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Supersymmetric Effects in Hadronic Top Production 

Martin Wiebusch 

\Ve study the effects of supersymmetry on polarised cross-sections for {[ production 

at the LHC within a MSSM framework. A numerical study is carried out for the ten 

benchmarks of the Snowmass accord. It is found that the higher order effects involving 

supersymmetric particles in internal loops can be as high as 6%, both for the cross­

section and the parity even helicity asymmetry, for one particular benchmark. For 

other benchmarks smaller but nonetheless observable corrections are found. 
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Introduction 

For nearly 35 years, supersymmetry (SUSY) has been an attractive theory in parti­

cle physics [1, 2]. At the most theoretical level, it permits the construction of string 

theories which do not contain tachyonic states, and at the phenomenological level it 

offers a solution to the hierarchy problem through its reduced ultraviolet divergences, 

as well as providing resolutions of several puzzles arising in standard models of cos­

mology. It also gives rise to a correction to the running of the couplings, so that 

the strong, weak, and electromagnetic interactions can unify at some Grand Unified 

(G UT) scale. 

However, to date there has been no reliable evidence that this theory describes 

Nature, so that if SUSY is indeed realised in nature, it must be broken at a scale 

higher than that reached in accelerator experiments conducted up to now. If the 

theory is to be effective in providing a solution to the hierarchy problem, then the 

SUSY breaking scale cannot be much more than about 1 Te V. This is also the scale of 

SUSY breaking which leads to unification of couplings. Hence, with the exception of 

some hidden corners of parameter space, SUSY can be discovered at the forthcoming 

LHC. 

Clearly the most dramatic manifestation of SUSY would be the production and 

identification of supersymmetric partner particles such as the spin-~ charginos or 

neutralinos, or evidence that at sufficiently high energies hadrons display behaviour 

consistent with the existence of squarks or gluinos. However, the existence of SUSY 

will also have indirect but measurable effects on the (total and differential) cross­

sections for the production of Standard Model (SM) particles. The LHC is expected 

to achieve sufficient integrated luminosity so that the statistical errors on these cross­

sections are below the percent level. Assuming sufficient control over theoretical and 

experimental systematic errors, we will then be able to detect the effects of higher 

vi 
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order corrections coming from loops of SUSY particles. The loops can give rise to 

a significant correction to the production cross-sections even below the threshold for 

the production of the SUSY particles themselves, so that hints that some new physics 

is imminent can be deduced before the threshold energies are actually reached. Above 

these thresholds, differential cross-sections with respect to suitably chosen variables 

can display structures which can be used to experimentally constrain the parameters 

of the underlying model. 

Due to its large mass the top quark decays predominantly via electroweak in­

teractions. Since the electroweak interactions violate parity, information about the 

spin of the top quark is encoded in the angular distribution of its decay products [3]. 
To fully exploit future experimental data we therefore need accurate computations 

(within the SM and beyond) of polarised tt production amplitudes, i.e. amplitudes for 

the production of tt pairs with given helicities. Such amplitudes allow us to predict 

not only the total tt cross section but also single and double spin asymmetries like the 

ones discussed in [4]. Of particular interest are parity violating asymmetries, since 

they are free of QCD related systematic errors. Considering ratios of asymmetries 

and total cross sections also removes systematic errors related to uncertainties in the 

incident beam flux. 

The SM predictions for hadronic tt production have already been calculated by 

several groups. Tree level amplitudes were first considered in [5-10]. The next-to­

leading order (NLO) QCD corrections to unpolarised amplitudes have been calculated 

in [11-16] and the electroweak contributions (O(aa;)) have been studied in [17-20]. 

Soft gluon resummation and threshold effects have been considered in [21-25]. The 

NLO QCD and electroweak corrections to polarised amplitudes are presented in [26-

29] and [20,30-34]' respectively. The estimates for the theoretical errors of these 

calculations lie at the percent level. 

Partial studies of SUSY contributions to both unpolarised and polarised if pro­

duction amplitudes within the Minimal Supersymmetric SM (MSSM) also exist. The 

SUSY electroweak corrections to unpolarised amplitudes are calculated in [35-37]. 
The same study for polarised amplitudes is carried out in [30]. The NLO SUSY 

QCD (SQCD) corrections to top production via gluon fusion (gg --7 tf) are presented 

in [38,39]. Top production via quark-antiquark annihilation is discussed in [40-42]. 

During the preparation of this thesis a complete study of NLO SQCD corrections [43] 

was also published. As pointed out there, the results of [40-42] disagree due to an 
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incorrect treatment of Majorana fermions in box diagrams (see section 4.3). 

In this thesis we present a complete study of SUSY QCD and electroweak cor­

rections to tf production within the MSSM framework. We have organised our cal­

culation so that software is available to calculate differential cross-sections with all 

possible helicity configurations and any given set of the extra 105 parameters of 

the MSSM. This provides maximum flexibility for studying different SUSY breaking 

scenarios and exotic areas of the parameter space, even though a scan over all 105 

parameters is clearly unrealistic. Our code can read input parameters in the SUSY 

Les Rouches Accord format [44], which makes it easily combinable with other MSSM 

related software. As a first analysis we present numerical results for the 10 'Snow­

mass' benchmark points of the MSSM parameter space, which were compiled at the 

Snowmass meeting of 2002 [45]. Vve find considerable variation in the magnitudes 

of the corrections from these different parameter sets. Conversely, this means that 

accurate measurement of the tf production cross-section can be used as a tool to help 

identify the correct set of SUSY parameters. 

At sufficiently high (partonic) energies, the SUSY corrections to tf production are 

expected to be dominated by single and double logarithms of incoming parton energy 

divided by the SUSY breaking scale, Msusy. The determination of these logarithms 

is independent of the SUSY parameter set, with the exception of l11susy and the 

ratio, tan p, of the vacuum expectation values of the two Riggs doublets, and the 

calculation is simplified by the fact that the mixing of various SUSY particles to form 

mass eigenstates has no effect on these logarithms. The logarithmic contributions have 

been calculated by Beccaria et. al. [46]. One may have expected that it would have 

been possible to express the entire SUSY correction in terms of these logarithms plus 

a constant off-set, which depended on the SUSY parameter set. We have compared 

our results with those of [46] and although it is indeed the case that our results agree 

with these logarithms plus a constant off-set at sufficiently high partonic energies, 

this approximation is found to be unsuitable at typical partonic energies which will 

be reached at the LRC, and the entire calculation is required for a reliable prediction 

of the cross-sections at the LRC. 

The structure of this thesis is as follows: In chapter 1 we provide an introduction 

to the SM and MSSM. In chapter 2 we introduce our strategy for calculating polarised 

top production amplitudes by combining computer algebra and numerical tools. In 

chapter 3 we discuss the issue of renormalisation and explain the DR renormalisation 
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scheme, which was used in this calculation. In chapter 4 we list the diagrams relevant 

for tt production at the LHC and explain some of the inner workings of the numerical 

library we wrote to compute them. In chapter 5 we show how physical observables, 

i.e. cross sections and their ratios, can be obtained from the amplitudes we calculated 

earlier. In chapter 6 we present our results and conclude. 



Chapter 1 

The Standard Model 

and its Supersymmetric Extension 

Since its formulation in the early 1970s the Standard Model of Particle Physics (SM) 

provides a remarkably successful description of the interactions of fundamental par­

ticles. Even with particle colliders probing energies at the scale of 100 Ge V there 

exist, to date, no confirmed observations that contradict the predictions of the SM.1 

Still, it is clear that the SM does not hold for arbitrarily high energies. Certainly 

modifications to the SM will be necessary at the Planck scale of 1019 GeV, where 

quantum gravitational effects become important, and it seems very unlikely that no 

new physics exists in the 17 orders of magnitude in between. 

A very popular class of models for physics beyond the Standard Model (BSM) 

are supersymmetric models. The main motivation for studying SUSY models is the 

fact that the SM has a very high "sensitivity" to any new physics at higher energy 

scales. The observed low-energy physics can only be explained by a judicious tuning 

of the parameters of the BSM model. This problem is known as the Hierarchy or 

Fine Tuning problem. As we will see later in this chapter, supersymmetric models 

can solve this problem if SUSY itself is realised at the 1 to 10 Te V scale. 

Here we first review the main features of the SM. Then we discuss the Hierarchy 

IThis statement is not entirely true. The discovery of neutrino oszillations has shown that 
neutrinos must have very small but nonzero masses, while the 8M predicts them to be massless. 
However, the ad hoc introduction of massive neutrinos in the 8M is not impossible but merely 
unsatisfying, since the lightness of the neutrinos remains unexplained. In any case, this issue has no 
impact on top quark physics, which is the subject matter of this thesis. 

1 
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problem and show how it is solved in a supersymmetric theory. Finally, we provide 

an introduction to the formalism of supersymmetry and give an overview over the 

minimal supersymmetric extension of the SM (MSSM), which will be the framework 

of our phenomenological study of top quark production. 

1.1 The Standard Model 

The success of the Standard Model began in 1971, when G. 't Hooft and M. Velt­

man discovered [47,48] that local gauge theories are renormalisable, even if the gauge 

symmetry is spontaneously broken. This encouraged serious phenomenological in­

vestigation of local gauge theories, since they were now known to be predictive even 

beyond the leading order in perturbation theory. It quickly became clear that the 

weak interactions could be described by an old model by Glashow, Weinberg and 

Salam [49-51], which suggested a spontaneously broken SU(2) x U(l) gauge sym­

metry. Likewise, many aspects of the strong interactions could be explained by an 

(unbroken) SU(3) gauge theory, known as Quantum Chromo dynamics (QCD). 

Finally, the Standard Model emerged from the fusion of these two models. It is a 

SU(3)c x SU(2h x U(l)y gauge theory that undergoes a spontaneous breakdown to 

a SU(3)c x U(l)Q symmetry at the electroweak breaking scale 

AEWSB = 246 GeV (1.1 ) 

The subscripts Y and Q stand for hypercharge and electric charge, respectively, and 

SU(3)c is the colour symmetry of QCD. The fields of the Standard Model are listed 

in table 1.1. The upper part of the table lists the fermionic fields: the quarks and 

leptons. They can be divided into three generations. Each generation comprises a 

lepton pair and a quark pair. The left-handed components of the fields in each pair 

form a doublet under the SU(2h symmetry. The right-handed components transform 

as singlets under SU(2h, with the exception of the neutrino fields, for which there 

are no right-handed components. This difference in the transformation behaviour of 

left and right-handed fields is the origin of parity violation in the Standard Model. 

The quark fields d, u, s, c, band t (called down, up, strange, charm, bottom and top 

quarks) each have three components in "colour space", which transform as triplets 

under the SU(3)c group. All the lepton fields are singlets under SU(3)c. 
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generation 
1 2 3 

leptons { charged leptons e f.L T 

neutrinos Ve vJL VT 

quarks { up type u c t 
down type d s b 

gauge bosons { 
SU(3)c C a (a = 1. .. 8) 
SU(2h W l W 2 vV3 , , 
U(1)y B 

Higgs fields H = (H+,HO) 

Table 1.1: Fields of the Standard Model 

The middle part of table 1.1 lists the gauge bosons associated with the SU(3)c, 

SU(2h and U(l)y subgroups. Initially, all the fields have to be massless. For the 

gauge bosons, mass terms are generally forbidden by the gauge symmetry, and for 

the fermions we cannot construct any mass terms because the left and right-handed 

components transform differently under the SU(2h symmetry. Masses in the Stan­

dard Model are generated by the Higgs mechanism: First we couple the fermions and 

gauge bosons to scalar fields, the Higgs doublet H _ (H+, HO), in a gauge invariant 

way. Then we construct the self-interactions of the Higgs field in such a way that 

it acquires a nonzero vacuum expectation value (VEV) , which is not invariant un­

der the full gauge group. This process is called spontaneous symmetry breaking. By 

expanding the Higgs field around its VEV we generate mass terms for all fields that 

couple to the Higgs field. 

The Standard Model Higgs fields H+ and HO transform as an anti-doublet under 

the SU(2h group and have a hypercharge of 1 associated with the U(l)y group. The 

Higgs potential is just the potential of a ej} theory with a negative mass term: 

(1.2) 

with f.L2, A > O. The Higgs Lagrangian is then 

£H = (DJLH)t (DJL H) - V(H) + Higgs-fermion interaction terms (1.3) 
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where DfL is the SU(2)L x U(1)y covariant derivative: 

(1.4) 

Here (J"i denote the Pauli matrices (A.34). The Higgs potential V is minimised if 

(1.5) 

Clearly there is a continuum of field vectors H that satisfy this condition. Each of 

these minima corresponds to a different vacuum state, but none of these states are 

invariant under the full SU(2)L x U(1)y gauge group. If Nature "chooses" to realise 

one of these vacuum states, this choice breaks the gauge symmetry. It is important 

to remember that the Lagrangian of the theory is still invariant under the full gauge 

group. The gauge symmetry is only broken by Nature's choice of the physical vacuum. 

Assume that the vacuum field configuration of the Standard Model Higgs field is 

with (1.6) 

This represents no loss of generality, since we can always redefine the field H in such 

a way that the vacuum configuration is of this form. To expand around this vacuum 

configuration we parametrise the field H as follows: 

(1. 7) 

where ¢i and h are independent real-valued fields. The fields ¢i are called Goldstone 

bosons and the field h is the physical Higgs field. By substituting this parametrisa­

tion of H in the Lagrangian (1.3) (and dropping a constant term) we see that the 

Lagrangian for the field h is of the form 

(1.8) 

Hence the physical Higgs field has a mass 

(1.9) 
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gauge field mass 
gv ev 

rnw = - =--
2 2sw 

Vv' mw mz = - g2 + g'2 = --
2 Cw 

o 

Table 1.2: Physical gauge fields and gauge boson masses of the Standard Model 

The constant term Hvac in (1. 7) generates mass terms for the gauge bosons: 

r _ TTt f. T;Vi(}i , / 'E \ ( ,: TXTif.!(}i . 'Ell\ U (110) 
.L.... mass - l1vac \zgv f.!2 -r zg f.!) \. -6gVV 2 - zg ) ..Llvac \_.-

= ~ [g:v\w~ + iW;) (Wlf.! - ilV2f.!) + :\gW: - g'Ef.!) (gW 3 lt - 9'Ef.!)] 

This leads to the physical fields and masses shown in table 1.2. Usually it is more 

convenient to replace the coupling constants 9 and g' by the electromagnetic coupling 

e and the Weinberg angle 8w . They are related by 

9 
Cw = cos 8w = -----;====::;: 

)g2 + g'2 

g' 
Sw = sin 8w = --r===== 

)g2 + g'2 
gg' 

e = -----;====::;: 
)g2 + g'2 

(1.11) 

The fermion masses in the Standard Model are generated in a similar manner if we 

introduce Yukawa interactions between the Higgs field and the fermions. To do this 

let us first rename the fields from table 1.1 in a more convenient way. We introduce 

a generation index I running from 1 to 3 and define 

uI = (u, c, t) dI = (d, s, b) (1.12) 

We also define the SU(2h doublets Qf and Lf (with i = 1,2) as 

(1.13) 
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where the subscript L denotes the left-handed spinor components. Now the Yukawa 

terms of the Standard Model Lagrangian can be written as 

f' yIJH* -J QJ yIJH d-J QJ yIJH -J L J h '!"'Yuk = -Eij u i u R j - d i R i - e ieR i + .c. (1.14) 

where I, J are generation indices, i, j are SU(2h doublet indices and Eij = -i(]"~ is 

an anti-symmetric 2 x 2 matrix. The couplings Y,!J, YjJ and y!J are called Yukawa 

couplings. If we substitute the expansion (1. 7) for H in (1.14) the constant term Hvac 

generates mass terms for the Standard Model quarks and charged leptons. 

1.2 The Hierarchy Problem 

As we mentioned in the last section, the issue of renormalisability is settled for the 

Standard Model by the work of 't Hooft, who proved that any local gauge theory is 

renormalisable, even if the gauge symmetry is spontaneously broken. However, the 

renormalisation of the Higgs field still causes problems, not in the dramatic sense that 

the theory becomes unpredictive, but in the sense that some unnatural fine tuning is 

required if we want to introduce new physics at high energy scales. 

To understand this let us have a look at the higher order corrections to the Higgs 

propagator. At leading order the propagator is given by 

h(p) 
(1.15) -

Here tnh denotes the bare Higgs mass, i.e. the coefficient multiplying the mass term 

in the (unrenormalised) Higgs Lagrangian. It should not be confused with the pole 

mass 7nh,pole' The pole mass is related to the sum of all higher order corrections to 

the Higgs propagator: 

h(p) 
(1.16) -

It is a physical observable and can be measured directly, once we have discovered 

the Higgs particle. Even now there exist theoretical boundaries on the Higgs mass 

and indirect measurements from precision electroweak data. A summary of these 
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constraints can be found in [52]. The precision electroweak data currently favours a 

Higgs mass of 

mh,pole = 114~~~ GeV (1.17) 

while the lower bound from LEP data is 

mh,pole> 115 GeV (1.18) 

In any case we expect the physical Higgs mass to be of the order of 100 Ge V. The 

free parameters of the Standard Model, or any model including it, must be chosen in 

such a way that the experimental value of the Higgs mass is reproduced. 

We can single out the loop contributions to mh,pole by writing 

(1.19) 

In general the mass shift 6.m~ will contain ultraviolet-divergent terms which have 

to be cancelled in the renormalisation procedure. The first step in this procedure 

consists in regularising the divergent integrals by some ad hoc prescription. This 

introduces a new energy scale to the theory, called the ultraviolet cutoff scale A. The 

mass shift 6.m~ will now depend on A: 

(1.20) 

Today most people regard the occurrence of divergences in quantum field theories 

and the necessity of regularisation as an indication that these theories are only low­

energy limits of a superior theory, which is ab initio divergence free. The cutoff scale 

A then represents the scale at which the field theory fails to approximate the superior 

theory. The "physical" value of A is therefore expected to lie close to the Planck scale 

ApI = 1019 GeV, where quantum-gravitational effects become important. 

Let us now consider the contributions to 6.m~ due to the following diagram: 

f 

-~-
h(p -;V-h(p) 

(1.21) 
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A simple calculation shows that the mass shift due to this diagram is: 

6.m~(A) = ~~: [-2A2 + 6m} 10g(A/mf) ... J (1.22) 

where Af is the coupling constant associated with the Higgs-fermion vertex and the 

dots indicate terms which are finite in the limit A ~ 00 and depend on the details of 

the regularisation method. The important point is that for large cutoffs A the mass 

shift 6.m~ is dominated by the A 2 term. 2 Thus, for cutoffs at the Planck scale, we 

would expect the pole mass mh,pole to be of order ApI. The only way to obtain a pole 

mass of order 100 GeV is by some large cancellations between the bare Higgs mass 

mh and the mass shift 6.mh(A). Since m~ is a free parameter of the theory and 6.m~ 

depends on all other parameters, such a cancellation would require very sensitive fine 

tuning of the parameters. While there is no physical argument that forbids such a 

fine tuned set of model parameters, to most people it would seem natural to ask for 

some sort of mechanism that explains this magical cancellation. 

Even if we ignore the problem of interpreting the regularisation of loop inte­

grals, the Higgs self-energy diagrams still cause problems if we want to introduce 

new massive particles into the theory. After cancelling ultraviolet divergent terms 

in accordance with the renormalisation programme, diagrams like (1.21) still lead to 

finite mass shifts of order m}. This will drive the physical Higgs mass mh,pole up 

to the scale of the heaviest particle that couples to it. If we also consider two-loop 

diagrams this problem even arises if the particle f does not couple directly to the 

Higgs. Thus a Higgs mass at the 100 Ge V scale imposes a strong constraint on any 

theory for BSM physics and it seems logical to concentrate on such models in which 

the smallness of the Higgs mass is explained naturally, for example by some sort of 

symmetry principle. 

1.3 Supersymmetry 

In (unbroken) supersymmetric theories the Hierarchy problem is solved by postulat­

ing a symmetry between bosonic and fermionic fields. The basic idea is to introduce 

a fermionic superpartner for each bosonic field and a bosonic superpartner for each 

2This is a special feature of scalar self-interactions. For fermion self-energy diagrams the first 
term in (1.22) would be absent. 
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fermionic field. The couplings between a field and its superpartner are constrained 

by supersymmetry in such a way that the self-energy corrections cancel. As a conse­

quence there is no mass renormalisation in supersymmetric theories and therefore no 

Hierarchy problem. 

In the case of the loop corrections to the Higgs propagator from some fermion f 
supersymmetry requires the existence of a scalar particle f, whose couplings to hare 

constrained in such a way that 

f 
f \ 

_\ '-
---~---

h(p) h(p) 
=0 (1.23) 

(The fermion loop contributes with opposite sign due to the minus sign associated 

with loops of fermionic particles.) As a result of this cancellation the mass shift 6m~ 

is exactly zero and no fine tuning is required to drive the physical Higgs mass down 

to the scale of 100 Ge V. 

Unfortunately supersymmetry cannot be realised as an exact symmetry. As we 

will see later, the masses of a particle and its superpartner must be equal in a theory 

with exact supersymmetry. This would mean that there should be, for example, a 

super-electron with spin zero and the same mass as the electron. No such particle has 

ever been observed. Therefore, if supersymmetry is realised at all, it must be a broken 

symmetry. The trick is to break supersymmetry in such a way that the quadratically 

divergent term in (1.19) still vanishes. In this case we speak of a softly broken su­

persymmetry. The logarithmic term does not cause any fine tuning problems, since 

even for a bare Higgs mass mh of order 100 GeV the logarithm 10g(Apl/mh) is only 

of order 10. 

Even without knowing how to construct supersymmetric theories in the first place 

we can already work out how to break supersymmetry softly. Generally, the La­

grangian of a theory with softly broken supersymmetry will decompose as 

.c = £SUSy + .csoft (1.24) 

where .cSUSy is a supersymmetric Lagrangian and .csoft contains the soft SUSY break-
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ing terms. Now the mass shift flm~ due to the first diagram in (1.23) is 

(1.25) 

where mf is the mass of the "sfermion" f and Af is the coupling constant associated 

with the four scalar vertex. Comparison with (1.19) shows that, for the cancellation 

(1.23) to work, the couplings Af and Af must satisfy 

(1.26) 

Adding terms with dimensionless couplings to a supersymmetric Lagrangian would 

generally spoil this relation. Therefore the Lagrangian Lsoft can only contain terms 

whose coupling constants have a nonzero (and positive) mass dimension. 

1.4 Superalgebras 

Let us now introduce the formalism of supersymmetry properly.3 As mentioned above, 

supersymmetry is a symmetry between particles with different spin. The possibilities 

for constructing such symmetries are strongly constrained by a powerful no-go theo­

rem proved by Coleman and Mandula [56] in 1967. A very simple and elegant proof 

for this theorem can be found in section 24.1 of [53]. It states that, under certain 

basic assumptions about the properties of the S matrix, the Poincare group P can 

only be extended in a trivial way, i.e. by introducing an internal symmetry whose 

generators commute with the Poincare generators (A. 7). 

However, the Coleman Mandula theorem is only concerned with extending the 

Poincare group to a larger Lie group. Any symmetry of a local field theory that is 

described by a Lie group can only mix bosons with bosons and fermions with fermions. 

To see this assume that there exists a continuous symmetry that mixes a complex 

scalar field ¢ and a (Majorana) spinor field 1jJ. Then the generator Q of this symmetry 

has to satisfy a commutation relation of the form [Q, ¢(x)] ex: 1jJ(x). Hence Q has to 

carry a spinor index and transform accordingly under Poincare transformations. Now, 

if the symmetry group is a Lie group, the generators of a unitary representation of the 

group have to form a Lie algebra under the commutation bracket. This means that 

3Good introductions to supersymmetry can, for example, be found in [53-55]. 
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the commutator of two symmetry generators must also be a symmetry generator. In 

a field theory generators can be written as space integrals over the time components 

of conserved Noether currents JJ1: 

(1.27) 

Via Noether's theorem the currents JJ1 can be expressed in terms of local products of 

field operators. The commutation relations of the symmetry generators then follow 

from the equal time commutation relations of the field operators: 

[¢(t, x), ¢(t, y)] = 6(3)(X - y) (1.28) 

However, if Q transforms as a spinor, its corresponding Noether current must contain 

an odd number of spinor fields 1jJ. According to the spin-statistics theorem the spinor 

fields satisfy anti-commutation relations: 

{1jJ(t, x), 1jJ(t, y)} = 6(3) (x - y) (1.29) 

Therefore the algebra of generators cannot close under the commutation bracket. 

The lesson we learn from this is that, in order to circumvent the Coleman lVIandula 

theorem, we need a wider mathematical concept of symmetry, which allows for gen­

erators that satisfy commutation as well as anti-commutation relations. The solution 

chosen in supersymmetry is to postulate a Z2 grading for the Lie algebra of symmetry 

generators. Let us first define the notion of a Z2 graded algebra or superalgebra. A 

superalgebra is a vector space A = Ao ED Al with an associative bilinear multiplication 

A x A ---+ A. Elements of Ao are called even or bosonic and elements of Al are called 

odd or fermionic. We define the notion of grade on Ao U Al via the map 

{ 

0, a E Ao 
I· 1 : Ao U Al ---+ Z2, a f--t lal = 

1, a E Al 
(1.30) 

Note that a grade cannot be assigned to all elements of A, but only to elements of 

the even and odd subspaces. However, any grade less element of A can be uniquely 

written as the sum of an even and an odd element. The multiplication is required to 
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respect the grading: 

labl = lal + Ibl Va, bE Ao U Al (1.31) 

Note that the addition on the right-hand side is modulo 2. For any superalgebra we 

define the supercommuiaior as 

[a, b} = ab - (-l)lallblba Va, bE Ao U Al (1.32) 

By linearity the definition also extends to ungraded elements of A. If the supercom­

mutator vanishes for all a, b E A the algebra A is called supercommuiaiive. 

A :;£;2 graded Lie algebra or Lie superalgebra is a graded vector space A = Ao EEl Al 

with a bilinear superbrackei [ . , . } : A x A --+ A. For a, b, c E Ao uA I the superbracket 

is required to satisfy 

• compatibility with the :;£;2 grading 

I[a, b}1 = lal + Ibl (1.33a) 

• super skew-symmetry 

[a, b} = -( _1)la 11 bl[b, a} (1.33b) 

• super Jacobi-identity 

(_1)la 11cl [a, [b, c}} + (_1)lb 11al [b, [c, a}} + (_1)lc 11 bl [c, [a, b}} = 0 (1.33c) 

If a, band c are all even, the properties (1.33) are just the defining properties of an 

ordinary Lie bracket. Furthermore, for any superalgebra the supercommutator (1.32) 

has the properties (1.33). Thus any superalgebra together with the supercommutator 

(1.32) is a Lie superalgebra. 

Let us now discuss the possible ways of extending the Poincare algebra (A. 11) to a 

Lie superalgebra. Due to the Coleman Mandula no-go theorem we can only introduce 

additional odd generators or even generators that commute with the "old" Poincare 

generators. The supercommutation relations of these new generators are strongly 

restricted by the space-time symmetries. According to the Haag-Lopuszanski-Sohnius 
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theorem4 the most general extension to the Poincare algebra consists of odd generators 

Q~ and even generators zrs satisfying the (anti- ) commutation relations 

[l\!JJlV, Q~} = _±((}I1l/)ex/3Q~ 

[pi", Q~} = 0 

[Qr Q-S} = 2P '\IJl 5rs + (1+15) ZST* + (1l-~(5) zrs 
ex '/3 Jl I ex/3 2 ex/3 2 ex/3 

[zrs, MJlV} = [zrs, pJl} = [zrs, Q~} = [zrs, Q~} 

= [zrs, ztU} = [zrs, ztu*} = 0 

and the Majorana constraint 

(1.34a) 

(1.34b) 

(1.34c) 

(1.34d) 

(1.35) 

In other words, the indices 00, f3 = 1, ... ,4 are bi-spinor indices and the generators 

Q~ behave like Majorana spinors under Poincare transformations. The indices r, s, t 

and u can run from 1 to some N ~ 1. The bosonic generators zrs are called ceniral 

charges. In the minimal supersymmetric extension to the Standard Model (MSSM) 

we assume that N = 1 and that the central charge vanishes. In this case the Lie 

superalgebra (1.34) simplifies to 

[l\!JJlV, Q ex} = - ± ((}JlV)ex/3Q /3 

[PJl, Qex} = 0 

[Qex, Q/3} = 2PJl'~/3 

1.5 Supergroups 

(1.36a) 

(1.36b) 

(1.36c) 

(1.36d) 

For ordinary symmetries there is a close relationship between the Lie group represent­

ing the symmetry transformations and the Lie algebra of the symmetry generators. 

The group structure of an ordinary Lie group G is reflected by the fact that the 

algebra £( G) of its generators closes under the commutation bracket. Assume that 

the group manifold can be (locally) parametrised by n real numbers ooa E 1R. Then a 

linear representation D of G can be regarded (locally) as a map from an open subset 

4See [57] or section 25.2 of [53]. 
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of IRn to the space of linear operators on some vector space. Without loss of generality 

we may choose the parametrisation in such a way that 

D(O) = 11 (1.37) 

The generators Ta in the representation D are related to derivatives with respect to 

the parameters aa: 

T a = i aD(a) I 
aaa 0;=0 

(1.38) 

By choosing an appropriate parametrisation we can then write the group elements 

D (a) as exponentials of the generators: 

(1.39) 

The group structure of G implies that 

(1.40) 

for some structure function f : IRn x IRn -+ IRn. According to the Baker-Hausdorff 

formula the left-hand side can be written as 

exp( -iaaTa) exp( -if3bT b) = exp( -iaaTa - if3bT b - i~[aaTa, f3bT b] + ., .) 

= exp( -iaaTa - if3bT b - i~f3baa[Ta, Tb] + ... ) . (1.41) 

The higher order terms involve commutators of commutators, but no anti-commu­

tators. Thus, for (1.40) to hold, the algebra of generators must close under the 

commutation bracket. A group manifold that is parametrisable by real numbers 

therefore automatically leads to generators that satisfy commutation relations. 

Since the generators of ordinary Lie groups always form an ordinary Lie algebra, 

we may ask whether we can also define more general groups, supergroups, whose gen­

erators form Lie superalgebras. In fact, this is possible with only a minor relaxation. 

All we have to do is allow the group manifold to be parametrised by ordinary as well 

as Grassmann coordinates. This naturally introduces a Z2 grading to the parameter 

space. The even subspace consists of directions described by ordinary numbers and 

the odd subspace of the Grassmann directions. Likewise, a generator is even if it is a 

derivative with respect to an ordinary coordinate and odd if it is a derivative with re-
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spect to a Grassmann coordinate. Due to (1.38) and the definition of derivatives with 

respect to Grassmann numbers the coordinates supercommute with the generators, 

i.e. 

(1.42) 

Then contractions like aaTa are always even and 

(1.43) 

This means that, for group manifolds which are parametrisable by a Z2 graded space, 

the commutators in the last line of (1.41) must be replaced by supercommutators. 

Consequently, to satisfy (1.40) the algebra of generators must close under the super­

commutation bracket. 

It is now straightforward to extend the Poincare group to a supergroup, the sv,per­

Poincare group SP by exponentiating the generators of the algebra (1.36). For N = 1 

the parameter space of the Poincare group is extended by one (Grassmann-valued) 

Majorana spinor ~a and a general transformation can be parametrised by a Lorentz 

matrix A = 1 +w, a four-vector aIL and a Majorana spinor ~a. In some representation 

D a general group element can be written as 

(1.44) 

1.6 Superfields 

The superfield formalism is a powerful tool to construct field theories that are in­

variant under the super-Poincare group (1.44). To motivate it, let us first review 

how we construct ordinary relativistic field theories. The starting point of any rel­

ativistic theory is defining the affine representation (A.4) of the Poincare group on 

Minkowski space, which leads to the multiplication law (A.5). Then the fields ¢ of 

a relativistic field theory are defined as maps from Minkowski space to some (real 

or complex) vector space whose elements transform under a linear representation D 

of the Lorentz group. The representation D determines the type of the field. For 

example, for D = D(O,O) we speak of scalar fields, for D = D(~'~) we speak of vector 

fields etc. On the space of fields of type D we can then define a unitary representation 
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UD of the Poincare group as follows: 

UD(A, a)¢(x) = D(A)¢((A, a)-Ix) = D(A)¢(A -IX - a) (1.45) 

By considering infinitesimal transformations (] + w, c) we see that, in this represen­

tation, the generators are differential operators acting on the fields ¢: 

UD(] + W, c)¢(x) = ¢(x) - i [CI"( -iol") + ~WI"I/(~xl"ol/ - ~xl/ol" + D(NJI"I/))] ¢(x) 

(1.46) 

Therefore 

UD(MI"I/) = ~xl"ol/ - ~xl/ol" + D(MI"I/) 

UD(PI") -iol" 

(1.47a) 

(1.47b) 

where D(MI"I/), UD(NJI"I/) and UD(PI") denote the Poincare generators in the corre­

sponding representation. To describe the dynamics of the fields we have to construct a 

Lagrangian density £( x) which consists of local products of the fields and transforms 

under Poincare transformations as a scalar field plus a covariant derivative: 

(A,a) 1 1 £(x) -----t £(A - x - a) + 0I"FI" (A - x - a) (1.48) 

Particularly useful for constructing Lagrangian densities are differential operators K 

that transform fields of one type D into fields of another type D'. These operators 

must satisfy 

UDI(A, a)KUi/(A, a) = K (1.49) 

or equivalently 

(1.50) 

They can also be used to impose Poincare invariant constraints K ¢ = 0 on the fields 

¢. For example, the differential operator 01" turns any field of type D into a field of 
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type D(~'~) Q9 D because 

8PUD(PM) = 8P( -iOM) = (-i8M)8P = (UD(~'~) (PM) + UD(PM) )8P 

= UD(~'~)®D(PM)8P 

8P D(NIMV) = 8P[~(XM8V - xV8M) + D(NIMV)] 

= Hg MP8V - gVP8M) + [~(xM8V - XV 8M) + D(NJMV)]8P 

= Ud~'~) (NIMV)P (]'8(]' + UD(NIMV)8P 

= U 1 1 (MMV)P 8(]' D(;V2)®D (]' 

(1.51a) 

(1.51b) 

In other words, the derivative operator 8M adds a Lorentz index to the field it acts on 

and makes it transform accordingly. 

The superfield formalism can be developed by following an analogous procedure 

for representations of the super-Poincare group SP. First we have to define an affine 

representation of SP on the space-time coordinates. Since the elements of SP depend 

on Grassmann-valued parameters, we can only construct a faithful affine representa­

tion of S P if we extend Minkowski space by Grassmann-valued coordinates. In the 

simplest case of an N = 1 supersymmetry we extend Minkowski space by a single 

Grassmann-valued Majorana spinor e. The resulting vector space is called the su­

perspace ]R414. The transformation behaviour of the super-coordinates (x, e) under a 

super-Poincare transformation (A, a,~) is then defined as: 

(1.52) 

where S = D(~'O) D(O,~) denotes the Dirac representation ofthe Lorentz group. This 

leads to the following multiplication law: 

(A', ai, ()(A, a,~) = (A'A, A'a + al + ie,S(A')~, S(A')~ + () (1.53) 

In analogy to ordinary relativistic fields we define superfields of type D as functions 

F of the super-coordinates x M and e, which transform under a super-Poincare trans­

formation (A, a,~) according to a representation UD defined by: 

UD(A, a, ~)F(x, e) = D(A)<p((A, a, ~)-l(X, e)) (1.54) 
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The generators in this representation are 

UD(MMI/) = ~ [XMOI/ - Xl/aM + ~eex(O"MI/)ex/J o~/Jl + D(MMI/) 

UD(PM) = -iBM , 

- a 
UD( Qex) = -i oeex - (fjJe)ex 

We also define 

(1.55a) 

(1.55b) 

(1.55c) 

(1.56) 

It can easily be checked that these operators satisfy the super-commutation relations 

(1.36). We can also define a super-equivalent to the derivative Ow Just like OM adds a 

Lorentz index to the field it acts on, we can define a super-derivative Vex which adds 

a spinor index to the superfield it acts on. Let 

(1.57) 

By calculating their super-commutators with the generators (1.55) we can show that 

they satisfy 

(1.58) 

To write down the most general scalar superfield F we expand in the Grassmann­

coordinates e. Since any power series of a Grassmann number aborts after first order 

we only get terms with up to 4 different es. A convenient basis for the Grassmann 

algebra generated by the es is 

(1.59) 

Any product of es can be expanded in this basis via the relations 

ee = i[-(ee)1 + (e'M,5e)rM,5 - (e'5e)r5] 

(e'5e)e = -(ee)e'5 , (e,M'5e)e = -(ee)e,M'5 (ee)ee = -~(ee)21 
(1.60) 
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In this basis the expansion of F reads 

F(x, 0) = C(x) + eX(x) + ~(eO)M(x) + ~er50N(x) - ~er/lr50[10L(X) + a/LC(x)] 

- ~(eO)e[A(X) + ¢JX(x)] - ~(eO?[D(x) + OC(x)] (1.61) 

(This slightly obscure parametrisation will become clear later on.) The fields C, X, 

M, N, A and D are called component fields. Depending on the number of Os in front 

of them we speak of zeroth, first, second, third or fourth order components. The 

behaviour of the component fields under super-Poincare transformations is dictated 

by the transformation law (1.58) (with D(A) = 1). Under ordinary Poincare trans­

formations the coefficients C, M, Nand D behave like scalar fields, X and A like 

bi-spinor fields and V/l like a vector field. If F is also required to be real, i.e. satisfy 

Ft = F, the components C, M, N, D and V/l must be real scalar and vector fields 

and X and A must be Majorana spinors. 

To determine the behaviour of the component fields under a supersymmetry trans­

formation (:fl., O,~) we have to calculate 

(1.62) 

Substituting (1.61) in (1.62) and reading off the coefficients of the basis (1.59) yields 

the variations 6~¢, 6~X, 6~M etc. of the component fields. Without doing the full 

calculation we can already anticipate an important result: Note that the first term 

in the last line of (1.62) is a derivative with respect to the Minkowski coordinates x/l. 

Contributions from this term to the variation of any component field will therefore 

always be a total derivative of some other (or the same) component field. The second 

term in (1.62) is a derivative with respect to the Grassmann coordinates O. In the 

expansion (1.61) it reduces the number of Os in each term by one. Hence the variation 

of some n-th order component field due to this term only comes from component fields 

of order n + 1. In particular, the variation 6~D gets no contributions from this term. 

Consequently the D-term transforms like a total derivative. This means that we can 

construct SUSY-invariant Lagrangian densities from D-terms of scalar superfields. 

The sum of all D terms in a Lagrangian is called the K iihler potential. 

Real scalar superfields are an important building block in the MSSM. Another 
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important ingredient are chiml super-fields. A left-chiral superfield is a (complex) 

superfield <I> that satisfies the constraint 

(1.63) 

For a right-chiral superfield we replace the right-handed projection operator ]~'5 by 

the left-handed projection operator ]-;,5. In particular, the complex conjugate of a 

left-chiral superfield is a right-chiral superfield because: 

(1.64) 

and therefore lha<I>t vanishes if DRa<I> vanishes. Another important feature of left 

(right) chiral superfields is that a product of only left (right) chiral superfields is again 

left (right) chiral. This follows immediately from the Leibniz rule of the superderiva­

tive: 

(1.65) 

Let us concentrate on left-chiral fields for the moment. To find an expansion like 

(1. 61) we use a little trick. For an arbitrary scalar superfield <I> (x, e) define 

so that 

Then 

( 
]+,5 D) & _ (1+,5 \ 8<I> 

2 a - \ 2 J a{3 De {3 

(1.66) 

(1.67) 

(1.68) 

so that the constraint DRa<I> simply means that & must have no explicit dependence 
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(1.69) 

Since OL has only two independent components the expansion of ~ terminates at 

second order: 

(1. 70) 

(Remember that eR = Ore due to the Majorana condition (1.35).) The components 

¢ and F are scalar fields and 1jJ L is a left-handed spinor field. Substituting (1. 70) in 

(1.66) yields the 0 expansion of <I>: 

<I> (x, 0) = ¢(x) + heJl-;'51jJ(x) + e1
-;'5 0F(x) - ~e,/1'500/1¢(X) 

- .:n(eo)e,/1 Jl-;15 o/11jJ(x) - ~(eO)2D¢(x) (1. 71) 

By comparing with (1.61) we see the reason for our awkward definition of the com­

ponents of a general scalar superfield: In terms of component fields, a left-chiral 

superfield is a scalar superfield with 

XR = 0 , V/1 = 0 , D = 0 and M = -iN . (1. 72) 

We also see that the vector component ofi(<I>-<I>*) is the total derivative 0/1 Re¢(x), 

which means that for a real vector field F the transformation 

F --t F + i( <I> - <I>*) (1.73) 

performs an (abelian) gauge transformation on the vector component of F. Inspection 

of (1. 71) also shows that the highest order term for which the associated component 

field is not a total derivative is the F term. We know that under a supersymme­

try transformation (X, O,~) the variation of any given component field only contains 

non-derivative terms from higher order components. Consequently the F term of a 

chiral superfield must also transform as a total derivative and can therefore be used 

to construct supersymmetric Lagrangian densities. The sum of all such terms in a 

Lagrangian is called the superpotential. 
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1.7 Supersymmetric Gauge Theories 

In the last section we introduced the two most important building blocks for con­

structing supersymmetric Lagrangians: the D terms of real scalar superfields and 

the F terms of chiral superfields. Before we start to construct supersymmetric La­

grangians let us briefly talk about mass dimensions. The Minkowski space coordinates 

Xll have mass dimension -1. Thus a Lagrangian density must have mass dimension 

4 so that its integral over Minkowski space is dimensionless. From the superspace 

transformation law (1.52) it follows that the Grassmann coordinates e must have 

mass dimension -1/2. Therefore a scalar superfield must have mass dimension 1 if 

we want its lowest order component field to be a scalar field with the usual mass 

dimension 1. The same superfield will then also provide us with a spinor field of mass 

dimension 3/2. However, to obtain a vector component with mass dimension 1 we 

have to consider dimensionless scalar superfields. 

Now assume we have a set of n left-chiral superfields <Pi of mass dimension 1. 

Then the most general renormalisable supersymmetric Lagrangian density is 

L: == L:kin L:pot 

with 

L:kin == 2[<p:<pd(iJO)2 

L:pot 2[~mij<pi<pj + ~Yijk<Pi<Pj<Pk Ai<Pi + h.c·leo 

(1.74) 

(1.75a) 

(1.75b) 

Here [ .. . loo and [ .. . l(oo)2 denote the coefficient of the corresponding term in the e 
expansion of the superfield in the brackets, i.e. the F term and D term, respectively. 

The mij are mass parameters of mass dimension 1 and Yijk are dimensionless coupling 

constants. Terms with more <PS would have to be contracted with couplings of negative 

mass dimension, which lead to non-renormalisable theories. Since the <Pi commute 

we can assume without restriction that mij and Yijk are symmetric in their indices. 
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In terms of component fields the Lagrangians read 

£kin = ii[;Lil)1/JLi - rP7 0 rPi + Ft Fi 

£pot = mij (rPiFj - ~ (i[;Li)c1/JLj) 

+ Yijk(rPirPjFk - (i[;Li)c1/JLjrPk + cycl.) + AiFi + h.c. 

(1.76a) 

(1.76b) 

where 'C' denotes charge conjugation and, in accordance with (B.61), ;j;c = 1/J Te. The 

abbreviation 'cycl.' indicates cyclic permutation of the indices i, j and k. Note that 

there are no kinetic terms for the fields Fi . This means that they do not represent 

independent dynamical degrees of freedom, but can be integrated out and expressed 

in terms of the other fields. In such a case one also speaks of auxiliary fields. For the 

Lagrangian above we have: 

D '* * A.* * A.* ~* ri = -/Ii - mij'Yj - Yijk'Yj'Yk 

Substituting this in (1. 76) yields the following kinetic terms and mass terms: 

(1. 77) 

(1.78) 

By diagonalising the mass matrix mij we see that this Lagrangian describes scalar 

particles and Majorana fermions with the same mass. Thus we have proved the 

statement we made earlier in this chapter: In a theory with unbroken supersymmetry 

each particle has the same mass as its superpartner. 

Now let us try to construct a theory with gauge symmetry. Assume the superfields 

<Pi transform under some (not necessarily irreducible) n dimensional representation 

of a compact semi-simple Lie group with generators T a . A general transformation is 

of the form 

(1. 79) 

for some real parameters Aa. The Kahler potential of the Lagrangian (1.75) is auto­

matically invariant under these transformations. By considering infinitesimal trans­

formations we see that the superpotential is invariant if 

Let us assume for now that the model parameters mij, Yijk and Ai are chosen so that 



CHAPTER 1. THE STANDARD MODEL AND ITS SUSY EXTENSION 24 

these conditions are satisfied. 

To make the gauge symmetry local we have to promote the parameters A a to 

dimensionless left-chiral superfields. The requirement that A a is left-chiral assures 

that <'pI = exp(-iAaTa)<'p is stillleft-chiral. Now the superpotential is still invariant, 

but <.P?<.Pi transforms as 

(1.81) 

Here we suppressed the indices i, j, etc. and used the shorthand 

A = AaTa (1.82) 

From now on, any bold symbol X is to be understood as a n x n matrix which can 

be written as xaTa. One might be tempted to require that the Aa are real, but in 

that case they would be left and right chiral at the same time. This would mean that 

all superderivatives of Aa vanish. Then A a would be a constant and we are back at a 

global gauge transformation. To permit gauge transformations that are actually local 

we therefore have to allow the A a to be complex. 

In non-supersymmetric theories the gauge invariance of the kinetic terms is re­

stored by the introduction of gauge bosons, which are real vector fields of mass di­

mension 1. As we already know that dimensionless real scalar superfields have vector 

components of mass dimension 1 we can easily guess the correct solution: We intro­

duce new real scalar superfields va which transform in such a way that 

(1.83) 

and rewrite the Kahler potential of (1. 75) as [<'pt e v <.p 1 (ee)2. In the abelian case (n = 1) 

the transformation law (1.83) reduces to V --+ V +i(A-A*), which we already identi­

fied as the correct supersymmetric generalisation of an abelian gauge transformation 

on a vector field. 

To construct a gauge invariant kinetic term for the fields va we exploit the fact 

that the trace of any expression W = waTa that transforms like 

W --+ e-iAWeiA (1.84) 
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is gauge invariant. This follows immediately from the cyclic property of the trace. 

From (1.83) we see that e-v transforms as 

(1.85) 

Because the A a are left-chiral fields the matrices A satisfy 

(1.86) 

Thus, using the Leibniz rule, we see that the derivative e-vVLe v transforms in the 

desired way: 

e-v VLc~e v -t e-iAe-V e iAt VLae-iAt e v eiA 

e-iAe-VeiAt (-iVLa A t)e-iAt e v eiA + e-iAe-V e iAt e-iAt VLae V eiA 

(1.87) 

Unfortunately the trace of this expression does not depend on V at all. To construct 

a matrix whose trace does actually depend on V consider the expression 

It transforms as desired under gauge transformations because 

W La -t fhVRe-iAe-VVLae v eiA 

= (-ii5LVRA)e-iAe-VVLae v eiA + e-iA15LvRe-VVLae V eiA 

= e-iAWLaeiA 

Furthermore, W La satisfies 

(1.88) 

(1.89) 

(1.90) 

because 15L = V~C and {VRal V R;3} = 0 so that a product of three or more right­

handed derivatives always vanishes. Analogously we define 

(1.91 ) 
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which also transforms like (1.84) and satisfies DLjJWRa = O. Consequently the traces 

and Tr(WLWR ) (1.92) 

are chiral superfields and we can use their F terms to construct the kinetic terms for 

the va. These terms also have the correct mass dimension. The full supersymmetric 

and gauge invariant Lagrangian now reads: 

1 - t v 
£ = -2 Tr[WW]ee + 2[<P e <P](ee)2 

8g 

where 9 is the coupling constant associated with the gauge symmetry. 

To determine the physical degrees of freedom we have to fix the gauge in the 

Lagrangian (1.93) and then integrate out the auxiliary component fields, which do 

not have a kinetic term. This is a rather tedious procedure with a very simple result: 

For the chiral fields <Pi we already know that the F component is an auxiliary field. 

Therefore the "matter" degrees of freedom are the fermion components 1/Ji and their 

scalar partners (Pi- In the case of the superfields va fixing the gauge and integrating 

out the auxiliary fields gets rid of most components. The only two components that 

remain are the vector component Vi-! and the fermionic component A. Thus we see that 

supersymmetry does exactly what we advertised at the beginning: It gives each field a 

superpartner, whose spin differs by 1/2. The constraints that supersymmetry imposes 

on the interactions between these fields give rise to a series of non-renormalisation 

theorems. A discussion of these theorems is beyond the scope of this introduction but 

can be found in [58] or chapter 27.6 of [53]. As mentioned earlier, these theorems show 

that masses do not renormalise in supersymmetric theories. Therefore the hierarchy 

problem does not exist in a supersymmetric theory. 

1.8 The MSSM 

With the preparations from the last section it is now easy to write down the (su­

per ) field content of the minimal supersymmetric extension to the Standard Model. 

In our discussion and notations we will closely follow [59]. 
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component fields gauge representation 
superfield spin 0 spin 1/2 spin 1 SU(3)c SU(2)L U(l)y 

(1)L){ i{ = (vI, ei) L{ = (vI, ei) 1 2 -1 
( 1>e)I (e~)* (e~)C 1 1 +2 
(1)Q){ Q{ = (ili, eli) Q{ = (ui,di) 3 2 +1/3 
(1)u)I (il~)* (u~)C 3 1 -4/3 
( 1>d)I (el~)* (d~)C 3 1 +2/3 

v,a 
G 

Aa Ca 8 1 0 

Vvv )..i 
W 

Wi 1 3 1 
VB )..B B 1 1 0 

(1) Hl1)i (Hf, H~) ('ljJl' 'ljJ2) 1 2 +1 
(1)Hd)i (Hf, Hf) ('ljJd 'wd) l' , 2 1 2 -1 

Table 1.3: Superfields of the MSSM, their physical component fields and their transforma­
tion behaviour under the SU(3)c x SU(2)L x U(l)y gauge group. The capital indices I are 
generation indices. The lowercase indices i correspond to the SU(2)L gauge group. Colour, 
spinor and Lorentz indices are suppressed. The bold numbers in the columns SU(3)c and 
SU(2)L denote the representation of the corresponding gauge group, under which the su­
perfields in each row transform. The numbers in the U(l)y column denote the (weak) 
hypercharge of these fields. 

Basically, all we have to do is to promote all matter fields from table 1.1 to left­

chiral superfields and all gauge fields to real scalar superfields, whilst preserving their 

transformation behaviour under the SU(3)c x SU(2h x U(l)y gauge group. Our 

notations for these fields and superfields are summarised in table 1.3. Note that, once 

we have decided to use left-chiral superfields, all spinor component fields must be 

left-handed. For an arbitrary right-handed spinor 'IjJ the charge conjugate (?/JRY of its 

right-handed component is left-handed, because 

(1.94) 

Hence we write the left-handed spinor components of 1>e, 1>u and 1>d as charge­

conjugates of right-handed spinors eR, UR and dR. The only non-straightforward 

modification is the introduction of two Higgs (super- ) doublets instead of one. We 

will soon understand the reason for this. 

Once the superfield content of the MSSM is established we have to define the 

superpotential in such a way that the interaction terms of the Standard Model are 

reproduced. Since all masses in the Standard Model are generated by the Higgs 
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mechanism, this task reduces to reproducing the Yukawa interactions (1.14). The 

last two terms of (1.14) are easily obtained from the following F terms: 

2[cijyIJ(<PHd)i(<Pd)I(<pQ)flee = -cijyIJHlJ1Qf 

2[cij y/ J (<p Hd)i (<p e)I (<p L) flee = -Cij y/ J Hide1Lf 

(1.95a) 

(1.95b) 

which agrees with the terms in (1.14) for Hj = cijHf. The only problem is the first 

term of (1.14). To generate masses for the up-type quarks we have to contract the 

SU(2)L index of the left-handed doublet Q with a Higgs doublet that transforms as 

a 2 representation under SU(2)L and whose first component has a nonzero VEV. In 

the Standard Model such a doublet is give by the complex conjugate doublet H*. 

Unfortunately the superpotential can only depend on the superfields and not their 

complex conjugates, so we cannot use the same trick in the MSSM. Instead we have 

to use two Higgs doublets with orthogonal VEV s: 

(1.96) 

This allows for another term in the MSSM superpotential: an interaction term be­

tween the two Higgs doublets, also known as fl term. The full MSSM superpotential 

now reads 

.cpot = 2 [flCij(<PHd)i(<PHu)j +Cijy/J(<PHd)i(<Pe)I(<PL)f 

+ cijyIJ(<PHd)i(<Pd)I(<pQ)f + Cijy!J(<PHU)i (<Pu)I(<pQ)f] ee + h.c. . (1.97) 

There are other SUSY and gauge invariant terms, but they would break lepton or 

baryon number conservation. To get rid of these terms one usually assumes conserva­

tion of an additional discrete symmetry called R-parity. The R-parity of a field with 

spin j, lepton number L and baryon number B is defined as 

R = (-1 )L+3B+2j (1.98) 

We should point out that the superpotential (1.97) does not allow the scalar 

components of the Higgs doublets to acquire nonzero VEVs and break the electroweak 

SU(2h x U(1)y symmetry. Electroweak symmetry breaking in the MSSM is closely 
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linked to the breaking of supersymmetry itself. As we explained in section 1.3 we must 

assume a softly broken supersymmetry if we want to solve the hierarchy problem. \Ve 

also saw that, in order to break supersymmetry softly, we can only add interaction 

terms to the Lagrangian which have a positive, nonzero mass dimension. In the case 

of the MSSM these soft breaking terms can be divided into four groups: 

• Mass terms for the sfermions: 

-m1d(Hid )*Hid 
- m~l1(Hn*Hiu - (mDIJ(L{)*Lf - (m~)IJ(e~)*e~ 

-(mb)IJ (Q{)*Qf - (m~)IJ (d~)*d~ - (m;JIJ (u~)*uk (1.99a) 

• Mass terms for gauginos: 

(1.99b) 

• Trilinear couplings of the scalar fields, analogous to the Yukawa terms in the 

su perpotential: 

(1.99c) 

• Trilinear couplings of the scalar fields, which are not of the same form as the 

Yukawa terms. These are also called non-analytic terms since they involve 

conjugated Higgs fields. Usually such terms are not considered because they 

are not generated in the most popular models for supersymmetry breaking: 

(1.99d) 

Determining the minimum of the Higgs potential in the softly broken Lagrangian 

leads to the following relations between the vacuum expectation values VI and V2 and 

the soft breaking parameters m~d' m~u, mI2 and p: 

(1.100a) 

(1.100b) 
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Now that we know the full MSSM Lagrangian we have to bring it into a form fit 

for phenomenological studies. This procedure can be divided into four steps: 

1. Absorb unphysical phases into a re-definition of the fields. 

2. Expand the Higgs fields around the vacuum expectation values. 

3. Fix the gauge. 

4. Diagonalise the mass matrices generated in step 2. 

Fortunately, this work has already been done and the results, including a complete 

list of Feynman rules, are given in [59]. With respect to step 1 note that all the 

Yukawa matrices and soft breaking parameters in the MSSM Lagrangian can, in 

general, be complex. Some of these phases and parameters can be removed by a 

re-definition of the fields. As usual for phenomenological studies, we work in the 't 

Hooft-Feynman gauge. The mass matrices are diagonalised by linear transformations 

of the component fields described by mixing matrices. After the diagonalisation these 

matrices appear in the interaction terms of the Lagrangian and consequently in the 

Feynman rules. To clarify our notations it is sufficient here to state which of the 

component fields from table 1.3 mix into which physical fields. For explicit instructions 

on how to compute the mixing matrices we refer to [59]. 

• As in the Standard Model, the electroweak gauge bosons mix to give three 

massive modes (Wi, ZZ) and one massless mode (the photon Afi)' 

• Two Higgs fields, one from each doublet, mix to give us two charged Higgses: 

However, only HI is a physical field. The field H2 is an unphysical, massless 

Goldstone boson. 

• The real parts of the other two Higgs fields mix into two neutral scalar Higgses: 



CHAPTER 1. THE STANDARD MODEL AND ITS SUSY EXTENSION 31 

• The imaginary parts mix into two neutral pseudo-scalar Higgses: 

Again, only A~ is a physical field and A~ an unphysical, massless Goldstone 

boson . 

• The left and right-handed components of the quark fields combine to give us 

massive Dirac fields 

By mixing different generations we diagonalise the Yukawa couplings. This 

procedure generates the Cabibbo-Kobayashi-Maskawa matrix of the Standard 

Model. 

• Two electroweak gauginos and two Higgsinos combine into two charged, massive 

Dirac fermions called charginos: 

Note that the AS are Majorana fermions and the ?jJs are left-handed fermions, 

so they all have only two degrees of freedom. The charginos Xl and X2, on the 

other hand, have four each, so the number of degrees of freedom is preserved. 

• The remaining electroweak gauginos and Higgsinos combine into four neutral 

Majorana fermions called neutralinos 

• The SU(3)c gauginos do not mix: 

• The partners of the left and right-handed up-type quarks mix, across genera-
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tions, into six up-type squarks: 

.. Likewise, the partners of the left and right-handed down-type quarks mix into 

six down-type squarks: 

1.9 SUSY Breaking Models 

From a phenomenological point of view, the main problem with the MSSM is its 

large number of parameters. The soft SUSY breaking terms (1.99) introduce 105 new 

fundamental parameters in addition to the parameters of the SM. However, there 

are strong indications that the MSSM parameters are constrained by some organ­

ising principle, since most "random" sets of parameters are in strong disagreement 

with experimental bounds on flavour mixing and CP violation (see [60] and references 

therein). These disagreements can be avoided by imposing suitable universality con­

ditions on the soft breaking parameters. Usually these conditions require the sfermion 

mass matrices from (1.99a) to be proportional to the identity matrix and the trilinear 

couplings from (1.99c) to be proportional to the corresponding Yukawa couplings. In 

other words: 

(ml)IJ = m15IJ (m~)IJ = m~5IJ 

(m~)IJ = m~5IJ (m~)IJ = m~5IJ (m;JIJ = m;5IJ 

AIJ - A yIJ d - d d AIJ = A yIJ u u u 

(1.101a) 

(1.101b) 

(1.101c) 

The last condition assures that the soft breaking parameters do not introduce any 

new CP violating phases. 

One might now be tempted to simply impose the universality conditions as an 

additional constraint on the MSSM parameter space. The problem with that approach 

is that the conditions (1.101) are not preserved under the renormalisation group 

evolution of the MSSM parameters. We will discuss the issue of renormalisation in 
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detail in chapter 3. Here it is sufficient to say that the regularisation of the theory 

via dimensional reduction forces us to introduce a new, arbitrary mass scale Q called 

the renormalisation scale. All parameters of the theory depend on Q. To assure the 

convergence of a perturbative expansion we have to choose Q to be of the same order 

as the typical energy scales of the process under consideration. From the interactions 

of the theory we can derive a set of differential equations, called renormalisation 

group equations (RGE), which determine the dependence of the parameters on Q. If 

all parameters are known at some renormalisation scale Ql the RGEs predict their 

values at any other scale Q2. It now turns out that, if the conditions (1.101) are 

satisfied at Ql, they will no longer be satisfied at Q2. It can, however, be shown that 

the deviations are small, even if Q is varied over many orders of magnitude. 

This indicates that the universality conditions (1.101), or stronger versions of 

them, could be satisfied at some large energy scale Qo, called the input scale. At that 

scale flavour mixing and CP violation might be absent altogether due to some higher 

symmetry of the Lagrangian, involving the MSSM fields and other fields which have 

not been discovered yet. Running the parameters down to the electroweak scale then 

leads to small deviations from (1.101) and could explain the smallness of these effects. 

An indication that this programme could actually work is given by the celebrated 

gauge coupling unification of the MSSM. The existence of supersymmetric partners 

of the Standard Model particles with masses roughly at the 1 Te V scale modifies the 

RG evolution of the gauge couplings in such a way that they coincide at a scale of 

1016 Ge V (see figure 1.1). This unification can be taken as a strong hint towards 

so-called Grand Unified Theories (GUT). In any case it suggests that the Lagrangian 

has some higher symmetry at energy scales near the Planck scale. 

To understand how patterns like (1.101) emerge at any scale, we have to consider 

models in which supersymmetry is broken spontaneously5. Unfortunately, it is im­

possible to break SUSY spontaneously using only the fields of the MSSM. The reason 

for this is that there exists a sum rule for the masses in a supersymmetric theory, 

namely: 

(1.102) 
all real scalars cp all chiral fermions X 

This rule holds trivially for an unbroken supersymmetry, since the masses of the 

fermions and their su perpartners are identical. However, it can be shown that (1.102) 

5For more information on spontaneous supersymmetry breaking see [53-55,61]. 
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Figure 1.1: RG evolution of the inverse gauge couplings cy;l(Q). Here CYi = 9;;47f, where 
93 is the strong (QeD) coupling, 92 = 9 and 91 = J5139'. The dashed lines show the 
Standard Model result. In the MSSM case Ct3(mz) is varied between 0.113 and 0.123 and 
the (universal) mass of the supersymmetric particles between 250 GeV and 1 TeV. The plot 
was taken from [61]. 

also holds if supersymmetry is spontaneously broken. In the case of the MSSM we 

already know that the fermion masses are all much smaller than the masses of their 

superpartners, so the rule (1.102) cannot hold for the MSSM spectrum alone. To 

construct a model with spontaneously broken supersymmetry we therefore have to 

extend the MSSM. 

The general strategy is to postulate some hidden sector of fields which have no or 

very weak direct couplings to the "visible sector" of MSSM fields. Supersymmetry is 

broken spontaneously in the hidden sector and this breaking is then communicated by 

mediating interactions to the visible sector. If the mediating interactions are flavour 

blind, this would provide an explanation for universality conditions like (1.101). There 

are two main proposals for the nature of these mediating interactions: 

Gravity-mediated SUSY breaking scenarios assume that supersymmetry break­

ing is communicated to the visible sector by gravitational interactions. This 

would automatically explain why the mediating interactions are flavour-blind. 

Gauge-mediated SUSY breaking introduces new messenger particles which cou­

ple to a SUSY breaking VEV and are also charged under the SU(3)c x SU(2)L x 

U(I)y gauge group. 
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Anomaly Mediated SUSY breaking is special type of gravity mediated SUSY 

breaking in which the SUSY breaking is communicated to the MSSM through 

the conformal anomaly. 

A more detailed discussion of different SUSY breaking scenarios can be found 

in [61]. Here we merely wanted to convey the idea that SUSY breaking models are 

work in progress and that, from a practical point of view, it would be unwise to lim.it 

phenomenological studies to one specific SUSY breaking scenario with a specific set 

of universality conditions. Whenever possible, phenomenological calculations should 

be done for arbitrary values of the full set of MSSM parameters. This is the approach 

we take in this work. For a first analysis, however, it is sensible to study benchmark 

points of the parameter space, which assume specific SUSY breaking scenarios. At 

the Snowmass meeting of 2002 a collection of 10 such benchmarks was compiled [45] 

and we will perform our analysis of supersymmetric effects on top quark production 

for these 10 parameter sets. 



Chapter 2 

tt Production Amplitudes 

As explained in the introduction, we calculate in this work the supersymmetric one­

loop corrections to top-antitop production amplitudes within the MSSM framework. 

At the LHC top quarks will be produced from proton-proton collisions at the 1 TeV 

scale. At this scale protons should be thought of as a mix of light quarks and gluons, 

held together by strong (QCD) interactions. According to the factorisation theorem 

[62] the actual collision only takes place between two of these partons - one from each 

proton. Consequently the two production channels for top quarks at the LHC are 

quark-antiquark scattering and gluon fusion. 

In this chapter we set up a general strategy for calculating the Feynman diagrams 

contributing to these two channels. The basic idea is the following: After cutting off 

the fermion legs from a given diagram it becomes a tensor with either two or four 

spinor indices. We then expand this object in a conveniently chosen basis of (tensor 

products of) Dirac matrices. The problem of contracting the indices of the tensor 

with the Dirac spinors uA(p), vA(p) etc. then reduces to calculating the contractions 

of these spinors with the basis tensors. The coefficients of the expansion can be 

calculated by contracting the basis tensors with the tensor representing the diagram. 

The reason for this procedure is that most computer algebra systems that are 

currently available (we used FORM [63J for this calculation) have efficient algorithms 

to calculate traces of Dirac matrices, but few if none allow Dirac spinors as built-in 

objects. Hence the coefficients of the basis expansion can be calculated by computer 

algebra. The contraction of the basis tensors with the Dirac spinors has to be done 

on paper but turns out to be a manageable task. 

36 
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We will now explain the details of this strategy for both production channels. Most 

of the quantum field theory results and notations used in this chapter are summarised 

in the appendices A and B. 

2.1 Quark Scattering 

Consider the process 

(2.1) 

where q denotes a massless quark and t is the top quark with mass mt m. The 

symbols fi and t denote the corresponding anti-quarks. The first argument is the 

spatial momentum of the particle. The second argument specifies the helicity. For the 

moment we ignore the colour indices. They will be accounted for when we construct 

the interference terms. At tree level the amplitude for the process (2.1) vanishes for 

(J1 = (J2· We therefore restrict ourselves to the case 

(2.2) 

According to the Feynman rules in table B.l in the appendix the matrix element for 

the process (2.1) takes the general form 

Mo-)I1'\2 (k1' k2; PI, P2) = L V~(k2)V;'\1 (pdfclC,;35(k1 , k2; PI, p2)u~(kdui2 (P2) ,(2.3) 
{f} 

where a, /3, I and 5 are spinor indices, the colour indices are suppressed, k~ = Ik11, 
k~ = Ik21, p~ = VPI + m2 and p~ = VP~ + m 2

. 

The spin tensors r represent the amputated Feynman diagrams. In terms of 

vacuum expectation values of time ordered products of field operators we have 

L r ex~f;35 (k1' k2; PI, P2)5klk/lP2 
{r} 

rv S-l (k2)exexIS-1 (pr)", (01 T{ qex1k2fi;3lkl t,'plt5'p2} 10) S-1(k1);3I;3S-1(P2)515 (2.4) 

where q and t are the field operators corresponding to light quarks and top quarks, 

respectively, and S-l denotes the inverse Dirac propagator (E.g). The momentum 
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indices represent Fourier transforms of the corresponding field operator in accordance 

with the notation (B.ll). The tilde 'rv' indicates that both sides are equal in the 

limit where the momenta kl, k2' PI and P2 go on shell. The sum on the left-hand 

side runs over all Feynman diagrams of the desired order. Each r can be expressed 

in terms of products of Dirac matrices. 

Let {r~n I r = 1 ... 16} and {r~ut I r = 1 ... 16} be two different bases of the space 

([:;4,4 of complex 4 x 4 matrices. Assume that they are orthogonal with respect to the 

trace product ( . , . ) defined in (A.48). A basis of the space ([:;4,4 ® ([:;4,4 of rank 4 spin 

tensors can be constructed from tensor products of these matrices. The matrix tensor 

product is defined by 

(rin M rout) rin rout 
r 'CJ S 0.,(315 = ro.(3 s,15 

We also define an inner product on ([:;4,4 ® ([:;4,4 by 

(r, r') = L r o.(3,15r~15o.(3 
0.,(3",15 

(2.5) 

(2.6) 

for arbitrary r, r' E ([:;4,4 ® <[;4,4. The basis (2.5) is orthogonal with respect to this 

inner product. Specifically 

(rin M rout rin M rout) = (rin rin) (rout rout) = Tr(rinrin) Tr(routrout) (2.7) 
r \C;! S , r' \CY s' r' r' s' Sl r r' s S' 

Expanding r in this basis we get 

r = """ c rin M rout 
~ rs r 'CJ s 
r,s 

Now the matrix element M can be written as 

r,s 

(2.8) 

To simplify our expressions we should choose the bases {r~n} and {r~ut} in such a 

way that in the sum (2.9) as many matrix elements as possible vanish. 

Let us start with the basis {r~n}. A convenient basis of the space ([:;4,4 is given 

by the (anti-symmetrised) products of Dirac matrices (A.46). Let rin be an arbitrary 

complex 4 x 4 matrix. If rin commutes with /5 the matrix element i?'(k2)rinuo-(kl) 
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vanishes because 

iTU<7(k2)fillU<7(kl) = V<7(k2)fill'5U<7(kl) 

= V<7(k2h5fiI1U<7(kl) 

= -o"V<7(k2)fiIlU<7(kd 

39 

(2.10) 

In particular every product of an even number of , matrices commutes with ,5. 
Therefore, if we expand fill in the basis (A.46) only the terms proportional to ,fL and 

,fL'5 contribute to the matrix element v<7(Pb)fiIlU<7(Pa). Thus we can write 

V<7(k2)fillU<7(kl) = afLv<7(k2hfL u<7(kl) + bfLv<7(k2),fL'5U<7(kd 

= C~V<7(k2hfL Ji~'Y5 U<7(kl) + c~v<7 (k2hfL Ji-;'Y5 U<7(kl) 

= C~V<7(k2hfLH;'Y5U<7(kl) 

where c~ afL + O"bfL and 0" = ±1. 

(2.11) 

The incoming four-momenta kl and k2 will usually be linearly independent. We 

can therefore choose two four-vectors el and e2 in such a way that the set {el' e2, kl' k2} 

is a basis of IR4. We further require that el and e2 are orthogonal to kl and k2 and 

to each other with respect to the Minkowski product and that ei = e~ = -1. Note, 

however, that {el' e2, Pa, Pb} is not an orthogonal basis since, in general, kl · k2 #- O. 

Expanding the coefficients c<7 in this basis we get 

(2.12) 

After substituting this in (2.11) we can use the fact that the Dirac spinors satisfy the 

momentum space Dirac equations (B.7) with m = O. Therefore the terms proportional 

to kl and k2 vanish and we can write (2.11) as 

(2.13) 

with 

(2.14) 

Using the relations (A.49) and the orthogonalities between el, e2, Pa and Pb we find 

(2.15) 
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Thus, if we complete the set {a'[, an to a basis of <[;4,4 and use this basis in the 

expansion (2.9), only the terms with r~n = 00'[ or 002" will contribute. 

The matrix elements of r~ut have to be calculated between massive states. There­

fore all basis matrices from (A.46) have to be taken into account, so we may as well 

use this basis in the expansion (2.9). Thus we can write the spin tensor r as 

2 

r rv "" [aiIY a IY 01L + aiIY a'! 0 ryJL + ciIY a IY 0 (Yw' + biIY a IY ® ryJLry + biIY a IY 0 ry ] ~ ~ JL ~ / JLV ~ JL 2 / /5 ~ /5 , (2.16) 
i=l 

where the tilde 'rv' indicates that we have dropped terms that vanish in the expansion 

(2.9) for the amplitude. Note that we use a different basis expansion for each value of 

(Y. We can project out the coefficients using equation (2.7) and the relations (A.49) 

and (2.15). 

(2.17a) 

(2.17b) 

(2.17c) 

(2.17d) 

(2.17e) 

In the computation of the matrix element (2.3) we can exploit the fact that the Dirac 

spinors satisfy the on-shell conditions (B. 7) and write 

Therefore 

UA1 (pdlLv- A2 (P2) = PIJLUAl(PlhJLv-A2(P2) 
m 

UAl(pdi5V-A2(P2) = PIJLUAl(PlhJLi5V-A2(P2) 
m 

2 

(2.18a) 

(2.18b) 

M IY ;AIA2 (kl) k2; PI, P2) = L [ (a: + aiIYP~) UA1 (Plh JLv-A2 (P2) vIY (k2)afu IY (k1 ) 

i=l 

(2.19) 
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To calculate the coefficients (2.17) with FORM, we still have to express them in 

terms of traces over spin matrices. This can be done if we assume that the spin 

tensor r factorises. There are two important cases. Assume that 

r r in rout 
(xy(38 = a(3 ,8 (2.20) 

or, in other words, r = rin Q9 rout. Then the equations (2.17) can be written as 

aiIT = -~ Tr(rinaiIT) Tr(rout) 

a~ = - 9~v Tr(rinaiIT) Tr(rout,V) 

ciIT = _ 9/Lp9vIT Tr(rina~IT) Tr(routaPIT) 
/LV 16 2 

b; = +9~v Tr(rinaiIT) Tr(rout,V,5) 

biIT = -~ Tr(rinaiIT) Tr(rout,5) 

(2.21a) 

(2.21b) 

(2.21c) 

(2.21d) 

(2.21e) 

Another type of factorisation, that appears in some of the box diagrams, is the fol­

lowing: 
(1) (2) 

r a ,(38 = r,(3ra8 (2.22) 

with r(l), r(2) E <e4,4. In this case we can rearrange the inner products as follows 

for arbitrary basis matrices r~n and r~ut. Therefore 

aiIT = -~ Tr(r(1)aiITr(2)) 

a; = - 9~v Tr(r(1)ai ITr (2),V) 

iIT = _ 9/LP9vIT T (r(l) ~ITr(2) PIT) 
c/LV 16 r a 2 a 

b~ = + 9~v Tr(r(l) aiITr(2),V '5) 

biIT = -~ Tr(r(1)aiITr(2),5) 

(2.23) 

(2.24a) 

(2.24b) 

(2.24c) 

(2.24d) 

(2.24e) 

As we have seen in (2.19), the matrix element (2.3) can be written in terms 
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of the coefficient functions (2.17) and matrix elements of the basis matrices (A.46) 

between the spinors uO"(kd, fP(k2), il)\1(PI) and V- A2 (P2)' The coefficient functions 

can be calculated with FORM using the trace techniques described above. However, the 

matrix elements of the basis matrices have to be calculated manually. Momentum 

conservation and rotation invariance of the matrix element M allow us to fix the 

momenta kI' k2' PI and P2 and the auxiliary vectors el and e2 in the following way: 

kI = (E, -E sin 8,0, E cos 8) 

e 1 = (0, cos 8, 0, sin 8) 

PI = (E, 0, O,p) 

with ° :::; 8 < 1f and 

Note that in polar coordinates we have 

k2 = (E, Esin8, 0, -Ecos8) 

e2 = (0, 0, 1, 0) 

P2 = (E, 0, 0, -p) 

k2 = (E,1f - 8,0) 

For consistency we also choose the polar coordinates of PI and P2 as 

PI = (p, 0, 1f) P2 = (p, 1f, 0) 

Using (B.54) and (B.32) we now obtain 

fJ+(k2 ) = V2E (sin ~ x+ + cos ~ x- , 0) 

ir(k2 ) = V2E (0 , - cos ~ x+ + sin ~ x-) 

1 
ilA1(PI) = J (i()I1(E+m) p)XA1, i(AI(E+m) _p)XA1 ) 

2(E + m) 

(2.25a) 

(2.25b) 

(2.25c) 

(2.26) 

(2.27) 

(2.28) 

(2.29a) 

(2.29b) 

(2.29c) 
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and 

Using the explicit form (A. 50) of the basis matrices we obtain 

fj+(k2)'"'/u+(kl) = -2iEcose 

fj+(k2)ry2U+(k1) = 2E 

fj+(k2)ry3U+(k1 ) = -2iEsine 

fj-(k2)"/u-(k1 ) = 2iEcose 

fj-(k2)"?u-(k1 ) = 2E , 

fj-(k2)"-/u-(k1 ) = 2iEsine 

Thus, using the definitions (2.14) of the matrices af, we have 

Furthermore 

UAl(pdiOV-A2(P2) = 0 , 

UA1 (Pl)rylV- A2 (P2) = -2iE5A1 ,-A2 , 

UA1 (Pl)ry2V- A2 (P2) = -2A1E5A1 ,-A2 , 

UA1 (Pl)ry3V- A2 (P2) = 2iAlm5Al,A2 , 

UAl(pdiOi5V-A2(P2) = 2im5A1 .A2 , 

UA1 (Pl)ryli5V-A2 (P2) = -2ipA15A1 ,-A2 , 

UA1 (Pl)ry2 i5V- A2 (P2) = _2p5A1 ,-A2 , 

UA1 (pdi3i5V- A2 (P2) = 0 , 
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(2.30a) 

(2.30b) 

(2.30c) 

(2.31a) 

(2.31b) 

(2.31c) 

(2.32) 

(2.33a) 

(2.33b) 

(2.33c) 

(2.33d) 

(2.33e) 

(2.33f) 

(2.33g) 

(2.33h) 
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u)\1 (Pl)CTOlV- A2 (P2) = 2mr5A1 ,-A2 

UA1 (pdCT02V- A2 (P2) = -2imA1r5 A1 ,-A2 

UA1(Pl)CT032v-A2(P2) = -2EA1r5 A1 ,A2 

UA1 (Pl)CT 12,.lv-A2 (P2) = _2ipr5 A1 ,A2 

UA1 (Pl)CT 23V- A2 (P2) = 0 

UA1 (Pl)CT 31 2v-A2 (P2) = 0 

2.2 Gluon Fusion 
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(2.33i) 

(2.33j) 

(2.33k) 

(2.331) 

(2.33m) 

(2.33n) 

The second process that contributes to tf production at the LHC is gluon fusion. 

Consider the process 

(2.34) 

where 9 denotes a gluon and the k i and CTi are the gluon four-momenta and helicities, 

respectively. As for the quark-antiquark scattering we can use the Feynman rules in 

table B.1 to write the matrix element for the process (2.1) in the general form 

(2.35) 

where 0; and f3 are spinor indices, f-L and v Lorentz indices and the colour and gauge 

indices are again suppressed. Again the rs represent the Feynman diagrams for the 

process, with the external legs cut off, and the sum runs over all possible diagrams of 

the desired order. 

The contraction of the Lorentz indices can be done directly in FORM, since FORM 

'understands' Lorentz vectors. Thus we define for each diagram the spin matrix 

(2.36) 

As in the last section we can now expand the matrix r0"1O"2 in the basis matrices 

(A.46): 

(2.37) 
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The coefficients a, all' CIlV , bll and b can be projected out using the relations (A.49). 

afJ l fJ2 = + i (rfJ1fJ2 , ].) 

a:lfJ2 = + 9~v (rfJlfJ2, ,V) 

CfJlfJ2 = + 91lP9vfJ (rfJlfJ2 aPfJ) 
IlV 8 ' 

b:l fJ2 = _ 9 ~v (rfJ1fJ2, ,V,5) 

b
fJlfJ2 = +i(rfJlfJ2 "5) 

(2.38a) 

(2.38b) 

(2.38c) 

(2.38d) 

(2.38e) 

Using the relations (2.18) for matrix elements between Dirac spinors we can then 

write 

M fJ
l

fJ
2;AlA2(kl,k2 ;Pl,P2) = L[ (a: lfJ2 +afJlfJ2P~) UAl (Pl)JIlV-

A2
(P2) 

{r} 

(2.39) 

As in the last section we use momentum conservation and rotation invariance of 

the matrix element M to fix the momenta kl, k 2, PI and P2 according to (2.25). 

Consequently, the polarisation vectors of the incoming gluons are 

(2.40) 

As before the coefficients afJl fJ2 afJl fJ2 CfJl fJ2 bfJlfJ2 and bfJlfJ2 can be calculated with , , 11 ' IlV , 11 

FORM using the projections (2.17). The contractions between the basis matrices ,11, 

a llV and ,11'5 and the Dirac spinors are given in (2.33). 

For the 99 -+ tf several diagrams can be regarded as crossed versions of other 

diagrams. Consider two diagrams rand r' which are related to each other by 

(2.41) 

Of the diagrams we will consider later on, all the t- and u-channel diagrams as well 

as some box diagrams are related to each other this way. Rather than calculating r 
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and f' as separate diagrams we can write the f' term in the sum (2.35) as 

(2.42) 

i.e. as the f term with the polarisation vectors for the external gluon legs swapped. 

For each pair of diagrams related to each other by (2.41) the BSMPRO library we 

introduce in chapter 4 contains only one diagram. The the other diagram can always 

be obtained from the first by changing the kinematic variables in such a way that the 

polarisation vectors f(Il (k1) and EU2 (k2) are effectively swapped. To do this we have 

to replace e with e - 7f and swap 0"1 and 0"2. 

With the formal developments discussed above we have split the task of calculating 

Feynman diagrams for tE production in two parts: calculating the coefficients (2.17) 

and (2.38) by evaluating traces of Dirac matrices and computing matrix elements 

of the basis matrices ,1\ O"IlV and ,11'5 between between the spinors u U (k1), f;U(k2 ), 

U>'1(P1) and V- A2 (P2) for kinematic parameters fixed according to (2.25). The first part 

can be done by computer algebra systems like FORM. The second part is independent 

of the diagram under consideration and therefore only needs to be done once. The 

results are given in (2.33). 



Chapter 3 

Renormalisation 

In virtually any realistic quantum field theory we encounter divergent integrals when 

we attempt to make calculations beyond the leading order in perturbation theory. 

However, for renormalisable theories these divergences can be removed by the follow­

ing procedure: We first introduce an ad hoc prescription to make all integrals in the 

perturbative expansion finite. This regularisation method comes at the expense of 

introducing a new, arbitrary parameter to the theory, which we call the cutoff param­

eter. In general, physical observables will now depend on the regularisation method 

and the cutoff parameter and may diverge in the limit where the cutoff is removed. 

However, in a renormalisable theory it is possible to cancel these divergences by in­

troducing a suitable (divergent) cutoff dependence for the fundamental parameters 

of the theory. 

In this chapter we review the systematics of renormalisation in the framework of 

dimensional reduction. We show how the standard integrals we encounter in per­

turbation theory can be regularised and calculated. Then we explain the DR renor­

malisation scheme and demonstrate how the divergences in self-energy and vertex 

corrections are removed. Troughout this chapter we will make extensive use of the 

notations summarised in appendix B. 

3.1 Dimensional Reduction 

From a good regularisation method we require that it preserves the crucial symmetries 

of the unregularised theory. For supersymmetric theories, the method of dimensional 

47 
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reduction meets this requirement. The basic idea of dimensional reduction is to 

assume that the fields only depend on d < 4 space-time dimensions and are constant 

in the remaining 4 - d spacial dimensions. As a consequence momentum integrals 

can be considered as integrals in d dimensions. The final answers can be analytically 

continued to complex values of d and exhibit isolated poles in the physical limit d --7 4. 

Note that, unlike dimensional regularisation, in dimensional reduction the number of 

field components and the Clifford algebra of r matrices remains unaltered. The reason 

for this is that supersymmetry mixes the components of bosonic and fermionic fields 

and can only be realised if the number of bosonic and fermionic degrees of freedom 

match. To distinguish the four-dimensional algebra from the d-dimensional algebra 

we introduce a d-dimensional metric tensor gJ.LV which satisfies 

(3.1) 

The loop integrals we encounter in one-loop perturbative calculations have the 

general form 

and m < n. The term +iE indicates the way in which the poles are moved off the real 

axis. By shifting the integration variable we can always assure that Po = O. Note that 

in (3.2) we have used the integration measure ddq for a d-dimensional space-time. By 

a technique called Veltman-Passarino reduction we can express the tensor integrals 

TJ~!"J.Lm with m :2: 1 in terms of scalar integrals 

(3.3) 

We will discuss this technique later on. First, however, we have to find a way to 

calculate the scalar integrals (3.3). 

The first step is to Feynman parametrise the integrand: 

T(n) = (n -1)1 J ddqd t dxo'" t dXn-l 5(1 - Xo - ... - Xn-l) . 
(27T) Jo Jo [xoDo(q) + ... + xn-1Dn-1(q) + u:]n 

(3.4) 

By completing the square in the denominator and shifting the integration variable we 
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can write this as 

(3.5) 

with 

(3.6) 

where .6. is a function of the Feynman parameters Xo, ... ,Xn-I, the momenta 

PI, ... ,Pn-I and the masses mo, ... , mn-I. To calculate fen) we can rotate the contour 

of the qO integral by 90 0 in the complex plane and substitute 

(3.7) 

Then 
fen) = (_lyni(n -I)! Jdd£ 1 

(27f)d (£2 + .6. - iE) 
(3.8) 

Exploiting the d-dimensional rotation symmetry of the integrand we find 

(3.9) 

As we will later take the physical limit d ~ 4 we write d = 4 - 25. Substituting this 

yields 

fen) = (_I)n_'l_.6.2- n(47f)b(.6. - iE)-br(n - 2 + 5) 
167f2 

To expand the Gamma function in 5 we use 

r(X) = (x - l)r(x - 1) and 
1 

r( 5) = "5 + IE + 0 (5) 

(3.10) 

(3.11) 

where IE ~ 0.5772 ... is the Euler constant. The physical limit is now obtained by 

5 ~ O. For the DR renormalisation it will be convenient to keep terms proportional 

to (~ + IE + In 47f) separate. In the following sections we will therefore write any 

5-dependent quantity Q as 

(3.12) 
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Let us now calculate the simplest scalar integrals explicitly. To keep our expres­

sions tidy we extract a common factor of i/167f2 from the integrals: 

T(l) = _i-Ao 
167f2 ' 

T(2) = _i_B 
167f2 0 , 

(3.13) 

For Ao we can use the equation (3.10) directly with .6. = m6' This yields 

Ao(mo) -_ 167f.' 21(1) - (i I )AA ( ) A- ( ) 
u IE + n 47f 0 mo + 0 mo 

z 
(3.14) 

with 
A 2 

Ao(mo) = mo and (3.15) 

Furthermore we see that 

T (l)( ) - J ddq ~ - and 
. J.L mo - (27f)d Do - 0 (3.16) 

Using the Feynman parametrisation (3.4) and the integral formula (3.10) we obtain 

for the n = 2 scalar integral: 

2 167f2 (2) _ A 1 - 2 
Bo(p ,mo, m1) = -. -T (p, mo, m1) = BO("8 + IE + In 47f) + Bo(p ,mo, mr) (3.17) 

z 

with 

Bo = 1 (3.18) 

and 
A( . 2 ) _ 2 2 (2 2 2) 2 u X,p ,mo, m1 - P x - P - mo + m 1 x + m 1 . (3.19) 

To obtain a manifestly analytic expression for the integral in (3.18) we would have 

to distinguish several cases. Vile will not do this here. However, for p2 = 0 and 

mo = m1 - m we obtain a very simple result: 

- 2 _ -(0) 
Bo(O,m,m) = -lnm = Bo (m) (3.20) 

By comparing (3.20) and (3.15) we find 

(3.21) 
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3.2 Veltman-Passarino Reduction 

The tensor integrals TS~: .. J-Lm can be expressed in terms of scalar integrals by a recursive 

procedure called Veltman-Passarino Reduction. As for the scalar integrals we first 

extract a factor of i/161f2 and define 

T(3) = _1,_C 
J-L 161f2 J-L (3.22) 

These integrals can only depend on the momenta Pi from (3.2) and must transform 

as symmetric Lorentz tensors. Thus we can write them as follows: 

EJ-L PiEI 

EJ-Lv = fjJ-LV Eoo + pipr Ell 
2 

CJ-L = LPrCi 
i=l 

2 

CJ-Lv = fjJ-LVCoo + L p!J-LP;}Cij 
i,j=l 

i=l i,j,k=l 

(3.23a) 

(3.23b) 

(3.23c) 

(3.23d) 

(3.23e) 

The coefficients Cij, Cijk etc. are called Veltman-Passarino functions. They are sym­

metric in the indices i, j, k and depend only on kinematic invariants. For example, 

the C coefficients can be regarded as functions of the masses mo, mI, m2 and the 

squared momenta PI, p~ and (PI +P2)2. The curly brackets around the Lorentz indices 

indicate symmetrisation without inclusion of combinatorial factors. 

To express the Veltman-Passarino functions in terms of the scalar integrals Ao, 

Eo etc. the basic strategy is to substitute the integral expression (3.2) on the left­

hand sides of (3.23) and then contract both sides with one of the momenta Pi or the 

metric tensor fjJ-Lv. Contracting with fjJ-LV gives us a factor q2 in the numerator of the 

integrand, which we can write as 

2 D 2 q = 0 + mo (3.24) 
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Likewise, contraction with Pi gives us a factor qPi, which we write as 

(3.25) 

By cancelling the denominators and shifting the integration variable we can then 

write these contractions in terms of other T integrals with fewer Lorentz indices 

and/ or fewer denominators. By applying this method recursively we can eventually 

express any tensor integral in terms or the scalar integrals. 

To illustrate this procedure we will do it here explicitly for BJ-i and BJ.Lv, To obtain 

the coefficient Bl we only have to contract both sides of (3.23a) with pJ.L. Using (3.25) 

this yields 

(3.26) 

or 

To determine Bll and Boo we need two equations. One is obtained by contracting 

Ti~) with pJ-i, another one by contracting it with gJ.Lv. Using (3.25) and (3.24) we get 

or 

pJ.LTi~)(p, mo, ml) = HpvT(l)(md - (p2 + m6 - mi)TS2)(p, mo, ml)] 

gJ-iVTi~)(p, mo, ml) = T(l)(ml) + m6T(2)(p, mo, md 

p2 Bll + Boo = ~Ao(md - ~(p2 + m6 - mi)B1 

P2Bll + (4 - 25)Boo = AO(ml) +m6Bo 

(3.28a) 

(3.28b) 

(3.29a) 

(3.29b) 

where here and for the rest of this section the functions without arguments are eval­

uated at (p2, mo, ml)' By separating the divergent and finite terms of Bll and Boo 

according to (3.12) we first obtain a set of equations for Ell and Boo: 

(3.3Ga) 

(3.3Gb) 
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Using (3.15) and (3.18) we find the following solution: 

A 2 1 2 212 
B ll (p ,mO, md = 2p2 (m1 - mO - -sP ) 

A 2 12 212 
Boo(p ,mO, m1) = 4(m1 + mO - -sP ) 

The set of equations for the finite parts is 

and has the following solution: 

- 2 
Boo(p ,mo, md = 

1 [ 2 2 2-
3(p2)2 -(p + mo - m1)Ao(mo) 

2 2 2-+ (2p + mo - m 1)Ao(m1) 

+ ((p2 + m5 - mi)2 - P2m5)BoJ 

__ 1_(m2 + m 2 _ lp2) 
6p2 0 1 3 

1 [ 2 2 2-
12p2 (p + mo - m1)Ao(mo) 

2 2 2-+ (p - mo + m 1)Ao(m1) 

+ (4p2m5 - (p2 + m5 - mi?)BoJ 
1 + _(m2 + m 2 _ lp2) 6 0 1 3 

3.3 The DR Renormalisation Scheme 
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(3.31) 

(3.32) 

(3.33a) 

(3.33b) 

(3.34) 

(3.35) 

The renormalisation scheme adopted in this work is called the modified dimensional 

reduction scheme or DR scheme. To demonstrate how it is implemented let us first 

discuss the renormalisation procedure in a somewhat generic form. For this purpose 

let the fields CPi label the entire field content of our theory, including scalar, spinor and 

vector fields and their derivatives. Furthermore, let Q denote the full symmetry group 

of the theory, including Poincare and gauge symmetry and possibly supersymmetry. 

The "field components" CPi then transform under some reducible representation D of 

Q. To construct a Lagrangian £., that is invariant under Q we need tensors r i1
" ·in 
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which are quasi-invariant under g, i.e. satisfy 

(3.36) 

where jil<"in must be zero if all indices are non-derivatives. For renormalisable the­

ories the Lagrangian can only contain terms which are at most quartic in the fields. 

We can therefore divide £ into three parts: a kinetic part £kin, which is quadratic in 

the fields, a cubic part £3 and a quartic part £4: 

(3.37) 

Now let {r~}, {r~k} and {r~kl} denote complete sets of linearly independent tensors 

satisfying (3.36) and some suitable normalisation conditions. Then the three parts of 

the Lagrangian can be written as 

f'k< - mTrijln<ln < 
.I-, III - T r2r) 

f' Trijk 
.1-,3 = Y T tpitpjtpk (3.38) 

The parameters yT and AT are coupling constants for the three and four-point vertices. 

The parameters m T are masses. Remember that the tpi also denote the derivatives of 

fundamental fields, so that the terms r~ tpitpj include kinetic terms and mass terms. 

For those r~ which couple derivatives it is understood that the coefficient m T is just 

a conventional normalisation constant and not a free parameter. 

All physical properties of the theory can be extracted from Green's junctions, 

i.e. from vacuum expectation values of time ordered products of field operators. In 

momentum space a general n point Green's function can be written as 

G, ,Pl'''Pn = 101 T{ln, Pl ... In, Pn} 10) 
21"'2n \ 't"'tl 't"tn 

(3.39) 

Here we use the momentum index notation for Fourier transformed fields introduced 

in (B.11). Momentum conservation requires that the Green's function can be written 

as 

G Pl<"pn - S ( ) KP1"'pn 
il' .. in - il'''in Pl ... Pn-l U (3.40) 

for some tensor-valued function S of the independent momenta. To determine the 
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physical one-particle states we consider the two-point Green's function 

(3.41) 

The one particle states are associated with poles of Sij(P) , i.e. with momenta p where 

the matrix S-l (p) becomes singular. By Lorentz invariance these momenta are or­

ganised in mass shells, i.e. in continua of momenta satisfying 

(3.42) 

for certain masses .A1n. The collection of masses Mn is the mass spectrum of the 

theory and the particles (and bound states) are associated with isolated points of the 

mass spectrum. In general, there is no condition on the mn to be real. Isolated points 

of the mass spectrum with nonzero imaginary parts correspond to unstable particles. 

In this case we write them as 

(3.43) 

for m n , rn E R. r n is called the decay width of the particle, since it determines the 

width of the resonance associated with it. For a particle with mass m and width r 
we can therefore write 

i i mr 
S(p)oc 2 2 . r= 2 2+(2 2)2+'" P - m + 2m p - m p m 

(3.44) 

In the last step we expanded the denominator in terms of r. In this form, the function 

S (p) can have higher order poles, but they must all be located at p2 = m 2 . 

In perturbation theory the vacuum expectation value in (3.39) is evaluated by 

path integral methods, using the language of Feynman diagrams. In calculations 

beyond leading order we encounter the divergent integrals we discussed in section 

3.1. Once we have regularised these integrals by dimensional reduction the function 

G will contain terms that diverge in the limit 5 ---7 O. Now, in a renormalisable theory 

the following thing happens: All divergent terms in G are proportional to contractions 

of the r~, r~jk and r~kl from (3.38) and can be removed by introducing a suitable 

5 dependence for the parameters m r , yr and N and by rescaling the fields CPi by 5-

dependent factors. (Since the CPi also denote derivatives it is understood that a field 

and its derivative cannot be scaled independently. Furthermore, those coefficients m r 
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which are not free parameters cannot renormalise, either.) The bookkeeping is easier 

if we introduce the 6 dependence through separate renormalisation factors Zi, Z;n' 

Z~ and Zr. Thus we replace 

(3.45) 

with no implicit sum over repeated indices. We have also introduced the renormali­

sation scale fL. It is a quantity of mass dimension 1. \iVhen the space-time integration 

is reduced to d = 4 - 26 dimensions the mass dimensions of all other objects in the 

Lagrangian must be adjusted to keep the action dimensionless. We can adjust the 

mass dimensions of the fields in such a way that J ddxLkin remains dimensionless, 

but then the couplings yr and )..r must get mass dimensions 6 and 26, respectively, to 

keep the integrals over £3 and £4 dimensionless. To extract the higher order terms 

in the Z factors we also define 

6Z:n = Z:n- 1 ,6.Zr = Zr - 1 . (3.46) 

Substituting this in the Lagrangian (3.37) (and expanding to first order in the 6Zs) 

leads to a number of quadratic, cubic and quartic terms proportional to the 6Zs. 

These terms are called counterterms. 

To determine, for example, a 6Zi at a given order we have to calculate the cor­

responding two-point Green's function at that order, including loop diagrams and 

counterterms. Then 6Zi has to be chosen in such a way that the divergent terms 

cancel. However, this procedure does not determine ,6.Zi uniquely. The notion of a 

divergent term is a question of bookkeeping and might differ by a finite amount. This 

is where the renormalisation scheme comes into play. It is basically a set of rules that 

remove the ambiguities in the definition of the counterterms. The renormalisation 

scheme we adopt here is called the DR scheme and can be summarised as follows: 

• Masses are renormalised in the on-shell scheme. This means that the countert­

erm for a mass m is chosen in such a way that the corresponding two-point 

Green's function has a simple pole at p2 = m 2 (p being the momentum flowing 

trough the propagator) . 

• Vertices are renormalised in the modified minimal subtraction (MS) scheme. 

This means that the function G from (3.40) is expressed in terms of Veltman-
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Passarino functions. These functions are then decomposed into "hat" and "bar" 

parts in accordance with (3.12). The counterterms are chosen so that the "hat" 

parts cancel. 

• Internal fields (i.e. those that were "pulled down" from the interaction La­

grangian) are renormalised by the same method. However, for external fields 

(i.e. the ones that appear in the time-ordered product (3.39)) the LSZ reduction 

formula requires that they are normalised like free fields. This basically means 

that the two-point Green's function has to look like a free field propagator. 

To demonstrate how this renormalisation scheme is implemented we now discuss 

the renormalisation of self-energy diagrams for fermions and gluons. 

3.4 Fermion Self-Energies 

The one-loop self-energy corrections to the fermion propagator have the general form 

(3.47) 

All other terms are excluded by Lorentz invariance. The Lagrangian of the free Dirac 

field 1/J is 

(3.48) 

where 1/JL and 1/JR are the left and right-handed projections of the field 1/J: 

, 11 - 15 ' 
1fJL = 1fJ 

2 
(3.49) 

In parity violating theories like the Standard Model or the MSSM the left and right­

handed components of 1/J must be treated independently under renormalisation. Thus 

we construct the renormalised Lagrangian L ren by replacing 

m ----+ Zm( 5) m (3.50) 
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To cancel the divergent terms in the coefficient f we also have to introduce a new 

term to the Lagrangian: 

(3.51) 

As this term is not present in the Lagrangian of the free Dirac field we have to choose 

Z5 in such a way that Z5(O) = O. Thus the renormalised Lagrangian reads 

1 1 - -
- (LiZm + 2LiZL + 2 LiZR)( 1/JL 1/JR + 1/JR7h)m 

- iLiZ5CI[;L1/JR -ifiR1/JL) , (3.52) 

where 

Thus the Feynman rule for the counterterms is 

~ 
p p 

+(LiZm + ~LiZL + ~LiZR)m + iLiZ5r5 ] 

= -i [-LiZv r) - LiZA r)r5 + (LiZm + LiZv)m + iLiZ5r5] (3.54) 

with 

(3.55) 

The renormalised one-loop correction I;(p) is the sum of the self-energy diagrams 

and the counterterms, i.e. 

I;(P)=i(~~~ +~) 
(a(p2) - LiZv)r) + (b(p2) - LiZA )r)r5 

+(C(p2) + LiZm + LiZv)m + i(f(p2) + LiZ5)r5 

(a(p2) - LiZv)(r) - m) + (b(p2) - LiZA )r)r5 

+(C(p2) + a(p2) + LiZm)m + i(f(p2) + LiZ5)r5 (3.56) 
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To calculate the corrected propagator we have to re-attach the external propaga­

tors to the self-energy diagram. The renormalisation factors have to be chosen in such 

a way that the correction to the propagator has a simple pole at p2 = m 2, namely 

i(J/J + m) (-il',(p)) i(J/J + m) = iIT(p) 
p2 _ m 2 p2 - m 2 p2 - m 2 

(3.57) 

for some function IT which is nonzero for p2 = m2. The terms proportional to (J/J -

m) and 15 automatically yield simple poles when substituted on the left-hand side, 

because 

and 

(J/J + m)(J/J - m)(J/J + m) 
(p2 _ m2)2 

(J/J + m)(p2 - m 2) (J/J + m) 
(p2 _ m2)2 p2 _ m2 

(J/J + m)r5(J/J + m) 
(p2 _ m2)2 

(J/J + m)( -J/J + m)r5 -15 
(p2 _ m2)2 p2 _ m2 

(3.58) 

(3.59) 

The third term in (3.56) would yield a double pole unless we choose !:lZm in such a 

way that it vanishes for p2 = m 2. With 

(3.60) 

we have 

(3.61 ) 

with a and c defined according to (3.12). We also choose the renormalisation factor 

Z5 in such a way that the 15-term vanishes for p2 = m 2: 

( 2) [ ]p2 _ [ -]p2 f P + !:lZ5 = f m2 = f m2 (3.62) 

The renormalisation factors Zv and ZA have to cancel the divergent terms of a and b. 

In the MS scheme we only remove terms proportional to (1/6" + IE + In 47f). Note that 

this cancellation is only possible if the divergent terms Cr, band c are independent of 

p2. With 

!:l.Zv = (~+ IE + In 47f)Cr , !:lZA = (~+ IE + In 47f)b (3.63) 
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we get cutoff-independent formulae for L: and II: 

(3.64a) 

(3.64b) 

Note that the renormalisation factors Zv, ZA, Zm and Z5 must be real. The divergent 

parts of the coefficient functions a, b, c and f must be real, too, because otherwise 

the theory would not be renormalisable. However, the finite parts of the coefficient 

functions can have nonzero imaginary parts. In this case the cancellations discussed 

above are incomplete and lead to double poles in the correction to the propagator. As 

we saw in (3.44) these double poles can be re-summed and effectively shift the pole 

of the two point Green's function off the real axis, which corresponds to a nonzero 

decay width r of the fermion. 

In the case of self-energy corrections on external legs we have to replace one of 

the propagators in (3.57) with the Dirac spinors u(p), v(-p), u(p) or fJ(-p) and take 

the limit p2 -7 m 2 . Using the fact that all these spinors are eigenvectors of ~ with 

eigenvalue +# we can now calculate the limits for each of the four terms in (3.64a) 

separately: 

~ + m 2 2 p2 - m 2 
p2--+m2 2 

2 2 a(p )(~ - m) u(p) = a(p) 2 2 u(p) ) a(m )u(p) 
p -m p -m 

(3.65a) 

~+m - 2 - 2 ~-m 
2 2 b(p )~15 u(p) = b(p )r5~ 2 2 u(p) 

p -m p -m 

- G# - m p2--+m2 1 
b(p2)r5yp2 2 2 u(p) ) -2 b(m2)r5u(p) 

p -m 

(3.65b) 

2 

~ + m 2 [C + alP 2 G 
2 2m[c+al~2u(p) =m 2 m2 (yp2+m)u(p) 

p -m p -m (3.65c) 

(3.65d) 

Analogous results are obtained for the spinors v( -p), u(p) and fJ( -p). For u(p) and 

fJ(-p) we pick up an extra minus sign in (3.65b) from anti-commuting ~ and 15. 

According to the LSZ reduction formula the external fields have to be normalised 

in such a way that the loop corrections to the two point Green's function vanish 
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on-shell. Therefore one half of the loop correction to each external propagator is 

subtracted off. The remaining half can be accounted for by using the following rules: 

~ - ~ = ~o:+ ~~15 .. .... ;;: p p 
(3.66a) 

~ - ~ 1 1 ~ .... .. 
p p c = "20: - 4: 15 (3.66b) 

with 

(3.67) 

Equations (3.64b) and (3.66) provide us with generic expressions for the self-energy 

corrections of internal and external fermion propagators. To compute the corrections 

due to a specific self-energy diagram we only have to determine the "form factors" a, 

b, c and f. For the diagrams relevant for our calculations this is done explicitly in 

chapter 4. 

3.5 Gauge Boson Self-Energies 

The Lagrangian of a free vector field Afl is 

(3.68) 

where Fflv = oflAv - ovAfl and ~ is the gauge parameter. To obtain the renormalised 

Lagrangian we replace 

This yields the renormalised Lagrangian 

Consequently, the Feynman rule for the counterterm is 

- -fl~V 

P P 

(3.69) 

(3.70) 

(3.71) 
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Due to Lorentz invariance the expressions for the one-loop self-energy diagrams 

have to take the general form 

, 0060. 006r" I-' l/ 
P P 

(3.72) 

Note the appearance of the d-dimensional metric tensor !j'J,!/. Since we have regularised 

the diagram on the left-hand side with dimensional reduction, arguments that use 

Lorentz invariance can only be applied to fields on the d-dimensional subspace. The 

Ward identities require that (3.72) vanishes if both indices are contracted with p. 

Therefore 

(3.73) 

and 

(3.74) 

The calculation of gluon self-energy diagrams usually becomes much easier when we 

contract the two external Lorentz indices. To determine f we will therefore use 

2 i (1 2) A ( ,00ifo.OoM, ) f (p ) = - p2 3 + 95 9 I-'l/ I-' P ~ P l/ (3.75) 

which is obtained by contracting (3.74) with 9 I-'l/' using 9 I-'l/ gl-'l/ = d = 4 - 25 and 

expanding to first order in 5. 

To cancel any divergent terms in f, the counterterm (3.71) must have the same 

form as (3.72), so we have to choose ~Z~ = ~Z and consequently 

(3.76) 

The renormalised self-energy correction 'E,I-'l/ (p) is the sum of the self-energy diagrams 

and the counterterm, i.e. 

'E,I-'l/(p) = -i (I-' ,oofO.oofo' l/ 

(3.77) 

To make this expression finite we choose ~Z = 21 and obtain 

(3.78) 
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where j and J(p2) are defined in analogy to (3.12). Note that the cancellation of 

divergent terms is only possible if j is independent of p. Thus the correction to the 

propagator is 

II () = -ig/Lp ('~PO") -igO"v = -i j-( 2) ( _ P/LPv) /Lv P 2 ~ 2 2 P 9 J1.v 2 
P P P P 

(3.79) 

For external gluons we have to replace one of the external propagators with the 

polarisation vector c~ (p) or c~* (p), according to the Feynman rules for external legs 

shown in tableB.l. Then we have to take the on-shell limitp2 -----+ O. Usingp/Lc~(p) = 0 

we find 

-i~/LV (i~VP)c;(p) = J(p2)c~(p) ~ J(O)c~(p) 
p 

(3.80) 

According to the LSZ reduction formula the external fields have to be normalised in 

such a way that the one-loop corrections to the two-point Green's function vanish 

on-shell. Thus one half of the self-energy correction on an external leg is cancelled 

by the normalisation of the external field. To account for self-energy corrections on 

external gluon legs we therefore have to mUltiply the tree level diagram by a factor 

of ~J(O). 

Thus, as for the fermion self-energies, we have determined the generic form of 

self-energy corrections on internal and external gluons. Explicit expressions for the 

form factors j are derived in chapter 4 for the diagrams relevant for our calculation. 

In principle, the renormalisation of vertex corrections can be treated in an analogous 

generic form: Write down the most general form for a three-point diagram, derive 

the Feynman rules for the counter-terms and adjust the renormalisation factors to 

cancel all divergences, in accordance with the renormalisation scheme. However, 

here the situation is simpler, because all vertices are renormalised in the modified 

minimal subtraction scheme. As we already know that the MSSM is renormalisable 

we can therefore express any vertex diagram directly in terms of Veltman-Passarino 

functions (3.23) and renormalise it by simply dropping all terms proportional to 

(i + IE + In 47r). This is done automatically by the LoopTools package we used for 

the numerical computation of Veltman-Passarino functions. 



Chapter 4 

Feynman Diagrams 

The objective of this work is to calculate the supersymmetric (MSSM) one-loop cor­

rections to polarised if production amplitudes at the Te V scale. At this scale we 

can consider all quark flavours except the top quark as massless. We also ignore 

contributions from off-diagonal elements of the CKM matrix. 

Within these approximations our task is to compute all new (i.e. non Standard 

Model) one-loop MSSM Feynman diagrams that contribute to if production. As we 

will see these diagrams involve squarks, charginos, neutralinos, gauginos and Higgs 

particles. 

4.1 Prototype Feynman Rules 

To handle the large number of diagrams we proceed in two steps: In the first step we 

compute a number of prototype diagrams. For these prototypes we only distinguish 

between fermions, scalar and vector particles, but not between all the different types 

of fermions, scalars and vector particles that appear in the MSSM. The propagators of 

and couplings between these prototype particles are written in a generic form, which 

we call the prototype Feynman rules: 

• propagators: 

p 
(4.1a) 

64 
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• vertices: 

-- .... --
P 

I 
I 

lk 
fL~ 

, P 
~ 

I 

, , 
I 

I 
I 

\ 

-
P p2 -m~ 

-fL ' lH50000 ' v 
= -2glw 

p2 P 

I 
I 

lk 
fL r'""1<O""'OO"""o""'oon.l~ 

\P 

I 

, , 
I 

,: SM\ 

----~ 

I 
I 

l 
, 
~ , , 

v 

_ -2gl11/ 
p2 -m~ 

= -i(p + k)11 

= i(A1 + B'5) 

= i[ gIW(PI - P2)P 

+ g1/P(P2 - P3)11 

+ gPI1 (P3 - PI tl 
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(4.1b) 

(4.1c) 

(4.1d) 

( 4.2a) 

(4.2b) 

(4.2c) 

( 4.2d) 

(4.2e) 

(4.2f) 
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( 4.2g) 

As we can see from these rules, solid lines represent (Dirac) fermions and dashed 

lines are scalars. Complex scalar propagators are drawn with an arrow on top of the 

dashed line. \Vavy lines stand massive vector bosons (W or Z bosons) and curly lines 

are massless vector bosons without axial couplings (gluons). The 'SM' label in (4.2d) 

indicates that the corresponding fermion is the (only) Standard Model particle of the 

vertex. Note that we do not provide separate prototype rules for Majorana fermions. 

Diagrams involving Majorana fermions can always be expressed in terms of diagrams 

with Dirac fermions by the techniques we discuss in section 4.3. 

Diagrams calculated with the Feynman rules (4.1) and (4.2) depend, in addition 

to the kinematic parameters and the incoming and outgoing helicities, on the generic 

masses mF, mv, ms and the vertex coefficients A and B. The actual MSSM diagrams 

are obtained from the prototypes by substituting the correct MSSM parameters for 

the generic masses and vertex coefficients. 

4.2 The BSMPRO and SUSYTOP Libraries 

To compute the Feynman diagrams for our calculation numerically we wrote two C++ 

class libraries called BSMPRO and SUSYTOP. Each of the classes in the BSMPRO library 

corresponds to a prototype diagram. They store information about the kinematic 

parameters, vertex coefficients and internal masses and provide methods to calculate 

the polarised amplitudes numerically. To do this we expressed, for each prototype, 

the coefficients (2.17) in terms of the Passarino- Veltman functions introduced in 

section 3.2. The algebraic manipulations were done with FORM and the results have 

been converted to C++ code and included in the BSMPRO library. Only the coefficient 

functions a, b, c and f for the self-energy diagrams are calculated by hand, following 

the procedure outlined in section 3.3. These results are given later in this chapter. 

For the numerical computation of the Veltman Passarino functions BSMPRO uses 

the LoopTools package [64]. In accordance with the DR renormalisation scheme, 
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LoopTools regularises the ultraviolet divergent Passarino-Veltman function by re­

moving the terms proportional to (t + IE + In 47f). Once the coefficient functions 

(2.17) for a certain diagram are calculated we can obtain the corresponding ampli­

tude by multiplying them with the helicity matrix elements (2.33). The classes of 

the BSMPRO library do this internally. In a realistic calculation there may be several 

diagrams which require the same Passarino-Veltman functions with identical parame­

ters. Since the computation of Passarino-Veltman functions is numerically expensive 

BSMPRO uses the cache of the LoopTools package to avoid calculating the same num­

bers repeatedly. For this purpose, all required Passarino-Veltman functions can be 

stored in one or more central tables, which are then read by all instances of the BSMPRO 

classes simultaneously. 

To calculate the actual diagrams we have to instantiate the BSMPRO classes, ini­

tialise the internal masses and vertex coefficients according to a given set of MSSM 

parameters, calculate the required Passarino-Veltman functions for a given set of 

kinematic parameters and call the update method for every instance of the BSMPRO 

classes to compute the polarised amplitudes. This work is done by the SUSYTOP li­

brary. It provides methods to read the MSSM parameters from the standard file 

format specified in the SUSY Les Houches Accord [44], instantiate and initialise all 

required BSMPRO classes and compute the interference terms from the amplitudes cal­

culated by these classes. The SUSYTOP library also takes care of including the correct 

COlO'UT factoTs, which have to be calculated separately for each interference term. 

We will now list all the prototype diagrams that are relevant for our calculation. 

The label under each diagram (set in typewriter font) is the name ofthe corresponding 

BSMPRO class. An asterisk behind the class name indicates that the crossed version 

of this diagram has to be included as well. The technique of crossing diagrams was 

explained in chapter 2. A double asterisk indicates that only the crossed version is 

needed. For each prototype we also provide a list of MSSM particles that have to be 

substituted for the generic propagators. To label the various MSSM particles we use 

the notations introduced at the end of section 1.8, which are essentially the same as 

used in [59]. However, unless stated otherwise the generation indices J, J, etc. only 

run over the first two generations. The third generation quarks are written explicitly 

as t (= u 3
) and b (= d3

). 

There are some cases in which we deviate from the Feynman rules given in section 

4.1: 
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• For vertices connected to incoming fermion lines we set A = 1 and B = O. As the 

incoming quarks are massless the corresponding Dirac spinors are eigenvectors of 

/5. Thus, to account for an incoming massless quark or anti-quark with helicity 

Cl and coupling coefficients A and B we just have to multiply the diagram by 

(A + ClB). 

• In some diagrams we have two identical prototype vertices which can represent 

different MSSM vertices. In this case we have to rename the vertex coefficients 

for one of the vertices. A label (C, D) next to a prototype vertex indicates that 

the coefficients A and B in the Feynman rules (4.2) are replaced by C and D, 

respectively. 

• In some diagrams we can have two different types of (MSSM) scalars, fermions 

or vectors in the same diagram. In this case we label them F1, F2, Sl, S2 etc. 

with masses mF1, mF2, mS1, mS2 etc. 

4.2.1 Tree-Level Diagrams 

The following prototype diagrams contribute to tt production at tree-level: 

Dqqbar _sV _tree 

V=/,Z,9 
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Dgg_tLtree* 

F=t 

4.2.2 Self-Energy Diagrams 

69 

For our calculation we only need to consider self-energy corrections for fermions and 

massless vector particles (gluons). We start with the fermion self-energies: 

The scalar self-energy correction to the fermion propagator is 

S(p q) 
......... 

/ " 
... I... !Po 

P F(q) P 

J (2~;~ D [i(A + B'5)i(11 + mF )i(A* - B*/5)i] 

J ddq 
= (27r)d D [ (IAI2 + IBI2)11- (A* B + B* A) 11,5 

+ (IAI2 - IBI2)mF + (A* B - B* A)mFI5] 

D = (q2 _ m~)((q - p)2 - m~) ( 4.4) 

The masses mF and ms correspond to the internal fermion and scalar, respectively, 
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and m is the renormalised mass of the external fermion. Comparing with (3.47) we 

define 

a (2) _ IAI2 + IBI2 B 
SF P - 167T2 1 

C (2) _ _ IAI2 - IBI2 mF B 
SF P - 167T2 m 0 , 

b (2) - _ 2 Re(A*B) B 
SF P - 167T2 1 

f ( 2) - _ 2iIm(A*B) B 
SF P - 167T2 1 

(4.5) 

Let us now move on to the gluon self-energies. The s-channel gluon propagator 

gets corrections from fermion and scalar loops. For the fermion loop we have 

F(q) 

F(q - p) 

_ J ddq Tr [( -i)Jlli(r/J- J/; + mF) (-i)rlli(r/J + mF) ] 
(27T)d (q2 - m~)((q - p)2 - m~) 

J ddq (6 -1)q2 - (6 -l)pq+m~ 
-8 (27T)d (q2-m~)((q-p)2-m~) 

8~2 [(6 - l)Ao + p2(6 l)Bl + m~BoJ 
167T 

i p2 
- 8

167T2 
[(5 - l)Ao - 2(6 -l)Bo + m~BoJ ( 4.6) 

where Ao AO(mF), Bo BO(p2, mF, mF), Bl - Bl (p2, mF, mF) and mF denotes 

the mass ofthe fermion in the loop. In the last step we used (3.27) for mo = ml = mF. 

Also note that, since gluons have no axial coupling, we have set B = 0 in the prototype 

Feynman rule (4.2a). Using (3.75), (3.21) and the expressions for Ao and 130 we obtain 

- 2 1 1 [ 8 - 4 2 2 - 8 2 4 2] jF(p ) = --- --Ao + -(p + 2mF)Bo + -m --p 
167T2 p2 3 3 3 F 9 

1 4 [ m~ - - (0) - 1] = --- 2-(Bo - B ) + Bo - -167T23 p2 0 3 
(4.7) 

- - - (0) - (0) - - 2 
where Ao - AO(mF), Bo - Bo (mF) and Bo - Bo(p ,mF, mF). 

For the scalar self-energy correction there are two diagrams which will always 

appear with the same coefficient: one with two three-point vertices and one with a 

single four-point vertex. We therefore include both diagrams in the definition of the 
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scalar self-energy coefficient function f s· 

(4.8) 

where Ao = Ao(ms), Bo = Bo(p2,ms,ms), Bl Bl(p2,ms,ms) and ms is the mass 

of the scalar particle in the loop. In the last step we used (3.27) for mo = ml = ms. 

Using (3.75), (3.21) and the expressions for Ao and Eo we obtain 

- 2 1 1 [ 4 - 1 2 2 - 4 2 2 2] fs(p ) = -- --Ao + -(4ms - p )Bo + -ms --p 
161T2 p2 3 3 3 9 

1 4 [m~ - -(0) 1 - 1] 
= 161T2"3 p2 (Bo - Bo ) - 4 Bo - "6 ( 4.9) 

- - - (0) - (0) - - 2 
where Ao = Ao(ms), Bo - Bo (ms) and Bo - Bo(p , ms, ms). 

By inserting the above-mentioned self-energy corrections in individual lines of the 

tree level diagrams we obtain the following self-energy diagrams: 
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+ 

Dqqbar _sV_xseSq 

(q, F, S) = (u I, XJ, Ui), (dI, XJ, Di), (u I, Xj, Di), (dI, xj, Ui ), (uI, A, Ui ), (dI, A, Di ) 

+ 

Dqqbar _sV _xseSt 

(F, S) = (XJ, Ui ), (Xj, Di ), (t, HP), (t, A~), (b, HI), (A, Ui ) 

Dqqbar_sG_iseF, Dqqbar_sG_iseS 

q=uI,dI , F=uI,t,dI,b,A , S=Ui,Di 
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+ 

Dgg_sG_xseFg, Dgg_sG_xseSg 

F = A , S = Ui, Di 

+ 

Dgg_sG_xseSt 

(F, S) = (XJ, Ui ), (Xj, Di ), (t, HP), (t, A~), (b, HI)' (A, Ui ) 

Dgg_sG_iseF, gg_sG_iseS 

F = A , S = Ui, Di 

73 
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+ 

Dgg_tLxseSt* 

(F, S) = (XJ, Ui ), (Xj, Di ), (t, Hp), (t, A~), (b, Hd, (A, Ui ) 

+ 

Dgg_tF _xseSt* 

F = A , S = Ui , Di 
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Dgg_tLiseS* 

(F, S) = (XJ, Ui ), (Xj, Di ), (t, HP), (t, A~), (b, Hi), (A, Ui ) 

In each diagram the hatched blob stands for one of the self-energy corrections 

discussed in the first part of this section. 

4.2.3 Vertex Corrections 

The prototype vertex corrections for the qq - f[ amplitude are: 

I , 
\ 

/ 
/ 

\ 

Dqqbar_sG_vertSq 

(q, F, S) = (uI
, A, Ui ), (dI , A, Di ) 

Dqqbar _sV -yertSt 

q = u I , dI 

, 
\ 

\ 

A 
I 

I 

(F, S) = (A, Ui ), (t, HP), (t, A~), (b, Hi) 
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F(q) 

, , 
/ 

Dqqbar_sG_vertSSq 

(q, F, 5) = 

(uf
, A, Ui ), (u f

, XJ, Ui ), (u f
, Xj, Di ), 

(d f
, A, Di ), (d f

, XJ, Di ), (d f
, Xj, Ui ) 

/ 

, 

Dqqbar_sG_vertSSt 

q = u f , df 

F(q) 

(5, F) = (A, Ui ), (XJ, Ui ), (Xj, Di ) 
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For the 99 - tt amplitude we distinguish vertex corrections for sand t-channel 

diagrams. The corrections to the s-channel diagrams are: 

, 

Dgg_sG_ vertSt 

\ 
\ 

A 
I 

(F, 5) = (A, Ui ), (t, HP), (t, A~), (b, HI) 

/ 
F(q) 

, 

Dgg_sG_vertSSt 

(5, F) = (Ui , A), (Ui , XJ), (Di' Xj) 
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~(kl,al) 

I' S(q) 
1"-
t ' V'X'X'l~1O<"X"X'X"I 

/ 

It! 
1/ 

t(k"a2) 

Dgg_sG_vertFg 

F=A 

~(kl,aJ) 

I' S(-q) I' + ' 'V"'K?nO<"X"'X'l'<'X'X'm-N 
/ 

I~ 
I / 

t(k2,a2) 

Dgg_sG3ertSg 

S = Ui, Di 

+ F(-q) 

Dgg_sS3ertFg 

F t, b , S = HP, A? 

77 
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+ 

Dgg_sS_ vertSg 

51 Ui,Di , 52 = HP,A~ 

.,.. ........... 
/ \ 8 2 

)----
/ 

Dgg_sS_vertSSg 

51 = Ui,D i , 52 = Hp,A~ 
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The t-channel vertex corrections are: 

I 
F(q) 4 

/ 
/ 

..... , 
F(-q) \ 

\ 
I 
I 

~ ~ 
t(p2' ),2) t(p2' ),2) 

Dgg_ tF _vertS 1 * Dgg_ tF _ vertS2* 

(F, S) = (A, UJ, (t, HP), (t, A~), (b, HI) (F, S) = (A, Ui ), (t, HP), (t, A~), (b, HI) 

Dgg_tF 3ertSSl * 

(S, F) = (Ui, A), (Ui , XJ), (Di' Xj) 

I 

! 
I 

~ 
t(p2' ),2) 

Dgg_tF _vertSS2* 

(S, F) = (Ui , A) 
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4.2.4 Box Diagrams 

51 
--- .... ---

(A,B) 

Dqqbar _boxSS 

(q, 51, 52, F1, F2 ) = (u f
, Ui , Uj, A, A), (u f

, Ui , Uj, A, X~), (u f
, Ui , Uj, X~, A), 

(d f
, D i , Dj , A, Xk), (d f

, Ui , Uj , Xb A) 

q(kl, a) 
F1 

I I (A,B) 
I I 

51 , i 52 
I I 
I I (C,D) 

h F2(q) ~ 
q(k2, -a) t(P2' ),2) 

Dqqbar _fboxSS 

(q, F1 , F2, 51, S2) = (uf
, A, A, Ui , Uj ), 

(d f
, A, A, Di , Uj), (uf

, X~, A, Ui , Uj ), 

(uf
, A, X~, Ui , Uj), (d f

, X~, A, Di , Uj), 

(d f
, A, X~, D i , Uj) 

(A,B) 

Dqqbar_fboxSSx** 

(q, F1 , F2 , 51, 52) = (uf
, A, A, Ui , Uj), 

(d f
, A, A, D i , Uj ), (uf

, X~, A, Ui , Uj ), 

(uf
, A, X~, Ui , Uj ), (d f

, X~, A, Di , Uj ), 

(d f
, A, X~, Di , Uj) 

80 
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F(q) 

Dgg_boxFS* 

I 
I , 
I 
I 

(F, S) = (A, Ui ), (t, Hf), (t, A~), (b, Hi) 

.... 
~ .... 

S(q) .... 
g(k2, CT2) ~ 

t(p2' A2) 

Dgg_boxSF4 

(S, F) = (Ui, A), (Ui, XJ), (Di' Xj) 

4.3 Majorana Fermions 

~~O-~) __ .-__ ~(Pl,),1) 
I 
I 
A 
I 
I 

,--S(q)-- 0.. 
g(k2' CT2) t(p2' A2) 

Dgg_boxSF* 

(S, F) = (Ui , A), (Ui, XJ), (Di' Xj) 

~~) __ '-7_~PI,Al) 
"~ 

" " " 

F(q) 

" " " 

Dgg_boxSFx* 

(S, F) = (Ui , A) 
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Even though the gluinos and neutralinos of the MSSM are Majorana fermions, the 

SUSYTOP library does not provide separate prototypes for diagrams involving Majo­

rana fermions. The reason for this is that all these diagrams can be related to diagrams 

where the Majorana fermions are replaced by ordinary Dirac fermions. To do this 

we simply use the relations (B.63) and (B.65) to eliminate the charge conjugation 

operator C. In this section we show how this is done explicitly for the (sub-) diagrams 

relevant for our calculation. 

The propagators for Majorana fermions are given in (B.71). Interaction terms 

involving two Majorana fields all have an extra factor of ~ relative to their Dirac­

equivalents. Thus our prototype vertex factors for vertices with two Majorana fermi­

ons are simply ~ times those for the Dirac vertices given in (4.2). Note that here our 

bookkeeping is different to the one used in [59]. In [59] it is assumed that the factors 
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of ~ are cancelled by the fact that there are more possibilities to contract Majorana 

fields than there are to contract Dirac fields (see (B. 71)). In this work we represent 

the different ways of contracting Majorana fields by separate diagrams (namely, those 

containing propagators with "clashing arrows"). As a result, all our MSSM Feynman 

rules for vertices with two Majorana fermions will have an extra factor of ~ compared 

to those given in [59]. 

In principle we could calculate all diagrams involving Majorana fermions sepa­

rately, using the expressions (B.71) for the Majorana propagators, and then compare 

the results with suitable diagrams that only involve Dirac fermions. However, this 

would be rather tedious and error prone. Instead we will now derive a set of diagram­

matic rules that allow us to "straighten out" the clashing arrows of any diagram with 

Majorana fermions. First consider a fermion line of the following form: 

Pn PI 

t t 
T=o: - - - - (3 ....... ® ...... ... ... ® .... ... 

Pn+1 kn-I kl Po 
(4.10) 

where PI, ... ,Pn are momenta flowing into the vertices from other lines and ki 

~;=oPj. This line corresponds to the following Wick contraction: 

I ,I I I 'I ' 
T = A Pn+l {5;r(n) A} . .. {5;r(2) A} {5;r(1) A} 5;f3 

(l; Pn Pn-l Pl Po (4.11) 

where the r(i) denote the string of r matrices that join the fermion fields in the 

corresponding vertex. The curly brackets indicate that the momentum indices of 

the enclosed fields are contracted with a momentum conserving delta function. The 

momentum indices attached to the brackets are added to that delta function. To 

disentangle the contractions we have to swap the fields in each vertex, so we pick up 

a factor of -1 for each vertex: 

. (4.12) 

Now we can use (B.70) to write the contractions in terms of the Dirac propagator S 

and the charge conjugation matrix C. Note that the fields in the contractions linking 

the vertices are in the wrong order. Thus we have to swap them all round, picking 

up a minus sign each time. As there are only n - 1 links between the n vertices, we 

have one minus sign left. Furthermore, since the spinor indices get swapped along 
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with the fields, we have to use the transpose of the Dirac propagator for the links: 

T = -[S(Pn+dC-1 r(n)T ST (-kn - 1) ... 

. . . ST (-k2)r(2)T ST (-kdr (1)T C- 1 S(Po)]et;3 5Pn+lpn'''Po . (4.13) 

N ow assume that the r(i) all satisfy 

(4.14) 

with O"i ±l. Then we can use the property (B.66) to pull one factor of C- 1 

past all the propagators and vertices until it is next to the other C- 1 . Then, using 

(C- 1)2 = -1, we obtain 

(4.15) 

Diagrammatically this means that 

Pn PI 

• • - - - - (3 0: ... ~ ® ...... ... ~ ® ~ ... 
Pn+l k n - 1 kl Po 

Pn PI 

• • = (I1 O"i) x 0: ...... ® ... ... 
Pn+l k n - 1 

... ... ® ..... (3 
kl Po 

. (4.16) 

Note that this logic still works if some of the fields in the chain are Dirac fields. 

Furthermore, if the fields have other indices like colour or weak isospin indices, the 

transpose applies to these indices, too. For example, the gluon-gluino coupling is 

proportional to 
rC/L - fa /L 

(eta) (;3b) - bc I et;3 ( 4.17) 

where f a
bc are the SU(3) structure constants and the gluino fields are contracted with 

the downstairs indices. Interchanging the indices band c gives us another minus sign, 

so that 

C r cp, C-l - fC (C /LC- 1 ) - fC /L - fC P, - rcp, 
et, (fa)(Jb) 15;3 - ab I et;3-- abl;3et- bal;3et- (;3b) (eta) 

=? crc/Lc- 1 =(rc/L)T (4.18) 
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Analogous derivations can be made in the cases where we replace one of the 

external fields with its bar-conjugate. This corresponds to the following diagrams: 

Pn PI Pn PI 

• • + • - - - - f3 - - - -0: ...... ® ..... ... .. ® .. ... 0: .. ... ® ...... ..... ® ... ... f3 
Pn+l kn- 1 kl Po Pn+l kn - 1 kl Po 

In both cases one of the contractions with the external fields ends up in the wrong 

order, too, so we get an extra minus sign from anti-commuting the fields in that 

contraction. On the other hand there is only one factor of C- 1 in the game now, so 

we get no minus sign from using (C-1)2 = -11. However, since we cannot cancel the 

charge conjugation matrix with anything it now appears in the final expression. To 

get rid of all the transposed propagators we have to pull it to the "far" end of the 

chain in each case. This leaves us with the following two diagrammatic rules: 

0: 

-...... 
Pn+l 

-...... 
Pn+l 

Pn 

-® ..... 
kn - 1 

= (I1 (}i) x 0: 

Pn 

t -® ..... 
kn- 1 

-... .. 
kl 

PI 

+­
® ..... 

Po 

Pn 
t 

f3 

...... ® ...... 
Pn+l kn- 1 

PI 

• - -... ... ® ... ... f3 
kl Po 

Pn 

• ® = (I1 (}i) x c;:~ x I - ......... ~ 
Pn+l 

PI 

• ... ... ® ...... 
kl Po 

PI 
t ...... ... ... ® 

kn- 1 kl 

I X C-1 
'Yf3 

... ... f3 
Po 

(4.19a) 

(4.19b) 

Note that these rules are only applicable if we end up with a fermion line in which 

all arrows point towards the left index (0: in this case). The order of the indices 

is determined by the time ordered product under consideration. However, the rules 

above are sufficient, since we can always rearrange the fields in a time ordered product 

so that the desired field appears on the left. We only have to remember that we pick 

up a minus sign each time we swap two fermionic fields in the time ordered product. 

With these rules at hand it is now straightforward to chase through the list of 

prototype diagrams given in section 4.2, draw a version with clashing arrows for each 



CHAPTER 4. FEYNMAN DIAGRAMS 85 

that involves Majorana fermions and use the rules derived above to straighten the 

arrows again, thus relating the new diagram to the original prototype. In most 

cases the rule (4.16) is sufficient. The only difficult cases are the box diagrams 

DqqbaLfboxSS and DqqbaLfboxSSx. The latter, as it is drawn in section 4.2.4, 

does not even exist in the MSSM since there are only vertices with incoming squark 

and outgoing quark lines or outgoing squark and incoming quark lines. However, 

using propagators with clashing arrows we can draw the following diagrams: 

~ t(Pl' AI) :::::-... t(pl' AI) 
Fl H 

q(k2' -CJ) q(k2' -CJ) 
" ;' 

I I "~ ~;' I I 
5 1& & 52 52 " ;' 51 

;' 

I I 
;' " ;' " I I ;' " 

q(kl'CJ) - ;' - " 
F2(q) ~ F2(q) ~ 

t(p2' A2) t(p2' A2) 
(4.20) 

We will straighten out the arrows on the fermion lines in such a way that we end up 

with charge conjugation matrices acting on the incoming spinors UCT(kl) and fJCT(k2 ). 

Remember that our diagrams correspond to a time ordered product of the form 

T { qak2 iJ(3kl t,rll2}. On the upper fermion line we end up with arrows pointing to­

wards the final state top quark. Thus, to apply the rules (4.20) we have to rewrite 

the time ordered product as 

(4.21) 

In other words, we pick up no sign from interchanging the fields in the time ordered 

product. 

After straightening the arrows the incoming spinors get multiplied with C- l
. Ac­

cording to the Feynman rules for external fermion legs given in table B.l we have to 

contract the incoming fermion line with UCT (kd and the incoming ant i-fermion line 

with fJCT(k2). Using (B.63) we find 

( 4.22) 

Thus the box diagrams (4.20) are algebraically equivalent to the "crossed" versions 
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of the prototypes Dqqbar _fboxSS and Dqqbar _fboxSSx: 

~ Fl 
t(Pl, AI) q(k2, -(J) 

Fl 
t(Pl, AI) 

q(k2, -(J) 
I I I I 
I I I I 

81 ! ! 82 81 , ! 82 
I I I I 

( 4.23a) 

I I I 

q(kl, (J) - ~ ~ ~ F2(q) 
t(P2, A2) q(kl ,(J) 

F2(q) 
t(p2' A2) 

~ Fl 
t(PI, AI) q(k2, -(J) 

Fl 
t(Pl,Al) 

q(k2, -(J) 
" ,/ " ,/ 

"~ ~,/ "~ ~,/ 
8 2 " ,/ 81 82 " ,/ 8 1 ,/ '" ,/ " ,/ " 

(4.23b) 
,/ " ,/ " ,/ " ,/ " ,/ - " ,/ " q(kl, (J) 

~ ~ ~ F2(q) 
t(P2, A2) q(kl ,(J) 

F2(q) 
t(P2, A2) 

In the first relation we also have reversed the arrow on the scalar 51' We can do this 

because the direction of the arrow on scalar lines has no impact on the algebraic ex­

pression for the diagram, since the scalar propagator is symmetric in the momentum. 

The upshot of all this is that for the prototypes Dqqbar _sG_iseF, Dgg_sG_iseF, 

Dgg_sG3ertFg the additional diagrams we get in the case of internal Majorana 

fermions add up to give us a factor of 1/2. Furthermore, we have to include the 

crossed versions of Dqqbar _fboxSS and Dqqbar _fboxSSx. To swap the incoming par­

ticles we simply replace e with e - 7r and (J with -(J. 



Chapter 5 

Cross Sections 

So far we have seen how to calculate supersymmetric one-loop corrections to the tt 
production amplitudes introduced in chapter 2. In this chapter we show how these 

amplitudes can be used to compute observables, specifically scattering cross sections 

and their ratios, which can be measured at particle colliders like the LHC. 

We will first derive an expression for the tt production cross section at parton 

level. Then we use the factorisation theorem to express the proton-proton to {[ cross 

section in terms of the parton level cross sections and parton distribution functions 

(PDF). Finally we show how information about the spins of the top quarks can be 

extracted from the angular distribution of their decay products. 

5.1 The Cross Section at Parton Level 

For the moment let us ignore the fact that, at the LHC, top quarks will be produced 

from proton-proton collisions and assume that we can collide individual partons (i.e. 

light quarks and gluons) with a given energy. In our approximation all partons are 

massless. Thus the flux factor is simply 1/(2Mtl), where lVhf is the invariant mass of 

the top-anti top system. The differential cross section at parton level is given by 

~ 1 d3PI d3p2 
dO"i(lVltt , PI' P2) = 2Nl

t
l (27r)32E(PI) (27r)32E(P2) 

x (27r)45(Mtt - E(PI) - E(p2))5( -PI - P2)IM i I2 . (5.1) 
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The arguments PI and P2 are the momenta of the final state top quarks in the 

partonic centre of mass frame. The index i labels the type of parton in the initial 

state. Depending on i, the matrix element M is the quantity defined in (2.3) or 

(2.35). The spin indices are suppressed. A priori the momentum arguments of M 
can be fixed to 

where 

kl = (E,O,O,E) 

PI = (E(PI)' PI) 

k2 = (E, 0, 0, - E) , 

P2 = (E(P2)' P2) 

1 
E = -Nf(E 

2 

(5.2) 

(5.3) 

is the energy of one parton or final state top quark in the centre of mass system. 

Now we integrate over the momentum P2' The delta function yields the additional 

constraint PI -P2 and 

To integrate out the remaining delta function we write PI in polar coordinates: 

PI = (p, e, ¢) 

The energy E(PI) depends only on the radial coordinate p: 

Thus we may write the delta function as 

1 
5(2E - 2E(PI)) = 12E'(p)15(P - p(E)) 

where p(E) denotes the positive zero point of 2E - 2E(p). Using (5.6) we find 

p(E) = JE2 - m 2 

and 
E'(p) = dE(p) = p 

dp Jp2 + m 2 

p 

E(p) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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Performing the integral over p and using E(p(E)) = E we get 

dA(M- B "') = _l_p(E)d(cos B)dc/J 1M 12 
O"~ tt" 'f' 2M

t
1 (21f )28E ~ (5.10) 

and the momentum arguments of M are further constrained by IPII = p(E). By 

rotation invariance of M the integral over rp just gives us a factor of 21f. Hence 

OCri (Mit, B) 
o(cos B) 

p(E)IMiI 2 

(21f)64E3 
(5.11 ) 

Furthermore, rotation invariance allows us to write the momentum arguments of M 

in terms of E and B according to (2.25). 

5.2 Proton Scattering Cross Sections 

At the LHC top quarks are produced from proton collisions with centre of mass 

energies JWpp at the Te V scale. In the parton model the actual collision takes place 

between two partons, one from each proton, which carry fractions Xl and X2 of the 

proton momenta PI and P2 . If we neglect the proton mass the centre of mass energy 

Nhf at parton level is related to the collision energy Mpp of the protons by 

(5.12) 

According to the factorisation theorem the cross section for producing top quarks 

from proton collisions is obtained by folding the cross section at parton level with 

the parton distribution functions k Let the index i = u, d, c, s, 9 denote a parton 

and the index 1, = ii, d, c, 5, 9 its antiparticle. Then the cross section for producing a 

top-antitop pair from a parton i in proton 1 and parton 1, in proton 2 is given by 

OO"i(Mpp , B) t t 2 2 OCri(JXIX2Nlpp, B) 
o(cosB) = Jo dXI Jo dX2 fi(XI)f,;;(X2)B(xIX2 Mpp - 4m ) o(cosB) 

(5.13) 

The functions fi and fT are the distribution functions of the the partons i and 1,. The 

theta function assures that the collision at parton level is above the threshold for 

producing the top-antitop pair. 
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To integrate out the theta function we make the following change of variables: 

T = XIX2 W = (1 - XI)X2 
T 

Xl = -- X2 = T + W 
T+W 

----- dT/\dw=-dT/\dw (
8X18X2 8X18X2) 1 
8T 8w 8w 8T X2 

Thus equation (5.13) reads 

Using (5.12) we can replace the integral over T by an integral over !VIa: 

where 

M2_ 
X - tt 

I - ~!f2 ; M2 
1\ a + w pp 

wmax 

(5.14a) 

(5.14b) 

(5.14c) 

(5.15) 

(5.16) 

(5.17) 

By omitting the integration over Mtt we also define the differential cross section 

82(J"i(Mpp, Mtt, e) 
8Mtt8(cos e) 

(5.18) 

for producing a top-antitop pair with a given invariant mass. If the particle i comes 

from proton 2 we have to interchange the labels i and z in (5.18) and replace e by 

7f - e. Hence we define 

(5.19) 

Experimentally we cannot determine on an event by event basis, which constituent 

of which proton took part in the collision. Hence, to construct an experimentally 

measurable cross section, we have to sum over all possible parton types i and the two 
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possible ways of extracting them from the two protons. Thus we define 

fPa(Mpp , M tt , 0) 
o 1v1tt:o( cos 0) 
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Usually it is more convenient to integrate out one more parameter. We define the 

invariant mass differential cross section as 

(5.21) 

If we integrate out the invariant mass argument Mtt it is conventional to parametrise 

the cross section by the transverse momentum PT of the top quark. In terms of fl1tt 

and 0 the transverse momentum PT can be written as: 

PT = p(~NItt) sinO , (5.22) 

with P given in (5.8). Since fl1tt lies between 2m and Mpp the transverse momentum 

PT ranges from 0 to P ( ~ Mpp). For a fixed value of PT the invariant mass Mtt of the 

top-antitop system can lie between 2E(PT) and Mpp, with E given in (5.6). Hence 

the transverse momentum differential cross section is given by the integral 

(5.23) 

where cos 0 is given in terms of PT and Mtt by 

(5.24) 

5.3 Top Decays and Observables 

So far we have assumed that the tt final state can be measured directly in the detec­

tors, along with the helicities of the top quarks. This is, of course, not true. With 
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a half-life of the order of 10-25 sec the top quarks decay long before they can reach 

a detector. However, their lifetime is also about 20 times shorter than the natural 

time scale of QeD, which means that they decays predominantly via electroweak in­

teractions. This gives us the unique opportunity to study spin correlations of the 

intermediate tt state. For other quarks the spin information is lost in the hadroni­

sation process, but for top quarks it can be extracted from the angular distribution 

of the decay products, due to the parity violating nature of the weak interactions. 

In this section we demonstrate how to define observables on some general final state 

X I X 2 of a process pp ----+ tt ----+ X I X 2 , which analyse the spins of the intermediate tt 
state. 

Let M tot denote the total amplitude for the process i ----+ tt ----+ X I X 2 , where i 

can be either a gluon-gluon or quark-antiquark initial state. Let M A,>" denote the 

amplitude for the process i ----+ tt. The indices ,\ and .\ denote the helicities of the 

top and anti-top, respectively, and we have suppressed the spins of the initial state 

and the dependence on the initial and final state momenta. Furthermore, let fJ,A and 

p>" denote the amplitudes for the decays t ----+ Xl and t ----+ X 2 , respectively. Then the 

amplitude M tot can be written as 

(5.25) 

where a sum over repeated indices is implied. Here we neglect interactions between 

the decay products of the top quarks, since these contributions are of higher order 

than the one-loop corrections we calculated for M A>... The modulus squared of M tot 

can then be written as 

(5.26) 

with an average over the spins of the initial state implied. The spin density matrices 

R, p and !5 are defined as 

(5.27) 

As the Pauli matrices (ji and the identity matrix form a basis of the space ([;2,2 of 



CHAPTER 5. CROSS SECTIONS 93 

2 x 2 matrices we can expand the spin density matrices as follows: 

(5.28) 

Using Tr((ji) = 0 and Tr((ji(jj) = 25ij we see that IMtot l2 can be written as 

(5.29) 

The dependence of the coefficients a, a, bi , Fi, A, Bi 13i and Cij on the initial 

and final momenta encodes the information about the spin of the top quarks and 

determines the angular distribution of the decay products. To define observables that 

can be measured with sufficient accuracy we have to integrate over most of the final 

state phase space. Assume that we integrate over all final state momenta except the 

momentum q of one decay product of the top quark and the momentum q of one of 

the decay products of the anti-top. By rotation invariance the (integrated) coefficient 

a can only depend on Iql and b must be proportional to q. Analogous statements hold 

for a, band q. The vectors q and q can be expressed in terms of polar coordinates 

(0, ¢) and (1], ¢): 

q = sin 0 cos ¢el + sin 0 sin ¢e2 + cos Oe3 

q = sin 1] cos ¢el + sin 1] sin ¢e2 + cos 1]e3 
(5.30) 

Note that the polar axes e3 and e3 for q and q can be chosen independently. Now 

we also integrate over Iql, Iql and the azimuthal angles ¢ and ¢. Let dLIPS' denote 

the corresponding integration measure. Then the integral over IMtot l2 is of the form 

J dLIPS' IMtot l2 = A' + B' cos 0 + 13' cos 1] + G' cos 0 cos 1] . (5.31) 

The coefficients A', B', 13' and G' can be measured experimentally by observing the 

angular distribution of the final state particles. By a more careful analysis they 

can also be related to spin correlations of the intermediate tt state. The details of 

these relations depend on the decay mode under consideration. For semi-leptonic top 

decays, for example, they were studied in [4] within a Standard Model framework. 

In the following discussion of our results for supersYlnmetric effects in if pro-
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duct ion cross sections we will only consider spin correlations at the level of the {[ 

intermediate state. A thorough analysis of supersymmetric signals in the angular 

distribution of the decay products still needs to be done. For consistency such an 

analysis will require the computation of supersymmetric corrections to the top decay 

amplitudes p,).. and {L>.. 



Chapter 6 

Results and Conclusions 

In this section we present our results for the SUSY corrections to polarised tf pro­

duction cross sections, which we calculated for each of the 10 Snowmass benchmarks 

detailed in [45]. The benchmarks la, 1b and 2 to 6 are derived from gravity mediated 

SUSY breaking scenarios. Benchmarks 7 and 8 are related to gauge mediated SUSY 

breaking and benchmark 9 comes from an anomaly mediated scenario. To calculate 

the masses of the supersymmetric particles and run the couplings to the Te V scale 

we used the program SOFTSUSY by B. C. Allanach [65]. The renormalisation scale p, 

of the scale dependent MSSM parameters was set to the geometric mean of the two 

stop masses, in accordance with the convention adopted in [65]. The decay widths 

of the MSSM Higgs particles were calculated with the program HDECAY by Djouadi, 

Kalinowski and Spira [66]. The Feynman rules for the MSSM vertices were taken 

from J. Rosiek's paper [59]. We compare our parton level cross sections with the 

results obtained in the leading log approximation [46]. Then we discuss our results 

for the total pp ---'t tt cross section and the asymmetries introduced in section 5.3. 

6.1 Numerical Results 

Let (;-i denote the total cross section for the process i ---'t tt, where the initial state i can 

be a gluon pair (gg), a light up-type quark-antiquark pair (uu) or a light down type 

quark-antiquark pair (dd). We regard (;-i as a function of the variable s - NIlE' where 

NItE is the invariant mass of the top-antitop pair. For each of these cross sections we 

95 



CHAPTER 6. RESULTS AND CONCLUSIONS 96 

0.5 

leading log 
exact 

0 

:>0 rn 
0"" rn"" <!,.. 

-0.5 

109 1010 1011 1012 1013 1014 

S [GeV2] 

Figure 6.1: SUSY corrections to the gg ---+ tt cross section in the "exact" calculation and 
the leading log approximation for benchmark 5 of [45]. The thickness of the leading log 
graph reflects the uncertainty due to the choice of the universal SUSY scale. 

have calculated the leading order contribution o-fo and the SUSY corrections o-tUSY 

due to the diagrams listed in chapter 4. The SUSY corrections can be split into super­

QCD (SQCD) corrections and super-electroweak (SEW) corrections. The SQCD 

corrections are of order O(a;) and the SEW correction of order O(aa;). Consequently 

the SEW corrections are one order of magnitude smaller than the SQCD corrections. 

We also define the ratios A SUSY( A) A (A) (Ji S 
Ti S = ALO(A) 

(Ji S 
(6.1) 

Figures 6.1 , 6.2 and 6.3 show a comparison of our "exact" ratios with the results 

obtained in the leading log approximation by Beccaria, Renard and Verzegnassi [46]. 

We have used Snowmass benchmark 5 to compute the exact cross section, but 

the observations stated here are true for any of the 10 Snowmass benchmarks. The 

only SUSY inputs in the leading log approximation are tan f3 and a universal SUSY 

mass scale Msusy. Sensible values for this scale lie anywhere between the mass of 

the lightest and the mass of the heaviest SUSY particle. The widths of the leading 

log graphs in figures 6.1 , 6.2 and 6.3 reflect this uncertainty. We see that , in the 

leading log approximation, the ratios ftUSY are proportional to log( s / M§usY)' For 

s .2: 109 GeV the exact ratio runs linear with the same slope, but with a constant offset 

to the leading log graph. For very large centre of mass energies this offset becomes 
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Figure 6.2: SUSY corrections to the uu -t tl cross section in the "exact" calculation 
and the leading log approximation for benchmark 5 of [45]. The results for first and second 
generation up-type quarks are identical. The width of the leading log graph reflects the 
uncertainty due to the choice of the universal SUSY scale. 
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Figure 6.3: SUSY corrections to the dd -t tf cross section in the "exact" calculation 
and the leading log approximation for benchmark 5 of [45]. The results for first and second 
generation down-type quarks are identical. The width of the leading log graph reflects the 
uncertainty due to the choice of the universal SUSY scale. 
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negligible. Therefore our results agree with the leading log approximation in the high 

energy limit. However, for collision energies that are achievable at the LHC we see 

that the leading log approximation fails. 

To obtain the pp ---+ tf cross sections, the parton level cross sections CYi were folded 

with the CTEQ6L1 set of the CTEQ v6.51 parton distribution functions [67]. The 

factorisation scale was set equal to the renormalisation scale. For the proton-proton 

collision we assumed a centre of mass energy of 14 Te V. Let dO)\l).,2 j dMtf; denote the 

invariant mass differential cross section for producing a top quark with helicity Al 

and an anti-top quark with helicity A2. Then we define 

dOtot do ++ do __ d(J +_ d(J_+ 
--=--+--+--+--
dMt dMt dMt dMt dMt 
d(JLL d(J++ d(J__ d(J+_ d(J_+ 
--=--+--------
dJl;!tt dMtt dMtt dlVItt dMtt 
d(Jpv d(J+_ d(J_+ 
---- ---- - ----
dMtt dMtt dlVItt 

(6.2a) 

(6.2b) 

(6.2c) 

For each combination we indicate the leading order and SUSY contributions by su­

perscripts 'LO' and 'SUSY', respectively. The parity even combinations d(JroYSY and 

d(Jr1£SY are dominated by the SQCD corrections. However, for the parity odd combi­

nation d(J~V,;SY the SQCD corrections are zero, since parity is conserved in super-QCD. 

For the asymmetries and the SUSY corrections we define the ratios 

d SUSY jdlVI -
SUSY (Jtot/LL/PV tt 

Ttot/LL/pv(Nht) = d LO j dlVI-(Jtot tt 
(6.3) 

Figures 6.4 and 6.5 show the results for d(Jt? j dlVh£ and Tt~(Mtt), respectively, 

with a renormalisation scale {L 464 Ge V (corresponding to the geometric mean of 

the stop masses in benchmark 1a). Since there is no parity violation at leading order 

the ratio T~~ is identically zero. 

Figures 6.6 and 6.7 show the ratios Tro~SY (Mtt) and TrYSY (lVItt ) for each of the 10 

Snowmass benchmarks. The renormalisation and factorisation scales are set, for 

each benchmark, to the geometric mean of the stop masses. The numerical values 

are shown in table 6.1. We have added up the super-electroweak (SEW) and super­

QCD (SQCD) corrections, but the SEW corrections are negligible compared to the 

SQCD corrections. We see that the SUSY corrections to the tf cross section can be as 
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Figure 6.4: Leading order results for the invariant mass differential cross section. The 
renormalisation and factorisation scales are set to 464 Ge V. 
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Figure 6.5: Leading order results for the invariant mass LL asymmetry. The renormali­
sation and factorisation scales are set to 464 Ge V. 
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Figure 6.6: SUSY corrections to the invariant mass differential cross section for the 
Snowmass benchmarks. The numbers in the legend refer to the labelling of the benchmarks 
in [45J. 
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Figure 6.7: SUSY corrections to the invariant mass LL asymmetry for the Snowmass 
benchmarks. The numbers in the legend refer to the labelling of the benchmarks in [45J. 
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Figure 6.8: SUSY corrections to the invariant mass PV asymmetry for the Snowmass 
benchmarks. The numbers in the legend refer to the labelling of the benchmarks in [45]. 

large as 10% of the leading order cross section, but typically only reach the 5% level. 

In both plots we see "resonance peaks" located at the masses of the heavy and the 

pseudo-scalar Higgs (Hf and A~ in the notation of [59]). They come from the scalar 

s-channel propagators in the diagrams labelled Dgg_sS3ertFg, Dgg_sS3ertSg and 

Dgg_sS3ertSSg in chapter 4. Note that due to the fermion triangle the sign of the 

diagram Dgg_sS3ertFg is opposite that of Dgg_sS3ertSg and Dgg_sS_vertSSg. This 

explains why we get "troughs" instead of peaks for some of the benchmarks. Also 

note that, for all 10 benchmarks, the difference of the heavy and the pseudo-scalar 

Higgs masses is much smaller than their decay widths. Consequently we can only 

see two distinct peaks when these peaks have opposite signs. The kinks occurring 

between 1 and 2 Te V coincide, for each benchmark, with twice the gluino mass and can 

therefore be understood as a threshold effect due to the box diagrams Dqqbar _fboxSS 

and Dgg_boxFS. 

Figure 6.8 shows the SUSY corrections to the parity violating asymmetry for 

each of the 10 benchmarks. Here the resonance peaks are absent, because the di­

agrams Dgg_sS3ertFg, Dgg_sS3ertSg and Dgg_sS3ertSSg are parity-conserving. 

Furthermore, the SUSY corrections to the parity violating asymmetry are one order 

of magnitude smaller than the corrections to the parity-even observables, because it 

only gets super-electroweak contributions of order O(aa;). 
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jJ, 
LO O"SUSY O"LO O"SUSY O"SUSY 

O"tot tot LL LL PV 

1a 465 331.8 +8.5 91.99 +1.83 +0.063 
1b 719 288.3 +6.9 79.50 +1.74 +0.020 
2 1100 266.3 -1.0 72.84 -0.33 +0.125 
3 713 289.5 +6.9 80.08 +1.75 +0.043 
4 595 307.6 +7.2 85.62 +1.68 -0.018 
5 402 332.1 +19.9 93.48 +5.19 +0.111 
6 559 310.8 +7.4 85.74 +1.73 +0.053 
7 820 284.9 +3.5 78.04 +0.80 +0.029 
8 1013 271.2 -1.9 74.08 -0.62 +0.035 
9 992 263.6 +6.9 72.32 +1.83 +0.019 

Table 6.1: Numerical results for the integrated tl cross section and asymmetries. The 
numbers in the left column refer to the labelling of the Snowmass benchmarks in [45]. The 
renormalisation scale jJ, in the second column is given in GeV. The superscripts 'LO' and 
'SUSY' indicate leading order results and SUSY corrections, respectively. The cross sections 
are given in pico-barns (pb). 

By integrating the differential cross sections (6.2) over Nft:[ we obtain cross sections 

for producing tt pairs with arbitrary invariant mass. We define the cross sections O"tot, 

0" LL and 0" PV by 

l
Mpp dO"tot/ LL/ PV 

O"tot/ LL/ PV = dMtt dM _ 
2mt tt 

(6.4) 

where mt is the top mass and Mpp = 14 TeV is the invariant mass of the proton­

proton system. Again, the leading order and SUSY contributions are indicated by 

superscripts 'LO' and 'SUSY', respectively. Table 6.1 summarises our results for these 

cross sections. For both, O"tot and O"LL we see that the SUSY corrections typically make 

up 2% of the leading order results. However, they can be as big as 5% in the case of 

benchmark 5 and as small as 0.3% in the case of benchmark 2. 

Experimentally it is often more convenient to parametrise the tt production cross 

section by the transverse momentum PT of the top quark. For the transverse momen­

tum differential cross section dO")\j >'2 / dPT we define the total differential cross section 

dO"tot/ dPT, the asymmetries dO"LL/ dPT and dO"Pv / dPT and the ratios Tt~(PT), T~~(PT), 
T~o~SY (PT), T7I

S
Y (PT) and T~~SY (PT) in analogy to (6.2) and (6.3). Our results for these 

quantities are shown in figures 6.9 to 6.13. We note here that the "resonance peaks" 

and "troughs" from the thresholds for scalar particle exchange are smoothed out by 

the phase-space integration which means that M tt is a far better variable in which to 

analyse the data in order to extract information on the SUSY parameter set, although 
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Figure 6.9: Leading order results for the transverse momentum differential cross section. 

we note that some of the benchmarks give rise to an enhancement of the differential 

cross-section of up to 7% at large Pr. 
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Figure 6.10: Leading order results for the transverse momentum LL asymmetry. 
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Figure 6.11: SUSY corrections to the transverse momentum differential cross section 
for the Snowmass benchmarks. The numbers in the legend refer to the labelling of the 
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6.2 Conclusions 

We have calculated the complete MSSM corrections to the cross-section for tf pro­

duction at the LHC. The calculation has been set up in terms of prototype Feynman 

graphs for the polarised amplitudes at parton-level. These prototypes are indepen­

dent of the underlying model and can be re-used for studying the effects of other 

BSM physics on top-quark production. In a second step we used these prototypes 

to construct a numerical library that computes the MSSM corrections for arbitrary 

values of the full set of MSSM parameters. 

As a first analysis we have calculated numerical results for the ten Snowmass 

benchmark sets using the CTEQ PDFs. We find a considerable variation of the effects 

of the one-loop SUSY corrections between the various benchmarks. The benchmark 

giving the largest correction is benchmark 5, which is a super-gravity model with 

small tanp = 5 and a large negative tri-linear coupling, Ao = -1000 GeV. These 

large corrections can be understood from the fact that this large tri-linear coupling 

generates a light stop mass (258 GeV) thereby enhancing graphs involving a stop 

mass inside the loop. This gives an enhancement of 6% in the total production cross­

section. 

Whereas the corrections for the other benchmarks are somewhat smaller, they are 

usually around 3% and therefore comparable to the weak corrections calculated by 

Bernreuther et. al. [31J and Kuhn et. al. [20J. Note that whereas the weak corrections 

reported in [20,31 J decrease the prediction for the cross-sections, the SUSY corrections 

have a positive sign for most of the benchmarks considered. 

Statistically, we expect these events to be easily detectable given the anticipated 

yield of order 107 events over the period of running of the LHC. We have found 

similar corrections in the asymmetry ratios defined in in (6.2) and (6.3). For these 

asymmetries we also expect cancellation of systematic errors arising from uncertainties 

in incoming parton fluxes and tagging efficiencies, so that these corrections of order 

3% would exceed the statistical errors by a factor of rv 100. 

Given corrections of such significance, it is reasonable to assume that corrections 

in the differential cross-sections will also be detectable (provided sufficiently large 

bins are taken). We have therefore plotted the differential cross-sections with respect 

to the invariant mass M{{ of the tf system and also with respect to the transverse 
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momentum PT of the t-quark. In the former case, the differential cross-sections display 

an interesting structure with peaks and/or troughs corresponding to thresholds for 

scalar particle exchanges in the gluon fusion process. 

We have also determined the SUSY contribution to the parity odd helicity asym­

metry. This receives only contributions from the supersymmetric partners in the 

weak-interaction sector, which are suppressed relative to the SQCD corrections by 

O(aw/as)' It would appear, therefore that even for benchmark 5, which produces 

the largest corrections, such parity violating asymmetries will be too small to observe. 

Nevertheless, the rewarding result of our studies is that the existence of super­

symmetric particles can have a measurable effect on the production cross sections 

for top-antitop pairs. Future investigations in this area should address the following 

issues: 

For a successful comparison with experimental data it is important to estimate 

and, if possible, reduce the theoretical systematic errors of this calculation. The 

two main sources of errors are uncertainties in the parton distribution functions and 

higher order corrections to the parton level fE production process. A method for 

estimating the PDF related errors of any observable based on the CTEQ6 PDFs is 

suggested in [68]. It essentially consists in calculating an observable not only with 

the "best fit" PDFs, but also for a set of 40 eigenvector PDFs which span a 90% 

confidence range around the central fit. To estimate the error due to higher order 

corrections it is conventional to vary the renormalisation scale f-l between one-half 

and twice its "ideal" value. The stability of the perturbative results can be enhanced 

by resummation techniques like soft gluon resummation. For unpolarised amplitudes 

such calculations have been done in [21-25], but, as far as I know, no such calculations 

exist for polarised amplitudes. 

Another essential step towards a phenomenologically relevant prediction is a proper 

inclusion of the top decays into our analysis. Remember that the quantities (6.2) are 

not actually measurable, because the spin of the top quarks cannot be observed di­

rectly. In section 5.3 we demonstrated how to define proper observables which are 

sensitive to the spins of the top quarks. Assuming that the supersymmetric correc­

tions to these observables are comparable to those for the "pseudo-observables" (6.3) 

a proper inclusion of supersymmetric one-loop effects into the decay matrix elements 

might be necessary for consistency. 
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Finally the dependence of tt production cross sections and asymmetries on MSSM 

parameters has to be explored. To use experimental results for top production cross 

sections to constrain MSSM parameters, the relevant directions in the MSSM param­

eter space have to be determined. Since the electroweak SUSY corrections are too 

small to be measurable, the majority of the MSSM parameters become irrelevant, so 

that an analysis based only on low energy parameters actually seems feasible. 



Appendix A 

Groups and Representations 

In this appendix we review the main features of the Lorentz and Poincare group and 

their corresponding Lie algebras. We also discuss finite dimensional representations 

of the Lorentz group, in particular left and right-handed \Veyl representations, the 

Dirac spinor representation and the Lorentz vector representation. 

A.I Lorentz and Poincare Transformations 

The Lorentz group L is the group of linear transformations on ]R4 that leave the 

Minkowski product 

(A.l) 

invariant. It is a Lie group of dimension 6. The transformations are described by the 

Lorentz matrices matrices A (AJLv, /-L,V 0 ... 3), which satisfy 

(A.2) 

If we write AJLv = gJLv+wJLv it follows from (A.2) that wJLV (= gJLpwPv) is anti-symmetric. 

Therefore the Lorentz group can be locally parametrised by the six independent 

components of wJLv. 

The Lorentz group L splits up into four disconnected parts L~, L~, L~ and L~. 
We define L~ as the subset of Lorentz matrices A with det A = + 1 and A 0 

0 2': 1. 

109 
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It is an invariant subgroup of L and we call it the group of proper Lorentz trans­

formations. The other subsets can be obtained from it by parity transformations 

P = diag( +1, -I, -I, -1) E L~ and time reflections T = diag( -I, + I, + I, + 1) E L~. 
In fact, they can be written as 

L~ = PL~ (A.3) 

The Poincare group P is obtained by adding space and time translations to the 

Lorentz group. It can be defined as the set of affine Lorentz transformations of 

Minkowski space: 

(A.4) 

for x E R4. Here we denote the elements of P as pairs (A, a), where a E R4 and 

A E L. From (A.8) we see that the product of two elements of the Poincare group is 

given by: 

(A.5) 

where (A2Al)!.!v - (A2)!.!p(Ad Pv and (A2al)!.! = (A2)!.!paP• We also define the discon­

nected subsets p!, p~, pi and p~ of P in the obvious way. 

Now consider a representation of the Poincare group, i.e. a mapping D from P 

to a space Hom V of linear operators on some (finite- or infinite-dimensional) vector 

space V that satisfies 

(A.6) 

Representations of the elements of p! can be expressed in terms of generators. Let 

(A, a) - (] + W, a) E p!. For a given representation D we define the generators 

(A.7a) 

(A.7b) 

In fact, the generators can be defined in a representation-independent way as elements 

of the tangent space of the group manifold. A linear representation D of the group 

on some vectors space then induces a linear representation of its generators on the 

same vector space. We use the symbol D to denote the group representation as well 
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as the induced representation of its generators. However, if it is clear or irrelevant 

which representation is meant we will drop the D, i.e. write Mlw and pfL instead of 

D(MIW) and D(PfL). From the antisymmetry of WfLV it follows that lVIfLV = -lVIVfL. 

As every element of pJ can be approximated by a product of infinitesimal group 

transformations, we can write 

(A.8) 

Using the multiplication law (A.5) and the composition rule (A.6) we find 

D(A, a)D(:li, c)D-1(A, a) = D(:li, Ac) 

D(A, a)D(:li w, O)D-1(A, a) = D(A(:li + w)A -1, -A(:li + w)A -1 + a) 

(A.9a) 

(A.9b) 

Expanding both sides to first order in c and w we obtain the following transformation 

laws for the generators: 

D(A, a)PfL D-1(A, a) = (A -l) fLv PV 

D(A, a)MfLV D- 1(A, a) = (A -1 )fLp(A -1 t CT(MPCT + aP pCT - aCT PP) 

(A.10a) 

(A.10b) 

Expanding these equations for an infinitesimal transformation (A, a) then yields the 

following commutation relations for the generators pi" and lVIfLV: 

[PfL, PV] = 0 

[lVIfLV, PP] = i(PfLgVP _ PVgfLP) 

(A.1la) 

(A.1lb) 

(A.1lc) 

The linear space spanned by the generators, together with the commutation bracket, 

forms a representation of the Lie algebra £(pJ) of the group of proper Poincare 

transformations. 

The Lie algebra of the Lorentz group L is spanned by the generators lVIfLV. Their 

commutation relations are given in (A.1lc). It can be shown that these commutation 

relations are automatically satisfied if we construct operators IfL that satisfy the 

Clifford algebra 

(A.12) 
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and define 
1 i 

MILv = "2 (JILV = "4 blL , ,-(] (A.13) 

From the equations (A.12) and (A.13) it also follows that 

(A.14) 

This is the same relation as (A.llb). It completely determines the transformation 

behaviour of the IlL under Lorentz transformations A, namely 

(A.15) 

To write the commutation relations of the MILv in a simpler form we define 

(A.16) 

From (A.llc) we then obtain the following relations for K and J: 

(A.17) 

The transformations generated by the K are called boosts and those generated by the 

J are spatial rotations. If we substitute aIL = 0 and 

i r; = WOi ei 1 ijk = -E Wjk 
2 

(A.18) 

in (A.8) we obtain the following general form of a proper Lorentz transformation A 

in terms of the generators K and J: 

D(A(rJ, 8)) = exp (-irJ' K - i8· J) 

For convenience we also define the following shorthands: 

D(B(rJ)) = D(A(rJ, 0)) = exp( -irJ . K) 

D(R(8)) = D(A(O, 8)) = exp( -i8· J) 

(A.19) 

(A.20a) 

(A.20b) 

The boost parameter rJ is called rapidity. The transformation R( 8) describes a rota­

tion by the angle 181 around the axis 0 in counter-clockwise direction. Therefore () is 
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called the rotation vector. Boosts along and rotations around the i-axis (i = 1,2,3) 

will be denoted by Bi (Tf) and Ri (e), respectively. 

We can further simplify the commutation relations (A.17) by choosing a different 

basis of the space of group generators. We define 

In terms of these generators we have 

The commutation relations for the Nl read 

[N~, N~l = iEiJk N! 

[N~, N~l = iE
ijk N~ 

[N~,N~l = 0 . 

(A.21) 

(A.22) 

(A.23a) 

(A.23b) 

(A.23c) 

This is just the Lie algebra of an SU(2) x SU(2) group. Its irreducible representations 

are fully specified by the values of the two Casimir operators N! = NtNt and 

N~ N~N~. Their possible values are j(j + 1), where j is a positive half-integer 

number. \Ve therefore denote a representation of L corresponding to N! = j+ (j+ + 1) 
and N~ = j-U- + 1) by D(j+,j-). 

A.2 Lorentz Vectors 

At the beginning of this section we defined the elements A of the Lorentz group as 

real 4 x 4 matrices satisfying (A.2). This is the defining representation of the Lorentz 

group. It is equivalent to the (~, ~) representation. That means that it is possible to 

find an invertible real 4 x 4 matrix A so that 

(A.24) 

for every Lorentz matrix A. The generators in this representation are 

(A.25) 



APPENDIX A. GROUPS AND REPRESENTATIONS 114 

Objects that transform according to this representation are called Lorentz vectors. 

vVe will now work out the explicit form of the Lorentz matrices for boosts along and 

rotations around the z-axis. 

For boosts along the z-axis we have 

(A.26) 

Using 

1 1 

(A.27) 
1 1 

we find 

cosh r; sinh r; 

1 
(A.28) 

1 

sinh r; cosh r; 

Later on we will have to construct boosts that take the momentum p = (m, 0, 0, 0) of 

a particle at rest to p = (E, 0, 0, p3), i.e. satisfy 
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We see immediately that this is true if 

E 
coshrJ = -

m 

For rotations around the z-axis we have 

Using 

-1 

+1 

p3 
sinhrJ = -

m 

115 

(A.30) 

(A.31) 

-1 

-1 

1t-1(-iM 12? , (_iM12)2n-l = (_It-l(-iA112) Vn ~ 1 

(A.32) 

we find 

1 

cos 0 - sinO 

sin 0 cos 0 
(A.33) 

1 

We see that this matrix rotates the spatial components of a four vector by an angle 

o around the z-axis in the counter-clockwise direction. 
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A.3 Weyl Spinors 

Objects that transform according to the (~, 0) or (O,~) representation of the Lorentz 

group are called lejt- or right-handed Weyl spinors, respectively. In other words left­

handed Weyl spinors transform as singlets under the SU(2)_ subgroup generated by 

the N~ and according to a ~ representation under the SU(2)+ subgroup generated 

by the N~. Right-handed Weyl spinors transform as singlets under the SU(2)+ and 

according to a ~ representation under the SU(2)_. 

In a ~ representation of SU(2) the generators are (Ji /2, where the (J"i are the Pauli 

matrices 

(A.34) 

They satisfy the following commutation and anti-commutation relations: 

(A.35) 

Therefore the generators of a left-handed Lorentz group representation (~, 0) are 

i 

N i - ~ +- 2 

In the right-handed representation (0, ~) the generators are 

(A.36) 

(A.37) 

Consequently, using (A.22), the left and right handed representations of a Lorentz 

transformation A( TJ, 8) can be written as 

D(~,O)(A(TJ, 8)) = exp ( -i(8 - iT]) . ~) 

D(O'~)(A(TJ, 8)) = exp ( -i(8 + iT])' ~) 

(A.38a) 

(A.38b) 

For later use we will now work out the explicit form of the representation matrices 

for rotations around the y-axis in counter-clockwise direction. First note that the 

generators of rotations are 0,/2 in both the left and the right-handed representation. 
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Therefore the representation matrices for pure rotations have the same form in both 

representations. According to (A.38) we get 

(A.39) 

where D can be both, D(~'O) or D(O,~). Using 

(A.40) 

we obtain 

(

COS fZ. 

= sin i . ()) -sm 2 

cos fZ. 
2 

(A.41) 

A.4 Dirac Spinors 

Objects that transform according to the direct sum of a left-handed and a right­

handed representation are called Dirac spinors. On the space of Dirac spinors a 

Lorentz transformation A is represented by the matrix 

(A.42) 
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From (A.38) and (A.22) we see immediately that the generators in this representation 

are 

i_I (J i 0') N+ --
2 . 

(A.43) 

and 

(A.44) 

We can write these generators in the form (A.13) if we define the Dirac 1 matrices 

as 

(A.45) 

Using (A.35) we can show that they satisfy the anti-commutation relations (A.12). 

A complete basis of the space C4,4 of complex 4 x 4 matrices can be constructed 

from anti-symmetrised products of the 1 matrices. Here we choose the following basis 

matrices: 

1l 15 ) (A.46) 

with 

(A.47) 

A symmetric inner product ( . ) . ) on C4,4 is defined by 

(A.48) 

The basis matrices (A.46) are orthogonal with respect to this product. They satisfy 

(A.49) 
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The explicit form of the basis matrices (A.46) is 

:ll.= G ~) _ (-1 0) 15 -
o :ll. 

10 = G ~) li= C ~i) 
-a2 0 

(A. 50) 

(-i~i 0) C :k) a Oi = aij = Eij k : 

o +iai 

COl ~) . C ~i) 10/5 = 1
2
/5 = . 

at 0 

The Lorentz and Poincare group representations we discussed in this appendix are 

of central importance for defining the transformation behaviour of relativistic fields 

and constructing Poincare invariant Lagrangian densities. In the next appendix we 

use them to construct free Dirac fields and massless vector fields. 



Appendix B 

Free Fields 

In this appendix we review the quantisation of free Dirac spinor and vector fields. 

We will derive from first principles the explicit form of the polarisation vectors crT (k) 

and the Dirac spinors urT(p) and vrT(p) for one-particle states with given helicities (j. 

B.1 The Free Dirac Field 

The free Dirac field 'ljJ is a field of Dirac spinors described by the Lagrangian 

(B.l) 

where f/J = 0,,1", Consequently, it satisfies the Dirac equation 

(if/J-m)'ljJ=O , (B.2) 

A unitary representation U of the Poincare group pJ is defined on the space solutions 

of (B.2) by 

U(A, a)'ljJ(x) S(A)'ljJ(A-IX - a) (B.3) 

where S(A) is the matrix from (A.42). Using the property (A.15) it can easily be 

checked that the Dirac equation (B.2) is invariant under these transformations. 

To quantise the Dirac field we promote the fields 'ljJ to operator valued fields acting 

on a Fock space F. To assure that the eigenstates of these field operators transform 
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according to (B.3) they have to satisfy 

U(A, a)'ljJ(x)Ut (A, a) = S(A -1 )'ljJ(Ax + a) , (B.4) 

where U is a unitary representation of p! on F. By solving the Dirac equation 

(B.2) we can write the field operators of the free Dirac field in terms of creation and 

annihilation operators, namely 

(B.5) 

where 

(B.6) 

and uA(p) and vA(p) are complete sets of spinors satisfying 

(B. 7) 

We call them Dirac coefficients. 

Path integral methods now allow us to calculate the Greens functions of the 

Dirac field. These are vacuum expectation values of time-ordered products of the 

field operators 'ljJ and 1{;. Of particular importance is the two-point function 

where Saj3 (p) is the Dirac propagator 

(B.g) 

and L::!..(p) the scalar propagator 

~ 
L::!..(p)=----

p2 - m 2 + if: (B.I0) 

For the Dirac field, the other two possible combinations, (01 T{'ljJa (x)'ljJj3 (Y)} 10) and 

(01 T{ 1{;a(x)1{;j3(Y)} 10), are zero. According to Wick's theorem all Greens functions 

can be expressed in terms of the two-point function (B.8). First we have to find all 

possible ways to pair up the operators in the time-ordered product. Each pairing is 
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called a Wick contraction. Then we have to bring all the pairs next to each other, 

picking up a factor of -1 for each time we have to swap two fermionic fields. Finally 

each pair is replaced by the expression (B.8) for the two-point Greens function. 

The LSZ reduction formula identifies S matrix elements as pole coefficients of 

Fourier transformed Greens functions. To keep our expressions readable we define 

the following shorthands for Fourier transformed fields: 

(B.ll) 

Momentum conserving delta functions are written as 

rpl'''pn _ (2 )4r(4)( + + 
U k1 ... k m - 7r U PI . . . Pn (B.12) 

Integrals over repeated momentum indices are implied. For example: 

1/Jap c5Pk 
= j (~~4 j d4x e-iPX1/Ja(x)(27r)4c5(4)(p k) = j d4x eikx1/Ja(X) = 1/J/ 

(B.13) 

Now the Fourier transform of the two point function (B.8) can be written as 

~{3k = j d4x eipx j d4y e-iky j (~:~4 e-iq(x-y) Sa{3( q) 

= j d
4
q jd4xei(P-q)xjd4yei(q-k)YS {3(q) 

(27r)4 a 

= j (~:~4 (27r)4c5(p - q)(27r)4c5(q - k)Sa{3(q) 

= (27r)4c5(p - k)Sa{3(P) 

= Sa{3 (p )c5P k (B.14) 

Note that the Dirac propagator is not symmetric in the momentum argument, so the 

position of the momentum indices P and k matters: 

~ 

1/J/1/J{3k = Sa{3(p)c5Pk = Sa{3(k)c5Pk 

The transformation behaviour of the operators a and bt can be determined by 
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substituting (B.5) in (B.4). For the right-hand side we get 

Comparison with the left-hand side yields 

u>"(p)U(A, a)a>..(p)Ut(A, a) S(A -l)u>"(Ap)a>..(Ap)e-i(Ap)a , 

v>"(p)U(A, a)bl(p)UT(A, a) = S(A -l)v>"(Ap)bl(Ap)ei(Ap)a . 

By setting A = ]. in (B.17) and expanding to first order in a, we find 

Therefore al(p) and bl(p) create particles with momentum p = (E(p), Pl. 
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(B.16) 

(B.17a) 

(B.17b) 

(B.18) 

To give a physical meaning to the index ,\ we consider the case where a = 0 and 

A is an infinitesimal counter-clockwise rotation around the axis p indicated by the 

spatial momentum p. Note that such a transformations leaves the four-momentum p 

invariant, i.e. Ap = p. Its representations can be written as 

U(A) ]. - iBp·J =]. - ~BcijkpiNljk , 

S(A) = ]. ~B cijkpi(]'jk ]. - ~B h(p) , 

(B.19a) 

(B.19b) 

where B is the infinitesimal rotation angle. For the spinor representation we have 

defined the heliciiy operator as 

(B.20) 
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It commutes with the matrix p, because 

[h(p),p] = ~cijk(piE(p)[,j"l, ,,,0]- pipf[,j'i, 'l]) 

= -~lplcijkpipfCl{,k,'l} _ {,j"f},k) 

ilp!cijkpipf (lj 15kf - 15jf,k) 

= ilp!cijkpipf (,jpipk _ piV,k) 

= 0 . 
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(B.21) 

Therefore we can construct the Dirac coefficients u A (p) and VA (p) as eigenvectors of 

h(p), i.e. 

(B.22) 

Since h(p) is hermitian and h(p)2 = ] the possible values of A are +1 and -1. Now 

substituting (B.19) in (B.17) yields 

(B.23) 

This tells us that al creates particles with helicity +A while bl creates particles with 

helicity -A. 

The normalisation of the Dirac coefficients depends on the mass m of the fermions. 

For m 0 we choose uA(p) and vA(p) in such a way that 

where the bar-conjugate of a Dirac spinor 'IjJ is defined as 1jj - 'ljJt,o. For massless 

fermions the spinors uA(p) and vA(p) are linearly dependent, since the equations (B. 7) 

are equivalent for m = O. However, u+(k) and v+(k) will still be orthogonal to 

u-(k) and v-(k). Thus, for massless particles we impose the following normalisation 

condition: 

(B.25) 

To apply the LSZ formalism, we have to construct linear combinations of field opera­

tors that create or annihilate the correct one-particle states from the vacuum. Using 

(B.5) and the orthogonality relations (B.24) or (B.25) we see that 
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• 1jjp u A(p) creates fermions with momentum p and helicity A, 

CD V-A (p )7/JP creates anti-fermions with momentum p and helicity A, 

CD flA(p )7/JP annihilates fermions with momentum p and helicity A, 

CD 1jjPv -A (p) annihilates fermions with momentum p and helicity A. 

Thus, according to the LSZ reduction formula, the Feynman rules for external fermion 

legs are the ones shown in table E.l on page 135. 

We will now calculate the components of the Dirac coefficients u and v. To do 

this we have to consider the cases m -=I- ° and m = ° separately. 

Massive Particles 

For m -=I- ° we can normalise the Dirac coefficients according to (B.24). Then we 

define the standard momentum 

p= (m,O,O,O) (B.26) 

and construct the spinors uA(p) and vA(p) as eigenvectors of f} and h(83), where 83 

is the spatial coordinate vector in z-direction. Using the explicit form (A.45) of the 

Dirac matrices, spinors uA(p) and vA(p) satisfying (B.7) for p = p can be written as 

(B.27) 

\Ve choose the two-component vectors XA as eigenvectors of (J3, namely 

(B.28) 

Thus the standard coefficients (B. 27) are also eigenvectors of h( 83), namely 

(B.29) 

To construct spinors uA(p) and vA(p) satisfying (B.22) and (B.7) for arbitrary four 

momenta p with p2 m 2 we can exploit the transformation behaviour (A.15) of the 
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gamma matrices. First of all we note that for an arbitrary Lorentz transformation A 

equation (A.15) tells us that 

(B.30) 

Assume that we have constructed some Lorentz transformation A(p) that takes the 

standard momentum 13 to p, i.e. 

A(p)13 = p . (B.31) 

Then we see that the spinors 

(B.32) 

satisfy (B.7). Because the matrices S(A(p)) may be non-unitary we have to include 

the normalisation factor N(A(p)) to assure the normalisation condition (B.24). Note 

however that rotations are represented by unitary matrices, so N (R( 0)) = l. 

To assure that the spinors (B.32) are also eigenvectors of the helicity operator h(p) 

we have to choose the transformation A(p) in a particular way. From the commutation 

relations (A.17) it follows that 

S(B(TJp))h(p)S-l(B(TJp)) = h(p) 

S(R(O))h(p)S-l(R(O)) = h(R(O)p) 

(B.33a) 

(B.33b) 

Therefore we can construct helicity eigenvectors u A (p) and vA (p) for arbitrary spatial 

momenta p by first applying a boost in z-direction and then a spatial rotation to the 

standard spinors (B.27). According to (A.30) a Lorentz boost that transforms the 

standard momentum 13 to a four momentum with spatial component p is given by 

L(p) = B(Arsinh(lp/ml)p) (B.34) 

We define 

(B.35) 

where e and ¢ are the polar angles of the vector p. With this particular choice for 

A(p) it follows from (B.33) that the spinors (B.32) are eigenvectors of h(p) with 
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eigenvalue A. 

The effect of the boosts S(L3 (lpl)) on the Dirac coefficients u>,(,J;) and vA(f;) can 

be written as 

(B.36a) 

(B.36b) 

To prove this we first note that (B.30) and (B.33) imply that the spinors on the left­

hand side of (B.36) satisfy (B.7) and (B.22) for p = (E(p), 0, 0, Ipl). Up to irrelevant 

phases, these conditions identify the spinors uniquely. In other words, the common 

eigenspaces of J/J and h(p) are one-dimensional. If we define the spinors u' and v' as 

they satisfy 

because 

(J/J + m) (J/J - m) PfLPv,fL,,( - m2 

1 
= "2PfLPv(bfL"V] + {,!""V}) _ m2 

= PfLPvgfLV - m 2 

=0 . 

(B.37) 

(B.38) 

(B.39) 

If P = (E(p), 0, 0, Ipl) they are also eigenvectors of h(e3) with eigenvalue A because, 

as we saw in (B.21), J/J commutes with h(p). Thus, because the common eigenspaces 

of J/J and h(p) are non-degenerate, it follows that 

(B.40) 
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To find the correct normalisation factor we calculate 

U'A(p)U'A(p) = uA(p)"'l(J/;T + m)"'l(J/; + m)uA(p) 

= uA(p)(J/; + m)2uA(p) 

2muA(p)(J/; m)uA(p) 

= 2muA(p)(E(p )"/- Ipl'l + m)uA(p) 

= 4m2 (E m) . 

In an analogous calculation we obtain 
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(B.41 ) 

(B.42) 

After normalising the spinors (B.37) appropriately and choosing p = (E(p), 0, 0, Ipl) 
we see that the equations (B.40) are equivalent to (B.36). 

Using (B.36) and the explicit form of the Dirac matrices (A.45) and the standard 

spinors (B.27) we find for p (E,O,O,p) 

1 ((E - AP + m)X
A

) 

J2(E + m) (E + AP + m)xA 
(B.43a) 

v (p) = ----;==== 
A 1 ((E-AP+m)X

A
) 

J2(E + m) -(E + AP + m)xA (B.43b) 

For spatial momenta with a nonzero polar angle e and an azimuthal angle ¢ we have 

to first apply a rotation by e about the y-axis and then a rotation by ¢ about the 

z-aXIS. Using (B.28) and the results from section A.3 we find 

D(~,O)(R3(¢)R2(e))xA = D(~,O)(R3(¢)R2(e))XA 

= cos ~e-iA¢/2xA + A sin ~eiA¢/2x-A 
2 2 

(B.44) 
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Thus 

A 1 ((E - AP + m)( cos ~e-iA¢/2XA + A sin ~eiA¢/2x-A)) 

u (p) = )2( E + m) (E + AP + m) (cos ~e-iA¢/2XA + A sin ~eiA¢/2x-A) 

A 1 
v (p) = )2(E + m) ( 

(E - AP + m) (cos ~e-iA¢/2xA + A sin ~eiA¢/2x-A) ) 

-(E + AP + m)(cos ~e-iA¢/2xA + A sin ~eiA¢/2x-A) 
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(B.45a) 

(B.45b) 

Massless Particles 

For m = 0 we use the normalisation condition (B.25) for the Dirac coefficients. 

Furthermore we have to use a different standard momentum, for example 

(B.46) 

where p is an arbitrary energy scale. Using the explicit form (A.45) of the Dirac 

matrices, solutions of (B. 7) for P = k are 

(B.47) 

where x+ and x- are defined in (B.28). In the massless case we have uA = vA, because 

for m = 0 the equations (B.7) are equivalent. Also note that the standard coefficients 

(B.47) are eigenvectors of h(e3) and 15, namely 

(B.48) 

As in the massive case we can construct spinors uA(k) and vA(k) satisfying (B.22) 

and (B.7) for arbitrary four momenta k with k2 = 0 by acting on uA(k) with a Lorentz 

transformation 

(B.49) 

The angles e and ¢ are the polar angles of k and L3 (I k I) is a boost in z-direction 

satisfying 

(B.50) 
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From the explicit form (A.28) of Lorentz matrices for boosts along the z-axis we see 

that 

(B.5l) 

According to (A.42) and (A.38) boosts along the z-axis are represented in the space 

of Dirac spinors by the matrix 

(B. 52) 

As the two-component vectors X.\ are eigenvectors of 0'3 we obtain 

(B. 53) 

Thus, in the massless case, a boost along the z-axis leaves the standard spinors 

u.\(k) invariant. The factor Jlkll f-L assures that the transformed spinors satisfy the 

normalisation condition (B.25), so we don't have to rescale them. 

To calculate the spinors u.\ (k) for spatial momenta k with a polar angle e and an 

azimuthal angle ¢ we have to rotate the spinors (B.47) first by e around the y-axis 

and then by ¢ around the z-axis. Using (B.44) we get 

(B.54a) 

(B.54b) 

For massless particles the helicity is a frame-independent quantity. To see this, 

note that for m = 0 the equations (B. 7) read 

(B.55) 

Furthermore the on-shell condition for massless particles is pO = Ipl. Thus we can 

write (B.55) as 

(B.56) 
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Multiplying with '5,° from the left we get 

'5U>-'(p) = fi'5,0,iU>-'(p) 

and with an analogous calculation 

= i'i,0,1,2,3,iU>-'(p) 

= _if/,1,2,3,iU>-'(p) 

= ~f3iEijk,j,kU>-'(p) 
2 

= h(p)u>-'(p) 
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(B.57) 

(B.58) 

So, for massless particles the helicity is simply the eigenvalue of ,5, and this is a 

frame-independent quantity. 

B.2 Charge Conjugation and Majorana Fermions 

The free quantised Dirac field describes two types of particles: fermions, which are 

created by at and their corresponding anti-fermions, which are created by bt . The 

charge conjugation operator C swaps particles with their anti-particles. It therefore 

satisfies 
Ca>-.(p)C-1 = b_>-.(p) 

Cal(p)C-1 = b~>-.(p) 

Cb_>-.(p)C- 1 = a>-.(p) 

C b~>-. (p )C- 1 al (p) 

From these relations it follows immediately that 

ct C- 1 = ±C 

(B.59) 

(B.60) 

As we have seen in (B.5), the field operator 1jJ(x) creates fermions and annihilates 

anti-fermions. Its charge conjugate C1jJ(X)C-1 and its bar-conjugate ;P(x) therefore 

create anti-fermions and annihilate fermions. To represent charge conjugation on the 

space of Dirac spinors we have to find a spinor matrix C that relates C 1jJ(x )C-1 and 

;P(x): 
(B.61 ) 
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Using (B.5) we find 

(B.62a) 

(B.62b) 

Thus C must satisfy 

(B.63) 

However, in the last section we have seen that the Dirac coefficients u>"(p) and v>"(p) 

are completely determined by the equations (B.7) and (B.22). Therefore the equations 

(B.63) are equivalent to 

(B.64) 

From the definition of J/J and h(p) we see that both relations are satisfied if we choose 

C in such a way that 

(B.65) 

From this equation we immediately obtain the charge conjugation behaviour of ,5 
and the Dirac propagator S (p ): 

C- 1 C T ,5 = '5 (B.66) 

In the Weyl representation the matrices ,0 and ,2 are symmetric, while the matrices 

,I and ,3 are anti-symmetric. Using the anti-commutation relations (A.12) we see 

that (B.65) is satisfied for 

(=? C- 1 ct CT -C) (B.67) 

Majorana fermions are described by Dirac spinors A, which satisfy the additional 

constraint 

(B.68) 

In other words: Majorana fermions are their own charge conjugate. This means that 

for Majorana fields the spinors A and):. can not be treated as independent degrees of 
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freedom. Using (B.68) and (B.67) we can express the Lagrangian of a Majorana field 

entirely in terms of A: 

(B.69) 

By inverting the operator C (ifjJ - m) and converting to momentum space we obtain 

the following two-point functions: 

,---, 

AaPA(3k = [S(p)C- 1]a(35Pk 
,---, 
AaP~(3k = Sa(3(p)5Pk 

In Feynman diagrams we represent the Majorana propagators as follows: 

- f3 = [S(p)C- 1]a(3 0: ....... 
P 

0: ....... f3 = Sa(3(P) 
p - f3 = [(-C)S(P)]a(3 0: ..... 
P 

B.3 Gauge Fields 

(B.70a) 

(B.70b) 

(B.70c) 

(B.7la) 

(B.7lb) 

(B.7lc) 

The gauge fields of a local SU (N) gauge symmetry are massless vector fields A~, which 

transform under local gauge transformations according to the adjoint representation 

of the gauge group. In a non-abelian gauge theory there are interactions between 

gauge fields, which have to be treated perturbatively. The free Lagrangian can be 

written as: 

(B.72) 

with 

(B.73) 

The second term in (B.72) is the gauge fixing term. In this work we are using the 

Feynman gauge, which corresponds to a value of E, 1. In this case the field equation 

induced by the Lagrangian (B.72) is just the homogeneous d'Alembert equation 

(B.74) 
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We will suppress the 'a' index from now on, since the Lagrangian is diagonal in the 

gauge indices. The solutions of (B. 74) can be written as 

(B.75) 

with 

pO = E(p) = Ipi (B.76) 

A priori there is no constraint on the polarisation vectors E so that the set {EUICT = 

O ... 3} forms a complete basis of Minkowski space. However, two of these four degrees 

of freedom are unphysical and get projected out by the gauge fixing procedure. 

To quantise the gluon field we promote the field components Aft(x) to operators 

acting on a Fock space F. Using path integral methods we see that the two-point 

function of the gauge field is given by 

(B.77) 

where .6..ftv(p) is the gluon propagator 

-{L roooooo' V 
p 

(B.78) 

with .6..(p) given in (B.I0). 

By arguments analogous to those leading to (B. 23) and (B.18) we can show that 

at (p) and au (p) create and annihilate gluons with helicity CT, if we construct the 

remaining two polarisation vectors as eigenvectors of the helicity operator h(f». In 

the four-vector representation we have 

(B.79) 

To construct eigenvectors of h(f» we choose vectors (h, e2 E lR 3 so that ell e2 and f> 
form an orthogonal, right-handed basis of lR 3 . In other words: 

(B.80) 
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initial state final state 
fermions UCT(p) UCT (p) 

anti -fermions ij-CT (p) v- CT (p) 
gluons fCT(p) fCT*(p) 

Table B.1: Feynman rules for external fermions and anti-fermions with momentum p and 
helicity CJ. 

Then we see that 

(B.81) 

so the eigenvectors of h(p) are readily obtained as 

±() 1 (~ .~) 
f P = V2 0, el ± ze2 (B.82) 

with 0' = + 1, -1. They satisfy 

(B.83) 

For the LSZ reduction formula we have to construct linear combinations of field 

operators that create one-particle states with the correct quantum numbers from the 

vacuum. Using (B.75) and the relations (B.83) we see that 

• f~(p)AlLp creates gluons with momentum p and helicity 0', 

• f~*(p)AILP annihilates gluons with momentum p and helicity O'. 

Consequently the Feynman rules for external gluon legs are the ones given in table 

B.l. 
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