousands of vertices [Foggia et al., 2001]. A successful

method is based on a technique called partition refinement.

Chapter 2 Graph Isomorphism and Symmetry Reduction 25

Definition 2.8. A canonical labelling function, canonical for a family F of graphs is a

function such that for any GI , G2 E F, canonical(GI) = canonical(G2) if and only if GI

and G2 are isomorphic.

The aim of the next two sections is to present to the reader how and why partition

refinement can be used as a general graph isomorphism algorithm. Its key issues have

been proved by several authors, one of the clearest being that of Kocay [1996]. They

are presented again for clarity and completeness.

2.3 Partition Refinement

There is a large amount of literature on graph isomorphism. For an extensive list of rel

evant work see the bibliographies of Corneil and Kirkpatrick [1980] and Babai and Luks

[1983]. Most programs that implement a general purpose graph isomorphism algorithm

are based on the method of partition refinement, which is the most efficient method

known to date. In the worst case they perform with an exponential complexity, but in

practice are extremely efficient for most graphs. Kocay [1996] presents a concise review

of the complexity issues associated with this algorithm and others. The most efficient

general purpose graph isomorphism program known today is McKay's C-Ianguage nauty,

which is based on partition refinement. Nauty can produce canonical labels for graphs,

in addition to their automorphism group. For a thorough reference of the algorithms

used, see McKay [1981]. In related work, the saucy program [Darga et al., 2004] spe

cialises certain algorithms used by nauty for use on graphs that represent conjunctive

normal form (CNF) formulae. In particular, saucy makes optimisations to the parti

tion refinement procedure by exploiting properties, such as the sparsity, of such graphs.

Furthermore, saucy is shown to outperform nauty by several orders of magnitude for

such graphs, when identifying automorphisms. These works indicate the power of parti

tion refinement and highlight the importance of using efficient programming techniques.

Unlike nauty, however, saucy has no facility to produce canonical labels. Therefore, we

focus on providing an overview of the concepts used by nauty in the next two sections, to

show how a canonical label can be identified. First, we present the key methods behind

partition refinement and highlight their relevance.

The main structure used in the algorithm is the partition. Given a graph G = (V, E),

a partition of V is a set of disjoint non-empty subsets of V, whose union is V. For

example, a partition of the vertices in G2 in Figure 2.1 could be, {{ a, b}, {c}, {d}}. The

elements of a partition are typically called its cells. A trivial cell contains a single vertex,

and this vertex is said to be fixed. A discrete partition contains only trivial cells, and a

unit partition contains a single cell. An ordered partition II of G = (V, E) is defined as

a list of cells, II = [C1, C2, ... , Cp], where each cell is disjoint, and whose union is V.

Chapter 2 Graph Isomorphism and Symmetry Reduction 26

A partition II' is referred to as being finer than some other partition II if and only if

each cell in II' is a subset of some cell of II. The converse case is defined as being coarser.

An example of a ordered discrete partition is [{ a}, {b }, {c}, {d}] (for the rest of the doc

ument ordered discrete partitions will be referred to as just discrete partitions, unless

made explicit). The sequence of vertices defined by the discrete partition has a corre

sponding adjacency matrix, see Table 2.1. The matrix can be viewed as a single binary

string comprised of the concatenation of each row of the matrix.

Definition 2.9. Let compute_label compute for a given graph and discrete partition

the row-by-row binary string of its corresponding matrix.

For example, given the graph, G2 in Figure 2.1 and the discrete partition d1 = [{a},

{b },{ c },{ d}], then compute_label(G, d1) = 0110101001000100 (refer to the matrix in Ta

ble 2.1).Note that binary strings form an ordered set, if equipped with the lexicographic

relation. Therefore it is easy to identify a unique, canonical label for a graph, i.e., choose

the minimum/maximum element. Continuing from the last example, d1 could have been

ordered differently, e.g., [{b},{a},{c},{d}]. Indeed, there are 4! different discrete par

titions, each of which has a corresponding binary string. Considering the ordered set

of binary strings for this graph, its canonical label is taken as the least element (or

maximum; although this document uses the least). Use of this method for computing

canonical labels is not practical in general though, since the number of different discrete

partitions is very large for large graphs: for a graph G = (V, E), this number is I V I!·

Partition refinement aims to r-estr-ict the number of discrete partitions considered while

searching for the canonical label. One simple restriction is to consider only the different

discrete partitions that preserve the vertex degree sequence, see Definition 2.7. Partition

refinement extends this invariant. The cxtcnsion uses the notion of eqv,itable/ stable

partitions.

Definition 2.10. Given a graph G (V, E), v E V and W c:;;: V, then the number of

elements of W that are adj acent to v in G, is denoted as d (v, W).

Definition 2.11. A partition II is said to be equitable/stable if, for all cells C1 , C2 E II

and VI, V2 E C1 , then d (VI, C2) = d (V2, C2).

If a partition is not equitable, it can be r-efined to make it so. In practice an efficient

algorithm to compute the refinement is required, such as those in McKay [1981] and

Kocay [1996]. Let us denote the refinement procedure, r-efine. Observe the following

propositions that hold for partitions used with refine (see McKay's paper for correctness

proofs):

Proposition 2.12. Partition II' = [C1', C2', ... , Cp'] r-efines II = [C1, C2, ... , Cq] (TI'

is .finer- than II); i ::::; j =? ::J x, y. Ci' c:;;: Cx 1\ Cj' c:;;: Cy 1\ x ::::; y.

Chapter 2 Graph Isomorphism and Symmetry Reduction 27

Proposition 2.13. Given an unordered partition II, there exists a unzque, coarsest,

unordered equitable partition lIe that is finer than II.

Definition 2.14. The refine function maps any partition II to an equitable partition

II', such that II' refines II by Proposition 2.12, and II' is the unique, coarsest equitable

partition of II that is at least as fine as it.

As an example, consider the two ordered partitions III = [{a, b},{c, d}] and II2 = [{a},

{b}, {c, d}]. III has four discrete partitions that are valid refinements, namely, [{ a},

{b}, {c}, {d}], [{b}, {a}, {c}, {d}], [{a}, {b}, {d}, {c}], and [{b}, {a}, {d}, {c}]. II2

however, has just two: [{a}, {b}, {c}, {d}] and [{a}, {b}, {d}, {c}]. Note that II2 is a

valid refinement of III' This illustrates that refining a partition II restricts the number of

discrete partitions that are refinements of II. If the partition is already stable, refining it

produces the original partition and no restriction is gained. However, if it is not stable,

the restriction can be substantial. This is a key advantage of partition refinement.

In practice, refinement uses an invariant that orders cells in a partition by ascending

degree. Hence, refine operates over ordered partitions. A number of ordered partitions

correspond to an unordered partition. If refine (II) II', then II' is one of possibly many

ordered partitions that correspond to the unique, coarsest equitable unordered partition

finer than II. Therefore an implementation of the refine function must take care to

ensure consistency. For example, given a graph G, an automorphism 11 E Aut(G), and

two partitions for G, IIo and II:;, where IIa = (IIfl)" , then the refinement of these

partitions should preserve the permutation between the resulting partitions, and their

ordering. That is, refinement should guarantee, refine(IIa) = (refine (lIp))".

The procedure for partition refinement is presented in Algorithm 2, as in McKay [1981].

For a thorough reference, including correctness proofs and optimisations of this tech

nique, refer to McKay's paper.

Observe that for an equitable partition produced by partition refinement, and vertices

Vl and V2 in different cells, there exists a cell, C, such that d (VI, C) f d (V2, C), see

line 6 of Algorithm 2. Therefore, in terms of the automorphisms of a graph, VI and V2

cannot be symmetric, i.e., If 11 E Aut(G) . VI f V2·

2.3.1 Automorphisms of a Graph

This section introduces the properties of the automorphisms of a graph, required for the

sections ahead.

Recall from Section 2.2 that an automorphism on a graph G (V, E) is a permutation

11 E Aut(G) that leaves V and E invariant. A cell C of a partition II is said to

be fixed by Aut(G) if C" = C for all 11 E Aut(G). If II = [Cl, C2 , ... ,Cp], then

Chapter 2 Graph Isomorphism and Symmetry Reduction

Algorithm 2 refine(7r, G): Refining a partition

Require: Graph G and partition 7r = [Vl, ... , Vn]

1: 7r := 7r;

2: 0: = [Vl , ... , Vn];

3: while ir is not discrete and 0: is not empty do
4: Remove an element W from 0:;

5: for all k E 1 ... n do

28

6: Compute ordered partition [Y1,'" , Ys] from Vb where Vi,j, x, y. 1 :; ij :;
s 1\ x E Yi 1\ Y E Yj =? i < j {::? d(x, W) < d(y, W)

7: if s > 1 then
8: update ir by replacing the cell Vk with the cells Y1,· .. , Y s ;

9: 0: = concatenate (0:, [Y1 , ... , Ys]);
10: end if
11: end for
12: end while
13: return Equitable partition, ir;

II" is denoted [Cl , C2" .. , C;]. Kocay [1996] proves the following proposition, which

connects partition refinement and the automorphism group.

Proposition 2.15. Let IIo be a partition of V (G) such that Aut(G) fixes every cell of

IIo. Let II a refinement of IIo. Then Aut(G) fixes every cell of II.

2.4 Stabilising Vertices

III order to fiud a canonical label for a graph (V, E), an efficient algorithm searches a

minimum number of vertex orderings of V. The last section describes one of the major

steps that can be used to reach this goal. However, it is not sufficient alone; ideally,

refining any partition should generate a partition with more cells (a more discretised

partition) - but this is not true when stabilising a partition that is already stable, in

which case the same partition is generated. Hence an extra technique, called splitting

is used to manipulate a stable partition into a valid refinement of itself, in an attempt

to make it non-stable, so that partition refinement can be applied once again. Thus,

we have a method for progressively making a partition finer, until discrete partitions

are obtained, and from which we can identify a canonical label. This section describes

splitting and several important properties of the techniques described so far.

Splitting Cells: Given a non-discrete ordered partition II, pick a cell C from it and

let u E C. Also let r be a subgroup of Aut(G) such that r fixes II. Concentrate on

orderings where u is further left than any other element of C. Split C into two cells,

{ u} and C - {u}. u is said to have been .!i.red. Call the modified partition II~. By

Proposition 2.12, II~ is a valid refinement of II. Note that although r no longer fixes

II~, the subgroup IIu = b E r I U' = u} that fixes u also fixes C - {u} and all other

Chapter 2 Graph Isomorphism and Symmetry Reduction 29

cells of II~. This idea will be used later. As an example of a partition that has been

fixed, II could be [{ u, v, w}, {x, y, z}] and II~ be [{ u}, { v, w}, {x, y, z}].

Definition 2.16. Let r be a permutation group acting on a set V. The subgroup r u

containing permutations that fix u is called a stabiliser subgroup.

No discrete partition that is a valid refinement of a stable partition II can be discarded

during the search for a canonical label. Therefore II must be split 1 CI times, so that all

u E C are fixed eventually. Continuing the previous example, II must also be split into

[{ v }, { u, w}, {x, y, z}] and [{ w }, {u, v}, {x, y, z}].

Vertex Stabilisation: Stabilisation can be applied post-splitting since the result may

not be stable. The process of fixing a vertex u in a partition II to get II~, and refining

II~ to an equitable partition IIu is called vertex stabilisation. It usually produces a

refinement of II that is far finer, from which considerably fewer discrete partitions can

be generated.

Pseudocode for the recursive algorithm that uses these ideas to find the smallest adja

cency matrix associated with an ordering is given in Algorithm. 3:

Algorithm 3 stabilise(II, G): Finding a canonical label of a graph

Require: Unlabelled, undirected graph, G
1: IIe = Tefine(II); / / refine II to an equitable partitioll
2: if IIe is discrete then
3: / / compare with smallest label so far
4: v = computclabel(G, IIe);
5: if v < best then
6: best = v; / / update label
7: end if
8: else
9: / / IIe is not discrete

10: C = first non-discrete cell in IIe;
11: for all u E C do
12: make a copy IIu of IIe in which C is split into 'U and C - {u}
13: stabilise (IIu, G);
14: end for
15: end if

Algorithm 3 shows that splitting takes place on the .first non-discrete cell of a non

discrete ordered partition. The choice could have been made using a more complicated

rule that may reduce the size of the search tree, but the computation overhead generally

outweighs this benefit due to the high frequency of splitting in the algorithm. Hence the

algorithm opts for the simple choice.

Given a graph G = (V, E), stabilise can be called with the unit partition containing

V to find the canonical label for G. The algorithm generates a tree structure where

the root is the unit partition and the leaves are discrete partitions. As an example,

Chapter 2 Graph Isomorphism and Symmetry Reduction 30

given the graph in Figure 2.3, Figure 2.4 then shows its corresponding search tree. The

canonical label is taken to be the lexicographically least adjacency matrix of the two

discrete partitions. The worked example can be found in Appendix A. Note that it is

possible to identify any discrete partition in a search tree by a list of fixed vertices that

trace its location in the tree from the root. For example, in Figure 2.4 the discrete node,

[{b},{e},{c},{d},{a}] can be identified by the list [fix(e)]. The root node of the tree

corresponds to the empty sequence [], where no vertices have been fixed.

b

a c

e d

FIGURE 2.3: A simple graph

[{a,b,c,d,e}]

I
,j,

[{b}, {c,c}, {d}, {a}]

jix(e)

[lb) ,{c},{e}.{d},{a}] [{b}, {e},{c},{cl}, [a}]

)

}

refine

split

FIGURE 2.4: An example search tree generated by stabilise([{a, b, c, d, em, for the
graph in Figure 2.3.

Canonical labels are the same for isomorphic graphs: Consider two graphs

G = (V, E) and II (V1T , E1T), where 71 is the vertex transforrnation between the G

and II. Now consider the search trees for G and II generated by the stabilise algorithm

using the unit partitions as the initial partition. The unit partition ITa of G corresponds

to the unit partition IT~ of II. Let ITb be the equitable partition of ITa produced by

partitioll refinement. Then ITb is the stabilisation of IT~. Apply this idea recursively to

the whole tree. This means the set Dc of discrete partitions in G correspond to the set

Dc in II. Since the two graphs have the same structure, and 71 is the transformation

between their vertices, the adjacency matrices that correspond to Dc are the same as

those for Dc. This illustrates that the canonical labels for both graphs are the same.

Non-isomorphic graphs have different canonical labels: Let the stabilise algo

rithm generate the same canonical labels for two non-isomorphic graphs. This is impossi

ble since the label is derived from the adjacency matrix, which determines the structure

Chapter 2 Graph Isomorphism and Symmetry Reduction 31

of the graph; and these graphs have different structures. Therefore non-isomorphic

graphs have different canonical labels.

Reducing the size of the search tree: Consider a run of the search procedure given in

Algorithm 3, which encounters an initial discrete partition with the label '01. .. ' (found

using computclabel in Definition 2.9). Lines 5 and 6 guarantee that the canonical label

found will begin with either '01' or '00'. However, it is still possible to generate discrete

partitions greater than this, beginning with either '10' or '11'. The first optimisation,

called lexicographic pruning, exploits such redundant searches by observing that parti

tions are progressively discretised from left to right (line 10). Therefore, the stabilise

procedure does not need application to any partition encountered whose discretised left

hand cells determine a partial adjacency matrix beginning with either '10' or '11'. An

appropriate change to Algorithm 3 simply requires the computation of a partial adja

cency matrix, and its comparison to the lowest label found so far, before executing line

13. The effect of this improvement can be a considerable reduction in the size of the

search tree, and a reduction in the time required to find the canonical label.

The second optimisation exploits the occurrence of multiple discrete partitions corre

sponding to the same adjacency matrix. Once more, the effect is to prune the search

tree so that it takes less time to identify a canonical label. The strategy involves the use

of automorphisms of the original graph that are inferred during the search. Therefore,

this optimisation is called mdomorphism pruning.

Consider the search tree for a graph G. Let 7r E Aut(G). Let III be a node in the tree.

and 0 1 be the set of nodes that descends from III. Also, let II2 be another node in the

tree, such that II2 = III. This means the set of nodes O2, below II2, is Or. Moreover,

the labels associated with the discrete partitions in O2 , are exactly those of 0 1 ; so O2

does not need to be searched if 0 1 has already been searched.

An automorphism is found whenever two discrete partitions are found to have the same

adjacency matrix, as shown in Definition 2.17, e.g., if two discrete partitions a and ,8

have the same adjacency matrices, the transformation from 0: to 0, and vice-versa is in

Aut(G).

Proposition 2.17. If 7r is a permutation of V, A1T shall denote the adjacency matr'ix

obtained from A by permv.ting the rows and columns by 7r. Two orderings 7r1 and 7r2 are

equivalent if A 1T
l = A1T2. So A 7fl 1T

2-
1 = A. Therefore 7r17r2-1 E Aut(G).

A na·ive method to make use of automorphisms is as follows. Whenever a partition is

produced in the search tree, find the transformations between itself and every other par

tition in the tree. If one of these transformations is an automorphism, the search below

this partition can be omitted. This approach is computationally expensive, especially

for graphs with large search trees and large automorphism groups. It can be improved

Chapter 2 Graph Isomorphism and Symmetry Reduction 32

and is discussed next. First, some definitions need to be given (as they appear in Kocay

[1996]).

Let r be a permutation group acting on V, 7r E r, u E V and v = u7f.

Definition 2.18. The conJ·ugate of a permutation i E r by 'if is 'if- l i 7r , denoted by ,/7f.
If i maps u to v, then i7f maps u7f to v7f.

Definition 2.19. The conjugate of a subgroup r u is 7r-
l r u7r = r~ = r v. The conjugate

of the stabiliser of u by 7r is the stabiliser of v = u7f.

Definition 2.20. If r u fixes a partition II, then r~ fixes r7f.

Proposition 2.21. Take r to be a subgmup of Aut(G) that .fi.7:es IT, and IIu is obtained

by partition refinement. Let 7r E r and v = u 7f. Then r v = r~.

Let IIo, IIl, ... ,IIk be the sequence of partitions occurring in a path to a leaf node in

the search tree. IIo is the initial equitable partition that is obtained by stabilising the

unit partition. Vertex Uo in IIo is fixed, and after stabilisation, ITl is obtained. Then

Ul in III is fixed etc. The branch of the search tree rooted at ITo on the edge labelled

Uo gets searched by stabilise(IIl). If however, Uo is fixed in ITo instead, to get II)'", then

the branch descending from Uo is isomorphic to the branch just searched. Having fixed

VD, no other points Uo need to be fixed where 7r E Aut(G). Now apply this idea more

generally. Let ro = Aut(G) for some graph G, and r l be the stabiliser subgroup of 1l{)

in r o, such that r l fixes III. Let r i be the subgroup of r i - 1 that is obtained by fixing

vertex Ui-l. Then r i fixes IIi. Now, stabilise chooses a vertex Ui in the first non-trivial

cdl of IIi and fixes it. If 7r r i, the nodes in the search tree descending from r i on the

edge labelled Ui is isomorphic to the one descending on the edge labelled ui. So having

chosen to fix 'Ui in the first non-trivial cell of IIi, no other points ui need to be fixed

where 7r E rio That is, to find the canonical label, only one point needs to be fixed from

each orbit of r i on the first non-trivial cell of IIi.

2.5 Discussion

This chapter, so far, describes the most efficient general purpose graph isomorphism

algorithm known to date, namely partition refinement, and the key ideas that make

it successful. In particular, it uncovers a method to canonically label a graph, so that

isomorphic graphs can be detected easily. In practice, these graphs may represent certain

structures used in the formal specification of a system. Such isomorphism algorithms

then make it possible to identify equivalent structures of a system. We make use of this

premise later in Chapter 4, where we describe the how to identify symmetric states of

B systems.

Chapter 2 Graph Isomorphism and Symmetry Reduction 33

The remaining sections of this chapter focus on how techniques that identify symmetries

inherent in a system can be exploited to produce a more efficient model checking strategy.

In Sections 2.6 and 2.7 symmetry reduction is introduced in more detail and a description

is given for a classic implementation technique. This is followed by a literature review

of 5 model checkers that use symmetry reduction, in Section 2.8.

2.6 Symmetry Reduction In Model Checking

Standard model checking performs an exhaustive search of the state space of a system

to determine whether some specification holds, and has been presented for PRoB in

Algorithm 1. The size of this state space can grow exponentially as more components

are added to the specification, e.g., a new variable. As a result, the verification of

large systems becomes intractable; requiring too much time/memory for the search

to terminate. Symmetry reduction is one of several techniques (amongst others, see

Section 1.3) that can be employed by model checkers to try and alleviate this problem.

The premise behind symmetry reduction is to identify symmetries in the system being

model checked, such that symmetric states may be interchanged with no effect on the

behaviour of the system. States encountered during checking, that are symmetric to

others already reached, can then be discarded to avoid redundant searches. The result of

exploiting symmetries is to search a smaller, equivalent state space. The major problem

associated with this scheme is finding a computation to identify symmetries, whose time

saved by a constrained search is not outweighed by its computational inefficiency.

Considerable progress has been made over the past 10 years in advancing symmetry

reduction in model checking. One of the first descriptions is by Huber et al. [1984] for

describing high-level Petri Nets, which is developed by Starke [1991] for deadlock and

liveness checking. Following this, Clarke et al. [1993] and Emerson and Sistla [1993]

discovered ways to exploit symmetry in temporal logic model checking. Expanded de

scriptions of these papers, amongst others, can be found in the journal article by Emerson

and Sistla [1996].

Although there has been a wide range of research into this area, so far no literature exists

on symmetry reduction for model checking systems specified in the B language ~ despite

its increasing popularity. Hence, a primary goal of this research is to develop existing

techniques for symmetry reduced model checking, for application to the B language and

the B model checker, PRoB.

Chapter 2 Graph Isomorphism and Symmetry Reduction 34

2.7 Classical Technique

The most frequently used technique for symmetry reduction is based on exploiting sym

metries induced by the transition relation of a finite-state concurrent system, i.e., the

behaviour of the system. Symmetry can be found, for example, in memories, caches,

network protocols, a software specification of a phonebook - anything with replicated

structure. Regarding the Kripke structure of a system, M = (S, R, L, So), these sym

metries imply the existence of automorphisms of the form pES >----» S, which pre

serve the transition relation, R, such that for every transition a f--4 b E R, we have

p(a) f--4 p(b) E R.

The group of all automorphisms for a Kripke structure M is denoted Aut(M). Given

a subgroup of these automorphisms, denoted G, one can partition the set of states, S,

into disjoint orbits (Definition 2.5), which may be used to construct a quotient Kripke

structure for the system, denoted Mo. Generally, M 0 is smaller in size than M (when

there exist automorphisms other than id (S)), but is never larger. Therefore, model

checking such structures usually requires less memory and time for verification. Given

now is a formal definition of M 0:

Definition 2.22. Given Kripke structure M = (S, R, L, So), with a group of automor

phisms G, there exists a quotient Kripke structure, /V(g = (So, Ro, Lo, S&), where:

S& = {[s]c I s E So},

So = {[slo I s E S},

- Ro = {[slo f--4 [tlo I s f--4 t E R},

LC([slo) = L(rep([slo)), where rep([s]c) finds a unique representative of [slo

For quotient structures to be of use in model checking, one must ensure that any violation

of the correctness conditions in the original Kripke structure corresponds to a violation in

the quotient structure. In previous work [Emerson and Sistla, 1993], it has been proved

that for every symmetric CTL * formula 'if; and every state s E S, then M 0, [s 1 0 F 'Ij; <=?

M, s F 'Ij;. Indeed, this ensures that checking a property for a system over a quotient

Kripke structure is sound with respect to checking the property over the original Kripke

structure. A CTL* formula, 'Ij;, is symmetric with respect to a group of automorphisms,

G, if for each maximal propositional subformula, v, that appears in 1/), then for every

pE G,M,s Fv<=?M,p(s) FV,

The quotient model given in Definition 2.22 uses orbits as states, e.g., S& in Defini

tion 2.22. The standard approach, however, is to make use of representatives of orbits

- computed by some function, rep that maps a state to its representative state. Let us

define formally the rep function, and modify the definition of M 0 accordingly:

Chapter 2 Graph Isomorphism and Symmetry Reduction 35

Definition 2.23. Given a group of automorphisms, G, let rep E S -7 Rep be the

function mapping a state in the original model, to its orbit representative state in the

quotient model, such that for every s, s' E S· (rep(s) = rep(s') ¢:? [s]c = [s']c).

Definition 2.24. Given Kripke structure M = (5, R, L, So), with a group of automor

phisms G, there exists a quotient Kripke structure, Mg = (Se, Re, Le, sg), using rep

in Definition 2.23, where:

- sg = {s I ::J s' . (s' f-+ S E rep 1\ s' E So)},

Se = Rep,

- Re = {s -7 s' I s, s' E Rep 1\ ::J rES· (s f-+ r E R 1\ r 1---+ s' E rep)},

- Le(s) = L(rep(s))

To illustrate the use of unique representatives from each orbit of a state, Figure 2.5

presents again the Kripke structure for the two-process mutual exclusion problem, in

troduced in Section 1.2; this time, however, states within the same orbit are indicated

by identical shapes in their upper left-hand corners. Figure 2.6 then presents the quo

tient model for the system: once again, this illustration is has been adapted from [Miller

et al., 2006, Figure 2]). Observe that the application of the transposition, 7i = (01), in

the original structure generates an identical structure. Thus, 7i is an automorphism of

the system. The automorphism then makes it possible to analyse orbits of states and

determine unique representatives for use in the quotient model, as in Figure 2.6.

FIGGRE 2.5: Kripke structure for the two-process mutual exclusion problem

Procedures that compute representatives can be computationally expensive. Jha [1996]

shows that the problem of testing the equivalence of two states, known as the orbit prob

lem, is harder than the graph isomorphism problem; therefore techniques may choose

not to approach the orbit problem directly. One method is use a more efficient compu

tation that maps each orbit to a subset of representative states as opposed to a unique

representative. For this case, one defines a representative relation, as in Definition 2.25:

Chapter 2 Graph Isomorphism and Symmetry Reduction

FIGURE 2.6: Symmetry reduced Kripke structure for the two-process mutual exclusion
problem

36

Definition 2.25. Given a group of automorphisms, G, let rep E JP(Rep x S) be the

representative relation if, for every s, S' E S . S f--7 S' E rep {=} s E Rep /\ [s] C = [S'] c.

A formal description of a corresponding quotient structure is now given:

Definition 2.26. Given Kripke structure M (S, R, L, So), with a group of automor

phisms G, there exists a quotient Kripke structure, /\//9 = (Sc, Rc, Lc, sg), using rep

in Definition 2.25, where:

sg = {s I =j S' E So . (s f--7 S' E rep)},

Sc = Rep,

Rc = rep-I; R; r-ep (where ';' denotes relational composition),

- Lc(s) = L(r-ep(s))

2.7.1 The Modified Model Checking Algorithm

The integration of a representative computation (Definitions 2.23 and 2.25) into a stan

dard model checking algorithm, such as Algorithm 1, requires only a small change. Recall

that in the original procedure, for each transition to some new state, s, one adds s to

the set of states that will be checked in the future. Symmetry reduced checking cliflcrs

by adding the representative of s, namely rep (s), to this set to be checked. Thus, for

several symmetric states with the same representative, only a single representative needs

checking. We now formalise the modified search procedure. For convenience, we also

present a generalised version of Algorithm 1. The procedures are given in Algorithms 4

and 5, and have been adapted from Ip and Dill [1993] and Bosnacki et al. [2002].

The success of a technique for symmetry reduction depends largely on the efficiency of

the identification of symmetries, using such r-ep computations, in addition to the overall

reduction in model size. One should note that, if a system exhibits very few symmetries,

the symmetry reduction observed will be limited.

Chapter 2 Graph Isomorphism and Symmetry Reduction

Algorithm 4 Standard Model Checking Exploration
Require: System description with transition relation R, and specification ¢

reached := unexpanded := {s I s E So};
while unexpanded =I- 0 do

remove a state s from unexpanded;
for all s f-> S' E R do

if s' Fe ¢ then
stop and return trace from an initial state to error;

end if
if s' ~ reached then

add s' to reached and unexpanded;
end if

end for
end while

Algorithm 5 Model Checking with Symmetry Reduction
Require: System description with transition relation R, and specification ¢

reached:= unexpanded:= {rep(s) I s E So)};
while un expanded =I- 0 do

remove a state s from un expanded ;
for all s f-> S' E R do

if s' Fe ¢ then
stop and return trace from an initial state to error;

end if
if rep (s') ~ reached then

add Tep (s') to reached and un expanded ;
end if

end for
end while

37

In the following section a review of five model checkers that use symmetry reduction is

presented.

2.8 Related work

Having provided the motivation for symmetry reduction in model checking, and a clas

sical technique, let us now introduce five popular model checking verification systems,

and examine their strategies for symmetry reduction.

2.8.1 Mur¢ and Scalarsets

The Mur¢ protocol verification system [Dill et al., 1992] consists of a description lan

guage and an explicit state model checker, which has been developed gradually over

the past decade. System descriptions in the Mur¢ language were inspired by the Unity

language [Chandy and Misra, 1988], and consist of a set of iterated guarded commands.

Chapter 2 Graph Isomorphism and Symmetry Reduction 38

(A guarded command is a condition followed by a sequence of actions.) Properties of a

system can be specified using assert statements, defined in-line with guarded commands,

and/or via a system invariant. However, the verifier does not support the specification of

any other temporal properties. Model checking then consists of enumerating through the

reachable states of the system, and checking whether the assertions and invariant con

ditions are violated in some state, or if there exist any deadlocks - any counterexamples

are reported to the user.

The Murdi verifier also makes use of a symmetry reduction [Ip and Dill, 1993] strategy

that conforms to Algorithm 5, so that quotient structures are progressively constructed

as the search space is explored. This makes it possible to verify systems that would

be intractable using standard checking alone. Symmetries are exploited using a special

construct in the description language called a scalarset, which represents an integer sub

range of symmetric dements. This symmetry is defined such that program behaviour is

invariant under arbitrary permutation of elements of a scalarset known as full symme

tries. As an example, a system that uses an array of processors might declare the process

identifiers used to index the array as belonging to such a scalarset. A possible reason

why a specifier may choose this could be because they are not interested in processor i

processing job j; instead they may only be concerned that some processor is processing

j. Consider Figure 2.7, showing two states in a system with one variable, an array of

scalarsct type; state A and B could be represented by two different states, but are in

fact symmetric; this is because each array tells us that it contains 3 elements of the same

symmetric type.

A sl s2 s3

B s2 sl s3

FIGURE 2.7: Two equivalent states, each containing one array of scalarset type.

To preserve the symmetric properties of scalarsets, they must only be subject to a

restricted set of operations. For example, scalarset variables can only be compared for

equality; it would make no sense to apply the binary operator, '<', to scalarset elements,

since they have no order. Therefore, prior to model checking, a Murq) system description

is analysed during a compilation phase to ensure the correct use of scalarsets. For more

details, see Ip and Dill [1993].

The Mur¢ verifier provides two methods of selecting representative states, both of which

utilise a lexicographic ordering on the states of the system. Let the term, state vector,

denote the sequence of variables and their values in some state. The first approach uses

a canonicalisation function that applies all permutations to a state vector, and records

the lexicographically least as the representative. This problem is inherently complex

and is at least as hard as testing for graph isomorphism, for which there is no known

Chapter 2 Graph Isomorphism and Symmetry Reduction 39

polynomial time algorithm. An alternate strategy therefore enables one to increase the

speed of finding (possibly multiple) representatives, by compromising the amount of

symmetry exploited. In this approach, a state vector is split into two parts: either a

most/least significant part, see Figure 2.8. Permutations are then applied to its most

significant section to generate the lexicographically least value. There may be several

permutations, A, that produce this value. Subsequently, a permutation from A is used to

normalise the least significant section of the state vector. The representative is taken to

be the concatenation of both parts of the vector. By altering the location of a split point,

symmetry reduction may be tuned with regard to speed, or the amount of symmetry

exploited. In the extreme case, where the most significant part includes the whole state,

observe that a unique representative is found per orbit so that more symmetries are

exploited. However, the computation is also more expensive. On the other hand, if the

split point is close to the start of the vector, e.g., n = 2 in Figure 2.8, representatives

are computed relatively quickly, although fewer symmetries are exploited.

Split point

v(n) = value of 11th state variable

FIGURE 2.8: An example of a state-vector and it's split point.

As mentioned previously, scalarsets exploit full symmetries in a system. The result

is a potential reduction in the size of a state space of N!, where N is the number of

elements in a scalarset. This is because for such a scalarset, the maximum size of an

equivalence class is N!, and the (canonicalisation) reduction strategy will select a unique

state from each. Experimental results presented in Dill et al. [1992] indicate that it is

possible to approach such savings. Systems exhibiting more general symmetries. such as

rotational symmetry (e.g., ring topologies), will not be exploited by the current strategy

of scalarsets, and are discussed in Ip [1996]. Potential savings for such symmetries would

be a factor of N.

A disadvantage of using scalarsets is the overhead of introducing a new data type into

the specification language. In addition, it is the responsibility of the specifier to identify

and encode the presence of symmetries within a system. Consequently, their ability

becomes a major factor influencing the symmetry reductions achieved.

2.8.2 SymmSpin

SPIN is a popular, oll-the-fly, explicit-state model checker [Holzmann, 1997b]' targeted

at verifying systems specified in PROMELA, which is a language with a syntax similar

to C, based on the guarded command language of Dijkstra [1976]. Through the use

Chapter 2 Graph Isomorphism and Symmetry Reduction 40

of breadth/depth-first exploration, the verification system is capable of checking LTL

properties.

SPIN benefits from a range of optimisations to its method of verification. Strategies for

state space reduction currently include the partial order reductions of Holzmann and

Peled [1994] and Holzmann [1999]. In addition, more savings in memory consumption

during verification are gained through the use of state storage techniques similar to BDDs

[Visser and Barringer, 1996], state compression [Holzmann, 1997a], bitstate hashing

[Holzmann, 1998] and hash-compact procedures [Wolper and Leroy, 1993].

Symmetry reduction is integrated into SPIN through the SymmSpin package [Bosnacki

et al., 2002]. The technique extends the work of Ip and Dill [1993] on scalarsets by

adding heuristics to the computation of representatives, resulting in four new strategies.

The scalarset type remains to be fully integrated into the PROMELA language, which

would require an extension to the PROMELA parser. Instead, all symmetry information is

supplied in an accompanying file. Accordingly, the state space exploration algorithm of

SPIN is modified so that model checking progressively constructs only a quotient model.

The devised heuristics exploit the ordering of variables in the state vector, on which

the lexicographical ordering is based. Moreover, by moving certain variables towards

the most significant (left-hand) end of the state vector. one reduces the number of

permutations to be considered when determining a representative. In the sorted strategy,

an array indexed by a scalarsct type is identified within the state vector and moved

(conceptually) to the extreme left of this vector. Such an array is called a main army. Let

us denote this main array, mI. Subsequently, mI is sorted to generate m2. Using one of

the permutations between mI and m2 (sorting may induce more than one permutation),

the least significant part of the state vector is normalised to generate the representative.

The advantage over the canonicalisation procedure, as used by MureD, is that sorting

identifies efficiently the lexicographically least state vector.

state s

sorting induces
permutation p

rcp(l)

rest of state vector

p(rest of state vector)

split point

FIGURE 2.9: An example of sorting the state-vector.

An example is given in Figure 2.9 (adapted from [Bosnacki et al., 2002]), where state s,

has already had a main array moved left of the split point. In this case, the main array

is indexed O ... 4. Sorting then induces a permutation, p = {O 1----+ 0,3 1----+ 1,2 1----+ 2,4 1----+

Chapter 2 Graph Isomorphism and Symmetry Reduction 41

3, 1 ~ 4}, which produces the representative, rep(s), when applied to the right-hand

part of s. Note that this method is not canonical; it may find multiple representatives

in the same orbit, e.g., there are actually 4 permutations between the main arrays in

Figure 2.9, which could be used to generate a representative.

The second approach, called the segmented strategy, shares the underlying idea of the

first approach, and modifies it to form a canonical technique. Instead of normalising

the rest of the state using one permutation between main array ml and m2, apply

all permutations between them and select the lexicographically least state vector as the

representative. This approach is guaranteed to identify a unique representative per orbit,

and is therefore more memory efficient in comparison with the sorted strategy, which

may identify multiple representatives. Note however, that the segmented approach is

computationally more expensive than the sorted approach.

The final two strategies enable the automatic application of the sorted and segmented

strategies to concurrent systems. Given the processes in a system, their program counters

are placed in an array, which is then treated exactly as a main array. The approaches

are called pc-sorted and pc-segmented accordingly. If a concurrent system also makes

use of a standard main array, then a combination of the techniques may be applied.

Empirical results have been obtained from applying all four strategies to a range of

models, including a Process Initialisation Protocol [Holzmann, 1991], and a Base Sta

tion Telecommunication Protocol [Dravapoulos et al., 1997]. As a control, a canoni

calisation function is also applied, which considers all permutations of a state vector

when identifying representatives (as used by the Mur¢ verifier). This is called the full

strategy. In summary, it is shown that for each technique it is possible to approach the

limit for reduction [Bosnacki et al., 2002, Section 4.4.4]. Furthermore, it is the form of

the program that dictates the effectiveness of any reduction. Generally, as the size of

the standard main array increases, the sorted/segmented strategies outperform the cor

responding pc-sorted/segmented alternatives. This is because the number of program

counters has remained constant. However, if the latter is then increased, the opposite

effect is observed. As already mentioned, there is also a trade off between the sorted and

segmented strategies. Although the sorted strategy is more efficient computationally, it

may find multiple representatives, and therefore is more memory intensive. Conversely,

the segmented strategy is computationally more expensive, but generally requires less

memory.

2.8.3 Symmetry in RuleBase: A Symbolic Model Checker

A symbolic representation of a search space during symbolic model checking, introduced

in Section 1.3.2, usually requires less memory when compared to explicit state techniques.

Ideally, adding a method for symmetry reduction to a symbolic model checker would

Chapter 2 Graph Isomorphism and Symmetry Reduction 42

be only as complicated as that for explicit state model checkers. Unfortunately this is

not the case. The problems associated with symmetry reduction (Section 2.7) become

more complex when using symbolic representations, e.g., dealing effectively with the

orbit problem.

Jha [1996] proves that the size of the BDD for the orbit relation increases exponentially

with the number of BDD variables, and shows that multiple representatives per orbit

can be used to reduce the size of the BDD for the orbit relation. This leaves the

problem of selecting representatives from an orbit, since different choices affect the

size of the BDDs encoding the quotient model. One approach is to avoid the need to

compute representatives in advance, and simply choose as a representative the first state

encountered from an orbit. This technique is proposed by Gyuris and Sistla [1999] for

explicit state model checking using a depth-first search. However, the method does not

apply well to symbolic model checking since such search algorithms are inefficient with

BDDs.

The symbolic model checker, RuleBase [Beer et a1., 1996] extends the OTL verification

engine used by Srvrv to handle a new language, called Sugar. The goal is to simplify the

definition of OTL specifications and make it more accessible to non-experts. Further

more, RuleBase accepts as input the industry standard hardware description languages

of Verilog [Thomas and Moorby, 2002] and VHDL [Lipsett et al., 1989]. The culmina

tion of these efforts, among others [Beer et a1., 1996], is a verification tool suitable for

industrial hardware design.

Barner and Grumberg [2002] present a method for integrating symmetry reduction into

RuleBase. Their approach utilises a technique for uncler-appr-oximation, where for each

newly encountered state, only a subset of the successors are explored. The use of under

approximation does not guarantee the discovery of all violations of the correctness con

ditions. However, it is effective at falsification, i.e., finding some violation. Therefore,

to provide verification, the model checker may accept 'hints' from the user in the form

of a set of generators for the system symmetries, which are invariant for the correctness

conditions. These can be used to exploit symmetries during model checking in the usual

way, in addition to ensuring at least one state from each orbit is explored. The choice of

representative is directed by certain BDD criteria, such that multiple representatives per

orbit may be found. 1"\ote that, as with the scalarset approaches of Mur¢ and SymmSpin,

the effectiveness of symmetry reduction in RuleBase depends on information supplied

by the user and is therefore prone to errors.

Experimentation indicates this symmetry reduction performs well when applied to live

ness properties, in comparison to standard checking in RuleBase. For instance, results

for a Futurebus (IEEE 896) example show that verification time can be reduced by a

Chapter 2 Graph Isomorphism and Symmetry Reduction 43

factor of approximately 18, and memory consumption can be reduced by around 7. How

ever, results also indicate that a saving in memory consumption is not always observed,

as illustrated by an Arbiter example.

2.8.4 Alloy Analyser

The ALLOY tool-set [Jackson, 2006a] is a software design framework consisting of a first

order, declarative language called ALLOY, for specifying abstract software systems, and

the ALLOY ANALYSER, which provides a fully automatic analysis of constraints over

ALLOY systems. Originally inspired by model checking, the analysis tool benefits from

symmetry reductions via an approach that differs to the other methods described so far

in this Section, e.g., scalarsets. Symmetries are inferred automatically from the types

in the specification, after which they are exploited (the user is not required to indicate

any symmetry information).

The analysis engine performs constraint-based evaluation using propositional satisfiabil

ity (SAT) solvers, including Chaff [YIoskewicz et a1., 2001] and BerkMill [Goldberg and

Novikov, 2002]. A key difference with standard model checkers is the absence of a notion

of state machines. Instead, analysis is achieved by translating a system description and

set of constraints, including bounds on types, into a large boolean formula in conjunctive

normal form (C~F), which is passed to a SAT solver. This attempts to find an assign

ment of variables for the formula, called an interpretation, that evaluates to true. If

this is successful, the interpretation is called an instance of the model. The analyser

is said to perform simulation if the instance denotes states or executions that satisfy a

given property. Conversely, if the instance violates a given property (a counterexample),

checking is performed. Given an instance, the formula is converted back into the tool's

native language and reported to the user. Despite the lack of a state machine idiom, it is

possible to check LTL properties by modelling traces explicitly. However, this is shown

to be effective typically for types with small bounds [Jackson, 2006a, Section 6.1.3 -

6.1.5].

During analysis, all types are represented internally as relations. Formulas involving

scalars or sets are translated into an equivalent one involving only relations, using a

method inspired by Schmidt and Strohlein [1993]. Elements of these relations remain un

interpreted throughout, and therefore share similarities with the elements of scalarsets;

an injective relabelling of the atoms has no effect on formula evaluation. However, un

like the methods that use scalarsets, where two states are tested directly for symmetry,

this strategy seeks to ensure symmetric interpretations are prevented from being gen

erated (before an equivalence check could take place). This is accomplished by adding

symmetry-breaking predicates [Crawford et a1., 1996] to the formula passed to the SAT

solver, which are constructed using symmetry information inferred from properties of

data structures used in a system.

Chapter 2 Graph Isomorphism and Symmetry Reduction 44

The identification of perfect symmetry-breaking predicates, where exactly one interpre

tation is generated per isomorphism class, is an NP-complete problem [McKay, 1998].

Furthermore, such predicates would be large and would be likely to compromise the

performance of analysis. Therefore, a non-perfect strategy is employed, which simpli

fies computation. Partial symmetry-breaking predicates are used that find at least one

interpretation from each isomorphism class. These predicates must be carefully chosen

so that a large fraction of interpretations are eliminated, and yet they must also be

compact to ensure interpretations are efficiently computed. Shlyakhter [2007] describes

techniques for finding partial symmetry-breaking predicates for the specific data types

used by ALLOY that eliminate over 99% of symmetric interpretations, and Khurshid

et al. [2003] shows how they can be applied during analysis. The precise details of this

are not given here; instead, an example borrowed from Crawford et al. [1996] is presented

to show how symmetry-breaking predicates may be used.

Consider the CNF boolean formula (a V c) 1\ (b V c) 1\ (a V b V c) 1\ (a V b), for which a

SAT solver will try to find instances. Let t denote true and f denote false. The

only two models are: (a = t, b = f, c 1), and (a = f, b = t, c = 1). There is

one automorphism of the formula; swap a for b. The application of an automorphism

to an interpretation generates an interpretation with the same truth value. Then, to

break the symmetry defined by the automorphism, the automorphism itself is added

to the original formula. In this case, the automorphism can be defined by a implies

b, or a --+ b. The formula extended with the symmetry-breaking predicate is then,

(a --+ b)l\(a VC)I\(b VC)I\(a V b V c)l\(aVb). Considering this automorphism, the new

formula retains the semantics of the original formula, but there is now only one model:

(a = f, b = t, c = 1). That is, the symmetric model has been broken.

The use of symmetry-breaking predicates in the ALLOY tool-set is an effective alternate

to classical symmetry reduction, as demonstrated by numerous successful case studies,

including checking Microsoft's Common Object Modelling interface for intercommuni

cation [Box, 1998], the Intentional Naming System for resource discovery in mobile

networks [Adjie-Winoto et al., 2000], and avionics systems [Dennis, 2003], and the de

sign of certain cancer therapy machines [Jackson and Jackson, 2006]. In addition, there

appears to be a large scope for further improvements, especially since the techniques can

be used in conjunction with independent, state of the art SAT solvers, for which there

is a separate abundance of research.

2.8.5 Recent Development in PRoB, I: Permutation Flooding

The following two sections present two recent approaches to symmetry reduction in

PRoB, whose development has been stimulated by the research documented in Chapter 4

of this thesis.

Chapter 2 Graph Isomorphism and Symmetry Reduction 45

The first technique, which is called permutation flooding [Leuschel, Butler, Spermann,

and Turner, 2007]' uses an alternate strategy for addressing the orbit problem when

compared with classical symmetry reduction. The method works by permuting states

encountered during model checking, and adding them to the state space. The premise

is that the permuted states would eventually be reached by model checking, and yet are

relatively easy to compute for B's data structures.

The permutations used by this approach are defined by a permutation function that

permutes certain abstract elements in a B machine, giving rise to symmetries in data

structures used within the system l
. These abstract elements belong to a standard type

of set in B, called the deferred set. The application of the permutation function to a

B state will generate a symmetric state. Therefore, one can draw similarities between

symmetries that arise from deferred sets, and those induced by scalarsets [Ip and Dill,

1993, Bosnacki et al., 2002]' as used in other symmetry reduction schemes.

Permutation flooding optimises the standard exhaustive checking algorithm used in

PRoB through the use of symmetric state permutations. Each time a new state is

encountered, all permutations/symmetries are computed and added to the state space.

The key advantages of using this methodology is:

- Computation of permutations requires only the permutation of deferred set ele

ments and is therefore relatively simple; even for complicated B data structures.

The orbit problem is addressed for any state s by adding to the model all states

symmetric to s, denoted by [s], where s E [s], and then marking all states in [s 1 \ { s }

as being 'already visited'. Future checking then will not compute successors of

[s 1 \ {s}, but does so for s, and thus we have s as the representative.

One drawback of the approach is that it may generate many permutations (,flood'

the state space). However, standard exhaustive checking will eventually reach all

permutation states and so there is nothing to lose. In fact, the algorithm has the

benefit that one need not check the invariant for all symmetric states, nor compute

the enabled operations and their eHects.

Let us now examine a simple B machine of a stack to illustrate the eHect of symmetry

reduction by permutation flooding in FROB. The machine has two operations: pv,sh, to

add data to the top of the stack, and pop, to remove the data on the top of the stack.

The encoding of the machine is given in Figure 2.10.

The machine uses a single deferred set, called DATA, which models the data that can

be stored on the stack. The constant, length, indicates the maximum number of data

elements the stack can store. For the convenience of the presentation, this is set to a

low number (length = 2). In addition, there is a single variable, contents, which is a

sequence of DATA, which models the stack.

lThis permutation function forms one of the research contributions of this thesis, and therefore is
presented in detail later in Section 4.2.

Chapter 2 Graph Isomorpl1ism and Symmetry Reduction

MACHINE
Stack

SETS
DATA

CONSTANTS
length

PROPERTIES
length E N!\

length = 2

VARIABLES
contents

INVARIANT
contents E seq(DATA)

INITIALISATION
contents []

OPERATIONS
push(d} ~

PRE
d E DATA !\ size(contents} < length

THEN
contents := d -+ contents

END;

dr-pop ~
PRE

size(contents} > 0
THEN

contents := tail (contents) II
d +- first (contents)

END;
END

FIGURE 2.10: A Stack machine

46

Standard model checking of this machine in PRoB generates the state space presented

in Figure 2.11. Note that the cardinality of deferred sets is set to 2, to keep the state

space small and aid description. As can be seen, the state space has 8 distinct states,

including the triangular node representing the uninitialised machine2 . The label of each

state represents the current value of contents. For clarity, the parameter of the push

operation is hidden, and the pop operation is not depicted (this does not affect the set

of reachable states).

2The state space PRoB visualises actually includes an extra node immediately after the triangular
node in Figure 2.11, to show the values of machine constants.

Chapter 2 Graph Isomorphism and Symmetry Reduction

+----

push
,.-//

[DATA1]

push

push

FIGURE 2.11: State Space of Stack machine (only push operation shown for clarity)

47

The use of the deferred set, DATA, gives rise to symmetric states. Symmetric states

in Figure 2.11 are indicated by having the same black shape in their upper left cor

ner. The permutation function used in permutation flooding is able to identify these

symmetries. Figure 2.12 shows the state space reached by permutation flooding, where

representative states are highlighted by dark shadows. Observe that, after the initialisa

tion of the machine, model checking adds an element of data to the stack, i.e., contents

[DATAl], and subsequently permutes the abstract elements of the deferred set to

generate a symmetric state (contents = [DATA2]) , which is also added to the state

space. .\Text, the procedure computes the two non-symmetric successors of [DATAl],

which are both taken as representatives, and their corresponding symmetric states are

added to the state space. To the end, model checking reaches and checks the invariant

of five states, compared to eight states in Figure 2.11, and will have generated three

permutation states.

push

JI' III
[DATA2.DATA1] [D/'TA2, DATA2]

FIGURE 2.12: State Space of Stack machine using Permutation Flooding (only push
operation shown for clarity)

Empirical results presented in Leuschel et al. [2007] highlight the effectiveness of permu

tation flooding, where speedups over standard model checking in PRoB can exceed an

Chapter 2 Graph Isomorphism and Symmetry Reduction 48

order of magnitude. Further experimental data can be found in Chapter 5, which pro

vides a comparison of permutation flooding with the techniques for symmetry reduction

described in Chapter 4 of this thesis.

2.8.6 Recent Development III PRoB, II: Symmetry Markers

Since the development of the technique for symmetry reduction in B, presented later in

Chapter 4, another method to exploit symmetries in B has been devised, called symmetry

markers [Leuschel and Massart, 2007]. The technique involves efficient approximate ver

ification of B models and is inspired by the success of SPIN'S bitstate hashing approach,

presented in Holzmann [1998]. The idea is to efficiently compute 'markers' for states,

such that symmetric states are guaranteed to have the same marker (hence, symmetry

marker). However, this property may not hold in the contrary situation; non-symmetric

states may have the same symmetry marker. Hence, the strategy is approximate: it may

fail to discover a state that violates the invariant, or deadlocks.

As with permutation flooding, the symmetry marker approach is described with ref

erence to a permutation function over deferred sets: which identifies symmetric states

(described in detail in Section 4.2 of this thesis). Leuschel and Massart [2007] also

describe the necessary conditions of a B machine: in which the technique achieves veri

fication. These conditions may, however, imply a system exhibits less symmetry, and so

there is less symmetry to exploit3 . Experimentation indicates that symmetry reduction

via symmetry markers may observe speedups in verification time over standard checking

in PRoB, exceeding two orders of magnitude.

To compute the symmetry marker for a given state, one treats states as graphs and makes

use of the concept of graph invariants: see Definition 2.7. Such invariant conditions will

hold for two graphs if they are symmetric, but may also hold for non-symmetric graphs.

As an example, one can compute for some graph a list of vertex degrees in ascending

order. In practice, there is a trade-off between the number of graphs distinguished by

some invariant condition ¢ (its precision), and the complexity of computing 1). The

symmetry marker approach makes use of conditions that are easy to compute, yet can

be very precise.

An informal description is now given for the computation of a symmetry marker, for a

B state, s. (A formalisation of the procedure can be found in [Leuschel and Massart,

2007, Pages 7-9].)

First, analyse the graph g, that represents the state s, and compute structural

information for each element d of a deferred set in s, which is invariant under

3For example, Leuschel and Massart [2007] describe that verification can be achieved by replacing
deferred sets (containing abstract elements) with enumerated sets (the elements of which are given a
distinct name, and are not abstract). However, in doing so, symmetries induced by deferred set elements
can no longer be exploited.

Chapter 2 Graph Isomorphism and Symmetry Reduction 49

symmetry. Achieve this by computing the multiset of paths in g, which lead to an

occurrence of d.

~ Second, for the values of a state, replace deferred set elements by the structural

information computed above.

Let us now examine a simple example to illustrate the use of symmetry markers. Con

sider a B machine that uses one deferred set, DS1, and contains three variables VI E DS1,

V2 E lP'(DS1) and V3 E DS1 f-7 DSl. Let state Sl have the value VI = dl , V2 = {dl , d2},

and V3 = {dl f--+ d3}. Let us also assume dl , d2, d3 E DSl. Then, the symmetry marker

for Sl is depicted in the rounded box on the right hand side of Figure 2.13. The left

hand side shows the graph of paths, representing the values used in the state. (The

braces, {I ... I}, indicate the use of multisets, and 'el' is used to indicate the constituent

elements of values.)

Symmetry Marker for state, where
V1 = d1
V2= {d1,d2}
V3= {(d1,d3)}

{{I (V1),(V2 el),(v3 el,left) I},

{I (v2e l) I} }

{({I (V1),(v2,el),(v3,el,left) I},

{I (v3,el,right) I})}

FIGURE 2.13: The symmetry marker for state 31

As can be seen, the graph representing the state contains the deferred set elements dl , d2

and d3 ~ each of which is identified (reached) by a set of paths from the initial paths

node in Figure 2.13. Accordingly, dl can be identified by the paths (VI)' or (V2' el), or

(V3, el, left). Let us denote this set of paths, Pl. Given that VI = dr, symmetry marking

then represents the value of VI, as Pl. Continuing in this way, the paths P2, reaching d2,

and the paths P3, reaching d3: enable one to find the symmetry marker for the entire

state, such that VI = PI, V2 = {P1,P2} and V3 = {(p1,P3)}'

Observe that by replacing deferred set elements by the structural information identifying

them, symmetry marking can exploit symmetries. For instance, a state symmetric to

Sl, where VI = d2, V2 {d2, dr}, and V3 = {(d2 f--+ d3)} (i.e., given Sl, permute d1 with

d2), has the same symmetry marker as Sl. Thus, model checking need not check it, or

any state reachable from it.

Chapter 2 Graph Isomorphism and Symmetry Reduction 50

There are cases, however, where symmetry markers fail to distinguish between non

symmetric states. For instance, this may occur when a B machine uses a relation over

a single deferred set, e.g., given a machine containing a single relation, rEDS f--> DS,

and dSl, dS2, dS3, dS4 E DS, then a state, where r = ({ dSl f--> dS2, dS2 1---7 ds3, dS3 1---7

ds4, dS4 1---7 dsI}), has the same symmetry marker as a different state, where T = ({ dSl 1---7

ds2, dS2 1---7 dsl , dS3 1---7 ds4, dS4 1---7 ds3}). However, it should be noted that the discovery

of any invariant violation or deadlocked state is guaranteed to exist in the original state

space. Therefore, an effective use of symmetry marking is that of falsification.

Continuing from the example in the previous section, let us apply symmetry markers

to the Stack machine given in Figure 2.10. Recall that for the convenience of the

presentation, both the length of the stack, and the size of deferred sets is set to 2.

Figure 2.14 depicts the symmetry marker for a state that models a stack containing two

different elements of data.

from(1

DATA 1 DATA2

Symmetry Marker for state, where I

contents = {(1 ,DATA 1),(2,DATA2)} I

I

contents I {{I<contents,el,from,1),
. (contents,el, from ,2) I}}

!

FIGURE 2.14: The symmetry marker for a state in the Stack machine

The labels, frorn(l) and !mrn(2), indicate the value of the natural number from which a

deferred set element is reached. As would be desired, the syrnmetry marker illustrated is

the same as that for the symmetric state where contents = {(l, DATA2), (2, DATAl)},

but differs from the markers for states where contents = {(l, DATAl), (2, DATAl)}

or contents = {(l, DATA2), (2, DATA2)} (since only 1 DATA element is used in these

states; a fact that is recorded in multisets). The state space obtained by model checking

in FROB with symmetry markers, is given in Figure 2.15. Unlike permutation Hooding,

thi.s technique identifies five states only, each of which is a representative.

The next chapter of this thesis presents the initial research contributions made towards

improving the process of model checking via state space reductions. The techniques

involve reducing the size of state spaces, obtained after model checking, while retaining

certain useful information. The reduced state spaces are then visualised. The premise

is that few model checking tools focus on improving such aspects, despite evidence that

visual feedback can constitute an important part in the understanding of a system.

Chapter 2 Graph Isomorphism and Symmetry Reduction

initialise

push

[DATA1]

[DATA1,DATA1] [DATA1,DATA2]

FIGURE 2.15: State space of Stack machine using Symmetry Markers (only push ope
ration shown for clarity)

51

Chapter 3

Visual State Space Reduction

3.1 Introduction and Motivation

Some model checkers provide a graphical view of the state space the model checker has

already explored; PRoB does so with the use of a graph drawing package called, dot

[DOT]. This feedback can be very beneficial to the understanding of the specification

since human perception is good at identifying structural similarities and symmetries

[Ham et al., 2001]. This feature works well for small state spaces, but in practice

specifications under analysis can often consume thousands of states, which limits the

usefulness of the graph.

Consider the phonebook machine presented in Section 1.4 (Figure 1.3), with the modifi

cation of removing the size_phone book operation, for simplicity. Therefore, it specifies

three operations that allow one to add, delete and look-up entries in the phonebook. The

full state space of this example (with Name and Code set to cardinality 3) has 65 states

and 433 transitions.

As can be seen in Figure 3.1, the visualisation of the state space in PRoB is possible,

but is difficult to grasp by humans and certain other useful aspects of the state space are

not easily identified in the visualisation. For example, it is difficult to spot individual

operations or that one can perform at most three consecutive calls to the add operation.

It turns out that there are very few tools and techniques that address the problem of

rendering aspects of a system state space in ways more suitable for human understand

ing; it is typical to only provide direct visualisations of an encoded system, e.g., an

interpretation tree in the ALLOY ANALYSER [Jackson, 2006a]. Therefore, this chapter

investigates various ways to improve visualisations of state space of B machines. A

selection of the results in this chapter appear in [Leuschel and Turner, 2005].

This chapter is organised as follows. The techniques that have been developed and im

plemented into the PRoB tool-set are described in Sections 3.3 and 3.4. An empirical

52

Chapter 3 Visual State Space Reduction 53

FIGURE 3.1: Phonebook machine - Original State Space.

analysis of their performance is given in Section 3.5, followed by a description of com

plementary extensions to the methods, in Section 3.6. Finally, a review of future work

is presented in Section 3.7.

3.2 Background

A background to visual state space reduction is now presented. First, Section 3.2.1

presents several successful ways of encoding a state space and reducing its siLle, and

discusses the associated issues. Subsequently, Section 3.2.2 reviews the various aspects

of a visualisation that make it more understandable to the hurnan eye.

3.2.1 Reducing the Size of a State Graph

A standard structure used to depict a state space, representing system behaviour, is the

Kripke structure - introduced in Definition 1.1. An alternate formation is a Finite State

Automaton [Cassandras and Lafortune, 1999], which enables system transitions (e.g.,

B operations) to be encoded naturally via labelled edges, and system states encoded

as states of the automaton. In addition, these structures have a range of techniques

for reducing their size. A key difference between Kripke structures and Finite State

Chapter 3 Visual State Space Reduction 54

Automata is that the latter lacks the notion of atomic propositions. A formal description

of Finite State Automata is given in Definition 3.1, which is followed by a selection of

approaches for reducing their size.

Definition 3.1. A finite state automaton is a four-tuple M = (Q, A, qo, 6, F), where Q

is the set of states, A is the set of transition labels (the alphabet), qo E Q is the initial

state, F <;;;; Q is the set of final states, and 6 <;;;; Q x (A U 6) x Q is the transition relation.

- L(M) is the language recognised by M, defined as the set of all sequences of letters

of the alphabet that define a trace from qo to a final state.

Two automata, Ml and M2, are equivalent iff L(Ml) = L(M2)'

- An automaton (Q, A, qo, 6, F) is deteTministic (DFA), if 6 is a partial function over

Q x A. If 6 <;;;; Q x A x Q, then it is nondeteTministic (NFA). Finally, it is called

nondeteTministic with 6-tmnsitions (cNFA), if there are no extra restrictions on ().

DFA Minimisation: Given a DFA or NFA, there exists a smallest DFA accepting

the same language. Regarding a state graph, which can be encoded naturally as an

NFA (operations in B may exhibit nondeterminism), this can be achieved via two steps.

First, it must first be converted into a DFA using a well known algorithm often known

as subset constTuction. Then, it can be minimised using another well known algorithm,

which works by finding indistinguishable states that can be merged into a single state;

starting from the fact that all non-final states are distinguishable from all final states.

Both algorithms can be found in Aho et al. [1988].

ENFA Minimisation: NFA can be smaller than a DFA by an exponential factor [Meyer

and Fischer, 1971]' and so an ideal strategy would directly minimise the NFA state

graph of a B specification. One such algorithm [John, 2004] is based on minimizing

cNFA. Unfortunately, this performs best when the automaton contains a large number

of c-transitions which are not present in graphs of B systems. Therefore, this technique

seems not to be very relevant to the goal.

Minimizing Finite State Automata Is Computationally HaTd: NFAs and DFAs accept

the same languages, i.e., the set of regular languages. However, an NFA can be ex

ponentially smaller than an equivalent DFA. This suggests a greater visual state space

reduction would be gained through the use of NFAs. Unfortunately, this is not so simple

since the NFA must be minimised prior to visualisation, for which there is no known

polynomial time algorithm. Malcher [2004] investigates this problem by looking at the

amount of nondetenninislll required to preserve the efficiency of minimizing a finite state

automaton. It finds that by restricting each accepting path of NF As to a fixed number of

nondeterministic transitions (e.g. one or two), the time complexity of certain decidabil

ity problems can be reduced from non-polynomial to polynomial time. This provided

hope that similar improvements in time complexity would be gained for minimizing re

stricted NFAs. However, it is proven to be NP-complete. Therefore, NFA minimisation

was eliminated as a tractable option for reducing the size of state space graphs.

Chapter 3 Visual State Space Reduction 55

An alternate approach to minimisation is a non-minimal reduction in size, while retaining

language equivalence, as demonstrated in Ilie and Yu [2002]. This method is based on the

idea of merging indistinguishable states, such as in DFA minimisation. Essentially, an

equivalence relation is computed on the states, such that non-equivalent states are made

distinguishable, and equivalent states may be indistinguishable. The reduced automaton

therefore may not be minimal, but may be significantly smaller than the original NFA.

Non-Equivalent Reduction: The previous techniques all generate smaller automatons

that recognise the same language. However, a useful visual reduction need not preserve

language equivalence; the user may not be interested in the entire state graph, but only

certain properties of it. For instance, a user may only want to know that all states in an

automaton have a certain outgoing transition. Figure 3.2 shows an example of this: the

left hand side shows the original automaton and the right side is the reduced automaton.

a
a

a

FIGURE 3.2: Non-equivalent reduction; all states have an 'a' transition.

~on-equivalent reduction has the advantage of being capable of reducing the size of the

original automaton by a greater amount than the techniques described previously, e.g.

by mder(s) of nmgnitudc; all that matters is what iufonnatioll a user finds useful. The

next section complements this by reviewing aspects of a visualisation many users deem

useful.

3.2.2 Features of a Good Visualisation

Effective visualisations should also consider aspects of visllaJisations in general, which

can complement an algorithm that produces smaller graphs. Several of these that Dulac

et al. [2002] recognise as key are now presented.

Redundant Recoding: This is a principle taken from programmmg language design

research, where the same infmmation is specified ill Ulme than one way. Used effectively,

this technique highlights only the useful sets of information in a representation.

Elision: This refers to the ability to temporarily hide certain information that is not

of immediate interest, for instance by rendering it in a different color.

Layout: The layout is important since it can highlight certain elements of the repre

sentation. For example, it may draw attention to symmetries within a state graph. The

graph visualisation survey by Herman et al. [2000], emphasizes two important aspects

Chapter 3 Visual State Space Reduction 56

that affect layouting, the first of which concerns the notion of predictability; given two

similar graphs, a run of a layout algorithm on each should not lead to radically different

representations. It is desirable to preserve the mental map of the user.

The second aspect regards the size of a graph. Few layouting techniques can claim to deal

effectively with thousands of nodes even though graphs of this size appear frequently in

application domains, including model checking. The size of a graph can make a normally

good layout algorithm completely unusable. Therefore many visualisation techniques

attempt to reduce the size of the graph to display. An overview of the important

techniques are documented in Herman et al. [2000], one of which appears to be more

relevant to this research; that is, clustering. This method generally assigns nodes of a

graph that satisfy some condition, e.g., defined by an equivalence relation, to the same

cluster. Edges are then made between clusters to represent the relation between the

nodes of one cluster with those of another. No tool has been found that clusters states

of a state space similar to one generated by model checking, and it appears further

research into the area could uncover some interesting results.

The next two sections introduce two new algorithms devised to improve the visualisation

of the state space of a B machine, generated by PROB. Improvements entail reductions

in the size of a state space, while utilising background information presented in the

preceding section.

3.3 The DFA-Abstraction Algorithm

This is the first of two algorithms developed for use in the PRoB model checker. It

uses another notion of transition systems; the labelled transition system (LTS) [Keller,

1976]. The state space generated by PRoB can be viewed as non-deterministic labelled

transition system, where the edges are labelled with terms of the form op(al, ... , an)

where op is the name of the operation that has been applied and al)··., an are the

arguments of the operation. The formal definition of an LTS is now given:

Definition 3.2. An LTS is a 4-tuple (Q,~, go, 5) where Q is the set of states, ~ the

alphabet for labelling the transitions, qo the initial state and 5 C;;; Q x ~ x Q is the

transition relation.

Here, q -*a q/ denotes that (q, a, q/) E Q. This is extended to sequences of transitions

so that q -*al, ... ,ak q/ denotes the fact that there exists a sequence of states qo,···, qk

such that qo q, qk = q/ and qi -* ai qi+l· The set of reachable states of an automaton

is defined to be the set {q E Q I qo -*, q for some sequence of states J}. Finally, the

traces of an automaton L is the set of sequences traces(L) = {J I qo -*, q for some

q E Q}.

Chapter 3 Visual State Space Reduction 57

This algorithm reduces the complexity of an LTS by abstracting away certain details of

the labelling function. For example, the user may not be interested in seeing (all) the

arguments of (all) the operations. The algorithm is defined in the following:

Definition 3.3. An abstraction function for an LTS (Q, E, qo, 6) is a function a from E

to some new alphabet E/. Then, the a-abstraction of the LTS is defined as a new LTS

(Q,E/,qo,5') where 5/ = {(q,a(a),q/) I (q,a,q/) E 5}.

The a-abstraction on its own is not yet very useful, as it does not diminish the number

of states (even though the number of transitions may have reduced). The first thing

that comes to mind in that respect is the classical determinisation and minimisation

algorithms for finite automata. Moreover, a finite LTS, such as those produced by

model checking, can be viewed as a NFA simply by marking all states as final states.

Therefore, the original NFA can be converted into a DFA. Given. that the resulting

automaton contains only finite states, it is already minimal and need not be applied to

classical DFA minimisation. This is exactly what has been implemented in the DFA

Abstraction Algorithm, which has been integrated into the PRoB tool-set. In summary,

the DFA-Abstraction computes:

i.) the a-Abstraction of an LTS

ii.) then determinises the resulting LTS

The algorithm is shown on a small example in Figure 3.3.

Original LTS
'-'

DFA-Abstraction Determinization

go(l,3) go(2,4) go/2 go/2 go/2

FIGURE 3.3: Illustrating the DFA-Abstraction Algorithm.

The algorithm was mainly used as a control: something to which other algorithms

could be compared. However, it was also known that it had the potential to collapse

symrnetrical subgraphs. Testing shows it is very useful in some cases, while in other cases

it increases the siLle of the graph (a known observation of the KFA to DFA conversion,

but which is rarely observed in practice).

DFA-abstraction of the phonebook: An example of its effect is shown in Figure 3.4 (the

full state space is given in Figure 3.1). Clearly there is a large reduction whose result is

a graph far clearer to an observer. One can see that only three phonebook entries are

permitted, and also that add and delete operations change the state.

Chapter 3 Visual State Space Reduction

6 ~ lookllpll-->(1)

5 --.-J lookup!l-->(l)

/ \
(delete!2 \ addl2

\) \ ' ,/
-~

4 ~ lookllpll-->(l)

\ ~,
\\

\ \

~y~2
initialise _machine!3

FIGURE 3.4: Phonebook machine - DFA-Abstraction.

58

In general, every node in the reduced graph corresponds to a set of states of the ani

mated B machine. Note that although operation argument information is lost during

a-abstraction, the DFA conversion algorithm preserves possible trace equivalences. This,

and the fact that determinisation may merge multiple B states, means that if a node

in the DFA-abstracted graph has an outgoing edge corresponding to some operation, it

does not guarantee this operation can be applied in all B states covered by this node.

Therefore, this is indicated in the implementation through the style of the edge; if all

covered B states can perform the operation, the edge is solid, otherwise the edge is

dashed.

Chapter 3 Visual State Space Reduction 59

3.4 Merge States with same Outgoing Transitions

This technique was devised after studying a collection of graphs produced by PRoB. It

works by merging all states with the same outgoing transitions and so it may produce

an automaton that is not equivalent (with respect to traces of operations) to the original

one. However, the technique can achieve a big reduction in the size of the automaton

while preserving information about which B operations are enabled in a particular state

(i.e. the traces of length 1). Before giving its definition, the signature of a state is first

presented, which represents the operations (i.e., transition labels) that can be performed

in that state.

Definition 3.4. Let (Q, L, qo, 5) be an LTS. Then define the signature of a node q E Q,

denoted by signature (q), as: signature (q) = {a I q ---+ a q' for some q' E Q}.

Definition 3.5. Let (Q, L, qo, 5) be an LTS. The Signature-Merge of the LTS is defined

to be a new LTS (Qs; L, qo, 5') where QS = {signature (q) I q E Q}, qo = signature (qo),

and 58 = {(signature(q), a, signature(q')) I (q, a, q') E 5}.

The effect of a signature-merge is to merge all states which have a common signature.

This ensures that at least for traces of length 1 there is no loss of precision. This alone

may not seem so useful, however some more propertics add to its bencfit. Let there be

some original LTS L, and the signature-merge LTS of L, called Ls. Then, if one state

in Ls has no out going transitions, corresponding to a machine that deadlocks, then L

also deadlocks. Also, the set of traces defined by L are a subset of those of Ls - which

means any trace that cannot be performed on the reduced LTS cannot be performed in

the original LTS.

Similar to the last algorithm, the implementation first computes the a-abstraction before

applying the signature-merge.

S'ignature-Merge of the phonebook: The method is applied to the phonebook example

and is shown in Figure 3.5. As can be seen, there is a large reduction that is far more

digestible to a human. Also, note that modifying the machine so that it can store more

phone numbers produces no change in the reduced graph, since this generates no new

signatures. So, in principle, one can even visualise the machine for an unbounded set

Name. This is not the case for the DFA (where if we allow 100 entries the DFA will

have 100 nodes). However, some of the precision of the DFA visualisation is lost: one

can no longer spot how many entries can be added; all that can be seen is that one can

add at least two entries, but not exactly how many. Still, the signature based approach

has managed to keep relevant information. For example, it is still obvious from the

graph that entries can only be looked up or deleted after adding an entry, and that it is

possible to reach a state where it is no longer possible to add entries.

Chapter 3 Visual State Space Reduction 60

initialise_machine/3

add/2 delete/2

2 lookupll-->(I) addl2 delete/2

delete/2

lookupll-->(1)

FIGURE 3.5: Phonebook machine - Signature-Merge

Although merging states with the sarne signature can be valuable, the visualisation may

become overly complicated. For instance, consider two states each with one, identical

outgoing transition; they have the same signature. If these transitions lead to successor

states with different signatures, then both transitions must be shown in the reduced

graph. Therefore, this work improves the interpretation of the graph using edges with

different styles. That is, if all states with the same signature (represented by one state

in the reduced graph) have an operation that leads to a set of next states, each sharing

the same signature, then this operation is said to be definite; indicated by a solid edge

in the graph. If not, then the edge is dashed. A concrete example of this can be seen in

the example in Figure 3.5; state 2 has dotted delete edges. This is because a state with

the same signature as 2 in the original graph can either delete a phone number to result

in a state with:

Chapter 3 Visual State Space Reduction 61

- the same signature as 2, e.g., when the phonebook contains two numbers, or

- a different signature, i.e., the empty phonebook.

3.5 Empirical Evaluation

The evaluation in the last sections suggest that the algorithms are often efficient at de

riving informative graphs. Some more comprehensive examples can be found in Leuschel

and Turner [2005]. An empirical evaluation of the algorithms is now presented, to show

concrete numbers on the size reductions achieved.

Tables 3.1 and 3.2 show key statistics obtained after applying both the Signature-Merge

and the DFA-Abstraction algorithms on 47 arbitrary state spaces that had been pre

viously model checked with the PRoB model checker: Table 3.1 shows percentages of

states and transitions compared to the original state space I and Table 3.2 shows the

overall statistics. The exact numbers of states and transitions for each state space, are

given in Appendix B.

Signature-lVlerge produced the best results, reducing the number of states by at least

85% and the number of transitions by at least 87% in half of the state spaces tested.

Moreover, 80% of the graphs had at least 43% fewer states and 59% fewer transitions

than the original. The best case produced a graph with approximately 99% fewer states

and transitions. The DFA-Abstraction technique also gave good results; half of the

graphs having at least 40% fewer states and at least 64% fewer transitions, and the best

case again reduced the number of states and transitions by 99%. The worst case didn't

follow the trend of producing a reduction, but in fact increased the size of the original

graph by approximately ten times. A result like this should not be unexpected since.

after all, it is possible for a DFA to be exponentially greater in size than an equivalent

NFA. However, only a small proportion of the applications of this technique had this

effect; approximately 80% of the tests produced a reduction.

TABLE 3.1: Sizes as percentage of original state space

Sig. Merge DFA-Abstr.

Machine Name States Transitions States Transitions

Ambulances 0.24 0.02 0.86 0.10

Baskets 6.33 2.02 21.52 8.59

B_Clavier _code 100.00 42.11 133.33 42.11

lSome of the machine names in Table 3.1 appear more than once, however their implementations
differ.

Chapter 3 Visual State Space Reduction 62

Table 3.1 Sizes as percentage of original state space (continued)

Sig. Merge DFA-Abstr.

Machine N arne States Transitions States Transitions

bibliotheque 73.33 58.49 93.33 75.47

B_Site_central 60.00 12.50 80.00 12.50

CarlaTravelAgency 9.09 30.09 60.61 78.76

Car la TravelAgency Err 13.33 43.17 67.5 71.22

countdown 0.13 0.10 7.97 7.77

Cruise 29.54 18.19 1203.97 901.35

CSM 83.12 86.60 101.30 100.00

DAB 40.00 4.88 80.00 7.32

dfa 75.00 57.14 150.00 100.00

dijkstra 42.86 33.33 100.00 66.67

DSPO 12.24 10.61 16.33 12.12

Fermat 11.76 3.70 58.82 20.99

FinalTravelAgency 0.93 0.57 7.69 6.12

FunLaws 1.95 0.63 14.79 6.49

FunLaws 4.28 2.45 20.23 15.39

GAME 8.97 5.30 32.79 20.45

GSNLrevue 36.36 28.57 63.64 50.00

Inscription 25.93 16.03 33.33 19.08

insLadapted 1.07 0.41 17.17 6.68

Jukebox 15.00 4.53 1225.00 616.83

LevelO 0.26 0.03 1.43 0.16

mO 100.00 99.98 150.77 150.29

Main 100.00 100.00 150.00 100.00

mmO 3.55 2.44 43.65 40.52

monitor 9.88 3.59 39.51 18.90

phonebook 6.15 1.62 9.23 2.31

Queues 42.86 22.22 57.14 22.22

Results 66.67 45.45 83.33 45.45

Rubik2 0.09 0.10 100.03 100.00

RussianPostalPuz:i:le 2.04 1.71 27.21 22.33

rw 90.00 94.59 105.00 100.00

Chapter 3 Visual State Space Reduction 63

Table 3.1 Sizes as percentage of original state space (continued)

Sig. Merge DFA-Abstr.

Machine N arne States Transitions States Transitions

scheduler 22.22 14.05 33.33 20.66

SensorNode 60.00 18.18 80.00 18.18

SeqLaws 15.79 22.41 71.05 101.72

SetLaws 1.23 0.72 17.40 11.78

station 25.00 14.61 28.57 14.61

Teletext 16.00 5.71 48.00 35.71

Teletext 21.43 9.84 107.14 100.00

TheSystem 14.04 43.09 72.81 69.92

TransactionsSimple 16.79 33.33 76.34 83.01

TravelAgency 9.09 34.55 59.66 62.83

TravelAgency _trace_check 0.33 0.93 38.75 40.92

TravelProB 0.80 A r." u . .<:o 3.83 0.95

U ndefinedFunctions 29.41 13.99 70.59 37.82

Sig. Merge DFA-Abstr.
Statistic States Transitions States Transitions

Minimum 0.09 0.02 0.86 0.10
Maximum 100.00 100.00 1225.00 901.35
Median 15.00 12.50 59.66 35.71
Average 27.77 22.23 107.76 73.33
80th Percentile 56.57 40.6 100.02 96.6
Std. Dev. 31.05 27.95 241.50 155.05

TABLE .3.2: Statistics from results in Table 3.1

3.6 Complementary extensions

Four new complementary extensions have been added to further improve the visualisa

tions, and are described here.

3.6.1 Diminishing the Abstraction function

Since the work of Leuschel and Turner [2005], the algorithms have been made more pre

cise by diminishing the a-abstraction such that it only abstracts away certain arguments.

This is guided by the user, to give more control over the reductions possible.

Chapter 3 Visual State Space Reduction

a SAO<TRAQ(

.... pay

o plt'J'(l)
0"",2)
o pey(3)

a p,n." T,,,,,,
.. (TRAO<1'

o sdec:U;TRACK1)
O~1).

~ (TRAO<2"

o creOl-l
o ""'.!(IIi_ok
0 1fnC- l
o plsyset-O ; ~.u.:ebOYIIICh

J .' I IIIACHINE J ukebox
!l'."".;.~. ~~-'-~~ __ -'- 2
!l-.... _""' _______ ..ccA=,'.. ~ SETS

I pa~2) l J. ~ CONSTAN TS

I ::$C~=10;1J) 1 .~4 r., I·· --- ~~ ____ ' J ~_ I

TRACK

limit

FIGURE 3.6: Screens hot of Java version of ProB

3.6.2 Integrated Java/Swing Visualiser

64

Figure 3.6 shows a version OfPROB that has been developed using Java to take advantage

of its cross platform compatibility and rich graphical user interface library. Various

panes in the main window present the user with information relating to the current

state; including the variables and values of the current state, a history of operations

executed, a hierarchical expansion of enabled operations (top left pane) and a state

space visualisation. There is also an integrated specification editor to facilitate any

changes necessary. As can be seen in the central pane of the screenshot, the user has

several choices of visualisation to choose from, including DFA-Abstraction and Signature

Merging. Certain visualisations also allow operations to be selectively removed from the

visualisation, e.g., to remove self loops and improve clarity.

3.6.3 User Defined Constraints

Through previous experience gained with model checkers, it was proposed that a better

understanding of the system might be gained if the user were able to directly query

the state space. Therefore the model checking tool was extended by enabling the user

to define constraints on system variables and on values of operation arguments, and

to subsequently view a graph of all states in which these hold, and the relationship

between them, if any. This is generally useful when the user is interested in exposing

some subtle aspect of the state space, which a more general algorithm would be unlikely

Chapter 3 Visual State Space Reduction 65

to reveal without user intervention. It should be noted that the effectiveness of reducing

state spaces using this technique depends largely on the user's literacy in the specification

language and their understanding of the system; however its potential makes it a feature

worth keeping and extending in the future. As mentioned, it is also possible for the user

to selectively turn off visible operations in the visualisation, to further reduce the size

of the graph: see tick boxes in Figure 3.6.

3.6.3.1 Subgraphs

Another method of reducing the size of the graph is to show only part of it: a subgraph.

Hence, the system also has the option to view the subgraph that connects one or more

states (determined either interactively via the visualisation, or via an options menu).

This is particularly useful when one wants to view all paths from the initial state that

lead to a state that violates the invariant of a B specification.

3.7 Summary and Future Work

Tables 3.1 and 3.2 show some encouraging results. The often considerable reduction of

the original state space by the DFA-Abstraction algorithm can be explained by its nature

of finding regular behaviour amongst abstracted transitions, and collapsing duplicated

instances of it into a single path (most of the time). A good example of this is shown in

the original Phonebook example (Figure 3.1) and the DFA reduced Phonebook example

(Figure 3.4). The graph generated remains very useful since all of the behaviour of the

origimd state space is captured in a definite finite automaton.

The Signature-Merge algorithm gives better reductions than the DFA -Abstraction

method, producing non-equivalent graphs to the original that do not show explicitly

the exact behaviour. However, they remain useful since they can still be used to check

many properties, such as checking if a trace may exist in the full state space. This is be

cause a system's behaviour is a subset of the behaviours described in its Signature-Merge

graph.

Fut'uTe Wark: The signature of a node can be viewed as all traces of length 1 that can

be performed from that node. An improvement can be made by extending the notion of

a signature and comparing all traces of length 2,3, ... , where the choice is guided by the

user. This enables more detailed trace information to be read from graphs generated by

the signature-merge method.

A converse improvement to that of diminishing a-abstraction (Section 3.6.1), and there

fore increasing precision in graphs, is to make it a less precise to achieve more reduction

Chapter 3 Visual State Space Reduction 66

in several ways. For instance, it could be made more aggressive, mapping several opera

tions together, which maybe the user is not interested in. Another option is to modify

Signature-Merge so that instead of merging nodes that have exactly the same signature,

they could be merged if the signatures are sufficiently similar. On the other hand, it may

be useful to combine both of these approaches: the user could type a certain number as

a target for the ideal number of nodes and then the graph is progressively made less or

more precise to approach that number.

The visual reduction strategies presented in this section take as input a state space

produced from model checking a B machine. The work inspired the line of research

presented in the next section, which involves reducing the size of a state space during

its construction, when model checking a B machine; namely, the technique of symmetry

reduction.

Chapter 4

Symmetry Reduction in PRoB

4.1 Introduction

The B-method, introduced in Section 1.4, is a theory and methodology used for the

formal development of computer programs. It includes a concise language based on set

theory and predicate logic, called B, and is used by industries in a range of critical

domains, notably in railway control.

Proof activities in B are usually carried out using the interactive theorem provers,

Atelier-B [Ste, 1996] or the B-toolkit [B-C, 1999]. Model checking is a useful, com

plementary approach that can perform these tasks automatically, if bounds are placed

on system types: as with the combined B-animation/model checker, PRoB.

Recall that a major challenge facing model checking is the problem of state space explo

sion. This is where a linear increase in the size of a specification leads to an exponential

increase in the number of states, which the model checker must explore. Thus, checking

larger specifications becomes intractable. ::Y1uch research in model checking focuses on

methods to combat this problem, including partial order reduction [Holzmann and Peled,

1994] and abstraction [Clarke et al., 1994]. Symmetry reduction is another approach,

which exploits symmetries inherent in the system [Clarke et al., 1999] by constraining

the search to representatives of symmetric states; often resulting in significant savings in

memory and time. A successful technique relies on a special data type, called a scalarset,

being introduced into the language of the model checker, to indicate symmetric struc

tures (e.g., the Mur¢ Verifier [Ip and Dill, 1993] and SymmSpill [Bosnacki et al., 2002]).

This requires the user to indicate symmetries of the model, and is therefore error prone,

and compromises the automation of model checking.

This chapter presents an automatic method for exploiting symmetries caused by a key

component of the B language, the deferred set. The culmination of the techniques it

uses is a method called canonical labels. A description of this technique can also be

67

Chapter 4 Symmetry Reduction in PRoB 68

found in Turner et al. [2007]. The work uses a very different technique to an alternate

strategy called permutation flooding, which is introduced in Section 2.8.5. For a thorough

reference, see Leuschel, Butler, Spermann, and Turner [2007].

The remaining parts of this chapter are organised as follows. The introduction continues

in Section 4.1.1 by describing a component of the B language that gives rise to symme

tries, which our techniques exploit. Section 4.1.2 elaborates on the types of symmetries

exploited using a detailed example. Presented next, in Section 4.2, are correctness

proofs showing that the types of symmetries we exploit are sound. Following this is a

description of how the symmetries are exploited, using a graph isomorphism algorithm

based on nauty. Section 4.3 details how states in B can be represented as graphs. We

relate the identification of symmetric states to the identification of isomorphic graphs,

in Section 4.4, and present the algorithm for finding isomorphic graphs in Section 4.5.

Section 4.6 shows how these techniques are integrated into model checking in PRoB, to

give the new method for symmetry reduction. Section 4.7 introduces complementary

work for symmetry reduction in PRoB, called the canonical labels + symmetry mark

ers approach, which combines the techniques of canonical labels and symmetry markers

(Section 2.8.6), in an attempt to gain the benefits of both methods. Finally, Section 4.8

presents how the new techniques for model checking fit withill the architecture of the

ProB model checker.

4.1.1 Deferred Sets III B give rise to Full Symmetries

In B there are two ways to introduce sets into a B machine: either as a parameter of the

machine, or via the SETS clause. Sets introduced in the SETS clause are called given

sets. Given sets whose elements are explicitly enumerated are called enumerated sets;

the other types of sets are called deferred sets. Figure 4.1 shows an example of a SETS

clause in a B machine, which uses both kinds of given sets.

SETS
ExitMsg = {slLccess,fail}; / / an enumerated set
Fmc / / a deferred set

FIGURE 4.1: Examples of given sets: ExitMsg (enumerated set) and Pmc (deferred
set)

Deferred sets consist of abstract elements. For instance, Fmc is a set of abstract pro

cessors. The only information known about a given element of such a set is the identity

of this deferred set. It follows that the permutation of one abstract element for another

will have no effect all semantics; no information is gained or lost. Extending this idea,

one finds a set containing n elements of Fmc to be symmetric to another set containing

n elements of Fmc. Indeed, the use of abstract elements in a B specification gives rise

Chapter 4 Symmetry Reduction in PRoB 69

to symmetries in data structures used within the system, which our scheme can exploit.

This is similar to the symmetries induced by scalarsets [Ip and Dill, 1993, Bosnacki

et al., 2002]' which are sets of permutable scalar values. As a consequence, our scheme

only exploits full symmetries of a system and not other types of symmetry such as

rotational or reflective symmetries: exploiting these would require new reduction strate

gies. In related work, [Ip, 1996] describes adaptations of the scalarset type that handles

rotational symmetries, and [Donaldson et al., 2005] presents a method for identifying

general symmetries within a message passing system, described in PROMELA, through

the analysis of a graphical representation of the communication structure of the system,

called a static channel diagram.

4.1.2 Motivation

Let us indicate the type of symmetry our method exploits by considering a simple B

machine of a phone book (a simplified version of Figure 1.3), which is presented below.

The machine has three operations: add, to add entries into the phone book; delete, to

remove entries; and lookup, to query a person's phone number.

MACHINE

phonebook

SETS

Name;

Code

VARIABLES

db

INVARIANT

db E Name -++ Code

INITIALISATION

db := 0

OPERATIONS

add (n , C) ::::::

PRE

n E Name /\ c E Code /\ n t/:- dom(db)

Chapter 4 Symmetry Reduction in PRoB

THEN
db := db U {n f-+ c}

END;

delete(n , C) ::;

PRE

n E Name 1\ C E Code 1\ n f-+ c E db

THEN
db := db \ {n f-+ c}

END;

C ~ lookup(n)

PRE

n E Name 1\ n E dom(db)

THEN
C := db(n)

END
END

70

The machine has two deferred sets, Name and Code, modelling sets of names and phone

numbers respectively. A single variable, db, which is a partial function, stores the con

tents of the phone book; hence, a Name can have at most one Code associated with

it.

An exhaustive search of the state space of this machine requires bounds to be placed

on the types used [Leuschel and Butler, 2003]. So, by setting the cardinality of the

deferred sets to 2, the full state space has 10 distinct states. Figure 4.2 shows the state

space, where the label of each state is the current value of db (e.g., {(N amel, Codel)}).

For clarity, the parameters of the add operation are hidden, and the delete and lookup

operations arc not depicted (this does not affect the set of reachable states) .

It '\ r ~
{(Name1.Code1) : : ((Name1.Code1) I l. (Name2.code1))) t. (Name2,Code2)} J

,..
, {(Name1.Code2)

(Name2,Code1)}
• i {(Narne1,Code2) !
, (Narne2,Code2)}!

FIGURE 4.2: State Space of Phonebook (only add operation shown for clarity)

Chapter 4 Symmetry Reduction in PRoB 71

The use of deferred sets give rise to symmetries among the states. Informally, let us

define two states as symmetric if the invariant has the same truth value in both states,

and if there is a permutation between the two states that permutes values of deferred

sets. One also requires this permutation to respect the typing, e.g., a Name can only be

permuted with another Name. In Figure 4.2, the state db = {(Name1, Code1)} is sym

metric to db = {(Name1, Code2)} since both are functions and there is the permutation,

{(Code1, Code2)} between them. Symmetric states in Figure 4.2 have been indicated by

identical black shapes in their top left hand corner. As can be seen, three other states

are symmetric to db = {(NameL Code1)}.

Let us now highlight that permutations that preserve the equivalence of two states must

take care with values that are elements of enumerated types (including Booleans and

integers). These values may not imply the existence of symmetries as described above.

For example, an alternate phonebook machine might specify Code as an enumerated

set, Code = {Code1, Code2, '999'}, where '999' is used to represent the phone number

of the emergency services. To ensure this number is reserved, one could strengthen the

precondition of the add operation with n #- '999'. Supposing db = {(Name1, Code1)}

and db = {(Name1,'999')} are two reachable states for this new machine, they should

not be found to be symmetric, since '999' now has a special meaning, with respect to

the add operation.

«Name1,Code1)}

add(Name2,Code2)

delete(Name2,Code1) delete(Name2,Code2)
// ""

FIGURE 4.3: Reduced State Space of Phonebook

Our approach to symmetry reduction checks only one (unique) representative per sym

metry class, using an algorithm for graph isomorphism that permits the permutations

described. Figure 4.3, illustrates the symmetry reduced state space for the phonebook

machine. The technique exploits symmetries caused by deferred sets, so it is likely to

significantly reduce the time and memory required to model check many B specifica

tions, since such sets are commonly used in B. For instance, deferred sets often occur

near the top of stepwise refinement chains, in the abstract specifications. In the next

Chapter 4 Symmetry Reduction in PRoB 72

section, the symmetries we exploit are presented formally, in addition to a proof that

their exploitation is sound.

4.2 Soundness of State Symmetries

The values of free variables in B expressions and predicates are either elements of given

sets (including Boolean values and integers), pairs of values, or sets of values. Let us

now describe more formally the symmetry between B states, introduced in the previous

section, which involves the existence of a permutation function over the deferred sets of

a machine, which respects the typing (it only permutes within the same deferred set).

Let us call this function, f. The description has been adapted from collaborative work

presented in, [Leuschel, Butler, Spermann, and Turner, 2007, Definitions 1 and 2].

Definition 4.1. Let DS be the set of disjoint deferred sets in a machine M. A permu

tation f over DS is a bijection from USEDSS to USEDSS such that V S E DS we have

{f(s) I s E S} S. f is a fixpoint for enumerated types, including Boolean values and

integers. Since values in B can be expressed as elements of given sets, sets of values, or

pairs of values, it is possible to lift f to states, using the following rules:

i.) f({vakJ, ... ,valn }) = {f(vakJ), ... ,f(valn)} (sets)

ii.) f((vakJ, vaIn)) = (f(vakJ),f(valn)) (pairs)

In addition, it is possible to recursively lift J to states of the form (vakJ, ... , vaIn), using:

iii.) f ((vakJ, ... , vaIn)) = (f (vakJ) , ... ,f (vaIn))

vVe shall now proceed to justify the use of f to identify symmetric states. First of

all, some notational conveniences are presented. We shall represent a B state as a

substitution of the form [vI, ... , vn := el, ... , en], where vI, ... ,vn (denoted V) are

the variables in any B expression/predicate and e1, ... , en (denoted C) are the values.

Such variables include state variables, machine constants, quantified variables and local

operations variables.

For expression E, we write E[V := C] to denote the value of E in state [V := C]. This

value will be an element of some type constructed from the given sets of a machine.

Similarly for predicate P, we write P[V := C] to denote the boolean truth value of

P in state [V := C]. Most B set operators are defined in terms of other more basic

operators and/or set comprehension1. This means we can focus on the core predicate

and expression syntax as defined in A brial [1996]. This core syntax is shown in Figures

4.4 and 4.52 .

IFor example, S <:;; T ¢} I;fx.(x E S =? x E T)
2To simplify the presentation we ignore integer and boolean expressions. These will never be permuted

by f. However an integer expression may contain a sub expression of the form max(S) or card(S), where

Chapter 4 Symmetry Reduction in PRoB

E VaT
Enum
(E,E)
ExE
JP(E)
{xIXESI\P}
E(E)

FIGURE 4.4: Core syntax for expres
sions

P .. - PI\P
-,p

E=E
\/x.(x E S =? P)
EEE

FIGURE 4.5: Core syntax for predi
cates

73

The goal is now to prove that permutation function f preserves the evaluation of any

expTession 01' pTedicate. This is expressed in Theorem 4.2.

Theorem 4.2. FOT any expTession E, pTedicate P, state [V .- C] and peTmutation

function f:

f(E[V := CD E[V := f(C)]

P[V:=C] <=? P[V:=f(C)]

The theorem can be proved by structural induction over expression and predicate terms.

The induction is mutual since expressions may contain predicates and vice versa. We

now consider several interesting cases of the structural induction. Firstly, we consider

the base case where E is an enumerated value ev:

f (ev [V : = CD
f (ev) ev has no fTee vaTiables

ev f(ev}=ev

ev [V := f (C)] ev has no fTee vaTiables

The case of an equality predicate makes use of the injectivity of f:

(E1 = E2)[V := f(C)]

<=? E1[V f(C)] = E2[V := f(C)] substitution distTibutes

<=? f(E1[V:= CD = f(E2[V := CD induction hypothesis

<=? E1[V:= C] = E2[V:= C] fis injective

<=? (E1 = E2)[V := C]

The case of a membership predicate is similar to the case for equality:

S is a set. The set Sin max(S) must be a set of integers and therefore will never be permuted. The set
S in card(S) can be any finite set and therefore could be permuted. Such permutation is sound since
the injectivity of f means that for any set S, card(S) = card(f(S)). This is currently not supported in
our definition of f.

Chapter 4 Symmetry Reduction in PRoB

(E1: E2)[V :=f(C)]

{=? E1[V :=f(C)]: E2[V :=f(C)] substitution distributes

{=? f(E1[V:= CJ) : f(E2[V := CJ) induction hypothesis

{=? E1[V:= C]: E2[V:= C] fis injective

{=? (E1: E2)[V := C]

For pairs of expressions, we have:

f((E1 x E2)[V := CJ)

f(E1[V := C] x E2[V := CJ) substitution distributes

E1[V := C] x E2[V := C] induction hypothesis

(E1 x E1)[V := C]

For the case of set comprehension, we have:

{x I xES /\ P}[V := C]
{x I x E S[V := C]/\ P[V := CJ} substitution distributes

{x I x E S[V := f(C)]/\ P[V := f(C)]} indllction hypothesis

{x I xES /\ P} [V := f (C)] substitution distributes

f ({ x I xES /\ P} [V := CJ) induction hypothesis

The case for a universal quantification predicate:

(Yx· (x' E S =? P))[V:= f(C)]

{=? Y x . (x E S [V := f (C)] =? P [V := f (C)]) substitution distributes

{=? Y x . (x E S [V := C] =? P [V := CJ) induction hypothesis

{=? (Yx· (x E S =? P))[V:= C]

74

The remaining cases (e.g., for a conjunction of two predicates, P /\ P) follow similar

patterns of proof to the above. Note that for the cases of set comprehension and universal

quantification, x is a free variable and is independent of V and C in both.

From Theorem 4.2, it follows that for any B machine, the symmetries induced by f
preserve the truth value of the system invariant (which is a predicate). Another inter

esting corollary is obtained by characterising B operations as predicates, as described

in Leuschel and Butler [2005]. This involves representing machine constants and vari

ables by a vector v, and defining a predicate P (x, v, v', y) that holds when an operation

x+- Op(y), operates on input variables, y, and output variables x, to generate the new

value of v, denoted v'. Applying the idea to states of a machine !VI, a state s relates to s'

by operation i +- Op(j) (write s -+~.i.j s'), when predicate P(i, s, s',j) holds. Then, by

Theorem 4.2, we can conclude that P(i, s, s',j) holds iff P(f(i),f(s),f(s'),f(j)) holds.

That is, f preserves the transition relation of a B machine3 .

Corollary 4.3. From Theorem 4.2 if follows that for every state permutation f, for B

machine M, with invariant I, we have:

3In [Clarke et aL, 1999, Section 14.1], the symmetries induced by f are referred to as automorphisms
of the system.

Chapter 4 Symmetry Reduction in PRoB 75

v 3 E S : 3 F I iff f (3) F I
- V 3 E S, V 3' E S: 3 -+~.i.j 3' ¢:? f(3) -+;;:'.f(i).f(j) f(3').

Using induction with Corollary 4.3, it also follows that a trace of execution between

states, 3 and 3' exists iff there exists a corresponding trace between f(3) and f(3'). A

symmetry reduction algorithm that identifies symmetries defined by f is then guaranteed

to encounter all reachable orbits of states.

Having identified and justified the types of symmetries that are exploited by our symme

try reduction technique, we can now describe how this is achieved. In the next section we

justify and present our method for representing B states. In later sections, we describe

how we use these representations to identify symmetric states.

4.3 Representing a State as a Graph

Recall that values in B are either elements of sets (including Boolean values and in

tegers), pairs of values, or sets of values. These rules can be used to construct any

(arbitrarily nested) valid B value. Indeed, this is how PRoB encodes values. A natural

representation of the value of a B state using such rules is the graph, where each vertex

corresponds to a single rule. Our research of formulating a method to exploit symmetries

between states in B uses this natural representation of states. The challenge of detecting

symmetric states therefore becomes one of identifying graph isomorphism. Our decision

to use graphical forms for states is supported by the large amount of research into the

graph isomorphism problem . .!\!loreover, although the problem has no known polynomial

time solntion, in practice some extremely efficient algorithms exist for most classes of

graphs [Kocay, 1996], which may contain several thousands of vertices [Foggia et al.,

2001]. Given that our graphical representation for states uses one vertex per rule, this

suggests that our approach to symmetry reduction has the potential to scale even for B

specifications containing large amounts of state information. Later in this chapter we

present the use of identifying graph isomorphism in two symmetry reduction techniques

for PROB. However, as a first step we describe our procedure for constructing a graphical

representation of any B state.

Let us consider an example of a graph that represents a state, which we will refer to later.

Figure 4.6 shows the state graph of the state, db = {(Name1, Codel) , (Name2, Code2)}

in Figure 4.2.

In this graph, the value of the relation, db is represented by edges that indicate specific

ordered pairs, whose edge labels denote the variable they encode. A special 'root' vertex

is also shown, as are vertex colours; these will be explained later in this section4 .

4The 'root' vertex in this case refers to the root of the state graph. This differs from the root node
occurring in state spaces traversed by FROB, which represent the uninitialised B machine (introduced
in Section 1.5.1).

Chapter 4 Symmetry Reduction in PRoB 76

o root

db
Name1 0 - -----· Code1

db
Name20--~ Code2

FIGURE 4.6: A phonebook state as a graph

We use the fact that B values are either elements of sets, pairs of values, or sets of values

as follows. Each element of a set will correspond to a unique vertex in the final graphical

representation. Extra vertices are also introduced to handle nested values. However, let

us first consider the simple cases where we ignore nested values in B. Then, we can use

four simple rules to translate a value to its concrete graphical representation. For an

element of a set (an atom), v E S, where v = so, we have the graph in Figure 4.7. The

graph of a set, v E lP'(S) , where v = {so, ... , sn} is shown in Figure 4.8. For a pair,

v E S x T, where v = (so, to), we construct a graph as in Figure 4.9. Finally, a relation,

v E Sf-> T , where v = {(so , to) , .. . , (sn, tm)} is depicted in Figure 4.10. Also, although

our graph representation does not distinguish v = {so} from v = so, or v = {(so, to)}

from v = (so , to) , the B type system does and we only work with well-typed machines

(typing is decidable in B) .

FIGURE 4.7: Graph
for an atom

C? root

soO v (j to

FIGURE 4.9: Graph
for a pair

FIGURE 4.8: Graph
for a set

FIGURE 4 .10: Graph
for pairs

We extend this idea for nested data structures, such as sets of sets, through the intro

duction of a set of special vertices, X, which contains an element x E X for each nested

value, val. Informally, for nested sets, v = {valo, ... , valn }, we create n + 1 special

vertices, and we translate the set {lb, . .. ,xn } to a graph, as in Figure 4.8. Then, we

recurse on each nested value vali' 0 ::; i ::; n and draw the corresponding graph with Xi

as the new 'root'.

Chapter 4 Symmetry Reduction in PRoB 77

Similarly, for nested relations, v = {(valo, valr), ... , (valn-l, valn)} , we have n + 1 spe

cial vertices, and we translate the relation {(XO, Xl), ... , (Xn-l, Xn)} to a graph, as in

Figure 4.10. Then, we recurse on each nested value vali' 0 ::; i ::; n and draw its corre

sponding graph with Xi as the new 'root'. This idea also applies to any variable whose

value is a nested pair, in which case there will be just two vertices from X.

As an example, Figure 4.11 shows the graph for a variable, VI E lP'(lP'(S)), whose value

is VI = {{ so}, {sd }. Note the two vertices, XO, Xl used to represent nested values.

root

FIGURE 4.11: The graph for variable, VI = {{ so}, {SI} }

It is also convenient to encode typing information of a B state into such graphs, which

can be indicated to a canonical labelling procedure such as nauty. The assignment

of labels to vertices is the method we adopt. By convention, vertex labels are called

colours, and a vertex labelled graph is called a colo'ured graph. So, more precisely, we

choose to assign the same colour to vertices iff the symmetric permutation function

f (Dcfinition 4.1) permutes their corrc:;ponding state values. A colouring schemc is

depicted in Figure 4.6, which shows a state of a phonebook. As can be secn, Names

and Codes have different colours since they are two distinct deferred sets; whereas the

individual elements of Names or Codes have the same colour.

The coloured graph representing a B :;tate is constructed by composing the individual

graphs representing the values of each state variable. This is called the state graph of

a state. Formal descriptions of the recursive procedures for constructing state graphs

are presented in Algorithms 6-11. The top level procedure is state_graph (Algorithm 6),

which takes as parameter a state of a B machine. Firstly, it sets up the colours to be

assigned to graph vertices, using global variables. The injection, dcol, provides different

colours for each deferred set used by the machine (dsets). x_col is a colour, not already

used in dcol, which is used for vertices of X required to represent nested values (see

Algorithm 6, line 5). esets is the set of enumerated sets used by the machine, and

used_col is the set of colours already in use by the state graph. Subsequently, this

algorithm draws coloured graphs (Algorithm 6, line 9) representing each variable value

in the state each of which has the same 'root' vertex, for consistency within the final

state graph.

The assignment of colours to vertices is performed by Algorithm 7, assign_colour. The

use of dcol, on line 2 of this procedure, ensures vertices corresponding to values in

Chapter 4 Symmetry Reduction in PRoB 78

the same deferred set have the same colour. Similarly, xcol (line 8) ensures vertices

corresponding to nested values have the same colour. On the other hand, for enumerated

values (line 4), vertex is assigned any unused colour, c, which is then used to update the

set of used colours, used_col. Therefore, a unique colour is assigned to every vertex that

corresponds to an enumerated element in the B machine. Moreover, note that vertices

are assigned the same colour iff their corresponding values are permuted by f.

In Algorithm 8, the var _gmph routine establishes the type of B value (set, atom, relation

or pair) of a variable, and applies the corresponding procedure. Subsequently, the set,

atom and relation algorithms create the necessary vertices and draws the edges required.

Note that we do not include a separate algorithm for drawing the graph of a pair, since

this is the same as a relation of size 1. Instead, we convert the pair to a singleton relation,

and apply the relation algorithm: see line 9 of Algorithm 8. In Algorithms 9-11, vertices

are created for each value analysed. Those that correspond to nested values are elements

of X, otherwise they correspond to a distinct element of a set in the original B state; see

Algorithm 9, line 2, Algorithm 10, line I, and Algorithm 11, line 2. Observe that, for

each nested value, we apply it to var _gmph, to construct the graph rooted at the current

vertex. This is only possible in the set or relation routines (i.e., Algorithm 9, line 6, and

Algorithm 11, lines 10 and 13), since atoms are indivisible. Also note that edges are

not drawn to the root vertex, for relations (Algorithm 11, line 7). The precise effects

of this choice, and other properties of the structure of state graphs, are not studied in

this research; our focus is to implement a working concept. Given that the structure of

state graphs could affect the time required for an algorithm to determine isomorphism,

for such graphs, the issue may constitute future work. For inspiration, we can look to

the saucy program [Darga et al., 2004], which optimises nauty for graphs that represent

Cl'JF formulae.

Algorithm 6 state_gmph (state)
Require: State value, state

1: / / Setup vertex colours using global variables
2: global dsets := {DSo, ... , DSn }; / / deferred sets used in machine
3: global esets := {ESo: ... : ESm }; / / enumerated sets used in machine
4: global dcol := an injection from {O, ... , n} to a set of colours, Colour's;
5: global xcol := any element from COlOUTS - mn(dcol);
6: global used_col := mn(dcol) u {xcol};
7: / / Draw graph
8: for all variable-value pairs, (v, vaT) in state do
9: vaT_gmph('mot', v, val);

10: end for

Let us now illustrate the use of statcgmph, by applying it to the B state, (VI =

{({so},{sI})}, V2 = {{S2}}), where SO,Sl E DSo, S2 E DS1 , and DSo,DS1 ~ dsets.

The action of computing state_gmph((v1 = {({so}, {sI})}, V2 = {{s2}}i) results in the

graph depicted in Figure 4.12. Note that the same colour is given to vertices xo, Xl and

X2, which belong to the set of vertices, X.

Chapter 4 Symmetry Reduction in FROB

Algorithm 7 assign_colour(val, vertex)

Require: B value, val, and corresponding vertex, vertex
1: if j Sp . Sp E dsets /\ val E Sp then
2: assign vertex with colour, dcol (p);
3: else if j Sp . Sp E esets /\ val E Sp then
4: assign vertex with colour, c E Colours - used_col;
5: used_col := used_col U {c};
6: else
7: / / val is nested, so use colour for vertices in X
8: assign vertex with colour, xcol;
9: end if

Algorithm 8 var _gmph(Vparent, v, val)

Require: Vertex Vparent, and variable v, with value val
1: if val is a set then
2: set(Vparent, v, val);
3: else if val is an atom then
4: atom(Vparent, 'U, val);
5: else if val is a relation then
6: relation (Vparent, v, val);
7: else
8: / / val is a pair
9: val := {val}; / / new value has same graph

10: relation (Vparent, v, val);
11: end if

Algorithm 9 set (Vparent, v, val)

Require: Vertex Vparent, and variable v, with value val = {vakJ, ... ,valn }

1: for all 0 ::; i ::; n do
2: Create vertex Vval" such that if Vval; is not an atom, then Vvaz, EX;

3: assign_colour(val.i' Vvaz.,);

4: Draw edge, Vual, Vparent;

5: if val; is not an atom then
6: var _gmph(V ual" v. vali);
7: end if
8: end for

Algorithm 10 atom(Vparent, v, val)

Require: Vertex Vparent, and variable v, with value val = vakJ
1: Create vertex Vvalo ;

2: Draw edge, VvaLo ~ Vparent;

79

Chapter 4 Symmetry Reduction in PRoB 80

Algorithm 11 relation(Vparent , V, val)

Require: Vertex Vparent, variable v, with value val = {(valo, vall), ... , (valn-I, valn)}
1: for all (val;, valj) E val do
2: Create vertices Vval;, VValj . If these are not atoms, then Vval;, Vva~ EX;
3: assign_colour(val;, VvazJ;
4: assign_colour (va~, Vva~);

v
5: Draw edge, Vval i 1---4 Vvalj ;
6: if Vparent is not 'root' then

v v
7: Draw edges, Vvaii 1---4 Vparent, Vvalj 1---4 Vparent;
8: end if
9: if vali is not an atom then

10: var _graph (Vva!; , v, vali);
11: end if
12: if valj is not an atom then
13: var _graph (VVa1j , v, valj);
14: end if
15: end for

FIGURE 4.12: The graph computed by statcgraph((vl = {({so}, {sd)}, V2 = {{S2}}))

4.4 Relating Graph Isomorphism to State Equivalence

In this section we aim to elucidate the relationship of symmetries between states, as

described in Section 4.2, and the identification of isomorphic state graphs, using the

concepts introduced in Chapter 2. (Note that by referring to isomorphic state graphs,

we mean graphs that have the same 'shape' , and vertex colouring.)

In Section 4.2, it has been shown that the application of permutation function, f, to

a state will preserve both its structure in terms of the core syntax used to encode the

state (see Figure 4.5), and the elements of enumerated/deferred sets its uses, e.g., given

xES, then f (x) E S. As we have proved, permutation states, sand f (s), then satisfy

the same predicates, and induce automorphisms on the transition relation of the B

machine. Therefore, we say sand f (s) are equivalent, or symmetric.

Our method for identifying symmetric B states is to use a canonical labelling algorithm

that establishes whether their corresponding state graphs are isomorphic. To relate

state symmetries to the algorithms used for identifying graph isomorphism, let us recall

that canonical labelling functions rely on the permutation of graph vertices to find for

some graph a unique canonical label that is the same for all isomorphic graphs. In the

Chapter 4 Symmetry Reduction in PRoB 81

terminology of the symmetries we have defined over states, the action of the permuta

tion function, f, corresponds to the permutations/relabellings of graph vertices applied

during the identification of a canonical label of a state graph, e.g., during partition

refinement (refer to Section 2.3). More precisely, the relabelling must guarantee that

permutations only occur over vertices of the same colour, since vertices have the same

colour iff f permutes the corresponding state values (see Algorithm 7, assign_colour).

We require this condition to be satisfied because canonical labels depend on the vertex

permutations involved in their computation; if the condition is not satisfied, we cannot

guarantee that isomorphic state graphs have the same canonical label. \Ve now define

our canonical labelling function, which can be used to identify isomorphic state graphs.

Definition 4.4. The function, canon, computes for a state graph its canonical label, by

permuting vertices with the same colour, such that for two graphs, gl and g2, canon(gl)

canon(g2) ¢} gl is isomorphic to g2.

To justify the use of canon to identify symmetric B states, we must also guarantee that

isomorphic state graphs are only found when their corresponding states are symmetric.

This is expressed by the following theorem:

Theorem 4.5. For any two states, sand s', s is symmetric to s' iff state_graph (s) is

isomorphic to state_graph (s').

vVe do not present a full proof of Theorem 4.5, however, we describe several steps to

show that it is intuitive. For these steps, we formally define state_graph as an injective

function from B states to state graphs. This is reasonable given that the procedure

works by analysing the structure of a state, so that different states generate different

state graphs.

State, s is symmetric to state, s'

¢} "3/. /(s) = s'

¢} "3/. statcgraph(f(s)) = state_graph(s')

¢} "3/. /(state_graph(s)) = statcgraph(s')

¢} statcgraph (s) isomorphic to state_graph (s')

state_graph is injective

/ commutes through statcgraph

The key step is the commutability of / through statcgraph. Although we have not

formally defined f over state graphs, we highlight the validity of this claim by noting

that / preserves the structure of a B state and permutes only elements of deferred sets.

Then, given that state_graph analyses the structure of a state to find its state graph, it

follows that the application of / to a state graph preserves the structure of the graph,

and only affects the vertices that correspond to dements of deferred sets. In the final

step, the test for isomorphism between state graphs can be carried out by the canon

function, given in Definition 4.4.

Our goal is now to develop a canonicalisation function for state graphs, which can

identify the presence of symmetry between the original B states. The premise is to base

Chapter 4 Symmetry Reduction in PRoB 82

the function on the underlying algorithm used by nauty, which is shown to be effective

and efficient on large graphs that may contain several thousands of vertices [Foggia et al.,

2001]. However, state graphs cannot be applied immediately to nauty, which works on

graphs without edge labels5 . In the next section we show how the underlying algorithm

of nauty, presented in Section 2.3, can be extended to work directly with state graphs.

4.5 Computing Canonical Labels for Labelled, Directed

Graphs

In order to represent the values of individual variables and constants, as well as to faith

fully represent more complicated B data structures as graphs, we have to use directed,

labelled and coloured graphs. Our algorithm to compute canonical labels for such graphs

has been developed and implemented using SICStus Prolog, to allow integration into the

PRoB tool-set.

In contrast to adjacency matrices for undirected graphs, those for directed graphs are

not necessarily triangular. Therefore, the move to directed graphs is straightforward

and consists of using full adjacency matrices in the procedure for computing a canonical

labeL Algorithm 3.

Similarly, treating coloured graphs is also not difficult; ,'ve simply define an order on the

vertex colours used, and then start off with an initial partition where the vertices have

already been partitioned according to the various colours (see also McKay [1981]). For

example, ordering colours dark to light, the initial partition for the graph in Figure 4.12,

would be, [{so, sd, {S2}, {xo, Xl, X2}, {root}]. As a consequence of this partitioning, the

initial partition will be finer than the unit partition, providing the original B machine

uses more than one type. This affects the si:6e of the search tree explored when computing

the canonical label, and therefore may affect the time required for computation, i.e.,

the finer an initial partition is, the less time required to compute its canonical label.

However, also note that finer initial partitions will generally correspond to states with

smaller orbits.

The move to graphs with labelled edges is less obvious. VVe now describe our adaptation

of the partition refinement procedure to handle such graphs. The main algorithm for

computing the canonical label of a coloured graph with directed and labelled edges is the

same as Algorithm 3, except for the compute_label procedure, given in Definition 2.9,

which determines a matrix for a given discrete partition. The change consists of placing

an ordering on the set of labels, L (the variable names), so that labelled graphs can

5This was true at the time we developed our algorithm. In the most recent version of nauty, version
2.4 (Beta), released 11 July 2007, graphs with edge labels are handled. However, such graphs need
transformation to a graph which nauty can accept, e.g., a graph containing n vertices and k edge labels
is transformed to one containing O(nlogk) vertices. Our approach works directly with state graphs.

Chapter 4 Symmetry Reduction in PRoB 83

be encoded as a single matrix, where each entry is a binary string of size 1 L I. For

directed edges, we ensure computelabel takes the row-by-row binary string for the full

matrix. As an example, consider Figure 4.12 and variable ordering VI, V2. Then, the

matrix entry at index [xo, Xl] would be '1,0', since between xo and Xl there exists only

the single edge labelled VI. Regarding the implementation in Prolog, this matrix entry

consists of a term of the form, mentry (x_O, x_I) , since this gives constant time access

to the value of x_O or x_I: a task performed frequently when analysing the order of

matrices6 . The current distribution of SICStus Prolog limits the number of arguments of

mentry terms to 256. Therefore, this approach only handles B specifications containing

up to 256 variables7 . To handle more than 256 variables, we also implement an alternate

method that uses AVL-Trees [Knuth, 1973], which have logarithmic access times.

We now present the changes to the partition refinement procedure. Since we work on

graphs with directed and labelled edges, we must first adapt the function d(V, W) and

the definition of equitable.

Definition 4.6. Let G be a graph with directed, labelled edges and set of vertices V,

V E V, W c;::: V and L := (h,'" ,II) the labels on the edges. Then din(v, W, Iv) is

the number of elements in W, that have an edge with the label Iv E L leading to v,

and dout (v, W, ll/) is the number of elements in W, that have an edge with the label ll/

coming from v.

Definition 4.7. Let G be a graph with directed, labelled edges and set of vertices V

and L := (h, ... ,II) the labels on the edges. An ordered partition 11 of V is called label

equitable if, for all cells VI, V2 in 11, VI, v2 E VI and label Iv E L, we have:

din(Vl, V2, Iv) = din(VJ., V2, 11/) and

dout (VI, V2, Iv) = dout (V2, V2 , Iv).

The original procedure for refinement of a partition (Algorithm 2) can now be adapted

to handle directed, labelled graphs, and is given in Algorithm 12.

Example 4.1. We integrate the methods described in Algor'ithm 3 and Sections 4.3-4·5,

to show how to compute the canonical label of an example B state, whose state graph Gx

is given 'in Figv,re 4.13.

The example state makes use of two deferred sets, DSI and DS2, and uses two variables,

VI E lP(lP(Dd) and V2 ElP(Dl f--+ D2)' Let us assume so, Sl E DSl , S2 E DS2 , and the

variables values VI = {{so}} and VJ. = {{ (Sl' S2)} }. Note, Figure 4.13 also depicts the

special vertices XQ, Xl E X for nested values, and the orders of variables and colours.

Therefore, we start with the initial partition 11 = [{ so, Sl}, {S2}, {xo, Xl}, {root}], such

6 An alternate structure with constant time access is the array. However, these are not available in
SICStus Prolog.

7In practice, it is not often that we deal with B machines containing more than 256 variables. However,
it may be required by large scale projects, e.g., industrial projects.

Chapter 4 Symmetry Reduction in PRoB

Algorithm 12 refine(7r, G): Extended partition refinement

Require: Directed, labelled graph G, 7r = [VI, ... , Vn], L = (h, ... ,It)
1: ii":= 7r;

2: ex = [VI,··· , Vnl;
3: while ii" is not discrete and ex is not empty do
4: Remove an element W from ex;
5: for all v E 1 ... l do
6: for all k E 1 ... n do

84

7: Compute ordered partition [YI,··· , Ysl from Vk, where Vi,j, x, y·1 ~ i,j ~
s 1\ x E Yi 1\ y. E Yj => i < j {::} rhn (x , W, lv) < din (y , W, lv)

8: if s > 1 then
9: update ii" by replacing the cell Vk with the cells YI ,··· , Ys ;

10: ex = concatenate (ex, [YI , Y2,· . . , Ys]);
11: end if
12: end for
13: end for
14: Repeat one time lines 5 - 13, but use alternate condition dout(x , W, lv) <

dout(y, W , lv) on line 7.
15: end while
16: return Label equitable partition, ii";

L = (V
"

V2)

. 00 0
===>

Order of colours

FIGURE 4.13: Example graph

that vertices in the same cell have the same colour, and the cells are ordered by their

colours.

Initially, line 1 of Algorithm 3 requests the partition refinement of 7r. We then enter

Algorithm 12 with 7r , and ex = [{so, sd, {S2} , {:ro , xd, {root}]. In the first traversal of

the while loop, W = {so , sd. The algorithm considers only edges with label VI in the

first cycle of the outer for-loop. For the first cell of 7r , VI = {so, sI}, no edges labelled VI

originate from Wand lead to an element of VI; so din(so, W, VI) = din(SI , W , VI) = 0

and 7r remains unchanged. Th e second cell of 7r , V2 = {S2}, is trivial and cannot be

split furth er, so the algorithm continues. For the third cell, V3 = {:ro , xI}, we have

din(:ro , W , vI) = 1 > 0 = din (Xl , W , vI). So, V3 is split into two cells, {xI}, {:ro};
which must be ordered by their values for din. The algorithm updates 7r and ex, where

7r:= [{so,sd , {S2} , {xI} , {xo},{root}] and ex:= [{S2},{XI,XO}, {root} , {xI} , {XO}]· Since

the last cell V4 = {root} is trivial, the algorithm progresses and begins considering edges

labelled, 'V2 (line 5, second iteration).

Splitting next occurs when dout is analysed (execution of line 14), for W = {S2} and

Chapter 4 Symmetry Reduction in PRoB 85

the edge label, V:2. When, VI = {so, sd, we have, dout(so, W, V2) = 0 < 1 = dout(SI, W,

V2) and so partition 11 is updated to 11 := [{so}, {sd, {S2}, {xI}, {xo}, {root}], which is

now discrete. Further splitting is not possible, so Algorithm 12 terminates with this

discrete, label equitable partitions. With execution returning to line 1 of Algorithm 3, 11 e

is discrete and the procedure terminates with the canonical label, computclabel (Gx, 11 e)'

Figure 4.14 shows the first two rows of the adjacency matrix of G, which constitute the

twelve most significant bits of the canonical label.

50 00 00 00 00 10 00

51 00 00 01 01 00 00

FIGURE 4.14: Adjacency matrix corresponding to the canonical label of Gx

Our implementation also integrates the optimisations of automorphism pruning and

lexicographic pruning into the search (see Section 2.4), with an option to turn them

on/off. However, it should be noted that our canonicalisation procedure does not use

several intricate programming optimisations used in nauty. For example, nauty rep

resents branches of the search tree using two array variables. This improves upon the

memory efficiency of our procedure, which constructs branches via recursion (Prolog has

no loop structures), and so a branch comprises a nurnber of stackframes in memory.

4.6 Symmetry Reduced Model Checking Algorithm

In this section, we formalise the integration of the canonicalisation function, developed

in Sections 4.2-4.5, into model checking in PRoB. The resulting symmetry reduction

scheme for B machines is presented in Algorithnl 13.

The algorithm behaves much like the standard procedure for model checking in PRoB,

presented in Algorithm 19. Although now, for each state encountered, we compute its

canonical label, so that we can determine whether a state symmetric to it has already

been encountered. This computation takes place in a two-phase process that first com

putes the state graph of the state, and then applies the canonicalisation function to the

resulting graph: see line 8.

8Note that a label equitable partition may not be discrete; sec Definition 4.7.
9For the clarity of the presentation, we omit from Algorithm 13 the SGraph variable present in

Algorithm 1, which is used to represent the reached state space - for visualisation purposes. However,
such visualisations are still possible in the implementation of Algorithm 13.

Chapter 4 Symmetry Reduction in PRoB

Algorithm 13 Symmetry Reduced Model Checking in PRoB
Require: An abstract machine M and invariant cP

1: Queue := (root) ; Visited := {canon(statcgraph(root))};
2: while Q'ueue i- 0 do
3: state := pop(Queue);
4: if state ~ cP or state deadlocks then
5: return counterexample trace from root to state
6: else
7: for all successor succ, and operation Op such that state -----+pjp succ do
8: sr := canon(state_graph(succ))
9: if sr rt Visited then

10: if random(l) < ex then
11: add succ to front of Queue
12: else
13: add succ to end of Queue
14: end if
15: Visited := Visited U {sr}
16: end if
17: end for
18: end if
19: end while
20: return ok

86

In a change from Algorithm 1, the Visited variable now records the canonical labels of

the states already reached by checking, as opposed to storing the actual states. Despite

this difference, the approach still provides the same use: to identify whether a state

(or symmetric state) has already been visited. For example, let us consider the case

where the reduced strategy has checked a state So, so that canon(state_graph (so)) E

Visited. If model checking then encounters a new state S1, where Sl = f(so) (i.e., So

and Sl are symmetric), we have canon(statcgraph(so)) canon(state_graph(sl))' As a

consequence, the condition on line 9 fails, since canon(state_gmph(sl)) E Visited, and

the symlnetric state Sl is not added to the Que'ue variable for further analysis.

Let us highlight that our method for symmetry reduction, given in Algorithm 13, takes

the first state encountered in each orbit as the representative state. The canonical label

is not the same as the representative state - it is a binary string (an example of which

is given in Figure 4.14), which is computed for a state, and which is the same for all

states in an orbit. Therefore, by storing the canonical label in Visited, it is possible

to determine whether future states encountered are symmetric to it by computing their

canonical labels, and testing for membership in Visited as described above.

Empirical results from experimentation of this symmetry reduction technique are pro

vided later in Chapter 5. The line of research presented in this chapter has also stim

ulated the development of two new techniques that achieve symmetry reductions in

PRoB - each of which exploit symmetries induced by the elements of deferred sets in

B machines. The culmination of this research is given as related work in Sections 2.8.5

Chapter 4 Symmetry Reduction in PRoB 87

and 2.8.6; namely the methods of permutation flooding and symmetry markers. The

next section details collaborative work that has developed another symmetry reduction

technique for PRoB, which aims to improve upon certain aspects of the classical ap

proach given in Algorithm 13. This new method makes use of both the canonicalisation

function, canon, for state graphs of B states, in addition to symmetry markers.

4.7 Collaborative Work: Canonical Labels + Symmetry

Markers

A natural extension to the techniques presented so far is to integrate efficient approx

imate verification by symmetry markers with full (bounded) verification performed by

canonicalisation labels; since, such a strategy could gain the benefits of both methods.

This is the premise for the technique described in this section.

Informally speaking, the new procedure aims to verify B machines using symmetry

markers alone. If two states are found to have different symmetry markers, there is no

need to compute their canonical labels. However, if two states have the same symmetry

marker, one determines the presence of any symmetry by computing a canonical label

for each and comparing labels in the usual way. Thus, unlike the symmetry marker

approach, this technique achieves verification. vVe can draw similarities between our

approach with that used during model checking in SMC [Sistla et al., 2000], which also

uses a procedure with two-phases to determine the presence of symmetry. Each state

encountered in SMC has an associated integer, called a checksum, which is computed

from the values of variables in that state. Checksums are computed such that two

different checksums for two states guarantee the states are not symmetric, whereas

identical checksums do not guarantee symmetry between the states. Hence, checksums

achieve the same effect as our symmetry markers. If model checking encounters two

states with identical checksums, SMC attempts to establish the presence of symmetry

using a randomised algorithm that analyses whether a permutation between the states

is a symmetry of the system. In contrast to our technique, this approach may falsely

indicate non-symmetry, and therefore produce a non-minimal quotient model: however,

the approach is still safe. The precise algorithm we use to combine symmetry markers

with canonical labels in PRoB is given in Algorithm 14.

Notice that the procedure is very similar to that of Algorithm 13, for model checking via

canonical labels; the differences involve the initial computation of a symmetry marker

(line 9), and the routine for subsequently computing a canonical label to determine

symmetry (lines 18-32) when a symmetry marker is encountered more than once.

The algorithm uses the variables, VisitedM and VisitedC, to store the visited symmetry

markers and visited canonical labels, respectively. The Queue variable is used as it is

Chapter 4 Symmetry Reduction in PRoB

Algorithm 14 Canonical Labels and Symmetry-Markers in PRoB
Require: An abstract machine M and invariant ¢

1: VisitedNI := {m(root)}; VisitedC:= {canon(statcgraph(root))};
2: Queue:= (root) ; oncmk_reached := 0;

3: while Queue i= () do
4: state: = pop (Queue);
5: if state F ¢ or state deadlocks then
6: return counterexample trace from root to state
7: else
8: for all successor succ, and operation Op such that state -+~p succ do
9: succm := m(succ);

10: if SUCCm t/: VisitedM then
11: if random(l) < 0: then
12: add succ to front of Q'ueue;
13: else
14: add succ to end of Queue;
15: end if
16: VisitedM := VisitedM U {SUCCm };

17: one_mk_reached := one_mk_reached U {SUCCm 1---7 SUCC};

18: else
19: if :::3 s . succm -+ s E one_mk_reached then
20: se := canon(state_graph(s)); VisitedC VisitedC U {se};
21: one_mk_reached := one_mk_reached \ SUCCm 1---7 s;
22: end if
23: SUCCe := canon(statcgraph(succ));
24: if SllCCe t/: VisitedC then
25: if random(1) < 0: then
26: add succ to front of Queue;
27: else
28: add s'ucc to end of Queue;
29: end if
30: VisitedC := VisitedC U {SUCCe };

31: end if
32: end if
33: end for
34: end if
35: end while
36: return ok

88

in Algorithms 1 and 13, to indicate the next state to be checked. one_mk_reached, is a

partial injection from symmetry markers to corresponding states, and is introduced to

indicate that a particular symmetry marker has only been computed once10 .

The technique ensures only one state per symmetry class is checked, i.e., the first state

encountered in its orbit. Let us illustrate this by examining a simple flow of execution

for the process. Assume the algorithm first encounters state sl, which is added to Queue

lOIn practice, the function served by oncmk_reached is modelled by querying whether there exists a
single instance of a particular symmetry marker in the Prolog database.

Chapter 4 Symmetry Reduction in PRoB 89

(so it will be checked), and the symmetry marker is computed, slm := m(sl) (line 9),

and is added to VisitedM (line 16). At this point, slm is asserted as the only marker

with its value by adding slm f--+ sl to one_mk_reached (line 17). Then, at a later

point in checking, the algorithm encounters state s2, which is the first state found where

m(sl) = m(s2); hence, the condition on line 10 fails, and execution continues from line

18. Now, we use canonicalisation labels to establish whether a state symmetric to s2 has

previously been checked. The only possible symmetric state is s 1, since both have the

same markers (recall that states with different symmetry markers are never symmetric,

see Section 2.8.6). Therefore, we must compute the canonical label for s1. This is

guaranteed because the expression on line 19 can be satisfied, which initialises s to s1.

The algorithm then computes the canonical label of s and adds it to VisitedC (line 20).

Implicitly, this means s is taken as the unique representative of its orbit. On the next

line, we remove the maplet from one_mk_reached, to ensure the condition on line 19 can

no longer be satisfied, therefore preventing superfluous computations of canonical labels

in the future. Testing whether a state symmetric to s2 has been previously checked then

involves computing the canonical label of s2, denoted s2c, and testing for its membership

in VisitedC (lines 23 and 24). This evaluates to true if sl is symmetric to s2, so s2 need

not be checked, and is not added to Que1Le. Otherwise, we ensure s2 will be checked

in the future, by adding it to Queue; and we also add s2c to VisitedC so that we can

detect future states encountered that are symmetric to it.

The approach presented in this section aims to gain the advantages of both symmetry

markers and canonical labels. That is, a symmetry reduced model checking procedure

that achieves verification, but which does not require the (possibly expensive) computa

tion of canonical labels for each state encountered. In Chapter 5, experimental results

arc prescnted to illustrate the efi"ectivcllCS::; of the technique. Furthermore, the results

are compared with corresponding results of complementary techniques for symmetry

reduction in PRoB, and we discuss any drawbacks and improvements of the strategy.

4.8 Integrating Symmetry Reduction into the Architec

ture of FROB

This section presents an overview of the architecture of PRoB, to show how the new

techniques for symmetry reduced model checking described in this chapter integrate into

the tool. The architecture is presented in Figure 4.15.

PRoB has been developed primarily using SICStus Prolog, with a graphical user inter

face written in Tcl/Tk [Tcl/Tk]. The front end of the tool is responsible for transforming

a B machine into a corresponding Prolog term representation, which is made available

to the main components of the model checking system. A Prolog encoding of the B ma

chine is given as input to the ProB interpreter, which makes calls to the 'ProB Kernel'

Chapter 4 Symmetry Reduction in PRoB

ProB Kernel

ProB Interpreter

ProB Animator Constraint Checker

Canonical Labels

B Machine

Prolog Encoding
of B Machine

./
Model Checker

FIGURE 4.15: Integration of the Symmetry Reduction methods into the existing archi
tecture of PRoB.

90

so that the B system is stored. Separate components in the tool-set exist for the anima

tion of B machines (,ProB Animator' in Figure 4.15), constraint-based model checking

(,Constraint Checker') and standard model checking ('Model Checker'). The techniques

presented for symmetry reduced model checking in this chapter, namely Canonical La

bels, and Canonical Labels + Symmetry Markers, are encoded in Prolog within their

own components so that they are easily 'plugged' in to other parts of the tool, as neces

sary. As can be seen, the symmetry reduction components are available to the animation

and model checking components of PRoB. In the current implementation of the tool,

an options menu enables a user to select whether to use symmetry reduction, and if so,

which method. For further information about the original components of PRoB, refer

to [Leuschel and Butler, 2003].

4.9 Summary

In this chapter, we have presented a framework for an automatic method that performs

classical symmetry reduction in model checkers of B systems. All of the techniques de

veloped have been integrated into PRoB using SICStus Prolog. Symmetries are induced

by abstract elements of deferred sets, and manifest in data structures used to represent B

machine state; as described in Section 4.1.1. Identification of symmetries takes place by

translating system states to directed, labelled and coloured graphs, called state graphs

(Section 4.3), and subsequently computing canonical labels using an extension to the

underlying algorithm of the graph isomorphism program nauty (Section 4.5): states are

symmetric iff they have the same canonical label.

Chapter 4 Symmetry Reduction in PRoB 91

The line of research that has developed symmetry reduction techniques based on scalarset

data types [Ip and Dill, 1993] is the inspiration for the work in this chapter. More recent

work includes the SymmSpin package [Bosnacki et al., 2002]' which uses scalarsets to

integrate symmetry reduction into the SPIN model checker. These special types con

tain only symmetric data values and are thus similar to deferred sets in B. However,

the scalarsets approach is not automatic; it requires the user to identify and assert the

presence of symmetries. Our approach is fully automatic since the deferred set is a key

component of the B language. Thus, the automation of model checking is not compro

mised. Furthermore, our reduction strategy will always apply to a large proportion of

B machines since deferred sets are frequently used, e.g., in abstract machines near the

top of rcfinemcnt chains.

To our knowledge, this is the first technique to integrate symmetry reduction into model

checkers of B. In addition, this research has stimulated the development of three separate

approaches to symmetry reduced model checking in B; all of which exploit symmetries

induced by deferred sets. An alternate approach to addressing the orbit problem is im

plemented in a strategy known as permutation flooding [Leuschel, Butler, Spermann, and

Turner, 2007], and is described in Section 2.8.5. In this method when a new state is en

countered, all symmetric states are added to the state space and are marked as 'already

processed'. Following this, separate work was developed by Leuschel and Massart, which

shows how graph invariants can be used as part of an efficient approximate-verification

technique, called symmetry markers see Section 2.8.6. In collaborative work, sym

metry reduction by canonical labels is integrated with symmetry markers (Section 4.7,

canonical labels + symmetry markers) to generate a new technique that aims to gain the

advantages of both: a model checking algorithm with increased efficiency, compared to

the cClnollicalisatioll approach, yet which performs full verification (within the bounds

of the system). Furthermore, it is feasible that the techniques presented could be gen

eralised to exploit symmetries in model checkers of other languages, providing they use

data structures that induce symmetries, as with the deferred set.

In Chapter 5 we present an empirical analysis and discussion that compares the perfor

mance of each of the four techniques for symmetry reduction in PRoB: canonical labels,

permutation flooding, symmetry markers, and canonical labels + symmetry markeTS.

Chapter 5

Empirical Evaluation

This chapter presents an evaluation of the four techniques for symmetry reduction in

PRoB; permlLtation flooding (Section 2.8.5), symmetry markers (Section 2.8.6), canon

ical labels (Section 4.6) and canonical labels + symmetry markers (Section 4.7). Eval

uation comprises experimentation and discussions for each method when applied to a

range of B machines. Results from standard model checking are used as a control. The

empirical data obtained provides evidence of the effectiveness of symmetry reduction, in

addition to insights into aspects affecting performance that may need to be explored in

the future.

All experiments are performed on a PC with a 2.8GHz Intel Pentium 4 processor, 1Gb

of available main memory, running SICStus Prolog 3.12.0 (x86-win32-nt-4) on 'Windows

XP Professional (Service Pack 2), and using PRoB version 1.2.0.

The chapter is organised as follows. In Section 5.1, details are given on the performance

of the Prolog implementation of the canonical labelling algorithm. Then, Section 5.2

presents an executive summary of the performances of each technique for symmetry

reduction in PRoB. vVe present the B machines used during experimentation in Sec

tion 5.3. Empirical results for model checking in the presence, and absence of errors,

are split over the next two sections, respectively. Section 5.4.1 compares the perfor

mance of symmetry reduction via canonical labels with that of standard checking, and

Section 5.4.2 compares results for the canonical label approach with the those of per

mutation flooding. Next, Section 5.4.3 compares the technique of canonical labels +
symmetry markers, with that of canonical labels. Section 5.5 then shows how these

techniques compare with symmetry markers, and standard model checking, when ap

plied to B machines containing errors. Finally, a summary of the chapter is given in

Section 5.6.

92

Chapter 5 Empirical Evaluation 93

5.1 Performance Issues with Prolog Data Structures

To illustrate certain details of the performance of our implementation that computes

canonical labels (Chapter 4), we apply it to a simple B machine that populates a single

binary relation, given in Figure 5.1. For each test, we apply exhaustive standard model

checking, and exhaustive symmetry reduced model checking via canonical labels, while

varying the size of deferred sets D and R.

MACHINE
BinaryRelations

SETS
D;
R

VAR!AHLES
rel

INVARIANT
rel E D ~ R

INITIALISATION
rel := 0

OPERATIONS
add(d , r) ~

PRE d E DAr ERA d 1---+ r ¢:. rel
THEN

rel := rel U {d 1---+ r}
END;

END

FIGlJRE 5.1: Binary Relations Machine

The results of the test are displayed in Table 5.1, showing the number of different

relation instances computed when symmetry reduction is either on or off, <'md whether

automorphism pruning is being used (denoted 'aut on' or 'aut off'); rel has k elements

in its domain and k elements in its range, time is recorded in seconds, and OT indicates

the test took more than two hours to complete.

Only non-symmetric relations are computed when the reduction technique is used. Con

versely, all 2kxk instances are computed when it is off. For example, when the size of the

deferred sets, D and R, is 4, the symmetry reduced approach identifies 317 instances of

the rel relation, whereas standard checking identifies 65537 instances. As can be seen,

for 1 ::; k ::; 4, the savings in time made when searching a reduced state space can greatly

outweigh the time overhead of computing canonical labels for its constituent states. In

Chapter 5 Empirical Evaluation 94

Symmetry off Symmetry via Canonical Labels
k States Time States Time (aut off) Time (aut on)
0 1 0.05 1 0.05 0.05
1 3 0.05 2 0.05 0.05
2 17 0.80 7 0.63 0.61
3 513 8.90 36 1.76 2.16
4 65,537 5070.12 317 133.44 172.27
5 33,554,433 OT 5624 OT OT

TABLE 5.1: Comparison of the number of different relations

the case where, k is 4, the time required by the standard approach is almost 40 times

that of the symmetry reduced approach. Thus, we have demonstrated that our method

accomplishes the fundamental premise of symmetry reduction for this example. In ad

dition, note that when k is 5, the reduced and standard strategies for model checking

take longer than 2 hours to complete. This highlights that it may still be intractable for

either approach to model check systems with large bounds on its types.

In Section 4.5, we describe that in our canonical labelling function we implement the

optimisation of automorphism pruning - and provide all option to turn this on or off.

The technique of automorphism pruning requires an efficient storage of the automor

phism group of a graph, since such groups can be very large for large graphs. Our

implementation makes use of the Schreier-Sims Algorithm [Kreher, 1998, Section 6.2.3,

pages 203-211]' which relies heavily on the manipulation of arrays. This is not so much

of a problem for programs written in languages such as C. such as nauty, since constant

time access to arrays is available. However, for the integration into FROB, this research

uses Prolog; which has no built-in array data type. Therefore, our implementation mod

els arrays as AVL-Trees, which have logarithmic access times, and for which SICStus

Prolog has a specific module1 . The effects of this can be seen in Table 5.1. Automor

phism pruning produces a worse average execution time than when pruning turned off,

e.g., when each deferred set contains 4 elements, there is a difference of approximately

40s. So, the overhead of using automorphism pruning outweighs the benefit of traversing

smaller, constrained search trees, during the computation of canonical labels. Despite

this, considerable savings are made in both computation time and size of the state space

when compared to results from standard exhaustive model checking. Therefore, auto

morphism pruning is not used by default in the current implementation of symmetry

reduction via canonical labels in FROB. Furthermore, although empirical data collected

from experimentation in this chapter is encouraging, this research can still be viewed

as proof of concept. Also, note that our implementation does use lexicographic pruning

when computing canonical labels, since this is computationally inexpensive; the strategy

only requires the construction of partial adjacency matrices, and a conditional statement

that tests the order of two matrices (refer to Algorithm 3 and its optimisations).

IHowever, such AVL-Trees are still encoded as relatively high-level Prolog terms.

Chapter 5 Empirical Evaluation 95

5.2 Executive Summary

This section provides an executive summary of the set of empirical results obtained from

the experimentation of techniques for symmetry reduction in B, described in Chapter 4:

symmetry reduction via canonical labels (Sections 4.1-4.5), permutation flooding (Sec

tion 2.8.5), efficient approximate verification by symmetry markers (Section 2.8.6), and

canonical labels + symmetry markers (Section 4.7). Experimentation involved applying

each method to a range of B machines (Section 5.3) that use many typical expressions

and values in B, to ensure the results obtained are representative of a larger sample of

machines. The precise details of experimentation can be found in Sections 5.4 and 5.5.

Let us first recall that the goal of model checking a B specification is to identify the

presence of system errors, or the absence of errors; the knowledge of either is very

useful. When we discover an error in PRoB, we can analyse the value of the state that

violates the invariant (or which is deadlocked), and view the sequence of operations

that lead to it. Referring back to the specification, we can then attempt to resolve the

causes of the error. This method is particularly useful during the development of a

B specification. Alternately, if we discover the absence of errors in a B specification,

we have an illcrea::;ed confidence in our ::;y::;tem, and a guarantee that within its CUITellt

bounds, the invariant holds and there are no deadlocks. If this precision does not suffice,

one might then increase these bounds, or seek to apply theorem proving. To ensure our

experimentation considers systems containing errors, or no errors, we apply each of

the techniques named above to 8 B machines without errors, and 4 B machines with

errors present. We justify this disparity by noting that model checking in PRoB uses a

combination of depth/bread first search, which changes on-the-fiy, and is determined by

a random factor, sec Algorithm 1. This doc::; not affect the aUlount of time required to

exhaustively check state spaces containing no error. Neither does it affect the number

of states/transitions inside these state spaces. Hence, we can directly compare results

for the different techniques, with respect to a particular machine. Given that these

machines exhibit symmetry in a variety of data structures, an arbitrary B machine is

likely to use such constructs and should observe similar data trends if applied to the

reduction techniques. Thus, we examine 8 machines, as opposed to 4, to increase our

cOllficicncc in the performance of a particnlar tcclllliqne, for a particular B machine. Sneh

comparisons are not possible for machines containing errors, since we cannot guarantee

the trace to the error fonnd by PRoB2 . Therefore, we aim demonstrate the results

that are possible for machines containing errors, and discuss the factors that influence

performance.

2We could change the random factor to a constant in PRoB's moclel checking algorithm, to force
only a depth first, or breadth first search. However, for best performance one should know which to
use. This is a non-trivial task and requires prior knowledge of a system error, and its location in the
state space. Therefore, our experimentation uses the default random factor in PRoB, i.e., for each new
successor state, there is probability 1/3 it will be added to the front of the queue (for depth-first search);
and 2/3 chance it is added to the back of the queue (breadth-first).

Chapter 5 Empirical Evaluation 96

We first summarise the results from experimentation conducted over machines con

taining errors. Each technique is found to perform substantially better than standard

model checking, and in some cases, speedups can exceed two orders of magnitude. In

terms of the reduction in the number of states and transitions, the quotient models

are found to be no less than 20 times smaller than their original models, and in one

case is approximately 3500 times smaller. The significance of this reduction is made

more prominent given that PRoB encodes states explicitly - a state consisting of a sin

gle variable consumes less memory than a state containing two or more variables; in

addition, a variable v E lP'(DS) whose value has a cardinality of 1 consumes less mem

ory than the same variable whose value has a cardinality of two or more. Therefore,

reductions in the size of the state space, and so reductions in memory consumption,

are more prominent for machines with complex state. To provide a better idea of the

amount of memory that can be saved, we note that a Prolog fact, state (var (vI, I))

consumes 80 bytes3 . Supposing the state space has been reduced by a factor of 3500,

and contains 350000 states in the unreduced model, then one would save 28000000 -

8000 = 27992000 bytes, or approximately 28 megabytes. In practice, facts represent

ing states in PRoB are more complicated than this example. A state with n variables

will consist of a Prolog fact of the form state (var (VI, VAL) , ... ,var (Vn, VAL)) ,

where each argument var (VAR, VAL) encodes the value of a state variable, and each

value, VAL, can be a nested prolog term. In addition, transitions between states of

the form. operation (stateIID, op (VALl, ... , VALN) ,state2ID), must also be

stored, where statelID and state2ID are effectively pointers to the states, and

op (VALl, ... , VALN) is the operation between them, where each VAL can be a nested

term representing a B value. Thus, one can see that the symmetry reductions made

using the Canonical Labels technique can reduce memory consumption by a significant

factor.

One factor influencing the magnitude of the speedups is the complexity of expressions

used in the invariant or properties clauses of a B machine. Computationally expensive

expressions include universal quantifiers, such as V(x).(x E S =? f(x) ~ MAX), and

closure operations, since their evaluation usually consists of many individual evaluations.

Given that symmetry reduced checking only analyses a unique representative per orbit,

it does not involve redundant analyses of expensive expressions. The result is a large

amount of time saved during verification.

Common to all methods, the time to compute the representative of a B state increases

with state complexity (e.g., which increases the size of a state graph). As a consequence,

verification times tend to increase with the number of clements of deferred sets used by

the state.

In addition to the general reason for the effectiveness of symmetry reduction, there

are particular aspects of each method that affect performance. Symmetry reduction

3This is true for our test environment, given in the introduction to this chapter.

Chapter 5 Empirical Evaluation 97

via canonical labels performs notably well on machines containing relations (including

total functions, partial functions, bijections etc.), when compared to standard model

checking. More specifically, the overhead of computing canonical labels is outweighed

by the time saved in checking a smaller state space; whereas, standard model checking

generates all symmetric instances of relations and requires considerably more time to

exhaust the state space. Experimentation shows that speedups exceeding 230 times

that of standard checking are possible. In contrast, results also reveal the method does

not perform as well for machines containing multiple variables whose values are sets

of deferred elements. The precise reason for this is difficult to determine. However,

we can identify that a significant factor is the structure of corresponding state graphs.

Consider a state graph representing a single deferred set, as described in Section 4.3.

Then, we know that each of its vertices has the same number of in-coming and out

going edges. In addition, they have the same neighbouring vertices. As a consequence,

partition refinement (Algorithm 12) cannot easily distinguish non-symmetric vertices

when computing canonical labels, and so more vertex orderings need to be analysed

to identify the canonical label. Therefore, computing representatives for may become

excessively expensive.

Permutation flooding is a useful alternate "trategy for "yrmnetry reduction, which per

forms better than the canonical label technique for machines containing multiple vari

ables whose values are sets. A factor contributing towards this result is the simplicity of

permuting states (to identify symmetries) in a programming environment such as Prolog;

which, moreover, has backtracking capabilities. Empirical data indicates that for such

machines the method reaches speedups of up to 64 times that of standard checking, and

30 times faster than the canonical labels approach. Note however, that in the prominent

ca.'ies where permutation flooding ontperfOl'Ill" canonical labels, the time" involved arc

still small, e.g., < 1 minute. Another aspect that makes this method effective is that

the complexity of computing symmetric permutations depends only on the number of

deferred set elements occurring inside the state. Therefore, the method is still valuable

when the data values inside individual states become complicated.

On the other hand, permutation flooding typically does not perform as well for machines

involving relations which can have many more symmetries than a set. For example,

a relation over two deferred sets, with a maximum of k elements in both the domain

and range, has 2kxk different instances (see Table 5.1): whereas a set containing up to

k deferred elements has 2k instances. Given that permutation flooding generates all

symmetric states, it follows that this method should take longer for machines containing

symmetric relations than machines with symmetric sets. Indeed, results confirm this ob

servation. In addition, the results show that permutation flooding can be outperformed

by the canonical label approach by a factor of approximately 15, for machines whose

symmetric data structures involve mainly relational types.

Chapter 5 Empirical Evaluation 98

A consequence of the explicit storage of symmetric states in permutation flooding is that

the method is not as memory efficient as the canonical label technique, which stores only

one representative per orbit. One set ofresults illustrates that permutation flooding may

even run out of memory, while the canonical labels technique successfully exhausts the

state space.

Recall that symmetry reduction by canonical labels + symmetry markers aims to gain

the benefits of canonical labels and symmetry markers by computing canonical labels for

states only when identical symmetry markers are found (and therefore non-symmetry

cannot be established). In practice, the method performs very well and experimenta

tion indicates possible speedups exceeding 450 times faster than standard checking. In

comparison to permutation flooding, the drawbacks include those experienced by the

canonical labels approach, thus lower speedups are witnessed for machines containing

variables that are sets of deferred elements. Similarly, the method retains the advan

tages of computing canonical labels, and so is especially suitable for machines containing

variables whose values involve relations with symmetries. Furthermore, results highlight

that computing symmetry markers is indeed advantageous, since typically verification

time is less than that of the canonical labelling technique alone; in certain cases veri

fication using this combined technique is an order or magllitude faster than canonical

labelling alone.

vVe now discuss the performance of the symmetry reduction techniques, in addition to

that of symmetry marking, when applied to machines containing errors4 . The results

obtained confirm that a major factor influencing counterexample/deadlock detection is

the random element used during state space exploration in model checking in PROB.

Therefore, we observe that the trace to an error, and the time required for its discovery,

does not depend solely on the number of deferred elements used, or the model checking

strategy. Additional factors that can affect error detection include the number of errors

present and their location in the state space ~ although, these assume prior knowledge

of the errors.

The efficiency of computing new states/representatives is another significant factor that

affects detecting errors. Ideally, this should be as fast as possible, to minimise the time

required to reach the error. Regarding the experimental results, we see that model

checking using symmetry markers identify the machine errors faster than the any of

other techniques. This method benefits from performing efficient computations for state

representatives. In addition, note that although this technique performs approximate

verification, all violations and deadlocks were correctly identified.

The size of the state space also influences error detection. A large state space pro

vides more opportunity than a small state space for the randomised search of PRoB

4We do not apply symmetry marking to error free machines, since it is an approximate technique
that does not guarantee checking one state per orbit.

Chapter 5 Empirical Evaluation 99

to explore regions that are error free. However, once again, we cannot guarantee this

claim, and indeed, experimentation highlights that in some cases errors are discovered

more quickly in larger state spaces than smaller ones. Some of the results for standard

model checking fall into this category. We also note that this method outperforms the

strategies of canonical labels, permutation flooding and canonical labels + symmetry

markers, for certain machines with errors. Given that these techniques found the errors

after exploring a similar number of states, we can be explain the difference in time by

the increased efficiency of generating states in standard checking.

vVhen finding errors, a significant bottleneck experienced by canonical labels, permu

tation flooding and canonical labels + symmetry markers is that of computing state

representatives. Accordingly, the methods exhibit the limitations witnessed during ex

perimentation of machines containing no errors (described earlier in this section). That

is, results indicate that the canonical labels approach identifies errors quickly in ma

chines whose symmetries involve mainly relations over deferred sets; permutation flood

ing identifies errors quickly in machines containing mainly sets of deferred elements;

and canonical labels + symmetry markers generally outperforms the canonical label

approach due to symmetry marking efficiently distinguishing non-symmetric states.

5.3 Machines used In Experimentation

In this section, we provide a brief description of each machine used in experimentation.

The B machines can be found in full in Appendix C.

i.) sched'ulerO defines a process scheduling specification, and is given in Leuschel and

Butler [2005], where each process can be in one of three states (idle, ready or

active), and the deferred sets are the process identifiers.

ii.) schedulerO* is a version of (i) in which there is an error in the precondition of the

enter operation, which leads to a deadlock, where all processes are in the Teady

state.

iii.) scheduler is a variation of scheduleTO and is taken from Legeard et al. [2002]. The

deferred sets it uses are also process identifiers, as in (i).

iv.) RussianPostalPuzzle is a specification of a cryptographic puzzle [Flannery and

Flannery, 2001]' which involves safely transmitting a message between two parties.

The deferred sets are sets of available keys and locks.

v.) phonebook is a slightly more elaborate version of the phonebook defined in Fig

ure 4.2, and has two additional variables; active, which represents the set of names

in the phonebook, and activec, which represents the set of numbers in the phone

book. The B specification is given in Figure 1.3.

Chapter 5 Empirical Evaluation 100

vi.) phonebook* is the phonebook specification with an under-constrained precondition

of the delete operation, which leads to an invariant violation.

vii.) FileSystem is an abstract specification of a filesystem in a Windows NT operating

system. There are three deferred sets used that represent sets of system users, file

names and file identifiers. This machine has been developed as part of the separate

research of Damchoom (a Ph.D student in the Dependable Systems and Software

Engineering group, at Southampton University, UK). Operations enable one to

login to the system, or logout, and perform basic file operations including; creation,

deletion, copy, move, rename, read, write, create directory, delete directory, change

directory and list the contents of a directory.

viii.) FileSystem* is a version of the FileSystem specification, which contains an invari

ant violation that arises when certain read operations do not observe write-locks.

This is caused by an under-constrained read precondition.

ix.) DiningPhilosophers is a B machine of the famous dining philosophers problem

given in Dijkstra [1971], where deferred sets represent the forks and philosophers.

x.) Peterson's is a B encoding of Peterson's mutual exclusion problem for n processes,

as presented in Peterson [1981 L where deferred sets are the process identifiers.

xi.) Peterson's* is an alternate specification of (x), in which invariant violations arise

when two processes occupy the critical region at the same time. This is caused

by a small error in the body of the waiLuniil operation (which determines if a

process can enter the critical region), where the binary operator, :::: is used instead

of <.

xii.) H oielK eys IS a refinement machine that models the use of key cards for room

access in a hoteL whose abstract specification is based on the machine given in

[Jackson, 2006b, Section E.2.2, page 308]. The deferred sets are the sets of keys,

cards, rooms and guests. The abstract specification also specifies deferred sets

representing the rooms and guests.

In addition to the machine descriptions, we also provide details of the data types of these

machines that exhibit symmetry (i.e., involving deferred sets), which will be exploited

by our symmetry reduction method. This will aid the analysis of the results from

experimentation, presented in the following sections. Table 5.2 presents the types of

variables used by the machines, which involve deferred sets5 . We denote deferred sets,

DS1 ... DSn, and enumerated sets (including Boolean values and integers), E. For

example, schedulerO contains a variable that is an element of lP(DS1) (i.e., a subset

of process identifiers). This machine also contains a total function, whose domain is a

5Machines containing errors, e.g., schedulerO*, have the same type definitions as their error free
specification. Therefore, these machines do not appear in Table 5.2.

Chapter 5 Empirical Evaluation 101

subset of DS1, and whose range is an enumerated set. Note that deferred sets with the

same name, in the same machine, indicate the same deferred set. However, deferred sets

with the same name, in different machines, do not indicate the same deferred set.

Machine Types of Constants/Variables involving Deferred Sets
schedulerO lP'(DS1), lP'(DS1) ~ E
scheduler lP'(DS1), lP'(DS1), lP'(DS1)

Russian Postal Puzzle lP'(DS1), lP'(DS1), E ~ lP'(DS1)
phonebook DS1 ~ DS2, lP'(DS1), lP'(DS2)
FileSystem DS1(x2), DS2(x2), DS3,

lP'(DS1)(x3), DS1 ~ DS3
DiningPhilosophers DS1 >-->7 DS2(x2), DS2 >-->7 DS1

Peterson's DS1 ~ E(x2), DS1 ++ E,
E ++ DS1

HotelKeys DS1 ++ DS2, lP'(DS3) , lP'(DS4) ,
DS4>--+ DS3(x2), DS4 ~ DS1,
DS2 >--+ DS3(x2)

TABLE 5.2: Deferred set information for machines tested

5.4 Identifying the Absence of Errors

The following section presents the empirical data obtained from applying each of the

following symmetry reduction techniques to the error free B rnachines, described in

Section 5.3: canonical labels, permutation flooding and canonical labels + symmetry

markers. The results from standard model checking in PRoB are used as a control. For

reliability, the data shown is the average taken over 3 tests.

5.4.1 Canonical Labels versus Standard Model Checking

In Table 5.3 we present the results from applying symmetry reduction in PRoB VIa

canonical labels to eight B specifications. For each specification, we vary the cardinality

of deferred sets (Cd) and record the time required for model checking to terminate. The

table also shows the number of states and transitions in the reachable state space, with

and without (wo) symmetry reduction, and the speedups obtained with the reduction

technique.

The results obtained are encouraging. As can be seen, symmetry reduction reduces

verification time up to some point, in each machine. Also, there is a large reduction in

the number of states and transitions. The most prominent savings are for the phonebook

machine, where a linear increase in size of deferred sets leads to a combinatorial saving

in time, for 1 ::::: n ::::: 6, where n is the number of elements in each deferred set; see

Chapter 5 Empirical Evaluation 102

Machine Cd Time Speed- States Trans
wo (s) with up wo with wo with

schedulerO 1 0.01 0.01 1.0 5 5 6 6
2 0.05 0.05 1.0 16 10 37 23
3 0.26 0.15 1.7 55 17 190 59
4 1.24 0.52 2.4 190 26 865 121
5 7.78 2.20 3.5 649 37 3646 216
6 35.35 12.03 2.9 2188 50 14581 351

scheduler 1 0.01 0.01 1.0 4 4 5 5
2 0.03 0.02 1.5 11 7 25 16
3 0.14 0.08 1.8 36 11 121 37
4 0.64 0.30 2.1 125 16 561 71
5 3.02 2.78 1.1 438 22 2418 121
6 22.93 27.03 0.8 1523 29 10489 190

Russian 1 0.05 0.08 0.6 15 15 24 24
Postal 2 0.31 0.42 0.7 81 48 177 105
Puzzle 3 2.13 2.05 1.0 441 119 1277 331

4 17.34 9.80 1.8 2325 248 7869 838
5 158.61 48.83 3.2 11985 459 47795 1826
6 738.14 266.37 2.8 60981 780 279969 3571

phonebook 1 0.01 0.01 1.0 3 3 4 4
2 0.06 0.03 2.0 10 6 37 17
3 0.69 0.17 4.1 65 8 433 50
4 12.03 1.09 11.0 626 13 6001 125
5 280.38 7.51 37.3 7777 20 97201 269
6 13944.97 60.36 231.0 117650 31 1815167 541

Pile- 1 0.01 0.01 1.0 3 3 4 4
System 2 12.85 2.57 5.0 649 82 2864 365

3 15588.06 360.09 43.3 362260 1927 2109780 11554
Dining- 2 0.09 0.05 1.8 21 7 52 18

Philosophers 3 2.88 0.28 10.3 337 11 1320 52
4 167.41 3.20 52.3 11809 20 62496 302

Peterson's 2 0.57 0.47 1.2 49 27 96 62
3 65.96 16.36 4.0 884 174 2648 618
4 22125.87 1053.92 21.0 22283 1134 89126 4530

HotelKeys 3 0.03 0.01 3.0 4 2 3 3
4 10.48 1.23 8.5 718 6 1636 29
5 3692.92 28.83 128.1 101311 20 444474 271
6 >16 hrs 617.24 >87.5 >940575 62 >1834527 409

TABLE 5.3: Experimental results for eight B-specilicaiions

the 'Speedup' column in Table 5.3. In the case where deferred sets have a size of 6,

reduced checking is 231 times faster than standard checking. In terms of the state

space, the quotient model is approximately 3500 times smaller the original model, with

respect to both states and transitions. Results for the machines, Peterson's, FileSystem,

DiningPhilosophers, and HotelKeys also indicate the benefit of applying the reduction

technique, observing speedups of approximately 20, 40, 60 and 130 respectively; and

Chapter 5 Empirical Evaluation 103

in which case the quotient models are no less than 50 times smaller than the original

models.

Let us examine further the DiningPhilosophers machine, which is given in Figure 5.2, to

see where savings can be made. The machine contains two constants, lFork and rFork,

representing the two forks available to each philosopher. There is also a single variable

called taken, which indicates for a philosopher the forks they are currently holding, if

any.

MACHINE
DiningPhilosophers

SETS
Phil;
Forks

CONSTANTS
IFork, r Fork

PROPERTIES
IForkE Phil >--l-> Forks /\
rForkE Phil >--l-> Forks /\
card(Forks) = card(Phil)/\
V(pp).(ppEPhil =? IFork(pp) #- rFork(pp))

VARIABLES
taken

INVARIANT
takenE Forks -+'t Phil /\
V(xx).(xxEdom(taken) =? (IFork(taken(xx)) = xx or rFork(taken(xx)) xx))

INITIALISATION taken:=0

OPERATIONS
TakeLeftFork(pJ) = PRE pEPhil /\ fEForks /\ ftf.dom(taken) /\ lFork(p)=f

THEN
taken(f) := p

END;

TakeRightFork(p,f) = PRE pEPhil /\ f EForks /\ f tf.dom(taken) /\ rFork(p)=f
THEN

taken(f) := p
END;

DropFork(pJ) = PRE pEPhil /\ JEForks /\ fEdom(taken) /\ taken(f)=p
THEN

taken := {f} <El taken

END
END

FIGURE 5.2: The Dining Philosophers Machine

The use of canonical labels during model checking determines that a single state can

represent all possible instantiations of the constants. Subsequent checking then needs

Chapter 5 Empirical Evaluation 104

only to check the successors of the representative state, in contrast to standard check

ing, which must check the successors of every different valid instantiation of the con

stants. The effect is made more pronounced given that redundant checking of symmet

ric states requires the analysis of the universal quantification, 'Ii (xx). (xxEdom(taken) ==?

(lFork(taken(xx)) = xx or rFork(taken(xx)) = xx)), in the invariant of this machine;

which specifies that each philosopher may only take their designated forks. Thus, for

this machine, a substantial speedup is observed, e.g., 52.3 times faster than standard

checking when there are 4 Forks and 4 Phils.

Predicting the magnitude of a speedup for some machine is non-trivial, although the

results show that a major factor is the amount of symmetry exhibited by a system,

and the data structures that induce them. Table 5.3 shows that machines involving

symmetric relational types witness better speedups than machines with only symmetric

sets, e.g., compare the phonebook with the scheduler machine. This difference in speedup

can be explained by the size of orbits of states for such machines. Table 5.1 illustrates

the number of instances of a relation, including all symmetries, over two deferred sets,

with cardinality k < 6. Standard model checking Inay need to generate and check all

2kxk instances of such a relation, to exhaust the state space. In comparison, there

are vastly fewer isomorphic ally distinct relations (as k increases), which the canonical

labels approach analyses. Therefore, we see that the benefits of searching a reduced

state space can outweigh the overhead of computing canonical labels. One should note

that the specific type of the relational value can also influence the speedups possible,

since this affects the number of symmetries. For example, an injective function over a

deferred set (of size k) and an enumerated set, has k! different instances (all symmetric).

Therefore, there are fewer symmetries to exploit. The smaller speedup for such cases

contribute towards the results for the DiningPhilosophers machine. Similar reasoning

explains the smaller speedups observed for machines involving only values that are sets

of deferred elements, which may have up to 2k instances of a set, as with the scheduler

machine.

Another factor is the structure of state graphs representing a B state, which are used

in the computation of canonical labels. Given a partition for a graph, recall that Al

gorithm 3 applies partition refinement successively to find a set of discrete partitions

(vertex orderings) from which it can determine the canonical label. Each application

of partition refinement aims to generate a significantly finer partition, to reduce the

number of partitions analysed in this computation. Partition refinement fails to meet

this goal when it is difficult to distinguish the non-symmetry of vertices in the graph;

in which case, more partitions must be analysed, and finding the canonical label re

quires more time. Therefore, the structure of the state graph for a B state influences

the speed of finding a canonical label. We can identify that state graphs involving sets

of deferred elements can be difficult to find a canonical label for. For example, consider

a state containing a single variable, v = {d1 , d2, d3, d4}, where d1 , d2, d3, d4 are elements

Chapter 5 Empirical Evaluation 105

of the same deferred set. The corresponding state graph consists of 4 vertices of colour

coll, each with a single directed edge, labelled with v, whose target vertex is the root, of

colour col2 (refer to Section 4.3 for more information on state graphs). Since the vertices

representing the deferred elements have the same number of in-coming and out-going

edges, and their neighbours are the same, partition refinement cannot distinguish any

non-symmetry between them (because they are symmetric). Given the initial partition,

[{ TOot}, { d1 , d2 , d3 , d4 }], Algorithm 3 must therefore analyse all 4! discrete partitions

finer than it, to find the canonical label. In contrast, state graphs for relational types

may not have such regular structure, which will enable partition refinement to establish

any non-symmetry between vertices, reducing the number of discrete partitions to be

analysed, and reducing the time required to compute a canonical label.

In Figure 5.3, we illustrate exactly how the speedup varies with the size of deferred set,

for a selection of the machines. Data points correspond to the cardinality of deferred

set used, i.e., the nth point on a line shows the speedup for the nth set of results in

Table 5.3, for a particular machine.

Q)
..Q

0..
~
-0
(j)
(j)
0..

(J)

102

101

x- --"

10° phonebook
HotelKeys --X'-

FileSystem ~
schedulerO ---8---

Russian Post Puzzle II-

102 103 104 105

Reachable States (log)

FIGURE 5.3: Variation of speedups with cardinality of deferred sets

As can be seen, the reduction method can be very eflective, with speedups exceeding an

order of magnitude and increasing linearly (or greater) with respect to the size of the

state space in certain cases, as illustrated by the lines for the phonebook, HotelKeys and

FileSystem machines. However, in some cases, a speedup drop off is observed, as with

the schedulerO and RussianPostalPuzzle machines.

Speedup drop off points occur when the benefits of using canonical labelling is out

weighed by the overhead of their computation. To study this problem, and reveal any

Chapter 5 Empirical Evaluation 106

programming inefficiencies in our implementation of this procedure, the execution of

computing a canonical label has been analysed using the Gauge profiling module in

SICStus Prolog. The results show that approximately 72% of the computation time

is spent accessing Prolog terms that model arrays (AVL-Trees)6. This figure could be

significantly reduced if we had available data structures with constant-time access, such

as C-Ianguage arrays. Additionally, several major optimisations used in nauty are not

used by our algorithm (discussed in Section 4.5 and Section 5.1). The result of any

algorithmic optimisation would be to increase the speedups achieved (i.e., increase the

gradient of lines in Figure 5.3) and delay the speedup drop off points.

5.4.2 Canonical Labels versus Permutation Flooding

In this section, we compare symmetry reduction via canonical labels to permutation

flooding [Leuschel et al., 2007], introduced in Section 2.8.5. Recall that in this method,

the problem of identifying representatives is viewed from a different perspective. In

stead of computing the representative of a newly encountered state, s, all symmetric

permutations of s are computed, and added to the state space; while marking s as the

representative. This is relatively unproblematic for B's data structures since it involves

only the permutation of deferred set elements. Empirical results confirm this approach is

effective ill practice; in some cases, speedups exceed an order of magnitude. In addition,

there are cases where it outperforms canonical labels. Table 5.4 presents the results of

applying permutation flooding to the eight machines tested in the previous section, to

illustrate the differences between the two strategies.

Observe that the numbers of states and transitions computed are the same as those

when canonical labels are used. Note however, that this is because Table 5.4 only

counts representative states: permutation flooding still generates all state symmetries

via symmetric permutations (and therefore will generate the same number of states

checked by standard model checking).

As with the canonical labels approach, the magnitude of the speedups in Table 5.4

depends largely on the B machine being checked. For the machines, Peterson's, Din

'IngPhilosophers, FileSystern and schedulerO, we see speedups of approximately 20, 35,

40 and 65 respectively over standard exhaustive checking. Those obtained for the Rus

sianPostalPuzzle, scheduler-G and sched'uler machines are actually greater than those

found when using symmetry reduction via canonical labels. However, observe that when

permutation flooding substantially outperforms the canonical labels method, the times

involved are typically less than 1 minute, e.g., for 4 deferred set elements, the scheduler

machine is 64.0 times faster than standard checking, whereas canonical labels is only

2.1 times faster; although, the actual times are still only, O.Ols and 0.30s, respectively.

Note that as the number of deferred elements increases, the speedups tend to drop off,

6By modelling arrays as lists, this figure increases to approximately 78% of the computation time.

Chapter 5 Empirical Evaluation 107

Machine Permutation Flooding (pf) Speedup

Cd Time(s) States Trans pi cl

schedulerO 1 0.01 5 6 1.0 1.0
2 0.04 10 23 1.3 1.0
3 0.09 17 59 2.9 1.7
4 0.26 26 121 4.8 2.4
5 0.92 37 216 8.5 3.5
6 5.65 50 315 6.3 2.9

scheduler 1 0.01 4 5 1.0 1.0
2 0.02 7 16 1.5 1.5
3 0.01 11 37 14.0 1.8
4 0.01 16 71 64.0 2.1
5 0.10 22 121 30.2 1.1
6 0.98 29 190 23.4 0.8

Russian 1 0.03 15 24 1.7 0.6
Postal 2 0.18 48 105 1.7 0.7
Puzzle 3 0.71 119 331 3.0 1.0

A Q nA 248 838 5.7 1.8 .,. u.v-:t::

5 21.91 459 1826 7.2 3.2
6 153.86 780 3571 4.8 2.8

phonebook 1 0.01 3 4 1.0 1.0
2 0.02 5 17 3.0 2.0
3 0.08 8 50 8.6 4.1
4 0.81 13 125 14.9 11.0
5 22.21 20 269 12.6 37.3
6 909.78 31 541 15.3 231.0

FileSystem 1 0.01 3 4 1.0 1.0
2 2.01 82 365 6.39 5.0
3 374.58 1927 11554 41.6 43.3

Dining- 2 0.03 7 18 3.0 1.8
Plrilos ophers 3 0.17 11 52 16.9 10.3

4 10.93 20 302 15.3 52.3

Peterson's 2 0.33 27 52 1.72 1.2
3 14.52 174 518 4.5 4.0
4 1126.10 1134 4530 19.6 21.0

HotelKeys 3 0.01 2 3 3.0 3.0
4 1.29 6 29 8.1 8.5
5 295.55 20 271 12.5 128.1
6 OM - - - >87.5

TABLE 5.4: Comparison of speedups: fiooding (pI) vs canonical labels (cl)

as with the results for canonical labels. This occurs when the benefits of only checking

representative states becomes outweighed by the time required to generate all symmetric

permutation states.

On the other hand, there are cases where reduction through canonical labels outperforms

permutation flooding, e.g., the phonebook, FileSystem, DiningPhilosophers, Peterson's

Chapter 5 Empirical Evaluation 108

and HotelKeys machines. In fact, it is found that reduction via canonical labels can be

an order of magnitude faster than permutation flooding, as with the machines of the

phonebook (231.0 versus 15.3) and HotelKeys (128.1 versus 12.5).

It is possible to identify factors that contribute to the variation in speedups between

canonical labels and permutation flooding. Results indicate that a significant factor is

the amount of symmetry within a system. In the previous section, we have discussed

how machines generally exhibit less symmetry when they use mainly variables whose

types are deferred sets, when compared to machines with variables of relational types

over deferred sets. Given that permutation flooding generates all symmetric states,

results show that the technique outperforms canonical labels for machines exhibiting

fewer symmetries, such as with the scheduler and RussianPostalPuzzle machines, where

the effectiveness of an efficient permutation procedure can be seen. However, as the

number of symmetries within a state space increases, the overhead of generating all

state symmetries becomes more prominent, and the benefits of canonical labels becomes

evident - as with the phonebook, DiningPhilosophers and HotelKeys machines.

The explicit storage of states, including representative states and their orbits, also affects

the performance of permutation flooding. A relatively extreme consequence of this is

witnessed for the HotelKeys machine, when deferred sets have cardinality 6. That is,

symmetry reduced checking fails for permutation flooding since all available RAM on

the test PC (up to 1GB) is consumed during the generation of permutation states.

This is indicated by 'OM' in Table 5.4. However, by storing only representative states,

symmetry reduction via canonical labels succeeds for this machine and terminates with

a speedup of > 87.5. Only a lower bound of the speedup can be given since standard

exhaustive checking for the HotelKeys machine exceeded the maximum test time of 15

hours.

5.4.3 Canonical Labels versus Canonical Labels + Symmetry Markers

Introd uced in Section 4.7, canonical labels + symmetry markers is a technique that

combines symmetry markers with reduction via canonical labels. The culmination is a

technique that aims to gain the benefits of both approaches; an exact approach that

does not always require the use of a graph isomorphism algorithm to compute unique

representatives. This section tests this conjecture by applying the method to the B

machines previously tested for the canonical labelling (Section 5.4.1) and permutation

flooding techniques (Section 5.4.2). The results obtained from experimentation are given

in Table 5.5.

Empirical results indicate the effectiveness of the combined technique. For the machines

of phonebook, DiningPhilosophers and HotelKeys, the method performs very well, with

speedups over standard checking of 238.4,478.3 and 103.5 respectively. Indeed, for these

Chapter 5 Empirical Evaluation

Machine Labels and Markers (cl + sm) Speedup
Cd Time(s) States Trans cl pi cl + sm

schedulerO 1 0.01 5 6 1.0 1.0 1.0
2 0.05 10 23 1.0 1.3 1.0
3 0.14 17 59 1.7 2.9 1.9
4 0.47 26 121 2.4 4.8 2.6
5 1.77 37 216 3.5 8.5 4.4
6 9.38 50 315 2.9 6.3 3.8

sched'uler 1 0.01 4 5 1.0 1.0 1.0
2 0.01 7 16 1.5 1.5 3.0
3 0.01 11 37 1.8 14.0 14.0
4 0.33 16 71 2.1 64.0 1.9
5 2.44 22 121 1.1 15.1 1.2
6 24.64 29 190 0.8 12.7 0.9

Russian 1 0.01 15 24 0.6 1.7 5.0
Postal 2 0.33 48 105 0.7 1.7 0.9
Puzzle 3 1.56 119 331 1.0 3.0 1.4

4 7.40 248 838 1.8 5.7 2.3
5 36.86 459 1826 3.2 7.2 4.3
6 200.46 780 3571 2.8 4.8 3.7

phonebook 1 0.01 3 4 1.0 1.0 1.0
2 0.03 5 17 2.0 3.0 2.0
3 0.18 8 50 4.1 8.6 3.8
4 1.01 13 125 11.0 14.9 11.9
5 6.97 20 269 37.3 12.6 40.2
6 58.50 31 541 231.0 15.3 238.4

FileSystem 1 0.01 3 4 1.0 1.0 1.0
2 2.98 82 365 5.0 6.39 4.3
3 380.59 1927 11554 43.3 41.6 41.0

Dining- 2 0.04 7 18 1.8 3.0 2.3
Philosophers 3 0.12 11 52 10.3 16.9 24.0

4 0.35 20 302 52.3 15.3 478.3
Peterson's 2 0.05 27 52 1.2 2.0 1.2

3 17.08 174 518 4.0 4.5 3.9
4 1166.87 1134 4530 21.0 19.6 19.0

HotelKeys 3 0.01 2 3 3.0 3.0 3.0
4 1.06 6 29 8.5 8.1 9.9
5 26.19 20 271 128.1 12.5 141.0
6 521.64 62 409 >87.5 - >103.5

TABLE 5.5: Comparison of speedups: canonical labels (cl) vs flooding (pf) vs canonical
labels + symmetry markers (cl + 8m)

109

machines the technique outperforms both symmetry reduction via canonical labels and

permutation flooding. Given that the presence of symmetry is established by canonical

labels, also note that the sizes of the state spaces are the same as those for the canonical

label technique.

Chapter 5 Empirical Evaluation 110

As with reduction via canonical labels, this method is outperformed by permutation

flooding for the schedulerO, scheduler and RussianPostalPuzzle machines. However, it

is only noticeably outperformed when the times are less than 1 minute. These results

indicate that symmetry markers do not distinguish non-symmetry for a large proportion

of the reachable states, and therefore canonical labels must be computed. The reasons

given in the previous section, describing the differences in performance between canonical

labels and permutation flooding, with respect to these machines, can then be applied

here.

In contrast, the results for the DiningPhilosophers machine, show a speedup of approx

imately 10 times that of the approach using canonical labels alone (478.3 compared

to 52.3). We can therefore deduce that many of the states encountered during model

checking can be distinguished using symmetry markers, which are less expensive to

compute than canonical labels. Thus, this example highlights the value of the combined

technique.

The Peterson's machine produces results that are slightly worse than both canonical

labels and permutation flooding. A possible reason is that computation of symmetry

markers and/or canonical labels may be complicated, and many states have orbits con

taining more than 1 state. Therefore, both symmetry markers and canonical labels are

frequently computed.

5.5 Identifying the Presence of Errors

In this section we present the empirical data obtained from applying each of the symme

try reduction techniques to the B machines containing errors, described in Section 5.3:

canonical labels, permutation flooding, symmetry markers and canonical labels + sym

metry markers. The results from standard model checking in PRoB are used as a control.

Given that PRoB uses a randomised search algorithm, and therefore we cannot guaran

tee the path to an error found, each experiment is conducted only once (no average is

taken). Results then serve to illustrate the possible performances of each technique.

The results from standard model checking are presented in Table 5.6. \iVe see that

standard model checking identifies errors in under lOs for the schedv,lerO*, phonebook*

and FileSystem* machines, while searching substantially fewer states and transitions

than the error free versions of these machines, e.g., for FileSystem * and deferred set size

3, the error is found after 4.46s, 439 states, and 818 transitions; corresponding results

for the error free machine are 15588.06s, 362260 states and 2109780 transitions.

We might expect the time to find errors to increase, as we increase the size of the

deferred sets (and therefore the size of the state space). However, this is not always

the case, as with the phonebook* machine for deferred set sizes 5 and 6: the former

Chapter 5 Empirical Evaluation 111

(5 deferred elements) requires 0.08s, 185 states and 211 transitions, whereas, the latter

requires O.Ols, 131 states, and 156 transitions. This is an effect of the randomised search

algorithm, and indeed, which error in the state space it finds (if there is more than one).

Machine Standard Checking
Cd Time(s) States Trans

scheduler{f' 1 <0.01 5 6
2 <0.01 16 34
3 0.20 55 179
4 0.10 98 136
5 4.77 649 3429
6 7.12 1933 4719

phonebook* 1 <0.01 3 4
2 <0.01 10 19
3 <0.01 35 68
4 0.01 46 57
5 0.08 185 211
6 0.01 131 156

FileSystem* 2 2.19 218 566
3 4.46 439 818

Peterson's* 2 0.21 27 32
3 13.53 443 758
4 179.24 586 598

TABLE 5.6: Identifying errors using Standard Checking

Results from the canonical labels method are given in Table 5.7. As with standard

checking, the errors are found in less than lOs for the schedulerO*, phonebook* and

FileSystem* machines. In fact, for 5 deferred elements, the schedulerO* error is found

almost 3 seconds faster (2.07s versus 4.77s). A significant factor here, however, is likely

to be the larger section of the state space (649 states, 3429 transitions), which standard

checking has to cover, in comparison to the section covered by canonical labels (32 states,

190 transitions). Canonical labels do not always lead to the discovery of errors more

quickly than standard checking, as seen with the machines other than sched'ulerO*. For

exanlple, for FileSystem* and 3 deferred elements, canonical labels takes 7.06s - 4.46s =
2.60s longer than the standard strategy. Given that canonical labels reach 439 - 158 =

281 fewer states and 828 - 387 = 441 fewer transitions, we may infer that the bottleneck

experienced is that of computing canonical forms for states. A rnore prominent example

of this appears with the results for the Peterson's* machine, where canonical labels takes

over 100s longer to discover the error.

Table 5.8 presents the data from experimentation when using permutation flooding.

Comparing the results with those for the canonical labels method, we see that permu

tation flooding identifies the error for the schedulerO* machine almost 2s quicker (when

there are 6 deferred set elements). We may explain this using reasoning given in the

previous section, i.e., the efficiency of generating the symmetric states dominates the

Chapter 5 Empirical Evaluation 112

Machine Canonical Labels
Cd Time(s) States Trans

scheduler()~ 1 <0.01 5 6
2 <0.01 10 21
3 0.01 17 40
4 0.52 20 106
5 2.07 32 190
6 6.95 42 282

phonebook* 1 <0.01 3 4
2 0.03 4 15
3 0.09 7 41
4 0.90 10 108
5 0.20 10 88
6 1.92 19 178

FileSystem* 2 1.01 60 163
3 7.06 158 387

Peterson's* 2 0.17 19 22
3 9.01 160 308
4 281.62 274 746

TABLE 5.7: Identifying errors using Canonical Labels

overhead of computing canonical labels. In contrast, as illustrated by the phonebook*

machine results, the generation of permutation states requires more time when there are

more symmetric states, and therefore the canonical label approach is quicker. Let us

now analyse the results for the Peterson's* machine. We note that permutation flooding

finds an error almost 94s quicker than the canonical labels approach. This appears to

be a surprising result, especially given that it contains 4 functions, each over a deferred

set and an enumerated set. However, we must note the canonical labels method checks

an extra 78 states, and 291 transitions. Additionally, the time that this requires is exag

gerated by the use of two universal quantifications in the machine (one in the invariant

and one in an operation).

In Table 5.9, we present the results obtained using symmetry markers. Recall that this

method performs approximate verification by efficiently generating a symmetry marker

for states, such that symmetric states have the same symmetry marker; although in

some cases, non-symmetric states may also have the same marker. First, experimenta

tion shows that this method finds the errors in all the B machines. Also, we see that

it outperforms all of the techniques discussed so far in this section: thus, indicating

the value of using an efficient computation to find representatives. The errors for the

schedulerO*, phonebook* and FileSystem* machines were found in under Is. Regarding

the Peterson's* machine, the error is found approximately 50s faster than permutation

flooding, and 140s faster than the canonical labels technique. In comparison to standard

checking, it is 40s faster note however, that the symmetry markers approach covers in

excess of 200 fewer states.

Chapter 5 Empirical Evaluation 113

Machine Permutation Flooding
Cd Time(s) States Trans

sched'ulerO* 1 <0.01 5 6
2 0.02 10 18

3 0.01 17 49
4 0.02 22 113

5 0.82 31 186
6 5.04 46 345

phonebook* 1 0.01 3 4
2 0.03 4 12

3 0.11 6 42
4 1.67 10 102
5 2.82 12 175
6 7.58 10 152

FileSystem* 2 1.08 37 89
3 4.25 33 102

Peterson's* 2 0.31 27 36
3 7.75 172 508
4 187.92 201 455

TABLE 5.8: Identifying errors using Permutation Flooding

Machine Symmetry Markers
Cd Time(s) States Trans

schedulerO* 1 <0.01 5 6
2 <0.01 10 18

3 0.06 17 44
4 0.17 24 146
5 0.32 35 202

6 0.58 48 259

phonebook* 1 <0.01 3 4
2 <0.01 4 13

3 <0.01 6 42
4 <0.01 10 115
5 <0.01 12 183
6 0.01 19 322

FileSystem* 2 0.24 44 86
3 0.36 110 98

Peterson's* 2 0.28 27 52
3 6.84 174 518
4 142.62 263 625

TABLE 5.9: Identifying errors using Symmetry Markers

Finally, Table 5.10 presents the results from canonical labels + symmetry markers.

The results observed are as one might expect. The method identifies errors slightly

quicker than the canonical label method, when the number of states and transitions

covered are similar, as with the schedulerO* machine. Also, we see the worth of the

Chapter 5 Empirical Evaluation 114

combined technique for the Peterson's* machine, where the error is found about 40s

faster, even though 31 more states and 67 more transitions are covered. When compared

to permutation flooding and standard model checking, the dominant issues concern

those for canonical labels, as described previously (since experimentation shows the

computation of symmetry markers is efficient). Similarly, comparing this approach to

symmetry markers, we again look to the bottlenecks experienced by canonical labels,

since this constitutes the key difference.

Machine Canonical Labels + Symmetry Markers
Cd Time(s) States Trans

schedulerO* 1 <0.01 5 6
2 <0.01 10 21
3 0.01 17 45
4 0.97 22 107
5 2.48 34 202
6 6.42 40 327

phonebook* 1 <0.01 3 4
2 0.01 4 12
3 0.16 7 44
4 1.03 11 102
5 0.35 12 175
6 1.89 15 155

FileSystem* 2 0.60 41 91
3 3.68 79 212

Peterson's* 2 0.41 21 46
3 14.86 163 459
4 246.67 305 813

TABLE 5.10: Identifying errors using Canonical Labels + Symmetry Markers

5.6 Summary

In this chapter, we have presented an evaluation of the four techniques for symmetry

reduction in PRoB, with an emphasis on illustrating the performance of our canonical

labelling technique, described in Section 4. Experimentation constituted application

of the different techniques to a range of B machines to provide reliable performance

information.

The empirical data obtained overall is encouraging and shows for each technique that

speedups over standard model checking can exceed at least an order of magnitude, when

applied to certain B machines. An Executive Summary of the data is given in Section 5.2.

Specifically, one observes that symmetry reduction via canonical labels performs notably

well on machines involving a large amount of symmetry. Often, this is a consequence of

the use of relations, and any relational derivatives, over 1 or 2 deferred sets. For such

Chapter 5 Empirical Evaluation 115

machines, speedups can be 2 orders of magnitude (the maximum recorded is 231). Re

sults also highlight the method is influenced by the structure of state graphs, from which

canonical labels are computed. In particular, more time is required to compute canoni

cal labels when partition refinement cannot easily establish non-symmetry between the

vertices of a state graph.

Results show that permutation flooding is more effective than canonical labels for ma

chines containing variables whose values do not involve relations over deferred sets, e.g.,

subsets of deferred sets. When such relations are involved, the system generally has more

symmetric states, which permutation flooding must generate. vVe believe that the gener

ation of the numerous symmetric states means permutation flooding is outperformed by

canonical labels. In the converse situation, when systems exhibit fewer symmetries, the

overhead of computing canonical labels becomes the dominant factor, and permutation

flooding outperforms canonical labels. Note that the speedups recorded for permutation

flooding do not exceed 1 order of magnitude (the maximum is 64), and in the cases where

it notably outperforms canonical labels, the times involved are less than 1 minute.

The combination of our technique and symmetry markers, which we call canonical labels

+ symmetry markers, is shown to generally perform better than the canonical labels

technique alone. Thi::; demonstrates the value of u::;ing symmetry markers to efficiently

distinguish non-symmetric states. Experimentation shows speedups can exceed 450,

when compared to standard checking (or 10 times faster than canonical labels). In

comparison to permutation flooding, the performance bottlenecks appear to be those

identified for canonical labels.

Regarding error detection, we find that the most effective method is the efficient ap

proximate verification performed by symmetry markers. Therefore, this technique is

recommended for u::;e after makiug change::; to a B ::;pecificatioll. Canonical labels, per

mutation flooding, and canonical labels + symmetry markers are also effective at iden

tifying the errors: however, we believe their drawback mainly concerns the expense of

computing representatives. In fact, results indicate that one may choose standard model

checking over these reduction techniques, since the randomised search algorithm used

in PRoB appears particularly effective at identifying error states. vVe recommend using

these symmetry reduction methods once there is confidence that fewer errors exist in the

specification e.g., symmetry markers fails to find an eHor, or ::;tandard checking finds no

error after a significant amount of time, such as 5 minutes7 . In which case, we will see

the benefits of the symmetry reductions, i.e., exploring a reduced state space, with the

guarantee that errors will not be missed.

In the next chapter, we formalise our algorithm for symmetry reduction via canonical

labels, and show that it is sound with respect to the algorithm for standard model

7 Given that standard checking took no longer than 3 minutes to find the errors during experimenta
tion.

Chapter 5 Empirical Evaluation 116

checking. The formalisation uses B refinement, where, for a single abstract machine,

two chains of refinement specify the standard and reduced approaches.

Chapter 6

Correctness of Algorithms

6.1 Introduction

In Chapters 2, 4 and 5 of this thesis, the focus is the development and evaluation of a

technique that performs symmetry reduction in model checking in B. This method relies

on symmetric states in B satisfying the same predicates, as described in Section 4.2,

and the use of a canonical labelling algorithm to identify symmetric states. Comple

mentary to this, it is very important to guarantee the soundness of symmetry reduction

via canonical labels, with respect to standard model checking. For example, if stan

dard model checking exhausts its search space without finding a counterexample, then

symmetry reduced checking must exhaust its constrained search space without finding

a counterexample. This chapter addresses this issue using formal specifications in B, for

both methods, that constitute soundness proofs for symmetry reduction by refinement.

The formal specifications have been developed and proved interactively using the free,

single-user version of the Atelier-B tool-set, called B4Free, and its graphical interface,

Click'n Prove [Abrial and Cansell, 2003]. They consist of an abstract B machine specify

ing the generalised goal of model checking, from which two separate chains of refinement

specify the standard and reduced approaches. The following sections of this chapter

present the machines that constitute the two chains. For clarity of the presentation,

each machine is broken into several parts, which are individually explained. Each ma

chine specifies the same set of operations, as required by B refinement, although they are

only included in the commentary when necessary, e.g., if an operation in a refinement

machine modifies its more abstract specification. Full versions of these machines can be

found in Appendix D. The abstract specification is given first, in Section 6.2.

117

Chapter 6 Correctness of Algorithms 118

6.2 An Abstract Specification for Model Checking

The abstract specification, mcO, introduces the sets and constants that are required to

capture the overall behaviour of a model checking procedure, as used by PRoB. These

are used to specify two mutually exclusive events that determine when model checking

can terminate. We begin by introducing the sets, constants and properties used by this

machine. The B encoding is given in Figure 6.1.

MACHINE
mcO

SETS
S;
ANSWER = {Pass,Fail}

CONSTANTS
i, /* special initial state * /
tr, / * transition relation * /
in v, /* states satisfying invariant * /
reach /* reachable states * /

PROPERTIES
tr E S f-7 S 1\

inv E JfD(S) 1\

i E inv 1\

i t/:. ran(tr) 1\

/* the reachable states */
reach E JfD(S) 1\

i E reach 1\

/* reach is a fix point * /
tr [reach] C;;; reach 1\

/* reach is the smallest fix point of
the reachable states * /
\;I(r).(r E JfD(S) 1\

i E r 1\

tr[r] C;;; r =?

reach C;;; r)

FIGURE 6.1: The Sets, Constants and Properties of the Abstract Machine, meO

The mcO machine uses two sets, S and ANSWER. Deferred set, S denotes all possible

states of the system being model checked (i.e., the cartesian product of types it uses).

Given that parameters are placed on system types in practice, I SI is finite. The enu

merated set, ANSWER denotes the two, mutually exclusive, choices of message that

are output once model checking terminates; either Pass (the reachable search space has

been exhausted without finding a counterexample), or Fail (a reachable counterexample

has been found).

There are four important constants used for the abstract specification. Defining the

behaviour of the system is tr, the transition relation over states in S. The set of correct

ness conditions checked by the algorithm is defined implicitly through inv; the subset

of S satisfying the corrcctucss conditions. Such all approach is sufficicnt for the model

checking of B systems in PRoB, since checking involves only safety constraints on vari

ables. A special state, i, is used to indicate the case where the variables used by the

specification have not yet been initialised. Successors of i include all initial states of

the system. It follows that i is always the root state of the search space. The set of

states encountered during model checking, denoted reach, can be defined by a fixpoint

on tr, where tr[reach] C;;; reach, i.e., the successor of any reachable state is also reachable.

Further, we specify reach as the smallest fixpoint of tr.

Chapter 6 Correctness of Algorithms

OPERATIONS
ok f- pass ~

WHEN reach <::; mv
THEN ok := Pass
END;

ok f- fail ~

WHEN reach 1= mv
THEN ok := Fail
END

END

FIGURE 6.2: The Operations of the Abstract Machine, meG

119

The operations of mcO are given in Figure 6.2. These include the operations, pass and

fail, which are mutually exclusive events that specify the conditions under which model

checking terminates. The pass operation is enabled (forever) if all reachable states

satisfy the correctness conditions used during checking (reach <::; inv). In which case,

the Pass message is specified as a return parameter. Conversely, fail is enabled (forever)

if the set of reachable states do not satisfy the correctness conditions. In which case,

the Fail message is output by the algorithm. In contrast to an implementation of a

model checking algorithm, this abstract specification either immediately passes or fails.

However, this is sufficient since its single goal is to capture the key properties of the

procedure. Details used by an implementation, such as variable information, are given

in refinements of mcO.

In the next section, the first level of refinement of meO is given.

6.3 Refinement Level 1

Let us now present mc1, the first level of refinement for meO, denoted meG c;:; mel.

This refinement introduces two key variables and two events that will be required in an

implementation of a model checking algorithm. Their use is generalised so that future

refinements can specify further their precise behaviour. Figure 6.3 presents the new

variables, invariant and initialisation clauses of the refinement machine, mel.

Variable rae is introduced to store all states reached by model checking so far, which

satisfy the correctness conditions. Conversely, err stores those states reached by model

checking that violate the correctness conditions.

Regarding the operations of this machine, mc1 introduces two events used during the

traversal of the state space in model checking. The operation, add_inv, models the check

ing of states that satisfy the correctness conditions (and in later refinement machines

also determines states yet to be checked). Conversely, add_err, models the checking of

Chapter 6 Correctness of Algorithms

REFINEMENT
mel

REFINES
meO

VARIABLES
rae, j* Teaehed and checked *j
eTT

INVARIANT
me ~ reach 1\

me ~ inv 1\

i E rae 1\

eTT ~ reach - inv

INITIALISATION
me := {i} II
eTT := 0

FIGURE 6.3: The Variables, Invariant and Initialisation of the mel refinement machine

120

counterexamples. We separate the events for state space traversal since we find this style

convenient for proof, and presentation. The operations of mel are given in Figure 6.4.

OPERATIONS
add_inv ::::::
ANY ss WHERE

ss ~ Teach-me 1\

ss ~ inv 1\

ss 7'= 0

THEN
rue := Tae U ss

END;

add_erT ~

ANY ss WHERE
ss ~ Teach-me 1\

ss 7'= 0 1\

ss n inv=0
THEN

err := err U ss
END;

ok <-- pass ::::::
WHEN

Teach c:.;:; rae
THEN

ok := Pass
END;

ok <-- fail

WHEN reach rz inv
THEN

ok := Fail
END

END

FIGURE 6.4: The Operations of the mel refillement machine

Observe that the add_inv event selects a non-empty subset from the reachable states,

which are yet to be reached, and which also satisfy the correctness conditions. This sub

set is added to rae. Let us assume all reachable states satisfy the correctness conditions.

Then, it follows that after an exhaustive search of the reachable states, we have the

condition, rae ~ in'u. Using this, one can refine the pass operation to become enabled

when reach ~ rae.

The add_err operation selects a non-empty subset from the reachable states, which are

yet to be reached, but which contain no element present in the set of states satisfying

the correctness conditions, i.e., are invariant violations. These violations are added to

err for a permanent record.

Chapter 6 Correctness of Algorithms 121

Given that we are model checking a finite state system, it is desirable to prove the

termination of the state space exploration algorithm specified in mel, which occurs

when pass or fail enables. This can be shown by providing the variant, i reach - (rac U

en·) I, which represents the number of remaining states yet to be explored. Then, we

note that successive applications of add_inv and add_err, decreases the value of the

variant progressively, until at some point no new states can be added to rac or err,

and therefore, add_inv or add_err can no longer be enabled. This ensures that pass

or fail will eventually engage. In the case where errors exist, fail enables. If add_inv

and add_err block, then all reachable states have been checked, without error, and pass

enables. Thus, we have shown the algorithm specified in mel terminates. The addition

of variants to a system is not supported in classical B and its B provers1. However, we

have provided a variant here to help illustrate the validity of mel.

6.4 Refinement for Standard Model Checking

The B machines mcO and mcl given in the previous sections are specified at a high

level: certain details are abstracted away that would be required for an implementa

tion of the algorithm. This section addresses this issue through a single refinement of

mel that specifies more closely the standard model checking algorithm, and as a conse

quence, highlights several key properties. Figure 6.5 shows the variables, invariant and

initialisation clauses of this machine.

REFINEMENT
mc2

REFINES
mcl

VARIABLES
'unex, /* reached, checked

and not explored * /
rac, /* reached and checked */
err / * reached erTOrs * /

INVARIANT
unex rac 1\

tr[rac-unex] ~ rac U err

INITIALISATION
unex := {i} II
rac:={i} II
err 0

FIGURE 6.5: The Variables, Invariant and Initialisation of the rnc2 refinement machine

As can be seen, rnc2 introduces a single variable, unex. The purpose of this variable

is to store all states reached by model checking so far, which satisfy the correctness

conditions, but whose successors are yet to be determined. Moreover, it is defined as a

subset of rac, since each state it stores will be reached via the transition relation from

the initial state i, and subsequently checked.

lThe new generation of B, called Event-B [Metayer et aL, 2005, Abrial et al., 2006], and its provers
provide support for variants.

Chapter 6 Correctness of Algorithms 122

In addition, note that a new invariant condition is added: tr[rac - unex] ~ rae U err.

This constitutes the basis of proving when model checking can terminate, given that no

violations exist. To clarify its use, we first present the behaviour of the operations in

this machine, given in Figure 6.6, and the assertions proved for this machine2 , given in

Figure 6.7.

OPERATIONS
add_inv::::::
ANY sl,s2 WHERE

sl E unex /\
s2 E ran(tr) /\
s2 E inv /\
sl f--+ s2 E tr /\
s2 ~ rac /\
err = 0

THEN
'unex := unex U {s2} II
rae := rac U {82}

END;

add_err ::::::
ANY 81,82 WHERE

sl E unex /\
82 E mn(tr) /\
82 ~ inv /\
sl f--+ 82 E tr /\
s2 ~ me /\
err = 0

THEN
err := err U {82}

END:

remove
ANY 51 WHERE

sl E unex /\
/* all succe8sors of sl
have been checked * /

tr[{ 81}] ~ rac /\
err = 0

THEN
un ex := unex - {sl}

END;

ok f-- paS8
WHEN

unex = 0 /\

err = 0

THEN
ok := Pa88

END;

ok f-- fail c::::::

WHEN err # 0

THEN
ok := Fail

END
END

FIGURE 6.6: The Operations of the mc2 refinement machine

Regarding the operations of this machine, remove is introduced to remove a state from

un ex whenever all of its successors have been reached, and therefore are elements of rac.

The repeated application of remove will cause unex to diminish in size, indicating that

fewer transitions remain to be explored. This can be expressed formally as a simple

variant, I unex I, whose size decreases upon the action of remove.

The add_inv event of mel is refined to select a single state from unex (a state whose

transitions have not yet all been traversed), and computes a single successor of it (82)

that satisfies the correctness conditions. The successor is added to both unex and rac.

In the case where the successor is an invariant violation, it is added to only err in the

2 An assertion in B is an expression over the sets, constants, properties, variables or invariant clauses
of a B machine. They enable one to form corollaries in B. By proving an assertion, it is made available
for use inside other proof activities for the machine, e.g., discharging proof obligations.

Chapter 6 Correctness of Algorithms 123

add_err operation. Addition to either unex or me would, otherwise, break the invariant,

unex ~ me 1\ me ~ inv.

ASSERTIONS
/* add_inv */
3(sl,s2).(sl E unex 1\

s2 E mn(tr) 1\
s2 E inv 1\
sl 1--+ s2 E tr 1\
s2 ~ me 1\
err = 0) V

/* add_err */
3(sl,s2).(sl E unex 1\

s2 E mn(tr) 1\
s2 ~ inv 1\
sl 1--+ s2 E tr 1\
s2 ~ me 1\
erT = 0) V

/* remove */
3(s1).(sl E unex 1\

tr[{sl}] ~ me 1\
err = 0) V

/* pass */
(unex = 01\

err = 0) V

/* fail */
(err =1= 0)

FIGURE 6.7: The Assertions of the mc2 refinement machine

A number of assertions are also specified in me2, to verify that the specified model check

ing algorithm is deadlock free, with respect to the enabled operations. The assertions

are cornprised of a disjunction of the guards of each operation. Therefore, given their

interactive proof in B4Free, it is guaranteed that there is always at least one enabled

operation, e.g., model checking has not yet finished, so one can perform either add_inv,

add_err or remove, or conversely, state space exploration has terminated and either pass

or fail is enabled (forever).

Given the deadlock-freeness of the machine, in addition to the previous variants specified

for the add_inv, add_erT and remove operations, which show that eventually these ope

rations are all blocked, we can deduce that either pass or fail will eventually be enabled.

This relies on pass and fail being valid refinements of their lllore abstract specification,

which we have proved interactively using the B prover. We now illustrate the proof,

which will involve the invariant condition introduced into this machine, tr[me - unex]

~ me U err, see Figure 6.5. Let us assume that model checking reaches state, s, where

s E inv and no counterexamples have been found so far (e.g., s = i):

i.) if all successors of s satisfy the invariant, all will be explored eventually as they

will be added to unex in add_inv. In the case where all reachable states satisfy

the correctness conditions, all successors will be explored, such that eventually

unex = 0 and err = 0, and pass enables. This implies, tr[me 0] ~ me U 0.

By the fix point property of reaeh (see the last property in Figure 6.1, for meG),

we have reaeh ~ me: the guard of pass in mel. Therefore, pass in me2 is a valid

refinement of its more abstract specification in, mel.

Chapter 6 Correctness of Algorithms 124

ii.) Otherwise, if a successor of s is an error state, it is added to err (in the add_err

operation), and fail enables. We prove this operation refines its more abstract

specification, using err i= 0 and err t;;; reach - inv, which imply there exists a

reachable state that violates the invariant, i.e., the guard of fail in mel, reach r;l

inv.

The overall chain of refinement developed for standard model checking consists of: meO

r::: mc1 r::: mc2. That is, me2 is a valid refinement of meO. Therefore, the model checking

algorithm specified in me2 is sound with respect to the abstract specification of model

checking. In the next section, we use B to specify the notion of symmetry reduction in

model checking.

6.5 Refinements for Symmetry Reduced Model Checking

This scction prescnts two refinemcnt machines that specify sYlIllneb"y reduced model

checking through the refinement of mel (Section 6.3), namely rmc1 and rme2. These

refinements follow closely the specification of me2, except they utilise the concept of

symmetry between states of a system.

6.5.1 Levell

In the first refinement, we introduce the notion of state symmetries into the constants

and properties clauses, as presented in Figure 6.8.

Symmetries are defined by automorphisms over the transition relation, and are modelled

as a set of permutations (bijections) over states, denoted a'ut. Also specified are two key

properties of automorphislns, as given in [Clarke et a1., 1999, Chapter 14];

- an inverse of an automorphism is itself an automorphism, and

- automorphisms preserve the transition relation (a result also shown in Section 4.2).

In the contcxt of this specification, we define that the special state i (representing the

uninitialised machine) is symmetric only to itself. In addition, we specify a consequence

of a result in Section 4.2, which proves that symmetric states satisfy the same predicates.

That is, a state satisfies the invariant, iff states symmetric to it also satisfy the invariant.

The constant, rep, is introduced to model an algorithm that computes a unique represen

tative for some given state, and is defined over the set of states S. Our implementation of

this function determines a unique representative from each orbit of states by computing

canonical labels (see canon in Definition 4.4). It follows that checking one state during

the reduced search, corresponds to checking all symmetric states in the standard search.

Chapter 6 Correctness of Algorithms

REFINEMENT
rmcl

REFINES
mel

CONSTANTS
/* automorphisms on tr */
aut,
/ * representative function * /
rep

PROPERTIES
aut E lP'(S)---» S) /\
id(S) E aut /\
v(p).(p E aut::::} p-1 E aut) /\
v (p). (p E a'ut ::::} i f---> i E p) /\

/* automorphism8 pre8erve tr * /
v(p,81,82).(p E aut /\ sl E S /\

82 E S::::}
(81 f---> 82 E tr) <=?

(p(81) f---> p(s2) E ir)) /\

125

/* automorphisms preserve invar. * /
v(p,sl,s2).(p E aut /\

sl f---> s2 E p ::::}
(sl E inv) ¢::} (s2 E inv)) /\

rep E S ---> S /\

/* symmetries have same rep. */
v(p,sl,s2).(p E aut /\

sl f---> s2 E p ::::}
rep(s1) = rep(s2)) /\

/* sand rep(s) implies auto. */
v(sl,s2).(sl f-7 s2 E Tep ::::}

3(p).(p E aut /\ sl f---> s2 E p)) /\

/* representatives are fix points * /
v(s).(s E mn(rep) ::::} rep(s) = s)

FIGURE 6.8: The Constants and Properties of the Machine, rmel

The rep function in this refinement is constrained accordingly (the first 3 properties in

volving rep). Further, we specify representatives as fix points. Assertions for rmel are

given in Figure 6.9, whose proof simplifies later proof activities required to guarantee

its consistency and show that it is a valid refinement of mel.

ASSERTIONS
/* representatives pre8erve invaT. * /
\/(sl,82).(sl E S /\

s2 E S /\
81 r-+ 82 E rep =?

((81 E inv) <=? (82 E inv))) /\

rep(i) = i /\
rep -1 [{ i} 1 = {i} /\

v(sl,82).(81 s2 Etr =?

3(882).(rep(81) f-7 s82 E tr /\
Tep(s2) = rep(882))) /\

/* S i8 reachable iff
rep(8) 'is reachable */

'11(8).(8 E S =?

((8 E reach) ¢::} (rep (8) E reach)))

FIGVRE 6.9: The Assertions of the rmel refiUclllcut machinc

There are five assertions defined for this machine, of which the first four are relatively

simple and follow from the properties of aut and rep. The last assertion (see Equa

tion 6.4) requires proof that for any reachable state its representative state is also reach

able. This is provable using induction and three specified properties of automorphisms,

given again in Equations 6.1 6.3. Proof by induction is difficult using the B provers,

Chapter 6 Correctness of Algorithms 126

therefore, we describe an inductive proof in the following3 :

Pmperty: V(p, sl,s2).(p E aut 1\ sl E S 1\ s2 E S =? (6.1)

(sll-'7 s2 E tr) {::? (p(sl) 1-'7 p(s2) E tT))

Pmperty: V(p) .(p E aut =? (6.2)

(i 1-'7 i E p))

Property: V(sl, s2).(sll-'7 s2 E rep =? (6.3)

3(p).(p E aut 1\ sll-'7 s2 E p))

AsseTtion: V(s).(s E S =? (6.4)

((s E reach) {::? (rep (s) E Teach)))

Pmoj. By Equation 6.1 we have i 1-'7 S E tr {::? p(i) 1-'7 p(s), for all automorphisms p.

vVe extend this idea to sequences of states. Let f = So -+ Sn; denote any sequence of

states So, ... ,Sn, where So = i (Equation 6.2) and Sj 1-'7 Sj+l E tr, for 0 :'S: j < n. Then,

by Equation 6.1, for all automorphisms p there is a sequence of states pb) = p(so) -+

p(sn), which denotes the sequence p(so), .. . , p(sn), where p(so) 'i (Equation 6.2) and

p(Sj) 1-'7 p(sj+d E tr, for 0 :'S: j < n. Given that representatives are automorphisms of

states (Equation 6.3), it follows that a state S is reachable if and only if rep(s) is also

reachable. 0

VARIABLES
/* vaTS for standard checking */
rac, unex, eTT,

/* vaTS faT Teduced appmach */
TTac, runex, TeTT

INVARIANT
unex t;:: Tac

Tmc t;:: mn(rep) 1\

Tmc t;:: mc 1\

Tunex t;:: Tmc 1\

Terr t;:: err 1\

Tep-l [Tmc] = mc 1\

Tep-l[Tunex] = unex 1\

Tep-l[TeTT] = eTT 1\

tT[mc-unex] t;:: mc U eTr

INITIALISATION
mc := {i} II Tmc {i} II
unex := {i}11 runex := {i}11
err := 0 II TeTT := 0

FIGURE 6.10: The Variables, Invariant and Initialisation of the Tmc1 refinement ma
chine

Six variables are used by this machine. Intuitively, they can be split into three pairs of

variables, where each pair consists of a variable used in the B specification of standard

model checking (mc, unex or err), and a corresponding variable introduced to specify

3Inductive proofs are not directly supported by the B provers, although they are possible through
the introduction of extra properties and assertions. This carries the risk of introducing errors into the
specification that cannot identified.

Chapter 6 Correctness of Algorithms 127

reduced checking (rrac, runex or rerr). The key premise is to link each pair with some

set of constraints, so that properties that apply to standard checking also apply to the

reduced approach.

As with the standard approach to checking, the set of states reached during checking

whose successors have not yet all been explored (unex), is a subset of the states en

countered by model checking (rac); unex ~ rac. To link rac and rrac, we specify that

rrac ~ rac and rep-l[rrac] = rac; the states symmetric to those of rrac are members

of rac. We specify corresponding constraints for variables unex, runex, err, and rerr.

In addition, tr[rac - unex] ~ rac U err is specified to simplify the detection of model

checking termination when no counterexamples are found (i.e., when unex = 0 and

err = 0, see mc2 in Section 6.4). This will be proved correct in the next refinement

using only rrac, runex, and rerr. The operations of rmc1 are given next, in Figure 6.11.

OPERATIONS
add_inv ;:;
ANY sl,s2 WHERE

sl E runex /\
s2 E ran(tr) /\
s2 E inv /\
sl f-7 s2 E ir /\
rep(s2) ~ rrac /\
rerr = 0

THEN
runex := runex U {rep(s2)} II
unex 'un ex U

rep-l [{rep(s2)}] II

rmc:= rmc U {rep(s2)} II
rac := rac U rep-l [{ rep (s2)}]

END;

add_err ;:;
ANY sl,s2 WHERE

sl E runex /\
s2 E ran (tr) /\
s2 ~ inv /\
sl f-7 s2 E ir /\
rep(s2) ~ rrac /\
rerr 0

THEN
rerr := rerr U {rep(s2)} II
err := err U rep-l[{rep(s2)}]

END;
END

rernove =
ANY sl WHERE

sl E runex /\
/* all successors of sl
have been checked * /
rep[tr[{sl }]] ~ rmc /\
rerr 0

THEN
runex:= runex - {sl} II
unex := unex - rep-l[{s1}]

END;

ok f- pass ;:;
WHEN

reach ~ rep-l [rrac]
THEN

ok := Pass
END;

ok f- fail ;:;
WHEN

reach ~ ~nv
THEN

ok := Fail
END

FIGURE 6.11: The Operations of the rmc1 refinement machine

Chapter 6 Correctness of Algorithms 128

Notice that this machine behaves in a similar way to mc2, which also refines mel. The

difference regarding the add_inv or add_err events, is that for each newly encountered

state s we add its representative to runex (if s satisfies the invariant) or rerr (if s

violates the invariant); while adding all symmetric states, rep -1 [{ S } 1 to unex or err.

(Note the similarity this technique shares with that of permutation flooding, described

in Section 2.8.5.) The remove operation follows this trend, and removes a state from

runex whenever the representatives of all of its successors have been encountered; while

all symmetric states are then removed from un ex. The variant, I reach - (rrac U rerr) I
+ I runex I, can be provided to show that these operations will block eventually, when

all representative states have been encountered. In which case, pass or fail may become

enabled. Finally, we see that the guards on the operations of pass and fail are equivalent

to those for the corresponding operations in mel (Figure 6.4).

Note that the intention of this refinement machine is to integrate symmetry into the

B specification of standard model checking (mc2) and link the variables used by the

standard and reduced approaches. It is not intended as a specification from which

an implementation may be constructed. However, this could be achieved for the next

refinement, which abstracts away the details of the standard approach.

6.5.2 Level 2

Having specified a relatively detailed refinement machine in rmcl, the last refinement

needs only retain three variables rrac, runex and rerr, upon which we specify a min

imal set of constraints. The variables and invariant of this machine are presented in

Figure 6.12.

REFINEMENT
rmc2

REFINES
rmel

VARIABLES
rrac, run ex, rer-r

INVARIANT
i E rrac /\
rmc c::: ran(rep) /\
rrac c::: mc /\
runex c::: rrac /\
rerr c::: err

INITIALISATION
rrac:= {i} II
runex := {i}11
rerr := 0

FIGURE 6.12: The Variables, Invariant and Initialisation of the rmc2 refinement ma
chine

Observe that the specification of the variables remains the same as that given in rmc1,

while all details of mc, unex, and err have been abstracted away. The same applies for

the operations of this machine, which are given in Figure 6.13.

Chapter 6 Correctness of Algorithms

OPERATIONS
add_inv ::;
ANY sl,s2 WHERE

sl E runex 1\

s2 E ran(tr) 1\

s2 E inv 1\

sl f--7 s2 E tr 1\

rep(s2) t/:c rrac 1\

rerr = 0

THEN
runex := runex U {rep(s2)} II
rrac := rrac U {rep(s2)}

END;

add_err ::;
ANY sl,s2 WHERE

sl E runex 1\

s2 E ran (tr) 1\

s2 t/:c inv 1\

sl f--7 s2 E tr 1\

rep(s2) t/:c rrac 1\

reTr 0

THEN
rerr := TeTT U {Tep(s2)}

END;

remove ::;
ANY sl WHERE

sl E runex 1\

/* all successors of sl
have been checked */

rep[tr[{s1}]] C;;; rrac 1\

rerr = 0

THEN
runex := runex - {sl}

END;

ok ~ pass ::;
WHEN

TeTT = 0 1\

runex = 0

THEN
ok := Pass

END;

ok ~ fail ~
WHEN

TeTT "I 0

THEN
ok := Fail

END
END

FIGURE 6.13: The Operations of the rmc2 refinement machine

129

Similar to mc2, a disjunction of the operation guards are specified as assertions, and

proved, to guarantee that one of the operations is enabled at all times in this refinement

machine. The assertions of nnc2 are given in Figure 6.14.

Using reasoning analogous to that in mc2, the deadlock-freeness of operations for this

machine, together with the variant described in rmc2, showing add_inv, add_err and

remove eventually block, it is ensured that either pass or fail will become enabled. If

no reachable counterexample exists, pass will become enabled eventually. vVe can show

that its guard, TUnex = 0 and rerr = 0 implies that termination should occur, since

(TUnex = 0 =? unex 0) and (rerT 0 =? err = 0) implies tr[rac - 0] C;;; rac U 0.

Therefore, using the fixpoint property in Figure 6.1, we have reach C;;; rac. That is, the

reachable state space has been reached and checked, without finding an error. In the

contrary situation, whenever a reachable error is found, it is added to rerr (in add_err).

Therefore, fail will become enabled. We can show that the guard of fail, rerT "I 0

implies an error exists, using Terr "I 0 =? erT "I 0) and err c:;;; reach - inv. Therefore

reach g: inv: a reachable error exists.

The chain of refinement for symmetry reduced model checking consists of: mcO ~ mcl C

Chapter 6 Correctness of Algorithms

ASSERTIONS
/* add_inv * /
3(sl,s2).(sl E runex /\

s2 E ran(tr) /\
s2 E inv /\
sl 1--> s2 E tr /\
rep(s2) t/:. rrac /\
rerr = 0) V

/* add_err */
3(sl,s2).(sl E runex /\

s2 E ran(tr) /\
s2 t/:. inv /\
sl 1--> s2 E tr /\
rep(s2) t/:. rrac /\
rerr = 0) V

/* remove */
3(s1).(sl E runex /\

rep[tr[{sl}]] c::; rrac /\
rerr = 0) V

/* pass */
(rerr = 0 /\

runex = 0) V

/* fail */
(rerr i=- 0)

FIGURE 6.14: The Assertions of the rrne2 refinement machine

130

rmel c:; nnc2. Therefore, symmetry reduced model checking is sound with respect to the

abstract specification of model checking. Moreover, by identifying a single representative

from each class of symmetric states, model checking with symIIletry reduction need only

analyse a subset of the states that constitute the model of the system.

6.6 Summary

This chapter presents a B specification of the type of model checking performed by

PRoB, namely that of checking safety properties in B systems, for both standard model

checking, and the symmetry reduced approach developed in this thesis.

An abstract specification for model checking is given in mcO in Section 6.2, which is

refined by mel in Section 6.3. From mel, two separate chains of refinement specify

certain details of algorithms that may implement standard and reduced approaches to

nlOdel checking. Given that both chains have been proved using the interactive theoreln

prover, B4Free, it follows that both approaches are sound with respect to the original

abstract specification for model checking, defined in meG.

The specification of the standard approach consists of a single refinement. This machine

requires 3 key variables, and has properties that indicate the method eventually termi

nates having found a counterexample (Jail) or without finding counterexamples (pass),

after exploring the reachable state space.

The specification of the reduced approach comprises two refinements. The first refine

ment makes use of the set of variables used in the standard approach (me2), and links

them to an analogous set of variables to be used in the reduced approach. The second

Chapter 6 Correctness of Algorithms 131

refinement then retains only the variables used by a reduced model checking approach.

Symmetries are defined by automorphisms over the transition relation of the B system

being checked, and symmetries are exploited using a function, called rep, which com

putes for some state, s, a unique representative from the orbit of s. In practice, our

implementation of a representative function makes use of an algorithm that computes

canonical labels for graphs representing B states, as described in Chapter 4. As with the

specification of standard model checking, its properties indicate the method eventually

terminates either having found counterexamples (fail) or without finding counterexam

ples (pass). In the latter case, all of the constrained reachable search space will have

been explored.

Chapter 7

Conclusions and Future Work

This thesis describes the development of a number of techniques that improve the process

of model checking B systems. These techniques include visual state space reductions that

enable one to view various succinct properties about the reachable states of a system,

in addition to the first approach to classical symmetry reduction in B. The use of each

technique has been illustrated, formalised, and integrated into the PRoB tool-set, to

produce a model checker with several novel features. Subsequent evaluations indicate

the effectiveness of each approach.

The main contribution to visual state space reductions include two algorithms that can

be applied to state spaces explored by model checking in PRoB. The resulting graphs,

which are generally significantly smaller in size, can then be visualised. The premise

of this research is that model checking often encounters state spaces too large to be

viewed: although, visual feedback can be very beneficial to the understanding of a system

since human perception is adept at identifying structural similarities and symmetries. A

significant factor for the reductions obtained by both methods is an abstraction function,

called iy, that diminishes the size of the transition relation of the original state space,

by discarding B operation pararneters. Further to this, the DFA-Abstraction algorithm

applies the classical determinisation algorithm of finite automata to merge states while

preserving trace information, which is generally useful to a user. The Signature-Merge

algorithm, on the other hand, generates larger reductions by merging all states with

the same outgoing transitions (signature). The minimised graph then has the useful

property that any trace that is not possible in the reduced graph also is not possible in

the original graph; or, if a deadlocked state exists in the reduced graph, then one also

exists in the original graph. Since Leuschel and Turner [2005], these algorithms have

been extended by diminishing the a-abstraction so that it only abstracts away certain

arguments. This is guided by the user, to give more control over the reductions possible.

In addition, a new graphical user interface of PRoB has been developed, and algorithms

have been added for viewing sets of states satisfying a user defined expression in B, or

subgraphs between two states chosen by a user, e.g., initial states and error states.

132

Chapter 7 Conclusions and Future Work 133

Given a graph generated by Signature-Merging, the signature of a node can be viewed

as all traces of length 1 that can be performed from that node. This can be improved

in the future by extending the notion of a signature and comparing all traces of length

2,3, ... , n, where n is specified by the user. This enables more detailed trace information

to be read from graphs generated by the Signature-Merge method. Another improvement

is to make the a-abstraction less precise to achieve greater reductions. For instance, it

could be made more aggressive by mapping several operations together, which the user

may not be interested in. Alternatively, Signature-Merge could be modified so that

nodes are merged if signatures are sufficiently similar, as opposed to requiring identical

signatures. Furthermore, it would be possible to combine both of these methods: the

user could request a certain number as a target for the ideal number of nodes, and then

the graph is progressively made less/more precise to approach that number.

This thesis also contributes the first technique to achieve classical symmetry reduction

for model checkers of B specifications, using an algorithm for identifying graph isomor

phism. This technique is called, symmetry reduction via Canonical Labels. The line of

research that has developed symmetry reduction techniques based on scalarsets is the

inspiration for this approach. The symmetries exploited by our method ['I\lrner et al.,

2007] are induced by the deferred set; a key component of the B language. Therefore,

in contrast to the scalarset approach, this technique is fully automatic. The algorithm

computes representatives in two phases. First, it computes the state graph of a state,

s. This is followed by computation of the canonical label of this state graph, which

corresponds to the unique representative of s. This thesis describes the translation of

B states to state graphs, and presents the relation of symmetric B states to isomorphic

state graphs. It presents the extension to the underlying algorithm of nauty, developed

for computing canonical labels for state graphs, so that symmetric B states can be iden

tified. Furthermore, we describe the integration of these techniques into standard model

checking in PRoB, to produce the method of symmetry reduction via Canonical Labels.

The research on symmetry reduction via Canonical Labels has stimulated the devel

opment of three more strategies for symmetry reduction in B, including Permutation

Flooding [Leuschel, Butler, Spermann, and Turner, 2007]' Symmetry Markers [Leuschel

and Massart, 2007]' and combined Canonical Labels + Symmetry Markers. An eval

uation has been provided for all of these techniques. The empirical results obtained

highlight their effectiveness, where speedups over standard checking can exceed two or

ders of magnitude for Canonical Labels and Canonical Labels + Symmetry Markers,

or one order of rnagnitude for Permutation Flooding. More specifically, results suggest

Symmetry Markers or standard checking should be used after making changes to a B

specification (e.g., during the early stages of development), to quickly identify any errors.

However, as confidence increases in fewer errors existing (e.g., Symmetry Markers fails

to find errors, or standard checking finds no errors after 5 minutes), it is recommended

that Canonical Labels/Canonical Labels + Symmetry Markers/Permutation Flooding

Chapter 7 Conclusions and Future Work 134

is used (depending on the symmetric data types used, discussed in Chapter 5), where

the benefits of symmetry reduction can be more pronounced, i.e., exploring a reduced

state space, with the guarantee that errors are not missed. We also note that it would

be possible to generalise these methods for application to model checkers of other formal

languages, e.g., using a translation that constructs state graphs for a specific language.

Future work aims to increase the speedups of computing representatives by optimising

the implementation of the canonical labelling algorithm, so that its performance is closer

to that of nauty. Immediate changes include translating Prolog procedures into CjJava,

while utilising automorphism pruning, and using only two array variables to represent

branches of the search tree, to significantly improve performance by reducing memory

consumption and computation time. In addition, the partition refinement step during

computation of a canonical label can be optimised to better suit the properties of state

graphs in B, and break more symmetries in each step. vVe may also devise a new

technique for constructing state graphs, for which partition refinement is better suited.

For both, we can use saucy [Darga et al., 2004] as inspiration, which optimises nauty for

CNF formulae. One improvement is to use the fact that edges never originate from the

root vertex, or indeed from the set of vertices, X, introduced to represent nested values.

Therefore, the algorithm is not required to compute dout for any vertex v E X U {root}.

Proof of soundness of symmetry reduction via Canonical Labels involves proving the

soundness of three of the techniques it uses. First, we have forrnalised the type of sym

metry exploited, and proved that the symmetric states induced are indeed symmetric,

as defined by Clarke et al. [1999]. Second, it is required that symmetry reduced model

checking suffices to construct quotient models progressively by checking a unique state

from each orbit. This is proved using refinement in B. A separate chain of refinement

is specified for both standard model checking in PRoB, and the symmetry reduced ap

proach. Since both chains refine the abstract specification of model checking, which is

also specified, it can be deduced that our symmetry reduction is sound with respect to

standard model checking. This contribution is novel in the field of B. In addition, the

use of B and refinement provides an alternate (and simplified) reference for the concepts

used during model checking and symmetry reduction. Finally, it should be proved that

the implementation of the extended version of McKay's canonical labelling algorithm

will assign the same label to two states if and only if the states are indeed symmetric

(according to our definition). This is a complex task that involves formally expressing

the numerous concepts and optimisations used by the algorithm. This is yet to be proved

and remains as future work.

The final proposal for future work regards an interesting, and more importantly, suc

cessful symmetry reduction technique, used notably by the ALLOY ANALYSER; that is,

symmetry-breaking. In this system, a SAT solver attempts to instantiate a formula that

contains state information. To reduce the number of possible interpretations, symmetry

breaking predicates are added to the formula. Their effect is to break symmetries in the

Chapter 7 Conclusions and Future Work 135

formula by preventing the satisfaction of a large proportion of isomorphic interpreta

tions. Application of the ALLOY approach to systems that do not use SAT solvers, such

as explicit state model checkers, is not straightforward. However, its premise highlights

new ways that could improve the performance of model checking systems in Busing

PROB. For example, it could be used to break symmetries during the evaluation of non

deterministic assignments. This includes statements in B such as ANY x WHERE y,

which attempts to find some instance of x, where y constrains x. Optimisations could be

gained by a scheme that analyses the form of y, and inserts into it extra predicates that

break symmetries of x, so that x may take only a small number of values. The effect is to

prune certain symmetric states from the state space, and reduce memory consumption

during verification. As with the ALLOY approach, it is suggested that the new predicates

do not break all symmetries except one, as this problem becomes intractable. Instead,

it is desirable to break a significant proportion of symmetries, while retaining compu

tational efficiency. This gives the potential for savings in verification time. Extending

this idea, symmetry breaking may also be used to compute (multiple) representatives for

each orbit. In contrast to the standard approach of performing a computation on a given

state, symmetry breaking could be applied when generating the values of variables for

a new state. It is proposed that a preprocess analyses the types of the system variables,

and constructs automatically the corresponding symmetry breaking predicates, using

the methods of Shlyakhter [2007] as inspiration. Let us illustrate this idea by examining

a simple example. Consider a B machine containing variable, pEDS --+ E, where DS is

a deferred set and E is an enumerated set. The bipartite graph for p, denoted, PE, has

isomorphisms (symmetries of p), which can be obtained by permuting the rows of the

adjacency matrix for PE since this corresponds to permuting elements of DS. (Here we

assume the adjacency matrix has a y-axis comprised of the elements of DS, and whose

x-axis is comprised of elements of E.) Then, a predicate that requires sorted rows in

this matrix will break many symmetries of p, while generating a normal form for use in

the state. Should a new symmetry-breaking scheme be employed, the constraint logic

module of SICStus Prolog should facilitate an implementation into the PRoB tool-set.

The strategies proposed would be novel in the field of model checking of the B language.

Moreover, background research indicates they hold a large scope for their application

and can be effective.

Appendix A

Finding a Canonical Label: A

Worked Example

A.I A Worked Example

The following section contains a worked example of finding a canonical label for the

graph, G = (V, E) given in Figure A.I. More information on this procedure can be

found in McKay [1981]' Kocay [1996] and Kreher [1998].

The main structure used within this example is the ordered partition: a list of disjoint

subsets of the vertices of the graph, V, whose union is V. In brief, the algorithm works

by J·efining and ji:Eing/spldting the partitions, to result in a characteristic set of discrete

partitions. Initially, all vertices are assumed to be symmetric, and are therefore placed

in the same cell, in the unit partition. This is then refined to an equitable partition. If

this partition is not discrete the first non-singleton cell is fixed in an attempt to make

it non-equitable; this entails removing one element from this cell and putting it into its

own cell, and leaving the remainder. So splitting a partition whose first non-singleton

cell has a size of 3, will result in 3 different partitions. From here, the new partitions

created from splitting are refinecl. Refinement ancl splitting continues iteratively until a

set of discrete partitions are obtained. When finished, the algorithm chooses the least

matrix of the characteristic partitions as the canonical label of the graph.

The refinement algorithm makes use of two variables: 'if, the partition value throughout

the procedure, and 0:, the list of cells to check against (as used by Algorithm 2, which

formalises partition refinement).

The steps of the algorithm are now described, and can be seen in the search tree of

Figure A.2:

136

Appendix A Finding a Canonical Label: A Worked Example

b

a

e

FIGURE A.l: A simple graph

[{a,b,c,d,e}]

1
[{b}, {c,c}, {d}, {a}]

/ix(c) /ix(e)

[{b}, {c}, {c}, {d}, {a}] [(b},{e},{c},{d}, (a)]

)

)

refine

split

FIGURE A.2: An example search tree generated by stabilise([{a, b, c, d, e}]), for the
graph in A.I.

137

1.) Jr = [{a 3 , b1 , c2
, d2 , e2 }] (unit partition), CY = [{a, b, c, d, e}]: To begin with, we

establish the number of vertices in the cell in CY, which are adjacent to vertices in

the cell of Jr. The number of adjacencies are indicated by superscripts above each

vertex v E S, where S is a cell in Jr. For example, a3 denotes that a is neighbours

with 3 vertices in {a, b, c, d, e}, i.e., b, c, e. In the next step, we split Jr into three

cells, ordered by the adjacencies shown, and we remove the cell we used in CY, and

append to CY the new cells just created.

2.) Jr [{b}, {c, d, e}, {a}], Cl: = [{b}, {c, d, e}, {a}]: Now, perform a similar compu-

tation, to find the number of adjacencies of vertices in cell, {b}, with the first cell

of CY, {b}. This does not lead to any splitting ({b} is already discrete). Comparing

the first cell of CY to the other cells of Jr also causes no splitting. Hence, we remove

the first cell of (y.

3.) Jr = [{ b}, {c1 , d2 , e1 }, {a}], CY = [{ c, d, e}, {a}]: The first cell of CY, {c, d, e}, causes

Jr to be split, so update Jr accordingly. Also, remove the first cell of CY, and append

to it the newly created cells.

4.) Jr = [{ b}, { c, e}, { d}, { a}], CY = [{ a}, { c, e }, { d}]: The first cell of CY, {a}, does not

cause any cell of Jr to by split, so remove it from CY.

5.) Jr = [{ b}, { c, e}, { d}, { a}], CY = [{ c, e}, { d}]: The first cell of a, {c, e }) does not

cause any cell of Jr to by split, so remove it from CY.

Appendix A Finding a Canonical Label: A Worked Example 138

6.) IT = [{b}, {c, e}, {d}, {a}], ct = [{d}]: The first cell of (x, {d}, does not cause any

cell of IT to by split, so remove it from ct.

7.) IT = [{b},{c,e},{d},{a}], ct = []: Now, we have that (X is empty, and so IT is

equitable. However, it is not yet discrete, so we must apply fixing, to generate two

finer partitions.

8a.) IT = [{ b}, {c}, {e}, {d}, {a}], ct = [{ b}, {c}, {e}, {d}, {a}]: In this partition, c has

been fixed. In doing so, IT is now discrete so we stop searching this branch of the

tree.

8b.) IT = [{b}, {e}, {c}, {d}, {a}], ct = [[{ b}, {e}, {c}, {d}, {a }}]: In this partition, e has

been fixed. In doing so, IT is now discrete so we stop searching this branch of the

tree.

The search produces tvvo discrete partitions, [{b}, {c}, {e}, {d}, {a}] and [{b}, {e}, {c},

{d}, {a}]- whose adjacency matrices are shown in Figures A.l and A.2.

II b I c I e I d I a I
b 0 0 0 0 1
c 0 0 0 1 1
e 0 0 0 1 1
d 0 1 1 0 0
a 1 1 1 0 0

TABLE A.I: Adjacency matrix of [{b}, {c}, {e}, {d}, {a}]

II b I e I c I d I a I
b 0 0 0 0 1
e 0 0 0 1 1
c 0 0 0 1 1
d 0 1 1 0 0
a 1 1 1 0 0

TABLE A.2: Adjacency matrix of [{ b}. {e}, {c}, {d}, {a}]

As can be seen, the matrices of both discrete partitions are the same (this is not always

the case) therefore they must both identify the lowest adj acency matrix. Hence, the

canonical label of the graph G, is 0000100011000110110011100, where the value is taken

as the concatenation of rows of the matrix, from left to right, top to bottoml.

lGiven that these adjacency matrices are the same, the permutation between the two partitions,
"swap c for e", is an automorphism of the graph.

Appendix B

Detailed Results from

Experimentation of Visualisation

Algorithms

Table B.1 presents all of the results obtained from testing, including the precise number

of states and transitions found in the original and reduced state spaces.

139

TABLE B.l: Number::; of State::; and Transitions in original and reduced state space.

Original State Space Signature Merge
Machine N arne States Transitions Self Loops Distinct transitions States Transitions

Ambulances 2552 77271 llllO 6 6 18
Baskets 79 3D6 120 5 5 8
B_ClavieLcode 3 19 16 6 :3 8
bibliotheque 15 5:; 10 9 II 31
B_SitLcentral 5 24 20 3 3 :3
CarlaTravelAgency 198 226 14 12 18 68
Carla TravclAgency Err 120 139 4 11 16 60
countdown :3085 52::16 0 5 4 5
Cruise 1361 256D5 4716 27 402 4675
CSM 77 209 0 14 64 181
DAB 5 11 10 2 2 2
dfa 4 7 4 3 3 4
dijkstra 7 D 1 :3 :3 :3
DSPO 49 66 () 7 6 7
Fermat 17 81 40 :3 2 3
FinalTravelAgency 1079 5608 2156 13 10 :32

DFA Abstraction

States Transitions

22 79
17 :34
4 8

14 40
4 3

120 178
81 DD

246 407
16386 231601

78 209
4 3
6 7
7 6
8 8

10 17
83 343

~ :g
§
Q
~.

tu
tJ
(1)

""" \:l:l

~
Q

::0
tJl
I::
>---..

""" (fl

::;-,
~
~

>d
~
S'
§
""" \:l:l
""" g'
o,
::;::
(fl'

I::
\:l:l
i::;-'
(fl'

\:l:l
""" g'
~

o'q
~
~,

~
(fl

f-'
~ o

Table B.l continued from previous page,

Original State Space Signature Merge
Machine N arne States Transitions Self Loops Distinct transitions States Transitions

FunLaws 257 1703 768 10 11 44
Fun Laws 257 204D G4 5 5 13
GAME 613 4675 3078 10 55 248
GSM_revue 11 28 10 8 4 8
Inscription 27 131 97 7 7 21
insLadapted 466 3655 112 6 5 15
Jukebox 40 30D 63 6 6 14
LevelO 769 6147 3072 2 2 2
mO 65 992~~ 9408 164 65 9921
Main 2 1 0 1 2 1
mmO 197 2707 2079 18 7 66
monitor 81 529 0 5 8 19
phoncbook 6~ ,) 433 14.4 4 4 7
Queues 7 18 12 4 3 4
Results 6 22 11 5 4 10
Rubik2 3514 3925 0 4 3 4
RussianPostaIPuz;z;lc 441 1227 0 5 9 21
rw 20 37 () 8 18 35
scheduler 36 121 0 5 8 17
SensorNode 5 11 0 2 3 2

DFA Abstraction

States Transitions

52 276

38 133

201 956

7 14

9 25

80 244

490 1906

11 10

98 14913

3 1

86 1097

32 100

6 10

4 4

5 10

3515 3925

120 274

21 37

12 25

4 2

~
§
Q
~.

tJ::I
t:::J
Ct>
"i-
ll> ::::
Ct>
Q

~
rn
I::
'
"i
(fJ

q,

S
~
'd
~
~'
§
"i-
ll>
"i-

g'
~
:>
(fJ'

I::
e:..
Si'
Il>
"i-

g'
~ oq
~
"i-
b"'
8
(fJ

f-'

""" f-'

Table B.l - continuecl from previous page.

Original State Space

Machine N arne States Transitions Self Loops Distinct transitions

SeqLaws 38 58 10 5
SetLaws 730 SlO4 24~~ 7
station 28 8D 0 5

Teletext li1 122 88 12
Teletext 25 210 174 12
TheSystern 114 123 :3 11
Tram;actionsSimplc 131 153 0 11
TravelAgency 176 IDI 4 12
TravelAgency _trace_check 28610 31012 0 10
TravelProB 626 3469 492 :3
UnclefinedFul1ctions 17 193 144 D

Signature Merge DFA Abstraction I
States Transitions States Transitions

6 13 27 59
D 37 127 601
7 13 8 13

3 12 15 122

4 12 12 75

16 53 83 86

22 51 100 127

16 66 105 120

D5 288 11087 12689

5 9 24 33

5 27 12 73

~
:g
§
&
~

tx:J
t::J
C1l
M-

\lO
::::.:
C1l
Q..

~
>::
>
o-t
C/)

~

~
~

>0
[tJ
S·
§
M-
\lO
M-

§'
~

~
>::
~
Cil'
\lO
M-

§'
~

~
:::1.
M-

b-'

~

f-'
~
tv

Appendix C

Machines Used for Empirical

Results

This appendix presents the twelve B machines used in Chapter 5 during the evaluation

of the symmetry reduction techniques for PROB. Note that in Chapter 5, we use the

asterisk (*) to distinguish machines containing errors from their valid versions, e.g., for

the schedulerO machine, its version that contains an error is denoted, schedulerO*. In

practice, we do not use these names since the asterisk is a reserved character in B.

Instead, we append '_err' on to the base machine name, e.g., schedulerD_err.

C.l Process Scheduler 1

MACHINE schedulerO

SETS

PROG;

STATE = {idle, ready, active}

VARIABLES proc, pst

INVARIANT

proc E W'(PROG) 1\

pst E proc -+ STATE 1\

143

Appendix C Machines Used for Empirical Results

card (psc 1 [{ active}]) ::; 1

INITIALISATION

proc := 0 II pst := 0

OPERATIONS

new(p) ::::::

PRE

p E PROG - proc

THEN

pst(p) := idle II
proc := proc U {p}

END;

del(p) ::::::

PRE

p E PROG !\

pst(p) = idle

THEN

proc := proc-{p} II
pst := {p} <4 pst

END;

ready(p) ::::::

PRE

p E PROG !\

pst(p) = idle

THEN

pst(p) := ready

END:

enier(p) ::::::

PRE

p E PROG !\

pst(p) = ready !\

psC1[{active}] = 0

144

Appendix e Machines Used for Empirical Results

THEN
pst(p) := active

END;

leave(p) ~

PRE
p E PROe 1\

pst (p) = active

THEN
pst(p) := idle

END
END

C.2 Process Scheduler 1 with Error

145

The B machine is the same as scheduler-a, except for an error that now occurs in the

enter- operation, which leads to a deadlocked state (when all elements of PROe are

r-eady).

MACHINE scheduler-a_en·

enter-(p) ~

PRE
p E PROe 1\

pst(p) = j* MISSING r-eady *j idle 1\

psC 1 [{active}] = 0

THEN
pst (p) : = active

END;

END

C.3 Process Scheduler 2

Appendix C Machines Used for Empirical Results

MACHINE scheduler

SETS PID

VARIABLES active, ready, waiting

INVARIANT

active E W'(PID) 1\ ready E W'(PID) 1\ waitingE W'(PID) 1\ j* the types */
/* and now the rest of the invariant */
active <:;;; P ID 1\

ready <:;;; PID 1\

waiting <:;;; P ID 1\

(ready n waiting) = 0 1\

active n (ready U waiting) = 0 1\

card (active) :s; 1 1\

((active = 0) =? (ready = 0))

INITIALISATION

active := 0 II ready := 0 II waiting := 0

OPERATIONS

new(pp) ~

SELECT

pp E PID 1\

pp ~ active 1\

pp ~ (ready U waiting)

THEN

waiting

END;

del(pp) ~

SELECT

(waiting U { pp })

146

Appendix C Machines Used for Empirical Results

pp E waiting

THEN
waiting := waiting - { pp }

END;

ready(rr) ~

SELECT
rr E waiting

THEN
waiting := (waiting - {rr}) II
IF (active = 0) THEN

active := {rr}

ELSE
ready := ready U {rr}

END
END;

swap =
SELECT

active -# 0

THEN
waiting := (waiting U active) II
IF (ready = 0) THEN

active := 0

ELSE
ANY pp WHERE pp E ready

THEN
active := {pp} II
ready := ready - {pp}

END
END

END
END

C.4 Russian Postal Puzzle

147

Appendix C Machines Used for Empirical Results

MACHINE RussianPostalPuzzle

SETS

KeyIDs;

PERSONS = {natasha,boris}

j* DEFINITIONS *j
j* GOAL == (padlocks =0 II box_containLgem=TRUE II hasbox = natasha) *j

VARIABLES

keysforsale, has box, padlocks, has_keys, box_contains_gem

INVARIANT

keysforsaleE JfI'(KeyIDs) II

hasboxE PERSONS II

padlocks <;;: K eyIDs II

haLkeysE PERSONS ---+ JfI'(KeyIDs) II

box_containLgemE BOOL

INITIALISATION

keysforsale KeyIDs II
hasbox := boris II
padlocks := 0 II
haLkeys := {natasha f-+ 0, boris ---+ 0} II
box_containLgem := TRUE

OPERATIONS

blly_padlocLand_key (keY'id,person) =

PRE keyidEkeysforsale II personEPERSONS II person = has box

THEN

haLkeys(person) := haLkeys(person) U {keyid} II
keysforsale := keysfoTsale - {keyid}

END;

148

Appendix C Machines Used for Empirical Results

add_padlock(keyid,person) =

PRE keyidEKeyIDs 1\ personEPERSONS 1\

person=hasbox 1\ keyid E haLkeys(person) 1\

keyid tf; padlocks

THEN

padlocks ;= padlocks U {keyid}

END;

remove_padlock (keyid,person) =

PRE keyidEKeyIDs 1\ peTsonEPERSONS 1\

person=hasbox 1\ keyidE padlocks 1\

keyid E haLkeys (person)

THEN

padlocks ;= padlocks - {keyid}

END;

send_box (from, to) =
PRE jromE PERSONS 1\ from = hasbox 1\

to E PERSONS 1\ to =1= hasbox

THEN

IF padlocks = 0 THEN

box_containLgem ;= FALSE

END II
hasbox ;= to

END

END

C.5 Phonebook

MACHINE phonebook

SETS

Name;

Code

VARIABLES db, active, activec

149

Appendix C Machines Used for Empirical Results

INVARIANT

db E Name -H Code 1\

active E lP'(Name) 1\

activec E lP'(Code) 1\

dom (db) = active 1\

ran (db) = activec

INITIALISATION

db := 0 II active := 0 II activec := 0

OPERATIONS

cc ~ lookup(nn) :;:

PRE

nn E Name 1\ nn E active

THEN

cc := db(nn)

END;

add (nn, cc) :;:

PRE

nn E Name 1\ cc E Code 1\ nn tJ active

THEN

db:=dbu{nnHcc}11

active := active {nn} II
activec := activec {cc}

END;

delete (nn, cc) :;:

PRE

nnEName 1\ cc E Code 1\ nn E act'ive 1\ cc E activec 1\ db(nn) = cc

THEN

db := db - { nn H cc} II
active := active - {nn} ! I

activec:= db[(active - {nn})]

END

150

Appendix C Machines Used for Empirical Results 151

END

C.6 Phonebook with Error

The B machine is the same as phone book, except for an error that now occurs in the delete

operation, which leads to a state violating the invariant (cannot guarantee, dom(db) =

active 1\ ran (db) = activec).

MACHINE phonebooLerr

delete (nn, cc) ~

PRE
nnEName 1\ cc E Code 1\ nn E active 1\ cc E activec

/* MISSING 1\ db(nn) = cc */
THEN

db := db - { nn 1---+ cc} II
active := active - {nn} II
activec := db [(active - {nn}) 1

END

END

C.7 Windows NT File System

MACHINE FileSystem

/* Author: KRIANGSAK DAMCHOOM; */
/* kd06r@ecs.soton.ac.'uk; */
/* last modified 20 November: 2006 */
/*~~~~~~~~~~~~~~~~~~~~~~~~-'l

/* This machine was wrdten to simulate the model of * /
/* basic file system (based on windows) * /
/ * which is included basic operationsE * /

Appendix C Machines Used for Empirical Results

/* create, delete, copy, move, rename, read, write * /
/* mkdir, deldir, change directory and list file * /
/* Nature of windows (stand alone) file systemE * /
/* - Only one user can login at anytime */
/* - File/directory name in each directory must be unique. */
/* - One name can appear in more than one directory. * /
/* - Only obJ·ect's owner can delete and modify the object's details. */
/* - An object can be written, deleted, renamed, moved */
/ * if it has not been reading or writing * /
/* - An object can be read, copied if it has not been writing. */
/* - Object mentioned above is instant of file or directory. * /
/* - Each object has propertiesE id, name, location, content and owner- * /
/* repr-esented by relationships which are described in invariant section. */
/* - Tree structure is used to implement * /
/*-------------------------'l

SETS

DID; /* object ID (of files/directories) */
NlVIE; /* object name (of.files/directories) */
USER; /* users */
CONTENT = {ctl} /*set of file content*/

CONSTANTS

root, rt, sp

PROPERTIES

root E DID II

rt E NlVIE II

sp E USER

VARIABLES

curdir, located_in, owner, oid, name, c_usr,

readingset, writingset, files, directories,

jcontent, dconients

152

Appendix C Machines Used for Empirical Results

INVARIANT

cusr E USER /\

curdir E OlD /\

oid E W(OlD) /\

files ~ oid /\

directories ~ oid /\

name E oid ----+ NME /\

/*all objects except root have a location * /
located_in E oid-{root}----+ oid /\

/* no repeated name in the same directory */
vo.(oE directories '* card(located_in -1 [{ 0 }])=card(name [located_in- 1 [{ 0 }]])) /\

/*all objects can map to root based on relative closuTe*/

VO.(OEoid-{root} '* 0----+rootEclosure1(located_in)) /\

/ *no cycles in tree structur'e * /
Vo.(OEoid '* 0----+o¢closure1(located_in))

owner E oid ----+ USER /\

fcontent E files ----+ CONTENT /\

dcontents E o'idf-+o'id /*contents of d'irectories*/ /\

Teadingset ~ oid /\

writingset ~ files /\

wrilingset n readingset == 0 /\

files n directories = 0 /\

vo.(oEoid '* dcontents[{o}] = located_in-l[{o}]) /\

INITIALISATION

c_'u,sr := sp /* CUST is a CUTTent useT */ II
curdir := root /* curdiT is a curTent directory * / II
located_in := 0 /* no location for root * / II
name := {roOtf--Ht} II

153

Appendix C Machines Used for Empirical Results

owner := {TOob---+sp} II
oid := {TOot II
files := 0 II
directories := {TOot} II
readingset := 0 II
writingset := 0 II
fcontent := 0 II
dcontents := 0 II

OPERATIONS

j*assume that there is only one user can login at any time*/

login (usr) =

PRE usrE USER

THEN

SELECT usr =1= cusr

THEN

cusr:=usr II
curdir :=TOot II
readingset := readingsetU{ curdir}

END

END;

logout (usr) =

SELECT usr=CUST

THEN

curdir:= TOot II
readingset :=0 II
writingset:=0

END;

crLfile(oi,nn,ct)=

PRE oiEOID /\ ctECONTENT /\ nnENME

THEN

SELECT

oi~oid

154

Appendix C Machines Used for Empirical Results

/\ nn~name[dcontents[{ curdir }]]

THEN
located_in := located_in U {oi <--* curdir} II
dcontents := dcontents U {curdir <--* oi} II
oid := oid U {oi} II
name := name U {oi<--*nn} II
owner := owner U {oi<--*c-usr} II
Jiles:=JilesU{oi} II
fcontent(oi) := ct

END
END;

rename (oi,old,nn) =

PRE oiE OlD /\ nnENME /\ oldENME

THEN
SELECT

oi~writingsetUreadingset /\

nn ~ name [dcontents [{ cv,rdir}]] /\

name(oi)= old /\

owner(Oi)=C_1LST /\

located_in(oi)=curdir /\

THEN name(oi):=nn

END
END;

move(oi,nn,drl,dr2)

PRE oiEoid /\ nnENME/\ drlEdirectories/\ dr2Cdireciories

THEN
SELECT

clr2~closure1(dcontents)[{oi}l U{oi} /\

oi~ writingsetureadingset /\

name(oi)=nn /\

owner(oi)=c_v,sr /\

located_in(oi)= drl /\

155

Appendix C Machines Used for Empirical Results

nn ~ name [dcontents [{ dr2} II
THEN

located_in (oi) := dr2 II
dcontents:= (dcontents - {dr1f-7oi})U{ dr2f-7oi}

END
END;

cOPy(oi1,nn1 ,dr1 ,oi2,nn2,dr2)=

PRE nn2ENME 1\

nn1ENME 1\

oi2EOID 1\

dr 1 E directories 1\

dr2E directories 1\

oil E.files

THEN
SELECT

oi2~oid 1\

name(oi1)=nn1 1\

located_in(oil)=drl 1\

owner(oi1)=cusr 1\

owner(dr2)=cusr 1\

oil ~ writingset 1\

nn2 ~ name [dcontents [{ dr2} II
THEN

located_in := located_in U {oi2 f-7 dr2} II
dcontents := dcontents U {dr2;-.-;oi2} II
oid := oid U {oi2} II
name := name U {oi2f-7nn2} II
owneT(oi2) := owner(oi1) II
files files U {oi2} II
fcontent (oi2):= fcontent (oil)

END
END;

156

Appendix C Machines Used for Empirical Results

mkdir(oi,dr)=

PRE oiE OlD A drENME

THEN
SELECT

oi~oid A

dr~ name [dcontents [{ curdir} II
THEN

located_in (oi) := curdir II
dcontents := dcontents U{ curdin-+oi} II
oid := oid U{oi} II
name(oi) := dr II
owner(oi):= cusr II
directories:= directoriesU{ oi}

END
END;

cdto (oi,dm)=

PRE oiE OlD A dmENME

THEN
SELECT

name(oi)=dm A

oicFmot A

oi E dcontents [{ cUTdir } 1 A

oiE directories A

owneT(oi)=C_UST

THEN
readingset := readingset U {oi} II
cur'd'ir:=oi

END
END;

cdbck =

PRE cUTdiTcFmot

THEN

157

Appendix C Machines Used for Empirical Results

readingset := readingset - {curdir} II
curdir:= located_in (curdir)

END;

delObj (oi,nme) =

PRE oiE DID 1\ nmeENME

THEN

SELECT

oi E dcontents [{ curdir }]

1\ name(oi)= nme

THEN

ANY descendents,all

WHERE

descendentse;;; oid 1\

alle;;; oid 1\

descendents closure 1 (dcontents) [{ oi}] 1\

all = descendentsU { oi} 1\

all n (wTitingsetUreadingset) = 0 1\

owner[all]={ c-usr}

THEN

located_in := all <E3located_in 1\

dcontents := dcontentsl > > all 1\

name := all<E3name 1\

owner := all <E3 owner 1\

fcontent := all <E3fcontent 1\

oid:= oid-all 1\

files := files - all 1\

directories := directories all 1\

END

END

END;

1st +- clir :::;

1st := name[dcontents[{wrdir}]];

158

Appendix C Machines Used for Empirical Results

cnt f-- read(oi,nn);:;

PRE nnENME 1\ oiEfiles

THEN
SELECT

oi E dcontents [{ curdir } 1 1\

name(oi)=nn 1\

oit/:writingset 1\

owner(oi)=cusr

THEN
readingset := readingset U {oi} II
cnt:=fcontent(oi)

END
END;

endread (oi,nn);:;

SELECT
oiEoid 1\

name(oi)=nn 1\

oi E readingset 1\

oiEfiles

THEN
readingset := readingset - {oi}

END;

write(oi,nn,ct);:;

PRE ctE CONTENT 1\ nnENME 1\ oiE OlD

THEN
SELECT

oiEfiles 1\

oiE dcontents [{ curdir} 1 1\

oit/:writingsetUreadingset 1\

owner(oi)=cusr 1\

name(oi)=nn 1\

THEN

159

Appendix C Machines Used for Empirical Results

wTitingset:= wTitingsetU{ oi} II
fcontent(oi):=ct

END
END;

endwTite(oi,nn)::;

SELECT name(oi) = nn 1\ oiEwTitingset

THEN
wTitingset:=wTitingset - {oi}

END
END

C.8 Windows NT File System with Error

160

The B machine is the same as FileSystem, except for an error that now occurs in the Tead

operation, which leads to a state violating the invariant (cannot guarantee wTitingset n
Teadingset 0).

MACHINE FileSystem

write(oi,nn,ct)::;

PRE ctE CONTENT 1\ nnENME /* MISSING 1\ oiE OlD * /
THEN

SELECT
oiEfiles 1\

oiE dcontents [{ Cl1TdiT } 1 1\

oi~ wTitingsetUTeadingset 1\

owneT(

name(oi)=nn 1\

THEN
wTitingset:= wTitingsetU{ oi} II
fcontent (oi) :=ct

END

Appendix C Machines Used for Empirical Results

END;

END

C.9 Dining Philosophers Machine

MACHINE

DiningPhilosophers

SETS

Phil;

Forks

CONSTANTS

lFork, rFork

PROPERTIES

lForkE Phil >----» Forks /\

rForkE Phil >---+> Forks /\

card(Forks) carcl(Phil)/\

V(pp).(ppEPhil =? lFork(pp) =I rFork(pp))

VARIABLES

taken

INVARIANT

takenE Forks -++ Phil /\

V(xx),(xxEclom(taken) =? (lFork(taken(x:I;)) = XX or rFork(taken(xx)) = xx))

INITIALISATION taken:=0

OPERATIONS

TakeLeftFork(pJ) = PRE pEPhil /\ fEForks /\ ftJclom(taken) /\ lFork(p)=f

THEN

taken(f) := p

END;

TakeRightFork(pJ) = PRE pEPhil /\ fEForks /\ ftJclom(taken) /\ rFork(p)

161

Appendix C Machines Used for Empirical Results

THEN

taken(j) := p

END;

DropFork(p,J) = PRE pEPhil 1\ fEForks 1\ fEdom(taken) 1\ taken(j)=p

THEN

taken := {j} <El taken

END

END

C.lO Peterson's Mutual Exclusion

/* Peterson's algorithm (mutual exclusion for n-processes) */
/* References in */
/* Peterson, G.L., lVIyths about the mutual exclusion problem, * /
/* Information processing letters, Vol 12, No 3, 1981. */

MACHINE Peter-sons

SETS

PID;

labeLt = {LO,L1,L2,L3,L4}

CONSTANTS

N

PROPERTIES

N E Nl 1\ N>l 1\ card(PID)=N

VARIABLES

P,

Q,

turn,

localj

INVARIANT

162

Appendix C Machines Used for Empirical Results

PE(PID -+labeLt) /\

QE(PID -+ (O .. N)) /\

turnE((l..N) -H PID) /\

localj E(PID-H(O .. N)) /\

not(3(i1,i2).(i1EPID /\ i2EPID /\ (not (i1=i2)) /\ P(i1)=L4 /\ P(i2)=L4))

INITIALISATION

P:= {i,LliEPID/\LElabeLt/\L=LO}11

Q:= {i,vliEPID/\vENAT/\v=O} II
localj := 0 II
turn := 0

OPERATIONS

Incj_and_while(i) =

PRE iEPID /\ P(i)=LO

THEN

loca~j(i):=l II
P(i):=Ll

END;

assign_QLj (i) =

PRE iEPID /\ P(i)=Ll

THEN

Q(i):=localj(i) II
P(i):=L2

END:

assign_TURN_j(i) =

PRE iEPID /\ P(i) = L2

THEN

turn(localj(i)) := i I

P(i) := L3

END;

waiLuntil(i)

PRE (iEPID /\ P(i) = L3)

163

Appendix C Machines Used for Empirical Results

THEN
IF (V(k).(kEPID-{i}=> Q(k)<localj(i))) or

not(turn (localj (i)) = i)

THEN
IF localj(i)<N-l THEN

localj(i) := localj(i) + 111 P(i) := Ll

ELSE
localj(i) := localj(i) + 111 P(i) := L4

END
END

END;

criticaLand_assigrLQi_O (i) =

PRE iEPID 1\ P(i)= L4
THEN

Q(i) := 111
P(i) := LO

END
END

C.II Petersons Mutual Exclusion with Error

164

The B machine is the same as Peiersons, except for an error that now occurs in the

read operation, which leads to a state violating the invariant (more than one process

can access the critical region at one time).

MACHINE

wa'iLuntil(i) =

PRE (iEPID 1\ P(i) = L3)

THEN
/* The error is due to the use oj, :;, instead oj; <. */
IF (V(k).(kEPID-{i}=> Q(k):;localj(i))) or

Appendix C Machines Used for Empirical Results

not(turn(localj(i)) = i)

THEN

IF localj(i)<N-1 THEN

localJ'(i) := localj(i) + 1[[P(i) := Ll

ELSE

localj(i) := localj(i) + 1[[P(i) := L4

END

END

END;

END

C.12 Hotel Key Card System

165

The machine applied to symmetry reduction during experimentation is HotelKeys, which

refines Hotel. Therefore, we first present the abstract specification.

MACHINE Hotel

/* by Michael Butler {mJb@ecs.soton.ac.uk} */
/* Abstmcl model of hotel room key allocation (loosely) based on * /
/* description from Daniel Jackson. */

SETS

GUEST;

ROOM

/* The enmnemtion for these types is not necessary; */
/* but conven'ient for animation 'in ProB. * /

VARIABLES alloc

INVARIANT alloc E ROOM -++ GUEST /* partial function */

INITIALISATION alloc := 0

Appendix C Machines Used for Empirical Results

OPERATIONS

CheckIn(g,r) ~

PRE

gEGUEST /\ rEROOM

THEN

SELECT /* GuardE */
r t/- dom(alloc)

THEN

alloc(r) := g

END

END;

/* Entering will be separated into 2 cases in the refinement, * /
/* but these 2 cases look exactly the same at the abstract level. */

Enter 1 (g,r) =
PRE gE GUEST /\ rEROOM THEN

SELECT

rl-+g E alloc

THEN

skip

END

END;

EnteT2 (g,r) =

PRE gEGUEST /\ rEROOM THEN

SELECT

rl-+g E alloc

THEN

skip

END

END;

CheckOui(g,r) ~

PRE gEGUEST /\ rEROOM THEN

166

Appendix C Machines Used for Empirical Results

SELECT

P-+g E alloc

THEN

alloc := {r} <EI alloc /* domain subtraction * /
END

END

END

REFINEMENT HotelKeys

REFINES Hotel

/* by Michael Butler {mjb@ecs.soton.ac.uk} */
/* Abstract model of hotel room key allocation (loosely) based on * /
/* description from Daniel Jackson. */

SETS

KEY;

CARD

VARIABLES

alloc, key, cArd, ckey1, ckey2, lock, prev, g'uest

INVARIANT

key E lP'(KEY) 1\ /* set of -issued keys */

cArd lP'(CARD) 1\ /* set oj issued cards ('card) is a B keyword) * /

ckey1 E cArd)--, key 1\ /* Each card has two keys */
ckey2 E cArd)--, key 1\ /* >-> represents inject-ive functions * /
ran (ckey1) n ran(ckey2) = 0 1\ /* disjoint ranges */

guest E cATd --+ GUEST 1\ /* each card is allocated to a guest * /

lock E ROOM >--> key 1\ /* cv.rrent key associated with a room lock * /
prev E ROOM >-> key /* previo'us key allocated to a room lock * /

167

Appendix C Machines Used for Empirical Results

INITIALISATION

ANY k8, f WHERE

k8 E lP'(KEY) 1\

f E ROOM >---> k8

THEN

key := k8 II
lock := f II
prev := f II
cArd, ckey1, ckey2, guest, alloc := 0, 0, 0, 0, 0

END

OPERATIONS

Checkln (g,r) ::;

PRE gE GUEST 1\ rEROOM THEN

ANY c, k WHERE

r E ROOM 1\ r~dom(alloc) 1\

c E CARD 1\ c ~ cArd 1\

k E KEY 1\ k ~ key

THEN

ckey1(c) := prev(r) II
ckey2(c) := k II
guest(c) := gil
prev(r) := k II
key := key U {k} II
cArd := cArd U {c} !I
alloc(r) := g

END

END;

/* The 2 cases for Enter are specified as separate operations.

/* It could be done as a single operation, but I find this

/* style more convenient for PTOOf.

168

Appendix C Machines Used for Empirical Results

EnteTl (g,r) =

PRE gEGUEST /\ rEROOM THEN

ANY c, k WHERE

cE CARD /\ kEKEY /\

C I----> g E guest /\

ckey1(c) = lock(r)

THEN

lock(r) := ckey2(c)

END

END;

Enter2 (g,r) =
PRE gE GUEST /\ rEROOM THEN

ANY c, k \X/HERE

cE CARD /\ kEKEY /\

C I----> g E guest /\

ckey2(c) = lock(r)

THEN

skip

END

END:

CheckOut(g,r) c::::::

PRE gEGUEST /\ rEROOM THEN

ANYc

WHERE

cECARD /\

c I----> g E guest /\

ckey2(c) = prev(r) /\

r I----> g E alloc

THEN

alloc := {r} <El alloc II
cArd := cArd - {c} II

169

Appendix C Machines Used for Empirical Results

guest := {c} ~ guest II
ckey1 := {c} ~ ckey1 II
ckey2 := {c} ~ ckey2

END
END

END

170

Appendix D

Machines Used in Correctness of

Algorithms

This appendix presents full versions of the B machines used in Chapter 6.

D.l An Abstract Specification for Model Checking

MACHINE

mcO

SETS

S;

ANSWER = {Pass,Fail}

CONSTANTS

i, / * special initial state * /
tr, /* transition relation */
inv, /* states satisfying invariant */
reach /* reachable states * /

PROPERTIES

tT E S H S 1\

inv E lP'(S) 1\

i E inv 1\

171

Appendix D Machines Used in Correctness of Algorithms

i ~ ran(tr) 1\

/* representation of the reachable states */
reach E lP'(S) 1\

i E reach 1\

/* reach is a fix point * /
tr [reach] ~ reach 1\

/* reach is the smallest fi.T: point of reachable states * /
v(r).(r E lP'(S) 1\

i E r 1\

tr[r] ~ r =?

reach ~ r)

OPERATIONS
add_inv :;,

skip;

add_err :;,

sk'ip;

remove

skip;

ok <- pass :;,

WHEN reach;:;; inv

THEN ok := Pass

END;

ok fail :;,

WHEN reach 1= 'inv

THEN ok := Fail

END

END

D.2 Refinement Level 1

REFINEMENT

mc1

REFINES

mcO

172

Appendix D Machines Used in Correctness of Algorithms

VARIABLES

rac, / * reached and checked * /
err

INVARIANT

rac c:::; reach 1\

rac c:::; inv 1\

i E rae 1\

err c:::; reach - inv

INITIALISATION

rae:={i} II
err := 0

OPERATIONS
add_inv :;0

ANY 33 WHERE

33 c:::; reach-rae 1\

33 c:::; inv 1\

33 # 0

THEN

rae := rae U 33

END;

add_crr :;0

ANY 35 WHERE

33 c:::; reach-rae 1\

58 # 0 1\

53 n irw=0

THEN

crr := err U 53

END;

remove =

ANY 53 WHERE

88 c:::; me

173

Appendix D Machines Used in Correctness of Algorithms

THEN

skip

END;

ok f- pass ::;

WHEN

reach ~ rac

THEN

ok := Pass

END;

ok f- fail ::;

WHEN reach % inv

THEN

ok := Fail

END

END

D.3 Refinement for Standard Model Checking

REFINEMENT

mc2

REFINES

mel

VARIABLES

unex, /* reached not checked * /
rac, /* reached and checked */
err /* reached errors */

INVARIANT

{i} ~ rac 1\

tr[rac-unex] ~ rac U err

ASSERTIONS

/* operation enabledness preservation '~/

/* add_inv */
=J(sl,s2).(sl E unex 1\

174

Appendix D Machines Used in Correctness of Algorithms

s2 E mn(tr) 1\

s2 E inv 1\

sl 1--+ s2 E tr 1\

s2 t/: mc 1\

err = 0) V

/* add_err */
3(sl,s2).(sl E un ex 1\

s2 E mn(tr) 1\

s2 t/: inv 1\

sl 1--+ s2 E tr 1\

s2 t/: me 1\

err = 0) V

/* remove */
3(s1).(sl E un ex /\

tr[{s1}] r;:;; me 1\

err = 0) V

/* pass */
(unex = 0 1\

crT = 0) V

/* fail "/

(eTT i= 0)

INITIALISATION

unex := {i} :1

me:={i}11

eTT := 0

OPERATIONS
add_inv ~

ANY sl,s2 WHERE

sl E 'unex 1\

s2 E mn(tT) 1\

32 E inv 1\

175

Appendix D Machines Used in Correctness of Algorithms

sl 1----+ s2 E tr 1\

s2 ~ mc 1\

err = 0

THEN

unex := unex U {s2} II
me := me U {s2}

END;

add_err =

ANY sl,s2 WHERE

sl E unex 1\

s2 E mn(tr) 1\

82 ~ inv 1\

sl 1----+ s2 E tr 1\

s2 ~ me 1\

err = 0

THEN

err := err U {s2}

END;

remove =

ANY sl WHERE

sl E unex 1\

tr[{ sl}] s;;: me 1\ /* all successors of sl have been checked */
err = 0

THEN

unex := 'unex - {sl}

END;

ok f- pass ~

WHEN

unex = 0 1\

err = 0

THEN

ok := Pass

176

Appendix D Machines Used in Correctness of Algorithms

END;

ok f- fail ,;:

WHEN err =F 0

THEN

ok := Fail

END

END

177

D.4 Refinements for Symmetry Reduced Model Checking

REFINEMENT

rmcl

REFINES

mcl

CONSTANTS

a'ut, 1* automorphisms on transition relation *1
rep 1* representative jv,nction *1

PROPERTIES

aut E lP'(S ~ S) 1\

id(S) E aut 1\

\/(p).(p E aut =? p-l E aut) 1\

\/(p). (p E aut =? i 1---+ i E p) 1\

1* automorphisms preserve the trans'dion relation *1
\/(p,sl,s2).(p E aut 1\ sl E S 1\ s2 E S =?

(sl 1---+ s2 E tr) oR (p(s1) 1---+ p(s2) E tr)) 1\

1* automorphisms preserve the invariant *1
\/(p,sl,s2).(p E aut 1\ sl 1---+ s2 E p =?

(sl E inv) oR (s2 E inv)) 1\

rep E S -7 S 1\

1* symmetric states have same representatives *1

Appendix D Machines Used in Correctness of Algorithms

v(p,sl,s2).(p E aut /\ sl I---> s2 E p =?

rep(sl) = rep(s2)) /\

/* representatives implies automorphism * /
v(sl,s2).(sl I---> s2 E rep =?

3(p).(p E aut /\ sl I---> s2 E p)) /\

/* representatives are fix points */
v(s).(s E ran(rep) =? rep(s) = s) /*/\ */

ASSERTIONS

/* representatives preserve the invariant * /
v(sl,s2).(sl E S /\

s2 E S /\
sl I---> s2 E rep =?

((sl E inv) {=? (s2 E inv))) /\

rep(i) = i /\

rep -1 [{ i } 1 { i} /\

v(sl,s2).(sl I---> s2 E tr =?

3(ss2).(rep(s1) I---> ss2 E tr /\ rep(s2) = rep(ss2))) /\

/* a state 'is reachable iff -its representative is reachable * /
v(s).(s E S =?

((s E reach) {=? (Tep (s) E Teach)))

VARIABLES

/* vaTS of oTiginal spec * /
ruc, unex, erT,

/* Teduced Teached and checked */
TTae, Tunex, Terr

INVARIANT

unex c;:: rae

rme c;:: ran (Tep) /\

Trac c;:: rae /\

178

Appendix D Machines Used in Correctness of Algorithms

runex <:;: rrac 1\

rerr <:;: err 1\

rep-l[rrac] = rac 1\

rep-l[runex] = unex 1\

rep-l [rerr] = err 1\

tr[rac-unex] <:;: rac U err

INITIALISATION

rac:= {i} II rrac:= {i} II
unex := {i}11 runex := {i}11

err := 0 II rerr := 0

OPERATIONS

add_inv ~

ANY 81,82 WHERE

81 E runex 1\

82 E ran(tr) 1\

82 E inv 1\

81 f-+ 82 E ir 1\

rep(82) t/. rrac 1\

rerr = 0

THEN

runex := runex U {rep(82)} II
unex := un ex U rep-l [{rep(82)}] II

rrac := rmc U {rep(82)} II
rae := rae U rep-l [{rep(82)}]

END;

add_err ~

ANY 81,82 WHERE

81 E runex 1\

82 E ran(tr) 1\

82 t/. inv 1\

81 f-+ 82 E tr 1\

179

Appendix D Machines Used in Correctness of Algorithms

rep(s2) ~ rrac 1\

rerr = 0

THEN

rerT := rerr U {rep(s2)} II
err := err U rep-l[{rep(s2)}]

END;

remove =

ANY sl WHERE

sl E runex 1\

rep[tr[{s1}]] ~ rrac 1\ /* all successors of sl have been checked */
rerr = 0

THEN

runex := runex - {sl} II
unex := 1mex - rep-l[{s1}]

END;

ok <- pass ::=::

WHEN

reach ~ rep-l[Trac]

THEN

ok := Pass

END;

ok <- fail ::=::

WHEN

reach % inv

THEN

ok := Fail

END

END

D.4.1 Level 2

REFINEMENT

rmc2

REFINES

rmc1

180

Appendix D Machines Used in Correctness of Algorithms

VARIABLES

j* reduced reached and checked *j
rrac, run ex, rerr

ASSERTIONS

j* operation enabledness preservation *j
j* add_inv *j
3(sl,s2).(sl E runex 1\

s2 E ran(tr) 1\

s2 E inv 1\

sl f--+ s2 E tr 1\

rep(s2) ~ rrac 1\

rerr = 0) V

j* add_err *j
3(sl,s2).(sl E runex 1\

s2 E ran(tr) 1\

s2 ~ inv 1\

sl f--+ s2 E tr 1\

rep(s2) ~ rrac 1\

rerr = 0) V

j* remove *j
3(s1).(sl E r-unex 1\

rep [tT[{s1} II S;;; rrac 1\

rerr = 0) V

j* pass *j
(TeTT = 0 1\

runex = 0) V

j* fail *j
(TeTT of. 0)

INVARIANT

i E Trac 1\

181

Appendix D Machines Used in Correctness of Algorithms

rrac <;;;; ran(Tep) !\

rrac <;;;; rac !\

runex <;;;; rrac !\

rerr <;;;; eTr

INITIALISATION

rrac:={i} II
runex := {i}11

rerr := 0

OPERATIONS
add_inv ::;::

ANY 51,52 WHERE

51 E runex !\

52 E ran(tr) !\

52 E inv !\

51 f-+ 52 E tr !\

rep(52) ~ rrac !\

reTT = 0

THEN

runex := runex U {Tep(52)} II

Trac := rrac U {rep(52)}

END;

add_err ::;::

ANY 51,52 WHERE

51 E rv,nex !\

52 E ran(tr) !\

52 ~ inv !\

51 f-+ 52 E tr !\

rep(52) ~ rrac !\

TeTr = 0

THEN

Ten' := TerT U {rep(52)}

END;

182

Appendix D Machines Used in Correctness of Algorithms

remove =

ANY sl WHERE

sl E runex /\

rep [tr[{s1}]] <;;; rrac /\ j* all successors of sl have been checked *j
rerr = 0

THEN

runex := runex - {sl}

END;

ok f-- pass :::::

WHEN

rerr = 0 /\

runex = 0

THEN

ok := Pass

END;

ok f-- fail :::::

WHEN

r'err -# 0

THEN

ok := Fail

END

END

183

Bibliography

Jean-Raymond Abrial. The B Book: Assigning programs to meanings. Cambridge

University Press, New York, NY, USA, 1996. ISBN 0-521-49619-5.

Jean-Raymond Abrial and Dominique Cansell. Click'n prove: Interactive proofs within

set theory. In TPHOLs, pages 1-24, 2003.

Jean-Raymond Abrial and L. Mussat. Event B On-line Reference Manual. Clearsy,

Pare de la Durannc, 320 avellUC Archimcde Les Pll~iades III - Bat A, 13857 Aix en

Provence Cedex 3, France, 2001. URL http://www.atelierb.societe.com/

ressources/evt2b/eventb_reference_manual.pdf.

Jean-Raymond Abrial, Dominique Cansell, and Dominique :Mery. A mechanically proved

and incremental development of IEEE 1394 Tree Identify Protocol. Formal Asp.

Comput., 14(3):215-227, 2003.

Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An

open extensible tool environment for event-b. In Zhiming Liu and Jifeng He, editors,

ICFEM, volume 4260 of Lecture Notes in Computer Science, pages 588-605. Springer,

2006. ISBN 3-540-47460-9.

William Adjie-vVinoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The de

sign and implementation of an intentional naming system. SICOPS Oper. Syst. Rev.,

34(2):22, 2000. ISSN 0163-5980. doi: http://doi.acm.org/10.1145/346152.346192.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques

and Tools. Addison-Wesley, 1988.

B- Toolkit, On-line manual. B-Core (UK) Limited, Oxon, UK, 1999. URL http: / /

www.b-core.com/ONLINEDOC/Contents.html.

Lasz16 Babai and Eugene M. Luks. Canonical labeling of graphs. In STOC, pages

171-183. ACM, 1983.

Ralph-Johan Back. On correct refinement of programs. J. Comput. Syst. Sci., 23(1):

49-68, 1981.

184

BIBLIOGRAPHY 185

Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for boolean

programs. In Klaus Havelund, John Penix, and Willem Visser, editors, SPIN, volume

1885 of Lecture Notes in Computer Science, pages 113-130. Springer, 2000. ISBN

3-540-41030-9.

Sharon Barner and Orna Grumberg. Combining symmetry reduction and under

approximation for symbolic model checking. In Ed Brinksma and Kim Guldstrand

Larsen, editors, CAV, volume 2404 of Lecture Notes in Computer Science, pages 93-

106. Springer, 2002. ISBN 3-540-43997-8.

Ilan Beer, Shoham Ben-David, Cindy Eisner, and Avner Landver. Rulebase: An

industry-oriented formal verification tool. In DAC, pages 655-660, 1996.

Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. Meteor: A suc

cessful application of B in a large project. In Jeannette M. Wing, Jim Woodcock,

and Jim Davies, editors, Wodd Congress on Formal Methods, volume 1708 of Lecture

Notes in Computer Science, pages 369-387. Springer, 1999. ISBN 3-540-66587-0.

Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The ternporal logic of branching

time. Acta Inj., 20:207-226, 1983.

Shoham Ben-David, Orna Grumberg, Tamir Heyman, and Assaf Schuster. Scalable

distributed on-the-fly symbolic model checking. STTT, 4(4) :496-504, 2003.

Eikc Best and Mac:iej KoutllY. A refilled view of the box algebra. In Giorgio Dc Michelis

and Michel Diaz, editors, Application and Theory of Petri Nets, volume 935 of Lecture

Notes in Computer Science, pages 1-20. Springer, 1995. ISBN 3-540-60029-9.

Ritwik Bhattacharya, Steven M. German, and Ganesh Gopalakrishnan. Symbolic partial

order reduction for rule based transition systems. In Dominique Borrione and Wolf

gang J. Paul, editors, CHARME, volume 3725 of Lecture Notes in Computer Science,

pages 332-335. Springer, 2005. ISBN 3-540-29105-9.

Dragan Bosnacki, Dennis DaIns, and Leszek Holenderski. Symmetric SPIN. STTT

International Journal on Software Tools for Technology Transfer, 4(1):92-106, 2002.

Ahmed Bouajjani, Stavros Tripakis, and Sergio Yovine. On-the-fly symbolic model

checking for real-time systems. In IEEE Real-Time Systems Symposium, pages 25-.

IEEE Computer Society, 1997.

Don Box. Essential COM. Addison-vVesley Longman Publishing Co., Inc., Boston, MA,

USA, 1998. ISBN 0-20163-446-5.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Trans. Computers, 35(8):677-691, 1986.

BIBLIOGRAPHY 186

Dominique Cansell and Dominique Mery. 'I\ltorial on the event-based B method, Formal

Techniques for Networked and Distributed systems - FORTE 2006, 26th IFIP WG

6.1 International Conference, Paris, France, September 26-29, 2006.

Dominique Cansell, Ganesh Gopalakrishnan, Michael D. Jones, Dominique Mery, and

Airy Weinzoepflen. Incremental proof of the producer/consumer property for the PCI

Protocol. In Didier Bert, Jonathan P. Bowen, Martin C. Henson, and Ken Robinson,

editors, ZB, volume 2272 of Lectur-e Notes in Computer- Science, pages 22-41. Springer,

2002. ISBN 3-540-43166-7.

Christos G. Cassandras and Stephane Lafortune. Intmduction to Discr-ete Event Systems.

Discrete Event Dynamic Systems. Springer, 1st edition, 1999.

Mani Chandy and Jayadev Misra. Pamllel Pmgmm Design: A Foundation. Addison

Wesley, Reading, MA, 1988. ISBN 0-201-05866-9.

Edmund M. Clarke and Ernest A. Emerson. Design and synthesis of synchronization

skeletons using branching-time temporal logic. In Dexter Kozen, editor, Logic of

Pmgmms, volume 131 of Lectur-e Notes in Computer- Science, pages 52-71. Springer,

1981. ISBN 3-540-11212-X.

Edmund M. Clarke, Thomas Filkorn, and Somesh Jha. Exploiting symmetry in temporal

logic model checking. In Courcoubetis [1993], pages 450-462. ISBN 3-540-56922-7.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstrac

tion. ACM Tmns. Pmgmm. Lang. Syst., 16(5):1512-1542, 1994.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. The MIT Press,

1999.

Derek G. Corneil and David G. Kirkpatrick. A theoretical analysis of various heuristics

for the graph isomorphism problem. SIAM J. COmp'llt., 9(2):281-297, 1980.

Costas Courcoubetis, editor. Computer- Aided Ver-ijication) 5th Inter-national Confer-ence,

CA V '93, Elounda) Gr-eece) June 28 - July 1) 1993, Pmceedings, volume 697 of Lectur-e

Notes in Computer- Science, 1993. Springer. ISBN 3-540-56922-7.

James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy.

Symmetry-breaking predicates for search problems. In KR, pages 148-159, 1996.

Kriangsak Damchoom. Dependable Systems and Software Engineering, School of Elec

tronics and Computer Science, University of Southampton, UK, November 2006.

Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploiting

structure in symmetry detection for CNF. In Sharad Malik, Limor Fix, and Andrew B.

Kahng, editors, DAC, pages 530-534. ACM, 2004. ISBN 1-58113-828-8.

BIBLIOGRAPHY 187

Greg Dennis. Tsafe: Building a trusted computing base for air traffic control software.

Master's thesis, Department of Electrical Engineering and Computer Science, 32 Vas

sar Street, 32-G706, Cambridge, MA 02139, January 2003.

Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica, 1:

115-138, 1971.

David L. DilL Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol verification

as a hardware design aid. In ICCD, pages 522-525. IEEE Computer Society, 1992.

ISBN 0-8186-3110-4.

Alastair F. Donaldson, Alice Miller, and Muffy Calder. Finding symmetry in models of

concurrent systems by static channel diagram analysis. Electr. Notes Theor. Comput.

Sci., 128(6):161-177,2005.

DOT. Graphviz, open source graph drawing software, AT&T Labs Research. URL

http://www.research.att.com/sw/tools/graphviz/.

Ioannis Dravapoulos, :Kikos Pronios, and Spyros Denazis. The magic ~WAND. Wireless

ATM MAC, September 1997. Deliverable 3D2.

:Kicolas Dulac, Thomas Viguier, Nancy Leverson, and Margaret-Anne Storey. On the use

of Visualization in Formal Requirements Specification. In IEEE Joint International

Conference on Req'uirements Engineering, pages 71-81, Essen, Germany, September

2002. URL http://sunnyday .mi t. edu/papers/RE02_visualization .pdf.

Ernest A. Emerson and Aravinda P. Sistla. Utilizing symmetry when model-checking

under fairness assumptions: An automata-theoretic approach. AClvI Trans. Program.

Lang. Syst., 19(4):617-638, 1997.

Ernest A. Emerson and Aravinda P. Sistla. Symmetry and model checking. In Cour

coubetis [1993], pages 463-478. ISBN 3-540-56922-7.

Ernest A. Emerson and Aravinda P. Sistla. Symmetry and model checking. Formal

Methods in System Design, 9(1/2):105-131, 1996.

Ernest A. Emerson and Thomas Wahl. Dynamic symmetry reduction. In Nicolas Halb

wachs and Lenore D. Zuck, editors, TACAS, volume 3440 of Lecture Notes in Com

puter Science, pages 382-396. Springer, 2005. ISBN 3-540-25333-5.

Sarah Flannery and David Flannery. In Code: A Mathematical Journey. Algonquin

Books of Chapel Hill, Chapel Hill, NC, USA, 2001. ISBN 1-56512-377-8.

Pasquale Foggia, Carlo Sansone, and Mario Vento. A performance comparison of five

algorithms for graph isomorphism. In 3rd IAPR TC-15 Workshop on Graph-based

Representations in Pattern Recognition, 2001.

BIBLIOGRAPHY 188

Patrice Godefroid. Partial-Order Methods Jor the Verification oj Concurrent Systems -

An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in Com

puter Science. Springer, 1996. ISBN 3-540-60761-7.

Patrice Godefroid. Model checking for programming languages using Verisoft. In POPL,

pages 174-186, 1997.

Evguenii 1. Goldberg and Yakov Novikov. Berkmin: A fast and robust sat-solver. In

DATE, pages 142-149. IEEE Computer Society, 2002. ISBN 0-7695-1471-5.

Jonathan Gross and Jay Yellen. Graph Theory and its Applications. Discrete Mathe

matics and its Applications. CRC Press, Boca Raton, Fla., USA, 1999.

Elsa L. Gunter and Doron Peled. Unit checking: Symbolic model checking for a unit

of code. In Nachum Dershowitz, editor, Verification: Theory and Practice, volume

2772 of Lecture Notes in Computer Science, pages 548-567. Springer, 2003. ISBN

3-540-21002-4.

Viktor Gyuris and Aravinda P. Sistla. On-the-fly model checking under fairness that

exploits symmetry. Formal Methods in System Design: An International Journal, 15

(3):217-238, November 1999.

Frank Ham, Huub van de vVetering, and Jack van vVijk. Visualization of State Tran

sition Graphs. In IEEE Symposi'um on InJormation Visualization, pages 59-63, San

Diego, CA, USA, October 2001. URL http://www.win.tue.nl/-fvham/fsm/

Downloads/FSM2002.pdf.

Vicky Hartonas-Garmhausen, Sergio Vale Aguiar Campos, and Edmund Yl. Clarke.

Probverus: Probabilistic symbolic model checking. In Joost-Pieter Katoen, editor,

ARTS, volume 1601 of Lecture Notes in Computer Science, pages 96-110. Springer,

1999. ISBl\ 3-540-66010-0.

Jifeng He, Charles A. R. Hoare, and Jeff W. Sanders. Data refinement refined. In Proc.

oj the European symposium on programming on ESOP 86, pages 187-196, New York,

NY, USA, 1986. Springer-Verlag New York, Inc. ISBN -540-16442-1.

Ivan Herman, Guy Melanon, and Scott Marshall. Graph Visualization and Navigation

in Information Visualization: A Survey. IEEE Transactions on Visualization and

Computer Graphics, 6(1):24-43, 2000. ISSN 1077-2626. doi: http://dx.doi.org/l0.

1109/2945.841119.

Gerard J. Holzmann. State compression in SPIN: Recursive indexing and compression

training runs. In R. Langerak, editor, Proceedings oj the 3th International SPIN

Workshop, Twente University, The Netherlands, 1997a. URL ci teseer. ist. psu.

edu/holzmann97state.html.

BIBLIOGRAPHY 189

Gerard J. Holzmann. An analysis of bitstate hashing. Formal Methods in System Design,

13(3):289-307, 1998.

Gerard J. Holzmann. The engineering of a model checker: The GNU i-protocol case

study revisited. In Dennis Dams, Rob Gerth, Stefan Leue, and Mieke Massink, editors,

SPIN, volume 1680 of Lecture Notes in Computer Science, pages 232-244. Springer,

1999. ISBN 3-540-66499-8.

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on software engi

neering, 23(5):279, 1997b.

Gerard J. Holzmann. Design and validation of computer protocols. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1991. ISBN 0-13-539925-4.

Gerard J. Holzmann and Doron Peled. An improvement in formal verification. In Dieter

Hogrefe and Stefan Leue, editors, FORTE, volume 6 of IFIP Conference Proceedings,

pages 197-211. Chapman & Hall, 1994. ISBN 0-412-64450-9.

Peter Huber, Arne M. Jensen, Leif O. Jepsen, and Kurt Jensen. Towards reachability

trees for high-level petri nets. In Gr'Zegor'Z Rozenberg, Hartmann J. Genrich, and

Gerard Roucairol, editors, European Workshop on Applications and Theory in Petri

Nets, volume 188 of Lecture Notes in Computer SC'ience, pages 215-233. Springer,

1984. ISBN 3-540-15204-0.

Lucian Ilie and Sheng Yu. Algorithms for computing small NFAs. In Krzysztof Diks and

Wojciech Rytter, editors, MFCS, volume 2420 of Lecture Notes in Computer Science,

pages 328-340. Springer, 2002. ISBN 3-540-44040-2.

Chung-vVah Norris Ip. State Reduction Methods For kutomatic Formal Methods. PhD

thesis, Department of Computer Science, Stanford University, California, 1996.

Chung-Wah Norris Ip and David L. Dill. Better verification through symmetry. In

David Agnew, Luc J. M. Claesen, and Raul Camposano, editors, CHDL, volume A-32

of IFIP Transact'ions, pages 97-111. North-Holland, 1993. ISBN 0-444-81641-0.

Daniel Jackson. The Alloy Analyser, 2006a. URL http: / / alloy. mi t . edu/.

Daniel Jackson. Software Abstractions: Logic, Lang'uage, and Analys'is. MIT Press,

2006b.

Daniel Jackson and Michael Jackson. Separating concerns in requirements analysis:

An example. In Michael Butler, Cliff B. Jones, Alexander Romanovsky, and Elena

Troubitsyna, editors, RODIN Book, volume 4157 of Lecture Notes in Computer Sci

ence, pages 210-225. Springer, 2006. ISBN 3-540-48265-2.

Somesh Jha. Symmetry and induction in model checking. PhD thesis, School of Com

puter Science, Carnegie Mellon University, Pittsburgh, Pa, 1996.

BIBLIOGRAPHY 190

Sebastian John. Minimal Unambiguous E-NFA. In Michael Domaratzki, Alexander

Okhotin, Kai Salomaa, and Sheng Yu, editors, CIAA, volume 3317 of Lecture Notes

in Computer Science, pages 190-201. Springer, 2004. ISBN 3-540-24318-6.

Vineet Kahlon, Aarti Gupta, and Nishant Sinha. Symbolic model checking of concur

rent programs using partial orders and on-the-fly transactions. In Thomas Ball and

Robert B. Jones, editors, CAY, volume 4144 of Lecture Notes in Computer Science,

pages 286-299. Springer, 2006. ISBN 3-540-37406-X.

Robert M. Keller. Formal verification of parallel programs. Comm'un. ACM, 19(7):

371-384, 1976. ISSN 0001-0782. doi: http)jdoi.acm.orgj10.1145j360248.360251.

Sarfraz Khurshid, Darko Marinov, Ilya Shlyakhter, and Daniel Jackson. A case for

efficient solution enumeration. In Enrico Giunchiglia and Armando Tacchella, editors,

SAT, volume 2919 of Lecture Notes in Computer Science, pages 272-286. Springer,

2003. ISBN 3-540-20851-8.

Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Program

ming. Addison-'Wesley, Reading, Massachusetts, second edition, 10 1973.

William Kocay. On Wr'iting Isomorphism Programs, chapter Chapter 6, pages 135-175.

Computational and Constructive Design Theory. Kluwer, 1996.

Donald. L. Kreher. Combinatorial Algorithms: Generation, Enumemtion and Search.

Discrete Mathematics and its Applications. CRC Press, 1998.

Bruno Legeard, Fabien Peureux, and Mark Utting. Automated boundary testing from Z

and B. In Lars-Henrik Eriksson and Peter A. Lindsay, editors, FME, volume 2391 of

Lecture Notes in Computer Science, pages 21-40. Springer, 2002. ISBN 3-540-43928-5.

Michael Leuchel and Michael Butler. ProB: An Automated Analysis Toolset for

the B Method. Technical report, Electronics and Computer Science, University of

Southampton, 2006. URL http://eprints . ecs. satan. ac. uk/12886/.

Michael Leuschel and Michael J. Butler. ProB: A model checker for B. In Keijiro Araki,

Stefania Gnesi, and Dino Mandrioli, editors, FME, volume 2805 of Lecture Notes in

Computer Science, pages 855-874. Springer. 2003. ISBl\ 3-540-40828-2.

Michael Leuschel and Michael J. Butler. Automatic refinement checking for B. In

Kung-Kiu Lau and Richard Banach, editors, ICFEM, volume 3785 of Lecture Notes

in Computer Science, pages 345-359. Springer, 2005. ISBN 3-540-29797-9.

Michael Leuschel and Thierry Massart. Efficient approximate verification of B via sym

metry markers. In International Symmetry Conference, page (to appear). Springer,

January 2007.

BIBLIOGRAPHY 191

Michael Leuschel and Edd 1\lrner. Visualising larger state spaces in ProB. In Helen

Treharne, Steve King, Martin C. Henson, and Steve A. Schneider, editors, ZB, volume

3455 of Lecture Notes in Computer Science, pages 6-23. Springer, 2005. ISBN 3-540-

25559-1.

Michael Leuschel, Michael Butler, Corinna Spermann, and Edd Thrner. Symmetry

reduction for B by permutation flooding. In Jacques Julliand and Olga Kouchnarenko,

editors, B, volume 4355 of Lecture Notes in Computer Science, pages 79-93. Springer

Verlag, 2007. ISBN 3-540-68760-2.

Roger Lipsett, Carl F. Schraefer, and Cary Ussery. VHDL: Hardward Description and

Design. Springer, 2nd edition, June 1989. ISBN 1-402-07089-1.

Andreas Malcher. Minimizing finite automata is computationally hard. Theor. Comput.

Sci., 327(3):375-390, 2004.

Brendan D. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26(2):306-324,

1998. ISSN 0196-6774. doi: http://dx.doi.org/10.1006fjagm.1997.0898.

Brendan D. McKay. Practical graph isomorphism. In Numerical mathematics and

computing, Pmc. 10th Manitoba Conf., Congr. Numemntium SO, pages 45-87,1981.

Kenneth L. McI'vlillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell,

MA, USA, 1993. ISBN 0792393805.

Christophe Metayer, Jean-Raymond Abrial, and Laurent Voisin. Event B language,

RODI~ deliverable D7, 2005. URL http://rodin . cs . nel . ae. uk/.

Albert R. Meyer and Michael J. Fischer. Economy of description by automata, gram

mars, and formal systems. In FOCS, pages 188-191. IEEE Computer Society, 1971.

Alice Miller, Alastair F. Donaldson, a.nd Muffy Calder. Symmetry in temporal logic

model checking. ACM Comput. Sum, 38(3), 2006.

Alice Miller, .:vluffy Calder, and Alastair F. Donaldson. A template-based approach for

the generation of abstractable and reducible models of featured networks. Computer

Networks, 51(2):439-455, 2007.

Matthew 'vV. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Shamd

Malik. Chaff: Engineering an efficient sat solver. In DA C, pages 530-535. ACM,

2001. ISBN 1-58113-297-2.

Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype verification

system. In Deepak Kapur, editor, CADE, volume 607 of Lecture Notes in Computer

Science, pages 748-752. Springer, 1992. ISBN 3-540-55602-8.

BIBLIOGRAPHY 192

Doron Peled. Partial order reduction: linear and branching temporal logics and process

algebras. In POMIV '96: Pmceedings of the DIMACS workshop on Partial order

methods in verification, pages 233-257, New York, NY, USA, 1997. AMS Press, Inc.

ISBN 0-8218-0579-7.

Gary L. Peterson. Myths about the mutual exclusion problem. Inf. Process. Lett., 12

(3):115-116, 1981.

Amir Pnueli. The temporal semantics of concurrent programs. Theor. Comput. Sci., 13:

45-60, 1981.

Denduang Pradubsuwun, Tomohiro Yoneda, and Chris J. Myers. Partial order reduction

for detecting safety and timing failures of timed circuits. In Farn Wang, editor, ATVA,

volume 3299 of Lecture Notes in Computer Science, pages 339-353. Springer, 2004.

ISBN 3-540-23610-4.

Robby, Matthew B. Dwyer, John Ratcliff, and Radu Iosif. Space-reduction strategies

for model checking dynamic software. Electr. Notes Theor. Comput. Sci., 89(3), 2003.

RODIN. Rigorous Open Development Environment for Complex Systems (RODIN), EU

project 1ST 511599. URL http://rodin.cs.nel.ac.uk/.

Gunther Schmidt and Thomas Strohlein. Relations and Graphs - Discrete Mathemat

ics for Computer Scientists. EATCS Monographs on Theoretical Computer Science.

Springer, 1993. ISBN 3-540-56254-0.

Klaus Schneider. Verification of Reactive Systems - Formal AI[ethods and Algorithms.

Texts in Theoretical Computer Science (EATCS Series). Springer, 2003.

Ilya Shlyakhter. Generating effective symmetry-breaking predicates for search problems.

Discrete Apphed Mathematics, 155(12):1539-1548,2007. ISSN 0166-218X. doi: http:

/ / dx.doi.org/10.1016 jj.dam.2005.10.018.

SICStus. SICStus prolog user's manual, 2005. URL http://www.sics.se/isl/

sicstus/docs/3.12.3/pdf/sicstus.pdf.

Aravinda P. Sistla, Viktor Gyuris, and Ernest A. Emerson. SMC: a symmetry-based

model checker for verificatioll of ::;afety and livcness properties. A CM Trans. Sojtw.

Eng. Methodol., 9(2):133-166, 2000.

Spin 4.3.0. Full Spin Distribution 4.3.0, June 2007. URL http: / / spinroot . com/

spin/Src/spin430.tar.gz.

Peter R. Starke. Reachability analysis of petri nets using symmetries. volume 8, pages

293-303, Newark, NJ, USA, 1991. Gordon and Breach Science Publishers, Inc.

Atelier B, User and Reference Manuals. Steria, Aix-en-Provence, France, 1996. URL

http://www.atelierb.societe.com/index_uk.htm.

BIBLIOGRAPHY 193

Tcl/Tk. Tcl/Tk Developer Exchange Website, 2007. URL http://www.tel.tk/

doe/.

Donald E. Thomas and Philip R. Moorby. The Verilog Hardware Description Language.

Springer, 5th edition, June 2002. ISBN 1-402-07089-1.

Edd Turner, Michael Leuschel, Corinna Spermann, and Michael Butler. Symmetry

reduced model checking for B. In First Joint IEEE/IFIP Symposium on Theoretical

Aspects of Software Engineering, TASE 2007, June 5-8, 2007, Shanghai, China, pages

25-34. IEEE Computer Society, 2007.

Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic

program verification (preliminary report). In LICS, pages 332-344. IEEE Computer

Society, 1986.

Willem Visser and Howard Barringer. Memory efficient state storage in Spin. In Jean

Charles Gregoire, Gerard J. Holzmann, and Doron A. Peled, editors, Pmceedings of

Series on Discrete Mathematics and Theoretical Computer Science, The SPIN Ver

ification System, volume 32, pages 239-256, Providence, Rhode Island 02940, USA,

1996. American Mathematical Society.

Pierre Wolper and Denis Leroy. Reliable hashing without collosion detection. In Cour

coubetis [1993], pages 59-70. ISBN 3-540-56922-7.

