
UNIVERSITY OF SOUTHAl\IIPTON

An Investigation of High Level Synthesis

for Computational Hardware

by

-,~rash Ahrnadi

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

December 2007

UNIVERSITY OF SOUTHAl'vIPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Arash Ahmadi

Using digital systems for numerical computation has a wide range of applications in
engineering and science. In most of the cases, employing general purpose computers is
a commonly accepted way to deploy an application, however, general purpose hardware
does not provide the best solution when there are implementation restrictions, such as
embedded systems, or the application requires very high performance calculations. On
the other hand, in result of recent achievements in custom computing and hardware
synthesis methods, it is possible to customise hardware to the applications. It means
that the computing features of the underlying hardware can be configured to provide
the best match with the application requirements. This thesis is concerned with the
development and validation of a specific application high level synthesis methods to
implement computational algorithms in digital hardware. Special emphasis is placed
upon datapath structure and accuracy analysis and optimisation between computational
error and hardware implementation costs.

The first part of the thesis concentrates on the high level synthesis of computational
algorithms. We investigate how the arithmetic characteristics of the hardware affects
implementation costs. In the following, the problem of choosing different arithmetic
characteristics for each functional unit considering circuit cost is addressed. We use a
symbolic method of computational error analysis in which the computational errors are
characterised as sets of statistical symbols.

The proposed accuracy modelling is applied to a new architecture for datapath syn­
thesis. Hierarchical target architecture is proposed which is built on a multiple-width
multiple-way partitioned bus which provides the capability of parallel implementation
of computational algorithms as well as flexibility in synthesis and optimisation. This
architecture is based on an extension to the shared bus structure which is built by con­
necting a set of series and parallel bus segments building up a communication medium
for all functional units. In combination with the multiple word-length design approach,
each bus segment, and all the connected functional units to it, are allocated to a distinct
bit-width.

Results demonstrate that by customising the structure and building blocks of compu­
tational intensive datapaths, savings can be made in the overall area, delay, and power
consumption of a hardware implementation. This approach represents an improvement
when compared with the previous work in this field and provides more understanding
of implementing the computational algorithms into the customised hardware.

Contents

Nomenclature

Acknowledgements

1 Introduction

1.1
1.2

Motivation
Objectives .

1.3 Major Contributions and Thesis Overview

2 Brief Review of Datapath Synthesis

2.1 Introduction
2.2 High Level Synthesis
2.3 Restricted HLS

2.3.1 Bus-Oriented Datapath Synthesis.
2.4 Computational Hardware

2.4.1 Arithmetic Characteristic

2.4.2
2.4.3
2.4.4

2.4.1.1 Number Representation Systems
2.4.1.2 Data Bit-Width ..
2.4.1.3 Overflow
2.4.1.4 Function Evaluation
Arithmetic Characteristics As An Optimisation Parameter.
Floating-Point to Fixed-Point Conversion
Word Length Optimisation

2.5 Summary

3 Computing With Uncertainty

3.1 Introduction
3.2 Analysing Finite Precision Effects.
3.3 Error Bound Analysis Approach

3.3.1 Interval Arithmetic
3.3.2 Affine Arithmetic

3.3.2.1 Affine Operations
3.3.2.2 Non-Affine Operations.

3.3.3 Taylor Method
3.4 Noise Analysis Approach

3.4.1 Modelling Digital Noise
3.4.2 Noise Propagation ...

3.4.2.1 Linear Time Invariant Systems

ii

Xl

xiii

1

1

3
4

7

7

7

13
15
19
20
21

25
25
26
29
30

34
37

38
38
39
41
42
45

45

46

47
49

49

54

54

CONTENTS

3.4.2.2 Non-Linear Systems
3.5 Summary . .

4 Symbolic Noise Analysis
4.1 Introduction
4.2 Motivations
4.3 Symbolic Noise Analysis Approach

4.3.1 Statistical Model of The Noise Symbols
4.3.1.1]\1ultiplication Noise Model

4.3.2 Noise Symbols Propagation
4.4 Symbols Combination

4.4.1 Histogram-Based Method ' ..

4.4.1.1 Mean and Variance of the Combined Variables
4.5 Implementation Algorithm.
4.6 Summary .

5 Multi-Way Multiple-Width Partitioned Bus Structure
5.1 Introduction
5.2 Motivating Examples
5.3 Bus-Oriented Datapath

5.3.1 Multiple-Width Partitioned-Bus
5.3.2 Multiple-Width Multiple-Way Partitioned-Bus

5.4 Wire Length Estimation ..
5.5 Implementation Algorithm.
5.6 Summary

6 Synthesis Using MW2P-Bus
6.1 Introduction
6.2 Synthesis Method ..
6.3 Target Architecture
6.4 Synthesiser

6.5

6.4.1 Internal Representations.
6.4.2 Functional Blocks Data Base
Summary

7 Optimisation Algorithm
7.1 Introduction
7.2 Method Overview .. .
7.3 Cost Functions

7.4
7.5

7.3.1 Delay Cost Function
7.3.2 Area Cost Function
7.3.3 Power Consumption Cost Function.
7.3.4 Noise Cost Function
7.3.5 MW2p-Bus Cost Function.
Optimisation Algorithm
Summary

8 Case Studies

iii

56
59

60
60
61

65
67
68
73
74
77
82
84

90

91
91
92

96
98

.100

.107

· 108
.113

115
.115
.116
.117

· 122
· 123
· 126
· 126

127
.127
.128
.129
.130
.130

· 131
· 133
.135

· 137
· 141

143

CONTENTS

8.1 Introduction
8.2 Black-Scholes Option Pricing Equation.
8.3 Single Shared Bus Implementation
8.4 Partitioned Bus Implementation
8.5 Summary

9 Conclusions and Future Works
9.1 Conclusion
9.2 Future of the Work.

A ICD Files Mnemonics
A.1 Introduction.
A.2 Syntax ..
A.3 Structure ..

B Supplementary Examples
B.1 Filtering.

B.l.l Related Algorithms and Models.
B.2 Transforms

B.2.l Goertzel Algorithm .. .
B.2.2 Fast Fourier Transform
B.2.3 Matrix Based Method

B.3 Implementation. .
B.3.l Filters ...
B.3.2 Transforms

Bibliography

iv

.143

.143

· 151
· 157
· 162

165
· 165
.166

169
.169
.169
.169

174
.174

· 175
· 178
.178
.179

· 182
· 186
· 186
· 189

197

List of Figures

1.1 General system design flow chart 2

2.1 High level synthesis and structure of the target circuit. 9

2.2 Basic structure of stacked partitioned bus. 18
2.3 Floating representation in ANSI/IEEE single precision. 24

3.1 Variables bound propagation through the algorithm computation tree. 42
3.2 Wrapping problem in IA method. . . 44
3.3 Standard fixed-point representation. 44
3.4 Additive computational noise model. 50
3.5 Probability density function for quantisation error a) Rounding b)2's com-

plement truncation c)Magnitude truncation. 51
3.6 Built in operation output truncation off 52
3.7 Two Pole IIR Filter structure with its Noise Sources. 56

4.1 Real range of y deviation in for the indicate range of values in Example
(4.1). .. 64

4.2 PDF after noise symbols combination a) Uniform PDF variables b)Addition
of the variables c) Multiplication of the variables d)Square of the variable
(Xl> .j2 - 1). 65

4.3 A visual view of symbolic noise representation of uncertainty a)IA method
b)AA method c)SNA method assuming uniform PDF for noise symbols
d)SNA noise symbols with arbitrary PDF'. 67

4.4 PDF of multiplier output with continuous normal distributed inputs. [48] 69
4.5 PDF of 16-bit multiplier output with integer uniform distributed inputs.. 69
4.6 Probability of each bit being "1" in the output of a 32-bit multiplier. . . . 71
4.7 PDF of 8-bit truncation error for 16-bit multiplier output with uniform

distributed input. 71
4.8 Truncation error depends only on the LSB part of the inputs. 73
4.9 Sampled PDF represented in the form of grid. 76
4.10 Histrogram approximation of a PDF. 79
4.11 Merging to overlapping bins in the output histogram. 82
4.12 Output histogram over error range [Xl) Xh] for Example (4.4) with different

granularities a)g=2 b)g=4 c)g=8 d)g=16 e)32 f)64. 86
4.13 PDF histogram of the output error over the error range for Example (4.5). 89

5.1 Corresponding DFG of the Example (5.1).
5.2 Structural view of the Example (5.1).

v

93
93

LIST OF FIGURES VI

5.3 Data communication scheme after binding and allocation of the Example
(5.1) a)data communication scheme b) multiplexer-based implementation. 93

5.4 A shared bus oriented implementation of the Example (5.1). . 94
5.5 Radix-2 FFT Butterfly Cell block diagram DIT form. 95
5.6 Scheduling diagram for radix-2 butterfly DIT form. 95
5.7 Sub-Blocks bus structures a) Single shared bus b)Fully connected peer to

peer. .. 97
5.8 Data transfer in DFG a) Without limit in data transfer in each C-step

(Fully connected peer to peer) b) Restricted to one data transfer in each
C-step (Single shared bus). 97

5.9 Partitioned bus structure. .. 98
5.10 Bus segments with different widths. 100
5.11 Sending data from segment i(< k) to segment j(> k) divides the JVIWP-

Bus into three parts. 101
5.12 Multiple-way partitioned bus a)Two parallel line partitioned shared bus

c)Three parallel line partitioned shared bus. 102
5.13 The proposed bus structure in higher dimension a) Four-line structure

b) Five-line structure c) General prism structure 103
5.14 The proposed bus structure in a torus form 103
5.15 Graph model for the three line bus as in Figure (5.13-b) a)General struc-

ture b)Same bus after pruning unused segments. 104
5.16 Graph model for a J\1W2P-Bus with M = 5 a)Full implementation b)Same

bus after pruning unused segments. 104
5.17 Graph model for a MW2p-Bus mapped into a Manhattan grid a)Full

implementation b)Same bus after pruning unused segments. 105
5.18 Comparing Bus Switches and Multiplexers a) Single-bit MUX-2 circuit

b) Single-bit bus switch circuit. 107
5.19 Data transfers in each C-step for Example (5.1) implemented with one

multiplier and one ALD 110
5.20 MWP2P-Bus implementation of the Example (5.1) circuit 110
5.21 Operations in each C-step for Example (5.2) implemented with two mul-

tiplier and two ALD. 112
5.22 MWp2p-Bus implementation of the Example (5.4) circuit. . . 113

6.1 General description of proposed system design method. . 117
6.2 Structure of target hardware in the proposed design method. . 118
6.3 Algorithm Executers structure. 119
6.4 Interfaces basic block diagram. 120
6.5 Controller structure a) Firmware type b) Reprogrammable type. . 121
6.6 Bus structure of the proposed architecture from a physical connection

point of view 121
6.7 Synthesiser flow chart 122
6.8 Synthesiser data structures a)Input digraph b)Implementation architec-

ture digraph. 123
6.9 Controller Structures a) Structured based on external control signals b)Unstructured.125

7.1 Dependency of area on word length for basic cells (Registers, Adder and
Sequential Multiplier) 131

LIST OF FIGURES

7.2

7.3
'7.4
7.5
7.6

8.1

Dependency of area on word length for basic cells (Registers, Adder and
J\1ultiplier).
Mapping a multiple-\VL DFG to hardware which shares resource ..
I\lW2P-Bus provides a dynamic connection path.
Genome structure for G A optimiser. .
Genomes structure in the applied GA

Iteration part of the Black-Scholes Monte-Carlo algorithm ..
8.2 General structure of :Monte-Carlo evaluation of the Black-Scholes equation

vii

. 133

.134

.136

. 138

.140

.145

a) initial calculations b)iterative part 146
8.3 General structure for multivariate function evaluation. 146
8.4 Input-Output error dependency of the nonlinear unit in the circuit of Fig-

ure (8.2) (assuming AE > 0) a)in ideal case b)with input error c) difference
between (a) and (b) 148

8.5 Error PDF of the algorithm a)vVithout considering rounding effect and
the nonlinear unit b) With effect of the nonlinear unit c) vVith effect of the
nonlinear unit and 10-10 rounding error d)With effect of the nonlinear
unit and uniform 32-bit-width for all the arithmetic units 149

8.6 Error PDF of the iteration part of the Black-Scholes equation after WL
optimisation a)comparing with W = 24 b) comparing with W = 27
c) comparing with W = 25. 151

8.7 Basic costs dependency on the WL for different designs a) Area b)Power
consumption c)Digital noise d)Delay. 153

8.8 Optimisation results compare versus Bindings (1,2,3,4) for Design 1. . 162
8.9 Optimisation results compare versus Bindings (1,2,3,4) for Design II. . 163
8.10 Optimisation results compare versus Bindings (1,2,3,4) for Design II. . 163

A.1 General format of the ICD file for a design with three sub-systems, struc-
tured controller. 171

A.2 ICD specification of the macro-cell for a matrix based transform (see
appendix B), unstructured controller form. 172

B.1 Implementation of general tow-pole IIR system a) simple form b)transposed
form c)lattice form 177

B.2 High order filters can be decomposed in a)cascade form b) parallel form. . 177
B.3 Signal Flow Graph of first order Goertzel filter. 179
B.4 Signal Flow Graph of second order Goertzel filter. 179
B.5 Raxid-2 Butterfly Cell for FFT a)DIT Implementation b)DIF Implemen-

tation. 180
B.6 8-point implementation of FFT by radix-2 Butterfly cells a)DIT bit­

reversed ordered inputs b)DIT normal ordered inputs c)DIF bit-reversed
ordered inputs d)DIF normal ordered inputs (each block is a radix-2 but-
terfly cell) [98] 181

B.7 Radix-4 Butterfly Cell for FFT implementation. 181
B.8 I\IIatrix decompositions for multiply implementation, a) Decomposition into

sub-blocks, b)Decomposition into rows and columns. 183
B.9 The basic structure for Stream data vector-matrix multiplication. . 184
B.lO Twiddle factors in the MC blocks for data stream inputs. . 185
B.ll Stored data DFT computation method. 185

LIST OF FIGURES

B.12 Two basic structure for stored data input which produces one Xli] each
time. a) Computing DFT signal (X[n]) one by one b) Feeding input signal

viii

one by one. 186
B.13 Block diagram of general 2k-Pole System. 187
B.14 Hardware realisation of TPF, numbers shows the sequence of operations.

a) Simple form b)Transposed form. * This operation can be moved to
stage 1 as well. 188

B.15 Block diagram of two pole system (Transposed typel) a) operations' se-
quence b) Block diagram.

B.16 Modified Goertzel algorithm block diagram
B.17 Second order Goertzel Filter scheduling for MCs
B.18 A basic structure for the Goertzel Filters implementation.
B.19 Radix-2 FFT Butterfly Cell block diagram a) DIT form b) DIF form.

.189

· 191
· 191
.192

· 193
B.20 Scheduling diagram for radix-2 butterfly DIT form. 193
B.21 In place computation of FFT by a limited number of Mes. a)with one

set of memory b)with two sets of memories. 195
B.22 Basic block diagram for Matrix Based signal manipulation by MCs 195
B.23 Scheduling diagram for matrix based algorithm implementation by MCs .. 196

List of Tables

3.1 Linearity and Time Dependency of the building blocks. 58

4.1 Multipliers output coverage for different word-lengths. 70
4.2 Mean value and variance of uniform PDF and our model in Figure (4.7) 72
4.3 Estimated parameters with histogram method for Example (4.1) 87
4.4 Quantisation error of the coefficients in Example (4.5). 87
4.5 Error result in the output of the Example (4.5). 89

5.1 Comparing multiplexer-based and bus-oriented methods for Example (5.1). 94
5.2 Comparing multiplexer-based and bus-oriented methods for radix-2 DIT

FFT. .. 95
5.3 Comparing occupation probabilities for the segments of the buses with

different number of segments 101
5.4 Data transfers in each C-step for Example (5.1) implemented with one

multiplier and one ALU III

5.5 Data transfers in each C-step for Example (B.2) implemented with two
multiplier and two ALU. 112

5.6 Functional units grouping result. . 112
5.7 Intra-groups data transfers. 112

8.1
8.2
8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

FPGA LUT usage for different uniform word-lengths.
Different fixed-uniform WL for designs.
Optimisation results with area constrained synthesis based on the four

. 150

. 153

uniform WL cases in cases Table(8.2)) 154
Optimisation results with energy constrained synthesis based on the four
uniform WL cases in cases Table(8.2)) 154
Optimisation results with noise constrained synthesis based on the four
uniform WL cases in cases Table(8.2)) 155
Optimisation results with delay constrained synthesis based on the four
uniform WL cases in cases Table(8.2)) 155
Cost reduction resulted for different designs from constrained optimisation
based on the four uniform WL cases in cases Table(8.2)). 156
l\/IWP-Bus and MW2p-Bus optimisation results for different number of
FUs, Binding I. 158
M\VP-Bus and MVV2p-Bus optimisation results for different number of
FUs, Binding II. 159
MWP-Bus and MW2p-Bus optimisation results for different number of
FUs, Binding III. 159

ix

LIST OF TABLES x

8.11 MWP-Bus and MW2p-Bus optimisation results for different number of
FUs, Binding IV 160

8.12 Delay improvements of the MWP-Bus compared with single shared bus
and optimised single shared in Tables (S.8) to Table (8.11). 160

S.13 Delay improvements of the MW2p-Bus compared with other synthesis
methods in Tables (8.8) to Table (8.11). 160

8.14 Design configurations after MWP-Bus optimisation.
S.15 Design configurations after I\·1W2p-Bus optimisation.
8.16 Optimisation time for different designs

A.1 ICD codes mnemonic.

B.1 Details of sequences for Two Pole Filter Me.
B.2 MC scheduling signals for Goertzel Filter. ..
B.3 MC scheduling for DIT radix-2 FFT Butterfly CelL.

· 161
· 162
.164

.170

.190

· 192
.194

B.4 Register Transfer Signals for MCs in a Matrix Based Transform Imple­
mentation. 196

Nomenclature

AA
ASIC
AE
ALAP
ALU
ASAP
ASIC
ASM
BSW

CAD
CDFG
CIH
CMOS
CPU
DCT
DFG
DFT
DIF
DIT
DSP
DST
DWT
EDA
FBDB

FDS
FFC
FFT

FIR
FPGA
FSM

GA
HDL

Affine Arithmetic

Application-Specific Integrated Circuit

Algorithm Executer

As Late As Possible

Arithmetic Logic Unit

As Soon As Possible

Application Specified Integrated Circuit

Algorithmic State Machine

Bus Switch

Computer Aided Design

Control Data Flow Graph

Computationally Intensive Hardware

Complementary MetalOxideSemiconductor

Central Processing Unit

Discrete Cosine Transform

Data Flow Graph

Discrete Fourier Transform

Dissemination In Frequency

Dissemination In Time

Digital Signal Processing

Discrete Sine Transform

Discrete Wavelet Transform

Electronic Design Automation

Functional Block Data Base

Force Directed Scheduling

Floating-point to Fixed-point Conversion

Fast Fourier Transform

Finite Impulse Response

Field Programmable Gate Arrays

Finite State Machine

Genetic Algorithm

Hardware Description Language

xi

NOMENCLATURE xii

HLS

IA

ICD

IDCT

IIR

ILP

IP

LCM

LP

LSB

LTI

MAC

MC

MOO

MOP

MSB

MWP-Bus

MW2 p-Bus

PDF

RAM

RNG

RNS

ROM

RTL

SA

SNA

SoC

SP

ULP

VEGA

VHDL

VLSI

WHT

High Level Synthesis

Interval Arithmetic

Intermediate Code

Inverse Discrete Cosine ilansform

Infinite Impulse Response

Integer Linear Programming

Intellectual Property

Least Common Multiple

Linear Programming

Least Significant Bit

Linear Time Invariant

Multiplication Accumulation

Macro Cell

Multi Objective Optimisation

Multi Objective Programming

Most Significant Bit

Multiple Width Partitioned Bus

Multiple Width Multiple Way Partitioned Bus

Probability Density Function

Random Access Memory

Random Number Generator

Residue Number Systems

Read Only Memory

Register ilansfer Level

Simulated Annealing

Symbolic Noise Analysis

System On Chip

Signal Processing

Unit in the Last Place

Vector Evaluated Genetic Algorithm

Very high speed integrated circuits Hardware Description Language

Very Large Scale Integrated circuit

Walsh Hadamard ilansform

Acknow ledgements

I would like to express my gratitude to Professor Mark Zwolinski for his time, construc­

tive advice, and willingness to share his insight and wisdom. An attentive reader who

consistently offered a fresh perspective on the work, his efforts on my behalf has helped

me to become a better scholar.

I also would like to thank all the faculty and staff in the Electronics Systems and Devices

(ESD) Group for their continued support and a warm atmosphere in which to work.

Specifically Professor Bashir M. AI-Hashimi who enthusiastically was ready to discus and

give his encouraging advice regarding my work. I also owe to Dr. Peter Wilson and Dr.

Jeff Reeves for their constructive discussions regarding my progress reports and thesis.

I am also thankful to my dear colleagues Abdolbaghi Rezazadeh, Mehdi Jafaripanah,

Biswajit Mishra, Karthik Baddam, Noohul Basheer Zain Ali, Tack Boon Vee, Andrew

Chapman, Kosala Amarasinghe, Marco Ochoa-Montiel and Donald Esrafili-Gerdeh for

their helps and omnipresent friendship to establish an inspiring cross-cultural working

atmosphere.

Last, but most important, I have to and I wish to acknowledge the people who are the

most closest to me. I cannot even imagine that without helps of my wife, who supported

me by all her means, it was possible for me to carryon with this work during the all

tough times which we had here far from our relatives. She heroically carried the burden

of our dear children. I cannot leave this acknowledgement without saying thanks to all

my family in back home specifically my mum and dad who have devoted their life for

my success and their prayers have been the greatest support.

Xlll

Declaration

I declare that the work in this thesis is entirely my own unless otherwise stated.

Arash Ahmadi

XIV

Chapter 1

Introduction

1.1 Motivation

Electronic Design Automation (EDA) has a vital position in many challenges of elec­

tronic market demands, where high complexity, low cost, high speed and low power

consumption are usual requirements. High Level Synthesis (HLS) has a key role in

design automation by trying to fill the big gap between high level descriptions of the

system requirements and low level specifications of the electronic system in specialised

hardware languages like Register Transfer Level (RTL) Hardware Description Languages

(HDLs). Accordingly, significant attention has been paid to HLS in academia and in­

dustry during the past decade which resulted in enrichment of the research community

in terms of literature, tools, theories and methodologies. Figure (1.1) shows the basic

work flow in HLS, which starts form an algorithm level specification of the design and

results in the physical implementation. The algorithm level specifications are normally

presented in the form of mathematical equations which need to be translated to a sys­

tem level specification. As it is depicted in this figure, this system level specification

should be divided into software and hardware parts both of which have a different syn­

thesis and verification procedures, however after all they must be combined to work

together. Testbenches in Figure (1.1) are testing routines for each level of specification

to verify that the specification. It is observable that there are diversity of the prob­

lems which must be solved in HLS, which range from physical aspects of the circuit

implementation to pure mathematical analysis and optimisation methods, has built up

a scene of very widespread problems to be inspected. To tackle this complication, HLS

has been categorised in different ways. From the designers' point of view, according to

the major problems which have to be dealt with, it has been divided into: low power

HLS, co-design HLS, parallel-design HLS, SOC HLS and so on. From another point

of view, HLS methods can be classified based on the application domain of the target

designs, Signal Processing (DSP) HLS for instance. The main focus of this study is

Computational Hardware HLS.

1

Chapter 1 Introduction

Testbenchs ~~==~

RTL
Specification

Physical
Implementation

Algorithm
Level

Hardware
Models

FIGURE 1.1: General system design flow chart.

Software
Packages

2

Nowadays, in almost every engineering or science discipline, there is an enormous num­

ber of applications which are dependent on digital calculations. The algorithms of these

calculations can be as simple as an algorithm to solve algebraic equations or more compli­

cated such as a multidimensional stochastic partial differential equation solver. Further­

more, the implementation platform can also range from sophisticated supercomputers

to low cost embedded calculation systems. Regardless of the calculation complexity and

the target platform, most of these applications share some common characteristics which

need to be taken into account during the design process.

There are some distinguishing differences between digital implementations of numerically

intensive tasks and other kinds of digital systems that must be taken into account in

HLS tools and methods specific to this domain. First, numerical algorithms typically

are based on abstract representations of the mathematical operations in which most

of the implementation issues are unseen. On the other hand, only a small number of

mathematical operations can be implemented in digital systems directly, which means

that there is a substantial gap between what is represented in the algorithm level of

specification and what can be implemented in the digital system. In other words, most

of the mathematical operations must be imitated by basic available operations in the

digital world. These imitation operations should be based on mathematical techniques

in conjunction with the hardware design limitations.

Calculation accuracy is another problem, where real variables (x E IR) in algorithm level

Chapter 1 Introduction 3

specifications are dealt with an infinite-precision assumption; only a finite-precision cal­

culation can be provided by digital implementations, which means that the input data to

the system will be a set of numbers as an approximation of the real information instead

of the exact values. Therefore in this sort of application, the existence of the compu­

tational error is inevitable. Nevertheless, the characteristics of the computational error

are a matter of concern because of its destructive effects in computationally intensive

applications. Minimising and modelling these effects are considered as major challenges

in the hardware implementation of numerical tasks. These models need to be combined

with the other hardware costs and parameters to create a consistent design and synthesis

environment. Since these errors are data dependent and their behaviour is considered as

a random phenomenon, their modelling in general, especially in presence of nonlinearity

in the system, can be very problematic.

The third major difference is: numerical algorithms may need to be run over a massive

amount of data, as in image processing for instance. Hardware implementation of these

kinds of algorithms are datapath-dominant, which means that the datapath requires

more resources in comparison with the controller. Furthermore, this fact suggests that

the pipelining or parallelisation of the operations has a great impact on the system

performance. Data communication synthesis, therefore, is likely to be a chief problem in

datapath synthesis. HLS methods mostly use a datapath/ controller model as a target

structure. The synthesiser has to compile the high level description of the system to

this target, where the datapath represents the computational parts of the algorithm and

the controller is the hardware implementation of the controlling statements in the high

level specification. This approach can give efficient solutions in some cases; but since

it is based on compiler methodologies rather than hardware implementation methods,

it cannot be expected that it presents the best solutions in this kind of applications

because there are different restrictions in customisable hardware compared with classic

computers.

Putting all the different issues together, a class of applications will be created which

can be a centre of attention for HLS methods. These major differences recommend

that general purpose HLS tools might not be able to give the best results in such cases.

Having identified these differences, this study presents an investigation of these major

problems to propose a HLS method focussing on hardware implementation of numerical

algorithms to provide a more suitable framework for their synthesis.

1.2 Objectives

According to the discussion presented in section 1.1, regarding motivations of the work,

the main objective of this thesis is to propose a synthesis method for computationally in­

tensive hardware, which is application specific. To achieve this goal, several intermediate

Chapter 1 Introduction 4

objectives need to be met.

However, because computational error was investigated before digital computers, the

majority of the works in hardware design concentrate on Linear Time Invariant (LTI)

models of computation. Unfortunately these models are neither very exact in many

practical cases, nor applicable to nonlinear functions and combinations. Accordingly,

the first step is a comparative investigation of the models for computational error. A

new approach to error modelling and calculation is the next step. This model uses a

combination of current methods to provide a more comprehensive model which can be

used with nonlinear systems as well as linear systems. Furthermore, more characteristics

of the error can be extracted based on this method of error analysis.

The next intermediate objective is communication synthesis in datapath [33]. Bus­

oriented datapath synthesis has been used previously. Although this structure is ben­

eficial in terms of resources, it suffers from difficulties related to the speed and power

consumption, see chapter 5 for more explanation. Modifications has been presented

(in research community) to improve this structure, which need to be considered. Since

heavy data traffic can be a major problem in computationally intensive hardware, even

these modifications do not provide the required speed for the system. Accordingly a

new structure for datapath synthesis is required.

1.3 Major Contributions and Thesis Overview

This thesis presents a novel method of computational error analysis , which is called

Symbolic Noise Analysis (SNA), is a combination of the error range analysis and noise

analysis methods, which provides more information from computational errors at differ­

ent points in the system than other similar approaches. SNA considers dependency of

the intermediate produced errors to avoid overestimation and also is capable of dealing

with nonlinear operations. Furthermore, error Probability Density Function (PDF) does

not need to be assumed with uniform distribution which is far from reality in many prac­

tical cases. Regarding datapath communication synthesis, a new bus structure, called

Multiple-Width Multiple-Way Partitioned Bus (MW2P-BUS), is introduced to provide

a flexible and cost effective data communication medium for functional units in datapath

level. This structure is generalised in the form of a predefined architecture to be used

with the SNA method in a synthesis method for computational intensive systems. This

synthesis tool produces RTL VHDL specification of the input algorithm based on the

SNA method and MW2P-BUS.

This thesis comprises nine chapters as follows:

Chapter 2 provides a brief review of datapath synthesis. First a general review of high

level synthesis is presented, then bus-oriented high level synthesis is discussed and related

Chapter 1 Introduction 5

works are surveyed. Afterward, computationally intensive hardware related issues are

investigated and major problems are discussed.

Chapter 3 provides a comprehensive overview of uncertainty in computing. Differ­

ent methods and models are presented including interval-arithmetic, affine-arithmetic,

Taylor-method, the noise model method and its nonlinear extension.

Chapter 4 describes the symbolic noise analysis method of error analysis. After motivat­

ing examples, and comparing different methods and their weak-points, SNA is presented

in detail with implementation algorithm.

Chapter 5 introduces the MW2p-BUS structure. Constructively, after motivation ex­

amples, single shared bus and partitioned bus (MWP-BUS) are presented first and then

MW2P-BUS is described as the evolution of the simpler structures.

Chapter 6 presents the target architecture for the synthesiser which is based on the

MW2P-BUS. This architecture is discussed in detail to show how a synthesised system

can be implemented based on it. More design examples are provided based on this

structure in appendix B.

Chapter 7 specifies the optimisation algorithm. This algorithm is based on a genetic

search where genomes are designed to present the design including word-length and

binding information. The corresponding algorithms and cost functions are explained in

detail to provide a complete reference of the optimisation method.

Chapter 8 provides the case studies for evaluation of the methods. Using different designs

it is shown that this method can offer improvements in design cost by trading accuracy

with the other design costs.

Appendix A presents more details of the intermediate specification files which are used

by synthesiser.

Chapter 1 Introduction 6

List of Publications

The work presented in this thesis has resulted in a number of original conference publi­

cations.

Presented Workshop and Conference Papers:

• A Symbolic Noise Analysis Appmach to Word-Length Optimization in DSP Hard­

ware Ahmadi, A.; Zwolinski, M.; International Symposium on Integrated Circuits

(ISIC 2007), 26-28 September 2007.

• MW P-Bus: A New Bus Structure for Datapath Synthesis Ahmadi, A.; Zwolinski,

M.; 3rd UK Embedded Forum, 2-3 April 2007.

• Multiple- Width Bus Partitioning Appmach to Datapath Synthesis Ahmadi, A.;

Zwolinski, M.; IEEE International Symposium on Circuits and Systems (ISCAS),

27-30 May 2007.

• A New Structure for Datapath Synthesis Ahmadi, A.; Zwolinski, M.; 12th Inter­

national CSI Computer Conference, 20-22 February 2007.

• Multiple- Width Bus Partitioning Approach to Datapath Synthesis Presented at:

Postgraduate Workshop on Embedded Systems,October 2006, Birmingham, UK.

• Word-Length Oriented Multiobjective Optimization of Area and Power Consump­

tion in DSP Algorithm Implementation Ahmadi, A.; Zwolinski, M.; Microelec­

tronics, 2006 25th International Conference on, 14-17 May 2006, Page(s):614 -

617.

• Area word-length trade off in DSP algorithm implementation and optimization

Ahmadi, A.; Zwolinski, M.; DSPenabledRaciio, 2005. The 2nd IEE/EURASIP

Conference on, 19-20 September 2005, Page(s):8.

Chapter 2

Brief Review of Datapath

Synthesis

2.1 Introduction

Owing to rapid development of microelectronics technology and design methods, it is

possible to integrate millions bf gates in a single chip. Design and verification of the

complex systems which can be made up from such a complicated circuits, will not be

possible without Computer Aided Design (CAD) tools and techniques. As a consequence

of microelectronics progress and of demanding applications, design automation methods

and tools need to be developed.

This chapter presents a comprehensive background knowledge related to the realisation

of computationally intensive hardware, bus-oriented design and floating-point to fixed­

point conversion to provide the preliminary information for the proposed method and

implementation structure.

2.2 High Level Synthesis

Commercial developments in CMOS technology make it likely that 50 million gate ASICs

will be feasible by 2010. ASIC design typically takes 18 to 24 months and costs from

$10M to $20M [139]. An ASIC has a selling window of 6 to 8 months in the marketplace

and, consequently, if the chip is delayed by much more than six months the customer

is likely to move on to the next generation chip, which is possible to be cheaper, faster

and have more features. Such competitive and highly time-restricted developments

only can keep up with the growing size and complexity of designs if high-level design

methodologies and accompanying tools are available that will allow complex digital

systems to be realised by reasonably sized teams in a short time frame.

7

Chapter 2 Brief Review of Datapath Synthesis 8

From the 1970s through the 1980s, research for CAD progressed as circuit complexity

increased, with design abstraction advancing from transistor level circuit synthesis to

logic level synthesis. With the assistance of logic level synthesis tools, designers could

capture system specifications at a higher level of abstraction. The advantage of working

at a higher level of abstraction is that it reduces the number of objects the designer

has to manipulate, enabling the designer to design larger and more complex systems in

shorter periods of time. High Level Synthesis (HLS) emerged in the late 80s, allowing

the designer to capture system specification at an even higher abstraction level. The

definition of high level synthesis was first given by McFarland et al. in [83]. They stated

that:

The synthesis task is to take a specification of the behaviour required

of a system and a set of constraints and goals to be satisfied, and to find

a structure that implements the behaviour while satisfying the goals and

constraints .. By behaviour we mean the way the system or its components

interact with their environment, i.e., the mapping from inputs to outputs.

Structure refers to the set of interconnected components that make up the

system something like a netlist. Usually there are many different structures

that can be used to realize a given behaviour. One of the tasks of synthesis

is to find the structure that best meets the constraints, such as limitations

on cycle time area or power, while minimizing other costs. For example, the

goal might be to minimize area while achieving a certain minimum processing

rate.

According to this definition, synthesis can take place at various levels of abstraction

as designs can be described at various levels of detail. The primary data types at

algorithmic level specification are numbers and/or bit strings and arrays. The input

specification gives the required details for mapping from the sequences of inputs to the

sequences of outputs in the form of mathematical functions. The specification should

also constrain the internal structure of the system as little as possible.

In context of digital system design, High Level Synthesis is considered as the process

of transforming a behavioural or algorithmic specification of a design into a synthesis­

able specification that consists of a datapath, a controller and memory elements. RTL

specification is the generally accepted output of the HLS process [33, 39] which defines

a structural model of a datapath, as an interconnection of resources, and a logic-level

model of a control unit, that issues the control signals to the datapath according to the

operations scheduling. The behavioural specification, on the other hand, refers to an

abstract, purely algorithmic representation of the relationship between system inputs

and outputs, with no explicit timing or structure information. This high level specifica­

tion must consist three basic information: Circuit Behaviour (HDL Models), Building

Blocks (library of resources) and Constraints (Timing, Silicon area, Power/energy etc.).

Chapter 2 Brief Review of Datapath Synthesis 9

Any high level specification consists of several ordered operations. As it is depicted in

Figure (2.1), the first task in high level synthesis is to capture the behavioural description

in an intermediate representation that captures both control flow and data flow. This

intermediate representation could be a Data Flow Graph (DFG) or a Control Data Flow

Graph (CDFG) which are suitable data structures by which data dependencies between

operations of the specified algorithm can be represented [33].

a=···,

b=···,

C="',

XES1, YES2

(ax + by)y-cx2

'----I

External
(outml signals

Operational
Sub-units

Sllb.llllits J
Control signals

FIGURE 2.1: High level synthesis and structure of the target circuit.

High level synthesis is usually treated by dividing the problem into three overlapping

sub-tasks: operation scheduling, resource allocation and resource binding [33, :39]. The

scheduling assigns each operation to a time step in which it will be executed. Resource

allocation determines the types (e.g., adder, multiplier, or register) and the number

of these types of resources that should be included in the design and resource binding

determines which resources that should be used to implement each specific operation.

Depending on the Optimisation approach, these tasks could be achieved separately or in

combination. The optimisation objectives or constraints most often are: timing (clock

rate, throughput), silicon area (logic and interconnections), power dissipation and energy

consumption.

As has been defined in the literature, for instance in [33], allocation consists of deter­

mining the number of resources that have been used in the design architecture. It also

determines the clocking scheme, memory hierarchy and pipelining scheme. Allocation

could be divided into sub-tasks like: arithmetic and logic units allocation, register and

memories allocation and interconnection allocation. The latter is applicable when the

system has the capability of a multi-bus structure.

Binding determines the mapping between the operations, variables and data (and con­

trol) transfers in the design and specific resources in the allocation. Hence, operations

are mapped to specific functional units, variables to registers and data/control transfers

to interconnection components. In other words, binding maps the operations to func­

tional modules and variables to registers such that the cost of the necessary interconnect

structure becomes minimal [33].

Chapter 2 Brief Review of Datapath Synthesis 10

In some synthesising methods allocation and binding are combined and this combination

is referred to as datapath synthesis, because regardless of the sequence of operation,

allocation and binding build the datapath of the system. Algorithms for solving datapath

synthesis problems can be found in [64, 33, 39].

Scheduling gives the information about the exact time of the each operation. This

information is vital to the system performance in the next stages of design. In the

design flow, scheduling could be done before or after data path synthesis depending

on synthesis constraints (time or resources or both) and design methodology. Having a

great impact on the system performance parameters, scheduling algorithms have received

significant attention in the literature, oriented to one or more cost optimisations. There

are explanations for some basic algorithms in [33]. In this section, several commonly

used scheduling algorithms are reviewed briefly: As Soon As Possible (ASAP), As Late

As Possible (ALAP), list scheduling, and Force-Directed Scheduling (FDS).

As Soon As Possible Scheduling

If the timing given for an unscheduled DFG is to be minimum and resources are not

restricted and assuming an unlimited number of functional units is available, the schedul­

ing problem can be solved using the ASAP algorithm. An operation is scheduled in a

control step as soon as all its predecessors are scheduled. These operations that do not

have any predecessors are scheduled in the first control step. The ASAP scheduling

algorithm can be described by the following steps.

1. Set control step C = 1;

2. For all operations Vi;

3. If Vi is not scheduled and (all its predecessors are scheduled or does not have any

predecessors) schedule it at C else check Vi;

4. If there is unscheduled and unchecked Vi, go to step 2;

5. C = C + 1;

6. uncheck ViS;

7. If there are any operations not scheduled, go to step 2; otherwise stop;

As Late As Possible Scheduling

Under the same constraints as ASAP, the scheduling problem can also be solved using

ALAP scheduling. It is similar to ASAP but schedules each operation into the latest

possible control step. The algorithm can be described by the following steps:

1. If the timing constraint is given as T control steps, C is set to T;

Chapter 2 Brief Review of Datapath Synthesis 11

2. For all operations Vi;

3. If Vi is not scheduled and (all its predecessors are scheduled or does not have any

predecessors) schedule it at C else check Vi;

4. If there is unscheduled and unchecked Vi, go to step 2;

5. C = C-l;

6. uncheck ViS;

7. If there are any operations not scheduled, go to step 2; otherwise stop;

Force-Directed Scheduling

Force Directed Scheduling (FDS) is a time constrained scheduling algorithm published

by Paulin and Knight [102]. The principle of FDS is to reduce the operation concurrency

in a control step and distribute the operations evenly to each control step in order to

minimise the number of functional units required. The algorithm starts by calculating

the time frames of each operation. The time frame is also commonly called the mobility

range, which is the time interval in which an operation can be scheduled regarding

its preceding and succeeding operations and scheduling time constraints. The mobility

range of an operation can be obtained by scheduling the DFG using ASAP and ALAP.

If an operation is scheduled at control step Cs by ASAP and is scheduled at control step

Cz by ALAP, the mobility range is the difference between Cz and Cs . This method assigns

probability values for each operation to be scheduled in a control step. If a control

step is in the mobility range of an operation, the probability that the operation can

be scheduled in this control step is the reciprocal of the operation mobility range. The

probability that the operation can be scheduled outside the mobility range time frame

is o.

When the scheduling probabilities over control steps are calculated for all operations in

the DFG, these information are used to produce a distribution graph. The distribution

graph shows the sum of the probabilities of each type of operation in each control. For

the distribution graph of each operation type, the distribution in a control step t can be

represented as:

d(t) = P(o, t), (2.1)
all DFG nodes

where P(o, t) is the probability contribution of operation 0 to control step t. The last

step is to calculate the force for each operation in its time frame. Assume an operation

o with a time frame from control step Cs to control step Cz. The parameter "force" for

o in control step t, where Cs ~ t ~ Cz, is calculated as:

Cz d(·)
Force(t) = d(t) - L ?, ,

. Cs - Cz + 1
2==Cs

(2.2)

Chapter 2 Brief Review of Datapath Synthesis 12

The forces of 0 predecessors and successors must also be calculated by using Equation

(2.1) whenever their time frames are affected by scheduling 0 to control step t. The

forces from predecessors and successors are called indirect forces. The total force for 0

to be scheduled in control step t is the sum of the self force and indirect forces. After

all the forces of 0 in its time frame are calculated, 0 is scheduled to the control step that

has the smallest force. The algorithm can be summarised as follows:

1. Select operation 0 for evaluation;

2. Evaluate the time frame for each operation;

3. Update the distribution graph, using Equation (2.1);

4. Calculate self forces for every control step in the operation's time frame, using

Equation (2.2)

5. Add the predecessor and successor forces to self forces;

6. Schedule 0 to the control step that has the lowest force. The time frame of 0 is set

to the selected control step;

7. If there is any operation not scheduled, go to step 1; otherwise stop.

List Scheduling

List scheduling is a resource constrained scheduling algorithm. In many applications,

implementation costs are the major concerns so the numbers of functional units are

given as the constraints. Under the resource constraints, list scheduling tries to find a

schedule that requires minimum latency. Basically, list scheduling is a variant of ASAP

scheduling, which uses a greedy approach to schedule as many operations as possible

into a control step, subject to the constraint of the availability of functional units [33].

The computational complexity for list scheduling is O(n). The general list scheduling

algorithm can be described as follows:

1. Set control step C = 1;

2. Get a list of operations that are ready to be scheduled;

3. Apply priority function to compute the priorities of the ready operations;

4. Schedule the first n operations and schedule them to C, where n is the available

number of functional units at C;

5. C=C+1;

6. If there are any operations not scheduled, go to step 2; otherwise stop.

Chapter 2 Brief Review of Data path Synthesis 13

2.3 Restricted HLS

In general, a high level synthesis method accepts an abstract specification of a system

which is limited to a purely algorithmic representation of the relationship between sys­

tem inputs and outputs. Nevertheless, this specification provides no explicit timing or

structural information, in many cases there are some restrictions in system implemen­

tation which need to be considered prior to or during the synthesis procedure. These

restrictions can be in the form of resource restriction, cost restriction and/or structure

restriction.

Resource restriction is applied to the cases which the synthesiser has access to a limited

number of certain resources. When the target implementation platform provides only

a limited number of resources, in the case of programmable devices such as FPGA,

synthesiser must be restricted to not violate this limit.

Cost restriction refers to the limitation in computation costs such as: power consump­

tion, area and latency. These costs can be related and even combined with the resources

restriction but they normally require a post synthesis evaluation whereas the resources

restriction can be applied prior to or during the synthesis. Some costs, power con­

sumption for instance, are data dependent and to be evaluated more precisely, a set of

stimulus is required.

Structure restrictions are considered as restrictions which are applied to the implementa­

tion structures. When the synthesiser is configured to map all the designs to a predefined

structure or architecture it is considered as a structure restricted synthesis. There are

many different ways to design and implement datapath and controllers and restricting

the synthesiser to a specific structure reduces the synthesis freedom, in returns it reduces

the feasible space of the design search.

It is a basic observation about computing hardware that generality and efficiency are, to

some extent, inversely related to each other in that tpe more general purpose a hardware

is, and thus the greater the number of different tasks it can perform, the less efficient, in

terms of computational cost, it will be in performing any of those specific tasks. Design

decisions are therefore almost always compromises between generality and efficiency. As

a basic strategy, designers at the first step try to identify the key features of applications

for which the competitive efficiency is a necessity and then extend the application range

as much as is practical without excessively damaging the performance of the main target

application.

Concern about the computational efficiency is more significant when the computation

cost is high in the target application. Two kinds of applications are recognisable in this

regard: the first type are applications like embedded computational systems and SoCs

which require a low cost, normally low power consumption and small area, design for

Chapter 2 Brief Review of Datapath Synthesis 14

application specific circuits to be integrated into a system with some other applications.

The second group contains applications such as DSPs or high accuracy scientific com­

putations which need massive and high speed computation with accuracy restrictions.

An embedded system is a special-purpose system which is completely encapsulated by

or dedicated to a device. Unlike general-purpose hardware an embedded circuit per­

forms one or a few predefined tasks, usually with very specific requirements. Since the

circuit is dedicated to specific tasks and needs to be designed for a specific application,

the designer must optimise it to minimise costs. Embedded systems are often mass­

produced, benefiting from economies of scale. Accordingly, design methods are required

to be highly automated and adaptable with different design constraints.

Implementation of computationally-intense hardware, conversely, is not a new issue. So­

lutions are experienced to counter the problems for which general purpose hardware

cannot achieve the necessary performance. Special purpose processors, attached proces­

sors, and coprocessors are well-known answers for this problem. The major downside of

the fixed auxiliary hardware is their lack of flexibility which makes them weak in coping

with changes in applications or development of new mathematical or algorithmic tech­

niques for problems solving. As a solution, ASICs offer the opportunity of specialising a

design for an application. Developing ASICs, however, is often expensive, because of the

complexity involved in the design and fabrication processes. Reconfigurable hardware,

on the other hand, such as Field Programmable Gate Arrays (FPGAs), is an attractive

alternative to ASICs; however, their efficiency in general can be lower than ASICs [69].

The biggest challenge to using reconfigurable auxiliary computing systems is to develop

an optimised implementation rapidly and to make it easy to verify and use. Circuit

synthesis from a high level specification consists of many different steps and sub-tasks.

Mapping the computationally intensive part of an algorithm to a reconfigurable device

requires tools to translate this part of the algorithm into a synthesis able specification

efficiently and automatically.

HLS in the general case consists of design optimisation. Several objectives can be in­

cluded in optimisation, as it was mentioned, and also there are several parameters by

which these objectives are controlled. The combination of these objectives with their

controlling parameters forms a multidimensional space of possible solutions for the op­

timisation problem; this space is called the 'feasible space' in optimisation terminology.

The basic duty of the optimisation task is searching this feasible space to find an optimal

point. Regarding design complexity, optimisation objectives and controlling parameters,

feasible space can be very large and it will be impractical to find an optimal solution in

it in a reasonable time.

Apart from clever optimisation algorithms, the essential way out of this problem is

limiting the feasible space, by restricting the optimisation tool to search only predefined

regions of the feasible space. The major drawback of this approach is the possibility

Chapter 2 Brief Review of Datapath Synthesis 15

of missing some optimal solutions which are located in the restricted area. This payoff

has been accepted in the HLS community providing that an optimal point can be found

in a reasonable time. One example of this restriction is to divide the target design

into datapath and controller parts. To find an effective restriction which still contains

optimal points, general characteristics of the target designs should be considered and

categorised.

There are some characteristics which make intensively computational hardware imple­

mentation different from that of general purpose hardware. To have a more efficient

design environment, computational algorithms can be inspected to classify their general

features and accordingly a structure be proposed for their implementation. This prede­

fined structure should be a flexible soft-architecture which provides the target structure

for the datapath and controller. In this study, a hierarchically predefined target struc­

ture is presented which provides multidimensional freedom to the synthesiser-optimiser

to find an optimal solution for design. This architecture is a bus-oriented design ap­

proach which is discussed in chapter 4. The following subsection gives a brief review of

related work in bus-oriented data path synthesis.

2.3.1 Bus-Oriented Datapath Synthesis

Datapath connectivity synthesis consists of defining the data connection among re­

sources, steering logic circuits, memory resources, input/output ports and the control

unit(s). Since a complete binding is required for all the system, connectivity synthesis

refines the binding information by providing the detailed interconnection among all the

system sub-blocks. Regarding the data communication structure in the system, different

approaches have been introduced for datapath synthesis. The major types of connectiv­

ity models that have been reported are: the point-to-point connectivity model and the

bus-oriented model [33]. The first approach uses multiplexers to steer data communica­

tions between hardware modules and manage the traffic, whereas the latter relies on a

communication channel which is implemented by shared buses.

Multiplexer-oriented interconnection architecture is also called random topology or point­

to-point interconnection architecture in which the interconnections of the functional

units in the datapath are implemented by point-to-point connections. Each wire con­

nects an input and an output of the functional units. In the case that more than one wire

must be connected to the same port, a multiplexer is introduced to steer the data flow

between them. Multiplexers are used by controller to select one of the multiple inputs to

be transmitted to the output in a multiplexed time scheme. A point-to-point structure

is the most popular interconnection topology in high-level synthesis because it simplifies

the allocation algorithms [45]. Multiplexed datapaths have been compared with the bus­

oriented architecture in [88], which results in large routing area requirements because of

the large number of nets [91].

Chapter 2 Brief Review of Datapath Synthesis 16

In a bus-oriented interconnection architecture, on the other hand, the variables are

transferred via busses in which the interconnections can be time-shared between dif­

ferent variables and this can reduce the routing area requirements considerably. This

is especially true if the datapath is floorplanned in a way that the data buses can be

routed horizontally on top of the functional units [20]. However more complex control

units are needed to handle the time-sharing of the bus [43]. Furthermore, since buses

are supposed to connect several sub-blocks together over long distances, their average

wire-length is expected to be longer than other signal wires (except the clock tree).

Consequently, there are several considerations regarding the electrical characteristics of

the shared buses such as bus driver requirements. Several works are presented on high

level synthesis techniques for bus oriented datapath design and optimisation, which are

reviewed in this section.

A bus which is partitioned into two or more segments is called a segmented bus. Each

segment acts as a normal bus between modules that are connected to it and operates in

parallel with other segments. Segments can be dynamically connected to each other, in

order to establish connections between modules located in neighbouring segments. Due

to the segmentation of this resource, parallel transactions can take place, thus increasing

the performance. When parts of the segmented bus are not involved in transactions, or

they only transfer intra-segment data, they become isolated from the rest of the bus.

A successful partitioned bus-oriented design is achievable by a precise organisation of

the sub-blocks and bus segments. As a result, a higher degree of parallelism of data

transfers and consequently the overall system performance are attainable. The success

of a segmented bus implementation depends on the balance between parallelism and

complexity of the system, therefore, the key parameters in this regard are the profile of

the accesses between different functional units, the organisation of the segments, and the

assignment of the units to the segments. The main idea is to organise the component

devices and the segments in such a way that the number of parallel data transfers is

maximised. At the other extreme, some frequently communicating units may reserve a

long portion of the bus, thus causing the bus to act more like a non-segmented one.

In [43] Frank et al. have integrated placement into high-level synthesis by using an in­

termediate structure, called the communication graph. The nodes of the communication

graph are labelled with tight estimates on the width and height of the hardware needed

for each functional unit. They derive these estimates by scheduling the data transfers

of the data flow on a restricted architecture prior to placement. After placement the

optimal communication schedule is computed together with the allocation of register

and interconnects. The tight estimates on physical design data allows a considerable

reduction in design time, because the designs can be evaluated prior to interconnect and

register allocation and assignment. This difficult and thus rather time consuming opti­

misation procedure only needs to be performed once for the best design. In [44] Frank

et al. also address the problem of scheduling communications in a bus architecture

Chapter 2 Brief Review of Datapath Synthesis 17

under memory constraints. They present a network flow formulation for the problem

and obtain an exact algorithm to schedule the communications, such that the constraint

on the number of registers in each functional unit is satisfied. An increasing number

of architectures use multiple memories in addition to, or instead of, one central RAM.

This technique relies on finding an exact solution to the problem.

De Micheli, in [33], suggests a sequencing graph model for a shared bus. From this

viewpoint, buses act as transfer resources that feed data to functional resources, thus

the operation of writing to a specific bus can be modelled explicitly as a vertex in the

sequencing graph model. In this case, the compatible or conflicting data transfers are

represented by compatibility or conflict graphs, similar to FUs in binding and scheduling.

An alternative method is also offered in the same reference in which buses are not

explicitly described in terms of sequencing graph where the optimum buses usage is

derived by exploiting the timing of the data transfers. Consequently two problems are

introduced: first, to find the minimum number of buses to accommodate all the data

transfers and second, to find the maximum number of data transfers that can be done

through a given number of buses. These problems are known to be analogous to the

multi-port binding problem and can be modelled by Integer Linear Programming (ILP)

constraints.

Seceleanu et al. in a series of works explored segmented bus synthesis algorithms [116,

113]. They consider the problem of allocating hardware units to segments of the bus

in such a way that the traffic across segment borders is minimised and the potential

for parallel transfers is maximised. In their work, the goal is to obtain an optimal

distribution of the components on the segments, so that the performance is maximally

increased. The objective here is to keep the inter and intra data transfers of each segment

as low as possible. A fixed number of segments is considered as an initial setting to

avoid trivial solutions. The inter-component traffic is defined by a unit-to-unit matrix

of transfer frequencies.

The concept of segmenting the bus was proposed by Ewering, [40], in the context of

single-chip devices. He proposed partitioned a bus as a target architecture for high level

synthesis. For automatic synthesis of the architecture he adopts a sequential optimisa­

tion technique which performs scheduling, binding, segment ordering and communica­

tion scheduling/binding sequentially. A switch permits or inhibits of data flow from one

segment to another. The direction of data flow is not under the control of the switch.

The basic structure of partitioned-bus architecture, which is illustrated in Figure (2.2)

[40], consists of a specified number of parallel busses. In order to avoid performance

degradation, each bus is divided into an equal number of segments. Two adjacent bus

segments are connected with switches. The switches are placed symmetrically. A switch

permits or inhibits data flows between segments, thus parallel data communications and

processing are possible. If data moves a long distance, however, many divided busses are

Chapter 2 Brief Review of Datapath Synthesis 18

possessed exclusively for data transfer which causes bus conflicts. Therefore equalizing

the data transfer load of each divided bus is needed during the high-level synthesis

process, both in the temporal and spatial domains.

FIGURE 2.2: Basic structure of stacked partitioned bus.

In [91], a bus driven scheduling and register minimisation technique is proposed. Af­

ter binding operations to segments, they solve the communication scheduling/binding

problem by list scheduling. The main objective of their research is to reduce the impact

of wiring. Their synthesis method, however, requires bus features to be considered as

soon as possible in the design trajectory. A new binding model and two new algorithms

for scheduling and register allocation for synthesis of bus-partitioned structures are pro­

posed. The algorithms are actually one of the first attempts to incorporate bus-binding

into the synthesis procedures. The experimental results demonstrate the reasoning of

such an approach and its efficiency.

Jeon and Choi in [57] try to reduce the probability of bus conflicts by considering crit­

icality, distribution and density of communication edges in the course of scheduling,

binding and segment ordering. In [127] a data transfer model for formulating the classic

HLS sub-problems is also proposed by Tarafdar et al. The model optimises the storage

architecture of a design concurrently with the execution time.

In [135], Wang et al. discus a segmented bus from the point of view of memory usage and

placement. Their work presents a methodology to reduce the bus power consumption in

memory dominated systems. The proposed partitioning method, systematically, com­

bines an activity driven placement of the memories and a bus segmentation approach to

localise the wire switching activities and minimise the associated wire capacitive load of

the memory bus. A reduction of 65% in bus power is reported.

In [61] a new structure extends the linear architecture of the partitioned-bus by stacking

multiple layers for handling large datapath-intensive applications. In the high-level

synthesis flow, we search the design space to determine the number of layers and the

suitable length of each layer with a given aspect ratio. This work also performs operation

clustering, segment binding, segment ordering, layer ordering, layer mirroring, and post

processing to equalize the data transfer load of each bus.

Chapter 2 Brief Review of Datapath Synthesis 19

In [58] Jone et. al. introduce the design theory and implementation issues of segmented

bus systems based on a graph model and the Gomory-Hu cut-equivalent tree algorithm

by which a bus can be partitioned into several (bus) segments separated by pass transis­

tors. Devices with higher data communication are placed in adjacent bus segments, to

reduce global data communication in the small portions of the bus segments. It is shown

that the power consumption can be reduced significantly. The concept of tree clustering

is also proposed to merge bus segments for further power reduction. -The design flow,

which includes bus tree construction in the register-transfer level and bus segmentation

cell placement and routing in the physical level, is presented.

Regarding low power bus design, Chen et al. in [19] propose a bus-segmentation method

to efficiently reduce the switched capacitance on the bus. The power consumed by the

bus can, therefore, be substantially reduced. Highly communicating devices are located

in adjacent bus segments, thus, most data communication can be achieved by switching

a small portion of the bus segments. As a result, power consumption and critical path

delay are both reduced. Experimental results obtained by simulating a delay model and

a power model demonstrate that the proposed segmented bus system reduces bus power

by about 60%-70% and improves critical bus delay by about 10%-30%.

2.4 Computational Hardware

General purpose hardware is designed with the primary goal of providing acceptable

performance for a wide variety of tasks rather than high performance for specific tasks.

The performance of such a machine ultimately depends on how well its capabilities

are matched with the computational requirements of the applications. If an applica­

tion requires more computational resources than general purpose hardware can provide,

designers are often driven to application specific architectures in which fundamental

machine capabilities are adapted to a particular class of algorithms.

In many engineering and scientific fields there are computationally intensive applica­

tions which consist dominantly of computational tasks. From an algorithmic point of

view, these applications are normally repetitive and (preferred to be) calculated with

a certain accuracy range. From the hardware design viewpoint, on the other hand,

these applications should be implemented using basic arithmetic operations which are

either shared over execution time and reused repetitively or included in the design to

execute the required tasks in parallel (if possible). Consequently, the target hardware

can be substantially improved in its performance by utilising specifically designed and

optimised functional units, which can execute these fundamental operations with higher

performance.

This section provides a basic view of the problem in different aspects to clarify the

requirements and specialities of computationally intensive hardware.

Chapter 2 Brief Review of Datapath Synthesis 20

2.4.1 Arithmetic Characteristic

Arithmetic units are the building blocks of any hardware implementation of numeri­

cal algorithms. Their performance and cost is, therefore, directly reflected in the final

implementation cost of the algorithm. From a design style viewpoint, a large num­

ber of alternatives are available to realise arithmetic operations which offer different

characteristics with different implementation costs. The way numbers are represented,

for instance, has a great impact on the computation accuracy and the implementation

cost. In addition to the number representation system, there are other characteristics

which need to be decided for arithmetic operations in the target hardware, such as

operand word-length, rounding method, overflow prevention and so on. Choosing the

most suitable set of these characteristics for the arithmetic units has a vital role in the

computational performance of the final hardware, they need, therefore, to be taken into

account before or during the design and optimisation procedure.

To treat the issue more formally, we would like to encapsulate these characteristics as

Arithmetical Characteristics (AC), which here means a set of arithmetic or computa­

tional characteristics which attribute the arithmetical structure of a functional unit.

These characteristics include but not limited to:

• Number Representation System: fixed-point, floating-point,

• Data Bit-Width;

• Rounding Method: Truncation, Rounding, ... ;

• Overflow Prevention Method: Non-prevented, Saturated Arithmetic, ... ;

Clearly choosing each set of characteristics is a tradeoff of costs and benefits. The de­

signer also should consider the compatibility of these characteristics in a design and also

the conversion cost of exchanging data between arithmetic units which have different

characteristics. Normally, relying on experiences, design restrictions/requirements and

available Intellectual Property (IP), the characteristics of the arithmetic units are cho­

sen at the very beginning of the hardware design procedure and these characteristics,

as a generally accepted view, are applied homogenously to all functional units in the

hardware; however, it is a matter for discussion whether this is the best way of doing

this in reality.

The following subsections provide a brief review of some basic characteristics of arith­

metic operations and their impact on the efficiency and accuracy of the computation. In

addition to primary arithmetic operations, there are mathematical functions which need

to be used in some computational algorithms. Elementary functions such as logarithmic

or trigonometric functions are examples which are widely used in many calculations.

Chapter 2 Brief Review of Datapath Synthesis 21

Since these kinds of functions are more complicated in terms of their hardware imple­

mentation and might be used repeatedly, they need to be evaluated with more precise

methods to consider different efficiency issues. Accordingly, a brief review of function

evaluation methods is also provided.

2.4.1.1 Number Representation Systems

Computer arithmetic is concerned with numbers and the basic arithmetic operations.

Accordingly, the number representation system is considered as a vital issue in computer

arithmetic [100]. The choice of how real world values are going to be represented in a

digital format has a great impact on the complexity and performance of the hardware

that implements the computation algorithms. Design area, speed, power consumption,

accuracy, compatibility and data interfaces are among the aspects to take into account

when a representation system chosen. This section provides a brief overview of the most

popular arithmetic systems.

In conventional digital computers, numbers are represented in the form of a finite and

ordered set of binary values such that

(2.3)

where X is a n-digit number and in a radix-r representation Xi E [0 r -1]. Depending on

how the original value is related to this ordered sequence of numbers and how can it be

reconstructed from its representation, different arithmetic systems have been introduced.

Arithmetic systems can be categorised into several subsets regarding the type of the

numbers they represent namely: natural, integer and real numbers [35].

Natural numbers

Natural numbers are known as nonnegative integers, which are represented in the form

of weighted systems or a Residue Number Systems (RNS). In a weighted representation

system any natural number X can be represented in the form

(2.4)

where the coefficients Xi are natural numbers 0 ::; Xi < T. It can be proved that this

representation is unique for X [35].

RNS representation is defined by a set of s moduli {mi}. If the mi are pairwise prime

for all i, the RNS is called nonredundant. The RNS representation of a given natural

number X is the vector R(X), whose components Xi are the respective residues modulo

Chapter 2 Brief Review of Datapath Synthesis 22

mi, that is successive remainders of the integer division ;'i as in Equation (2.5).

(2.5)

The least common multiple (LCM) of {md is the range of the RNS, generally denoted by

M. The greatest natural number that can be represented in the RNS, which is defined

by {md, is:
M - 1 = (ml -1 m2 - 1 ... m -1) , "S, (2.6)

If the mi are pairwise prime for all i, then Mis:

(2.7)

Example of this system can be found in [65]

Integer Numbers

Since the only difference between natural numbers and integers is their sign, the most

natural way of representing integers is the sign-magnitude representation system; nonethe­

less, it is not the most convenient for executing arithmetic operations [35]. Other com­

mon methods which should be mentioned here are Excess-E, r's complement and Booth

encoding.

With sign magnitude, an integer can be represented in the form of + X or -X, where X

is represented as a natural number and the sign can be represented using an additional

sign bit. This representation is very close to a human representation of integers.

Another way of representing negative numbers is associated with natural numbers by a

defined relation such as R(X), where R(-) is a one-to-one transform such as:

R(X) = { X
X+E

X 2: 0

otherwise
(2.8)

where E is a predefined constant. In this system the range of the represented numbers

is -E ::; X ::; r N - E.

r's complement on the other hand, can be thought of as another form of R(X) transform

of the integer numbers, where R(X) in this case is associating natural numbers to X as

shown in Equation (2.9).

R(X) = (X mod rN) ,

in other words, X is represented as

XN-l 2: ~
XN-l < ~

(2.9)

(2.10)

Chapter 2 Brief Review of Datapath Synthesis 23

here r is assumed to be even.

Booth's encoding is a signed digit method. Assuming a binary representation (r = 2),

an integer X in this method is represented by a set of digits X r7 (YN-l,'" ,Yl,YO)

which are defined based on a 2's complement representation of X, (XN-l ... XIXO) as in

Equation (2.11)

X
N-l

LYi X 2
i

,

o
Yo -Xo,

Yi

(2.11)

i = 1,2, ... ,N - 1.

clearly Yi E {-I, 0, +1} holds. The Booth representation can be extended to a Booth-r

representation, more details are available in [35].

Real Numbers

Representation of real numbers, theoretically, requires an (unrealistic) infinite precision

numbering system. To approximate real numbers there are two common numeration

systems, fixed-point and floating-point. The fixed-point system is an extension of the

integer representation system including a decimal point representation; it provides a

relatively limited range of numbers with a constant precision. Conversely, the floating­

point system allows the representation of a large range of numbers with relatively higher

precision.

In a fixed-point numeration system a real number X is represented as in Equation (2.4)

[65].
N2

X = L Xk X 2k,

k=-N1

(2.12)

Let assume that X min and Xmax are the minimum and maximum numbers which can be

represented by N bits respectively. In a fixed-point representation any real number X
belonging to the interval r-P x X min ::; X ::; r-P x Xmax can be represented in the form

of Equation (2.4) with an error equal to the absolute value of the difference between X
and X. From another viewpoint, the distance between two succeeding numbers is one

unit of the least significant position (ULP), see section 3.2. Accordingly the maximum

quantisation error in this method is equal to U ~p = r;P.

Floating-point numbers provide a dynamic range of representation for real numbers

without the need to scale the operands dming operations. In a floating-point numeration

system the representation consists of two numbers: a fixed-point number (the mantissa)

and an integer (exponent). Formally, in a floating-point system of radix-r, mantissa

length of p (precision) and exponent range of [Emin, EmaxL a number X is represented

by a mantissa Mx = XOXIX2 ... Xp-l which is an p-digit number in radix r, satisfying

Chapter 2 Brief Review of Datapath Synthesis 24

0::; lv1.y, < r, a sign Sx E {O, I}, and an exponent Ex, E rnin ::; Ex ::; Emax such as shown

in Equation (2.13) [2].

(2.13)

According to this representation, the ordered sequence of Equation (2.3) should be

divided into two parts, one represents the mantissa (1111.1; including the sign bit) and

the second part represents the exponent (Ex). For accuracy reasons, it is frequently

required that the floating-point representation be normalised in a way that the mantissa

is greater than or equal to '1', [65].

As explained in [2], the IEEE 754 standard defines binary representations for 32-bit

single-precision and 64-bit double-precision numbers as well as extended single-precision

and extended double-precision numbers. Similar to the definition of Equation (2.13), a

single-precision floating-point number presentation consists of three parts: the sign bit,

the exponent, and the mantissa. The division of the bit pattern into three parts is shown

in Figure (2.~)), where the sign bit is '0' if the number is positive and 'I' if the number

32 3] 23 o
I ± I Exponent I Mantissa

FIGURE 2.3: Floating representation in ANSI/IEEE single precision.

is negative. The exponent is an 8-bit number that ranges in value from -126 to 127.

The exponent is not a typical 2's complement representation because this would make

comparisons more difficult. Instead, the value is represented by an Excess-E system

(E = 127), which makes it possible to represent negative numbers. The mantissa is

the normalized binary representation of the number to be multiplied by 2 raised to the

power defined by the exponent.

It is indicated in [1:36] that floating point arithmetic leads to a higher rate of SNR (ratio

of the signal power to the noise power) than fixed point if the floating point mantissa is

equal in length to the fixed-point word. It is also claimed that for first and second order

filters the output SNR as a result of roundoff is dependent on the gain of filters and for

fixed-point decreases faster than for floating point.

Boite et a1. on the other hand, used fixed-point and floating-point realisations of digital

filters in [12] to compare the output Signal-to-Noise Ratio (SNR) due to the internal

noise. According to their results, for the same word-lengths, the peak value of the SNR

in fixed-point is approximately equal to that observed in floating-point, however the

later remains constant for a very large range of input signal levels.

Floating-point representation can provide more accuracy in computation, however, due

to implementation constraints such as silicon area, latency and power consumption,

many of the floating-point algorithms need to be converted to their fixed-point version

for practical reasons. This requires data range evaluation of the intermediate variables in

Chapter 2 Brief Review of Datapath Synthesis 25

the algorithm. Computing the exact ranges in a sequence of operations is a complex task

especially when there are dependencies between variables and operations. The obvious

method is an exhaustive simulation for all possible input values and tracing data range

propagation through the computation tree of the algorithm. This approach is unfeasible

in practice due to the size of the input space vectors, thus analytical methods have

received more attention in the community so far. Related studies regarding Floating­

point to Fixed-point Conversion (FFC) are briefly reviewed in section 2.4.3.

2.4.1.2 Data Bit-Width

The specification of a computation algorithm may not necessarily express the ranges of

the data and intermediate results. However, such information is essential to determine

the bit-widths of the hardware resources required for datapath synthesis because the

computation cost including silicon area, latency and power consumption of a datapath

depend directly on the bit-widths of the functional units, communication paths and

storage resources. The input ranges or bit-widths may be part of the specification

and the output is restricted to a minimum required accuracy, whereas the bit-widths

requirements of the intermediate variables usually need to be selected by the hardware

designer.

It is proved in [28] that there is a tight relationship between the hardware implemen­

tation cost of the functional units and their bit-width. It is shown in section 7.3 that

there is an approximately linear dependency between implementation costs of basic func­

tional units (register, adder, subtract or and sequential multiplier) and their bit-width.

Computational accuracy, on the other hand, is directly defined by the bit-width of the

operations. This contradiction between accuracy and implementation cost is the core

idea of bit-width (word-length) optimisation.

The optimum selection of the bit-width (or word length) may imply range reduction

due to implementation constraints which may result in loss of computation accuracy.

However tradeoff is tolerable in many cases, the same accuracy might be achievable in

most cases. This tradeoff and related works in this regard are reviewed in section 2.4.4.

2.4.1.3 Overflow

In a digital implementation of the arithmetic operations there are usually limits for

minimum and maximum representable values which denote that all the valid inputs and

outputs are limited to a fixed range between these limits. If the result of an operation

lies outside of this range, it cannot be represented properly and an error will be pro­

duced which depends on the representation system and the operation type. However in

some number representation systems, overflow does not intrinsically happen for some of

Chapter 2 Brief Review of Datapath Synthesis 26

the operations, for example fixed-point multiplication. The result can, however, be a

catastrophic loss in accuracy when it does occur.

Fixed-point addition/subtraction of two numbers which has the capability of overflow in

the result, when the answer to an addition or subtraction problem exceeds the magnitude

that can be represented with the prearranged number of bits. In the basic implemen­

tation of fixed-point addition/subtraction, overflow results in wrap-around phenomenon

which represents the actual result when the MSB either is omitted or shifted to the

sign-bit. In wrap-around, the functional unit attempts to represent positive numbers

just outside of the limit range as large negative numbers, and vice versa. Since overflow

discards the MSB part of the result, the consequential error has a devastating impact

on computation accuracy, so the preferred method is to avoid and prevent arithmetic

operations from overflowing [118].

Hardware designs are therefore usually either scaled appropriately to avoid overflow

for all but the most extreme input vectors, or designed to use saturation arithmetic.In

saturation arithmetic, if an operation results in a value greater than the maximum limit

it will be clamped to the maximum value, while if it is below the minimum it will be

clamped to the minimum. The value becomes "saturated" once it reaches the extreme

values; further additions to a maximum or subtractions from a minimum will not change

the result [27]. Formally, if the valid range of values is [Xmin, Xmax], the operation "0"

produces the following values:

O(a,b) ~ {
aob

X min

Xmax

X min < a 0 b < Xmax

a 0 b:S X min

a 0 b ~ Xmax

(2.14)

where OC) is the saturated form of "0". Saturation arithmetic is advantageous in terms

of overflow control in a way that may not significantly affect the computation accuracy.

However, these advantages are provided at the cost of a somewhat larger and slower

circuits compared to an implementation adopting standard fixed-point arithmetic for

the same binary point locations and word lengths. Accordingly, care must be taken to

select the appropriate points in the algorithm computation tree to saturate the signals

[27].

2.4.1.4 Function Evaluation

The elementary functions (eX, VX, l n (x), cos (x), cos -1 (x), ...) are the most commonly

used mathematical functions which are differentiable and cannot be represented by fi­

nite degree polynomials without losing accuracy. Computing these functions with the

required accuracy and a reasonable implementation cost is an important issue in hard­

ware design. From a computer arithmetic viewpoint, this problem ranges from theoreti­

cal discussions in mathematics and algorithm design level to implementation difficulties

Chapter 2 Brief Review of Datapath Synthesis 27

in software and/or hardware. Cost effective implementation of the elementary functions

is often the performance bottleneck of many intensive computational applications [92].

Software implementations can be too slow for numerically intensive or real-time appli­

cations. For instance, more than 50% of the total run time may be devoted to function

evaluation operations in some aircraft and missile simulation tasks [97]. The perfor­

mance of such applications can therefore be improved considerably by utilising suitable

hardware units for function evaluation modules. Nowadays, advances in hardware design

automation enable development and exploration of low cost and high speed function eval­

uation hardware units customised for particular applications, within a practical design

and implementation time [73].

Theoretically, the elementary functions are not much harder to compute than quotients

in division algorithm. It is proved by [1] that elementary functions are equivalent to

division with respect to Boolean circuit depth. This means that, roughly speaking, a

circuits can be designed to compute N -digit elementary functions in a time proportional

to 10g(N) [7]. In a more accurate way, as explained by [15], iUt is assumed that f(x) is

an elementary function and M(N) is the number of single-precision operations required

to multiply N-bit integers; it is shown that f(x) can be evaluated, with relative error

o (2- N), by 0 (M(N) 10g(N)) operations as N ----7 co, for any floating-point number x

(with an N-bit fraction) in a suitable finite interval [14].

In general, evaluation of an elementary function f(x) consists of three stages. The first

stage is range reduction (see [92]), in which the variation range of the argument x is

reduced to an appropriate small interval [a, b], resulting in a new argument x to limit

f(x) to a desired range of deviation. The second stage evaluates the function f(x) using

mathematical approximation methods. This approximation can be performed by well

known numerical methods such as polynomial or rational approximations, see [47] for

some examples. The third stage extrapolates f(x) from f(x).

Range reduction, as the first step of computing an elementary function, has a great

impact on evaluation accuracy. Almost all approximation algorithms only give a correct

result if the argument is within a given bounded interval. Accordingly, to compute

a function f(x) for an arbitrary argument x, one first must find an auxiliary value x

such that f(x) can easily be restored from f(x) and x belongs to the interval where

the approximation holds. A poor range reduction method may lead to catastrophic

accuracy problems when the input arguments are large [92]. In practice, two kinds of

range reduction are possible: Additive and Multiplicative. In additive range reduction x
is equal to x-kC, where k is an integer and C is a constant which is chosen regarding the

characteristics of f(x). Multiplicative range reduction, on the other hand, means that x
is equal to /fk' where k is an integer and C is a constant which is chose considering the

characteristics of f(x). Combinations of these basic methods with multiple Ci constant

values also can be applied to improve the range reduction in special cases. Choosing the

Chapter 2 Brief Review of Datapath Synthesis 28

range reduction method depends on the function characteristics, for example additive

range reduction is normally applied for trigonometric functions whereas multiplicative

range reduction is more suitable for exponential and logarithmic functions [92].

Even within a reduced range interval of the input argument, the elementary functions

cannot be calculated exactly, apart from in a few cases, they need therefore to be approx­

imated by numerical algorithms. Most algorithms consist either of piecewise polynomial

or rational approximations of the function being computed, or of building sequences that

converge to the result.

Accurate polynomial or rational approximation to a function encompasses tradeoffs be­

tween polynomial(s) degree and result accuracy. Normally, more accurate approxima­

tions are possible by increasing the degree of the approximating polynomials. Clearly,

polynomials or rational functions with higher degree computationally cost more, which

means that there is a contradictory relationship between accuracy and computation cost.

An approach to deal with this drawback is the table based approximation. Nevertheless,

this method can hypothetically evaluate functions with any desired accuracy. Tabulat­

ing a function for all possible input values is impractical for large word lengths (let us

say greater than 16-bits). In consequence, a combination of polynomial and table-based

methods is an attractive approach in many practical cases (see [73] and [86]). The basic

method of computing f(x), after preliminary range reduction, with this approach is to

first locate in the table the value Xo that is closest to x, then finding f (x) as in Equation

(2.15).

f(x) = f(xo) + E(x, xo), (2.15)

where f(x) is stored in the table and E(x, xo) is a correction function which can be

approximated by a lower degree polynomial or fraction function. A compromise between

the size of the table and degree of the polynomial(s) on one hand, and the result accuracy

on the other is a matter of optimisation, which is very dependent on the case.

Convergence methods, which are also called shift-and-add methods, are another way of'

approximating functions. These methods are based on simple elementary steps such as

addition and shifts (mUltiplication by 2i). One ofthe most famous methods of this class

is the CORDIC algorithm, introduced by [134]' which has enabled pocket calculators

to compute some elementary functions. Shift-and-add methods normally require less

hardware than polynomial or fraction approximations but, as is discussed in [92], they

can be slower and are still not generalised to all kinds of functions.

Since algorithm specification does not refer to the implementation method of elementary

functions, in the hardware implementation of computational algorithms, usually, the

designer needs to make a decision about the evaluation method of elementary functions

or combination of them (Jlog(x) sin(x) for example). Accordingly, different methods

should be considered to trade off realisation costs of the algorithm with its accuracy and

speed.

Chapter 2 Brief Review of Datapath Synthesis 29

2.4.2 Arithmetic Characteristics As An Optimisation Parameter

Very Large Scale Integrated (VLSI) circuit design and implementation has profoundly

changed the size and speed of computing structures by making available an immense

amount of computational resources on a single chip. The rapid increase in the size of

VLSI systems, and the need to reduce the circuit development time have resulted in a

need for CAD tools that can help choose the most suitable design parameters at the

early stages of the design process. Accordingly, a variety of methods and approaches are

presented for VLSI design.

Generally speaking, VLSI design methods can be compared with each other by the

computational power of their resulting chips. The computational power of the chip is

often measured by the efficient use of the silicon area, required energy and the execution

time. In other words, a design is more successful if it can perform the same computation

abilities as others with less area, lower power consumption and in a shorter time. These

implementation costs are referred to as 'complexity' in some studies [101].

Formally, with every machine M, a complexity function 1> M can be associated in many

different ways, where <PM(X) is interpreted as the complexity of the computation process

of M on an input x. Whereas the complexity of a machine reflects the structure of

the machine itself and is always represented by a single value (a natural number), the

computational complexity associated with a program is a function, whose values can be

understood as the complexity of the computations described by the program.

Often, complexity theory analyses the difficulty of computational problems in terms of

the number of required computational resources. It is can also be expressed in terms of

the necessary amounts of different computational resources, including time, space, power

consumption and other measures. In accordance with the assumed definition, a com­

plexity class is the set of all of the computational problems which can be solved using a

certain amount of computational resource. Perhaps the most well studied computational

resources in this regard are deterministic time and deterministic space. These resources

represent the amount of computation time and memory space needed on a deterministic

computer. These resources are of great practical interest, and are well-studied [137].

From a computational complexity view, the smallest units of the mathematical functions

are the elementary arithmetic operations. These operations are considered as the atomic

building blocks of the computation and are considered as the basic units of complex­

ity measurement for computational algorithms. This assumption is very viable for the

classic general purpose computer-software system of computation because normally in

these systems fixed pre-designed hardware is provided which needs to be programmed

by software to perform a specified algorithm. Since there is a predefined set of compu­

tational or arithmetic units available in the hardware part of the system, software codes

need to utilise just these units to carry out all the required operations.

Chapter 2 Brief Review of Datapath Synthesis 30

On the other hand, achievements in YLSI design technology, methods and tools make it

practical to customise hardware designs for specific applications. Having customised a

design for an application, the performance of the system can be improved by specialising

its features for that specific usage. This customisation can be applied to different features

of the hardware ranging from the architecture level to the lowest level of specification.

Accordingly, the classic model of the computer-software for computational complexity

is not applicable if the arithmetic units of the system have also been modified for a

specific application. In other words, if the elementary arithmetic operations have been

adjusted for a specific application, they cannot be assumed as the atomic building blocks

for complexity evaluation of the implemented algorithm. The implementation cost of an

adder, for instance, is strongly dependent on the word-length of the operands and the

presentation system. This means that the cost of adding two numbers is not fixed for

every implementation and is a function of the arithmetic characteristics of the operands,

such as word-length.

Extensions have been proposed to expand the concept of computational complexity to

the physical cost of the implementation of the algorithms. Thompson in [129] investi­

gates the complexity of the Discrete Fourier Transform (DFT) with respect to a model

of computation appropriate to VLSI implementation. This model focuses on two imple­

mentation costs, the silicon area and latency to perform the DFT algorithm (see [98] for

more details) on the chip. Consequently, lower bounds are proved for area and time in

relation to the number of points in the DFT algorithm.

Presenting more accurate bounds for computational complexity is beyond of the scope of

this work but from a high level synthesis viewpoint, the characteristics of the arithmetic

units must be taken into account in high level design evaluation, especially for com­

putationally intensive systems, because their efficiency is very sensitive to the sub-task

arithmetic operations. The following subsections present a brief review of the related

work in this area.

2.4.3 Floating-Point to Fixed-Point Conversion

Most algorithms are typically first proposed in terms of mathematical equations. To be

solved numerically, they are usually represented in a software format which is verified in

digital computers using some carefully designed test values. Most often, the underlying

data types in this software representation are either single or double precision floating­

point. Either one of these floating-point representations has a limited number of bits for

mantissa or exponent, however, both single and double floating data types are treated

as infinite-precision in practice.

In a top-down design flow to implement these algorithms, the next step is to determine

the system architecture, such as the data communication style of the sub-blocks or

Chapter 2 Brief Review of Datapath Synthesis 31

parallelism scheme. The details of this architectural description should reach down to

the level of arithmetic operators, such as adders, multiplexers, and delays. Since a

wide variety of structures and sub-blocks are available to the designer, to choose one

out of several promising architectures at this level of abstraction, requires an intensive

search and comparison to find the most appropriate implementation. During the search,

the architecture designers have to verify that structural refinements do not amend the

algorithm functionality. This takes place in floating-point simulations using the same

test values as previously.

After floating-point verification of the design, the immediate task of the hardware im­

plementation is to determine the data types that are feasible in a final realisation. A

large number of digital implementations rely on fixed-point approximations to reduce

hardware costs while increasing throughput rates. The designer, therefore, needs to de­

termine the arithmetic characteristics of the physical implemented data representation

of each number in the specified algorithm including the word-length (both integer word

length and fractional word length), truncation mode (either roundoff or truncation) and

overflow mode (either saturation or wrap-around). This task is named as Floating-point

to Fixed-point Conversion (FFC) in a literature [118].

In hierarchical system design and synthesis, the development of methodologies for the

automatic implementation of floating-point algorithms in fixed-point architectures is

required for the minimisation of the design costs including area, power consumption,

latency, accuracy and time to market.

In [62] a method is proposed for the floating-point to fixed-point conversion after code

generation. The input is an assembly program using a hypothetical floating-point in­

struction set and a floating-point data format. Then, a floating-point simulation of

the assembly program is conducted for verifying and estimating the range of each in­

ternal variable for automatic translation into a fixed-point version. The scaling that is

needed for the conversion of floating-point variables and data to fixed-point is conducted

based on the range of the signal through the processing algorithm. This study targets

floating-point algorithms in the TMS320C25/50 fixed-point DSP of Texas Instruments.

Accordingly the proposed methodology is specialised for this particular architecture and

to transpose it to other kinds of architecture requires more research.

A bit-width-optimisation system for hardware/software co-design, called FRIDGE, is

introduced in [60] by Keding et al. This work provides range optimisation by interval

arithmetic-based range propagation and simulation-based precision analysis. The tool

allows an automated, interactive transformation from floating-point ANSI-C into a bit­

true specification. Annotation is the first step in this method in which user defines

the fixed-point format of some variables which are critical in the system or for which

the fixed-point specification is already known. Furthermore, global annotations can be

defined in order to specify some rules for the entire system such as maximal data word

Chapter 2 Brief Review of Datapath Synthesis 32

length and casting rules. In the second step, the word-length ofthe integer and fractional

parts are determined for each variable, this step is called interpolation. The fixed-point

data formats are obtained from a set of data interval propagation rules and the analysis

of the algorithm control flow. An entire fixed-point specification of the application

can be produced in this step. This description is simulated in order to verify if the

accuracy constraints are fulfilled. The commercial tool CoCentric Fixed-point Designer

proposed by Synopsys is based on this approach. This procedure leads to a fixed-point

specification of the application in terms of behavioural VHDL, C or assembly.

The aim of the method presented in [66] and [67] is to transform a floating-point C

source code into an C code with integer data types in order to be independent of the

target architecture. Moreover, a fixed-point format optimisation is done in order to

minimise the number of scaling operations. At the first step, the floating-point data

types are replaced by fixed-point data types with the scaling operations in the output

code. The scaling operations and the fixed-point data formats are determined from

the dynamic range propagation information obtained from an interval analysis and the

statistical method introduced in [63]. The reduction of the number of scaling operations

is based on the assignment of a common format to several relevant variables to allow

the minimisation of cost function of the scaling operations. This cost function takes

account of the number of occurrences of each scaling operation and depends on the

scaling capacities of the target processor. For a processor with a barrel shifter, the cost

of a scaling operation is equal to one cycle; otherwise the number of cycles required

for a shift of n bits is equal to n cycles. In that work, the code execution time is

not optimised under a global accuracy constraint. The accuracy constraint is only

specified through the definition of the maximal accuracy degradation allowed for each

variable. Specific elements of the architecture are not taken into account for optimising

the fixed-point data formats. Moreover, the architecture model used to minimise the

scaling operations does not take account of the specialised shift registers which allow

specific shift operations without supplementary cycles. Furthermore, for processors with

instruction level parallelism capacities, the overhead due to scaling operations depends

on the scheduling step and cannot easily be evaluated before the code generation process.

Some similar simulation-based work has been reported by Leong et al in [76].

In [17] Cantin et al. presented a method to determine the word length required by

implementations of Digital Signal Processing algorithms. The method uses a CjC++

fixed-point simulation tool to model the impact of finite word length on overall accuracy.

It finds a combination of quasi-optimum bit resolutions in the corresponding data flow

graphs by computing dissimilarities between fixed-point and floating-point simulation

results. The selected algorithm minimises these dissimilarities and finds a combination

of word lengths that meets the objectives specified by the user. This method is a stimuli­

based dynamic error analysis method similar to the method is presented in [126] and

Chapter 2 Brief Review of Datapath Synthesis 33

[66]. The major difficulty of these dynamic error analysis methods is their optimisation

time which makes them impractical for complex designs.

Menard et al. presented a method of implementation of Digital Signal Processors under

accuracy constraints in [84] and [85]. In their method, the DSP architecture is taken

into account for optimising the execution time under accuracy constraints. At the first

stage, the method evaluates the variables dynamic range in the data flow graph by

applying interval arithmetic range analysis. The results obtained are used to determine

the decimal-point of the data in order to avoid an overflow. Then, the word-lengths of

each variable are defined. Finally, the data formats are optimised in order to minimise

the code execution time as long as the accuracy constraint is fulfilled. The determination

and optimisation of the data formats are made under accuracy constraint. The Signal

to Quantisation Noise Ratio (SQNR) is used for evaluating the accuracy.

In [3] and [4] Banerjee et al. described a behavioural synthesis method which reads

in high-level descriptions of digital signal processing applications written in MATLAB,

and automatically generates synthesisable register transfer level models and simulation

test-benches in VHDL or Verilog. Conversion of the floating point computations in

MATLAB to a fixed-point MATLAB version of specific precision for hardware design is

performed automatically. The RTL models can be synthesised using commercial logic

synthesis tools. Experimental results are reported on a set of MATLAB benchmarks

that are mapped onto the Xilinx Virtex II and Altera Stratix FPGAs.

Shi and Brodersen in [119] proposed a tool that automates the floating-point to fixed­

point conversion process for digital signal processing systems. Their method optimises

fixed-point data types of arithmetic operators, including overflow modes, integer word

lengths, fractional word lengths, and the number representation systems. The approach

is based on statistical modelling, hardware resource estimation and global optimisation

from an initial structural system description. This technique exploits the fact that the

fixed point realisation is a weak perturbation of the floating point realisation which al­

lows the development of a system model which can be used in the optimisation process.

In addition to word-length, this work adds overflow mode (wrap-round or saturation)

and number system (2's complement or unsigned) to the arithmetic characteristic pa­

rameters which can be selected during the optimisation process. This work only tries

to linearise the nonlinear system and does not provide any new model for error. It is

also not clear what is the complexity of their method to find the Jacobean matrix of the

linearised system. Furthermore, in the best case they can not only find variance of the

computational noise in the output, error range nor errors PDF are not achievable with

these methods.

Doi et al. in [38] presented a nonlinear programming method for floating-point to fixed­

point conversion in high level synthesis. An Affine Arithmetic error model is employed

for error propagation in the data flow graph which is integrated into a nonlinear problem

Chapter 2 Brief Review of Datapath Synthesis 34

specification. In this optimiser, the bit-width of the functional units is considered as the

implementation cost.

2.4.4 Word Length Optimisation

Over the past years, attempts have been made to demonstrate that using an optimal

word-length for functional units, less than the worst-case assumption, at different points

in the datapath, would dramatically save implementation costs.

In [21], a combined method of static and dynamic analysis was proposed. Cmar et al.

employ interval propagation analysis for range width determination and a simulation­

based method for precision bit-width optimisation. Their simulation is utilised by a

concurrent program which performs the same calculation as a reference and as a cus­

tom fixed-point format, and compares the error between the two values. For precision

evaluation, the first and second moments of the error at each signal point are examined.

Since the C specification of the DSP algorithm needs major modifications for this an­

alytical/simulation based method, the bit resolution analysis is performed only on one

operand instead of on combinations of operands. The idea behind such an approach

is that it sets an upper-bound on the word length of each variable, beyond which the

least significant bits will be drowned in quantisation or external noise. No additional

mechanism is proposed to automate the tradeoff of system area against error.

Kum and Sung [68] introduced several heuristic word length optimisation methods to

trade-off system area against Signal-to-Quantization-Noise Ratio (SQNR). The tech­

niques are heuristics based on bit-true simulation of the design under various internal

word lengths. This method measures the performance of a fixed-point algorithm using

simulation results. A reference system is designed without overflows or signal quan­

tisation effects and it iteratively modifies the word length of a signal to find a set of

optimum word lengths satisfying the fixed-point performance. Signal grouping is used

to reduce the number of simulations to calculate the uniform word-length and minimum

word length configuration. Starting from the minimum word length configuration, they

perform an exhaustive or heuristic search to get the optimised configuration of word­

lengths could then a high level synthesis is performed based on the minimum word length

information, while the final word length optimisation is conducted using the synthesised

hardware models. Since the design area is the only objective of the design, there is no

suggestion in the work to use other design costs, power consumption for instance, as

optimisation objectives.

Constantinides et al. focused on developing algorithms for word length optimisation in

several works [24, 28, 26, 25]. These methods employ static analytical digital noise anal­

ysis for DSP applications applied to Linear Time Invariant (LTI) systems implemented

as custom processing units. Optimisation techniques are proposed which allow the user

Chapter 2 Brief Review of Datapath Synthesis 35

to trade off implementation area for arithmetic error at the system outputs. Optimal­

ity with respect to the area and error estimates is guaranteed through modelling using

mixed integer linear programming; however, the optimisation time for complex designs

is expected to be high.

Constantinides later extended the previous efforts to nonlinear components in a dat­

apath by employing a small signal approach and investigating the effect of precision

optimisation on power reduction as a by-product of the word length optimisation [28].

[120] also introduces a similar method based on perturbation theory for nonlinear sys­

tems. Again in these works, power consumption is not an objective in the optimisation

heuristic.

Sulaiman and Arslan [125] presented a Multi Objective Genetic Algorithm (MOGA)

for WL and power consumption in a Fast Fourier Transform (FFT) processor. The

GA was used to find FFT coefficients which have optimum performance in terms of

Signal-to-Noise Ratio (SNR) and power consumption. The results demonstrate that

the GA can find solutions which are optimised for both objectives, but this work does

not offer a general optimisation method for DSP algorithms. There are studies, on the

other hand, which introduce methods to improve the speed or power consumption of the

communication on the shared buses, including bus splitting.

Nayak et al. in [93] presented a compiler that takes high-level signal processing al­

gorithms described in MATLAB and generates optimised hardware. Their precision

analysis algorithm determines the minimum number of bits required by a model of er­

rors through the data flow graph, where a set of error transfer functions determines the

error contribution of each node. Data range optimisation is performed by a data range

propagation technique. They concluded that this method reduces the required hardware

resources significantly.

In [lll] Sanghamitra and Banerjee presented an approach to automate the conversion

of floating-point MATLAB programs into fixed-point MATLAB programs for mapping

to FPGAs by profiling the expected inputs in order to estimate errors. The algorithm

attempts to minimise the hardware resources while constraining the quantisation error

within a specified limit. A binary search approach is utilised to arrive quickly at a coarse

optimal point. The fine optimisation starts from the coarse optimal point to reduce the

complexity to vary linearly with the number of quantisers. This method is based on a

dynamic analysis which uses the stimuli for error analysis.

In [71] Le-Gal et al. proposed a methodology that employs an annotated formal model

with bit-width information and dynamic range values in order to extract bit-wise infor­

mation to optimise the area and power consumption of hardware architectures provided

by high-level synthesis tools. This method is based on two steps. First, a bit-width anal­

ysis of the application according to the input information provided by the designer is

performed. This bit-width information is propagated through a graph which models the

Chapter 2 Brief Review of Datapath Synthesis 36

application to compute the lower-bound and upper-bound values to each computation

and the required memory. The resulting annotated graph enables datapath structure

optimisations for high-level synthesis with a processing time complexity of O(n). Once

all bound computation is performed, the necessary bit-widths to model data and to

implement the operations are evaluated. This information is then used during the high

level synthesis process. The second part of the method relates to the high-level synthe­

sis process. High-level synthesis is used to formally transform the application into an

architecture observing a set of constraints. Then an architecture optimisation stage is

completed in order to adapt both possible operator and register bit-widths of the design.

Han and Evans [52] also reported a sensitivity and complexity approach to word length

optimisation. In this work they discussed a pre-planned exhaustive search which utilises

the sensitivity information of hardware complexity and the system output error with

respect to the signal word length. Word length design case studies for a wireless demod­

ulator were implemented to show a meaningful improvement in the optimisation speed.

In their case studies, the optimised word-length was considered as the improvement

measure.

Several works report applications of symbolic analysis in computational error analysis

[94]. A basic implementation of this method is known as Affine Arithmetic (AA). In

this method, unlike Interval Arithmetic (see section 3.3.1 for more details), noise source

dependency is taken into account in a parametric representation of the error at different

points in the DFG. In [72] Lee et al. implemented an AA-based method which categories

the problem into two parts, range analysis and precision evaluation. The former gives the

integer part of the data whereas the latter provides the fractional part of the variables at

every point on the DFG. An Adaptive Simulated Annealing (ASA) heuristic is applied

to find the near-to optimal points. Similar to this work, a study was reported by Pu

and Ha [106] which applied AA with a different heuristic. In the later work, inspired by

[42], by applying the central limit theorem, the first and second moments of the output

noise are approximated from a symbolic representation of the output noise.

Since one way to reduce the power consumption in an Application-Specific Integrated

Circuit (ASIC) implementation is to reduce the bit-width of the computation units,

works have been presented focusing on this method for low power design. Mallik et al.

in [80] and [81] describe algorithms to optimise the bit-widths of fixed-point variables

for low power design in a SystemC-based ASIC design environment. An optimal bit­

width allocation algorithm for two variables and a greedy heuristic is proposed in which

converting the floating-point programs into ASIC synthesis able SystemC specifications

is automated. The expected inputs are profiled to estimate errors in the finite precision

conversions. Experimental results for the tradeoffs between quantisation error, power

consumption, and hardware resources are reported which demonstrate that it is possible

to reduce the power consumption by 50% on the average by allowing roundoff errors to

increase from 0.5% to 1% in the benchmarks.

Chapter 2 Brief Review of Datapath Synthesis 37

2.5 Summary

In this chapter, background knowledge related to the realisation of computationally

. intensive hardware as well as a comprehensive literature surveys on datapath synthesis,

bus-oriented design and floating-point to fixed-point conversion is provided.

The computational complexity of hardware implementation is investigated and the ef­

fect of minimising the cost of the arithmetic operations. From this viewpoint, classic

computational complexity is arguable in that computational cost of the algorithms can­

not be taken down to the elementary arithmetic operations because their cost might

vary depending on the implementation styles in the target hardware. Accordingly, the

arithmetic characteristic is introduced as a design optimisation parameter, especially in

the case of computationally intensive hardware. Floating-point to fixed-point conver­

sion and word-length optimisation are comprehensively reviewed as closely related fields

in which the arithmetic characteristic of functional units is the foremost optimisation

parameter in high level synthesis.

The next chapter provides a focused review concerning uncertainties in computation

and introduces different methods of how they can be modelled and treated in digital

computation.

Chapter 3

Computing With Uncertainty

3.1 Introduction

Uncertainty in computation is always a possibility with the practical problems. From a

computing system stand point, the origin of this uncertainty can be external or inter­

nal. External uncertainties are inherited from data acquisition or any preceding system

which are imported together with the input data in the form of input error or noise.

Internal uncertainties, on the other hand, arise from the current processing system be­

cause of computation limits and constraints. Since in many applications one or both

kinds of these uncertainties are inevitable, the error effects of these phenomena on the

computation process needs to be investigated.

Due to data dependency, computing the exact ranges of the output(s) variation in a

sequence of operations is a complex task particularly when there are dependencies be­

tween intermediate variables. Theoretically the only general method to figure out the

exact range is an exhaustive simulation of all the possible input vectors of the system.

Since full cover of the input space is impossible in practice, usually estimates of the

ranges are obtained through partial simulation of the input space. However, these es­

timates are not guaranteed to include all possible results and it must be assumed that

the stimuli vectors truly represent the expected input values. Accuracy analysis of the

computational systems has been investigated, with many different approaches which can

be classified in many different ways, and one such classification is static analysis versus

dynamic analysis.

Dynamic analysis methods are based on the use of a set of precisely chosen input stimuli

to cover the worst cases of uncertainty in the data computation, whereas static analysis

relies on analytical models of the error that functional units produce and the way that

errors propagate through the system to the output. Since dynamic methods are very

time consuming and based on simulation, this study is based on static error analysis and

this chapter provides a review of this issue and the related methods and works.

38

Chapter 3 Computing With Uncertainty 39

Error models and the previous work in this regard are reviewed for different types of

word-length refitting. These models either have a statistical specification or have an

error-bound symbolic specification which makes it possible to keep track of the errors

from their origin to eliminated or emerge those which come from the same source.

Major symbolic error models are reviewed including Interval Arithmetic (IA) and Affine

Arithmetic (AA) [94].

Statistical noise analysis is another approach which is inspired by analogue circuit noise

analysis. In this approach, computational errors are considered similar to independent

random noise sources. Each functional unit has an independent random noise generator

in its output which produces a noise with magnitude that is dependent on the maximum

computational error in that functional unit. These noise signals propagate through the

system exactly like signals from independent sources. This method is very useful in LTI

DSP applications, however, it does not consider the error dependency. It also requires

some modifications for nonlinear systems.

Since our work is based on combining arithmetic characteristics with HLS parameters,

we have to investigate the causes and effects of the computational errors. This chapter

provides a brief review on computation error modelling and analysis methods.

3.2 Analysing Finite Precision Effects

Digital hardware can only provide a limited number of binary digits for all the numbers

in computational algorithms. This limitation affects the represented values in two ways:

discretisation and bounding. Discretisation embodies a precision limit which indicates

the minimum distance between two neighbour values in the sequence of represented

numbers, whereas the bounding limit refers to the maximum and minimum values which

can be represented by this hardware. When real values must be fitted to this constraint

the result will be the original value along with an unwanted, and normally unknown,

value considered as error or noise. In most practical computation systems, there are

many of this kind of error picked up and carried by data from point to point through

the computation tree of the algorithm.

From a systematic viewpoint, uncertainty in computation may originate from two sources:

external and/or internal sources. Since input data of every computational system ei­

ther comes from another computational or a data acquisition system there is always a

possibility that it carry some errors due to the finite precision of the previous system.

Quantisation of the filter coefficients in DSP applications is a well known example of

this type of error. Internal uncertainties, on the other hand, arise from the current pro­

cessing system because of computation limits and constraints. Rounding or truncation

of the results in arithmetic operations is an example of this kind of error. Since in many

applications one or both kinds of these uncertainties are inevitable, the computation

Chapter 3 Computing With Uncertainty 40

process needs to be reinvestigated concerning error effects of these phenomena. Mod­

elling and dealing with these uncertainties are subjects of variety of disciplines ranging

from numerical analysis to computer software and hardware design.

As a matter of fact, it is not trivial to analyse the finite precision errors in actual designs.

Computational errors in functional units are data dependent in that different input data

sets can produce different patterns of errors in the system. Statistical distribution of the

input data, therefore, can cause a great impact on the actual accuracy of the system.

Furthermore, since finite precision effects are nonlinear, it is observable that compu­

tational errors in algorithms can be dependent on the sequence of the local functions

such as arithmetic operations. It means that during the high level synthesis process (see

section 2.2), subsystem allocation and scheduling might affect the predicted error in the

output if this dependency has not been considered. This complexity of the problem has

inspired the research community to introduce different methods of error analysis and

design optimisation. There are a variety of approaches to word-length optimisation in

high level synthesis in this regard, which can be classified in many different ways.

Dynamic analysis [52] relies on the use of stimuli input data sets. This method usually is

performed by applying a set of possible inputs to the system and continuously comparing

its calculated results with an auxiliary program which is performing the same algorithm

but in high precision arithmetic. Since this approach directly compares the overall

accuracy of the system with an ideal calculation, when compared to static-analysis

techniques, it potentially provides bit-width(s) estimation for functional units close to

the optimal set for those particular stimuli. However, in complicated systems, number of

possible inputs (2n vectors for an n input system) can be so high as to make it impossible

to exhaustively search the input space for worst case errors. Hence this method can be

problematic because a large set of stimuli inputs is required to analyse a complex design

with sufficient confidence, possibly leading to prohibitively long simulation times and

without guarantees for alternative input stimuli encountered in practice.

Static analysis is often more attractive than dynamic analysis especially for large designs,

since only the characteristics of the input signals are needed, however, it is believed to

give more conservative bit-width estimates than dynamic analysis [52]. This method is

based on an analytical model of the errors and their propagation ~cheme in the compu­

tation tree of the algorithms. Errors can be modelled in the form of random values with

a known probability Density Function (PDF), or conversely variation range of the data

might be modelled as number intervals or ranges. Either way, the propagation scheme

of these models must be inspected to find out the output value of the error or data

range and its relationship with the local error sources. In spite of its simplicity, there

are difficulties which this method needs to cope with.

In most of the computational noise analysis methods, such as DSP applications, error

sources are considered as independent Wide-Sense Stationary (WSS) noise sources with

Chapter 3 Computing With Uncertainty 41

uniform PDF [98, 104]. This assumption has a great impact on the method efficiency;

however, there are arguments about different issues in this regard. For instance, in many

practical computations intermediate results are strongly dependent on each other which

can violate the independency assumption of the error sources.

Error propagation model in static methods is also an important issue. Inspired by system

theory studies, the primary works in this field were based on a linear Time Independency

(LTI) assumption of the computational systems [99]. In practice, nevertheless, many of

the computational algorithms result in nonlinear system specifications. Consequently,

applying methods that are designed for LTI systems cannot be used. Furthermore, there

are applications that are required to be implemented in the form of time dependent or

adaptive systems. In these cases, the LTI model is not valid and cannot be applied to

the error analysis method. And finally, considering HLS methods in combination with

computational error analysis raises a new set of problems for these analysis methods.

To cope with aforementioned problems, different approaches have been introduced and

investigated. The following sections provide a brief review on major works in this regard.

3.3 Error Bound Analysis Approach

Understanding of the required range of variable values, at different points of a given

computation procedure, is vital to compute the minimum bit-width requirements in a

hardware implementation of an algorithm. It is also gaining more importance in the cus­

tomised hardware design methodologies, where underlying substrates allow construction

of customisable variable bit-width datapaths.

Assuming that the variation ranges of the input variables are known, this approach tries

to predict the variation range of the output data. Therefore, instead of a single value,

every number is represented by a range of values between the upper and lower bounds.

In other words, regardless of the real place of the number in the range, these methods

are concerned with data range dilation and contraction by data propagation through the

operations in the computation tree of the algorithm. These data ranges are normally

presented in the form of symbolic specifications. Since this method is focused on value

bounds, there is no information about how the actual value might be placed in the range.

A simple representation of this method is depicted in Figure (3.1).

The following subsections provide a brief review of different variants of interval range

analysis methods. Three methods are presented here: Interval Arithmetic (IA), Affine

Arithmetic (AA) and the Taylor Representation of range.

Chapter 3 Computing With Uncertainty 42

FUI FU3

FU2

FIGURE 3.1: Variables bound propagation through the algorithm computation tree.

3.3.1 Interval Arithmetic

Interval Arithmetic (IA) was introduced in 1960's by Ramon E. Moore as a PhD thesis

at Stanford University and later on, in his works [89, 90] as a tool for automatic control

of the errors, in a computed result, that arise from input error rounding errors during

computation, and truncation errors from using a numerical approximation to the math­

ematical problem. In his study not only the foundation of interval arithmetic has been

laid; it also offers interval methods for a variety of problems, such as interval version

of Newton's method [47] and automatic differentiation and algorithms for the validated

solution of Ordinary Differential Equations (ODE).

IA is a data range analysis method in numerical computation from which every real value

x is-represented by an interval x = [Xl, Xh] , where Xl S X S Xh. Arithmetic operations

are performed on these intervals in such a way that each result interval f; is guaranteed

to contain the value of the actual quantity y. Semantically, IA representation starts

from an closed interval of numbers. Consider a set S1 of real interval numbers defined

as in Equation (3.1).

(3.1)

where Xl is the lower bound of the interval and Xh is its upper bound, lR is the set of

real numbers and 1\ represents the logical AND.

Arithmetic operations on real numbers can be extended naturally to real interval num­

bers. Let 0 denote a two operand, real, arithmetic operation. If x, f; E S1 then the

formal specification of 0 is as in Equation (3.2).

x 0 f; = {z[(z = X 0 y) 1\ (x E x) 1\ (y E:O)}, (3.2)

Chapter 3 Computing With Uncertainty 43

Specifically elementary arithmetic operations with two independent uncertain values

represented in IA form as x = [Xl, Xh] and y = [Yl, Yh], have

x + y = [Xl + Yl, Xh + Yh],

x - y = [Xl - Yh, Xh - yzl ,

x x f) = [min {(Xl x Yl), (Xl x Yh), (Xh x Yl), (Xh x Yh)},

max{(XI X Yl), (Xl x Yh), (Xh x Yl), (Xh x Yh)}],

[min {Xl,!!i, Xh, Xh}, min {Xl,!!i, Xh, Xh}}] , assuming: ° tf. f),
Yl Yh Yl Yh Yl Yh Yl Yh

(3.3)

(3.4)

(3.5)

(3.6)

These formula ignore rounding, overflow and other computational errors. A comprehen­

sive set of elementary functions implemented in IA can be found in [123].

In general, for every function Y = J(Xl, X2, ... ,xn) where J : lR --7 lR; a corresponding

IA specification, f), is defined such as: f) = j(X1' X2, ... ,xn). This operation returns the

interval that contains all the values of J(Xl, X2,·· . ,xn), where variables {Xl, X2,·· . ,xn }

are independent and range over the given intervals {Xl, X2,·· . ,xn}.

Practically, it is observed that the computed error bound can be overestimated by IA

because the self-dependency of the data values are not considered in IA. Thus interval

arithmetic flils to identify different occurrences of the same variable bounds during the

computation algorithms. In other words, since there is no trace of the error sources in the

intervals, error sources which come from parallel branches in the computing tree might

share some common components that are not considered in the interval computation. As

a trivial example, consider x-x = ° which holds for each X E [1,2]' but x-x for x = [1,2]

results in [-1, 1] in the IA method. There is also another source of overestimation which

is called wrapping effect. This effect appears when intermediate results of a computation

are enclosed into intervals [96]. The following example makes this effect more clear.

Example 3.1. Consider the Junction J : (x,y) --7 f(x + Y,Y - x). The image oj

the square [0,v2"j2 is the rotated square with corners (0,0),(1,-1),(2,0),(1,1). On the

other hand, interval computation yields J([O, V2]' [0, V2]) = ([0,2]' [-1,1]), these regions

are depicted in Figure {3.2}.

Note that the observed overestimation (the area of the interval enclosure is twice the area

of the range) is not a result of dependency, but of the enclosure of a non-interval shaped

range into an interval. Overestimations of this kind are one of the major problems in

the interval arithmetic treatment of differential equations [123].

Chapter 3 Computing With Uncertainty

y

f(x,y)

x

y

2

-1

Actual
domain

FIGURE 3.2: Wrapping problem in IA method.

p /decimal point

lsi

FIGURE 3.3: Standard fixed-point representation.

44

x

To build up a complete method to cope with computational error optimisation, finite

precision errors also must be modelled in IA. Let us assume x is represented in fixed­

point by N1-bit word-length with decimal point positioned at p > 0, as depicted in Figure

(3.3). If x comes from a quantisation unit, the quantisation error can be modelled in IA

in Equation (3.7).

(3.7)

To model the truncation error assume that the same x is refitted into an N2-bit word­

length register, thus the error are modelled as the IA range in Equation (3.8).

(3.8)

IA computing, as a pioneering method in computing with uncertainties, is a very useful

method with low computation overhead. It can easily be implemented by overloading

elementary operations with IA operations and representing numbers in the form of or­

dered pairs. The major downside of the IA is its very conservative error range estimation.

This weak-point especially can be exaggerated in practical computation tasks, where in

long computation chains the computed intervals in one stage are inputs for the next

stages. This conservatism is mainly due to this assumption that the unknown values of

the arguments to the primitive operators vary independently over the given intervals. If

this assumption is not true, which it is not mostly and then having correlation between

possible results, not all the combinations of values in the given interval will appear in the

results set. In that case, the interval obtained by IA can be much wider than the exact

range of the result quantity, which known as "error explosion" [32]. Affine arithmetic is

Chapter 3 Computing With Uncertainty 45

an extension of IA to cope with some of these problems. This method is discussed in

the following subsection.

3.3.2 Affine Arithmetic

Affine arithmetic (AA) is a method for numerical computation that aims to attack the

dependency problem in interval computations. AA keeps track of first-order correlations

between computed and input quantities; these correlations are automatically exploited

in primitive operations, with the result that in many cases AA is able to produce interval

estimates that are much better than the ones obtained with standard interval arithmetic.

Moreover, AA also implicitly provides a symbolic representation for the joint range of

related quantities that can be exploited to increase the efficiency of interval methods.

A partially known quantity x in AA is represented by an affine form X, which is a

first-degree polynomial representation as in Equation (3.9)

(3.9)

where the coefficients Xi are finite real numbers and ti are symbolic real variables whose

values are unknown but assumed to lie in the interval U = [-1, + 1]. Xo is called the

central value of the affine form X. The coefficients Xi are partial deviations and Ei are

symbolic representation of the uncertainty in variables. In Equation (3.9) each Ei stand

for an independent component of the total uncertainty of the quantity x. The corre­

sponding coefficients Xi represents the magnitude of each component. In this definition,

the uncertainty source might be either internal (arithmetic rounding for instance) or

external (indeterminacy of the input data such as quantisation error) [12.3].

To model the elementary operations this method divides all operations into two cate­

gories: affine operations and non-affine operations. The first one refers to those which

result in a linear representation of the error symbols in the output whereas the later

represents those which result in nonlinear combination of the symbols, mUltiplication

for instance.

3.3.2.1 Affine Operations

If the operation f(x, y) itself is an affine function of its arguments X and y, then f can

be expanded and rearranged into an affine combination of the symbols Ei. Specifically,

for any given constants Q, /3, (E JR, the computation z --7 QX + /3y + (can be carried

Chapter 3 Computing With Uncertainty

out by affine expansion of x and Y as in Equation (3.10).

n

Xo + LXici,
i=l
n

Y Yo + LYici,
i=l

then Ii can be represented as in Equation (3.11).

n

Ii = ax + f3y + (= (axo + f3yo + () + L (axi + f3Yi)ci,
i=l

46

(3.10)

(3.11)

Except for roundoff errors and overflows, the affine form Ii above, together with x and y,
captures all the information about the quantities x, y, and Z that can be deduced from

the given affine forms x and y, and the equation Z = ax + f3y + (.

An AA computation that uses only affine operations with known constant coefficients

will usually give an almost-exact range for the ideal result. In fact, it will give an

almost-exact explicit formula for the ideal result in terms of the input variables.

3.3.2.2 Non-Affine Operations

The most important primitive operations that are not affine are multiplication and

division. If we write ~ = x x (~), then we can concentrate on multiplication. Given two

affine forms of Equation (3.10) their product is as Equation (3.12).

x·y
(xo + t XiCi) . (xo + t YiCi) ,

t=l t=l
n n n

XoYo + L (XOYi + YOXi)ci + L XiCi . LYici,
i=l i=l i=l

which can be rewritten as the following affine form for the product:

where:

n

X . Y = XoYo + L (XOYi + YOXi)ci + ZkCk,
i=l

n n

Zk:;:::: LXici' LYici, Ci E U,
i=l i=l

is an upper bound for the approximation error, as before. The simplest bound is:

n n

Zk = L !Xi!' L !Yi!,
i=l i=l

(3.12)

(3.13)

(3.14)

(3.15)

Chapter 3 Computing With Uncertainty 47

which is at most four times the error of the best affine approximation, but is very easily

computed.

AA can be used for precision analysis in a similar manner as for range analysis. Trun­

cation and rounding can cause a maximum error of 2-P (1 ULP) and 2-p- 1 (0.5 ULP),

respectively. Truncation chops bits off the least significant bits and requires no extra

hardware resources. Round to nearest involves a small adder followed by truncation.

Hence, the quantisation error of finite precision representation (x) of a real value x is

given in affine form as in Equation (3.16).

x = { x + 2-P
. E

X + 2-p - 1 . E

Truncation

Rounding
(3.16)

And for data refitting from NI-bit specification as depicted in Figure (3.3) into an N2-bit

specification, the AA error range is represented as:

(3.17)

AA method solve the data dependency problem of the IA method, accordingly it can give

better approximations for error bounds, however it requires more computations efforts

because of its more complicated structure. On the other hand, since AA is based on a

linear specification of the error symbols its offered method is restricted in the case of

nonlinear operations, to solve this problem Taylor method provides a more sophisticated

representation which is capable of modelling many nonlinear error symbols, this method

is presented in the following subsection.

3.3.3 Taylor Method

For reducing both the dependency problem and the wrapping effect, interval arithmetic

has been improved 'with symbolic extensions. Affine arithmetic is a simple method

which provides a linear combination of the error symbols and can be used to model

the elementary arithmetic operations, but in the case of more complicated elementary

functions which are not linear and normally can be evaluated in the form of polynomial or

fraction functions, see section 2.4.1.4, AA method cannot give a precise approximation.

A rigorous multivariate Taylor arithmetic has been developed by Berz and his group

since 1990s [79,'9] to cope with these difficulties.

A Taylor model of a function 1 on some interval x consists of the Taylor polynomial Pn of

order n of 1 and an interval remainder term In. This model encloses the approximation

error 11 - Pnl on x. In computations that involve 1, the function is replaced by Pn + In·

The polynomial part is propagated by symbolic calculations where possible and the

interval remainder term is processed according to the rules of interval arithmetic. All

Chapter 3 Computing With Uncertainty 48

truncation and roundoff errors in intermediate operations are also enclosed into the

remainder interval of the final result. The interval Taylor models for a differentiable

function 1 : x ~ JR.m -+ JR. can be derived in the form:

(3.18)

where Pn(x) represents a degree-n polynomial in the m variables x E JR.m, Xo is the bias

point and In represents the interval that compasses the interval error representation

of polynomial truncation and also possible errors in calculation of the coefficients of

Pn . Ideally, polynomial coefficients should be chosen in a way to minimise the error

enclosure.

To represent the case more formally, let 1 be a function on m variables: 1: [-I, l]m -+ JR.,

a Taylor model of order n for 1 is a pair (Pn , In) where Pn is the Taylor expansion of

order n for 1 at the point Xo = (0, ... ,0) and In is an interval enclosing the truncation

error, In will also be called the interval remainder of the Taylor model. This interval

remainder is required to satisfy the high order scaling property in that if the function !h
is defined for -1 :::; h :::; 1, by !h (x) = 1 (h xx) and its remainder bound is determined

as In,h, then as h -+ 0, the width of In,h behaves as O(hw+1). In could be computed as

a Lagrange remainder as:

(3.19)

where the 111100 norm is taken over [-I, l]m. However, determining In from a Lagrange

remainder is in practice very difficult so it is not applicable in the most of the cases.

It suffices that the scaling property and the following containment property hold as in

Equation (3.20) [110].

(3.20)

To simplify the notations and algorithms, without loss of generality all considered Taylor

models are considered as having the same order n, which must be in practice be less or

equal to the minimum of their actual orders.

In addition to choosing the optimal coefficients for approximation polynomials for the

range of a single function, Taylor models can be utilised to implement symbolic rep­

resentation of the computational errors. Taylor arithmetic should also be defined on

Taylor objects in such a way that evaluation of an expression for 10 in this arithmetic

gives the Taylor polynomial with remainder term for 1(x). For an introduction to these

concepts and techniques, see [110].

A Taylor model is a convenient way to represent and manipulate a function on a com­

puter in [110]. Since any function that is obtained by a sequence of arithmetic operations

is analytical which means that it and all its deriyatives are differentiable, then it can

Chapter 3 Computing With Uncertainty 49

be expanded into Taylor series. Thus, it is reasonable to restrict the target functions

to analytical functions [94]. Acordingly, various operations can be performed on Tay­

lor models, such as elementary arithmetic operations (+, -, x, /), elementary functions

(..r, log, sin, arctan, cosh, ...), composing Taylor models, integrating or differentiating

them and so on. Several examples can be found in [79, 9, 110].

This method is the most sophisticated method among error range modelling methods

with more precise error approximation and also higher computing overhead. To our best

of knowledge it only has been implemented in scientific software applications [110]. The

basic quantisation and refitting error models in this method are exactly the same for AA

method as specified in Equations (3.16) and (3.17). Basic examples to compare these

methods can be found in section 4.2.

3.4 Noise Analysis Approach

Error range propagation methods provide an expression of the error range at the output

to evaluate the computation accuracy. This approach does not provide any statistical

information about the error distribution over this range. Noise analysis approach, on

the other hand, gives a statistical description of the error at the output in the form of

noise energy or signal-to-noise parameter. This method is widely practiced in digital

signal processing design and optimisation [99, 28].

Applying noise analysis consists of two parts: noise model and noise propagation. The

first one refers to the error modelling of the functional units and the arithmetic char­

acteristics under finite precision effects. Functional unit operation type (+, -, x, ...),

arithmetic system (fixed-point/floating point), word-length, rounding method and over­

flow prevention method are the major parameters which need to be taken into account

in noise modelling. In ideal case, every computational error in each functional unit is an

independent random noise generator. To compute the overall effect of the errors at the

output, therefore, these noise sources are considered to propagate through the system

like signals and their spectrum in the output is calculated using noise sources and the

system structure. The following subsections discuss these issues in more detail.

3.4.1 Modelling Digital Noise

From a mathematical point of view, computational error can be modelled in the form of

an additive error, which means that adding or removing unwanted and indeterministic

information to the input data, appears at the output as an added noise value (signal) to

the original value (signal). In digital implementation ofthe (DSP) algorithms, depending

on the way of interaction with these computational noises, they have been divided into

two major categories: quantisation noise and round off error. However both of these

Chapter 3 Computing With Uncertainty 50

errors arise from the finite precision limitation, the way they affect the system are

different and thus require different solutions. Quantisation noise is considered as an

external source of the noise in that input data carries it before entering the computation

system, whereas round off noise has internal sources which result from the finite precision

restrictions of the arithmetic units which are trying to refit the data to the their finite

word length. We prefer to call this kind of error as a "data refit error".

One of the input noise sources inherited from all previous computational operations

or data acquisition systems. Every error imported to the system by input data will

be carried processed along side with the original information. Depending on the type

and characteristics, these errors might be strengthened or weakened compared with the

original information through data processing. The most known and well studied type of

error which appears almost everywhere in computational systems is quantisation error.

This error is investigated widely in the field of DSP and coding [51, 50].

Another external source of the error comes from coefficient quantisation. Every system

has a set of constant values representing the basic system characteristics, filter coef­

ficients for instance. These values, however, are real numbers (x E R) in reality but

they must be used by a digital computing system. With a limited number of binary

digits, truncation or rounding of these values is needed which causes an error that is

considered also as quantisation noise. When parameters of the system function (or its

corresponding difference equation specification) are quantised, the poles and zeros of

the system function might move to new positions in the Z-plane, which in the case of

a system implementation highly sensitive to the perturbation of the coefficients, may

mean the resulting system might no longer meet the design specifications, or in the case

of IIR system even might become unstable, detailed explanations can be found in DSP

texts such as [98].

In additive noise model, a finite word-length unit can be modelled in terms of an ideal

unit followed by an additive noise source as shown in Figure (3.4). Three distinct

approximation schemes can be employed after fitting the output data into the available

word-length of the functional unit by rounding, truncation or magnitude truncation.

Each of these approximation methods gives a different noise source probability density

function as depicted in the Figure (3.5).

X[n] Ideal
o--~ Operational

Unit
L-__ --'

Yen]

FIGURE 3.4: Additive computational noise model.

Chapter 3 Computing With Uncertainty

_Q.
2

Pee)

r q

(a)

e

51

Pee) Pee)

(b) (e)

FIGURE 3.5: Probability density function for quantisation error a) Rounding b)2's com­
plement truncation c)Magnitude truncation.

In the case of rounding, the output number must be fitted to a finite precision number

whose value is the closest possible to actual number as depicted in Figure (3.5-a) [37].

The mean or expected value of the quantisation error due to rounding is zero and the

variance ofthe error signal (E(n)) as in Equation (3.21),

(3.21)

where q is the maximum value of the rounding error and N is the word-length of the

target unit such that q = 2-N . In the case of truncating a number, where the result is

always less than the original value, as depicted in Figure (3.5-b), the mean value of the

error is shown in Equation (3.22).

2-N

E {E(n)} = --2-'

and the error variance is as in Equation (3.23).

2-2N
(}2 __ _

E - 12 '

(3.22)

(3.23)

If magnitude truncation is applied to 2's complement numbers, the probability density

function has the form of the Figure (3.5-c). In this case the mean value of the error is

zero and the variance is in Equation (3.24)

(3.24)

In addition to input noise, during computation with digital systems in most of the cases

after every arithmetic operation the actual result needs to be fitted into the output word

length. This operation might be a source of error if the result requires more precision

than can be represented by the output.

The round off noise is generated by the rounding or truncation operation that follows

the various arithmetic operations. It mostly happens in the case of multiplication where

the result of the product of two N-bit fixed-point fractions is a (2N -1) bit number and

it must eventually be quantised to M-bits (M < 2N - 1) by rounding or truncation. In

Chapter 3 Computing With Uncertainty 52

the systems with fixed word-length the truncation is done by built in units as shown in

Figure (3.6).

Built in
Tmncation
or Rounding

FIGURE 3.6: Built in operation output truncation off

According to discussions in [28] the model of Equation (3.22) needs correction for a

multiple word-length implementation. For 2's complement fixed point arithmetic the

truncation error cause by truncation from NI-bit to N2-bit has mean value and variance

as shown in Equations (3.25) and (3.26) respectively.

(3.25)

(3.26)

As a common assumption, these noise sources have been formulated as independent white

noise in DSP design [99]. By this assumption, knowing the variance and mean value will

be enough to provide an acceptable approximation for the noise produced in the system

output(s), however, this assumption necessitates some preliminary conditions.

Sripad and Snyder in [122] present the required necessary and sufficient condition to

model the output of a quantiser as an infinite precision input and an additive, uniform,

white noise. In this work the statistical properties of the quantisation error are studied

and it is proved that the characteristic function of the input random variable satisfies:

for all nolO, (3.27)

if and only if the density function of the quantisation error is uniform such as:

j.(E) ~ { t -~:S E < ~
otherwise

(3.28)

Chapter 3 Computing With Uncertainty 53

The characteristic function is defined as in Equation (3.29), see [117] or similar basic

probability texts for more details.

E [exp(jux)] , (3.29)

1
+00

-00 f (x)e
jux

dx,

where E[·] represents the expectation function [54] and j = A. Equations (3.27) and

(3.28) imply that the quantisation error can be assumed as a uniform noise if the input

signal satisfies the condition of the Equation (3.27). It is also shown in [122] that if this

condition does not apply to the input signal, the model of Equation (3.28) can be used

but its difference with the actual PDF of the quantiser is given by

~ '" <p (21m) (-27r j nE)
~~ x ~ exp ~ ,

nfO

(3.30)

Furthermore, error noises can be assumed independent if and only if the joint charac­

teristic function of the input random variables satisfies

(27rl 27rk)
<P X1 ,X2 b:' LS: = 0 for all l, k i- 0, (3.31)

Roundoff error after fixed-point multiplication is also commonly modelled as uniformly

distributed white noise that is uncorrelated with the signal [28]. In [6] Barnes et al.

present a statistical analysis of fixed-point roundoff error that identifies the conditions

under which this model is valid, and examines the statistical behaviour of the roundoff

error when these conditions are not satisfied. Their study shows that if the multiplier

coefficient is expressed as a = i:r, where M is a positive integral power of two and

N is an odd integer, then the errors generated by roundoff after multiplication can

generally be modelled as uniformly distributed, white, and uncorrelated with the signal,

if the signal has sufficiently wide bandwidth and has a dynamic range that extends over

approximately M steps. For narrow-band low-level signals, the roundoff error statistics

can differ significantly from the uniform, white, uncorrelated model. In addition, their

results show that statistical behaviour of roundoff error can differ significantly from

that of the quantisation error that is generated when a continuous random variable is

quantised. In this study the dynamic range of the input signal is measured by K' where

(12 is the variance of the signal and ~ represents the quantisation step size.

Also in this regards, a general statistical analysis is presented in [130] by Tokaji and

Barnes for the roundoff error that is generated when a discrete random multiplicand,

taking on only integer values, is multiplied by a real coefficient and the result rounded

back to the nearest integer. Numerical results for different statistical joint moments

verify that for signals with sufficiently large dynamic range (K) and bandwidth, the

roundoff error after multiplication can be accurately modelled as white noise that is

Chapter 3 Computing With Uncertainty 54

uncorrelated with the signal, a result that is well known and widely used. However, at

low signal levels, the white uncorrelated model may be significantly in error, since the

roundoff error statistics are highly dependent upon the value of the multiplier coeffi­

cient, and deviations from the white, uncorrelated model are greatest for multipliers in

the neighbourhood of integers and rational numbers with small denominators. These

results are generalised by Vladimirov and Dimond in [133] which provides a mathe­

matical discussions regarding noise dependency to the operation type and the system

characteristics.

3.4.2 Noise Propagation

In addition to the noise model, the propagation scheme of the noise is required to calcu­

late the noise effect at the output. :From a system analysis viewpoint, this issue can be

studied for two kinds of systems: linear and nonlinear. Linear systems, however, rarely

exist in practice, but are the simplest model by which the input/output relationship is

expressed with a linear relationship. It is also considered as the basis of many nonlinear

systems analysis methods. Nonlinear models, on the other hand, in most of the cases

provide more accurate but very complex models. The following subsections are devoted

to the modelling of noise propagation through the linear and nonlinear computation

trees.

3.4.2.1 Linear Time Invariant Systems

In mathematics, a linear function, f (x), is one which satisfies both of the following

properties which are referred to as the principle rules of superposition [98]:

• Additivity: f(x + y) = f(x) + f(y)

• Homogeneity: f(ax) = af(x)

and a linear system is one which is specified by a linear relationship between its input

and output. In other words, a linear system responds to any weighted sum of two input

sequences with an output sequence equal to the corresponding weighted sum of the

individual output sequences.

A time-invariant system is one whose output does not depend explicitly on time in that

its response to a time-shifted input sequence is an equally time-shifted output sequence.

For instance, if the input signal x produces an output y then any time shifted input,

t f-7 x(t + 0), results in a time-shifted output t f-7 y(t + 0). A formal specification for

time invariant system can be:

Chapter 3 Computing With Uncertainty

If S is the shifting operator So[x(t)J = x(t - 8), then the operator T is called

time-invariant, if T{So[x]} = So [T{x }J.

55

This property can be satisfied if the transfer function of the system is not a function

of time except as expressed by the input and output. This property can also be stated

in another way in terms of a schematic such as: "If a system is time-invariant then the

system block is commutative with an arbitrary delay" [98J.

From H~S viewpoint, most synthesisers use a DFG to represent the algorithms to be

implemented. Accordingly, the most popular way to analyse the noise propagation

through the system operations is independent of the noises produced in each operation

in the system and to model them as white noise source which have been separated in

the DFG as in [28J and [126J.

From basic theory of system analysis it is known that in a Linear Time Invariant (LTI)

system with M different inputs, the output y[nJ can be expressed as [99, 105J:

00

ydnJ = hdnJ * x[nJ = L hk[rJ . x[n - r], (3.32)
r=O

and:
M

y[nJ = LYk[n], (3.33)
k=l

where * is the convolution operator and hdrJ denotes the impulse (unit sample) response

for the kth source in the system. Therefore the output noise of the system can be

computed by replacing the x[nJ with noise sources in the DFG and hk[rJ with the unit

sample response from the noise insertion point to the output(s). Figure (3.7) shows

an example of a two-pole IIR filter with inserted noise sources. However, while this

relationship is mathematically acceptable, its implementation for complicated cases is

impractical.

One of the ways by which an adequate measure has been introduced is explained in

[99J based on the above equation and Lp norm of H(w) (the Fourier transform of the

transfer function h[nJ), where Lp is as in Equation (3.34).

1

Lp{H(w)} = [~j7r IH(wW d!..v] P ,
21f -7r

(3.34)

As it explained in [99J, given a normal distribution assumption for all noise sources, the

variance of the output noise, resulted from the kth noise source, can be approximated

as:
M

Ek = LO"~' L~{Hk(Z)}, (3.35)
k=l

Chapter 3 Computing Vilith Uncertainty 56

EQ : Quantisation Error

EcfJ : Rounding Error

E
ojlw

: Overflow Error

FIGURE 3.7: Two Pole IIR Filter structure with its Noise Sources.

where A1 is the number of noise sources, Hk(Z) is the Z transform, see [98] for more

details, of transfer function from kth noise source to the output. According to the

definition, LdH(z)} can be written as in Equation (3.36):

1

[E IT' {H(z)} [nil,], (3.36)

In addition (7k can be found according to [28] in a multiple word-length paradigm as

shown in Equation (3.26).

3.4.2.2 Non-Linear Systems

In its most general form, the input-output relationship of a system can be expressed as

Y = F(X,t), (3.37)

Chapter 3 Computing With Uncertainty 57

where F() specifies the input-output relationship, X is the input vector and Y represents

the output vector both are as shown

Y=

Yl(t)

Y2(t)

Yn(t)

X= (3.38)

Xm(t)

F(), unlike LTI systems, can be a nonlinear and/or time dependent function. Thus,

in general, the superposition rule is not applicable any more and the input-output re­

lationship can not be expressed as in Equations (3.32) and (3.33). Nonlinear models

are inevitable in many different applications which necessitate their inspection in com­

putational system analysis and optimisation. Since analysing nonlinear systems in the

general form is very difficult in engineering, the first approach usually is to linearise; in

other words, to try to avoid the nonlinear aspects of the problem.

In order to make some of the analytical results on computational error analysis for LTI

systems applicable to nonlinear systems, the first step is to linearise these systems. The

assumption is made that the quantisation errors induced by rounding or truncation

are sufficiently small not to affect the basic behaviour of the system. Accordingly, any

changes in word-length of the functional units in a nonlinearly specified computation

algorithm cause a change in the relationship between X and Y of the form

Y = F(X, t) --7 Y' = F'(X, t), (3.39)

Y'=Y+.6Y, (3.40)

y'= Yk(t) = ik(X, t), (3.41)

y~(t)

where Y' represents the changed output in result of the word-length modification and

is the output produced noise. These noise values can be expanded as

.6Y = G(X,E,t), .6Y= E= (3.42)

Since this produced error is a function of the input data and the word-length manipula­

tion in the system, it can be modelled as a function of the input (X) and errors which

have been produced in each node in consequence of arithmetic characteristic changes;

Chapter 3 Computing With Uncertainty 58

accordingly the new output is as in Equation (3.43).

y' = F(X, t) + G(X, E, t) (3.43)

The major problem with this method is specification of the function G in Equation

(3.43). In [28J and [99J only LTI systems are considered, thus G can be represented

by a linear relationship. This assumption is true for many systems, however, there are

important classes of problems which do not comply with this condition (adaptive filters

for instance). To overcome this restriction, two different methods are applied. Kim

and Sung in [68J suggest a simulation based approach which bypasses the modelling

problem, this approach is slow in the case of big designs. On the other hand, others,

such as Constantinides in [25J, propose a method which assumes that each component

in the system can be locally linearised, see Table (3.1), in order to determine the output

behaviour under a given rounding scheme. This approach approximates G based on the

assumption that the noise signal is very small in comparison with the original signal.

Equations (3.44) and (3.45) illustrate this approximation based on a Jacobean (Taylor)

approximation of function G.

6Y = G(X) ~ A x X, (3.44)

where A is the Jacobean of the G(x) as in Equation (3.45).

EEl EEl .!!.ILl..
aXl aX2 aXm

~ ~ .E!n..
A = Jc(x) = aXl aX2 aXm (3.45)

?!Im. ?!Im. ~
aXl aX2 OXm

This approach again has the difficulty in which the new (simplified) model elements,

matrix Aij , need to be found. We must bear in mind that the elements of A are

dependent on input values and also time. Constantinidis, [25J, suggests a simulation­

based method to find the values. Shi, [119], proposes a similar method to find the noise

expectation values at the output by applying a first order perturbation approach.

TABLE 3.l: Linearity and Time Dependency of the building blocks.

Operation I Representing FU I Function I O~' I o~~ I %t
+ ADS f(XI, X2) = Xl + X2 1 1 0
- ADS f(XI, X2) = Xl - X2 1 1 0
x MUL f(XI, X2) = Xl x X2 X2 Xl 0
x MUL f(XI, X2) = a x X2 a - 0

Chapter 3 Computing With Uncertainty 59

3.5 Summary

Background knowledge related to the finite precision computing has been investigated

in this chapter. Accordingly, a comprehensive literature survey on computational error

modelling and analysis is provided to build up the required theoretical basis for the

proposed method.

Finite precision computing always results in uncertainty in computation. However this

uncertainty generally comes from digital system limitations, it can be categorised by

its origin and behaviour. Different issues regarding these uncertainties are extensively

studied in related disciplines of science and engineering. From a computing system point

of view; there are two major approaches to model and analysis this problem in digital

hardware design: error bound analysis and statistical error analysis, both of which are

introduced and discussed in this chapter.

Error bound analysis relies on the fact that the basic arithmetic operations map a

"bounded continuous interval" (or simply an interval) into a "bounded continuous inter­

val". So, if an uncertain value can be modelled in the form of an interval, the output also

will be an interval which definitely contains the actual value. By generalising this rule,

this method calculates the output bounds of the result value. The value bounds can be

represented in different ways such as: number intervals or symbolic representations of

the ranges. The benefits and downside of each way are discussed in the chapter.

The statistical approaches, on the other hand, treat the errors emphasising the proba­

bility and statistical characteristics of the data and errors. This approach is very similar

to noise analysis in analogue electronic circuits and consists of two basic steps: noise

models and noise propagation structures. The first one refers to the PDF shape and

statistical specifications of the error in every point of the computation tree, whereas the

latter is concerned about how the noise is propagated through the system.

Next chapter presents a discussion with motivating examples to show weak points of

these methods and a new method will be offered to cover these weak points.

Chapter 4

Symbolic Noise Analysis

4.1 Introduction

Chapter 3 provided an overview of the computation error modelling and analysis. As

discussed, the current methods can be divided into two types: error bound analysis and

statistically based methods, where the former are focused on the error bounds model

and propagation in the system and the latter analyse the noise statistical expectation

functions. Actually, each method provides a part of the information which can be useful

in computational system design and optimisation. In this chapter a new method, called

Symbolic Noise Analysis (SNA), is introduced that suggests a combination of both error

bound and statistical analysis methods.

This method is based on symbolic modelling of the error bounds where the error sym­

bols are considered to be specified with a probability distribution function over a known

range. The noise symbol propagation scheme is quite similar to the error bound prop­

agation structure in the error bound analysis methods, however, noise symbols can be

combined and characterised in the form of different probability density functions. Ac­

cordingly at the system output the error can be portrayed in terms of the error bounds

and noise spectra. This information provides a more comprehensive view of the error

for a designer.

Although this method is based on a static analysis method, it can be used in combi­

nation with a dynamic approach as well. Since the method is based on noise symbol

propagation, noise symbols for FUs or sub-blocks can be derived from a stimulus-based

analysis in the form of a noise PDF. These stimuli-based noise symbols should be ac­

commodated in the design library by the noise characteristics of the FU or sub-block to

be used by the optimiser.

The chapter is organised as follow: first motivation examples are presented to show

the limitations of the current known methods, then a new method of error analysis is

60

Chapter 4 Symbolic Noise Analysis 61

introduced and compared with the other methods. Symbol combination is discussed in

the next section to show how the noise symbols can be merged to simplify the noise

specification. Finally the implementation algorithm is provided to illustrate the method

in practice.

4.2 Motivations

Nonlinear systems are real challenges for computational error analysis methods. Differ­

ent methods have been modified and improved to deal with these difficulties, however,

a perfect solution is still required (see chapter 3 for more details). Since most of the

function evaluation algorithms are based on polynomial approximation [92], to highlight

the problem and limitations let us consider the general form of polynomial functions and

see how different methods might come up with different results for the computational

error at the output.

Consider a degree-N polynomial as

N

Z = Laixi.
i=O

(4.1)

Uncertain input values are represented by the x and ai respectively, which result in an

uncertain output as
N

~ "" ~ ~i
Z = ~aix, (4.2)

i=O

IA representation of the uncertainty, see section 3.3.1, in the input and coefficient values

can be expressed in the form of i; E [Xl, Xh] and ai E [ail, aih] and z bounds can be

calculated from

(4.3)

Finding the exact output interval involves with the Minimum-Maximum Finding of the

polynomials over the input and coefficients variation range, which is not trivial. Instead

of searching for minima and maxima, the IA method performs a constructive bound

approximation starting from interval arithmetic operations as discussed in section 3.3.1.

In contrast, the AA representation of the uncertainty, see section 3.3.2, starts form an

affine representation of the x and coefficients (ai) as shown in Equation (4.4).

(4.4)

Chapter 4 Symbolic Noise Analysis

which results in z as:

N

L (aiO + aW:aJ(XO + XIEx)i.

i=O

62

(4.5)

After expansion, all the non-affine combinations of the noise symbols such as multiplica­

tions between them or powers must be modelled in the form of new noise symbols. This

manipulation simplifies the error representation but reduces the accuracy of the error

approximation. The Taylor model on the other hand, see section 3.3.3, keeps Equation

(4.S) as it is to represent the uncertainty.

Example 4.1. Consider the following quadratic equation,

y = ax2 + bx + c, (4.6)

with the input and coefficient error bounds as x E [-1, +1], a E [9,10], bE [-4, -6], c E

[6,7] and b,.y = f) - y with an uniform PDF over their ranges.

IA analysis gives the following limits for the intermediate values and the output:

ax2 E [-10,10]'

bx E [-6,6]'

y = ax2 + bx + c E [-10,23]'

In terms of AA symbolic error representation of the values, values of Equation (4.6) must

be rewritten as in Equation (4.7) with this assumption that the center of the interval is

the main value and and number variation over the range is represented in the form of

symbolic values E.

a = ao + alEa = 9.5 + 0.5Ea,

b = bo + brEb = -S + Eb,

C = Co + CIEc = 6.S + O.SEc,

X = Xo + Xl EI = 0 + EI,

(4.7)

Accordingly, the output value will be derived in terms of exact and symbolic errors as

y (9.5 + 0.5Ea)(EI)2 + (-5 + Eb)(EI) + (6.5 + O.SEc)

6.5 + 0.5Ec - SEI + 9.5Ei + 0.5EaEr + EbEl

6.5 + (0.5Ec - 5EI + 9.SEkl + 0.SEk2 + Ek3),
'------------~v '

/::;.y

which means that y E [-10,23].

(4.8)

Chapter 4 Symbolic Noise Analysis 63

Nonlinear system noise analysis is also applicable here. This method starts from repre­

sentation of y as:

y = f(x, a, b, c) = ax2 + bx + c, (4.9)

which expands to first order

By By By By
y ;:::::; f(xo,ao,bo,co)+t::,.xBx +b..a

Ba
+b..b

Bb
+b..c

Bc
' (4.10)

;:::::; Yo +t::,.y,

where t::,.y can be modelled in terms of noise with variance of cry. As explained in section

3.4.2.2, noise variance is calculated in the perturbation method [25, 120] by simulation

over a set of known data to find the differentiation terms in Equation (4.10). The error

variance will be:

cr ily ;:::::; 16.5 (4.11)

however it does not provide any information about the PDF of the noise or the error

bounds, explicitly.

The actual error bound can be achieved using mathematical methods and tools. In this

case we found the maximum and minimum values of the function y = f(x, a, b, c) =
ax2 + bx + c over the variation ranges of the x, a, band c. In Figure (4.1) the maximum

and minimum valued functions are depicted versus x using Maple. As is attainable from

graph, the real range of the output is [5,23].

This example shows how the distribution of symbols over the predefined range can affect

the final prediction of the error. It is also a matter of concern if the linear combination

of the noise symbols is blindly used to calculate the error bounds, which might result in

overestimated error bounds. In this example the refitting (truncating or rounding) error

of the arithmetic operations is not considered, however it is very important in practical

implementations.

Another problem with the current methods of error analysis is their ignorance of the

probability distribution function of the computational noise. The uniform PDF as­

sumption for all noise sources is arguable but still is acceptable with some conditions.

Difficulties arise when even with this presumption the arithmetic combination of the

noise values in the final result is very unlikely to be similar to uniform. The following

example shows the effect of the elementary arithmetic operations on the output PDF.

Results are in contrast with the naive assumption of noise analysis methods in which all

the noise values are uniformly distributed over the range.

Chapter 4 Symbolic Noise Analysis 64

·1.0 .n,g .(.If} .n.7 .{I.S -li.5 ,,1.4 .. U .c.:2 ·0.1 C.o- 0.1 02 C3 0.4 05 C.5 (;,; :ll3. 0.9 :,0

X

FIGURE 4.1: Real range of y deviation in for the indicate range of values in Example
(4.1).

Example 4.2. Assume x and f; are t'Wo values 'With uncertainties 'Which are abstracted

in the a.fjine representation as:

and (4.12)

where fl and f2 are two values with inter-val specifications f1, f2 E [-1, +1]. f1 and f2

are also assumed over these ranges 'With un~form PDF d'istributions. Three basic cases

are considered, addition, multiplication and square:

x + f; = (xo + X1 (1) + (Yo + Y1 (2),

x x f; = (xo + X1 (1) x (Yo + Y1 (2),
2 x = (xo + X1fr) x (xo + X1(1),

(4.13)

Referring to the basic probability theory [54] the PDF graph of the values in the output

of the each operation are depicted in Figure (4.2).

Actually, the arithmetic combinations between noise symbols f1 and f2 cannot be as­

sumed uniform, consequently the mean and variance of the PDFs after addition, multi­

plication and square have a similar shapes with Figure (4.2) and their mean value and

variance are:

- Addition of fl and f2:

- Multiplication of f1 and f2: f.J, = 0

- Square of f1:

2 _ 2
() - 3'

Chapter 4 Symbolic Noise Analysis

where these values for a uniform distribution over [-I, +1] are:

(a)

xxy

(c)

/1=0
2 1

(j =-
3'

(b)

(d)

FIGURE 4.2: PDF after noise symbols combination a) Uniform PDF vq,riables
b)Addition of the variables c) Multiplication of the variables d) Square of the variable

(Xl> V2 - 1).

65

This example proves that it is not always an accurate assumption that the PDF of the

noise sources are uniform after operations on them. It can be considered as a major

weak point for noise analysis methods.

4.3 Symbolic Noise Analysis Approach

When accurate and precise numerical information is not available, the computation task

is desired to be evaluated with the available information; however it might result in less

exact results. Frequently, such information about the values is presented in the form

of intervals bounding around the actual but unknown values. In many cases also, the

information is in the form of a probability density function, which describes the relative

likelihoods of the actual values.

Reconsidering the basic error analysis methods and the error range analysis methods,

errors are modelled in the form of a set of error symbols which propagate through

the computation tree of the system and the error variation range in the output can

Chapter 4 Symbolic Noise Analysis 66

be calculated but there is no useful information about the statistical characteristics of

this error value. The noise analysis method, on the other hand, relies on statistical

specification of the error. These two approaches have the capability to be combined to

make a new approach which benefits from the positive points of both. Dealing with

errors as symbols which have some statistical information with them is the core idea of

the method.

To compare different methods of error representations in errors bound evaluation, a

visual presentation of each method is useful. Consider a general function such as y =
f(x) as depicted in Figure (4.3) to perform a calculation on an uncertain input such as

x. Figure (4.3-a) shows the case when the input uncertainty is represented in the form of

a plain interval. Presumably, since the input representation does not support any more

information than the uncertainty range, the output cannot be anything more than an

interval in which the actual value will be placed. This is what IA method provides in the

best case. What is depicted in Figure (4.3-b) is an AA representation of the uncertain

value in terms of symbolic uncertainty. In spite of its improved error representation,

again no information regarding the probability distribution of the error is provided.

Our method, on the other hand, can be represented as depicted in Figure (4.3-c) in which

uncertainty is represented in the form of an algebraic combination of the noise symbols,

where the noise symbols are considered as random numbers in the range [-I, +1]. Equa­

tion (4.14) shows uncertain values representation in this method.

(4.14)

In this representation Fx (.) is a fractional function of polynomials (which is called an al­

gebraic function) and (Xl, X2, ... ,X N) are the coefficients of the polynomials (constants).

(EXl' EX2 ' ... ,EXN ') are Noise Symbols which carry the uncertainty of the represented

value, X, and each symbol Ei is assumed to have a known PDF, PEi • Unlike the AA

method or the Taylor model, the PDFs of the noise symbols are taken into account, in

which a PDF can be found for the output uncertainty to show the probability of the

output taking each value inside the bounded interval. Figure (4.3-d) shows the general

case where input noise symbols are also assumed to have an arbitrary PDF extracted

from empirical data or simulation results. However the presented method provides more

information about the computational noise and uncertainty, it requires more complex

algorithms and methods to be implemented in the system analysis and optimisation

procedures. One of the essential requirements is a method to deal with PDF functions.

Therefore, the practicality of the error analysis method depends on the answers of two

fundamental questions. First: how can noise symbols be represented in the synthesis

method? and second: how can PDF of these noise symbols be used to find the output

error PDF? The rest of this chapter is devoted answering these question regarding our

proposed method.

Chapter 4 Symbolic Noise Analysis

y

ily

",­,,-
+
~o

~
II

'" <I

y

x Xo
:~:

x

(a)

x

(c)

(b)

(d)

Ll.X=XO+Xl 8'1

:~
J].X;;::::."tO +X18 1

FIGURE 4.3: A visual view of symbolic noise representation of uncertainty a)IA method
b)AA method c)SNA method assuming uniform PDF for noise symbols d)SNA noise

symbols with arbitrary PDF

x

67

Berleant, [8], introduced a method to extend the automatically verified numerical infer­

ence to include combining operands when both are intervals, probability density func­

tions or when one is an interval and the other a probability density function. This

technique employs interval arithmetic techniques and forms a sharp contrast with tradi­

tional Monte Carlo methods. Our SNA method employs a similar method to calculate

the output PDF of the function, which is discussed in section 4.4. Since the noise sym­

bols are the basic elements of the method, an investigation of the computational noise

PDF is required at the first place. The next subsection provides a brief discussion in

this regard.

4.3.1 Statistical Model of The Noise Symbols

The probability density of the noise symbols are the initial information in the SNA

method of error analysis. As discussed in chapter 3, the sources of these error symbols

are different which means that they might have different characteristics. For instance,

a very basic characteristic which is different for those are result of data or coefficients

Chapter 4 Symbolic Noise Analysis 68

quantisation and those are result of data refitting is the type of the distributions where

quantisation noise has a continuous probability distribution and the data refitting noise

is a discrete random value [54]. In most computational error analysis methods all kinds

of noise are considered to be continuous and uniformly distributed.

In this study, all the errors are specified in the form of an algebraic combination of noise

symbols, which are distributed over [-1 + 1] with a known PDF. Since all the noise

symbols are considered over a small range and they need to be combined or interact with

each other, we consider all the noise symbols as continuous random values. However,

input noise symbols are assumed to have an uniform distribution and it is also possible

to extract the PDF of the noise symbols by simulation based on stimuli. In some cases

where the input noise has another PDF other than uniform, the uniform distribution

can easily be replaced by a simulation extracted PDF, which does not make any change

to the overall algorithm. This option can be interpreted as a mixed method of dynamic

and static analysis methods, see section 3.2, in which every subsystem can be used to

model their noise symbols by simulation.

The other sources of noise symbols are arithmetic units and the data refitting process. In

the case of data refitting noise, because almost all the function evaluation methods use

basic arithmetic operations, an investigation of the noise models of them are required.

Truncation of the result after addition and subtraction, provided no overflow happens,

produces an error which can be modelled with a uniform PDF. Multiplication, however,

behaves differently because of its sparse results distribution o~er the output range. The

next subsection provides a brief investigation of the output truncation of fixed-point

multiplication.

4.3.1.1 Multiplication Noise Model

The problem of the output PDF of multipliers must be considered in two separate cate­

gories of continuous and discrete distributions. Continuous distributions deal with real

numbers in mathematics. Discrete distribution can be construed as integer numbers or

fixed point representations in digital systems. Basically, the distribution of the product

of two continuous random variables can be expressed as [54]:

Fx.y(a) P{X· Y S; a},

J J fx.y(x, y)dxdy,

x.Y::;a

1+00 a 1
fx,Y(x, -). _. dx,

-00 x Ixl

(4.15)

Chapter 4 Symbolic Noise Analysis 69

I""here X and Y are continuous random variables and ix,Y(x, y) is the probability den­

sity function of (x i- 0, y). Finding a closed form for this distribution function is not

straightforward but some solutions have been addressed, [48], as depicted in Figure (4.4).

(t8

0.6

1 2 x

FIGURE 4.4: PDF of multiplier output with continuous normal distributed inputs. [48]

In the case of integer numbers this distribution is different because of the discrete char­

acteristics of integer numbers. To see the similarity of the continuous distribution and

discrete distribution for fixed-point numbers, a set of simulations over a large number of

random numbers (> 1015) are performed to detennine the frequency of the output num­

bers of a 16-bit multipliers for inputs with uniform distribution. The output distribution

is depicted in Figure (4.5).

I(x)

0.8

FIGURE 4.5: PDF of 16-bit multiplier output with integer uniform distributed inputs.

It is attainable form Figure (4.5) that multiplication results for integer numbers are more

sparse in bigger numbers. This fact has been confirmed by our exhaustive search of the

distinct multipliers output and it is observed that the output of multipliers does not

cover the output bit-width range in full. The results of these investigations appear in

Chapter 4 Symbolic Noise Analysis 70

Table (4.1). In Table (4.1), the first column shows the multiplier bit-width, the second

column shows number of distinct results, the third column indicates the total number of

the numbers which can represented by output bit-width and the last column indicates

what percentage of these possible numbers appear in the multiplier output. Clearly, by

increasing the bit-width, the output will be more sparse.

TABLE 4.1: Multipliers output coverage for different word-lengths.

N-bit Number of Total number Output coverage
Multiplier distinct outputs of outputs %

1 2 4 50.00%
2 7 16 43.75%
3 26 64 40.63%
4 90 256 35.16%
5 340 1024 33.21%
6 1238 4096 30.23%
7 4647 16384 28.37%
8 17578 65536 26.83%
9 67592 262144 25.79%
10 259768 1048576 24.78%
11 1004348 4194304 23.95%
12 3902357 16777216 23.26%

Now, the question is how does this phenomenon affect the round-off noise in hardware

implementations of the multipliers? A set of simulations with random numbers were

performed which gives a bitwise view of the problem. Figure (4.6) gives the probability of

each bit of the 16 x 16 bit multiplier being "1". According to this graph, this probability is

not identical for all the bits ofthe output. Our empirical investigation of the Figure (4.6)

shows that in m-bit truncation of the a multiplier with N-bit output, the probability of

a "I" occurring in the the kth place of the output noise is:

(4.16)

and accordingly the probability of a "0" occurrence in the the kth place of the output

noise is:
2k + 1

Po(k) = 2k+1 ' (4.17)

where in the both formulas k ::; Tf}. Practical results confirm these equations. From this

fact, a uniform PDF should not be expected from the output a multiplier.

Urabe in [131J presents a comprehensive discussion about the probability distribution

of the truncation error of the fixed-point multiplication where he proves the following

theorem:

Theorem 4.1. In a fixed-point multiplication, divide the range of the roundoff error

into 2n equal intervals. Then the probability for the roundoff error falling into anyone

Chapter 4 Symbolic Noise Analysis 71

0.6 ------------------- --

O.S

OA

g
~.

0.3

G.2

Q.1 ---- --- ----------

O+-----~----~----~----~------r_----~----~
:; 10 15 25 35

Output bit (i)

FIGURE 4.6: Probability of each bit being "I" in the output of a 32-bit multiplier.

of these intervals corwerges to 2-n as the number of digits of the factors zs increased

indefinitely.

In our case, with an exhaustive simulation of the truncation output noise of the mul­

tipliers for random uniform distributed inputs, the PDF of the output noise for 8-bit

truncation out of 16-bits is depicted in Figures (4.7). It can be observed that this

distribution is not uniform.

0.02 _-

0.018

0.016

0.014

0.012

..

.. _ .. _._---. ------ .. _---_ .. __ _ .. _ _---_ .. _-----_ .. - _ .. _------.-.. -

'n 0.01 ._--.................................... _-..................................... ----.--...................................... ------.
0.008 --.• -...... ., .. -.. -. -.. --.,------. ----of -----.---.. --.-------.-------.,------.------ ... -----.-- ... -.-------.------.-----

0.006 -.... --.--.... --.--.--.,--.--.--.... --.--.--.-.--.--...... .,--.--.--.--.---.--.--.--.--.--.--.--.--

0.004

0.002 +000------------------
0+-------.------,-------.------,,------,--

o 50 100 150 200 250

Bit-i of the Error

FIGURE 4.7: PDF of 8-bit truncation error for 16-bit multiplier output with uniform
distributed input.

Chapter 4 Symbolic Noise Analysis 72

Applying Equations (4.16) and (4.17) and according to the symmetry of the graph, the

probability function can be formulated as

P(x)
k

PI (k + 1) II R (.)
2m - k 0 '/, ,

i=1

= 2k+1 _ 1 k (2i + 1)
2m+2 II 2i+1 '

i=1

2k+1 _ 1 k .
------ck-"..(k-+3--) II (1 + 2~) ,
2m+2. 2-2- i=1

(4.18)

where k is the biggest integer number in the range of 0 < k ::; m that 2k divides x,

which formally means:

where N represents the set of positive integer numbers. In another word, the probability

of the occurring number x in the output depends on the place of the first "1", from the

right hand side, in the base-2 representation of x. The mean value and variance of the

truncation noise for different numbers of truncated bits are compared in Table (4.2) .

According to the table, by increasing the number of truncated bits, uniform distribution

model gets closer to the actual model. This result confirms the results in [5], where it is

suggested that the roundoff noise of the fixed-point multiplication can be approximated

by a uniform distribution for a large number of m, number of truncated bits, and N,

word-length of the multiplier output.

TABLE 4.2: Mean value and variance of uniform PDF and our model in Figure (4.7)

m-bit Uniform Distribution Proposed Distribution
Truncation Mean I Variance Mean I Variance

1 0.5 0.083333333 0.25 0.1875
2 l.5 0.75 0.999969 1.249939
3 3.5 4.083333333 2.750153 5.687454
4 7.5 18.75 6.501007 23.004912
5 15.5 80.08333333 14.252628 90.197059
6 3l.5 330.75 30.005785 353.203323
7 63.5 1344.083333 6l.769383 1392.149538
8 127.5 5418.75 125.486034 5518.875694
9 255.5 21760.08333 253.234952 21960.62686

10 511.5 87210.75 508.976108 87624.61602
11 1023.5 349184.0833 1020.686764 350021.5419
12 2047.5 1397418.75 2044.548389 1399220.573
13 4095.5 5591040.083 4092.004452 5594182.905
14 819l.5 22366890.75 8188.349327 22372861.38
15 16383.5 89473024.08 16379.13195 89482935.01

Chapter 4 Symbolic Noise Analysis 73

Truncation noise for multipliers with inputs with different PDFs is still matter of ques­

tion. We believe that the truncation noise is the same for a big category of the input

distributions because according to [122], quantisation noise for a wide range of number

distributions can be approximated by a random uniform distributed input. So in the

case of multiplication, as shown in Figure (4.8), the m-bit truncation error of the output

is only dependent on the m-bits LSB of the inputs, and since m-bits of the inputs can

be approximated by uniform distributed inputs, the multiplication truncation noise for

a wide range of the inputs can be modelled as in Figure (4.7).

Truncation Error

FIGURE 4.8: Truncation error depends only on the LSB part of the inputs.

It can be concluded that in word-length optimisation, PDF of truncation error in fixed­

point multipliers are better to be assumed uniform where number of truncated bits, m,

is greater than or equal to 8. For truncation with smaller number of bits (m < 8), the

PDF s different which needs to be considered for more precise error analysis.

4.3.2 Noise Symbols Propagation

In the SNA method a partially known quantity X, which is known analytically or has

been extracted from empirical or simulation-based information, is initially represented

in SNA form as in Equation(4.19).

(4.19)

where FxC) is a fraction of polynomials with M known coefficients (Xl, X2,' .. , XM); and

i; is an array as in Equation (4.20).

(4.20)

where Ei are symbolic representations of random values.

This algebraic representation [94], covers a big range of nonlinear relationships which can

be expressed as algebraic relations. Equation (4.19) is an extension to the ordinary Tay­

lor Model for representation of the uncertainties. Furthermore, the AA representation

can be achieved with a first order Taylor Model:

m

X = Xo + LXi' Ei,

i=l

(4.21)

Chapter 4 Symbolic Noise Analysis 74

where Xo is the original value, x is the rounded value, Xi E R are constants and -1 ::;

Ci ::; + 1 are noise symbols in the range [-1 + 1].

Every noise symbol has a known Source (S) in the computation data flow graph and a

known probability density function (P), Ei = (8, P). In the proposed method, modelling

the effects of word-length manipulation takes place in two basic steps: the first is a noise

model for computational errors for every operation in the DFG, and the second is a

model of noise propagation through the DFG.

To evaluate the noise propagation through the DFG, a specification of the datapath

polynomial algebra is applied and also all the non-algebraic operations are approxi­

mated by fraction functions. Consequently, since all the error models for linear and

nonlinear operations are represented in the form of fractional (algebraic) functions, the

output representation of the error will be a fractional function of the corresponding noise

symbols, which means that y can be written in the form:

(4.22)

where Fy(-) is a fractional function and X is the input vector. Polynomial operations

and methods are explained comprehensively in related works such as [72] and [94].

A relationship between output and noise symbols will be useful providing it is possible

to derive an explicit specification for the output uncertainty. Consequently, the next

problem regarding noise symbol propagation is noise symbol combination. Because

noise symbols are random variables with a known PDF, to extract useful information,

the algebraic operations on probability functions needs to be investigated in more detail.

F(X)=p(X,c)
Y ,E q(X,c)' (4.23)

where p(.) and q(-) are polynomials and X and c are vectors of input and noise symbols

respectively. The next section presents the method of finding PDF of the Fy(X, c)

knowing PDF of noise symbols (c).

4.4 Symbols Combination

To utilise symbolic noise analysis, one needs to combine the output noise PDF from

Equation (4.23) and PDF of the noise symbols. In other words, we are given random

numbers EI, E2, ... , EN, such their the probability distribution from which are known

and we are interested in determining the distribution of F(X, tl, E2, ... , EN)' Finding a

closed form for output PDF ofthe system in the general case is very attractive, however,

it is well known that analytic solutions may only be derived for simple functions [109].

Chapter 4 Symbolic Noise Analysis 75

Basic examples can be found in distribution theory which employ characteristic functions

as an auxiliary tool for PDF extraction of the functions of the random variables [117].

In probability theory, the characteristic function of any random variable completely

defines its probability distribution, where it is denoted by ¢(t) and is defined as the

Fourier transform of the probability function given by Equation (4.24), where X is any

random variable [117].

(4.24)

t is a real number, j is the imaginary unit, and E denotes the expected value. If fx is

the probability density function, then the characteristic function is

(4.25)

Characteristic functions are particularly useful for dealing with functions of independent

random variables. For example, if {Xl, X2,··· ,XN} is a sequence of independent (and

not necessarily identically distributed) random variables, and

N

SN = LaiXi,
i=l

where the ai are constants, then the characteristic function for SN is given by:

E (ejt(alXl+a2X2+ .. +aNXN») ,

E (ejt(alXl)ejt(a2X2) ... ejt(aNXN») ,

¢Xl (alt) . ¢X2 (a2t) ... ¢Xn (aNt).

(4.26)

(4.27)

Clearly the independence of Xi are required to establish the equality. PDF of the SN

can be driven by the inverse Fourier transform of Equation (4.27).

Example 4.3. Consider a set of random variables Xi which have a uniform distribution

on the interval [0,1] the distribution for the SN can be found directly as in Equation

(4.28) by a Fourier transform table [98}.

r [(/ -t cjt) N] (u), (4.28)

= 1 ~ k (N) N-I 2(N -I)! -6 (-1) k (u - k) sgn(u - k),

Chapter 4 Symbolic Noise Analysis 76

where the 1-1 represents the inverse Fourier transform and sgn(·) is the sign function.

The first few values of fSN are given as in Equation (4 .. 'e.9).

} [sgn(l - u) + sgn(u)], (4.29)

} [(-2 + u)sgn(-2 + u) - 2(-1 + u)sgn(-1 + u) + l1,sgn(u)],

~ [- (-3 + lIisgn(-3 + u) + 3(-2 + 11,?sgn(-2 + 'u),

-3(-1 + u)2sgn(-1 + u) + '1isgn(u)],

Since the analytical solution for the PDF extraction of the output in the closed form is

not a trivial task and the general form is limited to simple cases, approximation methods

are used in practice. Monte Carlo simulations are the best known and most commonly

applied numerical methods for solving this kind of problem. According to [109], how­

ever, :lVIonte Carlo simulation is often an unsatisfactory and misleading treatment of

compounding uncertainty such as in our application.

1

0.5

T , I
.,'fi II o

-1

..
I

I

• i I I

I
!
i
I
I
i

I ,
I
I
I
i

o

• I
I ,
} • ,
I
I r I I I t
f

I r i , • !
1

+1

FIGURE 4.9: Sampled PDF represented in the form of grid.

A very basic method to approximate a PDF is discretising, where all the PDFs are

approximated by sets of munbers which are samples of the real PDF, as depicted in

Figure (4.9). In this way the PDF is reduced from a continuous distribution to a discrete

function. The convolution operation between PDFs, therefore, can be performed by a

finite number of elementary operations. The accuracy of the method depends on the

sampling rate where a higher number of samples increases the accuracy and computation

overhead. To compromise between accuracy of the method and computational overhead,

modifications are possible. The method which we use in this study, therefore, is based

on a method which combines range error analysis and probability propagation, called

the histogram method, explained in the following subsection.

Chapter 4 Symbolic Noise Analysis 77

4.4.1 Histogram-Based Method

From a probability viewpoint, the interval methods implicitly have made the assumption

that the modelled values are situated within the bounds of the specified intervals with a

probability of "1". Accordingly, providing an operation, such as 0, is applied to values

x E x and y E f), where x and f) are intervals, to get a result z = x ° y, it can be said

that z E z = x ° f), see section 3.3.1, where the probability P(z E z) conforms to:

P(z E z) = P(x E x) . P(y E f)) = 1 x 1 = 1, (4.30)

assuming x and f) are independent. It is also assumed that all the numbers in the interval

have the same probability. Interval representation of the uncertain values, therefore, im­

plies that the uncertain value is a random number with a uniform distribution over the

specified interval. This probabilistic view of the interval operations is the core idea of the

proposed method in [8], called the Histogram Method for doing operations on probability

density functions. Informally, a histogram is defined as a finite set of numbers represent­

ing histogram values (bins) in the corresponding non-overlapping subintervals. In other

words, a histogram is the graphical version of a table which shows what proportion of

cases fall into each of several O'r many specified subintervals.

The histogram method has extended the elementary arithmetic operations to include

histograms as the basic data type. It employs the interval arithmetic method to do

the operations on the bins of the histograms to create a new set of bins for the output

histogram. The widths of the bins are the output intervals where the corresponding

probabilities of the output intervals are assigned based on the probability rule of Equa­

tion (4.30). These values are the heights of the bins on the output histogram. From

another standpoint, the arithmetic operations on histograms can be envisaged as a dis­

cretised convolution of the functions which have been approximated in the form of the

histogram operations.

To approximate the density functions, the input range of the function is divided into

a certain number of non-overlapping intervals. The standard interval data type is also

extended with a probability mass distributed inside the interval to form a histogram

bar. This probability is the same as the value of the function over the range. Providing

that a proper number of subintervals are chosen, a common approximation to obtain

an estimate of the output PDF is to assume that the distributions inside the bars are

always uniform. The uniformity approximation allows interval analysis to be used for

probabilistic function characterisation where the computation is typically performed in

terms of standard interval arithmetic.

To operate on a pair of PDFs of x and y, the output histogram can be calculated as

follows [8J:

Chapter 4 Symbolic Noise Analysis 78

1. Split the PDFs of x and Y into subintervals to create their corresponding histograms

Hx = {xd and Hy = {yd.

2. Compute the Cartesian product of the bins of the histograms describing x and y.

3. For each combination (Xi, Yj) in the Cartesian product, produce an intermediate

result interval employing the corresponding IA operation over the ranges:

(a) Execute the corresponding interval arithmetic operation on Xi and Yj to get

Zij = Xi 0 Yj;

(b) Associate with Zij the probability P(Zij) = P(Xi) . P(Yj);

4. The intermediate result intervals must be combined to get the bins of the output

histogram:

(a) Decide on a set of intervals partitioning the domain of Z. This partitioning

determines the placement of the bins in a histogram approximating the dis­

tribution function. The particular partition is unspecified by the algorithm,

but few bins will tend to provide coarse results;

(b) Calculate the area for each histogram bin of Z defined by the partition as

follows:

i. Any intermediate result interval, Zij, that falls completely within one

member of the partition has its entire probability mass assigned to the

bin corresponding to that member;

11. Any intermediate result interval that overlaps more than one member of

the partitions, has its probability mass divided between them, with mass

assigned to each partition member in proportion to the fraction of the

intermediate result interval it overlaps.

HI. All of the probabilities assigned to a partition member are accumulated

to give the total probability of the number. This is done for each partition

member;

(c) The probability of each bin equals its area, so the height of each bar is:

h = probability.
width

Since noise symbols in SNA method are assumed to be continuous random numbers, to

employ the histogram method on them, their PDF needs to be segmented into subin­

tervals to build up histograms. The number of these segments represents the accuracy

of the histogram methods. Therefore, a better approximation for PDF is possible by

increasing number of the segments, however, it costs more computation overhead. Each

histogram bin is characterised both by an interval describing its placement on the real

number line and by a probability density function which shows the placement proba­

bility inside the interval. In this way, the standard interval data type is extended with

Chapter 4 Symbolic Noise Analysis 79

a probability mass distributed inside the interval to form the height of histogram bins.

A common approximation to obtain an estimate of the output PDF is to assume that

the distributions inside the bars are always uniform. The uniformity approximation

simplifies using interval analysis for probabilistic function characterisation where the

computation is typically performed in terms of standard interval arithmetic.

1

FIGURE 4.10: Histrogram approximation of a PDF.

Noise symbols in our method (ci) are bounded random values in a fixed predefined range

of [-1, 1J. Accordingly, all the operations on them must also result in PDF over [-1, 1J to

be applicable in the succeeding operations as new symbols. Furthermore, these symbols

have continuous PDFs over the range and we need to choose how to divide them into

subintervals. It seems better, in terms of the computation overhead, to use the same

standard of discritisation for all the PDFs. We divide all the noise symbols into 21+1

subintervals, as depicted in Figure (4.10), for the sake of simplicity and compatibility.

In this study, a histogram (H) can be defined formally as in Definition (4.2), where

corresponding to each interval Ii in the H, a probability Pi is defined which represents

the PDF value in the interval h

Definition 4.2. A histogram H is a partition of the domain E in terms of intervals Ii

and local probabilities Pi where:

where l in the Definition (4.2) represents the granularity of the histogram H. This

definition also holds the basic characteristics of the set partitioning as:

Chapter 4 Symbolic Noise Analysis 80

and also the basic probability rule (P(x) :::; 1), which implies that:

21+1_1

L Pi = 1,
i=O

With this definition, the histogram method splits the noise symbols and their corre­

sponding PDF into fixed length subintervals, as depicted in Figure (4.10), and uses

these subintervals to generate intermediate results and then constructs the result PDF

of the arithmetic combination of the symbols .

Assuming interval operands are represented according to H, the new operators return

the result of the operation also represented in terms of H. When this result includes

more than one interval, the operator distributes the probability, Pi, among the output

intervals depending on the behaviour of the specific arithmetic operation. In order to

have consistent input and output data types, this new arithmetic can be formulated as

histogram arithmetic, as inputs can be viewed as histograms having a single interval.

Using our definition the computation model of the previous section is modified as:

1. Consider the input space is the set of intervals describing the histogram of the

input i in terms of Hi = {(Iij,Pij)}, where interval Iij of Hi can be represented

as: Iij = [aij,bij].

2. For each vector [... , ([aij, bd,Pij),·· .] of the input space:

(a) Compute the probability Pk = rrf=l Pij;

(b) For each operation with input histograms Hi (with one or several intervals),

and for each combination of intervals from the Cartesian product of the in­

tervals of histograms Hi do:

i. Obtain a histogram result using histogram-based arithmetic;

n. Proceed with the next operation if there is any more (step c) otherwise

return;

lll. Set the probability of each resulting histogram interval h by its calculated

Pk;

iv. Collect the result histogram to produce the output histogram (Haut);

According to the algorithm, all algebraic operations on histograms can be expanded to

the interval operations. Consider a set histograms Hi = {(Ii,j, Pi,j)} and function F

which is applied to them to produce another histogram as in Equation (4.31).

where Haut = {(Iaut,k> Paut,k)} is the result histogram. Applying the algorithm means

that F must be applied to all the Cartesian combinations of the input histograms as in

Chapter 4 Symbolic Noise Analysis 81

Equation (4.32).

(4.32)

All the operations between intervals of the histograms are exactly the same as in the

IA method in section 3.3.1. These operations on the input intervals produce a set of

overlapping intermediate intervals with the corresponding probability values which need

to be mapped into the output histogram bins. Recalling the fact that all the histograms

must have the same structure of Definition (4.2), let assume that intermediate intervals

are:

where x and y indicate two ends of the intermediate interval which are calculated by

applying F to the intervals (Ii1,jl> Pil,jl) and (Ii2 ,j2, Pi2,j2). The place of the intermediate

interval and its overlapping with the final intervals {(Iout,k, Pout,k)} can be extracted by

comparing x and y with k. If the intermediate interval has a share in the output interval

Iout,k, then the value ofthis share depends on the relative positions of x and y on k axis

and also the probabilities multiplication Pil,jl XPi2,j2. This positioning can be categorised

as follow:

Pout,k = Pout,k (No overlap)

x<k ---+ p=,k : Pou',k + (PH"! : P,2,j') (~l:l
Pout,k - Pout,k + (P11,]1 P12,]2) (y-X

(4.34)

Pout,k = Pout,k + (Pil,jl x Pi2,j2)

() (k+l-X) Pout,k = Pout,k + Pil,jl x Pi2,j2 --y=x-
k:=;x<k+l ---+

k+l:=;x ---+ Pout,k = Pout,k (N 0 overlap)

x and y can be found for basic arithmetic operations to implement the algorithm.

In fact, the interval methods have been described as having more advantages than tra­

ditional random sampling approaches (i.e. Monte Carlo simulation) [8, 18]. Exhaustive

exploration of the input data space is possible when represented in terms of intervals

but is infeasible when considering individual numeric values. On the other hand, two

problems appear when applying the histogram method to PDF estimation [18]. First,

the computation of the Cartesian product of the input histogram bins yields a set of

output bins that must be merged into a single output histogram and the complexity of

this merging can increase to infeasible levels. For instance, merging two intervals with

a non-empty intersection, as depicted in Figure (4.11), produces three smaller intervals,

so every new merge is bound to deal with more intersections as the computation pro­

gresses. Second, it has been argued, [18], that assuming uniform distributions inside the

histogram bins can be a problem with some operations that significantly increase the

Chapter 4 Symbolic Noise Analysis 82

size of the output interval but that causses sparse distributions, integer multiplication

for example.

FIGURE 4.11: Merging to overlapping bins in the output histogram.

There are similarities between the method which we have employed in this study and

a modified approach based on the definition of grids is proposed by Carreras, [18J, to

minimise these problems and better control the accuracy of the enclosures in the output

histogram obtained through interval calculations. Histogram grids by forcing a specific

representation on input and output histograms, and grouping the PDF samples in them,

allow control of the sizes of their bars. However, the computation is typically still

performed in terms of standard interval arithmetic. Such grids are analytic partitions of

the numeric ranges of interest that force a specific representation, and are the basis for

the definitions of new abstract domains and abstraction functions. Furthermore, it is

possible to associate a probability with each element of the abstract domain associated

with a given grid, resulting in the notion of histogram grids and the definitions of interval

operations on such grids. This allows the application of this class of abstractions to the

probabilistic characterisation of functions.

4.4.1.1 Mean and Variance of the Combined Variables

In the noise analysis approach, the noise spectrum is the key factor for accuracy compari­

son between different designs. After noise symbols propagation through the computation

tree of the systems, the output error can be derived in the form of the algebraic com­

bination of the noise symbols. Having known the statistical distribution of the noise

symbols the noise spectrum can also be calculated in the output as well as the error

ranges. In almost all the previous works, truncation or rounding errors are considered

to be independent and uniformly distributed. Based on these assumptions and using

stationary random signals characteristics in the time invariant system the output noise

spectrum is calculated by p-norm as illustrated in Equation (3.34) [99J.

Chapter 4 Symbolic Noise Analysis 83

In the simple cases of linear systems where output noise can be represented in terms

of a linear combination of the noise symbols, the expectation and variance of the sum

of independent random variables, such as Ei in Equation (4.21), can be calculated by

Equation (4.35) and Equation (4.36).

(4.35)

(4.36)

where EO, VarC) and Cov(-) stand for expectation, variance and covariance respec­

tively. In addition, based on the Central Limit Theorem,' the symbolic noises in Equation

(4.21) be merged so that the distribution of the replacement symbolic noise is approxi­

mately normal for large m.

There are works which try to combine the abilities of statistical methods with symbolic

analysis. [42] gives this basic idea that uncertainty symbols can be combined by the

Central Limit Theorem [54] to reduce the symbol array size. This idea is expanded in

[41] and applied to interconnection approximation by [77]. This method is improved to

provide a method for statistical interval analysis by [121] and is utilised for VLSI and

DSP design tools, however, their proposed method is only applicable to the simple cases

of PDF combinations.

From a probability theory point of view, if the probability distribution of x admits a

probability density function f(x), then the expected value can be computed as:

1
+00

E(x) = -00 xf(x)dx. (4.37)

The expected value of an arbitrary function of x, g(x), with respect to the probability

density function f(x) is given by:

]-

+00 •

E(g(x)) = -00 g(x)f(x)dx. (4.38)

If f.l = E (x) is the expected value mean of the random variable x, then the variance is:

(4.39)

Chapter 4 Symbolic Noise Analysis 84

For a histogram representation of the noise symbols this formula can be rewritten as:

21-1 21-1

= Tl L P~ - T21 L (p~ ((2k + l)Pk + 2))
k=O k=O

21-1 21-1

+T31 E (p~ ((k
2 + ~)Pk +4k - 2)) + T41 E (p~ (2k -~))

This computation may be combined with the histogram calculation in the system anal­

ysis and optimisation algorithm.

4.5 Implementation Algorithm

The overall algorithm for implementation of the symbolic noise analysis method consists

of three basic major steps:

1. Build up a Noise Symbol representation for signals in the computation tree and

their relationship with the arithmetic characteristics of the nodes.

2. Find the symbol propagation through the tree and its relationship in the output

node(s).

3. Find the histogram representation of the output PDF and the corresponding

bounds and noise powers.

Obviously each step in this algorithms contains many sub-steps.

The first step of the algorithm refers to the fact that based on the previous discussions in

chapter 2 and 3, the errors in each computational node are a function of the arithmetic

characteristics of the node such as word-length, arithmetic system and so on. Accord­

ingly, the noise symbols assigned to each node are dependent on these characteristics.

Noise symbols are created in a data structure which contains their source and proba­

bility distribution types (uniform, triangle ...) in the form of histograms with suitable

granularity. The volume of this data base increases with the number of nodes in the

system data flow graph. For computationally intensive systems which mostly require a

repeated routine this volume should not be intractably big. Furthermore, it is possible to

merge some of the noise together into new noise symbols to reduce the number, however

Chapter 4 Symbolic Noise Analysis 85

this approach causes inaccuracy and overhead in the optimisation process. To improve

this merging method one might investigate the DFG of the system to find those noise

symbols which only propagate through single paths and their merging does not decrease

the optimisation accuracy.

The second step consists of polynomial operations to build up the output error relation­

ship with the noise symbols sources from different points in the computation tree of the

datapath.

The third step is based on the algorithm discussed in section 4.4.1, by which the output

PDF and the corresponding bounds can be calculated. Applying the histogram requires

choosing a proper granularity of the histograms discritisation which has a great impact

on the result precision and also the algorithm complexity. For a histogram calculation

of an G-point sampling of the PDF (granularity=G) , the total number of the Cartesian

combination of the grid points between M distinct noise symbols is GM . For example,

computational complexity of SNA method to evaluate the output noise PDF of a design

with M functional units is O(GN), assuming G is the same for all noise points. With

G = 1, evaluation time is the same as AA method and it increases with G polynomially

(order M).

In comparison with the other methods, the proposed method has much more compre­

hensive information about the output error, however it has more computation overheads.

Furthermore, in respect of AA error symbols, the noise symbols in the proposed method

carry more information which means that their storing and manipulation requires a

more complicated data structure and also more computation resources. However, the

complexity of the method gives the freedom to the designer to adapt the required preci­

sion with available computation resources in an optimisation procedure. The following

examples provides some results to compare the different methods.

Example 4.4. Consider the quadratic equation of Example (4.1). Apply the SNA

method results in the histograms of Figure (4.12), which is depicted over the error range

[Xl, Xh]' Different histograms are represented which are calculated with different granu­

larities. Table (4.3) also presents the mean, variance, lower bound and upper bound for

these calculations. According to Equation (4.8), the output range can be calculated as

Y Yo + ~Y,
6.5 + [Xl, Xh], (4.41)

where Xl and Xh can be found in Table (4.3). In comparison, our method can provide

better approximations and also the noise PDF at the output.

This example shows that the higher granularity produces higher precision results but

with more calculation overheads. This flexibility is especially useful in the optimisation

process, where the low granularity calculations can be used for preliminary analysis to

Chapter 4 Symbolic Noise Analysis 86

0.14 Q.14

0.12

0.1

0.08

DOG

O.C4 0,04

0.02 0.02

X h X h

(a) (b)

O;G7 005

fr.045
0:06

0.04

.1035

0.03

0.025

002

a.015

0_01

0.01
I).OOS

X h X h

0.04

0.02-5

0.C3

0.025

O.ci2,

0.015

0.Q1

OJ)J5

(c) Cd)
0.018

0.016

0.014

0.012

a.C1

0.{}".J8

0.006

OJ)04

O,{XI2

X h

(e) (f)

FIGURE 4.12: Output histogram over error range [Xl, XhJ for Example (4.4) with dif­
ferent granularities a)g=2 b)g=4 c)g=8 d)g=16 e)32 f)64.

X

limit the feasible space of the optimisation search. Applying SNA method, execution

time for this example was lower than one second for granularity of g < 20 and 4 second

for g = 32 and approximately 50 seconds for g = 64 on a AMD Opteron 2GHz machine.

Example 4.5. Let us try 32-bit fixed-point implementation of a polynomial approxima­

tion of the exponential function, as written in Equation (4.42) [47].

y (
5 4 3 2) ., alx + a2x + a3x + a4x + a5x + a6 XV + 1.0, (4.42)

(((((alx + a2)x + a3)x + a4)x + a5)x + a6)x3 + 1.0,

h

Chapter 4 Symbolic Noise Analysis 87

TABLE 4.3: Estimated parameters with histogram method for Example (4.1)

Granularity I Mean I Variance I Xl I Xh I Xc

2 6.148148 36.274348 0.0 16.0 0.0
4 4.6688 28.173507 -1.0 16.5 -0.5
8 3.908208 22.467426 -1.25 16.5 -0.75
16 3.534689 19.489651 -1.375 16.5 -0.875
32 3.349956 18.014349 -1.4375 16.5 -0.9375
64 3.258123 17.286116 -1.46875 16.5 -0.96875

Actual
3.17 16.57 -1.5 16.5 -0.81

Values

Table (4.4) shows the coefficients before and after quantisation and their quantisation

noises. It is also assumed that the input value is limited to a range of -0.5ln 2 :S X :S

0.5ln 2 and is not carrying any error from previous computations. Error analysis of this

equation is based on different methods for a fixed-point hardware with 32-bit maximum

word-length. To focus on the accuracy effect, it is assumed that overflow does not happen

in the computations because of the proper scaling in the input data, however, it can be

analysed by SNA if we know the overflow PDF model of the arithmetic operations.

TABLE 4.4: Quantisation error of the coefficients in Example (4.5).

Coefficient Quantised Coefficient Error Weight Noise
ai Exact values(Dec) aiQ (Hex) ail Symbol

al 1.9875691500 1.FCD154F1 9.17956E - 11 q

a2 1.3981999507 1.65F06E95 6.11544E - 11 t2

a3 8.3334519073 8.555D1AAC 7.47763E - 11 t3

a4 4.1665795894 4.2AA4F5CO 7.61482E - 11 q

as 1.6666665459 1.AAAAA8A3 1.13829E - 10 tS

a6 5.0000001201 5.00000203 9.61093E - 11 t6

After coefficient replacement, the total error can be represented in the form of the

Equation (4.43).

(4.43)

Interval Arithmetic

In this approach all the numbers are represented in the form of range vales as:

(4.44)

Chapter 4 Symbolic Noise Analysis 88

and as a consequence of applying IA rules, the output error range is:

6.y E [-6.21628550436 X 10-12
, +6.21628550436 x 10-12] , (4.45)

Affine Arithmetic

Affine arithmetic approach uses exactly the same terminology as shown in the problem

and the final calculation is in the form of Equation (4.46).

Yo + 6.y, (4.46)

and the error part of the output can be represented in an affine format as:

6.y = 0 + (6.21628550436 x 10-12
) Ey , (4.47)

where Ey.E [-I, +1] is the noise symbol of the output error.

Noise Based Analysis

In noise-based method these errors are considered as independent WWS noise sources

which are propagating through the system. Since this example represents a linear system

relationship between noise sources as in Equation (4.48) the output error variance can

be calculated applying superposition.

(4.48)

and the error variance at the output point is:

(4.49)

Proposed Method

In the proposed method, values are represent in the form of a (not necessarily linear)

combination of the quantised values and error symbols. The final representation is

Similar to last example, using an unform distribution for Ei over [-I, +1] and applying

histogram calculation algorithm of section 4.4.1, the output error and its PDF can be

found. PDFs of Ei are divided to g (granularity) subsections then IA arithmetic is applied

to calculate value Equation (4.50) over each Cartesian combination of the subsections.

The histogram PDF ofthe output error is depicted in Figure (4.13). It can be observed

Chapter 4 S:ymbolic Noise Analysis 89

from this histogram that the output error is uniform only in the -! of the error range.

This result is also compatible with the theoretically calculation of the weighted sum of

uniform random variables as discussed in [.59] .

.. 0.0030 ..

................0.Q025 Uniform

.. ············o,o020··· •••••••••••• (.•.•••••••••••..•••••••••••••••••••••••••..••••••••••••••••.....

Linear

....... O.O.Q1Q .. -j- , "" 1·
- 6.225 X 10-13

FIGURE 4.13: PDF histogram of the output error over the error range for Example
(4.5).

Comparing results

Applying different methods to the computation the output error in each case is as in

Table (4.5). It is observable from the table that SNA method provides more compre­

hensive information about output error compared with the other methods. IA and AA

only give the output range of the result, when noise analysis method can only provide

noise variance in the output. Although estimated range of the error is more accurate by

SNA method its calculation overhead is higher. With SNA method, calculation time for

this example was 1 second for 9 = 8 and was approximately 60 seconds for 9 = 16 on a

AMD Opteron 2GHz machine.

TABLE 4.5: Error result in the output of the Example ('1.5).

Analysis Method II Error Bound I Noise Power PDF

IA Method [-6.216 x 10-12 , +6.216 x 10-12] x x

AA Method [-6.216 x 10-12 , +6.216 x 10-12] x x

NA Method x 2.258 x 10-22 x

SNA Method [-6.225 x 10-13 , +6.225 x 10-13] 6.291 x 10-24 ./

Chapter 4 Symbolic Noise Analysis 90

4.6 Summary

In this chapter, a new method for modelling computational error is presented. There

are works in which the computational error is modelled as an independent random noise

source which behaves like white noise. There are other approaches which deal with the

error as a solid symbol which represents the error range. Our model is a combination of

both, where every error bound is represented by symbolic noise which consist of error

bounds as well as the statistical characteristics. Using this method enables the analysis

to be done, based on both methods. In addition the noise spectra at the output can

be evaluated with controllable accurately to see the error distribution over the bounds.

This method is applied to several examples and results show its power in practice.

the next chapter introduces the data communication structure for a hardware plat­

form which is suitable for computational datapath implementation when the arithmetic

characteristics of the functional units can be taken into account as an optimisation

parameter.

Chapter 5

5.1 Introduction

From a system level point of view, every digital circuit consists of three basic parts:

Functional Units (FU), controllers and interconnections. The first provides computa­

tional resources for the algorithm execution, the second part controls the sequence of the

operations in the circuit and the third provides the communication channels for internal

and external data and control signal exchanges. Technically, interconnection refers to

all the wires in the design, whereas here we only focus on those which are responsible for

data communication between units. Thus the control signals and inter-units wires are

considered as a part of the controller and functional units respectively. Since computa­

tionally intensive hardware is supposed to deal with a large amount of data processing

and exchanges, the data communication can be a bottleneck in many cases.

Providing an optimal communication channel for the functional units, which creates the

required data communication paths with lowest implementation cost is a vital issue in

today's design framework. Although this issue is mostly considered at the architecture

level of design, in designs in which the datapath is dominant, it is necessary to consider

this problem at a lower level of specification such as Register Transfer Level (RTL).

Two main approaches have been used in communication synthesis at RTL, namely the

peer to peer method and the bus-oriented method. This chapter describes a modified

bus-oriented method and the corresponding implementation.

91

Chapter 5 Multi- Way Multiple-Width Partitioned Bus Structure 92

5.2 Motivating Examples

Bus-oriented datapath synthesis relies on sharing communication paths to reduce the

cost of implementation. In return, due to shared data transfer channels, delays are likely

during data exchange between functional units. To evaluate the viability of the bus­

oriented method and compare its implementation capabilities with multiplexer-based

methods, some basic examples are presented. The simplest structure of the bus-oriented

method, namely "single shared bus", is compared with a peer-to-peer structure. These

examples compare the cost efficiency of the methods in terms of latency and the number

of required switches for steering logic.

Example 5.1. Let consider an example of a behavioural specification of a first order

differential equation solver for an architectural design as presented in [103]. The specified

circuit has been designed to solve the second order differential equation of Equation {5.1}.

(5.1)

To solve this equation, [103], a forward Euler method is applied in the interval [0, a] with

step size of dx. The corresponding algorithm and DFG are quoted in Listing {4.1} and

Figure {5.1}.

Listing 4.1: Solution algorithm for Example {5.1}

Set Initial Conditions: y, ~

while {x < a3} repeat:

xf=x+dx;

u f = u - (a 1 x x x u x dx) - (a2 x Y x dx),­

Yf=y+(uxdx);

x = xf; U = uf; Y = Yf;

end;

To clarify the position of the data transfer units, consider a structural view of the circuit

as depicted in Figure (5.2) in which FU stands for functional units. In this structure,

MUL represents a multiplier, ALU is an arithmetic and logic unit, memory represents

all memories (volatile and non volatile) and steering represents the data transfer logic

and buses. Our discussion is focused on the steering block, which provides data commu­

nication media for functional units, and can be implemented with a multiplexer and/or

bus based method.

Considering an ideal allocation and binding with two multipliers and ALUs, the data

communication between these functional units will be as depicted in Figure (5.3). It can

Chapter 5 2Vlulti-Way ll/[ultiple-Width Partitioned Bus Structure

udxy

yUj ____
1

udx Xj !~----=-I-::
x dx III

... ···········111

x

III + III
a III

_ __ ~ __ =.=..:-. ..J II

c

II
II
II
II
II
II
II
II

........ _ -.............. ~.~ -.................. -........... i i
- + ::

II
.. :::.:::.:::.:::.:::.:::.:::.:::_::

___________________ ..J

FIGURE 5.1: Corresponding DFG of the Example (5.1).

Inputs

Controller

Outputs

FIGURE 5.2: Structural view of the Example (5.1).

93

be seen that the implementation requires three 2-1 multiplexer (MUX-2) and one 3-1

multiplexer (MUX-3). In addition, with a smaller number of functional units (MULs

or ALUs), the number of required multiplexers will increase. In comparison with the

multiplexer-based method, a shared bus construction of the circuit requires only six bus

switches as in Figure (5.4).

(a) (b)

FIGURE 5.3: Data communication scheme after binding and allocation of the Example
(5.1) a)data communication scheme b) multiplexer-based implementation.

Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure 94

FIGURE 5.4: A shared bus oriented implementation of the Example (5.1).

Similarly, for a different number of resources (MUL and ALU), after scheduling and

allocation by hand, the number of the required multiplexers is shown in Table (5.1). In

this table TMUL, TALU and TDT stand for the delays of multiplication, ALU operation

and Data 'Transfer in terms of clock cycles, respectively, and the number of multiplexers

represents the required number of 1-2 multiplexers (MUX-2). It can be seen that the

shared bus structure can be implemented with a fewer number of switches, but its delay

is higher. The next example investigates this problem with a more complicated design.

TABLE 5.l: Comparing multiplexer-based and bus-oriented methods for Example (5.1).
Binding MUX-Based Bus-Based

(ALU,MUL) MUX No. Latency BSW No. Latency

(1,1) 6 6TMUL + 2TALU 2 6TMUL + 2TALU + 18TDT

(2,1) 5 3TMU L + 2TALU 3 3TMUL + 2TALU + 18TDT

(1,2) 6 6TMUL +TALU 3 6TMUL + TALU + 18TDT

(2,2) 5 3TMUL +TALU 4 3TMUL + TALU + 18TDT

Example 5.2. The Fast Fourier Transform {FFT} is an efficient algorithm to com­

pute the discrete Fourier transform {DFT} [105]. FFT has a great importance to a

wide variety of intensively computational applications such as digital signal processing

{DSP}, solving partial differential equations and algorithms for quickly multiplying large

integers [105]' Figure {5.5} shows the basic block diagram of a radix-2 butterfly cell

in the form of Dissemination In Time {DIT} [98}, which is the building block of the

FFT algorithm. This block diagram is implemented by adders and multipliers and the

corresponding scheduling diagram is depicted in Figure {5.6}. See appendix A for more

details.

In Figure (5.6) it is assumed that there are two multipliers and two adder/subtractors

available. Numbers next to the connection lines indicate the Control step (C-step) in

which data transfer takes place on that interconnection, these values are extracted from

the scheduling table. This design is implemented and compared with peer-to-peer and

shared-bus methods and the results are in Table (5.2). Similar to the previous example,

Chapter 5 M ulti-Way MUltiple-Width Partitioned Bus Structure 95

pk
r

pk+l
r

p;k pk+l .

Q~ Q;+l

Q~ Q~+l

FIGURE 5.5: Radix-2 FFT Butterfly Cell block diagram DIT form.

it can be observed from the results that data transfer delay is very high in the shared-bus

method, however, the data steering cost shows reduction.

Inputs

1: MUL, MUL;
2: MUL, MUL;
3; ADD, ADD;
4: Transfer;

2)T--------r----~

5: ADD, ADD;
6: Transfer;
7: ADD,ADD;
8: Transfer;
9: Transfer.

Outputs

FIGURE 5.6: Scheduling diagram for radix-2 butterfly DIT form.

TABLE 5.2: Comparing multiplexer-based and bus-oriented methods for radix-2 DIT
FFT

Binding MUX-Based Bus-Based
(ALU,MUL) MUXNo. Latency BSW No. Latency

(1,1) 6 4TMUL + 6TALU 2 4TMUL + 6TALU + 21TDT
(2,1) 6 4TMUL + 3TALU 3 4TMUL + 3TALU + 21TDT
(1,2) 6 2TMUL + 6TALU 3 2TMUL + 6TALU + 21TDT
(2,2) 6 2TMUL + 3TALU 4 2TMUL + 3TALU + 21TDT

Chapter 5 Multi- Way MultipJe-Width Partitioned Bus Structure 96

These results suggest that data steering can be implemented by bus-oriented structures

with fewer switches but data transfers will take more time. However, using a shared­

bus structure can cause a considerable delay in data transfer in comparison with a

multiplexer based method, where, because of a limited number of communication paths,

every data transfer competes with others to occupy a path. Consequently, scheduling

and bus binding for data transfers are as important as the operation scheduling, because

an operation cannot be executed unless its operands are transferred to the input latches

of the corresponding functional unit [128].

The most trivial way to improve this structure is to utilise a partitioned bus with a

local communication data transfer scheme [40]. In the partitioned-bus architecture,

the shared bus is divided into a limited number of bus segments in the hope that the

communication path shortage problem will be alleviated due to the localisation of data

transfers. However, this approach needs more careful scheduling and binding for data

transfers [116] [75].

5.3 Bus-Oriented Datapath

Initially, a system specification consists of functional units and data communication

between them. Data flow graphs for instance, as a broadly accepted representation

of the datapath, are traditionally focused on the functional units and data transfer

operations are considered as a secondary concern. Consequently, design optimisation

steps are focused on functional units and their implementation costs [128].

Regarding the data communication structure in the system, different approaches have

been introduced for datapath synthesis which form a top-level point of view, two ex­

treme cases could be realised for system interconnection: a single shared bus and a fully

connected peer to peer structure, both of which are depicted in Figure (5.7) in terms

of DFG over C-steps. The shared bus is accessible for all the sub-blocks without any

priority whereas in the peer-to-peer structure every data transfer has a dedicated inter­

connection. The first one has a very simple implementation, however in massive data

processing systems with many sub-blocks it can be severely slow. In the fully connected

peer to peer structure, on the other hand, the result by system could be faster but more

costly in implementation.

By more investigation these two extreme cases, from a high level synthesis viewpoint, can

be annotated on the DFG representation of the datapath in the form of the data transfer

restrictions. Consider Figure (5.8) which shows a data flow graph representation of an

example datapath, in which 'T' represents data transfer. In Figure (5.8-a), the DFG

depicted using a C-steps time scale, assumes no restriction in data communications

between operations. In other words, it supposes to there is a data communication

channel available for every transfer whenever it is needed. Nevertheless there is no

Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure

(a) (b)

FIGURE 5.7: Sub-Blocks bus structures a) Single shared bus b)Fully connected peer to
peer.

97

assumption concerning the implementation of the DFG, normally multiplexers are used

for implementation of such a data transfer structure in the datapath synthesis.

~_-!-_--i-__ ':"-_____ .. C - Steps

(a)

C-Steps

(b)

FIGURE 5.8: Data transfer in DFG a) Without limit in data transfer in each C-step
(Fully connected peer to peer) b) Restricted to one data transfer in each C-step (Single

shared bus).

In Figure (5.8-b) on the other hand, an extreme restriction is applied to the data com­

munication structure which assumes only a single shared data communication channel or

bus for all sub-systems. As depicted in Figure (5.8-b), in this case only one data trans­

fer can take place in each C-step which means that the DFG must be expanded along

Chapter 5 Multi- Way Multiple-Width Partitioned Bus Structure 98

the C-step (time) axis to avoid any data collision between sub-systems. This structure

can be realised in the form of a single shared bus in which one set of interconnections

are shared among all the functional units as a data bus. In comparison with the first

structure, the main advantages of the shared bus architecture include: simple topology,

low cost, and extensibility [114]. It is, however, slow and requires more control overhead

in comparison to directly connected units.

To compromise between these two extreme communication synthesis models, we start

with a single shared bus and then expand it to more flexible structures. The following

subsections provide more details in this regard.

5.3.1 Multiple-Width Partitioned-Bus

In the single shared bus, the costs are directly dependent on the number of functional

units connected to the bus. For example, it is observable that the average data transfer

delay increases with the number of functional units or bus power consumption is a

function of the interconnection capacitance which also is a function of the number of

connected functional units and the bus wire-length [55]. Accordingly, it can be concluded

that the shared bus is more efficient in cases in which there is a small number of units,

that need to be connected to the bus. Thus dividing functional units into smaller groups

connected by detached shared buses is a rational approach to improve the data transfer

performance.

In a partitioned bus structure, as depicted in Figure (5.9), each bus is divided into

segments which are functionally connected by switches. Neighbouring segments, when

disconnected, can work independently and convey different data simultaneously. Func­

tional units which do not share the same segments can, therefore, operate in parallel.

This structure makes routing and placement easier [75] and also reduces the power con­

sumption of the bus [56]. The concept of segmenting the bus appeared in [40] in the

context of single-chip devices. The basic structure of the partitidned-bus architecture

consists of a specified number of busses connected in serial, where two adjacent bus

segments are connected with symmetrically placed switches. A switch permits or in­

hibits data flow between segments, thus parallel data communications and processing

are possible when two segments are disconnected.

FIGURE 5.9: Partitioned bus structure.

Chapter 5 Multi-Way MUltiple- Width Partitioned Bus Structure 99

In addition to basic HLS parameters, see section 2.2, the performance of this bus struc­

ture is dependent on the grouping of functional units and their allocation to the bus

segments. For instance, if data transfer takes place between functional units which are

positioned in non-neighbour segments all the intermediate buses are possessed exclu­

sively during the data transfer. Therefore, equalising the data transfer load of each

divided bus is needed during high level synthesis, both in the temporal domain and in

the spatial domain to take the data transfer into account as a synthesis parameter. This

bus structure can also be implemented in the form of a ring connection in which the end

segments of the bus are connected by a bus switch.

Choosing the bit-widths of the bus segments is another issue which needs to be considered

in the bus structure. Originally, a partitioned bus is considered as a single bus with a

uniform bit-width, which is split into segments by bus switches and it is generally agreed

to have the same bit-width for all the segments. Bearing in mind that the word-length

optimisation has a considerable impact on the overall performance of the system, it is

arguable whether all the bus segments should have the same bit-width or not. Assuming

all the functional units which are grouped together have the same word-length and are

connected to a bus segment, this bus segment must also have the same bit-width as

functional groups. Other groups and their corresponding bus segments mayor may

not have different bit-widths, we called this structure Multiple Width Partitioned Bus

(MWP-Bus).

It is need to be emphasised here that the the MWP-Bus is just a structure for datapath

and its cost and benefits must be considered overall with the functional units. However,

generally speaking, reusing the number of wires in design can reduce design cost but in

our study, number of segments, functional units allocation to the segments in combina­

tion with bit-width of the segments are utlised by optimisation tool to find the optimum

design for datapath. Actually, optimizer makes decision whether bus segments should

have different widths or not based on the functional units grouping and scheduling and

systems overall implementation cost.

The word-length optimisation method is based on the computational error sources and

propagation models as explained in chapter 3 and 4. Accordingly, in addition to func­

tional units which are potential sources of computational error, data exchange between

bus segments can also cause a truncation error if the sender bus has a larger bit-width

than the destination segment. Since the MSB parts of the bus segments are always

connected and truncation takes place in the LSB part, see Figure (5.10), so when data

transfer from left to right in Figure (5.10), it results in an error which can be modelled

as a truncation error along side other error sources in the system.

This modified structure increases the flexibility of the bus and gives more freedom to the

. optimiser to find the optimum design, however, it requires more effort in terms of word­

length optimisation problem as well as grouping functional units. Form the word-length

Chapter 5 Multi- Way Multiple-Width Partitioned Bus Structure 100

FIGURE 5.10: Bus segments with different widths.

optimisation point of view, the MWP-Bus structure, however, is an attempt to allocate

optimum word-lengths to groups of functional units, which results in reduced feasible

space of the optimisation search. Since MWP-Bus segments are connected in serial, if two

segments communicate, all the segments which are physically placed between them will

also be occupied. To improve this, the structure can be extended to multidimensional

structures, which is discussed in the following subsection.

5.3.2 MUltiple-Width MuItiple-Way Partitioned-Bus

The MWP-Bus structure offers only one possible path for each data transfer, so the con­

troller only needs to activate the required Bus-Switches (BSW) just in time to connect

functional units. This structure needs a simple control unit and improves data commu­

nication speed considerably for a small number of functional units, however, there are

difficulties when the number of bus segments increases.

In buses with long length, traffic in the middle part of the bus will be dramatically

higher than in the ends of the bus. Let us assume a partitioned bus with N serial

segments, where the probability of the segment m sending data to segment n in time t

is Pm,n(t), then the probability that segment k has been occupied by data transfer of

other segments communication at the time t is Pk(t), which can be calculated as

k N N k

Pk(t) = L L (Pi,j(t) . qi,j(t)) + L L (Pi,j(t) . qi,j(t)), (5.2)
i=l j=k i=k j=l

where qi,j(t) is the probability of the path from segment i to segment j is not occupied

by other segments data exchange at time t. According to Figure (5.11), the path from

segment i to segment j is not occupied by other segments data exchange if data would

not be sent:

Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure 101

- Case 1: Sending data from region A to B or C,

- Case 2: Sending data from region B to A or B or C,

- Case 3: Sending data from region C to A or B,

which means that qi,j(t) can be calculated as

Case 1 Case 2 Case 3
,,-_____ A , r .A.. , r A'-___ -.,

i-I N j N N j

qi,j(t) = IT IT (1 - Pl,m(t))· IT IT (1 - Pz,m(t))· IT IT (1 - Pl,m(t)), (5.3)
l=l m=i l=i m=1 l=j+1 m=1

k
. 1...... .

1 I .. ,""" I ~J N
• II!I .---~ iii 111---l1li • III
~I __________________ ~lIl ______ +I----~I~1 __________________ ~I

Region A Region B RegionC

FIGURE 5.1l: Sending data from segment i(< k) to segment j(> k) divides the MWP­
Bus into three parts.

In a real implementation of the bus structure, however, the probability functions Pm,n(t)

are dependent on each other because whenever there is no available segment to create a

path, which is called path congestion, data communication between segments needs to

be postponed to the time at which a path is available for data transfer. Even regardless

of this fact, Equation (5.2) shows that in designs with a large number of functional

units and consequently, a large number of bus segments, data communication latency

will inevitably increase in MWP-Bus. Table (5.3) shows these probabilities for buses

with different numbers of segments in the simplified case that assumes Pi .j = Po and

Pi .i = 0 for all the segments. It can be observed from Table (5.3) that data traffic in the

central part of the bus increases with the number of segments if Po is < < 1. In other

words, if the probability of data exchange between bus segments is low, data traffic in

the middle part of the MWP-Bus is expected to be the bottle-neck of data transfer

between functional units which are placed in different bus segments.

TABLE 5.3: Comparing occupation probabilities for the segments of the buses with
different number of segments.

~ 1~ ____ ~ ____ ,-___ p_l~a~c_e __ o_f_t,h_e_S_e~g~rn~e_n_t_l_'n-,11 __ VV __ p_-_B~u_s ____ ,-__ ~~ __ __
1 2 I 3 I 4 5

3 4po(1 - po)::! 6po(1- PO)5 4po(1- PO)3 - -
4 6po(1 - PO)5 lOpo(1- PO)9 10po(1- po)l! 6po(1 - PO)5 -
5 8po(1- PO)7 14po(1 - PO)13 18po(1 - PO)17 14po(1 - PO)13 8po(1 - po)'r

A possible extension, to avoid this problem, is a bus structure which provides more

than one path between some points in the datapath using parallel paths across the bus

Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure 102

segments. Data transfer schemes and the related controller will be more complicated

but this extension improves the data transfer latency significantly, see Figure (5.12)

for simple examples of this proposed extension which is called Multiple-Way Multiple­

Width Partitioned Bus (MW2p-Bus). FUs in the Figure (5.12) are considered as single

(/"~~--G1--­

I
I
I
\'----r---'

(a)

(b)

FIGURE 5.12: Multiple-way partitioned bus a)Two parallel line partitioned shared bus
c) Three parallel line partitioned shared bus.

input units which does not reduce the generality of the method because in the case of

multi-input FUs, each input or output can be connected to the same or different bus

segments.

These MW2p-Bus can be envisaged as a set of parallel MWP-Buses with segments

connected by bus switches. For more than three parallel buses, the structure forms

three dimensional shapes, as shown in Figure (5.13), where the resulting structures are

polygonal prism lattice buses in which the vertices are bus segments and the edges are

bus switches. In the Figure (5.13), M and N represent the number of parallel lines and

the number of serial segments respectively. This prism bus structure can be extended to

a torus shape by connecting the ends together, as depicted in Figure (5.14), to reduce

the average communication path lengths.

The major problem of these structures is the categorisation of the sub-blocks according

to their data traffic. In other words, to find which sub-blocks must placed together in a

group or which bus structure must be used, a profile of sub-block data transfer during

system operation is required from which the synthesiserjoptimiser can make a decision

to put which sub-blocks in which group and what bus structure should be used.

Chapter 5 Multi- Way Multiple- \~ljdth Partitioned Bus Structure

(a)

(b)

(c)

M=4

N=3

M=4
N=4

M=5
N=6

FIGURE 5.13: The proposed bus structure in higher dimension a) Four-line structure
b) Five-line structure c)General prism structure.

FIGURE 5.14: The proposed bus structure in a torus form.

103

Since the MW2p-Bus structures are polygonal prism lattice buses which require 3-D

wiring, in general, the interconnection complexity increases with the bus dimension and

the number of nodes. This bus structure can be reduced by the synthesiser to simpler

forms by pruning unused segments or trading off the speed with trimming the less-used

edges during the optimisation process.

Figure (5.15) illustrates the simplification idea for a planar lattice structure. In this

figure, a MW2p-Bus with N = 2 and IVI = 4 is depicted, where Figure (.S.15-a) shows

a fully implemented bus on which all the required combinational paths are shown by

dashed arrows. Consequently, there are some bus segments and bus switches that can

be pruned from the bus without any reduction in communication capability of the bus,

as depicted in Figure (5.l5-b). In comparison with the full implementation, which needs

Chapter 5 Multi- Way Multiple-Width Partitioned Bus Structure 104

12 bus segments and 14 bus switches, the pruned form only needs 5 bus segments and

7 bus switches, which is a considerable improvement.

r;;·:::~·:::.::~~::-:::::::···:::-~:::·~::::l· --_. __)

#A B ~ C D~
-E •••••••••••• _-..... ~. __ •• _ ••• _. __ u •••• __ <tf ••••••• --•••• -_.). __ ._ ••••••••• -).- -_ •••••••• _*

* •
" :

C:-.......... _._.... .-................ -.~ Lt

+ +
i i
i !
.. • ••• __ ••••• u ••••••• ___ ••••• __ • __ •••••• •

1

(a) (b)

FIGURE 5.15: Graph model for the three line bus as in Figure (5.13-b) a)General
structure b)Same bus after pruning unused segments.

This example suggests that (regarding maximum required path), to connect all the

possible combinations ofthe segments, the simplified form of the MW2p-Bus can directly

be derived from M. Consider a MW2p-Bus with M = 5, which is depicted in Figure

(5.16), to illustrate the issue. Figure (5.16-a) shows the fully implemented bus with the

required paths shown with dashed arrows. Similar to Figure (5.15-b), the pruned bus

is extracted as shown in Figure (5.16-b). In comparison with the full implementation

which needs 20 bus segments and 31 bus switches, the pruned form needs 8 bus segments

and 13 bus switches. Even this reduced structure might be pruned by the synthesiser

after allocation and scheduling and when it is figured out that some of the bus segments

and/ or bus switches are not used in the design.

,

*
l1 1

t-_···-

(a) (b)

FIGURE 5.16: Graph model for a MW2p-Bus with M = 5 a)Full implementation
b)Same bus after pruning unused segments.

To generalise this reduced structure, consider Figure (5.17). Let assume that all the

functional units are connected to the central bus segments in Figures (5.13), which we

call base-segments, so all other parallel segments are only used to provide the required

connections between the base-segments. We allocate paths for all possible combinations

of two segments, starting with the left-side base-segments. It can be observed from

Figure (5.17-a) that this allocation occupies the first level of parallel segments. In con­

sequence, all other base-segments are similarly allocated to the paths which are required

to connect them to other base-segments as depicted in Figure (5.17). After elimination of

Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure 105

unused parallel segments, the reduced structure ofthe bus is achieved in Figure (5.17-b),

which has a considerably lower complexity and implementation cost. Even this reduced

structure is only needed in designs in which all the base-segments have communications

with each other at the same time, otherwise after allocation and scheduling, see section

2.2, this reduced structure might be reduced to a simpler structure.

J

\1)
~

1
(a) (b)

I \

I \
{

r

i
!
I

\

\
\ / .J

\

I
I
I
I
I

FIGURE 5.17: Graph model for a MW2p-Bus mapped into a Manhattan grid a)Full
implementation b)Same bus after pruning unused segments.

To estimate the required bus segments and bus switches in the reduced form of the

MW2p-Bus, let us count the number of bus segments, NBS, and the number of bus

switches, Nsw . According to Figure (5.17-b) NBS can be calculated as

N sw can be calculated as:

(1 + 2 + ... (M - 3)) + M,

(M - 3)2 + (M - 3) M
2 +,

M2 - 3M +6

2

horizontal lines vertical lines

Nsw

r-______ A A ______ ~

'(1 + 2 + ... (M - 1))'+'(1 + 2 + ... (M - 3))'

(M - 1)2 + (M - 1) (M - 3)2 + (M - 3)
2 + 2 '

M 2 -3M+3,

(5.4)

(5.5)

Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure 106

where in both it is assumed that M > 3.

One parameter which is also useful in the cost estimation of this bus structure is the

number of grid segments where the bus is mapped to the Manhattan Grid [124]. Due to

the three-dimensional structure of the bus, it cannot be mapped to a two-dimensional

grid such as a Manhattan Grid without overlaps of some edges in the grid, as is shown in

Figure (5.16-b). After this mapping we count the number of the covered grid segments

to approximate the wiring cost of the bus. Accordingly, for a bus with M serial base­

segments, the reduced form in Figure (5.17-b) has NGS grid segments which consists of

horizontal (N H,GS) and vertical (Nv,Gs) lines. N GS can therefore be written in the form

of Equation (5.6).

N GS N H,GS + NV,Gs,

M -1 + ((M -1) + (M - 2) + ... + 3 + 2) + NV,Gs,

M2+M-4
2 + NV,Gs, (5.6)

where according to Figure (5.17) NV,GS can be written as:

NV,GS = (1) + (1 + 2) + (1 + 2 + 3) + '" + (1 + 2 + ... + M - 3),
M-3 j 1 M-3

L L i = 2 L (j + j2),
j=l i=l j=l

~ ((M - 3)2 + (M - 3) 2(M - 3)3 + 3(M - 3)2 + (M - 3))
2 2 + 6 '

~ (2M3
- 3M2 + M - 30 M2 - 5M + 6)

2 6 + 2 '

M3 -7M - 6

6
(5.7)

Then the number of the grid segments in the reduced form of MW2p-Bus (NGs), with

M serial segments, can be derived as in Equation (5.8).

NGS =
M2 + M - 4 M3 - 7 M - 6

2 + 6

M3 + 3M2 - 4M - 18

6
where M > 3, (5.8)

This equation for M =4 and M = 5 results in NGS = 13 and NGS = 27 respectively

which can be confirmed by inspecting Figures (5.15-b) and (5.16-b).

Since this bus structure replaces multiplexers in datapath synthesis, another interesting

problem compares the circuit level implementation of the bus switches and multiplexers.

Bus switches which are a key element in this bus structure can be implemented in the

form of gated inverting-buffers as depicted in Figure (5.18-b), where the simplest CMOS

Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure 107

implementation of a 2-input multiplexer using pass-transistors is as in Figure (5.18-

a), more details can be found in [108]. Comparing the two circuits shows that a bus

switch needs more transistors than a 2-input multiplexer (6 against 12), however, the

number of required transistors will increase geometrically with the number of inputs of

the multiplexer (18 for MUX-4 and 42 for MUX-8 for instance).

/----

AV Out
B 1

S

(a)

s

:~~"'
T GND

S

(b)

FIGURE 5.18: Comparing Bus Switches and Multiplexers a) Single-bit MUX-2 circuit
b) Single-bit bus switch circuit.

5.4 Wire Length Estimation

Rent's Rule, [124], gives a complexity measure of the interconnection topology and the

quality of the placement using circuit partitioning. This is the relationship between

the average number of terminals (or pins), T, of a part of a circuit (a bin) and the

average number of cells/macros (Basic Logic Blocks, B) inside the bin and t, which

is the average number of terminals per cell/macro. The relationship between these

parameters is therefore given by Rent's law as in Equation (5.9).

T = t· BP, (5.9)

where p is called the Rent exponent.

There are wire length estimations based on Rent's rule [124], but since wire-length

estimation is out of scope of this work and also we only need an approximation which

can be used to compare MW2p-Bus structures during the optimisation process, here by

flattening a general form of the MW2p-Bus to a modified Manhattan grid, as depicted

in Figure (5.17), the MW2p-Bus wire-length is approximated as a function of the node

count of the grid. Knowing that every node must be connected to at least one edge,

because of the lattice connectivity, MW2p-Bus wire length is a function of Nsw (see

Equation (5.5)).

Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure 108

On the other hand, every segment in MW2p-Bus has a distinct bit-width which multi­

plies the number of its wires. Accordingly the wire length for a MW2p-Bus bus is

--+
LB = F(W,M), (5.10)

--+
where W is the array of word-lengths of the bus segments as in Equation (5.11).

w = [WI W2 ... W N B] , (5.11)

where Wi refers to bit-width of bus segment i.

--+ --+
In general, F(W, M) in Equation (5.10) is not only a nonlinear function of Wand M but

is also a function of floor-planning/routing algorithm as well as the target technology.

Then, assuming a feasible place and route of the functional units, Equation (5.8) can be

used to derive an upper limit for wire-length of the MW2p-Bus, as in Equation (5.12).

(5.12)

where the W is the average bit-width of the bus segments. Since the complexity of the

function in Equation (5.8) affects the optimisation performance, a linear form of the

equation is applied in our cost model as in Equation (5.13).

LB ~ A . M3 + 3M
2

- 4M - 18
6 ·W, (5.13)

where A represents an empirical constant coefficient and W is the average bit-width of the

bus segments. This model provides a linear relationship with the average word-length

and a polynomial (third degree) nonlinear relationship with the number of MW2p-Bus

base-segments (M).

It should be noted that this expression represents the average wire length for the MW2p­

Bus (LB = ~) but not the interconnection cost, which should be specified in a hierar­

chically partitioned circuit placement optimisation. While the model of Equation (5.13)

is a plausible model, we utilise it within the context of the given modelling problem in

the optimisation algorithm in chapter 7.

5.5 Implementation Algorithm

The proposed structure for data communication in the datapath, in combination with

word-length optimisation forms a high level synthesis method. For the sake of clarifying

the method, here, we only consider the bus structure and functional units allocated to

the bus segments, which means that the HLS sub-tasks (see section 2.2) are solved and

the number of the required functional units is known and all the bus segments are also

Chapter 5 Multi-Way Multiple- Width Partitioned Bus Structure 109

considered to have a uniform bit-width. The implementation algorithm consists of the

following steps:

1. Choose the number of the base-segments, M, of the MW2p-Bus,

2. Divide the functional units into M groups,

3. Find data transfers between groups in each C-step,

4. Allocate the functional units to the base-segments to provide them with the re­

quired path for every data transfer in the DFG with minimum intra-group data

transfers,

5. For all the C-steps:

(a) For all the base-segments: start from the far-left segment to the far-right

segment,

i. allocate available segments to the required paths in the DFG,

6. If there are any unallocated paths (congestion), go to step (1) and increase M,

7. Prune the unused bus segments,

Each step of this algorithm contains sub-steps which are implemented and discussed in

the optimisation algorithm.

The path allocation algorithm for inter-group data exchange, in its general form, is a

routing problem or dynamic shortest path problem. To simplify and make it practical

for the cost evaluation algorithm, we restate the problem as follow: "Find the shortest

path between two nodes when the most left-hand side node has the highest priority and

the priority of other nodes decreases from left to right". If a node requires an inter­

group data transfer and it has priority, the algorithm allocates the path to it at the

corresponding C-step. In the case that no path is available, this data transfer will be

postponed by one clock cycle when new paths will be available. This method is not

the optimum way to route the paths but it is practical. Another issue which might be

considered during optimisation is the possibility of trading MW2p-Bus segments with

latency. It is reasonable to restrict MW2p-Bus segments to a certain number to reduce

the costs at the price of speed.

From an optimisation point of view, MW2p-Bus is combination of two problems: bus

segmentation and word-length optimisation. It is proved in [115] that the bus segmen­

tation problem is an NP-hard optimisation problem. In [29] word-length optimisation

is also demonstrated to be a NP-hard problem. So a combination of these two problems

should be more difficult to solve by exact methods of optimisation in practical a time.

Accordingly, stochastic methods of optimisation are more viable in practice. It means

Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure 110

that the step (1) and (2) in the algorithm can be implemented in the form of a random

walking search to find an optimal solution for the problem. We introduce a genetic

algorithm search for this problem in chapter 7.

Example 5.3. Mvrfi P-Bus implementation of Example (5.1).

Figure (5.19) demonstrates the operations scheduling with one multiplier and one ALU.

In this figure, numbers indicate the control steps on which control signals are applied to

the functional units to start the operations or transfer the data. Table (5.4) shows data

transfers in each C-step of Example (5.1) after scheduling and allocation for implemen­

tation with one multiplier (MUL) and one ALU with the assumption of a SISO (Single

Input Single Output) structure for this circuit. In this table, "-+" represents data trans­

fer and the index shows the input number of the functional units (for instance, MULl

is the first input of the multiplier). Since the design has only one input, it is impossible

to read two different values from the input in a single C-step, which is resulted in 2TD

(data transfer delay) extra time compared with Table (5.1). It is also assumed that the

operation delay of the adder and multiplier are the same. The MW2p-Bus implemen­

tation is depicted in Figure (5.20). To show a different style of design which can be

employed in this approach, we consider input and output terminals of the functional

units separately and deal with them as independent data exchange points in the circuit.

C-Step

Data Transfe

MUL

ALU

FIGURE 5.19: Data transfers in each C-step for Example (5.1) implemented with one
multiplier and one ALD.

~~ ~ In~ut
[liIJ
~

FIGURE 5.20: MWP2p-Bus implementation of the Example (5.1) circuit.

One of the advantages of this method is the flexible structure which provides the option

for the designer to trade off latency against bus interconnection complexity. Accordingly,

Chapter 5 Multi- Way Multiple-Width Partitioned Bus Structure

TABLE 5.4: Data transfers in each C-step for Example (5.1) implemented with one
multiplier and one ALU.

C-step II Data Transfers: I Delay
1 x -+ MULl al -+ MUL2

x -+ ALUI

2 dx -+ ALU2 MUL -+ REG1 TMUL

3 a3 -+ ALUI ALU -+ ALU2
dx -+ MULl

4 U -+ MUL2
5 MUL -+ MULl REG1 -+ MUL2

ALU -+ c TMUL +TD

6 U -+ ALU I MUL -+ ALU2 TMUL

7 Y -+ MULl a2 -+ MUL2
8 MUL -+ MULl dx -+ MUL2 TMUL+TD

9 ALU -+ ALU I MUL -+ ALU2 TMUL

10 u -+ MULl
11 dx -+ MUL2 ALU -+ Yf
12 dx -+ ALU I MUL -+ ALU2 TMUL +TALU

13 ALU -+ uf TALU

Total Delay: 6TMU L + 2T ALU + 2TD

111

the circuit of Figure (5.20) shows the maximum required complexity to achieve the

same latency as peer-to-peer data communication, in which the circuit can be reduced

to lower complexity with lower speed. It is also observable that this implementation

provides more flexibility in data communication in that there are several paths available

for every data transfer which can be useful to reconfigure the system on fly.

Example 5.4. Mv02 P-Bus implementation of Example {5.2}.

Figure (5.21) demonstrates the operations scheduling with two multipliers and two

ALUs. In this figure, numbers indicate the control steps on which control signals are

applied to the functional units to start the operations or transfer the data. Data trans­

fers in each C-step of Example (5.2) after scheduling and allocation for implementation

with two multipliers (MUL) and two adders/subtractors can be found in Table (5.5) and

more details can be seen in appendix B. In Table (5.5), MUL stands for multipliers and

ADS represents adder / subtractor and the indices show the inputs number. Again we

assume a SISO structure for this circuit, delay time, therefore is 4TD longer compared

with Table (5.2) because of extra time which is required for data transfer from input or

to output of the circuit. Grouping of the functional units to minimise the intra-groups

transactions is shown in Table (5.6) and Table (5.7) shows data transactions between

these groups in different C-steps. The result MW2p-Bus implementation is depicted in

Figure (5.22).

The second example shows that by correctly using the bus structure, the same speed as

peer-to-peer implementation is achievable.

Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure

C-Step 1

MUL2

MUL1

ALU2

ALU1

FIGURE 5.21: Operations in each C-step for Example (5.2) implemented with two
multiplier and two ALU.

TABLE 5.5: Data transfers in each C-step for Example (5.2) implemented with two
multiplier and two ALU.

C-step II Data Transfers: I Delay

1 Q~ ~ MULll bo ~ MUL1 2
Qf ~ MUL21 b1 ~ MUL22 TMUL+TD

2 MULl ~ ADSl1 b3 ~ MUL12
MUL2 ~ ADS21 b4 ~ MUL22 TMUL

3 MULl ~ ADS22 MUL2 ~ ADSb TALU

4 ADSI ~ REGl,ADSl1 ADS2 ~ REG2,ADS21
Pj: ~ ADS12 Pi

k ~ ADS22 TALU+TD

5 ADSI ~ pk+l
T

ADS2 ~ p k+1
t TD

6 REGI ~ ADS21 REG2 ~ ADSh TALU

7 ADSI ~ Q~+1 ADS2 ~ Q;+1 TD

Total Delay:

TABLE 5.6: Functional units grouping result.

I Group 1 I Group 2 I Group 3 I Group 4 I Group 5 I Group 6 I
IN MULlout MUL20ut ADSlout ADS20ut MEM

MULl1 ADS22 ADS12 ADSl1 ADS21 MUL12
MUL21 REGI REG2 MUL22

Output

TABLE 5.7: Intra-groups data transfers.

I C-Step I Transfers I
2 2~4 3~5

4 1 ~ 3 1 ~ 2
5 5~4

6 4~5

7 5~4

112

It is worth to be reminded that this method is in RTL level of datapath implementation,

which means that some problems of architecture level bus design are not applicable

here. In other words, place and route methods will be applied to the output of our

design method exactly the same way as MUX-based design. Therefore, wire-length

· Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure 113

~------, I REGl]

~ of I 1.
BSW

In 2 ~Qll.Ll In 1
ADS2 ADS 1 ADS 1

FIGURE 5.22: MWP2p-Bus implementation of the Example (5.4) circuit.

of the interconnections (in average) are not expected to be longer than MUX-based

method. Similarly, driving buffers and transistor sizing of the switches are not like bus

drivers in architecture level of the systems. They only need to drive funtional units as

much as fanout of the gates in the cell-library. However, if functional units grouping

and allocation result in big number of functional units are connected to bus segments,

length of the bus can be a problem regarding data transfer speed. In this case data

communication from one end of the bus to the other end might need more than one

clock cycle which is a limitation of the method and must be considered in designs with

the big number of functional units.

5.6 Summary

In this chapter a new method for bus-oriented communication synthesis is presented.

This method is based on partitioned bus and parallel segments to provide data commu­

nication for functional units whenever it is required. In the method every functional unit

is connected to a bus segment which is connected to other segments by a bus-switch.

These bus-switches are tri-state switches which isolate or connect segments by control

signals.

In the general form, these bus segments are connected to each other in the form of a

prism or torus to build up a bus structure. This bus structure is a three dimensional bus

topology in which the number of serial and parallel segments state the number of avail­

able paths for every data exchange between functional units. This method is compared

with peer-to-peer (multiplexer-based) method and its capability is discussed. Further­

more, in combination with multiple word-length methods this structure is extended to

MW2p-Bus in which (this freedom is added to the structure that) each segment can

have a different width from others. This structure provides a very flexible data commu­

nication platform for computationally intensive datapath with higher flexibility which

can be used in more complicated cases such as reconfigurable hardware. This structure

Chapter 5 Multi-Way Multiple-Width Partitioned Bus Structure 114

is applied to the implemented method in the future chapters as a predefined architecture

in the proposed high level synthesis method.

Chapter 6

Synthesis Using MW2p-Bus

6.1 Introduction

In this study, a design method is proposed that starts from a hierarchical behavioural

specification of the target system and produces a synthesisable Register Transfer Level

(RTL) representation. The resulting design is constructed hierarchically using a MW2p­

Bus with a flexible structure to match a variety of applications. Besides, it is very mod­

ular and manageable for the synthesiser and optimiser. Accordingly, an implementation

structure is introduced in detail in this chapter which explains how this structure can

be integrated into the synthesis method in the form of a predefined-architecture. This

architecture is capable of containing different kinds of sub-blocks which are required to

perform an algorithm. Supplementary design examples are provide in appendix B to

show the capability of this architecture.

The majority of HLS methods split the target design into two parts: controller and

datapath. The controller is a state machine which manages the sequence of operations

and controls the datapath blocks and the datapath does the computation. On this basis,

the HLS methods translate a high level specification of the design into a synthesisable

specification. This translation is not a simple one-to-one mapping between these two

specifications, but there exist many different and correct mappings that can be applied

to a given description which satisfy the functional correctness and design constraints.

Choosing the best, or at least a good, solution among all possible cases is considered as

an optimisation problem, which must be performed by a "Synthesiser". In most cases,

the synthesiser works in a similar manner to a software compiler in which a high level

specification is translated to a low-level implementation based on rules and restrictions

using intermediate specifications.

Hardware implementations of the algorithms, can be considered as a class of designs

which have some specific characteristics, see section 2.4. Design and implementation

115

Chapter 6 Synthesis Using MW'2P-Bus 116

of specific application hardware not only requires information about the field of the

application but also, sometimes, demands a set of specific methodologies or tools. Com­

putationally intensive algorithms have characteristics which distinguish them from other

digital systems. Due to these common properties, the target design for them can be re­

stricted to improve the synthesis process. In our method, a pre-defined target architec­

ture for the design is used to reduce the feasible space of optimisation and consequently

improve the synthesis method.

From a synthesis point of view, on the other hand, this target architecture is a restriction

in that it forces the synthesiser to map every design to a pre-defined structure which

dominates the feasible solution space in favour of the optimisation performance. Accord­

ingly, the datapath structure is constrained to a MW2P-Bus and a set of pre-defined

functional units with configurable arithmetic characteristics. However this structure is a

restriction for the synthesiser, but has sufficient flexibility to be used with a wide range

of computational algorithms. This chapter represents the proposed method for high

level synthesis of computational algorithms which, from an abstract high level synthesis

standpoint, is a restricted HLS.

This chapter is organised as follow: first, an overview of the synthesis method is pre­

sented; the second section provides details regarding pre-defined architecture and the

last section gives details of the synthesis tool.

6.2 Synthesis Method

There are a limited number of functional units which are used to construct most of

the hardware implementations of the computational applications. Algorithms which are

based on linear operations, for instance, can intrinsically be implemented by adders,

multipliers plus memories and the required glue logic. Nonlinear operations, such as

elementary functions, also can be evaluated by combinations of the elementary arith­

metic operations in the form of mathematical approximations with sufficient accuracy,

see [92]. It means that a library of the elementary arithmetic units can be adequate

to implement most computational applications. Taking into consideration the discus­

sions regarding target architectures and restricted HLS in sections 2.3 and 2.4, a design

method is proposed which is specified for computational algorithm synthesis starting

from a high level description of the goal system and is based on three parts: Functional

Blocks Data Base, Soft-Architecture and Synthesiser, as depicted in Figure (6.1).

The Functional Blocks Data Base (FBDB) is a library of functions and sub-systems

which may be used in computational algorithms. In addition to sub-systems implemen­

tation information, this data base must have a full set of optimisation parameters for

optimiser cost functions like: area, speed, power consumption and accuracy. It means

that each functional block and its constituents must be designed and optimised, then

Chapter 6 Synthesis Using M1V2 P-Bus

E:dernal IPs ~==~··X

Designed System

requirements
of the System

FIGURE 6.1: General description of proposed system design method.

117

their required parameters (area, speed, puwer consumption and accuracy) be modelled

for different arithmetic configurations to store in this data base. This library can also

be enriched by external IPs for further applications or higher performance .

. One can imagine the target architecture as the general plan of a system which indicates

the type and the connection of the sub-systems. This architecture, which should have

the flexibility to cope with a vast variety of possible applications, consists of four subdi­

visions: a.lgorithrn executers, interfaces, memories and controllers, as depicted in Figure

(6.2). Furthermore, it gives details of sub-systems grouping, interconnection structure,

communication protocol and general aspects of the system operations. Details of the

sub-systems or their functional blocks will be produced by the synthesiser according

to the system specification, FBDB and external IP characteristics. Since this method

works in several levels of abstraction and in each level it must choose the best selections,

according to the system specifications and requirements. Design building blocks can be

chose either from FBDB or external IPs to implement the target system.

The proposed design platform has been graphically explained in Figure (6.2). As can be

seen, there is a database of the preliminary available subsystems which can be used in

the design by fitting them into the soft-architecture. In the following sections, different

parts of this platform are explained.

6.3 Target Architecture

The synthesis method proposed for computationally intensive hard\vare in this study is

based on a combination of 'Nord-Iength and bus structure optimisation as discussed in

chapters 4 and 5. These two problems are considered to be NP-hard, [29] and [115],

which means that exact methods of optimisation are impractical. V.,Te have chosen a

genetic algorithm to search the feasible space for optimum designs, but the nurnber of

Chapter 6 Synthesis Using MW P-Bus

Synthesiser Subsystems Data Base

Synthesiser

Proposed Soft Architecture / ,---------, I
lAlgorithm Executcr

£7::..

~i Tntemal1vlemory

:Algorithm Executcr

Users
Mass Storages
Power Circuits

Data Communication Networks
Environmental Sensors

.Peripherals
Other Systems
Voic~Image ..

I
I r;::;11/0 :£:face i< i ~ A~~~~ion Simulator

'.. r Exchanger i I - "- / _______
': !~

Controller ~! . User andlor A i ~
,'=:::, r;=;, Oth. er Sy. stems ':~ ,I.,.,)
~ . ! ; Interfaces'!'

7- j

FIGURE 6.2: Structure of target hardware in the proposed design method.

118

all possible solutions can be very large which makes the search very time consuming.

One way to reduce the number of solutions is restriction of the structure. In other

words, by limiting the design to a pre-defined architecture we have reduced the size of

the feasible space to a practical dimension.

The pre-defined architecture has a hierarchical structure consisting of four divisions: Al­

gorithm Executer, Memory, Interfaces and Controller, as depicted in Figure (6.2). The

algorithm executers are hardware implementation of the algorithms; the memory con­

tains permanent information, such as coefficients and also temporary data; the interface

is responsible for connecting the core hardware to the environment and controller(s) can

be programmed to keep the sequence(s) of operations. This division is obviously based

on the functionality of the sub-blocks to allow the synthesiser to optimise each part

independently in a top-down design hierarchy.

Chapter 6 Synthesis Using NTW2 P-Bus 119

The Algorithm Executer (AE) contains a configurable combination of Macro-Cells (:I\1C),

as depicted in Figure (6.3), in which different kinds of computational algorithms can

be implemented using macro~operations provided by the macro-cells. Since these AEs

should work in parallel, and possibly with interactions with each other, every AE needs

to have an independent controller which is configurable, to utilise MCs, performing

different sequences of macro-operations.

Control Unit (Controller ,md
Program MemOlY) Input

(X[n]) Addition Nodes ~

The Macro Cell

~
;\l'ithmetic Units

(Multiply and AdditiOl)

1 \
r------, r-------I \

/ : 00'" 00"': : ISEQUENCER/ :-I~ Q;¢:=0 I

IA <1181
r-- -------- ---- a~ 1/ D·MEMs II rr.1P I I CThi I I: sCheduly'n

g
. . Memory L _____________ ~ __ J

'''... \1
~ l\1emo";es(Tomporary, VI ,- '7 Delays and Coefficients) ".../

I/O

(Adders) \
, . \

,-----l~;Dr ,h Control

cootro~/ISignaIS
STh·1 --.r-J 4.)

B I
~----+---------4

IADDml:
___ J

J , 7
Computational Units v

(Macro Cells and Output
Addition Nodes) (Y[n])

FIGURE 6 .. 3: Algorithm Executers structure.

The MC contains the basic required Functional Units (FU) to execute the algorithms;

sequencer and memories. Functional units are the finest grains in the architecture.

Choosing between different arithmetic characteristics, such as the rounding method or

word-length, creates different options for the synthesiser to optimise the design taking

computational accuracy into account as a synthesis parameter. As a result of this

flexibility, the MC can have different structures to perform an operation with different

costs. In addition to the number and structure of the functional units, it is also possible

to configure the sequencers unit of the MCs to perform different operations.

Another part of the architecture is the interface blocks. Every systeTn should be con­

nected to other information sources and destinations. In general, these systems might

not use the same format of data and it means that a data interface is required for connec­

tion. To deal "vith these cases, interface blocks are considered to be built up from three

smaller parts: External Side, Internal Side and Exchange Controller, as depicted in the

Figure (6.4). The external part is dependent on the system external interconnections,

thus it could cover every kind of communication circuit according to usage. This diver­

sity of circuits must be provided by either the FBDB or external IPs. The synthesiser

chooses this block according to system specifications and requirements. The internal

Chapter 6 Synthesis Using l'vfW2 P-Bus 120

side transfers data to/from the system. It needs to work with the other sub-systems'

connection protocol and is under the control of the exchange controller. The exchange

controller manages data format which should be swapped between the internal side and

external sides with coordination with the main controller.

Internal /L---J\ External
Side Side

FIGURE 6.4: Interfaces basic block diagram.

Regarding the memory map of the system, two scenarios are possible: a central shared

memory and distributed memory. However, bearing in mind that the AEs and 1\1Cs

structure, there are enough memories in each AE to execute the algorithms, to make

the architecture more flexible, a set of memories has been considered in the top level of

the architecture. Furthermore, there are some kinds of applications, such as adaptive

systems, for which the system needs to be configured during operation so a connection is

considered between top level memory and the MC coefficients memory (CFM). Loading

from memory to the CFMs can be serial and independent of other operations in the

system.

In this architecture, at each level of abstraction there are controllers and sequencers to

control the operations of the units and sub-blocks in that level. These controllers manage

the operation of the units in that level and also exchange information with the upper

level as well as sub-blocks. Nevertheless all the controllers have similar structures. These

controllers construct a hierarchal controlling network in which each controller controls

its sub-block controllers in master slave configurations.

There are two possible implementations for the controllers: firmware and programmable.

The first one has a read-only structure, such as ROM or FSM, which saves the controlling

signals for each step of operation and in which no further changes or reconfigurations

are possible. The second one, which has more hardware overhead, uses instructions

and rewritable memories, thus it can be reconfigured after first configuration. The first

option can be implemented with lower cost, whereas the latter seems more suitable for

systems with adaptive or reconfigurable operations. A simple description of both types

is shown in Figure (6.5). In addition to the datapath, controllers have relationships with

each other in a hierarchical master-slave structure.

From the bus structure point of view, the proposed architecture basically uses a shared

bus structure, as in Figure (6.6), which has been expanded in a hierarchical structure. In

Chapter 6 S:yntiIesis Using M~V2 P-Bus 121

E~1emnl!Upper-level Feedback Signals
Control Signals ,--------------j

Conditional
Ripple
COlmter

Control
Signals

Decoder

Datapath Datapath

'------')
States Representation Signals

(a) (b)

FIGURE 6.5: Controller structure a) Firmware type b) Reprogrammable type.

this structure, every level of the system has its own bus which is managed by a controller

in the saIne block. As shown in Figure (6.6), this structure is a tree-shape expansion of

the bus \-vhere each branch of the bus is a shared bus. However this structure provides

an organised interconnection for data communication in the system, communicating

using the shared parts of the bus becomes a serious bottleneck in the applications with

high speed and/or intensive data exchanges. \Vith due attention tothis fact, in a more

general form, this structure has been improved by splitting the shared parts of the single

buses into several disjoint sections with controllable break points.

,--- 1[fj!l~···~1 ,-- 1lf¥Jlf¥J ... ~ I ,--- 1~lf¥J···@l1
to to IJJ
C I I·IltJs-;I'>I<r.,l I c I~ I c: I ll!p,s4·m~1 I U'J Ul Ul

3: +-> 1[fj!l~···~1 ~ +- I~~···~I ~ ~ I~~···~I p P> po
';A

I I '" I~ I • • • fh

I l_lIl.m'rob.<,! I h IlltlSM~o<~l FD
,..
a .., ...,
'"' - - · - · . · · . · ·

I~~···~I .I~~···~I I~~···~I
I IBtrsl>lW~J I FfWS:M • .i.rj I , !.:StJ5}{ • .."rl I

t
I BUS Master I

FIGURE 6.6: Bus structure of the proposed architecture from a physical connection
point of view.

From a hierarchical structure viewpoint, all buffers between hierarchical levels are break­

ing points which are controlled by the controllers at higher levels of the abstraction.

Accordingly, this idea is extended to the internal buses in each level, in which shared

buses are split up and sub-blocks are categorised into groups with the most communica­

tions together. A controller at the same level manages these bus break points to make

interconnections dynamic and flexible for general data transfer.

Chapter 6 Synthesis Using M1;v2 P-Bus 122

Comparing this communication structure with the MW2p-Bus, see chapter 5, it can

be observed that the MW2p-Bus has the structure which is required in this architec­

ture. Deploying the MvV2p-Bus into the architecture makes it also compatible with the

data transfer aware synthesis as discussed in chapter 5 and SNA Inethod of bit-width

optimisation proposed in chapter 4.

6.4 Synthesiser

In Figure (6.1) the synthesiser is a synthesis-optimisation tool whose input is a high

level specification of the algorithm in a C-like difference equation format, and whose

output is synthesisable RTL VHDL [141]. From a HLS point of view, this synthesiser is

a restricted method in the sense that there is a pre-defined hierarchical architecture to

which the system. must be mapped. In addition, a set of library files are used to synthesis

and optimise the design where the libraries contain basic blocks of the system and their

synthesis and cost parameters (computational noise, area, power, and delay). These

cost parameters can be used in a cost evaluation program after scheduling, allocation

and binding to optimise the design. Figure (6.7) shows a basic block diagram of the

synthesising process in the proposed method.

FIGURE 6.7: Synthesiser flow chart.

Chapter 6 Synthesis Using MW2 p-Bus 123

In this method, RTL specifications of the system are produced in two parts: first is

synthesis/optimisation, whose input is the high level specification of the system which

creates an intermediate specification of the system. Technically this part does the syn­

thesis and optimisation task of the design and its output is a set of files in the format

of intermediate codes (ICD). ICD files present the synthesised system in a datapath­

controller structure, full details of this intermediatce specification regarding the grammar

and mnemonics of the ICD files are provided in appendix A. The second part of the syn­

thesis method is the ICD2VHD program which translates the ICD files to synthesisable

VHDL.

To make the operations of the synthesiser clearer, the following sub-sections present

l11.ore information about the synthesiser. The optimisation task will be explained in

chapter (7) and design examples are included in chapter (8).

6.4.1 Internal Representations

There are several internal data structures to represent the different stages of the system

synthesis in this tool. First of all, a parser program catches the high level specification

of the algorithm and passes it to other programs to extract the algorithm structure.

This algorithm is translated to a directed graph (Digraph) based data structure which

is implemented using the STLPLUS library [112]. Moreover, since the design must be

mapped into the target architecture, the target architecture also has been converted to

another data structure which is based on digraphs as well. In this way, information

exchange between input specifications and the resulting design will be easier. Figure

(6.8) shows a general form ofthe input and the output data structures of the synthesiser.

Inputs

Time
slices

Outputs

(a)

>-l
S·
" 'to
.g
" ::l
(0

-2-

(b)

- Data Bus
........ + Control Signals

® Functional Unit

[£J Controller

FIGURE 6.8: Synthesiser data structures a)Input digraph b)Implementation architec­
ture digraph.

In Figure (6.8-a) a simple scheduling diagram of the input algorithm has been depicted in

the form of a digraph where numbered nodes are arithmetic operations in the algorithm

Chapter 6 Synthesis Using M~ P-Bus 124

and arrows represent data transfers between functional units. Figure (6.8-b) gives an

example of an implemented algorithm with controllers in the form of a digraph. N­

type nodes in this digraph are hardware implementations of functional units each of

which could be a nested digraph and represent a sub-system. B-type nodes represent

bus switches; they control the data communication between levels of architecture or

functional units. C-type nodes are controllers which control the bus switches and "N"

nodes. Apart from controlling datapaths, as discussed in section 6.3, controllers have

a hierarchical relationship with each other which makes them a single controller in

distributed form. From this point of view, this data structure is divided into two parts:

a network of controllers and a network of datapaths.

The system datapath is formed from three major parts: sub-blocks, arithmetic units and

glue logic. Each sub-block can be another system at the lower level of the hierarchy and

contains other datapaths and controllers. But from a higher level of hierarchy, they are

nodes, just like simple arithmetic units. Arithmetic units are the basic building blocks

of the system and perform the required arithmetic operation. Arithmetic units originate

either from the FBDB data base of the synthesiser or from the user-defined external IP

data base.

Since datapaths are fully involved in the system optimisation, their representation and

manipulation has a crucial accountability in the final result especially in the word­

length optimisation process. Internally, datapaths are represented as a set of digraphs

connected to each other and controllers.

As mentioned in section 6.3 there are two possible structures for controllers: firmware

and programmable controllers. In view of the fact that many of the computational

applications can be implemented by the first one, only firmware type of the controller

is employed in the synthesiser, however by some modifications implementation of the

programmable controller is possible as well.

There are two subjects of interest regarding controllers in this design platform: controller

structure and controller interaction with each other and sub-systems. Essentially, con­

trollers are finite state machines (FSM) which continuously send out activation signals to

manage the datapath behaviour. Each unit, depending on its structure, receives at least

one activation signal. Some of the units or sub-systems are more complicated and apart

from their incoming control signals, they might have outgoing signals for a handshaking

connection. The controller gets these handshaking signals as the internal controlling

signals.

Consistent with the target architecture, controllers build a tree network in which a

master slave relationship between them is established. This relationship is created by

a set of handshaking signals between controllers in different levels of the hierarchy,

see Figure (6.8-b). These signals are called external controlling feedback signals. The

implementation of the controllers is based on the ICD file format which is very similar

Chapter 6 Synthesis Using M"WZP-Bus 125

to register transfer signals tables (similar to Tables in appendix B). ICD codes provide

for controllers two different configurations which we call Structured by External Control

Signals and Unstructured. Figure (6.9) shows these two configurations.

Generally, controllers are state machines which are under control of the both internal and

external controlling signals. Internal control signals are feedback or handshaking signals

from sub-blocks and external control signals are handshaking signals from higher level

of abstraction in the architecture; see Figure (6.5). According to how these internal and

external controlling signals affect the state machine sequence, these two configurations

are defined in Figure (6.g-a) and (6.9-b).

'-----< End?

a b

FIGURE 6.9: Controller Structures a) Structured based on external control signals
b)Unstructured.

In Figure (6.g-a) before starting the main loop, external control signals are checked and

according to their values a set of operations will execute. This structure is suitable for

applications or sub-systems which must give full authority to the higher level of the

hierarchy to limit their operations in some circumstances. Alternatively, the second

structure, Figure (6.9-b), is more flexible in that in each state decision depends on the

all internal and external controlling signals.

Chapter 6 Synthesis Using M1-V2 P-Bus 126

6.4.2 Functional Blocks Data Base

The synthesiser and optimiser use library files for design implementation and Optimi­

sation. Two library files are created and used in this study: FUNCTIONS and UNITS.

From a synthesis point of view, FUNCTIONS gives the functionality information of the

basic blocks like: unit type, operation and signalling requirements. UNITS, on the other

hand, gives information about the implementation and optimisation of the functional

units. List (6-2) and list (6-3). give samples of these libraries.

List 6.2: FUNCTION lib library sample flle.

II Basic Blocks FUNCTION library: (sample)

OPERA TIONS:

BUS =BSW2 IN:[O;d;BUS] OUT:[l;d;BUS]

BB =BSWI SP:[O;d;d]

= MUL INl:[l;d;BUS] IN2:[O;d;BUS] OUT:[2;O;BUS]

+ = ADS INl:[l;d;BUS] IN2:[O;d;BUS] OUT:[2;d;BUSJ

= ADS IN1:[1;d;BUS] IN2:[O,3;d;BUS] OUT:[2:(I:BUS]

REG= reg IN:[O;d;BUS] OUT:[l;d;BUS]

6.5 Summary

List 6.3: UNITS. lib library sample file.

/I Basic Bloc"" UNIT librar~:
(sample)

UNITS:

BSW101 (lOA=l D=lN=lP=l

BSW2 02 00 A= 2 D= 1 N= 1 P= 1

MUL 03 OlA=-I D=lN=lP=l

ADS 04 00 A= 4 D= 1 N= 1 P= 1

reg 0200 A= 1 D= 1 N= 1 P= 1

rom 1000 A= 1 D= 1 N= 1 P= 1

A: ~l-rea P: Power dissipation

N: noise D: delay

This chapter provided a comprehensive explanation of the architectural implementation

of the design. A bus-oriented structure is proposed which utilises the concept of the

MvV2p-Bus in the form of a soft-architecture as target structure for the synthesiser. This

architecture consists of several hierarchical levels in which macro-cells are connected to

a central MW2p-Bus to implement the specified algorithm. This set of macro-cells and

MW2p-Bus is controlled by a controller which can be implemented in the form of a

single controller or a distributed network of controllers.

This architecture is used as the target structure for optimisation to reduce the size of

the feasible space and consequently increase the optimisation speed. The ne:h.rt chapter

provides details of the optimisation method for this synthesiseI' and the corresponding

algorithms.

Chapter 7

Optimisation Algorithm

7.1 Introduction

In mathematics, optimisation is the discipline which is concerned with finding the max­

ima and minima of functions, possibly subject to constraints. In most realistic optimi­

sation problems, particularly those in design, a simultaneous optimisation of more than

one objective function is required. It is unlikely that the different objectives would be

optimised by the same choice of alternative parameters. Hence, some trade-off between

the criteria is needed to ensure a satisfactory design optimisation. A large number of

problems in engineering need to be formulated as a global optimisation problem and in

general, global optimisation problems can be very difficult to solve [33].

Many different ways have been proposed and investigated in a variety of applications to

solve a general or special case of optimisation problems. From one viewpoint, these ap­

proaches can be separated into two categories: exact methods and stochastic searches.

In the case of problems with NP complexity, exact methods soon become computa­

tional intractable and are only available for a subclass of optimisation problems [46].

In contrast, there are possibilities for a particular class of problems to employ heuristic

methods with practical optimisation times.

High level synthesis is concerned with the automatic generation and allocation of func­

tional units, registers, buses, controllers and glue logic from an abstract specification

of the system, see chapter 2. Always, there are many different "correct" options for a

synthesiser to map a given specification, so choosing the best, or at least a good, solution

among all possible cases is considered as an optimisation problem. High level synthe­

sis, in general, involves at least two NP-complete optimisation problems. The first is

scheduling in which the operations given by the high level specification are assigned a

control step. The second is allocation which assigns functional units to operations given

in the high level description [30]. In the worst case, a synthesis task may require solving

127

Chapter 7 Optimisation Algorithm 128

an exponential sub-problem at each step of the main problem. Therefore, there has

been a trend toward developing efficient heuristic algorithms which avoid certain locally

optimal solutions.

Such an optimisation should take into account several design quality constraints. Area,

delay and power consumption are most often considered as quality measures in this

regard. One usual optimisation method is to search inside the space of all acceptable

designs, which is called the feasible solutions space, to find the optimal solution. From

one point of view, the design space can be defined as multidimensional space spanned

by different characteristics of design. Every point in this space represents a possible

implementation.

In this study four basic objectives are considered for optimisation: area, power consump­

tion, latency and output digital noise, as the accuracy of the system is considered as the

quality measure of the design. In accordance with this assumption, the cost functions

are investigated to provide suitable models and cost functions for these objectives which

relate them to the word-length of the design units as a controlling parameter. A multiple

objective optimisation is employed to combine these cost functions in a Genetic method.

7.2 Method Overview

Principally, optimisation can be considered as a process of selecting a set of "parameters"

for the system to make "some aspects", called objectives, of it work more "efficiently".

In other words, there are a set of parameters which control the objectives and optimisa­

tion searches for the available values of the controlling parameters which give the best

(or sometimes better) efficiency. The definition of the controlling parameters and the

inspecting objectives are dependent on the nature of the under investigation problem.

In high level synthesis there are a set of well known parameters by which optimisers

find the optimum solutions for problems [33]. In this study, these parameters are the

HLS parameters, as explained in chapter 2, word-length (see chapter 4) of the functional

units and the MW2p-BUS structure (as explained in chapter 5).

Since the HLS objectives are closely dependent on the new proposed parameters (MW2P­

bus structure and word-length) design and optimisation with the combination of them

requires a new optimisation approach. In this study a genetic algorithm is chosen to

find an optimal solution, then binding and allocation procedures are merged into the

bus partitioning and word-length allocation in the form of the gene codes to integrate

all the objectives in one problem.

It is shown in chapters 2 and 5 that bus partitioning is a very effective method to improve

the communication speed in bus-oriented synthesis methods. The proposed method in

this work is an extension of segmented bus structures into more complex structures as

Chapter 7 Optimisation Algorithm 129

well as multiple-width concept. This flexibility and extendibility provides a wide range

of opportunities for trade-offs between system costs and performances. Consequently,

considering bus structure as an optimisation parameter, in terms of the number of bus

segments, bus switches and wire-length, is practicable.

The majority of the high level synthesis methods consider arithmetic units as atomic sub­

blocks which perform operations with certain accuracy and a pre-known implementation

costs. Regarding recent studies and our discussion in chapters 3 and 4 it is generally

accepted that this assumption is not necessarily valid. Accordingly, word-length can

be considered as an optimisation parameter which has a considerable impact on the

implementation costs as well as computation accuracy. Particularly, in the systems with

computationally intensive datapaths, the word-length as an optimisation parameter has

a more significant role.

The first step to take these new parameters (word-length and bus structure) into ac­

count in the optimisation is: finding the relationships between design objectives and

the new parameters. In this study, circuit area, power consumption, latency and accu­

racy are considered as design objectives, which need to be investigated in terms of their

relationship with word-length of the functional units and the bus structure.

To combine all the objectives with the word-length and MW2P-BUS structure, a stochas­

tic search method is proposed in the form of vector evaluating genetic algorithm [34].

Controlling parameters are coded in a gene which consist all the required information

for evaluation of the effect of the different parameters on the optimisation objectives.

In the following subsection more details of the optimisation method, extracted cost

functions and the corresponding algorithms are discussed.

7.3 Cost Functions

The costs of the design can be divided into three parts: those of datapaths; controllers;

and interconnections. Since the design space is extended by word-length and bus parti­

tioning here, the effect of these two new costs must be evaluated on each part individu­

ally. The controller part is not dependent on the word-length or system bus partitioning

and so it should be considered as a constant value in the cost function but the effect on

the two other parts must be investigated. Having focused on word-length, it is shown in

[16] and [28] that accuracy, area and power consumption costs are dramatically depen­

dent on the word-length and execution delay is a function of the word-length in the case

of functional units whose operation is based on sequential bit operations (for example

sequential multipliers). Bus partitioning, on the other hand, influences costs by adding

bus switches and their control wires. The cost model is as:

-7 -7-7

FTotaZ(X) = FController + Flnterconnect(X) + FDatapath(X) , (7.1)

Chapter 7 Optimisation Algorithm 130

---7

where F is the cost function and X is the set of MW2P-Bus parameters. An important

point, which needs to be reiterated here, is that the proposed cost models are functions to

evaluate different designs during optimisation, which means their ability to map feasible

design space individuals into a set of distinct cost values, are more important than their

precision. In the following subsections, descriptions of the cost models are presented.

All the relations and values are based on basic cells in the ST 0.12 p,m technology using

the Synopsys tools.

7.3.1 Delay Cost Function

The execution delay of the design is evaluated from the number of C-steps in the sched­

ule. Basically, the delay is a nonlinear function of parameters such as: the types of

available functional units in the synthesiser library; functional unit grouping; and the

word-length assigned to each group. From these, an evaluation function is implemented

in the optimiser which estimates the delay value (for each produced design, genome, in

the genetic algorithm) using a Resource Constrained (RC) List Scheduling algorithm

[33]. The basic delay for registers, bus switches and combinatorial functional units is

considered to be one clock cycle, whereas the delay for a sequential functional unit (a

Booth multiplier, for instance [100, 35]) is dependent on the word-length of the func­

tional unit. In the case of the Booth multiplier, which is one of the functional units

considered, latency is linearly dependent on word-length.

Another impact of word-length manipulation which requires more attention here is its

effect on the maximum delay of the functional unit units which might affect the working

frequency of the system. In basic scheduling without chaining or multicycling (see

[33]), the slowest functional unit dictates the maximum execution delay in a clock cycle,

in addition, the latency of the functional units are dependent on their word-length,

thus there is a relationship between word-length and maximum frequency (however,

selection of system frequency is dependent on many different parameters ranging from

implementation technology, device design, system dependency on its peripherals and so

on, but word-length should be considered as a parameter too).

7.3.2 Area Cost Function

Design area and its dependency on the word-length of the functional units is estimated

for all the functional units, cells and glue logic and is approximately linear with respect

to word-length, except for combinatorial multipliers which exhibit a second order depen­

dency. In addition, the impact of bus partitioning on the area can be approximated by

the bus switch area, and thus the area cost function can be derived as Equation (7.2),

---7 ---7 --+
FA(X) = Ac + AFu(X) + AB + ABs(X), (7.2)

Chapter 7 Optimisation Algorithm 131

-+ -+
where P'4.(X) is the total area cost, Ac is the controller area, AFU(X) is the datapath

-+
area, AB is the interconnection area and ABS(X) is the bus switch area.

The area of building blocks such as sequential multipliers, adders, registers, buffers and

switches can be assumed to have a proportional relationship to word length while the

area of a combinatorial multiplier can be modelled by a second order relationship with

its word length. Design implementation results confirm this assumption as depicted in

Figure (7.1).

Basic Cells Area
12000,·· .. .

10000+·· ... - .. ~

8000

<U
~ 6000 + .. ···········7/:························

4000+··· ~~ ... ~~

2000T···~::::====~======~~====~~~

O+-----~----~-----,-----,-----,------,-----,

o 5 10 15 20 25 30 35

I--tr- reg -0- ADS -+- MUL I Word Length

FIGURE 7.1: Dependency of area on word length for basic cells (Registers, Adder and
Sequential Multiplier).

7.3.3 Power Consumption Cost Function

To evaluate the system power consumption, a model is required that includes dynamic

and static power consumption for all the sub-blocks, interconnections, I/Os, drivers and

controllers [108]. Knowing that changing the word-length of the functional units does not

affect the controller activity and structure, the power consumption of controllers (Pc) is

a fixed term in the estimated power consumption. In addition, because of using M\V2p­

Bus approach in this study, which is closely related to the word-length of the functional

units and the number of wires, interconnection power consumption (PB) depends on the

word-length of the shared bus segments; therefore, ignoring the PB dependency on w is

not acceptable at this level of abstraction. On the other hand, including approximation

models of interconnection power consumption is too complex to be combined with the

model of functional units' povver consumption in a practical optimisation method. To

cope with this difficulty, we assume that the wiring complexity of the system bus can

be separated from the rest of the interconnections, which means that the cost model of

the J\1W2P-Bus can be isolated from the rest of the system. Having this assumption,

Chapter 7 Optimisation Algorithm 132

PE only refers to the interconnections power consumption without data buses, thus the

power consumption model is approximated as in Equation (7.3). The MW2p-Bus power

consumption model is also discussed in section 7.3.5.

-+ -+
Fp(X) ~ Ppu(X) + PE + Pc, (7.3)

A set of designs is used to evaluate the functional unit dependency on word-length and

the results are presented in Figure (7.2). In this figure, the average power consumptions

for the basic cells in the library (Register, Adders jSubtractor and Multiplier), with

random input data, is shown with respect to word-length. In these simulations, the

"Nominal Low Leakage" ST O.12p,m technology file is used. From this, we can see

that power consumption has approximately a linear dependency to the word-length.

On the other hand, power consumption is a combination of static and dynamic parts;

accordingly, in each functional unit it is a sum of static and dynamic parts as in Equation

(7.4).

(7.4)

Here Pk is the power consumption of the kth functional unit.

In general, dynamic and static power consumption are data dependent [78] but in this

study, to estimate power consumption in the optimisation procedure, static power con­

sumption is considered proportional to the total power, Equation (7.5).

(7.5)

where Ak is the leakage power factor. Simulations verify this assumption for basic blocks

for different word lengths.

Another assumption used to reduce the evaluation complexity is a time slot approxima­

tion [138]. In this approximation the total power consumption of a functional unit is

calculated in two parts: "activation" time slots and "standby" time slots. During func­

tional operation, power consumption is the sum of dynamic and static power whereas in

standby, only the leakage power is taken in account. Based on this approximation, the

total power consumption for each functional unit is given in Equation (7.6).

-+
Fp(X) =

1 NF+NB

T L Wk' (tkPk + (T - tk) . Pk . Ak),
k=l

1 NF+NB

T L Wk'Pk' (tk + Ak . (T - tk)),
k=l

(7.6)

-+ .
where Fp(X) is the average power consumption of the system, Pk is the average power

per bit of the kth functional unit or bus switch, Wi is the word-length assigned to the

group which contains the kth functional unit or the bus segment which is connected to

Chapter 7 Optimisation Algorithm 133

the bus switch, tk is the activation period of the kth functional unit or bus switch, Ak

is the leakage power factor, T is the total system operation time (latency), NF is the

number of functional units and N B is the number of bus sections.

To verify this equation, a set of simulations are performed using cell based implemen­

tation of the functional units with STO.12/1m technology. First, functional units are

synthesised using Mentor Graphics tool, Leonardo, then the result Verilog specification

is simulated over a relatively long period of time (10 second) with random number inputs

by 1\10delSim simulator, to extract the switching activity. Afterwards, these information

with ST technology files for nominal design are used with the Synopsys Primepower tool

to estimate the average power consumption over the simulation period.

Basic Cell Power Consumption

0.00012

0.0001

g- 0.00008

! 0.00b06
~
0..

0.00004

0.00002

0

0 10 20 30 40

I-+- reg --ADS -IJr- MUL I Word Length (W)

FIGURE 7.2: Dependency of area on word length for basic cells (Registers, Adder and
II,lultiplier) .

7.3.4 Noise Cost Function

In SNA method, as explained in chapter 4, variable x is initially represented as in

Equation(7.7) .

(7.7)

where Fx (-) is a fraction of polynomials with !vI known coefficients (Xl, X2, ... ,X 1'\,1); and

it is an array as in Equation (7.8).

(7.8)

where Ei are symbolic representations of random values.

Initially, noise symbols are considered to have a uniform PDF model that is presented

in [99] and then improved in [28] which is the commonly accepted model in the multiple

Chapter 7 Optimisation Algorithm

8-bits 16-bits
16-bits

/-
!

Produ~e(rE~
Here

In model -= 0,
In reality = 0.

FIGURE 7.3: Mapping a multiple-WL DFG to hardware which shares resource.

134

word-length paradigm. Noise cost can be considered to be error range and/or variance.

With this initial assumption, since the PDF is uniform over [-1, +1], the variance (ak)

of the error is:

(7.9)

where p represents the decimal point position, n2 represents the word-length of the

previous node and nl represents the word-length of the next node. According to this

model, the values of noise sources are specified by the word-length of the current FU

and its preceding (parent) node(s). Equation (7.9) offers a simple model which is mostly

correct; however it can be misleading in some cases, especially in stochastic search

methods.

Consider an example, as depicted in Figure (7.3), which shows the general maximum

required word-length in a small section of a DFG. In the figure, the annotated word­

lengths on the inputs of the nodes in the DFG, are assumed that has been inherited from

the parent nodes in DFG and intermediate word-length are calculated based on the input

word-lengths and the operation types. Let us assume that this DFG is implemented on

resources shared hardware, as shown in the figure, which only can provide a 24-bit adder

and a 32-bit multiplier for this section of the DFG. Now, since multiplications, which

need only 24-bits on the DFG, are implemented on the 32-bit multipliers in the adder

node if 32-bit is considered as the input word-length, the adder output should have error,

which is not. Accordingly, noise sources in the model in [28J must be considered to be

dependent on all the prior nodes in the DFG, instead of only previous nodes, or the

word-length of the implemented hardware.

Chapter 7 Optimisation Algorithm 135

This simple example suggests that in the noise source evaluation in Equation (7.9), the

word-length for every node in the DFG must be calculated from data range propagation

through all its preceding parent nodes. Especially in stochastic search methods or HLS

integrated methods this data range analysis must be repeated at every iteration. To deal

with this problem, for the GA-based method we suggest an ordered production and eval­

uation of the word-lengths in the W-vector of the genome which considers dependency

between allocated word-lengths in the genome vectors.

In our optimisation method, the basic cost function of computational noise is as in

Equation (7.9) but n1 and n2 are calculated with aforementioned considerations. In more

accurate design evaluations, error range and error PDF of the computational circuit are

calculated using SN A method.

7.3.5 MW2p-Bus Cost Function

The proposed bus structure has a fairly complicated interconnection which increases the

interconnection cost. To evaluate the design efficiency, costs of the bus are considered

independently alongside the other costs of the datapath.

Since the general structure of the MWP-BUS, which is similar to a single shared bus, is

not dependent on the splitting point, except for added bus switches, thus its area can

be considered as a constant value. But MW2p-Bus is more complicated and to simplify

the problem here, the area of the MW2p-BUS is considered linearly related to its wire­

length. According to the results of section 5.4 an approximation for the wire length of

the MW2p-Bus is in Equation (7.10).

A
M3 + 3M2 - 4M - 18

LB~ . ·W,
6

(7.10)

where A, as explained in section 5.4, is a constant value and does not affect our com­

parative results during optimisation.

By employing the proposed method in [56] and [55] the average energy consumption of

the split-bus architecture per clock cycle is calculated as in Equation (7.11).

EB,P ~. o:sw' vld · {~[CBk L L Xfer(Mi,Mj)]

k=l iEBUSk jEBUSk,i#j

[
CP(k,Z) L L xfer(Mi, M j)] } ,

k=l Z=l iEBUSdEBUSk

(7.11)

where o:sw is the average Switching Activity, N B is number of buses, GBk is equivalent

capacitance of the kth bus, Gp(k,l) is equivalent capacitance of the path from bus k to l,

Mi is functional unit i and xfer(Mi, M j) is the probability of data transfer from module

Chapter 7 Optimisation Algorithm

[~]

3

2

1 2

,~ ~..,'Io . .
: :

3

~ -.. - -------. -... ---~ . .
J • . .

. . ., . . ., 1
I

M-I M

FIGURE 7.4: MW2p-Bus provides a dynamic connection path.

136

Mi to module Iv!j in any clock cycle. This method is more suitable for implementations

which consist of submodules which have a stochastic communication scheme.

Assume that the receiver gate for each module is at its minimum size. and its input

capacitance is Cg . Furthermore, the output capacitance of the driver for each module

Mi is Co,i, CBk , calculated as in Equation (7.12).

Nk;

CBk Wk' LBk . (Cu + Cc) + L Wk' (Co,i + Cg),

i=l

Wk' (LBk' (Cu + Cc) + Nk' (Co + Cg)) ,

Wk' (LBk . Clk + Nk . C2 ,k) ,

(7.12)

where LBk is the physical length of the kth bus, Cu denotes the capacitance per unit

length of the bus wires, Cc denotes the coupling capacitance per unit length of the bus

due to the parallel running bus wires as well as other nearby wires on adjacent metal

layers, Nk is the number ofFUs connected to the kth bus and Wk is their WL. In Equation

(7.12), these parameters are abstracted in C1,kand C2,k for simplicity.

In contrast, by revising the data communication structure which is proposed here, the

datapath has a dynamic data communication architecture in that there are no fixed

wired connections between functional units during their operation, as depicted in Fig­

ure (7.4). Thus, unlike Equation (7.11) the characteristics of the interconnection change

dynamically during datapath operation. Basically, these characteristics are dependent

on the source and destination nodes and the available path(s) in the MW2p-Bus for

connection at that time. In general these parameters are functions of datapath HLS ob­

jectives, constraints and also the structure of the MW2p-Bus and number of its switches

and segments. Each connection path is made of bus segments in the selected path from

source to destination. Accordingly, the ith path capacitance (Cpath,i) can be calculated

Chapter 7 Optimisation Algorithm

by adding up its bus segments as in Equation (7.13).

Ni

Cpath,i = L CBb

k=l

137

(7.13)

where CBk is the capacitance of the kth bus segment in the ith path. By employing the

proposed method and Equations (7.12) and (7.13), the average energy consumption of

the MW2p-Bus per clock cycle (EB) is calculated as in Equation (7.14).

1 2 Np

:tYSW Vdd L Cpath,i,
i=l

1 N p Ni

"2C1:SW vld L L wk(LBkC1,k + Nk C2,k)

i=l k=l

(7.14)

where Cl:SW is the average switching activity, N p is the number of paths and Vdd is the

power supply voltage. In this study, this power consumption is related to the length of

bus segments as well as their width (WL).

7.4 Optimisation Algorithm

The implemented synthesiser employs an optimisation method which is based on a Ge­

netic Algorithm (GA). This method tries to match functional units to the target ar­

chitecture with optimum word-lengths and MW2p-Bus structure. In general, a genetic

algorithm is a heuristic stochastic search algorithm for the solution of optimisation prob­

lems. Starting from a random initial guess solution (called the first generation), better

descendants are tried in an attempt to find one that is the best under some criteria and

conditions. It is based on the idea of evolutionary theory, that individuals having a high

value of quality will survive to the next generation with greater probability [49].

The utilised genetic operators (including weighted roulette wheel, crossovers and muta­

tion [34]) are extracted from a standard GA procedure for variable length, integer array

genomes. The resultant genes represent the number and word-length of each functional

unit in the datapath. It must be noted that the gene's length might be different for in­

dividuals in every generation. The synthesiser tool employs an Elite-Preserving, Vector

Evaluated Genetic Algorithm (VEGA) optimisation with a fitness function of a Weighted

Chebyshev combination of the basic datapath costs (area, delay, energy and noise) and

bus costs (area and power consumption) to find the optimal points in the constrained

feasible space [34]. After assignment of the nodes of the DFG to word-lengths of nmc­

tional units, resource constrained allocation and scheduling [33] is applied to evaluate

each individual's fitness.

Chapter 7 Optimisation Algorithm 138

In the case of a single shared bus without segmentation, the genome of the individuals

in the optimisation procedure is as depicted in Figure (7.5). This figure represents an

array of integers in which the first part of the array gives the number of the functional

units that are used in the design (binding result for functional units). Afterwards, word­

lengths which are allocated to each functional unit are represented. It can be observe

that the length of the genes are variable, for example in the case which is shown in

Figure (7.5) the array length is Npu = M + A. The proposed optimisation algorithm

for the single shared bus without segmentation is shown in Listing (7.1).

FIGURE 7.5: Genome structure for GA optimiser.

Listing 7.1: The synthesiser algorithm for non-partitioned bus

INPUT: Data Flow Graph;

OUTPUT: Synthesisable RTL-VHDL;

Objectives: Minimising the area, power consumption;

and delay and maximising the accuracy;

BEGIN

Initialise the DFG using ASAP;

Find the maximum required FUs for each type

Find the Bound solutions for each cost;

Find the the uniform WL for all FUs which satisfies

the accuracy constrain;

First Generation;

FOR N iterations;

FOR all the population;

Find AreaO;

Find Static Energy Consumption;

Do List-SchedulingO;

Find the C-Steps

Find Delay();

Evaluate Dynamic Energy Consumption;

Evaluate Digital Noise in the output;

Find PowerO;

IF (a cost is out of its constraint range) THEN

modify its corresponding weight coefficient

in the combined cost function;

Chapter 7 Optimisation Algorithm

Find the overall combination cost;

END FOR;

Produce the next generation;

END FOR;

END;

139

In algorithm of Listing (7.1), the input is assumed to be represented in the form of data

flow graph (DFG), where the output is in the form of intermediate representation (ICD)

as explained in section 6.4, which can be translated to synthesisable RTL-VHDL. The

objectives of the optimisation algorithm are considered to be area, power consumption,

latency and accuracy of the design with the cost functions as explained in section 7.3.

In the first step, the algorithm finds the maximum required number of functional units

for implementation of the input DFG with applying ASAP scheduling algorithm. See

section 2.2 for more details regarding this scheduling algorithm. Then maximum and

minimum bounds of the each cost function are calculated to be used in the normalisation

of the costs in the fitness function of Weighted Chebyshev combinated cost as shown in

Equation (7.15) [22].

-----7 -----7 -----7 -----7

F(W) = KA . FA(W) + Kp . Fp(W) + KN . FN(W) + KD . FD(W)
KA +Kp+KN+KD

(7.15)

where FA, Pp , PN and PD are normalised cost functions for area, power consumption,

digital noise and delay respectively and KA, Kp, KN and KD are constant weight­

ing factors for costs such that increasing one of them against the others increases the

importance of the corresponding cost in the optimisation process.

The genetic algorithm starts with a first generation which is produced randomly, based

on the genome structure ofthe Figure (7.5). Afterward, in each iteration of the algorithm

new genomes are produced based on choosing the best individuals to produce more

offspring [34]. After assignment of the nodes of the DFG to functional units, a resource

constrained (RC) allocation and scheduling [33] is applied to evaluate each individual's

fitness. Population size, number of iterations, percentage of crossover and mutation and

their probabilities are chosen regarding the maximum required functional units in the

design.

From this experience, a genetic search does not converge in a reasonable time for com­

plicated designs (more than 50 nodes in the DFG) because of the size of the feasible

space (> 1054 assuming that the maximum allowed word-length is 32). Thus a biased

generation of the individuals is used to speed up the GA optimisation. Accordingly,

before the optimisation search, a design with a uniformly chosen word-length is found

that has the closest costs to the constraint values, since the optimum results are most

likely to be found close to this point, the GA search for optimal points is performed

Chapter 7 Optimisation Algorithm 140

around this preliminary (bias) point. However this guided search might lose some opti­

mal points in separated islands in the feasible space. The results show that it satisfies

the implementation requirements.

In practice, a non-constrained optimisation is a powerful tool in those cases where a

trade off is possible between all design costs, but in most practical implementations,

there are previously known constraints which must be satisfied. Comparison of our

results as well as inspection on the cost functions, suggests that by freezing one of the

costs and taking it as a design constraint during synthesis, it is possible to achieve the

same required objective with minimum costs for the others. To illustrate this issue, a

set of constrained optimisations were performed in which a static penalty method [23]
is employed to find the optimal points. In the algorithrn of Listing (7.1), the weight

coefficients of the combined cost function of Equation (7.1.5) are adaptively checked in

the case of user restricted optimisation (indicated as the IF 0 instruction) to keep the

restricted costs in the range defined by the user. It means that if a cost falls out of

the restricted zone, the algorithm will increase the corresponding weight factor for the

combinational cost evaluation until it is dragged back into range.

This method can be modified to be used for the MW2p-Bus structure. In Figure (7.6)

the general format of the genes in this case is depicted. Every gene has sections which

are (from left to right in Figure (7.6): DFG assignment to the groups; number of the

groups; number of FUO (multiplier for instance) in each group; number of FUI (ALU for

instance) in each group and so on for other functional unit types and the last section is

the word-length of each bus segment. Similar to the non partitioned bus, in this genome

values are also integers and the gene length is variable as are the minimum and maximum

numbers of the functional units. In Figure (7.6) the gene-length is = NDFG + 1 + 3NG

where NDFG is number of nodes in the DFG and NG is number ofthe bus base-segments,

see chapter 5.

FIGURE 7.6: Genomes structure in the applied GA

The optimisation algorithm is very similar to the Listing (7.1) with some modifications,

as shown in Listing (7.2). After assignment of the nodes of the DFG to groups (bus

segments) by genes, RC allocation and scheduling [33] is applied to evaluate each indi­

vidual's fitness.

Listing 7.2: The synthesiser algorithm for MW2p-Bus

Cllapter 7 Optimisation Algorithm

INPUT: Data Flow Graph;

OUTPUT: Synthesis able RTL-VHDL;

Objectives: Minimising the area, power consumption;

and delay and maximising the accuracy;

BEGIN

Initialise the DFG using ASAP;

Find the maximum required FUs for each type

Find the maximum number of the bus segments;

Find the Bound solutions for each cost;

First Generation;

FOR N-iterations;

FOR all the population;

Find AreaO;

Find Static Energy Consumption;

Do List-SchedulingO;

Find the C-Steps for Non-Partitioned Bus;

Modify the Bus Partitioning Effects;

Find DelayO;

Evaluate Dynamic Energy Consumption;

Evaluate Digital Noise in the output;

Find Power();

IF (a cost is out of its constraint range) THEN

modify its corresponding weight coefficient

in the combined cost function;

Find the overall combination cost;

END FOR;

Produce the next generation;

END FOR;

END;

7.5 Summary

141

In this chapter, an optimisation method for the synthesiser of the proposed method is

presented. First, the model of the problem is presented in which a relationship between

the design parameters and the cost functions is derived. The dimensions of the feasible

space are vital parameters in every kind of optimisation. Furthermore, the relationship

between cost functions and controlling parameters has a great impact on the optimisation

method chosen. In the presented problem, which is based on a target architecture, the

feasible space is limited to a smaller range of parameters which results in an increase

Chapter 7 Optimisation Algorithm 142

in optimisation speed. However, regarding the dimensions of the feasible space and

nonlinearity of the relationships between the cost functions and the parameters, there

is still a big number of possible solutions for the problem.

In addition to these difficulties, the optimisation problem consists of several objectives

namely, design area, power consumption, latency and accuracy. Thus a multi-objective

optimisation is required to deal with the NP-hard proposed problem and the nonlinear

cost functions. A genetic algorithm is proposed for optimisation of the problem, which

is based on vector evaluation to cope with the multi-objective problem. The required

gene codes and cost functions are provided for the problem and algorithm is explained

in detail. The next chapter presents results for some case studies.

Chapter 8

Case Studies

8.1 Introduction

Chapters 4, 5 and 6 have described a number of new techniques for the analysis, design

and optimisation of computationally intensive circuits. In this chapter, several case

studies are presented to evaluate the improvements which our proposed method can

make in design implementation costs. To show the ability of the SNA method in error

analysis of the computational systems with nonlinear units and also with data inputs

which cannot be assumed to have uniformly distribution PDFs, design procedure is

applied comprehensively to a Monte-Carlo simulation of an option pricing equation.

In the following, several other case studies are investigated using different implementa­

tion structures, which were presented in chapter 5. These implementations are divided

into three cases, which are word-length optimisation with single shared bus structure,

MWP-Bus structure and MW2p-Bus structure.

8.2 Black-Scholes Option Pricing Equation

Fischer Black and Myron Scholes [10, 11] published a paper which redefined finance

and derivatives and which have had considerable effect on the stock exchange market.

The piece is arguably one of the most important papers within finance theory to date,

allowing pricing of various derivatives, including options on commodities, financial assets

and even pricing of employee stock options [70].

From a mathematical point of view, this model can be expressed in the form of a Partial

Differential Equation (PDE) [95]. There are several approaches to solve this problem

numerically, which are briefly explained in [53]. In this study, a Monte-Carlo approach

is chosen for solution implementation and its corresponding algorithm appearers in the

MATLAB coding list of Listing (8.1) (quoted from [53]).

143

Chapter 8 Case Studies

Listing 8.1: Matlab codes for Monte Carlo simulation of the Black-Scholes PDE

%==
% Monte Carlo valuation for a European call

%==
% Problem and method parameters

% S = 2; E = 1; r = 0.05; sigma = 0.25; T = 3; M = 1e6; randn(state, 100);

%==
Svals = S· exp((r - SiQ;,a

2
). T + sigma·..jT· randn(M, 1));

Pvals = exp(-r' T) . max(Svals - E, 0);

Pmean = mean(Pvals);
'dth - 1.96·std(Pvals).

W1, - m '
con! = [Pmean - width, Pmean + width];

%==

144

By inspecting the algorithm of Listing (8.1), it can be observed that this algorithm can

be divided into two parts: initial calculations and iterations. The first part refers to the

values which need to be calculated only once at the beginning of the program and can

be saved in the memory for repetitive iterations, which includes random number gener­

ation and its combination with the initially calculated values. Since initial calculations

only happen once for each simulation, they are not considered in our optimisation and

assumed to be saved in the local memory. The iterative part of the algorithm , as de­

picted in Figure (8.1) and (8.2-a), can also be divided into two parts: Gaussian Random

Number Generator (GRNG) and the output calculation part, see Figure (8.2-b). Several

methods have been introduced in the literature for specific hardware implementations

of random number generators. Two famous and widely used algorithms are Box-Muller

[13] and Ziggurat [82] methods; their hardware implementations can be found in [74] and

[140] respectively. Accordingly we focus on the output calculation part of the algorithm

as depicted in Figure (8.2-b).

As mentioned, there are a set of pre-calculated values which are nonlinear functions of

the initial inputs. These nonlinear functions in the algorithm can be evaluated by dif­

ferent methods; a full explanation of many methods can be found in [92]. It is discussed

in [73] and [87] that piecewise polynomial is an efficient method which can provide the

required accuracy with lower hardware cost. So we assume that a piecewise polynomial

approximation is employed for nonlinear function evaluation as depicted in Figure (8.3).

In this structure a multivariate function !(Xl, X2, ... ,xm) is approximated by j in the

form of an order-n polynomial Pn(XI, X2,'" ,xm) in which its coefficients can be depen­

dent on the input variable(s) (Xl, X2," . ,xm)' After calculation of the coefficients, j is

Chapter 8 Case Studies 145

URNG

...-..L._ :

=:::;::'=::..1'

FIGURE 8.1: Iteration part of the Black-Scholes Monte-Carlo algorithm.

Chapter 8 Case Studies

\::l

S
~

r r ""

1 1 1
Functions

Evaluation

F; = sigma· -fi
'-----+F2 = exp(-r'T)

(
Sigma2) F3 = S ·T·exp r- 2 -E

(a)

M times repetition

max {input,O}

(b)

FIGURE 8.2: General structure of Monte-Carlo evaluation of the Black-Scholes equation
a)initial calculations b) iterative part.

146

constructed by calculating Pn(Xl, X2,'" , xm). This method, with n = I, is utilised in

[73] and [36] with n = 2 and with n = 3 in [87].

Xm

Coefficients

Producer

FIGURE 8.3: General structure for multivariate function evaluation.

\Ve recall from chapter 4 that the computational error consists of two parts: inherited

error from function evaluation units and errors which are produced by arithmetic units

Chapter 8 Case Studies 147

(multiplier and adder/subtractor). Accordingly, for error analysis of the iteration part of

the algorithm in Listing (8-1), the first step should be estimation of the errors which the

input variables carry in. The major error sources are those resulting from the piecewise

polynomial function evaluation units. Then accuracy analysis can be performed based on

the errors which are produced by the function evaluation units in the initial calculations

or in the random number generator unit. According to [87], the output error of the

function evaluation consists of three parts: E poly , Ecoej and Eround, as shown in Equation

(8.1) .
A --7 --7 --7

f(X) = Pn(X) = f(X) + Epoly + Ecoej + Eround, (8.1)

where Epoly represents the error which arises from the polynomial approximation of the

function. This error depends on the polynomial order and the approximation method.

Ecoej is the quantisation error of the polynomial coefficients, which needs to be fitted

into the lookup table. Eround, on the other hand, represents the rounding error which

is produced by arithmetic operations during polynomial reconstruction. Accordingly,

input values of the repetitive part of the algorithm of Figure (8.2-b) can be written as

follow:

XR XRO + XR1ER,

PI FlO + FnEFI,

P2 F 20 + F 2I EF2,

P3 F30 + F 3I EF3,

where XR is the Gaussian random number that is produced by the GRNG unit and E

represents noise symbols. We assume that these errors are uniformly distributed over

the range, however, other types of distributions can also be used in our analysis method.

Applying these assumptions, the error at the output of the circuit in Figure (8.2-b) can

be calculated using SNA method, as explained in chapter 4.

AI
,-_-"A,-__

'(xRoFIo + F30)'+

(xR1HoER + xRoFnEFI + XRIFnEREFl + F3I EF3) +

(aMIEMI + aAIEAI) '

AI + AE,

(8.2)

where AI represents the ideal calculation result and AE is the computational error, aMEM

and aAEA represent error coefficients and symbols for multipliers and adders respectively.

The output value of the Equation (8.2) is the input of the nonlinear unit in Figure

(8.2-b) which results in Equation (8.3).

AI> -AE

otherwise
(8.3)

Chapter 8 Case Studies 148

Thus the error after this nonlinear function in comparison with the ideal computation

can be depicted as in Figure (8.4), which shows that the output error of this unit can

be written as in Equation (8.4).

(a) (b)

Error

(c)

FIGURE 8.4: Input-Output error dependency of the nonlinear unit in the circuit of
Figure (8.2) (assuming AE > 0) a)in ideal case b)with input error c) difference between

(a) and (b).

{

0 AI < min{ -AE, O}

Error after nonlinear unit = AI + AE min{ -AE, O} ::; AI < max{ -AE, O}

AE max{ -AE, O} ::; AI

(8.4)

where AI = XRO . FlO + F30 and according to the algorithm, XRO is a standard Gaussian

random variable (XRO rv N(O, 1)), then AI is also a Gaussian random variable "\'lith mean

F30 and variance Fl20 (A I rv N ((F 30), (Flo))). Therefore, the result error has a PDF

UEo(x)) which can be stated (8.5).

o
P(AE = 0) + P(AI < min{ -AE, O})

P(min{ -AE, O} ::; AI < max{ -AE, O})

P(max{ - AE, O} ::; AI)

o

x < min{AE, O}
x=O
min{AE,O} < x < max{AE, O} (8.5)

X=AE

X> max{AE, O}

Since PDF of the AI and AE are known, fEo(x) can be derived and used to extract the

output error of the algorithm. It can be observed that since the computational error

affects both data and decision in this nonlinear unit, it is impossible to analyse with the

other error analysis methods mentioned in chapter 3, which shows the strength of over

method comparing previous works in the field.

C1Japter 8 Case Studies 149

Considering Listing (8.1), let us assume that all the input values including XR are repre­

sented in 32-bit fixed-point numbers and all the arithmetic operations use truncation on

their output rounding. We also assume that input errors which come from other units

have a uniform distribution with 10-8% deviation from the central value, however our

method will be the same for other kind of distributions, see chapter 4 for more details.

It is also assumed that x Rand ER are independent. Figure (8.5) shows the output error

without the effect of the rounding.

Error PDF ErrorPDF

··········"(i.002S·

0.0015
••• b ••• " •••••••••••• _ •••••••••••• ~::.?~~.~

-90 -80 -70 -60 ·50 _40 -30 ·20 ·10 0 10 20 30 40 50 60 70 80 90'

(a) (b)

ErrorPDF

I
.................... ..•.. _ --..... ?:.I?Q?:~ ..•..... __ ..•.•• Q,!?!'!g.9, .

...... p:PQ~.? _ ..

f 00:11_0 \

- "")5 _ _ _

00000

........ Q:gg.1.~ ...

0.0000

·90 -80 -70 .6{l -50 ·40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90
-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 SO 90

(c) (d)

FIGURE 8.5: Error PDF of the algorithm a)\Vithout considering rounding effect and
the nonlinear unit b)With effect of the nonlinear unit c)\Vith effect of the nonlinear unit
and 10-10 rounding error d)vVith effect of the nonlinear unit and uniform 32-bit-width

for all the arithmetic units.

In practice, it can be observed that multipliers are the most time consuming operations in

this algorithm. As shown in the literature [65, 100, 35], multipliers can be implemented

in the form of serial or parallel (pipelining) structures. The implementation cost of

parallel multipliers is higher than serial multipliers, whereas its execution time can be

as low as one clock cycle. Furthermore, our inspection shows that area, delay and power

consumption of the serial multiplier is almost linearly dependent on the word-length

whereas parallel multipliers show quadratic dependency on word-length with minimum

operation latency. The iterative part of the Monte-Carlo simulation, therefore, can be

speeded up either by utilising pipelining multipliers or by using several serial multipliers

working in parallel for every loop of the iteration of the algorithm. Either way, word­

length optimisation has a great impact on the implementation cost of the hardware. To

Chapter 8 Case Studies 150

show this impact on design costs and compare the effects of different word-lengths on the

output error of the computation, we perform an exhaustive comparison between design

area on Xilinx XC2VP2 FPGA (in terms of usage percentage) and output error range

and variance. The results are presented in Table (8.1). Synthesis results of Table (8.1)

are extracted using Mentor Graphics synthesiser tool (Leonardo 2005 a.76). Here we

consider that the error range of the function evaluation units is the same as the output

calculation part in Figure (8.2).

TABLE 8.1: FPGA LUT usage for different uniform word-lengths.
Uniform Total LUT Error range Error

WL LUTs usage Xh - Xl 0"2

32 3957 140% 2.318 x 10 -~ 3.608 x 10 18

31 3709 131% 5.031 x 10-8 1.447 X 10-17

30 3470 123% 1.017 x 10-7 5.790 X 10-17

29 3238 114% 2.031 x 10-7 2.310 X 10-16

28 3015 107% 4.318 x 10-7 9.249 X 10-16

27 2799 99% 7.778 x 10 1 3.705 x 10 It>

26 2592 92% 1.584 x 10-6 1.476 X 10-14

25 2392 84% 3.219 x 10-6 5.917 X 10-14

24 2201 78% 6.260 x 10-6 2.370 X 10-13

23 2017 71% 1.215 x 10-5 9.429 X 10-13

22 1842 65% 2.541 x 10-5 3.784 X 10-12

21 1674 59% 4.759 x 10-5 1.516 X 1O-11

20 1515 53% 9.826 x 10-5 6.071 X 1O-11

19 1363 48% 1.988 x 10-4 2.420 X 10-10

18 1220 43% 2.931 x 10-4 9.703 X 10-10

17 1084 38% 7.985 x 10-4 3.885 X 10-9

16 957 33% 1.570 x 10-3 1.548 X 10-8

On the other hand, after optimisation the word-length of the arithmetic units will be:

WI = 25, W2 = 26 and W3 = 23 (for FUs in Figure (8.2-b) from left to right starting

with the upper multiplier). The output error range is 4.978 x 10-6 and the output error

variance is 9.240 x 10-14 . The output error PDF of the optimised design is also compared

with the output error PDF of uniform word-length design with W = 24, W = 27 and

W = 25 in Figure (8.6). These figures show that optimised design has a better error PDF

in comparison with W = 24 uniform word-length design however it is worse comparing

with the case of uniform W = 25 and W = 27. Implementation of this design needs

2243 LUTs (79%) on the same FPGA, which is 24% lower than uniform word-length

(W = 27) implementation and 6.64% less than uniform word-length W = 25.

It can be seen that with higher error range it is possible to save considerably resources

and generally this method can be used to fit the design to the target FPGA by trading

word-length without loosing accuracy. Furthermore, it must be considered that in this

example the number of arithmetic units in the design is very low (one adder and two

Chapter 8 Case Studies

,·················():02·0·
ErrorPDF

•............•.•.•............. _ .•... _••. ,_ Q ... QQJ.{:!.

ErrorPDF

................ "" ___ .9:91Q.,··t···

0.008 ... , _-

Uniform WL = 27 001)(;···7

151

.. _-_ .. :~'!~;~ •..•
1 1/ (1(,,)1

-:-i/l\.i~ iii
·30 ·25 -20 ·15 -10 ~5 Q 5 10 15 20 25 30 *30 -25 -20 ~15 -10 ~5 0 5 10 15 20 25 30

(a) (b)

ErrorPDF

··-1

··30 ·25 -20 ·15 ·10 -5 5 10 15 20 25 30

(10,)1

(c)

FIGURE 8.6: Error PDF of the iteration part of the Black-Scholes equation after WL
optimisation a) comparing with W = 24 b) comparing with Till = 27 c) comparing with

W=25.

multipliers), which means the optimiser has not had too much freedom to chose the

different word-lengths for functional units.

The following sections present more complicated case studies with different implemen­

tation structure.

8.3 Single Shared Bus Implementation

In this section four case studies are implemented in ST O.12f.Lill technology using the

proposed method with a single shared bus structure. Design I is an order-18 difference

equation, Design II is a Filter (FIR-25), Design III is an 8-point FFT and Design TV is a

DCT 4x4, more details regarding these circuits can be found in appendix B. Multipliers

in all these designs in this section are sequential (Booth) multipliers.

Chapter 8 Case Studies 152

In the first step, to examine the effect of the word-length on the implementation costs,

circuits are implemented with different uniform word-lengths, which means all the arith­

metic units have the same word-length and the results of these implementations are

provided in Table (8.2) using our sample predesigned cell library of arithmetic units

including sequential multiplier. In this table, basic design costs: area, power consump­

tion, latency and digital noise in the output node are presented for different values of

word-lengths (W=8, 16, 24 and 32). It must be remembered that power consumption

is a function of the latency, thus to reduce the complexity of the results, we measure

energy per clock cycle to show the average power consumption in all the results in the

rest of this chapter.

The results in Table (8.2) show a considerable dependency of the design costs on the

word-length. As depicted in Figure (8.7), area and power consumption decrease almost

linearly by word-length reduction. Latency can be decreased providing that sequential

multipliers or other arithmetic units are used in the design. Digital noise, on the other

hand, shows an exponentially increase when word-length reduces, which means accuracy

is more sensitive to the word-length than other costs.

Apart from the initial investigation, this set of information can be used as the basic

evaluation scales and the constraint values for other optimisation results, as explained

in section 7.4. In other words, these uniform word-length designs can be used as the

reference point for the genetic search to reduce the optimisation time. Practically, in

constrained design optimisations, the optimal points are expected to be found around the

uniform word-length design which satisfies the constraint. Therefore, instead of starting

from a random initial point, our search algorithm starts from the uniform word-length

design which satisfies the constraint. These constraints are referred to as C1, C2 , C3

and C4 in Tables (8.3) to (8.6).

In the second step, constrained optimisations are applied for designs considering word­

length as a synthesis parameter. Since there are four different costs in this study, four

different cases of constraints are considered. Table (8.3) shows the synthesis results for

the same systems where design area is constrained. The constraint values for the area

cost function in Table (8.3) are the area cost results in Table (8.2).

Similarly Tables (8.4), (8.5) and (8.6) show synthesis results with optimisation con­

straints for energy consumption, output noise and latency respectively. Again the con­

straint values for each column and row of these tables can be found in the corresponding

column and row in the Table (8.2). In these tables A, E, Nand D stand for: area cost

(in f-Lm2
) , energy consumption cost (in f-LWatt), digital noise variance in the output and

delay cost (measured by the number of clock cycles) of the design respectively. Although

choosing word length of the FUs can can affect the maximum delay of the operations to

select the clock frequency of the design, in this work, it is assumed that all designs have

the same clock rate for to perform a basic comparison between different designs.

Chapter 8 Case Studies

TABLE 8.2: Different fixed-uniform "VL for designs.

Designs Cost

Design I Area
Energy
Noise
Delay

Design II Area
Energy
Noise
Delay

Design III Area
Energy
Noise
Delay

Design IV Area
Energy
Noise
Delay

200000

Different cases of Uniform WL for all FUs
C1(W = 8)

4152
5672.73
1.03E-2

168
22184

7143.11
1.28E-2

58
14456

9631.03
2.95E-2

100
29912

18256.5
3.26E-2

121

C2 (VV = 16) C3 CW = 24)

8304 12456
20779.2 45753.7
4.04E-5 1.58E-7

311 454
44368 66552

26929.2 59584.1
5.09E-5 1.99E-7

82 106
44368 89736

35813.4 78909
1. 15E-4 4.50E-7

110 121
111344 174744
71076.6 156085
1.27E-4 4.97E-7

130 152

300000 -~ " .~ ..•..•.•.....

EIlerg
[W.l::lk)

C4 (W = 32)

16608
80602.9

6.16E-10
598

88736
105061

7.62E-10
130

119648
138029
1.76E-9

145
222688
273138
1. 94E-9

178

250000 ». • ••••••••• -- •••• ~ •••••• " •••

153

.................... -.--- / __ .-_ _
150000 +

150000

100000 + /
100000

50000 ..

16 24 32
Word·length. (bits) Word-length (bits)

...... Design 1 -t-Deslgn II -f;rDesign 111-1+-Design IV Oesigni -+-Design U -t'rOesign II! * Design IV

(a) (b)

1.00E-10 L.............................. ___

Word-length (bits)
....... Design ! -+-Oesign n '";';"-Oesign Itt -7+-Deslgn IV

Word-length (bits)
-a-Oesigr: I-t<-Deslgn H +Oesign III ~Oesign JV

(c) (d)

FIGURE 8.7: Basic costs dependency on the WL for different designs a)Area b)power
consumption c) Digital noise d)Delay.

Chapter 8 Case Studies

TABLE 8.3: Optimisation results with area constrained synthesis based on the four
uniform WL cases in cases Table(8.2)).

Designs Cost
Area is constrained to:

C1 C2 I C3 C4
Design I Energy 4478.08 18350.9 42218.3 75706.9

Noise 1.03E-2 4.04E-5 1.09E-7 6.16E-10
Delay 150 293 436 580

Design II Energy 6295.61 25751.8 58066.5 101421
Noise 1.15E-2 4.80E-5 1. 77E-7 6.82E-10
Delay 53 79 102 126

Design III Energy 9095.21 34298.4 77773.5 136270
Noise 2.01E-2 5.68E-5 3.14E-7 1.05E-9
Delay 100 107 113 137

Design IV Energy 17341.5 70962.8 152568 271351
Noise 2.62E-2 1. 22E-4 4.71E-7 1. 63e-9
Delay 119 126 143 168

TABLE 8.4: Optimisation results with energy constrained synthesis based on the four
uniform WL cases in cases Table(8.2)).

Designs Cost
Energy is constrained to:

C1 C2 C3 C4
Design I Area 3633 7785 11937 16483

Noise 1.03E-2 4.04E-5 1.58E-7 4.27E-10
Delay 150 293 436 580

Design II Area 21987 44243 66105 87967
Noise 1. 14E-2 4.29E-5 1.66E-7 6.92E-10
Delay 55 78 102 127

Design III Area 14456 44118 82724 118754
Noise 2.73E-2 6.31E-5 2.46E-7 1.40E-9
Delay 100 106 119 135

Design IV Area 27086 100468 164315 222438
Noise 2.79E-2 1. 15E-4 4.69E-7 1.86E-9
Delay 119 126 144 169

154

From these results it can be concluded that in almost all cases, word-length optimisation

saves hardware costs, however this improvement is dependent on the circuit complexity

and its constraints. In summary, the results show up to 16.5%, 21%, 50%, 10% im­

provements in area, energy consumption, digital noise and latency respectively. Table

(8.7) shows improvements for different costs resulting from constrained optimisation in

comparison with the basic cases of the uniform word-lengths in Table (8.2).

Chapter 8 Case Studies

TABLE 8.5: Optimisation results with noise constrained synthesis based on the four
uniform WL cases in cases Table(8.2)).

Designs Cost
Noise is constrained to:

C1 C2 C3 C4
Design I Area 3633 7785 11937 16089

Energy 4478.08 18350.9 4209l.6 75706.9
Delay 150 293 436 580

Design II Area 20646 43349 64495 87323
Energy 6074.11 24996 55273.2 100628
Delay 53 79 101 126

Design III Area 12649 41595 88645 116178
Energy 7572.32 31676.3 76467.4 128521
Delay 99 107 114 135

Design IV Area 26889 100915 163027 219987
Energy 16856.9 69308.4 147610 265048
Delay 119 126 145 168

TABLE 8.6: Optimisation results with delay constrained synthesis based on the four
uniform WL cases in cases Table(8.2)).

Designs Cost
Delay is constrained to:

C1 C2 C3 C4
Design I Area 3633 7785 11937 16089

Energy 4478.08 18350.9 4209l.6 75706.9
Noise l.03E-2 4.04E-5 1.58E-7 6.16E-I0

Design II Area 21665 44243 65783 88736
Energy 6936.68 2654l.3 57530 104750
Noise l.20E-2 4.46E-5 l.87E-7 6.96E-1O

Design III Area 14331 36909 79951 119201
Energy 8879.05 30696 7386l.1 136681
Noise 2.81E-2 9.87E-5 3.29E-7 1.32E-9

Design IV Area 26245 106908 165353 221919
Energy 16355.9 70709.7 151477 269987
Noise 2.06E-2 1.10E-4 4.58E-7 l.84E-9

155

Chapter 8 Case Studies

TABLE 8.7: Cost reduction resulted for different designs from constrained optimisation
based on the four uniform WL cases in cases Table(8.2)).

Constrains Costs
Cost reduction (Min%-Max%)

Design I Design II Design III Design IV

Energy 06.0 - 2l.0 02.5 - 11.9 01.3 - 05.6 00.2 - 05.0
Area Noise 00.0 - 3l.0 05.7 - 10.2 30.0 - 50.6 04.0 - 19.6

Delay 03.0 - 10.7 03.1 - 08.6 00.0 - 06.6 01.7 - 05.9

Area 00.8 - 12.3 00.3 - 00.9 07.5 - 45.3 00.1 - 09.8
Energy Noise 00.0 - 30.6 09.2 - 16.6 00.0 - 06.9 04.1 - 14.4

Delay 03.0 - 10.7 02.3 - 05.2 00.1 - 09.8 01.7 - 05.3

Area 03.1 - 12.3 01.6 - 06.9 01.2 - 12.5 01.2 - 10.1
Noise Energy 06.0 - 21.0 04.2 - 15.0 03.1 - 2l.4 02.5 - 07.7

Delay 03.0 - 10.7 03.0 - 08.6 0l.0 - 06.9 01.7 - 05.6

Area 03.1 - 12.3 00.0 - 02.3 00.4 - 16.8 00.3 - 12.3
Delay Energy 06.0 - 2l.0 00.3 - 03.4 01.0 - 14.3 00.5 - 10.4

Noise 00.0 - 00.0 06.0 - 12.4 04.7 - 26.9 05.2 - 37.0

156

Chapter 8 Case Studies 157

8.4 Partitioned Bus Implementation

The segmented bus structures (MWP-BUS and MW2p-BUS) can improve the design

efficiency, as explained in chapter 5. To investigate the effect of the structures in design

optimisation, a number of case studies have been implemented in ST O.12f.Lm technol­

ogy using this method. 8-point Digital Cosine Transform (DCT) as, Design I, 5-order

Elliptic Filter, as Design II, and an RGB to YCbCr converter, as Design III, are used to

illustrate this method of datapath optimisation in comparison with other implementa­

tion techniques. The results of design syntheses are presented in Tables (8.8) to (8.ll).

Since the effectiveness of the method depends on the number of functional units and the

data traffic between them, every case study is implemented using four different binding

assumptions in which the number of functional unit is restricted (with 2, 3, 4 and 5

Add/Subtract and Multiplier FUs) for each benchmark.

Similar to the previous section, at the first step, for each binding, every design is im­

plemented with the assumption of a fixed and uniform word-length (W=16) for all the

functional units and then their design costs (area, power consumption, delay and vari­

ance of digital noise) are calculated as the reference values for optimisations. These

results are placed in the first column of the results in the tables, which is tagged as

Single Bus Uniform W=16.

In the second step, a general word-length optimisation method, as introduced in chapter

7.4, is applied to each design. These optimisations are performed based on a single shared

bus assumption. It is observable that the results of this word-length optimised synthesis

suggest reductions in the costs. As it obtainable from the table, the computational

accuracy most often is traded with improvements in other costs. As discussed in chapter

3, however, improvements are possible without losing accuracy.

In the third step, the partitioned bus method (MWBP) is used to synthesise the bench­

marks. The major achievement of this method in comparison with the non-partitioned

bus is latency reduction of the circuit. Since this method speeds up data communi­

cations between functional units, its resultant improvement varies with the number of

functional units and the data traffic between them. On the other hand, since MWP-BUS

requires bus switches to control data communications in the bus, the area and energy

consumption of the circuit are expected to increase as a result of applying this method.

This side effect can be observed in the results. Digital noise is not expected to change

considerably in comparison with the single bus method.

In completion of Table (8.8) to (8.ll), Table (8.14) presents the MWBP bus partitioning

and functional units grouping results with their word-lengths for each bus segment. In

comparison of the word-length optimisation with a shared bus structure, in terms of wire­

length of the bus, MWBP trades average bus width with bus switches. In other word,

MWBP uses bus switches to reduce the average wire length in the final implementation

Chapter 8 Case Studies 158

of the systems. Table (8.14) shows that different word-lengths are allocated to the bus

segments when the number of functional units are more than 6. In all the groupings,

IO-port of the system is in the first group.

In conclusion, the simulation results show that there is a considerable improvement

in delay because of the bus partitioning method, which is a valuable achievement, as

shown in Table (8.12) and Table (8.13). Moreover, according to Table (8.8) to (8.11),

MWBP is more effective in the case of more complicated designs (in terms of the number

of functional units and design complexity), which means by increasing the number of

functional units in binding or complexity of the implemented benchmark, the effect of

the bus switches reduces the overall cost. Table (8.14) also supports this supposition

that a bigger number of functional units consequences partitioned buses with different

word-length as an optimal point.

TABLE 8.8: MWP-Bus and MW2p-Bus optimisation results for different number of
FU s, Binding 1.

Binding I

Designs Costs
2 ALU , 2 Multiplier

Single Bus Single Bus MWP-Bus MW~P-Bus

Uniform Optimised Optimised Optimised
W=16 W W W

Design Area 16608 14532 15344 15344
I Delay 185 169 159 159

Noise 1. 14E-7 4.57E-7 4.14E-7 4.14E-7
Energy 18829.4 14652.3 15466.2 15466.2

Design Area 16608 14532 15344 15344
II Delay 115 107 94 94

Noise 7.95E-8 3.18E-7 3.95E-7 3.95E-7
Energy 9102.68 7161.25 8198.25 8198.25

Design Area 16608 14532 15344 15344
III Delay 88 80 72 72

Noise 6.71E-8 2.68E-7 6.71E-8 6.71E-8
Energy 9924.84 7664.48 8150.20 8150.20

In the forth step, the MW2p-BUS is used to synthesis the benchmarks. As discussed

in chapter 5, when the number of functional units increases, data traffic in the bus

segments, which are placed in the central part MWP-BUS, can increases to very high

rates. In these cases, data communication speed and consequently system latency are

decreased considerably. MW2p-BUS structure, alternatively, adds parallel segments

to the bus to provide supplementary paths to avoid path congestions in the central

segments of the bus. In other words, in comparison with MWP-BUS, MW2p-BUS

trades hardware resources (bus switches and bus segments) with latency. Last columns

in Tables (8.8) to (8.11) give the optimisation results with MW2p-BUS method and

Table (8.15) presents the bus partitioning and FU grouping results with their word­

lengths for each bus segment.

Chapter 8 Case Studies

TABLE 8.9: MWP-Bus and MW2p-Bus optimisation results for different number of
FUs, Binding II.

Binding II

Designs Costs
3 ALU , 3 Multiplier

Single Bus Single Bus MWP-Bus MW<:P-Bus
Uniform Optimised Optimised Optimised
W=16 W W W

Design Area 5 24912 21798 22610 22610
I Delay 148 136 83 83

Noise 1. 14E-7 1. 14E-7 1. 14E-7 1. 14E-7
Energy 19078 14858.1 15479 15479

Design Area 24912 21798 22610 23480
II Delay 107 101 74 63

Noise 7.95E-8 3.18E-7 7.95E-8 7.95E-8
Energy 9408.44 7422.91 8782.98 9120.94

Design Area 24912 21798 22610 22610
III Delay 71 65 33 33

Noise 6.71E-8 2.68E-7 6.71E-8 6.71E-8
Energy lO049.2 7767.38 8528.61 8528.61

TABLE 8.10: MWP-Bus and MW2p-Bus optimisation results for different number of
FUs, Binding III.

Binding III

Designs Costs
4 AL U , 4 Multiplier

Single Bus Single Bus MWP-Bus MW<:P-Bus
Uniform Optimised Optimised Optimised
W=16 W W W

Design Area 33216 29064 31265 32154.33
I Delay 138 130 65 46

Noise 1. 14E-7 4.57E-7 3.19E-7 1. 19E-7
Energy 19440.9 15187.4 15769.6 17218.17

Design Area 33216 29774 31265 35687.5
II Delay lOl 97 74 60

Noise 7.95E-8 3.18E-7 1.20E-7 7.20E-8
Energy 9875.48 7587.42 8947.87 10145.74

Design Area 33216 29064 31265 32135
III Delay 59 55 32 20

Noise 6.71E-8 2.68E-7 3.71E-7 1.49E-7
Energy 10126.4 7840.88 8924.59 9686.86

159

To interpret the results of MWP and MW2p methods in Tables (8.8) to (8.11), we need

to compare Tables (8.14) and (8.15). It is observable from Tables (8.14) and (8.15)

that both methods resulted in the same grouping and word-lengths for some designs,

which have a fewer number of functional units (Binding I & II). Recalling from chapter

5, MWP and MW2p have the same structure when functional units are divided into

two groups, thus implementation costs for both methods are the same in Tables (8.8)

Chapter 8 Case Studies

TABLE 8.11: MWP-Bus and MW2 p-Bus optimisation results for different number of
FUs, Binding IV.

Binding IV

Designs Costs
5 ALU , 5 Multiplier

Single Bus Single Bus MWP-Bus MW~P-Bus

Uniform Optimised Optimised Optimised
W=16 W W W

Design Area 41520 36330 37961 41083.5
I Delay 132 124 71 35

Noise 1. 14E-7 4.57E-7 1. 14E-6 1. 14E-7
Energy 19803.8 15481.4 16227.6 17562.41

Design Area 41520 36282 37675 45940
II Delay 101 90 72 59

Noise 7.95E-8 3.18E-7 3.39E-7 7.39E-8
Energy 10278.7 7734.30 9207.75 10925.8

Design Area 41520 20790 38589 43084
III Delay 59 52 29 19

Noise 6.71E-8 2.68E-7 1.95E-7 6.15E-8
Energy 10324.7 7946.15 9317.45 10416.26

TABLE 8.12: Delay improvements of the MWP-Bus compared with single shared bus
and optimised single shared in Tables (8.8) to Table (8.11).

Compared with

Single Bus with uniform WL
Single Bus with optimised WL

Improvement
(Min % - Max%)
14.05 - 53.52
5.92 - 50

TABLE 8.13: Delay improvements of the MW2p-Bus compared with other synthesis
methods in Tables (8.8) to Table (8.11).

Compared with

Single Bus with uniform WL
Single Bus with optimised WL
Single Bus with MWP-Bus

Improvement
(Min % - Max%)
14.05 - 73.48
5.92 - 71.77
0- 50.70

160

to (8.11) designs with two groups (and two bus segments). For designs with more

number of groups MWP and MW2p result in different implementation costs. Overall,

the simulation results show that there is a considerable improvement in system latency

(see Tables (8.12) and (8.13)) because of the MW2P-BUS method, which is a valuable

achievement. It must be reminded that MW2P-BUS delay improvement is result of

added parallel bus segments by which occupied buses can be bypassed (see chapter

5), therefore, we do not expect noise improvement by applying MW2P-BUS compared

with MWP-BUS. According to Table (8.8) to (8.11), MW2P-BUS is more effective in

the case of more complicated designs (in terms of the number of functional units and

design complexity), which means that by increasing the number of functional units in

Chapter 8 Case Studies 161

TABLE 8.14: Design configurations after MWP-Bus optimisation

Designs Groups
Binding I Binding II Binding III Binding IV
W * + W * + W * + W * +

Design I 1 15 1 1 15 2 2 15 2 2 15 3 2
2 15 1 1 16 1 1 15 1 1 14 1 2
3 - - - - - - 16 1 1 15 1 1

Design II 1 15 1 1 15 1 1 14 2 2 14 2 2
2 15 1 1 14 1 1 15 1 1 16 2 1
3 - - - 14 1 1 14 1 1 14 1 2

Design III 1 15 1 1 15 2 2 15 2 2 15 3 2
2 15 1 1 15 1 1 14 1 1 16 1 1
3 - - - - - - 15 1 1 15 1 2

the binding or complexity of the implemented benchmark, the effect of the bus switch

costs reduces the total cost.

In the tables moving from MWP to MW2p there is an improvement in speed because

of parallel segments, which are used in MW2p structure but error stays same which

is expected regarding this fact that parallel segments should not affect computational

noise in the circuit. There are couple of cases in the in which noise improves when

MW2p is applied, reason is the optimisation method. Since we have employed a genetic

algorithm, which is based on random search for optimum results, it is possible to find

slightly better results in some cases. Clearly, using exact methods of optimisation such

as linear programming can solve this problem, however optimisation speed of such a

methods is a severe problem.

To increase the readability of the results, Figures (8.9) to (8.10) graphically show the

cost improvements comparing different methods for each design. It is attainable from

graphs that using a single shared bus with optimised word-length gives cheapest designs,

in terms of area and power consumption, but the slowest, where the MWP and MW2p

can decrease the latency with price of more area and power consumption.

In general, the optimisation time for this synthesis method can be impractically high due

to the very big feasible space of the optimisation, greater than 1080 for a 50-node DFG

for instance. As discussed in chapter 7 and also section 8.3, by choosing the uniform

word-length design, which accomplishes the design constraint(s), as first generation in

the genetic research; this search time decreases significantly. Optimisation times on a

AMD Opteron (Dual) Processor 246 with 2.01 GHz clock frequency are measured for

different designs in this chapter and the average values are presented in Table (8.16).

According to the table, these times are dependent on the design, which is to be expected.

Chapter 8 Case Studies 162

TABLE 8.15: Design configurations after MvV2p-Bus optimisation

Designs Groups
Binding I
W * +

Design I 1 15 1 1
2 15 1 1
3 - - -

4 - - -

Design II 1 15 1 1
2 15 1 1
3 - - -

4 - - -

5 - - -

Design III 1 15 1 1
2 15 1 1
3 - - -
4 - - -

10000 -i------.-------.--------,
2 3 4

Energy Consumption ([lWatt)
21000

20000 .

19000 b=---======::-!:====
1BOOO

17000

16000 i······················· .•

14000 i'"

13000 +------,------.----------,
2 3 4

Binding II Binding III Binding IV
W

15
16
-

-
15
15
15
-
-

15
15
-

-

* + W * +
2 2 15 2 2
1 1 15 1 1
- - 16 1 1
- - - - -

1 1 15 1 1
1 1 16 1 1
1 1 15 1 1
- - 15 1 1
- - - - -

2 2 15 2 2

1 1 15 1 1
- - 15 1 1
- - - - -

Latency (Clock-C cles)
200

1BO

1601ll:~"' .. ··~c·· .. ·

140

120

100 - -

W

15
15
16
15

15
15
15
15
17

15
16
16
15

BO+ · ··· ci~~............... .

* +
2 2
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
2 2
1 1
1 1
1 1

60. ~.... ... ~~:;:::::::::t:=====~

40

20·~------,------,----~

2

Single Bus Uniform
Word-length (W=16)

Single Bus

3

Optimised Word-length

MWP-Bus
-L::r Optimised Word-length

MW2P-Bus
-0- Optimised Word-length

4

FIGURE 8.8: Optimisation results compare versus Bindings (1,2,3,4) for Design I.

8.5 Summary

Several case studies have been presented in this chapter to evaluate the proposed synthe­

sis method. These implementations are separated into four: a design with more detail

Chapter 8 Case Studies 163

Latency (Clock-Cycles)
50000

40000

35000

30000

80
25000 +-<<<<<<<<<<<<<<<<<<<< ««««<<<<<<-:A6S-o~

20000 1 «<<<<<<:~~e:2:::::"'<< 70 + ««««-«<<<<<

15000 60
I

10000 +1-----,-------,------ 50+-----~-----~----~

1 2 3 4 1 2 3 4

Energy Consumption (~lWatt)

10500
-+- Single Bus Uniform

Word-length (W=16)

10000 + < «<<<<< <<<<<<<<<<<<<<<<< <<<<<<< ««

9500 ---
Single Bus
Optimised Word-length

9000 '!'«««««« «<---««c/'

<MWP-Bus
8000 :!'--««<<<<<<<<<<<<<<<<<<<--<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<-<<<<<<<<<<<<<<<<<<<<<<<<<<<<«««-««< ««««--««<<<<<<<<<

7500 +-««<<<<< ««<<<:::='!IiP~--=c4II:=:::=:::==~
-6:- Optimised Word-length

7000 +------,-------c----~

2 3
MW2P-Bus

4 -0- Optimised Word-length

FIGURE 8.9: Optimisation results compare versus Bindings (1,2,3,4) for Design II.

Latency (Clock-Cycles)
90

80

70

60

50

40

30

20

10

4 2 3 4

Energy Consumption (1-IWatt)
11000

10500 +--««<<<<<<< -«<<<< «««««< <<<< ««<<<<<<<<
-+- Single Bus Uniform

Word-length (W=16)

9500

10000 L=--~~====:::::::::,~:::;::::::::::::-:

Single Bus
Optimised Word-length

9000

8500 +«< «<<< <_«:::~J~'<:«
MWP-Bus

8000 't-«<<<<<<<<<-- «« -b:- Optimised Word-length
7500

7000+------r-----~---~

2 3
MW2P-Bus

4 -0- Optimised Word-length

FIGURE 8.10: Optimisation results compare versus Bindings (1,2,3,4) for Design II.

Chapter 8 Case Studies

TABLE 8.16: Optimisation time for different designs

Design I Optimisation time (Sec)

DCT 1467
Elliptic Filter

RGB to YCbCr
621
876

164

to show the effectiveness of the symbolic noise analysis method and three set of designs

with different implementation structures.

It can be concluded from results that word-length optimisation has a considerable effect

on design costs and specifically is more useful in the case of designs with more functional

units. Furthermore, SNA as a computational error analysis method can provide com­

prehensive information about the output error. The iteration part of the Monte-Carlo

simulation of the Black-Scholes equation is chose to be implemented by this method

which results show lower error in the output with fewer resources usage. The single

shared bus, partitioned bus (MWP-BUS) and MW2p-BUS methods are utilised and

compared for the other case studies. Our results show that latency of the circuits can

be reduced considerably by using MWP-BUS and MW2p-BUS methods, however these

methods require more hardware resources because of their bus switches.

Chapter 9

Conclusions and Future Works

9.1 Conclusion

Application specific high level synthesis methods can produce more efficient designs be­

cause they are created with more focus on the specific features of the target designs.

Hardware implementations of the computational tasks, regarding their special require­

ments such as high number of arithmetic operations can be considered as a distinct

category with certain specifications. Two lines of applications can be envisaged for the

computational hardware synthesis methods: computational circuits which need to be

embedded in low-cost systems and hardware accelerators which can be attached to the

systems with intensive computing tasks.

The work described in this thesis has proposed a high level synthesis method for compu­

tationally intensive hardware. To accomplish this goal, two issues have been addressed:

the computational error analysis and the implementation structure. A detailed investi­

gation on computational error analysis is performed which shows that in general sub­

stantial savings in design costs (area, energy and ~atency) can be achieved by taking the

arithmetic characteristics of the functional units into account. Furthermore, it is shown

that choosing an appropriate data communication structure is a vital parameter in the

systems with high data exchange rates, accordingly, extended bus structures can im­

prove datapath synthesis. As a result of exploring these subjects, novel approaches are

introduced. The proposed method is restricted to a predefined architecture and takes

the arithmetic characteristics of the functional units into account as an optimisation

parameter.

In chapter 4 a new method for modelling computational error was presented which takes

into consideration the intermediate error dependencies as well as the probability distri­

bution function of the errors. In comparison with the current methods, which are either

based on error range analysis or noise analysis, this method is more comprehensive in

165

Chapter 9 Conclusions and Future Works 166

terms of the information it can provide for the designer to select the arithmetic char­

acteristics of the functional units and also in terms of its ability to deal with nonlinear

systems. In addition the noise spectra at the output can be evaluated with controllable

accurately to see the error distribution between its bounds. This method is applied to

several examples and results show its power in practice.

Chapter 5 presented a new method of bus-oriented communication synthesis which is

based on partitioned bus and parallel segments to provide data communications for

functional units. Each bus segment, in this structure, can have a distinct width from

other segments. This structure provides a very flexible data communication platform for

computationally intensive datapaths with flexibility in datapath interconnections. The

implemented synthesis method utilises the proposed bus structure as in the predefined

architecture. Examination of the results demonstrates a considerable improvement in

design costs when this structure is employed for synthesis and optimisation instead of

general word-length optimisation methods.

In conclusion, the contributions of this work can be categorised into three:

From the EDA point of view, this work explored high level synthesis of computational

intensive circuits considering accuracy along with the other synthesis objectives and

optimising with one more extra dimension design space.

From the computational accuracy analysis viewpoint, a more precise and inclusive

method was introduced which can be combined with the other synthesis cost evalua­

tion techniques.

From the datapath synthesis viewpoint, a generalisation of the bus-oriented design was

explored which provides an efficient and flexible method for communication synthesis in

datapath level. This structure can be used as a hierarchical form to localising data pro­

cessing in sub-groups of the system which can increase the system speed and flexibility.

9.2 Future of the Work

The present thesis could be elaborated in several directions. The following introduces

some interesting and relevant areas of future research.

• High level synthesis for computational intensive systems,

• Implementation structure and the corresponding optimisation methods,

• Accuracy modelling tradeoffs,

The motivation for the first direction is the presented synthesis method in chapters 6

and 7 which combines four optimisation objectives. Concerning system specification, as

Chapter 9 Conclusions and Future Works 167

the complexity of the systems and underlying hardware continues to increase, the design

cost for these have been raised drastically. Therefore, more comprehensive specification

languages, such as SystemC or MATLAB, should be considered for design specification

in the synthesis tool. This modification would extend compatibility of the methods with

algorithm level design and simulation tools.

Another extension of the synthesis tool could be in the form of a C++ library which is

attachable to C programs with heavy computational tasks. The idea is to automatically

divide these kinds of program into two parts: the computational part which is mapped

to external hardware (FPGAs for instance) and the rest of the program which remains

in the software part. Since the computational part is specifically implemented in an

optimum form on hardware, the execution speed of the application will be expected to

be increased.

Furthermore, the proposed synthesis tool relies on a functional units library to provide

the required basic blocks of the design, however, complicated functions such as elemen­

tary functions are application dependent and need to be designed and optimised precisely

using some extra methods. I believe by combining the presented method with function

evaluation methods it is possible to design more efficient computational systems with

more clear information about their computational error.

Regarding the datapath synthesis method, this work is based on the MW2p bus struc­

ture, which in the general form has a three dimensional structure. Since floorplanning

method and the implementation technology has a great impact on the wiring complexity

of the design, to provide a more accurate cost model for the bus structure these issues

need to be considered. I suggest an investigation on place and route methods and data

traffic rate between functional units (not just connection between them), because as

discussed in chapter 5 data transfer between functional units needs to be taken into

account in the design optimisation of the datapath dominant systems.

There is an interesting question regarding digital computation: why do general pur­

pose processors, normally, offer higher precision computation compared with hardware

implemented algorithms? General purpose processors provide a fixed number of com­

putational resources which can be used flexibly by software. From a hardware point

of view, it is a structure with a fixed datapath and a flexible controller. However, in

all the synthesis and optimisation methods which utilise arithmetic characteristic as an

optimisation parameter, only the datapath is taken into account and the controller has

a rigid structure. In other words, it is generally assumed that the controller is inde­

pendent from the computation accuracy and precision of the system, which is not true,

bearing in mind the example of general purpose processors. Therefore, the next step

in hardware implementation of algorithm must take the controller into consideration.

To do so, in first step, a general structure for controller and its implementation cost,

in terms of number of states, area and power consumption and so on is required. The

Chapter 9 Conclusions and Future Works 168

second step is decomposition of the complicated mathematical operations into sequences

of simple building blocks which allows controller to have several choices to implement

operations. And finally, combine the controller structures and models with datapath

costs and models in to a synthesis tool. As a result, if the software complexity can be

translated to more complicated controllers, higher precision computation can be pro­

vided. For example, a controller which can make decisions to reuse accurate functional

units or combine several functional units to perform more precise calculations or uses

different representations for data interchangeably can improve the computation accu­

racy. However design and implementation of such a controller is more expensive in

terms of hardware resources and energy consumption. This issue can be subjected as a

new research work in which controller and reconfigurability of the functional units are

employed to trade off accuracy, latency and power consumption.

Appendix A

leD Files Mnemonics

A.I Introduction

This appendix presents more details about intermediate codes (reD) syntax and gram­

mar. reD files have a very straightforward structure which is compatible with the

proposed architecture in this study, see chapter 6, and can be considered as a compact

representation format for Finite State Machines (FSMs).

A.2 Syntax

Table (A.l) gives a list of reD codes. These codes simply provide the ability to present

controlling signals in each state as well as structure of the controller FSM. A short

explanation for each mnemonic is provided in the table.

A.3 Structure

reD structure is as shown in Figure (A.l), which contains two parts: units declaration

and sequence of control signals. rn the first part, the under system is introduced which

contains name, input and output pin numbers and word-length of the system and all

the sub-blocks. System controller is specified in the second part, employing the basic

capabilities of the reD like: labelling, conditional and unconditional branching provides

the ability of implementation of the algorithms. As it is discussed in section 6.3, con­

troller can be implemented in two forms in the proposed architecture, structured and

unstructured. Figure (A.l) represents a system with structured controller. An unstruc­

tured controller is depicted in Figure (A.2). Similar to the other structure, the heading

of the file represents the name, number of inputs, number of outputs and bit-width of

169

Appendix A leD Files Mnemonics 170

TABLE A.I: leD codes mnemonic.
I Mnemonic I Example I Description

1 U## name ++ ** UOl ADD 02 01 16 System or Sub System name
and No. of Inputs (-), Outputs
(++) and word-length (**).

2 U##(-) U78(0) Signal activation, unit U##,
signal number (-).

3 L- L05 Label
4 X "- ... -" X "01001" External Output Control Signals

Setting, if 'd' used it means that
use the previous value.

5 WX- WXl Wait State Depending on External
Control Signal Number (-).

6 W-(++) W06(0) Wait State Depending on Internal
Control Signal No + of
Sub-System No-.

7 GX-++ GX0132 Jump to ++ (L++) depending
on External Control Signal No -.

8 Gddd++ Gddd32 Jump unconditionally
to ++ (L++).

9 G-++** G120132 Jump to ** (L**) depending on
signal No ++ of sub system No -.

10 RLX RLX Relaxation state.
n Xd= Xd= Unstructured scheduling

description Branch.
12 X= X= 00 Structured scheduling description

Branch - according to input
external control signals.

13 END END . End of the specification.
14 d GdddOO Don't care or consider the

previous value if needed.
15 , UOO(O) , U05(1) , End of the operation.
16 , ; RLX; End of the sate.
17 END. End of the branch
18 WXl X "00" , Conditional control signals

set, IF part.
19 WX1 X "01" , Conditional control signals

set, ELSE part.

Appendix A leD Files Mnemonics 171

10 of the system. The second line introduces the controller name and number of input

and outputs of it. Third part gives the datapath information which contains the name,

functionality, number of inputs, nurnber of outputs and bit-width of the functional units.

The last part of the file shows the controlling signals specification, which indicates the

activated control signals in each state of the controller. The second part of the syn­

thesis method is the lCD2VHD program which translates the lCD files to synthesisable

VHDL, see chapter 6 for more information regarding the synthesis procedure. Two more

examples are provided in the Listings (A.l) and (A.2).

~ Header and current floor plane name

SYS 02 02 32 ~ Controller

~~O_ ~N~~_~~ ~~ ~O_ ~2~ ~ Datapath units

: UOO IBUF_L2 02 00 32 V Controller (ASlv1)

I
I U01 OBUF_L2 02 00 32 I External control description
U02 AE1 02 02 24 I J I Signals condition

IU03 AE2 02 02 16 :

~ U..9~ ~3 __ ~2_ ~2_ ~ __ I

r,:.:::.::; •... , -
I!X= 10; L04 U01 (0) ; GXXXOS ; L06 U01 (0) ; GXXX07 ; LOB X "00" U01 (0) . I

I!X= DO! LOO W021 ; X "10" U01 (1) , U02 (1) ; GXXX04 ; LOS X "00" W031 ; I

:1 I x "10" U01 (1) , U03 (1) ; GXXX06 ; L07 X "00" W041 ; :

Ij 1 x "10" U01 (1) , U04 (1) GXXXOB . I

:lx= 01 1 uoo (0) L01 X "01" G02101 ; UOO (1) , U02 (0) L02 G03102 :

Ii 1UOO(1) , U03(0) ; L03 G04103 ; UOO(l) , U04(0) ; GXXXOO . I

:t~.: ... ~:i:j null . :
I END. I
~_~ __ J

~ End of the file

FIGURE A.I: General format of the lOD file for a design with three sub-systems,
structured controller.

Appendix A leD Files Mnemonics

MC5 1 02 02 16

UOO BSW2 02
U01 MOL 03
U02 MOL 03
U03 ADS 04
U04 ADS 04
U05 REG 02
U06 REG 02

00 16
01 16
01 16
00 16
00 16
00 16
00 16

Header: System name

Controller Name

• Datapath Units

MOB CE'M5 1 03 00 16 ____ Memory Unit

Controller States
Spec{fication

U07 REG 02 00 16 !
r Xd-;-LOO x -;;00;;- Wxo"{ x --;,017."}""{ {" X 7."00,;-}} -;-x-,:Qlo'-RI:x-; UOO(l)-;- uOlii), "I
! U02 (1) ; !
: UOB (0) U01 (0) ; UOS (0) , UOB (1) , U02 (0) !
I X "00" WXO { X "01" } {{ X "00" }} ; X "01" RLX UOO(l) , U01(1) , U02(1) I
! ; RLX ; I
I W010 U01 (2) U04 (1) U01 (2) U04 (1) U08 (0) U01 (0) RLX; I
I W020 U02 (2) U03 (1) U02 (2) U03 (1) U08 (0) U08 (2) U02 (0) I
I RLX I
1 WOlD {U01(2) U04(0) U01(2) U04(0) I
: W020 { U02 (2) U03 (D)} U02 (2) U03 (0) :
1 U03 (2) , U03 (1) , U04 (1) U04 (2) , U07 (0) 1
I X "00" WXO (X "01") {{ X "OO"}} ; X "01" RLX; UOO(l) ,U03(0) ,U03(3)1

I ' U04(0) ; I
I U03 (2) , U05 (0) ; U04 (2) , U06 (0) ; U07 (1) , U03 (1) , U04 (0) ; 1
I X "00" WXO {X "01") {{ X "OO"}} X "01" RLX ; UOO(l) ,U03(0) U03(3) I
I , U02(0) ; I
I X "ld" U05 (1) UOO (0) RLX WX1 X "Od" RLX I I
1 X "ld" U06 (1) UOO (0) RLX WX1 X "Od" RLX I
I x "10" U03 (2) UOO (0) RLX WXl X "Od" RLX I
1 X "ld" U04 (2) UOO (0) RLX WX1 X "Od" RLX I
I I
1 I
~ ___ G~~~ _. _ _ _ _ _ _ _ _____________________________ I

END .

FIGURE A.2: leD specification of the macro-cell for a matrix based transform (see
appendix B), unstructured controller form.

Listing A.l: structured controller leD file, highest level of specification.

AEl 02 02 16

COO CNTO_l-Ll 00 00 16

UOO IBUF_Ll 01 00 16

UOl OBUF_Ll 01 00 16

U02 MC1_l 02 02 16

172

Xd = LOO X "00" WXO { X "01" } {{ X "00" }} ; X "01" RLX ; UOO(O) , U02(0)

RLX ; W021 ; X "10" U02(1) , UOHO) ; RLX ; WXl { X "00" } ; RLX ;

GdddOO

END .

Appendix A lOD Files Mnemonics

Listing A.2: structured controller leD file, macro-cell (Me) level of specification

SYS 02 02 32

COO CNTO~2 00 00 32

UOO IBUF_L2 02 00 32

UOl OBUF_L2 02 00 32

U02 AEl 02 02 16

U03 AE2 02 02 24

173

U04 AE3 02 02 32

X= 10 L04 U01(O) ; GXXX05 ; L06 U01(O) ; GXXX07 ; L08 X "00" U01(O).

X= 00 LOO W021 ; X "10" U01(l) , U02(1) ; GXXX04 ; L05 X "00" W031;

X "10" U01(1) , U03(1) ; GXXX06 ; L07 X "00" W041 ;

X "10" U01(1) , U04(1) GXXX08 .

X= 01 UOO(O) LOl X "01" G02101 ; UOO(1) ,U02(0) L02 G03102

UOO(l) , U03(0) ; L03 G04103 ; UOO(l) , U04(0) ; GXXXOO .

X= dd null

END .

Appendix B

Supplementary Examples

In general, the proposed architecture exerts a set of restrictions on the high level synthesis

methodology. However these limitations have improved the synthesis process, generality

and ability of the architecture might be in question. To evaluate the flexibility of the

architecture and its ability to run basic DSP algorithms some of the more public and

basic algorithms are mapped to the architecture in this appendix. The first part of the

section is a survey on the basic algorithms and the second part presents the details of

the implementation of some algorithms on the architecture.

Signal processing algorithms originate from pure mathematical methods to analyse the

functions. There is a wide variety of DSP algorithms which have been divided into

different categories from different points of view ([132]), but since algorithms application

and mathematical properties are out of this study concern, they have been considered in

two broad categories: Filtering and Transforms. Following subsections give more details

in both.

B.1 Filtering

In general a system, and most signal transforms, can be described in the form of a

difference equation as illustrated in Equation (B.1).

F {x, f(x), f(x + h), f(x + 2h), ... , f(x + nh)} = 0, (B.1)

where, F can be a nonlinear time variant function. In the simplest case where F is linear

and time invariant, LTI system [98], the relationship between input, x and output y is:

N M

I:: ak . y[n - k] = I:: bk . x[n - k], (B.2)
k=O k=O

174

Appendix B Supplementary Examples 175

And by using Z transform (Z{}, see [98] or [105] for details), we have:

""N -k
Z {h[n]} = H(z) = L.,~O ak . z

Ek=o bk . z-k
(B.3)

where H (z) can be expanded in the form of multiplication of first order farctions to

build up a case-cade structure as

(BA)

or be expanded as addition of second order fractions as

(B.5)

Some very popular examples of these systems are filters.

From one point of view, filters (systems) can be divided into two categories: Finite­

Duration Impulse Response (FIR) and Infinite-Duration Impulse Response (IIR) filters.

From the implementation point of view, on the other hand, a FIR filter has no feed­

back but an IIR filter has feedback(s) and its computation operation is recursive which

increases the complexity and possibility of instability in comparison with FIR system.

There are a lot of related works in this regard [98], specially in design and implementa­

tion of filters as the most popular systems in practice; here we review some of the most

popular.

B.1.l Related Algorithms and Models

FIR systems have a finite duration Impulse Response, or Unit Sample Response in

discrete time systems. Their general description by difference equations is:

M-l

y[nJ = :L bk . x[n - kJ, (B.6)
k=O

Alternatively, by a transfer function in the form of:

M-l

Z{h[n]} = H(z) = :L bk . z-k, (B.7)
k=O

Furthermore, the unit sample response of the FIR system is identical to the coefficients

{bk }, that is:

Appendix B Supplementary Examples

h[n[~ { ~" O:Sn:SM-1

otherwise,

176

(B.S)

The length of the FIR system is denoted as M to conform to the established notation

in the technical literature. Several methods for implementing an FIR filter have been

introduced which we recite them here:

• Direct Form Structure

• Cascade Form Structures

• Frequency Sampling Structures

• Lattice Structure

IIR systems have an impulse response with infinite duration in time space. The rational

system function that characterizes an IIR system is:

N M

y[n] = - L aky[n - k] + L bkx[n - kJ, (B.9)
k=l k=O

This also can be expressed as a system function like:

(B.10)

Similar to FIR systems, there are several types of realisations structures including:

• Direct Form Structures

• Cascade Form Structures

• Parallel Form Structures

• Lattice Structure

• Lattice-Ladder Structure

There are other structures for IIR systems like: wave digital structures, frequency­

response masking and all-pass-based forms, etc [31, 9S]. They all represent various

tradeoffs; the best choice in a given context is not yet fully understood, and may never

be [9S]. Each method according to its implementation costs has advantages and dis­

advantages. For example, parameters like Complexity, Memory Requirements, Speed,

Finite Word-length Effects and Flexibility [101].

Since IIR filters have a more general form, they are considered in this design example.

Three basic structures of an order-2 (two pole) IIR filter have been shown in the Figure

Appendix B Supplementary Examples 177

(B.1). By manipulating the general form of an IIR system simply we can reduce the

design of a high order system (m, n > 2) to the design of two pole system by which ,as

a building block of the larger system, we can make a more complex systems using them

in cascade or parallel form or a mixed structures Figure (B.2).

x[n] y[n]

(a) (b)

x[n)

(c)

FIGURE B.1: Implementation of general tow-pole IIR system a)simplo form
b)transposed form c)lattice form.

X1nl-1 Hd (Z) H Hc,(z) ~ · .. · .. 1Hd(Z)~ Ylnl

(a)

X[n] Y[n]

(b)

FIGURE B.2: High order filters can be decomposed in a) cascade form b) parallel form.

Appendix B Supplementary Examples 178

B.2 Transforms

Since Fourier transform of signals has a great impact on signals and systems analysis,

many different kind of computation methods have been introduced and discussed for it

[98]. According to complexity parameters and resources restrictions, these computation

methods have different efficiencies. This section discusses the basis of some public meth­

ods for DFT realisation and afterward an implementation for each has been designed.

There are different algorithms of DFT implementations. Here, as a case study, three

basic algorithms have been discussed and implemented: Goertzel Filters [31], FFT and

Matrix Based method.

B.2.l Goertzel Algorithm

A computation procedure that is somewhat more efficient than the direct method is

called Goertzel Method (or filters). In this method the DFT can be viewed as the

response of a filter [31]. DFT of sequences x[n] is:

N-l

X[n] = L x[k] . WRrk, (B.ll)
k=O

k ·2"k N ·21fnN •
where WRr = e-JN"". Clearly WRr = e-J---y;r = 1 so the DFT equation can be rewnten

as:

X[n]
N-l

WRrN . L x[k]· WRrk,
k=O

N-l L x[k] . WNn(N-k) ,

k=O

For convenience, let us define a new sequence:

N-l

Yn[m] = L x[k] . WNn(m-k) ,
k=O

(B.12)

(B.13)

where it can be seen that X[n] = Yn[N]. The above equation shows that Yn[m] is the

convolution of x[n] with the sequence WN
km). Consequently, Yn[m] can be considered

as the response of a system with an impulse (unit sample) response of WNkm) and X[n]
is the value of the output when m = N. The signal flow graph of a system with unit

sample response WN
km) is depicted in Figure (B.3).

Appendix B Supplementary Examples 179

.. ..
x [nl]

w-k

!i

FIGURE B.3: Signal Flow Graph of first order Goertzel filter.

System function of the first order Goertzel filter is:

H (z) ___ 1 __
n - 1 W-nz-1' - N

(B.14)

from which, by multiplying both numerator and denominator of Hn(z) by the factor

(1 - wrf z-l), we obtain:

(1 - WNnz-l)(1 - WAY z-l)'

1- WNz- 1
n

1 - 2 cos (~ n) z-l + z-2 '

(B.15)

This is a second order system with signal flow graph of the Figure (B.4). The Goertzel

.. ... - -
x [m] Yn [m]

J~ " Z-l

_wn
.. N - -2Jr

2cos(-n)
N

Z-l -1 J
,

...

FIGURE B.4: Signal Flow Graph of second order Goertzel filter.

algorithm is more efficient than the FFT when only a few samples of DFT (X[n]) are

required.

B.2.2 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an important tool used in digital signal processing

applications. The definition of the FFT is identical to the DFT, only the method of

computation differs. From a matrix based view point, a DFT transformation of an N­

point input (x[nJ; n = 0, 1 ... N - 1) takes a vector of N coefficients and returns a vector

with its values evaluated at N points. Namely this transform is evaluated at the N roots

of unity, which are evenly spaced on the unit circle. Since the relationship between input

Appendix B Supplementary Examples 180

and output is linear, the Fourier transform must be given by a matrix multiplication

like:

X[n] F.ry x x[n], (B.16)

X[O] 1 1 1 1 x[O]
X[l] 1 WI

N W 2
N

W N - 1
N x[l]

X[2] 1 WR, W 3
N

W 2(N-l)
N x x[2]

X[N-1] 1 W N - 1
N

W 2(N-I)
N

W(N-l)2
I\T x[N-1]

where the VVN = e -j ~ is the ith participate of the Nth root of 1, FN is the N x N Fourier

matrix and X[n] is the DFT transformed of x[n]. FFT is based on decomposition of the

matrix multiplication to smaller matrixes which can affect the computational complexity

dramatically.

To achieve the efficiency of an FFT, it is important that N be a highly composite

number, which is typically considered as a power of 2 (N = 2M). Consequently, the

whole algorithm breaks down into a repeated application of an elementary transform

known in a butterfly structure. Figure (B.5) shows the general form of radix-2 FFT

butterfly, more details can be found in DSP text books such as [98] or [105].

P

Q

P+Q~~ P P+Q

Wk Wk
N

P-QW; Q N (P-Q)W:~

(a) (b)

FIGURE B.5: Raxid-2 Butterfly Cell for FFT a)DIT Implementation b)DIF Implemen­
tation.

The crucial difficulty of FFT implementation is its inputs and outputs data access and

arrangement. For example, consider Figure (B.6 which demonstrates an 8-point FFT

implementation in different ways. Apparently, data passing between butterfly blocks

makes an unavoidable computational overhead especially in a single bus systems.

Over the years, researchers have developed different forms of FFT for more efficient

computation [107]. Radix-2 Butterfly is the smallest element for FFT implementation.

The radix of FFT presents the number of inputs that are combined in a butterfly. FFT

is usually explained around the radix-2 algorithm for simplicity; however, using high

order radices saves more computational resources. This saving increases with radix, but

there is a very little improvement above radix-4. In radix-4 FFT, each butterfly has 4

inputs and 4 outputs, essentially combining two stages of a radix-2 algorithm in one, see

Figure (B. 7).

Appendix B Supplementary Examples 181

x[O X[O]
x[4 X[J]

x[2 X[2]
x[6 X[3]

x[l X[4]
x[5 X[5]

x[3 X[6]
x[7 X[7]

(a) (b)

x[O x[O X[O]
x[4 x[l X[l]

x[2 x[2 X[2]
x[6 x[3 X[3]

x[l x[4 X[4]
x[5 x[5 X[5]

x[3 x[6 X[6]
x[7 x[7 X[7]

(c) (d)

FIGURE B.6: 8-point implementation of FFT by radix-2 Butterfly cells a)DIT bit­
reversed ordered inputs b)DIT normal ordered inputs c)DIF bit-reversed ordered inputs

d)DIF normal ordered inputs (each block is a radix-2 butterfly cell) [98].

x[l]

x[2]

x[3]

x[4]

Wk
N

W2k
N

W 3k
N

X[J]

X[2]

X[3]

X[4]

FIGURE B.7: Radix-4 Butterfly Cell for FFT implementation.

The matrix equation for a radix-4 FFT cell is:

X[l] 1 1 1 1 x[I]
X[2] 1 -J -1 J x[2]

= x
X[3] 1 -1 1 -1 x[3]
X[4] 1 .7 -1 -J x[4]

(B.17)

Appendix B Supplementary Examples 182

and by separating the real and imaginary parts of the equation we see:

X[I] 1 1 1 1 0 0 0 0 x[l]
X[2] 1 0 -1 0 0 -1 0 1 x[2]

(B.18) +jx x
X[3] 1 -1 1 -1 0 0 0 0 x[3]
X[4] 1 0 -1 0 0 1 0 -1 x[4]

where by rewriting the equations we have:

X[I] = Pi + Ql Pi = x[l] + x[3]
X[2] = P 2 - jQ2

where
P 2 = x[I]- x[3]

(B.19)
X[3] =H -Ql Ql = x[2] + x[4]
X[4] = P 2 + jQ2 Q2 = x[2] - x[4]

In general the same structure of macro cells (Mes) can be used for radix-4 FFT im­

plementation, however, the macro cells' internal scheduling and coefficients must be

changed. If for some reasons, in tone detection systems for instance, only a few samples

of the DFT are needed; the computational complexity can be reduced by omitting the

non required frequencies computation tree. It means deleting the butterfly cells which

have no effect on the required frequencies DFT computation.

B.2.3 Matrix Based Method

However it is possible to implement both the aforementioned methods by the proposed

architecture, according to matrix expansion, there other ways to compute DFT by our

proposed architecture depending on data conditions. Basically matrix multiplication is

a set of multiplications and accumulations which can be implemented either in serial or

parallel form. So we can write a matrix multiplication like Equation (B.20).

CMxN AMxL X BLxN, (B.20)

all a12 a13 alL bll b12 b13 blN

a21 a22 a23 a2L b21 b22 b23 b2N

a31 a32 a33 a3L x b31 b32 b33 b3N

aMi aM2 aM3 aML bLl hL2 h3 hN

where Cij = ~f=l aik . bkj . Having no special order in this computation, there are many

possibilities for its implementation, see Figure (B.8). Decomposition to sub-blocks for

instance which has been used in FFT where sub-blocks dimensions are 2 in radix-2 FFT

or 4 in radix-4 FFT.

Due to the coefficients, special form, FFT implementation can be carried out over its

rows and columns in an efficient way as well. In FFT the first matrix (A in Equation

Appendix B Supplementary Examples

EJEJB EJ
EJBB EJ
BBB EJ
EJBB EJ

(a)

x

(b)

FIGURE B.8: Matrix decompositions for multiply implementation, a) Decomposition
into sub-blocks, b)Decomposition into rows and columns.

183

(B.20)) is an N x N symmetric matrix in which its elements have special characteristics

and the second matrix (B) is an LxI matrix (a vector of length L). Exploiting these

characteristics can make the computation very simple. In addition, depending on the

data input, hardware resources can be managed to best usage. We considered each one

separately.

Another vital problem of this kind of signal transforms is their massive input and output

data. Two approaches can be imagined: data stream and stored data. In the first one

a time spaced sequence of numbers will be the system input and in the second one it

supposed that data has been stored, or cached, previously in a local memory.

Stream input:

In this approach inputs will be received one by one, which means each time we have x[n]
received at that time and preceding values. So it seems better to calculate the effect

of that input on all inputs and wait for another input which means multiplying the

corresponding row of in input and accumulate it with the previous results. See Figure

(B.9).

By using this method one input of Me blocks is xli] always a real number. An interesting

positive point of this design is the FN elements which are called twiddles [105]. There is

Appendix B Supplementary Examples 184

X[n]

x[n] (the input sequence)

-----Next Column
~

FN Matrix

012 N-l

Column i'th

FIGURE B.9: The basic structure for Stream data vector-matrix multiplication.

a relationship between elements of each of the two neighbour columns of FN by which

the hardware can compute the next column for the next input faster. VVe can see:

where -i, j = 1,2,3, ... ,N - 1 (B.2I)

In other words, by having ail and multiplying it by each column we can find the next

column values.

To make the design more efficient, we can reverse the sequence of input data, so a

recursive formula will be achieved for X[n] like:

(B.22)

where FJ;r[n] = W;}. n = 0,1,2, " N - 1 is the second column of the FN and X[n] =
Xi[n]li=N_l. Figure (B.I0) shows a schematic implementation of this algorithm. The

weak point of this design is that in the large N-point DFT, we need a large number of

Mes, which can be impractical. To deal with this problem we can divide the X[n] array

into several sub-arrays with equal lengths and at each time compute just one of them.

Appendix B Supplementary Examples 185

X[n]

x[n] (the input sequence)

Just arrived!

~extColumn __

FIGURE B.lO: Twiddle factors in the Me blocks for data stream inputs.

Stored data input:

In most of the hardware implementations of the DFT, it is supposed that the input data

(vector) is stored in a local memory and is ready to use. However this assumption is

reasonable and makes all x[n] elements accessible, there is a massive data communication

scheme in these kinds of structures. It means that, data reading and saving is a bottle­

neck of the design efficiency. We again refer the reader to the basic matrix representation

of DFT, here we have all x[n] and the system can produce X[n] elements simultaneously,

see the Figure (B .11).

PN
Matrix is included inside of the MCs

x[O] EJEJ EJ
x[l] EJEJ EJ
x[2] EJ EJ EJ

X[n]

FIGURE B.ll: Stored data DFT computation method.

Depending on the implementation structure, the number of Mes can be reduced. For

example one may prefer to produce the X[n] elements one by one, which is interesting

when DFT in needed only in some frequencies; therefore, at each time, only one row of

the matrix will be used and the number of required Mes will be reduced dramatically,

see Figure (B.12-a). Another method is similar to the data stream processing method,

Appendix B Supplementary Examples 186

by which the input vector can be fed to the MCs from the end to start and as a result

the number of MCs will reduced, see Figure (B.12-b).

F,v Matrix

H-++ __ -t-l--I°

2

x[N-2]

N-i

L---L.-J-----"J XIn]

(a) (b)

FIGURE B.12: Two basic structure for stored data input which produces one Xli] each
time. a) Computing DFT signal (X[n]) one by one b)Feeding input signal one by one.

B.3 Implementation

The following subsections give details of design and implementation of the basic algo­

rithms which discussed in sections B.l and B.2.

B.3.1 Filters

System coefficients (ak and bk in Equation (B.I0)) can be implemented as firmware

or software. If they are implemented as firmware it may increase the speed, decrease

the complexity and programming delay time and also it is possible to simplify some

functional blocks, for example multipliers which always multiply a constant to input

data. On the other hand using software increases systems flexibility.

As Figure (B.13) shows, the system has been divided into sub-blocks; each block has

two poles and two zeros. These sub-blocks should be able to be connected together in

serial, parallel or mixed in form, and because of this there are some adders. All these

sub-blocks are controlled by a controller. The controller produces sequencing signals

for two pole systems and adders, these sequences can be implemented in firmware or

software.

Inside each two pole system, there are some functional blocks like addition, multipli­

cation and registers. As discussed in the algorithm's model there are many ways to

implement a system by these functional blocks. There is a dilemma here, whether one

of these structures should be chosen as the basic structure or these subsystems should

have an arbitrary structure. By making these subsystems programmable, we provide

Appendix B Supplementary Examples

; ------------ ------- ---------- ------ ---- --- ---- --- -------1
, ' , '
l ~ ! , ,
, ' : '
, ,
, ,
, , , , , , , , ,
, ,
, ,
, , ,
, ,

1+---1 Controller I+--+-

i
-

, , , , , , , , ,
, ,
, ,
, , ,
, ,
,

t___ ___ _ ___ _ ___ !

Output Data

FIGURE B.13: Block diagram of general 2k-Pole System.

187

the capability of using these sub-blocks as the basis of other algorithms which use the

Multiplier Accumulator (MAC) basic cell.

Clearly, according to IIR systems' implementation algorithms and structures, the build­

ing blocks of each Two Pole Filter (TPF) are:

• Multiplier

• Adder

• Delay Unit (Flip-Flops or Registers)

• Bus switches

In addition, if the filters coefficients are considered as well, we need another memory

unit for them. The parameters that lead us to choose one of these structures are:

the maximum memory requirement, critical path of the circuits, complexity (number

of adders and multipliers which required) and the required accuracy of computation

(word-length). The lattice architecture of IIR filters is not suitable in this case because

it was initially designed to approximate high order filters, so it is not suitable for the

two pole filters.

Figure (B.14-a) shows the basic implementation of a simple two-pole filter. Numbers

indicate the scheduling sequence of operations and it means that in the best case this

algorithm takes:

(B.23)

Appendix B Supplementary Examples 188

assuming that TMEM ::; TMUL, where TADD, Ti\1UL and Ti",\1ElvI stand for delay of adder,

multiplier and the memory modules, respectively. Moreover, it has been supposed that

the multipliers have a simple structure, with one constant input and another variable

input. Figure (B.14-b) shows the hardware realisation of transposed' form of TPF. The

computation delay for Transposed TPF, according to Figure (B.14-b), is:

T 7'PF = TADD + 3TMUL +TMEM,

(a)

Y[n)

1:ADD;
2: MUL, MEM. MEM;
3: MUL, MUL, MUL, MUL;
4:ADD,ADD;
5: ADD;

X[n)

(b)

(B.24)

Y[n)

1:MUl, MUL;
2: ADD, ADD,MUL;
3; MUl, MUL;

® ::~~~,~~.

FIGURE B .14: Hardware realisation of TPF, numbers shows the sequence of operations.
a) Simple form b)'n'ansposed form. * This operation can be moved to stage 1 as well.

This design (we will call it type-I) needs two multipliers, two adders, two registers and

other related circuits. Optionally there is another option (type-2) in which we move

the second's stage MUL to first step. Using type-2 scheduling scheme means one more

multiplication in the first stage and its delay will be:

TTPF = 2TADD + 2Ti\1UL + TMEM, TlvIUL 2: T.4.DD (B.25)

Implementation of the TPF by type-2 scheduling seems faster in comparison with type-

1, but in turn it needs one multiplier more than type-I, thus we will use type-l in our

implementation. Figure (B.lS) shows a block diagram of such a design. The sequencer,

in Figure (B.lS), produces required signals to control the data transfer between different

blocks just in time, similar to a controller. Table (B.l) shows the details of sequencer

signals1 . In this table "-+" means data transfer and signal names refer to input and

1 In the tables of this chapter delay of basic arithmetic operations are are assumed as follows:

- r: Delay of adders,

- r2 : Delay of multipliers,

- d: Basic delay of data transfer between registers.

It is also supposed that r ;::: d.

Appendix B Supplementary Examples 189

output enabling signals. Clearly, having different operation delays, Table (B.1) not

exactly show the timing of operation execution. These delays depend on the circuit

design of each block.

(a)

Y[nJ

1: MUL, MUL;
2: ADD, ADD,MUL;
3; MUL, MUL;
4:ADD,ADD;
5: MEM, MEM.

a X[n}lY[nJ
~~~-+~--~~~-+~--~--~~-H~~~-r--~--~-+------+-----~~ 

STEP I: (X, ha) -7 MULl, (X, bl) -7 MUL2; 
STEP 2: (MULl, MEMl) -7 ADD[, (MUL2 ,MEM2) -7 ADD2, (X, b2) -7 MULl -7 TMP; 
STEP 3: (ADD! ,-aI) -7 MULl, (ADD] ,-(2) -7 MUL2; 
STEP 4: (MULl, ADD2) -7 ADDl, (TMP, MUL2) -7 ADD2; 
STEP 5: (ADD2) -7 MEM2, (ADDl) -7 MEMl. 

(b) 

;j 

FIGURE B.15: Block diagram of two pole system (Transposed typel) a) operations' 
sequence b) Block diagram. 

B.3.2 Transforms 

In this part we will try to implement a simple system of DFT transform by our soft­

architecture to evaluate its ability. According to the general architecture, chapter 6, 

algorithm executers CAE) are responsible for execution of the different algorithms; the 

next subsections explain the corresponding AE design and structure. 

AEs are the heart of the system in that they execute the algorithms of transforms,filters 

and any other functionality of the system. As a simple example we will implement an 



Appendix B Supplementary Examples 190 

N-point DFT by different methods. We suppose to N = 2k and we will implement an 

N-point DFT for the input signal x[n]. As mentioned, there are three basic methods: 

Goertzel Filters, FFT and matrix multiplication method. We will try to fit each method 

with the proposed architecture. Figure (6.3) shows the general structure of the Algo­

rithm Executer (AE) and its Macro Cells (MC). Number of MCs in the AE is changeable 

and depends on costs or constraints. 

TABLE B.l: Details of sequences for Two Pole Filter MC. 
Steps State 

Register Transfer Signals 
Clock Total 

No. Cycles Delay 

Step 1 1 X-OUT,MUL1-IN1,MUL2-IN1, d 
2 bO-ADS-+CFM-AD,CFM-OUT,MUL1-N2, d 
3 b1-ADS-+CFM-AD,CFM-OUT,MUL2-IN2, r'j, r2 + 2d 

Step 2 4 MULl-OUT, ADD1-IN1, d 
5 MEM1-0UT,ADD1-IN2, d 
6 MUL2-0UT,ADD2-IN1, d 
7 MEM2-0UT,ADD2-IN2, d 
8 b2-ADS-+CFM-AD,CFM-OUT,MUL1-IN2, d 
9 ADD1-0UT,Y-IN,IjO, r 
10 MUL1-0UT,TMP-IN, rL. 

11 ADD1-0UT,MUL1-IN1,MUL2-IN1 *, d r2 + r + 6d 
Step 3 12 -a1-ADS-+CFM-AD,CFM-OUT,MUL1-IN2, d 

13 -a2-ADS-+CFM-AD,CFM-OUT,MUL2'-IN2, d 
14 ADD2-0UT ,ADD1-IN1, r r+2d 

Step 4 15 1-+ MULl-OUT ,1-+ ADD 1-IN2, r2 

16 TMP-OUT ,ADD2-IN1, d 
17 MUL2-0UT,ADD2-IN2, rL. 

18 ADD2-0UT,MEM2-IN, r 2r2 + r + d 
Step 5 19 ADD1-0UT,MEM1-IN, r r 

Total Delay 4r'j, +4r + 11d 

Goertzel Filters: 

As it has been explained in section B.2.1, this method can be implemented as a single pole 

or two pole IIR filter, see Figures (B.3) and (BA). For a first order filter (Figure (B.3)), 

according to Equations (B.12) and (B.13), the computations involve multiplication by 

complex numbers and each complex multiplication results in four real multiplications 

and four real additions. On the other hand, the second order filter implementation has 

avoided complex multiplications by a mathematical simplification. Figure (B.16) shows 

a second order Goertzel filter implementation in more detail, by inspection, one can 

write Equation (B.26). 

(21m) Qm = x[m] + 2 cos N . Qm-l - Qm-2, (B.26) 



Appendix B Supplementary Examples 191 

and since it is known that X[n] = Yn[N] and according to Figure (B.16) we have: 

(B.27) 

Then after N iterations, X[n] can be computed by the Equation (B.28). 

(B.28) 

x[m] 

FIGURE B.16: Modified Goertzel algorithm block diagram. 

Equation (B.28) means that complex multiplication is needed only once, for every X[n], 
after the final step when QN has been computed. The structure of Figure (B.16) is very 

suitable for implementation by MCs. MC scheduling has been depicted in Figure (B.17) 

and Table (B.2) shows the corresponding data transfer signals. 

Once after N 
iterations 

1: ADD, MUL, MEM; 
2: MEM,ADD; 

N: MUL, ADD. 

FIGURE B.17: Second order Goertzel Filter scheduling for Mes. 

In Figure (B.17) it has been assumed that the needed twiddle factors [105] have been 

stored in the CFM (Coefficients Memory) of MCs. In addition, operations of MCs are 

controlled by another controller which is based on the structure of Figure (RI8). In 



Appendix B Supplementary Examples 192 

TABLE B 2' Me scheduling signals for Goertzel Filter .. 

Steps State 
Register Transfer Signals 

Clock Total 
No. Cycles Delay 

Step 1 1 X-OUT,ADD1-IN1 ,BUF -IN, d 
2 ADD2-0UT,ADDI-IN2, r 
3 MEM2-0UT,ADD2-INI, d 
4 MEMI-OUT,MEM2-IN,MUL1-INI, d 
5 CI-ADS'CFM-AD,CFM-OUT, MULI-IN2, r"L r2 + r + 3d 

Step 2 6 MULI-OUT,ADD2-IN2, r 
7 ADDI-OUT,MEMI-IN, d r+d 

After N IteratIOns: 
Step N N MEMI-OUT ,MULI-IN, d 

N+I C2-ADS'CFM-AD,CFM-OUT,MULI-IN2, r"L 

N+2 ADDI-OUT,ADD2-INI, d 

N+3 MULI-OUT,ADD2-IN2, r 
N+4 ADD2-0UT,Y-IN,BUF-OUT, d r2 +2d 

_"L ."L Total Delay. (r + 2r + 4d) x N + r + 2d 

Figure (B.18) inputs are applied to MCs one by one in serial form and each MC produces 

the D FT at one frequency. 

FFT: 

Selected 
Frequencies 
Of X[n] 

FIGURE B.IS: A basic structure for the Goertzel Filters implementation. 

Two butterfly cells are possible for FFT: radix-2 and radix-4. Figure (B.19) shows the 

basic block diagram of a radix-2 butterfly cell. This block diagram can be implemented 

by MC, the scheduling diagram is depicted in Figure (B.20) and register transfer signals 

are shown in Table (B.3). 

In this application it supposed that the twiddle factors have been saved in CFM which 

is not practical. In addition to the twiddle factors, the FFT implementation has two 

difficulties, the first is the number of MCs (Butterfly Cells) and the second is the data 



Appendix B Supplementary Examples 193 

p"k Prk+1 Ilk 

Ilk p.k+l 
1 

pk 
J 

Q~ Q;+l Q; Qk+! 
r 

Q~ Qk+! Qf Qk+l 
1 \ 

(a) (b) 

FIGURE B.19: Radix-2 FFT Butterfly Cell block diagram a) DIT form b) DIF form. 

1: MUL, MUL; 
2: MUL, MUL; 
3; ADD, ADD; 
4: Transfer; 
5: ADD, ADD; 
6: Transfer; 
7: ADD, ADD; 
8: Transfer; 
9: Transfer. 

Inputs -------.;...-< 

Outputs 

FIGURE B.20: Scheduling diagram for radix-2 butterfly DIT form. 

passing scheme between them. To reduce the number of required MCs, a simple way 

is an in-place computation. It means that by the end of each state of computation the 

results will take the place of the previous input and will be the next stage input, see 

Figure (B.21-a). 

In Figures (B.21), 7' is the number of MCs which can be equal or less than N (the 

number of input and output san1ples) but if 7' < N, the addressing of the memories 

and sequencing of operations will be more complicated. By using two set of memories 

(Ml and 1,,12 in Figure (B.21)) addressing complexity and its overhead can be reduced 

dramatically. 



Appendix B Supplementary Examples 194 

TABLE B.3· MC scheduling for DIT radix-2 FFT Butterfly Cell 

Steps State 
Register Transfer Signals 

Clock Total 
No. Cycles Delay 

Step 1 1 X-OUT,MULI-INl,MUL2-INl,BUF-IN, d 
2 CI-ADS'CFM-AD,CFM-OUT,MULI-IN2, r 4 

3 C2-ADS' CFM-AD, CFM -OUT ,MUL2-IN2, r 4 r2 + 2d 

Step 2 4 X-OUT ,MULl-INI ,MUL2-INl, BUF -IN, d 

5 MULI-0 UT ,ADD2-INl, d 

6 CI-ADS'CFM-AD,CFM-OUT,MULI-IN2, r'2 

7 MUL2-0UT,ADDI-INl, d 

8 C3-ADS'CFM-AD,CFM-OUT,MUL2-IN2, r'2 r2 +4d 

Step 3 9 MULI-0UT,ADD2-IN2, r 
10 MUL2-0UT,ADDI-IN2, r r+d 

Step 4 11 ADD 1-0 UT ,ADD 1-INI ,ADD2-INl, d 
12 ADD2-0UT,TMP-IN, d 2d 

Step 5 13 X-OUT,ADDI-IN2,ADD2-IN2,ADDI-SUB,BUF-IN, r r 

Step 6 14 ADDI-0UT,MEMI-IN, d 
15 ADD2-0UT,MEM2-IN, d 2d 

Step 7 16 TMP-OUT,ADDI-INl,ADD2-IN2, d d 

Step 8 17 X-OUT,ADDI-IN2,ADD2-IN2,ADDI-SUB,BUF-IN, r r 

Step 9 18 ADD I-OUT, Y -IN ,BUF -OUT, d 

19 ADD2-0UT,Y-IN,BUF-OUT, d 
20 MEMI-0UT,BUF-OUT, d 
21 MEM2-0UT,BUF -OUT, d 4d 

Total Delay: 2r 4 + 3r + 15d 

Matrix Based Method 

By using a matrix based method MCs must execute complex multiplication and accu­

mulation, like Figure (B.22). Figure (B.23) presents the scheduling diagram and Table 

(B.4) shows the scheduling required for these operations. 

I 



Appendix B Supplementary Examples 

x[n]lX[n] 
MIN-I] M[N-2] M[N-3] 

(a) 

x[n]/X[n] 
-. ;:;;. r/] 

~ 
>-< ;::i ...... r/] 
(1) <l.) >-; 

;:'. I-< 

;::i o· 0 
;::i • .-< ...... 
>-; cd 
(1) I-< 

<l.) w ...... 
;::i >-< .....-...... 

;S IZl -+ 

x[n]/X[n] 

(b) 

FIGURE B.2l: In place computation of FFT by a limited number of MCs. a) with one 
set of memory b )with two sets of memories. 

x[m] 

FIGURE B.22: Basic block diagram for I\,1atrix Based signal manipulation by MCs. 

195 



Appendix B Supplementary Examples 

Y[nl 

1: MUL, MUL, 
Transfer; 
2: ADD, ADD; 
3: MEM, MEM. 

FIGURE B.23: Scheduling diagram for matrix based algorithm implementation by MCs. 

TABLE B.4: Register Transfer Signals for MCs in a Matrix Based Transform Imple­
mentation 

Steps State 
Register Transfer Signals 

Clock Total 
No. Cycles Delay 

Step 1 1 X-OUT, MUL1-IN1, MUL2-IN1, BUF-IN, d 
2 Cl-ADS'CFM-AD, CFM-OUT, MUL1-IN2, rL-

3 C2-ADS'CFM-AD, CFM-OUT, MUL2-IN2, rL-

4 MEM1-OUT, ADD1-IN1, d 
5 MEM2-0UT, ADD2-IN1, d r2 +d 

Step 2 6 MULl-OUT, ADD1-IN2, r 
7 MUL2-0UT, ADD2-IN2, r r+d 

Step 3 8 ADD1-OUT, MEM1-IN, d 
9 ADD2-0UT, MEM2-IN, d 2d 

After N inputs and N iteration 
Step N ADD1-OUT, Y-IN, BUF-OUT, 

~----+-~~-===~~~~==~==~---------+--~--~ 
ADD2-0UT, Y-IN, BUF-OUT, 2d 

Total Execution Delay (after N iterations) = (r 

196 



References 

[1] H. Alt. Comparison of arithmetic functions with respect to boolean circuit depth. 

In STOC '84: Proceedings of the sixteenth annual ACM symposium on Theory 

of computing, pages 466-470, New York, NY, USA, 1984. ACM Press. ISBN 

0-89791-133-4. 

[2] American National Standard Institute and The Institute of Electrical and Elec­

tronics Engineers. IEEE standard for binary floating-point arithmetic. AN­

SI/IEEE Standard, (Std 754-1985), 1985. 

[3] P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim, and R. Uribe. Automatic 

conversion of floating point MATLAB programs into fixed point FPGA based hard­

ware design. In FCCM '03: Proceedings of the 11th Annual IEEE Symposium on 

Field-Programmable Custom Computing Machines, pages 263-264, Washington, 

DC, USA, April 2003. IEEE Computer Society. ISBN 0-7695-1979-2. 

[4] P. Banerjee, M. Haldar, A. Nayak, V. Kim, V. Saxena, S. Parkes, D. Bagchi, 

S. Pal, N. Tripathi, D. Zaretsky, R. Anderson, and J. R. Uribe. Overview of a 

compiler for mapping MAT LAB programs onto FPGAs. IEEE Transactions on 

Very Large Scale Integration (VLSI) Systems, 12(3):312-324, March 2004. 

[5] E. H. Bareiss and J. L. Barlow. Roundoff error distribution in fixed point multipli­

cation. BIT Numerical Mathematics, 20(2):247-250, July 1980. ISSN 1572-9125. 

[6] C. W. Barnes, B. N. Tran, and S. H. Leung. On the statistics of fixed-point 

roundoff error. IEEE Transactions on Acoustics, Speech, and Signal Processing, 

33(3):595-606, June 1985. 

[7] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and 

related problems. SIAM J. Comput., 15(4):994-1003, 1986. ISSN 0097-5397. 

[8] D. Berleant. Automatically verified reasoning with both intervals and probability 

density functions. Interval Computations, (2):48-70, 1993. 

[9] M. Berz. From Taylor series to Taylor models. In In AlP Conference Proceedings 

405, page 123, 1997. 

191 



REFERENCES 198 

[10] F. Black and M. S. Scholes. The valuation of option contracts and a test of market 

efficiency. Journal of Finance, 27(2):399-417, May 1972. 

[11] F. Black and M. S. Scholes. The pricing of options and corporate liabilities. Journal 

of Political Economy, 81(3):637-54, May-June 1973. 

[12] R. Boite, X.-L. He, and J.P. Renard. A comparison of fixed-point and floating­

point realization of digital filter. In EUROCON 88: 8th European Conference on 

Electrotechnics. Conference Proceedings on Area Communication, pages 142-145, 

June 1988. 

[13] G. E. P. Box and M. E. Muller. A note on the generation of random normal 

deviates. The Annals of Mathematical Statistics, 29(2):610-611, January 1958. 

[14] R. P. Brent. Fast multiple-precision evaluation of elementary functions. Journal 

of the ACM, 23:242-251, 1976. ISSN 0004-5411. 

[15] R. P. Brent. Multiple-precision zero-finding methods and the complexity of ele­

mentary function evaluation. pages 151-176, 1976. 

[16] G. Caffarena, G. A. Constantinides, P. Y. K. Cheung, C. Carreras, and O. Nieto­

Taladriz. Otpimal combined word-length allocation and architectural synthesis of 

digital signal processing circuits. IEEE Transactions on Circuits and Systems II: 

Express Briefs, 53(5):339-343, May 2006. 

[17] M.-A. Cantin, Y. Savaria, D. Prodanos, and P. Lavoie. An automatic word length 

determination method. In ISCAS'01:The 2001 IEEE International Symposium on 

Circuits and Systems, volume 5, pages 53-56, 2001. ISBN 0-7803-6685-9. 

[18] C. Carreras and M. V. Hermenegildo. Grid-based histogram arithmetic for the 

probabilistic analysis of functions. In SARA '02: Proceedings of the 4th Inter­

national Symposium on Abstraction, Reformulation, and Approximation, pages 

107-123, London, UK, 2000. Springer-Verlag. ISBN 3-540-6'7839-5. 

[19] J. Y. Chen, W. B. Jone, J. S. Wang, H.-I. Lu, and T. F. Chen. Segmented bus 

design for low-power systems. IEEE Trans. Very Large Scale Integr. Syst., 7(1): 

25-29, 1999. ISSN 1063-8210. 

[20] H. W. Chun. A distributed constraint-based search architecture for bus timetabling 

and duty assignment. In APSEC '97: Proceedings of the Fourth Asia-Pacific 

Software Engineering and International Computer Science Conference, page 82, 

Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-8271-X. 

[21] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and 1. Bolsens. A methodology 

and design environment for DSP ASIC fixed point refinement. In DATE '99: 

Proceedings of the conference on Design, automation and test in Europe, page 56, 

New York, NY, USA, 1999. ACM Press. ISBN 1-58113-121-6. 



REFERENCES 199 

[22] C. A. C. Coello. An update survay of GA-based multiobjective optimization. ACM 

Computing Survays, 23(2):109-143, June 2000. 

[23] C. A. C. Coello. Theoretical and numerical constraint-handling techniques used 

with evolutionary algorithms: a survey of the state of the art. Computer Methods 

in Applied Mechanics and Engineering, 191(11-12):1245-87, June 2002. 

[24] G. A. Constantinides. Perturbation analysis for word-length optimization. In 

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom 

Computing Machines (FCCM03) , pages 81-90,2003. 

[25] G. A. Constantinides. Word-length optimization for differentiable nonlinear sys­

tems. ACM Trans. Des. Autom. Electron. Syst., 11(1):26-43, 2006. ISSN 1084-

4309. 

[26] G. A. Constantinides, P. Y. K. Cheung, and Wayne L. Optimum and heuristic 

synthesis of multiple word-length architectures. IEEE Transactions on Very Large 

Scale Integration (VLSI) Systems, 13(1):39-57, June 2005. 

[27] G. A. Constantinides, P. Y. K. Cheung, and W. Luk. Synthesis of saturation 

arithmetic architectures. ACM Trans. Des. Autom. Electron. Syst., 8(3):334-354, 

2003. ISSN 1084-4309. 

[28] G. A Constantinides, P. Y. K. Cheung, and W. Luk. Synthesis and Optimiza­

tion of DSP Algorithms (Fundamental Theories of Physics S.). Kluwer Academic 

Publishers, 2004. ISBN 1402079303. 

[29] G. A. Constantinides and G. J. Woeginger. The complexity of multiple wordlength 

assignment. Applied Mathematics Letters, 15(2):137-140, 2002. 

[30] J. Daalder, P. W. Eklund, and K. Ohmori. High-level synthesis optimization 

with genetic algorithms. In PRICAI '96: Proceedings of the 4th Pacific Rim 

International Conference on Artificial Intelligence, pages 276-287, London, UK, 

1996. Springer-Verlag. ISBN 3-540-61532-6. 

[31] N. Dahnoum. Digital Signal Processing Implementation. Pearson Education, 2000. 

ISBN 0201619164. 

[32] L. Henrique de Figueiredo and J. Stolfi. Affine arithmetic: Concepts and applica­

tions. Numerical Algorithms, 37(1-4):147-158, December 2004. ISSN 1017-1398. 

[33] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Ed­

ucation, 1994. ISBN 0071132716. 

[34] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley 

and Sons, 2001. ISBN 047187339X. 



REFERENCES 200 

[35] J.-P. Deschamps, G. J. A. Bioul, and G. D. Sutter. Synthesis of Arithmetic Cir­

cuits: FPGA, ASIC and Embedded Systems. Wiley-Interscience, 2006. ISBN 

0471687839. 

[36] J. Detrey and F. de Dinechin. Second Order Function Approximation Using a 

Single Multiplication on FPGAs, volume 3203/2004 of Book Series Lecture Notes 

in Computer Science, pages 221-230. Springer Berlin-Heidelberg, 2004. ISBN 

978-3-540-22989-6. 

[37] P. S. R. Diniz, E. da Silva, S. L. Netto, and E. A. B. da Silva. Digital Signal 

Processing: System Analysis and Design. Cambridge University Press, 2002. ISBN 

0521781752. 

[38] N. Doi, T. Horiyama, M. Nakanishi, and S. Kimura. Bit-length optimization 

method for high-level synthesis based on non-linear programming technique. IE­

ICE Trans. Fundam. Electron. Commun. Comput. Sci., E89-A(12):3427-3434, 

2006. ISSN 0916-8508. 

[39] P. Eles, K. Kuchcinski, and Z. Pengo System Synthesis with VHDL. KluwerAca­

demic, 1998. 

[40] C. Ewering. Automatic high level synthesis of partitioned busses. In ICCAD-

90:IEEE International Conference on Computer-Aided Design, pages 304-307, 

November 1990. 

[41] C. F. Fang. Probabilistic interval-valued computation: representing and reasoning 

about uncertainty in DSP and VLSI design. PhD thesis, Pittsburgh, PA, USA, 

2005. 

[42] C. F. Fang, R. A. Rutenbar, and T. Chen. Fast, accurate static analysis for fixed­

point finite-precision effects in DSP designs. In ICCAD '03: Proceedings of the 

2003 IEEE/ACM international conference on Computer-aided design, pages 275-

282, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 1-58113-762-1. 

[43] E. Frank and T. Lengauer. APPlaUSE: Area and performance optimization in a 

unified placement and synthesis environment. In ICCAD '95: Proceedings of the 

1995 IEEE/ACM international conference on Computer-aided design, pages 662-

667,Washington, DC, USA, 1995. IEEE Computer Society. ISBN 0-8186-7213-7. 

[44] E. Frank, S. Raje, and M. Sarrafzadeh. Constrained register allocation in bus 

architectures. In DAC '95: Proceedings of the 32nd ACM/IEEE conference on 

Design automation, pages 170-175, New York, NY, USA, 1995. ACM Press. ISBN 

0-89791-725-1. 

[45] D. D. Gajski, N. D. Dutt, A. C-H Wu, and S. Y-L Lin. High-level Synthesis: 

Introduction to Chip and System Design, page 376. Kluwer Academic Publishers, 

first edition, April 1992. ISBN 978-0792391944. 



REFERENCES 201 

[46] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the 

Theory of NP-completeness. W.H.Freeman & Co Ltd, April 1979. ISBN 978-

0716710455. 

[47] C. F. Gerald and P. O. Wheatley. Applied Numerical Analysis. Addison Wesley, 

7 edition, July 2003. ISBN 978-0321133045. 

[48] A. G. Glen, L. M. Leemis, and J. H. Drew. Computing the distribution of the 

product of two continuous random variables. Computational Statistics and Data 

Analysis, 4(3):451-464, January 2004. 

[49] D. A. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn­

ing. Addison-Wesley Professional, 1989. ISBN 0201157675. 

[50] R. M. Gray. Quantization noise spectra. IEEE Transactions on Information 

Theory, 36(6):1220-1244, November 1990. 

[51] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Transactions on Information 

Theory, 44(6):2325-2383, October 1998. 

[52] K. Han and B. L. Evans. Wordlength optimization using sensitivity information. 

EURASIP Journal on Applied Signal Processing, special issue on Design Methods 

for DSP Systems, (5):1-14, 2006. 

[53] D. J. Higham. Black-scholes for scientific computing students. Computing in 

Science and Engg., 6(6):72-79, 2004. ISSN 1521-9615. 

[54] J. L. Hodges, E. L. Lehmann, and J. L. Hodges. Basic Concepts Of Probability 

And Statistics. Society for Industrial and Applied Mathematic, second edition, 

January 2005. ISBN 978-0898715750. 

[55] C.-Ta Hsieh and M. Pedram. Architectural power optimization by bus splitting. 

In DATE '00: Proceedings of the conference on Design, automation and test in 

Europe, pages 612-616, New York, NY, USA, 2000. ACM Press. ISBN 1-58113-

244-1. 

[56] C.-Ta Hsieh and M. Pedram. Architectural energy optimization by bus splitting. 

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 

21 (4) :408-414, April 2002. 

[57] J. Jeon and K. Choi. Effective synthesis algorithm for partitioned bus architecture. 

Electronics Letters, 35(6):440-441, March 1999. ISSN 0013-5194. 

[58] W.-B. Jone, J. S. Wang, Hsueh-I Lu, I. P. Hsu, and J.-Y. Chen. Design theory and 

implementation for low-power segmented bus systems. ACM Trans. Des. Autom. 

Electron. Syst., 8(1):38-54, 2003. ISSN 1084-4309. 



REFERENCES 202 

[59] B. KAMGAR-PARSI, B. KAMGAR-PARSI, and M. BROSH. Distribution and 

moments of the weighted sum of uniform random variables, with applications in re­

ducing monte carlo simulations. Journal of statistical computation and simulation, 

52(4):399-414, 1995. ISSN 0094-9655. 

[60] H. Keding, M. Willems, M. Coors, and H. Meyr. FRIDGE: a fixed-point design and 

simulation environment. In DATE '98: Proceedings of the conference on Design, 

automation and test in Europe, pages 429-435, Washington, DC, USA, 1998. IEEE 

Computer Society. ISBN 0-8186-8359-7. 

[61] K Kim, K Choi, and Y.-H. Jun. Hardware synthesis for stack type partitioned­

bus architecture. In ICVC'99:6th International Conference on VLSI and CAD, 

pages 81-84, October 1999. 

[62] S. Kim and W. Sung. A floating-point to fixed-point assembly program translator 

for the TMS 320c25. IEEE Transactions on Circuits and Systems II: Analog and 

Digital Signal Processing, 41(11):730 - 739, November 1994. 

[63] S. Kim and W. Sung. Fixed-point error analysis and word length optimization 

of 88 IDCT architectures. IEEE Transactions on Circuits and Systems for Video 

Technology, 8(8):935 - 940, December 1998. 

[64] P. Kollig and B.M. Al-Hashimi. Simultaneous scheduling, allocation and binding 

in high level synthesis. Electronics Letters, 33(18):1516-1518, August 1997. 

[65] 1. Koren. Computer Arithmetic Algorithms. A. K Peters Ltd., Natick, MA, USA, 

2001. ISBN 1568811608. 

[66] K-1. Kum, J. Kang, and W. Sung. A floating-point to integer C converter with 

shift reduction for fixed-point digital signal processors. In ICASSP '99: IEEE 

International Conference on Acoustics, Speech, and Signal Processing, volume 4, 

pages 2163 2166, March 1999. 

[67] K-1. Kum, J. Kang, and W. Sung. AUTOS CALER for C: an optimizing floating­

point to integer c program converter for fixed-point digital signal processors. IEEE 

Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47 

(9):840-848, September 2000. 

[68] Ki-Il Kum and W. Sung. Combined word-length optimization and high-level syn­

thesis of digital signal processing systems. IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, 20(8):921-930, Unknown 2001. 

[69] 1. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26 

(2):203-215, February 2007. ISSN 0278-0070. 



REFERENCES 203 

[70] Y.-K Kwok. Mathematical Models of Financial Derivatives. Springer, 1 edition, 

May 1999. ISBN 978-9813083257. 

[71] B. Le-Gal, C. Andriamisaina, and E. Casseau. Bit-width aware high-level synthesis 

for digital signal processing systems. In IEEE International SOC Conference, 

pages 175-178, September 2006. 

[72] D.-U. Lee, A. Abdul-Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and G. A. 

Constantinides. Accuracy-guaranteed bit-width optimization. IEEE transactions 

on computer-aided design of Integrated Circuits and Systems, 25(10):1990-2000, 

OCTOBER 2006. 

[73] D.-U Lee, A. Abdul-Gaffar, O. Mencer, and W. Luk. Optimizing hardware function 

evaluation. IEEE Trans. Comput., 54(12):1520-1531, 2005. ISSN 0018-9340. 

[74] D.-U Lee, W. Luk, J. D. Villasenor, and P. Y. K. Cheung. A Gaussian noise 

generator for hardware-based simulations. IEEE Trans. Comput., 53(12):1523-

1534, 2004. ISSN 0018-9340. 

[75] S. Lee and K. Choi. Partitioned-bus architecture synthesis based on data trans­

fer modeL In APCHDL 99: The 6th Asia Pacific Conference on Chip Design 

Language, pages 144-149, 1999. 

[76] M. P. Leong, M. Y. Yeung, C. K. Yeung, C. W. Fu, P. A. Heng, and P. H. W. Leong. 

Automatic floating to fixed point translation and its application to post-rendering 

3D warping. In FCCM '99: Proceedings of the Seventh Annual IEEE Symposium 

on Field-Programmable Custom Computing Machines, page 240, Washington, DC, 

USA, 1999. IEEE Computer Society. ISBN 0-7695-0375-6. 

[77] J. D. Ma and R. A. Rutenbar. Fast interval-valued statistical interconnect model­

ing and reduction. In ISPD 'OS: Proceedings of the 2005 international symposium 

on Physical design, pages 159-166, New York, NY, USA, 2005. ACM Press. ISBN 

1-59593-021-3. 

[78] E. Macii, M. Pedram, and F. Somenzi. High-level power modeling, estimation, 

and optimization. IEEE Transactions on Computer-Aided Design of Integrated 

Circuits and Systems, 17(11):1061-1079, 1998. 

[79] K. Makino and M. Berz. Remainder differential algebras and their applications. 

Computational Differentiation: Techniques, Applications, and Tools SIAM, 1996. 

[80] A. Mallik, D. Sinha, P. Banerjee, and H. Zhou. Smart bit-width allocation for 

low power optimization in a systemc based ASIC design environment. In DATE 

'06: Proceedings of the conference on Design, automation and test in Europe, pages 

618-623, 3001 Leuven, Belgium, Belgium, 2006. European Design and Automation 

Association. ISBN 3-9810801-0-6. 



REFERENCES 204 

[81] A. Mallik, D. Sinha, P. Banerjee, and H. Zhou. Low-power optimization by smart 

bit-width allocation in a systemc-based ASIC design environment. IEEE Trans­

actions on Computer-Aided Design of Integrated Circuits and Systems, 26(3):447-

455, March 2007. 

[82] G. Marsaglia and W. W. Tsang. The Ziggurat method for generating random 

variables. Journal of Statistical Software, 5(8):1-7, 2000. 

[83] M. C. McFarland, A. C. Parker, and R. Camposano. Tutorial on high-level syn­

thesis. In DAC '88: Proceedings of the 25th ACM/IEEE conference on Design 

automation, pages 330-336, Los Alamitos, CA, USA, 1988. IEEE Computer Soci­

ety Press. ISBN 0-8186-8864-5. 

[84] D. Menard, D. Chillet, F. Charot, and O. Sentieys. Automatic floating-point to 

fixed-point conversion for DSP code generation. In CASES '02: Proceedings of 

the 2002 international conference on Compilers, architecture, and synthesis for 

embedded systems, pages 270-276, New York, NY, USA, 2002. ACM Press. ISBN 

1-58113-575-0. 

[85] D. Menard and O. Sentieys. DSP Code Generation with Optimized Data Word­

Length Selection, volume 3199/2004 of Lecture Notes in Computer Science, pages 

214-228. Springer Berlin Heidelberg, October 2004. ISBN 978-3-540-23035-9. 

[86] O. Mencer, N. Boullis, W. Luk, and H. Styles. Parameterized function evaluation 

for FPGAs. In FPL '01: Proceedings of the 11th International Conference on 

Field-Programmable Logic and Applications, pages 544-554, London, UK, 2001. 

Springer-Verlag. ISBN 3-540-42499-7. 

[87] R. Michard, A. Tisserand, and N. Veyrat-Charvillon. Small FPGA polynomial ap­

proximations with 3-bit coefficients and low-precision estimations of the powers of 

x. In IEEE International Conference on Application-Specific Systems, Architecture 

Processors, pages 334- 339, July 2005. ISBN 0-7695-2407-9. 

[88] A. Mignotte and M. Crastes de Paulet. Resource assignment with different target 

architectures. In Euro ASIC 91, pages 172-177, May 1991. 

[89] R. E. Moore. Interval analysis. Prentice-Hall, 1966. 

[90J R. E. Moore and F. Bierbaum. Methods and Applications of Interval Analysis. 

Soc for Industrial & Applied Math, 1979. ISBN 0898711614. 

[91J V. G. Moshnyaga, F. Ohbayashi, and K. Tamaru. A scheduling algorithm for 

synthesis of bus-partitioned architectures. In ASP-DAC '95: Proceedings of the 

1995 conference on Asia Pacific design automation (CD-ROM), page 7, New York, 

NY, USA, 1995. ACM Press. ISBN 0-89791-766-9. 



REFERENCES 205 

[92] J. M. Muller. Elementary Functions: Algorithms and Implementation. Birkhauser 

Boston, second edition, October 2005. ISBN 0817643729. 

[93] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee. Precision and error analysis 

of MATLAB applications during automated hardware synthesis for FPGAs. In 

Design, Automation and Test in Europe, 2001, pages 722 - 728, March 2001. 

[94] N. S. Nedialkov, V. Kreinovich, and S. A. Starks. Interval arithmetic, affine arith­

metic, taylor series methods: Why, what next? Numerical Algorithms, 37(1-4): 

325-336, December 2004. ISSN 1017-1398. 

[95] S. N. Neftci. Introduction to the Mathematics of Financial Derivatives. Academic 

Press, 2nd edition, April 2000. ISBN 978-0125153928. 

[96] A. Neumaier. The wrapping effect, ellipsoid arithmetic, stability and confidence 

region. Computing Supplementum, 9:175-190,1993. 

[97] E. P. O'Grady. Hardware support for floating point map function generation. In 

SS '99: Proceedings of the Thirty-Second Annual Simulation Symposium, page 

145, Washington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0128-1. 

[98] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-Time Signal Processing. 

Pearson US Imports and PHIPEs, 1999. ISBN 0130834432. 

[99] A. V. Oppenheim and C. J. Weinstein. Effects of finite register length in digital 

filtering and the fast Fourier transform. In IEEE Proceedings, pages AU-17:209-

215. IEEE, 1972. 

[100] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford 

University Press Inc, January 2000. ISBN 978-0195125832. 

[101] K. Parhi. VLSI Digital Signal Processing Systems: Design and Implementation. 

John Wiley and Sons Inc, 1999. ISBN 0471241865. 

[102] P. G. Paulin and J. P. Knight. Force-directed scheduling in automatic data path 

synthesis. In DAC '81: Proceedings of the 24th ACM/IEEE conference on Design 

automation, pages 195-202, New York, NY, USA, 1987. ACM Press. ISBN 0-8186-

0781-5. 

[103] P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavioral synthe­

sis of ASICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits 

and Systems, 8(6):661-679, June 1989. 

[104] J. Proakis, D. Manolakis, and D. G. Manolakis. Digital Signal Processing: Prin­

ciples, Algorithms and Applications. Pearson US Imports & PHIPEs, 1995. ISBN 

0133942899. 

[105] J. G. Proakis. Digital Signal Processing. Prentice Hall, 2006. ISBN 0131873741. 



REFERENCES 206 

[106] Y. Pu and Y. Ha. An automated, efficient and static bit-width optimization 

methodology towards maximum bit-width-to-error tradeoff with affine arithmetic 

model. In ASP-DAC '06: Proceedings of the 2006 conference on Asia South Pacific 

design automation, pages 886-891, New York, NY, USA, 2006. ACM Press. ISBN 

0-7803-9451-8. 

[107] M. Puschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W. Singer, 

Jianxin Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W. Johnson, 

and N. Rizzolo. SPIRAL: code generation for DSP transforms. Proceedings of the 

IEEE, 93(2):232-275, 2005. 

[108] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits. Pren­

tice Hall, second edition, December 2002. ISBN 978-0130909961. 

[109] H. Regan, S. Ferson, and D. Berleant. Equivalence of methods for uncertainty 

propagation of real-valued random variables. International Journal of Approximate 

Reasoning, 36(1):130, April 2004. 

[110] N. Revol, K. Makino, and M. Berz. Taylor models and floating-point arithmetic: 

proof that arithmetic operations are validated in COSY. Journal of Logic and 

Algebraic Programming, 64(1):135-154, July 2005. 

[111] S. Roy and P. Banerjee. An algorithm for trading off quantization error with 

hardware resources for MATLAB-based FPGA design. IEEE Trans. Comput., 54 

(7):886-896, 2005. ISSN 0018-9340. 

[112] A. Rushton. STLplus library. http://stlplus.sourceforge.net/, October 2004. 

[113] T. Seceleanu. Communication on a segmented bus platform. In IEEE International 

SOC Conference, pages 205-208, September 2004. 

[114] T. Seceleanu, V. Leppanen, J. Suomi, and O. Nevalainen. Resource allocation 

methodology for the segmented bus platform. In IEEE International SOC Con­

ference, pages 129-132, September 2005. 

[115] T. Seceleanu, Ville Leppnen, Jyri Suomi, and OlIi S. ,Nevalainen. On the organi­

zation of multisegmented bus. Technical Report 647, Turku, Finland, December 

2004. 

[116] T. Seceleanu, St. Stancescu, and V. Lazarescu. Distributed arbitration for the 

segmented bus platform. In ISSCS'2005: International Symposium on Signals, 

Circuits & Systems, pages 63-66, 2005. 

[117] T. A. Severini. Elements of Distribution Theory. Cambridge University Press, first 

edition, August 2005. ISBN 978-0521844727. 

[118] C. Shi. Floating-point to fixed-point conversion. PhD thesis, Department of EECS, 

University of California, Berkeley, USA, May 2004. 



REFERENCES 207 

[119] C. Shi and R. W. Brodersen. Automated fixed-point data-type optimization tool 

for signal processing and communication systems. In DAC '04: Proceedings of 

the 41st annual conference on Design automation, pages 478-483, New York, NY, 

USA, 2004. ACM Press. ISBN 1-58113-828-8. 

[120] C. Shi and R. W. Brodersen. A perturbation theory on statistical quantization 

effects in fixed-point DSP with non-stationary inputs. In ISCAS '04: Proceedings 

of the 2004 International Symposium on Circuits and Systems, volume 3, pages 

III-373-6. IEEE, May 2004. 

[121] A. Singhee, C. F. Fang, J. D. Ma, and R. A. Rutenbar. Probabilistic interval­

valued computation: toward a practical surrogate for statistics inside CAD tools. 

In DAC '06: Proceedings of the 43rd annual conference on Design automation, 

pages 167-172, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-381-6. 

[122] A. B. Sripad and D. L. Snyder. A necessary and sufficient condition for quanti­

zation errors to be uniform and white. IEEE Transactions on Acoustics, Speech, 

and Signal Processing, 25(5):442-448, October 1977. 

[123] J. Stolfi and L. de Figueiredo. Self- Validated Numerical Methods and Applica­

tions. Institute for Pure and Applied Mathematics (IMP A) , Rio de Janeiro, 1997. 

Monograph for the 21st Brazilian Mathematics Colloquium (CBM'97), IMPA. 

[124] D. Stroobandt. A Priori Wire Length Estimates for Digital Design. Kluwer Aca­

demic Publishers, 2001. ISBN 079237360X. 

[125] N. Sulaiman and T. Arslan. A multi-objective genetic algorithm for on-chip real­

time optimisation of word length and power consumption in a pipelined FFT 

processor targeting a MC-CDMA receiver. In 2005 NASA/DoD Conference on 

Evolvable Hardware, pages 154-159, 2005. 

[126] W. Sung and K. Kum. Simulation-based word-length optimization method for 

fixed-point digital signal processing systems. IEEE Transactions on Signal Pro­

cessing, 43(12):3087-3090, December 1995. 

[127] S. Tarafdar and M. Leeser. The DT-model: high-level synthesis using data trans­

fers. In DAC '98: Proceedings of the 35th annual conference on Design automation, 

pages 114-121, New York, NY, USA, 1998. ACM Press. ISBN 0-89791-964-5. 

[128] S. Tarafdar and M. Leeser. A data-centric approach to high-level synthesis. IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19 

(11):1251-1267, November 2000. ISSN 0278-0070. 

[129] C. D. Thonipson. Area-time complexity for VLSI. In STOC '19: Proceedings of 

the eleventh annual ACM symposium on Theory of computing, pages 81-88, New 

York, NY, USA, 1979. ACM Press. 



REFERENCES 208 

[130] I. Tokaji and C. W. Barnes. Roundoff error statistics for a continuous range of 

multiplier coefficients. IEEE Transactions on Circuits and Systems, 34(1):52-59, 

January 1987. 

[131] M. Urabe. Roundoff error distribution in fixed-point multiplication and a remark 

about the rounding rule. SIAM Journal of Numercal Analalysis 5, 202 (1968), 5 

(2):202-210, June 1968. 

[132] S. V. Vaseghi. Advanced Signal Processing and Digital Noise Reduction. John 

Wiley and Sons, 2005. ISBN 047009494X. 

[133] I. G. Vladimirov and P. Diamond. A uniform white-noise model for fixed-point 

roundoff errors in digital systems. Automation and Remote Control, 63(5):753-765, 

May 2002. ISSN 0005-1179. 

[134] J. VoIder. The CORDIC trigonometric computing technique. IRE Transactions 

on Electronic Computers, EC-8:330-334, September 1959. 

[135] H. Wang, A. Papanikolaou, M. Miranda, and F. Catthoor. A global bus power 

optimization methodology for physical design of memory dominated systems by 

coupling bus segmentation and activity driven block placement. In ASP-DAC '04: 

Proceedings of the 2004 conference on Asia South Pacific design automation, pages 

759-761, Piscataway, NJ, USA, 2004. IEEE Press. ISBN 0-7803-8175-0. 

[136] C. Weinstein and A. V. Oppenheim. A comparison of roundoff noise in floating 

point and fixed point digital filter realizations. Proceedings of the IEEE, 57(6): 

1181- 1183, June 1969. ISSN 0018-9219. 

[137] H. S. Wil£' Algorithms and Complexity. A K Peters, second edition, November 

2002. ISBN 978-1568811789. 

[138] A. C. Williams, A. D . Brown, and M. Zwolinski. Simultaneous optimisation of 

dynamic power, area and delay in behavioural synthesis. Computers and Digital 

Techniques, lEE Proceedings, 147(6):383-390, November 2000. 

[139] W.-F. Wong, R. S. Nikhil, D. L. Rosenband, and N. Dave. High-level synthesis: an 

essential ingredient for designing complex ASICs. In ICCAD '04: Proceedings of 

the 2004 IEEE/ACM International conference on Computer-aided design, pages 

775-782, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7803-

8702-3. 

[140] G. Zhang, P.H.W. Leong, D.-U Lee, J.D. Villasenor, R.c.c. Cheung, and W. Luk. 

Ziggurat-based hardware Gaussian random number generator. In Field Pro­

grammable Logic and Applications, 2005. International Conference on, pages 275-

280, August 2005. 

[141] M. Zwolinski. Digital System Design with VHDL. Prentice Hall, 2003. ISBN 

013039985X. 


