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There is an increasing interest in biometric identification but, unfortunately, identification based 

on only one classifier is unlikely to achieve acceptable performance for practical deployment. 

A potential way to overcome this is to combine results from more than one classifier. 

This thesis is concerned with combining the audio biometric (voice) and the visual biometric 

(face) for person identification. To achieve this goal, a speaker identification classifier and a face 

identification classifier are built and tested on the XM2VTS database. In this thesis, we provide 

both theoretical and practical research work on combining these two classifiers for the purpose 

of achieving better identification results. Experiments indicate that our approach achieves very 

high identification rate on the XM2VTS database. 

The main contributions of this thesis lie in three parts: first, we have proposed a new algorithm to 

adjust weighting parameter(s) for combining independent audio and visual signals; second, we 

have theoretically proved that there is no 'perfect' fusion algorithm suitable for all situations (the 

'no panacea' theorem); third, we have built an audio-visual person identification system and 

achieved good performance on the XM2VTS database. 

There are several directions for our future research work, which includes: (1) developing 

combination algorithms which are robust to noise and unpredictable situations; (2) combining 

visual features with the audio-visual classifier; (3) research work on face recognition; (4) 

generalising the method of finding optimal weighting parameter to the person verification cases; 

(5) theoretical study on multiple classifier combination; (6) building a real-time audio-visual 

person recognition system. 
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Chapter 1 

Introduction 

IdentifYing a person is a straightforward task for human beings. We do it all the time in business 

and social encounters (Miller, 1994). We say 'Hello' to our friends in the morning; a bank clerk 

can compare a customer's signature to identifY if he or she is the claimed person; we can easily 

know their identity when we talk with our friends through telephone. We are so accustomed to 

use the ability of identifYing people that we do not pay much attention to the reasons why such 

an ability exists. 

With the rapid progress of computer technology during the 70's of last century, researchers are 

more and more interested in building a computer system that can identify people automatically. 

When researchers began to delve into this area, they found there are many challenges and 

difficulties. Although the performance of biometric person identification systems has been 

improved significantly compared with some early systems, there are still many challenges that 

remain to be overcame in designing a completely automatic and reliable biometric system. The 

area of biometric person recognition has been receiving much attention in the previous several 

years. Especially after the events of September II, 200 I, the task of building a reliable biometric 

recognition system to prevent terrorism becomes an urgent endeavour for the governments of 

many countries, which has revitalised the research activities in this area. 

A wide variety of biometrics have been marshalled in support of this challenging task, among 

which are fingerprints, handwritten signature, hand shape, ear shape, iris, face and voice (Miller, 

1994). Some of these biometrics are shown in Figure 1.1. Each has its own advantages and 

disadvantages. For instance, fingerprint and iris are the most stable biometrics. They do not 

change dramatically with age, are not easy to alter or imitate, and are highly distinctive to 

an individual. But many people feel uncomfortable, even annoyed, when they are required to 

provide their fingerprints or let their irises be scanned. Other biometrics also have some kinds 

of advantages and disadvantages. Handwritten signatures are easy to imitate. Hand shape, ear 

shape and voice are not distinct biometrics because it is possible that different people have 

similar hand shape, ear shape or voice. Face recognition is a topic of active research during the 

last twenty years, but until now, there still remain some obstacles, such as pose and illumination 
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Fingerprint 
Face 

Iris 
Ear 

A ... _., . .... .. ~ 
Gait Signature 

Voice 

FIGURE 1. 1: Some biometrics for person recognition, including iris, face, fin gerprint, ear 
shape, gait, voice and signature etc. 

2 

variations, which hinder its further application (Chellappa et al., 1995 ; Zhao et al., 2003). Gait 

recognition provides a potential solution for identify ing a person from a long distance or in noisy 

environments, but until now, its performance still needs to be improved. 

Since recognition based on only one biometric is unlikely to achieve acceptable perfonnance for 

practical deployment, researchers come to the idea of building a system by integrating different 

biometrics together in order to achieve better performance than each single biometric. An 

investigation of how people solve the recognition problem might be helpful to clal" ify the idea of 

integrating different biometrics. When we want to recognise a person, we use the information of 

his or her face, voice, and other biometrics, then we make decisions based on all these biometrics 

together. For example, if we look at a person from a long distance, the face is not clear, but we 

can obtain the recognition result by the voice; in situations when the voice is not clear, we Call 

identify the person by the face . Because of this, it is also advantageous if the recognition system 

can obtain information of different biometrics, and integrate these biometrics by some methods 

to obtain better performance. This idea has the potential to provide a better solution than only 

using a single biometric. A particular situation in integrating biometrics for person recogni tion 

is the problem where basically two sources of information exist: audio signal (voice) and video 

signal (face). This problem is called audio-visual person recognition, which receives much 

attention lately because it provides a prospective solution to biometric recognition problems. 

Face and voice are very easy to obtain, and combination of these two makes the recognition 

system more robust to noise and complex environments. 

Normally, tasks requiring biometric recognition can be .div ided into verification and 

identification . Verification involves making a decision to accept or reject the identi ty claim 

of a person, based on how well the biometric sample the person produced matches the reference 

sample which is produced by the claimed individual. Identification entail s deciding which 
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registered person provides a given biometric sample from among a reference set of 'known' 

people, by finding the one from the reference set that gives the closest match to this biometric 

sample. 

In this thesis, we only concentrate on identification because, first, all methods which can be 

used in identification can also be implemented in verification, by setting up a score threshold to 

adjust the false acceptance rate (FAR) and the false rejection rate (FRR) (Webb, 2002). Second, 

in most cases, the problem of identification is more difficult than verification because the number 

of alternative choices for identification is the number of people in the reference set, while 

verification process has only two choices - accept or reject. Third, one of the main contributions 

of this thesis is concerned with building a new combination algorithm to optimise the scores 

of the audio and visual classifiers. It is not very important whether we choose identification or 

verification to explore the combination method. Because of the above three reasons, we limit 

our scope to audio-visual person identification. 

In order to build an audio-visual person identification system, a face identification system and a 

speaker identification system need to be built individually. Some combination algorithms also 

need to be specified to combine scores obtained from both systems into one identification result. 

1.1 Contributions of this Thesis 

The main contributions of this thesis concentrate on the area of combination algorithms for the 

audio-visual person identification system, which include: 

1. Building an audio-visual person identification system. Implementing benchmark 

algorithms for face and speaker identification, which include Gaussian mixture models 

(GMM) for speaker identification (Chapter 2), principal component analysis (PCA) 

and dynamic link architecture (DLA) for face identification (Chapter 3), dynamic 

programming (DP) for face tracking in videos (Chapter 6). 

2. Proposing a new method to estimate the optimal weighting parameter for fusion of scores 

in audio-visual person identification. This method first estimates the correct identification 

rate from score distributions, then directly maximises the estimated correct identification 

rate. Experiments indicate that the proposed method is superior to three other methods 

tested in reducing the bias and variance of the estimation (Chapter 4). 

3. Theoretically proving the 'No Panacea Theorem', which states that if the combination 

function is continuous and diverse, there exists a situation in which the combination 

algorithm will give very bad performance. Thus, there is no optimal combination 

algorithm which is suitable in all situations (Chapter 5). 

A minor contribution includes: 
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1. Implementing the text-independent speaker identification system for use in forensic voice 

recognition (Chapter 2). 

1.2 Thesis Outline 

Chapter 2: In this Chapter, we will introduce how to build audio biometric classifiers, which 

are also called speaker recognition classifiers. We will shortly review methods for speaker 

recognition, then discuss how to build a text-independent speaker identification system based 

on the Gaussian mixture model (GMM). Finally, we discuss the issue of applying the speaker 

identification system to forensic voice recognition. 

Chapter 3: In this chapter, we will discuss methods of building visual biometric classifiers, 

which are also called face recognition classifier. We will review methods which are commonly 

used in automatic face detection and identification, respectively. We will also implement 

algorithms for face detection and face identification, and then describe their performance on 

the XM2VTS database. 

Chapter 4: This chapter will outline our methods to combine the audio and visual classifiers. 

The problem of late integration of classifiers is firstly introduced. Then several frequently

used combination schemes are discussed. Finally, a new method for accurately choosing the 

optimal weighting parameter(s) for classifier combination is proposed. The proposed method is 

compared with three other well-established approaches. Using bootstrapping, we conclude that 

the proposed one can both reduce the bias and variance, thus achieving a better estimation for 

the optimal weighting parameter. 

Chapter 5: We will prove the 'No Panacea Theorem' (NPT), which states that if the 

combination function is continuous and diverse, there exists a situation in which the combination 

algorithm gives very bad performance. Thus, there is no optimal combination algorithm which 

is suitable in all situations. 

Chapter 6: In this chapter, we firstly develop an algorithm for tracking face images in video 

files, then use these face images to build a visual classifier. We also build an audio classifier 

based on techniques which are discussed in Chapter 2. The proposed method in Chapter 4 is 

used to combine the audio and visual classifiers. We apply this algorithm to the whole XM2VTS 

database, which consists of 295 subjects. Experiments indicate that the proposed audio-visual 

combination scheme can achieve good identification results on this database. 

Chapter 7: This chapter concludes the thesis and outlines several directions for future 

research work, which include (1) developing combination algorithms which are robust to noise 

and unpredictable situations; (2) combining visual features with the audio-visual classifier; 

(3) research work on face recognition; (4) generalising the method of finding optimal 

weighting parameter to the person verification cases; (5) theoretical study on multiple classifier 

combination; (6) building a real-time audio-visual person recognition system. 



Chapter 2 

Speaker Identification System 

This chapter will address the problem of building a person identification classifier based on 

audio signals. This research area is also called speaker identification. Speaker identification is 

the process of automatically deciding the identity of a person by extracting speaker specific 

information from his or her speech signals. The methods of speaker identification can be 

divided into two categories - text-dependent and text-independent. The former requires 

the speaker to provide utterances of key words or sentences that are the same text for both 

training and identification, whereas the latter does not rely on a specific text being spoken. The 

text-dependent methods are usually based on template matching teclmiques in which the time 

duration of an input speech is aligned with the template speech, and the similarity between 

them is accumulated from the beginning to the end of the speech (Furui et al., 1972; Zheng and 

Yuan, 1988; Naik et al., 1989; Rosenberg et al., 1991). However, the text-independent methods 

are concerned with extracting speaker-dependent acoustic properties of speech signals, and use 

these properties for identification (Poritz, 1982; Tishby, 1991; Savic and Gupta, 1990; Reynolds 

and Rose, 1995). 

This chapter will shortly review methods for both text-dependent and independent speaker 

recognition, then discuss on how to build a text-independent speaker identification system 

based on the Gaussian mixture model (GMM). Refer to Furui et al. (1972), Doddington 

(1985), O'Shaugnessy (1986) and Campbell (1997) for detailed reviews on speaker recognition. 

Finally, we discuss the issue of implementing the speaker identification system to forensic voice 

recognition. 

2.1 Feature Extraction 

The first step of speaker identification is to convert the input speech signals to a sequence 

of acoustic feature vectors. Ideally, the method of such a conversion should preserve all 

the acoustic characteristics that are distinctive for each speaker, while not being sensitive to 

5 
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FIGURE 2.1: The process of computing MFCCs. The speech signal is firstly Fourier 
transformed into the frequency domain, then multiplied by a series of mel-scale filters. The 
obtained signal is then processed by taking its energy, then taking the log operation, finally 
inverse Fourier transform is used to obtain the MFCCs. This figure is regenerated from Quatieri 

(2001 ). 

6 

acoustic variations that are irrelevant to the identification process. Voiers (1964) divides speaker

related features into high-level features and low-level features. High level features include 

'clarity', 'roughness', 'magnitude', and' animation'. Other high-level features are prosody, pitch 

intonation, articulation rate, and dialect, etc. He found that such high-level characteristics are 

perceptual cues in determining speaker identifiability. On the other hand, these features are 

difficult to extract by computers. In contrast, low-level features, being of an acoustic nature, are 

more measurable. They can be extracted and measured with comparatively simple methods, 

and good performance is obtained by using low-level features both in speech and speaker 

recognition (Davis and Mermelstein, 1980; Furui, 1986; Reynolds and Rose, 1995). 

One of the most frequently used set of low-level features is the mel-frequency cepstral 

coefficients (MFCC). MFCC features, which were introduced by Davis and Mermelstein (1980), 

exploit auditory principles as well as the decorrelating property of the cepstrum. In addition, 

They are amenable to compensation for convolutional channel distortion. As such, MFCC has 

proven to be one of the most successful feature representations in speech-related recognition 

tasks (Quatieri, 2001, Chap. 14). 

The procedure of MFCC computation is shown in Figure 2.1. The speech waveform is firstly 

windowed with the analysis window w[n]. Normally a Hanning window is used in this process. 

Refer to Oppenheim et al. (1999) for details of how to design analysis windows. Then the 

windowed speech signals are transformed into frequency domain by fast Fourier transform 

(FFT). These two steps can be written as the following: 

N 
T 

X(n, Wk) = L x[m]w[n - m] exp-jwkm 

m=-~ 

where Wk = 2; k with N the FFT length. The magnitude of X(n, Wk) is then weighted by a series 

offilters whose central frequencies and bandwidths roughly match those of the auditory critical 

band filters (Zwicker et al., 1957). These filters follow the mel-scale whereby band edges and 

centre frequencies of the filters are linear for low frequency « 1 000 Hz) and logarithmically 

increase with increasing frequency. We thus call the collection of these filters a mel-scale filter 

bank. An example of a mel-scale filter bank used by Davis and Mermelstein (1980) is illustrated 
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FIGURE 2.2: Triangular mel-scale filter bank used by Davis and Mermelstein (1980) in 
determining spectral log-energy features for speech recognition. 

in Figure 2.2. This filter bank is a rough approximation to actual auditory critical-band filters 

covering a 4000 Hz range. 

The next step in determining the mel-frequency cepstral coefficients is to compute the energy in 

the FFT coefficients weighted by each mel-scale filter. Denote the frequency response of the lth 

mel-scale filter as V,(w). The resulting energies are given for each speech frame at time nand 

for the lth mel-scale filter as: 

where L, and V, denote the lower and upper frequency indices over which each filter is nonzero 

and where 
VI 

A, = L 1 1!i(Wk) 12 
k=L, 

which normalises the filter according to their varying bandwidths so as to give equal energy for 

a flat input spectrum. 

The mel-frequency cepstral coefficients are the inverse Fourier transformation (IFFT) 

oflog{Emel(n, I)}, which is computed as: 

R-I 
I '""' ·2" 1m Cme1 [n, m] = Ii L.. log{Emel(n, /)}eJ/f 

1=0 

(2.1) 

where R is the number of filters. The reason for using the log function is that the production 

of speech signals can be regarded as an excitation signal passing through a vocal tract filter. 

It corresponds to a convolution process in the time domain, which is equivalent to multiplying 

the spectral magnitudes of the source and filter components. When the spectrum is represented 
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logarithmically, these components are additive, because the logarithm of a product is equal to 

the sum of the logarithms (log(A x B) = 10g(A) + 10g(B». Thus, by using a log function 

followed by IFFT, the coefficients corresponding to the excitation signal and the vocal tract filter 

can become decorrelated. Decorrelated coefficients are often more amenable to probabilistic 

modelling than are correlated coefficients. Because of the even property of log{ E mel (n 1 /)}, 

equation (2.1) can finally be written as 

We will use MFCC for speaker identification in Section 2.4. 

2.2 Methods for Text-dependent Speaker Identification 

This section will provide a short review on methods for text-dependent speaker recognition, 

and the next section will review methods for text-independent speaker recognition. For text

dependent speaker identification, the first step is to train reference templates for the required text. 

When there is an input speech utterance, it is first time-aligned with these reference templates 

and then a similarity measure is accumulated for the duration of the utterance. Because the text 

is known in advance, theoretically we can eliminate the information associated with the text in 

the speech signals, and only retain the information associated with speakers. Because of this, 

text-dependent methods can achieve good results in a relatively short speech utterance compared 

with text-independent methods. 

A typical approach to text-dependent speaker identification is the dynamic time warping (DTW) 

algorithm (Furui, 1981; Rabiner and luang, 1993). The key idea of DTW is to use some fonn 

of dynamic programming to align temporal patterns to account for differences in speaking rates 

across speakers as well as across repetitions of the word by the same speaker. In this approach, 

each utterance is represented by a sequence of feature vectors (such as the MFCCs discussed in 

Section 2.1), and the trial-to-trial timing variation of utterances of the same text is normalised by 

aligning the analysed feature vector sequence of a test utterance to the template feature vector 

sequence using a DTW algorithm. The overall distance between the test utterance and the 

template is used for identification decision. The methodology of DTW is well developed and 

provides good performance for speaker identification. 

Another frequently used speaker identification algorithm is hidden Markov model (HMM). The 

basic theory of hidden Markov models was published in a series of classic papers by Baum and 

his colleagues (Baum and Petrie, 1966; Baum and Egon, 1967; Baum and Sell, 1968; Baum 

et al., 1970; Baum, 1972). A HMM can efficiently model the statistical variation in spectral 

features. Therefore, HMM-based methods have achieved significantly better results than DTW

based methods (Naik et al., 1989; Rosenberg et al., 1991). 
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2.3 Methods for Text-independent Speaker Identification 

Because the text-independent methods do not require a person to say the same words or 

sentences during training and testing, text-independent speaker recognition is a more difficult 

task than text-dependent recognition. Algorithms for text-independent speaker identification 

can be categorised as HMM-based and probability-estimation-based. We will review these two 

methods respectively. 

In text-independent speaker identification, we can not generally predict the words and sentences 

used in identification. Therefore, the states of the HMM have to be built on the phoneme 

level. Poritz (1982) proposed using a five-state ergodic HMM (i.e., all possible transitions 

between states are allowed) to classify speech segments into one of the broad phonetic 

categories corresponding to the HMM states. Each of the five states represents strong voicing, 

silence, nasaVliquid, stop burst/post silence, and frication respectively, and is trained with the 

corresponding phonemes uttered by speakers. Tishby (1991) extended Poritz's work to the richer 

class of mixture autoregressive (AR) HMMs. In these models, the states are described as a linear 

combination (mixture) of AR sources. Another approach using HMMs for text-independent 

speaker identification is speech-recognition-based. Phonemes or phoneme-classes are explicitly 

recognised, and then each phoneme (-class) segment in the input speech is compared with 

HMMs corresponding to that phoneme (-class) (Savic and Gupta, 1990). 

The probability-estimation-based method assumes that acoustic features produced by each 

speaker follow some kind of probability distribution. These probability distributions can be 

estimated from the training data, provided that the time duration of the training data is long 

enough to decrease variations and thus obtain a stable probability model for each speaker. The 

time duration of the testing data also needs to be long enough. The first and earliest approach 

of probability-estimation method is to estimate distributions of simple acoustic features, such 

as spectrum representations or pitch (Furui et al., 1972; Markel et al., 1977). Reynolds and 

Rose (1995) extended this method by using Gaussian mixture models (GMMs) to estimate 

the probability distribution of mel-frequency cepstral features and obtained good results. The 

GMM algorithm has become a standard for text-independent speaker recognition and many new 

algorithms are based on it (Reynolds et al., 2000; Chao et al., 2005; Aronowitz et af., 2005). 

The vector quantisation (VQ) method can be classified as another kind of probability estimation 

if we regard the distance from the input feature vectors to those in a VQ-codebook as the 

reciprocal of a probability measure. In this method, VQ codebooks, consisting of a small number 

of representative feature vectors, are used as an efficient means of characterising speaker-specific 

features (Li and Wrench, 1983; Matsui and Furui, 1991; Rosenberg and Soong, 1987). 

Recently, methods in machine learning has also been introduced into the area of text

independent speaker recognition. The method of using support vector machines (SVM) for 

text-independent speaker recognition were firstly proposed by Fine et al. (2001) and Kharroubi 

et al. (2001), and received much attention in this area. A series of publications have discussed 
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the SVM method for text-independent speaker recognition (Campbell, 2002; Wan and Renals, 

2005; Campbell et at., 2006, 2007). 

2.4 GMM-based Speaker Identification System 

The use of GMM for text-independent speaker recognition was proposed by Reynolds and Rose 

(1995), and became a standard in the area of speaker recognition. In this section, a speaker 

identification system based on this method is built and tested by the XM2VTS database (Messer 

et aI., 1999). 

2.4.1 Gaussian Mixtures 

Following Reynolds and Rose (1995), we use cepstral coefficients derived from a mel-frequency 

filter bank to represent the features for identification. The speaker model is based on the 

Gaussian mixture model. A Gaussian mixture density is a weighted sum of M component 

densities: 

M 

p(xlA.) = L Pib;(X) (2.2) 
;=1 

where x is a D-dimensional random vector, b; (x) is the component density of the ith mixture 

and Pi is the weight of the ith mixture. Each component density is a D-variate Gaussian function 

of the form: 

with mean vector Iii and covariance matrix ~i. The mixture weights satisfy the constraint 

that Pi :::: 0 and L:;'!I Pi = 1. The complete Gaussian mixture density is parameterised by the 

mean vectors, covariance matrices and mixture weights from all component densities. These 

parameters are collectively represented as the 3-tuple: 

A. = {Pi, Iii, ~i} i = 1, 2, ... , M 

For speaker identification, each speaker is represented by a GMM and is referred to by hislher 

model A.. 

The GMM can have several different forms depending on the choice of covariance matrices. 

The model can have one covariance matrix per Gaussian component (nodal covariance), one 

covariance matrix for all Gaussian components in a speaker model (grand covariance), or a 
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single covariance matrix shared by all speaker models (global covariance). Here, we use nodal 

and diagonal covariance matrices for speaker models. Thus, we can write the speaker model as 

the following: 

where ai represents the variance of the ith component. 

2.4.2 Maximum Likelihood Parameter Estimation 

Given training speech from a speaker, the goal of speaker model training is to estimate the 

parameters of the GMM, ).., which in some sense best matches the distribution of the training 

feature vectors. There are several techniques available for estimating the parameters of a 

GMM (McLachlan, 1988). By far the most popular and well-established method is maximum 

likelihood (ML) estimation. 

The aim of ML estimation is to find the model parameters which maximise the likelihood 

of the GMM, given the training data. For a training data set X which contains F frames, 

X = {XI, X2, ... , XF}, the GMM likelihood can be written as: 

F 

p(XI)..) = n p(x 11)..) 
1=1 

(2.3) 

Unfortunately, this expression is a nonlinear function of the parameters ).. and direct 

maximisation is not possible. However, ML parameter estimations can be obtained iteratively 

using a special case of the EM (expectation-maximisation) algorithm (Dempster et al., 1977). 

The basic idea of the EM algorithm is, beginning with an initial model ).., to estimate a new 

model X, such that p(XI)..) ::: p(XIX). The new model then becomes the initial model for the 

next iteration and the process is repeated until some convergence threshold is reached. 

On each EM iteration, the following reestimation formulas are used which guarantee a 

monotonic increase in the model's likelihood value: 

Mixture Weights: 

Means: 
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Variances: 

_? L~=I p(ilxj, A) IXjl2 _1-=-.12 
ai = ,\,F . _ IL, 

L..j=1 p(rlxj, A) 

The a posteriori probability for the ith mixture is given by 

Thus, the new model X = [PI' iii' al) is obtained from the old model A = {PI, ill, at) by the 

above formulas. After several iterations, the model parameters will converge to a local maximum 

of equation (2.3). 

2.4.3 Decision Rule 

Suppose there are K speakers to be identified. Then Ak, k = 1,2, ... ,K is the model 

corresponding to the kth enrolled speaker. The goal of speaker identification is to find the 

one among these K models that best matches the test data represented by a sequence of 

F frames, X = {XI, xi, ... ; x'F}. In making the decision, we use the following frame-base 

weighted likelihood distance measure, dk, which refers to the distance from the test data to 

the kth speaker model: 

(2.4) 

in which p(XjlAd is given in equation (2.2). The normalisation by F is necessary as each token 

will, in general, have a different length and, therefore, a different number of frames. 

Suppose the task of a classifier is. to assign an input sequence X to one of K classes 

WI, W2, ..• , WK. We can then identify speaker s according to the rule: 

2.4.4 Silence Removal 

decide X E Ws if s = arg max dl 
I 

One step of our experiments is to remove the inter- and intra-word silence of speech both in 

training and testing. The idea of removing inter- and intra-word silence was based on the insight 

(obvious in retrospect) that there is unlikely to be much if any speaker-specific information 

contained within non-speech intervals of the signal. 

A simple silence-removal technique based on combining information on sound intensity and 

zero crossing rate is used. This is a version of the Rabiner-Sambur algorithm (Rabiner and 
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Sambur, 1975), originally designed for detection of the endpoints of isolated words but modified 

here for the removal of word-intema I silence. This algorithm sets two sound intensity thresholds: 

an upper threshold II and a lower threshold h (II > 12)' It also sets a zero-crossing rate 

threshold, Z. First, the algorithm marks the data points whose intensity is higher than the upper 

threshold II as 'speech points'. Then it extends the boundary of the speech points to points 

which have higher intensity than the lower intensity threshold h After this, the algoritlU11 

further extends the boundary of the speech points to those whose zero crossing rates exceed Z. 

The rationale is that low-intensity parts of the signal might be legitimate speech, but such low

intensity regions will correspond to noise-like excitation in the vocal tract spectrally shaped by a 

high-pass characteristic to have a relatively high zero-crossing rate C e.g., the fricative sounds, If I, 

lvi, lsi and /zl). All the other data points, not marked as speech points, are removed as 'silence'. 

By appropriately setting these three thresholds, the algorithm can successfully remove silence 

most of the time. 

In Table 2.2, we have compared the correct identification rate in situations when silence was 

removed and not removed. From our experiments, it is indicated that our silence-removal 

algorithm can always achieve better identification rate. 

2.4.5 Introduction to the XM2VTS database 

In this thesis, we will use the XM2VTS database to test our algorithms on audio-visual person 

identification. This database, intended for research into multi-modal person recognition, is 

obtainable from the Centre for Vision, Speech and Signal Processing at the University of 

Surrey, UK. It contains high-quality colour images, 32 kHz 16-bit sound files and video files 

of 295 subjects. These files are recorded in 4 sessions, over a period of 4 months. For each 

session, the subjects speak 6 sentences, which are numbered as Sentence I to 6. The content of 

each sentence is as follows. 

1. Sentence 1 and 4: Counting from zero to ten. 'Zero, one, two, three, four, five, six, seven, 

eight, nine, ten.' 

2. Sentence 2 and 5: Counting with a different order. 'Five, zero, six, nine, two, eight, one, 

three, seven, four.' 

3. Sentence 3 and 6: Speaking A sentence. 'John took father's green shoe bench out.' 

Each file has a unique name, with the form of 'CSubject number)_CSession nurnber)-<Sentence 

number),. Each subject is assigned to a unique subject number. For example, the first subject 

was assigned a number '000', and the last one assigned '371'. The other subjects were assigned 

numbers between '000' and '371'. The session number is from I to 4, corresponding to the 4 

recording sessions, and the sentence number is as defined above. For example, the audio file 

which contains Sentence 1 spoken by the first subject, during the first session is labelled as 
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Disk Number Content 
Speech files of 75 subjects. There are 

1 24 files for each person, which is recorded 
in 4 sessions (6 files for each session). 

2 Speech files of another 73 subjects, also 
24 files for each person. 

3 Speech files of another 74 subjects, 24 
files for each person. 

4 Speech files of another 73 subjects, 24 
files for each person. 
Frontal face images for the 295 subjects. 

5 There are 8 images for each person, which 
is taken in 4 sessions (2 images for 
each session). 
Video files which have both audio and visual 

6 information. One video file for each subject, 
which is recorded during the first session, 
when the subject speaks Sentence 3. 
Video files which have both audio and visual 

7 information. One video file for each subject, 
which is recorded during the second session, 
when the subject speaks Sentence 3. 
Video files which have both audio and visual 

8 information. One video file for each subject, 
which is recorded during the third session, 
when the subject speaks Sentence 3. 
Video files which have both audio and visual 

9 information. One video file for each subject, 
which is recorded during the fourth session, 
when the subject speaks Sentence 3. 

TABLE 2.1: The contents of the XM2VTS database. 

'OOO_Ll.wav'. Correspondingly, 'OOO_Ll.ppm' and 'OOO_Ll.avi' refer to the image and video 

files which were taken when this sentence was spoken. In this thesis, video files refer to files 

which contain synchronised sound and moving pictures. Please refer to Appendix A for detailed 

introduction of the image and video files in the XM2VTS database. 

We obtained an incomplete portion of the database, which consists of 9 disks. The content of 

each disk is listed in Table 2.1. The first four disks contain audio files; the fifth disk contains 

static images; and the last four disks contain video files which provide both audio and visual 

information. In this thesis, the XM2VTS database is used to test all the algorithms which we 

proposed for audio-visual person identification. 
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2.4.6 Experimental Results 

We use the sound files contained on the first disk of the XM2VTS database to test the speaker 

identification system. It contains speech files of 75 subjects. Each speaker provides 24 speech 

files which were recorded during 4 sessions (6 files for each session). 

For the silence removing algorithm, we set the upper sound intensity threshold 1 I to be 0.5 times 

the average sound intensity of the speech file, and the lower intensity threshold 12 to be 

0.2 times this average intensity value. The zero-crossing rate threshold Z was set to the 

average zero crossing rate of the speech file. Our experimental results suggest that, in most 

cases, these settings are reasonable and correctly remove word-internal silence while retaining 

the speech itself. 

After the silence is removed, we use mel-frequency cepstral coefficients as features. The 

magnitude spectrum from a 20 ms short-time segment of speech is pre-emphasised and 

processed by a mel-scale filter bank, then the log-energy filter outputs are cosine transformed to 

produce the cepstral coefficients. We use the first 20 coefficients excluding the zeroth coefficient, 

plus the first 20 delta coefficients as the feature set. This process occurs every 10 ms, producing 

100 features per second. Gaussian mixtures consisting of 64 component densities are used in 

these experiments. These experimental settings are proposed by Reynolds and Rose (I 995). 

In their paper, they compared the system's performance by varying the number of Gaussian 

mixtures from 8 to 64. They find that when enough training speech data are provided, the 

performance increases dramatically with the number of mixtures when it is below 30, and the 

performance becomes stable after that. 

We iteratively change the training sessions and testing sessions. First, we use one session 

for training, and the other three for testing; then we use two sessions for training and the 

other two for testing; finally we use three sessions for training and the other for testing. The 

identification results are shown in Table 2.2. In order to illustrate the effect of the silence

removing algorithm in Section 2.4.4, we have listed the identification rates with and without 

silence removed, respectively. 

We can see that the identification rates with silence removed are always better than those without 

silence removed, which indicates our silence-removal algorithm can always improve the speaker 

identification performance. Since the silence-removing process achieves better identification 

results, we will always use this technique in the remaining experiments and not mention it 

explicitly. 

For the results with silence removed, the identification rate is around 84% if only one session 

is used for training (the first 4 lines of Table 2.2). When two sessions are used for training, 

the identification rate increases to around 96% (the next 6 lines). When three sessions are used 

for training, the identification rate further increases to around 98% (the last 4 lines). It seems 

that the identification rate is very high, which gives us an illusion that voice is a nearly perfect 
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Training Session(s) Testing Session(s) Identification Rate Identification Rate 
Silence not Removed (%) Silence Removed (%) 

1 2,3,4 75.11 83.19 
2 1,3,4 74.81 83.85 
3 1,2,4 71.33 84.74 
4 1,2,3 67.48 87.33 

1,2 3,4 89.11 95.56 
1,3 2,4 89.00 96.44 
1,4 2,3 89.78 97.22 
2,3 1,4 89.67 96.44 
2,4 1,3 85.44 94.89 
3,4 1,2 84.00 95.33 

1,2,3 4 96.22 98.00 
1,2,4 3 92.22 98.22 
1,3,4 2 93.33 98.89 
2,3,4 I 87.78 96.67 

TABLE 2.2: Speaker identification rate of the GMM-based method. We have listed results both 
for silence removed and not removed. For the results with silence removed, the identification 
rate is around 84% if only one session is used for training. When two sessions are used for 
training, the identification rate increases to around 96%). When three sessions are used for 

training, the identification rate further increases to around 98%. 

biometric for person identification. However, the identification rate declines dramatically in 

noisy environment, as can be seen in Section 2.5. 

The performance of the classifier can be further illustrated in the ranking curve (Figure 2.3). 

In Figure 2.3, the X axis refers to the ranks of the correct classes, and the Y axis illustrates 

the cumulative identification rates at the corresponding ranks. For example, when X = I, the 

corresponding Y is the identification rate which was listed in Table 2.2; when X = 2, the Yaxis 

shows the fraction of the testing files which their correct classes generate the highest scores or 

second highest scores. We show 3 ranking curves out of the 14 classifiers in Table 2.2, which 

are, the classifiers in row I, 5 and II. The first of these 3 classifiers uses Session 1 for training, 

and Sessions 2, 3 and 4 for testing; the second uses Sessions I and 2 for training, and Sessions 3 

and 4 for testing; and the third uses Sessions I, 2 and 3 for training, and Session 4 for testing. 

We can see that as the training sessions increased, the ranking curves are becoming higher and 

reaches 1 more quickly. This indicates that the speaker identification classifiers becomes better 

when more training data are added. Another observation is that great performance improvement 

has been occurred when two sessions are used for training compared with just one session for 

training, however, the performance does not increase too much when three sessions are used for 

training instead of two. 
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FIGURE 2.3: Ranking curves ofthree classifiers in Table 2.2, which are, the classifiers in row I, 
5 and II. The first of these 3 classifiers uses Session I for training, and Sessions 2, 3 and 4 for 
testing; the second uses Sessions I and 2 for training, and Sessions 3 and 4 for testing; and the 
third uses Sessions I, 2 and 3 for training, and Session 4 for testing. The three ranking curves 

are represented by the solid line, the dotted line and the dash line, respectively. 

2.5 Forensic Voice Recognition 

17 

The speaker identification system built by MFCC and GMM achieves high identification rate as 

shown in Section 2.4.6. In this section, we will use this system to solve practical problems. In 

January 2006, Southampton police office has provided us a case for which our text-independent 

speaker identification system might be applied. We obtained some results by using our system. 

Because the voices contained in the audio tapes are contaminated by noise, the system didn't 

generate too much information that could assist the police to catch the criminal. However, 

we think this unsuccessful experience is valuable for pointing out the limitations of current 

speaker recognition technology and the intrinsic problems for forensic voice recognition. We 

will describe the case and our experiment in this section. 

2.5.1 The Case 

Two robbers came to a house at night. They chopped the door with an axe. The host and hostess 

of the house were awakened by the sound of chopping and came out. They quarrelled with the 

robbers for about two minutes, then the robbers ran away. Their conversations, together with 

other sounds, such as the sound of door chopping, dog barking, background noise, screaming 

of the host's daughter, were recorded by a sound recorder outside of the house. We refer to 

this recording as Recording 1. In Recording 1, the two robbers' voices only occupy a short 
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Recording 1 
Sound Source Duration (Seconds) 

Robber 1 10 
Robber 2 3 

The Hostess 15 
Scream of the host's daughter 1 
Sound of chopping the door 27 

Dog Barking 10 
Background Noise 17 

Recording 2 
Sound Source Duration (Seconds) 

Suspect 894 
Police 337 

Woman Police 13 

TA B L E 2.3: Sound sources and durations in the two recordings. 

time period. One robber, whom we refer to as Robber I, shouted 'Come out' for about 10 

seconds in order to frighten the host and hostess. Another robber, whom we refer as Robber 2, 

said, 'John, come on', which lasted only 1 second, but it provided important information that 

Robber l's name is John. Several days later, the police arrested a suspect whose name is also 

John. He is alleged to be Robber 1. The whole interrogation is also recorded by a sound recorder, 

which consists of the voices of a policeman, a policewoman and the suspect. We refer to the 

interrogation recording as Recording 2. 

Our aim is to provide evidence that whether the voice of Robber 1 in the first recording and the 

voice of the suspect in the second recording are produced by the same person. We investigate 

this problem by using the GMM-based speaker identification system. 

2.5.2 Experimental Settings and Results 

Admittedly, it is difficult to decide whether the voices in these two recordings are generated 

by the same speaker, especially when the voice in one of the two recordings is very short. 

Several researchers studied this problem with the background of forensic acoustics. Most of 

them obtain negative results (Boe, 2000; Broeders, 2001; Bonastre e/ al., 2003). As concluded 

by Boe (2000) and Bonastre et al. (2003), currently it is not possible to completely determine 

whether the similarity between two recordings is due to the speaker or to other factors. 

Here we try to tackle this problem by using our GMM-based speaker identification system. First, 

we separate the sound in the two recordings into small sound segments. Then we concatenate 

the sound segments produced by the same sound source together. Details of each sound source 

and its duration are shown in Table 2.3. 

The settings of the experiment is as follows. We use the voices of the suspect and the police in 
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Suspect Model Police Model 
Voice of Robber I -78.4192 -84.7210 
Voice of Robber 2 -64.3231 -70.0571 

Voice of the Hostess -76.4153 -83.1419 
Scream of the host's daughter -76.1317 -84.7993 
Sound of chopping the door -62.2292 -65.3633 

Dog Barking -63.4083 -67.2631 
Background Noise -61.0813 -64.8564 

TABLE 2.4: Scores of sound segments in Recording I, which are calculated by equation 2.4. 

Recording 2 to train the GMM classifier. Because the voices are long enough (894 seconds for 

the suspect and 337 seconds for the police), we can estimate the trained classifier provides good 

speaker models. Then we use the sounds in Recording 1 to test the classifier, to see whether each 

sound is more like the suspect's voice or the police's voice in Recording 2. The testing scores 

are obtained in Table 2.4. The scores are negative because the obtained probability is converted 

by the log function, as shown in equation 2.4. 

The GMM-based speaker identification classifier indicates that the voice of Robber 1 is more 

similar to the suspect model than the police model. However, the problem is far from being 

solved, because (1) the suspect model tends to generate greater scores than the police model for 

all sounds produced by these sound sources, which means that the classifier may be biased on the 

suspect model; (2) the background noise generates the greatest scores of all these sounds, which 

means the classifier is not reliable. A possible explanation of the results is that, both recordings 

are filled with similar kind of noise, and the voice of the suspect in Recording 2 is more like 

the noise, so that the suspect model always provides greater scores and the background noise in 

Recording 1 generates the greatest scores. 

We have to say that the result is not very successful, and the problem remains unsolved. The 

difficulties of this problem lies in two parts. First, Robber 1 's voice is very short in Recording 1 

(10 seconds), so some factors which are not dependent on the speaker can not be averaged out. 

Second, the two recordings are recorded in different environment, so the results may not show 

the difference of speakers, but the difference of environment. 

2.6 Summary 

In this chapter, we discussed how to build an audio speaker identification system. Firstly, we 

shortly reviewed methods for both text-dependent and text-independent speaker identification. 

Then a text-independent speaker identification system was built based on MFCC features and 

GMM model. This system achieved more than 95% identification rate over the 295 subjects of 

the XM2VTS database if enough speech data is used to train the classifier. 

We also discussed the possibility of using this classifier to forensic voice recognition. As 

indicated in Section 2.5, in this forensic case, the text-independent speaker identification method 
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is sensitive to background noise. Noise may severely alter the probability distribution of the 

speech signal, so speaker identification methods based on estimating probability distributions 

perform not very well when the speech signal is contaminated by noise. More research work 

needs to be carried out for speaker identification in noisy environment. 

I'.' 
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Chapter 3 

Face Identification System 

Automatic face identification has a large number of applications, including security access, 

law enforcement, internet communication, and computer entertainment. Research in face 

identification was firstly carried out in the 60 'so Although the performance of face identification 

systems has improved significantly since the first automatic face recognition system was 

developed by Kanade (1973), there are many unsolved problems remaining in this area. The 

face identification process can be divided into two steps. First, the face region in an image 

should be automatically detected; Second, the detected face region should be processed by an 

identification system and the identification result obtained. We call the first step face detection 

and the second face identification. In this chapter, we will review methods which are commonly 

used in face detection and face identification, respectively. We will also implement algorithms 

for face detection and face identification, and then discuss their performance on the XM2VTS 

database. Readers who want to find more about these topics are encouraged to read the following 

literature surveys: Chellappa et al. (1995), Zhao et al. (2003), and Li and Jain (2004). 

3.1 Methods for Face Detection 

In realistic application scenarios, a face could occur in a complex background and in many 

different positions. A face detection system which can accurately localise and extract face 

regions is the prerequisite for good face identification performance. Because of this, detecting 

faces is one of the key first steps in face recognition (Chellappa et al., 1995). 

Face detection methods can be effectively organised into two broad categories, distinguished 

by their different approaches to utilising face knowledge (Hjelmas, 2001). The techniques 

in the first category make explicit use of two kinds of information. The first is the shape 

information of faces and face features, such as edges and colour information of eyes, mouth 

and nose. The second information source is the geometry relationships of facial landmarks and 

features. Since features are the main ingredients, these techniques are termed as the feature

based approach. Another approach, which is called image-based approach, is to regard the 

21 
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face detection problem as general pattern recognition problem. Image-based representations 

of faces, for example in 2D intensity arrays, are directly classified into a face group using 

training algorithms without feature derivation and analysis. Unlike the feature-based approach, 

these relatively new techniques incorporate face knowledge implicitly into the system through 

mapping and training schemes (Valentin et al., 1994). The reader may refer to Hjelmas (2001), 

Yang et al. (2002), and Li and lain (2004) for reviews of face detection. 

3.1.1 Feature-Based Approach for Face Detection 

As discussed above, there are two kinds of information which can be used for the feature

based approach. The first is the shape information of facial features, such as eyes, mouth and 

nose. The second is the geometry relationships of facial features, such as the relative widths of 

features, the distances among face features, etc. Normally speaking, solely using one of these 

two kinds of information can not guarantee good performance. A robust detection is based on 

incorporating these two kinds of information together. Based on how to use these two kinds 

of information, the feature-based approach can be further divided into top-down methods and 

bottom-up methods (Yang et al., 2002). 

For the top-down methods, face candidates are first found by the geometry information of facial 

features, then detailed information for facial features is incorporated to accept or reject these 

candidates. For example, a frontal face often appears in an image with two eyes that are 

symmetric to each other, a nose and a mouth on the symmetrical line of these two eyes. If 

the image is under-sampled into low resolution, the face image will shrink to two line segments 

which represent eyes, with two line segments on the symmetrical line of the two eyes which 

represent nose and mouth respectively. The face candidates can be obtained by finding the 

clusters .of these line segments. In Wang and Yuan (2001), wavelet decomposition is first 

performed on the images. Then feature candidates are obtained by properly thresholding the 

intensity values of the wavelet image. Yang and Huang (1994) used a hierarchical knowledge

based method to detect faces. Their system consists of three levels of rules. The rules at a higher 

level are general descriptions of what a face looks like while the rules at lower levels rely on 

details of facial features. 

In contrast to the top-down approach, researchers have been trying to find invariant features of 

faces for detection. Many methods have been proposed to detect facial features and then, based 

on the extracted features, a statistical model is built to describe their geometrical relationship 

and to verify the existence of a face. Yuille et at. (1989) used deformable templates to find the 

position of eyes and mouths independently. The face region is automatically obtained after eyes 

and mouth are accurately located. Compared with other features, the eyes are easier to extract. 

To locate the positions of eyes accurately, Lam and Yan (1996) used active contours to extract 

eyes. The position of the eyes is coarsely obtained by edge detection, then an active contour, 

or snake (Kass et al., 1998; Gunn and Nixon, 1997), is first initialised at the proximity around 

the eyes. It then locks onto nearby edges and subsequently assumes the shape of eyes. Some 
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other bottom-up methods do not accurately detect facial features. Instead, these methods first 

detect candidates for facial features from information provided by low-level image operators 

(e.g., edges and colours), then the information about the geometrical relationship of facial 

features is applied to select facial features from candidates. Govindaraju (1996) tried to find 

facial feature candidates by labelling edges as the left side, hairline or right side of a frontal 

face and matched these edges against a face model. The labelled components are combined 

to form possible face locations based on a cost function. Yow and Cipolla (1996) modelled 

a face as a plane with six oriented facial features (two eyebrows, two eyes, one nose and one 

mouth). Each facial feature is modelled as a pair of oriented edges. The feature selection process 

starts with candidate points, followed by edge detection and linking, and tested by a statistical 

model which models the geometrical relationship of facial features. Hsu et al. (2002) used 

colour information for face detection. A skin colour model is first implemented to extract face 

candidates. Then candidates of eyes and mouths are detected by the individual colour models for 

eyes and mouths. Finally an eye-mouth triangle is formed for all possible combinations of the 

two eye candidates and one mouth candidate. Each eye-mouth triangle is verified by checking 

(1) lumina variations and average gradient orientations of eye and mouth blobs; (2) geometry 

and orientation of the triangle; and (3) the presence of a face boundary around the triangle. A 

score is computed for each verified eye-mouth triangle and all triangles that exceed a threshold 

are retained as a detected face. Another example of the bottom-up approach is the active shape 

models (ASM), which was firstly proposed by Cootes et al. (1995). Cootes et al. extends their 

work and introduced another powerful approach to deformable template models, namely, the 

active appearance models (AAM), which utilised a combined PCA of the landmarks and pixel 

values inside the object for object detection. Several publications discussed the issue of using 

ASM and AAM in face detection and modelling (Edwards et at., 1998; Ahlberg, 200 I; Wan 

et al., 2005; Sukno et al., 2007). 

3.1.2 Image-Based Approach for Face Detection 

Face detection by explicit modelling of facial features has been troubled by the unpredictability 

of face appearance and environmental conditions. Although some of the recent feature-based 

attempts have improved the ability to cope with the unpredictability, most are still limited in 

noisy and complex environments. There is a need for techniques that can perform in more hostile 

scenarios such as detecting multiple faces with different poses in clutter-intensive backgrounds. 

This requirement has inspired the research area of image-based face detection. By formulating 

the problem as one oflearning to recognise a face pattern from examples, the specific application 

of face knowledge is avoided, or more accurately speaking, the requirement of face knowledge 

is implicitly 'hidden' into the data training process. This eliminates the potential of modelling 

error due to incomplete or inaccurate face knowledge. The basic approach in recognising a face 

pattern is via a training procedure which classifies examples into face and non-face prototype 

classes. Comparison between these classes and a 2-D intensity array extracted from an input 

image allows the decision of face existence to be made. 
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An early approach was to represent the face images as a subspace of the overall image space. 

Sirovich and Kirby (1987) developed a technique using principal component analysis (PCA) 

to represent human faces. Turk and Pentland (199 I) later developed this technique for face 

detection and recognition. Their method exploits the distinct nature of the weights of eigenfaces 

in individual face representation. Since the face reconstruction by its principal components 

is an approximation, a residual error is defined in the algorithm as a preliminary measure of 

'faceness'. This residual error, which they termed 'distance-from-face-space' (DFFS), gives an 

indication of face existence, and can be used for face detection. Section 3.3.1 will discuss PCA 

and subspace methods in more detail for face identification. 

Neural networks have become a popular technique for pattern recognition problems, including 

face detection. The first neural network approach which reported results on a large, difficult 

database was by Rowley et al. (1998). Their system incorporates face knowledge in a connected 

neural network which is designed to look at windows of 20 x 20 pixels (thus 400 input units). 

There is one hidden layer with 26 units, where 4 units look at lOx 10 pixel subregions, 16 

look at 5 x 5 subregions, and 6 look at 20 x 5 pixels overlapping horizontal stripes. The input 

window is pre-processed through lighting correction and histogram equalisation. A problem 

that arises with window scanning techniques is overlapping detections. Rowley et al. (1998) 

deal with this problem through two heuristics: 

I. if the number of detections in a small neighbourhood surrounding the current location is 

above a certain threshold, a face is present at this location; 

2. when a region is classified as a face according to thresholding, then overlapping detections 

are likely to be false positives and are thus rejected. 

To improve performance further, they train multiple neural networks and combine the output 

with an arbitration strategy (AND, OR, voting, or a separate arbitration neural network). 

Other statistical learning approaches are also applied to the problem of face detection. These 

include distribution-based classifier (Sung and Poggio, 1998); support vector machines (Osuna 

et al., 1997); naive Bayes classifier (Schneiderman and Kanade, 1998); hidden Markov model 

(Rajagopalan et al., 1998); and information theoretical approach (Lew, 1996; Colmenarez 

and Huang, 1997). Recently, Haar-like features and AdaBoost (Freund and Schapire, 1997) 

learning-based face detection methods have achieved good performance in face detection (Viola 

and Jones, 200 I; Lienhart et al., 2002; Viola and Jones, 2002; Li and Zhang, 2004). Li and 

Jain (2004) recommended AdaBoost methods because the performance of these methods is 

comparable to the neural network method of Rowley e/ al. (1998), but they are several times 

faster. In Section 3.2.3, we will discuss how to build a face detection system based on the 

AdaBoost algorithm. 

Although face detection technology is now sufficiently mature to meet the minimum 

requirements of many practical applications, its performance is still far behind human 

performance. More research work needs to be carried out to fill this gap. 
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3.2 Face Detection System 

In this section, two face detection systems are presented. One is feature-based and the other is 

image-based. Both systems are tested on the XM2VTS database. The feature-based method is 

very similar to methods used by Yow and Cipolla (1996) and Jeng et al. (1998). Images are 

first input into a face colour detection module, then the skin-tone pixels are detected using an 

elliptical skin model in the transformed space. The feature-selection process starts with interest 

skin-tone pixels, followed by edge detection and linking, and tested by a statistical model which 

models the geometrical relationship of facial features. 

The image-based face detection system is implemented by using Haar-like features and the 

AdaBoost method which was proposed by Viola and Jones (2002). Recent research shows that 

this method can achieve robust performance under various situations. 

3.2.1 The Feature-Based Detection Procedure 

The first step of the feature-based face detection system is to extract skin colour points on 

images. Human skin has its own colour distribution that differs from most nonface objects. 

The skin colour distribution can be used to obtain candidate regions of faces. A skin colour 

likelihood model can be derived from skin samples. This may be done in different colour spaces, 

such as the HSV space, RGB space, or YC,Cb space (Martinkauppi, 2002; Zarit et al., 1999; 

Hsu et al., 2002). In our application, we use the method proposed by Hsu et al. (2002). First, 

the RGB space is converted to YCrCb space. Then by linear transformation, the skin colour 

tends to gather into an ellipse. We regard colours which are fall into that ellipse as skin colours, 

and filter out others which are out of that ellipse. The following are the original face image and 

the corresponding image which is obtained by this model. Based on the skin colour model, we 

can divide disconnected skin colour pixels into one or several face regions. The red square of 

Figure 3.2 indicates the face region which is detected from Figure 3. l(b). 

The obtained face image is then processed by a Sobel edge detector (Gonzalez and Woods, 

2002, chap.3, pp.75-146). The edge image is thresholded with a value which minimises the 

within-group variance (Haralick and Shapiro, 1992, Vol.1, Chap.2, pp.13-58). Figure 3.3(a) 

and Figure 3 .3(b) show the edge image generated by the Sobel edge detector and the edge image 

after the thresholding process. 

It can be observed that the main facial features such as eyes, nose and mouth are retained by 

the remaining white pixels in Figure 3.3(b). The next step is to locate these features. First, the 

so-called run-length local table method is employed to group these white pixels into maximal 

connected blocks (Haralick and Shapiro, 1992). Figure 3.4(a) shows the blocks which are 

grouped by this algorithm (different colours represent different blocks). We can see that facial 

features such as eyes, nose and mouth are grouped as different blocks. However, some of these 

blocks are not facial features, such as the face contour (the block with red colour) and the tiny 
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(a) (b) 

FIGURE 3 .1: Face detection using skin colour model. (a) The original face image. (b) The 
image after skin colour detection. 

FIGURE 3 .2: The detected face region, which is represented by the red square in this image. 
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blocks at the top of the image which are caused by the hair. The following procedure shows how 

to find facial features exactly from these blocks. 

For each block E, its width w, height h, centre of mass (x, jI) and orientation e can be obtained 

as follows (Jain, 1989): 

W = max (x) - min (x), h = max (y) - min (y ) 
(x.Y)EB (x.y)E B (x.y)E B (x ,y)EB 

1 1 
x=NLx' Y=NL Y 

(x.y)E B (x ,y)EB 

e 1 ta - I ( 2f-l-J.I ) - - n 
2 f-l-2. 0 - f-l-O.2 

(3.1) 
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(a) (b) 

FIGURE 3.3: Face image after edge detection and thresholding. (a) After skin colour detection , 
the face image is sent to a Sobel edge detector. (b) The obtained edge image is thresholded with 

a value which minimises the within-group variance. 

(a) (b) 

FIGURE 3.4: Blocks and block centres. (a) The blocks of the face image. Different blocks 
are represented with different colours . (b) Centres of blocks which are represented by the red 

points. 

27 
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D: The distance between two eyes. 

Dnose: The distance between the base line and the nose. 
In this model, we take Dnose = 0.6D. 

Dmouth: The distance between the base line and the mouth. 
In this model, we take D mollth = D . 

s, : The region for searching the nose point. 

S2: The region for searching the mouth point. 

FIGURE 3.5: The geometrical facial model which was proposed by Jeng et aZ. (1998). This 
model incorporates the fact that the distance between the nose and eyes is approximately 0.6 
times the distance between the two eyes, and the distance between the mouth and eyes is 
approximately the same to the distance between the two eyes. Using this information, it 
firstly find regions which are near the estimated nose and mouth positions, as indicated by S t 
and S2 on the graph, then regards face features candidates falling into these regions as nose 
and mouth candidates. By using equation 3.5 , 3.6 and 3.7, the final energy E is obtained for 
each combination of eye, nose and mouth candidate, and the combination which maxmises the 

energy is selected as the final result. 

Here f.i- p ,q is the (p, q)th central moment and can be calculated by 

f.i- p ,q = L (x - x)p(y - y)q (3 .2) 
(x ,y)EB 

Refer to Figure 3 A(b) for the centre of each block. 

After the labelling and grouping process, all blocks are regarded as facial feature candidates. We 

use the geometrical facial model which was proposed by Jeng et al. (1998) for face detection. 

This is a very simple model. It incorporates the fact that the distance between the nose and 

eyes is approximately 0.6 times the distance between the two eyes, and the distance between 

the mouth and eyes is approximately the same to the distance between the two eyes. Such a 

relationship is illustrated in Figure 3.5). 

The line passing through the centres of both eyes is called the base line. Let (x t , Y t) and (X2, Y2) 

be the centres of the left eye and right eye respectively. Then, the coefficients of the base line 

ax + by + c = 0 and the angle e between the base line and the x -axis can be calculated as 

follows: 
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a = Y2 - YI 

b = XI - X2 

C = X2YI - XIY2 

e = mn- I (-~) (3.3) 

The matching process starts by randomly selecting two blocks as eyes. Their corresponding 

base line and the angle e can be obtained by using equation (3.3). Because of the constraints of 

face orientation, the angle e should be checked to see if it is within the range of -45 0 to 450
• If 

not, the current pair will be abandoned and another pair will be considered. In this step, most 

of the combinations of facial feature candidates will be rejected. For those surviving pairs, their 

orientation el and e2, as indicated by equation (3.1), and 'normalised widths' between the two 

eyes, II and 12 are calculated. The normalised widths of the two eyes are obtained by dividing 

the width between the two eyes by the distance between their centres. Suppose the widths of the 

two eye candidates are WI and W2, respectively, their centres are (XI, YI) and (X2, Y2). Then, the 

normalised widths of the two eyes are calculated as follows: 

(3.4) 

After obtaining II and 12, the following evaluation function is employed to evaluate whether the 

current block pair is the eyes or not: 

The first term (II - 12)2 accounts for the fact that the length of two eyes should be similar; the 

second term (II + 12 - 2)2 enforces the constraints that distance between the two eyes should 

be about the width of one eye; the last two terms (e l - e)2 and (e2 - e)2 enforce the constraint 

that both eyes should align with the base line. By using the exponent, this evaluation function is 

normalised in the range of 0 to 1. 

For each pair of eye candidates, the relative regions SI and S2 in the geometrical face model will 

be searched for nose and mouth, respectively. To achieve this, every block located within S I 

and S2 will be evaluated. We use the mouth feature as an example to clarify the process. Let the 

centre ofa block k be located at (Xk, Yk). The distance from the centre to the base line can thus 

be calculated as: 
d _ laX/; + b)ik + cl 

mouth - -J a2 + b2 

The following evaluation function can be employed to evaluate the probability of the block k 
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being the mouth feature 

E _ [4 (dmouth - Dmouth) 2] mouth - exp - X D (3.6) 

The term (dmoulh-;Dmoulh) 2 which accounts for the distance from the mouth centre to the base 

line should be appropriately constrained according to the geometrical face model. Refer to 

Figure 3.5 for the value of D and Dmouth. The divisor D and the outer multiplier -4 make the 

evaluation value have an equal influence to that of the eye feature (because there are four items 

to be added in equation (3.5), and only one item in equation (3.6). A multiplier of 4 will balance 

this difference. This evaluation function also ranges from 0 to 1. After the evaluation value 

for each block is obtained, the block having the largest value will be regarded as the mouth 

feature corresponding to the current pair of eye candidates. The corresponding nose feature can 

similarly be obtained by using the evaluation function as follows: 

d nase - Dnase -
Enose = exp -4 X ( D ) [ ?] (3.7) 

After the above evaluation process have been finished for each pair of eye candidates, an overall 

evaluation function is defined as the weighted sum of the evaluation values of each facial feature: 

E = 0.6Eeye + 0.2Emouth + 0.2Enose (3.8) 

The weighting parameters 0.6, 0.2 and 0.2 are set up by our prior experience that eyes are more 

prominent features than mouth and nose. We will choose the pair of eye candidates which 

maximises the overall evaluation function as the detected eyes. 

By running the above process on Figure 3.1(a), we can finally obtain the facial features (eyes, 

nose and mouth) as shown in Figure 3.6. 

3.2.2 Experimental Results and Discussions 

This face detection method was tested with the fifth disk of the XM2VTS database. This disk 

contains face images of 295 subjects, each of which has 8 images which are taken in 4 sections 

(2 for each section). We take the images of the first 75 subjects as the testing set. 

We define 'successful detection' as the centres of the two detected eye blocks exactly falling 

into the eye regions. This is checked manually. Based on such a criterion, this face detection 

method is successful in 324 of the 600 face images (75 X 8=600). The detection rate is 54.0%. 

The relatively low detection rate is mainly due to two reasons. First, in some cases, the hair has 

similar colour to the skin, so the skin colour model can not filter out all the hair. Then the hair 

provides many tiny blocks after the edge detection, which make face detection a more difficult 

task (refer to Figure 3.7). 
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F IGURE 3.6: The detected facial features . Centres of facia l featmes are represented by red 
points. 

(a) (b) 

F IGURE 3.7: An example in which the hair provides many tiny blocks. (a) The original face 
image. (b) Blocks of the face image. The centre of each block is represented by a red point. 
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(a) (b) 

FIGURE 3.8 : Another example in which the eye glasses link the two eyes together. (a) The 
original face image. (b) The blocks of the face image. Different blocks are represented by 

different colours. 

2 

Second, in cases when people wear glasses, the edges of glasses are likely to mix with the edges 

of eyes. If the eyes are linked with the glasses as one block, the detection method can not work. 

Figure 3.8 is one example in which eye glasses link the two eyes together. 

The above two examples indicate the drawbacks of the feature-based approach. This approach 

is vulnerable to the unpredictability of face appearance and environmental conditions. Because 

of this, recent researches in face detection prefer image-based methods, which will be discussed 

in the next section. 

3.2.3 Haar-like Features and AdaBoost Method for Face Detection 

As can be seen from Section 3.2.2, the detection rate is comparatively low (54.0%) because of 

the unpredictability of environmental conditions. However, the image-based approach has the 

potential to overcome such a problem. Recently, AdaBoost image-based methods, which was 

firstly proposed by Viola and Jones (2004), have received much attention because so far they 

are the most successful ones in terms of detection accuracy and speed. In this section, we will 

shortly introduce the method, then build a system based on it and discuss its performance. 

The features used in this method are Haar basis functions which have been used by Papageorgiou 

et al. (1998). The method uses three kinds of features, namely, two-rectangle features, three

rectangle features and four-rectangle features, which is shown in Figure 3.9. These Haar-like 

features are interesting because, firstly, powerful face/nonface classifiers can be constructed 

based on these features ; secondly, they can be computed efficiently using the integral image 

technique which was proposed by (Crow, 1984). 

A weak classifier can be built based on each Haar-like feature. However, the exhaustive 

set of Haar features is very large, but only a small portion of features has the ability to 
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FIGURE 3.9: Four types of rectangular Haar wavelet-like features. A feature is a scalar 
calculated by summing up the pixels in the white region and subtracting those in the dark 

region. This figure is regenerated from Viola and Jones (2002). 
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discriminate face/nonface images. Thus, Viola and Jones (2002) proposed the AdaBoost 

algorithm to select features which are suitable for face detection. In its original form, the 

AdaBoost learning algorithm is used to boost the classification performance of a simple learning 

algorithm. It does this by combining a collection of weak classification functions to form a 

stronger classifier (Freund and Schapire, 1997). It has been proved that the training error of 

the strong classifier generated by AdaBoost approaches zero exponentially in the number of 

rounds (Freund and Schapire, 1997). A number of important results were later proved about its 

generalisation performance (Schapire et al., 1997). Because of its resistance to over-fitting, 

AdaBoost has become a benchmark algorithm for classifier combination. Recently, Li and 

Zhang (2004) proposed another boosting algorithm, which is called 'FloatBoost', to replace 

the AdaBoost algorithm for selecting these Haar-like features. 

Viola and Jones (2002) noticed that based on performance measured using a validation training 

set, the strong classifier which is trained by the AdaBoost algorithm can be adjusted to 

detect 100% of the faces with a false positive rate of 50%. Nevertheless the classifier can 

significantly reduce the number of sub-windows that need further processing, so they proposed 

the classifier cascade to solve this problem. The main idea of the classifier cascades is that 

they try to reject as many negative subwindows (subwindows which are regarded as nonface) 

as possible in the earliest stage, while retaining positive subwindows (subwindows which are 

regarded as face) to the final detection results. Subsequent classifiers are trained using those 

examples which pass through all the previous stages. 

The above is only a short introduction to the Haar-like features and AdaBoost algorithm for face 

detection. Refer to Viola and Jones (2001); Lienhart et al. (2002); Viola and Jones (2002); Li 

and Zhang (2004) for details of this method. 
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(a) A face image 

(b) The first five Haar-like feamres 

FIGURE 3.10: One face image and the first five Haar-like features overlapped on it. We can 
see that these five featurt:ls have very direct meanings for face detection. The first shows the 
intensity difference between the region of the eyes and the region across the upper cheeks. The 
second feature measures the difference in intensity between the region of the right pupil and 
the region of the right cheek. This analysis could be applied on the three other features here. 

Similar pictures are also illustrated in Viola and Jones (2002). 

3.2.4 Experimental Results 
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In this section, we will use the Haar-like features and AdaBoost algorithm for face detection. 

This algorithm is implemented using the Intel Open Source Computer Vision Library (OpenCV) 

which was developed by the Intel Corporation (Bradski and Pisarevsky, 2000). OpenCV 

contains a special package which implemented the AdaBoost face detection algorithm. The 

classifier cascade consists of 20 stages, and for each stage, 10-15 features are selected. 

Figure 3.10 shows the first five Haar-like features in the first stage, which can be regarded as the 

most powerful features chosen by the algorithm to discriminate face' and nOllface images. It can 

be seen that these five features have very direct meanings for face detection. 

The face detection algorithm is tested on the same dataset described in Section 3.2.2. Of the 600 

face images, 554 images are correctly identified. The detection rate is 92.33%. The criteria 

for correct detection are that (I) the detected face contains the eyebrows, eyes, and mouth, and 

(2) no false detection occurs. Compared with the 54.0% detection rate by using the featl.ler

based method as discussed in Section 3.2:2, we can see that this method can obtain much better 

detection results. Figure 3.11 gives an example of the AdaBoost face detector. 

The face images on which the detection is failed can be categorised into three groups. The 

first group is that, although the detector correctly finds the face, it also detects other smaller 

blocks which generate false alarms. The second group is that, the detector correctly find the 

face, however, it also regards other bigger blocks as faces . The third is that the detector does not 
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FIG UR E 3.11: The face detection result generated by the AdaBoost algorithm. The face is 
represented by a red square. 

FIGURE 3.12 : Representative detection errors in the first group. There are 39 images fa lling 
into this group, in which the correct faces are the biggest blocks generated by the detector. All 

detected blocks are marked by red squares. 
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detect face images at all. The first group occupies most of the failures. Of the 46 failures, There 

are 39 images falling into the first group, 6 in the second group, and only 1 in the third group. 

These images are shown in Figure 3.12, 3.13 and 3.14, respectively. 

Because there are 39 images in the first group, we just select four representative unages in 

Figure 3.12. We also list all unages in the second and third groups (Figure 3. 13 and 3.14). We 

can see that half of the errors in the second group are generated by one person, which remulds 

that the AdaBoost algorithm can fail in some face appearances. There is only one unage which 

the AdaBoost algorithm fails detection (Figure 3.14). In this unage, the subject lowered down 

her head, generating an extreme pose. Since the detector is trained by frontal-view images, it 

can not solve problems in such an extreme condition. 

Because every image contains exactly one face, the detection failures in the fi rst group can be 

be easily corrected by retaining only the biggest detected block Ul each image. We can fix most 

of the detection errors by using this method. By using the AdaBoost algorithm, we have almost 

solved the face detection problem. In Section 6.1, we combine the AdaBoost method with the 

dynamic progranuning (DP) algorithm to detect face in video files. We can then achieve 100% 

detection rate in the video files . 

3.3 Image-Based Approach for Face Identification 

Since the face detection problem is solved, the next step is face identification from the detected 

face images. Similar to face detection, face identification methods can roughly be divided 

into feature-based approaches and image-based approaches. Feature-based methods use the 
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FIGURE 3.13: The 6 images in the second group, in which the correct face is not the biggest 
block generated by the detector. All detected blocks are marked by red square . 

FIGURE 3.14: There is only one face image in the third group, which the AdaBoost algorithm 
fails to detect at all. 
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infonnation of the local statistics (geometric and/or appearance) of facial features such as the 

eyes, nose and mouth; while image-based methods use the whole face region as the raw input to 

a recognition system. Just as the human perception system uses both local featmes and the whole 

face region to recognise faces (Bartlett and Searcy, 1993; Tanaka and Farah, 1993), some face 

identification algorithms also incorporate both feature-based methods and image-based methods 

to achieve better identification results. We will discuss image-based methods in this section, and 

the feature-based methods in the following section. 

3.3.1 A Short Review 

The most commonly-used image-based method for face identification is the subspace method. 

Face images, represented as high-dimensional pixel arrays, often belong to a manifold of 

intrinsically low dimension. It is common to model the face space as a (possibly disconnected) 

principal manifold embedded in the high-dimensionaliInage space. Its intrinsic dimensionality 

is determined by the number of degrees of freedom within the face space. There are 

several methods for reducing the dimensionality of face images, such as principal component 

analysis (PCA), linear discriminant analysis (LDA), and independent component analysis (ICA). 

Principal component analysis (Jolliffe, 1986) is a dimensionality-reduction technique based 

on extracting the desired number of principal components of the multidimensional data. 
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Implementing PCA for face analysis and representation starts from the ground-breaking work 

of Kirby and Sirovich (1990). Their paper was followed by the 'eigenfaces' technique by Turk 

and Pentland (1991), the first application of PCA to face recognition. 

Let a face image J (x , y) be a two-dimensional N by N array of intensity values, or a vector of 

dimension N 2 . For example, an image of size 128 x 128 describes a vector of dimension 16384. 

Let the training set of face images be f l , f 2 , .•. , f M . Each f; (i = 1,2, ... , M) is a vector 

of N 2 dimensions. The average face of the set is defined by 

(3.9) 

Each face differs from the average by the vector ct>; = f; - \II. The eigenvectors are obtained 

by solving the eigenvalue problem 

11.= UTCU (3.10) 

where A is a diagonal matrix, with eigenvalues on the main diagonal; U is an orthonormal 

matrix, which means that U- I = UT, or UTU = J; C is the covariance matrix of the data: 

;=1 

(3.11 ) 

where the matrix A = [ct>1 ct>2 ... ct>MJ, is a N 2 by M matrix. The matrix C, however, is N 2 

by N 2, and determining the N 2 eigenvectors and eigenvalues is an intractable task for typical 

image sizes. Fortunately, it is possible to solve this problem by first solving a much smaller 

M by M matrix problem, and taking linear combinations of the resulting vectors. The following 

theorem indicates this possibility. 

Theorem 3.1. If v I, V2, ... , V M are eigenvectors of the matrix A T A, with corresponding 

eigenvalues AI, A2, ... , AM, then AVI, AV2, ... , AVM are eigenvectors ofAAT, with the same 

eigenvalues AI, A2, ... , AM. 

Proof: Since Vk (k = 1,2, ... , M) is an eigenvector of the matrix AT A, with corresponding 

eigenvalue Ak, then by the definitions of eigenvectors and eigenvalues, we have 

Then the following deduction proves that A v k is an eigenvector of A AT. 

That completes the proof. 

(AAT)(Avk) = A(AT AVk) 

= A(AkVk) 

= Ak(Avk) 

(3.12) 

(3.13) 



Chapter 3 Face Identification System 38 

(a) 

(b) 

FIGUR E 3.15: Eight eigenfaces extracted from eight face images . (a) Eight face images . 
(b) The corresponding eigenfaces sorted by their eigenvalues. 

The above theorem shows that in order to solve the eigenvalue problems on the N 2 x N 2 

matrix AA T, we can firstly solve the problem on the M x M matrix AT A, then obtain the 

eigenvectors of A AT by multiplying the eigenvectors with A. With this method the calcu lations 

are greatly reduced from the order of the number of pixels in the images (N 2
) to the number 

of images in the training set (M). In practice, the training set of face images will be relatively 

small (M « N 2 ), and the calculations become quite manageable. The associated eigenvalues 

allow us to rank the eigenvectors according to their usefulness in characterising the variation 

. among the images. Figure 3.15 shows an example of the 8 eigenfaces calculated from 8 face 

images. Each face image is projected into the principal subspace. 

Once the eigenfaces are created, identification becomes a pattern recognition task. The 

eigenfaces span an M' -dimensional subspace of the original N 2 image ~pace . The M' sign ifica nt 

eigenvectors of the matrix A A T are chosen as those with the largest associated eigenvalues. A 

test face image f is transformed into its eigenface components (projecting into 'face space') by 

a simple operation, Pk = uk (f - \II), for k = 1,2, . .. , M' (Uk is the leth significant eigenvector 

of AA T ). This describes a set of point-by-point image multiplications and summations. These 

weights form a weight vector P T = [PI . P2, .. . , PM'] that describes the contTibution of each 

eigenface in representing the input face image. 

Suppose PI , P2 , ...• PM are weight vectors which are generated by the M training face 

images fl . f 2 •... • f M . For a test image f , we firstly generate its weight vector P, then we 

find the image in the training set which is most similar to it. 

M IP ' P' I 
Find Ie = arg max I 

;= I lIP 1111 Pill 
(3. 14) 

We will classify the test image f into the class to which the training image f k belongs. 

Classify f E Ws • if fk E W s (3. 15) 
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The above eigenface approach can be extended to a Baysian approach by using a probabilistic 

measure of similarity, instead of the simple Euclidean distance (Moghaddam and Pentland, 

1997). 

Face identification systems using linear discriminant analysis (LDA), or Fisher's linear 

discriminant (FLD), have also been very successful (Swets and Weng, 1996; Belhumeur et al., 

1997; Etemad and Chellappa, 1997; Zhao et al., 1998). LDA training is carried out via scatter 

matrix analysis (Fukunaga, 1989). For an M-class problem (in the face identification example, 

M is the number of people to be identified), the within- and between-class scatter matrices S w, 

Sb are computed as follows: 

;=1 

M 

L P(w;)(m; - mo)(m; - mo)T (3.16) 
;=1 

where P (Wi) is the prior class probability, and is usually replaced by 1/ M with the assumption 

of equal priors, mi is the average face vector of the ith person, and mo is the average face 

vector of all M persons. Here Sw is the within-class scatter matrix, showing the average 

scatter ~i of the sample vectors x of different classes Wi around their respective means 

m;: ~i = E [(x(w) - mi)(x(w) - mi)Tlw = Wi] and can be calculated by equation (3.11). 

Similarly, Sb is the between class scatter matrix, representing the scatter of the conditional 

mean vector m i around the overall mean vector mo. A commonly used measure for quantifying 

discriminatory power is the ratio of the determinant of the between-class scatter matrix of the 

projected samples to the determinant of the within-class scatter matrix: 

(3.17) 

The optimal projection matrix <I> which maximises J(T) can be obtained by solving a 

generalised eigenvalue problem: 

(3.18) 

where A,", is a diagonal matrix which contains all the eigenvalues of <I> along its diagonal. 

Intuitively, LDA finds the projection of the data in which the classes are most linearly separable 

It can be proved that the dimension of <I> is at most M - 1. Because in practice Sw is usually 

singular, the Fisherfaces algorithm first reduces the dimensionality of the data with PCA and 

then applies LDA to reduce further the dimensionality to M - 1. The identification is then 

accomplished by a neural network classifier in this final subspace. 

Based on the argument that for tasks such as face recognition much of the important information 

is contained in high-order statistics, it has been proposed by Bartlett et al. (1998) to use 

independent component analysis (lCA) to extract features for face recognition. ICA minimises 
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higher-order dependencies, and the components found by ICA are designed to be non

Gaussian. Suppose x is aN-dimensional vector (x = [x I. X2 • .... X M f). ICA produces a N x M 

matrix A that projects x to an M-dimensional vector y = [yl. y2 • .... YM] (M < N) so that each 

component of y is independent (Jutten and Herault. 1991; Comon, 1994). 

x = Ay 

ATA =1= I 
M 

P(y) ~ Il P(Y;) (3.19) 
;=1 

Bartlett et at. (1998) investigated the use of ICA framework for face recognition in two different 

architectures: the first is used to find a set of statistically independent source images that can be 

viewed as independent image features for a given set of training images. and the second is used 

to find image filters that produce statistically independent outputs (a factorial code method). In 

both architectures, PCA is used first to reduce the dimensionality of the original image size. 

Other image-based approaches are also used for face identification. These include: kernel

PCA and kernel-Fisher methods (SchOlkopf et at., 1998; Yang, 2002). which are kernel-based 

extensions of PCA and LDA; support vector machines (Phillips, 1998); genetic algorithm 

(Liu and Wechsler, 2000); feature lines (Li and Lu, 1999); probabilistic decision-based neural 

networks (Lin et at., 1997). 

Recent advances of the image-based face recognition is to use 3-D images for training and 

testing (Bronstein et al., 2005; Mpiperis et al., 2007). 3-D face recognition has the potential 

to achieve better accuracy than its 2-D counterpart by measuring geometry of rigid features 

on the face. This avoids such pitfalls of 2D face recognition algorithms as change in lighting, 

different facial expressions, make-up and head orientation. Another approach is to use the 3-

D model to improve accuracy of traditional 2-D recognition by transforming the head into a 

known view. One example of this approach is to use 3-D morphable models to reconstruct 

iIIumination- and pose-invariant face models from 2-D images, and use the reconstructed face 

models for recognition (B1anz et al., 2002; Weyrauch et al .• 2003). 

3.3.2 Face Identification System Based on PCA 

In this section, a face identification system is implemented by using the PCA method. First, 

the face images are automatically detected by the AdaBoost face detection algorithm. For those 

images which fail in detection, the face regions are manually selected. Following the original 

PCA face recognition paper (Turk and Pentland, 1991), we bilinearly resample all face images 

to smaller size of 128 x 128 (N = 128), which forms a 16384-dimensional face space. By 

using PCA for the training images, the first 50 eigenvalues are extracted (M' = 50). Thus, every 

training face image in the I 6384-dimensional space is projected to the 50-dimensional subspace. 

Then we also project the test images to this subspace, and classification results are obtained by 
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Training Session(s) Testing Session(s) Identification Rate (%) 
1 2,3,4 65.11 
2 1,3,4 63.78 
3 1,2,4 68.00 
4 1,2,3 66.22 

1,2 3,4 76.00 
1,3 2,4 81.33 
1,4 2,3 79.33 
2,3 1,4 79.33 
2,4 1,3 77.00 
3,4 1,2 74.33 

1,2,3 4 84.00 
1,2,4 3 81.33 
1,3,4 2 82.67 
2,3,4 I 76.67 

TABLE 3. I: Identification rate of the PCA method. The identification rate is associated with 
the number oftraining images. It is shown that the identification rate is around 65% if only one 
session is used for training (as shown in the first 4 lines in the table); and when two sessions 
are used for training, the identification rate increases to around 79% (the next 6 lines). When 
three sessions are used for training, the identification rate further increases to around 81 % (the 

last 4 lines). 

using equations (3.14) and (3.15). 
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We use the face images in the fifth disk of the XM2VTS database to test the PCA face 

identification method. As indicated in Section 2.4.5, the fifth disk contains frontal face images 

for the 295 subjects. There are 8 images for each person, which are taken in 4 sessions (2 images 

for each session). We choose the first 75 subjects for the experiments, which is the same as we 

tested the speaker identification system in Section 2.4.6. 

The settings of the experiments are similar to when we tested the speaker identification classifier 

in Section 2.4.6. We iteratively change the training sessions and testing sessions. First, we use 

one session for training, and the other three for testing; then use two sessions for training and 

the other two for testing; finally use three sessions for training and the other for testing. The 

identification results are shown in Table 3.1. We can see that the identification rate is associated 

with the number of training images. It is shown that the identification rate is around 65% if only 

one session is used for training (as shown in the first 4 lines in the table); and when two sessions 

are used for training, the identification rate increases to around 79% (the next 6 lines). When 

three sessions are used for training, the identification rate further increases to around 81 % (the 

last 4 lines). 

Similar to Section 2.4.6, we draw the ranking curves of the PCA method here. We also choose 

the ranking curves of 3 classifiers, which are, the classifiers in row 1, 5 and 11 of Table 3.1. The 

first uses Session I for training, and Sessions 2, 3 and 4 for testing; the second uses Sessions 1 

and 2 for training, and Sessions 3 and 4 for testing; and the third uses Sessions I, 2 and 3 for 

training, and Session 4 for testing. Compared with Figure 2.3, we can see that generally the 
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FIGURE 3.16: Ranking curves of three classifiers in Table 3.1, which are, the classifiers in 
row I, 5 and II. The first of these 3 classifiers uses Session I for training, and Sessions 2, 3 
and 4 for testing; the second uses Sessions rand 2 for training, and Sessions 3 and 4 for testing; 
and the third uses Sessions I, 2 and 3 for training, and Session 4 for testing. The three ranking 

curves are represented by the solid line, the dotted line and the dash line, respectively. 
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speaker identification classifier has higher identification rate. However, when only one session 

is used for training, the speaker identification classifier generates poorer performance for some 

testing files, which make the curve reach to 1 at a later stage. 

3.3.3 More Discussions on the peA Method 

In Section 3.3.2, the PCA method is used to map a 16384-dimensional vector to a 50-

dimensional vector in a subspace which is formed by the eigenvalues of the training images. 

This process has raised a question that whether this dimensional-reduction technique increases 

separability of classes, i.e., whether the vectors generated by PCA are more suitable for 

recognition than the original vectors. In this section, we will show that the vectors generated 

by PCA are better than the original ones for face recognition. Firstly, we extract face images of 

two different subjects (Subject Number: '000' and '001 '). As described in Section 3.3.2, each 

subject has 8 images, which are taken in 4 sessions. These face images are also resampled to 

a smaller size of 128 x 128, as shown in Figure 3.17. By using PCA, the original 16384-

dimensional vectors are mapped to 16-dimensional vectors (Here we can only obtain 16-

dimensional vectors, contrasting to the 50-dimensional vectors in Section 3.3.2, because there 

are only 16 images). 

A mapping algorithm, which is called Sammon's mapping (Sammon, 1969), is used to map 
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(a) Face images for subj ect '000 ' 

(b) Face images for subj ect '00 I ' 

FIGURE 3 . 17 : Face images of two subjects, with subject number ' 000 ' and ' 001 ' in the 
XM2VTS database . 
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the high-dimensional vectors to two-dimensional so that we could draw these vectors on a 

graph. This algorithm intends to preserve the relative distance between the input points 

approximately. Figure 3.18(a) and 3.18(b) shows the 16384-dimensional original vectors and 

the 16-dimensional PCA vectors after the Sammon's mapping, respectively. The vectors which 

are labelled by plus signs are generated by face images of subject ' 000' , and the vectors labelled 

by squares are generated by subject '001' . The figure shows that both the original vectors and 

the PCA vectors are completely separated with respect to these two classes, which indicate that 

both PCA and simple vector-comparison method can perform well when the intra-class distances . 

are big enough. 

However, when two classes are similar and overlapped in the feature space, the PCA method 

can perform better than the simple comparison method. This situation is shown in Figure 3. 19 

and 3.20. Figure 3.19 shows face images of two subjects with subject number ' 010 ' and ' 2 11 ' 

in the database. They are similar in appearances . 

The original and the PCA vectors of the face images are shown in Figure 3.20. Vectors which are 

labelled by plus signs are generated by subject ' 0 I 0', and those labelled by squares are generated 

by subject '211'. These subjects are similar in appearances, so their vectors mixed with each 

other. We can see that the· PCA vectors are more separable on the graph. A linear class ifier 

can correctly separate most PCA vectors of these two classes, while more complex hyperplane 

needs to be assumed if we need to separate the vectors in their original form . By using PCA, we 

have increased the separability of data, so potentially achieving better recognition results than 

simple vector comparison method. 
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(a) The original vectors (b) The PCA Vectors 

FIGURE 3 . I 8: Illustrations of the I 6384-dimensional original vectors and the 16-dimensional 
PCA vectors. These vectors are converted to two-dimensional vectors by the Sammon 's 
mapping, which can be shown on the plane. The vectors which are labelled by plus signs are 
generated by face images of subject '000 ' , and the vectors labelled by squares are generated by 

face images of subject ' 00 I' . 

(a) Face images for subject ' 010' 

(b) Face images for subject '211 ' 

FIGURE 3 . 19 : Face images of two subjects, with subject number ' 0 I 0' and ' 2 11 ' 111 the 
XM2VTS database. They have very similar appearances. 
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(a) The original vectors (b) The PCA Vectors 

PI G URE 3.20: Illustrations of the 163 84-dimensional original vectors and the 16-dimensional 
PCA vectors of subject '0 I 0' and '211'. Vectors which are labelled by plus signs are generated 
by subject '010', and those labelled by squares are generated by subject '211'. These subjects 
are similar in appearance, so their vectors mixed with each other on the graph. We can see that 

the PCA vectors are more separable than the original ones. 

3.4 Feature-Based Approach for Face Identification 
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In this section, the feature-based approach for face identification is firstly reviewed, then a face 

identification system based on dynamic link architecture (Lades et al., 1993) is presented and 

tested on the XM2VTS database. 

3.4.1 Feature-Based Approach for Face Identification 

Many methods in the feature-based category have been proposed, including early methods 

based on geometrical relationships of local features (Kelly, 1970; Kanade, 1973) as well as 

ID (Samaria and Young, 1994) and pseudo-2D (Samaria, 1994) HMM methods. One of the most 

successful methods is the elastic bunch graph matching (EBGM) system (Wiskott et al., 1997), 

which is based on dynamic link architecture (DLA) (Buhmann et al., 1990; Lades et al., 1993; 

Okada et af., 1998). Wavelets, especial Gabor wavelets, playa building-block role for facial 

representation in these graph matching methods. A typical local-feature representation consists 

of wavelet coefficients for different scales and rotations based on fixed wavelet bases. These 

locally estimated wavelet coefficients has some robustness to illumination changes, translation, 

distortion, scaling and rotation of images. DLA attempts to solve some of the conceptual 

problems of conventional artificial neural networks, the most prominent of these being the 

representation of syntactical relationships. DLA uses synaptic plasticity and is ·able to form sets 

of neurons grouped into structured graphs while maintaining the advantages of neural systems. 

The DLA architecture was extended to elastic bunch graph matching (Wiskott et al., 1997). This 
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is similar to DLA, but instead of attaching only a single jet to each vertex, the authors attached 

a set of jets, each derived from a different face image (refer to Section 3.4.2 for definitions of 

'jet' and 'vertex '). To handle the pose-variation problem, the pose of the face is first determined 

using prior class information (Kruger et al., 1997), and the 'jet' transformations under pose 

variation are learned using training images (Maurer and Malsburg, 1996). The success of the 

DLA and EBGM system may be due to its resemblance to the human visual system (Biederman 

and Kalocsai, 1998). 

3.4.2 System Description 

In this system, we use Gabor wavelets to represent the face image. Let J (x) be the grey-level 

distribution of the input image, where x = [x I, X2] represents the two coordinates of each pixel 

on the image. The Gabor wavelet transform can be written as a convolution of the image J 

with a family of kernels Vr"k' The parameter k determines the wavelength and orientation of the 

kernel Vr;;. The Gabor wavelet operator W symbolises the convolution with all possible Ie: 

(3.20) 

The kernel Vr;; takes the form of a plane wave restricted by a Gaussian envelope function: 

P (Px2
) [_ (_a 2

)] Vr;;Ct) = a 2 exp - 2a 2 exp(ik . x) - exp -2- (3.21) 

The first term in the square brackets determines the oscillatory part of the kernel. The second 

term compensates for the dc value of the kernel, to avoid unwanted dependence of the filter 

response on the absolute intensity of the image. The complex-valued Vr"k combines an even 

(cosine-type) and odd (sine-type) part. The Fourier transform ofVr;; is given by: 

(3.22) 

The first exponential centred at the characteristic frequency k provides a bandpass filter. The 

second exponential removes the dc component of Vr"k' The reader may refer to Mallet (1999) and 

Chui (1992) for a detailed description of the wavelet transform and Gabor wavelets. 

To generate a local description of a face image, we sample W at five logarithmically spaced 

frequency levels and eight orientations indexed by v E to, ... , 4) and fJ.- E to, ... , 7}, which was 

suggested by Lades et al. (1993). 

(3.23) 

where f is the spacing factor between kernels in the frequency domain. In this system, we 

take f = ./2, kmax = T' and variance a = 1. The magnitude of (W J)(kvIJ.' x) forms a 40-
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I ' 

FIGURE 3.21: Gabor wavelet representation for a face image. These 40 subimages are obtained 
with v varying from 0 to 4 and J-t from 0 to 7. 
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dimensional feature vector J ex) for each pixel x in the face image, which will be referred to as 

a 'jet' : 

(3.24) 

Figure 3.21 shows the 40 Gabor wavelet components of a face image. Several observations 

need to be mentioned here. Firstly, as v becomes greater, the Gabor wavelet image becomes 

more and more blurred. Such a phenomenori is very similar to the Fourier transform of images. 

From equation (3.23), the greater v corresponds to a lower frequency component, which makes 

the image blurred. The second observation is that the Gabor wavelet components have greater 

values near facial features, so it makes the positions of eyes, nose and mouth brighter than other 

areas. This demonstrates the Gabor wavelet's ability to select and analyse facial features. 
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(a) (b) 

FIGURE 3.22: The original and deformed grid of the training image taken fro m Subject ' 050 ' . 
(a) A training image with a square grid on it. (b) The deformed grid on this training image. 
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The first step of our system is to construct face models automatically from the training face 

images. This can be done by using the following procedure. Following Lades et al. (1993), we 

firstly place a 7 x 10 square grid M onto a training image, as indicated in Figure 3.22(a). Each 

intersection point of this grid is called a ' vertex'. Thus, we obtain 70 vertices for each image. 

We use the 70 feature vectors at a vertex of M to fonn a template. Then the procedure described 

in Algorithm 3.1 is implemented to update the vertex of M. 

]: counter +-- 0 
2: while counter < N do 
3: Pick a vertex in M at random. Its position is denoted as X;. 
4: Randomly select a vector /::,. x;. The magnitude of /::"x; is randomly chosen from 1 to a 

predefined value /::"max. The direction of /::" i ; is also randomly chosen. 
5: if the point (x; + /::"x;) falls into the area surrounded by the neighbour vertex of Xi, and 

IIJ(x ; + /::"X;) II > IIJ(x;) II then 
6: x; +-- x; + /::"x; 
7: counter +-- 0 
8: else 
9: counter +-- counter + 1 

]0: end if 
]]: end while 

ALGORITHM 3.1: Algorithm for updating the vertices on training images. 

The original paper, Lades et af. (1993), sets N = 100 and /::"max equals the distance of 10 pixels 

(refer to Algorithm 3.1 for the meaning of these parameters). However, more accurate matching 

is obtained when N is greater. In this experiments, ere we set N = 500 and keep the same 

value of /::"max. We also require that (x; + /::"x;) falls into the area surrounded by the neighbour 

vertex of x;. This requirement guarantees that the topological relationship of the grid M is not 

changed during the updating procedure. Figure 3.22(b) shows the defonned grid. We can see 

that vertices in the defonned grid gather at the prominent facial features (e.g., eyes, nose and 

mouth), which indicates a good modelling of face images. If there are K training images, the 

defonned grids of these training images can be obtained by the above procedure. We denote 

these K defonned grids as M I , M2, ... , MK. 
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As part of elastic graph matching, the similarity of pairs of vertices has to be evaluated. We 

settle for the normalised dot product of jets as our similarity function. We denote V AI as the set 

of all vertices in a training image M, and V' as the set of all vertices in a testing image. We need 

to find a one-to-one mapping I: V M ~ V' that projects each vertex in the training image to 

one of the vertices in the testing image. We denote the similarity function between a vertex X; 
in a training image and its corresponding vertex in a testing image as 

(3.25) 

where JM and J' are the Gabor wavelet 'jets' in the training image and the testing image, 

respectively. 

Another similarity that relates to the topology between vertices in the training image and vertices 

in the testing image also needs to be considered. We model the topological similarity by the 

constraint of neighbouring vertices in the training image matching to neighbouring vertices in 

the testing image. Suppose there are two adjacent vertices X; and x) in the training image. We 

denote the Euclidean distance vector between them as: 

AM - - (..) E '-";j=Xj-X;,I,jE (3.26) 

where E is the set of all adjacent vertex pairs in the training image. We can also denote their 

corresponding Euclidean distance vector in the testing image as: 

3.~ = I(x)) - I(x;), (i, j) E E (3.27) 

The vertex labels of the testing image are compared to the corresponding ones in the training 

image by a quadratic comparison function 

(3.28) 

The second step of our system is elastic matching of a training image M to a testing image J, 

which amounts to a search for a one-to-one mapping I: V M ~ V' of vertex positions which 

simultaneously optimises Sv and Se. We evaluate the quality of a mapping according to the cost 

function: 

(3.29) 

which is a linear combination of the Se term and the Sv term. The coefficient).. controls the 

rigidity of the image graph, large values penalising distortion of J with respect to M. In our 

system, we choose).. = 3 x 10-4 . 

The elastic matching procedure is very similar to the first step. Firstly, we bilinearly resize 

both the training image and testing image to 128 x 128 pixels, then directly put the grid of the 

training image M onto the testing image. That is, we start the searching process by the self-
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(a) (b) 

FIGURE 3.23: Elastic template matching for a testing image of Subject ' 050' . (a) The grid as 
shown in Figure 3.22(b) is directly put to a testing image. (b) The deformed grid on the testing 
image after the elastic matching process. We can see that the deformed grid contain more 

prominent facial features, thus achieving a better matching. 
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mapping f(x;) = x; for all vertices X;. After that, Algorithm 3.2 is used to find a mapping f 

which minimises the ~ost function SCM, f). 

1: counter +- 0 
2: while counter < N do 
3: Pick a vertex in VM at random. Its position is denoted as X; . 
4: Suppose f(x;) = x) (x) E VM). Randomly select a vector b.x) . The magnitude of 

b.x) is randomly chosen from 1 to a predefined value b. max. The direction of b.xj is also 
randomly chosen. 

5: if the point (x) + b.x)) falls out of the area surrounded by the neighbour vertices of xj in 
the image domain. then 

6: counter +- counter + 1 
7: else 
8: Define a new mapping / that / (x;) = xj + b.x) and for other t :j:. i , / (i ,) = f (.~,). 
9: if SCM, /) < SCM, f) then 

10: f +- / 
11: counter +- 0 
12: else 
13 : counter +- counter + 1 
14: end if 
15: end if 
16: end while 

ALGORITHM 3.2: Algorithm for finding a mapping from the model graph to the image graph 

We also choose N = 500 and b. max equals the distance of 10 pixels, the same as in the first 

step. Figure 3.23 shows the elastic matching procedure as discussed above. We could see that 

the deformed grid contains more prominent facial features, thus achieving a better matching. 

If we put a testing image X into each of the K face models M I , M2, .. ,MK , we can obtain the 

values of S(MI , f), S(M2, f), ... ,S(MK' f) respectively by using Algorithm 3.2. We can then 

identify the testing image according to the rule: 

Find k = arg min S(M;, f) , then decide X E ws , if Mk E Ws 
; 
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Training Session(s) Testing Session(s) Identification Rate (%) 
1 2,3,4 78.44 
2 1,3,4 82.22 
3 1,2,4 80.22 
4 1,2,3 83.56 

1,2 3,4 88.00 
1,3 2,4 91.00 
1,4 2,3 92.33 
2,3 1,4 91.67 
2,4 1,3 94.00 
3,4 1,2 88.33 

1,2,3 4 92.67 
1,2,4 3 95.33 
1,3,4 2 90.67 
2,3,4 I 90.67 

TABLE 3.2: Identification rate of the DLA method. It is shown that the identification rate is 
around 80% if only one session is used for training (as shown in the first 4 lines of the table); 
and when two sessions are used for training, the identification rate increases to around 90% (the 
next 6 lines). When three sessions are used for training, the identification rate further increases 

to around 92% (the last 4 lines). 

3.4.3 Experimental Results and Discussions 
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The settings of the experiments to test the DLA face identification method are the same as we 

used to test the PCA method in Section 3.3.2. The identification results are shown in Table 3.2. 

Compared with Table 3.1 , we can see that the identification rate of DLA outperforms PCA 

by around ten percentage points. The expense is that DLA is two times slower than the PCA 

method in the training process, and ten times slower in the testing process. More research needs 

to be carried out to improve the performance of PCA and the speed of the DLA method. 

Here we also draw the ranking curve of the DLA face identification classifier in Figure 3.24. 

The settings are the same with those in Figure 2.3 and 3.16. We can see that the identification 

rate is increased when more images are used for training. 

3.5 Summary 

In this chapter, we have discussed the problem of building an automatic face identification 

system. This problem could be further divided into two steps - face detection and face 

identification. Two methods are used for face detection and their results are compared. The 

first one is based on extracting facial features by lower-order information such as facial colour, 

edges and geometry offacial features. The second is based on Haar-like features and AdaBoost. 

Experiments indicate that the second method achieves better results than the first one. Because 

of its advantages in speed and performance, the Haar-like features and Boosting algorithms 

have become a standard of current face detection research. However, as we can see from the 
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FIGURE 3.24: Ranking curves of three classifiers in Table 3.2, which are, the classifiers in 
row I, 5 and 11. The first of these 3 classifiers uses Session 1 for training, and Sessions 2, 3 
and 4 for testing; the second uses Sessions 1 and 2 for training, and Sessions 3 and 4 for testing; 
and the third uses Sessions 1, 2 and 3 for training, and Session 4 for testing. The three ranking 

curves are represented by the solid line, the dotted line and the dash line, respectively. 
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experimental results, there are still some situations which the detector can not produce accurate 

performance. 

Two algorithms are used for the face identification step, which are principle component 

analysis (PCA) and dynamic link architecture (DLA). The PCA method has poorer identification 

results than DLA, however, it is much faster. There should be some trade-off between time and 

performance for these two methods. In addition, better algorithms also needs to be carried out 

in the face recognition area to increase both speed and performance. 



Chapter 4 

Combining Classifiers 

4.1 Introduction 

In Chapters 2 and 3, we discussed the process of building a speaker identification system and a 

face identification system, respectively. In this chapter, we will concentrate on the problem 

of how to combine the scores of these two systems together to obtain better identification 

performance. The idea of combining scores of multi-classifiers appears under a variety of 

names in the literature: classifier fusion (Gader et al., 1996; Keller et al., 1994); classifier 

combination (Kittler et al., 1998a; Lam and Suen, 1995; Woods et at., 1997; Xu et al., 1992); 

mixture of experts (Jacobs, 1995; Jacobs et at., 1991; Jordan and Xu, 1995; Nowlan and 

Hinton, 1991); committees of neural networks (Bishop, 1995; Drucker et al., 1994); consensus 

aggregation (Benediktsson et al., 1997; Ng and Abramson, 1992; Benediktsson and Swain, 

1992); voting pool of classifiers (Battiti and Colla, 1994); classifier ensembles (Drucker et a/., 

1994; Filippi et at., 1994). In this chapter, we will refer to this problem by using either classifier 

fusion or classifier combination. 

It is widely agreed that the audio and visual modalities can be combined at three different levels, 

which is defined by Lucey et at. as early integration, middle integration and late integration, 

respectively. For early integration, the feature vectors of audio and visual signals are extracted 

separately, then vector concatenation is employed to form a new feature vector, finally, this 

new feature vector is used for recognition (Adjoudani and Benoit, 1995; Luettin, 1997). For 

late integration, the audio and visual classifiers are built separately, then fusion methods are 

implemented to combine the scores generated by the audio and visual classifiers (Kittler et al., 

1998b; Ben-Yacoub et al., 1999; Toh and Yau, 2004). Another level of integration, namely 

middle integration, is also frequently used for combining audio and visual modalities. Examples 

of this level integration are multi stream hidden Markov models (Fu et al., 2003; Bengio, 2003; 

Lucey et al., 2005). 

However, the most frequently-used methods appearing in the literature are based on late 

integration. This is because of two reasons. First, compared with early integration and 
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middle integration, late integration is simple. It does not take into accotmt the correlation and 

interaction of audio and visual signals, thus circumventing the problem of synchronising audio 

and visual signals. Instead, it treats these two modalities separately, obtaining two separate 

classifiers, then processing scores generated by these two classifiers. Second, late integration 

achieves commensurate, if not better, recognition rates compared with early integration and 

middle integration. Lucey et at. compared different approaches of the early integration, middle 

integration and late integration, and found that late integration is superior in terms of classifier 

flexibility and its ability to dampen independent errors coming from either modality. 

Of all approaches in late integration, the simplest are based on some fixed rules, e.g., the sum 

rule, product rule etc (Kittler et at., 1998b; Duin, 2002). The scores generated by the audio and 

visual classifiers are combined by some fixed functions, and training the combined classifier 

is not needed. It has been shown that by using fixed rules, the performance of the person 

recognition system can be greatly improved (Kittler et at., 1998b; Erzin et al., 2005). Kittler 

et al. (1998b) attempted to build a theoretical framework for the fixed rules. Their experimental 

results for combining the scores from three experts (two face experts and a text-dependent 

speaker expert) showed that the sum rule outperformed the product rule. A smaIl revision to 

the fix rules is to assigning weighting parameter(s) to each modality based on the performance 

of that modality, the so caIled weighted sum rule and weighted product rule. Experiments 

showed that weighted sum and product rules performed better than fixed sum and product 

rules (Chibelushi et al., 1993; BruneIli and Falavigna, 1995; Maison et al., 1999; Wark, 2000; 

Sanderson and Paliwal, 2003). Although various methods are proposed to choose weighting 

parameters, there is not a unanimous agreement on how to do this. 

In this chapter, we wiII firstly describe the problem of late integration of classifiers. then 

discuss several frequently-used combination schemes. We wiII also propose a new method for 

accurately choosing the optimal weighting parameter(s) for audio-visual person identification. 

FinaIly the proposed method is compared with three other weIl-established methods. Using the 

bootstrapping method, we conclude that our approach can both reduce the bias and variance, 

thus achieving a better estimation for the optimal weighting parameter. 

4.2 General Problem for Late Integration of Classifiers 

Suppose the task of a classifier is to assign an input vector X to one of K classes WI, W2,.oo,WK. 

This classifier consists of K discriminant functions (or scores), /1 (X), /2(X),oo.,fK (X) 

respectively. The decision rule in terms of discriminant functions is: 

decide X E Ws if s = arg rfax /k (X) 
k=1 

(4.1) 

Here, the discriminant functions /1 (X), /2(X),oo.,fK (X) are specified by the classification 

algorithm. They can be the probability that X belongs to each class, or the distance between 
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X and the centre of each class, or take any other form. 

Now consider there are M classifiers. As discussed above, each classifier has K discriminant 

functions. In this chapter, we will always use M as the number of classifiers, and K as the 

number of classes. Let f~ (X), f;'(X), ... ,[,~ (X) denote the K discriminant functions of the mth 

classifier (m = 1,2 .... , M). Obviously the decision rule of the mth classifier is: 

decide X E Ws if s = arg m~x f;~ (X) 
k=1 

(4.2) 

The combination process of the M classifiers can be described as finding a set of combination 

functions Fk (X), (k = 1. 2 ..... K), so that there will be a new set of discriminant functions. 

fc~mb(X) = FI ((j~(X)}) 

fc2omb(X) = F2 ({[,~(X)l) 

(4.3) 

The set {f~ (X)} contains all discriminant functions with m varying from I to M, and k from 1 

to K. The decision rule for combining these M classifiers is an extension of the decision 

rule (4.1): 

decide X E Ws if s = arg m~x f;omb(X) 
k=1 

(4.4) 

Based on the discussion above, we can define the general problem of combination of classifiers 

as follows. 

Definition 4.1. Suppose there are M classifiers, each of which will classify an input vector X 

into one of K classes. Let f;~ (X) denote the scores of the mth classifier assigning to the kth 

classifier (m = 1. 2 .... , M and k = 1. 2 ..... K). The problem of combination of classifiers 

is to find a set of combination functions so that the correct identification rate is maximised on 

testing data. 

Table 4.1 provides an example to clarify the combination problem. Suppose there are 2 

classifiers (M = 2), each of which classifies an input vector into one of 2 classes (K = 2). 

In this table, there are 4 training vectors, Xl, X2, X3, X4. For each of these training vectors, 

we know both the class label and the scores provided by each of the two classifiers. 

For example, we can see from Table 4.2(a) that the training vector Xl belongs to class 1, and 

the first classifier assigns score 7 to class 1, and 6 to class 2. (refer to the m = 1 column in 

Table 4.2(a). According to decision rule (4.2), the first classifier correctly identifies that Xl 

belongs to class 1. Similarly, the second classifier assigns score 5 to classifier I and 3 to 

classifier 2. It also correctly identifies that Xl belongs to class 1. Similar analysis can be 

applied to the training data X2, X3, X4. 
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TABLE 4.1: An example to clarify the problem of classifier combination. The information of 
the training data XI, X2, X3, X4 is provided in (a)-(d). A class label needs to be assigned to 

the testing data XS. 
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f~(Xl) f;(Xl) Class label j;,~(X2) j;~(X2) Class label 

m = 1 7 6 
I 

m =2 5 3 
m = I 10 12 

2 
m =2 8 9 

(a) Class label and scores for Xl (b) Class label and scores for X2 

f~(X3) f~(X3) Class label j;;,(X4) f~(X4) Class label 

m = 1 12 10 
1 

m =2 5 6 
m = 1 9 5 

2 
m =2 4 10 

(c) Class label and scores for X3 (d) Class label and scores for X 4 

fnl,(X) J,~(X) Class label 

m = 1 10 12 
? 

m =2 8 9 

(e) Only scores are provided for the testing data X5. A class label needs to be assigned. 

From Definition (4.1), the problem of combination of classifiers is to devise an algorithm by 

using the information in Table 4.2(a)-4.2(d) to maximise the correct identification rate on testing 

data. Suppose we input testing data X5 into these two classifiers. We need to assign a class label 

(the question mark in Table 4.2(e)) to X5 based on both the training data (data in Table 4.2(a)-

4.2(d)) and the scores of X5 (Data in Table 4.2(e)). 

From the discussion above, we can see that the problem of classifier combination is very similar 

to many machine learning problems. According to Mitchell (1997), in order to have a well

defined learning problem, we must identify three features: the class of tasks, the measure 

of performance to be improved, and the source of experience. The problem of classifier 

combination can be defined as: 

• Task T: Find a combination algorithm which can properly combine scores of classifiers. 

• Performance measure P: percentage of correct identification on some set of testing data. 

• Training experience E: Scores and class labels provided by classifiers on some set of 

training data. 

Since the problem of combination of classifiers is a special case of machine learning problems, 

many methods widely used in machine learning can also be applied to this problem. These 

include: neural networks (Granger, 2001; Giacinto et al., 2003; Shi et al., 2005), support 

vector machines (Sehgal et al., 2004; Solewicz and Koppel, 2004; Czyz et al., 2004), genetic 

algorithm (Kuncheva and Jain, 2000; Minaei-Bidgoli et al., 2004), Dempster-Shafer evidence 
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theory (Xu et at., 1992; Hegarat-Mascle et at., 1997), fuzzy theory (Tahani and Keller, 1990; 

Cho and Kim, 1995; Chatzis et at., 1999) and decision templates (Kuncheva et al., 2001) etc. 

Compared with other machine learning problems, the classifier combination problem has its own 

advantages and disadvantages. The scores which are generated by this classifier provide much 

information about the final class. For example, the nwnbers in Table 4.1 are not random. They 

have some intrinsic structure. In these five tables, we can see that if the input vector belongs 

to class 1, then in most cases the numbers in the row of'!,,', (X)' are greater that numbers in 

the row of 'fj; (X) " and vice versa. Such a clear structure supports the assumption that both 

of the two classifiers are 'good' classifiers, e.g., classifiers which provide useful information to 

discriminate classes. But for many other machine learning problems, this well-defined structure 

does not exist. 

However, in most cases, the training data for classifier combination are very limited. Consider 

the case of audio-visual person identification. It is unrealistic to record video files of each person 

many times. From the recorded video files, we need to choose a large portion of them to train 

the speaker identification and face identification system. Only a small portion can be used for 

training the combination algorithm. In other words, the combination algorithm needs to work 

well in situations where training data are sparse. 

The lack of training data is one of the greatest problems for classifier combination. In most 

cases, it will prevent the implementation of some data-consuming algorithms (e.g., Probability 

estimation, neural networks, genetic algorithms, etc.). In other words, parameters in the 

combination algorithm can not possess a very large number because of the phenomenon of 

'curse of dimensionality' (Bishop, 1995, chap.2). 

From the above discussions, we can set up the criteria of a good combination algorithm. First, 

the algorithm needs to achieve good performance in situations where training data are sparse; 

second, the algorithm needs to retain the specific information provided by each classifier. 

4.3 Three Levels of Classifier Combination 

Broadly speaking, the discriminant functions for a classifier can be classified as one of the 

following levels (Brunelli and Falavigna, 1995): 

(I) The measurement level: Each discriminant function measures the confidence that the input 

signal belongs to one specific class. The probability that the input signal belongs to each class 

is a confidence measure/ 

(4.5) 

Many classifiers are based on probability measures. For example, the GMM probability density 

function which is used in Chapter 2 belongs to this category. 
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Another frequently used measurement is distance. When the distance from the input signal to the 

centre of some class has a large value, the possibility that the input signal belongs to that class 

is low; while a small distance indicates the reverse. We can define the discriminant functions as 

the negative of the distance: 

(4.6) 

Here Xk represents the centre of the kth class. The minus sign is used to keep the discriminant 

functions consistent with decision rule (4.1). The distance measure is widely applied in many 

algorithms. For example, the nearest neighbour (NN) rule will output a distance measure 

between the input signal and the training data which are nearest to it. 

(2) The rank level: The value of each discriminant function is fixed to an integer from I to K, 

sorted by increasing confidence. 

{/ (X), f2(X), ... , fk(X)} = {I, 2, ... , K} (4.7) 

That is, if f U) (X) = K for some i E {I, 2, ... , K}, the possibility that X belongs to Wi takes the 

highest value; if fi (x) = 1 for some i E {I, 2, ... , K}, the possibility takes the lowest value. 

(3) The abstract level: The value of each discriminant function fk (XIII) is 0 or 1, and there is 

only one 1 for the set of discriminant functions {f I (x), f2 (x), ... , fK (x)}, and all others are O. 

In another word, the classifier only indicates the classification result, and no other information 

is provided. 

It is easy to see that the measurement level can be converted to the rank level by increasingly 

sorting the values of the discriminant functions; and the rank level can be converted to the 

abstract level by setting the discrimination function which equals to K to 1, and all others 

to O. As a point of view in infonnation theory (Cover and Thomas, 1991), we can say that the 

measurement level provides the greatest amount ofinfonnation while the abstract level provides 

the smallest amount of infonnation. 

Because the measurement level contains the greatest amount of information, it is more suitable 

for developing and testing combination algorithms. In this chapter, we will concentrate on 

measurement-level combination. 

4.4 Bayesian Approach for Combining Classifiers 

Bayesian theory indicates a theoretically optimal rule for combination of classifiers. If we can 

calculate the posterior probability P(wklx) for each k = 1,2, ... , K, then we can easily write 

the decision rule according to Bayesian theory: (Refer to Webb 2002 for a general introduction 

to Bayesian theory.) 

decide X E Ws if s = arg nfax P (Wk IX) 
k=1 
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Because P(wklx) = P(XI~~.~(Wkl and P(X) is a constant for different (Vb the above decision 

rule can be rewritten as 

decide X E Ws if s = argm~x [P(XIWk)P(wdJ 
k=l 

(4.8) 

Bayesian theory leads to an approach of probability estimation. If we can correctly estimate 

the a priori probability P(XIWk) and P(Wk) by using the training data, then we can obtain an 

optimal classifier. However, such a probability estimation task is impossible both theoretically 

and practically. Vapnik (1998, chap. 2) has proved that there does not exist a uniform convergent 

algorithm to estimate probability density functions. In Chapter 5, we will prove the 'No Panacea 

Theorem' for classifier combination, which states that any combination algorithm will perfonn 

badly in some probability distributions no matter how many training data are provided. Thus, 

we can not guarantee we have obtained the true probability density distributions no matter what 

estimation algorithm we use. In addition, no probability density estimation method can achieve 

good results when very sparse training data are provided, but we have stated in Section 4.2 that 

lack of training data is one of the intrinsic problems for classifier combination. 

The problem of sparse data in probability estimation can be alleviated if all classifiers are 

independent (e.g., a face identification classifier and a speaker identification classifier can be 

regarded as independent because faces are strongly uncorrelated with voices). Suppose the 

input vector X is a combination of M feature vectors, that is X = {x I, X2, ... , X M}. Each of 

the M feature vectors is extracted from one of the classifiers. For example, in audio-visual 

person identification, we can regard x I as the face feature, and X2 as the voice feature. If all of 

the M classifiers are independent of each other, the combined probability density function is a 

multiple of the probability density functions of these classifiers: 

M 

P(wklx) = n P(wklxi) (4.9) 
i=l 

Notice that P(wklxi) = P(X;lWklP(Wkl. By some deduction we can obtain the following decision 
P(Xjl ' 

rule: 

(4.10) 

Because the dimensionality of Xi is smaller than the full vector X, the probability estimation 

task becomes easier. However, in most cases, such a reduction is not enough to solve the 'curse 

of dimensionality' problem. 

From the above discussion, we can see that the Baysian approach is optimal provided the 

probability density functions in equation (4.10) are correctly estimated. However, such an 

optimality can not be achieved either theoretically or practically. 
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4.5 Combination with Simple Rules 

As shown in equation (4.3), generally, each of the combination functions has M x K free 

parameters. Due to the problem of the 'curse of dimensionality', in situations where the training 

data is sparse, we can not find an accurate combination algorithm with so many free parameters. 

One way to relieve this problem is to reduce arbitrarily the free parameters in equation (4.3). 

Many researchers assume the simplified combination functions take the following form: 

fc~mb(X) 

fc2
omb(X) 

F, U,'(X), 12'(X),···, livt(X)) 

F2 U,2(X) , Ii (X) , ... , fifO()) 

(4.11 ) 

That is, the Kth combination function is only correlated with the Kth discriminant functions of 

the M classifiers. Thus the free parameters of each of the combination functions are reduced 

from M x K to M. The reason for this assumption is that, for example, if an input vector X 

belongs to the kth class, which means it is very possible that It, If, ... , It take bigger values 

than other scores. It is easy to generate a combination function which combines these big values 

to obtain a final big value (e.g., the combination function is the sum of these scores). 

Some simple combination functions do not require the training process. They are called fixed 

rules (Kittler et af., 1998a; Duin, 2002). The most frequently used fixed rules are listed as 

follows. 

1. Product rule: For product rule, the combined combination function is the product of the 

discriminant functions. 

( 4.12) 

From equation (4.10), we can see that the product rule is the optimal solution to the problem of 

classifier combination if (1) the discriminant functions can accurately measure the probability 

that the input vector belongs to each class (equation 4.5); (2) all classifiers are independent 

of each other (equation 4.9); (3) each class has equal probability of occurring, that is 

P(w,) = P(W2) = ... = P(WK). 

2. Sum rule: The combination function is the sum of scores which are generated by each 

classifier. 

(4.13) 
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Kittler et al. (1998a) indicate that the sum rule is more robust to noise than the product rule. 

3. Maximum rule: The maximum rule is described as follows: 

fckomb(X) = FkUt(XI), !2k(X2), ... , !t(xu)) 

max~= I [/,~ (xm) ] (4.14) 

The idea of the maximum rule is to select the classifier that is most confident of itself. Normally 

all !~ (xm) need to be re-scaled to the same range to make the output of all the M classifiers 

comparable. 

4. Minimum rule: The minimum rule is just opposite to the maximum rule. It takes the 

minimum of top rank scores for each classifer: 

FkUt(XI), !{(X2), ... , !t(XM)) 

min~=1 [/,~(xm)] (4.15) 

The minimum rule will select the outcome of the classifier that has the least objection against a 

certain class. Similar to maximum rule, a normalisation procedure also needs to be carried out. 

5. Median rule: The median rule is similar to the sum rule, but may yield more robust results 

because the median value is not sensitive to large errors of each classifier. 

FkUlk(XI), !{(X2), ... , !t(XM)) 

median~= I [/,~ (xm) ] (4.16) 

The reason why we use fixed rules lies in three parts. First, fixed rules do not require training 

data. They can be implemented in situations when training data are hard to obtain. Second, 

fixed rules are very simple. This saves time for computation. Third, fixed rules work well in 

some situations. There are many examples to show that classifiers combined by these fixed rules 

are better than each classifier individually (Kittler et al., 1998a; Ben-Yacoub et al., 1999; Duin, 

2002). 

However, fixed rules are sub-optimal (Duin, 2002). They may be misleading if some of the 

classifiers perform poorly. For designing an optimal decision rule, we need to evaluate each 

classifier by the training data. 

4.6 Combination of Classifiers by the Weighted Sum Rule 

A parameter optimisation approach is proposed as another method for combination of classifiers. 

This approach firstly assumes the combination functions have a form involving some parameters, 

then uses training data to optimise these parameters. 
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A well-known parameter optimisation rule is the weighted sum rule, which is described as: 

FkU,k(X,), fi(X2). ... , f;/(XM)) 
M 

L [amf;'(xm)] , (k = 1,2, ... , K) 

m=' 

with the constraint that L::=, am = 1. 

(4.17) 

The main difference between the weighted sum rule and the fixed sum rule in (4.13) is that the 

weighted sum rule allocates a weighting parameter am to each discriminant function /,~ (X). 

These weighting parameter(s) are optimised by applying a training algorithm. 

The weighting parameters should be selected according to the relative reliability of 

the M classifiers. One way to do this is to optimise C( so as to maximise the identification rate on 

some training data (Maison et al., 1999; Duin, 2002), but this carries the danger of over-fitting, 

so reducing the ability to generalise to unseen test data. 

Several methods can be used to prevent over-fitting. For example, Ney (1995) used the smoothed 

error rate as the cost function for optimising the weighting parameter(s), and Brunelli and 

Falavigna (1995) used the normalised ratio of the first- to the second-best integrated score to 

calculate the weighting parameter(s). Ueda (2000) used an algorithm to optimise the weighting 

parameter(s) based on minimising the mean square error (MSE). In the next section, we propose 

a new method for accurately choosing the weighting parameter(s) that directly minimises the 

estimated correct identification rate. 

4.7 New Method for Optimising Weighting Parameter(s) 

This section will propose a new method for optimising weighting parameter(s) for the weighted 

sum rule. Contrary to the methods which were proposed by other researchers (Brunelli and 

Falavigna, 1995; Ney, 1995; Ueda, 2000), we will firstly estimate the correct identification rate 

from score distributions, then directly maximise the estimated correct identification rate. 

4.7.1 Theoretical Development 

Suppose each of the audio and video classifiers consists of K discriminant functions, 

f' (X), f 2(X), ... ,JK (X). The decision rule in terms of discriminant functions is: 

decide X E {J)s if s = arg max fi (X) 
i 

(4.18) 

Here, we denote by f/ (X), f? (X), ... , f,K (X) the scores obtained from the video classifier 

(face identification), and by f2' (X), fi(X), ... , fr (X) the scores obtained from the audio 
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classifier. Because only two classifiers are provided, equation (4.17) for describing the weighted 

sum rule can be rewritten as: 

rk fk fk Jcomb(X, ex) = ex I (X) + (1 - ex) 2 (X) k=I,2, ... ,K (4.19) 

The decision rule based on the specific ex is as follows: 

decide X E Ws if s = arg max f:omb (X) (4.20) 
I 

In what follows, however, we simplify the notation for discriminant functions by dropping 

arguments X and ex, except when it is necessary to distinguish among different values 

of these arguments. 

The first step of our method is to nonnalise the scores of the training data. We use the so called 

z-score nonnalisation, which is calculated using the arithmetic mean and standard deviation of 

the given data. Refer to Jain et al. (2005) for an overview of score normalisation techniques in 

multimodal biometric systems. 

The z-score normalisation process can be divided into two steps. In the first step, all scores 

of both audio and video classifiers have their mean subtracted and the result is then divided 

by their variance: 

(4.21 ) 

Here, I is the number of training data points, K is the number of classes, and m E {I, 2}. 

The second step of nonnalisation is to make the correct score (i.e., that for the correct person) 

zero. This gives us a known reference point from which to assess scores, and simplifies the 

derivation of an appropriate mathematical model under Gaussian assumptions-see below. If 

we set the weighting parameter ex to a constant value, we can obtain the combined scores 

fc~mb' fc
2
omb' ... ,fc~mb by equations (4.19) and (4.21). The second step of the normalisation 

process is: 

if X E Wi then F;omb = fckomb - f~omb k=1.2 .... ,K (4.22) 

Equation (4.22) is used to make the correct score zero. We can see from the decision rule, 

equation (4.18), that these two steps of nonnalisation do not change the identification result 

because the new scores in (4.22) are obtained only by subtracting and dividing the same number 

from the original scores, which does not influence the rank of the scores. 
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After normalisation, the next step is to estimate the probability distribution of the scores. We 

assume that the values of the score functions are independent. That is: 

K 

P (Fc~mb' ... , F:;~b' F:~b' ... , Fc~mblX E Wi) = n p (Fc~mbIX E Wi) 
k=l.k#-i 

The reason why k i=- i is that, after the normalisation, F~omb always equals zero if X E Wi. We 

denote the correct identification rate (the probability of correct identification) when X E Wi 

as Ci (a). Since F~omb == ° when X E Wi after the normalisation process, we can calculate C i (ex) 

on the basis of equation (4.18) as: 

K 

Ci(a) = n P (F;omb < 0IX E Wi) 
k=l.k#-i 

4.7.2 Probability Density Estimation 

(4.23) 

To calculate the probability P (F;omb < 0IX E Wi) for each k = I, 2, ... , K, we first have to 

estimate the probability distribution P (Fc~mb IX E Wi) from the training data in the form of 

a Gaussian mixture model. But a problem of sparse data arises when we try to model the 

distribution this way. In essence, it is hard to estimate the density of a multi-modal data 

distribution reliably. 

Our approach to this problem is to break the available training data up into 'sections', and to treat 

each of these as a unimodal Gaussian, and then to combine them. Suppose there are M training 

data available for deciding the weighting parameter a. Among these M files, there are MI files 

belonging to class WI, M2 files belonging to class W2, ... , and finally MK files belonging to 

class WK (M + M2 + ... + MK = M). 

We denote the Mi training data belonging to class Wi as XI, X2, ... , X Mj' The Gaussian mixture 

is then: 
Mj k 2 

( 
k ) I" I (Fcomb - ILk}) ) 

P FcomblX E Wi = Mi f;:1 J2rr A exp - 2A2 (4.24) 

where A is a parameter controlling the variance(s). 

The component means ILk} are obtained as ILk} = F;omb(X}, a), j = 1,2, ... , Mi. From this, 

we see that the means of the mixture components are the scores of the training data. When A is 

large, the variance of each mixture component is large; when it is small, the variance is small. 

In the extreme case when A becomes zero, the probability density shrinks to a series of impulse 

functions. 
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P (FckomblX E Wi) 
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(a) Mj = 5, A = I (b) Mj = 5, A = O.S 
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\. , 
~8~--~6----,~~'~~2~~~~'~'~~~--~8 F!mb 

(e) Mj = 5, A = 0.1 

FIGURE 4.1: Probability density estimation using equation (4.24). The distribution to 
be estimated is a Gaussian distribution with zero mean and standard deviation of one (as 
indicated by the dashed lines in these three graphs). Five data points are drawn from this 
distribution (M; = 5). Using equation (4.24), we can obtain the estimated distributions (solid 

lines) with (a) A = I, (b) A = 0.5 and (c) A = 0.1, respectively. 

Figure 4.1 demonstrates an example of estimating probability density functions using 

equation (4.24). The probability density function to be estimated is a Gaussian distribution with 

zero mean and standard deviation of one. It can be seen that in this specific example, the true 

density function is better estimated when A has a greater value, but this is not always correct. 

Other distributions may favour smaller rather than greater A. To estimate the probability density 

distribution using equation (4.24) with finite data, we have to choose a suitable value of A and 

it is not clear how this should be done. 

However, Bishop (1995, pp.54-55) proves that when the data are infinite, the 

expectation of the estimated probability density using the above method will converge to 

the true probability density. This property holds for all values of A. Figure 4.2 demonstrates 

the convergence procedure when the number of data points increases. 
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(c) M; = 1000, A = 0.1 (d) M; = 10000, A = 0.1 

FIGURE 4.2: An example to illustrate how the estimated density function (solid lines) 
reaches the true density function (dashed lines) when increasing Mi. A is fixed to 0.1 and 

Mi = 10, 100, 1000, 10000 respectively. 

4.7.3 Estimating Correct Identification Rate 

Using the estimated pdf, we can now calculate the probability that F;omb(X) < 0 as: 

P (F;omb(X, a) < 0 I X E Wi) 

= _1 ~ _1_ fO ex (_ (F;omb(X, a) - f.J-kj)2)d [Fk (X )] 
M,. L.t IF A P 2A2 comb ' a 

I j=1 V L.li -00 

M 

= _1 t <I> (_ f.J-kj ) 
M,. A 

I j=1 

where <I>(x) is the integral of the Gaussian distribution: 

66 
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jx I (X2) ct>(X) = ,t;Lexp -- dx 
-00 ,,2rr 2 

From equation (4.23), we can finally obtain Ci(a), which is the correct identification rate for a 

specified a when X E Wi, as: 

The overall correct identification rate, denoted C(a), is given as: 

K 

C(a) = L Ci(a)P(X E Wi) (4.25) 
i=l 

where P(X E Wi) can be estimated as "if with M; equal to the number of training data points 

which belong to class Wi, and M equal to the total number of training data points. Thus, we have 

transformed the problem of choosing weighting parameter a for combining two classifiers to a 

problem of maximising the correct identification rate C(a). 

decide a = aopt if a = arg max C(a) 
0' 

Once the weighting parameter a is selected using our proposed method, we assume it does 

not change when it is applied to the test data. Such an assumption is based on the more 

general one that the training data and the test data are independently drawn from the same 

probability distribution. However, this assumption may not hold in practice, especially when 

unexpected environmental noise has dramatically changed the probability distribution of the 

test data. In this situation, it is preferable to use adaptive methods to adjust the weighting 

parameter(s) (Wark et at., 1999; Wark, 2000; Sanderson and Paliwal, 2003). We still assume 

that the probability distribution of the training data and test data is the same in this chapter, 

because, firstly, the XM2VTS database does not contain sufficient data to learn and test adaptive 

methods for combining classifiers; secondly, one of the main contributions of this thesis is to 

provide a method to accurately estimate the weighting parameter(s) for classifier combination, 

and we need to use the scores generated by the audio and visual classifier to test this method. 

4.8 Results Using Real Data 

We use the first and fifth disks of the XM2VTS database to test the performance of the proposed 

method. As indicated by Section 2.4.5, the first disk contains speech files of 75 subjects (24 
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files for each person, which are recorded in 4 sessions, 6 files for each session). The fifth disk 

contains static face images for these 75 subjects (8 images for each person, which are taken 

in 4 sessions, 2 files for each session). We will test the proposed combination algorithm on 

these 75 subjects. 

For each test speech file, we randomly select three files which are not from the same session as 

the training set, then test this file with the trained GMM model. This train-3/test-1 strategy is 

applied to the 24 files for each speaker and 24 identification results are obtained. 

In building the face classifier, for each image, we use the 6 images in the other 3 sessions as 

the training set, and then test that image. Such a strategy is applied to all 8 images of each 

person, obtaining 8 identification results. For each of the 4 sessions, we randomly select 2 of 

the 6 speaker identification results and then combine them with the 2 face identification results 

for that session. 

Figure 4.3 shows the empirical correct identification rate CeCa) as a increases from 0 to I, 

with a 0.01 increment on each trial. This is done by first determining the individual scores of 

both the audio and video classifier, then calculating the combined scores using equation (4.19), 

and finally using these for identification. Let us first define the indicator function Tk (Xi) as I 

when Xi E Wk; and 0 when Xi tJ. Wk. 

Then CeCa) is defined as follows: 

Xi E Wk 

otherwise 

1
M 

L A K k 
CeCa) = M Tk(Xi ), wherek = argmax/comb(Xi,a) 

k=1 
i=1 

(4.26) 

(4.27) 

The identification rate for the video classifier is 81.93%, and for the audio classifier it is 90.37%. 

The combined classifier achieves the highest identification rate (98.31 %) when a equals 0.22. 

However, the empirical identification rate CeCa) is not a very suitable function to determine the 

weighting parameter a because of its non-smooth nature, making it difficult to identify a clear 

peak corresponding to the optimum. 

We can also obtain a similar curve Cprop(a) by estimating the correct identification rate, as 

proposed in Section 4.7. Because for the proposed method the scores for both classifiers are 

normalised by equation (4.21), some adjustments need to be done to eliminate the effect of 

normalisation. Recall equation (4.19), the combination function, is as follows. 

k=I,2, ... ,K 

If we replace the original scores Ilk (X) and If (X) with the normalised scores It (X) = It (::-1,'1 
and It (X) = It (~-J1.2 , the weighting parameter a also needs to be changed correspondingly to 
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FIGURE 4.3: The empirical correct identification rate using the test data, with IX varying 
from 0 to I. 
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obtain the same effect. Suppose a is changed to a', equation (4.19) can be rewritten as follows: 

fckomb (X, a') a' It (X) + (1 - a') 12k (X) 

= a,/Jk (X) - f-LJ + (1 _ a') 11 (X) - f-L2 k=1,2, ... ,K 
GJ ~ 

To obtain the same effect, we must have: 

Thus, we obtain 

In order to make Cprop(a) comparable to CeCa), we must define Cprop(a) as follows: 

a' 

where C(a') is defined as in equation (4.25). 

Figure 4.4 illustrates the obtained correct identification curves when A = 0.001, A = 0.01 and 

A = 0.1. When A takes a relatively large value, the curve is smoothed relative to the empirical 

correct identification curve, and the peak of Cprop{a) when a varies from 0 to 1 can be more 

clearly observed. 

We can see from Figure 4.4 that the estimated correct identification rate is always smaller 

than the true correct identification rate. This is because the estimated score distribution as in 
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FIGURE 4.4: The correct identification rate Cprop(a) using the proposed method as a varies 
from 0 to I: (a) A = 0.001; (b) A = 0.01: (c) A = 0.1. 

equation (4.24) does not precisely reflect the true distribution. From Figure 4.5, we can see that 

even if all the scores for estimation are below 0, the estimated possibility that the score is greater 

than zero is still 0.02. 

That is, in this special case, the estimated identification rate is 2% smaller than the 

true correct identification rate. If we add up all these score distributions together as in 

equation (4.23) and (4.25), we can also expect the estimated identification rate is smaller than 

the true identification rate. We can further estimate that when A becomes larger, the estimated 

identification rate will be even smaller. That is the reason why the values of C prop (a ) are different 

when A takes different values. But we can see from the above experiments that this problem 

does not interfere with the process of deciding the weighting parameter a, because we only need 

to find the a which yields the maximum value of Cprop(a). 
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•• 

Flc:on>b 

FIGURE 4.5: The estimated probability density of fckomb(X, a) when A = 0.5 and 

f:omb(Xt. a) = -3.48, f:omb (X2. a) = -2.54, .t;,~mb(X3. a) = -2.02, f:omb (X4. a) = 
-1.56, f!mb(XS. a) = -1.34, f:omb (X6. a) = -0.50. It indicates that even if all the scores 

for estimation are below 0, the estimated possibility that the score is greater than 0 is 0.02. 

4.9 Further Results Using Bootstrapping 
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The empirical identification curve in Figure 4.3 shows that the maximal identification rate is 

achieved when ct = 0.22, while all the three identification rate curves in Figure 4.4 using the 

proposed method indicate that the optimal ct is 0.24. Our intuition told us that the estimation 

by the proposed method is more accurate because it provides a smooth curve, thus reducing 

the possibility of over-fitting. In this section, we use bootstrapping to indicate that, compared 

with other frequently-used methods, the proposed one for choosing the weighting parameter(s) 

performs better in reducing the variance of the estimated optimal weighting parameter, thus 

suggesting a more accurate estimation. 

The publication in 1979 of Bradley Efron's first article on bootstrap methods was a major event 

in statistics, at once synthesising some of the earlier resampling ideas and establishing a new 

framework for statistical analysis. It has been shown that bootstrap methods often perform better 

than traditional methods in many applications. The reader is referred to Davison and Hinkley 

(1997) for a detailed discussion. 

The bootstrapping is performed as follows. As indicated in Section 4.8, there are 8 face 

identification results and 24 speaker identification results for each person. In each bootstrap 

process, we randomly select 8 speaker identification results out of these 24, then combine 

them with the 8 face identification results, and obtain estimates of the optimal ct by both 

the empirical and proposed methods. This sampling without replacement process is repeated 

N times, so obtaining N estimates of the optimal ct, one for each process, which are represented 

as ct~Pt. ct;pl' ...• ct~t. The mean and variance of ctopt can be calculated as follows: 
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We have tested four methods for choosing the optimal weighting parameter using the bootstrap 
method: 

1. the empirical method based on actual identification results; 

2. the proposed method based on pdf estimation; 

3. smoothed error rate estimation; and 

4. a genetic algorithm, as proposed by Lam and Suen (1995). 

The first two have already been described. The smoothed error rate estimation method was first 

used by Ney (1995), and subsequently in audio-visual person identification by Maison et al. 

(1999). This method shares some similarities with our method (2) as proposed in this chapter, 

which is also a smoothing technique for the correct identification curve. Instead of finding 

the ex which maximises Ce(ex), the smoothed error rate estimation method finds the ex which 

maximise Csmooth(ex) defined as follows: 

1 M k {i' k (X ) I 
C () __ '\' '\' 7' (X.) exp rJ comb i, ex 

smooth ex - M ~ ~ 1 k I K {.j } 
i=1 k=1 Lj=1 exp rJicomb(Xi, ex) 

(4.28) 

Here M is the total number of training data points. K is the total number of classes and Tk (Xi) 

has been defined in equation (4.26). We note here that it depends on choosing a parameter rJ 

which when large reduces the smoothed error rate to the empirical one. 

Lam and Suen's method attempts to find the optimal weighting parameters using genetic 

algorithm. This method assigns a weighting parameter to each classifier, making the fusion 

function as follows: 

Then the fitness function which the genetic algorithm needs to maximise is set as: 
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Method aap! a"U"' 
Empirical 0.2548 0.0545 

Genetic Algorithm 0.2685 0.0547 
A = 0.001 0.2478 0.0419 
A = 0.002 0.2464 0.0421 
A = 0.005 0.2470 0.0425 

Proposed 
A = 0.01 0.2480 0.0400 
A = 0.02 0.2665 0.0386 
A = 0.05 0.2488 0.0358 
A = 0.1 0.2635 0.Q308 
A = 0.2 0.3001 0.0355 

1]=5 0.2664 0.0552 
1] = 10 0.3598 0.0388 
1] = 15 0.3051 0.0373 

Smoothed Error Rate 
1] = 20 0.2879 0.0388 
1] = 25 0.2798 0.0411 
1] = 30 0.2766 0.0424 
1] = 35 0.2683 0.0475 
1] = 40 0.2667 0.0486 

TABLE 4.2: The means and variances ofthe four methods for estimating the optimal weighting 
parameter Clop! with the real speech and video data. 
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and where M is the number of training data points, K is the number of classes, and Tk(X;) is 

defined as in equation (4.26). 

A genetic algorithm is used to search for the al and a2 which maximise Cgu(al, (2). Our 

settings of parameters are slightly different from the original paper. The population size is 20. 

The fractions of crossover and migration are 0.8 and 0.2 respectively. Because we used the 

default settings of the Matlab GA function, the reader should refer to the Matlab function 

ga (f i tnes s f en I nvars) for the settings of other parameters. 

The GA algorithm inspects 100 generations and picks the a I and a2 which yield the largest value 

of Cga(al, (2). To make the GA method comparable with other methods, the optimal weighting 

coefficient a is then found as -I" = ~. 
-ex uz 

Table 4.2 shows the means aap! and variances a"op, of these four methods using 200 bootstrap 

iterations (N = 200). We have used a range of A values for the proposed method and, similarly, 

a range of 1] values for the smoothed error rate estimation method. Those shown in table are the 

sub-ranges over which good estimates (i.e., low variances) were obtained. 

We can see from the table that the four methods provide similar means. The proposed method 

and the smoothed error rate method give generally smaller variances than the other two methods 

(although this is of course achieved with the advantage of an adjustable parameter). The 

proposed method appears to give a rather smaller variance than the smoothed error rate method, 

but this is uncertain. 
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4.10 Results with Simulated Data 

Table 4.2 indicates that the proposed method perfonns slightly better in reducing the estimation 

variance, but it does not show that this method is also good at reducing the estimation bias, i.e., 

if (Yopt estimated by this method is close to the true value of the optimal weighting parameter. 

With the real data used in the previous section, this question can not be answered because this 

true value is unknown. 

In this section, we try to answer this question in some aspects. First, we construct simulated 

data with a known probability distribution. So the true value of the optimal weighting parameter 

can be exactly calculated. Finally, we use the bootstrap method with N = 200 to estimate the 

optimal weighting parameter, and see how close the estimated optimal weighting parameter is 

to the true value of that parameter. 

Consider a 2-c1assifier and K -class problem. We need to construct 2K scores of an 

input X which belongs to a specific class. For example, we can assume that X E Ws. 

These scores are represented as /,~(X), where m E {I,2} and k E {I, 2, ... , K}. For 

constructing /,~ (X), !;, (X), ... , /,; (X) (m E {I, 2}), we first generate K random numbers, 

each of which is uniformly distributed in the range of [0, 200]. We use n m I, nm2, ... , nmK 

to represent these K numbers. We choose n ms as the maximum of these K numbers 

(n ms = max{nml, nm2, ... , nmK)), since it is reasonable'to assume that the highest score will be 

obtained for the correct class. Next we generate another K random numbers, amI, a m2, ... , amK, 

each of which is uniformly distributed in the range of [0, a,~ax]. Here a;ax is a controlling 

parameter. The scores f~ (X), f~(X), ... , /,; (X) are generated as follows. For each m E {I, 2} 

and k E {I, 2, ... , K}, f~ (X) is a random sample drawn from a Gaussian distribution with 

mean nmk and variance amk. 

We construct two classifiers, denoted Classifier I and Classifier 2. For Classifier I, we set its 

a!nax to 10; and for Classifier 2, we set its a 2
max to 20. Thus, Classifier I is a strong classifier 

and Classifier 2 is a weak classifier. For both, we set K to 74, equal to the number of classes in 

the audio-visual person identification task. For each class, we generate 8 sets of scores from 

Classifier I, and 24 sets of scores from Classifier 2, which is also the same as the audio

visual person identification task. Using the bootstrap method, we then obtain the means and 

variances of the four methods. Since the simulated data are generated from a known distribution, 

we can also accurately calculate the true optimal weighting parameter, (Ytruc, by using all the 

parameters nmk and amk (m E {I, 2} and k E {I, 2, ... , K)). For simplicity, the process of 

how to calculate (Ytrue is described in Appendix B. We only mention here that we can accurately 

calculate (Ytrue since the score distributions are known. 

Table 4.3 shows the estimated means and variances for normally-distributed simulated data using 

the four methods. Here, (Ytrue = 0.650. It can be observed that the means of the empirical, 

genetic algorithm and proposed methods are closer to (Ytrue than the smoothed error rate method, 

but the proposed method gives much smaller variance than the empirical and genetic algorithm 
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Method Q'opt a"opt 

Empirical 0.6509 0.0428 
Genetic Algorithm 0.6510 0.0399 

A = 0.001 0.6494 0.0350 
A = 0.002 0.6499 0.0344 
A = 0.005 0.6494 0.0303 

Proposed 
A = 0.01 0.6520 0.0298 
A = 0.02 0.6520 0.0277 
A = 0.05 0.6491 0.0180 
A = 0.1 0.6185 0.0089 
A = 0.2 0.5719 0.0058 

1]=5 0.5225 0.0045 
1] = 10 0.5750 0.0047 
1] = 15 0.6070 0.0078 

Smoothed Error Rate 
1] = 20 0.6269 0.0113 
1] = 25 0.6358 0.0124 
1] = 30 0.6436 0.0159 
1] = 35 0.6436 0.0159 
1] = 40 0.6436 0.0159 

TABLE 4.3: The means and variances of four methods for estimating CXopt on simulated data 
generated to have a Gaussian distribution. Here CXopt = 0.650. The process of how to calculate 

this CXtrue is described in Appendix B. 
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methods. However, we need to remember that the simulated data are generated with a Gaussian 

distribution, so this could be considered an unfair test of our method. Thus, we have also carried 

out performance comparisons with data with a rectangular distribution. This should show our 

method at maximum disadvantage relative to the competitors. 

As before, the sets of random numbers were generated from which we obtain n mk and 

amk (m E (l, 2) and k E {I, 2, ... , K)). A uniform distribution in the range (nmk - amk, nmk + 
amk) was then generated to simulate the distribution of J;~ (X). The results in Table 4.4 for 

the data with uniform distribution show that the proposed method holds up well in the face 

of violation of the underlying assumption of normally-distributed data. The optimal weighting 

parameter is estimated with very low bias and low variance, certainly relative to the empirical 

and GA methods. Performance is slightly but noticeably better than the smoothed error rate 

method. 

It is not suitable to use the empirical method directly to decide the optimal weighting parameter, 

because it gives very high variance. A better solution is to calculate the average of the optimal 

weighting parameters by using the bootstrap method. In situations where the training data 

are sparse, so that it is difficult to use the bootstrap method, the proposed method is highly 

recommended. 

The main drawback of the proposed method is that we have to choose a suitable value of A and 

it is not clear how this should be done. Of course, the smoothed error rate technique shares this 

kind of problem, in that we have to fix a suitable value of 1]. 
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Method <Yopt 0""001 

Empirical 0.7324 0.0492 
Genetic Algorithm 0.7368 0.0529 

A = 0.001 0.7359 0.0419 
A = 0.002 0.7367 0.0413 
A = 0.005 0.7346 0.0385 

Proposed 
A = 0.01 0.7343 0.0306 
A = 0.02 0.7327 0.0220 
A = 0.05 0.7270 0.0176 
A = 0.1 0.7177 0.0224 
A = 0.2 0.7541 0.0519 

1]=5 0.6106 0.1486 
1] = 10 0.7043 0.0525 
1] = 15 0.7135 0.0314 

Smoothed Error Rate 
1] = 20 0.7182 0.0255 
1] = 25 0.7224 0.0235 
1] = 30 0.7256 0.0234 
1] = 35 0.7256 0.0234 
1] = 40 0.7256 0.0234 

TABLE 4.4: The means and variances of four methods for estimating (lopt on simulated data 
generated with a uniform distribution. Here (lopt = 0.727. The process of how to calculate (ltrue 

are described in Appendix B. 

4.11 Summary 
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In this chapter, we have provided a method to estimate the optimal weighting parameter for 

fusion of scores in audio-visual person identification. It is based on estimation of probability 

density functions for the scores under a Gaussian assumption. By use of bootstrapping, the 

performance of this method can be strictly analysed and compared with other methods. Using 

simulated data, such that the pdf's are known, results indicate that this method has advantages 

in reducing the bias and variance of the estimation. The method is shown to perform well 

even when the underlying Gaussian assumption is violated. The main problem is in choosing a 

suitable value of smoothing parameter A. It is not clear at present how this should best be done. 

The validity of the proposed method are based on two assumptions. First, the bootstrapping 

method as discussed in Section 4.9 is based on the assumption that the performances of the 

audio classifier and the visual classifier are independent. Intuitively, such an assumption is true 

because we have little information to imagine a person's face when only listening to hislher 

voice, and vice versa. Another assumption is that, as discussed in Section 4.7.3, the training 

and the test data are drawn independently from a fixed probability distribution. Thus, the 

optimal weighting parameter remains unchanged. Although this assumption is very common 

in theoretical pattern recognition studies (Vapnik, 1998), it may not valid in practice. Thus, 

adaptive methods for choosing weighting parameter(s) are preferable in practical situations. 

It should be noted that, although our method is developed for the identification task, it can 
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be generated to verification. For verification, similar approach can be applied for choosing 

the optimal weighting parameter based on minimising the equal error rate (EER), instead of 

maximising the correct identification rate for the identification case. In Chapter 7, we have 

outlined some future work to generalise this method to person verification. 
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Chapter 5 

Theoretical Study: A 'No Panacea 

Theorem' for Classifier Combination 

As indicated in Chapter 4, it is hard to find an optimal combination algorithm which can 

perform well in every situation. In this chapter, we theoretically prove that there is no 

'perfect' combination algorithm suitable for all situations. Such a property, which is called 

the 'no panacea' principle by Kuncheva (2004), appears widely acknowledged, but no strict 

mathematical proof exists for it. 

In this Chapter, we introduce a theoretical proof of the 'no panacea' property for classifier 

combination. We have proved the No Panacea Theorem (NPT), which states that if the 

combination function is continuous and diverse (to be defined), there exists a situation in 

which the combination algorithm will give very bad performance. Thus, there is no optimal 

combination algorithm which is suitable in all situations. Although built for multiple classifier 

combination, this theorem is also valid for all supervised learning situations. 

The No Panacea Theorem for classifier combination can be regarded as a generalisation of the 

No Free Lunch (NFL) Theorems (Wolpert and Macready, 1995, 1997). Wolpert and Macready 

(1997) proved that any two optimisation algorithms are equivalent when their performance is 

averaged across all possible probability density functions. Wolpert (2001) further extended the 

NFL idea to supervised learning and concluded that the performance of any learning algorithms 

are the same when averaging over all prior probability distributions. These establish the same 

average performance of all optimisation and supervised learning algorithms across all possible 

problems. There has been much work extending and generalising the NFL theorem. The reader 

is referred to www.no - free -1 unch . org for details. 

However, the NFL theorem only discusses the average performance of algorithms. It does not 

consider the problem of how good or bad the performance of a specific algorithm would be for 

a given probability distribution. If there exists a probability distribution which would dictate 

bad performance for a specified algorithm, what does it look like? This chapter will address 

78 
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these two problems. We prove that if the combination functions are continuous and diverse, 

then we can construct probability density functions based on Gaussian mixtures in which the 

combination algorithm will yield very bad performance. 

There has also been some research work on constructing objective functions and probability 

distributions for theorem proving. Oltean (2004) has explicitly constructed objective functions 

where random search outperforms evolutionary algorithms. Antos et al. (1999) construct 

probability distributions to prove that there does not exist a universally-superior Bayes error 

estimation method, no matter how many simulations are performed and how large the sample 

sizes are. However, the objective functions and probability distributions constructed in these 

previous works are a little bit 'strange', i.e., they are not likely to be encountered in real

world problems. In this chapter, we will prove the No Panacea Theorem based on constructing 

probability distributions of Gaussian mixtures. Based on the central limit theorem (Grimmett 

and Stirzaker, 1992), Gaussian mixtures are good models for many real-world problems. 

Another origin of our proof comes from the Chanson theorem (Vapnik, 1998, chap. 2) in 

statistics, which states that for any estimator E/(A) of an unknown probability measure defined 

on the Borel subsets A c (0, 1), there exists a measure P for which E/(A) does not provide 

uniform convergence. Our method to construct the probability density functions in Section 5.2 

is very similar to the proof of this theorem. 

5.1 Background 

Suppose there are M classifiers. The task of each classifier is to assign an input X to one 

of K classes, WI. W2, .. .', WK. Each classifier generates a set of discriminant functions (or 

scores), fl (X), f2(X), ... , fK (X) respectively. The decision rule in terms of discriminant 

functions is: 

decide X E Ws if S = arg m~x fk (X) 
k=1 

For these M classifiers, we use fi (X), fI2(X) , ... ,f( (X) to represent the scores generated 

by the first classifier, and f21 (X), lJ (X), ... , fr (X) to represent the scores generated by 

the second classifier, ... , and flt(X), f'1t(X), ... , ff5(X) to represent scores generated by 

the Mth classifier. Thus, we obtain M x K score functions. For simplicity, we will use 

XI, X2, ... , XN to represent these score functions (N = M x K). If the input has a subscript, 

such as X j , we will use X Ij' X2j, ... , X Nj to represent its scores. 

The process of combining these M classifiers can be described as finding a set of combination 
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functions Fk (XI, X2, ... , X N) (k = 1, 2, ... , K) with the following decision rule: 

(5.1) 

A combination function divides the whole domain D of all points {XJ,X2, ... ,XN} into 

K regions, denoted D I , D 2 , ••• , DK: 

DI = {{XI,X2, ... ,XN} largT!~Fk(XI'X2, ... 'XN)=I} 

D2 = {{XI, X2,··· ,XN} I argT!~Fk(XI'X2"" ,XN) = 2} 

From decision rule 5.1, we know that Di (i = 1,2, ... , K) is the region that the combination 

algorithm regards as encompassing the ith class. 

We define the K joint probability density functions of x I, X2, ... , X N given the input data as: 

PI(XI,X2, ... ,XN) = P(XI,X2"",XNIXEWI) 

P2(XI,X2, ... ,XN) P(XI,X2"",XNIXEW2) 

Then according to our previous definitions, we can obtain the classification error rate given that 

the correct class is Wi (i = 1, 2, ... , K) as a function of Pi: 

f Pi(XI, X2, ... , XN) dx l dx2 ... dxN 

iJ; 

= 1-f Pi(XI,X2, ... ,XN)dxl dx2 ••• dxN 

D/ 

where Di is the complement of D i : 

(5.2) 
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It refers to the region in which the classification is incorrect. 

Based on these definitions, the total classification error rate can be calculated as follows: 

K 

P(error) L P(wi)P(errorlwi) 
i=1 

K 

= 1- LP(Wi) f Pi(XI,X2, ... ,XN)dx l dx2 ... dxN (5.3) 
1=1 D; 

Here P(wd, P(W2), ... , P(WK) are the prior probabilities that input data X belongs to classes 

WI, W2, ... , WK respectively. 

In order to build the theorem, two assumptions for the combination functions need to be added. 

Assumption l. [Continuous assumption]. For each k E {I, 2, ... , K}, the combination function 

Fk(XI, X2, ... , XN) is continuous with respect to XI, X2, ... , XN. More specifically, for any 

10 > 0, there exists a 8 = 8(10) > ° such that 

If j(xi - XIO)2 + (X2 - X20)2 + ... + (XN - XNO)2 < 8, 

then IFk(XI,X2,'" ,XN) - Fk(XIO,X20, ... ,xNo)1 < 10 

A useful corollary can be deduced from the continuous assumption which will be used in our 

proof of the NPT. 

Corollary 5.1. If Fk(XI, X2, ... , XN) is continuous for each k E {I, 2, ... , K). then for any 

point Xo with scores {XIO, X20, ... ,XNO). suppose S is the class label which the combination 

algorithm assigns to Xo: 

then there exists an open ball B (Xo, 8) so that for any point in that open ball, the combination 

algorithm will assign the same class label S to this point. 

Here B (Xo, 8) refers to the set of points {XI, X2, ... ,XN} which satisfy: 

Assumption 2. [Diverse assumption]. There should be two data points which make the 

combination functions take values of two different classes. In other words, there exists two 

classes Wi and Wj (1 :::: i < j :::: K) that satisfy the following constraints. 
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3{Xlw" X2w/, ... ,XNw/} such that i = arg maxf=1 FkCxlw;, X2(uj' ... ,XNw;) 

3{Xlwj' X2wj' ... ,XNwj} such that j = arg maxf=1 Fk(Xlwj' X2wj' ... ,XNwj) 

5.2 No Panacea Theorem 

Based on the definitions above, we will prove the No Panacea Theorem in the cases of 

M classifiers and K classes. 

Suppose there are U training data points, XI, X 2, ... , Xu. The scores of the jth data point X} 

given by the M classifiers are represented as {XI}, X2j' ... , XNj}' Here j = 1,2, ... , U. For 

these U training data points, we have the following theorem. 

Theorem 5.2. Given the U training points as described above, if the combination 

functions Fk(xl,x2"",xN),(k=I,2, ... ,K) satisfY the continuous and diverse 

assumptions, then there exist K continuous probability density functions 

PI(XI,X2, ... ,XN),P2(XI,X2, ... ,XN), ... ,PK(XI,X2, ... ,XN) such that for any given 

P > ° and any E E (0, 1), thefollowing two properties hold: 

1. For j = 1,2, ... , u, if Xj E Wi then Pi(Xlj, X2j, ... , XNj) > P. 

2. For all i = 1,2, ... ,k, P(errorlwi) calculated by equation (5.2) is greater than (1 - E). 

Thus, the total classification error P(error), which is calculated by equation (5.3), is (llso 

greater than (1 - E). 

For this N -classifier, K -class problem, every combination algorithm needs to generate 

K combination functions Fk(XI, X2, ... , XN) (k = 1,2, ... , K) based on the training data points 

XI, X 2, ... , Xu. But, as can be seen from equations (5.2) and (5.3), the performance of the 

combination algorithm is not only associated with the function F(x I, X2, ... ,XN), but also with 

probability density functions. However, these pdf's can not be completely revealed by finite 

training data, so for any combination algorithm, there may exist some pdf's which make the 

performance very bad. Thus, properties (1) and (2) give a criterion for how bad the performance 

of the combination may be. Property (I) states that there exist pdf's which make the density on 

the training data very high. Property (2) states that such pdf's also make the error rate very high. 

Generally, these two properties indicates that for any combination algorithm which satisfies 

the continuous and diverse assumptions, there exist pdf's which can very possibly generate the 

training data, but the combination functions may give very poor performance. The main idea of 

our proof is to generate Gaussian mixture distributions which have high densities in the 'wrong' 

areas (where the combination functions give incorrect classification). 

Proof Because Fk(XI, X2, ... ,XN) satisfies the diverse assumption, which means that the 

combination algorithm assigns some points to one class and other points to another class, 
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without loss of generality, we assume these two classes are WI and W2. That is, there exists 

one point {Xlwl' X2wI' ... ,XNwl } E WI and another {X1W2' XZ W2 ' ... ,XN'"2} E Wz such that: 

arg max{=l F k (Xlwl' X2'"I' ... , XNwI) = I 

and argmax{=l Fk(X1w2' X2'"2"'" XN'"2) = 2 

Because Fk(Xl, X2, ... , XN) is continuous, by corollary (5.1), there exist 01 and 02 that make 

B(Xwl , 01) S; Dl and B(XW2 ' 02) S; D2. 

We further suppose that for the V training points, there are VI points belonging to WI. V2 points 

belonging to W2, ... , and VN points to WN, where 'L;:'1 Vi = V. 

Based on the above definitions, we can prove the theorem in two steps. 

Step 1 We first construct probability density functions Pl(Xl,X2, ••• ,XN) and 

P2 (x 1 , X2, ... , X N ), then we prove that the given PI and P2 satisfy properties (1) and (2). 

The form of PI and P2 is given as follows: 

where tIl and t21 are Gaussian mixture distributions, and t12 and t22 are Gaussian distributions. 

1 
----7:'N e 

(J21raWl) 

r:i:.1 h-x/W2)2 

2aZ2 

1 1 u _r:i:.I(X/-x/j)2 ' 

= - N L T Wl (x I, X2, ••• , X N ) e la£ 
V2 (J21ra2) j=l 

1 r:i:.1 h-x/WI )2 
----"i7

N 
e - laZ I 

( J21rawl ) 
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Here Tw, is an indicator function which has the value 0 when {x I , X2, .•• , X N} ¢ Wi, and 1 

otherwise. The general form of these indicator functions is: 

if{xl,X2,'" ,XN} ¢ Wi 

otherwise 
(i = 1, 2, ... , K) 

where ai, a2, aWl and a W2 are parameters to be decided. In the following, we prove that when 

ai, a2, aWl and a W2 are sufficiently small, properties (1) and (2) will hold. 

We first prove that when al is sufficiently small, if X} belongs to WI, then PI (xI}, X2}, •.• ,XNj) 

will be greater than P. 

> 

E 
= 

So if we choose: 

1 ( E )1. 
al <..,fiii (UI + 1)P (5.4) 

we will always have PI (XI), X2), ... ,XN}) > P. 

The same deduction can be used to prove that when 

(5.5) 

if X} E W2, then P2 (XI), X2}, ... , X Nj) > P. Thus, we have proved property (1). 

For property (2), we will prove that when aWl and a W2 are sufficiently small, both P(errorlwl) 

and P(errorlw2) are greater than (1 - E). 
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P(errorlwd = f PI(XI,X2, ... ,XN)dxI dx2 .. · dxN 

Vi 

> f PI(XI,X2, ... ,XN)dxI dx2 ··· dxN 

D2 

> f (1 -~E) l!2CxI, X2 • ... , XN) dxI dx2 ... dxN 
VI + 1 

D2 

Since B(XW?" 02) £ D2, we have: 

F or a Gaussian distribution with mean 0 and variance a, we have the Chernoff bound (Wilson, 

1996) for the integral. 

Substituting a = aW2 and 0 = !k into the above, we finally obtain: 

So if we choose: 

(5.6) 
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then P(errorlwl) will be greater than (1 - E). Similarly, if: 

(5.7) 

then P(errorlw2) will be greater than (1 - E). Thus, we have proved property (2). 

Step 2 Here, we construct probability density functions P3, P4, ... , P K, then we will prove that 

these distributions also satisfy properties (I) and (2). We only give details for constructing P3; 

the other probability density functions are constructed by the same method. 

By the same deduction as in Step I, we can obtain that, if 

we will have 

1. For j = 1,2, ... , U, if Xj E W3, then P3(Xlj, X2j, ... , XNj) > P. 

2. P(error I W3) > (1 - E). 

Because the basic idea of proving this theorem is to construct Gaussian mixture distributions 

which have high densities in areas in which the combination algorithm gives incorrect 

classification, t32 can also be generated with another form: 
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and property (2) will also hold if 

L~=I (X'-·'"IIU.,)2 
2{J~2 

Similarly, we can prove that, for i = 4, ... , K, the same results also hold. Since all 

the P(error I Wi)(i = 1,2, ... , K) are greater than (l - E), the total error rate P(error), which 

is calculated by equation (5.3), is also greater than 1 - E. Thus, we have completed the proof of 

the NPT. 

5.3 Illustrative Examples 

The following examples are for the NPT in the case of two classifiers and two classes (M = 2 

and K = 2). There are four score functions for each data point. Because it is difficult to visualise 

four-dimensional data points, we will change some definitions in Section 5.1 to obtain two

dimensional data points. 

Suppose there are two classifiers, each assigning an input X to one of two classes, W I or W2, 

as described by two score functions II (X) and h (X). The decision rule of the kth classifier 

(k = 1,2) is: 

'd (XEWliflk(X»O Dec! e 
X E W2 otherwise 

By this definition, we only need two score functions to describe the combination algorithm. 

We use XI and X2 to represent II (X) and heX). If the input data point has a subscript, such 

as Xi, we will use X I i and X2i to represent II (Xi) and h (Xi)' Based on these definitions, every 

combination algorithm defines a combination function F(XI, X2), with the decision rule: 

'd (XEWI ifF(xl,X2) > 0 Dec! e 
X E W2 otherwise 

Thus, we only need one combination function to describe the combination algorithm. We keep 

other definitions in Sections 5.1 and 5.2 unchanged. 
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(a) (b) 

FIGURE 5. I : An example of probability density functions whi ch give bad performance for 
combination by the sum rule: (a) PI (XI, X2); (b) P 2(X I , X2). 

Suppose we have four training data points, two of which belong to W I and two of which 

belong to W2 (i.e., UI = 2 and U2 = 2). The scores of the two data points from WI are given 

as {x II ,x2d = {I, 2} and {X I2,X22 } = {2, I}; the scores of the two data points from W 2 are 

given as {X13,X23 } = {-I , -2} and {X I4 ,X24 } = {-2, ~ 1} . We assume that the combination 

function F(XI, X2) follows the simple sum rule: 

'd I X E WI if X I + X2 > 0 Dec) e 
X E W2 otherwise 

It is obvious that this rule is continuous and diverse. We can choose the corresponding 

{X lwl ,X2wl} = {I , I} and {X lw2,X2w2 } = {- I , - I} . For the sum rule, there is a 81 = I that 

makes B ({I, I}, 81) E DI and, similarly, a 82 = I that makes B({ - I , - I}, 82) E D2 . Finally, 

we choose E = 0.1 and P = 2. Equations (5.4), (5 .5), (5 .6) and (5.7) yield 0'1 = 0'2 = 0.0515 

and aWl = a W2 = 0.2304 . 

Figure 5.1 shows PI (XI, X2) and P 2 (XI, X2) obtained by setting a i , 0'2, a Wl and a W2 as above. 

Figure 5.1(a) shows that more than 90% of the probability that the input data belong to W I 

(i .e., (I - E) = 0.9) is accumulated near the point {- I , - I} . At this point, the sum rule gives 

incorrect classifications. It can also be seen that high probability is also accumulated near the 

training data points {I, 2} and {2, I}, which indicates that in such a di stribution it is very possible 

to have these training data but impossible to obtain correct classification by the sum rule . 

It may be argued that such 'strange' probability density functions, which are so biased In 

the 'wrong' areas and near the training data, are not at all likely to be encountered in real

world applications. However, in situations that are not so extreme, we can show that a given 

combination rule also can not guarantee good performance. In the previous example, if we 

set E = 0.5 and P = 0.2, keeping the other settings the same, we can obtain smoother pdf's 

(Figure 5.2). However, the error rate is still more than 50%, which is greater than the guess rate. 
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(a) (b) 

FIGURE 5 .2 : Further example of pdf's exhibiting poor classification perfonnance obtained by 
setting E = 0.5 and P = 0.2: (a) PI (X I, X2) ; (b) P2(XI, X2 ) . 

5.4 Relation to NFL Theorems 

9 

Although Wolpert has proved several NFL theorems for supervised learning (Wolpert, 200 1), 

the basic idea of these proofs is similar. The NFL theorem assumes that the state space which a 

computer can represent, though perhaps quite large, is finite . For simplicity, we can assume the 

state space of a computer is a 5 x 5 grid, as shown in Figure 5.4. 

Suppose each square of Figure 5.4 is associated with one of two classes, Class 1 and Class 2, and 

we know some of these squares belong to Class I, which are labelled by the circles on the graph; 

and som.e belong to Class 2, which are labelled by the triangles . From these, we need to deduce 

the class labels of the unknown squares. For example, what are the class labels of square A 

and B respectively? By intuition, A is more likely to be in Class I and B in Class 2 because 

they are surrounded by squares which belong to these classes. But the NFL theorem states 

that square A and B can belong to either Class I or 2 equiprobably if no further assumptions 

are implemented. For example, if we assume that a square which is in the vicinity of squares 

belonging to one class is more likely to be in that class, then we can classify A to Class I and B 

to Class 2. However, this assumption can not be mathematically proved. The NFL theorem 

states that we can not deduce the class labels of the unknown squares based on those we know. 

In this chapter, we have further extended the NFL theorem by constructing probability 

distributions. In this example, if there is a classification algorithm which classifies A to Class I 

and B to Class 2, then we have proved that there exists a set of probability density funct ions 

which make A more probable to be in Class 2 and B in Class I . Thus, the classification algori thm 

will perform badly under these pdf's . Furthermore, if these squares become infinitely small , the 

constructed probability density functions will converge to Gaussian mixture distributions, which 

are good models for many real-world problems based on tbe central limit theorem. 
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• A • • • • • • .-Class 1 

B • .-Class 2 

FIGURE 5.3: A figure to explain the idea of the NFL theorem. We can not deduce the class 
labels in square A and B if no further assumptions are implemented. 

5.5 Summary 

We have proved the No Panacea Theorem for classifier combination, which states that if the 

combination function is continuous and diverse, there exist probability density functions in 

which the combination algorithm will yield very bad performance. Thus, there is no optimal 

combination algorithm that is suitable for application in all situations. 

The No Panacea Theorem is an extension of the No Free Lunch Theorem by explicitly 

constructing probability density functions to indicate that there exist situations which will make 

classification algorithm perform badly, no matter which classification algorithm is provided. 

Our aim in presenting this theorem is not to criticise any particular algorithm(s) for combining 

classifiers, but rather to point out the difficulties we might encounter in this area. The pdf's 

we constructed to prove the theorem are Gaussian mixtures, which are good models for many 

applications. We also show (by example) that the probability density functions could be very 

smooth. These observations indicate that there is no universally optimal combination algorithm 

in real-world applications. From this theorem, we see that a good combination algorithm is 

not only dependent on combination functions, but also on the probability density functions. So 

studying the pdf's becomes the first step in finding a good combination algorithm. For example, 

which kind of probability density functions are more frequently occurring than others? How to 

incorporate the probability density functions into the design of combination algorithms? These 

problems remain largely unsolved. 

Another fact to be noted is that, although the theorem is built on the background of multiple 

classifier combination, it can be easily generalised to all supervised learning problems. If we 

regard data points {XI, X2, ..• , XN} as features in a supervised learning problem, the whole 

deduction of the algorithm is still correct. Thus, the NPT is valid for all supervised learning 

problems. 



Chapter 6 

Combining Simultaneous Audio-Visual 

Data 

In Chapter 4, we have discussed how to combine individual audio and visual classifiers. The 

audio classifier is trained and tested by speech files which are spanned in the time domain, 

but the visual classifier is trained and tested by static images. In other words, the time-related 

information of the visual classifier is not used in the combination scheme. In this chapter, we 

will discuss approaches to use the time-related information of video files. We firstly develop 

an algorithm for tracking face images in video files, then use these face images to build a 

visual classifier. Then the combination algorithm in Chapter 4 is used to combine the audio 

and visual classifiers. We implement this algorithm to the whole XM2VTS database, which 

consists of 295 subjects. The experiments indicate that the proposed audio-visual combination 

scheme can achieve good identification rate on this database, which is around 92% when two 

sessions are used for training, and 97% if three sessions are used for training. 

6.1 Face Tracking in Video Files 

In this session, we will develop a face tracking algorithm based on dynamic programming (DP). 

We have previously built a good face detection system as shown in Section 3.2. However, 

because video files consist of many frames, it can not be guaranteed that the detection system 

will succeed for every frame. For example, Figure 6.1 shows the detection results for the first 

four frames of a video file. It is observed that for frame 1, 2 and 4, there are two face candidates, 

as indicated by the red squares. One of them is the correct face image, and the other is a false 

alarm. For frame 3, there is only one face candidate, and it is the correct face image. 

If we only look at an individual frame, we can not discriminate which face candidate is the false 

alarm, and which is the correct face image. But when combining the information provided by all 

these frames, it is possible to use an algorithm to track the true face for each frame. The problem 

91 
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(a) Frames I (b) Frames 2 

(c) Frames 3 (d) Frames 4 

FIGURE 6.1 : The face detection results for the first four frames of a video fil e. The detected 
faces are illustrated by red squares. 
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can be explained by Figure 6.2. We can define a ' path' if we choose exactly one face candidate 

from each frame. For all these pathes, there exists an optimal one which passes through all 

true faces in these frames (as shown by the red lines in the figure) . Intui tively, the optimal path 

needs to satisfy two properties. First, each face candidate on the optimal path should really ' be 

a face'. For example, face candidate X l 2 (the second candidate of the fi rst frame) does not have 

this property, because there is a big blue region at the left side, which is not typical for a face 

image. Second, there should not be a huge displacement between adjacent face candidates on 

the optimal path. In other words, the velocity of face movement should be smooth. Based on 

these two assumptions, we propose a method for tracking the face linages in video fi les. 

Our method is very slinilar to Lappas et al. (2002). In their original work, they have carried 

out a tracking framework by using dynamic programming (DP). In tbis paper, we apply their 

framework in the case of video face detection. First, we define an energy function for each path, 

wbich consists of an internal energy and a transit energy. Then we use dynamic programming 

to obtain the optimal path which minimises the energy function. The internal energy, which is a 
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Frame 1 Frame 2 Frame 3 Frame 4 

FIGURE 6 .2 : Face candidates and paths of the four frames shown in Figure 6. 1. 
Here Xij represents the jth face candidate of the ith frame. The optimal path is outl ined 

with red colour. 
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measure of how much a face candidate is ' like a face' , can be defined as follows. Suppo eN i 

the number of pixels in the region of a face candidate X ij , and M is the number of pixels which 

are regarded as skin colours by the skin colour model as discussed in Section 3.2.1 . Then the 

internal energy is defined as 
M 

Eintemal (Xij ) = N (6.1) 

For a face candidate X ij , we can define the coordinates of its upper-left comer as (0 ij • bij ) , and 

the coordinates of its lower-right comer as (e ij. dij ) . Note that these coordinates are normalised 

by the height and width of the frame. For example, suppose that the width of the frame is W , 

and the height is H . Further suppose that the pixel value of the upper-left corner is A Ij and B,l . 

Then 

b _ B ij 
/) - H 

The transit energy from X ij to X (i+ I)k is defined as follows. 

Finally we can define the total energy of a path ( X ljl • X 2Jz ' .. .• X NjN ) as 

N- I N 

E(XI jl' X 2Jz • . . . • X NjN ) = WI L Etransi t(Xijjl X(i+ I)j (l+I» - W2 L Eintemal(Xij, ) (6.3) 
i= 1 i= 1 

Here W I and W 2 are weights to balance the contributions of the internal and transit energies. 

We further suppose there are J, face candidates in the first frame, J2 face candidates in the 
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second frame, ... , I N face candidates in the Nth frame. Our aim is to find jl.h •...• jN 

which satisfy that ji E {I. 2 ..... Ji } (i 1. 2 ..... N) and minimise the total 

energy E (XIii' X 2h . ...• X Nj'!). A standard dynamic programming algorithm can be applied to 

solve this problem, which we will shortly describe here. Refer to Cormen et al. (2001, Chap.16) 

for a good introduction to dynamic programming. 

First, we define S(iji) as the path which reaches the face candidate Xi/; and minimise the energy 

function E(XI}I' X 2jz • ...• Xi};). 

min 
hE 11.2.····JII 
hE 11.2 •... . J21 

i(l_I) E 11.2 ..... J(I_1)1 

The process of finding minimal energy could be written as follows. 

min 
il E 11.2 . . ··.JI I 
hE 11.2····.J21 

i(N-1) E 11.2.···.J(N_1)1 
iN E (1.2.···.JNI 

(6.4) 

(6.5) 

Further note that the total energy function can be rewritten in a recursive form as in equation (6.6) 

and (6.7). 

E (XI}I' X 2h • ...• X(i+I)}(I+I)) 

= E (XIii' X 2h , ... , Xi}l) + WI Etransit (Xi}I' X(i+I)}(I+I)) 

-W2 E intemal (X(i+I)}(I+I)) 

with th~ beginning term 

Then Sij; can also be written in the following recursive form, as in equation (6.8) and 6.9. 

S(iji) = . min [S(i-I)}(I_I) + WI Etransit (X(i-lJiU-I). XIj,)] 
J(I-I) E{ 1.2 .... ,1(1-1>1 

-W2 E intemal (Xi};) 

with the beginning term 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

Using equation (6.5), (6.8) and (6.9), the minimal energy path can be recursively decided from 

frame 1 to N. Thus, we have solved the problem of finding minimal energy path by using 

dynamic programming. 
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Disk Number Session Number Number of Video files 

6 1 295 
7 2 294 
8 3 291 
9 4 295 

TABLE 6.1: Number of video files in each session. 

This face tracking algorithm is applied to the video files in the XM2VTS database (Disk 6, 7, 

8, 9). For each person, there are four video files, which are recorded in four different sessions. 

In each video file, the person speaks the same sentence, 'John took father's green shoe bench 

out'. Because there are 295 persons in the database, we should' have 1180 video files. However, 

5 video files are missing due to reasons that some person didn't present in one session, or some 

technical problems in recording the video files. Thus, the database consists 1175 video files. 

Table 6.1 gives the number of video files contained in each session. 

We applied this algorithm to the video files, and we obtain 100% successful tracking rate. The 

criteria of successful tracking has been defined in Section 3.2.2, which is (1) the detected face 

contains the eyebrows, eyes and mouth; and (2) no false detection occurs. 

6.2 Experiments for Combining Audio and Visual Classifiers 

After extracting the face images in each video file, the next step is to use these images for 

face identification. First, we need to divide the video files into training files and testing files. 

For example, we can use the video files in Session 1 and 2 for training, and the video files in 

Session 3 and 4 for training. Because each training video file contains around 100 frames, it 

would be time-consuming if we use face images in all these frames. For simplicity, we only use 

one face image of every five frames to build the classifier (e.g., for each training video file, we 

use face images in the first frame, sixth frame, eleventh frame, etc to train the classifier). 

The classifier is built by using the PCA method, which was discussed in Section 3.3.1. The 

reason why we do not use the better DLA method (as discussed in Section 3.4.1) is that the 

DLA method is especially time-consuming when dealing with such a big amount of frames in 

these video files. One of our futures work would be devising algorithms to reduce the time 

complexity of the DLA method, but in this stage, we just use the relatively faster PCA method. 

The training process for the PCA method is the same as described in Section 3.3.1, but the testing 

process is slightly different. Each testing file contains many face images, and the classifier will 

generate an identification result for each face image. Some method needs to be implemented to 

combine these results into a single one. Here we use the maximum rule, which is described as 

follows. 

Suppose PI, P2 , ... , PM are weight vectors which are generated by the M training face 

images r I , r 2, •.• , r M. For a testing video file which contains N faces, we assume these face 



Chapter 6 Combining Simultaneous Alldio-Visual Data 

Training Testing Session Video Identification Rate 

1,2 
3 62.54 
4 62.71 

1,3 
2 67.69 
4 62.03 

1,4 
2 65.31 
3 62.59 

2,3 
1 67.80 
4 66.10 

2,4 
1 67.80 
3 68.14 

3,4 
1 63.73 
2 69.49 

TABLE 6.2: Experimental results for face identification in video files. A cross validation test 
is applied to these files. The classifier is trained by video files in two sessions, and then tested 
by the remaining sessions. Such a process iterates for each pair of sessions, which generates 12 

identification results. 
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images are A I, 11.2 , .•. , AN, and their corresponding weight vectors are Q I, Q2, ... , Q N. Then 

we will find one face image in the training set, and another face image in the testing set which 

are most similar with each other. 

(6.10) 

Then we will classify the testing video file into the class which the training image r II belongs to: 

Classify the testing video file into ws , if r ll E W.\. (6.11 ) 

A cross validation test is applied to the video files. The classifier is trained by video files in 

two sessions, and then tested by the remaining sessions. Such a process iterates for each pair of 

sessions. The identification results are summarised in Table 6.2. We can see that the classifier 

achieves around 65% identification rate over these 295 subjects. 

We still use the audio classifier which was discussed in Section 2.4. We also use two sessions 

for training, and the remaining two sessions for testing. The results are shown in Table 6.3. 

Generally, the audio classifier has achieved more than 80% identification rate over these 295 

subjects. 

We use the fusion method which was proposed in Section 4.7 to combine the scores of audio 

and visual classifiers. To obtain the optimal weighting parameter Ct, we use two sessions for 

training the audio and visual classifiers, then use one session for training the optimal weighting 

parameter Ct, finally use the remaining session to test the effect of the obtained Ct. For example, if 

we use Session 1 and 2 to train the audio and visual classifiers, then we can use Session 4 to train 

the optimal weighting parameter Ct, and then test the performance of the chosen Ct on Session 3. 
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Training Testing Session Audio Identification Rate 

1,2 
3 85.57 
4 83.05 

1,3 
2 80.95 
4 84.41 

1,4 
2 84.69 
3 85.37 

2,3 
1 78.98 
4 87.46 

2,4 
I 74.24 
3 86.78 

3,4 
1 73.22 
2 84.41 

TABLE 6.3: Experimental results for speaker identification in video files. A cross validation 
test is applied to these files. The classifier is trained by video files in two sessions, and then 
tested by the remaining sessions. Such a process iterates for each pair of sessions, which 

generates 12 identification results. 

Sessions for Session for Session for Estimated ex Estimated ex True Optimal 
Training Audio Training Testing the Using the Using the ex on 

and Visual Optimal ex Performance Empirical Proposed the Testing 
Classifiers Method Method Session 

1,2 
3 4 0.77 0.77 0.76 
4 3 0.76 0.76 0.77 

1,3 
2 4 0.72 0.72 0.71 
4 2 0.71 0.72 0.72 

1,4 
2 3 0.76 0.78 0.77 
3 2 0.77 0.77 0.76 

2,3 
1 4 0.76 0.76 0.77 
4 I 0.77 0.79 0.76 

2,4 
1 3 0.75 0.77 0.81 
3 I 0.81 0.83 0.75 

3,4 
1 2 0.63 0.70 0.77 
2 1 0.77 0.75 0.63 

TABLE 6.4: Experimental results of the empirical and proposed methods on the 12 settings 
(Two sessions for training the audio and visual classifiers, one for training the weighting 
parameter ex, and using the remaining session to test the performance of the combined 
classifier). We have listed the estimated ex using the empirical and proposed methods. For 
the proposed method, we set the parameter A = 0.0 I. For comparison, we also list the true 

optimal ex on the test session in each setting. 
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Alternatively, we can also use Session 3 to train the weighting parameter ex, then use Session 4 

to test the performance. Thus, we can obtain 12 different experimental settings by iteratively 

choosing 2 sessions for training the audio and visual classifiers, then choosing one session for 

training the optimal ex, finally testing the obtained optimal ex on the remaining session. Table 6.4 

shows the experimental results of these 12 experimental settings (Here we set A = 0.01 for the 

proposed method). 
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FIGURE 6.3: The empirical identification curve when using Sessions 3 and 4 to train the audio 
and visual classifiers, and testing the combined classifier on Session 2 with a varying from 0 

to I. The identification rate reaches its maximum when a = 0.77. 
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Table 6.4 further indicates the better performance of our proposed method than the frequently

used empirical method. The fourth column shows that the optimal a's which were found by the 

empirical method (described in Section 4.8); and the fifth column shows the optimal a's which 

were found by our proposed method (described in Section 4.7). We also list the true optimal a's 

which maximise the identification rates of the test sessions in the sixth column. In some cases, 

such as row 1,2,3,5,6 and 7, the proposed and the empirical methods obtain similar estimation 

results. However, for row 4, 9, 11 and 12, the proposed method outperforms the empirical 

method. It should be noted that especially in Row 11, the results of the proposed method are 

much better. In Row 11, we use Sessions 3 and 4 to train the audio and visual classifiers, and 

use Session 1 to train the optimal a, finally use Session 2 to test the combined classifier. The 

estimated a ofthe empirical method is 0.63, and the estimated a of the proposed method is 0.70. 

The true optimal Ci in this situation is 0.77, which indicates that our proposed method is better 

than the empirical one in this case. Figure 6.3 and 6.4 visualise this example. In Figure 6.4, both 

the empirical and proposed methods generate identification curves similar to the identification 

curve on the testing session (Figure 6.3). The empirical estimation curve in Figure 6.4(a) has a 

non-smooth nature, which generates an unstable estimation of the optimal a at 0.63. However, 

when this curve is smoothed by the proposed method, as in Figure 6.4(b), a better estimation is 

obtained at a = 0.70. 

However, the proposed method does not always generate better estimation than the empirical 

one. As shown in Table 6.4, the empirical method is slightly better than the proposed one for 

Row 8 and 10, which emphasises the situation that the proposed method can not guarantee better 

performance in every case. It can only achieve slightly better estimation results in a statistical 

sense. 

Table 6.5 shows the identification rates of these 12 experimental settings by using the a's 

generated by the proposed method. For comparison, the identification rates of the true 

optimal a's which maximise the identification rates on the testing sessions are also listed here. 

We can see that the identification rates are more than 90% on average. 
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FIGURE 6.4: The estimated identification curve by using Sessions 3 and 4 to train the audio and 
visual classifiers, and using Session I to train the optimal a. (a) The estimated identification 
curve by using the empirical method, which reaches its maximum when a = 0.63. (b) The 
estimated identification curve by using the proposed method, which reaches its maximum 
when a = 0.70. From Figure 6.3, we can see that the optimal a equals to 0.77 when using 
Sessions 3 and 4 for training the audio and visual classifiers, and using Session 2 to train the 
weighting parameter a. The proposed method is better for estimating the optimal a than the 

empirical one in this case. 

Sessions for Session for Session for Identification Rate Identification Rate 
Training Audio Training Testing the with the a with the true 

and Visual Optimal a Performance Generated by the Optimal a 
Classifiers Proposed Method 

1,2 
3 4 0.9051 0.9085 
4 3 0.9278 0.9313 

1,3 
2 4 0.9186 0.9186 
4 2 0.9116 0.9116 

1,4 
2 3 0.9456 0.9456 
3 2 0.9456 0.9456 

2,3 
1 4 0.9356 0.9390 
4 1 0.9254 0.9254 

2,4 
1 3 0.9492 0.9627 
3 1 0.8881 0.9017 

3,4 
1 2 0.9254 0.9458 
2 1 0.9051 0.9153 

TABLE 6.5: Experiments results of the empirical and proposed methods on the 12 settings. 
We have listed the estimated a using the empirical and proposed methods, respectively. For 
comparison, we also list the true optimal a which maximises the identification rate on the 
testing session in each setting. The identification rates on the test sessions are more than 90% 

on average. 
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Audio Identification Visual Identification Combined Identification 
Rate (%) Rate (%) Rate (%) 

Fox et af. (2003) 98.01 93.23 100 
Our Results 94.92 62.71 96.95 

TABLE 6.6: Comparison of our identification results with Fox el al. (2003). The audio 
classifier by Fox el al. (2003) achieves 98.01% identification rate, which is 3 percent higher 
than our 94.92% identification rate but higher rates are only to be expected for the easier text
dependent task. Because they used a commercial face recognition software contrasting to our 
preliminary algorithms, their face identification rate is 93.23%, which is much higher than 
our 62.71 % result. By combination of these two classifiers, they achieved 100% identification 

rate, contrasting to our 96.95% combined identification rate. 

6.3 Comparison With Related Publications 

Another paper Fox et al. (2003), which was published in 2003, also discussed the audio-visual 

person identification problem by using the XM2VTS database. They built a text-dependent 

speaker identification classifier based on hidden Markov models (HMM). For face identification, 

they used a commercial software FaceIt to generate the identification results. Both classifiers are 

tested on 291 subjects of the XM2VTS database, contrasting to 295 subjects in our experiment 

settings. They use session I, 2 and 3 for training, and session 4 for testing. 

In order to compare our results with theirs, we use the same experimental condition as them. 

In this experiment, Session I, 2 and 3 are used for training the audio and visual classifiers, and 

session 4 is used for testing the performance of the system. Because there is no data available 

to train the optimal a, we will obtain a's value from Table 6.4. We take the estimated a value 

using the proposed method in this table (Column 4, Row I), which is 0.77. This value was 

obtained by using Session 1 and 2 to train the audio and visual classifiers, and using Session 3 

to train the optimal a, then using Session 4 to test the performance of the combined classifier .. 

This experimental settings are valid because session 4 is not used in the training process. Our 

experimental results are listed in Table 6.6. For comparison, we also list the results which was 

published in Fox et al. (2003). 

We can see that the audio classifier by Fox et af. (2003) achieves 98.01% identification 

rate, which is 3 percent higher than our 94.92% identification rate but higher rates are only 

to be expected for the easier text-dependent task. Because they used a commercial face 

recognition software FACEIT, contrasting to our preliminary algorithms, their face identification 

rate is 93.23%, which is much higher than our 62.71% result. By combination of these 

two classifiers, they achieved 100% identification rate, contrasting to our 96.95% combined 

identification rate. 

In their paper, they also built another classifier for lip motion, and combined it with the audio and 

visual classifiers. They also devised a fusion method to combine scores of different classifiers 

when the audio signal was contaminated with noise. They tested the three-classifier system in 

different signal-to-noise ratio (SNR), and obtained good results even when immense noise is 
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added to the audio signal. For example, by using the three classifiers, they can achieve 96.81 % 

identification rate when SNR equals to O. 

6.4 Summary 

In this chapter, we have discussed the possibility of extending the face identification method to 

video files. A face tracking method based on dynamic programming is proposed to track the face 

images. After that, a PCA classifier is implemented for identification. Experiments indicate that 

this method can achieve around 65% identification rate by using two sessions of the database 

for training, and the other two sessions for testing (Table 6.2). We still use the audio classifier 

which was discussed in Chapter 2.4 and obtain around 80% identification rate (Table 6.3). , The 

combination methods discussed in Chapter 4 are implemented to combine the audio and visual 

classifiers, and achieves slightly better identification results than the empirical one. We obtain 

more than 90% identification rate, as shown in Table 6.5. 

We also compared our results with another publication (Fox et at., 2003), their results are better 

than ours. This is because they use a text-dependent speaker classifier, which is an easier 

task than the GMM-based text-independent method in this thesis. In addition, they also use 

a commercial face recognition software, which generates much better identification results than 

our preliminary PCA classifier. 

The good identification results both in this thesis and in Fox et at. 's paper indicate that recent 

computer algorithms can achieve nearly perfect identification rate for the audio-visual person 

identification task, provided that (I) the audio and visual signals are recorded in controlled 

conditions, for example, the audio signals should not contain too much noise, and the video 

signals should be similar in pose and illumination for training and testing; (2) the size of the 

database should not be too large. Good identification performance can not be guaranteed if the 

database includes thousands of subjects. Although promising results have been achieved in this 

paper, it is still a long way for computers to achieve identification results as high as human 

beings in this audio-visual person identification task. 
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Chapter 7 

Conclusions and Future Work 

The main contribution of this thesis lies in three parts. First, we have constructed face 

identification and speaker identification classifiers by using some benchmark algorithms. We 

show that combination of the two classifiers could achieve very high identification rate on the 

XM2VTS database. Thus, we have proved the potential of combining multiple classifiers for 

biometric recognition. Second, a novel method based on estimation of probability density 

functions for the scores under a Gaussian assumption is proposed for finding the optimal 

weighting parameters for combination of the audio and visual classifiers. Experiments indicate 

that this method has advantages in reducing both the bias and variance of the estimation and 

is superior to other three frequently-used methods. Another contribution of this thesis is that 

we have theoretically proved that there is no 'perfect' combination algorithm suitable for all 

situations (the No Panacea Theorem). As a generalisation of the No Free Lunch Theorem, we 

have proved that if the combination function is continuous and diverse, there exists a situation 

in which the combination algorithm will yield very bad performance. This theorem has denied 

the attempt to find an generally optimal combination algorithm. 

7.1 Limitations 

Several limitations of our research need to be clarified here. Firstly, as indicated in Chapter 4 

and 6, although the proposed combination method is better than the empirical method in the 

sense of average performance, it can not guarantee good performance in every case. This re

emphasises the idea of the No Panacea Theorem that there is no generally optimal combination 

method. 

Secondly, at the current stage, the audio-visual classifier does not run in real time. For 

experiments on the 295 subjects, typical running time is about one minute per test file for the 

PCA face classifier; and ten minutes per test file for the DLA face classifier. The running time 

of the PCA method can be improved to fit the requirement of a real-time system if we change 
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the MATLAB code to C++. However, more research work needs to be carried out to reduce the 

running time of the DLA face classifier. 

7.2 Future Work 

Although some novel approaches has been discussed in this thesis, there are still many unsolved 

problems remaining in the area of audio-visual person identification. From my experiences, I 

think the following problems are valuable directions for our future work. 

I. Developing combination algorithms which are robust to noise and unpredictable 

situations: In Chapter 4, we have proposed a method to choose the optimal weighting 

parameter for the weighted-sum rule. This method is based on the assumption that 

the training the training and testing data are independently drawn from the same 

probability distribution. However, this assumption may not hold in practice, especially 

when noise or unexpected environmental conditions have dramatically changed the 

probability distribution of the test data. In this situation, it is more preferable to use 

adaptive combination methods whose parameters could be gradually adjusted according 

to different noise level or environmental conditions. This problem has been partially 

discussed in several publications (Wark et al., 1999; Wark, 2000; Sanderson and Paliwal, 

2003), which could be our references for further research work. 

2. Combining Visual Features with the Audio-Visual Classifier: Visual features, 

especially the mouth movement information, provide information of the person's identity. 

It is a relatively new approach to combine the visual features with voice for person 

recognition. Several publications have discussed the possibility of incorporating the 

mouth movement information for speaker and speech recognition (Dupont and Luettin, 

2000; Fu et al., 2003; Lucey et al., 2005), which provides a basis for further research. 

3. Research Work on Face Recognition: It is noted that our face recognition classifier 

achieves around 65% identification rate over 295 subjects on the XM2VTS database. 

However, it is very possible to improve the face identification rate to a higher level. Face 

recognition is a long-standing area which has attracted the attention of many researchers. 

Recently, more research work concentrates on building 3-D face models to solve the 

problem of pose and illumination (Huang et al., 2003; Blanz and Vetter, 2003; Lee et al., 

2004), which could be an option for our future work. 

4. Generalising the Method of Finding Optimal Weighting Parameter(s) to Person 

Verification Cases: In Chapter 4, we have discussed the possibility of generalising 

the proposed method to verification cases. For verification, a similar approach can be 

applied for choosing the optimal weighting parameter based on minimising the equal error 

rate (EER). 
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5. Theoretical Study on Multiple Classifier Combination: In Chapter 5, we have pointed 

out that studying the probability density function becomes the first step in finding a good 

combination algorithm. More research work could be carried out on studying the pdf's. 

The basic idea is to classify the pdf's according to their properties, then the relationships 

between each class of pdf's and a specific combination algorithm could be revealed 

theoretically. 

6. Building a Real-Time Audio-Visual Person Recognition System: Our long-time goal 

is to convert our research work to a commercial system which could be used in real-time 

recognition tasks. More research work and technical deployment needs to be carried out 

to achieve this goal. 

,1, 
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Appendix A 

The Images and Video Files in the 

XM2VTS Database 

This appendix will show several images and video files in the XM2VTS database. We are 

concerned with the inter-class variations of these images and video files, and try to bring the 

reader some intuition of how easy or difficult the face detection and recognition tasks would be 

on this database. 

For most of these files, the inter-class appearance variations are not very obvious. Figure A.I 

is an example of the images which has little variations. Face recognition is a comparatively 

easy task for these images. Both the PCA and DLA methods can perform well in this situation. 

However, there are shape variations for some sl,lbjects. For example, Figure A.2 shows most of 

these variations. We can see that the subject changed hair style, earrings and glasses in these 

sessions, which brought some difficulties to face recognition algorithms. Experiments indicate 

that our algorithms perform not so well in this situation. In this case, the PCA method performs 

even worse than DLA because it does not contain much local information as the DLA algorithm. 

There are also pose variations for some subjects. Figure A.3 indicates one example of the pose 

variation problem. In this example, the subject turned her head with different angle in each 

session. This situation brought many difficulties for the face recognition task. Our PCA and 

DLA algorithm perform badly in this situation. 

We also show images contained in a video file as an example. Figure A.4 lists all frames in the 

video file '000_L3.avi', which is generated by the subject '000' during the first session, when 

he speaks the third sentence' John took father's green show bench out'. The mouth movement 

information is obvious in this figure. 

From the figures shown here, we can see that most of images and video files do not have much 

variations. Compared with other databases, such as FERET (Rizvi et at., 1998; Phillips et at., 
2000), XM2VTS is a relatively easy database for face recognition. However, there are still shape 

and pose variations in this database, which bring some problems for face recognition algorithms. 
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FIGURE A.I: Face images of subject ' 000 ' , which is taken during four sessions, two for each 
session. 

FIGURE A.2: Face images of subject ' 005' , which is taken during four sessions, two for each 
session. The subject changed her hair style, earrings and glasses in these sessions. 

FIGURE A .3: Face images of subject ' 050 ', which is taken during four sessions, two for each 
session. The subject turned her head with different angle in each session. 
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(a) Frame 1- 10 

(b) Frame 11 - 20 

(c) Frame 21- 30 

(d) Frame 31- 40 

(e) Frame 41 - 50 

(1) Frame 51 - 60 

(g) Frame 61 - 70 

(h) Frame 71 - 80 

(i) Frame 81 - 90 

U) Frame 91 - 100 

(k) Frame 101 - 103 

FIGURE A.4 : The frames in video fil e ' 000_L3.avi' , which is generated by the subject ' 000 ' 
during the first session, when he speaks the third sentence ' John took father's green show bench 

out' . 
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Appendix B 

Calculating atrue in Section 4.10 

This appendix will describe the procedure of calculating ct true, which was defined in Section 4.10. 

We will calculate it under assumptions of Gaussian and uniform distributions, respectively. 

We first consider the case of Gaussian distributions. The construction of scores is reiterated 

as follows. For a 2-classifier and K -class problem. We need to construct 2K scores of 

an input X which belongs to a specific class. For example, we can assume that X E Ws. 

These scores are represented as I~ (X), where m E {I, 2} and k E {I, 2, ... ,K}. For 

constructing /,~ (X), f;, (X), ... , I'; (X) (m E {I, 2 D, we first generate K random numbers, 

each of which is uniformly distributed in the range of [0,200]. We use nml' n m2, .•. , nmK 

to represent these K numbers. We choose nms as the maximum of these K numbers 

(n ms = max{nml, nm2, ... , nmK n, since it is reasonable to assume that the highest score will be 

obtained for the correct class. Next we generate another K random numbers, amI, a m2, •.• , amK, 

each of which is uniformly distributed in the range of [0, a/~~ax]. Here a/~ax is a controlling 

parameter. The scores I~ (X), /,~(X), ... , j~~ (X) are generated as follows. For each m E {I, 2} 

and k E {I, 2, ... , K}, I~ (X) is a random sample drawn from a Gaussian distribution with 

mean nmk and variance amk. 

The following procedure describes how to calculate cttruc based on the above settings. Recall the 

weighted-sum rule for combining scores of two classifiers: 

k = 1,2, ... , K 

Since It (X) and I{ (X) are Gaussian distributions with mean n Ik, n2k, and variance alb a2b 

fc~mb(X, ct) is also a Gaussian distribution distribution with mean nk and variance ak, which are 

given as follows: 

For simplicity, we use Pk(X, ct) to represent the probability distribution of l:omb(X, ct), 
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FIGURE B.l: A figure to explain equation (B.3). If .r~~mb(X, a) equals to a specific value II , 

the probability that .r{omb(X, a) < u should be the area of the gray region . Finally, the 

probability P U{omb (X, a) < .r:omb (X, a») is obtained by averaging the above probability over 
all u's on the real line. 
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where k = 1,2, . . . , K. As indicated before, Pk(x , a) is a Gaussian distribution with mean nk 

and variance O'k. 

We have assumed that X E W s. According to decision rule 4.20, the probability of correct 

recognition, which is defined as Ctrue(a), should be the probability that f :omb(X, a) is the largest 

of all K scores f{omb(X, a) (k = 1,2, . .. , K) . Since these scores are independently drawn 

from Gaussian distributions, this probability can be further divided as a product of individual 

probabilities, as shown in equation (B.2). 

K 

= n P U{omb(X, a) < f~~mb(X, a») (B.2) 
k=l.k# 

As mentioned previously, fc~mb(X, a) is a Gaussian distributions with mean nk and variance O'k; 

and f :omb(X, a) is a Gaussian distribution with mean ns and variance as. Because of this, 

P U{omb (X, a) < f:omb (X, a») can be calculated by the following equation. 

( k s ' ) I 1+00 (u-nk) (u -ns )2) P fcomb(X, a) < fcomb(X, a) = ~ ¢ -- exp - 2 du 
. v 2:rrO's -00 O'k 20's 

Figure B. I explains how this equation comes from. If f :omb(X, a ) equals to a specific value u , as 

shown in this figure, the probability that f:omb (X, a) < u should be the area of the gray region 
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in Figure B.I, which could be calculated as: 

Finally, the probability P Uc~mb(X, a) < f:omb(X, a)) is obtained by averaging the above 

probability over all u's on the real line. 

The above equation could be further simplified as 

(B.3) 

From equation (B.2) and (B.3), the probability of correct recognition Ctrue can be calculated as 

P ( n fc~mb(X, a) < f:omb(X, a)) 
k=lk# 

K 

= Il P U:omb(X, a) < f:omb(X, a)) 

The integral of the above equation can be estimated by using numerical method. The true 

optimal weighting parameter, atrue, is selected as the value which maximises Ctrue(a). 

(B.4) 

In Section 4.10, atrue is obtained by varying a from 0 to 1, with 0.001 increment. 
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The procedure of obtaining a true under uniform distributions is similar to the case of 

Gaussian distributions. In order to clarify our description, we reiterate the score-generating 

process. For constructing III~ (X), ;;~ (X), .... !,~ (X) (m E ( I. 2)), we first generate 

K random numbers, each of which is unifonnly distributed in the range of [0, 200]. We use 

nml. nmZ . .... nmK to represent these K numbers. We also choose nms as the maximum of these 

K numbers (n ms = max{nml, nm2 • •..• nmK))' Next we generate another K random numbers, 

ami. amz . ...• amK, each of which is unifonnly distributed in the range [0, a,::'ax]. ~ere a,~ax is 

a controlling parameter. The scores !,;, (X), !,~ (X) • ...• I; (X) are generated as follows. For 

each m E {1.2} and k E {I. 2. '" . K}, ;:,(X) is a random sample drawn from a uniform 

distribution in the range (nmk - amk> nmk + amk). 

Recall the weighted-sum rule for combining scores of two classifiers: 

k = 1.2 ..... K 

As described above, Ilk (X) and I{ (X) are unifonn distributions distributions in the range 

of [n Ik - alb n Ik +ald and [nZk - a2k. n2k +a2k], respectively. Then, all
k (X) and (I-a)l{ (X) 

are also unifonn distributions, which span in the range of [a(n Ik - alk), a(nlk + alk)] 

and [(1 - a)(nZk - aZk), (I - a)(nZk + aZk)], respectively. Because Ickomb(X, a) is the sum 

of alt(X) and (I - a)/{(x), which are two uniform distributions, it has a distribution with a 

trapezoid shape. We refer to this distribution as a 'trapezoid distribution'. 

The analytical fonn ofthe trapezoid distribution is given as follows. Suppose It (X) is a uniform 

distribution which spans in the range of[n Ik -alb n lk+ald, and I{ (X) is a uniform distribution 

in the range of [nZk - aZk. nZk + a2k]. We firstly calculate four parameters A, B, C and D, as in 

equation (B.5). 

A 

(B.5) 

We further suppose that (D - C) :::; (B - A). If (D - C) > (B - A), we will swap the definitions 

of A, Band C, D so that this assumption still holds. Then the distribution of Ic~mb(X, a), 

denoted by Pk(x, a) is given as follows: 

° 
(B-A/(D-C) (x - A - C) 

I 
B-A 

- (B-A/(D-C) (x - B - D) 

° 

x<A+C 

A+C:::;x<A+D 

A+D:::;x<B+C 

B+C:::;x<B+D 

x>B+D 

(8.6) 

Fig B.2 illustrates the process of generating the trapezoid distribution. The shape of Pk(x, a) is 

shown in Figure B.2(e). We further introduce the distribution function of f;omb(X, a), which is 
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(e) Probability distribution of exit (X) (ex = 0.5) (d) Probability distribution of (1 - ex)l{ (X) (ex = 0.5) 
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FIGURE B.2: Probability distributions of Ickomb (X, a), which is a weighted sum of two uniform 
distributions It (X) and If (X). (a) The uniform distribution of It (X), which spans in the 
range of[nli - O'li, nli + O'li]; (b) The uniform distribution of 12k (X), which spans in the range 
of [n2i - 0'2i, n2i + 0'2;]; (c) alt (X) is also a uniform distribution, which spans in the range 
of [a(nli - O'li), a(nli + O'li )]; (d) (I - a)lf (X) is also a uniform distribution, which spans in 

the range of[(I-a)(n2i -0'2i), (1- a)(n2i +0'2i )]; (e) Itomb (X, a) = all
k (X) + (1- a)lf (X) 

is a trapezoid distribution. The analytical form of this distribution is clarified in equation (B.S) 
and (B.6) 
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FIGURE B.3: Fk(X, a) is the distribution function of f:omb(x, a), which is the integral 
of Pk(X, a). 
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Figure B.3 illustrates the shape of Fk(X, a). 

x<A+C 
A+C::::x<A+D 
A+D::::x<B+C 
B+C::::x<B+D 
x>B+D 

(B.7) 

Using similar deduction as we did in the Gaussian distribution case, we could 

obtain P (fc~mb (X, a) < f:omb (X, a») as follows: 

Finally, the correct identification rate, Clrue(a), can be written as: 

K 1+00 

= n -00 Fk(u)Ps(u)du 
k= l.ki's 

(B.8) 

The true optimal weighting parameter, alrue , is selected as the value which maximises Clrue(a). 

(B.9) 

Similar to the Gaussian distribution case, atrue is obtained by varying a from 0 to 1, with 0.001 

increment. 
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