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The advanced channel quality-aware adaptive modulation and coding techniques employed in 

both existing and future wireless communication systems are capable of substantially improving the 

achievable system performance. Furthermore, other novel techniques employed by the base-station 

(BS), such as transmit preprocessing, pre-equalization and so on can be used for simplifying the 

design of the receiver. All these techniques require accurate channel state information (CSI) at the 

transmitter side. In these high-rate broad-band wireless systems the carrier frequency has to be high. 

Furthermore, practical transmit preprocessing techniques have to rely on CSI feedback, where the 

outdated CSI estimated by the remote receiver based on the past data quantized and then signalled 

back to the base station's (BS) transmitter may not be sufficiently accurate. Hence an improved CSI 

accuracy has to be sought, which may be achieved with the aid of predicting the CSI for the future 

instant of the next transmission burst on the basis of previously receive CSI, which is achievable, 

since the CSI is typically correlated. 

Therefore, in this thesis, novel channel prediction techniques are investigated in the context of 

both narrowband and wideband communication systems. Furthermore, a range of transmit prepro

cessing techniques are designed for multiple input multiple output (MIMO) systems operating in both 

single-user and multiple-user scenarios, which benefit from the employment of channel prediction. 

Both minimum mean square error (MMSE) channel predictors and Kalman-filtering assisted 

channel predictors are investigated in the context of narrowband channels. Then, for wideband chan

nel, two-dimensional (2D) channel estimation and prediction was considered, which was capable of 

predicting both the frequency-domain (FD) and time-domain (TD) fluctuation of wideband channels. 

An eigenmode transmission based single-user MIMO system was also investigated, which re-
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quires the computation of the singular vectors. These can be determined from the singular value 

decomposition (SVD) of the channel's impulse response (CIR) matrix, which has to be carried out 

at the regular instants and hence imposes a high computational complexity. However, instead of the 

periodic estimation of the CIR matrix and its regular SVD, it is possible to directly track the output 

of the SVD, namely the singular vectors without performing the above-mentioned channel estimation 

and SVD. 

As far as MIMO aided multi-user systems are concerned, both zero-forcing and MMSE BS pre

processing techniques were investigated, which aim for simplifying the design of the mobile station's 

(MS) receiver. Again, channel prediction was invoked for acquiring the CSI required for transmit 

preprocessing. 

Furthermore, a SVD based transmit preprocessing algorithm was proposed for both uplink (UL) 

and downlink (DL) transmissions in the context of a MIMO system supporting multiple users and 

different power allocation schemes are designed for both UL and DL transmissions. 

Finally, the thesis was concluded with the investigation of recurrent neural network (RNN) based 

nonlinear channel prediction. 
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C:-l 
Introduction 

Transmitter pre-processing techniques, such as adaptive-rate transmission [4-12] are capable of sub

stantially improving the achievable capacity of wireless systems, provided that the relevant channel 

state information (CSI) about to be experienced by the transmitted signal can be obtained by the trans

mitter before transmissions. In high-rate broad-band wireless communications systems the carrier

frequency is usually high, which results in a relatively high Doppler frequency associated with fast 

fading. For wireless communications systems experiencing fast fading, the outdated CSI estimated 

based on previously received CSI may not be sufficiently accurate for achieving a high transmitter 

pre-processing gain [13]. However, an improved accuracy may be achieved with the aid oflong range 

channel prediction [14-16]. 

The literatures of channel prediction was briefly reviewed in Tables 1.1 to 1.3. In the context 

of channel prediction various sum-of-sinusoids [17] based channel modelling algorithms have been 

investigated [18-25]. The ROOT-MUSIC (ROOT-Multiple Signal Classification (26]) [18] and the 

modified ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique (27]) [19] 

were invoked for estimating the frequencies of sinusoids, followed by determining their amplitudes. 

Then the future complex-valued fading channel envelope can be linearly predicted. In [20] the em

ployment of the ESPRIT algorithm was extended to wideband communication systems. By exploiting 

the wideband channel transfer function's (CTF) correlation accross the FD and jointly applying the 

ESPRIT algorithm for predicting the TD evolution of the wideband CTF at different frequencies 

achieved a better performance than that of the scheme invoking it at each frequency individually [20]. 

Furthermore, in [21] the 2-D Unitary-ESPRIT algorithm and in [22] the I-D Unitary-ESPRIT al

gorithm have been employed for estimating the CTF. Once the CTF's parameters are determined, the 

CTF can be predicted not only in the time domain (TD), but also in the frequency domain (FD). Sim-

1 
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ilar principles were extended to Orthogonal Frequency Division Multiplexing (OFDM) based com

munication systems in [24] and were shown to outperform the linear Burg predictor [28]. In [23], the 

regularized Linear Minimum Mean Square Error (LMMSE) algorithm was proposed for calculating 

the complex-valued amplitude of a sinusoidal channel model used in a single-input multiple-output 

(SIMO) communication system, assuming the knowledge of the sinusoidal model's freqeuncies. This 

scheme performed better than the linear predictor of [29]. Moreover, the above-mentioned LMMSE 

based channel predictror was further investigated in conjunction with predicting and then taking into 

account the frequency estimation error of the sum of sinusoids channel model [30J. In [31] a Joint 

Moving Average and Sinusoidal (JMAS) prediction model was proposed and the LS algorithm was 

used for determining the CIR. Furthermore, in [25], a 2-D frequency estimation algorithm was used 

for determining the FD CTF in the context of an OFDM system. 

Another alternative is to model the narrowband channel by an autoregressive (AR) process [5,32], 

which can be accurately predicted by a linear predictor [29,33-40]. In [29,33-35] the MMSE prin

ciple was employed for predicting the CSI. The most important characteristic of this algorithm is 

that the sampling rate is usually significiantly lower than the data rate, which facilitates the predic

tion of the channel for the duration of numerous data bits, hence we refer to this approach as long 

range channel prediction. Adaptive channel prediction was investigated based on the RLS and LMS 

techniques [39]. 

The concept of long range prediction was also employed in OFDM systems based predictors 

using various optimization criteria such as the MMSE [36], normalized LMS (NLMS) and RLS [40, 

41] criteria as well as an LMS fuzzy logic controller (FLC-LMS) [42]. An innovative so-called 

robust predictor design was provided in [5,43], which was designed to guarantee a certain level of 

performance, even if the channel's Doppler power spectral density deviated from that used in its 

design. Then this MMSE based robust channel predictor was investigated in the context of Multiple 

Input Multiple Output (MIMO) schemes [37] and in OFDM systems [38], respectively. 

In [44] several algorithms based on the above-mentioned sum of sinusoids channel model and on 

an AR model were investiged. The achievable performances of all these algorithms were tested and 

compared in a range of different contexts, such as Jakes' model [17], a statistical model proposed by 

Dersch [45] and also for measured data [44J, respectively. The correspondig results of [44J showed 

that the performances of the algorithms based on the sinusoidal model are better than those based on 

the AR model, when using data generated by Jakes' model [17J. However, when either data generated 

by the statistical model of Dersch [45] or measured data [44] were used, the algorithms based on the 

AR model performed better than those based on the sinusoidal model [44]. 
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The prediction algorithms based on the AR channel exploited only the linear correlation of chan

nel coefficients [29]. However, the correlation of the channel coefficients may be more accurately 

modelled by a nonlinear process [46-51]. Consequently, nonlinear prediction algorithms can also be 

used for predicting the fading channels' profile [49-54]. In [49], the multivariate adaptive regression 

splines (MARS) based model was used for predicting both the power and the complex-valued taps 

of the wideband fading channels, which outperformed the classic finite impulse response (FIR) mod

els [49]. Furthermore, the nonlinear predictors based on a so-called chaotic attractor [50] and on the 

recurrent least squares support vector machine [51] outperformed the AR model predictor. In [52-54] 

neural network based algorithms have been investigated in order to predict fading channels. It was 

shown that the performance of the neural network based algorithms may become better than that of 

linear predictors [52,53] under specific propagation conditions. Moveover, in [55] a MLP based chan

nel predictor was used for predicting realistic channel measurements and was shown to outperform 

the classic linear channel predictor. 

A range of other prediction algorithms can also be found in [56-59]. In [56) the novel technique 

of particle filtering was invoked for blind channel prediction, while in [57) Markov model based 

channel envelope prediction was investigated in the context of an OFDMA system. In [58], the so

called minimum energy bandlimited channel predictor was proposed. 

It is well known that multiple antennas employed both at the transmitter and receiver side are 

capable of substantially improving the achievable system performance [60-62]. Furthermore, trans

mit preprocessing [63] is a key technique of future MIMO-aided wireless communication systems, 

which has the potential of simplifying the receiver design. The premise of transmit preprocessing is 

that the acurate CSI must be avaible at transitter side, which can be obtained by channel estimation 

at receiver and then fedback from the receiver to the transmitter. However, the estimated CSI may 

become outdated by the time it was conveyed to the BS for transmit preprocessing, resulting in a per

formance degration. Hence channel prediction constitues an ideal candidate for circumventing this 

problem, since it has the potential of generating the required future CSI based on its past values with 

the latency of signalling it from the remote receiver. 

In the case of a single-user MIMO system, one of the transmit preprocessing algorithms is consti

tuted by the so-called eigenmode transmission technique [64], which requires the knowledge of the 

singular eigen vectors of the MIMO channel's CIR matrix at both the transmitter and receiver side. 

The singular eigen vector can be obtained by estimating the MIMO channel's matrix and subjecting 

it to singular value decomposion (SVD) for every transmission burst, which imposes a high compu

tational complexity. Since only the knowledge of the non-zero singular eigen vectors is required for 
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eigenmode transmission, it is intuively reasonable to use an algorithm that is capable of tracking the 

non-zero singular eigen vectors of the MIMO channel's CIR matrix without estimating the channel 

itself for every transmission burst. Hence this subspace-tracking approach is capable of substantially 

reducing the computational complexity imposed. 

In the context of MIMO-aided multiple user scenarios, zero forcing and MMSE transmit prepro

cessing are widely used for downlink transmission. However, in realistic communication systems, 

only imperfect CSI is available for transmit preprocessing. Hence, the performance of both zero 

forcing and MMSE preprocessing techniques has to be investigated in conjunction with imperfect 

CSI. 

Besides downlink transmit preprocessing, uplink transmit preprocessing also constitutes a promis

ing area of investigation, since it is potentially capable of simplifying the receiver design at the BS. 

Against this background, the novel contributions of this thesis are as follows: 

• Both MMSE and Kalman filter assisted long range channel prediction is investigated in the 

context of narrowband wireless channels [65-68]. 

• Channel estimation is carried out in both the TD as well as the FD and Kalman filtering assisted 

long range prediction is invoked for wideband single-carrier communication systems [69,70]. 

• Projection approximation subspace tracking with deflation (PASTD) is combined with MIMO

aided eigenmode transmission and investigated in the context of a single user system, where 

the MIMO channel matrix does not have to be estimated for every transmission burst. Its pe

riodically repeated SVD is also avoided, since the non-zero singular eigen vectors are directly 

tracked, hence we are capable of reducing the computational complexity imposed. Further

more, differential BPSK modulation is invoked for removing the phase ambiguity imposed by 

the SVD of the MIMO channel matrix [71], albeit this is achieved at a commensurate perfor

mance degradation. 

• Both zero forcing and MMSE downlink transmit preprocessing techniques were designed in

vestigated for multiple user MIMO systems and their benefits were investigated in terms of the 

effect of the number of antennas both at the BS and the MS. Furthermore, a Kalman filtering 

assisted channel predictor was invoked for generating the predicted CSI at the transmitter and 

the effects of channel prediction were also investigated [72]. 

• SVD based transmit preprocessing was proposed for both the downlink and uplink in the 

context of a MIMO-aided multiple user system. Specifically, two different power allocation 
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schemes were investigated, which are capable of either maintaining the maximum information 

rate or maintaining the maximum attainable SNR in the context of the proposed SVD based 

transmit preprocessing algorithm. 

• Recurrent neural network (RNN) based long range channel prediction was investigated [73] 

in the context of narrowband channels, in order to explore the potential benefits of non-linear 

prediction. 

The outline of the thesis is as follows. In Chapter 2, the characteristics of wireless channels are 

briefly discussed, leading to the classification of channels. Following this, the statistical model of 

the wireless channel is described. In Chapter 3, MMSE based long range prediction of narrowband 

channels is investigated, followed by the study of Kalman filtering assisted long range prediction. In 

Chapter 4, wideband single carrier systems are considered. We commence our discourse by inves

tigating two-dimensional channel estimation relying on both TD and FD techniques. Then, based 

on the results of the channel estimation techniques of Section 4.4, Kalman filtering assisted long 

range prediction is extended to wideband channels. Our simulation results characterize the perfor

mance of the proposed algorithm. In Chapter 5, PASTD subspace tracking based MIMO eigenmode 

transmission is investigated, which is capable of tracking the non-zero singular eigen vectors without 

estimating the MIMO channel matrix for each transmission burst followed by its SVD. Hence again, 

this technique is capable of reducing the computational complexity imposed. Furthermore, DPSK 

modulation is used in order 10 avoid the phase ambiguity imposed by SVD. In Chapter 6, Kalman 

filtering assisted channel prediction is applied into a MIMO-aided multiple user system employing 

either a zero forcing or MMSE downlink transmit preprocessing. The effects of number of antennas at 

both the BS and the MS as well as normalized maximum Doppler frequency are investigated in con

junction with the predicted CSI. In Chapter 7, a SVD based transmit preprocessing tecnique capable 

of both downlink and uplink transmissions is proposed. In particular, the maximum-information-rate 

and the maximum-SNR based power allocation schemes are investigated in conjunction with the pro

posed transmit preprocesing algorithm. In Chapter 8, based on the assumption that wireless channels 

may be modelled by a nonlinear process, RNN based channel prediction is investigated. Specifically, 

two different types of activation functions are considered, namely split- and full-activation. Further

more, three different tranining algorithms, namely the real-time recurrent learning (RTRL), the global 

extended Kalman filter (GEKF) and the decoupled extended Kalman filter (DEKF) are investigated in 

the context of channels contaminated by either additive white Gaussian noise (A WGN) or impulsive 

noise. Simulation results are also provided for characterizing the performance of RNN based channel 



6 CHAPTER 1. INTRODUCTION 

predictors. Finally, our conclusions and future work ideas are provided in Chapter 9. 
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Year Author(s) Contribution 
1991 Cavers. [74] The optimum linear channel estimation was investigated in 

the context of the flat fading channel. 
1997 Gao et at. [53] The channel envelope's magnitude prediction was investi-

gated using nonlinear neural network. 
1998 Hwang and Winters [18] Based on the sum of sinusoids model of the channel [l7J, 

the Doppler frequency of the channel model was estimated 
using the Root-MUSIC (ROOT Multiple Signal Classifica-
tion [26]) algorithm. Then the complex-valued fading en-
velope was determined by the least-square (LS) algorithm. 

1999 Andesen et al. [19] Based on the sum of sinusoids channel model, the Doppler 
frequency was estimated using the modified ESPRIT (Es-
timation of Signal Parameters via Rotational Invariance 
Technique [27]) algorithm. Then the complex-valued fad-
ing envelope was determined by the LS estimation algo-
rithm. 

1999 Ekman and Kubin (49) Narrowband channel prediction was investigated using the 
nonlinear MARS (multivariate adaptive regression splines) 
model. 

2000 Duel-Hallen et al. (29) The channel was modelled by an autogressive (AR) pro-
cess, and the AR coefficients were determined based on 
the MMSE criterion. 

2001 Dong et at. (20) Based on the sum of sinusoids channel model, the Doppler 
frequency was estimated using the modified ESPRIT algo-
rithm in the context of wideband channels. By exploiting 
the wideband channel transfer function's (CTF) FD corre-
lation and jointly applying the ESPRIT algorithm for pre-
dicting the wideband CTF at different frequencies achieved 
a better performance than that of the scheme invoking it at 
each frequency individually. 

2002 Semmelrodt and Kattenbach [21, 22J Based on the sum of sinusoids channel model, the Doppler 
frequency of a wideband channel model was estimated by 
the 2-D Unitary-ESPRIT and 1-D Unitary-ESPRIT algo-
rithm. 

2002 Ekamn et at. [75] The channel's power was predicted based on an AR model 
and an algorithm was proposed for compensating its bias. 

2003 Chen et at. [39] Long range channel prediction was investigated using both 
the recursive least square (RLS) and the least mean square 
(LMS) algorithms, which can adaptively predict the chan-
nel without any knowledge of the channel's statistical prop-
erties. 

2003 Semmelrodt and Kattenbach [44] The performance of the sum of sinusoids and the AR model 
based channel prediction algorithms were compared. 

2004 Chen et al. [23] Based on the sum of sinusoids channel model, the Doppler 
frequency was estimated by the Unitary-ESPRIT algo-
rithm. Then the regularized Linear MMSE (LMMSE) al-
gorithm was used for determining the complex-valued am-
plitudes, which avoided the noise enhencement encoun-
tered by the LS algorithm. 

Table 1.1: Major contributions on channel prediction 
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Year Author(s) Contribution 
2004 Wong et ai. [36] For OFDM systems, the prediction of the channel's trans-

fer function (CTF) is typically carried out in three different 
ways, namely by determining the predictor's coefficients 
seperately for all sub carriers or for the specific subcarri-
ers only corresponding to pilot symbols and then reusing 
them for the surrounding other subcarriers. Alternatively 
we may perform channel impulse response (CIR) predic-
tion in the TD by transferring the FD CTF to CIR in TD 
and then transforming the predicted CIR from the TD back 
to the CTF in the FD. The MMSE performance, the com-
putational complexity and the memory requirements were 
compared for these three different algorithms. 

2004 Sun et at. [50,51] The nonlinear correlation exhibited by the channel coeffi-
cients was investigated. Furthermore, recurrent LS Sup-
port Vector Machines (SVM) were invoked for exploiting 
the nonlinear correlation of the channel coefficients en-
countered in certain propagation enviroments, which was 
shown to outperform the AR model based linear MMSE 
algorithm. 

2004 Cao et at. [76] Wideband CIR prediction was transformed into CTF pre-
diction by predicting CTP in the FD and then transforming 
it back to CIR in the TD. 

2004 Castro et at. [56] Tomlinson-Harashima pre-equalization was investigated 
with the aid of channel prediction, which was carried out 
by Kalman filtering or particle filtering. Both techniques 
showed a similar performance. However, particle filtering 
has an advantage over Kalman filtering, since it constitutes 
a blind algorithm. 

2004 Luo et at. [37] So-called robust MMSE channel estimation and prediction 
[5,43] were investigated in the context of a MIMO system, 
where the predictor was designed by taking the channel's 
worst-case power-delay profile into account. 

2004 Akhtman and Hanzo [38] Robust MMSE ch~mnel prediction [5,43] was investigated 
in the context of OFDM and MC-CDMA systems, where 
the predictor was designed by taking the channel's worst-
case power-delay profile into account. 

2005 Wong and Evans [24] An OFDM system was investigated and its FD CTF was 
modeled at a given frequency by the sum of sinusoids, 
where the FD CTF parameters were estimated by the ES-
PRIT algorithm. Then the complex-valued channel mag-
nitudes were determined. The future CTF at a given fre-
quency was generated by extrapolation. 

2005 Schafhuber and Matz [40] An MMSE channel predictor was designed for OFDM sys-
tems, which exploited the TD and FD correlation of the 
CTF. Furthermore, by assuming that the transmitted data 
symbols had a zero mean and were independent identically 
distributed, a reduced-complexity MMSE predictor was 
proposed. Moreover, the CTF prediction was transformed 
into CIR prediction, which further reduced the complex-
ity. Adaptive channel prediction was carried out using the 
normalized least mean square (NLMS) and recursive least 
squares (RLS) algorithms. 

Table 1.2: Major contributions on channel prediction continued 
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Year Author(s) Contribution 
2005 Chen et at. [30] The regularized LMMSE channel prediction of [23] 

was further improved by predicting the discrep-
ancy between the observed and predicted channel, in 
other words, by taking the FD estimation error into 
account. 

2005 Klaue and Aguiar [55] A multi-layer perception (MLP) based predictor was 
invoked for predicting the realistic propagation mea-
surement based channel instead of a simulated chan-
nel, where the comparisions showed that it outper-
formed the classic linear predictor. 

2006 Xie et at. [41] Both an MMSE and simplified MMSE predictor 
desigened for OFDM systems were considered, 
which exploited both the TD and FD correlation of 
the CTF. Furthermore, the NLMS algorithm based 
channel prediction technique was investigated in 
both the TD and FD. 

2006 Wen et at. [42] The prediction of the CTF in an OFDM system was 
transformed into the prediction of the CIR and a 
fuzzy-logic controlled LMS (FLC-LMS) predictor 
was used for predicting each CIR tap. 

2006 Liu and Liu [25] An OFDM system was considered and the CTF of a 
given subcarrier frequency was modelled by the sum 
of sinusoids. Then the parameters were estimated by 
a joint 2-D FD CTF estimation algorithm, which was 
shown to outperform the I-D frequency estimation 
based algorithm of [24]. 

2006 Baddour and Beaulieu [77] The CIR coefficients were estimated for narrowband 
channel prediction by a smoothening filter in order 
to mitigate the effects of noise. Then the estimated 
channel coefficients were used for predicting the fu-
ture CIR taps. Furthermore, this scheme was also 
investigated in the context of a scenario dispensing 
with any statistical knowledge concerning the chan-
nel. 

2006 Chee et at. [57] The finite state Markov channel (FSMC) model of 
the narrowband channel was reviewed and chan-
nel prediction was investigated in the context of an 
OFDMA system. 

2006 Zemen et at. [58] Based on the principle that the narrowband chan-
nel may be approximated by a linear combination of 
orthogonal basis functions, the basis functions cor-
responding to future time instants were determined 
and used for approximating the future CIR taps. 

2007 Chen et ai. [31] Based on the algorithms provided in [23, 30] a joint 
moving average and sinusoidal (JMAS) prediction 
model was proposed and an LS algorithm based pre-
dictor was investigated. 

Table 1.3: Major contributions on channel prediction continued 



~~----------------------------~ 
Overview of Wireless Channel Models 

2.1 Introduction 

In wireless communication, modelling of the wireless channel constitues an important research field, 

which has attracted substantial research insterests [17,78,79]. Since this thesis concentrates on wire

less channel prediction, in this chapter we provide an overview of the various channel models. The 

chapter is organized as follows. In Section 2.2, a brief of characteriztion of the wireless channel is 

provided. The classification of wireless channels is considered in Section 2.3, while in Section 2.4 

their statistical model is provided. Finally, the simulation of wireless channels is discussed in Section 

2.5 and our conclusions are offered in Section 2.6. 

2.2 Characterization of Fading Channels 

In wireless communications systems, the received signal experiences diverse channel impariments 

imposed by multipath propagation and Doppler frequency shift. More specifically, the signal received 

by the receiver at any point in space may be the superposition of a large number of plane waves 

having randomly distributed amplitudes, phases, angles of arrival (AOA) and different propogation 

delays [17,80]. These multipath components combine vectorially at the receiver antenna and hence 

the received signal fluctuates quite dramatically as a function of time. Furthermore, due to the relative 

motion of the transmitter and the receiver, each multipath component may exprience an apparent shift 

in frequency, which is referred to as the Doppler frequency shift. Fig.2.1 depicts a horizontal x - y 

plane, portraying a mobile station (MS) moving at velocity v along the x-axis [17]. Let the nth plane 

wave arrive at the-MS's antenna at an angle of incidence en, as shown in Fig.2.1. Then, the MS's 

10 
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y 

nth incoming wave 

rno Ie v x 

Figure 2.1: Illustration of Doppler effect 

motion imposes a Doppler frequency shift upon the incident plane wave, which is given by [17] 

(2.1) 

where Idm represents the maximum Doppler shift, which can be expressed as 

v V 
Idm ="\ = Ie-, 

Ae C 
(2.2) 

where Ae = cj Ie is the wavelength of the arriving plane wave, Ie is the carrier frequency, c is the 

speed of light and v is the velocity of the MS. 

Consider the transmission of a band-pass signal s(t), which is expressed as 

S(t) = ~ {sl(t)d2rr!ct} , (2.3) 

where Sl(t) is the complex low-pass signal, Ie is the carrier frequency and ~{.} denotes the real part 

of the argument. If the channel is comprised of N paths, then the received band-pass signal xn(t) of 

the nth path may be expressed as [80,81] 

Xn(t) ~ {Cln(t)SZ(t - Tn (t))e j2rr [fc+fnJ[t-'Tn(t)] } 

= ~ {Cln(t)SI(t - Tn(t))e-j2rr[(fc+fn)Tn(t)-fntlej2rr!ct} , (2.4) 

where Cln(t) is the amplitude attenuation factor, Tn(t) is the propagation delay and In represents the 

Doppler frequency shift associated with the nth path. 
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The band-pass signal x(t) received via N distinct propogation paths can be expressed as 

x(t) = ~ {r(t)ej27rfct} , (2.5) 

where the complex low-pass signal ret) can be expressed as 

N 

ret) L O:n(t)e-j27r[(fc+fn)Tn(t)-fntlsl(t - Tn(t)) 
n=l 

N 

= L O:n (t)ej¢n (t) Sl (t - Tn(t)), (2.6) 
n=l 

while the phase of 

(2.7) 

is associated with the nth path. Based on (2.6), the channel can be modeled by a time-variant linear 

filter having a complex low-pass channel impulse response (CIR) expressed as 

N 

C(T, t) = L O:n(t)ej¢n(t)8(T - Tn(t)). (2.8) 
n=l 

Given (2.8), let us now discuss the characteristics of the wireless channels. 

2.3 Classification of the fading channel 

The mobile channel is a time varying multi path medium. The fading channel may undergo different 

types of fading according to the specific transmitted signal characteristics and channel parameters. 

Based on the amount of multipath-induced time domain spreading, the fading channel may be clas

sified as frequency-nonselective or frequency-selective. By contrast, according to the Doppler spread 

encountered, fading channels may be classified as rapidly fading channels or slowly fading channels. 

The terms frequency-nonselective fading and frequency-selective fading can be used to describe the 

characteristics of signals in the frequency-domain (FD). By contrast, the terminology of fast fading 

and slow fading channels can be used for describing the characteristics of signals in the time-domain 

(TD). Let us first consider the family of frequency-nonselective and frequency-selective fading chan

nels. 
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2.3.1 Frequency-Nonselective Fading versus Frequency Selective Fading 

The autocorrelation function of the CIR seen in (2.8) can be expressed as 

(2.9) 

Assuming a wide sense stationary uncorrelated scattering (WSSUS) channel, which implies that the 

attenuations and phase shifts of the channel associated with different path delays are uncorrelated, 

(2.9) can then be written as [81] 

(2.10) 

If we let I::::.t = 0, the resultant autocorrelation fucntion ¢e( T1 i 0) == <Pe( T) is simply the average 

output power of the channel as a function of the time delay T. The range of T values over which ¢e( T) 

is essentially non-zero is referred to as the delay spread of the channel, which is denoted by Tm. 

By taking the Fourier transform of C(T, t) with respect to T, we obtain the time-variant channel 

transfer fucntion (CTF) C(fi t), which is given by [81] 

1
+00 

C(fit) = -00 C(Ti t )e-j2rr!T dT. (2.11) 

Assuming that the channel is wide sense stationary (WSS), the frequency domain autocorrelation 

function (ACF) ¢c(fI, hi I::::.t) is given by 

¢C(f1, hi I::::.t) = ~E[C*(fIit)C(f2;t+ I::::.t)J. 

Upon substituting Eq.(2.l1) into Eq.(2.l2), we obtain [81] 

¢c(fI,fz;l::::.t) =. ~ 1: 1:00 

E[C*(T1it)C(T2;t+l::::.t)]ej27T(flTl-hT2)dT1dT2 

= 1:00 

¢e(T1; I::::.t)ej2rr
(/l-12)71 dTl 

1: ¢e(T1; I::::.t)e-j2rr
(tlJ)Tl dTl == ¢c(!~.f; I::::.t), 

(2.12) 

(2.13) 

where I::::.J = h - fI and ¢c(I::::.J; I::::.t) is termed as the spaced-frequency, spaced-time correlation 
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function of the channel. Upon assuming b..t = 0, we have 

(2.14) 

As a result of the Fourier transform based relationship between ¢c(b..f) and ¢e( T), the coherence 

bandwidth Be of the channel is given by [81] 

(2.15) 

Based on the above analysis, we may state that if the channel's coherence bandwidth Be is higher 

than the bandwidth of the transmitted signal, all the FD components of the transmitted signal will 

experience similar fading. Hence, this type of fading channels is said to be a frequency-nonselective 

fading channel or frequency-flat fading channel. Otherwise, the channel is said to be frequency- . 

selective, namely when the channel's coherence bandwidth Be is lower than the bandwidth of the 

transmitted signal. This is because in this type of channel two frequency components having a FD 

spacing higher than the coherence bandwidth may experience significantly different fading. The 

frequency-nonselective fading channel is also referred to as a narrowband fading channel, while the 

frequency-selective fading channel is also referred to as a wideband fading channel. 

2.3.2 Slow Fading versus Fast Fading 

The Fourier transform of ¢c(b..j; b..t) with respect to the variable b..t can be expressed as 

1
+00 

3c(b..j; >.) = -00 ¢c(b..j; b..t)e- j2
11'>..t::.t db..t. (2.16) 

When b..j is set to zero and 3e(0; >.) == 3e(>'), the relationship in (2.16) becomes 

1
+00 

3c(>') = -CXJ ¢c(0; b..t)e- j211'AD.t db..t. (2.17) 

The function 3e (>.) is termed as the Doppler power spectrum of the channel, which characterizes the 

signal intensity as a function of the Doppler frequency>.. The range of the values of >. over which 

3c(>') is essentially nonzero is referred to as the Doppler spread Bd of the channel. Since 3c(>') is 

related to ¢c(b..t) by the Fourier transform, the coherence time (b..t)e of the channel is given by [81] 

(2.18) 
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Therefore, if the channel's coherence time (.6.t)e is lower than the symbol period of the transmit

ted signal, the channel is said to be a fast fading channel. Otherwise, it is termed as a slowly fading 

channel. 

In wireless channel simulations one of the most widely used fiat fading channel model is Jakes' 

model, which is given by [17,81] 

N 

C(O; t) == c(t) = L Q;n(t)ej(27r!dmt cos 8nHn) , (2.19) 
n=l 

where Q;n(t) is the amplitude attenuation factor, fdm is the maximum Doppler frequency shift and 

¢n is a random phase. In this model, when assuming E[lc(tWl = 1, the autocorrelation of the 

time-variant fading envelope C (f; t) is given by [17, 81] 

¢c(.6.t) = ~E[C*(O; t)C(O; t + .6.t)l 

1 
= 2 Jo(27rfdm.6.t), (2.20) 

where JoO is the zero-order modified Bessel function of the first kind [80], which is depicted in 

Fig.2.2. Accordingly, the Fourier transform of Eq.(2.19) yields the Doppler power spectrum [81] of 

Sc(J) = 1:00 

¢c(.6.t)e-j27r!b..t d.6.t 

= j+oo ~ Jo(27r fdm.6.t) d.6.t 
-00 2 

{ 
27r!dm.;:-(-d;;;Y if If I < fdm 

o if If I > fdm' 

The normalized Doppler power spectrum is plotted in Figure.2.3. 

2.4 Statistical Model of the Fading Channel 

(2.21) 

Let us consider the transmission of an unmodulated carrier having a frequency of fe. Then we have 

sz(t) = 1 for all t and the received complex low-pass signal seen in (2.6) can now be expressed as 

N 

ret) L Q;n(t)ejtPn(t) 
n=l 

(2.22) 
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Figure 2.2: The zero-order Bessel-function of the first kind, Jo (27r fdmb..t) 

where rJ(t) and rQ(t) are the real part and imagnary part of r(t), respectively. Below a range of 

statistical models are summarized. 

2.4.1 Rayleigh Distribution 

According to the central limit theoem, when the value of N is sufficiently high, r(t) of (2.22) can be 

modeled as a complex Gaussian process. When rJ(t) and rQ(t) have a mean of zero and a common 

variance of 0-2 , r(t) is modeled as a zero-mean complex-valued Gaussian process. Then, the complex

valued received signal envelope of 

X(t) = Ir(t)1 = vr; + r~ (2.23) 

obeys the Rayleigh distribution at any time instant t, which has a probability density function (PDF) 

expressed as [80] 

x ~ o. (2.24) 
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Figure 2.3: Normalized Doppler power spectrum 8(1). when assuming that the maximum Doppler frequency 
shift is fdm = lOOH z 

A channel having an amplitude obeying the Rayleigh distribution of (2.24) is referred to as a Rayleigh 

fading channel. 

2.4.2 Ricean Distribution 

When rI(t) and rQ(t) have the non-zero means of mI and mQ, respectively, then the complex

valued received signal envelope X(t) obeys a Ricean distribution at any time instant t, which has a 

PDF expressed as [80] 

x 2: 0, (2.25) 

where 82 = mJ + m~ is the non-centrality parameter and 10 (-) is the Oth order modified Bessel 

function of the first kind. A channel having an amplitude obeying the Ricean distribution of (2.25) is 

hence termed as a Ricean fading channel. 
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2.4.3 Nakagami-m Distribution 

Another popular distribution often used for modelling wireless channels is the Nakagami-m distri

bution. In the context of the Nakagami fading channel the fading amplitude X(t) obeys the PDF 

of [80] 

x 2: 0, (2.26) 

where r(.) is the gamma function, 0 = E[X2] is the average envelope power of the channel and m 

is the Nakagami fading parameter, given by 

m = E[(X2 _ 0 2)]' 

2.5 Simulation of Wireless Channels 

1 
m >- 2' (2.27) 

The simulation of bandlimited Rayleigh fading channels attracted substantial research attention [17, 

78,79,82-84]. In this section, the IDFT based [82] Jakes' technique [17] and the autoregessive (AR) 

simulator [78,79] of the flat Rayleigh fading channel are considered. 

2.5.1 IDFT Simulator 

The IDFT-based simulator was first proposed in [82] and can be implemented using the following 

steps [85]: 

1) Specify the number of frequency domain points, N, used for representing -/Sc(f) and the 

maximum Doppler frequency shift fdm. The value of N is usually set to be an integer power 

of2; 

2) Compute the frequency spacing between the adjacent spectral lines as bJ..f = 2fdm/(N - 1). 

This defines the time duration of a fading waveform, T = 1/ bJ..f; 

3) Generate complex-valued Gaussian random variables for each of the N /2 positive frequency 

components; 

4) Construct the negative frequency components of the noise source by conjugating the positive 

frequency values and assigning these values to the mirror-symmetric negative frequency com

ponents. This conjugate-complex symmetry ensures that the corresponding TD fading envelope 

is real-valued; 
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Figure 2.4: The envelope of the fading channel generated using the IDFf-based simulator 

5) For each frequency component, multiply the in-phase and quadrature noise sources by the 

Doppler spectrum ..jSc(f); 

6) Perform an IFFT on the resultant FD signals representing both the inphase and the quadrature 

components to generate two length-N time series and create an N-point time series of the 

fading magnitude according to (2.23). 

As an example, the envelope of the fading channel generated by the IDFf-based Rayleigh simulator 

is plotted in 2.4 

The IDFT-bsed channel simulator uses a complex-valued Gaussian random noise generator to 

produce a baseband line spectrum. The maximum frequency component of the line spectrum is f dm. 

Again, since the fading magnitude is real-valued, the negative frequency components are constructed 

by simply conjugating the complex Gaussian values obtained for the positive frequencies. The resul

tant line spectrum is then multiplied by the discrete frequency representation of ..j Sc(f) having the 

same number of points as the complex-valued noise source. 

The IDFT-based technique is known to be an efficient fading channel generator. Howerver, when 

using the IDFT-based simulator, all random samples have to be generated using a single FFT operation 

and stored in memory. Hence, when a large number of values is required, the storage requirements 
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associated with this approach can make it unattractive. 

2.5.2 Jakes Simulator 

An alternative channel simulator has been suggested by Jakes [17], whihc has been widely used in 

the simulation of wireless channels. The principles behind Jakes' simulator became explicit in (2.19), 

which is repeated here for convienence: 

N 
r(t) = L eJ(27rfdmt cos Bn+¢n) , (2.2S) 

n=l 

where it is assumed that we have an(t) = 1. We assume that the N number of arrival angles in (2.19) 

are uniformly distributed in [0, 21T], that we have 

n = 1,2"" N. (2.29) 

Furthermore, if N /2 is an odd integer, then as shown in [17, SO], a typical Rayleigh faded 

envelope can be generated by using M low-frequency oscillators having frequencies of in = 

idm cos (21Tn/N) , n = 1,2,'" , M, and an oscillator having the frequency of idm, where we have 

(2.30) 

The fading channel's envelope generated by the Jakes model using M = 8 and idm = 100Hz is 

shown in Fig.2.S. 

Let the normalized autocorrelation function be defined as 

A. ( ) _ E[r*(t)r(t + T)] 
'f/rr T - E[lr(t)12] , (2.31) 

which is plotted in Fig. 2.6. From Fig.2.6 we can see that when the time delay of T is low, for example 

when T < 0.0458, the Jakes model is capable of closely approximating the correlation function of 

(2.20). However, when the time delay is high, for example T 2:: 0.0458, the autocorrelation function 

of the fading envelope generated by Jakes' simulator does not closely agree with the zeroth order 

Bessel function of first kind seen in (2.20), which is likely to be a consequence of using a low number 

of sinusoids for modelling the channel. 
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Figure 2.5: The envelope of the fading channel generated by Jakes' simulator with M = 8 and the maximum 
Doppler frequency shift of fdm = 100Hz 

2.5.3 AR Simulator 

In [78, 79] an AR simulator has been proposed. Specifically, the AR simulator describes the flat 

Rayleigh fading channel as a complex-valued AR process of order p, which can be expressed as 

. P 

Cn = L akCn-k + Wn , 

k=l 

(2.32) 

where Cn is the complex fading envelope c(t) sampled at the time instants of t = nT, T is the 

sampling period, while Wn is a complex white Gaussian noise process at time instant t = nT having 

zero mean and a variance of (T~n and (aI, a2, ... ,ap ) are the AR process coefficients. Let us define 

a p-dimensional AR coefficient vector a as 

(2.33) 

and a p-dimensional channel complex coefficient vector en as 

(2.34) 
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Figure 2.6: The zeroth order Bessel function of first kind Jo(27r fdmT) and the normalized autocorrelation 
function ¢rr(T) estimated from the Jakes model when M = 8 and assuming that the maximum 
Doppler frequency shift is f dm = 1 OOH z 

Thus, a can be formulated as [78] 

R - 1 a= cere, (2.35) 

where Ree is a (p x p)-dimensional autocorrelation matrix having coefficients of Reeij = 
E[cn-jc~_il, which is given by 

r(O) 

r(l) 

r*(l) 

r(O) 

r*(p - 1) 

r*(p-2) 

r(p - 1) r(p - 2) r(O) 

(2.36) 

and re is a p-dimensional cross correlation vector with coefficients rej = E[cnC~_jl, which are given 

by 

re = E[cnc~_rl = [r(l), r(2),· .. ,r(p)]T, (2.37) 
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where r(l) = E[cnc~_l], r* (I) = E[cnc~_ll*. Accordingly, we have [78,79] 

p 

();n = r(O) - I>kr(-k). (2.38) 
k=l 

The AR simulator may accurately approximate theoretical statistics of a wireless channel by ad

justing the order p of the model for practical finite-length implementations. A disadvantage of the AR 

model is that the autocorrelation matrix Ree maybe singular when calculating the AR coefficients. 

In this case, a very small positive value has to be added to the main diagonal of the autocorrelation 

matrix in order to solve this problem [78]. In this report, 10-9 is added to the main diagonal of the 

autocorrelation matrix Ree to make it non-singular. 

2.6 Conclusion 

In this chapter, a rudimentary characterization of fading channels was provided. Then the classifica

tion of wireless channels was discussed, introducing the concepts of frequency-nonselective fading, 

frequency-selective fading, slow fading and fast fading. Furthermore, statistical channel models were 

discussed and various flat Rayleigh fading channel simulators were investigated. 



~~----------------------------~ 
Long -Range Linear Prediction of 

Narrowband Fading Channels 

3.1 Introduction 

The aim of the long range channel prediction is to forecast the future values of the channel coefficients 

as far ahead as possible. The AR model based long-range prediction (LRP) algorithm of [29] was 

designed for flat Rayleigh fading channels. Based on this model it was demonstrated in Section 3.2 

that the minimum mean square error (MMSE) of channel prediction can be achieved, despite sampling 

the channel's profile at a rate lower than the symbol rate [29,33-35]. Then the channel coefficients to 

be used at symbol rate can be obtained by interpolation. Inspired by this principle, a LRP algorithm 

assisted by Kalman filtering will be designed in this chapter for flat Rayleigh fading channels and its 

performance will be investigated. 

The objectives of LRP are multifold: 

• These techniques may be used for simply improving the so-called zero-order channel prediction 

based on the currently received pilots at a receiver, which are assumed to be still valid at the 

current instant. This application becomes particularly important in the context of HSDPA-style 

near instantaneously adaptive modems . 

• In the context of transmit preprocessing techniques the plausible rationale is that the unique, 

user-specific spatio-temporal CIR CST-CIR) of each user may be employed for differentiating 

the transmitted signals destined for a specific user already at the transmitter, provided that this 

ST-CIR can be accurately predicted for the future instant of reception at the MS. This scenario 

24 
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\,r_k __ ..-:.I Detecto1I-b_k __ 

Figure 3.1: Basic schematic of communication systems 

constitutes another high-significance LRP application scenario, because without its employ

ment the transmitter would only have access to the outdated CTFs signalled by the remote 

receiver to the preprocessing-aided transmitter in the past, which would degrade the achievable 

preprocessing performance. It is worth noting that the more sophisticated the specific transmit 

preprocessor, the more accurate LRP is required for avoiding the erosion of its performance 

gain. 

The rest of this chapter has the following structure. In Section 3.2 the principle of MMSE based 

LRP invoked for predicting narrowband fading channels is highlighted and its performance is char

acterized. As a more sophisticated design alternative, in Section 3.3, a Kalman filtering assisted LRP 

scheme designed for narrowband fading channels is advocated and characterized. Finally, our 

conclusions are offered in Section 3.4. 

3.2 MMSE Assisted Long-Range Prediction 

The basic schematic of the communication system considered is depicted in Figure. 3.1, where {bk } 

is the data symbol sequence, s(t) = L:k bkg(t - kn) is the transmitted complex-valued low pass 

signal, g(t) is the transmitter pulse shape and Tb is the data symbol duration. The complex low pass 

received signal r(t) seen in Figure. 3.1 is given by 

r(t) = c(t)s(t) + n(t), (3.1) 

where c(t) is the non-dispersive fading coefficient, which was given in (2.19) and repeated here for 

convenience 
N 

c(t) = I.: Ctn ej (27rfnH<Pn) , (3.2) 
n=l 
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where N represents the number of scatterers, an, in and cPn are the amplitUde, Doppler frequency 

shift and phase associated with the nth path, respectively, while n(t) is the AWGN process having 

a zero mean and a variance of No /2 per dimension. Additionally, without loss of generality, it is 

assumed that the average channel power obeys E[lc(tWl = 1. Furthermore, by sampling the output 

of the matched filter (MF) at the symbol rate, the communication system can be modeled by a discrete

time system given by 

(3.3) 

where rk. Ck and nk are obtained from the complex low pass received signal r(t), from the complex

valued fading profile c(t) and the AWGN n(t) by sampling them at the time instants of t = kn, 

respectively. The output bk of the detector represents the estimate of bk • An AR model based linear 

LRP algorithm wasn proposed in [29,33-35]. The principles behind it may be described as follows. 

3.2.1 Principles of :MMSE Assisted Long-Range Prediction 

Let us assume that a sequence of p previous samples of the complex-valued fading channel profile is 

obtained at the time instant t = nTs, where Ts is the sampling interval duration, in contrast to the 

data symbol duration. The MMSE prediction of the future channel sample en based on p previous 

samples, namely Cn-l, .. , ,Cn-p is given by 

p 

Cn = L djCn-j, 
j=l 

where p is the order of the AR model and Cn is the estimate of Cn. Let 

be a p-dimensional vector containing the p number of observation samples. Let furthermore 

(3.4) 

(3.5) 

(3.6) 

be the long-range predictor's weight vector. Then, the optimal predictor's weight vector do 

[dol, ... ,dopl generated using the minimum mean square error (MMSE) cirterion is given by [1] 

(3.7) 
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where R is the (p x p )-dimensional autocorrelation matrix of the observation sample vector c(n - 1), 

which is given by 

R = E[c(n - l)cH (n - 1)] = 

r(O) 

r*(l) 

r(l) 

r(O) 

rep - 1) 

rep - 2) 

r*(p- 1) r*(p- 2) reO) 

(3.8) 

where r(l) = E[cnc~_l]' r*(l) = E[cnc~_zl*. It is explicit that we have 1'( -l) = r*(l). Furthermore, 

in (3.7) r is the p-dimensional autocorrelation vector of the observation sample vector e(n - 1) and 

of the desired channel sample Cn to be predicted, which is given by 

Cn-lC~ r*(l) 1'( -1) 

r = E[e(n -l)c~] = E 
Cn-2C~ r*(2) 1'(-2) 

(3.9) = = 

cn-pc~ r*(p) 1'( -p)) 

where r( -j) = E[cn-jc~]. 

Note that the samples in Eq.(3.4) have to be taken at least at the Nyquist rate given by twice the 

maximum Doppler frequency Idm. In LRP, it can be shown [29,33-35] that the sampling rate can 

be chosen to be close to the Nyquist rate, which is usually much lower than the data symbol rate, as 

seen in (3.3). After the LRP, interpolation between the predicted samples can used in order to provide 

estimates of the fading profile at the data symbol rate [33], which generates a channel estimate for 

each data symbol. 

In order to show that low-rate sampling may nonetheless result in sufficiently accurate LRP, when 

the filter length p in (3.4) is fixed, we extend the one-step prediction of (3.4) to a general channel 

prediction problem as follows. More explicitly, in this general channel prediction approach, our 

objective is to find the MMSE estimate of a future sample C(7) at the time instant 7, where we have 

7 > 0, by observing p previous samples collected both at and prior to time zero at the sampling rate 

of Is = IjTs. Let 

(3.10) 

be the long-range predictor's weight vector consisting of the p number of AR coefficients. Let fur-
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thermore 

(3.11) 

be a p-dimensional vector consisting of p previous data symbols. The predicted value to C( 7) at the 

time instant 7 > 0 can be expressed as 

p-l 

8(7) = Ldkc-k = d7C!, 
k=O 

where 8(7) is the estimate of c( 7). Additionally, the estimation error e( 7) is given by 

e(7) = C(7) - 8(7). 

Let the predictor-optimization cost function J be defined by 

J = E[e(7)e*(7)] 

E[le(7Wl· 

(3.12) 

(3.13) 

(3.14) 

Then the MMSE predictor is obtained by choosing the weight vector d, which minimizes the cost 

function J. 

Accordingly, the optimum weight vector of the MMSE predictor can be expressed as 

(3.15) 

where the optimum coefficient vector do! is given by 

(3.16) 

Furthermore, in (3.15) R is a (p x p )-dimensonal autocorrelation matrix of observation channel profile 
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vector C f' which is expressed as 

r(O) 
r*(l) 

r(l) 
r(O) 

r(p - 1) 

r(p - 2) 

r*(p-1) r*(p-2) r(O) 
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(3.17) 

while r is the p-dimensional cross-correlation vector of the observation channel profile vector C f and 

of the desired channel sample T, which is expressed as 

CoC*(T) r*(T) r(--r) 

r = E[cfc*(r)] = E 
c_lc*(r) r*(r + 1) r( -(r + 1)) 

. (3.18) = 

C(p_l)c*(r) r*(r+p-1) r(-(r+p-1)) 

In this chapter, we assume r(T) = JO(27f}dmr) [17], Hence, the autocorrelation function R of 

(3.17) can be simplified to 

R= 

r(O) 
r(l) 

r(l) 
r(O) 

r(p - 1) 

r(p - 2) 

r(p - 1) r(p - 2) r(O) 

and the cross-correlation function r seen in (3.18) can be expressed as 

r= 

r(r) 

r(r+ 1) 

r(r+p-1) 

(3.19) 

(3.20) 

Finally, the MMSE estimate of the channel profile sample c( r) at time instant of r > 0 can be 

expressed as 

p-l 

80 (r) 2:: d~kC-k 
k=O 

= d~cf· (3.21) 
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Order of AR model p 20 
Maximum dopper idm 100Hz 
Data symbol rate ib 25kHz 

Table 3.1: Parameters of the MMSE predictor 

Since we assumed that C f has a zero mean, the predicted value c( T) also has a zero mean. Further

more, the variance of C(T) can be evaluated using (3.21), which yields 

cr~o(r) = E[d:'CfC7 dofJ 

d:'E[CfC7J dof 

d:'Rdof 

rHR-1r. 

The minimum MSE can be expressed as [1] 

2 HR-1 
creer) - r r, 

where cr~(r) is the variance of C(T). 

3.2.2 Performance Analysis of the Long-Range MMSE Predictor 

(3.22) 

(3.23) 

In this section, we use a number of examples to characterize the estimation performance of the long

range predictor. Note that the effects of the channel noise on the predictor can be incorporated into the 

autocorrelation matrix R by including 1/ S N R * I in (3.17), where I is a (p x p) -dimensional identity 

matrix. Note that the autocorrelation matrix R can be singular in the noiseless case, but R of (3.15) is 

usually invertible, when additive noise is present. Furthermore, when assuming E(lck 12) = 1, (3.23) 

can be rewritten as 

2 Hd 
creer) - r of 

p-l 

1 - I: dokr(T + k). (3.24) 
k=O 

Let us first consider a predictor having a fixed order of p, but a variable sampling rate of is. It 

can be shown that as is increases, the portion of the autocorrelation function spanned by the samples 
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Figure 3.2: Theoretical autocorrelation function of the Rayleigh fading channel and the observation interval 
spaned by the autocorrelation when assuming a prediction range of T = 5ms and two different 
sampling frequncies of fsl = 25kHz and fs2 = 500Hz, respectively. The remaining parameters 
are assumed to be as in Table 3.1. 

r(T + k) in (3.24) decreases, which can be seen in Figure. 3.2. As shown in Figure. 3.2, when 

a higher sampling frequency of Is = 25KHz is adopted, the observation interval spanned by the 

autocorrelation function samples is only about O.76ms. The autocorrelation value range spanned 

by these autocorrelation function samples along this interval is small. Consequently, when we aim 

for predicting the channel far ahead, i.e., when T is large, based on these samples, the correlation 

between the desired channel sample and the observed samples becomes low, and the corresponding 

MMSE generated in (3.24) increases. However, when a lower sampling frequency of Is = 500Hz is 

adopted, the observed samples are spaced far apart, which results in an observation interval duration 

of 38ms. In this case, as shown in Figure. 3.2, the autocorrelation sample values vary significantly 

for any realistic prediction range. Due to the high sidelobes of the autocorrelation function, some of 

these autocorrelation samples are sufficiently large to prevent the MMSE in (3.24) from becoming 

very large [29]. 

The MMSE performance of LRP associated with various sampling rates against the prediction 

range T is portrayed in Figure 3.3, when assuming a SNR higher than lOOdB. The other paramers 

were the same as those shown in Table 3.1. The reason for us to select a high SNR value is to com-
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Figure 3.3: MMSE performance of LRP for the various values of sampling rate, is, against the prediction 
range T when assuming a SNR higher than lOOdE. The remaining paramers are assumed to as in 
Table 3.1. 

pare the achievable perfonnance, when various sampling rates were considered. In our forthcoming 

discussions, different p and SN R values will be considered. In Figure 3.3, the MMSE curves were 

computed from (3.24) for a given prediction range of T. For example, when we have T = 0.002s, 

which corresponds to a 50-data-symbol look-ahead, when a sampling frequency of Is = 25Hz is 

adopted. However, this scenario implies using one-step prediction, when setting the sampling fre

queny to Is = 500Hz. As seen from Figure 3.3, the channel profile can be predicted at a given 

time instant of T in the future, when using different sampling rates. However, the prediction becomes 

more accurate, when using relatively low sampling rates [29]. Hence, in the context of LRP, the chan

nel profile's sampling rate can be significantly lower than the data rate, provided that the order p of 

prediction filter remains the same. Hence, the LRP of the channel profile becomes feasible. 

The effect of the sampling rate on the MMSE perfonnance achievable for the prediction range of 

T = 4ms, at a SNR higher than 140dB is shown in Figure 3.4, when using various predictor orders 

p. The remaining parameters are shown in Table 3.1. We observe from Figure 3.4, that for a given 

predictor order p, there exists an optimal sampling rate, which minimizes the corresponding MMSE. 

As shown in Fig.3.4, the optimum sampling rate is approximately 1KHz for a moderate to a high 

order of p, ranging from p = 10 to P = 100. 
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Figure 3.4: MMSE of the long-range predictor versus sampling rate, is performance for a prediction range 
r = 4ms, a SNR higher than lOOdB when using various predictor orders p. The remaining 
parameters are assumed to be the same as in Table 3.1. 

In Figuure 3.5 the MMSE performance versus the predictor order p is plotted for different values 

of the SNR, when assuming that the sampling rate was is = 500R z and the prediction range was 

T = 2ms. The remaining parameters are assumed to be as in Table 3.1. As shown in Figure 3.5, 

when the predictor order p increases, the MMSE curves approach a floor value. Furthermore, for 

any a given SNR value and for a low predictor order p, the MMSE value decreases near-linearly 

upon increasing the predictor order p. However, after the predictor order p reaches a certain value, 

the MMSE approaches a floor and remains near-constant, when increasing the value of p. Since the 

predictor order p is closely related to the prediction complexity and the complexity is usually on the 

order of O(p2), the affordable complexity predetermines the LRP order along with the remaining 

parameters, such as idm. T, SNR, etc. Additionally, we can see from Figure 3.5 that when the SNR 

value increases, usually a long-range predictor having a relatively higher order of p is required, in 

order to achieve an improved prediction performance. In other words, when the SNR value increases, 

the MMSE floor decreases as a function of the predictor order. 

Finally, in Figure 3.6 the prediction accuracy of the LRP algorithm is characterized, when the 

channel's profile is generated by Jakes' simulator using nine oscillators. We assumed that the SNR 
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Figure 3.5: MMSE versus predictor order preformance for different values of the SNR, when assuming a 
sampling rate of is = 500Hz, and a prediction range of 7 = 2ms. The remaining parameters are 
assumed to be the same as in Table 3.1. 

was infinity, the order of the long-range predictor was p = 50, the sampling frequency was is = 5idm 

and the prediction range was T = 0.0028. All other parameters are shown in Table 3.1. We observe 

from the results of Figure 3.6 that the values obtained using the long-range predictor closely agree 

with the actual channel envelope, provided that the SNR value is sufficiently high. In practice, since 

the SNR value cannot be extremely high, it can be expected that the predicted value generated using 

LRP may be slightly different from the actual value of the channel envelope. 

3.3 Kalman Filter Assisted Long-Range Prediction 

In the last section the MMSE-assisted long-range predictor used only p past observations in order to 

predict the future complex-valued channel coefficient. However, in practice all the past observations 

are available, provided that predictor has sufficient memory. Consequently, if we can use all the past 

observation samples for prediction, it can be expected that a more precise prediction of the future 

channel profile can be achieved. It is well-known the Kalman filters are capable of exploiting all 

the available observed samples in order to predict the future states. Based on the Kalman filtering 

principles, prediction is carried out recursively, which usually results in low-complexity prediction. 
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Figure 3.6: Long-range prediction of the envelope of a Rayleigh fading channel profile generated by Jakes' 
model associated with 9 oscillators when assuming that the SN R was infinity, the order of the 
predictor was p = 50, the sampling frequency was Is = 500Hz and the prediction range was 
7 = 0.0028. All other parameters are assumed to the same as in Table 3.1 

Hence, in this section we extend the LRP philosophy discussed in the previous section by invoking 

the classic Kalman filtering principles [1-3]. 

3.3.1 Kalman Filtering Principles [1-3] 

According to the classic principles of Kalman filtering [1-3], the discrete vector-based Kalman filter 

has a process equation, which can be expressed as [1] 

(3.25) 

where the p-dimensional vector en represents the state vector, the (p x p )-dimensional matrix F n-l 

is the transition matrix, while the p-dimensional vector Wn represents the process noise vector, which 

is modeled as a white sequence, where all members of the set of sequences have zero means and are 
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mutually uncorrelated with each other [2]. The correlation matirx of Wn is defined by 

E[ Hl _ { Qwn , n = k 
wnwk -

0, n =I k . 
(3.26) 

The measurement equation for the discrete vector-based Kalman filter is assumed to have the form of 

(3.27) 

where the N-dimensional vector rn represents the observation vector, Hn is a known (N x p)

dimensional measurement matirx, while the N-dimensional vector v n is the measurement noise vec

tor. The measurement noise vector is modeled as a zero-mean, white-noise process having correlation 

matrix of 

E[ Hl- {Qvn' n = k vnvk -
0, n =I k . 

(3.28) 

Furthermore, it is assumed that the process noise vector W n and the measurement noise vector v n are 

statistically independent, yielding 

E[wnv~l = 0, for all nand k. (3.29) 

Let the innovation process an be defined as 

an = rn - r[nln-l]' n = 1,2,··· , (3.30) 

where the vector r[nln-l] denotes the MMSE prediction of the observed data rn at time n, based on 

all the past observed data. According to (3.25), the process equation can be written as 

Ck Fk-lFk-2Fk-3 ... Foco + Fk-l F k-2F k-3 ... Fl WI 

+Fk-l F k-2F k-3'" F2W 2 + ... + Fk-lWk-l + Wk, (3.31) 

which shows that Ck is a linear combination of the initial state of Co and the noise vectors of 

Wl, W2,'" ,Wk' Additionally, it is assumed in our model that Co is uncorrelated with both Wn 

and Vn forn ~ O. 

Since the measurement noise vector Vn is uncorrelated with both the initial state of Co and the 
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process noise vector W n , according to (3.31), we obtain that 

E[CkV~l = 0, k, n 2: O. (3.32) 

Additionally, from (3.27), we have 

(3.33) 

and 

(3.34) 

It can be seen from (3.27) that the MMSE-based prediction for the present observation of rn can be 

expressed as 

(3.35) 

where C[nln-l] represents the MMSE prediction of Cn and V[nln-l] represents the MMSE prediction 

of v n, respevtively, based on the observations rl, ... ,r n-l. According to (3.33), Vn is orthogonal to 

the past observations rl, r2, ... ,rn-l, which results in V[nln-l] = O. Consequently, (3.35) is reduced 

to 

(3.36) 

Upon substituting (3.36) and (3.27) into (3.30), the innovation vector an can be expressed as [1] 

where 

an rn - Hnc[nln-l] 

Hnen + Vn , (3.37) 

(3.38) 

which represents the error between the state vector Cn and the predicted state vector C[nln-l]' Fur

thermore, it can be shown that en is orthogonal to both Wn+l and Vn . 
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With the aid of classic Kalman filtering theory [1], the state vector C[n+l\nJ can be predicted 

according to 

n 

C[n+l\nJ = 2:= E[cn+lo:flRk1O:k 
k=l 

n-l 

2:= E[Cn+l o:flRkl O:k + E[Cn+l o:t;lR:;:;-l O:n, 
k=l 

where Rk is the autocorrelation matrix of the innovation process O:b which is given by 

Upon substituting (3.37) into (3.40), we obtain 

where 

which represents the autocorrelation matrix of the predicted state error vector ek. 

From (3.34) we know that O:k is orthogonal to wn+l for 0:::; k :::; n. Then, we can obtain 

E[cn+lo:fl = E{[Fncn + wn+l]o:f} 

F nE[cno:f], 0:::; k ::; n. 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

Upon substituting (3.43) into (3.39), C[n+l\nJ can be obtained from C[n\n-lj, with the recursive equa

tion expressed as 

(3.44) 

where Gn is the Kalman gain, which is given by 

G n E[Cn+lo:t;]R:;:;-l 

F nKnHt; R:;:;-l , (3.45) 
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while Kn+ 1 is given by 

Kn+1 = E[en+1 e;:+lJ 
F nMnF;: + QWn+1' (3.46) 

which is referred to as the Riccati difference equation [1]. Furthermore, in (3.46) Mn is given by [2], 

Mn = E[ene;:] 

E[(cn - C[nln])(cn - C[nln])H] 

= Kn - KnH;: (HnKnH;: + Qvn)-lHnKn, (3.47) 

which represents the autocorrelation matrix of the estimation error vector en. 

3.3.2 Initialization of the Kalman Filter 

The initialization described in [1] will be used in this chapter. Specifically, (:[01- 1] and Ko can be 

initialized as 

Ko = E[(co - E[co]) (co - E[co])H], 

respectively. Since Cn has a zero mean, we have 

(:[01-1] = E[co] = 0 

Ko = E[(co - E[co]) (co - E[coJ)H] 

= E[coc~J. 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

In summary, when using the classic Kalman filter, F n, H n, QWn and QVn have to be known in 

advance, while (:[01-1] and Ko are initialized according to (3.48) and (3.49), respectively. Then, R.n, 

Gn, an and C[n+llnJ can be computed according to (3.41), (3.45), (3.37) and (3.44), while Kn+1 and 

Mn are updated according to (3.46) and (3.47), respectively. 
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Having discussed the classic Kalman filtering principles, let us now investigate the application of 

Kalman filtering for the LRP of wireless channels. 

3.3.3 Application of the Kalman Filter for One-Step Long-Range Prediction 

As we have described in Section 2.5.3, the channel's complex-valued coefficients can be expressed as 

in (2.32), which is repeated here for convenience, 

p 

Cn = E akCn-k + W n , 

k=l 

(3.52) 

where [aI, a2,'" ,ap ] and CJ;n are determined by (2.35) and (2.38), respectively. In order to invoke 

the vector-based Kalman filter for the LRP, we define a p-dimensional state vector en at the time 

instant t = nTs as 

(3.53) 

Hence, we have 

(3.54) 

where F n-l is a (p x p )-dimensional transition matrix, which is given by 

al a2 a3 ap-l a p 

1 0 0 0 0 

0 1 0 0 0 
Fn-l = (3.55) 

0 0 1 0 0 

0 0 0 1 0 

while Wn is a p-dimensional process noise vector, which is expressed as 

Wn = [WmO,··· ,of· (3.56) 

Let the (1 x p )-dimensional measurement matrix Hn be defined as 

Hn = [bn, 0, 0, ... ,0], (3.57) 
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where bn is the data symbol after modulation. Then, according to (3.3) , the measurement equation 

can be written as 

(3.58) 

Based on the above arguments and according to the Kalman filtering principles described by (3.45), 

(3.46), (3.47), C[n+Iln] can be obtained recursively by 

(3.59) 

where 

(3.60) 

(3.61) 

(3.62) 

where the first element in C[n+Iln]. is the prediction of Cn+l based on rl,'" ,rn , while the first 

element in K n+ 1 is the corresponding MMSE, when Cn+1 is predicted by the observations rl, ... ,rn . 

Since Cn+1 is predicted based on the observations until the instant n, Le. based on rl, ... ,r n' the 

corresponding prediction is the simplest possible one-step prediction. Let us now consider our LRP 

problem in conjunction with an arbitrary prediction range. 

3.3.4 Application of the Kalman Filter for Long-Range Prediction 

In order to predict the channel's complex-valued coefficients for an arbitrary time interval T, T > 0 

ahead of the available observations, (3.62) is modified as 

p-l 

Cn+r = 2: arkCn-k + W n+n T > 0 
k=O 

and a p-dimensional AR coefficient vector a r is defined as 

(3.63) 

(3.64) 
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which can be expressed as [78] 

R - 1 
aT = CCTrCT' (3.65) 

where RCCT is the (p x p )-dimensional autocorrelation matrix of the state vector Cn. The matrix RCCT 

is given by 

1'(0) 

1'(1) 

1'*(1) 

1'(0) 

1'*(p - 1) 

1'*(p - 2) 

1'(p - 1) 1'(p - 2) 1'(0) 

(3.66) 

while r CT is the p-dimensional cross correlation vector of the desired channel coefficient CT and of the 

state vector Cn, which is given by 

(3.67) 

associated with 1'(l) = E[cnc~_zl, 1'*(l) = E[Cnc~_ll*. Accordingly, the variance of the noise wn+T 

in (3.63) is given by 

p-l 

(T~n+T = 1'(0) - L aTk1'(-k - r). (3.68) 
k=D 

Let a (p x 1 )-dimensional state vector cn+r be defined as 

(3.69) 

Then, the process equation of the Kalman filter can be expressed as 

(3.70) 



3.3. KALMAN FILTER ASSISTED LONG-RANGE PREDICTION 43 

where F nT is a (p x p )-dimensional transition matrix, which can be expressed as 

aTo ad aT2 aT(p-2) aT(p-l) 

1 0 0 0 0 

0 1 0 0 0 
FnT = (3.71) 

0 0 1 0 0 

0 0 0 1 0 

while w n+T is a p-dimensional process noise vector, which is expressed as 

(3.72) 

After C[nln-l] is obtained according to (3.59), C[n+Tln] can be expressed as 

(3.73) 

where the first element in C[n+Tln], is the prediction of Cn+T based on rl, ... ,rn and G m is given by 

(3.74) 

Furthermore, we have 

where the first element in Kn+T is the corresponding MMSE. Note that when T = Ts , the LRP 

derived for an arbitrary prediction interval is the same as the one-step LRP. 

In the next section, various examples are provided in order to show the characteristics of the LRP 

invoking the classic Kalman filtering principles. 

3.3.5 Performance Analysis of the Kalman Filter Assisted Long-Range Prediction 

In this section, the simulation results are given to illustrate the performance of the Kalmang filter 

assisted LRP. Furthermore, pilot symbol assisted modulation (PSAM) [74] is invoked in this section 

and bn = 1 is assumed to be the pilot symbol, which is inserted according to the sampling frequency 

of is as shown in Figure 3.7 where pilot symbol is inserted every L symbols. Consequently, the 
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I" L-_~I I" L 

I datal pilot/ datal... : I data[ .................... . ..I pilot data!:::::::::::::::1 datal pilot I datal 

predicted channel 
Channel predictor 

Figure 3.7: Pilot-assisted flat fading channel prediction 

Maximum Doppler frequency i dm lOOHz 
Sampling rate is 500Hz 
Data symbol rate ib 25KHz 
Prediction range T 0.002s 

Table 3.2: Parameters for Kalman flter assisted long range prediction 

measurement matrix Hn in (3.57) can be expressed as 

Hn = [1,0,··· ,0]. (3.76) 

In Figure 3.8, the achievable MMSE performance is evaluated versus the order p of the predictor 

for the Kalman fiter assisted LRP with respect to different SNR values, when the 500th sample is 

predicted. The remaining parameters were summarized in Table 3.2. Furthermore, the prediction 

range of T = 0.0028 cOITesponds to one-step prediction in this case. As we can see from the results 

of Figure 3.8, for a given SNR value, initially the MMSE value decreases rapidly and near-linearly 

upon increasing the predictor's order p, before it reaches a MMSE floor for a moderate order p. 

For predictor orders in excess of this value the MMSE remains near-constant, regardless of further 

increasing the predictor's order p. Since the order p is related to the complexity of the prediction and 

the complexity is usually on the order of O(p3) for the Kalman filter based prediction, the minimum 

value of p used for Kalman filter assisted LRP may be found based on the specific combination of the 

remaining system parameters, such as idm, T, SNR, etc. Additionally, we can see from Figure 3.8 for 

high SNR values, usually a Kalman filter having a slightly higher order p is required for reaching the 

the MMSE floor-value. This is because for higher SNRs, the precision of the AR model of the channel 

dominates the performance of preditor, while for lower SNRs the measurement noise dominates the 
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Figure 3.8: MMSE versus the predictor order p performance for the Kalman fiter assisted LRP with respect to 
different SNR values, when the 500th sample is predicted. The remaining parameters are summa
rized in Table 3.2. 

performance of the predictor instead of the predictor's order p. Furthermore, when the SNR increases, 

the MMSE recorded for a specific predictor order is reduced, because the influence of measurement 

noise diminishes. Addtionally, when the predictor order p is higher than 15, there are some spikes 

in the MMSE curves of Figure 3.8. This is because the matrix Rcc used for calculating the AR

model's coefficients in (2.35) is ill-conditioned for these preditor orders and hence the results become 

unreliable [78,79]. 

In Figure 3.9 we evaluate the convergence of Kalman filtering assissted LRP in terms of its MMSE 

versus the number pilots used for LRP for different SNR values, when the preditor's order is p = 15. 

The remaining parameters are assumed to be the same as in Table 3.2. We observe from the results 

of Figure 3.9 that for a given SNR value, the MMSE initially decreases near-linearly upon increasing 

the number of the pilots and finally reaches a constant MMSE floor value. Futhermore, Kalman filter 

assisted LRP converges faster for higher SNR values because the influence of the measurement noise 

is less dominant. Additionally, for a given number of pilots, the MMSE decreases upon increasing 

the SNR. 
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Figure 3.9: MMSE perfonnance versus the number of pilots used by the LRP at different SNR values when 
assiming that the order of the predictor is p = 15, while the remaining parameters are assumed to 
be the same as in Table 3.2. 

3.4 Conclusions 

In Section 3.2, MMSE assisted LRP designed for narrowband fading channels has been discussed. 

From the results of Figures 3.4 and 3.3 we conclude that the best MMSE performance may be 

achieved by choosing an appropriate sampling rate is, which can be significantly lower than the data 

rate ib. In order to further improve the achievable performance, in Section 3.3 more sophisticated 

Kalman filtering assistedLRP was proposed and investigated. 



~~----------------------------~ 
Long-Range Linear Prediction of Wideband 

Fading Channels 

4.1 Introduction 

In the previous chapter, we have mainly discussed LRP in the context of narrowband fading chan

nels. However, high-rate state-of-the-art wireless communications typically experience frequency

selective wideband fading rather than flat fading. In the context of wideband channel conditions, the 

system suffers from intersymbol interference lSI [81]. In order to cope with this problem, multicar

rier transmission systems have been proposed, such as Orthogonal Frequency-Division Multiplexing 

(OFDM) [5], which is capable of transforming the frequency-selective fading channel into to numer

ous low rate parallel flat fading channels, hence avoiding the lSI. However, a specific drawback of 

OFDM is its high peak-to-average power ratio (PAPR). As a design alternative, single carrier fre

quency domain equalization (SC-FDE) has been proposed as a couterpart of OFDM, which promises 

a similar performance to that of OFDM, but without imposing a high PAPR [86,87]. 

Recently, pre-equalization applied in the frequency domain has attracted wide attention [88-90], 

which is capable of simplifying the design of the receiver. Furthermore, advanced techniques such 

as adaptive modulation and precoding have also been investigated in the context of single carrier 

wideband systems [4,91-94]. However, both pre-equalization in the frequency domain and adaptive 

modulation require the accurate channel state information (CSI) at the transmitter side. As a design 

option, the receiver can estimate the CSI and feed it back to the transmitter. However, due to the 

inherent delay, the estimated CSI becomes outdated at transmitter. Altervaltively, channel prediction 

47 
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can be used for solving this problem. Therefore, it is important to investigate wideband channel pre

diction designed for suppOlting sophisticated transmitter preprocessing techniques, such as adaptive 

modulation [4---6], pre-Rake processing [95], multiuser transmission techniques [96]. 

In [20] the ESPRIT algorithm has been employed for wideband channel prediction. Since the 

wideband channel transfer function (CTF) tends to be highly correlated, in [20J the CTFs were deter

mined during an observation interval and were then used by the ESPRIT algorithm in order to keep 

track of the CTF's poles. Once the poles of the CTF have been estimated, the corresponding com

plex CIR-tap gains can be determined by solving a set of linear equations and can also be used for 

predicting their future values. In contrast to [20], in [21,22] both the 1-D and 2-D Unitary-ESPRIT 

algorithm assisted by a so-called chirp-signal estimation scheme have been employed for estimating 

the CTF's parameters. Once these parameters have been determined, the CTF can be predicted both 

in the time-domain and frequency-domain in order to provide future estimates. With this motivation, 

in this chapter we investige the LRP of wideband channels. 

The rest of this chapter has the following structure. The wideband channel is described in Sec

tion 4.2, while classic single carrier data transmission is discussed in Section 4.3. In Section 4.4 the 

philosophy of two-dimensional (2-D) channel estimation applied in a single carrier system is demon

strated, while a LRP aided single carrier wideband system is proposed in Section 4.5. Our simulation 

results are provided in Section 4.6. Finally, our conclusions are offered in Section 4.7. 

4.2 Description of the Wideband Channel 

The received signal of wideband wireless communication systems can be expressed as [97,98J 

+00 
r(t) = L bkC(t; t - kTb) + z(t), (4.1) 

k=-oo 

where bk represents the discrete-time transmitted signal, Tb is the symbol period and z(t) is the 

AWGN contaminating the received signal. In (4.1) c( t; T) represents the combined channel impulse 

response (CIR), which can be expressed as 

c(t; T) = g(t) ® g(t; T) ® g*(-t), (4.2) 

where g(t) and g* (-t) represent the pulse shaping filter at the transmitter and the corresponding 

matched filter at the receiver, respectively. Furthermore g(t; T) represents the CIR of the time-varying 



4.3. SINGLE-CARRIER BLOCK-BASED DATA TRANSMISSION 49 

frequency-selective fading channel, which can be expressed as [43] 

+00 
get; T) = L (Xl (t)O(T - Tl), (4.3) 

1=-00 

where l is the multipath component index, while T{ and (Xl (t) represent the delay and the complex 

channel gain of the lth path, respectively. Furthermore, in (4.2) the symbol 0 denotes the convolution 

operation. 

When r( t) of (4.1) is sampled at the symbol rate, the output of the matched filter can be expressed 

as 

+00 
rn == r(t)lt=nn = L bkc(nTb;nn - kn) + z(nn) 

k=-oo 
+00 

= L bkc(n;n-k) + Zn 
k=-oo 

+00 

= L c(n;k)b(n-k) + Zn· 
k=-oo 

(4.4) 

As shown in (4.4), the impulse response C(n;k) generally extends to infinity. However, in practical 

communications applications it is common to truncate it at some order L, yielding the discrete-time 

model, which can be expressed as 

L-l 

rn = L c(n;k)b(n-k) + Zn· 
k=O 

(4.5) 

Let us now consider channel estimation and prediction in the context of a single-carrier wideband 

system. 

4.3 Single-Carrier Block-Based Data Transmission 

In wideband frequency-selective fading channels, different frequencies may experience different fad

ing, if the frequency band is wider than the coherence bandwidth of the channel. By contrast, when 

the transmission bandwidth is signifficiantly lower than the coherence bandwidth of the channel, all 

frequencies will experience similar fading. An attractive technique of estimating or predicting wide

band fading channels - in particular, if their CIR is long - is to transfer the received signal from the 

time-domain to the frequency-domain and then estimate or predict the channel in the frequency do-
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Data Block I _ 
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Frequency-Selective 

Fading Channel IFF[ 

Figure 4.1: Schematic of single-carrier block-based data transmission 

~ Channel Estimation 
and Prediction 

main. Specifically, the total frequency band can be divided into a number of subbands having a low 

bandwidth. Consequently, the signals associcated with each subband experience flat fading. In this 

case, the channel corresponding to each of the subchannels can be estimated or predicted by invoking 

various algorithms designed for flat fading channels. Each subchannel can be predicted, for example, 

using the LRP approaches that have been investigated in Chapter 3. 

In [86,87,99-101], a single-carrier block-based transmission scheme designed for multipth fading 

channels has been discussed, which was shown in FigA.1 . In the context of block-based data trans

missions, each block is constituted by N useful data symbols, namely by [bCk;O), b(k;l)" .. ,b(k;N-l)] 

for the kth block. In order to eliminate the interblock interference (lBI), each transmission block 

is also quasi-periodically extended by a length-u cyclic prefix repeating the last u symbols of the 

transmission block, where the value of u is determined by the CIR duration. Specifically, if the CIR 

is modeled by an Lth-order filter, then u should satisfy u 2: L - 1 (99J. Consequently, a data block is 

comprised of (N +u) data symbols expressed as [bCk;N-u), ... , b(k;N-l), bCk;o), b(k;2)' ... , bCk;N-1)l. 

Let TB be the duration of a data block and n be the duration of a data symbol. Then we have 

TB = (N + U)Tb' (4.6) 

We assume that the CIR taps of the channel concerned remain constant during the transmission 

of a data block [86,87,99-101]. Furthermore, we assume that for the kth data block, the CIR vector 

Ck can be expressed as 

(4.7) 

where 

(4.8) 

represents the channel's amplitude in correspondence with the lth data symbol within the kth data 

block. Hence, according to (4.5) and (4.8), the received signal's samples observed during the kth data 
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block can be expressed as 

L-1 

r(k;n) = L C(k;l)b(k;n-l) + Z(k;n), n = 0, 1"" ,N - 1,'" ,N + u - 1. (4.9) 
1=0 

Having received (N + u) number of observed samples corresponding to a data block, the first 

u samples are discarded, in order to eliminate the IEI. Consequenctly, following the removal of the 

cyclic prefix the N received samples of the kth data block can be expressed as 

(4.10) 

where rk consists of the N observation samples, which is expressed as 

(4.11) 

Zk is the N-dimensional noise vector, which is expressed as 

(4.l2) 

while bk is aN-dimensional vector containing the N number of transmitted data symbols, which is 

denoted by 

(4.l3) 

Finally, in (4.10) C k is a (N x N)-dimensional circulant matrix with the first coulmn containing CIR 
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followed by (N - L) zeros [100], where C k is given by 

Co 0 0 0 CL-l CL-2 Cl 

Cl Co 0 0 0 CL-l C2 

0 

0 0 

CL-2 Co 0 CL-l 
Ck = (4.14) 

CL-I CL-2 Co 0 0 

0 CL-I Co 0 

0 0 0 

0 

0 0 0 CL-l CL-2 CI Co 

Since C k of (4.14) is a circulant matrix, it can be shown that C k can be expressed as [100,102] 

(4.15) 

where the superscript {-}H represents the conjugate transpose operation, Q is the (N x N)

dimensional orthonormal discrete Fourier transform (DFT) matrix and its (m, n)th element of Q(m,n) 

is given by 

1 -j27r= 
Q(m,n) = .;Fie N, 0::; m, n ::; N - 1. (4.16) 

Furthermore, it can be shown that Q has the property of 

(4.17) 

In (4.15) Ak is a diagonal matrix, whose (n, n )th element is equal to the nth DFT coefficient of 

[co, CI,'" ,CL-I], where the DFT can be expressed as 

L-1 
v "" -j27r!E. 
C(k;n) = ~ c(k;l)e N , O::;n::;N-1. (4.18) 

1=0 

In fact, the DFT of [C(k;O), c(k;l), ... , C(k;L-1)] is the discrete CTF. In Figure 4.2, IC(k;n) I represents 

the envelope of the discrete CTF of C(k;n)' which is ploted for N = 128, L = 10. Observe in 



4.3. SINGLE-CARRIER BLOCK-BASED DATA TRANSMISSION 

IC(k;n) I expressed in dB 

5 

o 
-5 

-10 

-15 

-20 

10
20 

o 

90
100 

70
80 

50
60 

3040 Time index (k) 

53 

Figure 4.2: Envelope of the Discrete Channel Transfer Function (CTF) for a channel corresponding to f dm = 
120H z, data block duration of TB = 0.000258, L = 10, N = 128. The power intensity is set to 
0.1 for each path 

Figure 4.2, that the CTF can be estimated or predicted either in the time-domain or in the frequency

domain, since it exhibits correlation along both axes. 

Therefore, upon applying the DFf to the received samples rk> rk can be transformed from the 

time-domain to the frequency domain. Specifically, after applying the DFT to rk of (4.10), we arrive 

at the frequency domain observation vector, which can be expressed as 

(4.19) 

When substituting (4.10) and (4.15) into (4.19) and using the property of (4.17), we obtain 

(4.20) 

where bk = VHQbk represents the DFT of the input symbol vector of bk and Zk = VHQZk is the 

DFT of the noise vector Zk. If AWGN has a covariance of No, then, the covariance matrix of Zk is 

given by NoIN. Consequently, according to (4.17), the covariance matrix of Zk can be formulated as 
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E[Zkztn = N NoIN. Hence, the noise vector of Zk in the frequency domain is still a white Gaussian 

noise vector. 

By expanding (4.20), the nth element ofrk can be expressed as 

(4.21) 

where "'p(k;n) is the nth DFTcoefficient of the received observation samples rk = [r(k;O) , r(k;l)," . ,r(k;N-l)V, 

i.e. we have 

N-l 
v ~ _j2rrmn 
rp(k;n) = L-- r(k;m)e N , o ~ n ~ N -1, (4.22) 

m=O 

bp(k;n) in (4.21) is the nth DFT coefficient of the transmitted data symbols of b k = 

[b(k;O), b(k;l),··· ,b(k;N-l)V, which is expressed as 

N-l 

b
v 

~ b -j2rrlli!!. 
p(k;n) = L-- (k;m)e N , O~n~N-1. (4.23) 

m=O 

Finally, Zp(k;n) is the nth DFT coefficient of the noise samples Zk = [zck;O) , Z(k;l), ... , Z(k;N -l)V, 

which is given by 

N-l 
v ~ -j2rrlli!!. 
zp(k;n) = L-- Z(k;m)e N , O~n~N-1. (4.24) 

m=O 

Above we have briefly characterized the family of wideband wireless channels, which exhibit 

time-varying frequency-selective fading. Hence, it is expected that in wideband systems the channel 

estimation and prediction process becomes significantly more complex than in narrowband systems. 

Below we investigate the process of channel estimation and LRP in the context of single-carrier 

wideband systems. 

4.4 Estimation of Wideband Channels 

Since at the receiver side only noisy channel samples are available, the noise may have a significant 

impact on the achievable performance ofllie prediction, ifllie noisy channel samples are directly used 

for channel prediction williout any preprocessing. In order to mitigate the effects of the noise on the 

channel prediction, first channel estimation is carried out. 
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4.4.1 Two-Dimensional Channel Estimation 

Wideband channel estimation techniques may be classified as time-domain (TD) [4] or as frequency

domain (FD) [5] methods, which have different applications. The main criterion of deciding between 

these design options is essentially the length of the CIR expressed in terms of the number of trans

mitted symbols. More explicitly, given a total delay-spread of say 1 us in a certain propagation envi

roment, it is the transmission rate, which determines the normalized CIR length. For example, at a 

signalling rate of 1M Baud, a relatively short channel-sounding sequence of a few symbol-duration 

would provide an adequate CIR estimate, hence requiring a relatively low-order channel equalizer. 

By contrast, at 100M Baud the channel's despersion is on the order of 100 symbols, which may 

require an excessive channel sounding sequence duration and overhead as well as a complex, high

order time domain channel equalizaer. Furthermore, when employing LRP for the sake of improving 

the achievable channel estimation accuracy, on the order of 100 CIR taps would have to be predicted. 

In this scenario it may become implementationally less complex to transform the received N -symbol 

TD pilot block - which physically represents the estimated CIR - to the FD and carry out the LRP of 

the FD CTF, as we will discuss in the context of Figure 4.5. 

In [103-107], a 2-D channel estimation algorithm has been proposed for wideband channel es

timation aided multi-carrier systems. As shown in [103], the pilot symbols may be transmitted on 

different sub carriers of the OFDM symbols. At the receiver, two cascaded I-D filters are used for es

timating the channel in the frequency-domain and time-domain, respectively. This decomposed 2-D 

channel estimation algorithm has also been used in [104], where two cascaded I-D filters were in

voked for channel estimation in order to improve the attainable performance of MC-CDMA systems. 

Furthermore, in [105-107] a 2-D channel estimation algorithm using a 2-D Wiener filter was used for 

minimizing the MSE of 2-D channel estimation. The performance of channel estimation using two 

cascaded I-D filters was shown to be similar to that of2-D filters in [105-107]. However, the former 

has a lower complexity than the latter [l05-107]. 

From now on let b~k = [bp(kiN-u) , ... ,bp(ki N - 1), bp(kiO) , ... ,bp(kiN-1ll denote the pilot symbol 

block, while b~k = [bd(ki N - u ) , '" ,bd(ki N - 1), bd(kiO) , '" ,bd(ki N - 1)] denote the data symbol block. 

Then the transmission of the pilot symbol block and data symbol block is illustrated in Figure 4.3. 

Moreover, in Figure 4.3 M denotes the interval between two pilot symbol blocks. Furthermore, 

let rpk = [rp(kiO) , ... ,rp(kjN-1)] denote the received signal block of (4.10) corresponding to pilot 

symbol block b~k after the removal of the cyclic prefix, while r dk = [r d(kjO), ... , r d(kjN -1) J denote 

the received signal block of (4.10) corresponding to data symbol block b~k after the removal of the 



56 CHAPTER 4. LONG-RANGE LINEAR PREDICTION OF WIDEBAND FADING CHANl\T£LS 

Time Index 

Figure 4.3: Illustration of transmitted symbol block, where the vector b~k denotes the pilot symbol block while 

the vector b~k denotes the data symbol block. Moreover, M denotes the interval between two pilot 
symbol blocks. 

.. ·",rdl'''') 

Time Index 

Figure 4.4: Illustration of received signal block, where the vector rpk denotes the received singal block cor

responding to pilot symbol block b~k' while the vector rdk denotes the received signal block 

corresponding to data symbol block b~k' 

cyclic prefix, as shown in Figure 4.4. 

The illustration of CTF estimation and CTF prediction in the context of single-carrier systems is 

described in Figure 4.5 where M denotes the interval between two pilot symbol blocks. 

Let bpk = [bp(k;O) , bp(k;l),'" ,bp(k;N_d
T denote the N-symbol pilot data vector. Then accord

ing to (4.1 0), the corresponding N -symbol recived signal vector r pk is given by 

(4.25) 

where Cpk is the N x N -component circulant CIR matrix of (4.14) corresponding to the pilot symbol 

:::F;j~F: 

channel prediction by Kalman filter 

Figure 4.5: Illustration of channel estimation and LRP for single carrier systems 
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: predicted CTF , , 
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block and Zpk is the N-component the AWGN vector, currupting the pilot symbol block. The N

symbol time-domain pilot information can be converted to the frequency-domain with the aid of the 

N-point DFT of (4.20) as shwon in Figure 4.5, yielding 

rpk v'NQCpkbpk + v'NQZpk 

Apk bpk + Zpk. 

According to (4.21), the received signal rp(k;n) is expressed as 

rp(k;n) = Cp(k;n)bp(k;n) + Zp(k;n) , n = 0,1, ... ,N - 1. 

(4.26) 

(4.27) 

Upon dividing both sides of (4.27) by bp(k;n), the resultant estimate of Cp(k;n) can be expressed as 

_ r p(k;n) v .zp(k;n) 
Cp(k;n) = -v-- = cp(k;n) + -v--, n = 0,1"" ,N - 1, 

bp(k;n) bp(k;n) 

(4.28) 

where Cp(k;n) represents the estimate of Cp(k;n) provided by the nth DFT bin on the basis of the time

domain pilots b pk' The autocorrelation of Cp(k;n) may be expressed as [106] 

r[k - k'; n - n'J = r[~k; ~nj = E[Cp(k;n)C;(k' ;n,)l 

= rt[k - k/jrf[n - n'l 

= rt[~klrf[~n], (4.29) 

where we have ~k = k - k', ~n = n - n', and rt[~kj is the resultant time-domain autocorrelation 

function, which can be expressed as [106] 

(4.30) 

where again, TB is the duration of the symbol block, Jo (-) is the zero order Bessel function of the first 

kind and fdm is the maximum Doppler frequency. In (4.29) rf[~nJ is the autocorrelation function in 

the frequency-domain, which can be expressed as [108] 

L-1 

rf[~nl = L a-re-j27rb.nfoTl, (4.31) 

1=0 

where we have fo = l/(Nn) [109], n represents symbol duration and L is the number of multi path 
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components. Finally, in (4.31) TZ is the delay of the lth multipath component and (jf is the average 

power of the lth multi path component. 

The autocorrelation function of Cp(kin) can be expeseed as 

(4.32) 

where we have exploited that Cp(kin ) is uncorrelated with Zp(kin ) and that Zp(k;n) is the AWGN with 

zero mean and a variance of N No [110], Furthermore, the crosscorrelation between Cp(k;n) and Cp(k;n) 

is expressed as 

(4.33) 

Let us now consider wideband channel estimation based on two cascaded I-D filters. In this case 

channel estimation is carried out first in the frequency-domain and then in the time-domain. 

4.4.1.1 Frequency-Domain Channel Estimation 

In the context of FD channel estimation as shown in Figure 4.5, the channel estimates formulated in 

(4.28) are used. Consequently, the optimum channel estimation in the MMSE sense formulated in the 

frequency-domain can be expressed for the pilot data block at time instant k as 

N-l 

~(k;n) = L d(k;i)cp(k;i) 
i=O 

o ~ n ~ N -1, (4.34) 

where Cp(k) = [Cp(k;O) , Cp(k;l), .. , ,Cp(k;N-l)? and Cp(k;n) represents the estimate of Cp(k;n) in 

the frequency-domain. Furthermore, in (4.34) d(k;i) denotes the ith filter coefficient and d(k) = 

[d(k,O) , d(k;l)"" ,d(k;N-1)lT denotes the coefficient vector of the frequency-domain filter used for 
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estimating Cp(k;n), which is determined by [1], 

d R -l 
(k) = f rf, (4.35) 

where Rf is the (N x N)-dimensisonal autocorrelation matrix of Cp(k)' which is given according to 

(4.32) by: 

R f E[Cp(k)C~k)J 

rt[OJrf[OJ + I.fNoI2 
(kiO) 

rt[OJrf[lJ 

rt[OJrf[-lJ 

rdOJr f [OJ + 1 boN N°12 
(kil) 

rt[OJr f [1 - NJ 

rt[OJr f [2 - NJ 
(4.36) 

and rf is the N-dimensional cross correlation vector between Cp(k) and c;(k;n)' which is given ac

cording to (4.33) by 

= (4.37) 

_ v* 
Cp(k;N-l)Cp(k;n) 

Based on (4.30), we have 

rt[OJ = Jo(O) = 1. (4.38) 

Hence upon substituting Eq.(4.38) into (4.36) and (4.37), we have 

rf[OJ + I.fNoI2 
(kiO) 

rf[-lJ rf[l- NJ 

rf[lJ rf[OJ + I.fNoI2 rf[2 - NJ 
(4.39) Rf (ki l ) 

rf[N -1] rf[N - 2] 1" [0] + NNo 
f Ib(k;N -1) 12 
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and 

(4.40) 

rj[N -1- n] 

After frequency-domain estimation, the minimum MSE can be derived as follows. Let Jj(k;n) 

denote the MSE after frequency domain estimation. Then we have 

(4.41) 

Upon substituting (4.34) into (4.41), we arrive at: 

Jj(k;n) = E[(Cp(k;n) - d~)Cp(k))(Cp(k;n) - d~)Cp(k))*] 

E[I V 12 d H - v*' d T -* v d H - -H d ] 
Cp(k;n) - (k)Cp(k)Cp(k;n) - (k)Cp(k)Cp(k;n) + (k)Cp(k)Cp(k) (k) 

= er~ - d~)r j - d~/; + d~)Rjd(k)' (4.42) 

where according to (4.29) and (4.38), we have 

L-1 

er~ = E[ICp(k;n) 12] = rt[O]r j [0] = r j [0] = L err, (4.43) 
1=0 

which represents the average power of Cp(k;n) received over L multipath component channels. Fur

thermore, when substituting (4.35) and (4.43) into (4.42), it can be shown that the minimum MSE 

Jjo(k;n) after the frequency domain filtering is given by 

J = 2 HR-1 
jo(k;n) ere - r j j rj 

= rj[O]- rfRj1rj. (4.44) 

Finally, after MMSE frequency-domain estimation, Cp(k;n) can be expressed as 

(4.45) 
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where ((k;n) represents the estimation error between Cp(k;n) and Cp(k;n) in the MMSE sense, which can 

be modeled as a zero mean process having a variance of Jjo(k;n)' Furthermore, the autocorrelation 

function of Cp(k;n) derived for a given frequency component is given by 

E[(Cp(k;n) + ((Jc;n») (cp(k';n) + ((k';n»)*j 

rtlk - k'jrj[Oj + Jjo(k;n)o(k - k'), (4.46) 

where we have used the property that, in Wiener filtering, ((k;n) is independent of Cp(k;n) and ((k;n) is 

also independent of ((k';n)' when k -::f. k' [106,107]. The crosscorrelation between Cp(k;n) and Cp(k;n) 

derived for a given frequency component can be expressed as 

4.4.1.2 Time-Domain Channel Estimation 

E[(Cp(k;n) + ((k;n»)c;(k' ;n)] 

rt[k - k'jrj[Oj. (4.47) 

In section 4.4.1.1 the CTF corresponding to N-symbol pilot block was carried out in the frequency

domain in the context of a fixed time index k. Recall from Figure 4.2 that the consecutive time-domain 

fading samples associated with different values of k and recorded for each fixed frequency index n 

of the FD CTF are also correlated. Hence, following frequency-domain CTF estimation, we can 

carry out CTF estimation also in the time-domain for both the pilot and the data blocks as seen in 

Figure 4.5. Specifically, if at time instant k an N-symbol pilot block was received first, FD CTF 

estimation is carried out, as discussed in Section 4.4.1.1. Then, for a fixed frequency index n, K 

consecutive estimated FD CTFs Cp(k;n) of (4.34) were collected and assigned to a K-element vector 

cp(n), which is given by 

~ [~~ ~ ]T 
cp(n) = Cp(k;n) , Cp(k-M;n) , ... ,Cp(k-(K -l)M;n) . (4.48) 

Hence the optimum linear CTF estimation in the MMSE sense can be expressed in the time domain 

as [106] 

K-l 

L dej;nip(k-jM;n) 
j=O 

d H ~ 
(n)cp(n), (K - l)M ::; k' ::; k, (4.49) 
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where c(k' ;n) is the estimate of c(k' ;n) based on the samples cp(n) estimated in the frequency-domain, 

while den) = [d(O;n), d(l;n),'" ,d(K-l;n)V denotes the coefficient vector of the time-domain filter, 

which is given by [1] 

(4.50) 

where Rt is the (K x K)-dimensional autocorrelation matrix of cp(n)' expressed as 

R t = E[cp(n)C~n)] (4.51) 

rdO]rf[O] + Jfo(O;n) rd-M]rf[O] rtl(l - K)M]rf[O] 

rt [M]rf [0] rtfO]r f [0] + Jfo(l;n) rt[2 - K]rf[O] 

rt[(K - l)M]rf[O] rtf(K - 2)M]rf[0] rt [OJr f [0] + Jfo(K -l;n) 

Furthermore, rt in (4.50) is the K-dimensional cross-correlation vector of Cp(n) and cCk';n), which is 

given by 

: (4.52) 
[ 

rt[-k']rf[O] 1 
rt[(K - l)~ - k']rf[OJ . 

Correspondingly, the MMSE Jto(k;n) recorded after the time-domain channel estimation can be ex

pressed as 

J = (J'c? - rtHn-lrt to(k' ;n) .L"I; 

(4.53) 

After the time-domain estimation in the MMSE sense, C(k;n) can be expressed as 

C(k' ;n) = c(k' ;n) + ~(k' ;n) (4.54) 

where ~(k' ;n) represents the estimation error between c(k' ;n) and c(k' ;n) in the MMSE sense, which is 

a zero-mean process with a variance of Jto(k' ;n)' 

Let us now investigate the LRP of wideband channels based on the observation samples obtained 

in this section. 
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4.5 Long-Range Channel Prediction of Wideband Channels 

Above we have demonstrated the principles of 2-D wideband channel estimation. In order to em

ploy the narrowband based Kalman filtering assisted LRP described in Section 3.3 in the context of 

wideband channels, the CTF Cp(k;n) estimated after the first stage frequency-domain filtering can be 

directly used for TD CTF prediction. Hence, the CTF corresponding to the next pilot symbol block is 

predicted with the aid of all previous pilot blocks available from the past, as illustrated in Figure 4.5, 

which allow us for example to predict the resultant CTF for the future instant of reception at a mobile 

receiver by a transmit preprocessing scheme. 

Since any of the frequency components experiences flat fading, the Kalman filtering assisted LRP 

derived in Section 3.3 can be directly used in the context of each frequency components. 

More specifically, for any fixed frequency component n, according to (3.52), the channel's future 

state can be described by the AR process of [79] 

P 

Cp(k;n) = L amCp(k-mM;n) + W(k;n), 

m=l 

(4.55) 

where P is the order of the AR process. Let Cp(k;n) be a P-dimensional CTF vector, which is written 

as 

U [U U U JT 
cp(k;n) = Cp(k;n) , Cp(k-M;n) , ... ,Cp(k-(P-l)M;n) . (4.56) 

Then, the channel prediction problem can be modelled by the classic Kalman process equation of [1] 

(4.57) 

where F(k-l;n) and W(k;n) are defined in (3.55) and (3.56), respectively. According to (3.58), the CTF 

Cp(k;n) of (4.45) estimated in the frequency domain can be expressed by the Kalman measurement 

equation as 

(4.58) 

where H(k;n) is a (1 x P)-dimensional measurement matrix, which is given by 

H(k;n) = [1,0"" ,0]. (4.59) 

According to (3.59), the prediction of Cp(k+l;n)' which is the specific value of the CTF at fre-
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quency index n at time instant (k + M), can be expressed as [1] 

Cp[(k+l;n)l(k;n)] = F(k;n)Cp[(k;n)l(k-l;n)] + G(k;n)Cl:(k;n) , (4.60) 

where Cp[(k+l;n)l(k;n)] represents the prediction of Cp(k+l;n) in the MMSE sense, based on all the past 

observations corresponding to all the N-symbol pilot blocks from the past until time instant k for a 

fixed frequency component n. Furthermore, in (4.60), G(k;n) is the Kalman gain and Q(k;n) is the 

innovation process [1], which are given by [1] 

(4.61) 

(4.62) 

where K(k+l;n) is the correlation of the prediction state error vector, which is given by [1] 

(4.63) 

and M(k;n) is the estimation state error vector, which is given by [1] 

(4.64) 

Moreover, the first element in K(k+l;n) represents the resultant MMSE, when Cp(k+l;n) is predicted 

by the observations Cp(l;n)"" ,Cp(k;n). 

Let us now provide a range of simulation results in order to characterize the achievable perfor

mance of both wideband channel estimation and prediction. 

4.6 Simulation Results 

For single-carrier wideband systems, the design of optimal pilot sequence has been discussed inten

sively in [111-116]. Since a Chu-sequence [117] has a constant magnitue in both the time domain 

and in the frequency domain, it avoids the high PAPR of OFDM systems and as an added benefit, it 

also yields identical MMSE estimates for all frequency components of the CTF [114-116]. Hence in 
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this section Chu-sequences [117] were adopted as pilot symbols, which are given by [117] 

{ 

expjN';;n2 if N is even 
bp(k,n) = jN'7rn(n+l) 

exp N if N is odd 
(4.65) 

where N' and N are relatively primes [117]. 

Furthermore, according to (4.5), the average received SNR, Tb, calculated before the DFT was 

applied to the pilot symbol block, is defined as 

(4.66) 

where Es is the average energy of bp(k,n), No is the variance of the noise and af = E[IC(k;l) 12] is the 

average power of the Zth path. 

Moreover, according to (4.21), the average received SNR, T(a,n), evaluated for the nth frequency 

component after the DFT operation is defined as 

u 2 
E[IC(k;n)b(k;n)l] 

T(a,n) = E[z 12] 
(k;n) 

(4.67) 

According to (4.18), we have E[lC(k;n) 12] = 'L.~(/ af and E[lZ(k;n) 12] = N No. Hence (4.67) can be 

expressed as 

T(a,n) 
E

u L-I 

s "" 2 NN, ~al' 
o 1=0 

(4.68) 

where Es is the average energy of b(k;n). Since the Chu sequences of (4.66) are adopted, we have 

T(a,O) = T(a,l) = ... = T(a,N-I)' 

Furthermore, in order to demonstrate the benefits of CTF estimation in the frequency domain, we 

introduce the effective SNR T(e,n) for employment in LRP after the FD CTF estimation was carried 
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Normalized Doppler frequency idmTB 0.001 
Number of multi path L=3 
Length of data block N = 128 
Length of cyclic prefix is u=2 
Power intensity for each multipath component 01 1.0/3.0 
Predictor's order P=20 
[TO, Tl, T2J [0, Tb, 2TbJ 

Table 4.1: Parameters for linear wideband channel estimation and prediction 

I 

r-.... 
~ 
~ 

......... 
I ............ 

............. 
r--..... 

'-...... 

2 4 6 8 10 
SNR (dB) 

Figure 4.6: MMSE of (4.44) versus average the SNR per symbol of (4.66) performance of CTF estimation in 
the frequency domain. The remaining parameters are summarized in Table 4.1. 

out for the nth frequency component based on (4.44), which is defined as 

1'(e,n) 
E[/C(k;n) /2J 
E/((k;n)/2 

1 ~ 2 
L..t al' 

Jjo(kjn) l=O 

Likewise we have 1'(e,O) = 1'(e,l) = ... = 1'(e,N-l) since Chu sequences are invoked. 

(4.69) 

In Figure 4.6 the MMSE versus average the SNR per symbol performance of CTF estimation in 
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Figure 4.7: The effective SNR of (4.69) for LRP after CTF estimation in the frequency domain per symbol 
versus average SNR of (4.66) per symbol. The remaining parameters are summarized in Table 4.1. 

SNR'Yb 

Table 4.2: Effective SNR of (4.69) after frequency domain estimation 

the frequency domain is plotted. The system parameters are summarized in Table 4.1. As we can see 

from Figure 4.6, MMSE decreases linearly upon increasing SNR. 

In Figure 4.7 the effective SNR of (4.69) calculated for LRP after CTF estimation in the frequency 

domain per symbol versus the average SNR of (4.66) per symbol is plotted. The remaining parameters 

are summarized in Table 4.1. We can see from Figure 4.7 that the effective SNR of (4.69) increases 

linearly upon increasing the SNR of (4.66). This is because the MMSE of (4.44) decreases linearly 

upon increasing the SNR, as seen in Figure 4.6. Furthermore, the effective SNR of (4.69) calculated 

for LRP after CTF estimation in the frequency domain corresponding to Figure 4.7 is summarized in 

Table 4.2. We can see from Table 4.2 that an approximately 16.3 dB SNR gain can be achieved after 

frequency domain estimation. 

In Figure 4.8 the CTF generated after frequency domain estimation is plotted, when the value of 

the SNR expression of (4.66) was 'Yb=lOdB. The remaining parameters are summarized in Table 4.1. 
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Figure 4.8: CTP after frequency domain estimation when SNR of (4.66) is I'b=lOdB. The remaining parame
ters are summarized in Table 4.1. 

We can see from Figure 4.8 that the noisy CTF generated before frequency domain estimation sub

stantially deviate from the true CTF owing to the effects of the AWGN. However, observe in Fig

ure 4.8 that the effects of noise are effectively mitigated by frequency domain filtering and hencethe 

estimated CTF closely argees with the true CTF after frequency domain filtering. 

In Figure 4.9 the MMSE versus SNR of (4.66) per symbol performance of was plotted after 

Kalman filtering assisted prediction, when the pilot block interval M was M = 5, 10, 15, 20 and 

the normalized maximum Doppler frequency was set to fdmTB = 0.001 and 0.0001, respectively. 

The remaining parameters are summarized in Table 4.1. We can see from Figure 4.9 that the MMSE 

performance corresponding to fdmTB = 0.0001 is always better than that corresponding to fdmTB = 

0.001. This because the lower normalized maximum Doppler frequency corresponds to a slower TD 

fluctuation of the CTF and hence the Kalman filtering assisted predictor can predict the CTF more 

precisely. Furthermore, for a given normalized maximum Doppler frequency fdmTB, the MMSE is 

increased upon increasing the interval between pilot symbol blocks M from M = 5 to M = 20. 

This is because the lower the interval M between N -symbol pilot blocks, the stronger the correlation 

between the pilot blocks, hence the Kalman filtering assisted predictor can predict the CTF more 

precisely. 
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Figure 4.9: MMSE versus SNR of (4.66) per symbol performance of Kalman filtering assisted prediction when 
the pilot block interval M is M = 5, 10, 15,20 and the normalized maximum Doppler frequency 
fdmTB = 0.001 and 0.0001, respectively. The remaining parameters are summarized in Table 4. L 

4.7 Conclusions 

In this chapter, both channel estimation and prediction were investigated in the context of a single

carrier wideband system. The received signals corresponding to N-symbol pilot blocks were first 

processed by the DFT operation in order to transfter the CIR to the frequency domain. Then I-D 

CTF estimation was carried out in the frequency domain. As shown in Table 4.2, as approximately 

16.3dB SNR gain can be achieved. Then both CTF estimation and prediction can be carried out in 

the time domain. Since the effect of AWGN has been mitigated by frequency domain filtering as 

shown in Figure 4.8, a good estimation and prediction performance can be expected, as evidenced 

by Figure 4.9. Furthermore, as we can see from Figure 4.9 the lower the normalized maximum 

Doppler frequency and the lower the interval between pilot symbol blocks, the better the achievable 

performance. 



~:;----------------------------~ 
Subspace Tracking Based Blind MIMO 

Transmit Preprocessing 

5.1 Introduction 

Due to the emerging high demand for supporting novel multimedia applications, next generation 

wireless systems are expected to support high data rates. When employing multiple antennas at 

both the transmitter and receiver, multiple input multiple output (MIMO) systems have the potential 

achieving a high transmission rate than their traditional single input single output (SISO) systems 

counterparts [60]. 

MIMO systems have attracted intensive research interests during the last decade [60-62]. In the 

absence of CSI at the tranmitter, space time coding [118] or spatial mUltiplexing [119-121] constitue 

prime candidates for MIMO transmission. However, when the CSI is available at both the transmitter 

and the receiver, a more sophisticated technique refered to as eigenmode transmission [64] can be used 

for decomposing the MIMO channel into several independent SISO subchannels, which involves the 

singular value decomposition (SVD) of the MIMO channel matrix. In this case no joint detection is 

needed and the resultant single-antenna-based detection algorithm becomes rather simple; 

The third-generation (3G) wireless systems support two different modes, namely frequency divi

sion dupJexing (FDD) and time division duplexing (TDD) [122-125]. In the FDD mode, the uplink 

(UL) and downlink CDL) signals are transmitted at different carrier frequencies, which results in in

dependently fading channels for the UL and DL. By contrast, in the TDD mode, the UL and DL 

transmissions ensue at the same carrier frequency. Hence the UL and DL channels tend to fade to-

70 
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gether and therefore can be considered as similar [122]. We will exploit this similarity of the UL and 

DL channels of the TDD mode in this chapter. 

The CSI required at the transmitter can be obtained with the aid of the side-information control 

channel from the receiver in the FDD mode. Alternatively, it can be directly estimated on the basis of 

the received signal's quality and exploited by the transmitter in the TDD mode [126]. 

Channel estimation (CE) followed by SVD is invoked, when eigenmode transmissions are em

ployed [127-129], which potentially imposes a high computational complexiy. Instead of esti

mating the entire MIMO channel matrix and then additionally implementing SVD, it was claimed 

in [130-139] that subspace tracking based algorithms may result in lower computational complexity 

in the context of eigenmode transmissions. 

In the family of subspace tracking algorithms, the so-called projection approximation tracking 

combined with deflation (PASTD) [140] has been shown to be applicable in diverse scenarios [141, 

142]. Hence, in this chapter PASTD algorithm is employed for subspace tracking in a MIMO-aided 

TDD system. 

The chapter is structured as follows. In Secion 5.2, a MIMO system using eigenmode transmission 

is considered, while in Secion 5.3, a TDD-based MIMO system is discussed further. In Secion 5.4, 

the PASTD algorithm is are introduced. In Secion 5.5, differential coding is invoked for removing the 

phase ambiguity imposed by the non-unique nature [143] of the subspace considered. In Section 5.6 

simulation results are provided. Finally, our conclusions are offered in Section 5.7. 

5.2 MIMO Transmission Model 

-----------------, 
I I 
I I 
I I 
I I 
I I MIMO 
I 

Differential I Tx preprocessing x y ~x postprocessing x I I Channel I I 

I 
Coding I Vs H = USA8V~ UH 

I 
I 8 
I 

I 
I 

I 
I 
I 

~----------------~ 

Figure 5.1: Schematic of MIMO eigenmode transmission 

Consider a system having MT transmitter and MR receiver antennas subjected to a flat-fading 

channel between any pair of transmitter and receiver antennas. Then the received 1\1R-dimensional 

Y 
~ 
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symbol vector y can be expressed as 

y = Hx+n, (5.1) 

where x is the MT-dimensional transmitted symbol vector and H is an (MR x MT )-dimensional 

complex channel matrix with the (i, j)th element being the fading channel between the ith receive 

and jth transmit antennas. Finally, n is the Mwdimensional AWGN vector having a zero-mean and 

E(nnH ) = (j~1MR' Here 1M is an (M x M)-dimensional identity matrix. 

If the rank of H is assumed to be q (q ::; min(M, N)), the SVD of the channel matrix H is given 

by 

H VAVH 

IV, Vnl [ :' ~][~;], (5.2) 

where V is an (MR x MR)-dimensional unitary matrix satisfying VHU = 1MR and V is an (MT x 

MT )-dimensional unitary matrix having the property of VHV = 1MT' while A is an (MR x MT)

dimensional matrix and 1M is an (M x M)-dimensional identity matrix. In the second line of (5.2), 

As is a (q x q)-dimensional diagonal matrix having diagonal elements of Al ~ A2'" Aq-l ~ Aq, 

which are the singular values of H. Furthermore, in (5.2) we portrayed U and V in form of two 

components, where Vs is an (MR x q)-dimensional matrix constituted by the first p columns of V, 

which span the column-space of H and V s is an (MT x p )-dimensional matrix formed by the first q 

columns of V, which span the row-space of H. Still referring to (5.2), Un is an [MR x (MR - q)J

dimensional matrix, which is orthogonal to V s, while spanning the null space of H and V n is an 

[MT x (MT - q)]-dimensional matrix that is orthogonal to Vs and spans the left null space ofH. 

If the channel matrix H is known at both the transmitter and receiver, the so-called eigenmode 

transmission regime of [64] shown in Fig.5.1 can be invoked to decompose the MIMO channel into 

orthogonal subchannels by applying V s and V s at the transmitter and receiver, respectively, yielding 

y = V~y 

= V~ (HVs-x + n) 

Ax+ ii, (5.3) 

where x is a q-dimensional transmitted symbol vector, while ii = V ~ n is a q-dimensional noise 
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vector, which has the same statistical properties as ll(dl,k), because U~ is a unitary matrix. 

As an explicit benefit of using the SVD, the known channel matrix H is finally decomposed 

into q independent orthogonal subchannels, each of which has a channel gain of Ai and this transmit 

preprocessing regime is referred to as eigenmode transmission [64]. 

As a further simplication, it was shown in [130] that high-integrity reception can be achieved, if 

we opt for transmitting in a limited number of p (1 :S p :S q) subchannels having channel gains of 

Al 2: A2'" 2: Ap for achieving a high throughput, while meeting the specific target BER perfor-

mance. 

Another potential advantage of eigenmode transmission is that only the left singular vectors of 

Us and the right singular vectors of V s are needed, as we can see in (5.3). Hence it is intuitively 

appealing to invoke algorithms, which estimate or update the singular vectors only [130-135] instead 

of estimating the entire MIMO channel matrix H and then additionally implementing the SVD, which 

would inevitably impose a high computational complexity. 

5.3 TDD MIMO Transmission Model 

A MIMO link may be created using either FDD or TDD mode. In this chapter, we assume employing 

the TDD mode. Consider a TDD system using MT antennas at the base station (BS) and MR antennas 

at the mobile station (MS), encountering a flat-fading channel between any pair of transmitter and 

receiver antennas. Furthermore, for simplicity, we assume that the system supports a single user. 

Then the MR-dimensional received symbol vector Y dl (k) of the DL and the MT-dimensional received 

symbol vector Yul (k) of the UL can be expressed as 

(5.4) 

(5.5) 

where Xdl(k) is an MT-dimensional DL symbol vector transmitted from the BS to the MS, while 

xUl(k) is an Mwdimensional UL symbol vector transmitted from the MS to the BS. Furthermore, 

Hdl (k) is the DL channel matrix and Hul (k) is the UL channel matrix. Moreover, lldl (k) is the DL 

AWGN noise vector having a zero-mean and E(lldlll:J) = a;;dIIMR' llul(k) is the UL AWGN noise 

vector having a zero-mean and E(llulll{fz) = a;uIIMT' 

Since the UL and DL timeslots of a TDD link are transmitted on the same carrier frequency, the 
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UL and DL channel matrices may be assumed to be identical, provided that the Doppler frequency 

is sufficiently low and hence the corresponding channel impulse response (CIR) does not change 

dramatically during the time between the UL and DL time slot. If this is not the case,because for 

example FDD is used, explicit CIR signalling has to be used [144]. Hence we have 

(5.6) 

Upon substituting (5.6) into (5.5), we arrive at 

(5.7) 

The transmitted symbol vector Xul is conjugated before transmission, as proposed in [130]. In this 

case, we obtain 

(5.8) 

Furthermore, the received symbol vector is conjugated as well, hence we have 

(5.9) 

According to (5.2), the SVD of Hdl can be expressed as 

[ 
V~s ] , 

Vdln 

(5.10) 

where Udls is an (MRxq)-dimensional unitary matrix, while V dls is an (MT xq)-dimensional unitary 

matrix. Furthermore, Adls isa (q x q)-dimensional diagonal matrix with its diagonal elements given 

by Al ~ A2 ... Aq-l ~ Aq, which are the singular values of Hdl. Accordingly, the SVD of HH is 

given by 

HH = [V V 1 [AdI
S 0] [ U~s ] . dl dIs dIn H o 0 U d1n 

(5.11) 

When eigenmode transmission is used for the sake of avoiding interference among the transmitted 

data symbols, the p-dimensional transmitted symbol vectors Xdl and :x'ul are multiplied by V dlsp 

and U dl sp given by the first p columns of V dIs and U dIs' respectively, before their transmission. 
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According to (5.3), we obtain 

(5.12) 

Y~Z(k) (5.13) 

The resultant received symbol vectors Y dZ and Y:z are multiplied by the matrices U :!zsp and V:!zsp' 

respectively, for the sake of avoiding interference among the transmitted data symbols. Finally, we 

obtain 

U[jLp (k)YdZ(k) 

AdZp(k)XdZ(k) + U:!zsp(k)ndz(k), (5.14) 

Yul(k) = V:!zsp(k)Y:z(k) 

AdZp(k)xuz(k) + V:!zsp(k)nuz(k), (5.15) 

where A dZp is a (p x p)-dimensional diagonal matrix having Al ~ A2 ... Ap-l ~ Ap as its diagonal 

elements. As we can see, only the matrix U dZsp has to be known at the MS, while the matrix V dZ sp is 

used for preprocessing at the BS. 

The matrices U dZsp and V dZ sp can be obtained by SVD of the channel matrix H dZ ' However, 

this requires estimating the channel matrix first, tHen implementing the SVD, which imposes a high 

computational complexity. Observe in (5.9) to (5.15) however, that only the subspace matrices Udzsp 

and V dZsp are required instead of the knowledge of the entire channel matrix. 

Let us continue by considering the DL transmission in more detail. More explicitly, our goal is to 

obtain the matrices U dZsp and V dZsp without estimating the channel matrix H and without performing 

the SVD of H. Upon substituting (5.10) into (5.12), we obtain 

(5.16) 
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The autocorrelation matrix of the vector Y dl of received symbols is given by 

(S.17) 

Let the total average transmit power P be a constant and let us allocate an equal power to each 

nonzero subchannel in (S.16). Then we obtain the autocorrelation of the p-dimensional vector )cdl of 

transmitted symbols as follows 

(S.18) 

Hence, following a few further manipulations, (S.17) can be written as 

[ 
P A 

2 
+ (J2 0 1 [ U H 1 R = [U U 1 P dlsp ndl dis 

Ydl dis din 2 H' 
o (Jndl U d1n 

(S.19) 

where U dis is constituted by q eigenvectors of Ry dl associated with the q largest eigenvalues (~Ai + 
(J~dl) ~ (~A§ + (J~dl) •.. 2:: (~A~ + (J~dl) of Ry dl' The space spanned by the columns of U ells is 

referred to as the signal subspace, while Udln consists of (MR - q) number of eigenvectors of Rydl 

related to (MR - q) number of eigenvalues {(J~dl} of Rydl' Finally, the space spanned by the columns 

of Udln is termed as the noise subspace, which is orthogonal to the signal subspace [l31, 141]. 

We can see from our discussions above that the eigenvectors in U dis also consist of the orthonor

mal basis vector of the column-space of H dl . Moreover, when the vector Ydl of received symbols 

becomes available, so-called subspace tracking algorithms [140, 14S, 146] can be used to track the 

orthonormal basis vectors of U dlsp ' which spans the column-space of H. 

Similarly, when the vector Y~I of received symbols becomes available, the eigenvectors in V dlsp 

can be tracked as well, which spans the row-space of H. Upon obtaining the corresponding left and 

right singular vectors of H, the eigenmode MIMO-aided transmission regime described above can be 

employed. 

In the family of different subspace tracking algorithms, the Projection Approximation Subspace 

Tracking technique using deflation (PASTD) [140] stands out as one of the most popular algorithms. 

In the next section, the PASTD algorithm will be briefly described in the context of tracking the 

elements of U dlsp ' The same algorithm can also be used for tracking the elements of V dl sp ' 
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5.4 PASTD Subspace Tracking [140] 

2. Updating exponentially Idi(k) I ,Id(k -1) I (3 .. 
weighted eigenvalue 

Time delay , ' 

I L I 

{I. Project.ion I T;(k) 
X operatlOn I w;( k - 1) 

Yi(k) 

I Time delay I 
-

.( 3. --- wi(k) -b ei(k) '---- 4. Updating 

'" eigenvector 

Yi+l( .. k) 

f6eflation r 
Figure 5.2: Schematic of PASTD subspace tracking 

The PASTD algorithm of [140] designed for signal subspace tracking is demonstrated in Fig.S.2 

and summarized in Table 5.1, where Ydl(k) is the kth MR-dimensional received signal vector gen

erated for DL transmission, while di(k) represents the exponentially weighted estimate of the ith 

eigenvalue and wi(k) denotes the estimate of the ith eigenvector at the kth time instant. Furthermore, 

f3 (0 < f3 ~ 1) represents the forgetting factor. Table 5.1 summarizes the operations of the PASTD 

algorithm, which is based on the so-called deflation technique [140] and its basic philosophy is that 

of the sequential estimation of the so-called principal components [140]. The most dominant eigen

vector is updated first by applying the PAST algorithm at the 1st iteration [140]. Then the projection 

of the current signal sample vector Ydl(k) onto this eigenvector is removed from Ydl(k) itself. Now 

the second most dominant eigenvector becomes the most dominant one in the updated signal vector 

and hence can be extracted in the same way as outlined above. This procedure is applied repeatedly, 

until all desired eigencomponents have been estimated. 

Since the deflation technique results in a strong loss of orthonormality between the singular vec

tors [140], the Gram-Schmidt orthonormalization [81] technique is invoked for reorthogonalizing the 

signal subspace after each update. 

The variables di(O) and Wi(O) have to be initialized, as seen in Table 5.1 . Specifically, the SVD 

of the first M vectors of the received symbols are used for the initialization of di(O) and Wi(O) [141]. 

Since the singular vector generated according to (5.2) can be different up to a complex-valued 
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Operation procedure of PASTD algorithm 

Yl(k) = Ydz(k) 
For i = 1, 2, . .. ,p, Do 
ri(k) = wf (k - l)Yi(k); prejection operation 
~(k) = /3di (k -1) + [ri[2; 
ei(k) = Yi(k) - wi(k - l)ri(k); 
wi(k) = wi(k - 1) + ei(k)[ri(k)/di(t)]; updating eigenvectors 
Yi+l(k) = Yi(k) - wi(k)ri(k); deflation 

Table 5.1: The PASTD algorithm designed for tracking the signal subspace components of the received signal 
vector Ydl 

r-1 Delay r-
Vk-l 

b Sk Diffential Vk 

bits 
PSK 

encoder 

Figure 5.3: Transmitter block diagram of a classic DPSK scheme. 

coefficient of unit norm [130], it may cause phase ambiguity [130], which can be resolved for example 

by differential encoding, leading to differential phase shift keying (DPSK) modulation [130]. 

5.5 Differential Encoding 

In this section we consider the employment of differentil encoding. The shematic of a DPSK trans

mitter is shown in Figure.5.3. As seen in Figure 5.3, the symbol Vk transmitted at time instant k is 

obtained from Vk = XkVk-l> where Xk is a PSK modulated symbol and Vk-l is the symbol transmitted 

at time instant (k - 1) [147]. 

If the channel gain between the transmitter and receiver is h and the noise is nk, the received 

signal can be expressed as 

(5.20) 

If the channel gain h may be assumed to be constant for the symbol intervals (k - 1) and k, the 

optimal estimate of Xk is to find the specific symbol of the M-PSK constellation, which meets the 

requirement of [148] 
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Number of transmitter antennas MT 4 
Number of receiver antennas MR 4 
Normalized maximum Doppler frequency fdmTs 0.0001 
Forgetting factor (3 in Section 5.4 0.99 

Table 5.2: Parameters for the PASTD algorithm in TDD mode for fdrnTs = 0.0001 

Number of transmitter antennas MT 4 
Number of receiver antennas MR 4 
Normalized maximum Doppler frequency fdmTs 0.001 
Forgetting factor (3 in Section 5.4 0.95 

Table 5.3: Parameters for the PASTD algorithm in TDD mode for f drnTs = 0.001 

where we have 

\h\2VkVk_l + hVknk_l + nkh*vk-l + nknk-l 

= \h\2Xk + N, 

with N being the Gaussian noise. 

(5.21) 

(5.22) 

5.6 Performance of Subspace Tracking Based Blind Transmit Prepro

cessing 

Having described the TDD system and the PASTD algorithms in Section 5.4, in this section our 

simulation results are provided in order to characterize the attainable performance of PASTD subspace 

tracking in the context of TDD system. Furthermore, differential BPSK modulation is used. 

In Figures 5.4 and 5.5, the achievable BER performance against the forgetting factor (3 in Section 

5.4 when only the largest eigenvalue is used for both the uplink and downlink is plotted, respectively, 

at SNRs of-l0dB, -5dB and OdE. The remaining parameters are assumed to be the same as in 

Table 5.2. We can see from Figures 5.4 and 5.5 that for a given SNR, the BER decreases only silghtly 

upon increasing the forgetting factor (3. This is because for the low normalized Doppler frequency of 

fdmTs = 0.0001, the channel exhibits a high correlation for a long period, which allows us to exploit 
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Figure 5.4: BER perfonnance against the forgetting factor (3 in Section 5.4 when only the largest eigenvalue is 
used for uplink transmission at different values of SNR. The remaining parameters are assumed to 
be the same as in Table 5.2. 

the channel knowledge over a longer period, resulting in a higher forgetting factor. In case of (3 = 1, 

all the past channel output samples are invoked. In case of an infinite memory, the correlation between 

a far distant channel sample and current one is low and therefore the effects of the noise imposed by a 

distant noisy sample on correlation becomes more dominant, which actually degrades the algorithm's 

performance. Furthermore, we observe that for diffement values of SNR, the optimum forgetting 

factor (3 may be different. For SNR=-10dB and -5dB the optimum of 0.99 is sligtly higher than 

the 0.98 value recorded for SNR=OdB. The reason behind this may be attributed to the observation 

that for lower SNRs a higher number of noisy samples may be needed to mitigate the effects of the 

noise and hence a higher forgetting factor is required. By contrast, for higher SNRs a lower number 

of noisy samples is sufficient for mitigating the effects of noise, which results in a lower forgetting 

factor (3. 

In Figures 5.6 and 5.7, the achievable BER performance is plotted against the forgetting factor (3, 

when only the largest eigenvalue is used for both uplink and downlink transmissions , respectively, 

at SNRs of -10dB,-5dB and OdB. The remaining parameters are the same as in Table 5.3. We can 

see from Figures 5.6 and 5.7 that for a given SNR, the BER slightly decreases upon increasing the 
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Figure 5.5: BER performance against the forgetting factor f3 in Section 5.4 when only the largest eigenvalue is 
used for downlink transmission at different values of SNR. The remaining parameters are assumed 
to be the same as in Table 5.2. 

forgetting factor (3, until an optimum point is reached, which is lower than that in the case of fdmTs = 

0.0001. Beyond this point the BER increases relatively sharply upon increasing the forgetting factor 

(3. This is because for the normalized Doppler frequency fdmTs = 0.001 the channel varies more 

rapidly than for fdmTs = 0.001. Hence the correlation between the channel samples decays faster, 

which implies that a lower forgetting factor (3 is needed. We can also see for SNR=-10dB and -5dB 

that the optimum forgetting factor is around (3 = 0.95, while for SNR=OdB it is around 0.90. The 

reason for this is observation the same as for the case of fdmTs = 0.0001. Furthermore, since a lower 

forgetting factor results in a faster convergence, we can opt for a lower forgetting factor under the 

constraint of meeting the target BER for the sake of achieving a more rapid convergence. 

In Figure 5.8 the attainable BER performance is portrayed for different values of the SNR, when 

only the largest eigenvalue is used for uplink transmission. The remaining parameters are the same as 

in Table 5.2. We can see from Figure 5.8 that the achievable BER performance of PASTD subspace 

tracking is similar to that achieved with the aid of perfect channel knowledge. Observe, however that 

the BER difference between the perfect estimation based scenario and the tracked scenario becomes 

higher upon increasing the SNR. This is because the forgetting factor of (3 = 0.99 is not the optimum 
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Figure 5.6: BER perfonnance against the forgetting factor (3 in Section 5.4 when only the largest eigenvalue is 
used for uplink transmission at different values of SNR. The remaining parameters are assumed to 
be the same as in Table 5.3. 

for higher SNRs, as seen earlier in Figure 5,4. The same performance is observed for downlink trans

mission because the uplink and downlink channels are similar. Furthermore, the same phenomenon 

is confirmed in Figure 5.9. 

In Figure 5.10 the attainable mean BER performance is plotted against the forgetting factor f3 
introduced in Section 5,4, when the first two largest eigenvalues are used for UL transmissions. The 

results were plotted for different values of the SNR. The remaining parameters are the same as in 

Table 5.2. We can see from Figure 5.10 that different optimum forgetting factors are found for the 

different values of the SNR. The reason for this observation is the same as that stated earlier for 

Figure 5,4 Furthermore, we observe the same phenomenon from Figure 5.11. 

In Figure 5.12 the attainable BER performance is characterized for different values of the SNR, 

when the first two eigenvalues are used for uplink transmission. The remaining parameters are the 

same as in Table 5.2. We can see from Figure 5.12 that the performance recorded for the largest 

eigenvalue is the same as in Figure 5.4 and when the availability of perfect channel knowledge is as

sumed, while the performances achieved by the PATSD algorithm are quite different from those seen 

in Figure 5,4. This is because the subspace tracking algorithm is unable to eliminate the interferece 
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Figure 5.7: BER performance against the forgetting factor (3 in Section 5.4 when only the largest eigenvalue is 
used for downlink transmission at different values of SNR. The remaining parameters are assumed 
to be the same as in Table 5.3. 

between the two eigenvalues, while there is no interference between the two eigenvalues in case of 

perfect channel knowledge. Furthermore, the BER curve exhibits a floor value upon increasing the 

SNR. This is because the interference between two eigenvalues becomes the dominant factor for high 

values of the SNR. The same phenomenon is observed in Figure 5.13. 

5.7 Summary and Conclusions 

In this chapter, PASTD subspace tracking aided MIMO transmit processing techniques were inves

tigated in the context of a TDD system. Since only the left or right singular vectors of the channel 

matrix are required at transmitter and receiver, respectively, for eigenmode transmission in the TDD 

mode, PASTD subspace tracking can be used at both the transmitter and receiver to acquire the re

quired left and right singular vectors without estimating the entire MIMO channel matrix H. This 

operation is followed by SVD of H, which typically results in a high complexity. Furthermore, since 

the PASTD subspace tracking technique is a blind algorithm, it improves the achievable spectral effi

ciency. A specific deficiency of the family of subspace tracking algorithms is their phase ambiguity 

imposed by the the non-unique nature of SVD, which was resolved by employing differential encod-
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Figure 5.8: BER versus SNR perfonnance, when only the largest eigenvalue is used for uplink transmission. 
The remaining parameters are be the same as in Table 5.2. 

ing. Finally, the efficiency of the proposed scheme was verified by our simulations. 
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Figure 5.10: Mean BER perfonnance against the forgetting factor (3 in Section 5.4, when the first two largest 
eigenvalues are used for uplink transmission at different SNRs. The remaining parameters are the 
same as in Table 5.2. 
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Figure 5.11: Mean BER perfonnance against the forgetting factor f3 in Section 5.4, when the first two largest 
eigenvalues are used for uplink transmission at different SNRs. The remaining parameters are the 
same as in Table 5.3. 
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Channel Prediction Based Multiuser 

Transmission in SDMA 

6.1 Introduction 

In the previous chapter we mainly focussed our attention on point to point communications sys

tems, albeit practical real communications systems have to support multiple users [149, 150]. Di

verse schemes have been proposed for supporting multiple users, including Time Division Multiple 

Access (TDMA), Code Division Multiple Access (CDMA) [94], Space Division Multiple Access 

(SDMA) [5] and so on. In CDMA systems, each user is assigned a unique user specific signature or 

spreading code, in order to differentiate them from the others, while in SDMA systems, the unique 

user specific spatial signature represented by the channel impulse response (CIR) acts like the unique 

spreading code of a CDMA system. 

Recently, transmitter preprocessing techniques implemented at the base-station (BS) have re

ceived wide attention [151-155], since they require a simple receiver at the mobile station (MS). 

Porvided that the channel impulse response (CIR) of all the BS to mobile station (MS) links is known 

in advance - even before the signal's transmission - it is plausible that the different users' signals may 

be differentiated with the aid of their unique, user-specific downlink CIRs. Naturally, this non-causal 

CIR knowledge is unavailable in practice. Hence a natural design option is to estimate the CIRs at 

the receiver after the BS's signal was received and convey it using side-information to the BS for its 

future use. Naturally, the resultant CIR has to be quantized before its transmission. In addition to 

this quantization error, it also becomes outdated, which may seriously degrade the attainable perfor-

88 
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mance [156], and both imperfections result in an erosion of the achievable transmit preprocessing 

gain expressed in terms of either the attainable transmit power reduction or the number of users that 

may be supported. Another attractive design option is to avoid the eIR-signalling latency by invok

ing the previously received eIRs for predicting their future evolution using CIR-tap prediction. To 

elaborate a little further, explicit eIR signalling may be used in Frequency Division Duplex (FDD) 

systems, where the uplink and downlink operate at different carrier frequencies. By contrast, in Time 

Division Duplex (TDD) systems, the uplink and downlink signals are transmitted at the same car

rier frequencies. Hence these signals experience similar eIRs as well as frequency domain channel 

transfer functions, unless their bandwidth is wider than the coherence bandwidth of the channel. The 

employment of a TDD mode is assumed in this chapter. 

In the context of MIMO channel prediction algorithms [37,143,157-160], the vector Kalman 

filtering assisted MIMO channel predictor has been successfully employed for tracking and predicting 

the MIMO channel [161]. Hence this technique is adopted in this chapter, in order to facilitate BS 

transmitter preprocessing in the context of downlink TDD transmissons. 

The outline of the chapter is as follows. In Secion 6.2, the philosophy of SDMA downlink trans

mission using preprocessing is described. In Section 6.3 the MMSE preprocessing criterion is investi

gated. In Section 6.4, SDMA uplink transmissions are reviewed briefly, while in Section 6.5 Kalman 

filtering assisted channel prediction is discussed. In Section 6.6, the existing third-generation TDD 

standard is highlighted and in Section 6.7 our simulation results are provided and analysed. Finally, 

our conclusions are offered in Section 6.8. 

6.2 SDMA Downlink Transmission Model 

Consider a system having a single BS and supporting K MSs, as shown in Fig.6.1. The BS has M 

transmitter antennas and the kth MS has Nk 2: 1 receiver antennas. Furthermore, the channel between 

any pair of transmitter and receiver antennas is assumed to be flat-fading. The Nk-dimensional symbol 

vector X(dl,k) is transmitted from the BS to the kth MS, which can be expressed as 

(6.1) 

Before X(dl,k) is transmitted, it is multiplied by the (M x Nk)-dimensional transmit preprocessing 

matrix P k . Hence the M-dimensinonal preprocessed data vector d(dl,k) is destined for the kth user, 
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Figure 6.1: Schematic of the SDMA downlink transmitter 

which is given by 

(6.2) 

Hence the M -dimensional composite preprocessed data vector ddl of the K users is given by 

K 

ddl = I: d(dl,k) 

k=l 
K 

= I: PkX(dl,k) 

k=l 

PXdl, (6.3) 

where P is a (M x U)-dimensional matrix and U = 'L-f=l Nb which is given by 

(6.4) 
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while Xdl is a U-dimensional transmitted symbol vector, which has the structure of 

- [T T T]T Xdl - X(dl,l) , X(dl,2) , '" ,x(dl,K) . 

The received Nk-dimensional vector rk of the kth user, is given by 

rk Hkddl + ll(dl,k) 

HkPXdl + ll(dl,k) 

K 

= Hk LPiX(dl,i) + ll(dl,k) 
i=1 

K 

HkPkX(dl,k) + Hk L PiX(dl,i) + ll(dl,k) , 

i=l,i#k 

91 

(6.5) 

(6.6) 

where ll(dl,k) is an Nk-dimensional AWGN vector having zero mean and the autocorrelation matrix 

of E[ll(dl,k)ll~l,k)] = CTfdl,k)INk' while Hk is the (Nk x M)-dimensional matrix of flat-fading eIR 

taps, which is given by 

(k) 
hl1 

(k) 
hI2 

(k) 
hIM 

h(k) h(k) h(k) 

Hk 
21 22 2M (6.7) 

h(k) 
Nkl 

h(k) 
Nk2 

h(k) 
NkM 

where h~;) represents the eIR coefficients between the jth BS antenna and the ith receiver antenna 

of the kth MS. As we can see from (6.6), Multiple User Interference (MU!) is imposed on the kth 

MS by all the other DL users. 

The U -dimensional received symbol vector r of the K DL users can be expressed as 

rl HI 

r2 H2 
PXdl + lldl, r 

rK HK 

HPXdl +lldl, (6.S) 
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where H is a (U x M)-dimensional matrix, which is given by 

H = [Hf,H§, ... ,HI?, (6.9) 

while ndl is aU-dimensional AWGN vector, which is expressed as 

(6.10) 

The AWGN has a zero mean and an autocorrelation matrix of 

(}[dl,l)INl 0 0 

E[ndln:Z] 
0 (}[dl,2) IN2 

(6.11) 

0 0 (}[dl,K) INK 

6.3 MMSE Criterion for DL Preprocessing 

Numerous criteria have been proposed for designing the DL preprocessing matrix P [151]. In this 

chapter, the preprocessing matrix P is chosen based on the MMSE criterion, so that the MSE between 

the received signal vector r and the transmitted symbols Xdl expressed as E[lir - Xd111 2] is minimized. 

6.3.1 Exploiting the Knowledge of the AWGN Variance 

When the variance of the AWGNto be experienced at the MS's receiver can be correctly estimated and 

fed back to the BS via the uplink, the MSE between the received signal vector r and the transmitted 

symbols Xdl is expressed as [153] 

E[(HPXdl + ndl - Xdl)H (HPXdl + ndl - Xdl)] 

= E[(HPXdl - Xdl)H (HPXdl - Xdl)] + E[n:Zndzl 

H E[n:z ndl] 2 
= E[(HPXdl - Xdl) (HPXdl - Xdz)] + E[II

X
dII1 2] E[IIPxll] 

E[(HPXdl - Xdl)H(HPXdl- Xdl)] + aE[lIPxI1 2
] 

Trace (RL::J, (6.12) 
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where we have applied the constraint of E[lIPXdzll~] = E[llxdd I~] in the third line of (6.12), and a 

is given by 

E[nHn] 

E[l XdI1 2]' 

2 (J dl 
Es' 

(6.13) 

where Es denotes the power of each transmitted DL symbol and (J~l represents the A WGN variance 

at a MS's receiver, which is assumed to be the same for all MSs. Moreover Trace (.) in (6.12) denotes 

the trace of the argument. Furthermore, R,6. is given by 

R,6. E[(HPXdl - Xdl) (HPXdl - Xdl)H] + aE[(Px)(Px)H] 

HPpHHH -HP+appH _pHHH +Iu. (6.14) 

The problem of minimizing E[lir - Xd111 2] is now turned into minimizing the trace of R,6., which 

can be achieved by differentiating Trace(R,6.) with respect to P*, yielding [162] 

&Trace(R,6.) = HHHP p _ HH 
&P* + a . 

Setting (6.15) to zero, we arrive at 

P (HHH + aIM)-lHH 

HH(HHH + aIU)-l, 

where we have used the Matrix Inversion Lemma [1] in the second line of (6.16). 

6.3.2 Dispensing with the Knowledge of the AWGN Variance 

(6.15) 

(6.16) 

When the variance of the background AWGN to be experienced at the MS's receiver is unknown to 

the transmitter, the MSE between the received signal vector r and the transmitted symbols Xdl can be 

written as 

E[(HPXdl + ndl - Xdl)H (HPXdl + ndl - Xdl)] 

Trace(E[(HPXdl + ndl - Xdl)) ((HPXdl + ndl - Xdl)H]) 

Trace(R,6.), (6.17) 
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where R6, is a (U x U)-dimensional matrix, which can be expressed as 

R6, E[(HPXdZ + ndZ - xdz))((HPXdZ + ndZ - xdzl H) 

HPpHHH - HP + O"Jz1u - pHHH + Iu. (6.18) 

Comparision with (6.14) shows that there is no linkage between the AWGN variance O"Jz and the 

preprocessing matrix Pin (6.18). Similarly to (6.14), the specific solution which minimizes the trace 

of R6, also minimizes the E[lir - xdzI12]. Hence, by differentiating Trace(R6,) with respect to P*, 

we have [162] 

(6.19) 

Setting (6.19) to zero, as in (6.15), yields 

(6.20) 

Since HH is a (M x U)-dimensional matrix, we arrive at 

(6.21) 

where (HH)+ is the (U x M)-dimensional pseudo-inverse of the matrix R H, which is given by [1] 

(6.22) 

Upon pre-multiplying both side of (6.20) with (HH)+, we have 

(6.23) 

According to (6.21), (6.23) can be rewritten as 

HP =Iu. (6.24) 

Hence P is given by the pseudo inverse of the matrix H, 

(6.25) 
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where H+ is the (lV! x U)-dimensional inverse of the matrix H, which is given by 

(6.26) 

Upon substituting (6.26) into (6.8) we have 

(6.27) 

Observe from (6.27) that interestingly, we arrive at the zero-forcing preprocessing formulation despite 

using the MMSE criterion, when the variance of the noise is unavailable at the transmitter. Therefore, 

in the rest of this chapter, we refer to preprocessing dispensing with the knowledge of the background 

AWGN variance as zero-forcing preprocessing. By contrast, preprocessing exploiting the knowledge 

of the receiver's background AWGN variance is termed as MMSE preprocessing. 

6.3.3 Power Control 

It is a natural constraint that the transmitted power of all users should remain unchanged after pre

processing. In this case, the employment of power control has to be considered in the context of 

transmitter preprocessing and in fact the normalized preprocessing matrix Po has to be used instead 

of P for the sake of satisfying the constraint of 

(6.28) 

A natural ambition is to allocate the total BS transmitter power to all the users employing the 

same normalized coefficient (3 for all the users, yielding 

Po = (3P, 

where (3 is a real-valued variable. Upon substituting (6.29) into (6.28), we have 

E[IIP oXdlll~l trace(E[((3P)XdI X%z ((3p)H) 

= (32trace(ppH) 

U. 

(6.29) 

(6.30) 
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Hence upon using (6.30) we have 

(3= 
u 

trace(ppH) . (6.31) 

6.3.4 Performance Analysis 

Based on (6.29), (6.27) is expressed as 

(6.32) 

where (3 is determined by (6.31). For each data stream r(k,j) of r, the instantaneous signal-to-noise 

ratio (SNR) is given by 

"I = 
(32 
-2' 
(J dl 

(6.33) 

When baseband BPSK modulation is employed, the instantaneous BER of any data stream r(k,j) can 

be expressed as 

(6.34) 

Furthermore, in the case of a single user having a single antenna, the SNR in case of MMSE prepro

cesing is given by 

(6.35) 

where P is determined by (6.16) and (3 is determined by (6.31). Likewise, when baseband BPSK 

modulation is employed, the instantaneous BER for this single user can be expressed as 

(6.36) 

It may be readily shown that the achieveable BER is the same for both the MMSE and zero-forcing 

transmit preprocessing in the case of a single user having a single antenna. 
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6.4 MIMO-Aided SDMA Uplink Transmission 

Let us now consider uplink (UL) transmissions, where X(ul,k) = [X(ul,kl) , X(ul,k2),'" ,X(ul,kNk)lT is 

the Nk-dimensional UL transmitted symbol vector of the kth user, as seen in Figure 6.2 Since TDD 

transmissions are considered in this chapter, we assume that the UL and DL eIRs are indenticaI. 

Hence the M -dimensional received UL signal y at BS is expressed as 

Xl [Jtjl 
- e eNI 

Mobile Station 1 

• 
• 
• 
• 

,-

" " " 

,," ,,"
" " " " " " " " " " " " " " " " " " " 

Figure 6.2: Schematic of the SDMA uplink transmitter 

K 

Y = L HI X(ul,k) + nul 

k='I 

X(ul,l) 

[ Hf HT Hk] 
X(ul,2) 

+ nul = ... 
2 

X(ul,K) 

HTXul + nul, 

1 

• 
• 
• 
• 
• 
• 

M 

e 

e 

e 

Base Station 

(6.37) 
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where Xul is the U -dimensional composite transmitted symbol vector of the K users, which is given 

by Xul = [x[ul,l) ' x[uI,2) ' ... ,x[uI,K)V, while l1ul is an }1.1-dimensional AWGN vector having zero 

mean and an autocorrelation matrix of E[l1ull1~] = (J~lIM' 

In the context of UL transmissions the U-dimensional decision variable vector z at the BS can be 

expressed as 

(6.38) 

where W is a (M x U)-dimensional receiver weight matrix. When BPSK modulation is employed, 

hard-decisions are made as follows: 

XUl = sgn(Re{z}), (6.39) 

where sgn(·) is the sign function. If the classic MMSE detector is invoked, the optimum weight 

matrix W:! is given by 

where Ry is a (M x M)-dimensionaI autocorrelation matrix of y, which is given by 

Ry E[yyH] 

= E[(HT Xul + l1ul)(HT Xul + nul)H] 

HTH* + (J~lIM' 

(6.40) 

(6.41) 

while Ryx is the (M x U)-dimensional cross-correlation matrix of y and x, which is given by 

Consequently, we have 

Ryx E[yxH] 

E[(HT Xul + nul)~] 
HT. (6.42) 

(6.43) 
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As seen from (6.43), the knowledge of the UL eIR matrix is needed at the BS for the MMSE 

SDMA detector. Alternatively, the least mean square (LMS) or recursive least square (RLS) algo

rithms [1] can be used for detection, when the eIR matrix is not available. 

6.S Channel Prediction Based SDMA DL Transmitter Preprocessing 

In order to perform BS transmit preprocessing for the SDMA downlink as described in Section 6.2, 

the eIR matrix hosting DL eIRs must be availble at the BS station. As a benefit of the TDD mode, 

the downlink eIRs can be estimated or predicted based on the eIRs of the uplink transmission I. 

However, the inherent delay of the estimated eIRs may seriously degrade the attainable performance 

[156]. Hence, the employment of prediction is preferred [153,154] for the SDMA DL. In this chapter, 

Kalman filtering assisted MIMO channel prediction is invoked [161]. To this end, (6.37) is rewritten 

for the time instant n as 

y(n) = [hI (n),·· . , hu(n)]xul(n) + llul(n), (6.44) 

where the M-dimensional vector hj(n), 1 ~ j ~ U is the jth column of H T , which represents 

the eIR vector between the jth MS transmitter antenna and all the BS receiver antennas. Then, we 

construct a (MU)-length channel vector 

(6.45) 

According to (2.32) the ith, 1 ~ i ~ M element hji(n) in hj(n), which represents the channel eIR 

tap between the jth MS transmitter antenna and the ith receiver BS receiver antenna, can be expressed 

by an AutoRegressive (AR) model as [79] 

p 

I: aUi,q)hji(n - q) + Wji(n), (6.46) 
q=I 

where p is the order of the channel's AR model, {aUi,q)} represents the AR model coeffi

cients and Wji(n) is an AWGN process having a zero mean and an autocorrelation coefficient of 

E[Wji(n)wii(n)] = (}~ji(n)' where (}~ji(n) can be obtained from (2.38). According to (6.46), the 

eIR vector between the jth MS transmitter antenna and all the BS receiver antennas hj(n) can be 

1 As it was shown in Figure 15.3, p559 of [5], estimation, is carried out on the basis of previous CIR tap values for the 
current instant, while prediction determines their future values. 
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expressed as 

p 

L A(j,q)hj(n - q) + wj(n), (6.47) 
q=l 

where {Aj,q} represents the (lvI x lvI)-dimensional diagonal AR model coefficient matrices in the 

jth column of the eIR tap matrix HT, which are given by 

ajl,q 0 0 

0 aj2,q 0 
Aj,q (6.48) 

0 0 ajM,q 

while wj(n) is an lvI-dimensional AWGN vector, which is given by 

(6.49) 

Upon substituting (6.47) into (6.45), the whole channel eIR vector h( n) can be expressed with the 

aid of AR model as 

p 

h(n) = LAqh(n - q) + w(n), (6.50) 

q=l 

where Aq is an (MU x lvIU)-dimensional diagonal matrix, which is expressed as 

(6.51) 

o o AU,q 

while w(n) is a (lvI x U)-dimensional AWGN vector, which is given by 

(6.52) 

If the p eIR vectors h( n - q) (0 :::; q :::; (p - 1)) corresponding to p consecutive time instants are 

combined into a new vector h(n) = [h(nf, h(n _1)T, ... ,h(n - p + IflT, based on (6.50) we 
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arrive at 

h(n) F(n)h(n - 1) + w(n), (6.53) 

where F(n) is a [(M x U x p) x (M x U x p)]-dimensional transition matrix [1], describing the state 

transition from time instant (n - 1) to n, which is given by 

I(MxU) 0 
(6.54) 

while w(n) is a ((M x U x p)-dimensional noise vector, which is formulated as 

(6.55) 

Now the received UL signal vector of (6.44) can be rewritten as [161] 

y(n) = X(n)h(n) + llul(n), (6.56) 

where X is a (M x (M x U x p))-dimensional matrix, which is given by 

(6.57) 

with ® representing the Kronecker product. Furthermore, in (6.57) x is a (U x p)-dimensional row 

vector, given by 

x(n) = [X;I'O]. (6.58) 

Given the process equation and measurement equation of (6.53) and (6.56) [1], respectively, vector 

Kalman filtering assisted MIMO channel prediction of h(n + lin) based on all the observations up to 

the time instant n, can be performed using the vector-based Kalman filtering assisted MIMO eIR-tap 

prediction procedure described in Table 6.1 [1,2]. 
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h(n + lin) = F(n)h(nln - 1) + G(n)a(n); 
a(n) = y(n) X(n)h(nln - 1); 
G(n) = P(n)K(n)XH (n)R-1(n); 
R(n) = X(n)K(n)XH (n) + Qv(n); 
Qv(n) = E[nul(n)n~(n)] = (J"~IIM; 
K(n + 1) = P(n)M(n)pH (n) + Qw(n + 1); 
Qw(n) = E[w(n)w(n)H]; 
M(n) = K(n) - K(n)XH(n)(X(n)K(n)XH(n) + Qv(n))-lX(n)K(n). 

Table 6.1: Vector Kalman Filtering Assisted MIMO Channel, Prediction 

6.6 TDD Standard 

All of our above discussions were based on using a TDD transmission mode. Hence below we provide 

a brief overview of the existing third-generation TDD standard, namely the UMTS Terrestrial Radio 

Access (UTRA) TDD [123,124]. The UTRA TDD time slot allocation is exemplified in Figure 6.3 

[123,124], where i denotes an uplink time slot and 1 denotes a downlink time slot. Furthermore, Time 

Division-Synchronous Code Division Multiple Access (TD-SCDMA) also contributes a promising 

TDD transmission mode, [125,163], which may be adopted as the third generation scheme in China. 

An example of the corresponding time slot allocation schemes is shown in Figure 6.4 [163]. 

. . . 
/ j /1/1111 II j I j I j III till j 1111 I II 

Figure 6.3: Example ofUTRA TDD mode transmission. 

. . . ~ 
~pecial 

t t ~ ~ ~ ~ ~ 
~pecial 

t t ~ t J ~ Time Time 
Slot Slot 

Figure 6.4: Example ofTD-SCDMA mode transmission. 

6.7 Performance Results 

In this section, we provide simulation results for characterizing the performance of channel prediction 

aided downlink preprocessing. More specifically, a generalized TDD mode is assumed, where the 

• • • 

• • • 
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Scheme 1 Scheme 2 Scheme 3 Scheme 4 
Number of users 1 2 3 4 
No. of receiver antennas at each user 1 1 1 1 
Modulation scheme BPSK BPSK BPSK BPSK 

Table 6.2: Parameters used for SDMA downlink (DL) preprocessing 

time-span between two transmitted uplink symbols used for CIR tap prediction is assumed to be Land 

the range of prediction [" where the predicted CIR taps are used is shown in Figure 6.5. Furthermore, 

Ts is the symbol duration, while the normalized maximum Doppler frequency is given by fdmTsL. 

Additionally, BPSK modulation is employed for both uplink and downlink transmissions. Finally, 

error-freely detected uplink symbols are assumed instead of invoking any specific uplink detector, 

implying that our results represent an idealistic upper bound. 

L __ I ~ [, ---I 
• • • • • • • • • 

(n - 2) (n- 1) (n) Predicted eIR ii 

Vector Kalman Predictor 

Figure 6.5: Schematic of the MIMO channel prediction scheme porposed for TDD systems. 

6.7.1 Effect of the Number of Transmitter Antennas at the BS 

In Figures 6.6 to 6.12 the achievable BER performance versus average SNR per symbol performance 

is plotted for Schemes 1-4 of Table 6,2, when the number of transmitter antennas at the BS ranges 

from M = 1 to M = 10, for both zero-forcing and MMSE BS transmit preprocessing. Observe from 

Figures 6.6 to 6.12 that as expected, the BER performance is improved upon increasing the number of 

BS transmit antennas. However, the extra transmit diversity gain attained every time, when increasing 

M by one gradually erodes, since transmit diversity gain does not increase linearly with M. 

Additionally, the SNR required for maintaining BER=10-3 for Schemes 1-4 for both zero forc

ing and MMSE preprocessing was extracted from Figures 6.6 to 6.12 and summarized in Table 6.3 
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Figure 6.6: BER versus average SNR per symbol performance for Scheme 1 of Table 6.2, when the number 
of transmitter antennas M at the BS ranges from M = 1 to M = 10 for zero-forcing BS transmit 
preprocessing according to (6.34). 
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Figure 6.7: BER versus average SNR per symbol performance for Scheme 2 of Table 6.2, when the number 
of transmitter antennas M at the BS ranges from M = 2 to M = 10 for zero-forcing BS transmit 
preprocessing according to (6.34). 
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Figure 6.8: BER versus average SNR per symbol performance for Scheme 3 of Table 6.2, when the number 
of transmitter antennas M at the BS ranges from M = 3 to M = 10 for zero-forcing BS transmit 
preprocessing according to (6.34). 
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Figure 6.9: BER versus average SNR per symbol performance for Scheme 4 of Table 6.2, when the number 
of transmitter antennas M at the BS ranges from M = 4 to M = 10 for zero-forcing BS transmit 
preprocessing according to (6.34). 
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Figure 6.10: BER versus average SNR per symbol perforinance for the first user for Scheme 2 of Table 6.2, 
when the number of transmitter antennas M at the BS ranges from M = 2 to M = 10 for MMSE 
BS transmit preprocessing using perfect CIR. 

1 

'" Perfect M 3 
5 0 Perfect M;4 

t.r... x Perfect M 5 

I~ ~ '" - Perfect M=6 
* - Perfect M;7 
c;i - Perfect M;8 
• - Perfect M=9 

,,\ \, 
"a " 

• - Perfect M=lO 

~\' \ " i 

\' , i. ... , l\ \ '\ ... 

, ........ 
.i\\ \ '\ \, I -4 

10 -10 -5 o 5 10 15 20 25 30 35 40 
SNR (dB) 

Figure 6.11: BER versus average SNR per symbol performance for the first user for Scheme 3 of Table 6.2, 
when the number of transmitter antennas Mat theBS ranges from M = 3 to M = 10 for MMSE 
BS transmit preprocessing using perfect CIR. 



6.7. PERFORMANCE RESULTS 

1 

!~~ 

1\;\\ 

~\\\ 

It\. 

\' 

-4 
10_

10 -5 o 

"'I!I 
\~ 

,\ \ i\ 

. \\ '\ 
5 

107 

0 Perree! M 4 
x Perree! M 5 
... Perree! M 6 

, * - Perree! M=7 
~ Perree! M 8 
II Perree! M 9 

• Perree! M 10 

• '., 
.. 

1\ ...... 
10 15 20 25 30 35 40 
SNR (dB) 

Figure 6.12: BER versus average SNR per symbol performance for the first antenna of first user for Scheme 
4 of Table 6.2, when the number of transmitter antennas M at the BS ranges from M = 4 to 
M = 10 for MMSE BS transmit preprocessing using perfect eIR. 

Scheme 1 [dB] Scheme 2 [dB] Scheme 3 [dB] Scheme 4 [dB] 
Throughput 1 bit 2 bits 3 bits 4 bits 

Zero forcing Zero forcing MMSE Zero forcing MMSE Zero forcing MMSE 
From Fig.6.6 Fig.6.7 Fig.6.10 Fig.6.8 Fig.6.11 Fig.6.9 Fig.6.12 
M=l 23.5 
M=2 10.9 24.4 20.6 
M=3 6.5 10.7 9.1 23.8 16.2 
M=4 3.8 6.0 5.1 10.3 7.6 23.8 14.1 
M=5 2.4 3.5 2.9 5.7 4.6 10.3 6.6 
M=6 1.0 1.7 1.5 3.2 2.5 5.6 3.7 
M=7 0.1 0.6 0.3 1.6 1.2 3.2 2.1 
M=8 -0.7 -0.3 -0.4 0.6 0.1 1.6 0.7 
M=9 -1.5 -0.9 -1.2 -0.3 -0.6 0.4 -0.2 
M=lO -2.1 -1.5 -1.8 -1.0 -1.3 -0.6 -1.0 

Table 6.3: SNR (dB] required for maintaining BER=1O-3 for both zero forcing and MMSE preprocessing for 
Schemes 1-4 of Table 6.2 

for Schemes 1-4 of Table 6.2, when maintaining BER=10-3, which is also presented in Fig.6.13. 

As we can see from Fig.6.13, MMSE preprocessing required a lower SNR for attaining the same 

performance than that necessitated by zero forcing preprocessing. This is due to the fact that MMSE 

preprocessing takes into accout the effects of both the MUI and of the noise jointly, while zero forcing 

only considers those of the MUI. 
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Figure 6.13: SNR [dB] required for maintaining BER=1O-3 for both zero forcing and MMSE preprocessing 
for Schemes 1-4 of Table 6.2 

Number of users K 2 
Number of antennas per user Nk 2 
Order of Kalman filtering assisted predictor p 2 
Range of prediction £ L/2 

Table 6.4: Parameters of the channel prediction based SDMA downlink preprocessing in TDD mode 
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Figure 6.14: BER versus average SNR per symbol performance for downlink transmission for the first receive 
antenna of the first user, when the number of transmitter antennas at the BS is assumed to be 
4, 6, 8, and 10, respectively for MMSE BS transmit preprocessing. Furthermore, the maximum 
normalized Doppler frequency is fdmTsL = 0.001 and the remaining parameters are the same as 
in Table 6.4. 

In Figure 6.14, the attainable BER performance versus average SNR is plotted for the first receive 

antenna of the first user, when the number of antennas used for MMSE BS transmit preprocessing is 

assumed to be M = 4, 6, 8, and 10, respectively. Furthermore, the maximum normalized Doppler 

frequency is fdmTsL = 0.001 and the remaining parameters are the same as in Table 6.4. As we 

can see from Figure 6.14, once the number of transmitter antennas at the B S becomes more than the 

sum of the number of each MS's receiver antennas, the achievable BER performance is significantlly 

improved for both the perfect and predicted CIR-tap scenarios as a benefit of tranmitter diversity. Fur

thermore, observe in Figure 6.14 that the performance difference between M = 4 and 6, M = 6 and 

8, as well as M = 8 and 10 recorded for both the perfect and predicted CIR-tap scenarios, becomes 

narrower. This is because the achieveable extra additional transmit diversity gain becomes lower upon 

every further increase of the number of antennas M at the BS. Moreover, the performance discrep

ancy seen in Figure 6.14 between the perfect and predicted CIR-tap scenarios becomes lower upon 

increasing the number of antennas at the BS since the performance loss due to prediction can be ef

fectively compensated by increasing the transmit diversity gain and hence approaching a near A WGN 

performance. Additionally, the performance discrepancy between the scenarios using predicted eIR 
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taps in conjunction with M = 10 and perfect eIR taps with j\!J = 8 is narrower than that between 

the predicted erR scenario using M = 8 and the perfect erR scenario employing M = 6. Similarly, 

observe in Figure 6.14 that the latter scenario has a lower perform ace discrepancy than that between 

the predicted erR case employing M = 6 and the perfect erR scenario using M = 4. Especially, the 

BER performance of the predicted eIR scenario using M = 10 was shown to be better in Figure 6.14 

than that using perfect erR-tap knowledge in conjunction with M = 8 in the lower range of SNRs. 

The reason for this is because the extra transmit gain attained compensates for the performance loss 

imposed by the channel's prediction error. The same trend can be observed in Figure 6.15 in the 

context of zero-forcing BS transmit preprocessing, where the theoretical BER performance of (6.34) 

is also plotted. Reassuringly, the theoretical results closely agree with those corresponding to the 

perfect erR scenario. 
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Figure 6.15: BER versus average SNR per symbol performance for downlink transmission for the first receive 
antenna of the first user when the number of transmitter antennas at BS is assumed to be 4, 6, 
8, and 10, respectively for zero-forcing BS transmit preprocessing. Furthermore, the maximum 
normalized Doppler frequency is fdmTsL = 0.001 and the remaining parameters are the same as 
in Table 6.4. 

6.7.2 Effect of the Number ofMSs 

rn Figures 6.16 to 6.23 the achievable BER performance versus average SNR per symbol performance 

is plotted for Schemes 1-4 of Table 6.5, when the number of MSs K ranges from K = 1 to K = 10, 
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Figure 6.16: BER versus average SNR per symbol perfonnance for Scheme 1 of Table 6.5, when the number 
of MS K ranges from K = 1 to K = 10 for zero forcing BS transmit preprocessing according 
to (6.34). 
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Figure 6.17: BER versus average SNR per symbol perfonnance for Scheme 2 of Table 6.5, when the number 
of MS K ranges from K = 1 to K = 10 for zero forcing BS transmit preprocessing according 
to (6.34). 
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Figure 6.18: BER versus average SNR per symbol perfonnance for Scheme 3 of Table 6.5, when the number 
of MS K ranges from K = 1 to K = 10 for zero forcing BS transmit preprocessing according 
to (6.34). 
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Figure 6.19: BER versus average SNR per symbol perfonnance for Scheme 4 of Table 6.5, when the number 
of MS K ranges from K = 1 to K = 10 for zero forcing BS transmit preprocessing according 
to (6.34). 
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Figure 6.20: BER versus average SNR per symbol performance for Scheme 1 of Table 6.5, when the number 
of MS K ranges from K = 1 to K = 10 for MMSE BS transmit preprocessing using perfect 
ClR. 
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Figure 6.21: BER versus average SNR per symbol performance for Scheme 2 of Table 6.5, when the number 
of MS K ranges from K = 1 to K = 10 for MMSE BS transmit preprocessing using perfect 
ClR. 
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Figure 6.22: BER versus average SNR per symbol performance for Scheme 3 of Table 6.5, when the number 
of MS K ranges from K = 1 to K = 10 for MMSE BS transmit preprocessing using perfect 
CIR. 
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Figure 6.23: BER versus average SNR per symbol performance for Scheme 4 of Table 6.5, when the number 
of MS K ranges from K = 1 to K = 10 for MMSE BS transmit preprocessing using perfect 
CIR. 
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Scheme 1 Scheme 2 Scheme 3 Scheme 4 
No. of antennas at each MS 1 1 1 1 
No. of antennas at the BS 7 8 9 10 
Modulation scheme BPSK BPSK BPSK BPSK 

Table 6.5: Parameters II used for SDMA downlink (DL) preprocessing 

I Scheme 1 [dB] I Scheme 2 [dB] I Scheme 3 [dB] I Scheme 4 [dB] 

Zero forcing MMSE Zero forcing MMSE Zero forcing MMSE Zero forcing MMSE 
Throughput Fig.6.16 Fig.6.20 Fig.6.17 Fig.6.21 Fig.6.18 Fig.6.22 Fig.6.19 Fig.6.23 

K=1 1 bits 0.1 0.1 -0.7 -0.7 -1.3 -1.3 -2.1 -2.1 
K==2 2 bits 0.6 0.4 -OJ -0.4 -1.0 -1.2 -1.5 -1.8 
K=3 3 bits 1.8 1.2 0.6 OJ -OJ -0.7 -1.0 -1.3 
K=4 4 bits 3.1 2.1 1.5 0.7 OJ -OJ -0.6 -1.0 
K==5 5 bits 5.0 3.2 3.0 1.9 1.5 0.4 0.6 -0.4 
K=6 6 bits 10.6 5.6 5.6 2.9 2.9 1.5 1.5 0.4 
K==7 7 bits 25.7 11.5 10.3 5.6 5.6 3.2 2.9 1.8 
K==8 8 bits 24.7 9.0 9.7 4.7 5.4 2.6 
K=9 9 bits 24.4 7.8 10.0 4.7 
K==lO 10 bits 24.1 7.6 

Table 6.6: SNR [dB] required for maintaining BER=10-3 for both zero forcing and MMSE preprocessing for 
Schemes 1-4 of Table 6.5 

for both zero-forcing and MMSE BS transmit preprocessing. Observe from Figures 6.16 to 6.23 that 

as expected, the BER performance is improved upon decreasing the number of MSs. However, the 

extra transmit diversity gain attained every time, when decreasing K by one gradually erodes, since 

the achievable transmit diversity gain does not increase linearly upon decreasing K. 

Additionally, the SNR required for maintaining BER=10-3 for Schemes 1-4 of Table 6.5 for both 

zero forcing and MMSE preprocessing was extracted from Figures 6.16 to 6.23 and summarized in 

Table 6.6 for Schemes 1-4 of Table 6.5, when maintaining BER=10-3 , which is also depicted in 

Fig.6.24. As we can see from Fig.6.24, MMSE preprocessing required a lower SNR than zero forcing 

preprocessing for attaining the same BER performance. The reason for this observation is the same 

as that discussed before in the context of Table 6.3. 

6.7.3 Performance With or Without the Knowledge of AWGN Variance 

In Figure 6.25 the BER versus average SNR per symbol performance was recorded for downlink 

transmission in the context of the first receive antenna of the first user when the number of antennas 

at the BS is assumed to be M =4 and 6, respectively, for both MMSE and zero-forcing BS transmit 
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Figure 6.24: SNR [dB] required for maintaining BER=1O- 3 for both zero forcing and MMSE preprocessing 
for Schemes 1-4 of Table 6.5 

preprocessing. Furthermore, the maximum normalized Doppler frequency is fdmTsL = 0.001. We 

can see from Figure 6.25 that as expected, the BER performance of both MMSE and zero-forcing BS 

transmit preprocessing is improved upon increasing the SNR, regardless whether perfect or prediced 

CIR taps are used. Apart from the obvious effect of noise reduction at the detector, this BER per

formance improvement is also due to the associated more accurate prediction, when using predicted 

CIR taps. Moreover, observe in Figure 6.25 for a given number of antennas at the BS the achievable 

BER performance of MMSE preprocessing is better than that of zero-forcing preprocessing for both 

the perfect and predicted CIR scenarios. This is because the effects of both the MUI and AWGN 

are jointly taken into account by the MMSE preprocessing. Furthmore, the performance discrepancy 

between MMSE and zero-forcing preprocessing recorded in Figure 6.25 for both the perfect and pre

dicted CIR taps scenarios becomes narrower upon increasing the number of transmitter antennas from 
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5 10 

Figure 6.25: BER versus average SNR per symbol performance for downlink transmission for the first receive 
antenna of the first user when the number of transmitter antennas at BS is assumed to be 4 and 6, 
respectively, for both the MMSE and zero-forcing BS transmit preprocessing. Furthermore, the 
maximum normalized Doppler frequency is fdmTsL = 0.001. The remaining parameters are the 
same as in Table 6.4. 

M =4 to 6. This is because zero-forcing preprocessing benefits more from the associated increased 

transmit diversity than MMSE preprocessing, since the transmitter diversity significantly mitigates not 

only the effect of the fading, but also those of the AWGN, as a benefit of noise averaging. Addition

ally, the discrepancy between the MMSE and zero-forcing based preprocessing techniques becomes 

narrower upon increasing the SNR for both the perfect and prediced eIR taps scenarios when con

sidering the same number of antennas at BS. This is because MMSE preprocessing loses its benefits 

of mitigating the effects of the A WGN upon increasing the SNR. Moreover, as seen in Figure 6.25 

the MMSE preprocessing using M =4 transmitter antennas outperforms the zero-forcing scheme for 

both the perfect and predicted eIR-tap scenarios, regardless of the SNR. Moreover, the MMSE pre

processor using M =4 transmitter antennas outperforms the zero-forcing scheme, even when M =6 

tranmitter antennas are used in both the perfect and predicted eIR scenarios in the lower SNR range 

of Figure 6.25. This is because the MMSE preprocessing has the ability of mitigating the effects of 

the AWGN. Furthermore, for M =6 transmitter antennas the MMSE preprocessor using predicted 

eIR taps becomes capable of outperforming the zero-forcing preprocessor benefitting from perfect 

eIR tap in the lower range of SNR of Figure 6.25. The reason for this is because the detrimental 
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effects of CIR-tap prediction error are lower for MMSE preprocessing than the effects of the AWGN 

imposed on zero-forcing preprocessing using perfect eIR taps, especially for lower SNR range of 

Figure 6.25. 

6.7.4 Effects of the Maximum Normalized Doppler Frequency 
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Figure 6.26: BER versus average SNR per symbol performance for downlink transmission for the first receive 
antenna of the first user, when the number of transmitter antennas at BS is assumed to be 4 and 
6, respectively, for both the MMSE and zero-forcing BS transmit preprocessing. Furthermore the 
maximum normalized Doppler frequency is fdmTsL = 0.001 and fdmTsL = 0.0001, respec
tively. The remairiing parameters are the same as in Table 6.4. 

In Figure 6.26 the achievable BER performance is plotted against different values of the SNR for 

the first receive antenna of the first user, when the number of transmitter antennas at the BS is as

sumed to be M =4 and 6, respectively, for both MMSE and zero-forcing BS transmit preprocessing. 

The maximum normalized Doppler frequency was fdmTsL = 0.001 and fdmTsL = 0.0001, respec

tively. The remaining parameters are the same as in Table 6.4. We can see from Figure 6.26 that the 

BER performance is improved for both MMSE and zero-forcing preprocessing upon increasing the 

number of transmitter antennas from M =4 to 6 regardless of the maxmimum normalized Doppler 

frequency fdmTsL, which is a plausible benefit of the increased transmitter diversity gain. Addition

ally, for a given number of transmitter antennas, the attainable BER performance was improved for 

both the MMSE and zero-forcing preprocessing for a given number of predictor's order, when the 
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maximum normalized Doppler frequency was reduced from 0.001 to 0.0001. Furthermore, observe 

in Figure 6.26 that the BER performance recorded for predicted erR taps was close to that of perfect 

erR knowledge for both MMSE and zero-forcing preprocessing. Moreover, for M =6 transmit

ter antennas and fdmTsL = 0.0001 the BER performance of MMSE preprocessing using predicted 

erR taps became better than that of zero-focring preprocessing using perfect erR tap knowledge, 

regardless of the SNR. This is becasue the effect of CIR-tap prediction error on MMSE preprocessing 

using predicted eIR taps was always found to be lower compared to that of the AWGN imposed on 

zero-forcing preprocessing benefitting from perfect eIR tap knowledge in the case of slow fading. 

6.8 Conclusion 

Transmitter preprocessing has been investigated as a key technique of simplifying the MS's receiver. 

A crucial requirement for its success is the accurate and prompt knowledge of the eIR taps at the BS. 

The quantized and outdated eIR tap knowledge results in a performance degration. Hence, CIR-tap 

prediction becomes an essential technique in this situation. Furthermore, the eIR tap values extracted 

from the uplink transmissions can be used for predicting the downlink eIR taps in TDD systems. 

In this chapter, a TDD based SDMA system using a vector Kalman filtering assisted predictor was 

used at the BS for predicting the downlink erR taps in order to invoke transmitter preprocessing. The 

MMSE criterion was adopted for designing the BS's transmit preprocessing matrix and two different 

forms of preprocessing, namely MMSE and zero-forcing were used corresponding to known or un

knon backgroud AWGN variance, respectively. Our simulation results portrayed in Figures 6.14 to 

6.26 demonstrated that with the aid of the Kalman filtering assisted channel predictor, BS transmitter 

preprocessing becomes capable of achieving an attractive performance. Furthermore, MMSE prepro

cessing was shown to outperform zero-forcing preprocessing as a benefit of its ability of mitigating 

the AWGN, as seen in Figures 6.25 and 6.26. 
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preprocessing and postprocessing matrix, where cooperation of the MSs was required, while in [170J 

the so-called maximum ratio [171] uplink transmission scheme was investigated, where only the 

dominant right-hand-side (rhs) and left-hand-side (Ihs) singular eigen vectors were adopted as the 

preprocessing and postprocessing eigen vectors, hence increasing the diversity gain at the cost of 

reducing the multiplexing gain. 

It has been shown in [9,10, 172-177] that when accurate and prompt CSI is available at both the 

transmitter and receiver, SVD-based adaptive modulation (AM) techniques applied in the context of 

MIMO systems are capable of achieving a high average spectral efficiency CASE). Moreover, both 

SVD-assisted space time block coding (STBC) and V-BLAST have found numerous applications 

[178-180]. However, these proposals were based on point-to-point communcations. In the context 

of multiple users, SVD based MUD was discussed in [181,182], when only the largest eigenvalue 

was invoked for uplink transmission, while in [183] multiple eigenvalue were invoked for downlink 

transmission, but only the inter-stream interference of the same user is cancelled with the aid of joint 

preprocessing and postprocessing. 

In this chapter, both SVD-based SDMA MUDs designed for the uplink as well as multiple user 

downlink transmissions are investigated. When using combined SVD-based preprocessing and post

processing, both the multiple access interference (MAl) as well as the inter-stream interference of the 

same user can be completely removed in the case of uplink transmissions. Similarly, both the MUI as 

well as the inter-stream interference of a given user can be completely cancelled, when considering 

downlink transmissions. The proposed algorithm facilitates the employment of the adaptive modu

lation (AM) in the context of MIMO-aided multiple users and allows the extension of SVD-assisted 

STBC and V-BLAST to multiple user scenarios. 

In contrast to the block diagonalization techniques of [152, 164J, which only consider downlink 

transmissions, both the uplink and downlink have been considered by the algorithm proposed in this 

chapter. Furthermore, the individual users' channel was specifically taken into account, which is a 

substantial benefit in comparision to the transmit MMSE or zero-forcing technique. Another potential 

advantage is that only the knowledge of the singular vectors is required by the proposed algorithm, 

hence, subspace tracking or estimation algorithms may be used for directly tracking the preprocessing 

and postprocessing matrix, without regularly estimating the channel matrix and carrying out its SVD, 

which would result in a high complexity [130-132J. 

The chapter is structured as follows. In Section 7.2, SVD-based joint preprocessing and postpro

cessing designed for MIMO-aided SDMA MUD in the uplink is discussed. In Section 7.3 SVD-based 

joint preprocessing and postprocessing conceived for MIMO-assisted SDMA mupltiuser downlink 
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transmission is investigated, which is further discussed in a TDD context in Section 7.4. In Section 

7.5 our simulation results are provided. Finally, our conclusions are offered in Section 7.6. 

Note that, for the sake of simplifying our notation, in this chapter the variables without overbars 

are either related to the uplink or are common for both the uplink and downlink, while the variables 

having an overbar specifically denote the downlink. 

7.2 SVD-Based Uplink Transmission and Detection 

In this section we consider both uplink transmission and detection in a multiuser MIMO system, 

where the base-station (BS) supports multiple mobile-stations (MSs). Although the extension of these 

principles to other types of MIMO systems is straightforward, the multiuser MIMO system considered 

here is in fact a SDMA system, where both the BS and MSs may employ multiple antennas both for 

reception and transmission. In our study we assume that the BS is capable of acquiring the uplink 

channel impulse response (eIR) knowledge in the context of all the uplink users. By contrast, a MS 

is only capable of acquiring the uplink eIR knowledge of itself. Furthermore, we assume that there 

is no cooperation among the uplink users. 

Since each of the MSs employs its corresponding uplink eIR knowledge, the SVD-based tech

nique of [64] may hence be invoked, so that the transmission power can be optimally allocated to the 

transmit antennas of an uplink user in order to maximise the achievable performance. Specifically, in 

this section we investigate the uplink transmission power allocation under the criterion of maximal in

formation rate per user [64] or of maximal signal-to-interference-plus-noise ratio (SINR) [88]. Again, 

there is no cooperation among the uplink users, hence .the uplink users experience MAl, which may 

significantly degrade the achievable performance. Therefore, in this section the family of SVD-based 

techniques is also investigated, in order to mitigate the effects of MAl among the uplink users. It can 

be shown that the SVD-based MAl suppression satisfies the zero-forcing (ZF) condition, which is 

capable of entirely removing the residual uplink MAL 

7.2.1 Representation of the Uplink Signal 

The schematic of the uplink multiuser MIMO system considered in this chapter is shown in Fig. 7.1, 

where the base-station (BS) employs M number of receive antennas and the kth (k = 1,2, ... , K) 

mobile station (MS) employs Nk number of transmit antennas. In Fig. 7.1 Qk (k = 1,2, ... ,K) 

represents the uplink transmitter's preprocessing matrix formulated for detecting the signal of the kth 

MS. The kth MS's data Xk is first preprocessed using Qk before its transmission. In Fig. 7.1 Tk 
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Figure 7.1: Schematic of an uplink multiuser MIMO system, where the BS employs M receive antennas, while 
the mobile stations (MSs) may employ different number of transmit antennas. 

(k = 1,2, ... , K) represents the receiver's post-processing matrix formulated for detecting of the 

data transmitted by the kth MS. Let us now describe in detail both the transmission and detection 

schemes, which are based on the SVD. 

Let the Nk data sysmbols to be transmitted by the kth MS to the BS be hosted by a vector 

expressed as [169] 

(7.1) 

As shown in Fig. 7.1, Xk is preprocessed using the kth MS's transmitter preprocessing matrix Qk, 

yielding the output (169) 

(7.2) 

Let the eIR matrix connecting the Nk transmit antennas of the kth MS with the M receive antennas 
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at the BS be expressed as 

, k = 1,2, ... , K, (7.3) 

which is a (M x Nk)-component matrix. Then, the received length-M observation vector y at the BS 

can be expressed as [169] 

K 

Y = ~Hkdk +n 
k=l 
K 

= ~HkQkXk +n, 
k=l 

(7.4) 

where n is a length-M noise observation vector, which is assumed to be Gaussian distributed with a 

zero mean and a covariance matrix given by (J'2 1M. 

Let us define 

H = [H1,H2 ,'" ,HK]T, 

Q=diag{Ql,Q2,'" ,QK}' 

d = [d[,dr, ... ,dk(, 

[ T T TJT X= xl,X2,"·,xK , (7.5) 

where H is the C2~r;=1 Nk x M)-component combined channel matrix of the uplink, Q is the 

(~r;=l Nk x ~r;=l Nk)-component overall preprocessing matrix, d is the length-(~r;=l Nk) overall 

preprocessed data vector and x is the length-(~r;=l Nk) overall transmitted data vector. 

Then, (7.4) can also be written as 

y=Hd+n 

=HQx+n. (7.6) 

As shown in Fig. 7.1, at the BS' s receiver the observation vector y is processed in order to generate 

the estimates of the transmitted data symbols. Specifically, the kth MS's transmitted data is recovered 
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by processing the observation vector Y using a (Nk x "~1)-component weight matrix Tb which can 

be expressed as 

Xk =Tky, k = 1,2, ... ,K. (7.7) 

Let us collect all the estimates of the K uplink users into a single vector X, which is defined as 

(7.8) 

Furthermore, let the overall ('£,f=l Nk x M)-component weight matrix T be formulated as 

(7.9) 

Then, it can be shown that (7.8) may be expressed as 

x=Ty 

= THQx + Tn, (7.10) 

where the matrix operation of T is referred to as receiver post-processing [60] in contrast to the 

transmitter preprocessing operation of Q [60,153]. 

For the traditional zero-forcing receiver [184], which does not use transmit preprocessing, the 

overall preprocessing matrix Q and the overall postprocessing matrix T are expressed, respectively, 

as 

Q =I""K N' L..k=l k 

Upon substituting (7.11) and (7.12) into (7.10), we have 

A I 

x=x+n, 

(7.11 ) 

(7.12) 

(7.13) 
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where 

(7.14) 

The covariance matrix R of n' is given by 

(7.15) 

Above we have derived the expression of the discrete-time signal received at the BS, as shown 

in (7.6), when the MS's transmitter employs transmitter preprocessing. After the receiver post

processing seen in Fig. 7.1, the decision variable vector representing the transmitted data of the K 

uplink users is given by (7.10). Below we consider both the uplink preprocessing as well as detec

tion and derive the expressions for both the transmitter preprocessing matrix Q and for the receiver 

post-processing matrix T using the classic SVD principles. In our derivation we assume that we have 

M 2: "L.f=l Nk , which physically means that the number of antennas at the BS is equal to or higher 

than the sum of antennas of all the K MSs. 

7.2.2 Uplink Transmitter Preprocessing Based on SVD 

The uplink transmitter preprocesing is employed for facilitating efficient transmission power alloca

tion and to assist the BS receiver in reliably detecting the uplink signals. Our study shows that the 

system employing transmission power allocation is capable of significantly outperforming that dis

pensing with it. Let us assume that H k of (7.3) satisfies rank (H k) = Nk. Then, the SVD of H k can 

be expressed as 

Hk=Ukrt]Vr 

= [U" U knJ [A~']v r (7.16) 

- U Al/2VH k - K - ks k k, - 1,2, ... , , (7.17) 

where Uk and V k are (M x M) and (Nk x Nk)-component unitary matrices, respectively, while A = 

diag {AI, A2,'" ,ANk} contains the Nk non-zero eigenvalues of Hf! H k or H kHf!. Furthermore, 

in (7.16) the columns of Uk are constituted by the eigenvectors of H kHf!, U ks consists of the Nk 
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eigenvectors corresponding to the signal subspace of H kHr:, while U kn consists of the (M - Nk) 

eigenvectors corresponding to the null subspace of H kH r:. Similarly, the columns of V k correspond 

to the eigenvectors of H r: H k. 

Upon substituting (7.17) into (7.4), the vector y of the received signal seen in Figure 7.1 can be 

expressed as 

K 

Y = ~UksA!/2Vr:QkXk +n, (7.18) 
k=l 

where the channel matrix of the kth user H k is replaced by its SVD. Let the transmitter preprocessing 

matrix Qk of Figure 7.1 be formulated as 

Qk = Vk(3k, k = 1,2, ... ,K, (7.19) 

where (3k = diag {(3kl," . , (3kNk} is a (Nk x Nk)-component diagonal matrix, which is employed 

for implementing the transmission power-allocation, as we will discuss in detail in our forthcom

ing discourse in Subsection 7.2.4. After substituting (7.19) into (7.18) and exploiting the property 

Vr:V k = INk' the vector y of the received signal seen in Figure 7.1 can be simplified to 

(7.20) 

where the right-hand-side (rhs) singular vectors of the channel matrix H k of the kth user has been 

cancelled out by the corresponding preprocessing matrix Q k of Figure 7.1 at the K th MS. 

Equation (7.20) shows that the preprocessing operation represented by the preprocessing matrix, 

say Qko of (7.19) decouples the Nk transmitted data symbols of the kth MS from the transmitter side. 

In other words, as shown in (7.20), the preprocessing of Xk projects the Nk symbols of Xk onto Nk 

different orthogonal subspaces. In this case a specific symbol Xk can be readily detected on the basis 

of the subspace it belongs to without encountering interference from the other symbols of MS k. 

Let us define 

Us = [U1s ,U2s ,'" ,UKs] , 

Al/2 - d' {Al/2 A1/ 2 ... Al/2} - lag l' 2' , K ' 

(7.21 ) 
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where the (1\11 x "L~=1 NIc)-component matrix Us consists of K signal spaces of HlcH;:, the 

("L~=1 Nic x "L~=1 NIc)-component matrix A 1/2 is composed of the K number of diagonal matrices 

Ak/
2

, while the ("L~=1 Nic x "L~=1 NIc)-component diagonal matrix (3 hosts the power allocation 

coefficients for all the K MSs. 

Then, the received signal vector y of Figure 7.1 can be expressed as 

(7.22) 

Note that although the columns of U ks (k = 1,2, ... ,K) are orthogonal, suggesting that there is 

no IAI, the columns of Us in (7.22) corresponding to the different users are non-orthogonal. There

fore, there is MAl, which should be cancelled by the BS's receiver. Let us now consider the issues of 

uplink detection. 

7.2.3 Uplink Detection 

Upon left multiplying the overall transmit postprocessing matrix T with the received signal vector y 

of (7.22), the decision variable vector of (7.10) formulated for all the K users can be expressed as 

(7.23) 

It can be shown that there are many alternatives for the design of the receiver post-processing matrix 

T, as discussed in [184]. As an example, in this chapter we focus our attention on the zero-forcing 

(ZF) detection scheme, which is a linear detector and is capable of entirely removing the MAL 

The ZF solution encapsulated in T can be readily derived in the context of [184] 

T = { [Usl+ = (UljUsr
1 
ulj, if "Lf=l Nk < M; 

[Usr1
, if "Lf=l Nk = M, 

(7.24) 

where [·l+ denotes the pseudo inverse of the matrix Us. Upon substituting (7.24) into (7.23), we 

arrive at 

(7.25) 
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Explicitly, the MAl is entirely removed. In (7.25) the noise term n' is given by 

n'=Tn, (7.26) 

which still represents a Gaussian noise vector with zero mean, but its covariance matrix is given by 

(7.27) 

which indicates that the noise observations become correlated after receiver post-processing. 

Since the signals transmitted from a given MS are decoupled by its transmitter preprocessing, it 

can be shown that the diagonal entries of U ~ Us are constituted by K unity matrices having the sizes 

of (Nk x Nk) for k = 1,2, ... ,K, respectively. Therefore, a given MS does not impose correlation 

on its own noise samples. This property makes it possible for us to study the power-allocation for 

a specific MS without considering the correlation among the noise observation samples. Let us now 

consider the UL power-allocation in the next section. 

7.2.4 Power-Allocation 

In the context of uplink transmission, the originally allocated transmission power of the kth MS is 

given by E [IIXk 112] . Hence the power-allocation is carried out under the constraint of 

(7.28) 

which means that the transmission power after transmit preprocessing cannot exceed the originally 

allocated power. Let us assume that the transmitted symbols are normalized to satisfy E [llxkiI12] = 

1. Then, the above constraint can be written as 

Nk 

Lf3fi = Nk. (7.29) 
i=l 

In our the power-allocatIon study we assume that a MS employs the knowledge of the MIMO 

channels connecting its transmit antennas with the M BS receive antennas, i.e. that the kth MS 

has the knowledge of H k . Therefore, the kth MS has the knowledge of A k . However, the kth MS 

is unable to acquire any knowledge about the other MSs' eIRs. By contrast, the BS is capable of 

acquiring channel knowledge in the context of all the MSs, in order to carry out zero-forcing based 

detection. 



130 CHAPTER 7. SVD ASSISTED TRANSMISSION AND DETECTION IN MULTIUSER MIMO SYSTEMS 

In this section power-allocation is carried out in the uplink multiuser MIMO system either based 

on maximizing the information rate [64] or on maximizing the overall SNR [88]. Let us first consider 

the power-allocation scheme, which achieves the maximal information rate for an individual MS. 

7.2.4.1 Maximum Information Rate Based Power-Allocation 

Since in the considered system there is no cooperation among the MSs, a MS can only exploit the 

knowledge of it own eIR and its shared power can only be across to its own transmit antennas, 

while ignoring the existance of all the other MSs. In this case the 'water-filling' principle [64] may 

be employed for allocating the MS's total transmission power, in order to maximize the achievable 

information rate of the corresponding user. Specifically, as shown in (7.25), the decision variable 

vector of the kth MS can be expressed as 

~ - A1/ 2f3 I k - 12K Xk - k kXk + nk' - , , ... , . (7.30) 

When treating the components of n~ as independent Gaussian random variables, it can be shown that, 

in order to maximize the achievable information rate, the power-allocation related matrix 13k should 

be chosen according to [64J 

(7.31) 

where I (Xk,Xk) denotes the channel capacity associated with Hko which quantifies the maximum 

number of error free information bits per channel use that can be transmitted over the channel H k for 

the given noise covariance matrix, when assuming that the noise power is unity. Furthermore, since 

the channel matrix H k is decomposed into Nk parallel SISO channels and n~ is assumed to represent 

indepedent Gaussian random variables, the channel capacity associated with H k can be expressed as 

the sum of Nk SISO channels' capacity. 

Upon exploiting the 'water-filling' principle [64], the information rate of (7.31) can be maxi

mized, if the coefficients {,6ki} of the (Nk x Nk)-component diagonal matrix of (7.19) hosting the 

power allocation coefficients are chosen as [64] 

(7.32) 
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and Vk is chosen so that 

is satisfied. 

if x 2: 0 

if x < 0 
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(7.33) 

(7.34) 

Furthermore, when substituting (7.32) into (7.31), it can be shown that the maximum information 

rate of the kth MS is given by [64] 

Nk 

Imax(xk,xk) = L (10g2 [VkAki])+, k = 1,2, ... , K. 
i=l 

(7.35) 

The above result has been obtained, when assuming that the noise power is unity. When the 

signal-to-noise ratio (SNR) is known, the maximum information rate normalized by the number of 

transmit antennas of MS k can be expressed as [147] 

1 Nk [( A ( 2) +)] Imax(Xk, Xk) = Nk~ 10g2 1 + (J;i Vk - ~ki ' k = 1,2, ... , K (7.36) 

which denotes the maximum number of error free information bits per channel use for the channel 

H k at a given SNR, provided that the noise samples observed at the BS 's receiver are independent. 

When the power-allocation regime of (7.32) and assuming noise samples are correlated, the max

imal achievable rate must be modified as follows. Let us denote the the covariance matrix of the noise 

samples by 

(7.37) 

The maximal achievable normalized rate can be expressed as [185] 

(7.38) 

where the diagonal entries of f3k are given by (7.36). From (7.38) we can see that the channel capacity 
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associated with H k is not treated as the sum of Nk S1S0 channel's capacity, since the correlation 

among the noise components is known at the receiver and the receiver is capable of exploiting this 

correlation for improving the channel capacity of H k. The maximum attainable information rate of 

(7.38) is achieved, when the receiver is capable of exploiting the knowledge of Rk for the detection 

of the kth user, despite having no knowledge concerning the correlation of the noise experienced by 

the different users, since there is no cooperation among the MSs. 

Note furthermore that when the conventional zero-forcing detection of (7.13) is considered, the 

achievable normalized capacity can be expressed as [186] 

, 1 2:f[=1 Nk [( 1)] 
Imax(x,x) = K L log2 1 + -[R] .. ' 2:k=l Nk i=l (2,2) 

(7.39) 

where R is a noise auto-correlation matrix of the noise given by (7.15), 

7.2.4.2 Power-Allocation Designed for Achieving the Maximum SNR 

For this scenario, we approximate the entries of the vector n~ as the independent identically dis

tributed (i.i.d) Gaussian random variables having a common variance of 0'2/2 per dimension. Given 

the decision variable vector of (7.30), the SNR of the ith antenna's symbol of MS k can be expressed 

as 

)..ki(3~i ' N k 1 K 'Yki = --2 -, ~ = 1,2, ... , ki =,2, ... , 
(J' 

(7.40) 

and the sum of the SNRs of all the Nk antennas is given by 'Yk = 2:~1 'Yki. However, it can be 

shown that maximizing 'Yk does not result in a meaningful solution [88]. Hence we opt the following 

expression for minimizing [88] 

(7.41) 

under the constraint of (7.29) for the total transmission power. In this case the Lagrangian constrained 

optimazation cost-function [88] can be formulated as 

(7.42) 
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Upon taking the derivative of J in (7.42) with respect to (3hi and setting the result to zero gives 

[ff2 

(3~i = ~, i = 1,2, ... ,Nk, 
{..LAki 

where {..L can be obtained from the power constraint of (7.29), which gives 

1 

v1i 

(7.43) 

(7.44) 

Finally, when substituting the above result into (7.43), we arrive at the power-allocation scheme 

optimized for maintaining the maximum achievable SNR in the form of 

(7.45) 

where (3~i is the power allocated to the ith antenna of the kth MS, which is only related to the Nk 

eigenvalues of the channel matrix H k. 

Upon comparing (7.45) to (7.32), we can see that the power-allocation scheme of (7.32) which is 

derived for the maximal information rate criterion assigns more transmission power to the transmit 

antennas having good channel conditions. By contrast, the power-allocation scheme of (7.45) opti

mized based on the maximum SNR principle assigns less transmission power to the transmit antennas 

benefitting from having good channel conditions, so that the SNR-related quantity of (7.41) can be 

minimized. 

Upon substituting (7.45) into (7.40), the SNR experienced by the ith antenna's symbol of MS k 

is given by 

(

N -1 
Nky'):ki k 1 . 

'Yki = 2 L ~) , ~ = 1,2, ... , Nk; k = 1,2, ... ,K. 
(j i=l V Aki 

(7.46) 

Furthermore, when the BPSK modulation is employed, the BER can be expressed as 

(7.47) 
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Note that there are other strategies [126,187], which can also be invoked for optimizing the trans

mission power allocation. For example, the transmission power can be allocated, in order to achieve 

the minimum BER (MBER) [187]. It can also be allocated for minimizing the transmission power 

required maintaining a given data rate in the context of speficic modulation schemes. Furthermore, 

adaptive-rate modulation [6] can be invoked for practically achieving a transmission rate that is as 

high as possible. 

Having considered uplink transmissions, let us now consider the downlink in the next section. 

7.3 SVD-Based Downlink Transmission and Detection 

• 
• 

Base Station 

Figure 7.2: Schematic of SDMA downlink transmission using both preprocessing and postprocessing. 

Similarly to the uplink, the downlink system considered has a single BS supporting K MSs as 

shown in Fig. 7.2. The BS is equipped with M transmit antennas, while the kth (k = 1,2, ... ,K) 

MS has Nk receive antennas. Furthermore, we assume that the channel between any pair of transmit 

and receive antennas is flat-fading. Note again that in this chapter the variables marked with overbars 

are specifically reserved for the downlink. 

Let the Nk-component DL symbol vector Xk to be transmitted to the kth MS be expressed as 

(7.48) 
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As shown in Figure 7.2, Xlc is preprocessed before its transmission by premutiplying it with an (M x 

Nk)-component preprocessing matrix P ko yielding 

(7.49) 

After transmitter preprocessing, the M-component signal broadcast by the BS to the K MSs can be 

expressed as 

K K 

d = L::dk = L::PkXk 
k=l k=l 

=Px, (7.50) 

where P is a (M x 2.:f=l Nk) -component matrix given by 

(7.51) 

and x is a (2.:f=l Nk) -component vector containing the transmitted data, which is given by 

(7.52) 

When the signal of (7.50) is transmitted over the downlink MIMO channel, as shown in Figure 7.2, 

the received Nk-component vector Y k of the kth MS can be expressed as 

Yk =ihd+nk 

= HkPx +nk 
K 

= L::HkPiXi + nk 
i=l 

K 

= HkPkXk + L:: HkPiXi + nk, k = 1,2, ... , K 
i=l,ifk 

(7.53) 

where nk is an Nk-length AWGN vector having zero mean and a covariance matrix of E[nknf!l = 

(T2INk' while Hk is a (Nk x M)-component channel transfer matrix connecting the M antennas of 
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the BS with the kth MS, which can be expressed as 

(7.54) 

where h~) represents the CIR coefficients between the jth BS transmit antenna and the ith receive an

tenna of the kth MS. As we can see from (7.53), the downlink MSs experience multiuser inferference 

(MUI). 

Let us assume that the rows of fI k (k = 1, 2, ... ,K) have full rank, i.e. we have rank (fI k) = 

Nk, and that M 2: ~f=l Nk. Then, upon carrying out the SVD of fI ko we arrive at 

(7.55) 

where (j k and V k are (Nk x Nk)-component and (M x M)-component unitary matrices, respec

tively, Ak is a (Nk x Nk)-component diagonal matrix containing the eigenvalues of fIkfI~, i.e. we 

have Ak = diag{).kll ).k2,· .. ,).kNk}' Furthermore, in (7.55) V ks is a (M x Nk)-component ma

trix, which is constituted by the eigenvectors corresponding to the non-zero eigenvalues of fI~ fI k. 

By contrast, V kn is a (M x (M - Nk ) )-component matrix, which is constituted by the eigenvec

tors corresponding to the zero eigenvalues of fI~ fI k. Similarly, (j k consists of the eigenvectors of 
- -H 
HkHk · 

Upon substituting (7.55) into the second equation in (7.53), the received signal ih of the kth MS 

seen in Figure 7.2 may be expressed as 

(7.56) 

Let us now collect all the K received signal vectors {Yk} of (7.53) into a vector fI, which is expressed 
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as 

- [-T -T -T] T Y = Yl ,Y2,'" 'YK . (7.57) 

Then, according to (7.56) it can be shown that the overall received signal vector fJ of all K MSs can 

be expressed as 

fJ = U A 1/2V~ Px + n, 

where we introduced the following definitions, 

U=diag{UI,U2,'" ,UK}, 

A = diag {A I ,A2 , ... ,AK }, 

(7.58) 

(7.59) 

In (7.59) U and A are (~f=l Nk X ~f=1 Nk) -component matrices, V s is a (M x ~f=1 Nk)

component matrix and n is an A WGN vector, which is Gaussian distributed with zero-mean and a 

covariance matrix of (J2 I ",K· N . 
L"k=1 k 

The preprocessing matrix P is designed, so that the downlink MUI can be efficiently suppressed. 

As shown in (7.58), the MUI can be fully removed, when the preprocessing matrix P is chosen to 

satisfy 

(7.60) 

where the power-allocation regime of {3 = diag {,61, ,62,' .. , ,62:f[=1 Nk} = diag {,6ll, ... , ,6INI; ... ; 
,6 KI, ... ,,6 K N K } represents our transmission power constraint, which will be considered in detail in 

our forthcoming discourse of Subsection 7.3.1. 

In order to satisfy (7.60), P can be set to be 

P = [V~t {3 

= Vs [V~Vs]-l {3 

=P{3, (7.61) 
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where [V~r denotes the pseudo inverse of the matrix V~ and P = [V~t = Vs [V:Vs] -1. 

When substituting the overall preprocessing matrix of (7.60) into (7.58), the overall received 

signal vector jj of all K MSs can be simplified to 

- U-A- 1/ 2 1.l- -Y = jJX +n. (7.62) 

To be more specific, the Nk-Iength observation vector of the kth MS can be expressed as 

(7.63) 

where we have 13k = diag{.8k1,.8k2,··· ,.8kNk}' Explicitly, the kth user endures no interference 

conflicted by the other users. However, there may exist interference among the symbols transmitted 

by the BS to the kth MS. This inter-element interference can be suppressed with the aid of the SVD

based matrices {Uk}. Consequently, after the postprocessing the received signal vectors Wd by 

{Gk = U:} according to Figure 7.2, the decision variables can be individually as 

(7.64) 

or jointly as 

" "T "T T 
X=[Xl'''' ,xKl 

= J... 1/
2.8x + UHii. (7.65) 

Let us now consider the design of power allocation for the downlink. 

7.3.1 Power-Allocation 

In the context of downlink transmissions, the total transmission power E [IIPxI12] of all the K MSs 

after transmit preprocessing must not exceed the original total transmission power E [llxI12] of all 

the K MSs before transmit preprocessing, hence the power-allocation designed for downlink trans

missions is implemented under the constraint of [153] 

(7.66) 

Upon substituting (7.61) into (7.66), we arrive at [153] 
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J{ 

trace(p
H 

PiJ2) ::; L Nk · 

k=l 

Here we have assumed that E[xxH] = I ~r;=1 Nk' 
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(7.67) 

Explicitly, pH P is a positive definite full-rank matrix. Let {'13ii} (1 ::; i ::; L,~=l Nk) be the 
-H-

diagonal elements of matrix P P, where we have {'13id > O. Consequently, the constraint of (7.67) 

can be written as 

and furthermore, we have 

~r;=1 Nk J{ 

L 'l3iij3~::; L Nk , 

i=l k=l 

P=PiJ 

= [PliJl"" ,PKiJK] 

= [Pl ,'" ,PK], 

Alternatively, we can also impose a power constraint on each user as 

Hence we have 

(7.68) 

(7.69) 

(7.70) 

(7.71) 

(k) - H - (k) 
Let {'13ii } (1 ::; i ::; Nk) be the diagonal elements of matrix P k Pk> where we have {'13 ii } > O. 

Consequently, the constraint of (7.70) can be written as 

(7.72) 

In this section four different types of power-allocation schemes are considered. The first one max

imizes the overall information rate of the K downlink users. We refer to this power-allocation scheme 
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as that designed for achieving joint maximum information rate. The second one aims for maximizing 

the information rate for each of the downlink users. We term this power-allocation scheme as the one 

designed for maintaining the individual maximum information rate. Moreover, similarly to the up

link, the downlink power may be optimized for maximizing the average SNR for the individual users, 

which is hence referred to as the maximum SNR (MSNR) assisted power-allocation regime. Finally, 

a widely used power-allocation scheme, which is referred to as equal power-allocation scheme in this 

chapter, since it simply assigns the same power to each antenna of each MS, is also investigated in 

the context of the proposed transmission regime. 

7.3.1.1 Joint Maximum Information Rate Assisted Power-Allocation 

When following the approach of Section 7.2.4.1 and using the 'water-filling' principle [64], it can be 

shown that the overall information rate of the downlink can be maximized, if {,Bii} are chosen as [64] 

. ( 1 )+ ,B~ = v-=-:-:- ' i = 1, 2, ... , L N k, 
An k=l 

K 

(7.73) 

where v is chosen so that the power allocation constraint of (7.68) is satisfied [64], i.e. we have 

L;{;=1 Nk K 

L 79ii,B~::; L Nk· (7.74) 

i=l k=l 

The proof of this is given in Appendix B. Furthennore, it can be shown that the maximum overall 

information rate of the downlink can be computed as [64] 

L;~=1 Nk 

Imax(x,x) = L (logz[V'xiJt (7.75) 

i=l 

which represents the maximum number of error free information bits per channel use for downlink 

transmission, when jointly considering the power allocation of all the K MSs, and when the noise 

power is unity. 

Additionally, given a specific SNR, the maximum overall infonnation rate nonnalized by the total 

number of receive antennas Lf=l Nk can be expressed as [147] 

1 L;{;=1 Nk [ ( ,x. ( 2) +) 1 
Imax(x,x) = K L log2 1 + 0'; v - ~. ' 

Lk=l Nk i=l 2 

(7.76) 
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which represents the normalized maximum number of error free information bits per channel use for 

a given SNR, when jointly considering the power allocation among all the K MSs, and when ZF

assisted transmit preprocessing based on SVD is applied, assuming that the noise samples observed 

at the MSs are independent. 

7.3.1.2 Power-Allocation Designed for Maximum Individual Information Rate 

When the power-allocation regime based on the maximum individual information rate is considered, 

the power adjustment is carried out for a specific user without exploiting any information concerning 

the other users. Specifically,· for the kth downlink MS the power is specifically allocated so that the 

kth user's information rate is maximized, while satisfying the power constraint of 

(7.77) 
i=l 

When we compare (7.64) to (7.30), we find that they have the same structure. Hence, in this case 

the power !3fi allocated for the kth downlink MS can be represented as [64] 

- ( 1 )+ fJfi = Vk - =- ,i = 1,2, ... ,Nk; k = 1,2, ... , K, 
Aki 

(7.78) 

where Vk is chosen so that the the transmission power constraint of (7.77) is satisfied [64]. i.e. we 

have 

(7.79) 

The proof of this can be found in Appendix B. 

Furthermore. it can be shown that the maximum information rate of the kth MS can be expressed 

as [64] 

Nk 

Imax(xk,xk) = L (10g2 [Vk);ki]) + , k = 1,2, ... , K (7.80) 

i=l 

which represents the maximum number of error free information bits per channel use for the kth MS. 

when noise power is unity. Alternatively, when the SNR is known, the maximum information rate of 
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the kth MS normalized by the number of receive antennas Nk can be expressed as [147] 

(7.81) 

which represents the average maximum number of error free information bits per channel use for 

the kth MS for a given SNR, again assuming that the noise samples observed at the kth MS are 

independent. 

7.3.1.3 Power-Allocation Designed for Maximum SNR 

Similarly to the uplink scenario of (7.41), when the power-allocation is optimized for maintaining the 

MSNR, the transmitter minimizes 

(7.82) 

under the constraint of (7.68) imposed on the transmission power. 

Upon following an approach used for the uplink in Section 7.2.4.2, it can be shown that in the 

case of MSNR-optimization the power i3~ allocated to the ith data stream is given by [88] 

(7.83) 

Furthermore, similarly to the uplink scenario of (7.40), the resultant SNR of the ith data stream 

can be expressed as 

(7.84) 
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Furthermore, when BPSK modulation is employed, the BER can be computed as 

K 

Pbbi) = Q (~), i = 1,2, ... , LNk . (7.85) 
k=l 

7.3.1.4 Equal Power Allocation 

In this case, the coefficients /3i are set according to /31 = ... = /3""K N = /3, where /3 is a constant, 
0k=1 K 

facilitating the normalization of all K MS's power [151,153], hence (7.67) can be expressed as [153] 

K 

/32trace(pH P) :::; L Nk· 
k=l 

It can be readily shown with the aid of (7.61) that in this case we have [151, 153] 

/3= 

In this case, the resulant SNR of (7.40) for the ith symbol of MS k can be expressed as 

Specifically, we refer to this power-allocation scheme as the equal-power based scheme. 

Furthermore, when BPSK modulation is employed, the resultant BER can be computed as 

K 

Pbbi) = Q (~), i = 1,2, ... ,LNk. 
k=l 

(7.86) 

(7.87) 

(7.88) 

(7.89) 

Similarly to the uplink discussions of Subsection 7.2.4, there are also other strategies for downlink 

power allocation [126,168,187]. 
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7.4 Downlink Transmitter Preprocessing and Detection in TDD MIMO 

Systems 

The downlink transmitter preprocessing and detection techniques discussed in Section 7.3 are suit

able for both FDD and TDD systems. When TDD-assisted MIMO systems are considered, both the 

downlink transmitter preprocessing and detection schemes can be further simplified by exploiting the 

channel's reciprocity manifesting itself in terms of a similar UL and DL CHTF, since both are trans

mitted at the same frequency, although naturally, in practice the effects of the different UL and DL 

interferences also have to be taken in account. Let us consider the benefits of UL/DL reciprocity in a 

little more detail. 

In TDD-assisted MIMO systems, instead of transmitting the data as seen in (7.50), we arrange for 

the downlink to transmit 

K 

it = :LPkxic = Px* (7.90) 

k=l 

where xic is the conjugate of Xk as in [130]. 

Since in TDD-assisted MIMO systems we have fI k = HI, where H k is the CIR matrix of the 

uplink channel, the Nk-component received vector rk by the kth MS can be expressed as 

T- -rk = Hkd+nk 
K 

= HI:L PIX; + fik 
1=1 

(7.91) 

Upon applying the conjugation operation to rk [130], which allows us to recover the DL's transmitted 

data, we arrive at 

ric = Hf! P*x + fiic 
K 

HHp* - ""' HHp* - - * = k kXk + ~ k lXl +nk' 
Ilk 

(7.92) 

According to (7.17), the CIR matrix H k of the uplink channel associated with the kth MS can be 
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represented with the aid of the SVD as 

H - U Al/2VH "-k - ks k k , k - 1,2, ... ,K. (7.93) 

Upon substituting (7.93) into (7.92), we arrive at 

(7.94) 

Let r* be the ('[~,f=l Nk) -component vector defined as 

* [H H H]T r = r 1 ,r2 ,'" ,rK , (7.95) 

Then, it can be shown with the aid of (7.94) that r* can be represented as 

(7.96) 

where the arguments of A and Us have been defined in the context of (7.21), while V sand n are given 

by 

v s = diag {VI, V 2, ... , V K } 

- [-T -T -T]T n = nl' n2 , ... , n K . (7.97) 

Note that in the above equations the orthogonal matrices U ks and V k for k = 1,2, ... , K have 

been obtained for uplink transmission and detection, respectively. Therefore, in TDD-assisted MIMO 

systems the preprocessing and post-processing techniques designed for both the uplink and downlink 

can be implemented based on the same common SVD at each of the MSs for finding V k for k = 

1,. " , K, while K common SVDs are employed at the BS for deriving U ks for k = 1, ... , K. 

By contrast, when the the FDCHTFs of the uplink and downlink cannot be deemed similar, which is 

often the case in FDD-assisted wireless systems, each MS requires two separate SVDs, one for uplink 

transmission and one for downlink detection. Similarly, the BS has to carry out 2K SVDs, K of them 

for uplink detection and the other K for downlink preprocessing. 

Based on (7.96) it can be readily shown that in order to completely remove the multiuser interfer-
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ence, the BS's transmitter preprocessing matrix P can be chosen to satisfy 

(7.98) 

Upon solving this equation, we arrive at 

P = u; [UrU;] -1 (3. (7.99) 

Finally, the decision variables can be derived for the K MSs by substituting (7.99) into (7.96) and 

then multiplying both sides of (7.96) by V~, yielding, 

y = V~r* 

= Al/2(3x + V~ii*, (7.100) 

where (3 depends on the specific power-allocation scheme applied, as discussed in Section 7.3. 

7.5 Simulations 

In this section, simulation results are provided for characterizing the achievable performance of the 

proposed algorithm in conjunction with a specific power allocation scheme. Speficically, three dif

ferent scenarios are considered in Tables 7.1, 7.2 and 7.3, where Table 7.1 outlines the parameters 

used for various fully loaded systems, where the MSs benefit from having 2,4,5 or 10 antennas. By 

contrast, in Table 7.2 the total number of antennas employed was M = 20 and at the MS it was 

Nk = 4, while the number of MSs was K = 2,3,4 or 5. Finally, in Table 7.3 the number of MSs 

was fixed to K = 3 and the number of antennas at each MS was set to Nk = 4, while the number 

of antennas at the BS was M = 12,16,20 or 24. Furthermore, the symbols "M - K - Nk" in the 

legends of the simulation results seen in Figures 7.3 to 7.17 indicate that M antennas are employed 

at the BS for supporting K MSs and each of the MSs had Nk antennas. 

As a bench marker, the achievable system capacity versus average SNR per symbol recorded for a 

single-user MIMO system is evaluated from (7.36) and plotted in Figure 7.3, when uncorrlated noise 

contaminates the received signal of the four schemes. The number of antennas at the BS is fixed to 

M = 20 and the number of antennas at MS varies from Nk = 1 to 4. We can see from Figure 7.3 that 

the achievable system capacity increases significantly upon increasing the number of receive antennas 

at the MS. This is because the more antennas the system has, the higher the capacity that it is capable 
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Figure 7.3: System capacity versus average SNR per symbol evaluated from (7.36) for a single user MIMO 
system when encountering the uncorrelated noise for four schemes where number of antennas at 
the BS is fixed to M = 20 and the number of antennas at MS varies from Nk = 1 to 4. 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 
Number of MSs (K) 10 5 4 2 
Number of antennas at each MS (Nk ) 2 4 5 10 
Number of antennas at the BS (M) 20 20 20 20 
Modulation scheme BPSK BPSK BPSK BPSK 

Table 7.1: Parameters I for SDMA transmission based on SVD for various fully loaded systems, where the 
MSs benefit from having 2,4,5 or 10 antennas. 

of achieving [64]. However, as we can see in Figure 7.3, the attainable capacity does not increase 

proportionally with the number of transmitter antennas [64]. 

In Figure 7.4, the attainable average capacity versus average SNR per symbol recorded for uplink 

transmission is plotted, when invoking the maximum information rate based power allocation policy 

of [64, 185] for the four diffent transmission schemes, as shown in Table 7.1. We can see from Fig

ure 7.4 that for a specific scheme of Table 7.1, the capacity achieved by assuming the presence of the 

uncorrelated noise of (7.36) is significantly higher than that associated with encountering the corre

lated noise of (7.38). This is due to the noise enhancement imposed by the postprocessing. Further

more, the highest capacity is achieved by Schemes 1, 2, 3 and 4, when the presence of uncorrelated 
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Figure 7.4: The average capacity versus average SNR per symbol evaluted from (7.36), (7.38) and (7.39) for 
uplink transmission, when invoking the maximum information rate based power allocation policy 
for the four diffent transmission schemes outlined in Table 7.1. 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Number of MSs (K) 2 3 4 5 
Number of antenna at each MS (Nk) 4 4 4 4 
Number of antennas at the BS (M) 20 20 20 20 
Modulation scheme BPSK BPSK BPSK BPSK 

Table 7.2: Parameters II for SDMA transmission based on SVD for different number of MSs, i.e. system loads. 

noise is assumed. This can be explained that the system capacity does not increase proportionally 

with the number of transmitter antennas as evidenced in Figure 7.3. Moreover, when considering the 

correlated noise scenario of Figure 7.4, the more users the system supports, the lower the capacity it 

achieves. This is because for a fully loaded system a higher number of users results in lower number 

of antennas at each MS, resulting in a higher MUI for each individual user. Furthermore, the classic 

zero forcing receiver treats all other C2.=f=l Nk - 1) transmit antennas' signal as interference, which 

results in the lowest performance. 

In Figure 7.5, the achievable average capacity versus average SNR per symbol performance is 

plotted for uplink transmission, when invoking the maximum information rate based power allocation 
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Figure 7.S: The average capacity versus average SNR per symbol evaluted from (7.36), (7.38) and (7.39) for 
uplink transmission, when invoking maximum information rate based power allocation policy for 
the four different schemes, as shown in Table 7.2. 

policy of [64, 185] for the four different schemes outlined in Table 7.2. We can see from Figure 7.5 

that the achievable capacity remains constant for the four schemes, when the presence of uncorrelated 

noise is assumed, because the system capacity improvement attained is proportional to the number 

of users supported in this scenario. However, the achievable capacity recorded in the presence of 

correlated noise decreases upon increasing the number of users, which results in an increased MUI. 

Furthermore, for uncorrelated noise, the system capacity increases proportionally upon increasing the 

number of users, since the average capacity is the same for any of the schemes in Table 7.2. However, 

for correlated noise, the situation is more complicated and will be further detailed in the context of 

Figure 7.6. 

In Figure 7.6, the achievable system capacity versus the average SNR per symbol is plotted for 

uplink transmission, when invoking the maximum information rate based power allocation policy for 

correlated noise and using the four different schemes of Table 7.2. We can see from Figure 7.6 that 

the highest system capacity may be achieved by different schemes for different SNRs. In fact, there is 

a tradeoff between the number of users supported and the SNR. The more users are served, the more 

serious the MUI. However the effects of the MUI are more readily mitigated upon increasing the SNR, 
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Figure 7.6: System capacity versus average SNR per symbol evaluted from (7.38) and (7.39) for uplink trans
mission when invoking maximum information rate based power allocation policy of [64, 185] for 
only correlated noise for the four different schemes of Table 7.2. 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 
Number of users 3 3 3 3 
Number of antenna at each user 4 4 4 4 
Number of antennas at the BS 12 16 20 24 
Modulation scheme BPSK BPSK BPSK BPSK 

Table 7.3: Parameters III for SDMA transmission based on SVD for a fixed number of 3 users and 4 antennas 
at each MS, while varying the number of BS antennas. 

hence, the more users, the higher the capacity at high SNRs. Observe in Figure 7.6 that as expected, 

the highest capacity should be achieved in the 5-user scenario of Table 7.2, when the SNR approaches 

infinity, because no residual MUI is experienced. Furthermore, the traditioanl zero-forcing receiver 

achieves the lowest capacity,as discussed above. 

In Figure 7.7, the achievable average capacity versus average SNR per symbol is plotted for uplink 

transmission, when invoking the maximum information rate based power aIIocation policy of [64, 185] 

for the four different schemes of Table 7.3. We can see from Figure 7.7 that the attainable capacity 

corresponding to the uncorrelated noise scenario for a specific scheme is always better than that of 

the correlated noise scenario due to the noise enhancement experienced in the uncorrelated noise 
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Figure 7.7: Average capacity versus average SNR per symbol evaluted from (7.38) and (7,39) for uplink trans
mission when invoking maximum information rate based power allocation policy for the four dif
ferent schemes of Table 7.3. 

scenario. Furthermore, the achievable capaticy increases upon increasing the number of antennas at 

the BS for both the uncorrelated and correlated noise scenarios due to associated increased receiver 

diversity gain. Moreover, the achievable capacity corresponding to M = 20 and 24 antennas at the 

BS in the presence of correlated noise is almost the same as that corresponding to M = 12 and 16 

antennas at the BS recorded for uncorrelated noise. The reason for this is because the associated 

receive diversity gain compensates the performance loss due to noise enhancement. Unsurpersingly, 

the classic zero-forcing receiver still achieves the lowest capacity. 

In Figure 7.8 the achievable average BER versus average SNR per symbol is plotted for uplink 

transmission, when invoking the maximum SNR based power allocation policy for the four different 

schemes of Table 7.1. We can see from Figure 7.8 that the BER performance recorded for uncorrelated 

noise is always better than that corresponding to the correlated noise scenario, which again is due to 

the more substantial noise enhancement experienced in the presence of correlated noise. Furthermore, 

the BER performance degrades upon increasing the number of transmit antennas at the MS, when 

uncorrelated noise is encountered. The reason for this is because having more transmit antennas 

at MS may result in a wider eigenvalue dynamic range. Consequently, low eigenvalues may be 
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Figure 7.8: Average BER versus average SNR per symbol evaluted from (7.47) for uplink transmission when 
invoking the maximum SNR based power allocation policy for the four different schemes of Ta
ble 7.1. 

obtained, which dominate the BER performance. However, in the presence of correlated noise the 

BER performance is similar for the schemes considered in Table 7.1. The reason for this is that when 

we have less antennas at the MS, we support more users, which results in more serious MUI. 

In Figure 7.9, displays the achievable average BER versus average SNR per symbol performance 

for uplink transmissions, when invoking the maximum SNR based power allocation policy for the four 

different schemes of Table 7.2. We can see from Figure 7.9 that the BER performance remains similar 

upon increasing the number of users, when uncorrelated noise is assumed, since (7.46) shows that the 

SNR of a specific user is not related to the parameters of other users. However, in the uncorrelated 

noise scenario, the BER performance degrades upon increasing the number of users due to the more 

serious MUI inflicted. 

In Figure 7.10, the achievable average BER versus average SNR per symbol is characterized in 

the context of uplink transmissions, when invoking the maximum SNR based power allocation policy 

for the four different schemes of Table 7.3. We can see from Figure 7.9 that the BER performance 

improves upon increasing the number of antennas at the BS for both the uncorrelated and correlated 

noise scenarios due to the associated receiver diversity gain. Furthermore, for a given scheme of 
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Figure 7.9: Average BER versus average SNR per symbol evaluted from (7.47) for uplink transmission when 
invoking the maximum SNR based power allocation policy for the four different schemes of Ta
ble 7.2. 

Table 7.3 the BER performance recorded in the presence of correlated noise is worse than that of 

the uncorrelated noise scenario owing to the more substantial noise enhancement. Moreover, the 

achievable BER performance corresponding to M = 20 and 24 antennas at the BS and recorded for 

correlated noise is close to that corresponding to M = 12 and 16 antennas experienced in the presence 

of uncorrelated noise, since the increased receive diversity gain compensates for the performance loss 

imposed by the noise enhancement. 

In Figure 7.11, the attainable average capacity versus average SNR per symbol recorded for down

link transmissions is plotted when invoking joint and individual maximum information rate based 

power allocation policy of [64], respectively, for the four diffent transmission schemes of Table 7.1. 

Surprisingly, we observe in Figure 7.11 that the average capacity achieved by the individual maximum 

information rate policy of [64] is slightly higher than that recorded for the joint maximum informa

tion rate policy [64]. The reason for this is because the power constraint of (7.74) is more stringent 

owing to the effect of'l3ii than (7.79). Furthermore the average capacity decreases upon increasing 

the number of users, since supporting more users results in a higher MUI. 

Figure 7.12 portrays the achievable average capacity versus the average SNR per symbol perfor-
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Figure 7.10: Average BER versus average SNR per symbol evaluted from (7.47) for uplink transmission when 
invoking the maximum SNR based power allocation policy for the four different schemes of 
Table 7.3. 

mance is plotted for uplink transmissions, when invoking both the joint and the individual maximum 

information rate based power allocation policy of [64], respectively, for the four diffent transmission 

schemes of Table 7.2. We can see from Figure 7.12 that the attainable capacity is similar for both the 

joint and the individual policy for all four schemes of Table 7.2, when uncorrelated noise is assumed. 

Furthermore, the more users are supported, the more serious the MUI and hence the lower the average 

capacity. 

Figure 7.13 shows the attainable system capacity versus the average SNR per symbol performance 

for downlink transmissions, when invoking both the joint and the individual maximum information 

rate based power allocation policy of [64], respectively, for the four different transmission schemes 

of Table 7.1. We can see from Figure 7.13 that the highest system capacity is achieved by different 

specific schemes of Table 7.1 for different SNR values. The power constraints of (7.74) and (7.79) 

have a significant influence on the system capacity. 

Figure 7.14 characterizes the achievable average capacity versus the average SNR per symbol 

performance for downlink transmissions when invoking both the joint and the individual maximum 

information rate based power allocation policy of [64], respectively, for the four diffent transmission 
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Figure 7.11: Average capacity versus average SNR per symbol evaluted from (7.75) and (7.81) for downlink 
transmission when invoking joint and individual maximum information rate based power alloca
tion policy, respectively, for four schemes of Table 7.1. 

schemes of Table 7.3. We can see from Figure 7.14 that the capacity increases upon increasing the 

number of antennas at the BS for both the joint and the individual policy of [64], as a benefit of the 

increased receiver diversity gain. Furthermore, for a given scheme, the capacity remains similar for 

both the joint and individual policy. 

In Figure 7.15 we recorded the achievable average BER versus the average SNR per symbol per

formance for downlink transmission, when invoking the maximum SNR and the equally normalized 

power allocation of policy [88, 153J, respectively, for the four different schemes of Table 7.1. We can 

see from Figure 7.15 that the BER performance corresponding to the maximum SNR based power 

allocation policy of [88] is always better than that of the equal-power policy of [153]. This is because 

the equal-power normalized policy assigns the same power to each data stream. Hence, some data 

streams having low SNR values may dominate and hence degrade the average BER performance. 

However, in order to maximize the expression in (7.82), the maximum SNR based power allocation 

policy may assign more power to weaker data stream in order to prevent this BER performance degra

dation. Moreover, for the equal-power policy, the BER remains similar upon increasing the number 

of users up to full load. The reason for this observation is similar to that in Figure 7.8, when we have 
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Figure 7.12: Average capacity versus average SNR per symbol evaluted from (7.75) and (7.81) for downlink 
transmission when invoking joint and individual maximum information rate based power alloca
tion policy, respectively, for the four diffent transmission schemes of Table 7.2. 

less antennas at the MS, we support more users, which results in more serious MDI. 

In Figure 7.16 the achievable average BER versus average SNR per symbol is plotted for downlink 

transmissions, when employing maximum SNR and the equal-power policy of [88, 153], respectively, 

for the four different schemes of Table 7.2. We can see from Figure 7.16 that the BER performance 

of the maximum SNR policy of [88J is always better than that of the equal-power policy [153J. The 

reason for this observation is the same as that argued in the context of Figure 7.15. Furthermore, the 

BER performance improves upon decreasing the number of supported users in the context of both 

policies, since an extra transmit diversity gain is attained. 

In Figure 7.17 the achievable average BER versus average SNR per symbol performance is shown 

for downlink transmissions, when using the maximum SNR and the equal-power policy of [88, 153J, 

respectively, for the four different schemes of Table 7.3. As observed in Figure 7.l7, the BER perfor

mance improves upon increasing the number of antennas at the MS for both the maximum SNR and 

the equal-power policy due to the increased transmit diversity gain experienced. Furthermore, for a 

given scheme of Table 7.3 the BER performance corresponding to the equal-power policy of [153] 

is always worse than that of the maximum SNR policy [88] . The reason for this is similar to those 
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Figure 7.13: System capacity versus average SNR per symbol valuted from (7.75) and (7.81) for downlink 
transmission when invoking joint and individual maximum information rate based power alloca
tion policy, respectively, for the four diffent transmission schemes of Table 7.2. 

outlined in our arguments provided in the context of Figure 7.15. There may exist some lower eigen

values of the channel matrix, which result in lower effective parallel channel gains. However, the 

equal-power policy simply allocates the same power to each transmitted symbol and ignores this 

effect. Hence there may be some low SNR data streams dominating the BER performance in the 

context of the equal-power policy. Moreover, the BER performance corresponding to a higher num

ber of antennas at the BS for the equal-power policy may become better than that corresponding to a 

lower number of antennas at the BS combined with the maximum SNR policy. This is because the 

increased transmit diversity gain may be able to compensate the potential performance loss due to the 

lower-power data stream of the equal-power policy. 

7.6 Conclusions 

In this chapter, SVD based SDMA MUD algorithms were proposed for both uplink and downlink 

transmissions. Based on the proposed algorithm, both the maximum information rate and the max

imum SNR based power allocation policies of [64,88,185] were considered for uplink transmisson 
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Figure 7.14: Average capacity versus average SNR per symbol evaluted from (7.75) and (7.81) for downlink 
transmission when invoking joint and individual maximum information rate based power alloca
tion policy, respectively, for the four diffent transmission schemes of Table 7.3. 

and the attainable capacity and BER performance was compared for both the uncorrelated and corre

lated noise scenarios. The simulation results of Figures 7.3 to 7.10 suggest that a performance loss is 

experienced due the experienced noise enhancement in the correlated noise scenarios. For downlink 

transmission, the joint and the individual maximum information rate based power allocation policies 

of [64] were considered first. The simulation results of Figures 7.11 to 7.14 suggest that both of them 

achieve a similar performance, while and the power constraints of (7.74) and (7.79) have a significant 

influence on the attainable system performance. Furthermore, the maximum SNR and equal-power 

allocation policies of [88, 151] were compared for downlink transmissions as well. The simulation 

results of Figures 7.15 to 7.17 suggest that the BER performance corresponding to the maximum SNR 

policy is better than that of the equal-power policy, since the equal-power policy ingores the fact that 

the lower eigenvalues of the channel matrix result in a lower effective channel gain and simply allo

cate an equal power to each transmitted symbol. Hence in the context of the equal-power policy some 

of the lower-SNR data streams will degrade the overall BER performance, while the maximum-SNR 

policy is capable of allocating more power to the specific data streams having lower eigenvalues in 

order to achieve an improved balance among all data streams. The TDD mode may exploit that the 
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Figure 7.15: Average BER versus average SNR per symbol evaluated from (7.85) and (7.89) for downlink 
transmission when invoking maximum SNR and equally normalized policy, respectively, for the 
four different schemes of Table 7.1. 

UL and DL channels are similar and invoke this knowledge for downlink transmit preprocessing, as 

discussed in Section 7.4. 

The main advantage of the proposed algorithm is that the characteristics of individual users' 

channels are taken into account instead of treating all the users' channels jointly, as in the traditional 

MMSE or zero-forcing MUD technique. Secondly, both uplink and downlink transmissions were 

considered based on the same MUD scheme instead of considering only downlink transmission in the 

context of the block diagonalization algorithm of [152, 164]. 

Morever, based on the SVD-aided based SDMA MUD algorithm, SVD-assisted STBC and 

BLAST type system [178-180] may also be readily created for multiuser scenarios. Furthermore, 

sophisticated adaptive modulation schemes may be employed in the context of multiple users for 

both uplink and downlink transmissions by adjusting the related parameters, such as the transmit 

power, the transmission rate etc in order to maximize the throughput or minimize the transmission 

power and so on [9,177]. A typical application of this scheme can be found in multimedia communi

cations, where different modulation schemes can be chosen to satisfy the different quality-of-service 

(QoS) requirements imposed by different media [188, 189]. 
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Figure 7.16: Average BER versus average SNR per symbol evaluated from (7.85) and (7.89) for downlink 
transmission when invoking maximum SNR and equally normalized policy, respectively, for the 
four different schemes of Table 7.2. 

Moreover, since only the knowledge of the singular eigen vectors is required at the MS or the 

BS to implement the proposed algorithm, subspace tracking techniques may be invoked for directly 

determining the future SVD components, instead of estimating the channel matrix and repeatedly 

employing SVD, which results in a high complexity [130-132]. 
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Figure 7.17: Average BER versus average SNR per symbol evaluated from (7.85) and (7.89) for downlink 
transmission when invoking maximum SNR and equally normalized policy, respectively, for the 
four different schemes of Table 7.3. 



c:-8 ______________ ---1 

Preliminary Results for Future Research 

8.1 Introduction 

In the previous chapters, the non-dispersive fading channel was linearly predicted which was readily 

justifiable, since the channal can be accurately modelled by a tapped delay line [5,32]. However, 

the presence of strong nonlinear correlation among the channel coefficients has also been reported 

[46,47,49-51J. As a design alternative, neural network based nonlinear algorithms may be invoked for 

carrying out the task of channel prediction. Neural networks have also been proposed for numerous 

nonlinear modelling applications, for example in the context of audio signal processing [190-192J, 

signal processing for tele-communication [193,194] and so on. Recurrent neural networks (RNNs) 

were reported to benefit from having a feedback from their outputs [195]. The resultant scheme may 

be considered as an infinte impulse response filter [196]. This property renders them suitable for 

nonlinear speech processing [197-204J, or for classification-based channel equalization [205,206J. 

In this chapter, the application of RNN s for narrowband channel prediction is investigated. 

The rest of this chapter has the following structure. The RNN-based channel predictor is intro

duced in Section 8.2, while the RNN's activation function and training algorithms are discussed in 

Section 8.3 and Section 8.4, respectively. The application of RNN-based channel predicors in non

Gaussian channels is discussed in Section 8.5. Our simulation results are provided in Section 8.6. 

Finally, our conclusions are offered in Section 8.7. 
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Figure 8.1: Schematic of an RNN-based channel predictor 

8.2 Narrowband Channel Prediction Using FCRNNs 
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As shown in (3.1) of Chapter 3 for a narrowband fading channel, the sampled received signal r(k) is 

given by 

r(k) = c(k)b(k) + n(k), (8.1) 

where c(k) is obtained by sampling the complex-valued fading channel c(t) at the time instant of 

t = kTb and Tb is the data symbol duration, b(k) is the kth transmitted symbol value, while n(k) is a 

complex-valued discrete AWGN process having a variance of No/2 per dimension. 

As we can see in Figure 8.l, if the {b(k)} are known pilot symbols, the channel estimate c(k) can 

be expressed as 

c(k) 
r(k) 
b(k) 

n(k) 
c(k) + b(k) . (8.2) 

As pointed out in [46,47,50,51], {c(k)} has to be sampled and the sampling rate is determined 

based on the average mutual information of samples. In this chapter {c( k)} is directly used for chan

nel prediction and the delayed output of the decision-directed channel estimator (DDCE) constitues a 

(p x I)-dimensional vector c(k), which is expressed as 

c(k) = [c(k),··· ,c(k - P + I)J. (8.3) 

Then c(k) of (8.3) is fed into the RNN-based channel predictor in order to generate the predicted 
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The structure of the RNN-based channel predictor is shown in Figure 8.2. The family of fully 

" connected recurrent neural networks (FCRNNs) constitutes a specific subclass of recurrent neural 

networks, where every neuron of the output layer is fed back into the input layer and every neuron of 

the input layer is connected to every neuron of the output layer in the network [195,207]. Since typ

ically complex-valued channels are encountered in wireless communications, complex-valued neural 

networks have been developed [208]. They tend to impose a lower computational complexity in com

parison to their real-valued conterparts in the context of wireless communication applications [208]. 

Hence in this chapter the family of complex-valued FCRNNs is discussed and the set of real-valued 

FCRNNs can be considered as a special case. 

Briefly, Figure 8.2 shows an FCRNN, which consists of N activation neurons having P external 

inputs as well as a fixed bias input bbias. The network has two distinct layers consisting of the 
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external input-feedback layer and a layer of processing elements. Let the (N x 1 )-dimensional vector 

y(k) = [Yl (k), ... , YN(k)jT denote the complex-valued output vector of all the neurons at time index 

k, where Yn(k) is the complex-valued output of the nth neuron, n = 1"" ,N, and the (P x 1)

dimensional vector s(k) = [s(k - 1),." , s(k - p)]T denotes the complex-valued external input 

vector at time index k. Furthermore, let the bias be bbias = (1 + j), where j = A. Then 

the (P + 1 + N) x I-dimensional combined input vector p(k) of the network seen in Figure 8.2 

represents the concatenation of the vectors s(k), bbias and y(k - 1), which is given by 

[ 

s(k) 1 
p(k) = bbias 

y(k - 1) 

[s(k-l), ... ,s(k-P),I+j,Y1(k-l),··· ,YN(k-l)f 

p(1')(k) + jp(i)(k), (8.4) 

where the superscripts (.)(1') and O(i) denote the real and imaginary parts of the argument, respec

tively. Assuming that the outputs of the first M neurons are the outputs of the FCRNN, the (M x 1)

dimensional output vector ofthe FCRNN yo(k) can be expressed as 

yo(k) = [Y1(k),··· ,YM(k)f, 1::; M::; N. (8.5) 

Let Wn,l denote the complex-valued weight of the FCRNN, which connects the nth neuron and 

lth input, where we have 1 ::; n ::; Nand 1 ::; l ::; (P + 1 + N). Then the input of the nth node at 

time index k is given by 

P+HN 

netn (k) = L Wn,l(k)Pl(k) 
1=1 

n (1') (k) + J'n (i) (k) 
etn etn ' 

(8.6) 

where n~~~ (k) and n~~~ (k) are the real and imaginary parts of netn (k), respectively, which can be 
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expressed as (209] 

P+l+N 
n~~~(k) = L [w~i(k)pfr)(k) - W~,~(k)pfi)(k)l 

1=1 
P 

L[W~? (k)sir)(k - I) - w~!z(k )s(i)(k - I)) + (W~~+1 (k) - W~,)P+1 (k)] + 
1=1 
N 

L[W~~+l+q(k)y~r)(k - 1) - W~,~+l+q(k)y~i)(k - l)J (8.7) 
q=1 

P+l+N 
n~~n(k) = L [w~i(k)pfi)(k)+w~,~(k)pt)(k)J 

1=1 
P 

"'[w(r) (k)s(i) (k -l) + w(i)(k)s(r)(k -l)) + (w(r) (k) + wei) (k)J + 
~ n,l n,l n,P+1 n,P+1 
1=1 
N 

L[W~~+l+q(k)y~i)(k -1) + w~,>p+l+ik)y~i)(k - l)J. (8.8) 
q=1 

The output of the nth activation neuron can be expressed as [209] 

Yn (k) = <I> ( netn (k)) 

<I>ir) (netn (k)) + j<I>(i) (netn (k)) 

y;;)(k)+jy~)(k), n=l,··· ,N, (8.9) 

where <I> is a complex-valued nonlinear activation function, while y;;) (k) and y~) (k) are the real and 

imaginary parts of Yn(k), respectively. 

Predicted channel Error Cost function 
Updated weight 

c(k + 1) e(k) E(k) = iJe(k)J2 {Wn,l(k + I)} 
------"'\ 2: j------,------""i 

r 
Actual channel 

c(k + 1) 

Figure 8.3: Schematic of the weight-update arrangement 

Let dm (k), 1 :::; m :::; M be the correponding desired output of the mth neuron. Then the (M x1)-
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dimensional desired output vector of the FCRNN do( k) can be expressed as 

(8.10) 

In the context of narrowband channel prediction, we have 

[s(k - 1)"" ,s(k - p)] = [e(k), .. · ,e(k - P + 1)], (8.11 ) 

Yo(k) = Yl(k) = c(k + 1), (8.12) 

(8.13) 

Consequently, the error e(k) seen in Figure 8.3 represents the discrepancy between the actual fading 

channel profile c(k + 1) as well as the predicted fading channel profile c( k + 1) and is given by 

e(k) = c(k + 1) - c(k + 1). (8.14) 

Then the error e(k) of (S.14) is fed to a training algorithm in order to generate the updated weights, 

as shown in Figure S.3, until a sufficiently accurate prediction is achieved. 

8.3 Activation Function 

In this chapter, two different activation functions are investigated, namely the split activation and the 

full activation function [209]. The terminology "split activation function" is used for indicating that 

the complex-valued input is divided into two real-valued components which are treated seperately to 

derive the two real-valued outputs that are combined to generate a complex-valued output [210,211]. 

By contrast, when using a "full activation function", the complex-valued input is fed into an activation 

function, which directly generates a complex-valued output [209]. Specifically, in conjunction with 

the split activation function, (S.9) is expressed as 

Yn(k) = f(n~~~(k)) + jf(n~~~(k)) 
1 . 1 

(r) + J (i) ( , 
1 + e-{3netn (k) 1 + e-{3netn k) 

(S.15) = 
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where f(x) is a function having real-valued input and real-valued output. Here we opted for using 

the so-called logistic sigmoid function, given by 

where x is real-valued. 

1 
f(x) = 1 + ex' (8.16) 

For a full activation function, the complex-valued activation function was directly chosen to be 

the logistic sigmoid function: Then (8.9) is expressed as 

1 
(8.17) 

(n (r) (k)+J' (i) (k))' 1 + e- etn netn 

In the context of narrowband channel prediction, when the split activation function of (8.15) is 

used, the range of the real-valued logistic sigmoid function of (8.16) spans the interval of (0, 1), hence 

the desired outputs of the neural network have to be adjusted so that they fall within this range. The 

appropriately adjusted desired output of the neural network can be generated in conjunction with the 

split activation function Cs (k + 1) by appropriately shifting and scaling the original desired output 

with the aid of the following equation 

cs(k+1) = 
c(k + 1) + as 

Ls 
(c(r)(k + 1) + a~r)) + j(c(i)(k+!) + a~i)) 

Ls 
= c~r)(k+1)+jc~i)(k+1) LsiD, (8.18) 

where as is the complex-valued shift coefficient and Ls is the real-valued scaling coefficient. Fur

thermore, a~r) and a~i) are the real and imaginary parts of as in (8.18), respectively. Specifically, 

in our simulations outlined in this chapter, we had as = 5 + j5 and Ls = 10, which resulted in the 

minimum MSE, when they were varied within a reasonable range. Accordingly, the output yo(k) of 

the FCRNN is not the prediction of the actual channel profile c( k + 1), but the adjusted actual channel 

profile cs(k + 1), which is expressed as 

(8.19) 
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Consequently, the error and the cost function can be expressed as 

(8.20) 

(8.21) 

When the full activation function of (8.17) is used, the desired output of the neural network also 

has to be adjusted, so that it falls within the range the complex-valued of logistic sigmoid function of 

(8.17). In this case, the desired output of the neural network adjusted for invoking the full activation 

function is given by 

= 
c(k + 1) + {Xf 

Lf 

(c(r)(k + 1) + (Xf)) + j(c(i)(k + 1) + (X~)) 
Lf 

cf)(k + 1) + jc~)(k + 1) Lf # 0, (8.22) 

where {Xf is a complex-valued shift coefficient and Lf is a real-valued scaling coefficient, respectively, 

while (Xf) and (X~i) are the real and imaginary parts of {Xf in (8.22), respectively. In our simulations 

highlighed in Section 8.6 of this chapter, we used the values of (Xf = 50 + j50 and Lf = 80, which 

resulted in the minimum MSE. 

Similarly, the output yo(k) of FCRNN is not the prediction of the actual channel profile c(k + 1), 

but the adjusted actual channel profile cf(k + 1), which is expressed as 

(8.23) 

By contrast, when the full activation function is used, the error and the cost function, respectively. can 

be expressed as 

(8.24) 

(8.25) 
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8.4 Training Algorithms 

In this chapter, three different training algorithms are invoked, namely the real time recurrent leam

ing (RTRL) scheme [209-215], the global extended Kalman filter (GEKF) [216] and the decoupled 

extended Kalman filter (DEKF) based training [216]. In this section we assume that the reader is 

familiar with the these principles, which have been outlined in Appendix A. 

8.5 Non-Gaussian Channel Prediction 

So far channel prediction has been carried out under the assumption that the noise n(k) can modelled 

as AWGN. However, in practical communications systems we often encounter impulsive noise, which 

is non-Gaussian [217-219]. In this section, the application ofRNNs in the prediction of non-Gaussian 

channels is investigated. For brevity and mathematical tractability, we only consider split activation, 

but this technique can be extended to the employment of the full activation function. 

A popular impulsive noise model is the a-stable random distribution [218,219]. The symmetric 

a-stable (SaS) Probability Density Function (PDF) is defined by its characteristic function which is 

the Fourier transform ofthe PDF, as given by [218,219] 

P(t) = e-"Yiti", (8.26) 

where the parameters, (r > 0) and a (a E (0,2]) define the specific SaS distribution. When we 

have a = 2, this scenario corresponds to the zero-mean normal distribution having a variance of 2" 

while it turns into the Cauchy distribution [218], when we have a = 1. The SaS noise samples can 

be generated from the following random variable [218,219] 

1-a 

( ) 
_ .1 sin(at) (COS((l - a)t)) c;- -I- 1 

Po< t _,a 1 A ,a I , 
(cost)" 

(8.27) 

where t is uniformly distributed in (-7f /2, 7f /2) and A obeys the standard exponential distribution. 

The SaS noise has an infinite variance [218], which makes the use of the standard SNR meaning

less. In this section, the so-called geometric signal-to-noise ratio (GSNR) defined in [220] is used in 

order to indicate the power ratio of the information-bearing signal and the SaS noise [218], which is 

expressed as 

(8.28) 
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where Cg c::: 1.78 is the exponential of the Euler's constant [218], and So = (Cgr)!; /Cg denotes the 

geometric power. In general the noise power increases, as 0: decreases and when 0: approaches zero, 

the noise power tends to infinity. 

8.6 Performance Results 

8.6.1 Channel Prediction Performance for a Gaussian Channel 

In this chapter, the mean square error (MSE) metric is used for quantifying the attainable performance 

of the various fading channel predictors. More specifically, for the split activation function of (8.15), 

the resulant MSE is given by 

MSE 
1 K 
K I: Ic(k + 1) - (cs(k + 1)~s - O:s)12 

k=l 
K 

= ~ I: I(cs(k + 1)~s - O:s) - (cs(k + 1)~s - O:s)12 
k=l 

1 K 
= K I: Ics(k + 1)~s - cs(k + 1)~sl2 

k=l 

1 K 
= K~s I: /cs(k + 1) - cs(k + 1)/2 

k=l 

2 K 
K~; I:E(k). 

k=l 

By contrast, for the full activation function of (8.17) the MSE expression is formulated as 

K 

MSE = ~ I: )c(k + 1) - (cj(k + 1)~j - O:j )12 

k=l 

2 K 
= K&J I: E(k), 

k=l 

(8.29) 

(8.30) 

where K is the total number of the channel samples, which were predicted after the training has been 

completed. Furthermore, in our simulations, BPSK modulation was employed and E(jc(k)j2) = 1 

was assumed, as in Chapter 3. In Figure 8.4, the achieveable channel prediction MSE performance 

versus the number of external inputs is quantified for both the SCRTRL and FCRTRL schemes of 

(8.29) and (8.30) as a function of the different number of activations N = 1,2,3 and 4, when using 
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Learning rate 'TJ 0.01 
Number of data for training 10000 
Number of data for calculating MSE after training 10000 
Maximum doppler frequency 1 dm 120 Hz 
Data rate Ib 4ksymbols/s 
Sampling rate Is 4kHz 
SNR lOdB 

Table 8.1: Parameters for calculating the MSE versus the number of external inputs 

10-1 

10-2 

N = 1 for SCRTRL 
N = 2 for SCRTRL 
N = 3 for SCRTRL 
N = 4 for SCRTRL 
N = 1 for FCRTRL 
N = 2 for FCRTRL 
N = 3 for FCRTRL 
N = 4 for FCRTRL 

-

5 10 15 20 25 30 35 40 45 50 

Number of external inputs 

Figure 8.4: MSE performance versus the number of external inputs for both the SCRTRL and FCRTRL in 
conjunction with different number of activations N = 1,2,3 and 4 when the power intensity of 
the channel was set to 1.0. The remaining parameters are given in Table.S.l. 
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the parameters of Table.S.l. Observe from Figure S.4 that for the SCRTRL scheme of (S.29) the 

MSE performaces of the different number of activations N = 1,2,3 and 4 are similar, regardless of 

the number of external inputs P. This indicates that the number of activation neurons does not ap

preciably affect the attainable performance and those findings are consistent with those disseminated 

in [19S, 205]. Moreover, when P changes from 1 to 2, the achievable MSE performace decreases 

nearly linearly and when we have P > 2, the MSE performances fluctuate upon increasing the num

ber of external inputs. The minimum MSE was achieved at P = 34. On the other hand, as seen in 

Figure 8.4 for the FCRTRL arrangement of (8.30), the MSE flucJuates upon increasing the number 

of external inputs for the different number of activations N = 1,2,3 and 4 and the minimum MSE 

recorded for the different number of activations N = 1,2,3 and 4 was obtained, when the number of 

external inputs was P = 9. It is worth mentioning at this stage that the channel predictor's complexity 

increases as a function of the number of activations. Moreover, when the number of external inputs 

was P ~ 9, the MSE performances recorded for the different number of activations N = 1,2,3 and 4 

remained near-constant. By contrast, when the number of external inputs obeyed 9 < P ~ 18, there 

were slight MSE differences among them, and the higher the number of activations, the better the 

MSE performace. However, observe in Figure 8.4 that when the number of external inputs obeyed 

P > 18, the lower the number of activations, the better the MSE performance and the difference 

among the various parameter settings became apparent, except when we have 43 < P < 47, result

ing again in similar MSE performances for the different number of activations N = 1,2,3 and 4. 

Furthermore, it is seen in Figure 8.4 for P ~ 6, that a better MSE performane was achieved by the 

SCRTRL or FCRTRL schemes of (8.29) and (8.30) and the MSE difference remained small between 

them. By contrast, observe in Figure 8.4 that for 6 < P < 10, the associated MSE performances of 

the SCRTRL and FCRTRL arrangments of (8.29) and (8.30) are almost identical. However, as seen 

in Figure 8.4 when we have P 2': 10, a consistently better MSE performance was attained by the 

SCRTRL scheme of (8.29). Finally, the number of external inputs was set to P = 9 for the FCRTRL 

scheme of (8.30) in order to achieve the minimum MSE in our forthcoming investigations. Further

more, the number of external inputs was chosen to be P = 9 also for the SCRTRL scheme of (8.29) 

for the sake of convient comparision to our forthcoming simulation experiments. 

In Figure 8.5, the attainable MSE performance versus learning rate rJ of both the SCRTRL and 

FCRTRL schemes of (8.29) and (8.30) is characterized using the parameters of Table 8.2. We note 

from Figure 8.5 that for the SCRTRL scheme of (8.29) the MSE perform aces recorded for different 

number of activations N = 1,2,3 and 4 are again, quite similar to each other, when the learning 

rate of (A.IS) and (A.43) obeys rJ < 0.05. Furthermore, the MSE decreases near-linearly upon 
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Number of activation N 1 
Number of external inputs P 9 
Number of data for training lOOOO 
Number of data for calculating MSE lOOOO 
Maximum doppler frequency fdm 120 Hz 

Data rate fb 4ksymbols/s 

Sampling rate fs 4kHz 

SNR lOdB 

Table 8.2: Parameters used for calculating the MSE versus learning rate 

10-1 

10-2 

N = 1 for SCRTRL-
N = 2 for SCRTRL--------
N = 3 for SCRTRL·········· 
N = 4 for SCRTRL···:··············· 
N = 1 for FCRTRL-·-·_·_·-·
N = 2 for FCRTRL-·---·-· 
N 

Q +~_~1'>.~",,,,~.,,,,,,,...-
~.-:¢t.Ql!."r't.:,;"Kf Al,j"·· -- -- -_., 

$.d-!fi!7-''''-jff;;;4 for FCRTRL-·········· 
...... ...:$ . 

.. 4>;v:1J . 
. ~.; 

_lj.y.;'V' 
~;" 

.~:v" 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Learning rate 7] 

Figure 8.5: MSE performance versus the learning rate TJ for both the SCRTRL and FCRTRL schemes of (8.29) 
and (8.30). The remaining parameters were summarized in Table 8.2. 
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Learning rate 'T) 0.01 
Number of activation N 1 
Number of external inputs P 9 
Number of data for calculating MSE 10000 
Maximum doppler frequency I dm 120Hz 
Data rate Ib 4ksymbols/s 
Sampling rate Is 4kHz 
SNR lOdB 

Table 8.3: Parameters used, when comparing the MSE performances of SCRTRL and FCRTRL 

increasing the learning rate 'T) in the range of'T) < 0.004 and smoothly after that point, until it reaches 

its minimum at point of'rJ = 0.006. Upon increasing 'T) further, it remains near-constant, regardless of 

the number of activations. On the other hand, the MSE of FCRTRL recorded for different number of 

activations N = 1,2,3 and 4 decreases smoothly upon increasing the learning rate 'T), until it reaches 

its minimum at point at'rJ = 0.006 or'T) = 0.007. Beyond that point, the MSE recorded for different 

number of activations N = 1,2,3 and 4 increases smoothly. Furthermore, the MSE performances 

found for different number of activations N = 1,2,3 and 4 were similar, when the learning rate 

obeyed'rJ < 0.005 and diverged slightly beyond that point. More specifically, the lower the number 

of activations, the better the MSE performance, except for 'rJ > 0.098, where the MSE perform aces 

converged to a similar value. Finally, when the learning rate obeyed 'rJ < 0.003, the MSE performace 

of FCRTRL was significantly better than those of SCRTRL. For values in excess of'rJ = 0.01, the 

MSE performance of SCRTRL was significantly better than that of FCRTRL. Furthermore, because 

the higher the number of activation, the higher the complexity, the number of activations was set to 

N = 1 for both SCRTRL and FCRTRL in our forthcoming simulations. 

In Figure 8.6 the MSE performance of the SCRTRL scheme of (8.29) is compared to that of the 

FCRTRL arrangement of (8.30), when using the parameters of Table 8.3. To elaborate a little further, 

we can see in Figure 8.6 that at the begining of the training the MSE performance of the SCRTRL 

scheme of (8.29) is significantly better than that of the FCRTRL arrangement of (8.30). The reason 

for this observation is that the scaling coefficient of the FCRTRL in (8.30) is ~ f = 80, which is 

seven times higher than that of the SCRTRL in (8.29) during the course of training. The MSE of the 

FCRTRL scheme of (8.30) was about 50 times higher than that of the SCRTRL arrangement of (8.29) 

even for same cost function. By changing learning rate to 'rJ = 0.005,0.006,0.007,0.008 and 0.009, 

similar performances have been observed for the two schemes. Finally, a learning rate of'rJ = 0.01 

was chosen for both the SCRTRL and FCRTRL arrangements in the following simulations, because 
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Figure 8.6: MSE performance versus the number of pilots used for training of both SCRTRL and FCRTRL. 
The remaining parameters were summarized in Table 8.3. 

the larger the learning rate, the shorter the training time. 

In Figure 8.7, the cost function value of (8.21) versus the number of pilots used for training of 

the SCRTRL scheme of (8.29) is plotted using the parameters of Table 8.3. We infer from Figure 8.7 

that the cost function of the SCRTRL scheme of (8.29) formulated in (8.21) exhibits a gracefully 

decreasing trend upon increasing the number of training samples. 

By contrast, in Figure 8.8 the cost function value of (8.25) versus the number of pilots used for 

training of the FCRTRL scheme of (8.30) is plotted using the parameters of Table 8.3. Observe in 

Figure 8.8 that the associated cost function values of the FCRTRL schems of (8.30) apprear to be 

about two orders of magnitude lower than those of the SCRTRL scheme of (8.29) seen in Figure 8.7. 

In Figures 8.9 to 8.14, the complex-valued channel profile prediction performance of both the 

SCRTRL and FCRTRL schemes of (8.29) and (8.30) is compared in terms of their real part and 

imaginary part, as well as in terms of the magnitude of the channel envelope using the parameters of 

Table8.4. In this specific initialization scenario, we had an MSE of 0.060245349 for the SCRTRL 

scheme of (8.29) and MSE of 0.0752349 for the FCRTRL of (8.30). From Figure 8.9 to Figure 8.14, 

we can see that for some data points both the SCRTRL and the FCRTRL shemes of (8.29) and (8.30) 

are capable of accurately predicting the real part and imaginary part of the channel profile as well as 
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Figure 8.7: The cost function value of (S.21) vers~s the number of pilots used for training of the SCRTRL 
scheme of (S.29). The remaining parameters were summarized in Table.S.3. 
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Figure 8.8: The cost function value of (S.25) versus the number of pilots used for training of the FCRTRL 
scheme of Eq.(S.30). The remaining parameters were summarized in Table.S.3. 
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Learning rate rJ 0.01 
Number of activation N 1 
Number of external inputs P 9 
Number of training data samples 5000 
Number of data samples for calculating MSE 10000 
Maximum doppler frequency idm 120Hz 

Data rate ib 4ksymbols/s 
Sampling rate is 4kHz 
SNR lOdB 

Table 8.4: Parameters used for quantifying the prediction performances of both SCRTRL and FCRTRL 
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Figure 8.9: The real part of the complex-valued fading channel profile predicted by the SCRTRL scheme of 
(8.29) versus the number of predicted data. The remaining parameters were summarized in Table 
8.4. 
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Figure 8.10: The real part of the complex-valued fading channel profile predicted by the FCRTRL scheme of 
(8.30) versus the number of predicted data. The remaining parameters were summarized in Table 
8.4. 
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Figure 8.11: The imaginary part of the complex-valued fading channel profile predicted by the SCRTRL 
scheme of (8.29) versus the number of predicted data. The remaining parameters were sum
marized in Table 8.4. 
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Figure 8.12: The imaginary part of the complex-valued fading channel profile predicted by the FCRTRL 
scheme of (8.30) versus the number of predicted data. The remaining parameters were sum
marized in Table 8.4. 
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Figure 8.13: Magnitude of the complex-valued fading channel envelope predicted by the SCRTRL scheme of 
(8.29) versus the number of predicted data. The remaining parameters were summarized in Table 
8.4. 
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Figure 8.14: Magnitude of the complex-valued fading channel envelope predicted by the FCRTRL scheme of 
(8.30) versus the number of predicted data. The remaining parameters were summarized in Table 
8.4. 

Number of activation N 2 
Number of external inputs P 9 
Number of training data samples 5000 
Number of data samples for calculating MSE 10000 
Maximum doppler frequency idm 120Hz 
Data rate ib 4ksymbols/s 
Sampling rate is 4kHz 
SNR lOdB 

Table 8.5: Parameters for prediction performances of both GEFK and DEKF with the split activation function 
ans full activation 

the envelope of the channel. For the specific initialization considered, the MSE performance of the 

SCRTRL scheme of (8.29) is better than that of the FCRTRL sheme of (8.30), but depending on the 

specific choise of system parameters, these trends may change. 

In Figure 8.15 and Figure 8.16, the cost function value of (8.21) versus the number of pilots 

used for training is portrayed for the GEKF training scheme of Appendix A.2.2.3 and the DEKF 

training scheme of Appendix A.2.2.4, respectively, when using the split activation function of (8.15) 

in conjunction with the parameters of Table 8.5. The comparision of Figure 8.15 and Figure 8.16 
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Figure 8.15: The cost function value of (S.21) versus the number of pilots used for training of the GEKF 
training scheme of Appendix A.2.2.3 when using the split activation function of (S.15). The 
remaining parameters were summarized in Table S.S. 

shows that the cost function value of (8.21) associated with the DEKF training scheme of Appendix 

A.2.2.4 is slightly better than that recorded for the GEKF training scheme of Appendix A.2.2.3, when 

using the split activation function of (8.15). Furthennore, by comparing Figure 8.15 and Figure 8.16 

to Figure 8.7, we can see that the the cost function value of (8.21) recorded for both the GEKF training 

schemes of Appendix A.2.2.3 and the DEKF training scheme of Appendix A.2.2.4 in conjunction with 

the split activation function of (8.15) converges faster than that for the SCRTRL training scheme of 

Appendix A.2. 1. 1. 

In Figures 8.17 and 8.18, the cost function value of (8.25) versus the number of pilots used for 

training is portrayed for the GEKF training scheme of Appendix A.2.2.3 and the DEKF training 

scheme of Appendix A.2.2.4, respectively, when using the full activation function of Eq.(8.17) in 

conjunction with the parameters of Table 8.5. Figure 8.18 shows that the cost function value of (8.25) 

associated with the DEKF training scheme of Appendix A.2.2.4, respectively, is identical to that 

recorded for the GEKF training scheme of Appendix A.2.2.3 when using the full activation function 

of (8.17). Furthennore, by comparing Figure 8.17 and Figure 8.18 to Figure 8.8, we can see that the 

the cost function value of (8.25) recorded for both the GEKF training schemes of Appendix A.2.2.3 
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Figure 8.16: The cost function value of (8.21) versus the number of pikots used for training of the DEKF 
training scheme of Appendix A.2.2.4 when using the split activation function of (8.15). The 
remaining parameters were summarized in Table 8.5. 

and the DEKF training scheme of Appendix A.2.2.4 in conjunction with the full activation function 

of (S.17) converges faster than that for the FCRTRL training scheme of Appendix A.2.1.2. 

In Figures S.19 to S.22 the complex-valued channel profile prediction performance of both the 

GEKF and DEKF training schemes of Appendix A.2.2.3 and Appendix A.2.2.4 in conjunction with 

the split activation function of (S.15) and the full activation function of (8.17) is compared in terms of 

the magnitude of the channel profile using the parameters of Table S.4. In this specific initialization 

scenario, we had an MSE of 0.055629872 for the GEKF training scheme of Appendix A.2.2.3 and 

an MSE of 0.055582135 for the DEKF training scheme of Appendix A.2.2A in conjunction with the 

split activation function of (S.15), while an MSE of 0.0560591 for both the GEKF and DEKF schemes 

of Appendix A.2.2.3 and A.2.2.4, when using the full activation function of (8.17). For the specific 

initialization considered, the MSE performance of the DEKF training scheme of Appendix A.2.2.4 

recorded in conjucntion with the split activation function of (S.15) is the best. Furthermore, the MSE 

of the GEKF training scheme of Appendix A.2.2.3 employing the split activation function of (8.15) 

is the second best, while that of both the GEKF and DEKF schemes of Appendix A.2.2.3 and A.2.2.4 

using the full activation function of (8.17) is the worst, although depending on the spedfic system 
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Figure 8.17: The cost function value of (8.25) versus the number of pilots used for training data of the GEKF 
training scheme of Appendix A.2.2.3 when using the full activation function of (8.17). The 
remaining parameters were summarized in Table 8.5. 

parameters, these trends may change. 

8.6.2 Prediction Performance for a Non-Gaussian Channel 

In this section the performance ofRNNs trained by the RTRL, GEKF and DEKF schemes for a non

Gaussian channel is characterized by simulations and compared to that of a linear MMSE preditor. 

During the training process, perfect CSI was assumed. For the linear MMSE preditor, the autocorre

lation coefficients of both the predicted channel profile and of the prefect profile were estimated for 

the first 500 received data symbols. 

In Figure 8.23 to Figure 8.26, the MSE performance versus the GSNR of (8.28) was recorded, 

when assuming a = 1.3, 1.5, 1.7 and 1.9, respectively. The other parameters were summarized in 

Table 8.6. From the results of Figure 8.23 we can see that when we have a = 1.3, the RNN-based 

predictor trained by the GEKF and DEKF is capable of achieving an acceptable MSE, provided that 

the GSNR is sufficient high, while the linear MMSE preditor is inferior. However, when a is in

creased to 1.5 and 1. 7, both the RNN-based predictor trained by the GEKF and DEKF as well as the 

linear MMSE preditor attains an acceptable MSE upon increasing the GSNR. However, observe in 
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Figure 8.18: The cost function value of (8.25) versus the number of pilots used for training of the DEKF 
training scheme of Appendix A.2.2,4 when using the full activation function of (8.17). The 
remaining parameters were summarized in Table 8.5. 

10° 
Q) 

0.. 
0 ..... 
Q) 

5 
~ 

10-1 

10-2 

19000 

envelope of actual channel -
predicted by GEKF when using split activation ---------

!; 
" 

,I 

19200 19400 19600 19800 20000 

Number of predicted data samples 

Figure 8.19: Magnitude of the complex-valued fading channel envelope predicted by the GEKF training 
scheme of Appendix A.2.2,3 versus the number of predicted data when using the split activa
tion function of (8.15). The remaining parameters were summarized in Table 8.4. 
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Figure 8.20: Magnitude of the complex-valued fading channel envelope predicted by the GEKF training 
scheme of Appendix A.2.2.4 versus the number of predicted data when using the split activa
tion function of (8.15). The remaining parameters were summarized in Table 8.4. 
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Figure 8.21: Magnitude of the complex-valued fading channel envelope predicted by the GEKF training 
scheme of Appendix A.2.2.3 versus the number of predicted data when using the full activation 
function of (8.17). The remaining parameters were summarized in Table 8.4. 
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Figure 8.22: Magnitude of the complex-valued fading channel envelope predicted by the GEKF training 
scheme of Appendix A.2.2.4 versus the number of predicted data when using the full activation 
function of (8.17). The remaining parameters were summarized in Table 8.4. 

Number of activation N 2 
Number of external inputs P 10 
Total number transmitted data symbols 40000 
Number of training data samples 500 
Number of data samples for calculating MSE 39500 
Maximum doppler frequency idm 20Hz 
Data rate ib 4ksyrnbols/s 
Sampling rate is 4kHz 
Learning rate for RTRL'I] 0.005 
'Y 1.0 
Number of independent simulations 100 

Table 8.6: Parameters used for non-Gaussian channel prediction 
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Figure 8.23: The MSE versus GSNR performance for a: = 1.3. The other parameters were summarized in 
Table.8.6. 
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Figure 8.24: The MSE versus GSNR performance for a: = 1.5. The other parameters were summarized in 
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Figure 8.25: The MSE versus GSNR performance for a = 1.7. The other parameters were summarized in 
Table.8.6. 
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Figure 8.26: The MSE versus GSNR performance for a = 1.9. The other parameters were summarized in 
Table.8.6. 
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Figure 8.25 and Figure 8.25 that the RNN-based predictor trained by the GEKF and DEKF converges 

faster than the linear MMSE predictor, provided that the GSNR is moderate. Futhermore, the per

formance of the RNN-based preditor is more stable than that of the linear MMSE predictor. Finally, 

when we have 0: = 1.9, the linear MMSE predictor performs better than the RNN-based predictor. 

We may conclude that when 0: is sufficiently high, which implies that the impulsive noise is near

Gaussian, the linear MMSE predictor may achieve a better performance. However, when the PDF 

of the impulsive noise substantially deviates from the PDF of the Gaussian noise, which implies that 

0: deviates from 2.0, the RNN-based predictor trained by the GEKF and DEKF becomes capable of 

achieving a better performance. Note that in all cases the RNN-based predictor trained by the RTRL 

fails to achieve an acceptable performance. 

8.7 Conclusion 

In this chapter, RNN-based narrowband channel predictors were proposed when assuming the pres

ence of both AWGN and non-Guassion noise. Specially, two different activation functions were 

invoked, namely the split activation function and the full activation function of Section 8.3, respec

tively. Furthermore, for each of the activation functions, three different training algorithms, namely 

the RTRL, GEKF and DEKF schemes of Section A.2, were investigated. Again, the application of 

the RNN-based channel predictor was also extended to non-Gaussian channels. Our simulation re

sults showed that the GEKF and DEKF training schemes converge faster than the RTRL training 

regime and obtain a better MSE performance in case of the AWGN channel. Furthermore, as far as 

non-Gaussian channels are concerned, the GEKF and DEKF trained RNN-based channnel predictors 

converge faster than the linear MMSE predictor and are also more stable. 
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Conclusions and Future Work 

In this concluding chapter, a summary of the thesis will be presented in Section 9.1. This will be 

followed by our suggestions for future work in Section 9.2. 

9.1 Summary and Conclusions 

9.1.1 Chapter 1 

In Chapter 1, the importance of channel prediction in wireless communication systems was discussed 

and an overview of various prediction algorithms was presented. Following this, the contributions of 

the thesis were highlighted and its organization was provided. 

9.1.2 Chapter 2 

In Chapter 2, the characteristics of wireless channels were considered. Specifically, the two main 

factors of characterizing a wireless channel, namely the multipath propagation phenomenon and the 

Doppler frequency shift were introduced in Section 2.2. Following this, the classification of wireless 

channels into frequency-nonselective and frequency-selective subclasses or into fast-fading or slow

fading categories was discussed in Section 2.3. In Section 2.4 statistical models, such as as Rayleigh, 

Rician or Nakagami models were provided. The simulation of Rayleigh fading channels using IDFT, 

Jakes' model and an AR model was presented in Section 2.5. 

191 
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SNR'Yb 
Effective SNR 'Y e,n 

Table 9.1: Effective SNR of (4.69) after frequency domain estimation 

9.1.3 Chapter 3 

In Chapter 3, the LRP philosophy was investigated in the context of narrowband wireless channels. 

Specifically, in Section 3.2 it was shown that a more accurate prediction can be obtained, despite 

using a lower sampling rate than the data rate based on MMSE LRP' Motivated by this discovery, 

Kalman filtering assisted LRP was investigated in Section 3.3. 

9.1.4 Chapter 4 

In Chapter 4 the channel estimation and prediction processes invoked for a single-carrier system 

encountering wideband propagation conditions were considered. The characterization of dispersive 

wideband channel was porvided in Section 4.2 and the single-carrier transmitter was discussed in 

Section 4.3. Two-dimensional channel estimation employed in the FD and TD was investigated in 

Section 4.4, while Kalman filtering assisted LRP was proposed for a single-carrier system in Section 

4.5, when communicating over wideband channels. The simulation results provided in Section 4.6 

showed the benefits of channel estimation, which was repeated for the reader's convenience in Fig

ure 9.1. We can see from Figure 9.1 that the effective SNR was significantly improved with the aid of 

channel estimation, as summarized in Table 9.1, where an approximately 16.3 dB SNR gain can be 

observed after frequency domain estimation. 

9.1.5 Chapter 5 

In Chapter 5, subspace tracking based MIMO eigenmode transmit preprocessing was investigated in 

the context of a single user. MIMO eigenmode transmission requires the knowledge of the right

hand-side singular eigen vectors of the MIMO channel matrix seen in (5.3) at the transmitter side and 

that if the left-hand-side singular eigen vectors of the MIMO channel matrix at the receiver side, as 

shown in Figure 9.2. In order" to acquire these singular eigen vectors, traditionally, channel estimation 

is required at the receiver side, followed by the SVD of the estimated channel matrix, as shown in 

Figure 9.3. Alternatively, a subspace tracking algorithm can be invoked for generating the required 

singular eigen vectors without performing channel estimation followed by its SVD, as shown in Fig

ure 9.3, which reduces the computationaly complexity imposed. Specifically, the PASTD subspace 
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Figure 9.2: Schematic of MIMO eigenmode transmission. 

tracking algorithm was invoked in the context of a TDD MIMO system in Chapter 5. Furthermore, 

the phase ambiguity imposed by the SVD of the channel's CIR matrix was resolved by the employ

ment of DPSK modulation. The simulations characterize the achievable performance with the aid of 

PASTD subspace tracking. 

9.1.6 Chapter 6 

In Chapter 6, both zero forcing and MMSE based transmit preprocessing techniques were considered 

in the context of a MIMO aided multiple user scenario. Speficically, the transmit diversity gain and 

spatial multiplexing gain achieved by these transmit preprocessing techniques was investigated in the 
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Scheme 1 [dB] Scheme 2 [dB] Scheme 3 [dB] Scheme 4 [dB] 
1 bit 2 bits 3 bits 4 bits 

Zero forcing Zero forcing MMSE Zero forcing MMSE Zero forcing MMSE 
Fig.6.6 Fig.6.7 Fig.6.10 Fig.6.8 Fig.6.11 Fig.6.9 Fig.6.12 
23.5 
10.9 24.4 20.6 
6.5 10.7 9.1 23.8 16.2 
3.8 6.0 5.1 10.3 7.6 23.8 14.1 
2.4 3.5 2.9 5.7 4.6 10.3 6.6 
1.0 1.7 1.5 3.2 2.5 5.6 3.7 
0.1 0.6 0.3 1.6 1.2 3.2 2.1 
-0.7 -0.3 -0.4 0.6 0.1 1.6 0.7 
-1.5 -0.9 -1.2 -0.3 -0.6 0.4 -0.2 
-2.1 -1.5 -1.8 -1.0 -1.3 -0.6 -1.0 

Table 9.2: SNR [dB] required for maintaining BER=1O-3 for both zero forcing and MMSE preprocessing for 
Schemes 1-4 of Table 6.2 

I Scheme I [dB] I Scheme 2 [dB] I Scheme 3 [dB] I Scheme 4 [dB] 

ZerO forcing MMSE Zero forcing MMSE Zero forcing MMSE Zero forcing MMSE 
Throughput Fig.6.16 Fig.6.20 Fig.6.17 Fig.6.21 Fig.6.18 Fig.6.22 Fig.6.19 Fig.6.23 

K=1 1 bits 0.1 0.1 -0.7 -0.7 -1.3 -1.3 -2.1 -2.1 
K=2 2 bits 0.6 0.4 -OJ -0.4 -1.0 -1.2 -1.5 -1.8 
K=3 3 bits 1.8 1.2 0.6 OJ -OJ -0.7 -1.0 -1.3 
K=4 4 bits 3.1 2.1 1.5 0.7 OJ -0.3 -0.6 -1.0 
K=5 5 bits 5.0 3.2 3.0 1.9 1.5 0.4 0.6 -0.4 
K=6 6 bits 10.6 5.6 5.6 2.9 2.9 1.5 1.5 0.4 
K=7 7 bits 25.7 11.5 1003 5.6 5.6 3.2 2.9 1.8 
K=8 8 bits 24.7 9.0 9.7 4.7 5.4 2.6 
K=9 9 bits 24.4 7.8 10.0 4.7 
K=1O 10 bits 24.1 7.6 

Table 9.3: SNR [dB] required for maintaining BER=10-3 for both zero forcing and MMSE preprocessing for 
Schemes 1-4 of Table 6.5 
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Figure 9.4: SNR [dB] required for maintaining BER=1Q-3 for both zero forcing and MMSE preprocessing for 
Schemes 1-4 of Table 6.2 

context of BPSK modulation and was summarized in Tables 9.2 and 9.3, which are also plotted in 

Figures 9.4 and 9.5. As we can see from Figures 9.4 and 9.5, MMSE preprocessing required a lower 

SNR for attaining the same BER performance than zero forcing preprocessing. This is due to the fact 

that MMSE preprocessing takes into accoount the effects of both the MUI and of noise jointly, while 

zero forcing only considers those of the MUI. 

Additionally, Kalman filtering assisted channel prediction was invoked for supporting the zero 

forcing and MMSE based transmit preprocessing techniques in the context of a TDD system. 

9.1.7 Chapter 7 

In Chapter 7, SVD based transmit preprocessing and postprocessing was proposed in the context of 

MIMO aided multiple users for both UL and DL transmissions. Furthermore, based on the proposed 
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Figure 9.5: SNR [dB] required for maintaining BER=1Q-3 for both zero forcing and MMSE preprocessing for 
Schemes 1-4 of Table 6.5 

algorithm, both the maximum information rate and the maximum SNR based power allocation poli

cies of [64, 185,221] were considered for uplink transmisson and both the attainable capacity as well 

as the BER performance was compared for both the uncorrelated and correlated noise scenarios. The 

simulation results of Figures 7.3 to 7.10 suggest that a performance loss is experienced due to the 

noise enhancement experienced in the correlated noise scenarios. For downlink transmission, the joint 

and the individual maximum information rate based power allocation policies of [64] were consid

ered first. The simulation results of Figures 7.11 to 7.14 suggest that both of them achieve a similar 

performance, while and the power constraints of (7.74) and (7.79) have a significant influence on 

the attainable system performance. Furthermore, the maximum SNR and the equal-power allocation 

policies of [151,221] were compared for downlink transmissions as well. The simulation results of 

Figures 7.15 to 7.17 suggest that the BER performance corresponding to the maximum SNR policy 
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is better than that of the equal-power policy, since the equal-power policy ingores the fact that the 

lower eigenvalues of the channel matrix result in a lower effective channel gain and simply allocate 

an equal power to each transmitted symbol. Hence in the context of the equal-power policy some 

of the lower-SNR data streams will degrade the overall BER performance, while the maximum-SNR 

policy is capable of allocating more power to the specific data streams having lower eigenvalues in 

order to achieve an improved balance among all data streams. The TDD mode may exploit that the 

UL and DL channels are similar and invoke this knowledge for downlink transmit preprocessing, as 

discussed in Section 7.4. 

9.1.8 Chapter 8 

In Chapter 8, nonlinear channel prediction using RNNs was considered. Speficically, the structure 

of RNN-based channel predictor was considered in Section 8.2, while two types of RNN activation 

functions, namely, the split-and the full activation function were presented in Section 8.3. Further

more, three different training algorithms, namely, the RTRL, the GEKF and the DEKF techniques 

were introduced in Section 8.4, respectively. The application of RNN-based channel predictors was 

discussed in Section 8.5 in the context of non-Gaussian channels. Finally, our simulation results 

provided in Section 8.6 showed that the RNN-based channel predictor was capable of fulfilling the 

task of channel prediction and that the GEFK and DEKF training schemes exhibited a rapid con

vergence. Furthermore, when the dominant source of impariment was impulsive noise, rather than 

Gaussian noise, the RNN-based predictor achieved a better performance than the linear MMSE based 

predictor. 

9.2 Future Work 

Due to the emerging high demand for supporting novel multimedia applications, next generation 

wireless systems are expected to support high data rates. When employing multiple antennas at 

both the transmitter and receiver, multiple input multiple output (MIMO) systems have the potential 

of achieving a higher transmission rate or higher intergrity than their traditional single input single 

output (SISO) counterparts [60]. Accordingly, the investigation of application channel prediction in 

the context of MIMO systems constitutes our main research direction in the future. 
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9.2.1 Long-Range Prediction Based Scheduling 

Since the wireless channel imposes adverse effects on wireless communications, amongst others tech

niques, antenna diversity has been employed for combatting its effects. However, instead of mitigating 

it, in future generation of wireless communication systems, we may opt for circumventing its effects 

with the aid of the so-called multiuser-diversity based scheduling [222,223]. Numerous scheduling 

strategies rely on the availability of full or partial CSI in order to schedule the transmissions of specific 

users during the next time slot, using for example maximum SNR-based scheduling [224] or propor

tional fair scheduling [225J. Hence it is intitutively reasonable to employ channel prediction instead 

of channel estimation in the context of scheduling techniques [226], and hence channel prediction 

assisted scheduling will be one of out future reseach topics. 

9.2.2 Long-Range Prediction Based Transmitter Antenna Selection 

One of the drawbacks of MIMO systems is their increased complexity, and cost imposed by the 

employment of mutliple RF chains of the multiple antennas used at both the transmitter and receiver. 

For this reason, there is now great interest in so-called antenna selection schemes, which aim 

for reducing the complexity of MIMO systems by activating either a limited subset of transmit

ter or receiver antennas or a combination of subsets of transmitter and receiver antennas (transmit

ter/receiver antenna selection) for communicating without compromising the achievable the perfor

mance [227,228]. Specifically, when transmitter antenna selection is invoked, the CSI corresponding 

to next transmission instant is required at the transmitter. When using channel prediciton instead of 

channel estimation, transmitter antenna selection may achieve a better performance [229]. Hence, 

channel prediciton assisted transmitter antenna selection will constitute another future research field. 



Bibliography 

[1) S. Haykin, Adaptive Filter Theory. Prentice Hall, Inc, fourth ed., 2002. 

[2] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filter

ing: With Matlab Exercises And Solutions. Wiley, third ed., 1997. 

[3] S. M. Kay, Fundamentals of Statistical Signal Processing:Estimation Theory. New Jersey: 

Prentice Hall, Inc, 1993. 

[4] L. Hanzo, C. H. Wong, and M. S. Yee, Adaptive wireless transceivers: turbo-coded, turbo

equalized and space-time coded TDMA, CDMA, and OFDM Systems. John Wiley & Sons, 

2002. 

[5] L. Hanzo, M. Munster, B. J. Choi, and T. Keller, OFDM and MC-CDMAfor broadband multi

user communications, WLANs and broadcasting. John Wiley & Sons, 2003. 

[6J L. Hanzo, S. X. Ng, W. T. Webb, and T. Keller, Quadrature amplitude modulation: from 

basics to adaptive trellis-coded, turbo-equalised and space-time doded OFDM, CDMA and 

MC-CDMA Systems. John Wiley, second ed., 2004. 

[7] J. M. Torrance and L. Hanzo, "Upper bound performance of adaptive modulation in a slow 

Rayleigh fading channel," Electronics Letters, vol. 32, pp. 718-719, April 1996. 

[8] S. T. Chung and A. J. Goldsmith, "Degrees of freedom in adaptive modulation: a unified view," 

IEEE Transactions on Communications, vol. 49, pp. 1561 -1571, September 2001. 

[9J Z. Zhou and B. Vucetic, "MIMO systems with adaptive modulation," IEEE Transactions on 

Vehicular Technology, vol. 54, pp. 1828 - 1842, September 2005. 

199 



200 BIBLIOGRAPHY 

[10] S. Zhou and G. B. Giannakis, "How accurate channel prediction needs to be for transmit

beamforming with adaptive modulation over Rayleigh MIMO channels?," IEEE Transactions 

on Wireless Communications, vol. 3, pp. 1285 - 1294, July 2004. 

[11) M. Mohammad and R M. Buehrer, "On the impact of SNR estimation error on adaptive mod

ulation," IEEE Communications Letters, vol. 9, pp. 490-492, June 2005. 

[12] J. F. Paris, M. C. Aguayo-Torres, and J. T. Entrambasaguas, "Impact of channel estimation error 

on adaptive modulation performance in flat fading," IEEE Transactions on Communications, 

vol. 52, pp. 716 - 720, May 2004. 

[13J A. J. Goldsmith and S.Chua, "Variable-rate variable-power MQAM for fading channels," IEEE 

Transactions on Communications, vol. 45, pp. 1218 - 1230, October 1997. 

[14] S. Falahati, A. Svensson, T. Ekman, and M. Sternad, "Adaptive modulation systems for pre

dicted wireless channels," IEEE Transactions on Communications, vol. 52, pp. 307 - 316, 

February 2004. 

[15] G. E. Oien, H. Holm, and K. J. Hole, "Impact of channel prediction on adaptive coded modu

lation performance in Rayleigh fading," IEEE Transactions on Vehicular Technology, vol. 53, 

pp. 758 -769, May 2004. 

[16] X. Cai and G. B. Giannakis, "Adaptive PSAM accounting for channel estimation and prediction 

errors," IEEE Transactions on Wireless Communications, vol. 4, pp. 246- 256, January 2005. 

(17] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974. 

[18J J. K. Huang and J. H. Winters, "Sinusoidal modeling and prediction of fast fading processes," 

in Global Telecommunications Conference, vol. 2, (Sydney, NSW, Australia), pp. 892 - 897, 8 

- 12 November 1998. 

[19J J. B. Andersen, J. Jensen, S. H. Jensen, and F. Frederiksen, "Prediction of future fading based 

on past measurements," in Proceedings of IEEE Vehicular Technology Conference, 1999, Fall., 

vol. 1, (Amsterdam, Netherlands), pp. 151 -155,19 - 22 September 1999. 

[20] L. Dong, G. Xu, and H. Ling, "Prediction of fast fading mobile radio channels in wideband 

communication systems," in Global Telecommunications Conference, 2001, vol. 6, (San Anto

nio, TX, USA), pp. 3287 - 3291,25 - 29 November 2001. 



BIDLIOGRAPHY 201 

[21J S. Semmelrodt and R. Kattenbach, "Application of spectral estimation techniques to 2-D fading 

forecast of time-variant channels," in COST273 TD(01)034., (Bologna, Italy), 15 - 17 October 

2001. 

[22J S. Semmelrodt and R. Kattenbach, "A 2-D fading forecast of time-variant channels based on 

parametric modeling techniques," in The 13th IEEE International Symposium on Personal, 

Indoor and Mobile Radio Communications, 2002., vol. 4, (Lisbon, Portugal), pp. 1640 - 1644, 

15 - 18 September 2002. 

[23J M. Chen and M. Viberg, "LMMSE channel prediction based on sinusoidal modeling," in IEEE 

Sensor Array and Multichannel Signal Processing Workshop Proceedings, (Sitges, Barcelona, 

Spain), pp. 377 - 381, 18 - 21 July 2004. 

[24J I. C. Wong and B. L. Evans, "Joint channel estimation and prediction for OFDM systems," in 

IEEE Global Telecommunications Conference, (St. Louis, Missouri USA), pp. 2255 - 2259, 

28 November - 2 December 2005. 

[25] 1. Liu and X. Liu, "Time-varying channel identification and prediction in OFDM systems using 

2-D frequency estimation," in Military Communications Conference, (Washington, DC, USA), 

pp. 1-7,23 - 25 October 2006. 

[26] A. J. Barabell, "Improve the resolution performance of eigenstructure-based direction-finding 

algorithms," in IEEE International Conference on Acoustics, Speech, and Signal Processing, 

(Boston, MA, USA), pp. 336-339, 14 - 16,April1983. 

[27J R. Roy and T. Kailath, "ESPRIT-estimation of signal parameters by rotational invariance tech

niques," IEEE Transactions on Acoustic, Speech, and Signal Processing, vol. 37, pp. 984-995, 

July 1989. 

[28] A. Forenza, Exploitation of the fixed wireless channel through the link-adaptation algorithm 

and the channel prediction. Master thesis, Instituts Eurocom, 2001. 

[29] A. Duel-Hallen, S. Hu, and H. Hallen, "Long range prediction of fading signals: enabling 

adaptive transmission for mobile radio channels," IEEE Signal Processing Magzine, vol. 17, 

pp. 62-75, May 2000. 



202 BffiLIOGRAPHY 

[30] M. Chen, M. Viberg, and T. Ekman, "Two new approaches to channel prediction based on 

sinusoidal modelling," in IEEE/SP 13th Workshop on Statistical Signal Processing, (Telecom 

Paris, Paris), pp. 697- 700, 17 - 20 July 2005. 

[31] M. Chen, T. Ekman, and M. Viberg, "New approaches for channel prediction based on sinu

soidal modeling," EURASIP Journal on Advances in Signal Processing, vol. 2007, no. 49393, 

2007. 

[32] R. Steele and L. Hanzo, Mobile Radio Communications: Second and Third-Generation Cel

lular and WATM Systems OFDM and MC-CDMAfor broadband multi-user communications, 

WLANs and broadcasting. John Wiley & Sons, 1999. 

[33] T. Eyceoz, A. Duel-Hallen, and H. Hallen, "Deterministic channel modeling and long range 

prediction of fast fading mobile radio channels," IEEE Communications Letters, vol. 2, 

pp. 254-256, September 1998. 

[34] T. Eyceoz, S. Hu, and A. Duel-Hallen, "Performance analysis of long range prediction for fast 

fading channels," in Proceedings of the 33rd Annual Conference on Information Sciences & 

Systems (CISS'99), (Baltimore, MD, USA), pp. 656-661, 17 - 19 March 1999. 

[35] T. Eyceoz, A. Duel-Hallen, and H. Hallen, ''Prediction of fast fading farameters by resolv

ing the interference pattern," in Proceedings of the 31st ASILOMAR Conference on Signals, 

System, & Compurters, (Pacific Grove, CA, USA), pp. 167-171,2 - 5 November 1997. 

[36] I. C. Wong, A. Forenza, R. W. Heath, and B. L. Evans, "Long range channel prediction for 

adaptive OFDM systems," in Conference Record of the Thirty-Eighth Asilomar Conference on 

Signals, Systems and Computers, (Pacific Grove, CA, USA), pp. 732 - 736, 7 - 10 November 

2004. 

[37] Z. Luo, H. Gao, Y. Liu, and J. Gao, "Robust pilot-symbol-aided MIMO channel estimation and 

prediction," in IEEE Global Telecommunications Conference, (Dallas, Texas, USA), pp. 3646 

- 3650, 29 November - 3 December 2004. 

[38] J. Akhtman and L. Hanzo, "Low-complexity channel estimation for OFDM and MC-CDMA," 

in IEEE 59th Vehicular Technology Conference, Spring, (Milan, Italy), pp. 1134 - 1138, 17-

19 May 2004. 



BIDLIOGRAPHY 203 

[39J Y. Chen, H. Tsai, and 1. Peng, "Effects of adaptive prediction algorithms on adaptive QAM in 

flat Rayleigh fading channels," in IEEE Proceedings on Personal, Indoor and Mobile Radio 

Communications, (Beijing, China), pp. 2446 - 2451, 7 - 10 September 2003. 

[40] D. Schafhuber and G. Matz, "MMSE and adaptive prediction of time-varying channels for 

OFDM systems," IEEE Transactions on Wireless Communications, vol. 4, pp. 593 - 602, 

March 2005. 

(41] G. Xie, R. Zhang, and Y. Liu, "Simplified and adaptive prediction algorithm of time-varying 

wide band channels," in International Symposium on Communications and Information Tech

nologies, (Bangkok, Thailand), pp. 264 - 267, 18 - 20 October 2006. 

(42] 1. Wen, C. Chang, G. Lee, and C. Huang, "OFDM channel prediction using fuzzy update LMS 

algorithm in time-variant mobile channel," in IEEE 64th Vehicular Technology Conference 

Fall, (Montreal, Canada), pp. 1 - 5, 15 - 28 September 2006. 

[43] Y:Li, L. J. Cimini, and N. R. Sollenberger, "Robust channel estimation for OFDM systems with 

rapid dispersive fading channels," IEEE Transactions on Communications, vol. 46, pp. 902 -

915, July 1998. 

[44] S. Semmelrodt and R. Kattenbach, "Investigation of different fading forecast schemes for flat 

fading radio channels," in VTC 2003-Fall., (Orlando, Florida, USA), pp. 149 - 153, 6 - 9 

October 2003. 

(45J w. R. Braun and U. Dersch, "A physical mobile radio channel model," IEEE Transactions on 

Vehicular Technology, vol. 40, pp. 472-482, May 1991. 

(46) S. Bug and R. Jakoby, "Modeling the mobile channel using theory of dynamics-first derivations 

and results," in Proceedings of the European Wireless Conference, (Barcelona, Spain), pp. 402-

407, 24 - 27 February 2004. 

[47] S. Bug and R. Jakoby, "Modeling the mobile radio channel using theory of dynamics - re

construction of dynamics by differential dquations," in Proceedings of VTC 2004-Fall, (Los 

Angeles, USA), pp. 28-32, 26 - 29 September 2004. 

[48J S. Bug, A. Nazarov, K. Kastell, and R. Jakoby, "Characterizing the mobile radio channel by 

a conservative dynamical system," in VTC 2006-Spring, (Melbourne, Australia), pp. 2772 -

2776, 7 - 10 May 2006. 



204 BIDLIOGRAPHY 

[49J T. Ekman and G. Kubin, "Nonlinear prediction of mobile radio channels: measurements and 

MARS model designs," in ICASSP'99, (Phoenix, Arizona, USA), pp. 2667 - 2670, 15 - 19 

March 1999. 

[50] J. Sun, T. Zhang, and F. Liu, "Nonlinear prediction of fast fading channel parameters based 

on the chaotic attractor," in Proceedings of the IEEE 6th Circuits and Systems Symposium on 

Emerging Technologies: Frontiers of Mobile and Wireless Communication, (Shanghai, China), 

pp. 181 - 184,31 May - 2 June 2004. 

[51] J. Sun, T. Zhang, andF. Liu, "Nonlinear prediction of mobile-radio fading channel using re

current least squares support vector machines and embedding phase space," in International 

Conference on Communications, Circuits and Systems, (Chengdu, China), pp. 282 - 286, 27 -

29 June 2004. 

[52] X. M. Gao, 1. M. A. Tanskanen, and S. J. Ovaska, "Comparison of linear and neural network

based power prediction schemes for mobile DS/CDMA systems," in Proceedings of IEEE Ve

hicular Technology Conference, 1996., (Atlanta, Georgia, USA), pp. 61 - 65, 28 April- 1 May 

1996. 

[53] X. M. Gao, X. Z. Gao, 1. M. A. Tanskanen, and S. J. Ovaska, "Power prediction in mobile 

communication systems using an optimal neural-network structure," IEEE Transactions on 

Neural Networks, vol. 8, pp. 1446 - 1455, November 1997. 

[54J B. Visweswaran and T. Kiran, "Channel prediction based power control in W-CDMA systems," 

in First International Conference on 3G Mobile Communication Technologies, (London, UK), 

pp. 41 - 45, 27 - 29 March 2000. 

[55J J. Klaue and A. Aguiar, "Robust real-time channel prediction based on inaccurate instanta

neous measurements: an approach," in IEEE 6th Workshop on Signal Processing Advances in 

Wireless Communications (SPAWC), (New York City, USA), pp. 530 - 534, 5 - 8 June 2005. 

[56] P. M. Castro, L. Castro, and J. Miguez, "Precoding in wireless communications systems using 

particle tiltering for blind channel prediction," in IEEE 5th Workshop on Signal Processing 

Advances in Wireless Communications, (Lisboa, Portugal), pp. 97 - 101, 11 - 14 July 2004. 

[57J T. K. Chee, C. Lim, and J. Choi, "Channel prediction using lumpable tinite-state Markov chan

nels in OFDMA systems," in IEEE 63rd Vehicular Technology Conference Spring, (Melbourne, 

Australia), pp. 1560 - 1564, 7 - 10 May 2006. 



BffiLiOGRAPHY 205 

[58] T. Zemen, C. F. Mechlenbrauker, and B. H. Fleury, "Time-variant channel prediction using 

time-concentrated and band-limited sequences," in IEEE International Conference on Com

munications, (Istanbul, Turkey), pp. 5660 - 5665, 11 - 15 June 2006. 

[59] Y. Lee, "Channel prediction with cascade AR modeling," in Advanced International Confer

ence on Telecommunications and International Conference on Internet and Web Applications 

and Services, (Guadeloupe, French Caribbean), pp. 40 - 40, 19 - 25 February 2006. 

[60] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, "An overview of MIMO communi

cations - a key to gigabit wireless," Proceedings of the IEEE, vol. 92, pp. 198- 218, February 

2004. 

[61] D. Gesbert, M. Shaft, D. Shiu, P. J. Smith, and A. Naguib, "From theory to practice: an 

overview of MIMO space-time coded wireless systems," IEEE Journal on Selected Areas in 

Communications, vol. 21, pp. 281- 302, April 2003. 

[62] S. N. Diggavi, N. Al-dhahir, A. Stamoulis, and A. R. Calderbank, "Great expectations: the 

value of spatial diversity in wireless networks," Proceedings of the IEEE, vol. 92, pp. 219-

270, February 2004. 

[63] R. Irmer, Multiuser transmission in code division multiple access mobile communications sys

tems. Ph.D. thesis, Technische Universitat Dresden, 2005. 

(64] 1. E. Telatar, "Capacity of multi-antenna Gaussian channels," European Transactions on 

Telecommunications, vol. 10, pp. 585-595, May 1999. 

[65] W. Liu, S. X. Ng, L. L. Yang, and L. Hanzo, "Joint channel prediction aided differentially 

encoded TTCM and BICM-ID assisted eigen-beamforming," lEE Electronics Letters, vol. 43, 

pp. 232 - 234, February 2007. 

[66] S. X. Ng, W. Liu, J. Wang, M. Tao, L. L. Yang, and L. Hanzo, "Performance analysis of 

iteratively decoded variable-length space-time coded modulation," in IEEE International Con

ference on Communications, (Glasgow, Scotland, UK), p. CDROM, 24 - 28 June 2007. 

[67] S. X. Ng, W. Liu, L. L. Yang, and L. Hanzo, "Channel prediction aided coded modulation 

assisted eigen-beamforming," in Proceedings of the IEEE Vehicular Technology Conference, 

(Dublin, Ireland), pp. 1742 -1746,23 - 25 April 2007. 



206 BIDLIOGRAPHY 

[68] A. Ahreans, W. Liu, S. X. Ng, V. Kuehn, L. L. Yang, and L. Hanzo, "SVD-aided, iteratively 

detected spatial division multiplexing using long-range channel prediction," submitted to IEEE 

Workshop on Signal Processing Systems, (Shanghai, China), 17 - 19 October 2007. 

[69] W. Liu, L. L. Yang, and L. Hanzo, "Wideband channel estimation and prediction in single

carrier wireless systems," in Proceedings of the IEEE Vehicular Technology Conference, 

(Stockholm, Sweden), pp. 543 - 547,30 May - 1 June 2005. 

[70] B. Hu, W. Liu, L. L. Yang, and L. Hanzo, "Multiuser decorrelating based long-range frequency

domain channel transfer function prediction in multicarrier DS-CDMA systems," in Proceed

ings of IEEE International Symposium on Spread Spectrum Techniques and Applications, 

(Manaus, Amazon, Brazil), pp. 163 - 167, 28 - 31 August 2006. 

[71] W. Liu, L. L. Yang, and L. Hanzo, "Subspace tracking based blind MIMO transmit prepro

cessing," in Proceedings of the IEEE Vehicular Technology Conference 2007 Spring, (Dublin, 

Ireland), pp. 2228 - 2232, 23 - 25 April 2007. 

[72] W. Liu, L. L. Yang, and L. Hanzo, "Channel prediction aided multiuser transmission in 

SDMA," submitted to IEEE Workshop on Signal Processing Systems, (Shanghai, China), 17 -

19 October 2007. 

[73] W. Liu, L. L. Yang, and L. Hanzo, "Recurrent neural network based narrowband channel 

prediction," in Proceedings of the IEEE Vehicular Technology Conference, (Melbourne, Aus

tralia), pp. 2173 - 2177, 7 - 10 May 2006. 

[74] 1. K. Cavers, "An analysis of pilot symbol assisted modulation for Rayleigh fading channels," 

IEEE Transactions onVehicular Technology, vol. 40, pp. 686 - 693, November 1991. 

[75] T. Ekman, M. Sternad, and G. Kubin, "Unbiased power prediction of rayleigh fading channels," 

in IEEE 56th Vehicular Technology Conference, (Vancouver, Canada), pp. 280 - 284, 24 - 29 

September 2002. 

[76] W. Cao and W. Wang, ~'A frequency-domain channel prediction algorithm in wideband wireless 

communication systems," in 15th IEEE International Symposium on Personal, Indoor and 

Mobile Radio Communications., (Barcelona, Spain), pp. 2402 - 2405,5 - 8 September 2004. 



BIBLIOGRAPHY 207 

[77] K. E. Baddour and N. C. Beaulieu, "Improved pilot-assisted prediction of unknown time

selective Rayleigh channels," in IEEE International Conference on Communications, (Istanbul, 

Turkey), pp. 5192 - 5199, 11 - 15 June 2006. 

[78] K. E. Baddour and N. C. Beaulieu, "Autoregressive models for fading channel simulation," in 

Global Telecommunications Conference, (San Antonio, TX, USA), pp. 1187 - 1192, 25 - 29 

November 2001. 

[79] K. E. Baddour and N. C. Beaulieu, "Autoregressive modeling for fading channel simulation," 

IEEE Transactions on Wireless Communications, vol. 4, pp. 1650 - 1662, July 2005. 

[80] G. L. StUber, Principles of Mobile Communication. Norwell, MA, USA: Kluwer Academic 

Publishers, 1996. 

[81] J. G. Proakis, Digital Communications. McGraw Hill, 4th ed., 2000. 

[82] J. I. Smith, "A computer generated multipath fading simulation for mobile radio," IEEE Trans

actions on Vehicular Techonology, vol. 24, pp. 39-40, August 1975. 

[83] H. S. Wang and N. Moayeri, "Finite-state Markov channel-a useful model for radio communi

cation channels," IEEE Transactions on Vehicular Techonology, vol. 44, pp. 163-171, February 

1995. 

[84] Y. L. Guan and L. F. Turner, "Generalised FSMC model for radio channels with correlated 

fading," in Communications, lEE Proceedings, pp. 133-137, April 1999. 

[85] T. S. Rappaport, Wireless Communications: Principles and Practice. New York: Prentice Hall, 

Inc, 1996. 

[86] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, "Frequency domain 

equalization for single-carrier broadband wireless systems," IEEE Communications Magazine, 

vol. 40, pp. 58 - 66, April 2002. 

[87] D. D. Falconer and S. L. Ariyavisitakul, "Broadband wireless using single carrier and fre

quency domain equalization," in The 5th International Symposium on Wireless Personal Mul

timedia Communications, 2002., (Sheraton Waikiki, Honolulu, Hawaii), pp. 27 - 36, 27 - 30 

October 2002. 



208 BIDLIOGRAPHY 

[88] M. Morelli and L. Sanguinetti, "A novel prefiltering technique for downlink transmissions in 

TDD MC-CDMA systems," IEEE Transactions on Wireless Communications, vol. 4, pp. 2064 

- 2069, September 2005. 

[89] L. U. Choi and R. D. Murch, "A transmit MIMO scheme with frequency domain pre

equalization for wireless frequency selective channels," IEEE Transactions on Communica

tions, vol. 3, pp. 929- 938, May 2004. 

[90] Y. Zhu and K. B. Letaief, "Frequency domain pre-equalization with precoding for broadband 

SDMA systems," in WCNC, (Hong Kong, China), pp. 1449 -1454, 11-15 March 2007. 

[91] L. Gong, Y. Du, 1. Li, and 1. Yuan, "A new channel state information utilization criterion in 

SC-FDE," in IEEE Radio and Wireless Symposium, (San Diego, California, USA), pp. 19 - 22, 

17 - 19 Jan 2006. 

[92] B. Fong, G. Y. Hong, and A. C. M. Fong, "Adaptive single carrier modulation scheme for high

speed mobile computing," in International Conference on Consumer Electronics, (Las Vegas, 

NY, USA), pp. 295 - 296,8 - 12 Jan 2005. 

[93] K. Takeda, H. Tomeba, and F. Adachi, "BER performance analysis of joint Tomlinson

Harashima precoding and frequency-domain equalization," in WCNC, (Hong Kong, China), 

pp. 1465 - 1469, 11-15 March 2007. 

[94] L. Hanzo, L. L. Yang, E.-L. Kuan, and K. Yen, Single and multi-carrier DS-CDMA: multi

user detection, space-time spreading, synchronisation, networking and standards. John Wiley, 

2003. 

[95] R. Esmailzadeh, E. Sourour, and M. Nakagawa, "Prerake diversity combining in time-division 

duplex CDMA mobile communications," IEEE Transactions on Vehicular Technology, vol. 48, 

pp. 795-801, May 1999. 

[96] W. M. Jang, B. R. Vojcic, and R. L. Pickholtz, "Joint transmitter-receiver optimization in syn

chronous multiuser communications over multi path channel," IEEE Transactions on Commu

nications, vol. 46, pp. 269-278, February 1998. 

[97] M. K. Tsatasnis, G. B. Giannakis, and G. Zhou, "Estimation and equalization of fading chan

nels with random coefficients," in 1996 IEEE International Conference on Acoustics, Speech, 

and Signal Processing., (Atlanta, GA, USA), pp. 1093 -1096, 7 - 10 May 1996. 



BIBLIOGRAPHY 209 

[98] J. X. Wu and C. S. Xiao, "Time-varying and frequency-selective channel estimation with un

equally spaced pilot symbols," in 2003 IEEE International Conference on Acoustics, Speech, 

and Signal Processing, 2003., (Hong Kong, China), pp. 620-623, 6 - 10 April 2003. 

[99] T. Hwang and Y. Li, "Iterative cyclic prefix reconstruction for coded single-carrier systems 

with frequency-domain equalization (SC-FDE)," in VTC 2003-Spring., (Jeju, South Korea), 

pp. 1841 - 1845, 23 - 25 April 2003. 

[100] N. Al-Dhahir, "Single-carrier frequency-domain equalization for space-time block-coded 

transmissions over frequency-selective fading channels," IEEE Communications Letters, vol. 5, 

pp. 304 - 306, July 2001. 

[101] N. AI-Dhahir, "Single-carrier frequency-domain equalization for space-time-coded transmis

sions over broadband wireless channels," in 12th IEEE International Symposium on Personal, 

Indoor and Mobile Radio Communications, 2001., (San Diego, CA, USA), pp. B-143-BI46, 

30 September - 3 October 2001. 

[102] A. F. Naguib, "Combined interference suppression and frequency domain equalization for 

space-time block coded transmission," in IEEE International Conference on Communications, 

2003., (Anchorage, Alaska, USA), pp. 3261 - 3266, 11 - 15 May 2003. 

[103] P. Hoeher, "TCM on frequency-selective land-mobile fading channels," in 5th 1'irrenia Interna

tional Workshop on Digital Communications, (Tirrenia, Italy), pp. 317-328, 8 - 12 September 

1991. 

[104] S. Kaiser and P. Hoeher, "Performance of multi-carrier CDMA systems with channel estima

tion in two dimensions," in The 8th IEEE International Symposium on Personal, Indoor and 

Mobile Radio Communications, 1997., (Helsinki, Finland), pp. 115 - 119, 1 - 4 September 

1997. 

[l05] P. Hoeher, S. Kaiser, and P. Robertson, "Two-dimensional pilot-symbol-aided channel estima

tion by wiener filtering," in IEEE International Conference on Acoustics, Speech, and Signal 

Processing, 1997., (Munich, Germany), pp. 1845 - 1848, 21 - 24 April 1997. 

[106] P. Hoeher, S. Kaiser, and P. Robertson, "Pilot-symbol-aided channel estimation in time and 

frequency," in Proc. Sixth Communication Theory Mini-Conference in conjunction with IEEE 

GLOBECOM '97, (Phoenix, AZ, USA), pp. 90-96, 3 -8 November 1997. 



210 BffiLIOGRAPHY 

[107] S. Kaiser, "Multi-carrier CDMA mobile radio systems - analysis and optimization of detection, 

decoding, and channel estimation," Ph.D. Thesis, 1998. 

[108] W. G. Jeon, K. H. Paik, and y. S. Cho, "Two-dimensional MMSE channel estimation for 

OFDM systems with transmitter diversity," in VTC 2001-Fall., (Atlantic City, New Jersey, 

USA), pp. 1682 -1685, 7 - 11 October 2001. 

[109] H. Witschnig, T. Mayer, A. Springer, L. Maurer, M. Huemer, and R. Weigel, "The advantages 

of a known sequence versus cyclic prefix in a SCIFDE system," in The 5th International Sympo

sium on Wireless Personal Multimedia Communications, 2002., (Sheraton Waikiki, Honolulu, 

Hawaii, USA), pp. 1328 - 1332, 27 - 30 October 2002. 

[110] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, "White pa

per: Frequency domain equalization for single-carrier broadband wireless systems," in 

http://www.sce.carleton.calbbw/papers/whitepaper2.pdj. 

[111] C. Tellambura, M. G. Parker, Y. J. Guo, S. J. Shepherd, and S. K. Barton, "Optimal sequences 

for channel estimation using discrete Fourier transform techniques," IEEE Transactions on 

Communications, vol. 47, pp. 230 - 238, February 1999. 

[112] Y. Zeng and T. S. Ng, "Pilot cyclic prefixed single carrier communication: channel estimation 

and equalization," IEEE Signal Processing Letters, vol. 12, pp. 56 - 59, January 2005. 

[113] J. Li and Y. Du, "Channel estimation schemes for SC-FDEIFS system," in IEEE Symposium on 

Computers and Communications, (Pula-Cagliari, Sardinia, Italy), pp. 155 - 160, 26 - 29 June 

2006. 

[114] J. Siew, J. Coon, R. J. Piechocki, A. Dowler, A. Nix, M. Beach, S. Armour, and J. McGeehan, 

"A channel estimation algorithm for MIMO-SCFDE," IEEE Communications Letters, vol. 8, 

pp. 555 - 557, September 2004. 

[115] J. Coon, M. Beach, and J. McGeehan, "Optimal training sequences for channel estimation 

in cyclic-prefix-based single-carrier systems with transmit diversity," IEEE Signal Processing 

Letters, vol. 11, pp. 729- 732, September 2004. 

[116] A. Osseiran, A. Logothetis, and S. B. Slimane, "Pilot design criteria for single carrier frequency 

domain equalization on a real-time DSP-based MIMO test-bed," in IEEE Vehicular Technology 

Conference, (Montreal, Canada), pp. 1- 4, 25 - 28 September 2006. 



BIBLIOGRAPHY 211 

[117] D. C. Chu, "Polyphase codes with good periodic correlation properties," IEEE Transactions on 

Information Theory, vol. 18, pp. 531- 532, July 1972. 

[118] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE 

Journal on Selected Areas in Communications, vol. 16, pp. 1451-1458, October 1998. 

[119] G. J. Foschini, "Layered space-time architecture for wireless communications in a fading envi

ronment using multi-element arrays," Bell Labs Technical Journal, vol. 1, pp. 41-59, Autumn 

1996. 

[120] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, "V-BLAST: an architec

ture for realizing very high data rates over the rich-scattering wireless channel," in International 

Symposium on Signals, Systems, and Electronics, (Pisa, Italy), pp. 295-300, 29 September - 2 

October 1998. 

[121] G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, "Detection algorithm 

and initial laboratory results using v-blast space-time communication architecture," Electronics 

Letters, vol. 35, pp. 14-16, January 1999. 

[122] A. S. Dakdouki, V. L. Banket, N. K. Mykhaylov, and A. A. Skopa, "Downlink processing algo

rithms for multi-antenna wireless communications," IEEE Communications Magazine, vol. 43, 

pp. 122 - 127, January 2005. 

[123] J. S. Blogh and L. Hanzo, Third-generation systems and intelligent wireless networking: smart 

antennas and adaptive modulation. John Wiley-IEEE Press, 2002. 

[124] M. Haardt, A. Klein, R. Koehn, S. Oestreich, M. Purat, V. Sommer, and T. Ulrich, "The 

TD-CDMA based UTRA TDD mode," IEEE Journal on Selected Areas in Communications, 

vol. 18, pp. 1375 - 1385, August 2000. 

[125] M. Peng and W. Wang, "A framework for investigating radio resource management algorithms 

in TD-SCDMA systems," IEEE Communications Magazine, vol. 43, pp. S 12 - S 18, June 2005. 

[126] H. Sampath, P. Stoica, and A. Paulraj, "Generalized linear precoder and decoder design for 

MIMO channels using the weighted mmse criterion," IEEE Transactions on Communications, 

vol. 49, pp. 2198 - 2206, December 2001. 

[127] G. Lebrun, J. Gao, and M. Faulkner, "MIMO transmission over a time-varying channel using 

SVD," IEEE Transactions on Wireless Communications, vol. 4, pp. 757- 764, March 2005. 



212 . BIBLIOGRAPHY 

[128] G. Lebrun, S. Spiteri, and M. Faulkner, "Channel estimation for an SVD-MIMO system," in 

IEEE International Conference on Communications, (Paris, France), pp. 3025 - 3029,20 - 24 

June 2004. 

[129] A. Cano-Gutierrez, M. Stojanovic, and J. Vidal, "Effect of channel estimation error on the per

formance of SVD-based MIMO communication systems," in IEEE International Symposium 

on Personal, Indoor and Mobile Radio Communications, (Barcelona, Spain), pp. 508 - 512,5 

- 8 September 2004. 

[130] T. Dahl, N. Christophersen, and D. Gesbert, "Blind MIMO eigenmode transmission based on 

the algebraic power method," IEEE Transactions on Signal Processing, vol. 52, pp. 2424-

2431, September 2004. 

[131] A. S. Y. Poon, D. N. C. Tse, and R. W. Brodersen, "An adaptive multiantenna transceiver for 

slowly flat fading channels," IEEE Transactions on Communications, vol. 51, pp. 1820 -1827, 

November 2003. 

[132] Y. Tang, B. Vucetic, and Y. Li, "An iterative singular vectors estimation scheme for beam

forming transmission and detection in MIMO systems," IEEE Communications Letters, vol. 9, 

pp. 505 - 507, June 2005. 

[133] Y. Tan, G. Lebrun, and M. Faulkner, "An adaptive channel SVD tracking strategy in time

varying TDD system," in IEEE Semiannual Vehicular Technology Conference, (Jeju, Korea), 

pp. 769 - 773, 22 - 25 April 2003. 

[134] H. Z. Jafarian and G. Gulak, "Iterative MIMO channel SVD estimation," in IEEE International 

Conference on Communications, (Seoul, Korea), pp. 1157 -1161, 16 - 20 May 2005. 

[135] H. Z. Jafarian and G. Gulak, "Adaptive channel SVD estimation for MIMO-OFDM systems," 

in IEEE Vehicular Technology Conference, Spring, (Stockholm, Sweden), pp. 552- 556, 30 

May - 1 June 2005. 

[136] T. Bianchi, C. F. Micheli, and F. Argenti, "SVD tracking algorithm for zero padded block 

transmission over fading channels," in IEEE Global Telecommunications Conference" (San 

Francisco, CA, USA), pp. 2125 - 2129, 1 - 3 December 2003. 



BIDLIOGRAPHY 213 

[137] T. J. Willink, "An efficient SVD update algorithm and application to MIMO communications," 

in Proceedings of European Signal Processing Conference, (Antalya, Turkey), 4 - 8 September 

2005. 

[138] F. Schafer, M. Stege, C. Michalke, and G. Fettweis, "Efficient tracking of eigenspaces and its 

application to MIMO-systems," in Proceedings of the 1ST Mobile & Wireless Communications 

Summit, (Aveiro, Portugal), 15 - 18 June 2003. 

[139] C. Michalke, M. Stege, F. Schafer, and G. Fettweis, "Efficient tracking of eigenspaces and 

its application to eigenbeamforming," in IEEE Proceedings on Personal, Indoor and Mobile 

Radio Communications, (Beijing, China), pp. 2847 - 2851, 7 - 10 September 2003. 

[140] B. Yang, "Projection approximation subspace tracking," IEEE Transactions on Wireless Com

munications, vol. 43, pp. 95 - 107, January 1995. 

[141] X. Wang and H. V. Poor, "Blind multiuser detection: a subspace approach," IEEE Transactions 

on Information Theory, vol. 44, pp. 677-690, March 1998. 

[142] C. Li and X. Wang, "Performance comparisons of MIMO techniques with application to 

WCDMA systems," EURASIP Journal on Applied Signal Processing, vol. 2004, pp. 649-661, 

May 2004. 

[143] H. T. Nguyen, G. Leus, and N. Khaled, "Prediction of the eigenvectors for spatial multiplexing 

MIMO systems in time-varying channels," in Proceedings of the Fifth IEEE International Sym

posium on Signal Processing and Information Technology, (Athens, Greece), pp. 119- 124, 18 

- 21 December 2005. 

[144] D. Yang, L. L. Yang, and L. Hanzo, "Performance of SDMA systems using transmitter prepro

cessing based on noisy feedback of vector-quantized channel impulse responses," in Proceed

ings of the IEEE Vehicular Technology Conference 2007 Spring, (Dublin, Ireland), pp. 2119 -

2123, 23 - 25 April 2007. 

[145] S. Attallah and K. Abed-Meraim, "Fast algorithms for subspace tracking," IEEE Signal Pro

cessing Letters, vol. 8, pp. 203 - 206, July 2001. 

[146] W. Utschick, "Tracking of signal subspace projectors," IEEE Signal Processing Letters, vol. 50, 

pp. 769 - 778, April 2002. 

[147] B. Vucetic and J. Yuan, Space-Time Coding. Wiley, 2003. 



214 BmLIOGRAPHY 

[148] H. Jafarkhani, Space-Time Coding: Theory and Practice. Cambridge University Press, 2005. 

[149] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, "An introduction to the multi

user MIMO downlink," IEEE Communications Magazine, vol. 42, pp. 60- 67, October 2004. 

[150] W. Ajib and D. Haccoun, "An overview of scheduling algorithms in MIMO-based fourth

generation wireless systems," IEEE Network, vol. 19, pp. 43- 48, September 2005. 

[151] M. Joham, W. Utschick, and J. A. Nossek, "Linear transmit processing in MIMO communi

cations systems," IEEE Transactions on Signal Processing, vol. 53, pp. 2700- 2712, August 

2005. 

[152] L. Choi and R. D. Murch, "A transmit preprocessing technique for multiuser MIMO systems 

using a decomposition approach," IEEE Transactions on Wireless Communications, vol. 3, 

pp. 20- 24, January 2004. 

[153] R. L. Choi and R. D. Murch, "New transmit schemes and simplified receivers for MIMO 

wireless communication systems," IEEE Transactions on Wireless Communications, vol. 2, 

pp. 1217-1230, November 2003. 

[154] R. Choi and R. Murch, "MIMO transmit optimization for wireless communication systems," 

in The First IEEE International Workshop on Electronic Design, Test and Applications, 

(Christchurch, New Zealand), pp. 33 - 37,29 - 31 January 2002. 

[155] Y. Wu, J. Zhang, S. Zhou, and X. Xu, "Precoding in the multiuser MIMO downlink based on 

subspace tracking techniques," in IEEE Vehicular Technology Conference, (Dallas, TX, USA), 

pp. 2382 - 2386, 25 - 28 September 2005. 

[156] L. Choi and R. D. Murch, "Transmit-preprocessing techniques with simplified receivers for the 

downlink of MISO TDD-CDMA systems," IEEE Transactions on Wireless Communications, 

vol. 35, pp. 285- 295, March 2004. 

[157] D. V. Duong, B. Holter, and G. E. Oien, "Optimal pilot spacing and power in rate-adaptive 

MIMO diversity systems with imperfect transmitter CSI," in IEEE 6th Workshop on Signal 

Processing Advances in Wireless Communications, (New York, USA), pp. 47 - 51, 5 - 8 June 

2005. 



BIBLIOGRAPHY 215 

[158] H. T. Nguyen, G. Leus, and N. Khaled, "Precoder and decoder prediction in time-varying 

MIMO channels," in Proceedings of IEEE International Workshop on Computational Ad

vances in Multi-Sensor Adaptive Processing, (Puerto Vallarta, Mexico), pp. 153 - 156, 13 -

15 December 2005. 

[159] S. Spiteri, G. Lebnin, and M. Faulkner, "Prediction for time-varying SVD systems," in IEEE 

International Symposium on Personal, Indoor and Mobile Radio Communications, (Barcelona, 

Spain), pp. 1608 -1612,5 - 8 September 2004. 

[160] T. Svantesson, "A performance bound for prediction of MIMO channels," IEEE Transactions 

on Signal Processing, vol. 54, pp. 520 - 529, February 2006. 

[161] C. Komninakis, C. Fragouli, A. H. Sayed, and R. D. Wesel, "Multi-input multi-output fading 

channel tracking and equalization using Kalman estimation," IEEE Transactions on Signal 

Processing, vol. 50, pp. 1065 -1076, May 2002. 

[162] D. H. Brandwood, "A complex gradient operator and its apphcation in adaptive array theory," 

lEE Proceedings, Part F - Communications, Radar and Signal Processing, vol. 130, pp. 11 -

16, February 1983. 

[163] H. H. Chen, C. X. Fan, and W. W. Lu, "China's perspectives on 3G mobile commuunications 

and beyond: TD-SCDMA technology," IEEE Wireless Communications, vol. 9; pp. 48 - 59, 

Apri12002. 

[164] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, "Zero-forcing methods for downlink spatial 

multiplexing in multiuser MIMO channels," IEEE Transactions on Signal Processing, vol. 52, 

pp. 461 - 471, February 2004. 

[165] T. Yoo and A. Goldsmith, "On the optimality of multi antenna broadcast scheduling using zero

forcing beamforming," IEEE Journal on Selected Areas in Communications, vol. 24, pp. 528-

541, March 2006. 

[166] R. F. H. Fisher, C. Windpassinger, A. Lampe, and J. B. Huber, "Space-time transmission using 

Tomlinson-Harashima precoding," in 4th ITG Conference on Source and Channel Coding, 

(Berlin, Germany), pp. 139 - 147, 28 - 30 January 2002. 



216 BIDLIOGRAPHY 

[167] L. U. Choi and R. D. Murch, "A pre-BLAST-DFE technique for the downlink of frequency

selective fading MIMO channels," IEEE Transactions on Communications, vol. 52, pp. 737 -

743, May 2004. 

[168] A. Wiesel, Y. C. Eldar, and S. Shamai, "Linear precoding via conic optimization for fixed 

MIMO receivers," IEEE Transactions on Signal Processing, vol. 54, pp. 161- 176, January 

2006. 

[169] S. Serberli and A. Yener, "Transceiver optimization for multiuser MIMO systems," IEEE 

Transactions on Signal Processing, vol. 52, pp. 214 - 226, January 2004. 

[170] Y. Tokgoz and B. D. Rao, "Performance analysis of maximum ratio transmission based multi

cellular MIMO systems," IEEE Transactions on Wireless Communications, vol. 5, pp. 83 - 89, 

January 2006. 

[171] T. K. Y. Lo, "Maximum ratio transmission," IEEE Transactions on Communications, vol. 47, 

pp. 1458 - 1461, October 1999. 

[172] 1. C. Roh and B. D. Rao, "Adaptive modulation for mUltiple antenna channels," in Conference 

Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, (Pacific 

Grove, CA, USA), pp. 526 - 530, 3 - 6 November 2002. 

[173] S. Zhou and G. B. Giannakis, "Adaptive modulation for multiantenna transmissions with chan

nel mean feedback," IEEE Transactions on Vehicular Technology, vol. 3, pp. 1626- 1636, 

September 2004. 

[174] Z. Zhou and B. Vucetic, "The effect of CSI imperfection on the performance of SVD based 

adaptive modulation in MIMO systems," in International Sympos-ium on Information Theory, 

(Chicago, IL, USA), pp. 317 - 317,27 June - 2 July 2003. 

[175] Z. Zhou and B. Vucetic, "Design of adaptive modulation using imperfect CSI in MIMO sys

tems," Electronics Letters, vol. 40, pp. 1073 - 1075, August 2004. 

[176] Z. Zhou, B. Vucetic, Z. Chen, and Y. Li, "Design of adaptive modulation in MIMO systems 

using outdated CSI," in IEEE 16th International Symposium on Personal, Indoor and Mobile 

Radio Communications, (Berlin, Germany), pp. 1101 - 1105, 11 - 14 September 2005. 

[177] Z. Wang, C. He, and A. He, "Robust AM-MIMO based on minimized transmission power," 

IEEE Communications Letters, vol. 10, pp. 432 - 434, June 2006. 



BmLIOGRAPHY 217 

[178] 1. H. Sung and 1. R. Barry, "Space-time processing with channel knowledge at the transmit

ter," in International Conference on International Conference on Trends in Communications 

EUROCON 2001, (Bratislava, Slovaki), pp. 26 - 29,4 - 7 July 2001. 

[179] S. X. Ng, B. L. Yeap, and L. Hanzo, "Full-rate, full-diversity adaptive space time block coding 

for transmission over Rayleigh fading channels," in IEEE Vehicular Technology Conference, 

(Stockholm, Sweden), pp. 1210 - 1214, 30 May - 1 June 2005. 

[180] T. 1. Willink, ''An adaptive algorithm for V-BLAST," in IEEE Vehicular Technology Confer

ence, (Stockholm, Sweden), pp. 2044 - 2048, 26 - 29 September 2004. 

[181] 1. Kim and J. M. Cioffi, "Spatial multiuser access with antenna diversity using singular value 

decomposition," in IEEE International Conference on Communications, (New Orleans, LA, 

USA), pp. 1253 - 1257, 18-22 June 2000. 

[182] K. Kim, S. Lee, and K. Chang, "An efficient multiuser access scheme combining the transmit 

diversity with the modified SVD methods for MIMO channels," in Conference Record of the 

Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, (Pacific Grove, Cali

fornia, USA), pp. 1719 - 1721, 3 - 6 November 2002. 

[183] K. E. Dawui and D. T. M. Slock, "Multiuser-MIMO downlink TX-RX design based on SVD 

channel diagonalization and multiuser diversity," in Conference Record of the Thirty-Ninth 

Asilomar Conference on Signals, Systems and Computers, (Pacific Grove, CA, USA), pp. 1493 

- 1497, October 28 - November 1 2005. 

[184] S. Verdu, Multiuser Detection. Cambridge University Press, 1998. 

[185] B. Holter, "On the capacity of the MIMO channel: A tutorial introduction," in IEEE Norwegian 

Symposium on Signal Processing, (Trondheim, Norway), pp. 167 -172,18 - 20 October 2001. 

[186] R. W. Heath, M. Airy, and A. J. Paulraj, "Multiuser diversity for mimo wireless systems with 

linear receivers," in Conference Record of the Thirty-Fifth Asilomar Conference on Signals, 

Systems and Computers, (Pacific Grove, CA, USA), pp. 1194 - 1199, 4 -7 Nov 2001. 

[187] Y. Ding, T. N. Davidson, Z. Q. Luo, and K. M. Wong, "Minimum ber block precoders for 

zero-forcing equalization," IEEE Transactions on Signal Processing, vol. 51, pp. 2410- 2423, 

September 2003. 



218 BIBLIOGRAPHY 

[188] A. Yasotharan, "Multirate zero-forcing Tx-Rx design for MIMO channel under BER con

straints," IEEE Transactions on Signal Processing, vol. 54, pp. 2288- 2301, June 2006. 

[189] K. Zhang and Z. Niu, "Joint transmit rate, power and antenna allocation for MIMO systems 

with multimedia traffic," IEICE TRANSACTIONS on Communications, vol. E89-B, pp. 1939-

1942, June 2006. 

[190] G. Cocchi and A. Uncini, "Subband neural networks prediction for on-line audio signal recov

ery," IEEE Transactions on Neural Networks, vol. 13, pp. 867-876, July 2002. 

[191] A. Uncini and G. Cocchi, "Subband neural networks for noisy signal forecasting and miss

ing data reconstruction," in International Joint Conference on Neural Networks, (Honolulu, 

Hawaii, USA), pp. 438 - 441,12 - 17 May 2002. 

[192] G. Cocchi and A. Uncini, "Subbands audio signal recovering using neural nonlinear predic

tion," in IEEE International Conference on Acoustics, Speech, and Signal Processing, (Salt 

Lake City, Utah, USA), pp. 1289 - 1292, 7 - 11 May 2001. 

[193] S. Haykin and L. Li, "Adaptive digital communication receivers," IEEE Communications Mag

azine, vol. 38, pp. 106 - 114, December 2000. 

[194] M. Ibnkahla, "Applications of neural networks to digital communications: A survey," Signal 

Processing, vol. 80, prJ. 1185-1215, July 2000. 

[195] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice Hall, Inc, 2rd ed., 1999. 

[196] S. Ong, C. You, S. Choi, and D. Hong, ''A decision feedback recurrent neural equalizer as an 

infiniteimpulse response filter," IEEE Transactions on Signal Processing, vol. 45, pp. 2851 -

2858, November 1997. 

[197] E. Varoglu and K. Hacioglu, "Speech prediction using recurrent neural networks," Electronics 

Letters, vol. 35, pp. 1353 - 1355, August 1999. 

[198] J. A. Perez-Ortiz, J. Calera-Rubio, and M. L. Forcada, "A comparison between recurrent neural 

architectures for real-time nonlinear prediction of speech signals," in IEEE Signal Processing 

Society Workshop Neural Networks for Signal Processing, (Falmouth, Massachusetts, USA), 

pp. 73 - 81, 10 - 12 September 2001. 



BIBLIOGRAPHY 219 

[199] S. Haykin and L. Li, "Nonlinear adaptive prediction of nonstationary signals," IEEE Transac

tions on Signal Processing, vol. 43, pp. 526 - 535, February 1995. 

[200] 1. Baltersee and J. A. Chambers, "Nonlinear adaptive prediction of speech with a pipelined 

recurrent neural network," IEEE Transactions on Signal Processing, vol. 46, pp. 2207 - 2216, 

August 1998. 

[201] D. P. Mandic and J. A. Chambers, "Toward an optimal PRNN-based nonlinear predictor," IEEE 

Transactions on Neural Networks, vol. 10, pp. 1435 - 1442, November 1999. 

[202] D. P. Mandic and J. A. Chambers, "Advanced PRNN based nonlinear prediction/system iden

tification," in lEE Colloquium on Non-Linear Signal and Image Processing, (Savoy Place, 

London, UK), pp. 1111 - 1116, 22 May 1998. 

[203] D. P. Mandic and J. A. Chambers, "On the choice of parameters of the cost function in nested 

modular RNN's," IEEE Transactions on Neural Networks, vol. 11, pp. 315 - 322, March 2000. 

[204] D. P. Mandic and J. A. Chambers, "From an a priori RNN to an a posteriori PRNN nonlinear 

predictor," in IEEE Signal Processing Society Workshop Neural Networks for Signal Process

ing VIII, (Cambridge, UK), pp. 174 - 183, 31 August - 2 September 1998. 

[205] 1. D. Ortiz-Fuentes and M. L. Forcada, "A comparison between recurrent neural network ar

chitectures for digital equalization," in IEEE International Conference on Acoustics, Speech, 

and Signal Processing, (Munich, Germany), pp. 3281 - 3284,21 - 24 April 1997. 

[206] P. H. G. Coelho, "A new state space model for a complex RTRL neural network," in Interna

tional Joint Conference on Neural Networks, (Washington DC, USA), pp. 1756 - 1761, 15 -

19 July 2001. 

[207] D. P. Mandic and J. A. Chambers, Recurrent Neural Networks for Prediction: Learning Algo

rithms, Architectures and Stability. John Willy & Sons, 2001. 

[208] N. Benvenuto, M. Marchesi, F. Piazza, and A. Uncini, "A comparison between real and com

plex valued neural networks in communication applications," in Proceedings of the Interna

tional Conference on Artificial Neural Networks, (Espoo, Finland), pp. 1177 - 1180, 24 - 28 

June 1991. 

[209] S. L. Goh and D. P. Mandic, "A complex-valued RTRL algorithm for recurrent neural net

works," Neural Computation, vol. 16, pp. 2699-2713, December 2004. 



220 BIBLIOGRAPHY 

[210] G. Kechriotis and E. S. Manolakos, "Training fully recurrent neural networks with complex 

weights," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Process

ing, vol. 41, pp. 235 - 238, March 1994. 

[211] G. Kechriotis, E. Zervas, and E. S. Manolakos, "Using recurrent neural networks for adaptive 

communication channel equalization," IEEE Transactions on Neural Networks, vol. 5, pp. 267 

- 278, March 1994. 

[212] R.). Williams and D, Zipser, "A learning algorithm for continually running fully recurrent 

neural networks," Neural Computation, vol. 1, no. 2, pp. 270-280, 1989. 

[213] S. L. Goh and D. P. Mandic, "Nonlinear adaptive prediction using a complex-valued PRNN," 

in IEEE I 3th Workshop on Neural Networksfor Signal Processing, (Toulouse, France), pp. 779 

-788, 17 - 19 September 2003. 

[214] S. L. Goh, D. Popovic, and D. P. Mandic, "Complex-valued estimation of wind profile and 

wind power," in Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference, 

(Dubrovnik, Croatia), pp. 1037 - 1040, 9 - 12 May 2004. 

[215] S. L. Goh and D. P. Mandic, "A data-reusing gradient descent algorithm for complex-valued 

recurrent neural networks," in Proceedings of the Knowledge-Based Intelligent Information 

and Engineering Systems, (Oxford, UK), pp. 340-350, 3 - 5 September 2003. 

[216] G. V. Puskorius and L. A. Feldkamp, "Decoupled extended Kalman filter training of feedfor

ward layered networks," in International Joint Conference on Neural Networks, (Seattle, WA, 

USA), pp. 771 - 777, 8 - 14 July 1991. 

[217] X. Wang and H. V. Poor, "Robust multiuser detection in non-gaussian channels," IEEE Trans

actions on Signal Processing, vol. 47, pp. 289 - 305, February 1999. 

[218] J. Choi, M. Bouchard, and T. H. Yeap, "Recurrent neural equalization for communication 

channels in impulsive noise environments," in IEEE International Joint Conference on Neural 

Networks, (Montreal, Canada), pp. 3232 - 3237, 31 July - 4 August 2005. 

[219] G. A. Tsihrintzis and C. L. Nikias, "Performance of optimum and suboptimum receivers in 

the presence of impulsive noise modeled as an alpha-stable process," IEEE Transactions on 

Communications, vol. 43, pp. 904 - 914, February/MarchiApril 1995. 



BIBLIOGRAPHY 221 

(220] J. G. Gonzalez, Robust techniques for wireless communications in non-Gaussian environments. 

Ph.D. thesis, University of Delaware, USA, 1997. 

(221] M. Morelli, M. Pun, and C. J. Kuo, "Frequency-domain pre-equalization for single-carrier 

space-division multiple-access downlink transmissions," in VTC 2006-Spring., (Melbourne, 

Australia), pp. 2418- 2422, 7 - 10 May 2006. 

[222] A. Gyasi-Agyei, "Cross-layer multiservice opportunistic scheduling for wireless networks," 

Communications Magazine, vol. 44, pp. 50 - 57, June 2006. 

[223] C. Anton-Haro, "Cross-layer scheduling for multi-user MIMO systems," Communications 

Magazine, vol. 44, pp. 39 - 45, September 2006. 

[224] T. Bonald, "Flow-level performance analysis of some opportunistic scheduling algorithms," 

European transactions on telecommunications, vol. 16, pp. 65 - 75, January 2004. 

[225] P. Viswanath, D. N. C. Tse, and R. Laroia, "Opportunistic beamforming using dumb antennas," 

IEEE Transactions on Information Theory, vol. 48, pp. 1277 - 1294, June 2002. 

[226] H. J. Bang, T. Ekman, and D. Gesbert, "A channel predictive proportional fair scheduling al

gorithm," in IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 

(New York City, USA), pp. 620 - 624, 5 - 8 June 2003. 

[227] S. Sanayei and A. Nosratinia, "Antenna selection in MIMO systems," IEEE Communications 

Magazine, vol. 42, pp. 68 - 73, October 2004. 

[228] A. F. Molisch, "MIMO systems with antenna selection," IEEE Microwave Magazine, vol. 5, 

pp. 46 - 56, March 2004. 

[229] Y. Takei and T. Ohtsuki, "Throughput maximization transmission control scheme using chan

nel prediction for MIMO systems," in IEEE Global Telecommunications Conference, (St. 

Louis, MO, USA), pp. 2344 - 2348, 28 November - 2 December 2003. 

[230] S. Haykin, Kalman Filtering and Neural Networks. John Wiley & Sons, 2001. 

[231] S. Singhal and L. Wu, "Training multilayer perceptrons with the extended Kalman algorithm," 

in Advances in Neural Information Processing Systems 1, pp. 133-140, 1989. 



222 BIBLIOGRAPHY 

[232] G. V. Puskorius and L. A. Feldkamp, "A signal processing framework based on dynamic neural 

networks with application to problems in adaptation, filtering, and classification," Proceedings 

of the IEEE, vol. 86, pp. 2259 - 2277, November 1998. 

[233] L. A. Feldkamp and G. V. Puskorius, "Training of robust neural controllers," in IEEE Con

ference on Decision and Control, (Orlando, FL, USA), pp. 2754 - 2759, 14 - 16 December 

1994. 

[234] G. V. Puskorius and L. A. Feldkamp, "Neurocontrol of nonlinear dynamical systems with 

Kalman filter trained recurrent networks," IEEE Transactions on Neural Networks, vol. 5, 

pp. 279 - 297, March 1994. 

[235] J. Choi, A. C. Lima, and S. Haykin, "Kalman filter-trained recurrent neural equalizers for 

time-varying channels," IEEE Transactions on Communications, vol. 53, pp. 472-480, March 

.2005. 

[236] J. Choi, M. Bouchard, and T. H. Yeap, "Decision feedback recurrent neural equalization with 

fast convergence rate," IEEE Transactions on Neural Networks, vol. 16, pp. 699 - 708, May 

2005. 

[237] P. H. G. Coelho, ''A complex EKF-RTRL neural network," in International Joint Conference 

on Neural Networks, (Washington DC, USA), pp. 120 - 125, 15 - 19 July 2001. 

[238] P. H. G. Coelho, ''Adaptive channel equalization using EKF-CRTRL neural networks," in In

ternational Joint Conference on Neural Networks, (Honolulu, Hawaii, USA), pp. 1195 - 1199, 

12 - 17 May 2002. 



I A Appendix ____________________________________ ~ 

Fully Connected Recurrent Neural 

Networks 

A.1 Introduction 

An FCRNN structure has been shown in Figure 8.2, which consists of N activation neurons having 

P external inputs as well as a fixed bias input bbias. The network has two distinct layers consisting 

of the external input-feedback layer and a layer of processing elements. Let the (N x I)-dimensional 

vector y(k) = [Yl(k),··· ,YN(k)]T denote the complex-valued output vector of all the neurons at 

time index k, where Yn(k) is the complex-valued output of the nth neuron, n = 1,," ,N, and the 

(P x I)-dimensional vector s(k) = [s(k - 1)"" ,s(k - P)V denotes the complex-valued external 

input vector at time index k. Furthermore, let the bias be bbias = (1 + j), where j = A. Then the 

(P+ 1 +N) x I-dimensional combined input vector p(k) of the network seen in Figure 8.2 represents 

the concatenation of the vectors s(k), bbias and y(k - 1), which is given by 

p(k) [:~:] 
y(k - 1) 

= [s(k - 1),,, . ,s(k - P), 1 + j, Yl (k - 1)" .. , YN(k - I)V 

p(r)(k) + jp(i)(k), (A. I) 

where the superscripts (-)(r) and (.)(i) denote the real and imaginary parts of the argument, respec

tively. Assuming that the outputs of the first M neurons are the outputs of the FCRNN, then the 
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(M X 1 )-dimensional output vector of the FCRNN Yo (k) can be expressed as 

CA.2) 

Let Wn,l denote the complex-valued weight of the FCRNN, which connects the nth neuron and 

lth input, where we have 1 ::; n ::; Nand 1 ::; l ::; (P + 1 + N), Then the input of the nth node at 

time index k is given by 

P+1+N 
netn (k) L wn,l(k)Pl(k) 

1=1 
n (r) (k) + J'n (i) (k) etn etn ' 

(A.3) 

where n~~~(k) and n~~~(k) are the real and imaginary parts ofnetn(k), respectively, which can be 

expressed as [209] 

P+1+N 
n (r) (k) = ~ [w(r) (k)p(r) (k) - wei) (k )p(i) (k)] etn L...J n,1 1 n,l. I 

1=1 
P 

= L[W~? (k)s(r) (k -l) - w~!z(k)s(i) (k -l)) + (W~~+l (k) - W~i,~+l (k)] + 

n (i) (k) etn 

1=1 
N 

L[w~~+1+q(k)y~r) (k - 1) - w~i,~+1+q(k)y~i)(k - 1)], (A.4) 
q=l 

1=1 
P 

L[W~? (k)s(i)(k -l) + w~,hk)s(r)(k - l)) + (w~~+1 (k) + W~,~+l (k)] + 
1=1 
N 
~[(r) (k) (i) (k ) (i) (k) (i) (k - 1)] L...J wn ,P+1+q Yq - 1 + wn ,P+1+q Yq , 
q=l 

(A.S) 

The output of the nth activation neuron can be formulated as [209] 

Yn( k) Il> (netn (k)) 

= Il>(r) (netn (k)) + j<I>(i) (netn (k)) 

= y~)(k) + jy~)(k), n = 1,,,, ,N, (A.6) 
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where q? is a complex-valued nonlinear activation function, while y¥) (k) and y~) (k) are the real and 

imaginary parts of Yn (k), respectively. 

Let dm (k), 1 :S m :S M be the correponding desired output of the mth neuron. Then the (M x 1)

dimensional desired output vector of the FCRNN do(k) can be expressed as 

(A.7) 

A.2 Training Algorithms for FCRNN 

In this section, the real time recurrent learning (RTRL) technique [209-215], the global extended 

Kalman filter (GEKF) aided training [216] and the decoupled extended Kalman filter (DEKF) [216] 

will be discussed in detail. When do is the desired output vector, the (M x I)-dimensional error 

vector of the FCRNN eo (k) can be written as 

eo(k) doCk) - yo(k) 

[el(k), .. · ,eM(k)]T, I:SM:SN, (AS) 

where em (k) is the error corresponding to the mth neuron, which is given by 

em(k) = dm(k) - Ym(k) 

e~)(k) + je~(k), 1 :S m :S M (A9) 

where e~) (k) and e~ (k) are the real part and imaginary part of em (k) and are expressed as 

(AlO) 

(A.ll) 

A.2.t Complex-Valued Real Time Recurrent Learning Algorithm for FCRNN 

Real Time Recurrent Learning (RTRL) constitutes the most 'widely used algorithm for training RNNs. 

It was proposed in [212] for real-valued cases, where the inputs, output, weights and activation func

tions are assumed to be real-valued. However, in many applications the inputs and outputs of a 

practical system are best described as complex valued signals. In these cases, the real-valued RTRL 



226 APPENDIX A. FULLY CONNECTED'RECURRENT NEURAL NETWORKS 

algorithm has to be extended to the complex-valued RTRL (CRTRL) [2IOJ. There are two differ

ent CRTRL algorithms proposed for training FCRNNs in the literature, namely the split CRTRL 

(SCRTRL) [210,211] and the full CRTRL (FCRTRL) [209, 213-215J. Let us first consider the 

SCRTRL algorithm. 

A.2.1.1 Split-Complex-Valued Real Time Recurrent Learning Algorithm for FCRNN 

For the SCRTRL, (A.6) is first expressed as 

Yn(k) y~)(k) + jy~)(k) 

f(n~~~ (k)) + jf(n~2n(k)), 'n = 1"" ,N, (A.12) 

where fO is a function having real-valued inputs and real-valued outputs. For real-time applications, 

the cost function of the recurrent network is given by 

E(k) 
1 M 

2 L Jem(kW 
m=l 

1 M 
2 L em(k)e~(k). 

m=l 

(A.l3) 

Upon substituting Eq.(A.9) into Eq.(A.13), we obtain 

M 

E(k) = ~ L[(e~)(k))2 + (e}:((k))2], 1:S M:S N. 
m=l 

(A. 14) 

The SCRTRL algorithm minimizes the cost function E(k) by recursively updating the weight coeffi

cients based on the gradient descent scheme, which is given by 

wn,z(k + 1) wn,z(k) + L.wn,z(k) (A. 15) 

where TJ controls the learning rate, which is chosen to be a small, positive constant, and V Wn IE (k ) 

is the gradient of E(k) with respect to the complex weight wn,z(k). Notice that E(k) is a real-valued 
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function, and \lwn,[E(k) is hence given by 

aE(k) .aE(k) 
\lwn,[E(k) = -W + ]--(i-) ,1 ::; n::; N, 1 ::; l ::; P + 1 + N. 

aWnl aWnl , , 
(A.16) 

where &E~~i and &E~~) are the gradients of E(k) with respect to the real and imaginary part of the 
&wn ,[ &wn ,[ 

complex weight Wn,l, respectively. According to (A.14) and also due to the fact that E(k) is an 

indirect function of wn,l(k) through the variable Ym(k), it can be shown that ~:~~i can be calculated 
n,l 

as 

aE(k) 
w(r)(k) n,l 

M [aE(k) (aY~:2(k)) aE(k) (aY~(k))l f, y~)(k) awZI(k) + y~(k) awZI(k) 

M a (r)() M a (i)( ) 
_ '" (r)(k) Ym k _ '" (i)(k) Ym k 

L..t em (r) L..t em (r)' 
m=l aWn,l(k) m=l aWn,l(k) 

(A.17) 

Similarly, &E~~) can be calculated as 
&wn,l 

aE(k) 
w(i) (k) n,l 

M [aE(k) (aY~:)(k)) aE(k) (aY~)(k))l f, y~)(k) aw~:Z(k) + y~(k) aW~:l(k) 
M J;} (r)(k) M !:\ (i)(k) 

= _ '" (r) (k) UYm _ '" (i) (k) uYm L..t em (i) L..t em (i)' 
m=l aWn,l(k) m=l aWn,l(k) 

(A. IS) 

In (A.17) and (A. IS) the factors &Yu(k) = &y~)(k) + j &y~i)(k) and &Yu(k) = &y~)(k) + j &y~i)(k) 
&w(r) (k) &w(r) (k) &w(r) (k) &w(t) (k) &w(·) (k) &w(·) (k) 

n,l n,l n,l n,l n,L n,l 

provide measures for the output sensitivity of the uth neuron at time index k in response to a small 

variation in the value of wn,l(k). According to (A. 12), these sensitivities can be evaluated as 

(A. 19) 

(A.20) 
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(A.21) 

;) (i) ( n) a (i) (k) 
uYu k = / ( (i) (k)) netu 
aw~{(k) netu aw~{(k) , , 

(A.22) 

where j' (.) is the first derivative of f (.) with respect to its argument. Following the derivation of the 

real-valued RTRL in [212], after differentiating (AA) and (A.5) these sensitivities can be computed 

as 

Unetu _ aYq (k- 1) (r) k _ aYq (k - 1) (i) k + <5 (r) k ;) (r) (k) [N ( (r) (i) ) ] 

aw~i(k) - ~ aw~i(k) wu,P+l+q() aw~i(k) wu,P+l+q( ). nUPI ( ), 

(A.23) 

an~~~(k)=.[~(ay~r)(k-1) (r) (k)_ay~i\k-1) (i) (k))]-<5 (i)(k) 
aw~,{(k) ~ aw~,{ck) wu,P+l+q aw~,{(k) wu,P+l+q nUPI' 

(A.25) 

anetu k = '" aYq (k - 1) w(r) (k) + aYq (k - 1) wei) (k) + <5 p(r)(k) (i) () [N ( (i) (r) ) ] 

aw~!z(k) ~ aw~!z(k) u,P+l+q aw~!z(k) u,P+l+q nu I , 

(A.26) 

where 

{

I, if u = n 
<5nu = 

0, otherwise 
(A.27) 
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is the Kronecker delta function. For convenience, we denote the sensitivities as 7rut r) (k) = 8Y~~/k), 
n, 8wn ,l(k) 

7ru ,(ir)(k) = 8y~i)(k) 7ru ,(ri)(k) = 8yt)(k) 7ru ,(ii)(k) = 8y~i)(k). Then with the aid of (A. 19) to 
n,l 8w(r)(k)' n,l 8w(')(k)' n,l 8w(')(k) , 

n,L n,L n,l 

(A.26), these sensitivity items can be recursively updated by the following matrix equations [210,211] 

[ 
7r~:Vr)(k+1) 7r~:V~)(k+1)] = [j'(n~~~(k+1» . 0 ] x 
7ru ,(zr)(k+1) 7ru ,(n)(k+'l) 0 j'(n(z) (k+1» n,l n,l etu 

"" W u,P+l+q -Wu,P+l+q" 7rn,1 7rn,l" 
( 

N [(r) (k) (i) (k) ] [q,(rr)(k) q,(ri)(k)] 
L...t (i) (r) q,(ir) q,(ii) 
q=l Wu ,p+1+q(k) Wu ,p+1+q(k) 7rn,1 (k) 7rn,1 (k) 

[ 
pt)(k) -pii)(k)]) 

+Jnu (i) (r) , 1 :::; u :::; N. 
PI (k) PI (k) 

(A.2S) 

According to (A. 17) to (A.26), (A. 16) can also be expressed as 

M ( [ m,(rr)(k) m,(ri)(k)] [ 1]) 
\lw E(k) = - "" [e(r)(k) e(i) (k)] 7rn,I, 7rn,1 .. 'J' 

n,1 L...t m m m,(zr)(k) m,(n)(k) 
m=l 7r n,l 7r n,l 

(A.29) 

Finally, upon substituting (A.29) into (A. IS), the weight update equation becomes 

wn,l(k + 1) wn,l(k) - 'T/ \lwn,1 E(k) 

M ( [ m,(rr)(k) 
= wn l(k) + 'T/ "" [e(r)(k) e(i)(k)] 7rn,I, 

, L...t m m m,(zr)(k) 
m=l 7rn,1 

where 1:::; n :::; Nand 1 :::; l :::; P + 1 + N. Having derived the SCRTRL algorithm for the RNN, let 

us now derive the FCRTRL algorithm. 

A.2.1.2 Full Complex-Valued Real Time Recurrent Learning Algorithm for FCRNN 

In the context of the FCRTRL algorithm, (A.6) can be expressed as 

Yn(k) yf;)(k) + jy~)(k) 

<I>(r)(n~~~ (k), n~~~ (k» + j<I>(i)(n~~~ (k), n~~~ (k», n = 1"" ,N. (A.3l) 
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Accordingly, the sensitivities defined for FCRTRL can be evaluated as 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

According to (A.23) to (A.26) and (A.32) to (A.35), the sensitivities defined for for FCRTRL can be 

recursively updated by the following matrix equations [209] 

[ 

() ( ") ] [ay~r) (HI) ay~r) (HI) 1 
1r~/r (k + 1) 1r~:t (k + 1) = an~~) (HI) an~~) (HI) x 
1ru,(ir) (k + 1) 1ru,(ii) (k + 1) aY~')(HI) ay~,f(k+I) 

n,l n,l anCr ) (k+I) anC') (k+I) 
etu etu 

"'""" Wu",P+I+q -Wu ,P+I+q 1rn,1 1rn,1 

( 

N [(r) (k) (i) (k) ] [ q,(rr) (k) q,(ri) (k) ] 
L...J (i) (r) q,(ir) q,(ii) 
q=1 Wu ,p+1+q(k) Wu ,p+1+q(k) 1rn,1 (k) 1rn ,1 (k) 

[ 

p(r)(k) _p(i)(k)]) 
+Onu lei) (:) , 1 ::; n, u ::; N, 1 ::; l ::; P + 1 + N. 

PI (k) PI (k) 
(A.36) 

For a complex function to be analytic at a point in Z E C, where C encompasses the entire com

plex plane, it has to satisfy the Cauchy-Riemann equations [209]. To arrive at the Cauchy-Riemann 

equations, the partial derivatives (sensitivities) along the real and imaginary axes should be equal, 

requiring, 

(A.37) 
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Equating the real and imaginary parts in (A.37), we obtain 

(A.38) 

(A.39) 

Equivalently, we have 

u,(rr)(k) = u,(ii)(k) 
7r n,l 7r n,l ' (A.40) 

u,(ri)(k) __ u,(ir)(k) 7rn,l - 7rn,l . (A.4l) 

With the aid of the Cauchy-Riemann equations, a more compact representation of the gradient 

VWn,IE(k) can be obtained, which is given by 

M 

- L (e~;;l(k)7r:,;(rr)(k) + e~(k)7r:,;(ir) + je~)(k)7r:,(ri)(k) + je~(k)7r:,;(ii)(k») 
m=l 

M 

- L ([e~)(k) + je~(k)] [7r:'i(rr)(k) + j7r:,ti
) (k)J) 

m=l 
M 

= - L em(k) [7r:'i(rr)(k) - j7rn,l(k)m,(ir) (k)] 
m=l 

M 

= - L em(k) (7r~z)* (k), 
m=l 

where em(k) = e~) (k) + je~ (k) and (7r~l) (k) = (7r:,;(rr) (k) + j7r:,;(ri) (k»). Finally, the weight 

update is given by 

M 

6wn,z(k) = 'T} Lem(k) (7r~l)* (k), 1 ::; M, n ::; N,l ::; l ::; P + N + 1. (A.43) 
m=l 

(A. 42) 
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As in the context of the RTRL algorithm of [212] under the assumption that for a sufficiently small 

learning rate 'r/, we have [209] 

(A.44) 

8y~) (k ~ 1) 8y~i) (k - 1) 
8W

n
,l(k) ~ 8W

n
,l(k _ 1)' 1 ::; u, n ::; N,l ::; l ::; P + N + 1, (A.45) 
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the update of the sensitivities (7f~,Z) * (k) becomes 

8yt)(k) [ (r) A ' (i) 
(7r~,lr (k) = (r) 8nu pz (k) - J8nu pz (k) + 

8net,,(k) 
N 

~ [ (w~~+1+ik) - jw~i'~+1+q(k)) 7f~',)rr) (k - 1) + 

(jw:::~+Hq(k) + W~'~+l+q(k)) ?f~::';)(k - 1) l] 
8yt)(k) [(i) , (r) 

+ (i) 8nuPI (k) + J8nuPI (k) + 
8net,,(k) 

N 
'" [( (r) (k) ,(i) (k)) q,(ri)(k ) ~ -Wu,P+1+q + JWu,P+l+q 7fn,1 - 1 + 

( W~!P+1+q( k) + jW:::~+l+q(k)) ?f~'.i") (k - 1) l] 
8yt)(k) [J: *(k) ~ [ * (k) q,(rr)(k ) (r) unuPI + L....t wu,P+1+q 7fn,1 - 1 + 
8net,,(k) q=l 

'* (k) q,(ri)(k 1)]] 8yt)(k) ['J: *(k) 
JWu,P+1+q 7fn,1 - + 8n~~~ (k) JUnuPI + 

t, [ -w:,p+ 1+, (k )?f~:: ,i) (k - 1) + jw:,P+ 1+, (k)?f ~',:rr) (k - 1) l] 
(

ayt)(k) + 8Y~)(k)) [8nu *(k) + 
8n~~~(k) f)n~~,,(k) PI 

~ w* (k) (7fq,(rr)(k - 1) + J'7fq,(ri)(k - 1))] L....t u,P+l+q n,l n,l 
q=l 

= {<I>I (n~~~,n~~~)(k)}* [w~7r7l"~,I(k -1) + 8nu1t(k)] , (A.46) 

where <I>'(.) is the first derivative of <I> (,) with respect to its argument, while w U,7r = 

[wu,P+1+1.··· ,Wu,P+1+NjT and 7l"n,l(k - 1) = [7f~/k - 1),." ,7r;!,z(k - l)jT. Finally, by substi

tuting (A.42) into (A. IS), the weight update equation becomes 

wn,l(k + 1) wn,l(k) + 'fJ '\lwn,l E(k) 
M 

wn,l(k) + 'fJ L em(k) (7f:'lr (k), 
m=l 

(A.47) 



234 APPENDIX A. FULLY CONNECTED RECURRENT NEURAL NETWORKS 

where ( 7r;Z) * (k) is given by (A.46). 

A.2.2 Complex Parameter-Based Kalman Filter Training for FCRNNs 

Although the RTRL algorithm is popular owing to its reasonable complexity, it is based on the gradi

ent method using first-order derivatives. Hence, it may exhibit an inferior convergence speed in com

parison to the family of more sophisticated learning techniques using second-order derivatives [230]. 

The extended Kalman filter (EKF) [230] forms the basis of a second-order neural network training 

method. The essence of the recursive EKF procedure is that an approximate covariance matrix that 

constitutes second-order information about the training problem considered is generated and evolved 

during the training process. Since Singhal and Wu firstly introduced the EKF training algorithm 

in [231] for static forward oriented neural networks (FNNs), the EKF has constituted the basis for the 

enhancement of computationally effective neural network training methods that enable the application 

of FNNs and RNNs to diverse problems such as pattern classification [216,232], control [233,234], 

channel equalization [235-238], etc. 

In this section, the so-called global extended Kalman filter (GEKF) [216] and the decoupled 

extended Kalman filter (DEKF) [216] aided training algorithms are investigated by using bith the 

split activation function of (A. 12) and the full activation function of (A.31), respectively. 

A.2.2.1 Principles of Extended Kalman Filters 

The Kalman filtering problem considered in Chapter 3 has focused on the prediction of a state vector 

in a linear model of a dynamic system. If, however, the model is nonlinear, we may extend the use of 

Kalman filtering through a linearization procedure. The resultant filter is referred to as the extended 

Kalman filter (EKF) [1-3]. 

In order to derive the extended Kalman filter, we commence our discussion by considering a 

nonlinear dynamical system described by the state-space model of [230] 

w(k + 1) = f(k, w(k)) + w(k), (A.48) 

y(k) = h(k, w(k)) + v(k), (A.49) 

where w(k) is a (L x I)-dimensional state vector and y(k) is a (M x I)-dimensional measure-
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ment vector while w(k) and v(k) are independent, zero-mean, white Gaussian noise processes with 

covariance matrices of Qw (k) and Qv (k), respectively. Furthermore, in (A.48) the functional 

f(k, w(k)) denotes a nonlinear transition matrix function that might be time-variant, while the func

tional h(k, w(k) in (A.49) denotes a nonlinear measurement matrix that may be time-variant as well. 

The basic principle behind the extended Kalman filter is the linearization of the statespace model 

of (A.48) and (A.49) at each time instant associated with the most recent state estimate. the most 

recently estimated state is expressed as either w(klk) or as w(klk-l), depending on which particular 

functional is being considered, as will be detailed in our forthcoming discourse. Once a linear model 

is obtained, the conventional linear model based Kalman filter equations can then be used. 

More specifically, the approximation can be carried out in two stages. In the first stage, the 

following two matrices are constructed [195,230]: 

of(k, w) 
F(k + 1, k) = ow Iw=w(klk), (A.50) 

oh(k, w) 
H(k) = Ow Iw=w(klk-l), (A.51) 

where F(k+ 1, k) is an (L x L)-dimensional matrix, whose ijth entry is equal to the partial derivative 

of the ith component of f(k, w) with respect to the jth component of w, while H(k) is a (M x L)

dimensional matrix whose ijth entry is equal to the partial derivative of the ith component of h(k, w) 

with respect to the jth component of w. Note that in (A.50) at point of the derivatives are evaluated 

at w = w(klk) while in (A.51), the derivatives are evaluated at w = w(klk - 1). The entries of the 

matrices F(k + 1, k) and H(k) are all known (Le., they are computable), since w(k) and w(kJk -1) 

are available at time k. 

In the context of the second stage, once the matrices F(k+ 1, k) and H(k) are evaluated, the first

order Taylor approximation of the nonlinear functions f(k, w(k)) and h(k, w(k)) can be employed 

around the point of w = w(klk) and w = w(klk - 1), respectively. Specifically, f(k, w(k)) and 

h(k, w(k)) can be approximated as [195,230] 

f(k, w(k)) ~ F(k, w(klk)) + F(k + 1, k)[w(k) - w(klk)], (A. 52) 

h(k, w(k)) ~ H(k, w(klk - 1)) + H(k)[w(k) - w(klk - 1)J. (A.53) 
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Given the above approximations, we may now proceed to approximate the nonlinear expression 

of Eqs.(A.48) and (A49) using their corresponding linear models, which can be expressed as [230] 

w(k + 1) ~ F(k + 1, k)w(k) + w(k) + x(k), (AS4) 

y(k) ~ H(k)w(k) + v(k), (ASS) 

where we have introduced the new quantities [230]: 

y(k) = y(k) - [h(k, w(klk - 1)) - H(k)w(klk - 1)], (AS6) 

x(k) = f(k, w(klk)) - F(k + 1, k)w(klk). (AS7) 

Since the entries ofy(k) are all known at time k, y(k) can be regarded as an observation vector at 

time k. Similarly, the entries in the term x(k) are all known at time k. 

A.2.2.2 State-Space Model of FCRNN 

In order to apply the extended Kalman filtering principles for the training of the FCRNN, the FCRNN 

has to be firstly formulated in terms of the state-space model. The state space model for the FCRNN 

can be derived either from the split activation model of (A.12) or from the full activation model of 

A.31). Let us now derive them in detail. 

A.2.2.2.1 State-Space Model of FCRNN Using Split Activation 

For the FCRNN depicted in Figure 8.2, which consists of N neurons and has P external inputs, the 

dynamic behavior of the network which is assumed to be noise-free, can be described by [230] 

y(k + 1) ~(Wu(k)u(k) + Wy(k)y(k)) 

~(W(k)p(k)), 

yo(k) = Cy(k). 

(AS8) 

(AS9) 

In (AS8) and (A.S9) the (N x I)-dimensional vector y(k) [Yl (k)," . ,YN(k)jT denotes 
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the state of the network, the ((P + 1) x 1)-dimensional vector u(k) [s(k - 1),··· ,s(k-

P),bbiasV represents the input applied to the network, the (M x 1)-dimensional vector yo(k) = 

[YI (k), ... , Y M (k) V desribes the output of the network, W u (k) is a (N x (P + 1) )-dimensional 

weight matrix corresponding to the input vector u(k), while Wy(k) is a (N x N)-dimensional ma

trix corresponding to the state vector y(k). Furthermore, W(k) is a (N x (N + p + 1))-dimensional 

weight matrix, which is given by 

W(k) = [Wu(k) Wy(k)] (A. 60) 

and p(k) = [s(k -1), ... ,s(k - P),1 +j,YI(k -1)"" ,YN(k -1)V and cP : Rq -+ Rq is a 

diagonal map. Finally, in Eq.(A.59) C is a (M x N)-dimensional matrix. The dimensionality of the 

state space, namely N, is the order of the system. Therefore, the state-space model of Figure 8.2 is a 

P-input, M-output recurrent model of order N. Eqs (A.58) and (A.59) are the process equation and 

measurement equation of the model, respectively. The process equation in the state-space description 

of Eq.(A.58) can be rewritten in the following form: 

y(k + 1) = 

P(wf(k)p(k)) 

P(wf(k)p(k)) 

P(w'JAk)p(k)) 

(A.61) 

where the ((P+1+N) x1)-dimensional weight vectorwn is given by Wn = [Wn,I,'" , Wn ,P+1+NV, 

where n = 1,2"" , N. The weight vector Wn belongs to the nth neuron in the recurrent network 

seen in Figure 8.2 and corresponds to the nth row of the weight matrix W (k). 

Letting net(k + 1) = W(k)p(k), we obtain [236] 

(A.62) 

(A.63) 

For the sake of convenient presentation, we introduce a range of new matrices in the spirit of [236], 

which are defined as follows . 

• The derivative matrix of the state vector y(k) with respect to the weight vector Wn is defined 
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as [236] 

A~AE)(k) 
&yeA) 

a (E) 
Wn 

ayfA\k) ayfA)(k) ay;A)(k) 
a (B) a (B) (B) 

Wn,l Wn 2 aWn N+p+l 
ay~A) (k) ay~A)'(k) ay~A) (k) 

= 
a (B) 

Wn,l 
a (B) 

W n ,2 
(B) 

aWn,N+p+l (A.64) 

ayC;)(k) ayC;)(k) ayC;)(k) 
a (B) 

Wn,l 
a (B) 

W n ,2 
(B) 

aWn,N+P+l 

where A, B E {r, i} and A~AE) (k) is a (N x (N + p + l))-dimensional matrix. According 

to the definition of the derivative matrix given in (A.64), the overall derivative matrix can be 

represented as [236] 

(A.65) 

wheren=1,2,··· ,N. 

• Z~A) (k) is defined to be a (N x (N + P + 1) )-dimensional matrix whose rows are all zero, 

except for the nth row, which is equal to the transpose of the vector p(k), i.e., Z~A)(k) is 

defined as [236] 

(A. 66) 

where A E {r, i} . 

• r(A)(k) is defined as the (N x N)-dimensional diagonal matries, which are given by [236] 

(A.67) 

{

(i) (i) (i)} 
r(i)(k + 1) = diag dYl, (k + 1) , dY2, (k + 1) , ... , dy~ (k + 1) , 

dn(~) (k + 1) dn(t) (k + 1) dn(t) (k + 1) 
etl et2 etn 

(A.68) 
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dy(r)(k+l) (r) (r) 
where tr) denotes the first derivative of Yn (k + 1) with netn (k + 1). 

dnetn (k+l) 

With the aid of the definitions given above, upon differentiating (A61) and using the chain rule of 

calculus [236], A~r) (k) is defined as [236] 

oy(r)(k + 1) 

8w~)(k) 
dy(r)(k + 1) onet(r)(k + 1) 

dnet(r)(k + 1) 8w~)(k) 

where the two derivatives are represented as [236] 

dy(r)(k + 1) 
dnet(r)(k + 1) 

Substituting (A70) and (A.71) into (A.69), A~r)(k) can then be expressed as [236] 

(A69) 

Similarly, the terms of A~i) (k + 1), A~i) (k + 1), A~r) (k + 1) can respectively be expressed as [236] 

(A73) 

(A.74) 

(A.75) 

Finally, when expressing (A72) to (A.75) in an compact form, we can obtain the following recursive 
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equation [236] 

A.2.2.2.2 State-Space Model of FCRNN Using Full Activation 

In the case of using the full activation in the FCRNN, to the best of our knowledge, no previous work 

has been done in this field. Hence, we will derive the state-space model for FCRNN in the context of 

full activation fucntion below. Firstly, we introduce the following new matrices. 

• r(AB) (k) is a (N x N) diagonal matrix, which is defined as 

r(1'1')(k + 1) = diag .J!.L.J!:L ... ~ 
{ 

0 (1') 0 (1') 0 (1') } 

(1') , (1') , , (1') , 
onetl Onet2 Onetn 

(1'i) A _. ::J!L:!!!:L...:!J!J:L 
{ 

£1 (1') £1 (1') £1 (1')} 

r . (k + 1) - dlag (i)' (i)' , (i) , 
Onetl Onet2 onetn 

r(i1')(k + 1) = diag OYl OY2 ... oYN 
{

(i) (i) (i) } 

(1') , (1') , , (1') , 
Onetl onet2 onetn 

. { £1 (i) £1 (i) £1 (i) } 
(ii) _. uYl uY2 uYN r (k+1) -dlag -W'-W,"',-W . 

Onetl onet2 onetn 

Similarly, A~1') (k) is defined as 

oy(1')(k + 1) 

8w~)(k) 
oy(1')(k + 1) Onet(1')(k + 1) oy(1')(k + 1) onet(i)(k + 1) 

= Onet(1')(k + 1) ow~)(k) + onet(i)(k + 1) ow~)(k) , 

(A. 77) 

(A.78) 

(A.79) 

(A. 80) 

(A.81) 
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where the derivatives are further represented as 

ay(r)(k + 1) 

anet(r)(k + 1) 

ayi(k + 1) 
anet(i)(k + 1) 

anet(r)(k + 1) 

aw~)(k) 

By substituting (AS2) to (A.S5) into (A81), A~r) (k + 1) may be expressed as 

A~r)(k + 1) = r(rr)(k + l)[w£r)(k)A~r)(k) - W£i)(k)A~r)(k) + Z~)(k)J + 
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(A.S2) 

(A.S3) 

(AS4) 

r(ri) (k + 1) [Wi;) (k)A~r) (k) + W£i) (k)Atr) (k) + Z~) (k)J. (A.86) 

Upon following similar steps as above, the matrices A~i) (k + 1), A~i) (k + 1), A~r) (k + 1) can be 

respectively expressed as 

A~i)(k + 1) = r(rr)(k + l)[w£r)(k)A~i)(k) - W£i)(k)A~i)(k) - Z~)(k)J + 

r(ri)(k + l)[W£i)(k)A~i)(k) + W£i)(k)Ati)(k) + Z~)(k)J, (A.S7) 

r(ir)(k + l)[w£r)(k)A~i)(k) - W£i)(k)A~i)(k) - Z~)(k)J + 

r(ii)(k + l)[w£r)(k)A~i)(k) + W£i) (k)Ati) (k) + Z~)(k)J, (ASS) 
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A~r)(k + 1) = r(ir)(k + l)[w~r)(k)A~r)(k) - W~i)(k)A~r)(k) + Z~)(k)l + 

r(ii)(k + l)[w~r)(k)A~r)(k) + W~i)(k)A~r)(k) + Z~)(k)l. (A.89) 

Finally, combining (A.86) to (A.89) into a single matrix, we arrive at a recursive equation, which is 

expressed as 

Note that the full activation function is analytic, hence according to Cauchy-Riemann equation 

we can arrive at 

A.2.2.3 Global Extended Kalman Filter Training for FCRNNs 

In order to employ the EKF for training the FCRNN, the network's behavior has to be recast in the 

form of the following nonlinear discrete-time system: [230] 

w(k + 1) = w(k) + w(k), (A. 92) 

yo(k) = CiJ»(w(k) , p(k)) + v(k), (A. 93) 

where w(k) is a (L x I)-dimensional vector, which is defined by 

w(k) = (A.94) 
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where L = (P + 1 + N) x N is the total number of the weights,while wn(k)(n = 1,2"" ,N) 

is the nth column of the transposed weight matrix W T (k) in (A.60). (A.92) is the process equa

tion, suggesting that the state of the system is given by the network's weight parameter values w(k) 

corrupted by the process noise w(k), where w(k) is a stationary process. By contrast, (A.93) is the 

measurement equation, which formulates the network's output vector yo(k) as a nonlinear function 

<PO of the weight vector w(k) and the vector p(k). As seen in (A.I) p(k) includes both the in

put vector u(k) and the recurrent node activations y(k). Furthermore, in (A.93) v(k) represents a 

random measurement noise vector. Note that the process noise w(k) is typically characterized as 

zero-mean white noise having a covariance given by E[w(i)wH (j)J = 6ijQW(j). The measure

ment noise v(k) is usually also characterized as zero-mean white noise having a covariance given by 

E[v(i)vH (j)J = 6ijQV(j). 

In order to apply the GEKF to the state-space model of (A.54) and (A.55), the nonlinear function 

<p(w(k), p(k)) seen in (A.93) must be linearized. According to (A.51), the linearization process can 

be described as [230] 

A(k + 1) 

= 

where we have [236] 

= 

8<p(w(k + 1), p(k + 1)) I 
8w(k) w(klk-l) 

\lwy(k + l)lw(klk-l) 

[
8Y(k + 1) .8y(k + 1)] I (A.95) 
8w(r)(k) - J 8w(i)(k) w(klk-l) 

[A(rr)(k + 1) + A(ii)(k + 1)) + j(A(ir)(k + 1) - A(ri)(k + l)JI_ , 
w(klk-l) 

8y(A)(k) 
8w(B) 

w(klk-l) 

{)y}t) (k) 

{) (s) 
wN ,l 

[A (AB) (k) A (AB) (k) .. , A (AB) (k)J 1 
1 2 N w(klk-l) , 

8wN ,p+l+N w(klk-l) 

(A.96) 

where A, B E {r, i} and w(klk - 1) represents the estimate of the state of the system at time k, 
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given the observed data up to the time instant of (k - 1). The resultant linearized equations can be 

expressed as [236] 

w(k + 1) = w(k) + w(k), (A.97) 

yo(k) = CA(k + l)w(k) + v(k), (A.98) 

where we have [230] 

yo(k) = yo(k) - C[ q>(w(k), z(k»llw(klk-l) - A(k + l)w(klk - 1)]. (A. 99) 

Finally, with the aid of the linearized equations shown in (A.97) and (A.98) the training problem 

using the global extended Kalman filter can now be described as that of finding the minimum mean

squared error estimate of the state vector w(k) using all the observed data available. Specifically, 

let H(k) = CA(k + 1). Then the GEKF solution to the training problem is given by the following 

recursion [1]: 

Y(k) = [Qv(k) + H(k)K(klk - I)HH (k)t 1
, (A. 100) 

G(k) = K(klk - I)HH (k)Y(k), (A.1Ol) 

a(k) = yo(k) - yo(klk - 1), (A. 102) 

w(k + 11k) = w(klk - 1) + G(k)a(k), (A. 103) 

K(k + 11k) = K(klk -1) - G(k)H(k)K(klk - 1) + Qw(k), (A. 104) 

where Y(k) represents a (M x M)-dimensional global scaling matrix, G(k) is the (L x M)

dimensional Kalman gain matrix and a(k) is the (M x I)-dimensional innovation process. Further

more, yo(k) is the (M x I)-dimensional desired vector while yo(klk -1) is the (M x I)-dimensional 

estimate of y o( k) based on the input data available at time (k - 1) and it is represented by the actual 
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output vector Cq>(w(klk - 1), p(k)), when residing in state w(klk - 1), while K(klk - 1) is the 

approximate error covariance matrix. Notice that the cost function E(k) can be expressed as 

(A. 105) 

A.2.2.4 Decoupled Extended kalman Filter Training for FCRNNs 

The computational requirements of GEKF are dominated by the need to store and update the approx

imate error covariance matrix K(klk - 1) at each time instant. For a neural network architecture 

having M outputs and L weights, the computational complexity of the GEKF algorithm is propor

tional to OeM L2) and its storage requirement is proportional to 0(L2) [230]. In order to reduce the 

complexity of the GEKF algorithm, the DEKF algorithm has been proposed [216], which was derived 

from the GEKF by assuming that the interactions between certain weight estimates can be ignored. 

Explicitly, this simplification introduces many zeros into the error covariance matrix K(k/k-1). Fur

thermore, if the weights of GEKF are decoupled so that they can be divided into groups and the groups 

are mutually exclusive of one another, then the error covariance matrix K(k/k - 1) can be arranged 

into a block-diagonal matrix form. Let 9 represent the number of these weight groups. Then, for 

group n, 1 ::; n ::; g, the vector wn(klk -1) represents to the estimated weight parameters, Hn(k) is 

the submatrix of derivatives of network outputs with respect to the nth group's weights, Kn(k/k - 1) 

is the weight group's approximate error covariance matrix, and Gn(k) is its Kalman gain matrix. The 

concatenation of the vectors wn(k/k-1) forms the vector w(k/k-1). Similarly, the global derivative 

matrix H(k) of (A.Sl) is composed by the concatenation of the individual sub matrices Hn(k). The 

DEKF algorithm for the nth weight group is given by [230] 

(A.l06) 

(A.lO?) 

a(k) = yo(k) - yo(klk - 1), (A.108) 

(A. 109) 
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(A.IIO) 

Note that the DEKF algorithm reduces to the GEKF algorithm, when we have 9 = 1. 

The computational complexity and storage requirements of the DEKF can be significantly lower 

than those of the GEKF. It can be shown that for 9 disjoint weight groups, the computational com

plexity of the DEKF becomes O( M2 L + M I::~=l L~), where Ln is the number of weights in group 

n, while the total storage requirements become O(I::~=l L~) [230]. 

Although many different approaches have been proposed for decoupling in RNNs [230], in this 

chapter only that specific scenario is considered [230], when the weights corresponding to different 

nodes are assumed to be independent of each other. Furthermore, we note that the cost function E (k) 

used for the DEKF is the same as that of the GEKF. 

A.2.2.5 Parameter Settings 

The measurement and process noise covariance matrices, Qv (k) and Qw (k) have to be specified for 

all training patterns for both the GEKF and the DEKF training algorithm. Let rJ(k) be the measure

ment noise coefficient to be specified by the user at the time index k. Then Qv (k) can be expressed 

for both the GEKF and the DEKF training algorithm as [236] 

(A.lll) 

where Qv(k) is a (M x M)-dimensional matrix. Normally, the measurement noise coefficient is 

assigned a low value at the beginning of training, which is increased gradually to a value no larger 

than unity during the course of training [230]. Specifically, in this chapter the measurement noise 

coefficent is assumed to be 

rJ(k) = T}(O) + Je0'! k' k> 0, (A.l12) 

where '17(0) is the initial value of the measurement noise coefficient, while Je is the total number of 

training data samples. Furthermore, let c;(k) be the process noise coefficient, then for the GEKF, 

Qw(k) can be expressed as 

Qw(k) = c;(k)(1 + j1) (A.l13) 
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and for the DEKF Q[;., (k) can be expressed as 

(A.1l4) 

where Qw(k) is a (L x L)-dimensional matrix and Q[;.,(k) is a (Ln x Ln)-dimensional matrix, 

respectively. The process noise coefficient c:;( k) generally has a relatively large initial value on the 

order of 10-2 and then it is tapered to a small value of the order of 10-6 [230]. Specifically, in this 

chapter the process noise coefficent used is given by 

(k) = c:;(0) - k * 0.000004 k > O. 
c:; 2.0' 

(A. 115) 

Furthermore, ifc:;(k) < 0.000001, we setc:;(k) = 0.000001. In (A.IlS) c:;(0) is the initial value of the 

process noise coefficient. 

As shown in (A. 100) and (A.l06), there is an approximate error covariance matrix K(110), which 

must be initialized at the beginning of the training process to reflect the fact that no a-priori knowledge 

was used to initialize the weights. Specifically, for the GEKF K(110) can be expressed as [236] 

K(110) = 'l9-1 (1 + j1), (A.1l6) 

where K(l!O) is a (L x L)-dimensional matrix and for the DEKFKn(110) can be formulated as [236] 

(A. 1 17) 

where K(110) is a (Ln x Ln)-dimensional matrix, and'l9 is used to initialize both K(110) and Kn(110). 

A.3 Activation Function 

For the split activation function of (A. 12) the real-valued input and real-valued output function fO 
was chosen as the logistic sigmoid function [209,213-215] 

1 
f(x) = l+e-x ' 

(A.1l8) 
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where x is real-valued. The first derivative of fe-) with respect to its argument can be expressed as 

/ (x) (1) I 
1 + e-X 

f(x) (1 - f(x)). (A. 119) 

By subsituting (A.118) into (A.12), we obtain 

Yn(k) f(n~~~ (k» + jf(n~~~ (k) 
1 . 1 

(r) + J (i)' 
1 + e-i3netn (k) 1 + e-i3netn (k) 

(A. 120) = 

For our full activation function, the complex activation function was chosen to be the logistic 

sigmoid function directly. Then (A.31) can be rewritten as 

1 

1 + e-(n~~~ (k)+jn~~~ (k)) 

1 
= 

= 

where we have 

_nCr) (k) (i) 
(r) (r) k n(i) k _ l+e etn cosnetnCk) 

Yn (netJ ), etn ( » - _ (r) (k) (i) -2 (r) (k)' 
1 + 2e netn cosnetn(k) + e netn 

_nCr) (k)· (i) (k) 
(i) (r) (i) _ e etn sm netn ~ 

Yn (netn (k), netn (k» - (r) (i) 2 (r) • 
1 + 2e-netn cos n t + e- netn en 

(A. 122) 

(A.123) 

The partial derivative of yt) (n~~~ (k), n~~~ (k» with respect to n~~~ (k) and n~~~ (k) can be expressed, 
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respectively, as 

oy(r) (n(r) (k) neil (k» 
n etn 'etn 

_ (r) (k) (i) (r) (k) 
e netn COS n (k) + 2e - 2netn etn 

on(r) (k) 
etn 

_ (r) (k) (i) (r) (k) (1 + 2e netn cos netn (k) + e-2netn )2 

e-3n~~~(k) cosn(i) (k) + etn 

_ (r) (k) (i) (T) (k) 
(1 + 2e netn cos netn (k) + e-2netn )2 

(A.124) 

oy(r) (n(r) (k) neil (k» 
n etn 'etn 

on(i) (k) 
etn 

(r) ( ) (') (r) (') 
e-netn k sin n ~ (k) - e-3netn (k) sin n ~ (k) 

d n d n (A.125) 

Furthermote, the partial derivative of y~\n~~~ (k), n~~~ (k» with respect to n~~~ (k) and n~~~ (k) can 

be formulated, respectively, as 

oy(i) (n (r) (k) n (i) (k» 
n etn 'etn 

an (r) (k) 
etn 

= 

(r)C) C') (r) C") 
e-3netn k sin n ~ (k) - e-netn Ck) sin n ~ (k) etn etn (AI26) 

oyCi) (nCr) (k) n (i) (k» 
n etn ' etn 

onCi ) (k) etn 

= 

From (A.124) to (A 127), we can see that the complex sigmoid function satisfies the Cauchy-Riemann 

Equation, which means that it is analytic in C, except for the points netn (k) = (2l + 1)7T, where 

(A.I2l) is undefined. 

A.4 Initialization 

For both the SCRTRL and FCRTRL learning algorithms, at the begining of the training, in order to 

update the weights at time index 1, the value of 7T~:tr) (0), 7T~:yr) (0), 7T~:yr\O) and 7T~:yr) (0) has 

to be known, as seen in (A.30) and (A47). Since we assume that the initial state of the network has 

no funtional dependence on the weights, for both the SCRTRL and FCRTRL learning algorithms we 
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have [209] 

(A.128) 

(A.129) 

7T~'iii) (0) = 0, 1 ~ U, n ::; N, 1 ::; l ::; P + 1 + N, , (A.l30) 

(A. 131) 

In a similar way, for the EKF training algorithm we also have AKr) (0) = 0, A~i) (0) = 0, A~r) (0) = 

o and A~i) (0) = 0 [236]. Furthermore, for all the SCRTRL, FCRTRL and EKF training algorithms. 

each element wn,z(O) is initialized by letting both the real part and imaginary part of Wn,I(O) equal 

a small value that satifies Iw~?(O), < 0.0001 and IW~?1 (0) I < 0.0001 [236]. Both the real and 

imaginary parts of Wn,l (0) are drawn from a random uniform distribution. Moreover, the activations 

of each neuron Yu(O), 1 ::; U ::; N are initialized in the same way as the weights matrix. Furthermore, 

for the EKF training algorithm the measurement noise coefficient and process noise coefficient are 

initialized as 1](0) = 0.1 and c;(0) = 0.01, respectively, while f} is initialized as f} = 0.01. 
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By setting ddZ to zero, we arrive at [147] 
Pk 

where we have v = Ij(L'lJ k ln2), which can be determined from (B.l) 

(B.5) 



List of Symbols 

liliiii f n: Doppler frequency shift; 

liliiii fdm: maximum Doppler frequency shift; 

liliiii c( T, t): complex low-pass channel impulse response; 

III Tm: maximum delay spread; 

III Be: coherence bandwidth of wireless channel; 

III Bd: Doppler spread; 

III (Llt)e: coherence time of wireless channel 

III S (1): power sprectrum of the received signal; 

III c( t): complex channel coefficient; 

III Tb: data symbol duration; 

III Ck: complex fading signal c(t) sampled at the time instant of t = kn, 

III en: prediction of en; 

III I: identity matrix; 

III S N R: signal to noise ratio; 

III Cn: P x 1 state vector; 

III C[n!n-l]: MMSE prediction of Cn; 

III en: error between C[n!n-l] and en; 

III Rn: autocorrelation matrix of an; 

III Kn: predicted state-error correlation matrix of en; 

III G n : Kalman gain; 
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III Mn: filtered state-error correlation matrix; 

II en: estimate error of cn; 

II c(n;kf combined channel impulse response at time instant nn with dalay kn; 

III bk;n: the nth useful data in the kth data block; 

II TB: duration of data block; 

II u: length of the cyclic prefix; 

II r(k;n): the nth received signal in the kth data block; 

II C(k;n): the combined channel impulse response for the nth received signal in the kth data block; 

II Z(k;n): the AWGN for the nth received signal in the kth data block; 

II C(k;n): DFT of c(k;n); 

II C(k;n): rough estimate to C(k;n); 

II C(k;n)o: optimum frequency domain estimate to C(k;n) in the MMSE sense; 

II C(k;n)o: optimum time domain estimate to C(k;n) in the MMSE sense; 

II C[(k+l;n)l(k;n)j= MMSE prediction to C(k+l;n) for a fixed frequency component; 

II H: channel matrix for single user MIMO system; 

II U: left singular vector matrix of SVD of channel matrix for single user MIMO system; 

II V: right singular vector matrix of SVD of channel matrix for single user MIMO system; 

II A: singular value matrix of SVD of channel matrix for single user MIMO system; 

II Us: basis of column space of channel matrix for single user MIM 0 system; 

II V s: basis of row space of channel matrix for single user MIMO system; 

II Un: basis of null space of channel matrix for single user MIMO system; 

II V n: basis of left null space of channel matrix for single user MIMO system; 

II Ap: singular values of channel matrix for single user MIMO system; 



I11III X(dl,k): symbol vector for downlink transmission from BS to the kth MS; 

III Pk: preprocessing matrix for symbol vector X(dl,k); 

III d(dl,k): preprocessed symbol vector for X(dl,k); 

I11III ddl: overall preprocessed symbol vector for all K MSs; 

III P: overall preprocessed matrix for all K MSs; 

I11III Xdl: overall symbol vector for downlink transmission from BS to all K MSs; 

I11III H: overall channel matrix for all K MSs for downlink transmission; 

III H+: pseudo-inverse of th~ matrix H; 

III X(ul,k): symbol vector for uplink transmission from the kth MS to BS; 

III y: overall received singal at BS from all K MSs for uplink transmission; 

III Xul: overall symbol vector for uplink transmission from all K MSs to BS; 

III Xk: transmitted symbol vector from the kth MS to BS for multiple user MIMO systems; 

III Qk: preprocessing matrix at the kth MS for multiple user MIMO systems; 
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III d k : effective transmitted symbol vector from the kth MS to BS for multiple user MIMO sys

tems; 

I11III H k : channel matrix between the kth MS and the BS for multiple user MIMO systems; 

III y: received signal vector at the BS for multiple user MIMO systems; 

III x: overall transmitted symbol vector from all K MSs to BS for multiple user MIMO systems; 

I11III Q: overall preprocessing matrix for all K MSs for multiple user MIMO systems; 

III d: overall effective transmitted symbol vector from all K MSs for multiple user MIMO sys

tems; 

I11III H: overall channel matrix between the K MSs and the BS for multiple user MIMO systems; 

I11III Tk: postprocessing matrix for the kth MS at BS for multiple user MIMO systems; 



256 APPENDIX B. WATER-FILLING BASED POWER ALLOCATION 

III T: overall postprocessing matrix for all K MSs at BS for multiple user MIMO systems; 

II Uk: left singular vector matrix of channel matrix between the kth MS and the BS for multiple 

user MIMO systems; 

II V k: right singular vector matrix of channel matrix between the kth MS and the BS for multiple 

user MIMO systems; 

II A k : eigenvalue matrix of channel matrix between the kth MS and the BS for multiple user 

MIMO systems; 

II Xk: transmitted symbol vector from BS to the kth MS for mUltiple user MIMO systems; 

II P k : preprocessing matrix at the BS for the kth MS for multiple user MIMO systems; 

II dk : effective transmitted symbol vector at the BS for the kth MS for multiple user MIMO 

systems; 

II H k : channel matrix from the BS to the kth MS for multiple user MIMO systems; 

II Yk: received signal vector from the BS to the kth MS for multiple user MIMO systems; 

II x: overall transmitted symbol vector from the BS to all K MSs for multiple user MIMO sys

tems; 

II P: overall preprocessing matrix at the BS for multiple user MIMO systems; 

II d: overall effective transmitted symbol vector from the BS to all K MSs for multiple user 

MIMO systems; 

II Uk: left singular vector matrix of channel matrix from the BS to the kth MS for mUltiple user 

MIMO systems; 

II V k: right singular vector matrix of channel matrix from the BS to the kth MS for multiple user 

MIMO systems; 

II Ak: eigenvalue matrix of channel matrix from the BS to the kth MS for multiple user MIMO 

systems; 
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