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The Geometry of Weak Gravitational Singularities 

by Luke James Ronaldson 

We introduce a new class of weak curvature singularity with the critical feature that, al­

though the curvature may be unbounded on approach to the singularity, the curvature 

remains square Lebesgue integrable. 

Previous work looking at analogous singularities in the context of Yang-Mills gauge 

theory, suggests that a two-dimensional singularity, with square Lebesgue integrable cur­

vature, will have a connection approaching that of a fiat connection on approach to the 

singularity. By considering a 2-dimensional, timelike and static, weak singularity and by 

treating General Relativity as a.gauge theory, we are able to apply these methods to grav­

itational singularities. We show that 

1. A limit holonomy exists and is independent of position on the singularity 

2. The connection tends to the conical connection in an Li Sobolev norm 

3. The metric tends to the conical metric in an L§ Sobolev norm 

In the final chapter we review previous work on the use of Colombeau's theory of gen­

eralised functions in describing the curvature of conical spacetimes as distributions. Using 

the results stated above, we are able to extend this work to a class of weak curvature singu­

larities. We show that the distributional part of the curvature of a weak, two-dimensional, 

timelike and static, curvature singularity is associated (in the sense of Colombeau algebras) 

to the distributional curvature of a 4-dimensional cone, which may be described in terms 

of 2-dimensional delta functions. 
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Conventions 

Throughout this thesis we shall adopt the following conventions. 

The letters a through to h will be used for space-time indices, letters i to n will be used 

for Lie algebra and Lie group indices and Greek letters a, /3, etc ... will be used for indices 

of the Lie algebra 80(3). 

The different types of derivative are given in the following way. 

Ordinary derivative d 

Partial derivative a or 

Exterior derivative d 

Covariant exterior derivative D 

Space-time covariant derivative V or 

We shall use Ci for i E N to denote generic constants. Unless otherwise stated it can be 

assumed that any Ci in a theorem or proof will not necessarily be the same when written 

again in a different theorem or proof. 

As in [53] we shall sometimes refer to w as a differential p-form and sometimes we refer to 

wa1 ... ap as the p-form. The distinction is not important since the index structure of differ­

ential forms is trivial. It will be clearly indicated where necessary when an index-free letter 

represents a function and when that letter represents a differential form written without 

coordinate indices. 

If we have an object with Lie algebra or Lie group indices we distinguish between the full 

object and just one particular Lie algebra or Lie group component of the object by the use 

of the normal notation and the normal notation with a check mark above it respectively. 
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For example, Aja is the Lie algebra valued connection 1-form and A~a is the (i, j)th scalar 

valued 1-form component of Aja' 

In Chapter 4 when we write eU where u is a matrix (in the Lie algebra 80(3)) we mean to 

interpret the exponential as an expansion. i.e. 

u2 u3 u4 

eU = Id + u + - + - + - + ... 
2 3! 4! 

In Chapter 3 and Chapter 4, if a Sobolev norm is written without reference to a domain 

it is to be taken over, then it is assumed that the Sobolev space is to be taken locally. For 

example, we may shorten A E Lr,]oc to just A E Lr. 
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Nomenclature 

We include a list of some of the notation used in this thesis which has not been explained in 

the 'Conventions' summary. We omit notation for the standard Lie groups and Lie algebras 

which are listed in Appendix A.I. Notation given for one chapter will have the same meaning 

in following chapters unless stated otherwise. 
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Chapter 1 

Introduction 

A singularity in General Relativity is a point at the edge of a space-time where causal 

geodesics come to an end. An object traveling along such a geodesic has a point beyond 

w.hich it has no past and/or a point beyond which it has no future. Singularities have 

attracted much interest over the last fifty years, but the task of understanding such phe­

nomena has not been without obstacles since the nature of singularities prevents their direct 

observation, as proposed by the cosmic censorship hypothesis [33, 38]. However, properties 

can be deduced by the effect they have on the surrounding space-time. 

Einstein's field equations, given by Gab = 81fGTab are the basis from which we understand 

General Relativity. The meaning of these equations and the effect of gravitation have been 

summarised by the theoretical physicist John Wheeler: 

"Space tells bodies how to move and bodies tell space how to curve." 

Where there exists a massive body in space-time, the curvature of the space-time around 

that body will be increased. 

Curvature singularities can be thought of as an extreme of this situation. As we approach a 

curvature singularity the curvature becomes unbounded. For example we consider the case 

of the Schwarzschild solution, with line element 

(1.1) 

The effect is that the gravitational attraction, resulting from the distortion of the geome­

try of the space-time around the singularity, becomes so strong that, at a certain distance 
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from the singularity, not even light can escape. At this distance we have what is known 

as an 'event horizon'. The region which the event horizon bounds is defined to be a 'black 

hole'. According to the cosmic censorship hypothesis all (generic) curvature singularities 

are hidden behind an event horizon in this way. 

However, not all gravitational singularities are black holes. An important class of such 

singularities is given by cosmological or big-bang singularities such as that given by the 

Friedmann solution with line element 

ds2 = dt2 - R2(t) ( 1 2dr2 + r2de2 - r2 sin2 edq}) 
1 - K,r 

(1.2) 

where R(t) is a scale-factor found by solving Friedmann's equation. This space-time is sin-

gular at t = 0 where R vanishes. 

Another class of singularities which do not have event horizons is given by quasi-regular sin­

gularities. A quasi-regular singularity does not have this rapidly increasing curvature [12] 

and in fact the curvature is bounded as measured in a parallely propagated frame. The 

curvature is well-defined in the neighborhood but not at the singularity itself, which is not 

a point of the space-time manifold. The standard model for a quasi-regular singularity is 

the 4-dimensional cone. Our intuitive understanding of the familiar two-dimensional cone 

shows that at any point away from the singularity, although the cone may be curved, locally 

the cone is flat (i.e. has zero curvature). Likewise we see that at the point of the cone, we 

cannot describe the curvature and the point is degenerate. 

For the four-dimensional cone the singularity is not a point but a 2-dimensional surface. If 

coordinates on the singularity are given by (t, z) then for each point (t1' Zl) the coordinates 

in the surrounding cone are (r, e). The line element of the four-dimensional cone is 

(1.3) 

Although all quasi-regular singularities have an undefined curvature, the integral of the 

curvature over a neighborhood of the singularity is defined. We find the curvature can be 

described using a distribution [49J. The holonomy of a closed path is given by the integral 

of the connection around the path, which may also be given in terms of an integral of 

the curvature over the spanning surface. Using Gab = 87r KTab and the holonomy, we can 

measure the integral of the corresponding energy-momentum tensor at the singularity. The 
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idea of a distributional curvature at a quasi-regular singularity is covered extensively in [49] 

and in Chapter 2. 

In the past singularities have often been considered to be exceptions to many of the laws 

and theorems governing space-times. By providing a distributional solution to Einstein's 

equations for quasi-regular singularities we can work with them in much the same way that 

we do for point and line charges in electromagnetism. This enables one to regard them as 

interior points of the space-time (see [5] for details). 

In this thesis we will focus on a class of singularities for which the singularity is stronger 

than for quasi-regular singularities but for which the curvature is locally square integrable. 

We will refer to this class of singularities as weak curvature singularities. 

The goal of this thesis is to extend the holonomy analysis to include weak 

curvature singularities. This is used to find a description of the connection 

and metric in the neighbourhood of the singularity. The method of Colombeau 

algebras is then used to calculate the distributional curvature of the singularity. 

In Chapter 2 we provide a brief review of singular space-times and key concepts regarding 

completeness, distributional curvature and holonomy. We also introduce some important 

concepts from analysis such as Sobolev spaces. 

We often think of General Relativity by considering a metric; and an explicit form for 

the metric is obtained by making a coordinate choice. Instead we will think of GR as a 

gauge theory by looking at connections on the orthonormal frame bundle. This allows us 

to make comparisons with Yang-Mills theory where similar holonomy dependent theorems 

have been developed, also with the restriction that the curvature is square Lebesgue inte­

grable [39, 40]. In Chapter 3 we briefly describe the gauge theory formalism for Yang-Mills 

fields and then review two theorems of particular interest in [39] which tell us how, as we 

radially tend towards the singularity, the geometry of the Yang-Mills field in a neighbor­

hood of the singularity increasingly resembles the geometry of a space with a flat connection. 

Our aim is to take these theorems and adapt the method of proof so they apply in General 

Relativity. This shows that we can describe the curvature at a weak curvature singularity 
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in much the same way as a conical singularity. Chapter 4 details the main results of this 

thesis, with a complete proof, at the expense of some repetition of material from the pre­

vious chapter. In the GR case we have a metric as well as a connection and this enables us 

to obtain a description of the limiting geometry in terms of the metric. 

In Chapter 5 we review work from the last two decades on generalised functions and 

Colombeau algebras and look at succesful efforts to find the distributional curvature of 

a four-dimensional conical singularity. We then use a similar method to establish an ex­

pression for the distributional curvature of a weak curvature singularity. 
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Chapter 2 

Singularities in General Relativity 

2.1 What IS a singularity? 

A singularity is an exceptional point in space-time with which we must take especial care 

when applying the laws of physics. Singularities are best described by the effect they have 

on the surrounding geometry of a space-time and so perhaps a better question would be 

to ask, "where is a singularity?". If we consider a space-time to be described by the pair 

(M, g), a manifold and a metric, then we realise that singularities cannot exist within a 

space-time. The differential geometry of the manifold and the metric cannot describe such 

an unnatural point as a singularity and so we say that singularities exist at the boundary 

of space-time. 

A familiar singularity is that of the Schwarzschild solution. This singularity exists within 

an event horizon and so is causally separated from any external observer. We understand 

that the curvature increases to infinity as we approach the singularity. However, we also 

note that at a distance of 2m away from the singularity (where m is the mass of the black 

hole in geometrised units) the metric in Schwarzschild coordinates is undefined. This may 

compel us to believe there exists a singularity at r = 2m. However, the singularity here 

is due to the particular choice of coordinates we have used to describe the Schwarzschild 

solution, and in fact r = 2m is not a true singularity. We call such phenomena, 'coordinate 

singularities' . 

Another problem which may arise in trying to identify singularities is with our notion 

of a limit. Since singularities do not reside in any space-time, one way to measure their 

properties is to take limits as we approach the singular point. If our space-time has a fixed 
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background metric and/or the metric is positive definite then this is not a problem, as 

we have a clear understanding of distance and hence the shortest distance between points. 

Hence, when dealing with electro-magnetism which is usually described by modeling it in 

Minkowski space-time (which has a fixed background metric), we do not have problems 

in taking limits on approach to singularities. In General Relativity the metric also has 

Lorentzian signature and hence (in this thesis) has the sign convention 

+ 

However, without a fixed positive definite background metric we have no obvious way to 

measure distance. Instead we regard singular space-times as ones which are in some sense 

incomplete and also cannot be extended to make them complete. We first look at various 

definitions of completeness, and show how to attach a boundary to incomplete space-times. 

Cauchy completeness 

We start by looking at the concept of Cauchy completeness. We say that a metric space 

(M, d) is Cauchy complete (m-complete) if all Cauchy convergent sequences of points con­

verge to points also within the space. A sequence of points (xn) is Cauchy convergent if 

(2.1) 

If one has a Cauchy sequence that does not converge to a point in M then this indicates the 

space is not complete. By working with equivalence classes of such Cauchy sequences one 

can attach some additional ideal points to the space M to obtain the Cauchy completion M 

(see for example [1]). The boundary points 8M := M\M form the boundary of the space. 

However, since we have no natural way to measure the distance between Xn and Xm we find 

this to be an inadequate way of identifying boundary points in GR. 

Geodesic completeness 

An alternative notion of completeness more suitable for the GR case is provided by geodesic 

completeness. A manifold is geodesically complete (g-complete) if all geodesics are of infi-
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nite length and never leave the manifold. 

Geodesic completeness and Cauchy completeness are interchangeable when dealing with a 

space with a positive definite metric (by the Hopf-Rinow theorem, see for example [10]). 

However, for a metric of Lorentzian signature, g-completeness still makes sense where m­

completeness does not. An affinely parameterised geodesic is a C 2 curve, f-L : t f-7 f-L(t) E M 

through a space-time satisfying the geodesic equation given by 

(2.2) 

If there is a .value beyond which the affine parameter t cannot be extended the geodesic is 

incomplete. A smooth curve is a geodesic if the tangent to the geodesic is parallely trans­

ported along itself. Parallel transport preserves norms and it is the norm of the tangent 

vector to the geodesic that determines if the geodesic is timelike, spacelike or null. Hence 

geodesics always remain either timelike, spacelike or null. For the case of timelike geodesics 

we have time as our parameter. Massless particles (e.g. photons) travel along null geodesics 

and particles with mass can travel along timelike geodesics. Hence, it seems satisfactory to 

say that should a manifold of an inextendible space-time feature a non-spacelike geodesic 

which is incomplete, then that space-time has a boundary point at the point of incom­

pleteness. However, Geroch [16] has constructed an example of a rocket-ship with bounded 

acceleration which could leave a g-complete space-time at a point which we must consider 

to be a boundary point. Hence geodesic completeness does not necessarily imply that the 

space-time is without boundary. 

Instead of just g-completeness it seems natural to demand that a space-time without a 

boundary is complete for all non-spacelike curves; that is to say, containing no non-spacelike 

curves which are either future or past incomplete. This leads us onto our next definition of 

completeness. 

Bundle completeness 

In Riemannian geometry (where we have a positive definite metric g) we define d(p, q) as 

the length of the shortest of the curves, : t f-7 ,(t) joining p E M to q E M where, is 

continuous and twice piecewise differentiable. We write this explicitly as 
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(2.3) 

This gives us the arc-length of the geodesic. In GR affine parameters give the arc-length of 

(timelike) geodesics. Generalised affine parameters (GAPs) measure the length of any path. 

We again consider a parameterised curve f.L : t 1-7 f.L(t) (although not necessarily geodesic) 

through a point p E M. We choose a basis (ef) for TpM the tangent space at p and then 

look at the tangent space for the entire curve, Tf.L(t)M. By parallely propagating (ef) along 

fl we obtain a basis (ef(t)) for Tf.L(t)M for each t. The tangent vector can be expressed using 

this basis by 

(2.4) 

We define the GAP u to be 

(2.5) 

Note that u is not uniquely defined by fl, but also depends on the initial choice of basis 

ef for TpM. However, if there is a value for a GAP for a curve beyond which it cannot 

be extended then it can be shown that this will be true for all GAPs of that curve. Hence 

whether or not a curve can or cannot be extended does not depend on the initial choice of 

basis but only on fl. If there exists a value beyond which the GAP cannot be extended then 

such a curve is b-incomplete. We describe a space-time as being b-complete if it permits 

no such incomplete curves and b-incomplete otherwise. We note that since a b-complete 

space-time contains only b-complete curves, all geodesics must also be complete and hence 

b-completeness implies g-completeness. 

The b-boundary 

Since the singularity lies outside the space-time, we would like to define its location in 

another space so it is more than a conceptual position. To do this we can consider various 

ideas such as the a-boundary [37] (abstract boundary), b-boundary [35] (bundle boundary), 

c-boundary [17] (causal boundary) or the g-boundary [15] (geodesic boundary). In this 

thesis we consider the b-boundary, the construction of which involves Cauchy sequences 

and bundles. 
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Cauchy sequences 

In general, if we have a metric space (M, d), we say M is complete if all Cauchy convergent 

sequences are convergent to a point in M. If M is not complete then we look at M, the 

space of equivalence classes of Cauchy sequences on M, where two sequences are equivalent 

if they converge to the same point. We can identify elements of M with points, not all of 

which lie in M. We call M the Cauchy completion of M. We define the boundary of M as 

oM=M\M (2.6) 

Now we wish to apply this method to model singularities. We choose a space-time (M, g) 

where g is C 2 and look at a completion of M by adding ideal points to get M. The 

singularities are located at the boundary oj'll! = M\M. However, since we are not using a 

positive definite metric, it is not possible simply to use the Cauchy completion of M. To 

continue we shall need to construct a positive definite metric on the bundle space above 

the manifold. 

Frame Bundles 

Any point x in a manifold M, which we shall take to be four dimensional, can be mapped 

to LxM (a set of 4 linearly independent vectors at the point x) which lies in LM, the frame 

bundle. 

M -----t LM 

(2.7) 

The fibre above a point x on a manifold is the set of all points in the bundle which project 

down onto x. In LM the fibre is a space of sets of four linearly independent vectors. A point 

in this space could be (xg, Xf , X~ , Xf). We can transform from this point to any other 

point in the space (Yoa, y1
a, y;a, Yin by means of a matrix L E GL(4, JR) where GL(4, JR) is 

the group of 4 x 4 invertible matrices with elements in JR. 

(2.8) 

We say that X '" Y -¢=::? Y = LX and we find that X is equivalent to all points in 

LxM. Hence we can project any point X in the space to [X], the equivalence class of X. 

We identify [X] with x. 

We now have a way to take LM to M 
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II: LM ---+ M 

X f---+ [X]=x (2.9) 

We now use the soldering I-form and the connection I-form to put a positive definite metric 

on LM and hence give it the structure of a metric space. 

The soldering I-form (or canonical I-form) 

We have a projection from the frame bundle LM to the manifold M 

IT: LM ---+ M (2.10) 

The derivative of the projection, DIT maps the tangent space of LM to the tangent space 

ofM 

DIT : T(LM) ---+ T M (2.11) 

We now define the soldering I-form <p as a map from the tangent space of LM, at the point 

p ELM, to ]R4 

(2.12) 

Suppose v E Tp(LM) is a vector in the tangent space to the point p E LM such that 

IT(p) = x. We let 

DIIp : Tp(LM) ---+ TxM 

v f---+ DITp(v) (2.13) 

We can think of elements of LM as being given by a frame and a point in M. So p = 

({e~H=o,x) and we can look at the components of DIIp(v) using the frame {e~H=o at the 

point p, i.e. 

(2.14) 

and we use this Wi to define the soldering I-form, so that <p ( v) = Wi. 
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Definition 2.1 The soldering i-form cp is defined by its action on the tangent space to the 

bundle LM at a point p = ({enf=o,x) ELM 

cp : Tp(LM) -7 JR.4 

v H (Dl1p(v))a (e-l)~ = Wi = (WO, WI, W 2, W 3) (2.15) 

where (e- I )~, also written v~, is the dual basis to ef and so v~ef = 6~. 

See Appendix A.3 for more on duals of differential forms. 

If cp(v) = 0 then W = 0 and so Dl1p(v) = O. This implies v E TpLM provides a zero tangent 

vector at the point x. The converse of this argument is also true and so we have cp(v) = 0 

if and only if v is 'vertical' in LM. That is to say, a vertical v represents a change in the 

frame direction on the manifold but not a change in position. We define Vp C TpLM to be 

the space of all vectors in TpLM that are vertical in LM. 

The connection I-form on the bundle 

Let gl (4, JR.) be the real vector space equal to the set of all left-invariant vector fields on the 

Lie group G L( 4, JR.), where G L( 4, JR.) is the Lie group of 4 x 4 matrix transformations acting 

on fibres of LM. We call gl(4, JR.) the Lie algebra of the Lie group GL(4, JR.) (Lie groups, Lie 

algebras and left-invariance are discussed in Appendix A.l). The Lie group action moves 

points in the bundle along the fibre and so the vector field A * which is tangent to the 

orbit under this action is also tangent to the fibre. We call A * the fundamental vector field 

corresponding to A E gl (4, JR.). The map from A to A * is denoted by c:; where 

c:;:gl(4,JR.) -7x(LM) (2.16) 

and x(LM) is the space of vector fields on LM. We note that c:; is a Lie algebra homomor­

phism given by 

c:;([A, B]) = [c:;(A), c:;(B)J (2.17) 

where [, J denotes the bracket in the Lie algebra gl (4, JR.) on the left-hand side and the Lie 

bracket between vector fields on the right hand side (see for example [27J for more details). 
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We now define the connection I-form ~ on the bundle LM. We write ~ in order to dis­

tinguish this gauge independent connection I-form from the gauge dependent connection 

I-form w on M which is used later in this thesis. 

Definition 2.2 The connection i-form ~p at a point p E LM is defined to be a gl(4,lR)­

valued one-form on the bundle LM that satisfies the following conditions 

i. ~p(A*) = A Vp ELM, A E gl(4, lR) 

2. (Rg*~)p(v) = Adg-l(~p(v)) , Vv E TpLM 

Where (Rg*~)p = ~pg*, the right action of g* on ~p and the adjoint map Adg : LM ---+ LM 

is defined for each f ELM by 

(2.18) 

We say that v E TpLM is horizontal if and only if ~p( v) = O. A horizontal vector v repre­

sents a change in the frame position on the manifold corresponding to parallel propagation 

with respect to the connection ~. We define Hp C TpLM to be the space of all vectors in 

TpLM that are horizontal in LM. 

From our definitions of vp and Hp we have [35] 

(2.19) 

The metric on LM 

We may now use the soldering I-form cp and the connection I-form ~ to define a symmetric 

covariant tensor of rank 2 on LM. 

Definition 2.3 G is a covariant tensor of rank 2 defined by 

G: Tp(Ll\lJ) x Tp(LM) ---+ lR 

(m, n) H cp(m)· cp(n) + ~p(m) . ~p(n) (2.20) 

where 

(2.21 ) 
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(2.22) 

and rp(m)i are the components of rp(m) E IR4 and 0d.p(m)j are the components of 0d.p(m) E 

gl (4, IR). 

Proposition 2.4 G is a positive definite metric on LM. 

Proof 

We observe that 

G(m,m) = rp(m)· rp(m) + 0d.p (m)· 0d.p(m) 20 (2.23) 

and 

G(m,m) 0 

¢=:;> rp(m)· rp(m) + 0d.p (m) . 0d.p (m) 0 

¢=:;> rp(m) = 0 and wp(m) = 0 

and so m is both vertical and horizontaL Since Hp n vp = {O} [35], we therefore know that 

m = O. So 

G(m, m) = 0 ¢=:;> m = 0 (2.24) 

Hence the metric G satisfies the requirements of a positive definite metric on LM. 0 

The positive definite metric G endows LM with the structure of a metric space. This gives 

us a way to measure the b-length (bundle length) of a path in LM and hence we can now 

look at LM, the Cauchy completion of LM. The transformation 

GL(4, IR) x LM -7 LM 

(2.25) 

is uniformly continuous and so the transformation extends to G L( 4, IR) x LM -7 LM 

(see [48]). The projection fr takes elements of LM to M by identifying [X] with x as before, 

and this is how we define the completion of M. In the same way that M c:::: LM. / G L ( 4, IR), 
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we define it = LM / G L( 4)5.). 

With the projection 

(2.26) 

we can now define the b-boundary, 81v[ = M\M. Note that the b-boundary should be used 

with caution as it is not without problems. For example, a topological manifold must, by 

definition, be Hausdorff and yet it has been shown that the b-boundary is non-Hausdorff 

([4] and more recently [41]). 

Extensions 

Let us now consider a space-time that is half Minkowski space; that is to say, identical 

to Minkowski space but only defined for 0 < x < 00. Any point at x = 0 is a bound­

ary point but these boundary points are not singular because we have not considered a 

full inextendible space-time. In some sense, our choice of space-time was simply not large 

enough. We can extend the space time to include x ::::; 0 and in particular the points at x = O. 

We now provide the following definition and proposition regarding extendibility which are 

stated and proved in [4]. 

Definition 2.5 An extension of a space-time (M, g) is an isometric imbedding e : M -+ 

M', where (M', g') is a space-time and e is onto a proper subset of M'. 

If a space-time has an extension then it is termed extendible. The following result demon­

strates that extendible space-times are timelike g-incomplete (and hence also timelike b­

incomplete) . 

Proposition 2.6 If M has an extension e : M -+ M' then there is an incomplete timelike 

geodesic I in M such that e 0 I is extendible. 

We will use extendibility to determine if the point of incompleteness is a singular or regular 

boundary point. Let us consider a g-incomplete timelike geodesic,. Suppose there is an 

isometry e of the space-time (M, g) into a larger space-time (M', g') where I now has an 
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endpoint p E M'\ e( M}. If the Riemann tensor of (M', g') is C r then (M', g') is a Cr exten­

sion of (M, g). If (M', g') is C r at p then i is said to terminate at a C r regular boundary 

point. If there is no isometry e for which the space-time (M', g') admits a point p which is 

the endpoint of i, then the boundary point is singular. 

In the example of half Minkowski space above we now realise that the points on the line 

x = 0 are regular boundary points. 

2.2 Classification of singularities 

Ellis and Schmidt [12] gave a flow-chart describing the general way in which one classifies 

singularities, a modified version of which is reproduced here (Figure 2.1). 

Regular boundary 

Curvature singularity Quasi-regular singul 

1-"''--,0101 singularity Scalar singularity 

Figure 2.1: A simple flow-chart to classify singularities. 

The first step towards classifying a singularity is to ensure that a candidate boundary point 

is indeed a singularity. We recall that if a boundary point is singular then there is no 

extension to the space-time which includes the boundary point. If all inextendible paths 

are b-complete then the space-time has no singularities. However, if a boundary point is 

accessible only by spacelike curves it is not clear that this represents a physical singular­

ity since it cannot be reached by a material particle (which travels along timelike or null 

curves). Hence we regard non-spacelike b-incompleteness of an inextendible space-time as 

a sufficient condition for the presence of a physical singularity. 

Once we have established that our boundary point is singular we then observe how the 

curvature behaves as we increase the parameter t of a path I( t), which terminates at the 

singularity. 
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If any of the components of the curvature tensor are unbounded as we parallely propagate 

a basis along a b-incomplete curve that terminates at a singularity, then we say that the 

singular point is a parallely propagated curvature singularity. 

If any of the scalar polynomials in gab, Cabcd (the Weyl tensor) and Rabcd (and their deriva­

tives) are unbounded on the incomplete curve, then the curve terminates at a scalar poly­

nomial curvature singularity, an example of which is given by the Schwarzschild solution in 

spherical polar coordinates where we find that the quantity 

C C
abcd _ 48m2 

abed - --6-
r 

(2.27) 

is divergent on approach to the singularity (r -+ 0). We call such quantities scalar invari­

ants since they remain the same in all coordinate systems. 

We note that parallely propagated curvature singularities and scalar polynomial curvature 

singularities are sometimes respectively shortened to curvature singularities and scalar cur­

vature singularities. 

If the Riemann tensor tends to finite limits in some orthonormal frame along ,(t), but not 

in any such frame parallely propagated along ,(t), we have a particular class of non-scalar 

singularity called a whimper or intermediate singularity [26]. 

If the curvature tends to a limit in a parallely propagated frame along all paths on approach 

to the singularity then we have a 'quasi-regular singularity. If the curvature is unbounded 

on approach to the singularity but remains in L2 then we have a weak singularity. These 

last two singularities are of particular interest to us and will be discussed further below. 

Quasi-regular singularities 

A quasi-regular singularity arises when the curvature tensor components (when measured 

in a parallely propagated frame) tend to a well-defined limit along all curves terminating 

at the singularity. It is not so much the singularity which is imposing itself on the space­

time, more that the singularity is a natural result of the topology of the space-time. As 

discussed in the introduction to this thesis, the prototype for a quasi-regular singularity is 

the four-dimensional conical singularity given by the line element 

16 



o :5. e < 27f (2.28) 

the metric of which is a direct product of the metric for the two-dimensional cone and the 

metric for two-dimensional fiat space-time (ds 2 = - dt2 + dz2 ). If we set e = Ae we obtain 

o :5. () < 27f A (2.29) 

We now show why the two-surface given by r = 0 is a quasi-regular singularity in the case 

of a four-dimensional cone. Since the metric given in (2.29) is fiat then the components of 

the curvature tensor in a parallely propagated frame are necessarily well behaved. Points 

on the surface r = 0 therefore cannot be points of a curvature singularity. If we have a 

circle around any regular (in the sense of being non-singular) point, then the ratio of the 

circumference of the circle to its distance has a limiting value of 27f as the radius tends to 

zero. This is not the case for a four-dimensional cone at r = 0 where the ratio is in fact 

27f A and so, while not a curvature singularity, points on the surface r = 0 can also not be 

thought of as regular. Instead such a surface is a quasi-regular singularity. 

To understand the geometry ofthe four-dimensional conical space-time it is best to consider 

the space-time of a two dimensional cone with line element 

o :5. e < 21f (2.30) 

where we will assume 0 < A < 1. We can take this cone and cut a slit from its point in 

a straight line away from the point. We then 'unravel' the cone to have a manifold with a 

section missing from it (see Figure 2.2). The angle of the section is 27f (1 A). As we would 

expect, we see that this space is analogous to Minkowski space-time. At all non-singular 

points on a cone the metric is locally flat. 

We now let e = Ae and so (2.30) becomes 

(2.31) 

Taking x = r cos e and f) r sin e for a < e < 27f A we have 

(2.32) 

This is the same as Minkowski space-time but with a wedge taken out since e only varies 

between a and 27f A. We identify the two lines e = 27f A and (j = O. But this now implies 
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.., .., 
.., .., 

Figure 2.2: The first diagram illustrates the construction of a cone from Minkowski space. Both diagrams 

show how parallel geodesics on a cone do or don't meet depending on whether the apex of the cone is or is 

not between the two lines. 

that a geodesic will have a kink as it passes over this line of identification. It will be focused 

more towards the singularity at r = O. If we fold this space into a cone, it will be a smooth 

regular cone except along the line of identification where any grid dr.awn on the original 

Minkowski space will have a kink in it. Along this line on the cone the coordinates are 

singular but the space-time is not. 

If we draw two parallel lines which both pass the singularity on the same side, then the lines 

will never meet. However, if we take parallel lines either side of the singularity, then we see 

that the lines do meet and hence there must exist a non-zero curvature at the singularity. 

This is also illustrated in Figure 2.2. 

2.3 Distributional curvature 

In General Relativity the naive expectation of the requirement to find the curvature of a 

space-time is for the metric to be C2 . This is because the equation for the curvature in terms 

of the metric has first and second order derivatives of the metric. On closer examination we 

find that the metric need only be C2-, meaning that the metric is C 1 and its first deriva­

tives satisfy the Lipschitz condition. However, to satisfy the contracted Bianchi identities 

and hence the conservation of the energy-momentum tensor (from Einstein's equation) we 

require higher differentiability. 

Findings in [18] indicate that we can circumvent this problem by interpreting the curvature 

18 



as a distribution (see Appendix A.5 for more on classical distribution theory). However, the 

curvature tensor is a non-linear function of the metric and its first two derivatives which 

means we cannot simply take weak derivatives and then multiply terms. This in turn implies 

that we cannot just lower the required differentiability of the metric to include a broader 

class of space-times as in general we cannot interpret the curvature as a distribution in this 

case. However, Geroch and Traschen have set out conditions [18] on a metric for it to be 

considered 'GT-regular' and for which the required products make sense as a distribution 

and hence for which the components of the curvature are well defined as a distribution. 

They later deduced that GT-regular metrics can only have their singular support on a 

sub manifold of co dimension one. This final condition clearly rules out conical singularities 

having a GT-regular metric. However, a non-linear theory of generalised functions has been 

proposed by Colombeau [8, 9J to circumvent this problem and is discussed in detail in 

Chapter 5. 

More recently Garfinkle [14J has studied a wider class of semi-regular metrics, which contains 

the class of GT-regular metrics, whose curvature makes sense as a distribution. Garfinkle 

defines a metric gab to be a semi-regular metric provided that 

1. gab and gab exist almost everywhere and are locally integrable 

2. The weak first derivative of gab exists 

3. The Christoffel tensor r~b is locally integrable 

4. r~[blr~lc is locally integrable 

Hence weak curvature singularities are not necessarily semi-regular since no assumption is 

made about the behaviour of the metric and so there is no guarantee that Garfinkle's first 

condition is satisfied. 

In the next section we discuss a heuristic method to determine distributional curvature at 

a conical singularity by considering its holonomy. In Chapter 5 we shall use this holonomy 

method in combination with Colombeau's theory to find the distributional curvature of 

conical and weak singularities. 
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2.4 Holonomy 

What is holonomy? 

Figure 2.3: A diagram to illustrate holonomy on the 2-dimensional surface of a sphere. 

An easy way to gain an initial understanding of holonomy is to consider the 2-dimensional 

surface of a sphere. We take a vector at a point a and parallely transport it along one 

of the great circles passing through a until we reach a point b. We then transport along a 

different great circle passing through b until we reach a point c. We then parallely transport 

along the great circle which connects c and a until we are back where we started at a. We 

compare the directions of the initial vector and the final vector and the rotation required to 

take one to the other tells us the holonomy around a closed path on the surface of the sphere. 

The way we will calculate holonomy in more complex geometries is by comparing initial and 

final frames. Let us consider a closed path /1,t. Any frame propagated completely around 

the path will be related to the initial frame by a GL(n, JR) transformation. For GR we use 

a metric connection and orthonormal frames, so that the holonomy is an element of the 

Lorentz group. The holonomy is the rotation which takes the initial frame to the frame 

after it has been completely parallely propagated around a closed path. We include a more 

formal definition similar to that given in [55]. 

Definition 2.7 (Holonorny of a closed curve) Let /1, : [0, 1] --+ M be a closed curve in 

the manifold M. Suppose that the frame E( s) at point /1,( s) is defined by parallely propa­

gating E(O) around /1,) then the holonomy of /1" Hol(E(O),/1,) is defined to be the GL(4,JR) 

transformation such that 
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(2.33) 

The holonomy of a singularity in General Relativity 

Let us take a manifold M which has a singular boundary which is a surface of co dimension 

two. We consider a b-incomplete path in this space).. : [0,1) --+ M which terminates at 

a point on the singularity. We define the loop space PA of ).. to be the set of C 1 maps 

f.1. : [O,IJ x [0,1) --+ M such that f.1.(0, t) = f.1.(I, t) = )..(t) and the b-length of the s­

parameterised (t fixed) closed path f.1. (s, t) = f.1.t (s) tends to zero as t tends to 1. The 

b-length of a path, as shown earlier, is the length of the lifted path measured in the frame 

bundle LM, so to find the b-length of f.1. we first perform a 'horizontal lift' taking f.1.t(s) into 

LM to fit : [0, IJ --+ LM by parallely propagating a frame Et(O) at f.1.t(O) along f.1.t. The loop 

space PA is composed of closed paths encircling the singular point and the act of increasing 

t is to 'tighten the noose' around the point. 

If we lift the loop f.1.t into the frame bundle then the path Pt is no longer closed. The path 

starts and finishes at the same fibre but not the same point, since position in Ll.\!{ indicates 

both the position and direction of the parallely propagated frame in M. The holonomy is 

the rotation which the frame has undergone to get from its initial orientation to its final 

orientation and so looking at this in LM, it is the group element Hol(Et(O) , f.1.t) E GL(4, JR) 

taking 11(0, t) to 11(1, t). The limit holonomy is found by taking the limit of Hol(Et(O), f.1.t) 

as t tends to 1. We provide a formal definition 

Definition 2.8 (Limit holonomy for a loop space) Let)..: [0,1) --+ M be a b-incomplete 

curve and PA be the loop space consisting of the C 1 maps f.1. : [0, IJ x [0,1) --+ M such that 

1. f.1.(0, t) = f.1.(I, t) = )..(t) 

2. The b-length of p.,( s, t) p.,t (s) tends to zero as t tends to 1. 

Then the limit holonomy of the loop space PA' where it exists, is defined to be 

Hol(O) (2.34) 

We shall now use the holonomy method to calculate the integrated curvature at conical 

singularities as shown in [49J. We first consider the Gauss-Bonnet theorem (for a region 

with boundary), that states that for a regular 2-dimensional Riemannian manifold, 
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1 Kda- = 27f - r K gd8 
u leu 

(2.35 ) 

where a- is the volume element, K is the Gaussian curvature, U is a region homeomorphic to 

a disk and au is the boundary of U. The geodesic curvature Kg is the norm of the geodesic 

curvature vector V TT, so that 

(2.36) 

where T is the vector tangent to au. Since U in our case contains the conical singularity 

we can regard the right hand side of (2.35) as defining the integrated curvature of the 

singularity. Vickers has shown [47] that we can rewrite (2.35) in the more relevant form 

exp i [2 = L (2.37) 

where [2 is the curvature 2-form taking values in 80(2) and L is the rotation matrix which 

describes parallel propagation around au and represents a rotation through 27f(1 - A) no 

matter how small U is, as long as it contains the origin. As we make U smaller we can see 

that in the limiting case the conical singularity will have delta function curvature. 

We can generalise (2.37) for four dimensions to the equation 

(2.38) 

where P exp is a path ordered exponential operator (as given in [47]), L is the Lorentz 

transformation relating an initial orthonormal frame to one obtained by parallel propaga­

tion around au and [2 is the curvature 2-form of U. 

\TVe now have an equation (2.38) which relates curvature to holonomy and vice-versa. We 

may extend this to the distributional setting and use it heuristically to relate the dis­

tributional curvature to the limit holonomy. However it remains to show that it makes 

mathematical sense to describe curvature as a distribution in this way. In Chapter 5 we 

demonstrate how Clarke, Vickers and Wilson [7] show that curvature can be thought of as 

a distribution by using the Colombeau algebra (as described in [8, 9]). They then apply 

the results of the above holonomy method to find the distributional curvature and energy-

momentum tensor of a conical singularity. 
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The aim of this thesis is to apply the above ideas to a wider class of singularities for which 

the holonomy is defined. This will require the curvature to (at least) be integrable. The 

main condition we will use is that the curvature is square integrable in a neighbourhood U 

of the singularity in the sense that 

(2.39) 

We will later include an additional condition on the gauge dependent connection I-form. 

What it means to 'square the modulus' of a Lie algebra valued 2-form will be discussed in 

detail in Section 2.6. We will call curvature singularities with curvature that satisfies (2.39) 

'weak curvature singularities'. 

We now have the motivation for the next chapters to find the holonomy of different geome­

tries featuring weak singularities in both Yang-Mills theory and General Relativity. 

2.5 Results from the holonomy method for quasi-regular sin­

gularities 

We briefly discuss the main results from Vickers [49J for quasi-regular singularities. The 

theorem is restricted to singularities with bounded curvature on approach to the singular­

ity and is obtained in a similar fashion to that used in the next chapter for singularities 

in Yang-Mills. We wish to extend the results obtained in [49J to weak curvature singular­

ities. We include here a simplified version of the theorem and the physical and geometric 

significance of its results in order to show the sort of results we hope to obtain in Chapter 4. 

Theorem 2.9 Let ~ be a (timelike) two dimensional quasi-regular singularity and let Lr 

be the holonomy obtained by parallel propagation around a loop of radius r round a point 

p E ~, then 

1. The limit holonomy limr--+o Lr = La exists 

2. The tangent space to ~ is a fixed point of La 

3. La is independent of p 

The first result implies that the quasi-regular singularity locally looks like a conical singu­

larity. The second tells us that the axis of rotation about which we establish the holonomy 
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is parallel to the singularity and the second result combined with the first result informs 

us that the singularity has a similar geometric structure to a cosmic string. The third re­

sult implies that the angle of the cone is the same no matter which point we take on the 

singularity and that the integral of the curvature and hence the distributional energy mo­

mentum tensor of the 'string' are conserved. The second and third results also tell us that 

the singularity is totally geodesic (i.e. geodesics in the sub manifold L; are also geodesics 

in the manifold). The notion of totally geodesic makes sense in this context since for such 

a quasi-regular singularity we may use the b-completion of tensor fields on M to obtain 

tensor fields on M (see [49] for details). 

Unruh et al. [46] have obtained similar results modelling cosmic strings on conical singu­

larities, with particular focus on those models with angular defecit smaller than 7r. They 

show that an idealized cosmic string with conical angular defecit l::,,¢ must be straight in 

the sense that the one-currvature K, of a parallel curve at a small, constant distance d from 

the string tends to zero with d according to 

(2.40) 

where 

ry == (1 _ ~:) -1 (2.41 ) 

and a is a characteristic global length associated with the loop. They also show that the 

divergence of the Riemann tensor is weak enough to preserve integrability of the Riemann 

curvature for positive angular defecits. They use this to show that the cosmic string's shape 

and orbit are geodesics of the spacetime. 

More precisely, they consider the history of the idealized string to be a timelike two-space 

Szt, whose points are conical singularities of the space-time. They show that Szt is totally 

geodesic if the Ricci tensor is bounded near Szt. Space-time geodesics orthogonal to Szt at 

a point Q sweep out a spacelike two-space Sxy having a conical structure at the point Q 

where it intersects Szt. One can then select any intrinsic geodesic L t of Szt, parametrised 

by proper distance t and with tangent 

(2.42) 
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Unruh et al. then prove that L t , as a locus of conical singularities of the four-metric, must 

be a geodesic. 

2.6 The Sobolev spaces I{(X) 

We include a discussion on Sobolev norms and spaces, since they will be used extensively 

in the following chapters. 

The standard context for consideration of Sobolev spaces is for functions f : II{n --7 II{ in 

Euclidean space. We define the L~ norm of f over an arbitrary domain A c II{n in the 

following way. 

Definition 2.10 Let f : II{n --7 lR and let A c lRn. The Lg norm of f over A is IlfIIL~(A) 

where p is a positive real number, q is a non-negative integer and 

1 

II fll_ p ,., = (r '\' lfia flPrln rr ' P 
IIJ IIDqll\) \ J A L...t I~ J I ~ ~) 

\ O::;lal::;q 
(2.43) 

Here a is a multi-index with dimension nand 8 is the usual partial derivative but taken in 

the weak sense (as defined in Appendix A.5). 

We now define the Sobolev space L~(A). 

Definition 2.11 L~(A) is a space of functions such that IlfIIL~(A) < 00 for all f E L~(A) 

and 80' f is a measurable function for all 0 ::::; lal ::::; q. 

Note that in the case of compact A, f E Cq(A) implies that f E L~(A), although the con­

ditions in Definition 2.11 are weaker since we allow weak derivatives of f provided 80' f is 

a measurable function, and IlfIIL~(A) is finite. 

The 'L' used to denote a Sobolev space comes from the French mathematician Henri 

Lebesgue and it is in reference to him that we say that L2(A) is the set of all functions on 

A which are square Lebesgue integrable. Note that unless it is unclear in what domain the 

Sobolev space lies we shall adopt the convention of shortening II IIL~(A) to II IIL~' 

In a similar way to that found in [20] we define Sobolev norms for space-times with metrics 

that are not necessarily fiat. We first take a positive definite background metric ~ab on the 
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manifold. The physical space-time as given in the following chapters will be Lorentzian 

and contain a singularity and so while the introduced background metric is unphysical, it 

nevertheless provides a method to measure magnitudes and volumes of physical objects. 

Definition 2.12 Let h be a scalar function in an n-dimensional space-time (M, g) and 

let A c M. The L~ norm of h over A is IlhllLP where p is a positive real number, q is a 
q 

non-negative integer and 

1 

IlhlIL~ = (i L IvahlPda) p 
O~lal~q 

(2.44) 

Here da is the volume element induced by the positive definite metric ~ab on M. The operator 

V is the covariant derivative with respect to ~ab and a is a multi-index with dimension n. 

Note that this thesis follows the notation in [39] in that =lo:l=n IvahlP will sometimes be 

shortened to Iv(n) hiP. 

We now look at Sobolev norms of non-scalar functions with space-time components. 

Definition 2.13 For i, j EN let Kal ... aibl ... bj be a function in an n-dimensional space-time 

(M, g) and let A c M. The Lg norm of K over A is IIKIIL~ where p is a positive real 

number, q is a non-negative integer and 

1 

IIKIIL~ = (r L Iva KIPda) P 
. JA O~lal~q 

We define the magnitude norm I I by 

(2.45) 

(2.46) 

We shall choose our background metric to be locally flat so, when using Cartesian coor­

dinates, we can take all the covariant derivatives to be partial derivatives. That is to say, 

we let ~ab ! 6ab, where ! indicates a coordinate dependent equality (the flat metric is 

different depending on what coordinates we are in). 

For an example of a Sobolev norm on a coordinate indexed object we can consider la, a 

differential I-form. l E Lr requires that 
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1 

IllailLI = (/ .L yCila YCilb~abdcy)::2 < (Xl 

oS;ICiIS;l 

(2.47) 

In gauge theory one also considers scalar functions taking values in the Lie group or its Lie 

algebra, elements of which we can think of as square matrices. Here we define the Sobolev 

norm in the same way as for Definition 2.10 but we now extend our definition of the modulus 

I I to accommodate Lie indices, as given in [34]. Below, the raised t indicates the complex 

conjugate of the transpose (also known as the Hermitian conjugate). 

Definition 2.14 Let H be an object taking values in a Lie algebra or Lie group. We think 

of H as being matrix valued. The modulus of H is 

(2.48) 

or in index notation 

IH i l2 = fl Hi HtJk" = HiJii = '" Ihil2 
J ZJ" JJ ~ J 

(2.49) 
ij 

where iIj denotes the particular ~ component of the matrix Hj and so the operator I I in 

the instance on the right hand side of {2.49} is just the standard scalar modulus defined in 

the usual way for real and complex numbers. 

As an example we consider a Lie group valued object gj (which shall be described in the 

next chapter as a gauge transformation) where 

g: M -7 SU(2) (2.50) 

9 E L~ requires that 

1 

IIgjllL~ = (/ .L ~ IYCigjI2dcy)::2 < (Xl 

OS;ICiIS;2 Z,J 

(2.51) 

The above definitions naturally lead on to a consideration of Sobolev norms of additional 

objects which are used in gauge theory, functions with both space-time and Lie indices. In 

this case the definition of a Sobolev norm is analogous to Definition 2.13, but we now define 

the modulus of an object with both space-time and Lie indices. To define the modulus we 

will make use of both (2.46) and (2.49). 
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Definition 2.15 The modulus of an object j taking values in a Lie algebra or Lie group 

and with m raised and p lowered space-time indices is defined by 

Ijial ... am 12 
J bl ... bp 

jial ... am JiCl ... cm c c Chdl cbpdp 
J bl ... bp J dl ... dp l,alcl ... l,amcm <, .•. l, (2.52) 

In the next chapter we discuss the Yang-Mills connection I-form Ai. but we show here a 
Ja 

Sobolev norm of this connection as a useful example of a mixed indexed object. A E Ly 

only if 

IIA;aIlLf (/ L Iva A;aI 2da) ~ 
O::;lal:Sl 

1 

(/ 

i 2 b i 2 b i 2 b i 2 b i 2 ) 2 IAjal + lOt VbAjal + lOr VbAjal + lOa VbAjal + loz VbAjal da 

< 00 (2.53) 

where we have also illustrated how we take the covariant derivative with the multi-index 0:. 

Finally we define the local Sobolev space L~,loc(A) for non-compact regions by saying that 

f E L~,loc(A) if va f is a measurable function for all 0 :::; 10:1 ::; q and for all compact subsets 

C of A we have 

Chapter summary 

In this chapter we reviewed some of the important background material needed for this 

thesis, such as different methods of defining singularities. We also introduced more com­

plex ideas such as quasi-regular and weak curvature singularities, distributional curvature, 

a definition of a positive definite metric on the frame bundle and its use in the construction 

of the b-boundary. 

We also showed how the holonomy around a singularity could be used to find the distribu­

tional curvature of the singularity and discussed how previous work by Vickers [49] applied 
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this method for conical singularities. 

Finally we introduced Sobolev spaces, which playa crucial role in the following chapters. 
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Chapter 3 

Singularities in Yang-Mills theory 

In this chapter we show a method for analysing weak curvature singularities in Yang-Mills 

theory given by [39] whose GR analogy in Chapter 4 is used to understand the properties 

of certain curvature singularities. 

Although in general the curvature diverges on approach to a singularity, it is possible to 

assil2'n a distributional curvature in some cases. This method has been used bv Vickers r491 
U v. L J 

to gain an insight into quasi-regular singularities but the restrictions needed (i.e. curvature 

tending to a limit in a parallely propagated frame) are too strong for curvature singularities. 

It is our intention to find a method to examine the properties of certain weak curvature 

singularities, those singularities whose curvature is square Lebesgue integrable. Sibner and 

Sibner [39, 40] and Rade [34] show two ways to classify singular Sobolev connections in 

Yang-Mills gauge theory by examining the holonomy around the singularity. One of the 

requirements of the Sibners' method is square Lebesgue integrability of the curvature. This 

has led us to believe that the method is transferable to General Relativity with a similar 

requirement. We discuss how this might be done in the next chapter. 

Rade tactfully comments [34] that the main proof in Sibner and Sibner [39] "is hard to 

follow". In actual fact, while the theorems are useful for mathematicians and physicists 

working with Yang-Mills theory, as well as having an analogous application in GR (given in 

this thesis), the presentation of the proofs is not only lacking in detail but is also incorrect 

in many places. In most cases the errors seem likely to have been made in the final stages 

of writing the paper and are typographical and hence do not result in a need to modify the 

proofs or theorems. Instead it has been necessary to locate and correct the errors in indi­

vidual places. Because of the lack of detail given in [39], this has been a quite difficult and 
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tedious process and is probably the cause for Wide to have presented his alternate approach. 

We start by looking at Yang-Mills fields on Minkowski space for which there exist Minkowski 

coordinates (t, x, y, z) such that the metric is 

gab ~ TJab (3.1 ) 

For the purpose of calculating norms we will also use a positive definite background metric 

which is given in these coordinates by 

(3.2) 

Note that the choice of Minkowski coordinates is not unique so that this prescription does 

not define the background metric eab uniquely. However, none of the results depend on the 

particular choice of background metric (up to a change in constants). 

The goal of this chapter is to look at fields which are singular on a smooth 2-dimensional 

submanifold 2:: and show how we find the holonomy around 2::. Vie then demonstrate two 

important theorems. The first will show that for smooth local curvature and connection 

in the neighbourhood of a singularity a limit holonomy exists and is independent of posi­

tion on the singularity. The second theorem shows that by looking at smaller and smaller 

closed paths around the singularity, we see that the Lr norm of the difference between the 

connection and a flat connection goes to zero. Hence as one approaches the singularity, the 

field looks more and more like a singular Yang-Mills field with a locally flat connection. 

Much of the process for establishing the two main theorems of this chapter is directly 

analogous to the process we shall be using in the next chapter and so the technical details of 

the proofs shall be reserved for the General Relativity counterpart. Introductions, methods, 

proof outlines and most theorems, corollaries and lemmas will be presented in both chapters, 

at the expense of some repetition. 

Yang-Mills gauge theory 

Current understanding of physics is that there exist four natural forces; gravitational, elec­

tromagnetic, weak nuclear f-nd strong nuclear. The basic foundation of all but the first of 

these forces lies in gauge theory. Gauge theories are a class of physical theories based on the 

concept that symmetry transformations can be performed locally as well as globally. Most 
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physical theories are characterised by Lagrangians which are invariant under certain trans­

formations - those that are identically performed at every point in the space-time; we say 

that the Lagrangians have global symmetries. Gauge theory extends this idea by requiring 

that the Lagrangians must have local symmetries as well. Local symmetry transformations 

can be performed in a particular region of space-time without affecting what happens in 

another region. 

An example of a local gauge symmetry is that in electromagnetic theory, a gauge transfor­

mation of the vector potential A leaves the electromagnetic field tensor F unaffected. The 

local gauge transformation is given by A --+ A + df. However, F and A are related by the 

equation 

F=dA (3.3) 

so that F --+ d(A + df) = dA = F since d2 = O. Hence both A and A + df lead to the same 

field strengths (see for example [30]). 

An example of a global gauge symmetry is the Lorentz invariance of Maxwell's equations. 

Elements Li; of the Lorentz group are global gauge transformations and gauge transform 

the electromagnetic field tensor in the following way 

(3.4) 

Hence if Fab is a solution of Maxwell's equations then Fed is also a solution (since it is the 

same solution but in different coordinates). 

In general gauge theory is the study of connections on vector bundles with the action of Lie 

groups. A choice of gauge in a space-time provides an element of the bundle at each point 

in a manifold. A gauge can thus be seen as a section though the bundle which associates 

a unique point in the bundle with a unique point on the base manifold. A gauge trans­

formation is a transformation between two sections. Gauge theory provides an abstract 

mathematical description of various different Yang-Mills fields such as the strong and weak 

nuclear forces. 

We now introduce some of the key concepts for Yang-Mills theory. 
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The bundle 

Definition 3.1 A bundle is defined to be a triple (P, II, M) where P and M are topological 

spaces and II : P --7 M is a continuous map. The space P is called the bundle space of the 

bundle. M is the base space of the bundle. The map II is the projection and the inverse 

image II-I({x}) is the fibre over x E M. 

We note that in all existing applications in physics the bundles that arise have the special 

property that the fibres II-I ( { X } ), x EM, are all homeomorphic to a common space F 

known as the fibre of the bundle. These bundles are said to be fibre bundles. 

Definition 3.2 If G is a Lie group then a right G-space is a manifold P equipped with an 

action by G in such a way that any g E G acts on P on the right. 

Definition 3.3 A bundle (P, II, .A1) is defined to be a G-bundle if P is a right G-space and 

if (P, II, M) is isomorphic to the bundle (P, p, PIG) where PIG is the orbit of the space of 

the G-action on P and p is the projection p: P --7 PIG. 

'" f2 't- n A Tf.F't t f 7 Tlf1 (nTT 715\' 7'-' 1,1 •• IF"Yl 71 veurll Ion .:>.'± 1/ u ac s reelY on r men r, 11, lVl) 'is afJmea TO De a pnnczpat u-ounale, 

and G is then called the structure group of the bundle. 

Let (P, II, M) be a principal fibre bundle over the manifold M with structure group G and 

projection II : P --7 M. Given x E M then II-I (x) is a closed submanifold of P which is 

diffeomorphic to G and is called the fibre at x. The group G acts freely on P on the right 

R:PxG --7 P 

(u,g) H- ug=Rgu (3.5) 

For every open ball U E M we can look at II-I (U) E P. There exists a homeomorphism ¢ 

which takes II-I(U) to U x G which is part of the product bundle space (M x G) which 

we call the trivial bundle. 

We define a Yang-Mills theory to follow from a functional of the form 

1= r pi bFjab d4x (3.6) JM Ja 2 

where P]ab is the curvature 2-form of a principal fibre bundle with arbitrary Lie fibre group, 

G. 
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For our description of Yang-Mills theory we will take P to be a principal, SU(2)-bundle over 

Minkowski space M. The use of the Lie group SU(2) provides a special case for Yang-Mills 

theory but it has all the features of more general gauge groups (e.g. it is non-Abelian) so 

we use it as an illustration and a vehicle for showing concrete calculations. 

The connection 

From Chapter 2 we already understand the concept of a gauge independent connection 

I-form on the bundle LM 

f!d.p : Tp(LM) -+ gl(4,lR) (3.7) 

where p ELM. 

In Yang-Mills we have the connection I-form Aq on the bundle P 

(3.8) 

where q E P. 

We can now choose a gauge a (also known as a section) through the bundle 

a:M-+P (3.9) 

noting that II· a : M -+ 1\1 is the identity map on the manifold but a . II : P -+ P is not the 

identity map on the bundle. This arises because a is injective and II is surjective (neither 

are bijective). 

The pushforward of a is given by the derivative of a 

(3.10) 

for any x E M. If X E TxM then we can define a* Aq, the pullback of a on Aq) in terms of 

the pushforward 

(3.11) 

Using the gauge a we can now define the gauge dependent connection I-form A on M. 
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Definition 3.5 The pullback of (j acting on the gauge independent connection i-form Aq 

is defined to be the gauge dependent connection i-form A, with elements taking values in 

the Lie algebra su(2), such that 

A : TxM ---+ 3u(2) 

X a ---+ (A(X))j=xaA~a (3.12) 

From here onwards reference to the 'connection I-form' always pertains to the gauge de­

pendent connection I-form, unless otherwise stated. 

We now consider a Lie group valued function 3 such that 

3 : M ---+ SU(2) (3.13) 

Vie use 3 to make a gauge transformation on (j to a new gauge 0- in the following way 

(3.14) 

In this new gauge we now define a different connection I-form on M 

0-* A = A (3.15) 

As a consequence of (3.11), (3.14) and (3.15) we nOw have a relationship between A and A, 

given by 

(3.16) 

Two connection I-forms A and A are gauge equivalent if there is a gauge transformation 

3: M ---+ SU(2) such that for all x E M (3.16) is satisfied. More explicitly 

(3.17) 

In the future we will shorten this and similar expressions to A~a = (3- 1 )iA~a3~+( 3-1)i (ds )Ja 

or just A = 3-1 A3 + 3-1d3 and remember, when omitting x, that gauge transformations 

vary with position on the manifold. 
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We now consider the exterior covariant derivative D = d + A, as given in [23] (note, 

in accordance with the custom in Pure Mathematics, D is referred to as the connection 

in [23]). Here d is the exterior derivative of the space-time part and A is the Lie algebra 

valued connection 1-form. The exterior covariant derivative acts on some Lie algebra valued 

scalar a~ in the following way. 

Dai 
J 

or (Da)ja 

and acts on a Lie algebra valued p-form fJjal ... ap like 

The curvature 

We can now define the curvature 2-form in Yang-Mills. 

(3.18) 

(3.19) 

Definition 3.6 The curvature 2-form F on M has elements which take values in su(2) 

and is antisymmetric on its spacetime indices 

(3.20) 

and is defined by its relation to the connection i-form as given by 

F DA= dA+ [A,A] 

or 

A i Ai Ak Ai Ak 2 j[b,a] + ka jb - kb ja (3.21) 

Note that this has the analogue R a
bcd 2fb[d,c] + f~cfbd - f~drbc in General Relativity. 

An important feature of the curvature F is that it transforms homogeneously under a gauge 

transformation (unlike the connection A). 

Lemma 3.7 If F = dA + [A, A] and P = dA + [A, A] and A and A are gauge equivalent, 

then P = s-l Fs. 
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Proof 

F dA+ [A,A] 
Ai Ai Ai Ak Ai Ak 

Ajb,a - Aja,b + Aka Ajb - AkbAja 

(( -l)i Ak I (-l)i k ) ((. -l)i Ak I (-l)i k ) 
S k IbSj + S kSj,b a - S k laSj + S kSj,a b , , 

(( -l)i Am n (-l)i m) (( -l)kAP q (-l)k P ) + S m naSk + S mSk,a S P qbSj + S pSj,b 

(( -l)i Am n + (-l)i m) (( -l)kAP q+ ( -l)k P ) - S m nbSk S mSk,b S P qaSj S pSj,a 

( -l)iAk I (-l)iAk 1+( -l)iAk An 1 (-l)iAk An I 
S k lb,aSj - S k la,bSj S k na IbSj - S k nb laSj 

o 

Hence F is homogeneous under a gauge transformation. 

(3.22) 

Corollary 3.8 Connections that have zero curvature in one gauge transform to connections 

that have zero curvature in another gauge. We call these connections, flat connections. 

The action in Yang-Mills theory is given by 

(3.23) 

where * is the Hodge star operator as described in [31]. Since F transforms homogeneously 

we know that the Yang-Mills action is gauge-invariant. In index notation we can rewrite 

(3.23) as 

I = ~ r Fi F jab d 4 
4 ) M Jab 2 X 

Minimising the action gives the source free Yang-Mills equations D * F = O. 

The electromagnetic action 

(3.24) 

I = 1M FabFabd4x (3.25) 

is one specific example of the Yang-Mills action of (3.24) for which the gauge group is U(l). 

The Yang-Mills equations are then simply y. F = 0 which is equivalent to the Maxwell's 

equations 

Y·E 0 and yxB=E (3.26) 

where B is the magnetic field, E is the electric field and E is the derivative of E with 

respect to time. 
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3.1 The holonomy method in Yang-Mills 

We now set out the general method by which we establish the existence of limit holonomy 

around a weak singularity in Yang-Mills theory. Note that our terminology differs from that 

in [39] where holonomy is treated as being the conjugacy class [Jr J of phase factors Jr. This 

is the gauge invariant approach. We will simply consider Jr to be the holonomy but bear 

in mind that this holonomy will change depending on what gauge we are in. As we shall 

show later, if a connection A has holonomy Jr (forming the conjugacy class [Jr ]) , then if 

we gauge transform A, the new holonomy will also be conjugate to Jr and thus will be in 

the same conjugacy class [JrJ although the holonomy itself will not necessarily be Jr' 

Conditions on the connection and curvature 

We first discuss the geometry of the space in which we carry out the method and then give 

some preliminary conditions on the curvature and connection forms. 

The manifold M we are to work with is 4-dimensional with a 2-dimensional smoothly 

imbedded, timelike, orientable, connected singular set ~ E :AI. 'l';e let coordinates on the 

singular 2-surface be ('IL, v). For each point on the singularity we then look at flat space-like 

2-planes which are normal to the singularity at that point. 

N 
" " 
~ .- ':; --........-

} 1 

~~~~-{ 
I 
i 

~)~LO 
Nr:/ ~. ______ \\ jf 

Figure 3.1: A diagram showing the singularity 2:;, the E-neighbourhood N, a point on the singularity 2:;0 

and the disk No which is normal to I; at 2:;0. 

Since the singularity is not necessarily a plane we must ensure that our normal planes, for 

each point on the singularity, do not intersect. For this purpose when we look at normal 
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planes to the singularity we do so only within a ball of radius E, where E is sufficiently small 

that the normal plane does not intersect other normal planes (normal at different points on 

the singularity) within the ball. We label this E-neighbourhood of the singularity, N. For E 

sufficiently small, N is locally a product of 2:: with a normal disk (see Figure 3.1). We then 

look at a given point on the singularity 2::0 and its corresponding small disk No which lies 

in the plane normal to 2:: at 2::0. Since the metric on this 2-plane is flat and positive definite, 

there exist coordinates such that the metric is given by 

(3.27) 

and so points on the normal plane to each point on the singularity are given by the polar 

coordinates (T, e). 

We let X N\2:: and Xo = No \2::0 . 

We require A E Li loc(X) as one of our conditions and call such a connection a 'Sobolev , 

connection'. As shown in Chapter 2, A E L~ lAjX) means that yo: A is a measurable function 
- , .... , ... v ...... - , 

for all 0 ::; lal ::; 1 and for all compact subsets C of X we have from (2.53) 

1 

IIA~aIILi,IOC(X) = (1 ~ Iva A~aI2dO")"2 < 00 

c 0::::: 1 al::::: 1 

(3.28) 

We also demand that the curvature 2-form F belongs to L2(N), which is equivalent to the 

requirement that the Yang-Mills action I is finite. Note that F E Lroc (X) is an immediate 

consequence of the formula F = dA + [A, A] and using the Sobolev imbedding Li -+ L4 

on A E Li,loc(X) (see Appendix B.l and [1]). However we also require the stonger global 

condition FE L2(X) (not simply Lroc(X)) in some of the proofs and so we impose this as 

an additional requirement. 

Holonomy around the singularity 

We now find the holonomy around the singularity. 

We take a particular point on the 2-dimensional singularity and consider the normal (T, e) 

plane. \tVe look at the singularity and a closed path given by IT (e) in the manifold, starting 

at a point x E ]R4. The path encircles the singularity at distance T. As e increases we move 
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along the path. Ir (and later also Ar , fLr and gr) is an object that depends on r, but r is 

fixed unless otherwise stated. 

We consider the bundle above the manifold which is locally SU(2) x Xo where each point 

in the bundle represents an element of the Lie group SU(2) at a point in the manifold Xo. 

The global structure of the bundle may be more complicated but since we are only looking 

at an open ball around a singularity, we need only consider local structure. A projection, IT, 

takes points in SU(2) x Xo to Xo. The projection discards information about the element 

leaving only its position. The fibre above y E Xo is the set of all points a E SU(2) x Xo 

such that IT(a) = y. The fibre represents all possible SU(2) group elements at a point in Xo. 

We let Ir(e) be the projection of a particular path Ar(e) in SU(2) x Xo which describes the 

parallel propagation of a basis element Ei. The path Ar (e) contains not only the informa­

tion of the position of the path Ir (e) in the manifold but also the information of how the 

element is propagated around this path. 

Now consider a reference section (or gauge choice) through SU(2) x X o, passing through 

the point Ar(O) which projects down to x E Xo. On this plane we draw, starting at Ar(O), 

the closed path which projects down to Ir and we shall call this path fLr (e). Since fLr (e) is 

a closed path, we know that fLr(O) = fLr(27f). Note also that /-Lr(e) and Ar(e) both lie on the 

same fibre above Ir (e) for each e. 

There is a gauge transformation 9 : M ----7 SU(2) such that for each e we have gr(e) E 

SU(2) : SU(2) ----7 SU(2), that takes fLr(e) to Ar(e). i.e. 

Ar(e) = Rgr(e)fLr(e) 

Since fLr (0) = Ar (0) we have gr (0) = I. 

(3.29) 

We now wish to establish a first order differential equation for the gauge transformation 

gr(e) in terms of the connection I-form A. The solution of this equation at e = 27f will give 

us the holonomy around the singularity. 

Let la(s) = (r,s,'Uo,vo) be a closed path in the manifold around a point on the singularity 

('Uo, vo) at a fixed distance r. We consider a point in the fibre, E. The gauge transformation 
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gr takes E to the point E, where E is the result of parallel propagation of E along the path 

,. We have 

Since we are applying parallel propagation we have 

where 

We now evaluate (3.31). 

Which we can write as 

DT(gf E k ) 

(DTgf)Ef; + gfDTEk 

TCEkDcgf + gfTCDcEk 

T CEa k + kTcAj Ea kgi,c gi kc j 

KCEa k KC kAj E a 
Ue kgi,c + uegi kc j 

E a k + kAj E a 
kgi,e gi ke j 

E - 1l Ea k kAj EaE-11 
a kgi,e + gi ke j a 

dgr de + Aegr = 0 

since gr for fixed r depends only on e so ¥e = fJ!e. 

(3.30) 

(3.31) 

(3.32) 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 0 (3.33) 

(3.34) 

Since fLr(O) Ar(O), our initial point is the identity and we have the initial value problem 

(3.35) 
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the solution of which would be obtained by finding the integral of a path ordered exponen­

tial as given in [55]. 

The transformation taking the initial point at e = 0 to the final point at e = 21f is the 

holonomy which we now define as gr(21f) = Jr. If it exists, the limit holonomy JD of the 

singularity is the limit as r tends to zero of Jr. 

Later in this chapter we shall prove that this limit holonomy exists for the given conditions 

on the connection and curvature. 

Properties of holonomy 

The proofs of the two critical theorems in this chapter rely on various properties of holon­

o my, connections and, in particular, flat connections which we include below as lemmas. 

We first define conjugacy for a group G. 

Definition 3.9 Two elements a and b oj G are conjugate ij there exists some c E G such 

that a = c 1bc. 

We would like to show that [Jr ], the conjugacy class of Jr , is gauge invariant and we express 

this in the following lemma. 

Lemma 3.10 Ij gr and 9r are two solutions oj (3.35), jor gauge equivalent connections 

D =d+A and iJ =d+A, then gr(21f) and 9r(21f) are conjugate in SU(2). 

Proof 

We let s : Xo ---+ SU(2) be the continuous gauge transformation between A and A. The 

connection A in the new gauge is given by A = s-l As + s-lds. We are always taking gauge 

transformations at different points on the same path I and so we shall simplify s (I( e)) to 

just s(e). Since Ir(O) = ,r(21f) we have s(O) = s(21f). (3.35) now becomes 

d9r (-1 -1 dS) A () I de + s Ae s + s de gr = 0 9r 0 = (3.36) 

Now, substitute the function gr(e) = s(e)9r(e)s-1(O) into (3.35) 
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-1 ds 0 dfJr -lA 0 

s degr + de + s esgr o 

dgr (-1 -1 dS) ~ 
de + s Ae s + s de gr o (3.37) 

and so s(e)gr(8)s-1(0) solves (3.35) in the original gauge. Hence, by uniqueness 

o (3.38) 

We note that Lemma 3.10 holds if A is related to A by a 'weak' gauge transformation 

s E L~ lac' which need neither be smooth nor continuous [39]. Hence if A is weakly gauge , 

equivalent to a connection A for which [J] has a limit, then the limit holonomy for A also 

exists and belongs to the conjugacy class [J]. 

We now wish to show that if the connection were fiat, then the conjugacy class of the 

holonomy, [Jr ], would be a homotopy invariant and hence independent of r. 

Lemma 3.11 If D =d + A describes a fiat connection then the associated conjugacy class 

of the holonomy is homotopy invariant. 

Proof 

The proof shall consider three cases. 

Case 1 

We look at two homotopic closed paths around the singularity, 11 and 12, which start 

(and hence finish) at the same point. We wish to show that for a fiat connection, the 

holonomy generated by these loops are the same. The holonomy of a closed path is related 

to the exponential of the integral of the curvature over the region enclosed. Since each path 

encircles the singularity, where the curvature is undefined, we instead look at the region 

enclosed by the path 12111' This region does not encircle the singularity and so the integral 
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of the curvature over this path is zero. Therefore the exponential is the identity and hence 

we have, where Hol(E(O, 1'1)) is the rotation generated by parallely propagating a frame 

around 1'1 

(Hol(E(O,1'2)))-lHol(E(O, 1'1)) = I ===? Hol(E(O,l'l)) = Hol(E(O, 1'2)) (3.39) 

and hence the holonomy of a loop does not change when the loop is continuously deformed 

as long as the two loops share a point. 

Case 2 

Let us consider two loops A and B around a singularity which do not intersect each other. 

We take a loop C around the singularity with the particular feature that it intersects A and 

B in exactly one place each. :From Case 1 we know that loop A has the same holonomy up 

to conjugacy as loop C and likewise that loop C has the same holonomy up to conjugacy 

as loop B. Hence A and B have the same holonomy up to conjugacy. 

Case 3 

We must also consider the case where two loops A and B around a singularity intersect 

each other in multiple places. Once again we choose a third loop C around the singularity 

which does not intersect either loop. Now from Case 2 we know that A and C have the 

same holonomy up to conjugacy and also from Case 2 we know that Band C have the 

same holonomy up to conjugacy. Hence A and B have the same holonomy up to conjugacy. 

These three cases combined show that if we have a fiat connection then the conjugacy class 

of the holonomy is homotopy invariant. 0 

Lemma 3.12 There is a unique correspondence between conjugacy classes of holonomy 

and fiat connections. 

As we have shown before, conjugacy classes of holonomy are conjugacy classes in SU(2). 

For positive values of e we can uniquely describe conjugacy classes in SU(2) by their trace 

(since the other matrix invariant is the determinant, which is always one) which will be 
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between -2 and 2. To uniquely describe anyone conjugacy class in SU(2) we use its diagonal 

representative of the form 

(e-;im e2~im) mER (3.40) 

The prototype of the fiat connection is given by 

0) A . de = mide 
-zm 

(3.41 ) 

where 

(3.42) 

We now solve (3.35) with Ae = A~ = mi to get 

( 

e-ime 
gr = 

o 
(3.43) 

, 

We know from Lemma 3.11 that the solution of (3.35) is homotopy invariant for fiat bundles 

and so in this case gr(e) = g(e). Hence the holonomy ofthe prototype of the fiat connection 

is 

g(27r ) (C;im e2~im) (3.44) 

which is equal to the diagonal representative of the conjugacy dass given by (3.40). Note 

that two different values of m which are separated by integer values, will yield the same 

diagonal representative. Hence there is a unique correspondence between fiat connections 

(modulo 1) and conjugacy classes of holonomy. D 

Lemma 3.13 If m1 = m2 + n, nEZ, then there exists a gauge transformation 9 such that 

g-l A;g + g-ldg = A~ where 

AD-1-

45 

(3.45) 



Proof 

Take 

( 

eine 
g(e) = 0 (3.46) 

Since 9 and A~ are diagonal, g-lA~g = A~. So gauge transforming A~ with this g(e) it 

follows that 

A~ + g-ldg C:' 0 
) dB+ ( c~ne 0 ) ( in:

n

, 

-im2 eine _in~-ine ) de 

[ C:' 0 

) + C: -~n) 1 de 
-~m2 

( i(m'o+n) 0 
) de 

-i(m2 + n) 

= A~ (3.47) 

and hence A~ and A~ are gauge equivalent. 0 

VVe note that since n is an integer, we have 

g(27r ) (e':nn e-~inn) 
I (3.48) 

Lemma 3.14 If m is an integer then D is gauge equivalent to d. 

Proof 

From Lemma 3.13 we know that Ai and A~ are gauge equivalent and hence so are Dl = 

d + A~ and D2 = d + A~. Since ml is an integer we can choose n to be ml also and hence 

m2 = O. 
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, ( iO 
===} A; = 0 o ) de = Q 

-iO 

Hence D2 = d. Therefore Dl = d + A~ is gauge equivalent to d. 0 

(3.49) 

From this it can be seen that, locally, fiat bundles can be indexed by m, which we shall call 

the holonomy number, belonging to the finite interval 

O::;m<l (3.50) 

Lemma 3.15 If f(271) and h(271) are two conjugate elements of a group and f(O) 

h(O) = Id then there exists a continuous periodic k(e) in the group such that f(e) 

k-l(e)h(e)k(271) which provides the conjugacy at e 271. 

Proof 

Since f(271) and h(271) are conjugate, we know that there is an element of the group a 

such that f(271) = a- 1h(271)a. Now let a be the specific value for the group element k(e) 

when e = 271, so a = k(271). Since we have k(271) = h(271)k(27r)f-l(271), we now define 

k(e) for each value of e as k(e) = h(e)k(271)f-l(e). Since h(O) = f(O) = Id we know that 

k(O) Idk(271)Id- 1 k(271) and so k is continuous and periodic. 

Lemma 3.16 Let D = d + A be a fiat connection with holonomy m. There is a gauge in 

which' D d + AD where 

(
im 0 ) 
o -im de 

(3.51) 

Proof 

From Lemma 3,12 we know that the holonomy g(271) of the fiat connection A will be conju-

gate to the holonomy gD (271) , of the prototype of the fiat connection 
( 

e-27rim 0 ) 

o e 27rzm 

AD. From Lemma 3.15 we know that the conjugacy is provided by a continuous periodic 

k(e) such that gD(e) = k-l(e)g(e)k(271) which we rewrite as 

(3.52) 

remembering that the non-constants are functions of e. 
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For our original flat connection A we have ~ + Aeg O. Using (3.52) we now get 

(3.53) 

Since l is the solution for the prototype of the flat connection 

o (3.54) 

we have by uniqueness 

(3.55) 

Hence there exists a gauge transformation k, which takes a flat connection A to the proto­

type of the flat connection AD. 0 

We have now established important lemmas concerning flat connections and holonomy but 

we have yet to show that the limit holonomy given by limr-+o Jr = JD exists. The aim of 

the next section is to be able to state that 

"limr-+o[Jr] = [J] exists for almost all P E 2:, and is independent of P." 

3.2 Existence of limit holonomy 

The theorem below gives sufficient analytic conditions for the limit holonomy condition to 

be satisfied. 

Theorem 3.17 (Sibner and Sibner) Let N be a normal E-neighbourhood of the 2-dimensional 

submanifold ~ of a 4-manifold M. If D =d+A with A E Li loc(N\2:) and F E L2(N) then , 

locally! there is a gauge in which the components of A have a limit in ~ with! in particular! 

Ae -+ mi almost everywhere. The holonomy limit of D at:S exists and is independent of 

the normal plane to the singular 2-surface. 
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Overview of proof 

There are three key statements we wish to prove. 

A) There exists a gauge such that Ae -+ (im 0 ) as r -+ O. 
o -im 

B) The limit holonomy exists at Ii. 

C) The limit holonomy is independent of the point at which we take the normal plane to 

the singularity. 

We first gauge transform the connection into the radial gauge where Ar = O. We then 

look at the e component of A and show that liIDr-+o Ae = Ce where C = Cede is a fiat 

connection. We know from Lemma 3.16 that any fiat connection is gauge equivalent to 

another fiat connection 

b \( im A = 
o 

o 
for some 0 ::; m < 1 (3.56) 

-zm 

and m classifies the gauge equivalence class. So there is an s such that s-lCs + s-lds = AD 

and since C and AD depend only on e, so too does s. We then gauge transform A with s to 

get A = s-l As + s-lds. We know that since s only depends on e 

and 

lim Ae de = lim (s -1 As + S -1 ds) = AD 
r-+O r-+O 

ds 
de 

(3.57) 

(3.58) 

~:C:n~t::t t:::::~:::S:O:~~:: ::c:h:~:d~~ :"r:d ~~: r~e rt:n:formU,g using 
DA 

gr solves (3.35) for D = d + A and gr is the solution for iJ = d + A. Since D is gauge 

equivalent to jj we can apply Lemma 3.10 to show that 9r(27r) = Jr and gr(27r) 

conjugate in SU(2). We know that gr(27r) = Jr depends only on jie and having shown that 

limr-+o Ae = AD we can then apply Lemma 3.12 to deduce that limr-+o Jr = J exists. Since 
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Jr and Jr are conjugate, we know that [Jr 1 = [Jr 1 and hence that limr-to [Jr ] = [J] exists. 

DB 

Having established a limit holonomy for one point P on the singularity, we then show that 

this limit does not change if we choose a different point on the singularity, say P'. We first 

change the coordinates on the singularity so that P and pI both lie on the line v = vo. 

We then show that the difference between the holonomy at P and the holonomy at pI is 

bounded by an expression which we know tends to zero as r tends to zero. Hence the limit 

holonomy is independent of the point at which we take the normal plane to the singularity. 

DC 

The detailed proof of Theorem 3.17 has a direct analogy to the proof in the GR case and 

so is included in Chapter 4 but not here. 

3.3 Similarities to a fiat connection as r -+ 0 

In this section we bring together ideas needed for the second main result of [39]. vVe first 

consider the set of connections AP where p 2:: 2 

AP = {D = d + AlA E Li,IOC(XO) andF E LP(No)} (3.59) 

In the previous section we have demonstrated the existence of limit holonomy for D E A2. 

It follows from Theorem 3.17 that if D E AP then 

"A limit holonomy exists and is given by the real number m as shown in (3.50)". (Hm) 

We call the above m-dependent holonomy condition (Hm). If we know that (Hm) is satisfied 

for a connection in AP then we can find a prototype of the flat connection AD = mide which 

shares the same holonomy. 

We introduce a new space Lf:r where Y is a flat connection. A I-form ( is in Ltc if 

11(IILi y = II(IILP + IIVy(IILP = I!(IILP + Ild( + [(, Ylil < 00 (3.60) 

We now give the main result for this section. 

Theorem 3.18 (Sibner and Sibner) There exists a constant k > 0 such that, for D E 

A2 with IIFIIL2(No) < k there is a real number m (with corresponding fiat connection AD 
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mide) and a gauge in which D =d+A with A-AD E Li,A' (No). Moreover, for some constant 

C, 

(3.61) 

We already know from Theorem 3.17 that locally there is a gauge in which the components 

of A have a limit at the singularity with Ae ---+ mi almost everywhere. Theorem 3.18 states 

that the Li,Ao (No) norm of the difference between the connection A and the flat connection 

AD is less than or equal to a constant multiplied by the L2 norm of the curvature F. By 

taking the curvature over smaller and smaller regions around the singularity we can make 

this term go to zero. Hence on approach to the singularity we find that A tends to AD. In 

other words, for any given connection, there is a gauge in which this connection is, near 

the singular 2-manifold, asymptotic to a flat connection AD = m1,de. This is stronger than 

the statement from Theorem 3.17 since it involves all the components of A (not just the e 
component) . 

All connections in AP have a holonomy number m, telling us which conjugacy class the 

holonomy of the connection belongs to. Since all these connections with corresponding m 

are asymptotic to the same AD, the holonomy number m E IR provides a useful way to 

classify connections in AP. 

We now define A~,k' a subset of AP, to be used in the proposition below. 

(3.62) 

The main technical result of this section is 

Proposition 3.19 Let p > 2. Then there exists k and c, and an explicit fiat connection r 
with holonomy m, such that if D E A~,k' then there exists a gauge in which D =d+A and 

(3.63) 

In Chapter 4 we will then show how Proposition 3.19 leads on to Corollary 3.20: 

Corollary 3.20 Let p > 2. There exists a gauge in which D =d+A E A~,k with A - AD E 

Li AD (No) and , 

(3.64) 
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As shall be demonstrated in Chapter 4, from Corollary 3.20 we can then show Theorem 

3.18. 

Overview of Proof of Proposition 3.19 

To prove Proposition 3.19 we will need to show that there does exist a flat connection 

such that in a particular gauge the inequality in (3.63) is satisfied. We now provide a brief 

overview of the proof. Once again, the proof of Proposition 3.19 has a direct analogy to the 

proof in the GR case and so the details of the proof are included in Chapter 4 but not here: 

For open balls Eex we can perform a gauge transformation such that in these balls the 

following properties hold for the gauge transformed connection I-form A ex. 

(3.65) 

(3.66) 

(3.67) 

We call this gauge the Coulomb gauge for short since (3.65) is the Coulomb property for 

differential forms. 

Vie construct a composite gauge transformation 9 using cutoff functions such that in two 

overlapping balls which are adjacent in the e direction the transformation 9 will continu­

ously change from the gauge transformation which makes A Coulomb in one ball to the 

gauge transformation which makes A Coulomb in the other. The composite gauge transfor­

mation is the result of a careful composition of many gauge transformations, the first acting 

on all balls except the first and then each successive one acting on smaller and smaller re­

gions going around the singularity. 

Note that this gauge transformation does not patch together the gauge transformation 

needed to make A Coulomb in the last ball and that needed to make A Coulomb in the 

first ball and so is not continuous at e = 0 = 27f. Hence the composite gauge transforma­

tion is non-global. We look at the gauge transformation which bridges the discontinuity. 

We take the Coulomb connection at e = 0, undo the gauge transformation that made the 

connection Coulomb in the first ball and then make the gauge transformation that makes 
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the connection Coulomb in the final ball. We call this gauge transformation s. 

The complete non'-global composite gauge transformation will also patch together overlap­

ping balls in the radial direction and in both directions spanning the singular 2-surface. In 

this new gauge A will either be Coulomb or 'close' to Coulomb everywhere, the 'closeness' 

being bounded by a cutoff function and its derivatives. 

We know from Theorem 3.17 that the limit holonomy of D = d + A at the singularity 

exists. If we have a global gauge and the origin is a regular point then the limit holonomy 

is trivial. In our case we start with a global gauge and a singular origin. We use Taubes' 

theorem (and property 1. above) to establish that limr-+o s = So exists. 

We have shown earlier in this chapter how we can use parallel propagation to establish a 

non-global composite gauge in which the limit 'jump' is the limit holonomy. We will call 

this the holonomy gauge. We will force our new non-global composite gauge to look like 

the holonomy gauge in the limit as T tends to zero. Hence they will have the same limit 

'jump'. Since the limit as T tends to zero of the jump in the holonomy gauge is the limit 

holonomy, we know that the limit as T tends to zero of the jump in the composite gauge is 

also the (same) limit holonomy. Hence the limit holonomy for the connection A is So. This 

is proved by first showing that So is the limit holonomy of a constant flat connection AXl 

and then showing that Aoo and A have the same limit holonomy. 

Also from before we know that any flat connection is gauge equivalent to Ab = m~de for 

some m E llt We say that our flat connection has holonomy number m. 

To get the final requirement to show (3.63) we must first, before applying the gauge trans­

formation g, have changed to a radial gauge (so Ar = 0) and we can then find that we have 

a bound on IIA - AooIILq. 

One final obstacle to proving Proposition 3.19 is that we require that our composite gauge 

transformation be global. We use another cutoff function to make the composite gauge 

transformation continuous and periodic and hence global. Since we are now using a differ­

ent global gauge transformation, some more calculations are required before we establish 

the final result that 11.4 - filLi r(Nol :s; cliFIILq. Then since D E A~,k we have proved 
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Proposition 3.19. 

Chapter summary 

In this chapter we have introduced Yang-Mills gauge theory and explained the concepts of 

limit holonomy in this context. We gave the important definitions and lemmas which are 

crucial for the proofs of the two main theorems of Sibner and Sibner [39]. The proofs are 

summarised but we delay giving all the details of the proofs until the next chapter, where 

the analogous results are established in the context of General Relativity. 

The purpose of this chapter has been to show that for certain 2-dimensional singularities, 

with connection in Li,lOC(X) and curvature in L2(N), a limit holonomy exists which is the 

same at all points on the singularity. We then went on to show that the connection tends in 

Li AD (X) to that of the prototype fiat connection Ab. In the next chapter, the latter result , 

will be the key to showing that the metric of a weak singularity tends to that of a conical 

metric. 
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Chapter 4 

Weak Curvature Singularities in 

General Relativity 

In Chapter 2 we have discussed quasi-regular singularities. These are singularities that have 

the particular feature of curvature tending to a limit in a parallely propagated frame. It has 

been shown that the holonomy around a 2-dimensional timelike quasi-regular singularity 

can be calculated and then used to establish a distributional value for the curvature at the 

singularity [49]. 

In this chapter we wish to find a holonomy method for weak curvature singularities for 

which curvature can be unbounded on approach to the singularity, but has the particular 

constraint that the curvature is in L2, i.e. the integral of the square of the modulus (as 

given in Chapter 2) of the curvature is bounded. In the previous chapter we demonstrated 

a holonomy method used in Yang-Mills theory [39] where we had the corresponding con­

straint that the curvature is in L2. We now wish to apply this holonomy method from 

Yang-Mills to a method for General Relativity to be applied to weak singularities. 

We will look at 2-dimensional timelike weak singularities given by 2:. As in Chapter 3 we 

will first show that there exists a limit holonomy. We will also show that this limit holonomy 

acts in a surface transverse to the singularity. The second main theorem of the chapter will 

show how, in the limiting case, the connection tends to that of the flat 4-dimensional cone, 

as used to model such quasi-regular singularities. In addition we find that the metric also 

tends to that of the 4-dimensional cone. 

In Chapter 5 we will go on to show that these findings enable us to compare weak curvature 
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singularities with quasi-regular singularities. Methods used by \iVilson and Vickers [49, 55] 

for quasi-regular singularities (based on Colombeau algebras) can then be applied, enabling 

us to find distributional curvature of weak curvature singularities. 

The usual way of describing a space-time is to look at how a metric describes distance 

between points, located by a choice of coordinates. Instead of thinking of tensors in a coor­

dinate basis we can look at tensors with respect to an orthonormal frame. Instead of using 

the metric to derive the Christoffel connection, we find the Ricci rotation coefficients (see 

Appendix A.2), again using a frame. This gives us a local description of the connection on 

the frame bundle and hence a description of GR as a gauge theory on the frame bundle, 

with the Lorentz group as fibres. This way of thinking allows comparisons between GR and 

Yang-Mills theory and is our first step to using [39] to understand weak curvature singu­

larities in G R. 

Let t be the time coordinate corresponding to the static Killing vector T so that the hy­

persurfaces which are orthogonal to T are given by t equal to a constant. Let L;to be the 

intersection of L; with the hypersurface t to. Then L;to is a curve in a 3-dimensional space. 

We now introduce cylindrical polar type coordinates (r, a, z) in a neighbourhood of L;to on 

the 3-dimensional space such that z is a coordinate along the singularity, r gives the radial 

distance from the singularity and a is an angular coordinate. The precise definition is given 

below and is similar to that of Unruh et al. [46], who also looked at a class of singularities 

for which the curvature was unbounded but only diverged slowly. 

We let z be some coordinate such that the z =constant surfaces are transverse to L;to, so 

that z parameterises points on the singularity (see Figure 4.1). We now look at a fixed 2-

surface S(to,zo) , given by t = to =constant and z = Zo =constant. We let r give the geodesic 

distance of points in Zo from the singular point in S(to,zo) and we let a be a coordinate 

which is constant along such geodesics and is 27f-periodic in a. Note however, this does 

not fix a uniquely. Furthermore, for a to be well defined we need to be in a sufficiently 

small neighbourhood to ensure that geodesics are unique. This will determine the size of 

our E-neighbourhood. 

We may do this on any such 2-surface for different values of z and all we require is that 

the a coordinates fit together smoothly (that is to say if ,(f) is a smooth curve, au) is a 
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..... ....--~-----------; 1 -----.,.. 
-~ 

Figure 4.1: A diagram showing the cylindrical polar type coordinates around the singualrity ~ and the 

surface z = Zo transverse to ~. 

smooth function). 

Thus (t, r, e, z) give coordinates in the neighbourhood of the singularity so that t and z give 

coordinates that parameterise points on the singularity ('Xlhich is given by r == 0) and (rj e) 

give polar type coordinates on 2-surfaces transverse to the singularity. 

At this stage it is important that we also highlight the differences between gauge theory 

for Yang-Mills and for General Relativity. 

The bundle and connection in G R 

In Yang-Mills theory we considered a connection on an SU(2) bundle. In formulating Gen­

eral Relativity as a gauge theory we take the bundle to be OM (the bundle of orthonormal 

frames) with gauge group the Lorentz group L = 0(1,3). The analogue of the Yang-Mills 

connection I-form A~ = A~adxa (taking values in su(2)) is provided by the connection 

I-form 

i i .okd a 
Wj = Ijk'IJa X ( 4.1) 

which takes values in the Lie algebra r of the Lorentz group. Here {}~(x) are dual to the 

frames ek(x) and I}k are the Ricci rotation coefficients (see Appendix A.2 for details of this 

and Cartan's description of the connection). 
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Cartan's description provides us with many of the properties and identities involving the 

connection I-form and the Ricci rotation coefficients, which will be used later in this thesis. 

We recall from Chapter 2 an alternative description of the connection in terms of a I-form 

fo!. on the bundle OM taking values in L 

We can now choose a section 0- (also known as a gauge) through the bundle 

0-: M -+ OM (4.2) 

Let w = o-*fo!. be the pullback of fo!. under the section 0-. Then w is a 1-form on M taking 

values in ( which give the (gauge dependent) connection I-form on M. Hence w is a map 

(4.3) 

Note this is related to the definition (4.1) given by Cartan's description through 

( 4.4) 

From here onwards reference to the 'connection I-form' always pertains to the gauge de­

pendent connection I-form on M, unless otherwise stated. 

The curvature 

Instead of the curvature 2-form Fj = Fjabdxa 1\ dxb E su(2) in Yang-Mills, we now use the 

curvature 2-form D~ = D~abdxa I\dxb !R\cd{)~e~dxC I\dxd E (where R\cd is the standard 

Riemann curvature tensor. 

Definition 4.1 The curvature 2-form D on M has elements which take values in ( and is 

antisymmetric on its spacetime indices 

(4.5) 

and is defined by its relation to the connection i-form as given by 
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n = dw+ [w,w] ( 4.6) 

or 

(4.7) 

In the proofs of Theorem 3.17 and Theorem 3.18 we made use of the fact that 5U(2) is 

compact. It is important to note that the Lorentz group is not compact and it is unclear 

whether or not compactness is a requisite for the proof of these theorems. This will be the 

subject of discussion at the end of the chapter. Instead we shall, for the purposes of this 

thesis, restrict our application of the holonomy theorems to static space-times. 

The bundle and connection for static space-times 

For static space-times we know that there is a timelike Killing vector T which is orthogonal 

to a spacelike surface. We will choose an orthonormal basis adapted to this description in 

order to reduce a bundle OM to the bundle Q with gauge group 80(3) (which is compact). 

This construction is described below. 

We choose Q to consist of frames (ei) such that the zeroth vector points in the i' direction. 

If ei and fii are two orthonormal frames such that both eg = fa and eg = i'a then 

ea = LJeQ 
2 2 J 

(4.8) 

where 

1 0 0 0 

L~ = 
0 a b c 

(4.9) 
0 d e f 
0 9 h ~ 

and 

( : b 

; ) GDc e E 50(3) (4.10) 
f3 

h 

Hence we have an action 
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80(3) x Q --+ Q 

(m, e) 1-7 e (4.11) 

We therefore consider the bundle Q with gauge group 80(3). We now show that the con­

nection on OM induces a connection on Q. 

Let ef be a basis for our space-time with 79~ the corresponding dual basis. Then we can 

choose eg to be the basis vector pointing in the T direction and e~, with Q = {I, 2, 3}, to be 

the three other vectors of the basis, all orthogonal to the T direction. Since the space-time 

is static, all the hypersurfaces orthogonal to the timelike Killing vector are identical and 

we may choose 79~ to be the same for all t. Hence parallel propagation in the eg direction 

leaves the 79~ covectors fixed. Thus 

(4.12) 

From here we can proceed to show that w~ = wg = O. We start with (4.12) 

v eo 79CX 0 

==::} riO 79i 0 

o (4.13) 

where r;k are the Ricci rotation coefficients as given in Appendix A.2. We know that, 

because the metric connection is torsion free, 

(4.14) 

Hence r;k -rkj = Ckj' where C~j are the structure constants ofthe Lie algebra [22] defined 

in terms of the basis vectors, 

(4.15) 

We are interested in the term 

(~= {1,2, 3}) (4.16) 

Since we are in a static space-time we can apply the hypersurface orthogonality condition 

which shows that [eo, etJ] 0: fft and hence we can show that 
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CO(3 0 

==} 1.10 
ct 

10j 

==} IOi 0 (from (4.13)) 

==} IOi'l3i 0 

==} Wo 0 (4.17) 

From the symmetry of (A.21) we can further deduce that w~ = o. 

Since w~ = Wo = 0 the only non-zero terms in the connection are w~. Furthermore 

( 4.18) 

Thus 

(4.19) 

We now want to look at how w$ transforms under a gauge transformation. In General 

Relativity the standard symbol for the metric is 9 and so in this chapter the GR analogue 

of the gauge transformation previously denoted as 9 in Chapter 3 will be G. Hence a gauge 

transformation is a map 

G: M -+ 50(3) 

( 4.20) 

This induces a map on the frame {ej} given by the corresponding L~ through (4.8) and 

(4.9). The connection in the new frame is 

C;./ = (L-l)i wk Ll + (L-l)i (dL)k 
J k I J k J 

(4.21) 

However, Lg = 1, L~ 0, La = ° and L~,o = ° (since the space-time is static) so that 

(4.21) reduces to 

61 



(4.22) 

Hence we may regard w as an SO(3) connection on the bundle Q. From now onwards w 

will represent this induced connection on Q rather than the connection on OM. 

The curvature 

\Ale now define the curvature 2-form for our restricted bundle. 

Definition 4.2 The curvature 2-form D on M has elements which take values in 30(3) and 

is antisymmetric on its spacetime indices 

D : TxM x TxM -+ 30(3) 

(Xa, yb) f-7 xaybD~ab ( 4.23) 

and is defined by its relation to the connection 1-form as given by 

D= dw+[w,w] ( 4.24) 

or 

(4.25) 

Comparing to (4.7) we see that for a static space-time D~ = n~ = 0 and D~ are just the 

(a, (3) components of D~ab since w~ wo = O. Hence 

no: 1 Ra _00: b 
Hf3cd ="2 bcd'ua ef3 

where Rbcd is the usual Riemann curvature of the static space-time. 

4.1 The holonomy method in General Relativity 

( 4.26) 

We now set out the general method by which we establish the existence of a limit holonomy 

around a weak singularity in General Relativity. By partially following the convention in the 

previous chapter we shall label the neighbourhood of the singularity N and the complement 

of the singularity in N we shall label X (i.e. X N\~). We also relabel our transverse 

2-surface S(to,zo) as No. We define Xo = No \~(to,zo) the complement of the singular point 
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I:(to,zo) in the transverse surface No S(to 

We require w E LI,loc(X) as one of our conditions, As shown in Chapter 2, W E LI,IOC(X) 

means that yaw is a measurable function for all 0 :; lal :; 1 and for all compact subsets C 

of X we have from (2.53) 

(1 I: lyawJal2do-) ~ < 00 

c O::;l a l9 
( 4.27) 

Since we are working locally we will for convenience take the positive definite background 

metric ~ab to have line element 

(4.28) 

where (t, r, e, z) are the coordinates in the neighbourhood of the singularity introduced at 

the beginning of this chapter. However, we find that the results of this thesis are not sen­

sitive to this particular choice of positive definite metric. 

We also require n E L2(N). Note that n E Lroc(X) is an immediate consequence of the 

formula n = dw + [w, w] and using the Sobolev imbedding Lr ---+ L4 on w E LIloc(X) (see , 

Appendix B.l and [1]). However, as in the previous chapter, the proof requires the stronger 

condition n E L2(X) and so we impose this additional requirement. 

Holonomy around the singularity 

Below, with the aid of Figure 4.2 we first set out the general method by which we establish 

holonomy around a singularity in General Relativity and then show the algebra involved in 

the process. 

We take a particular point on the 2-dimensional singularity and consider the transverse 

(r, e) surface (for the diagram we suppress dimensions tangent to the singularity). We take 

a closed path Xr(e) in X o, around the singularity at distance r, beginning and ending at 

the same point x E Xo. The path Xr (and later also Ar , /-lr and Gr ) depends on r, but r is 

fixed unless otherwise stated. We shall take a frame on Xr and parallely propagate round 

the path until the location of the frame is the same, but the direction is related to the 

original by a gauge transformation. 
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We consider the bundle above the manifold (see Figure 4.2) which locally is given by 

80(3) x Xo· The global structure of the bundle is that of Q but, since we are only looking 

at an open ball around a singularity, we need only consider local structure. A projection, IT, 

takes points in 80(3) x Xo to Xo. The projection discards information about the element 

leaving only its position. The fibre above y E Xo is the set of all points a E 80(3) x Xo 

such that IT(a) = y. The fibre represents all possible 80(3) group elements (and hence all 

frames in Q) at a point in Xo. 

reference 

Figure 4.2: A diagram showing how we establish holonomy of a singularity, using the (local structure of 

the) bundle Q. 

Xr(e) E M is the projection of a particular path Ar(e) E SO(3) x Xo. This path in the 

frame bundle details the transformation of the parallely transported frame e~, indicating 

position on the path Xr (e) in the manifold and how the frame is propagated around this 

path. Vve now consider a reference section through 80(3) x X o, intersecting the point Ar(O) 

which projects down to x E Xo. A section through the frame bundle can be seen as a choice 

of gauge, with 80(3) transformations between gauges taking one section to another. On 

this plane we draw, starting at Ar(O), the closed path which projects down to Xr and we 

shall call this path /-Lr (e). 
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Since f-Lrce) is a closed path, we know that f-Lr(O) = f-Lr(2nl This path corresponds to a frame 

rotating around Xr which, on returning to x has the same direction as when it started. We 

note that f-Lr(e) and )Ae) both lie on the same fibre above XrCB) for each e. The fibre above 

y E M is the set of all points a E Q such that TIC a) y and represents all possible frame 

configurations at a point in M. 

There is a gauge transformation G : M -+ 80(3) such that for each e we have Gr(e) E 

80(3) : 80(3) -+ 80(3), that takes f-Lr(e) to Ar(e). i.e. 

( 4.29) 

J r , and the limit as r tends 

to zero of Gr (211") is JD, the holonomy of the singularity. We would like to show that the 

holonomy limit 

( 4.30) 

is well defined and this is given by Theorem 4.8. 

As in the previous chapter we now wish to set up a differential equation containing the 

gauge transformation G and the connection I-form w. 

We take an initial frame to be the basis e~, which lies on a path Xa(e) = (to, ro, e, zo) 

around a point on the singularity (to, zo) at a constant distance (ro). We look at the gauge 

transformation G which takes e to the frame e which is e parallely propagated around the 

path X- So we have 

(4.31) 

Since we are looking at parallel propagation we have 

( 4.32) 

where 

( 4.33) 
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We now evaluate (4.32). 

VT(G~e~) 

(vTG~)e~ + G~vTe~ 

In index free notation we write 

dG 
de + weG 0 

o 

o 

o 

o 

o 

o 

o 

o 

o D ( 4.34) 

( 4.35) 

Since pAO) = Ar(O) we know that the initial frame is at e 0 and so we obtain the initial 

condition G(O) = I. We now have an initial value problem which has a solution given by a 

path ordered integral. 

dG 
de + weG = 0 G(O) = I (4.36) 

Properties of holonomy 

The proofs of the two critical theorems in this chapter rely on various properties of holon­

o my, connections and, in particular, flat connections which we include below as lemmas. 

\iVe first note that the definitions of gauge equivalence and conjugacy for our connection w 

and curvature n are analogous to Lemma 3.7, Corollary 3.8 and Definition 3.9 in Chapter 3. 

We wish to show that the conjugacy class [Jr] of the holonomy Jr = Gr (27f) is gauge inde­

pendent, i.e. that the transformation from the initial element to the '27f-evolved' element 

will always have the same 'magnitude' of rotation, although the actual transformation will 
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change depending on the initial frame. 

If Gr is the solution of (4.35) for connection w, then Gr is the solution for connection w. 
Let wand w be gauge equivalent. That is to say there exists some gauge transformation 

s : X -+ Q such that w = s-lws + s-lds. Since Xr is a closed path we have s(O) = s(27r). 

In the new gauge we have 

(4.37) 

which we can rewrite using the connection of the original gauge as 

dG (-1 -1 dS) ~ de + s WeS + S de G = 0 ( 4.38) 

(4.35) and (4.38) are two equations with three unknowns (for a given s) and so any solution 

relating G with G without the W terms must satisfy both (4.35) and (4.38). If we let 

G = s-lGs(O) then (4.38) becomes (4.35) 

o 

o 

o 

o 

o ( 4.39) 

and so by uniqueness we have G = sGs-1 (0). Since we know that s(O) s(27r) we have 

and so 

(4.41 ) 

and hence we have 

Lemma 4.3 If G and G are solutions of (4.35) for gauge equivalent connections wand w 
then Jr and Jr are conjugate in 50(3); and so [Jr 1 is gauge invariant. 
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Lemma 3.11 in Chapter 3 has a direct analogy to the GR case and so is not reproduced here, 

but we recall that if the connection were flat, then the conjugacy class of the holonomy, 

[17' ], would be a homotopy invariant and hence independent of r. Hence for conical singu­

larities the holonomy does not change with distance from the singularity, because of the 

flat (local) topology of the 4-dimensional cone. However, for weak curvature singularities, 

the holonomy is dependent on position away from the singularity. 

In the next two sections we shall provide two theorems. We first want to show that if we 

let r tend to zero then the limit holonomy exists; it follows immediately from Lemma 4.3 

that if the limit holonomy exists in one gauge, then it will exist in all gauges obtained by 

smooth gauge transformations. We note (from [39]) that Lemma 4.3 still holds if wand W 

are related by a weak gauge transformation s E L~,IOc' This means that if w is weakly gauge 

equivalent to a connection w for which [J] has a limit, then [J] also has a limit. The second 

result we wish to show is that, as we let r tend to zero, we find that the connection tends 

to that of a conical singularity as measured in an LI norm. 

Flat connections and flat bundles 

Using a similar method to that given in [21] and making use of Appendix A.2, we shall now 

find the prototype for a flat conical connection I-form by starting with the line element for 

a four dimensional cone 

( 4.42) 

where 0 < A < 1 provides the angular deficit of the cone 27f(1 - A). We shall temporarily 

suppress use of space-time coordinates in our calculations and let 

where we shall choose f1ij to be the Minkowski metric Diag(l, -1, 1, -1) and {ji is the 

basis of one-forms 

{jO = dt ( 4.44) 

We wish to find the associated flat connection I-form wD and so we first establish some 

symmetries from the equation 

(4.45) 
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We find that wb~ = 0 for all i = j and that wb~ = -wbi for all i =I j =I 0 =I i. Hence the 

prototype will have the form 

0 A B C 

w
p = 

A 0 D E 

B -D 0 F 

C -E -F 0 

where each A . .. F is a I-form. It follows that d{)o = d{)l = df)3 = O. We also have 

( 4.46) 

We now use the equation d{)i = -wp~ 1\ {)k (again from Appendix A.2) and find that 

A 1\ {)l + B 1\ {)2 + C 1\ {)3 0 

A 1\ {)o + D 1\ {)2 + E 1\ {)3 0 

B 1\ {)o - D 1\ {)1 + F 1\ {)3 _!f)l A {)2 
r 

C 1\ {)O - E 1\ {)1 - F 1\ {)2 0 (4.4 7) 

Solving these simultaneous equations gives us, for some constant c 

0 0 c{)3 c{)2 

pi 0 0 _1{)2 0 
( 4.48) r 

w· 
J c{)3 1{)2 0 c{)o 

r 

c{)2 0 -c{)o 0 

From before we know that connection I-forms in static space-times are such that wg 
w~ = 0 and so we choose c O. Finally we recall that {)2 = r Ade and so we have our 

prototype for the flat connection 
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o 0 0 0 

o 0 -A 0 
de = wdB 

o A 0 0 
( 4.49) 

o 0 0 0 

Lemma 4.4 There is a unique correspondence between conjugacy classes of holonomy and 

flat connections. 

As we have shown before, conjugacy classes of holonomy are conjugacy classes in 50(3). 

Elements of the same conjugacy class for the group GL(3, lIt) have three invariants under 

conjugacy. For a matrix BE GL(3, lIt) with eigenvalues >'1, A2, A3, these invariants are 

(4.50) 

However, we are effectively using 50(3) (since the t component is unity) which has the 

two restrictions that det B = 1 and BBT =Id. To find the eigenvalues of a 3 x 3 matrix 

one must solve a cubic equation, a solution of which must be real. Since the transformation 

represented by an 50(3) element is length preserving we have that the real eigenvalue is ±1. 

If the other eigenvalues are real too, they must also be ±1. Since det B = Inv3 = I, we 

know that either Al A2 = A3 lor, without loss of generality (invariants are symmetric), 

Al = I, A2 A3 -1. In both cases Invl = Inv2. 

If the other eigenvalues are non-real then they are complex conjugate to one another, so 

the real eigenvalue is Al = 1 and the complex eigenvalues are (since AIA2A3 = 1) '\2 = eief; 

and A3 = e- i ¢. We find that once again Invl = Inv2. 

Since Inv3 = 1 and Invl = Inv2 for all elements of 50(3), we can uniquely describe a pair 

of conjugacy classes in 50(3) by their trace (which will be between 0 and 4), where one 

conjugacy class is identical to the other except has the opposite orientation (i.e. represents 
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rotations in the opposite direction). To uniquely describe anyone conjugacy class in 50(3) 

we use a representative of the form 

1 o o o 
o cos 21T A sin 21T A 0 

o - sin 21T A cos 21T A 0 

o o o 
The prototype of the fiat connection is given by 

0 0 0 

'i 0 0 -A 
wD

• 
J 

0 A 0 

0 0 0 

The solution of (4.35) where We = wD e can be found. 

0 

0 

0 

0 

1 

de 

aG} 2 
ae - AGj = 0 

o and 
aG3 

_J =0 Vj ae 

Solving these simultaneous equations shows us that G; is of the form 

Cl C2 C3 C4 

G~ = 
HI H2 H3 H4 

J 1 J 2 h J4 

C5 C6 C7 Cs 

(4.51) 

( 4.52) 

( 4.53) 

(4.54) 

where Cl ... Cs are real constants, Hi = mi sin Ae - ni cos Ae, Ji = mi cos Ae + ni sin Ae and 

mi and ni are real constants. 

We can determine all of the above constants by noting that at e = 0 we have G; =Id. The 

solution of (4.35) is 

1 0 0 0 

G~ = 
0 cosAe sinAe 0 

0 - sinAe cosAe 0 
( 4.55) 

0 0 0 1 
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It is easy to see from (4.55) that these gauge transformations represent rotations in the 

surface transverse to the (t, z) singularity. 

We know from Lemma 3.11 in Chapter 3 that the solution of (4.35) is homotopy invariant 

for flat bundles and so we can confirm that G; (e) is also independent from r. Hence the 

holonomy of the prototype of the flat connection is 

1 0 0 0 

0 cos 27r A sin27rA 0 
G(27r) = ( 4.56) 

0 - sin 27rA cos 27rA 0 

0 0 0 1 

which is equal to the representative of the conjugacy class as given by (4.51). Note that 

two different values of A which are separated by integer values, will yield the same repre­

sentative. Hence there is a unique correspondence between flat connections (modulo 1) and 

conjugacy classes of holonomy. D 

Lemma 4.5 If Al A2 + n, nEZ, then there exists a gauge transformation G such that 

G-Iw~G + G-IdG = w~ where 

0 0 0 0 0 0 0 0 

D 
0 0 -AI 0 

D 
0 0 -A2 0 

(4.57) WI= de W2 = de 
0 Al 0 0 0 A2 0 0 

0 0 0 0 0 0 0 0 

Proof 

Take 

1 0 0 0 

0 cosne - sinne 0 
(4.58) G(e) = 

0 sinne cosne 0 

0 0 0 1 

We note that G-Iw~G = w~. So gauge transforming w~ with this G(e) it follows that 
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0 0 0 0 

w~ + G-IdG 
0 0 -A2 0 

de+ 
0 A2 0 0 

0 0 0 0 

1 0 0 0 0 0 0 0 

0 cosne sinne 0 0 -nsinne -ncosne 0 
de 

0 - sinne cosne 0 0 ncos ne -nsinne 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 -A2 0 0 0 -n 0 
+ de 

0 A2 0 0 0 n 0 0 

L \ 0 0 0 0 
/ \ 0 0 0 o / J 

( ~ 0 0 

~ to 0 -AI 

~ ~ 
Al 0 

~) 0 0 

wD 
1 

(4.59) 

and hence w~ and w~ are gauge equivalent. 0 

We note that since n is an integer, we have 

1 0 0 0 

0 1 0 0 
G(21T) = de = I (4.60) 

0 0 1 0 

0 0 0 1 

Lemma 4.6 If A is an integer then D is gauge equivalent to d. 

Proof 

From Lemma 4.5 we know that w~ and w~ are gauge equivalent and hence so are DI = d +w~ 

and D2 d + w~. Since Al is an integer we can choose n to be Al also and hence Az = o. 

Therefore 

(4.61) 
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Hence D2 d. Therefore Dl = d + w~ is gauge equivalent to d. 0 

Lemma 4.7 Let D =d+w be a fiat connection with holonomy A. There is a gauge in which 

D =d+wo where 

o 0 0 0 

o 0 -A 0 de ( 4.62) 
o A 0 0 

o 0 0 0 

Proof 

From Lemma 4.4 we know that the holonomy G(21T) of the flat connection w will be con-

jugate to the holonomy 

( ~ 0 0 

~ I cD(21T) = 
cos 21TA sin21TA 

(4.63) 

l ~ - sin21T A cos 21TA 

~ ) 0 0 

of the prototype of the flat connection wO
• From Lemma 3.15 we know that the conjugacy 

is provided by a continuous periodic k(e) such that GO(e) = k-l(e)G(e)k(21T) which we 

rewrite as 

(4.64) 

remembering that the non-constants are functions of e. 

For our original flat connection w we have ~~ + weG = O. Using (4.64) we now get 

o 

o 

o 

o ( 4.65) 

Since GO is the solution for the prototype of the flat connection 

74 



we have by uniqueness 

dk 
k- 1 k+k-l I> we n de = We 

( 4.66) 

(4.67) 

Hence there exists a gauge transformation k, which takes a flat connection w to the proto­

type of the flat connection wI>. 0 

We have now established important lemmas concerning flat connections and holonomy but 

we have yet to show that the limit holonomy given by (4.30) exists. The aim of the next 

section is to be able to state that 

"lilIlr--)-o[Jr ] = [J] exists for almost all P E :E, and is independent of P." 

4.2 Existence of limit holonomy 

We now state and prove the theorem governing existence of limit holonomy. 

Theorem 4.8 Let N be a transverse E-neighborhood oj the 2-dimensional submanifold :E 

of a 4-manifold M. If w E Li loc(N\:E) and D E L2(N) then the holonomy limit exists at :E. , 

Locally there is a gauge in which the components of w have a limit at :E with, in particular 

We -+ w~ almost everywhere, where the fiat connection of the 4-d cone is given by 

0 0 0 0 

wI> = w~de = 
0 0 A 0 

de ( 4.68) 
0 -A 0 0 

0 0 0 0 

Overview of proof 

There are three key statements we wish to prove. 

A) There exists a gauge such that we -+ w~ as r -+ O. 

B) The limit holonomy exists at :E. 
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C) The limit holonomy is independent of the point at which we take the surface transverse 

to the singularity. 

'\'Ve first gauge transform the connection into the radial gauge where WI' = O. We then look at 

the e component of wand show that lilllr---+D We Ce where C = Cede is a fiat connection. 

We know from Lemma 4.7 that any fiat connection is gauge equivalent to another fiat 

connection, specifically 

o 0 0 0 

o 0 A 0 

o -A 0 0 

o 0 0 0 

de (4.69) 

and A classifies the gauge equivalence class. So there is an s such that s-lCs + s-lds = wD 

and since C and wD depend only on e, so too does s. We then gauge transform w with s to 

get W = s-lws + s-lds. We know that since s only depends on e 

(4.70) 

and 

(4.71) 

Hence, by first gauge transforming to the radial gauge and then gauge transforming using 

s we find that there exists a gauge such that We -+ w~ as r -+- O. 

DA 

Gr solves (4.36) for D = d + wand Gr is the solution for jj = d + W. Since D is gauge 

equivalent to iJ we can apply Lemma 4.3 to show that Gr (21f) = II' and Gr (27f) = Jr are 

conjugate in 80(3). We know that Gr (27f) = Jr depends only on We and having shown that 

lilllr---+D We = wD we can then apply Lemma 4.4 to deduce that lilllr---+o Jr = J exists. Since 

II' and Jr are conjugate, we know that [Jr] = [ir] and hence that limr---+o [11'] = [1] exists. 

DB 

Having established a limit holonomy for one point P on the singularity, we then show that 

this limit does not change if we choose a different point on the singularity, say P'. We first 

change the coordinates on the singularity so that P and P' both lie on the line t = to· 
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We then show that the difference between the holonomy at P and the holonomy at pi 

is bounded by an expression which we know tends to zero as '{' tends to zero. Hence the 

limit holonomy is independent of the point at which we take the surface transverse to the 

singularity. 

DC 

Proof 

The proof is divided into many steps which we shall discuss individually in detail. 

We wish to show that there exists a gauge transformation such that the radial component 

of the connection term, Wr , disappears. Let G be the gauge transformation which is the 

solution of 

dG 
dr +wrG = 0 (4.72) 

We would like to show that W E Li,loc implies that G E L~,loc' 

We have in (4.72) a first order 0 D E for the gauge transformation, but only in the r-direction. 

All the large changes around a singularity happen on approach to the singularity (i.e. by 

decreasing '{'). In the case of a flat or near flat conical singularity changes induced by deriva­

tives of the gauge transformation in the e, t and z direction are small and smooth. If we 

vary parameters smoothly then the solution will also change smoothly. Therefore we can 

assume that any gauge transformation will be bounded in the non-'{' directions allowing us 

to focus solely on proving the boundedness of G in the '{' direction. 

We are only considering the Lie algebra and Lie group valued '{'-components of (4.72). We 

perform the following calculation treating the matrices as scalars. The results found for 

scalars also work for matrices. Let us simplify the notation in (4.72) to 
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G' 

===} G" 

-w'G-w G' r r 

-W' G - w (-w G) r r r 

(4.73) 

where I denotes taking the derivative with respect to 7'. We wish to show that Wr E Lr loc , 

implies that G E L~ loco We start by looking at the square of the L221 norm of G. 
, , DC 

J L l\7aG~12dCJ 
O::::lal::::2 

J IG~12 + 16~\7 aG~12 + 16~6~\7b(\7 aG~)12dCJ (4.74) 

We know that \7 aG~ = aaG~ = G~,a' However, we must take care with the second covariant 

derivative \7b\7aG~ = \7b(G~,J = G~,ab - r~bG~,c where r~b is the background metric 

connection. We find that 

(4.75) 

This is because the r;r terms for the 4-d cylindrical polar flat metric are zero for each C. 

Hence 

IIG~111~ = J IG"12 + IG'12 + IGI2dCJ 

Since GGT =Id it follows that 

16~1 < 1 

===} L 16~12 < 00 

E,f3 

V E, j3 

Hence we know that G is bounded (so IGI :::; c for some constant c) and so 

(4.76) 

( 4.77) 

J IG"12 + IG'12 + IGI 2dCJ J Iw;G2 - 2w;w~G2 + w~ 2G21 + Iw;G21 + IG2
1dCJ 

< c2 J Iw;l- 2Iw;w~1 + Iw~21 + Iw;1 + IdCJ (4.78) 

78 



From wr E Li,IOC we know that J Iw;1 + Iw~ 21da is finite. 

We now apply the Sobolev Imbedding Theorem to our problem following Appendix B.1 

very carefully. We let the domain 2: (called n in the appendix) be a 4-D subset of m;,4 in 

the neighbourhood of the singular set N\,,£. Using the notation of Appendix B.1, so far we 

have k = n = 4. Now since Wr ELi loc we want to take p = 2 and j + m = 1. To satisfy the , 

initial restrictions of Case A, we must have 2m < 4 and 4 - 2m < 4 ::::; 4. Simplifying this 

it follows that 0 < m < 2 or m = 1 and hence j = O. We can now extract results from the 

theorem and in particular from (B.3) 

(4.79) 

So by taking an imbedding into a different space and taking q to be 4, we can see that 

J Iw;lda is also finite. Going back to (4.78) we see that it only remains to show that 

J Iw;w~lda < 00. 

( 4.80) 

Let us say that w;w~ > w; and w;w~ > w~2. This implies that w~ > w; and w; > w~ 

which is a contradiction. Hence w;w~ ::::; w; and/or w;w~ ::::; w~2. This implies J Iw;w~lda ::::; 

J Iw;lda < 00 and/or J Iw;w~lda ::::; J Iw~2lda < 00. 

Therefore 

(4.81) 

Hence 

c2 J Iw;1 - 2Iw;w~1 + Iw~21 + Iw;1 + Ida < (X) 

===}. J IG"12 + IG'I2 + IGI2da < (X) 

===}G E L§,IOC o ( 4.82) 

and so we know that 

w E Li,loc ===} G E L~,lOC ( 4.83) 
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Since the neighborhood N of L:; is locally a product we can apply a consequence of Fubini's 

theorem (see Appendix B.2) 

G E L~(N) 

===:> L IGI2 + 18GI2 + 18(8G)12d4 x < 00 

===:> iN"O IGI2 + 18GI2 + 18(8GWd2
x < 00 almost everywhere 

===:>G E L~(No) almost everywhere (4.84) 

where No is the surface transverse to the singularity. We now return to the Sobolev Imbed­

ding Theorem and look at Case C from [1] (once again, refer to Appendix B.1). 

Our domain is No so n = 2. Let us choose m = p = 2 which satisfies the requirement for 

Case C, that mp > n. And so we have 

( 4.85) 

and hence 

( 4.86) 

Therefore, since we have from Fubini that G E L~(No), we can imbed G into a space of 

continuous functions and therefore G is continuous in almost all transverse surfaces. The 

obvious periodicity from using polar coordinates tells us also that G is periodic in () with 

period 27f. 

We now let wand w be related by the gauge transformation G. Hence 

w G-1wG + G-1dG 

G-1wrG + G-1 :~ 

G-
1 (:~ + WrG) 

o from (4.72) ( 4.87) 

We can see that in this gauge wr = 0 and so we have put w into a radial gauge. Since w E Lr 
and G E L~, we know that wE Li. We now re-label w as w. 
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We have by definition, 

and since Wr = 0 in the new radial gauge, we have 

Hence 

00: 2 0: + 0:, Go, j3re wj3[e,r] w,rwj3e - Wrye wj3r 

w$e,r w$r,e + 0 - 0 

0: 
wj3e,r 
OWe 
or 

( 4.88) 

( 4.89) 

Vve take We to be a Fourier series with complex coefficients an and so in a Fourier series 

expansion 

00 

We = L an(r)eine (4.90) 
n=-oo 

We now note, again from Fubini's theorem, that 0 is in L2 on almost all transverse surfaces. 

We note that 0 is piecewise continuous with periodicity 27T and so we can apply Parseval's 

equality (see Appendix B.3) for complex coefficients. We take a transverse surface at (ua, va) 

and use Parseval's equality, (4.89) and the knowledge that when integrating between rl and 

r2 we have rl :::::: r 

OWe 
Ore --

or 
00 

oan inB L --e 0 
or 

n=-oo 

J;];;I' J 1012dB 

f }~}::rn I' dr J 1~210'2drde 
< J IT2 1012~drdB 

Tl rl 

IT2 00 loan 12 c J 1~2 Ifll 2
rdrdB 0 (4.91) ===? L Or dr < 

Tl n=-oo 

We let rm be a sequence of radii tending to zero. We let We (rm) = Wm with m = {O, 1,2, ... }. 

We would like to show that for all E > 0 there exists N E N such that IWm - wpl < E for all 

m, p > N and hence that Wm is a Cauchy sequence. Let us take 
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00 00 

n=-oo n=-oo 
00 

n=-oo 
00 

n=-oo 
00 

n=-oo 

and applying Parseval's theorem again it follows that 

Now let rk = rl + brkl' Using the Fundamental Theorem of Calculus it follows that 

Hence 

Now we use Holder's inequality with p = 2 (see Appendix B.4) to get 

< rk 11 . 8an (r) Idr 
JTI 8r 

< III11L211 8a;;r) IIL2 

(f l' dr ) \ (C I iJa;; r) I' dr) ! 

< C, (f 1 8a;;r) I' dr) ! 

Hence 

lan(rk) - an(rl)1 2 
::; C2ilTk 1 8a;;r) 12 dr 

and using (4.91) it follows that 
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(4.93) 

( 4.94) 

( 4.95) 

( 4.96) 

( 4.97) 



00 

(4.98) 
n=-oo 

From (4.93) 

(4.99) 

Since Tk is a sequence of radii tending to zero we see that as Tl approaches Tk, the right 

hand side of (4.99) tends to zero. Hence 

almost everywhere 

since if the integral of the square of a function is zero then the function can only be non-zero 

on a set of measure zero. Hence We(Tm) I:~=-oo an (Tm)eine is a Cauchy sequence almost 

everywhere. 0 

The Cauchy Convergence Criterion states that a sequence in W is convergent if and only 

if it is a Cauchy sequence. We have shown that the Fourier series above forms a Cauchy 

sequence, so the sequence converges to a limit. The limit of (4.90) as T tends to zero is 

00 

Ce = L an(O)eine (4.100) 
n=-(X) 

We have a connection I-form which only has non-zero coefficients for de and that coefficient 

depends only on e. Hence the curvature 2-form given by the connection C = Cede is 

n~ab C~a,b - C~b,a + C;aCJb C~bCJa 

C$e,e - C$e,e + C;eCJe - C;eCJe 

o (4.101) 

Hence the I-form C = Cede defines a flat connection on the transverse surface through 

(to, zo) 

Lemma 4.7 states that any flat connection is gauge equivalent to another flat connection, 

which is given by the prototype for a flat connection wD• Therefore we have 
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(4.102) 

for some s. Since C and wD only depend on e we know that s only depends on e. By varying 

t and z we find that the extended s is still independent of r for all of Xo. 

Now we return to the connection w for which we have gauged away the radial component 

(wr = 0) and gauge transform by s to obtain 

(4.103) 

Since s is independent of r, we still have wr = O. So now, just as before for we, we have the 

inequality (4.91) for the Fourier coefficients of We and so likewise We converges to a limit as 

r ----7 O. However 

and 

lim We 
r--+O 

lim wede 
r--+O 

lim (s- lwes + s-l dS) 
r--+O de 

1 . 1 ds 
S- (~~ we)S + s- de 

-1 -1 ds 
s Ces + s de 

limw 
r--+O 

lim (s-lws + s-lds) 
r--+O 

s-l(1im w)s + s-lds 
r--+O 

S-ICs + s-lds 

(4.104) 

(4.105) 

From Lemma 4.3, since 9r and 9r are solutions of (4.36) for gauge equivalent connections 

D = d + wand iJ = d + W, we know that 9r(27r) = Jr and 9r (27r) Jr are conjugate in 

50(3). We know 9r(27r) = Jr depends only on we(r). As r -7- 0 we have w ----7 wb, hence 

limr--+o Jr = J exists. The conjugacy class [ir] of Jr is gauge invariant and so [ir] = [Jr]. 

Hence the solution of (4.36) at e = 27r converges and the limit holonomy condition exists. 0 

The existence of limit holonomy can be shown for any (t, z) but it remains to show the 

limit is independent of the actual values t and z take. We let two points, PI and P2 be 
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points on the singularity. We change the coordinates t and z to t and z in such a way 

that one of the two coordinates denoting position on the singularity is the same for both 

points, i.e. PI = (to, ZI) and P2 = (to, Z2)' We can now consider a sequence of cylinders 

CTi = {(to,z,ri,e)lzl::; z::; Z2,0::; e::; 27f} as '1'i -+ O. We recall that D E L2(N) and so, 

again as a consequence of Fubini's theorem, we can separate the dt and d'1' components and 

be left with a finite integral over the e and z directions 

r2
71' ~Z2 IDI2'1'idzde = J r IDI2dS < (Xl 

Jo JZ1 Jer ; 

almost everywhere (4.106) 

where dS = dz'1'de. Hence 

( 4.107) 

We now choose a particular gauge so that Wz = 0 and, referring back to (4.88) and (4.89), 

we obtain ~ nze in an analogous way. Integrating Dze with respect to z between Zl 

and Z2 we obtain 

r Z2 

IWe(Z2, to, '1'i, e) - We(ZI, to, '1'i, e) I I J- Dzedzi 
ZI 

< ~Z2 IDzel dz 
JZ 1 

( 4.108) 

We know that IDI2 = ID~ab12 = D~abn~ciac~bd where ~ab is the positive definite background 

metric in 4-D cylindrical polar coordinates. Hence IDr2 is equal to the sum of positive 

definite terms one of which is 121Dze12. Therefore ~IDze12 must be less than or equal to 
Ti Ti 

IDI2 and so IDzel ::; '1'iiDI. Now continuing from (4.108) we have 

i
Z2 

IWe(Z2, to, '1'i, e) We(Zl,to,'1'i,e)1 < ri _ IDldz 
ZI 

- - 2 
IWe(Z2' to, '1'i, e) - We(ZI, to, '1'i, e)1 < (i Z2 

) 2 '1'; ZI IDldz 
using Holder's inequality 

l
z2 

< kr; _ IDI2dz 
ZI 

1271' 1271' i Z2 

° IWe(Z2' to, '1'i, e) - We(ZI, to, '1'i, e)1 2de < k'1'; _ IDI 2dzde 
° ZI 

k'1'i J lor. IDI
2
dS 

, 
using Holder's inequality 

(1271' ) 2 Kri J lor IDI
2
dS ===} ° IWe(Z2, to, '1'i, e) - we(Zl, to, '1'i, e)lde < (4.109) 

, 
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We let Gl and G2 be solutions of (4.36) at r = ri in the surfaces transverse to the singularity 

at (Zl' to) and (Z2' to) respectively. So 

0, Gl(O) = I 

We(Z2' to, ri, e) - we(Zl, to, ri, e) 

127r IWe(Z2' to, ri, e) - we(Zl, to, Ti, e)lde 

1 

< (Kr; J fa" Inl'dS)' from (4.109) 

We know that 

(4.110) 

So 

( K rI( Ir!l'dS)' > [T~l GI ' - d~' G,' I dO 

Hence 

r27r 
I dGl G- l G dGZl 

I de (L 'b ., 1) 
} 0 de 1 + 2 de el llIZ s ru e 

127r IG2(Gzl d~l + d~~l Gl)G1ll de 

127r IG211(Gzld~1 + d~~l Gl)IIG1l1de 

> C 1127r GZ1 d~l + d~~l Gldel 

C I [GZIGIJ~7r1 
C [Gzl (27T)G l (27T) - GZl(O)Gl(O)[ 

since G l (0) = G2 (0) = I 

1 

GIG,' (2n)G, (2n) - II <: ( Kr, J fa" Ir!l'dS)' --+ 0 (4.111) 

This proves that as ri -+ 0 we have that Gl (27T) = G2 (27T) and hence the holonomy limit is 

the same at PI and P2. 0 
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We now show that the directions tangent to the singularity are left invariant by the holon­

omy. Since the space-time is static we know that the holonomy is a rotation keeping the 

T direction fixed. Hence the t-direction of the singularity remains fixed. We thus need to 

show that the z-direction is also invariant. 

We therefore work at a fixed time to and look at directions tangent to I;to' To show that these 

directions remain invariant we adapt the method of [6]. However, rather than considering 

fixed loops surrounding a thick cosmic string, we will consider a family of loops surrounding 

the singularity. We may use the method in [6] since the curvature diverges more slowly 

than the lengths of the loops tends to zero. We start by considering a map A(r, 8, z) which 

parameterises a solid cylinder in a neighbourhood of some point on the singularity. Let 

A: (0,1] x [0,21T] X [0,1] --+ N n I;to 

(r,8,z) t-+ A(r,B,z) 

be a map with the following properties (see Figure 4.3) 

1. Ar,z(8) := A(r8, z) is a family of loops with Ar,z(O) = Ar,z(21T) 

2. The length of Ar,z --+ 0 as r --+ 0 

(4.112) 

3. The curves r t-+ A(r, 8, z) for fixed 8 and z are curves which tend to points on the 

singularity as r --+ 0 

4. The curves z t-+ A(r, 8, z) for fixed rand 8 are geodesics 

Let ei be a frame at the point A(1, 0, 0). We first parallelly propagate this in along the 

curve A(r, 0, 0) and then around each of the loops Ar,o(8). Finally we propagate it along the 

curve z t-+ A(r, 8, z) to obtain a frame at each of the points on the cylinder. 

We now consider tangent vectors to the cylinder r = canst. with coordinate components 

and ya = OA
a 

oB 
We can rewrite X a with frame indices by contracting with the dual frame ?9~. 

By parallely propagating the frame around Ar,o we then have 
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Figure 4.3: A diagram showing the map A. 

Let R{ (r) be the holonomy around z:; such that 

ei(r,O,l) = Ri(r)ej(r,O,O) 

Hence 

where R~(r) is the inverse of R}(r). Therefore 

Hence 

~~(r,O,l))(a(r,O,O) 

R}(r )~~ (r, 0, O))(a (r, 0, 0) 

R} (r))(i (r, 0, 0) 

IR(r))((r, 0, 0) -)((r,O,O)I, 1)((r,O,l) -)((r,O,O)1 

1121f vyXdel 

< 121f IvyXI de 

Since the connection is torsion free and )( and Yare surface forming 
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VxY VyX = [X,Y] = 0 ( 4.120) 

Hence 

r27r 

IR(r)X(r, 0, 0) - X(r, 0, 0)1 ~ io IV x YI de (4.121) 

We now estimate IVxYI. Since the curves z N >-(r,e,z) are geodesics the equation of 

geodesic deviation gives 

d2yi 
-- = Ri xj Xkyl 
dz2 Jkl (4.122) 

Solving this equation using the Green's functions for ~:t = 0 gives 

zyi(r, e, 1) + (1 - z)yi(r, e, 0) + (z - 1) foz z' R~kl(r, e, z')xj Xkyldz' 

+z 11 (z' - l)R~kl(r, e, Z')xj Xky1dz' (4.123) 

Differentiating and setting z = 0 gives 

(4.124) 

Since V xei = 0, dri 
(r, e, 0) gives the frame components of \7 x yi(r, e, 0) and hence 

substituting into (4.121) and using the fact that 0 < z' - 1 < 1, then gives 

IR(r)X(r, 0, 0) - X(r, 0, 0)1 < 127r Iyi(r, e', l)lde' + fo27r Iyi(r, e', O)lde 

+ 127r 11 IR~kl(r, e, Z')xj Xky1ldx' de' (4.126) 

To estimate (4.126) we use the fact that the length of the loops given by r = canst. are 

O(r) as r --+ O. Hence we have 

(4.127) 

Hence the first two terms on the right hand side of (4.126) tend to zero as r --+ O. To 

estimate the final term we write 
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yi gy-i (4.128) 

where jei and yi are unit vectors as measured by the background metric. Then by the 

construction of ). we have 

If I < cr and (4.129) 

Then 

(4.130) 

However the curvature is in L2 so that 

(4.131) 

Hence IR~kljej jekyl12r diverges more slowly than ~. ThuslR~kljej jekyll dIverges more 

slowly than ~ so that IR~kljej jekyllr tends to zero as r tends to zero. Hence by (4.130) we 

have 

as r--+O (4.132) 

Hence 

(4.133) 

Thus taking the limit as r -+ ° in (4.121) we have 

limIR(r)X(r,O,O) X(r,O,O)1 0 
r-+O 

(4.134) 

But as r tends to zero, X(r, 0, 0) is tangent to the singularity and R(r) -+ R, the holonomy 

of the singularity at z = 0. Hence we must have that the tangent directions to the singularity 

are invariant under the limit holonomy as claimed. 

4.3 Similarities to a flat connection as r -+ 0 

In this section we bring together ideas needed for the second main result of [39]. We first 

consider the set of connections WP where p 2: 2 

WP = {D d + wlw E Li,]oc(Xo) andD E LP(No)} (4.135) 
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In the previous section we have demonstrated the existence of limit holonomy for D E W 2. 

It follows from Theorem 4.8 that if D E WP then 

"A limit holonomy exists and is given by the real number A as shown in (4.51)". (HA ) 

We call the above A-dependent holonomy condition (HA)' If we know that (HA) is satisfied 

for a connection in WP then we can find a prototype of the flat connection wD which shares 

the same holonomy. 

We introduce a new space Li,y where T is a flat connection. A I-form C is in Lf,( if 

IICIILP = II(IILP + IIVy(IILP = II(IILP + Ild( + [(, T]II < 00 
1,Y 

( 4.136) 

We now give the main result for this section. 

Theorem 4.9 There exists a constant k > 0 such that, for D E W2 with IlnIIL2(No) < k 

there is a real number A (with corresponding flat connection wD) and a gauge in which 

D =d+w with w - wD E L21 b (No). Moreover, for some constant C, 
,w 

(4.137) 

We already know from Theorem 4.8 that locally there is a gauge in which the components 

of w have a limit at the singularity with WIJ -7 wD almost everywhere. Theorem 4.9 states 

that the L21 b (No) norm of the difference between the connection wand the flat connection 
,w 

wD is less than or equal to a constant multiplied by the L2 norm of the curvature n. By 

taking the curvature over smaller and smaller regions around the singularity we can make 

this term go to zero. Hence on approach to the singularity we find that w tends to wD• In 

other words, for any given connection, there is a gauge in which this connection is, near 

the singular 2-manifold, asymptotic to a flat connection wD• This is stronger than the state­

ment from Theorem 4.8 since it involves all the components of w (not just the e component). 

All connections in WP have a holonomy number A, telling us which conjugacy class the 

holonomy of the connection belongs to. Since all these connections with corresponding A 

are asymptotic to the same wD, the holonomy number A E ~ provides a useful way to 

classify connections in WP. 

We now define W~ k' a subset of WP, to be used in the proposition below. , 
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(4.138) 

The main technical result of this section is Proposition 4.10 which leads on to Corollary 

4.11 which then implies Theorem 4.9. 

Proposition 4.10 Let p > 2. Then there exists k and c, and an explicit flat connection f 

with holonomy A, such that if D E W~,k' then there exists a gauge in which D =d+w and 

(4.139) 

We now wish to show a corollary of the above proposition featuring a similar inequality to 

(4.139) but for the prototype of the fiat connection wp
• 

Corollary 4.11 Let p > 2. There exists a gauge in which D =d+w with w wP E Lf,wb (No) 

and 

( 4.140) 

Proof 

Since f is a fiat connection, we know from Lemma 4.7 that there is a gauge in which f 

is given by w
p
• In the limit as r ---r 0 both these connections are given by aoodB for some 

constant aoo (see (4.250)). Hence f and w P are related by a gauge transformation C with 

the property that lilTIr-+o G =Id and limr-+o dG = O. Now 

.. 1" .. 1 ' .. 1 " 
c111w - rJILq(No) + Ild(G- wG) + G- wfG - G- fwGIIM(No) 

CI Ilw - rJILq(No) + IIG-1 (dw + wf - fw) GIILq(No) 

, l ' '1 ' +lldG- wG + G- wdGIILq(No) 

< CI (11w - fIILq(No) + Ilvr(w - f)IILq(No)) 

, 1 " 1 ' , -1 ' 
cIiJw - rJiL1 (No) + II-G- dGG- wG + G wdGIILq(No) 

1,r 

< CIIDIILq(No) + II-C-1dCC-1wC + a-1wdGIILq(No) (4.141) 
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Since dG -+ 0 as 7' -+ 0 for sufficiently small No, we may ignore the second term at the 

expense of an increase in the constant C. Hence 

o (4.142) 

We now wish to show that Corollary 4.11 implies Theorem 4.9. 

Let us take a connection I-form W E Li lac' We can approximate W by a smooth sequence , 

Wj such that IIDwj IIL2(No) < k (uniformly bounded). Since the Wj are smooth we have that 

Wj E Lf lac for p > 2. For each j we can apply Corollary 4.11. Hence for each Dj = d + Wj , 

we know there is a gauge such that D j = d + Wj in which 

p>2 (4.143) 

where w; approximates wD and Wj approximates w. We take limits as j -+ 00 and see that 

a subsequence of Wj - w; converges weakly in Lf to some w - w~. This means that the 

integral given by Ilwj - wJD·IIL2 (N,) converges to the integral given by Ilw - w~IIL2 (No)' 
I wb 0 l,w(X) 

, j 

Since D j = d + Wj can be gauge transformed to D j = d + Wj for each j, there exists a 

sequence Sj E L~ loc(XO) such that , 

(4.144) 

It follows (see [39]) that a diagonal subsequence of {Sj} converges weakly to S E L~,IOc' 

Hence as j -+ 00 we have 

(4.145) 

A remark earlier in this chapter states that Lemma 4.3 holds if wand ware related by such 

a weak gauge transformation. Hence the holonomy Jr of W is conjugate to the holonomy Jr 

From before, we know there is a constant k > 0 such that D = d + W with D E W2 and 

IIDII£2(No) < k. Using S we know there is a gauge such that for some fiat connection wD 

(given by an A E IR) we have W - wD E Li wb (No) and , 
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Ilw ( 4.146) 

Hence we have proved Theorem 4.9. 

The remainder of this section is concerned with the proof of Proposition 4.10. We first 

include an overview of the proof and then the full proof. Concepts and theorems by Taubes 

that appear here without reference are those that originally appeared in [39]. 

Overview of Proof 

To prove Proposition 4.10 we will need to show that there does exist a fiat connection such 

that in a particular gauge the inequality in (4.139) is satisfied. We now provide a brief 

overview of the proof. 

For open balls Eo we can perform a gauge transformation such that in these balls the 

following properties hold for the gauge transformed connection I-form w O
• 

(4.147) 

(4.148) 

(4.149) 

We call this gauge the Coulomb gauge for short since (4.147) is the Coulomb property for 

differential forms. 

We construct a composite gauge transformation G using cutoff functions such that in two 

overlapping balls which are adjacent in the e direction the transformation G will contin­

uously change from the gauge transformation which makes w Coulomb in one ball to the 

gauge transformation which makes w Coulomb in the other. The composite gauge transfor­

mation is the result of a careful composition of many gauge transformations, the first acting 

on all balls except the first and then each successive one acting on smaller and smaller re­

gions going around the singularity. 

Note that this gauge transformation does not patch together the gauge transformation 

needed to make w Coulomb in the last ball and that needed to make w Coulomb in the 
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first ball and so is not continuous at e 0 21f. Hence the composite gauge transforma­

tion is non-global. We look at the gauge transformation which bridges the discontinuity. 

We take the Coulomb connection at e = 0, undo the gauge transformation that made the 

connection Coulomb in the first ball and then make the gauge transformation that makes 

the connection Coulomb in the final ball. We call this gauge transformation 8. 

The complete non-global composite gauge transformation will also patch together overlap­

ping balls in the radial direction and in both directions spanning the singular 2-surface. In 

this new gauge w will either be Coulomb or 'close' to Coulomb everywhere, the 'closeness' 

being bounded by a cutoff function and its derivatives. 

We know from Theorem 4.8 that the limit holonomy of D = d + w at the singularity exists. 

If we have a global gauge and the origin is a regular point then the limit holonomy is trivial. 

In our case we start with a global gauge and a singular origin. We use Taubes' theorem 

(and property 1. above) to establish that liillr--+o 8 = So exists. 

We have shown earlier in this chapter how we can use parallel propagation to establish a 

non-global composite gauge in which the limit 'jump' is the limit holonomy. We will call 

this the holonomy gauge. We will force our new non-global composite gauge to look like 

the holonomy gauge in the limit as r tends to zero. Hence they will have the same limit 

'jump'. Since the limit as r tends to zero of the jump in the holonomy gauge is the limit 

holonomy, we know that the limit as r tends to zero of the jump in the composite gauge is 

also the (same) limit holonomy. Hence the limit holonomy for the connection w is So. This 

is proved by first showing that 80 is the limit holonomy of a constant flat connection Woo 

and then showing that Woo and w have the same limit holonomy. 

Also from before we know that any flat connection is gauge equivalent to wD = mide for 

some m E lR. We say that our flat connection has holonomy number m. 

To get the final requirement to show (4.139) we must first, before applying the gauge trans­

formation G, have changed to a radial gauge (so Wr = 0) and we can then find that we have 

a bound on Ilw - WoolILq. 

One final obstacle to proving Proposition 4.10 is that we require that our composite gauge 
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transformation be global. We use another cutoff function to make the composite gauge 

transformation continuous and periodic and hence global. Since we are now using a differ­

ent global gauge transformation, some more calculations are required before we establish 

the final result that Ilw rIILi,r(No):::::: ciIOIILq. Then since D E w~,k we have proved Propo­

sition 4.10. 

Proof of Proposition 4.10 

We cover the space Xo = No \2::0 by a countable collection of balls. We note that on each 

ball we have a Coulomb gauge, as given by Uhlenbeck [45]. In this gauge the Lr norm of 

the connection form can be estimated by the L2 norm of the curvature. Vife cover Xo by 

balls Bet in which the Coulomb gauge is given by the following strengthening of the theorem 

from [45] (see [39]) 

Theorem 4.12 For K sufficiently small, there is a gauge in which D = d + wet E WP with 

d* wet 0 (4.150) 

IlwetIILi(Ba ) < KIIOIILq(Ba), 2::::::q::::::p (4.151) 

1 1 et 
VolBet B", w dV 0 (4.152) 

Proof 

(4.150) and (4.151) are proved in [45] and so :we know there exists some WO such that 

d*wo = 0 and IlwoIILHB",) :::::: KIIOIILq(Ba) with 2 :::::: q :::::: p. We now look at the sequence Wn = 

e-unwoeun +dun where each Wi is gauge equivalent to WO under the the gauge transformation 

using Si = eUi . We let 'Un have the property that 

(4.153) 

We now solve (4.153) to get the particular solution such that IBa d'UndV = - IBa cUn-lweteUn-ldV, 

where the integration here is on each space-time component of the I-forms. 
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(4.154) 

From [39] we have that Un converges to u and so Wn converges to w = e-uwoeu + duo Vie 

see that (4.153) and (4.154) become 

Ilu e-U[wO, du]eU 

r dudV r e-UwOeUdV 
lEa lEa 

We should now look at (4.155) in more detail 

Ilu 

(Ilu)~ 

where g is the background metric. Since gaf = 6hgah = _Ebcdf Ea
bcd we have 

(Ilu)~ 

(*d*du)~ 

==} (d * du)2bcdf 

_(e-U)~EbCdf E\cd[(WO)~a(du)~f - (du)~f(wO)~a](eU)J 

Ebcdf (-(e-U)~E\Cd[(WO)~a(du)~f (du)~f(wO)~a](eU)J) 

-(e-U)~E\cd[(WO)~a(du)~f - (du)~f(wO)~a](eU)J 

(e-U)~ ((du)~f(wO)~aE\cd - (WO)~aE\cd(du)~f) (eU)J 

(e-U)~ ((du)~f(*wO)~bCd (*WO)~bCd(du)~f) (eU)J 

e-U(du * W O 
- *wodu)eU 

(4.155) 

(4.156) 

(4.157) 

We now use (4.156) and (4.157) to check that w satisfies each of (4.150), (4.151) and (4.152). 

o 0(4.150) (4.158) 
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It can be seen from an earlier result (4.83), that IlunIIL~(Ba) :::; IlwO'IILi(Ba) and hence also 

that IlunIIL~(Ba) :::; IlwO'IILiCB.:,,)· Since Un converges to u we have 

IlwIILi(Ba) lie-uwoeu + dullLiCBa) 

< Ile-uwoeuIILi(Ba) + IlduIILi(Ba) (triangle inequality) 

< ClllwoIILi(Bu ) + IluIIL~(Ba) (since u E L§) 

< c21l wollLi(Bu l 

< cIIDII£2(Bn) 

=? IlwllLi (Bn) < CIIDIILq(Bn ) 0(4.151) (4.159) 

(4.160) 

Hence there is a gauge in which D = d + wO' satisfying all three Coulomb conditions as 

required. 

Proposition 4.13 Under a constant gauge transformation ea , all three Coulomb results 

continue to hold. 

Proof 

Let wO' be Coulomb so we already have d * wO' = 0, IlwO'IILi(Ba) :::; kIIDIILi(B",) for 2 :::; q :::; p 

and votBa IB", wO'dV = O. Then 

w e-awO'ea 

*w e-a * wO'ea 

d*w d(e-a * wO'ea) 

e-ad * wO'ea 

... d* w 0 (4.161) 

and 
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w e-awQea 

IlwIILi(Ba) Ile-awQe
a IILi (Ba) 

< cllwQIILi(Ba) (since ea is constant) 

".llwIILi(Ba) < cIIDlb(Ba) for 2 ~ q ~ p (4.162) 

and 

w 

. 1 r dV 0 
.. VolE

Q 
lBa w = 

D (4.163) 

Hence we have some gauge freedom since the connection WOi is not uniquely specified. 

We now look at the covering as constructed in [39J and then look at the composite gauge 

transformation over the balls surrounding the singularity. 

The global covering 

Assume that {EQ} is an open covering of Xo, which contains a sub covering {UQ} which we 

now define. We allow our two dimensional (local) singularity :Eo, to be diffeomorphic to a 

square in ]R2. The points in the balls UQ are determined by three parameters contained in 

a = (n, l, x) where n E N, lEN (l ~ 7) and x is a point of 2:;0 lying on the standard square 

lattice An of side length 2-n - 1 . The open ball UQ consists of all points restricted as follows: 

2. ~l < e < ;f (l + 2) 

3. y belongs to the open square centered at x of the length 2-n 

For each point on the square, the ball UQ is a section of an annulus. For any connection 

w, there exists a gauge transformation hQ such that WOi = h;;lwhOi + h-;;ldhQ is a Coulomb 

connection in U Q' 
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If Uo. n uf3 1= 0 then we can gauge transform wo. to wf3 by first undoing ho. and then applying 

hf3' i.e. gauge transform by h-;;Ihf3 (since both ho. and hf3 are defined in Uo. nU(3) as we now 

show. 

h~lho.wo.h-;;lhf3 + h~lho.d(h-;;lhf3) 

h~lho.(h-;;lWho. + h-;;ldho.)h-;;lhf3 + h~lho.(dh-;;l)hf3 + h~lho.h-;;l(dhf3) 

h~lWhf3 + h~ldho.h-;;lhf3 + h~lho.dh-;;lhf3 + h~ldhfJ 

h~lWhf3 + h~ldho.h-;;l hf3 + h~l ho.dh-;;l hf3 + h~l dhfJ 

h~lWhf3 + h~ld(ho.h-;;l)hfJ + h~ldhf3 

h~lWhfJ + h~ldhf3 
wf3 (4.164) 

We let h-;;lhf3 = eU and for points x E Uo. n Uf3 we have a gauge transformation (leaving x 

unchanged) 

eU = h-;;l . hf3 : (Uo. n U(3) x 30(3) --7 (Uo. n Uf3) x 80(3) 

(x, G) H (x, (h-;;l . h(3)G) = (x, eUG) (4.165) 

where, 'U E 80(3). 

From before we have 

(4.166) 

Since {Bo.} is an open covering of X Q, which contains a subcovering Uo. , we know that Eo. 

is the smallest ball containing Uo. and so 11'UIIL~(U,,) ::; cllflIILq(ua ) also. Hence on Uo. U Uf3, 

for a point P lying in Uo. n Uf3 we have 
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1 1 
d2 Ilu - u(P) IILq(U",UUj3) + d II\7uIILQ(U",UUj3) + 11\7(\7u) IILQ(U",UUj3) 

a a 

1 1 
d211u - u(P)IILQ(UcxUUj3) + d 11\7(u - u(P))IILQ(U"UUj3) + 11\7(\7(u u(P))lb(U"uUj3) 

a a 

< Cllu - u(P) IIL~(UcxUUj3) (where C is a constant dependent on da ) 

< C (1IuIIL~(U"UUj3) + Ilu(P) IIL~(UaUUj3)) 
C (1IuIIL~(Ua) + IluIIL~(Uj3) -lluIIL~(UanUj3) + Ilu(P)IIL~(UanUj3)) 
C (1IuIIL~(Ucx) + IluIIL~(Uj3)) (since P E Ua n U(3) 

< C (1IDIILQ(Ua) + IIDIILQ(Uj3)) (4.167) 

Hence we have 

Corollary 4.14 

(4.168) 

on Ua U Uf3, where P lies in Ua n Uf3, and d is the larger of the diameters of the two balls 

Ba and Bf3. 

We note that d is the maximum distance between the fixed point P E Ua n Uf3and any 

other point in Ua U Uf3. 

The composite gauge transformation 

The non-Abelian nature of 50(3) means that we cannot glue more than two local gauges 

by a cutoff function. We glue together regions of Xo which are related to one another by 

transformations as detailed above. We first glue together the eight regions as related by 

increasing l by one from 0 to 7 (keeping x and n constant). This will give us a complete 

annulus around the singularity. Now we glue together those annuli which are related to 

each other by a shift of one on the square lattice An, creating what we can think of as a 

thick walled cylinder.l We finally glue together regions related to each other by increas­

ing n by one, which effectively fills out the 'cylinder' radially so that it is a solid object 

and we have covered all of Xo. This will produce a multi-valued gauge in the sense that 

G(r, 27r, y) I- G(r, 0, y). 

IThe analogy to a cylinder would be correct if the singularity was one-dimensional. However, :s is two­

dimensional. 
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\Ve use a number of cutoff functions to glue together local gauge functions. Each cutoff 

function yields a value of 0, 1 or some real number between 0 and 1 for all locations in Xo. 

What value a cutoff function takes between 0 and 1 is not required in the proof, except for 

determining derivatives (which we address in Appendix A.4). It is sufficient to know that 

the cutoff function is smooth between A = 0 and A = 1. We begin by looking at overlapping 

regions around the annulus. We start with the function 

A(t) = { 1, 
0, 

0:::; t :::; ;6 
311 < t < 27r 
16 - -

and we let Al (e) = A( e - ~l) be periodic in e of period 27r. 

1[1 < e < .JL + E1 
4 - - 16 4 

o < e < 1[1 31[ + 1[1 < e < 27r 
- 4' 16 4-

(4.169) 

(4.170) 

With n and x fixed we now define a gauge transformation on the entire annulus U;=o U(n,l,x) 

by 

h(n,l,x) exp(Alul) 

{ 

h(n,l,x) exp(ul), 

h(n,l,x), 

1[l < e < .JL + 111 
4 - - 16 4 

o < e < 1[1 31f + 1[l < e < 27r 
- 4' 16 4-

where exp Ul = h-( Il )h(n l-1 x), So we can rewrite (4.171) as n, ,x ) , 

h IV: _ { h(n,l-l,x), 
n,x (n,l,x)-

h(n,l,x), 

1[1 < e < .JL + 1[l 
4 - - 16 4 

o < e < 1[l 31[ + 1fl < e < 27r 
- 4' 16 4-

(4.171) 

( 4.172) 

We will use (4.172) to tell us how, for every value of l, we can glue the gauge to its adjacent 

gauge on the annulus. 

We now define the cutoff function used to glue together a pair of overlapping annuli on 

the singularity. We move along the singularity from a point (Xl, X2) on the lattice An to a 

neighboring point x' = (Xl, X2 - 2-(n+l)). Our cutoff function is 

{

I, 
A(Y) = 

0, 

Y :::; X2 - 2-(n+l) 

Y? X2 
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We let u(n,x,x') be defined by expu(n,x,x') = h:;;,~hn,x" Then on U(n,l,x) n U(n,l,x') our 

global gauge transformation is given by 

hn,x exp(.A(y)u(n, x, x')) 

{ 

hn,x exp u(n, x, x'), 

hn,x, 

y ::; X2 - 2-(n+l) 

y 2': X2 

y ::; X2 - 2-(n+l) 

y 2': X2 

( 4.174) 

(4.174) tells us how, for every value of x, we can glue the local gauge of the annulus to 

all annuli up our 'cylinder' (note that in contrast to the first cutoff function, this one is 

dependent on another variable n). Since the singularity is two dimensional, we must define 

an analogous transformation addressing overlapping regions on the singularity with squares 

centred at (Xl, X2) and (Xl - 2-(n+l), X2). 

Finally we establish the cutoff function used to glue together the 'cylinders' of different 

inner and outer radii by looking at overlapping regions U(n,l,x) and U(n+l,l,x)' Our final 

cutoff function is 

{ 

0, 
.A(r) = 

1, 

r ::; 2-(n+l) 

r> .Q.2-(n+l) 
- 2 

( 4.175) 

we now define G = hnexp(.Au) on the appropriate intersection where expu = h:;;lhn+l' So 

G { hn, r ::; 2-(n+l) 

hn expu, r> .Q.2-(n+l) 
- 2 

{ hn, r ::; 2-(n+l) 
(4.176) 

hn+l' r> .Q.2-(n+l) 
- 2 

and this tells us how, for each pair of radii, we can glue the local gauge of the 'cylinder' to 

that of the next larger or smaller radius cylinder. 

We now show in detail how to construct the composite gauge transformation by using the 

above cutoff functions. It is sufficient to show how this is done just in the e direction since 

this is where we will address the complication arising from G being discontinuous at e 27f. 

Analogous algorithms are carried out for the the radial and parallel to singularity directions. 
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In a ball U(n,l,x) the gauge transformation h(n,l,x) takes some connection w to w(n,l,x) where 

w(n,l,x) is Coulomb. 

We refer back to (4.170), (4.171) and (4.172) and let 

and so on U(n,l-l,x) n U(n,l,x) 

(4.177) 

7rl < e < 7£!:. + 1I.. 
4 - 4 16 

7rl + 37f < e < 7f1 + Z!: 
4 16 - 4 4 

(4.178) 

For reasons that shall become clear later we extend eU(l-l,l) over all X = "L,\N 

h-1 h (n,l-l,x) (n,l,x) 

h-1 h (n,I-2,x) (n,l,x) 

h-1 h 
(n,l-l,x) (n,l,x) 

Id 

h-1 h 
(n,l-l,x) (n,l,x) 

o<e<7£!:.-Z!: - - 4 4 

7fl _ Z!: < e < tfl _ 37f 
4 4 - - 4 16 

7rl _ 1I.. < e < 7fl 
4 16 - - 4 

7rl < e < 7£!:. + 1I.. 
4 - - 4 16 

7rl + 37r < e < 271" 
4 16-

(4.179) 

We see above that the function over all e is multi-valued at ~l and ~l - 4. From (4.179) we 

have on U~=l U(n,i,x) 

7rl < e < 7£!:. + 1I.. 
4 - 4 16 

7rl + 37f < e < 271" 
4 16 - -

(4.180) 

Since neither ~l nor ~l 4 are in U~=l U(n,i,x), we are not affected by the fact that the cutoff 

function is multi-valued. 

On U(n,l-l,x) n U(n,l,x) we can get from w(n,l-l,x) to w(n,l,x) via the gauge transformation 

given by eU(l-l,l) 

{ 

w(n,l-l,x) 
e-U(l-l,l)w(n,l-l,x)eU(l-l,l) + du = 

(I-l,l) ( I ) w n, ,x 
(4.181) 

Let us, for example, look at this gauge change for I = 1. On U(n,O,x) n U(n,l,x) we can get 

from w(n,O,x) to w(n,l,x) via the gauge transformation given by eU(O,l) 
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w(n,O,x) 

w(n,l,x) 

Constructing the composite gauge 

7!:. < e < 51T 
4 - 16 

7-Tr<e<~ 
16 - 2 

(4.182) 

(Since we are only currently looking at gluing the balls in the angular direction, we shall 

abbreviate U(n,l,x) to Ul, w(n,l,x) to wi and h(n,l,x) to hi) 

We start by gauge transforming some connection w to wO by ho everywhere. So in Uo, wO 

is Coulomb. Now we apply the following algorithm: 

1. On Uo n U1 we use eU(O,l) to take wO to wI 

2. Extend eU(O,l) to act on all U~=o Ui \ Uo 

3. (a) In Uo \UI the connection is wO 

(b) In Uo n U1 the connection is wO changing to wI 

(c) In (U~=o Ui ) \ Uo and at e = 21f the connection is wI 

We then repeat the algorithm for successively larger values of l 

3. (a) In UO\UI the connection is wO 

(b) In Uo n UI the connection is wO changing to wI 

( c) At e = i the connection is wI 

(d) In UI n U2 the connection is wI changing to w2 

(e) In (U~=O Ui ) \ (Uo U UI ) and at e = 21f the connection is w2 

1. On Ul- I n Ul we use eU(l-l,l) to take wl- I to wi 
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3. (a) In Uo \ U1 the connection is wO 

(b) In Ui-l n Ui the connection is wi- 1 changing to wi for all 1 SiS I 

(c) At e = 7f(ji1
) the connection is w j for all 1 S j < I 

(d) In (U~=o Ui ) \(U~:6 Ui ) and at e = 21f the connection is wi 

Finally, for 1 = 7 

3. (a) In Uo \U1 the connection is wO 

(b) In Ui-l n Ui the connection is wi- 1 changing to wi for alII SiS 7 

( c) At e = 7f(j: 1) the connection is (;) for all 1 S j < 7 

(d) In (U~=o Ui) \(U~=o Ui) and at e = 21f the connection is w7 . Again, note that 

U~=o Ui \ (U~=o Ui) = 0 

Looking at point 2. above for 1 = 7 we see that we are no longer extending the gauge 

transformation and so we stop here. Importantly, we do not continue this algorithm for the 

intersection U7 n Uo. 

To summarise: We start in one gauge and look at overlapping balls Uz around the singu­

larity. As we cross into a new section we make a continuous gauge transformation into a 

different gauge. We do this as we enter a new ball all the way up to U6 n U7. Since these 

gauge transformations are all continuous, we can compose them all into one continuous 

gauge transformation G (note that Wle=27f #- limx-to+ wle=x and so we do not have conti­

nuity as we go across e = 21f = 0). \iVhen we gauge transform in an intersection, as we are 

changing from wi- 1 to wi, the connection is not Coulomb in the in-between stages. However, 

as shall be discussed later, the deviation of the connection is controlled by the first and 

second derivatives of .\ for which we have estimates on upper bounds (see Appendix A.4). 

We have established that eU(l-l,l) = (hn,xlU(n,l-l,x))-l(hn,xIU(n,l,x)) takes w(n,l-l,x) to w(n,l,x) 

in the region U(n,l-l,x) nU(n,l,x)' The equivalent result for the entire space is eU[(n,l,x),(m,p,y)] = 
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(glU(n,l,x))-I(gIU(m,p,y)) taking w(n,l,x) to w(m,p,y) in the region U(n,l,x) n U(m,p,y) where ei­

ther m = n or n+ 1, p [or l + 1 and Y (Xl, X2), (Xl, X2 - 2-(n+I)) or (Xl - 2-(n+l) , X2). 

We include a summary of the effect of each component gauge transformation in the region 

UCn,l,x): 

hCn,l,x) takes any connection w to w(n,l,x) (which is Coulomb in U(n,l,x))' 

hn,x takes w to wCn,l-l,x) in some regions and wCn,l,x) in others. In all remaining transitionary 

regions the connection is not Coulomb. 

hn takes w to w(n,l-l,x), wCn,l,x), w(n,l-l,x'), w(n,l,x') or some smoothly changing non-Coulomb 

connection (dependent on region). 

G takes w to w(n,l-l,x) wCn,l,x) w(n,l-l,x') wCn,l,x') w(n+l,l-l,x) w(n+l,l,x) w(n+l,l-l,x') , , " , , , 
WCn+l,I,x') or some smoothly changing non-Coulomb connection (dependent on region). 

eU[(n,I,x),(m,p,y)] = (GIUCn,l,x))-l( GIUCm,p,y)) smoothly takes wCn,l,x) to w(m,p,y) , where UCn,l,x)n 

UCm,p,y) I- 0. 

By composing the above functions and their inverses we construct the composite gauge 

transformation. In this gauge we rewrite w as w. 

As noted earlier, constant gauge transformations are not uniquely specified and we can use 

this gauge freedom to choose a particularly simple form for u in the regions of overlapping 

balls in the e direction. We extend this notion to include radial directions and directions 

parallel to the singularity and have the following lemma. 

Lemma 4.15 In the region Ua n UfJ) where (3 = (n', [I, x')) we can choose the function u 

such that u(P) = 0 if any of the below conditions apply 

1. n = n') X = x' and l = l' + 1 with 1 ::; l' < 7 

2. n = n'l l = l' and X and x' are adjacent on the square lattice An 

3. n = n ' + 1) l = l' and X = x' 
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That is to say, if Ua and U(3 differ by one or more of either a rotation of ~, a displacement 

of 1 on.the grid An or a radial skew by a factor of two, then the function u at any point P in 

Ua n U(3 is zero. Of importance is that [' < 7 and so u(P) cannot be zero in an intersection 

where [' = 7. This is because no matter what gauge we take, we can never make the gauge 

'match up' in the region Uo n U7. 

The effect of Lemma 4.15 is to choose our non-global composite gauge to look like the 

holonomy gauge (achieved by parallel propagation) in the limit as r tends to zero. This will 

later be used to establish the limit holonomy. 

We recall that each of the u's occurring on an intersection of two balls belongs to L§ for 

q > 2. We now note that each ball Ua has a boundary which does not consist of slits or 

cusps and in fact is Lipschitz continuous (see Appendix B.5). This means we can apply 

Sobolev's Lemma (as given in Appendix B.6) where N = 4, m = 2 and q > 2. Hence 

N < mq and for all u E L§ we have 

(4.183) 

Hence all u's occurring on an intersection belong to VXJ. 

From Theorem 4.14 and Lemma 4.15, for all intersections not involving [ = 0 and [ = 7 we 

have the following equation which will be important later in this chapter. 

(4.184) 

We refer back to our previous definition of the composite gauge transformation G = 

hn exp(.\u) and rewrite it in full in terms of its cutoff functions. 

G = h(n,l,x) exp('\lul) exp(.\(y)u(n, X, x')) exp(.\u) (4.185) 

In Appendix A.4 we show that we have upper bounds on the cutoff functions and their first 

two derivatives and we know that each u is bounded in the manner described in (4.184). We 

also know that the L~ norm of the gauge transformation h( n,l,x), used to make a connection 

Coulomb in U(n,l,x) , is itself less than or equal to a constant times the L2 norm of n (as we 

saw in the proof of Theorem 4.12). From this we can deduce that on an intersection not 

involving e = 0 and e = 21f, the I-form K, G-1dG E Li behaves like 
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(4.186) 

We have used the non-global composite gauge to glue together Coulomb gauges using cutoff 

functions. In this gauge we still require the second Coulomb condition on the connection, 

(4.151), to hold. If the condition holds without cutoff functions (i.e. in the Coulomb case) 

then it will hold with cutoff functions up to a larger constant coefficient of IlnllL2. We can 

make the effect of the AS arbitrarily small by using the previously discussed gauge freedom. 

Hence 

(4.187) 

At e = 21f we use G to gauge transform from w(n,7,x) to w(n,O,x) by s = G(r, 21f, y)-lG(r, 0, y). 

We now look at the two values of G given by Go = GIU(n,O,x) and G7 = GIU(n,7,x)' The 

transformation used to gauge transform from wO to w7 is defined to be s = Gale7 on 

U(n,x) {U(n,O,x) n U(n,7,x)}' It remains to identify three important features of this trans­

formation and we shall go through these in turn. We first show s has a pointwise limit 

as r tends to zero and we identify this limit with the holonomy. We then use a carefully 

normalised local radial gauge to show that the connection satisfies good curvature related 

estimates. From this we can modify s to obtain a global gauge in which the connection form 

satisfies the inequality of Proposition 4.10. 

We define a ball parameterised only by x and n which we shall call V = V[n, xl = {(r, e, y)} 

where 

_E. < e < E. 
8 8 

Y belongs to the open square centered at x of side length i 2-n 

We let n[n, xl be the collection of all indices a = (n', i', x') such that the intersection of 

Ua and V is non-empty. We let the union of all of these non-zero V-intersecting Uas be 

W[n, xl. We let X[n, xl be the union of all W[n', xls where n' 2:: n. Finally we let the point 

P[n,xl = (2-(n+1) , 0, x). So in equation form 
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W[n, x] U UQ 

QED 

X[n, X] U W[n',x] 
n'2:n 

F[n,x] = (T(n+1) , 0, X) (4.188) 

Using this we can apply the following theorem: 

Theorem 4.16 The gauge transformation s obeys the inequalities 

(a) sup Ils(r, e, y) s(P[n, xl) II :s: cllnwll£2(W) 
(r,B,y)EV 

(4.189) 

(b) Is(P[n, xl) - s(P[n', x']) I :s: cllr2wll£2(X[n,x]uX[n',x'J) (4.190) 

Part (a) states that the least upper bound in V of the norm of the difference between s 

and s(F) is bounded above by a constant times the L2 norm of r2w (the curvature for a 

connection w) in the region W, the unity of all the V-intersecting balls U Q' 

Part (b) states that the norm of the difference between s at two different points, P[n, x] 

and F[n', x'] is bounded above by a constant times the L2 norm of r2w in the region given 

by the union of X[n, x] and X[n', x']. 

Proof (a) 

The way to prove (4.189) is to show first that the gauge transformation s = Go 1 G7 has a 

limit as one tends to the singular set or, in other words, that s is continuous as n tends 

to infinity. The standard way to show continuity would be to use Morrey's lemma [32] (see 

Appendix B.7) to show that s is Holder continuous (see Appendix B.8). 

If we take q = 2 for Theorem 4.14 then we find that ~llvull£2 :::; K(llr2ll£2(Uo,)+IIDIIL2(UB)) < 

00 and hence J 18ul 2 dO" is bounded and we can use Morrey's lemma (for p = 2). If we had 

taken any higher values of q then we could not bound J 18ulP dO" since we only know that 

r2 E L2. Note that u E L~ and hence, when q = 2 we have u E L~; this in turn implies that 

u E Li satisfying another condition of Morrey's lemma. However we have the requirement 

that q > 2 in order to apply Sobolev's lemma to show that the u's in the intersection 
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Ua n U(3 belong to L oo . Hence the problem must be solved in a different fashion. 

If we let n be in LT for r > 2 then we can now use Theorem 4.14 for higher values of q 

(up to and including r) in order to get the initial conditions required for Morrey's lemma, 

in the same way as before. With q > 2 we can now still use Sobolev's Lemma. However, 

this has the drawback that our condition on the curvature is now even stronger and hence 

Theorem 4.9 is less versatile. 

Instead we shall show that s is continuous by using a proof given by Taubes in the appendix 

of [44]. The method is quite complex but we include here a summary of the procedure. 

Our aim is to show that a gauge transformation from a Coulomb gauge to another Coulomb 

gauge is continuous. The way we do this is to use the fact that the Laplacian of a gauge 

transformation sis L where L depends only on s and the two connection I-forms (no deriva­

tives are involved). We mollify this expression, divide by a potential, integrate by parts, 

and then show that the remaining potentials are continuous functions. 

For two connection I-forms a and b related by the gauge transformation s in an open ball 

U we have the equation 

(4.191) 

(analogous to our gauge transformation equation) and the first Coulomb condition that 

d * a = d * b = O. We note that even though we are considering connections in the non­

global composite gauge, which is not in general Coulomb, the Coulomb properties hold since 

in the region we are currently working, Uo n U7, the Coulomb gauge and the non-global 

composite gauge are identical (the cutoff functions are not used in this intersection). From 

this Coulomb condition and (4.191) we have 

* d* ds = sb . b - 2a . sb + a . as (4.192) 

We now use a standard mollifier jE on both sides of (4.192). A mollifier is a smooth function 

with special properties, used to create sequences of smooth functions approximating non­

smooth functions. 

d*d(jE * s)(y) = (jE * L)(y) at y E UE 
(4.193) 
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where L is the RHS of (4.192) and * indicates a convolution. We consider the cut-off function 

{

I Ix - yl < idist(x, aU) 
(3X (y) = 

o Ix - yl > !dist(x, au) 
(4.194) 

and multiply both sides of (4.193) by Ix-yl-2(3X (y) and then integrate the resulting equation 

over U using the Green's function for 6. = *d * d to get 

(4.195) 

We note that the first part of the RHS is what we would have if the convolution (j£ * L) 

was not a mollification and was simply L. 

Taubes proves that for E = 0 the RHS of (4.195) defines a continuous function from U to 

Mn and hence the LHS, (j£ * s)(x), does the same for E = O. He does this by splitting the 

RHS into two terms si (y) and S2(Y). We find that s2(y) is continuous from a lemma stating 

that for any function v we have 

Lemma 4.17 (Taubes) The map h2 : U X Ll (U) -+ lR defined to be 

d*d(3X) 4 

I 12 d Y x-y 
(4.196) 

is jointly continuous. 

The proof that si (y) is continuous is more complicated than the proof for the continuity of 

s2(Y). Vile establish that the E = 0 limit of si exists as a map 31 : U -+ Mn and then that 

the map hI : U X (Ll n L CO
) X2 Li(U) -+ lR, defined as 

J uvx 4 
h1 (x,u,v,w) = I 12d y u x - y 

( 4.197) 

is well defined and has the properties given by the lemma below. 

Lemma 4.18 (Taubes) The map hI! above, is continuous on its domain 

(4.198) 
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Hence si(x) and thus the entire RHS of (4.195) is continuous for E = O. 

Since jE * S converges strongly to s in Lfoc(U) for any 1 ::; P ::; 00 (which we are in) we know 

that the gauge transformation s is continuous and hence on the intersection of the first and 

seventh coordinate patches s has a limit as we tend towards the singular set. 

Having shown that s is continuous we now wish to finish the proof of part a) of the theorem, 

in order to prove part b) which will tell us how s tends to so. As we have shown in (4.183), 

IlullL'Xl ::; cll f2 IILQ(U",UU,,). We recall that s is dependent on h E L~ and exponentials of u. 

Since s is continuous we know that this dependence is also continuous and from this we can 

show that supv lis - s(p)11 is bounded above as in Theorem 4.16. 0 

We now look at the proof of the second part of Theorem 4.16 

Proof (b) 

The proof of (b) comes by using (a), 

Is(P[n, x]) - s(P[n', x']) I Is(P[n, x]) - s(P) - (s(P[n', x'] - s(P)) I 

< Is(P[n,x]) - s(P)1 + Is(P[n',x']) - s(P)1 

< sup Is(P[n, x]) - s(P)1 + sup Is(P[n', x']) - s(P)1 
v v 

< clllf2w ll£2(W[n,x]) + c211 f2wIIL2(W[nl,x']) 

< cllf2w II L 2(X[n,xluX[n',x']) (4.199) 

We can go from the fourth to the fifth line because W[n, x] U W[n', x'] is smaller than 

X[n,x] U X[n', x']. 

Part (b) shows us that as we increase nand n' to infinity the region X[n, x] U X[n', x'] 

will shrink to only the Ucx balls intersecting the shrinking region V around the singularity. 

V will certainly be shrinking not just radially but also on the singularity since, as n in­

creases, the side length of the square on the singularity equal to ~2-n is also shrinking. So 

as n --+ 00 the sequence {s(P[n,x])} converges to some pointwise limit So E 80(3). This So 

in 80(3) is independent of the value of x we choose, since s is not affected by position on 

the singularity, but only the size of the open square around that position. The size of the 

open square is not dependent on x but on n. 
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The limit as r tends to zero of the jump in the holonomy gauge is the limit holonomy and 

so, from Lemma 4.15, we have an indication that the limit as r tends to zero of the jump 

in the composite gauge is also the (same) limit holonomy. The proof that the limit So can 

be identified with the limit holonomy of W is as follows. 

First we wish to show that So is equal to the holonomy 100 of a constant fiat connection WOO' 

Since So is a constant it can be rewritten as exp( -21Woo ) where aoo is a constant matrix. 

It follows from the discussion at the end of Section 4.2 that a= takes values in so(3). Now 

let us look at some constant flat connection Woo = aoode. We can work out the holonomy, 

G(21T), of Woo by solving 

dG 
de + aooG = 0 ( 4.200) 

We find the holonomy 100 of this constant flat connection w= is G(21T) = exp(-21Taoo ). 

Hence So = 100 , Up to a choice of gauge, Woo is the flat connection to which we will show our 

connection W will asymptotically tend. More precisely, we will show W tends to a prototype 

flat connection which is gauge equivalent to Woo' 

We now wish to show that Woo and w have the same limit holonomy. To do this we need 

the following lemma which will also be crucial to the proof of Proposition 4.10. 

Lemma 4.19 In any ball Ea., a point P may be chosen and a radial gauge (wr = 0) found, 

in which w(P) = Woo = aoo d8 and the inequality, 

(4.201) 

is satisfied. 

We use the above lemma to show that an initial gauge can be chosen such that the connec­

tion in the composite gauge tends to the constant fiat connection Woo as r tends to zero. 

Hence Woo and w have the same limit holonomy. From before we know that So is equal to 

100 , the holonomy of Woo' This concludes the proof that So can be identified with the limit 

holonomy of w. D 
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Proof of Lemma 4.19 

From before we know that there exists a radial gauge such that limr-+o w = Woo almost 

everywhere. If w' is related to w by a gauge transformation G' then 

and 

w~(P) = G,-lwz(p)G' + G'_188~' 

If we let G' be the solution to the equation 

dd~' + wz(P)G' 0 

(4.202) 

(4.203) 

( 4.204) 

which is G' = e-wz(P)z, then it follows that w~(P) = O. If we then transform w' further 

using the gauge transformation G" = e-w;(P)t then we have a new radial gauge 

w" = ew;(P)t [ewz(P)Zwe-wz(P)Z - wz(P)e-Wz(P)Zdz] e-w;(P) _ ew;(P)tw~(P)e-w;(P)tdt 

( 4.205) 

which still satisfies w~(P) = 0 but also w~'(P) = O. We now work in this gauge and so restrict 

the notation w" to w. We now make a constant gauge transformation to fix we(P) = aoo · 

Since Wr = 0 it follows that ~ = Dre . Now we integrate both sides of this equation with 

respect to r (using a dummy variable p) between r(P) and T to get 

and since here r(P) ~ p ~ r we have 

Iwe - aool ~ r plDldp 
Jp=r(P) 

Now we use (4.207) and Holder's inequality. 
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Iwe aool < ir 

plnldp 
p=r(P) 

< IIIIIL Ilplnlll LQ ([ )~ ([ r Idp Ipnlqdp 
p=r(P) p=r(P) 

'=' ([ )l (1' - 1'(P)) Q Ipnlqdp 
p=r(P) 

.=i ([ ) l < l' Q Ipnlqdp 
p=r(P) 

Iwe - aool q < 1'q- 1ir 

Ipnlqdp (4.208) 
p=r(P) 

Now we integrate over the volume of a ball Bo< with radius r. Nothing significant is hap­

pening in the z and t directions and any integral over e is bounded so (introducing a multi­

plicative constant) we only need to look at the integral in the radial direction, remembering 

to introduce the additional l' when integrating over the area. So we have 

( 4.209) 

Now using integration by parts we obtain 

(4.210) 

Now we use integration by parts again 

(4.211) 
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So (4.210) becomes 

(/Iwe < cr7 (rq r IfWdP) ~ 
Jp=r(P) 

= cr~ ( r IfWdP) ~ 
Jp=r(P) 

However, q 2: 2 implies that 2q:l 2: 2 and since r is small, we know that 

2q+l 2 
r q :5,r 

and so (4.212) becomes 

1 

( r Iwe - a Iqdr'\ q ,,) 00) 

==? r-2
1l we - aoollLq 

( 4.212) 

( 4.213) 

( 4.214) 

With a similar method we can obtain estimates on Wz and Wt thus concluding our proof for 

Lemma 4.19. 0 

When we refer to performing the composite gauge transformation on the connection, we 

mean that we apply the composite gauge transformation on the connection in the radial 

gauge. 

We let w represent the connection I-form in the radial gauge of Lemma 4.19 in the ball 

containing Uo = U(n,O,x), i.e. the ball over the sector 0 < e < ~. We let Wo be the connection 

I-form in the Coulomb gauge on this same ball. The gauge transformation h takes w to Wo 

using the equation dh + wh hwo. We can rewrite this as (remembering that Wr = 0) 

ah ah ah ah 
ae de + az dz + at dt + ar dr + wehde + wzhdz + wthdt = 

hwoede + hwozdz + hwotdt + hwordr (4.215) 

Taking coefficients of de 

ah 
ae + we h = hWoe ( 4.216) 
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and so 

hWoe 

hwoe - (a oo + we)h 

re 
h(s)woe(s) - (aoo + we(s))h(s)ds 

leQ 

+I+f(z,t,r) 

h ~ e"~eh. ~ ea~e (I + J,: e-a~e[hwoe - (000 + we)h]dB + f) ( 4.217) 

We now use a result from measure theory (see [39]) which states that there is a point Q E Uo 

with 0 < eQ < ~ such that 

1 211w - w= Iliq(~ ) Iw - woolqrdrdzdt ::; 7r 0 

uon(e=eQ) 2" 
( 4.218) 

With Q defined this way and f(Q) = 0 it follows that 

IV f I :; const { (Iw. I + Iw,j) (',oQ ",t) + J,: (Iwo I + Iw, I + I Wt I + rlQldB) } (4.219) 

We then take Lq norms and use the measure theoretic fact above, Theorem 4.14 and the 

Poincare inequality (see Appendix B.9) to get 

Lemma 4.20 Let h be the gauge transformation on Uo from the radial to the Coulomb 

gauge. Then, h = eaDOe(I + Ro) where, for q 2:: 2 

(4.220) 

for some remainder term Ro· 

An analogous computation for the ball U7 = U(n, 7, x) gives us an expression for the gauge 

transformation k from the radial gauge to the Coulomb gauge 

(4.221) 

with 

( 4.222) 
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Returning to the transformation s = C01C7 = h- 1k we can rewrite it in terms of c 21raoo 

and the remainder functions 

s (eacoe (I + Ro)) -1 eaoo (e-21T) (J + R7) 

(J + Ro) -l e-aoo e eaooB e-21Taoo (J + R7) 

(J + Ro)-l e-21ra=(J +R7) ( 4.223) 

Now we define the set N = {x E Uo n U71IR7(X)1 > I} and let m(N) be its measure. Then 

m(N) Iv dx 

< lTV IR7(X)ldx since IR7(X)1 > 1 

< Iv IR7(XWdx 

(1I R7(X) IILq(N)) q 

< (1I R7(X)IILQ(U7))q since U7 :2 U7 n Uo 

I 211£>11 \q < \cr IIHIILQ(U7)) 

< cr2qIIDlliq(U7) 

< Cr
2qo(1) since IIDIIM(U7) tends to ° (4.224) 

Since r is small and q ::::: 2 we have m(N) ::; Cr4o(1). One can approximate the measure 

of the intersection of the two balls Uo and U7 to be r 4 and from this we know m(N) < 

~m(UOnU7) rv r4. If we let V = (UonU7)\Nthen we see that V = {x E UonU71IR7(X)1 ::; I} 

so IR71 ::; 1 on V. Since m(V) + m(N) = m(Uo n U7), if m(N) < ~m(Uo n U7) then 

m(V) ::::: ~m(Uo n U7). The average value over V of IRo(P)IQ is given by 

Iv IRolQdx 
m(V) 

and so we can find a point P E V such that 

f IR IQdx 
IR (P)IQ < v 0 

o - m(V) 

and hence 

2 f IR IQdx IR (PW < v 0 
o - m(Uo n U7) 

(4.225) 

( 4.226) 

(4.227) 

Since P E V we know that R7 (P) I ::; 1. By taking the qth root of (4.227) and then applying 

Lemma 4.20, we have 
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Lemma 4.21 There exists a point P in Uo n U7 and a constant C such that 

2Cr21'ISlII 
IRo(P)1 < Lq and (4.228) 

m(Uo n U7)q 

We now look at P = P[n, x], the point of Uo n U7 given by Lemma 4.21 and the gauge 

transformation s = soe'l/J = G01G7 on U(n,O,x) n Un,7,x) where 1jJ E L~ and 2 :s; q :s; p. Since 

s is on U(n,O,x) n U(n,7,x) we can use Theorem 4.14 to get 

IIV(V1f;)IILQ + r- i IIV1f;IILq + r- 2 111f;IILq < Il n II LQ (uOnU7) 

==* IIV(V1f;) 11M + r- 11IV1f;IILQ < Il n II LQ (uOnU7) 

We shall use this result later for Proposition 4.22. 

(4.229) 

We now observe that for small r we can use a Taylor series expansion on (1 + RO(p))-l to 

get 

(I + RO(p))-l = 1 - Ro(P) + higher order terms ( 4.230) 

Let us call the higher order terms, H. We know that by taking a sufficiently small space 

near to Ro(P) we have that IHI :s; Ro(P). So now let 

where 

(1 + RO(p))-l 1 - Ro(P) 

Ro(P) Ro(P) - H 

< Ro(P) + Ro(P) 

==* IRo(P)1 < 2I Ro(P)1 

Now we use (4.223) and (4.231) to get 

s(P) (1 + Ro(p))-le-27raoo (1 + R7(P)) 

e-27raoo (1 - Ro (P)) (1 + R7 (F)) 

We let s soe'l/J so we have 
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(4.234) 

The remainder terms vanish from the point we expand about, so Ro(O) = R7(0) = 0 and 

we know that 

so, using (4.232) and the inequality IR7(P) I ::; 1 from Lemma 4.21, it follows that 

Now let e'IjJ(P) = I + W. Then 

I - Ro(P)R7(P) - Ro(P) + R7(P) 

IRo(P)R7(P) + Ro(P) - R7(P)1 

< IRo(P)R7(P) + Ro(P)1 

< 12Ro(P)1 

< 4I Ro(P)1 

II - I - WI < 4IRo(P)1 

=} IWI < 4I Ro(P)1 

(4.235) 

(4.236) 

(4.237) 

Iln(I + W) I ::; 21 W I for all values of W except when -1 ::; W :::; P ~ -0. 797 (considering just 

the one dimensional case for illustrative purposes). However, since we know that IWI ::; 41 Rol 
we can see from Lemma 4.21 that if we are considering UOnU7 close enough to the singularity 

we can ensure that IWI < 0.797. Hence, 

1'if(P) I Iln(I + W)I 

< 21WI 

< 81 Rol 

So now using Lemma 4.21 again we have the result 

1'if(P) I < 81 Rol 

< 
Cr2110,1ILQ(Uo) 

1 

(m(Uo n U7)F 

< 
Cr2110,1ILQ(UOUU7) 

1 

(m(Uo n U7)F 
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We now combine (4.229) and (4.239) to get 

Proposition 4.22 The gauge transformation s = soe1/J 

where 1/J E L~, 2 :; q :; p, and obeys the inequalities, 

< IIDIILQ(UOUU7) 

Cr21IDIILQ(UoUU7) 
11/J(P) I < 1 

(m(Uo n U7))Q 

where P = P[n, x] is the point of Uo n U7 given by Lemma 4.21. 

From Proposition 4.22 we can see that since 11/J1 approaches zero in the limit we have 

e1/J =Id in the limit. Hence s = soe1/J tends to So as we would expect. We now have all the 

requirements to calculate the inequality in (4.139) except that the gauge transformation G 

is not global as a result of using the composite gauge transformation which is discontinuous 

at B = 0 = 21f. We use the following cut-off function to modify the non-global composite 

gauge to be global in such a way that the required inequalities for wand K, are preserved 

up to constants. 

)"(B) = {I B = 0 
o B> 2I - 8 

( 4.240) 

Now, instead of G we shall have our new global gauge transformation a = GsA where a is 

identical to G except in the region U(n,O,x) n U(n,7,x)' In this region we use s = Gr; IG7 and 

the cutoff function and observe that 

a(B) 
B>2I - 8 

(4.241) 

Now let w = a-Iwa + a-Ida and K, = a-Ida. We wish to show that the Li norms of 

both of these objects in this global gauge are bounded above by cilDIILq (this is the only 

Coulomb property we still require at this stage). 

Recall that w is the original connection gauge transformed once into the radial gauge and 

then into the non-global composite gauge. We know that IlwllLi :; cilDIILq and hence 
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Ilwllu Iis-AW/' + S-Ad(sA)IILq 
1 1 

< cI!lwllLq + Ils-Ad(sA)IILq 
1 1 

< c211DIILq + II(lnso)V'AIILq + c3111/;V'AIILQ + IIAV'1/;IILQ 
1 1 1 

< CIIDIILQ (4.242) 

In the above calculation we make use of Proposition 4.22 and bounds on the cutoff function 

and its first two derivatives, obtained in a similar manner to Appendix A.4. Note that it is 

only necessary to apply Proposition 4.22 in the region Uo n U7 since elsewhere G = a and 

II(lns)V'A + AV'1/; + S-AKSAIILq 
1 

< II(lns)V'AIiLi + 1lAV'1/;IILi + cilKIILi 

< cllDllLQ (4.243) 

We now deduce some important results to assist in our final calculation 

1. Woo is a flat connection which implies that r = a-1wooa + a-Ida is a flat connection. 

2. Since r is a flat connection we know that its curvature Dr = dr + [r, r] = 0 

3. 

4. We wish to show that 

Ilw~b,a - w~a,bIILQ 

< Ilw~b,aIILq + Ilw~a,bIILQ 

21Iw~b,aIIM 

2118wllLQ 
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To show this we will first look at the case where wand r are scalars. 

(/ 10rlqdcr) ~ 

(/ 10QllrQldcr) ~ 
1 

< (110QII£2llrQIIL2dcr) q (Holder's inequality) 

(/ 1012Qdcr) iq (/ 1 r'l 2Qdcr ) 2~ (4.245) 

By the Sobolev imbedding theorem (see proof of Theorem 5.23 in [1]) we know that 

if mp :::; nand p :::; r :::; n~;np then 

( 4.246) 

for some scalar w, constant k. Hence 

(4.247) 

As aresult of the fiat background metric and the construction of the Sobolev norm 

as shown in Chapter 2, it can be shown that (4.247) applies in the non-scalar case 

also. Hence we know that 

11[O, r] IILq < 2110rll Lq 

< c211011Lq IlrllLq 
1 1 

< c211011LQ IIC-1wex,(l + kllLq 
1 1 

< c211011Lq (1IC-1wooCIILq + 11R;IILq) 
1 1 1 

< c311011LQ + c211011LQ IlkllLq 
1 1 1 

< c411SlllLQ + c511 Sl lliQ 

< c411SlllLQ + c611SlllLQ 

< cllSllb (4.248) 

We now finish the proof of this section by applying the above results and Lemma 4.19. We 

introduce C as a finite set of as such that Uo:Ec Bo: forms a covering space for No· 
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110 rliLq + Ilvr(0 - r)IIM 

110 - rliLq + Ild(0 - f) + [O - r, fJIILq 

110 - fllLq + lidO + [O, f] (df + [f, f]) IILq 

IIC-1wC - C-1wooCII Lq + lidO + [0,f]IILq 

< IIC-1(w - woo)CIIM + IId01b + 11[0,fJIILq 

< c211w - WoollLq + 2118011Lq + CIllnll Lq 

< C2 (L Ilw - WOOIILq(BCX)) + c311 wliLi + cIllDllLq 
nEe 

< c411DliLq + c511DIILq 

< cilDIILq (4.249) 

Since D E W~,k = {D = d+wlw E Li,loc(Xo),D E LP(No), IIOlIL2 ::; k and (HA) holds} we 

have thus shown Proposition 4.10. f is given by Aoo in the composite global gauge and has 

a limit given by 

(4.250) 

Hence, as previously shown, we obtain Corollary 4.11 by noting that in the limit f = aoodB 

is a constant fiat connection and so is gauge equivalent to wb• Corollary 4.11 then leads on 

to Theorem 4.9. 0 

4.4 Limiting behaviour of the metric 

We have established Theorem 4.9 demonstrating that the connection is asymptotically the 

same as the connection of a 4-dimensional cone. We would now like to establish the following 

theorem relating the metric with the metric of a four dimensional cone. 

Theorem 4.23 There exist coordinates such that the metric 9 satisfies 

(4.251) 

where l is the metric for the four-dimensional cone and the L;,vb norm zs where the 

covariant derivatives are taken with respect to the conical metric. 
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Proof 

Let us first consider the 4-dimensional conical space-time, with angular deficit 21r(1 - A) 

and connection I-form wb. We look at a point Xo away from the singularity which we can 

say is Xo = (0, ro, 0, 0), without loss of generality. We choose a dual basis at Xo to be 

1 0 0 0 

o 1 0 0 

o 0 1 0 

000 1 

(4.252) 

We Fermi-Walker transport [20l19b~ (xo) using the metric connection r b, first in along the 

radial line fJ = 0, then around a loop (for each value of r), then in both the t and z directions. 

Note that we employ Fermi-Walker transportation since the lines along which we propagate 

are not geodesics and hence parallel propagation will not preserve orthogonality of the 

dual basis. Since we have used the metric connection we know that the coframe remains 

orthonormal. This will give 19b~ (t, r, fJ, z) = 19b~. We note that '!91>~ (t, r, 21r, z) 0:/: 19b~ (t, r, 0, z). 

However, there exists an element of 80(3), Lb~(t, r, z) = Lb~ such that 

(4.253) 

Since 19b~ is orthonormal, the fiat metric l ab(t, r, fJ, z) is given by 

( 4.254) 

where 17afJ is the Minkowski metric. Hence l ab(t, r, 21r, z) = l ab(t, r, 0, z). 

Now we consider the space-time with connection I-form w. We choose a dual basis 19~(xo) 

at the point Xo and Fermi-\iValker transport in an analogous way to the above, using the 

metric connection r, to get the coframe 19~(t, r, fJ, z) = 19~. However we choose the initial 

co frame in such a way that 

lim19~(O,r,O,O) = lim19b~(O,r,O,O) 
r-+O r-+O 

( 4.255) 

Then in the same fashion as before we find the 80(3) transformation L~ such that 

19~(t,r,21r,z) = L~19~(t,r,O,z) ( 4.256) 

and we also have 
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(4.257) 

We now want to show that Ilgab -'- g~bllL2 ~ KIIDllp. We first define h~(t,T,e,Z) = h~ by 

( 4.258) 

(4.259) 

Hence 

( 4.260) 

We now let J~(t, T, e, z) be a global section in the global composite gauge 9 from before, 

such that 

(4.261) 

From [20] 'we know the definition of the Fermi-Walker derivative of a vector and from this 

it is not hard to deduce the Fermi-Walker derivative of a I-form 

(4.262) 

Since we are applying Fermi-Walker transport it follows that 

(4.263) 

Using previous methods to find (4.35)we can derive a similar expression 

(4.264) 

In the same way we let 

(4.265) 

We find that 

(4.266) 
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Note that using Gronwall's inequality (see Appendix B.lO) we see that even if P and q were 

elements of the full Lorentz group (as opposed to the subgroup 50(3)), they would still be 

bounded. From (4.258) we have 

{JCX 
a 

hCX {JD{3 
{3 a 

=? pCX{;{3 
{3 a h~q~{;2 

=?P~ hCX q{3 
(3 I (4.267) 

In coordinate free notation we write h = pq-1. This implies 

dh dp -1 dq-1 
de de q +Pdj) 

dp -1 -1 dq -1 
de q - pq de q 

p(we - w~)q-1 + g(e, T)we{Jeq-1 - i(e, T)W~{JBq-l - g(e, ewe{Je){Jeq-1 

D ( - D"O) "0 -1 +g e, eWeve veq (from (4.264) and (4.266)) 

Reverting back to using indices we have 

dh~ 

de 

It can be shown that 

D h{3(hCX S:CX)"ODI'"OD). s:{3(hCt S:CX)"Obi"OD). 
gab - gab = Tlcx(3). I' - uI' v a V b + Tlcx{3u). /' - uI' 'U a V b 

Hence, since e, {J, {JD, TI, wD, T, e, q-1 and 0 are bounded we can rewrite (4.269) as 

( 4.268) 

( 4.269) 

(4.270) 

(4.271) 

where CJ~ and DJ~ are bounded tensors. Integrating both sides and choosing the constant 

of integration to be the identity matrix I we have, on suppressing indices, 
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Hence 

h 1+ ('e p(wb - w)q-l + C(wD w) + D(h I)d¢ Jq,=o 
===* h - I = i:o p(w

b - w)q-1d¢ + i:o C(wb 
- w)d¢ 

+ i:o D(h - I)d¢ 

===* Ih - II < i:o Ip(w
b 

- w)q-1Id¢ + i:o IG(wb 
- w)ld¢ 

+ i:o DI(h - I)ld¢ 

< Cl i:o Iwb 
wld¢ + C2 i:o Ih - I[d¢ 

(Using Gronwall's Lemma) 

Ih - II < cleC2e le 
Iwo - wld¢ q,=o 

< C31e Ij - wld¢ q,=0 

Ih-II2 < cl CLIW'-W1d1»2 

< 21fq fo27r Iwo - wl2de (Holder's inequality) 

===* J J 1:1

0 Ih - I[2rdrdzdt < 21fC411wO - wll12 

===* J J fo27r 1:1

0 Ih - 11 2
rdrdedzdt 

===* Ilh - 11112 

===* Ilh - lib 

===* 11'l9 - 'l9DIIL2 

===* 11'l9 - 'l9D IIL2 

< 41f2qllwD - wll12 (Integrating WRT e) 

< 41f2C411wb - wl[12 

< 21fC411wD - wllp 

< c411wD wllL2 (from (4.260) 

< c511nll p (from Theorem 4.9) 

We now return to the metrics 

Ilgab - g~b IIL2 = II1Ja,6'l9~'l9~ - 1Ja,6'l9D~ 'l9b~ IIL2 

II ooaoo,6 ooaoab,6 ooaooD,B oaD a oob,611 = 1Ja,6'Ua'U b -1Ja,6'Ua'U b + 1Ja,6'ua'U b - 1Ja,6'U a'U b L2 

< II1Ja,6'l9~'l9~ -1Ja,6'l9~'l9b~IIL2 + II1Ja,6-8~-8D~ -1Ja,6'l9b~'l9b~IIL2 

< qll'l9b' - 'l9°~IIL2 + c211'l9~ - vb~llp 
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Since we wish to estimate Ilg -l11L2 ,the covariant derivatives are taken with respect to 
2,\7' 

the connection of the conical metric. In order to simplify the calculations we make a change 

of coordinates to quasi-Cartesian coordinates so that g~b * TJab, the connection vanishes 

and the covariant derivative is simply the partial derivative. The effect of this coordinate 

change is to treat the conical space-time as being Minkowski space but with a sector of 

angle 27r(1 - A) missing (see Section 2.2). 

We now determine inequalities for the first and second derivative terms making up the L§ 

norm of 9 -l· 

In quasi-Cartesian coordinates we have 

(4.274) 

If an object is in L2 then its components will also be in L2 and so 

(4.275) 

The metric is related to the connection r by the equation 

(4.276) 

Hence taking line integrals we have 

gab = g~b + J gdar~cdxc + J 9dbr~cdxc (4.277) 

where g~b is a constant of integration. Taking the sup norm of both sides shows us that 

Igabl ::; Ig~bl + 2 J Igdallr~cldxc ( 4.278) 

Using the equivalence of norms, we can now let the norm be the magnitude norm defined 

in Section 2.6. We can then apply Gronwall's inequality (see Appendix B.10) and hence 

( 4.279) 

Since we are taking norms locally we know that 
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r E Lr,lOC 

=}r E L\oc , 

=} J Ir~eldxc < 00 

=} exp (2 J Ir~eldxe) < 00 

=} Igabl < 00 

From (4.276) we now have 

Igab,el 2Igd(a r t)el 

< clrgel 

=} IldgllL2 < cllrlb 

Now we establish an inequality for the second derivative of g. 

gab,e 

Igab,eel 

gdarge + gdbr~e 

\gda,erge + gdargc,e + gdb,er~e + gdbr~e,e \ 
I(gfdr~e + gfar~e)rge + gdargc,e 

+(gfdrte + gfbr~e)r~c + gdbr~e.el 

Since Igl is bounded we know from (4.275) that 

(4.280) 

(4.281) 

( 4.282) 

( 4.283) 

Again since Igl is bounded and applying the sub-multiplicativity property of (4.247) we 

have 

(4.284) 

for a small enough region around the singularity. Hence 

( 4.285) 

and finally 
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(4.286) 

as required. 

Chapter summary 

In this chapter we discussed the details of the conditions for a weak curvature singularity 

in order that we might find analogous theorems in General Relativity to those found in 

Chapter 3. As well as the connection I-form being in Li loc(X) and the curvature being in , 

L2(N), we imposed the additional condition that the space-time is static. This has the effect 

that the Lorentz transformations are restricted to rotations (see the discussion below) and 

hence the gauge group is 50(3). We discussed properties of holonomy and then constructed 

the locally flat connections which in the GR case are given by the four-dimensional cones. 

We stated and proved the GR analogue of the two main theorems from Sibner and Sib­

ner [39]. These theorems state that 

1. Limiting holonomy exists for weak curvature singularities and is identical at allioca­

tions on the singularity. 

2. As r tends to 0, the L21 ' (No) norm of the difference between the connection wand ,w 

the conical connection wD is bounded by the L2(No) norm of the curvature. 

The proof of Theorem 3.18, in particular, is complex and required considerable patience 

and time to complete due to the brevity and inaccuracy of the proof offered in [39]. 

In the GR case there were two new issues which required additional attention. Firstly, at 

the end of the proof of Theorem 4.8 we needed to show that the existence and invariance 

of the limit holonomy meant that the axis of the rotation of the holonomy agreed with 

the direction of the singularity. Secondly, in GR the connection is given by the metric. We 

were able to use the results of Theorem 4.9 to show that the metric of the weak curvature 

singularity is close to that of a conical singularity. More precisely we showed that 

3. As r tends to 0, the L~ \7' (No) norm of the difference between the metric 9 and the , 

conical metric l is bounded by the L2(No) norm of the curvature. 
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This property is required for our work in the next chapter. 

We now offer two discussions on issues relating to this chapter. 

U sing the full Lorentz group 

Earlier in this chapter we explained that it is necessary to take a Lie subgroup 80(3) of 

the Lorentz group as the gauge group for our bundle space. The reason behind this is that 

it is not certain whether or not boundedness of the Lie group elements is required in order 

for the main results of this chapter to hold. For example, in our proof of (4.78) we certainly 

require G to be bounded. 

In the case of a 2-dimensional and timelike quasi-regular singularity, where the full Lorentz 

group is used as the gauge group, the holonomy is a rotation and not a boost. So one might 

expect our theorems to apply to 2-dimensional and timelike square integrable singularities 

with the Lorentz gauge group, since we would also expect holonomy to be a rotation and 

hence bounded. In which case the G from (4.78) is bounded anyway. 

Use of the Lorentz group could allow for the consideration of non-static space-times and 

hence a considerably larger scope for application of Theorem 4.8 and Theorem 4.9 to Gen­

eral Relativity. 

However, even if it was not possible to show that the elements of the group remained 

bounded, it might be possible to prove Theorem 4.8 and Theorem 4.9 with a weaker con­

dition. 

An alternative proof? 

In [39] the Sibners offer an alternative proof for (the Yang-Mills analogue of) Theorem 

4.9 using a separate theorem of Taubes. The idea they propose is to go directly to the 

critical So bolev case of p = 2 in Theorem 4.9 and hence bypass some of the later lemmas 

in their paper as well as Proposition 4.10 and Corollary 4.1f (since these are concerned 

with lowering p > 2 to P = 2). However, the method relies on the application of Theorem 

4.16 which we have deduced can only be applied in relation to LP norms of n where p > 2. 

This ultimately comes from the fact that u E L co only if u E L~ for q > 2 (Sobolev's lemma). 
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For the alternate proofto work we would perhaps have to approximate u E L§ by a sequence 

of smooth u E Lg in a similar fashion to the method shown to derive Theorem 4.9 from 

Corollary 4.11. 
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Chapter 5 

Distributional Curvature 

In this chapter we shall discuss how the findings of the previous chapter, regarding the 

metric of a weak curvature singularity, allow us to calculate the distributional curvature of 

the singularity. We have shown that the L§ norm of the difference between the metric of a 

conical singularity in four dimensions (4-cone) and the metric of a weak singularity tends to 

zero on approach to the singularity. We therefore expect that the distributional curvature 

and hence also the energy momentum tensor of these two classes of singularity will show a 

similar relationship. 

As previously noted, the 4-cone is a relatively simple example of a quasi-regular singu­

larity. We showed in Chapter 2 a heuristic method used in [49] to find the distributional 

curvature of a 4-cone, by calculating the holonomy around the two dimensional singularity. 

Clarke, Vickers and Wilson have shown a rigorous method [7, 55] to verify the value of the 

distributional curvature. The process used (and summarised in this chapter) is to regard 

the singularity as a distributional solution to Einstein's equations by using Colombeau's 

non-linear theory of generalised functions [8, 9] to describe the space-time geometry. 

From the distributional curvature of the 4-cone found using the holonomy method, it follows 

that the related energy-momentum tensor is of the form 

(5.1) 

where 5(2) is a two-dimensional delta function with compact support, fJ, = /3/ (4G(21f - fJ)), 

G is the gravitational constant and /3 is the rotation provided by the holonomy. The energy­

momentum of the form in (5.1) is precisely the form of the energy momentum tensor of a 

cosmic string in the thin string limit. We shall explain what this means below. 
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Cosmic strings are considered to be topological defects in a space-time, formed when dif­

ferent regions of space-time undergo thermodynamic phase transitions, resulting in domain 

boundaries between the two regions when they meet. They have immense density and so 

represent significant gravitational sources. 

Cosmic strings, for which the thickness of the string tends to zero, can be modeled by 2-

dimensional, timelike quasi-regular singularities (for example, the 4-cone, as shown above). 

This 'thin string' model is not an exact physical model of a cosmic string since they do 

have a small but non-zero thickness. However, it has been shown that the thin string limit 

is a good estimate since almost all of the matter is confined to a region with the thickness 

of the Higgs Compton wavelength [24, 52]. Further validation that the thin string model is 

an accurate estimate can be found in [49]. 

By looking at a suitable class of weak curvature singularities instead of quasi-regular singu­

larities we find that we get the same energy-momentum tensor from a distributional point 

of view. Hence weak singularities also display properties of cosmic strings. 

In Section 5.1 we review the methods used to construct the generalised Colombeau alge­

bra [7]. In Section 5.2 we review previous successes in finding the distributional curvature 

of a standard conical singularity [7, 42] and also for variations on the four-dimensional 

cone [55]. In Section 5.3 we extend this work to find the distributional curvature of a weak 

curvature singularity. 

5.1 Construction of the Colombeau algebra 

In this section we include the full technical details of the construction of the Colombeau 

algebra and then briefly summarise the process and its application. 

We start by defining the following sets of functions. 

<.P E V(JRn ) ~ <.P E C= and <.p has compact support 

<.p E Ao(JRn) ~ <.P E V(JRn) and in <.p(x)dx = 1 

<.P E Aq(JRn ) ~ <.P E Ao(JRn ) and r <'p(x)xidx = 0 (1:S; i :s; q) (5.2) 
JfJf.n 
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where i is a multi-index such that xi = (xl )il (x2 )i2 ••• (xn )in where ik E N and Iii 

i 1 + i2 + ... + ik' We define the n-dimensional 6-function as having the property 

r 6(n) (x)dx = 1 (5.3) 
IfB!.n 

Let <l? E Ao Cll~n ), then the E-parametrised function <l? E (x) = E~ g) (~) (0 < E < 1) is known 

a~ a model 6-net and is also in Ao (r ), although with a smaller support and larger amplitude 

than <l? For a locally integrable function f : JRn -+ C we can look at its smoothed function 

f such that 

(5.4) 

Hence 

(5.5) 

Letting % = v we have 

(5.6) 

In the case where f is continuous we therefore have 

lim j(<l?E' x) = J f(x)<l?(v)dv = f(x) 
E-tO 

(5.7) 

which justifies the use of the term delta-net to describe <l?E' 

Definition 5.1 The function R is an element of the algebra £ (JRn ) iff 

(<l?,x) r--7 R(<l?,x) 

and for fixed <l?, Bq, E Coo where <l? E Ao (JRn ) and 

x r--7 Bq,(x) = R(<l?,x) 
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Definition 5.2 The function R is an element of the moderate subalgebra t'M(lRn) of t'(JP?n) 

iff for all K c c JP?n and for all i E I'fL, there is some N E N such that: If <P E AN (IRn ) 

there exists c, 77 > 0 such that 

sup 18~R(<Pc,x)1 ::; cCN (0 < E < '17) (5.8) 
xEK 

Note that eN increases as a polynomial of ~, not an exponential. A feature of this sub­

algebra is that if Rl, R2 E t'M(JP?n) then the product RIR2 does not coincide with usual 

multiplication of Coo functions. If we have a smooth function f, we can map this into an 

element of EM(JP?n) in two ways. We can leave it unchanged by using 

(5.9) 

or smooth the function by using 

(a generalised function) (5.10) 

where 1 and i are both in EM (JP?n) and <Pc E Aq (JP?n). However, on one hand we have 

ig(<p,x):= i(<p,x) . g(<p, x) = (J9)(<P,x) (5.11) 

and on the other 

19(<p,x):= J(<p,x) . g(<p, x) i (fg)(<P, x) (5.12) 

We would like to be using 1 as our approximation but we would also like the multiplica­

tivity property of (5.11). We will bunch together the two representations by letting 1 rv i 
for all <Pc so there is just one regularisation of f given by the equivalence class til, which 

we will show belongs to a differential algebra, namely Colombeau's generalised function 

algebra [8, 9]. 

Before constructing our equivalence relation we must first look at the ideal N(JRn
) of the 

subalgebra EM(JP?n). 

Definition 5.3 The function R is an element of the ideal N(JRn ) iff for all K cc lRn and 

for all i E I'fL, there is some N E N and some increasing and unbounded sequence {rq hEN 
such that: If <P E Aq (JP?n ), for q ;::: N, there exists c, 77 > 0 such that 
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sup 18~R(iPE,X)1 :; CE,q-N 
xEK 

(0 < E < 7)) (5.13) 

The important point here is that for sufficiently large q, E,q-N tends to zero. 

Proof that N([?n) is an ideal 

If 9 E N([?n) then 9 and all its derivatives are less than or equal to C1E'e N . If f E EM 

then f and all its derivatives are less than or equal to C2C N . Hence 

f 9 :; Cl c2E,q-N C N 

(fg)' = f'g + fg' :; clc2E,q-2N + Clc2 E,Q-2N 

(fg)" = (f'g + fg')' = f"g + 21'g' + fg" < 4C3E'YQ-2N etc. (5.14) 

So letting 2N = N' we see that if 9 E N ([?n) and f E El\,1 (lRn) then f 9 E N C'J!?n) which is 

the property of N([?n) being an ideal. 0 

We nmv wish to sho\',' that 1 - j E N([?n). Let us look at the 1-D case, which has a result 

analogous to the higher dimensional result. 

1-j 

(0 < e < 1) 

since ¢ E Aq ([?n ) 

(5.15) 

Since iP(v) is of compact support and the function is finite everywhere, the integrand on 

the penultimate line is bounded by a constant. From (5.15) we see that 1 - j E N([?n). 
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We now define our equivalence relation. 

From the previous result we get that f ("V j as required. The equivalence classes formed 

under this relation are elements of the quotient set EJJ/::/. Let us look at two elements of 
[ (l~n) 
ffCfi{n) which we shall call [RIJ and [R2J. Let a, bE ['M(JR.n) such that a E [RIJ and b E [R2J 

and let ni E N(JR.n) Vi EN. Then a = RI - nl and b = R2 - n2. So 

(5.16) 

Since nl, n2 E N(JR.n ) and RI, R2 E ['M(JR.n ) we have RIn2, nI R 2 E N(JR.n) and also nIn2 E 

N(JR.n ) since N(JR.n) C ['M(JR.n ). Hence 

(5.17) 

Therefore if a E [RIJ and b E [R2J then ab E [RIR2J and so we still have the required 

closure group property. We let EJJ/:nn} = Q, Colombeau's generalised function algebra. Q is 

a differential algebra which means we can differentiate and take products of elements in a 

well defined manner. To find the generalised function corresponding to the product of two 

distributions or a distribution and a continuous function, we take the equivalence class of 

the product of the two smoothed distributions or the product of the smoothed distribution 

and the smoothed continuous function respectively. Hence, if we can express the metric as 

a generalised function (an element of Q) then we can express the curvature as a generalised 

function. 

Later in this section we shall be interested in generalised functions which in some way 

correspond to distributions. This correspondence shall be defined using a notion of weak 

equivalence which we shall now derive, following the program outlined in [7J. 

We would like to understand what it means to take the integral of a generalised function. 

In an analogous way to that done before we will first define a new algebra, sub-algebra and 

ideal space which are in effect pointwise values of the spaces [' (JR.n ) , [' M (JR.n ) and N (JR.n) 

respectively. 

Definition 5.5 The algebra [' is defined to be the set of functions 

(5.18) 
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Definition 5.6 The subalgebra EM is the set of all f3 E E such that there exists an N E N 

such that if <J? E AN then there exists c,7) > 0 such that 

(0 < E < 7)) (5.19) 

Each element R E EM(lRn) is, for a test function <I? , a representative for a corresponding 

generalised function G = [R(<J?, x)l E Q(JRn ). The function 

PR: Al -+ C 

<J? r-+ r R(<I?,x)dx 
JJRn 

(5.20) 

is an element of EM. If Rl and R2 are representatives for the same G, then PRl and PR2 

differ by a function belonging to the ideal I of the algebra EM. 

Definition 5.7 The ideal I of the algebra EM is the set of functions P such that there is 

some N E N and some increasing and unbounded sequence {I'q }qEN such that if <I? E Aq(IR;n) 

for q 2:: N then there exists c, 7) > 0 such that 

(0 < E < 7)) (5.21 ) 

The equivalence class obtained from the quotient of EM and I is independent of which 

representative we take of the generalised function G and we think of this quotient as being 

the value for the integral of G. We define elements of this quotient to be generalised complex 

numbers. 

Definition 5.8 The algebra of generalised numbers is defined to be 

For any z E C we can look at the constant function pz(<I?) = z. The equivalence class [Pzl 

of this function is a generalised complex number. Hence for any classical complex number 

we can associate a generalised complex number. 

Definition 5.9 z E t is associated to z E C if there is a representative P E EM of z such 

that for <I? E Aq (I~n) and with a large enough q E N, 

( 5.22) 
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If Z E t is associated to z E C then we write Z I- z. Note that if z I- z then it is 

not necessary that z is the equivalence class [pz]. We now define association between two 

generalised complex numbers. 

Definition 5.10 Zl, Z2 E t are associated to each other if and only if Zl - Z2 I- 0 E C. 

In a similar way we can now define weak equivalence (or association) between elements of 

the Colombeau algebra. 

Definition 5.11 If Gl , G2 E 9 (lR.n) then G1 is weakly equivalent to G2 if and only if for 

each I]i E 1)(IRn ), 

(5.23) 

Weak equivalence between G1 and G2 is written Gl ~ G2 . 

Finally we say that a generalised function G corresponds to a distribution T if G ~ T. 

The key point about a Colombeau algebra is that it takes a non-smooth function f(x) and 

embeds it uniquely into the algebra as a smoothed function j(x, <1>c). However, in doing so, 

the smoothed function is no longer simply a function of x, but also of the E-parameterised 

kernel, <1>c. For fixed <1>, j is a I-parameter family of smoothed functions. Since the embedded 

objects are smooth we can now perform calculations involving differentiation, multiplica­

tion and addition with other elements of the Colombeau algebra and still have a resulting 

answer in the algebra. 

To return the function from the algebra to the set of distributions we use association. We 

consider how the smoothed function acts on a test function \f! E 1). If the limit as E -+ 0 of 

this integral is independent of <1>, but agrees with the action of some distribution T acting 

on I]i, then we say that the algebra element is associated to that distribution. 

5.2 Distributional curvature of a conical singularity 

Many alternative methods have qeen used to determine information about cosmic strings. 

Vilenkin [50] deduced, using a weak field theory, that the exterior metric of a cosmic string 

is the 4-dimensional conical metric. Gott [19] and Linet [28J carne to the same conclusion 
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by starting with the conditions on the energy-momentum tensor "T/ = T; and Tba = 0 for 

other components" and deducing the exterior metric which gave rise to such conditions. 

Vilenkin [51] and Vickers [49] used the Nambu action and then the four dimensional La­

grangian action to calculate the energy-momentum density of the string, but from this it is 

quite hard to obtain the metric. 

Using the Colombeau algebra, Clarke, Vickers and Wilson [7, 55] found the distributional 

curvature for a conical singularity, determined a precise energy-momentum tensor and hence 

calculated the mass per unit length of a cosmic string. Wilson [55] has also applied these 

methods to other quasi-regular singularities including conical non-fiat singularities (for 

specifically behaving curvature) and also conical singularities with variable angular deficit. 

In previous chapters we have shown that a suitable class of weak curvature singularities 

asymptotically agree with conical singularities as '{" -t O. Hence we expect the singular part 

of the energy-momentum tensor provided by a weak curvature singularity to be associated 

to the distributional energy-momentum tensor for a cosmic string. 

We start by reviewing the calculation of the distributional curvature of a cone. Following 

the method in [55], we determine distributional curvature (density), first for a 2-D cone and 

then for a 4-D cone. We first notice that in both cases, since the Geroch-Traschen condi­

tions [18] are not satisfied we cannot immediately recognise that Rabcd can be interpreted 

as a distribution. 

Since the cone does not satisfy the GT-regularity conditions, we cannot calculate the dis­

tributional curvature directly. One approach is to replace g~b by a family of smooth metrics 

g~bE' We could now try to calculate the curvature Rabcdc of g~bc for fixed E and then take 

the limit of Rabcdc as E -t 0, as has been attempted in [2, 18, 29]. By making a suitable 

choice of smoothing, the limiting curvature can be used to recover, for example, the Ricci 

scalar 

R = limRE 
E-+O 

(5.24) 

However, it has been demonstrated that this type of method is only applicable in certain 

situations [18] and in the case of the 4-cone ultimately yields different answers for the mass 

per unit length of the cosmic string. 
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The advantage of using the Colombeau approach is that one has a canonical embedding of 

non-smooth objects into the algebra. We embed the metric into the Colombeau algebra by 

taking a representative of the family of smoothed metrics (given by an equivalence class). 

In the algebra we can now perform the necessary calculations to find a representative of 

the curvature density. To get back to the level of distributions we are then required to use 

the relationship of weak equivalence (or association). We now outline the calculation for 

the case of a two dimensional cone (see [55] for details). We start by looking at the metric 

for the 2-cone in Cartesian coordinates. This avoids any confusion which may arise when 

distinguishing between coordinate and actual singularities. We then split the metric into 

singular and non singular parts 

b 1 2 1 2 
gab = 2(1 - A )hab + 2(1 + A )6a b (5.25) 

where 

(5.26) 

we then smooth g~b using a model J-net <I> E ..4.1 (JR2 ) to find the family of smooth metrics 

(5.27) 

where <I> has a radius of 

Ro=sup {(x2+y2)kll<I>(x)Y)1 > o} (5.28) 

Due to the nature of <I» the smoothed metric will belong to the algebra [M (JR2 
). We note 

that 

-b 1 ( 2) 1 ( 2) 
gab

E 
= 2 1 + A 6ab + 2 1 - A habE 

(5.29) 

and so we need only evaluate !-tab
E

' Wilson shows that 

( C4 + C6~ + C7~ C5 + C8 ~ + C9 :' ) (x2 + y2) (1' < ERO) +0 2 
C5 + C8~ + C9~ -C4 C6~ - C771 E 

E E 

( x
2_y2 

~) ( ,9+
1 

) x 2+y2 x 2+y2 +0 'l±l (1' > ERO) (5.30) 
~ ~ (x2 + y2) 2 
x 2+y2 x 2+y 
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where the Ck are constants. 

Since g~b€ is as an element of [M (IR;2), we can embed into the Colombeau algebra Q by taking 

the representative [g~bl E Q as described in Section 5.1. Working in the Colombeau algebra, 

we can now calculate the representative Ricci scalar RE from gDb in the usual manner. 
a € 

Note that we wish to regard the dirac delta 8(2) as a scalar density (so that it is dual to a 

function) and we therefore choose to calculate the Ricci scalar density RE-/Fi rather than 

the Ricci scalar. The Ricci scalar density RE-/Fi gives a representative of the equivalence 

class [kJ~l in Q. To return from the Colombeau algebra to the space of distributions, 

Wilson demonstrates that for each (j) E Coo with compact support 

This shows that 

lim r 47r(1 - A)8(2)W(x, y)dxdy 
HOjK 

(5.31 ) 

( 5.32) 

Hence we have our associated curvature distribution 47r(1 - A)8(2). The calculation (5.31) 

can be done either by evaluating the integrals directly or by using a holonomy (Gauss­

Bonnet) argument. We note that since we are taking limits as E -+ 0 we make good use of 

approximations involving E. 

The important point of this method is that, by using the Colombeau algebra, we can take 

the curvature of the representative of the metric to find the representative of the curvature 

of the metric. Note also that since weak equivalence is independent of the representative 

in [M, the right hand side of (5.32) is also independent of both (j) and the representative 

we take for Q. This shows that at the level of weak equivalence the curvature of the 2-

dimensional cone is uniquely given by 47r(1 A)8(2). 

For the 4-D case the calculations are very similar and we find that for the full smoothed 

Riemann density tensor, the only non-zero component is [RX~y-J="1l ~ 27r(1- A)8(2), as we 

expected from our heuristic holonomy method in Chapter 2. By a simple contraction on the 

components of the Riemann tensor we obtain the distributional mixed energy-momentum 

tensor density, with non-zero components 

(5.33) 
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Wilson then calculates the mass density per unit length of the cosmic string to be [P,(t, z)] ;:::; 

21T(1- A). 

Variations on the 4-dimensional cone 

Physical models of a cosmic string are likely to require a model less simple than that of a 4-

dimensional cone. Clarke, Wilson and Vickers [7, 55] have proposed a number of alternatives 

to the conical metric 

(5.34) 

two of which we briefly discuss. Note that the convention in [7, 55] is to adopt the Lorentzian 

sign convention Diag( -1, 1, 1, 1), but this has no significant effect on any results. 

Firstly, the constant A can be considered to be a function A(t, z). The metric 

(5.35) 

describes a conical metric but with a variable deficit angle dependent on what point of the 

singularity we are looking at. Note that the above metric does not describe a quasi-regular 

singularity but, with significance to this thesis, it does describe a spacetime with square 

Lebesgue integrable curvature. Wilson [55] shows that the distributional part of the energy­

momentum tensor behaves like a cosmic string with a mass per unit length that changes 

with position on the string. 

If we introduce a perturbation of a conical metric that vanishes sufficiently fast as we ap­

proach the axis we would still expect to be able to calculate the distributional curvature 

using a method similar to that of a cone. We first embed the components of the metric 

into the Colombeau algebra and then calculate the generalised function curvature density 

Rab cdR. This curvature density will have both a distributional contribution from the 

axis of the perturbed cone and a regular contribution from the metric. By subtracting the 

regular part from RabcdR we obtain the contribution from the axis. 

Wilson demonstrates the procedure for the special case of a metric given by 

(5.36) 
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where the term k(r) is a perturbation function of r that is O(r2) and can be thought of as a 

Coo function of the Cartesian coordinates. He shows that the resultant Riemann curvature 

density has both a distributional and a regular component. The non-zero part is given by 

(5.37) 

The significance to our work of this last model is in the derivation of the curvature. We use 

a similar method and in fact find that the curvature of a weak singuaraity has the same 

distributional and regular contributions as given by (5.37). We discuss this in the following 

section. 

5.3 Distributional curvature of a weak singularity 

We now apply the previous results from this chapter and Chapter 4 to calculate the curva­

ture of a weak singularity. We show that the distributional part of the curvature is identical 

to that of the conical singularity and that at the singularity, weak and conical singularities 

have the same curvature. This follows from the theorem for this section which we now state. 

Theorem 5.12 In Cartesian coordinates for g~b' a weak curvature singularity has a dis­

tributional curvature 

(5.38) 

and for the other components 

(5.39) 

where R is the non-singular curvature away from the origin. 

Note that in the conical case, R is zero .. 

Proof of Theorem 5.12 

We first consider comparisons between the conical and weak singularities in the two dimen­

sional case. The metric for both singularities will have coordinate singularities at r = 0 in 

polar coordinates so we use Cartesian coordinates to avoid confusion. 

As before we write the metric for the conical singularity by splitting it into regular and 

singular parts 
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We now do the same for a weak singularity 

1 2 1 2 -
gab = 2(1 + A )6ab + 2(1 - A )hab 

for some hab. We smooth both metrics with a function <I> E Al (JR2) such that 

9ab,E(X, y) 

We recall that 

r g~b(U, V)<I>E(U - X, V - y)dudv 
J~2 

r gab(U,V)<I>E(U - X,v - y)dudv 
J~2 

y) = ~<I> (~(u -X,v - y)) 
E2 E 

Letting (s,t) = (l/E)(u - X,V - y) we have 

Also, since 

it follows that 

Hence, 

I 9~b'E(X, y) - g~b (x, y) I 

I-
b b I ====? gab,E - gab 

r <I>(s, t)dsdt = I 
J~2 

IL4 (9~b(X + ES, y + Et) - g~b(X, y)) <I>(s, t)dSdtj 

O(E) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

where 0 (E) is a function of E that tends to zero as E ---7 O. Similar estimates apply for the 

first and second derivatives provided <I> E Aq for q ;::: 2. We also have 

( 5.48) 
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and again similar estimates for the first and second derivatives apply. It follows that 

From Theorem 4.23 we know that 

Hence 

b ' 
Ilg - 9 IIL§(B(a)) ::; CIIRIIL2(B(a)) 

119£ - 9~IIL§(B(a)) II9E - 9 + 9 - gb + gb - 9~IIL§(B(a)) 

< 119E - gIIL§(B(a)) + Ilg -lIIL§(B(a)) + III - 9~ IIL§(B(a)) 

< CIilRIIL2(B(a)) + O(c) 

< O(a) + O(c) 

(5.49) 

(5.50) 

(5.51) 

Hence considering the formula for the curvature in terms of the connection and the metric, 

and employing an argument similar to that used to prove Theorem 4.9, we find that for 

any fixed function <Jl E Al (Il~2) 

r (R£-vge - R~#)<Jldxdy < O(a) + O(c) 
JB(a) 

===? lim r (R£-vge - R~#)<Jldxdy < O(a) 
£--+0 J B(a) 

From the results of [55] given earlier we know that 

(5.52) 

lim r R~!ii<Jldxdy = 47f(1 - A)<Jl(O, 0) = r 47f(1 - A)J(2) <Jldxdy (5.53) 
£--+0 J B(a) J B(a) 

Hence from (5.52) we have 

lim r (R£-vge - 47f(1 A)J(2))<Jldxdy::; O(a) 
E--+O J B(a) 

(5.54) 

We now let U be the support of <Jl where we have chosen a such that B(a) C U. We recall 

that REV!}; ~ RJg and so, from the definition of weak equivalence we know that 

lim r (RE-vge - Ry'g)<Jldxdy = 0 
£--+0 J U\(O,O) 

(5.55) 

Finally, we show that the following limit is zero 
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E~61k2 (RE~ - Rvg - 41f(1 - -4)5(2)) <PdXdyl 

E~61fu (RE~ - Rvg - 41f(1 - A)5(2)) <PdXdyl 

- lim r (RE~ - Rvg) <pdxdy 
E---+O JU\B(a) 

+ r (R£~ - Rvg - 41f(1 - A)5(2)) <pdxdy 
J B(a) 

Since (5.56) is independent of a we can write 

E~ Ik2 (R£Vi: - Rvg - 41f(1 - A)5(2)) <PdXdyl 

lim lim r (REVi: - Rvg) <pdxdy 
a---+O E---+O J U\B(a) 

I 

< lim r ( REVfJE - Rvg)\ <PdXdyll 
E---+O JU\(O,O) \ 

(5.56) 

(5.57) 

+ lim lim r (R£Vi: - 41f(1 - A)5(2)) ~dxdy + lim r Rvg<pdxdy 
a---+O £---+0 J B(a) , a---+O J B(a) 

From .(5.55) we know that the first integral vanishes. Likewise, from (5.54) we know the 

second integral vanishes. Finally, since R is the regular part of the curvature, we know that 

the third integral vanishes. Therefore 

(5.58) 

Again from the definition of weak equivalence we find that 

(5.59) 

Using similar methods to those found in Chapter 5 of [55] we can then extend this result 

to the four dimensional case. 

(5.60) 
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Chapter summary 

Heuristic arguments suggest that the curvature of a conical singularity is given by a delta 

function. However, the metric does not lie in the class of GT-regular metrics and therefore 

one cannot simply use classical distribution theory to calculate the curvature. An alter­

native approach is to regularise the metric through some smoothing procedure. However, 

as shown by Geroch and Traschen, this method also has a number of difficulties and in 

particular, different smoothings provide different answers. Because of this we followed [55] 

and applied a method involving the use of Colombeau's algebras (see Section 5.1 for a full 

description of these). 

We embed the metric into the Colombeau algebra by taking a representative of the family 

of smoothed metrics. In the algebra we can now perform the necessary calculations to find a 

representative of the curvature density. To get back to the level of distributions we are then 

required to use the relationship of association. For the cone we find that the Colombeau 

distributional curvature density is associated to a delta function which is exactly the result 

expected from the holonomy method given in [49]. 

We then briefly discussed using similar methods for finding the distributional curvature of 

metrics which represent a perturbation of a conical metric. We then recalled the results 

from Chapter 4 which show that a weak curvature singularity looks like a cone close to the 

singularity. We combined the previous results of this chapter for calculating the distribu­

tional curvature of the cone, with the results from Chapter 4, to calculate the distributional 

curvature density of a weak singularity. In doing so we confirmed the expected result, that 

weak curvature singularities have a regular part given by the regular part of the metric and 

a singular part with a distributional curvature equal to that of a 4-dimensional cone. 
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Chapter 6 

Conclusions 

The objective of this thesis has been to find the distributional curvature of weak curva­

ture singularities, those singularities with the property (amongst others) of having square 

Lebesgue integrable curvature. We examined theorems from Yang-Mills gauge theory and 

derived analogous theorems for General Relativity. These theorems state that weak singu­

larities have a limit holonomy and also have connection and metric tending to that of a 

conical singularity as r -+ O. We then considered known results for the distributional cur­

vature of a conical singularity and demonstrated that this is the same as the distributional 

part of the curvature of a weak singularity. 

Summary 

Since this thesis concerns singularities, in Chapter 2 we included a brief review of modern 

understanding of some crucial concepts such as "what a singularity is" and "where a singu­

larity is". In defining a singularity we introduced the ideas of Cauchy, geodesic and bundle 

completeness. We found that the metric and manifold alone are inadequate tools to describe 

the location of a singularity and so in this thesis we chose to adopt the method of locating 

singularities on a b-boundary. We showed how constructing the b-boundary requires the 

establishment of a positive definite metric on the frame bundle using both the canonical 

and connection I-forms in order to find the Cauchy completion of the frame bundle. 

We then went on to classify different types of singularities and in particular looked at 

quasi-regular singularities. We then introduced the idea of distributional curvature as a 

way of describing curvature at a singularity. The concept of holonomy was explained and 

we showed how holonomy can be used to measure distributional curvature of a singularity. 
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As an illustration of some of the results that have been found for quasi-regular singularities 

using the holonomy method we summarised the main findings in [49]. 

Next we introduced the particular type of singularity with which we are concerned, the 

weak curvature singularity. The curvature of the space-time may approach infinity towards 

a weak singularity but is, however, square Lebesgue integrable everywhere. Hence a distri­

butional curvature can be assigned at the singularity. 

This thesis relies on the use of Sobolev spaces and norms and so a detailed explanation was 

given, particularly on how to take Sobolev norms of objects with space-time and/or Lie 

group or Lie algebra indices. 

In Chapter 3 we considered the work of Sibner and Sibner [39] in Yang-Mills gauge theory. 

We first introduced Yang-Mills theory and then showed the method by which the Sibners 

demonstrated the existence of limit holonomy at all points on a singular 2-surface. It was 

demonstrated that this limit holonomy is independent of the limiting point on the singular­

ity. The remainder of Chapter 3 was concerned with the second main result of Sibner and 

Sibner which showed that, in a neighbourhood of a singularity, the Lr norm of the differ­

ence between a connection and some constant flat connection is bounded by the L2 norm 

of the curvature. Any connection has a corresponding flat connection to which it tends in 

the limit. This connection and flat connection share the same limit holonomy. Many of the 

details of the proofs were omitted particularly where a directly analogous proof was applied 

in the case of General Relativity in Chapter 4. 

In Chapter 4 we adapted the theorems shown in Chapter 3 to be applicable to certain 

static space-times in General Relativity which have 2-dimensional and timelike, weak cur­

vature singularities. We showed the important differences between the Sibners problem in 

Yang-Mills and our problem in GR. Most notably we discussed the gauge group 50(3), a 

subgroup of the Lorentz group, assigned to our bundle space and demonstrated that the 

connection I-form w} and the curvature 2-form n} take values in the Lie algebra 30(3) of 

50(3). We also provided the construction of the prototype flat connection, which for GR 

is the flat 4-dimensional cone. 

We included the full details of the proofs needed to establish Theorem 4.8 and Theorem 4.9. 
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We also showed two more results integral for our problem in GR. The first used work done 

in [6] to show that the axis of rotation of the holonomy agrees with the singularity. The 

second showed that it is not just the connection which tends to a flat conical connection on 

approach to the singularity, but also the metric which tends to the metric of the flat cone. 

This last result ultimately allows us to find the distributional curvature of a weak singularity. 

In Chapter 5 we gave a detailed explanation of Colombeau's theory of generalised functions 

and then summarised a method given in [55] to find the distributional curvature of a conical 

singularity. We briefly discussed further work in [55] to find the distributional curvature of 

a perturbed conical singularity. We then applied a similar method to calculate the distri­

butional part of the curvature of a weak singularity to be the same as the distributional 

curvature of a conical singularity. 

By extending previous results for conical singularities, to include weak curvature singular­

ities, we have increased the size of the class of singularities which possess curvature that 

can be described using a distribution. By treating these singularities as a distributional 

solution of Einstein's equations we can consider them, at least in some sense, to be part 

of the space-time. This will enable physicists to work with singularities in a considerably 

more rigorous fashion. 
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Appendix A 

Relevant methods and properties 

A.I Lie groups and Lie algebras 

We define a Lie group using the definition in [22]. 

Definition A.I A Lie group G is a group in the usual sense but is also a differentiable 

. manifold with the properties that taking the product of two g'f'OUp elements, and taking the 

inverse of a group element, are smooth operations. Specifically the maps 

and 

are both Coo. 

Some examples of Lie groups are: 

The general linear group 

The special linear group 

J-L:GxG -7 G 

(gl,g2) -7 glg2 
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(A.l) 

(A.2) 

(A.3) 



(A.4) 

The orthogonal group 

(A.5) 

The special orthogonal group 

SO(n) = SOn(IR.) {A E O(n)ldetA = I} (A.6) 

The unitary group (where A* = AT, the transpose of the complex conjugate of A) 

U(n) = UnUC.) = {A E Mn(qIA* A = I} (A.7) 

The special unitary group 

SU(n) = SUn(CC) = {A E U(n)ldetA = I} (A.S) 

The right and left translations of a Lie group G are diffeomorphisms of G labelled by the 

elements g E G and defined by 

Rg : G -+ G 

g' t-+ g' g 

Lg : G -+ G 

g' t-+ gg' (A.9) 

Isham [22] defines a vector field X on a Lie group G as left-invariant if it is Lg-related to 

itself for all g E G. That it is to say 

(A.10) 

To every Lie group G, we can associate a Lie algebra 9, the set of all left-invariant vector 

fields on G, whose underlying vector space is the tangent space of G at the identity element. 

£! completely captures the local structure of the group since there is a one-to-one association 

between one-parameter subgroups of the Lie group and its Lie algebra (see page 166 in [22] 

for details). Lie algebra indices are given by lower case letters. 

As an example of a construction of a Lie algebra let us consider g in the group SO(3) 

(rotations in 3 dimensions), with g(O) = I. Here r5 is the Euclidean metric and 9 is the 

derivative of g with respect to t. 
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g1(t)6ijgi (t) 6kl 

g1(t)6ijgl(t) + gUt)6ijgl(t) 0 

g1 (0)6ijgl (0) + g1 (0)6ijgl (0) 0 

o (A.l1) 

Now let g(O) = B E 80(3). Lowering the indices we get 

(A.12) 

so B is anti-symmetric. Note that this lowering of indices will be different when we work 

with the Lorentz group and Minkowski metric. The basis for 30(3) is ei where 

(A.13) 

We say that a matrix C takes values in the Lie algebra 80(3) iff C can be composed from 

a linear combination of f.l' f.2 and ~. 

A.2 Relating basis vectors to connection I-forms 

Once we have chosen the metric on a manifold, then we can choose the basis vectors 

from which the metric is derived such that their inner products are constant. If we let 

{Ii, i = 0,1,2, 3} be the basis of one-forms (the dual of the basis of vectors {ei' i = 0,1,2, 3}) 

then the metric is 

(A.14) 

where fLij is a matrix of constants. In GR we often take fLij to be the Minkowski metric 7)ij· 

We note that {)i is a I-form and so could just as well be written {)~dxa.The covariant 

derivative of {)i in the ej direction is a I-form and hence is a linear combination of the {)k. 

We may therefore write [21] 

c,\? .oi i .ok 
ej v c.u a = -rkj'U a (A.15) 
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The scalars ,kj (since i, k, j are numerical labels) are the Ricci rotation coefficients and 

determine the connection. Also, since gab1J~ 1Jt = p,ij - that is to say, the 1Ji have constant 

inner product p,ij and since the 1Jj form a basis dual to the ei, we have 1Jtej = 5g (and 

also 1Jbei = 51). From this we have the following 

'V c5~ 0 

i b 'V c1J aei 0 

i b 
1J a 'V cei 

b i 
-ei 'V c1J a 

c1Ji'V b ej a cei b c'V 1Ji -eiej c a 

c1Ji'V b ej a cei 
b i k 

ei Ikj1J a 

1Ji c'V a bek cei 
a j 1Ji 

ejlik b 

ek'V cei J/kej 

We can contract both sides of (A.15) with gab 1J'b to find 

===} ry(i .lIm)k 
I kJr 

_gab {}mryi .1Jk 
b IkJ a 

ryi "mk 
- Ikjr 

-,Lf-tmk 
- Ikjp,ik 

( 
i mk + m ik) - IkjP, IkjP, 

reverse Leibniz 

( 
i mk + m ik) - 'YkjP, IkjP, 

since V' cg
ab = 0 

since JL ij are constants 

( 
i mk + m ik) - 'YkjP, IkjP, 

o 

We now define (suppressing space-time indices) the connection I-forms wk by 

W
i - "Ii .oj 
k - Ikj'u 

For the G R case we could now write (A.l 7) as 
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(A. 17) 

(A.18) 



(A.19) 

which tells us that wJ takes values in the Lie algebra of the Lorentz group. 

The Ricci rotation coefficients may be used to obtain an expression for the coordinate 

components of the connection 

(A.20) 

where r denotes the standard Levi-Civita connection. 

The connection I-forms w~ also contain the information about the connection and by (A.17) 

they are skew-symmetric if an index is raised by f-Lij , as is shown here 

wtf-Lmk 

---'- ! ( wf umk + wm"ik \ 
------T 2 \,;;' . k r" ) 

===} ji /Im )k 
kr" 

Itjf-L
mkl3j 

!l3j ('YLJ1,mk + 'Y'[:;;lIik ) 2 ""J' ."Jr" / 

l3 j ",(i ./Im)k 
, kJr" 

===} w(i /Im )k = 0 
kr" 

o 

Now from (A.15), if we contract both sides with 13~ we find 

l3lejV'cl3~ j i k 
-l3b Ikjl3a 

===} 0bV' cl3~ i 13k -Wkb a 

===} V'bl3~ i k 
-wkbl3a 

We now skew this on [a, b]' and then revert to index free notation 

V'bl3~ 

===} V' bl3~ - V' al3t 

===} 8bl3~ - 8al3t 

===} dl3i 

(A.23) is called the first structure equation. 
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-wi 1\ 13k 
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(A.22) 
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A.3 Duals of differential forms 

It is important to understand that a dual of a differential form (or Hodge dual) is different 

from the dual of a vector space. 

Let w be a p-form on an n-dimensional oriented manifold with metric gab. We define the 

dual *w, of w by 

1 *w - _W/-Ll/-L2···/-LPE 
VIV2··· Vn-p - p! /-Ll···/-LpVl···Vn - p 

(A.24) 

where E/-Ll ... /-Ln is the natural volume element on M, the totally antisymmetric tensor field 

which satisfies 

and 

( 0 

s = t 1 

signature of gab is non-negative 

signature of gab is negative 

(A.25) 

It can be seen that the dual of a k-form in n dimensions is an n - k-form. For example, in 

Chapter 3 the curvature F = ~ Fabdxa 1\ dxb is a 2-form and *F is the dual of F written as 

where 

Eabcd = 1 ~ 
-1 

even permutation of 0123 

repeated entry 

odd permutation of 0123 

A.4 Estimating derivatives of the cut-off function A 

(A.26) 

(A.27) 

This appendix relates to the cutoff functions used in Section 4.3 and should be read with 

reference to that section. 

We show that for our cutoff functions A we have 

(A.28) 

160 



recalling that d is the larger of the diameters of the two balls BO' and Bf3. We will show 

how to estimate the cutoff function in the radial direction A (r ). Analogous estimates may 

be found for the cutoff functions A(Y) and Az(8). We begin with 

A(r) = { ~ 
where a = 2-(n+l). 

r~a 

r> 3a 
- 2 

(A.29) 

We wish to define the function in the region a < r < 32a in such a way that A(r) is smooth. 

We first note that 

(A.30) 

is zero at r = a and r 32a and positive in between, so this is a good start for a function 

for the gradient of A. A little thought shows us that we can now write A as 

o 

A(r) = 

1 

-1 

e(x- 32')2 dx 

r::::;a 

r> 3a 
- 2 

where the constant C is defined as 

With this definition 

-'L 1 -1 
2 - ~ 

( 

3 )-1 
C = 1 e(r-a)2 e(r-T) dr 

1\7>'(r)1 = ( 

o 
-1 _-_1_ 

Ce (r-a)2 e (r_~)2 

o 

r~a 

(A.31) 

We now wish to find the maximum of Iv Al by looking at its derivatives. After some calcu­

lations we obtain 
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o r::::;a 

-1 _-_1_ 

2Ce(r-a)2e(r-""Tl2 (_1_ + 1 ) a < r < 3a 
(r-a)3 (r- 3

2
a)3 2 

o 
So the maximum of IVAI is when 

2Ce (r=~)2 e-(r---3-}-)2 ( 1 + __ 1 __ ) 
(r - a)3 (r _ 3;)3 = 0 for 

From (A.32) we have 

o 1 1 ---+---
(r -a)3 (r _ ~a)3 

(r - 3a)3 + (r _ a)3 
2 

So 

5a -32 (22n+7) 
maxlvA(r)1 = IVA(-)I = Ce-;;'2 = Ce-

4 

(A.32) 

(A.33) 

(A.34) 

The maximum possible diameter of the ball will be less than the outside arc-length added 

to the difference between the radial distance of the outside edge and the radial distance of 

the inside edge from the singularity. So 

d < ~2-n + Tn _ 2-n- 2 

2 

(27f + 3)Tn - 2 

2n+2 

27f + 3 
(A.35) 

To show that IVAI::::; cd- 1 we will first show that IVAI ::::; i;:~. For this we shall use a proof 

by contradiction. Suppose IVAI> i;:~. Then 

Ce-(22n+7
) 

> 27f + 3 

===}_(22n+7) > ln2n+2 -lnC(27r+3) 

===}lnC(27f+3) > ln2n+2+22n+7 (A.36) 
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Let 

(A.37) 

Then 

c = (t f(r)dr r (A.38) 

We calculate that 

(9a) (lla) -640 f - = f - = e 9a 2 

8 8 
(A.39) 

Since f is monotonic increasing for r :::; i and monotonic decreasing for r 2:: i (in the region 

a < r < 32a) we know that 

-640 

f(r) 2:: e 9a 2 
w 9a lla 
v -<r<--

8 8 
(A.40) 

Therefore the integral Ja32a 
f (r )dr is greater than the area of the rectangle with sides 9: :::; 

".. < lla <Inn n < f("..'\ < pyn(-640,\ , - 8 ~~~~ v - j \' / _ v •• y \ 9a2 / 

3a 12 f(r)dr > 

(A.41) 

The right hand side decreases as n increases so we find that the maximum of the right hand 

side is when n = 0, the smallest value of n we can take. Therefore we know that 

c < e -;5 (512) 23 

-2560 8e-9 -

-2560 
=? In C(27f + 3) < In8e-g-(27f + 3) 

2560 
In 8(27f + 3) - -9-

< -280 (A.42) 

Going back to the right hand side of (A.36) we observe that 

InC(27f + 3) > In2M2 + 22n+7 2:: In4 + 27 > 128 (A.43) 

163 



and so we have a contradiction, which proves that 1\7(.\)1 < i;:~ ::::; cd-1 for any constant 

c> 1. 

The calculation to show that 1\7(v.\)1 ::::; cd-2 is more complex but is done in a similar way 

to that used above. 

A.5 Distributions 

We now provide a brief review of distributions. For the sake of simiplicity we look at func­

tions in one dimension. Analogous results exist in higher dimensions. 

Let us consider the following function I, mapping lR to lR, where a E lR+ , the set of positive 

real numbers. 

f 2a(1 - ax) x E [0, l/a] 
f(x) = 
" " lOx ~ [0,1/ a] 

(A.44) 

We see that for all a E lR+ the integral is 1. We can increase a to any real number we wish 

and still we have a bounded function. However, if we take the limit as a --+ 00 then we 

have a function which yields 0 at all points except one (the origin) where it is undefined. 

However, although the function is undefined at zero, the integral is still 1. In the limit as 

a --+ 00, we call this type of function a distribution. An underlying idea for distributions is 

that if a function has a certain property then so too might the limit of the function to the 

distribution. 

Distributions are objects like 5-functions. The way they are defined classically is as dual 

spaces to some function space. If we let a be a distribution, then a is a map from functions 

I to real numbers. We call I a test-function and the set of test-functions D. Likewise the 

set of distributions is D'. 

a ED' lED 

< a,I > c E lR (A.45) 

Usually we take distributions to be dual to the space of functions I where the I are smooth 

and of compact support. The support of a function is those elements which are not mapped 
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to zero. Compact means closed and bounded for subsets of IR, so 1 vanishes outside some 

finite interval. We can imbed an ordinary function in the space of distributions in the follow­

ing way (for one dimension). Given an ordinary function 9 in lR we define the corresponding 

distribution 9 E D' by 

< g,l >= i: l(x)g(x)dx = c E lR (A.46) 

We label the imbedding operation i : Lfoc ---+ D', where Lfoc is the space of locally inte-

grable functions. 

Now we define g', the weak derivative of g, as follows. First we suppose that 9 is differen­

tiable. Then we set (g)' = (g'). We bear in mind that since 1 has compact support, it is 

zero at ±oo. 

((g)',l) (g',l) 
(Xl 1 g' dx (Integration by parts) 
J- oo 

[j geoo - i: l' gdx 

i: l'gdx 

(g,1') (A.47) 

Even if 9 is not differentiable, we can still define the weak derivative 

((g)',l) = - (g,1') (A.48) 

and in general, for some a E D' we have 

(a', 1) = - (a,!,) (A.49) 

For more on distributions see [13]. 
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Appendix B 

Definitions, lemmas and theorems 

B.l The Sobolev imbedding theorem 

We now state, without proof, the parts ofthe Sobolev Imbedding Theorem, as given in [1], 

which are relevant to this thesis (notation is changed from [1] to remain consistent with 

this thesis). An imbedding is a homeomorphism of one topological space to a subspace of 

another topological space. The whole of the theorem applies to many different cases. We 

state only those cases relevant to the work in this thesis. 

Let 0 be a domain in JR7L and let Ok be the k-dimensional domain obtained by intersecting 0 

with a k-dimensional plane in lRn , 1 ~ k ~ n. (Thus on == 0.) Let j and m be non-negative 

integers and let p satisfy 1 ~ P < 00. 

There exists the following imbeddings: 

Case A: Suppose mp < nand n - mp < k ~ n. Then 

and in particular, 

L~+m (0) -+ L;(O), 

and taking j = 0 we get 
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np 
p~q~ , 

n-mp 

np 
p ~ q :;, ----=-­

n-mp 

(B.l) 

(B.2) 

(B.3) 



Case C: Suppose mp > n. Then 

B.2 Fubini's theorem 

Following the description in [54] we state Fubini's theorem for ]R.2 . 

Suppose that fELl (]R.2). Then 

l2 f(x, y)d(x, y) = l (l f(x, Y)dY) dx 

We interpret (B.5) as meaning that 

F(x) l f(x, y)dy 
vIR 

exists for almost all x E ]R. and that 

exists and equals 

[ F(x)dx 

r f(x, y)d(x, y) 
JIR2 

As a consequence of (B.5) we can see that if f(x,y) = g(x)h(y) then 

r f(x,y)d(x,y) = r g(x)dx r h(y)dy < 00 
JR2 JIR JIR 

B.3 Parseval's equality 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

Parseval's equality states that for a continuous function f, of period 27f, with Fourier 

coefficients ak and bk we have 

(B.10) 

where 
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and 

1 121f 
an = - f(e) cos(ne)de 

7r 0 

bn =.!. r21f 
f(e) sin(ne)de 

7r Jo 
Parseval's theorem also applies for Fourier series with complex coefficients. i.e. for 

00 

n=-oo 

where 

we have 

B.4 Holder's inequality 

(B.ll) 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

Holder's inequality states that if 1 < p < (Xl and 1+1, 1, then for two functions f E LP(n) 
P P 

and 9 E LP' (0.) we have 

(B.16) 

B.5 Lipschitz-continuous subsets 

A function f such that 

If(x) - f(y)1 ~ Glx yl (B.17) 

for all x and y, where G is a constant independent of x and y , is called a Lipschitz function. 

For example, any function with a bounded first derivative must be Lipschitz. 

A subset is Lipschitz continuous if the boundary of the subset is Lipschitz continuous. In 

simpler geometric terms this means that the boundary can have corners but not cusps or 

slits. 
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B.6 Sobolev's lelTIma 

Let D be an open Lipschitz-continuous subset of]RN and let q E ]R with 1 ::; q < (X) and 

mEN. Then there is a constant C such that for all u E Lfn 

(B.18) 

for N < mq. 

B.7 Morrey's lemma 

Let u E Lf(BR(XO)), 1 ::; P ::; n, and suppose that there are constants J-L > 0 and v > 0 

such that 

r 18ulPdx::; vp
(- )n-p+fLP , 0 < r < 8 = R - Ix xol 

J Br(x) 8 

for every ball Br(x), x E BR(XO)' Then u E C[Br(xo)] for r < Rand 

A 1 

lu(e) - u(x)1 ::; ~v81-~-fLV:Ple - xlfL, 
J-L 

where Vn is the volume of the unit-ball. 

B.8 Holder continuity 

8 
I.; - xl ::; 2 

Let (M, d1 ) and (N, d2 ) be two metric spaces. If a function f : M --7 N, satisfies 

(B.19) 

(B.20) 

(B.21) 

for some constants k 2:: 0, CY > 0 and all x and y, it is said to be Holder continuous. The 

number CY is called the exponent of the Holder condition. If Q = 1, then the function satisfies 

a Lipschitz condition. 

B.9 The Poincare inequality 

For all u(x) E Lf(D) and 1 ::; p < n, 0 < q ::; np/(n - p), if n is a bounded Lipschitz 

domain then the function u satisfies the (q,p)-Poincan3 inequality 
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(B.22) 

where C is some constant. 

B.lO Gronwall's lemma 

If, for to ::::; t ::::; tl, ¢(t) ~ 0 and 'lj;(t) ~ 0 are continuous functions such that the inequality 

¢(t)::::; k+Ll t 

'lj;(s)¢(s)ds 
to 

(B.23) 

holds on to ::::; t ::::; tl, with k and L positive constants, then 

¢(t) ::::; k exp (L 1: 'lj;(S)dS) (B.24) 

on to ::::; t ::::; tl. 

170 



Bibliography 

[1] R. Adams: "Sobolev spaces", Academic Press (1975) 

[2] H. Balasin and H. Nachbagauer: "What curves the Schwarzschild geometry", Class. 

Quantum Grav., 10, 2271-2278 (1993) 

[3] Y. Choquet-Bruhat and C. DeWitt-Morette, with M. Dillard-Bleick: "Analysis, man­

ifolds and physics", North-Holland (1982) 

[4] C. Clarke: "The analysis of space-time singularities", Cambridge Lecture Notes in 

Physics, Cambridge University Press (1993) 

[5] C. Clarke: "Generalized hyperbolicity in singular spacetimes", Class. Quantum Grav., 

15, 975-984 (1998) 

[6] C. Clarke, G. Ellis and J. Vickers: "The large-scale bending of cosmic strings", Class. 

Quantum Grav., 7, 1-14 (1990) 

[7] C. Clarke, J. Vickers and J. "\iVilson: "Generalized functions and distributional curvature 

of cosmic strings", Class. Quantum Grav., 13, 2485-2498 (1996) 

[8] J. Colombeau: "New generalized functions and multiplication of distributions", North­

Holland Mathematics Studies, vol 84, North-Holland (1984) 

[9] J. Colombeau: "Multiplication of distributions", Lecture notes in mathematics, vol 

1532, Springer (1992) 

[10] E. Curiel: "The analysis of singular spacetimes", Proc. Phil. Sci., 66, 119-145 (1999) 

[11] R. D'Inverno: "Introducing Einstein's relativity", Oxford University Press (1992) 

[12] G. Ellis and B. Schmidt: "Singular space-times", Gen. ReI. Grav., 8, 915-953 (1977) 

[13] F. Friedlander: "Introduction to the theory of distributions", 2nd ed., Cambridge Uni­

versity Press (1998) 

171 



[14] D. Garfinkle: "Metrics with distributional curvature", Class. Quantum Grav., 16,4101-

4109 (1999) 

[15] R. Geroch: "Local characterization of singularities in General Relativity", J. Math. 

Phys., 9, 450-465 (1968) 

[16] R. Geroch: "What is a singularity in General Relativity", Ann. Phys., 48, 526-540 

(1968) 

[17] R. Geroch, E. Kronheimer and R. Penrose: "Ideal points in space-time", Proc. Roy. 

Soc. London Ser. A, 321, 545-567 (1972) 

[18] R. Geroch and J. Traschen: "Strings and other distributional sources in General Rel­

ativity", Phys. Rev. D, 38, 1017-1031 (1987) 

[19] J. Gott: "Gravitational lensing effects of vacuum strings: Exact solutions", Ast. J., 

288, 422-427 (1985) 

[20] S. Hawking and G. Ellis: "The large scale structure of space-time", Cambridge Univer­

sity Press (1973) 

[21] L. Hughston and K. Tod: "An Introduction to General Relativity", Cambridge Univer­

sity Press (1990) 

[22] C. Isham: "Modern differential geometry for physicists", World Scientific (1989) 

[23] A. Jaffe and C. Taubes: "Vortices and monopoles", Progress in Physics, vol 2, 

Birkhauser (1980) 

[24] T. Kibble: "Topology of cosmic domains and strings", J. Phys. A. 9, 1387-1398 (1976) 

[25] D. Kini: "Weak singularities in general relativity", Ph.D. Thesis, University of 

Southampton (1997) 

[26] A. King: "New types of singUlarity in General Relativity: The general cylindrically 

symmetric stationary dust solution", Commun. Math. Phys., 38, 157-171 (1974) 

[27] M. Kunzinger, R. Steinbauer and J. Vickers: "Generalised connections and curvature", 

Math. Proc. Camb. Phil. Soc., 139, 497-521 (2004) 

[28] B. Linet: "The static metrics with cylindrical symmetry describing a model of cosmic 

strings", Gen. ReI. Grav., 11, 1109-1115 (1985) 

172 



[29] J. Louko and R. Sorkin: "Complex actions in two-dimensional topology change", Class. 

Quantum Grav., 14, 179-204 (1997) 

[30] D. Martin: "Manifold Theory", Ellis Horwood Limited, Chichester (1991) 

[31] C. Misner, K. Thorne, J. Wheeler: "Gravitation", W.H.Freeman, New York (1970) 

[32] C. Morrey: "Multiple integrals in the calculus of variations ", Springer (1966) 

[33] R. Penrose: "The question of cosmic censorship", Chapter 5 in "Black Holes and Rel­

ativistic Stars", R. Wald (editor), University of Chicago Press (1994) 

[34] J. Rade: "Singular Yang-Mills fields", Local theory 11., J. reine angew. Math., 456, 

197-219 (1994) 

[35] B. Schmidt: "A new definition of singular points m General Relativity", Gen. Rel. 

Grav., 1, 269-280 (1971) 

[36] L. Schwartz: "Sur l'impossibilite de la multiplication des distributions", C. R. Acad. 

Sci. Paris, 239, 847-848 (1954) 

[37] S. Scott and P. Szekeres: "The abstract boundary - a new approach to singularities of 

manifolds", J. GeoID. Phys., 13, no.3 223-253 (1994) 

[38] S. Shapiro and S. Teukolsky: "Formation of naked singularities: The violation of cosmic 

censorship", Phys. Rev. Lett., 66, 994-997 (1991) 

[39] L. Sibner and R. Sibner: "Classification of singular sobolev connections by their holon­

omy", Commun. Math. Phys., 144, 337-350 (1992) 

[40] L. Sibner and R. Sibner: "Singular sobolev connections with holonomy", American 

Math. Soc., 19, 471-473 (1988) 

[41] F. Stahl: "Degeneracy of the b-boundary in General Relativity", Commun. Math. Phys. 

208, 331-353 (1999) 

[42] R. Steinbauer and J. Vickers: "The use of generalized functions and distributions in 

general relativity", Class. Quantum Grav., 23, R91-R114 (2006) 

[43] C. Taubes: "The existence of multi-monopole solutions to the non-abelian, Yang-Mills­

Higgs equations for arbitrary simple gauge groups", Commun. Math. Phys., 80, 343-367 

(1981) 

173 



[44] C. Taubes: "Path connected Yang-Mills moduli spaces", J. Diff. Geom., 19, 337-392 

(1984) 

[45] K. Uhlenbeck: "Connections with LP bounds on curvature", Commun. Math. Phys., 

83, 31-42 (1982) 

[46] VV. Unruh, G. Hayward, W. Israel and D. McManus: "Cosmic-string loops are straight", 

Phys. Rev. Lett., 62, 2897-2900 (1989) 

[47] J. Vickers: "Generalised cosmic strings", Class. Quantum Grav., 4, 1-9 (1987) 

[48] J. Vickers: "Quasi-regular singularities and cosmic strings", Class. Quantum Grav., 7, 

731-741 (1990) 

[49] J. Vickers: "Singularities, distributional curvature and cosmic strings", Rend. Sem. 

Mat. Univers. Politecn. Torino, 50 (1992) 

[50] A. Vilenkin: "Gravitational field of vacuum domain walls and strings", Phys. Rev. D, 

23, 852-857 (1981) 

[51] A. Vilenkin: "Cosmic strings", Phys. Rev. D, 24, 2082-2089 (1981) 

[52] A. Vilenkin: "Cosmological density fluctuations produced by vacuum strings", Phys. 

Rev. Lett. 46, 1169-1172 (1981) 

[53] R. Wald: "General Relativity", The University of Chicago Press (1984) 

[54] A. Weir: "Lebesgue integration and measure", Cambridge University Press (1973) 

[55] J. Wilson: "Regularity of axisymmetric space-times in General Relativity", Ph.D. The­

sis, University of Southampton (1997) 

174 


