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The movement of computational power and communications capabilities onto 
networks of sensors in the environment through the concept of pervasive or 
ubiquitous computing has initiated opportunities for the delivery of ground-based data 
in real-time and the development of adaptive monitoring systems. Measurements of 
water level taken by a network of wireless sensors called 'FloodNet' were assimilated 
into a one-dimensional hydrodynamic model using an ensemble Kalman filter, to 
create a forecasting model. The ensemble Kalman filter led to an increase in forecast 
accuracy of between 50% and 70% depending on location for forecast lead times of 
less than 4 hours. 

This research then focused on methods for targeting measurements in real-time, such 
that the power limited but flexible resources deployed by the FloodNet project could 
be used optimally. Two targeting methods were developed. The first targeted 
measurements systematically over space and time until the forecasting model 
predicted that the probability of the water level exceeding a pre-defined threshold was 
less than 5%. The second method targeted measurements based on the expected 
decrease in forecasted water level error variance at a validation time and location, 
quickly calculated for various sets of measurements by an ensemble transform 
Kalman filter. Estimates of forecast error covariance from the ensemble Kalman filter 
and ensemble transform Kalman filter were significantly correlated, with correlations 
ranging between 0.979 and 0.292. Targeting measurements based on the decrease in 
forecast error variance was found to be more efficient than the systematic sampling 
method. The ensemble transform Kalman filter based targeting method was also used 
to estimate the 'signal variance' of theoretical measurements at any computational 
node in the hydrodynamic model. Furthermore, time series data, different sensors 
types and measurements of floodplain stage could all be taken into account either as 
part of the targeting process or prior to measurement targeting. 
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between a measurement time tm and a validation time tv. From a 
background forecast an EnKF was used to assimilate two or three 
measurements. The forecast error variance was then calculated by 
propagating an ensemble of RC model simulations to the validation 
time. The ETKF used the same background forecast and the same 
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measurement error covariance to calculate an ensemble transform. 
This transform was then applied to the background forecast at the 
selected times up to the validation time. The correlation between 
background error variance at the target times and the validation time 
are shown as correlation B. Correlations between the ETKF and 
EnKF estimates of signal variance are shown as correlation C. 

Table 5.7: This table contains the correlations between ETKF and EnKF 
(Correlation A) estimates of forecast error variance at two times 
between a measurement time tm and a validation time tv. From a 
background forecast an EnKF was used to assimilate two or three 
measurements. The forecast error variance was then calculated by 
propagating an ensemble ofRC model simulations to the validation 
time. The ETKF used the same background forecast and the same 
measurement error covariance to calculate an ensemble transform. 
This transform was then applied to the background forecast at the 
selected times up to the validation time. The correlation between 
background error variance at the target times and the validation time 
are shown as correlation B. Correlations between the ETKF and 
EnKF estimates of signal variance are shown as correlation C. 
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1 Introduction 

Timely, reliable and accurate flood warnings have the potential to mitigate some of 

the negative impacts of flooding (Carsell et at., 2004). Generating these warnings in 

real-time requires integrated systems that detect an impending event and disseminate 

alerts to stakeholders in and around the area at risk with sufficient lead times 

(Khatibi et a!., 2003). Observations such as rainfall or river flow taken during the 

detection step may be used directly as the basis for issuing a warning. Alternatively, 

a flood forecasting system may be put in place prior to the warning step to make 

predictions of river state variables such as stage and flow, usually with the aim of 

increasing the forecast accuracy (Sprokkereef, 2001; Aubert, 2003; Madsen and 

Skotner, 2005) or extending the lead time of the forecasts to give advanced warnings 

(De Roo et a!., 2003; Werner et al., 2005). These systems often include a numerical 

model to simulate the expected flows over the forecast lead time and a method for 

considering current observations. 

Data assimilation is the process of incorporating observations into model 

simulations. McLaughlin (2002) distinguishes between three types of data 

assimilation problem; interpolation, smoothing and filtering. These are discussed 

further in chapter 2. There are several data assimilation methods that can be applied 

to filtering problems, of which the method used in chapters 4, 5, 6 and 7 of this thesis 

for updating model states with measurement data is just one example. 

The concept behind state updating is that updating the current states of a numerical 

model to form a closer match with real-time measurements will lead to a reduction in 

forecasted state error compared to that obtained with the uncorrected model (Aubert 

et al., 2003). This error reduction occurs because the errors in a short forecast are 

different from those over the longer time periods that are relevant to the simulation 

model structure and calibration (Young, 2002). For linear systems where there is 

uncertainty in both the simulation model and measurements, optimal state updating 

can be achieved by minimising the errors between model state predictions and 

measurements using a Kalman filter (Kalman, 1960; Refsgaard, 1997; Schreider et 



ai., 2001; Young, 2002). For models in which state changes exhibit non-linear 

behaviour approximations to this approach such as the extended Kalman filter 

(Maybeck, 1979) and ensemble Kalman filter EnKF (Evensen, 1994) have been 

developed and applied to river and coastal flow models (Madsen and Cafiizares, 

1999; Shiiba et ai., 2000; Hartnack and Madsen, 2001; Madsen and Skotner, 2005; 

Andreadis et al., 2007). Ensemble based methods where model error statistics are 

derived from multiple state simulations are usually easier to implement than the 

extended Kalman filter, especially as the degree of process non-linearity increases 

(Evensen, 1994; Madsen and Cafiizares, 1999). Nevertheless, characterising and 

quantifying the sources of uncertainty in the simulation model and generating 

ensembles with appropriate error statistics remains a major problem (Butts et ai., 

2005). 

The accuracy of a forecast depends on the accuracy of its simulation model and the 

efficiency of the data assimilation algorithm (Refsgaard, 1997). Where the 

simulation model accuracy will depend on the errors introduced as a result of 

uncertainty in model structure, boundary conditions and parameters, whilst the 

efficiency of the data assimilation algorithm, as a means of reducing state 

uncertainty, is important because it will influence the reduction in state uncertainty 

brought about by assimilating measurements, which themselves will contain errors. 

These measurements will be collected according to some sampling framework, 

which may not be optimised to provide data with as much information content as 

possible. For spatial sampling problems geostatistical methods can be used to 

optimise sampling design based on an underlying assumption of the degree of spatial 

dependence in state values. However, in sequential data assimilation, where time 

forms an important factor in state dynamics, methods of real-time sampling design 

based on the Kalman filter have been developed. In the field of meteorological 

modelling Monte Carlo adaptive sampling methods such as the ensemble transform 

Kalman filter (ETKF) (Bishop et ai., 2001) have been developed and applied to 

address a similar set of issues that would be expected in the field of flood 

forecasting. Namely, how to approximate an optimal spatio-temporal sampling 

scheme with a given set of resources when the underlying process is known to be 

non-linear? To the author's knowledge the application of these adaptive sampling 
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methods (which are introduced in chapter 2) in a flood forecasting context has not 

been previously attempted. 

An additional motivation behind researching optimal real-time sampling design 

relates to recent developments in environmental wireless sensor networks (De Roure. 

2005). These pervasive sensor networks can be reconfigured in real-time, thus 

facilitating adaptive sampling, usually with the aim of saving power or reducing data 

transmission. The FloodNet project, which provided the measurement data used in 

this study, created an experimental wireless sensor network specifically designed to 

monitor river flows and levels. It required a means of prioritising which 

measurements to collect and transmit from the field in real-time in order to save 

battery power. 

1. 1 Thesis aims 

Flood forecasting systems have the potential to improve the management of flood 

events and thereby mitigate some of their negative impacts. Whilst it is recognised 

that flood forecasting systems require procedures to disseminate and react to 

forecasts, research in this thesis was limited to flood detection and modelling. In 

recent years, stochastic predictions of state variables and the delivery of probabilistic 

rather than deterministic predictions have been sought by environmental managers 

interested in hydrological forecasting (Krzysztofowicz, 2001). When flood 

forecasting, the principal advantage of a probabilistic approach is the ability to 

calculate flood risk based on the probability of a particular magnitude of flood event 

and the expected losses from such an event. This allows the value of risk avoidance 

and risk reduction strategies to be assessed against their cost. For example, not 

building a house on a floodplain is an example of risk avoidance, whilst installing a 

forecasting system is a means of risk reduction, both of which may be unnecessary if 

the risk is low. The desire for stochastic rather than deterministic predictions was a 

core aim of this thesis which applied to all subsequent aims. The overall aims of the 

thesis were as follows: 
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1. Build a forecasting model based on: 

a. A simulation model capable of simulating states at unmonitored 

locations. 

b. A data assimilation algorithm that can utilise real-time measurement 

data that are spatiotemporally discontinuous and corrupted by errors. 

2. Assess the ability of the forecasting model to simulate state error propagation 

3. Develop a method to quickly estimate forecast error variance simulated by 

the forecasting model. 

4. Develop and evaluate an adaptive sampling framework that could be applied 

to a network of wireless sensor nodes with limited power. 

5. Develop and test a methodology to design optimal sampling frameworks for 

flood forecasting. 

These general aims were addressed by four research chapters each of which had its 

own set of specific aims. 

In chapter 4 'Flood inundation model updating using an Ensemble Kalman filter and 

spatially distributed measurements' the principal aim was to utilise a state updating 

method and a hydraulic model to estimate stage and stage uncertainty, over a 4 hour 

forecast period, at specific validation locations. Integral to this aim was the accuracy 

of state forecasts, and uncertainty estimates, and the robustness of the model when 

subjected to different spatio-temporal sampling regimes. 

In chapter 5 'Evaluating the utility of the ensemble transform Kalman filter for 

adaptive sampling when updating a hydrodynamic model' the aim was to evaluate a 

method, known as the ensemble transform Kalman filter (ETKF) (Bishop et at., 

2001), to quickly estimate the error variance of a stage forecast given one or more 

possible stage measurements from the sensor network. 

In chapter 6 'Adaptive space-time sampling with wireless sensor nodes for flood 

forecasting' the aim was to develop and evaluate adaptive sampling techniques that 

facilitate a reduction in the need to transmit real-time data from a network of sensor 

nodes in the field (called FloodNet) to the forecasting model introduced in chapter 4. 
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In chapter 7 'Optimal sampling design with an ensemble transform Kalman filter' the 

aim was to test the response of the ETKF to several test scenarios, useful for the 

design of a sensor network deployment. These tests included an investigation of the 

spatio-temporal changes in signal variance from theoretical sensors both within the 

main river channel and on the floodplain, as well as measurements with different 

error vanances. 

These research chapters were supported by a literature review in chapter 2 and a 

methods review in chapter 3. 
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2 Literature review 

This chapter reviews some of the research conducted on two of the key components 

of a flood forecasting system, namely the simulation of system dynamics (section 

2.1) and data assimilation methods for updating simulations with real-time 

measurements (section 2.2). Some of the recent research on adaptive sampling 

techniques is also reviewed in section 2.3. Each of these sections represent maj or 

areas of research, although not always centred on the sphere of flood forecasting. 

Therefore, the section on simulation models is limited to distributed hydrodynamic 

models, whilst the section on data assimilation is limited to sequential data 

assimilation algorithms based on the Kalman filter. In tum, this limits the section on 

adaptive sampling to research that is compatible with the previous sections. 

2.1 Distributed flood models 

Water flow is a spatially three-dimensional temporally varying process. The 

dynamics or hydrodynamics of this process are well known and can be described by 

the three-dimensional Navier-Stokes equations (Hervouet and Van Haren, 1996). 

Solving these equations is difficult and computationally demanding, even for small 

real world problems. Therefore, it is common for hydrodynamic flow models to be 

based on simplifications of these equations when simulating within channel flows 

and flood inundation. Despite three-dimensional processes having been found to be 

important at the interface between channel and floodplain flows (Knight and Shiono. 

1996), floodplain flows are generally thought of as two-dimensional processes, 

whilst one-dimensional models are often regarded as being adequate for simulating 

channel flow. Simplified process representations include, in decreasing complexity, 

codes based on: two-dimensional finite element (Bates et at., 1992), simple finite 

volume (Horritt, 2004), two-dimensional diffusive wave (Bates and DeRoo, 2000; 

Yu and Lane, 2006), one-dimensional dynamic wave (Moussa and Bocquillon, 1996) 

and kinematic wave models (Bates and DeRoo, 2000; Singh, 2001). 

6 



Two-dimensional finite element solutions have been shown to be capable of 

representing significant floodplain flow complexity (Bates et at., 1992, 1997, 1998; 

Nicholas and Mitchell, 2003). Although, Horritt and Bates (2001) found that a 

kinematic wave model of channel flows coupled to a simple storage cell raster model 

of floodplain flows (LISFLOOD-FP, Bates and DeRoo, 2000) performed as well as a 

more complex two-dimensional finite element method, given the available 

calibration and validation data. The principal barrier to a more precise assessment of 

the validity of the flow dynamics and an assessment of the accuracy of state 

simulations was the lack of distributed calibration and validation data with sufficient 

resolution and temporal coverage. Horritt and Bates (2002) compared LISFLOOD

FP with a one-dimensional model (HEC-RAS) and a two-dimensional finite element 

model (TELEMAC-2D), finding that the HEC-RAS and TELEMAC-2D models 

made equally accurate predictions of flood inundation area given calibration data in 

the form of flood wave travel time or inundated area. However, the raster cell model 

(LISFLOOD-FP) was only able to make comparable predictions of inundated area 

when calibrated against inundated area data. The calibration of the raster cell model 

for flood inundation impaired its ability to predict flood wave travel times because 

the optimal parameterisation of the model for inundation area and flood wave travel 

time were found to be in different areas of the parameter space. 

One-dimensional channel flow models are popular because they are computationally 

simpler and require fewer parameters than their two-dimensional counterparts 

(Horritt and Bates, 2001). The one-dimensional Saint -Venant equations can be used 

to simulate unsteady open channel flow in the along-channel directions only, thus 

omitting lateral and vertical flow. Solutions to the full Saint -Venant equations are 

known as dynamic wave models. They account for local acceleration, convective 

acceleration, pressure, gravity, friction, eddy loss, wind shear and lateral inflows 

(Wilson, 2004). Simplifications to the dynamic wave model include diffusive wave 

models that neglect local and convective acceleration terms (Chow, 1988) and 

kinematic wave models that neglect local acceleration, convective acceleration and 

pressure terms (Singh, 2001). Neither of these simplifications is suitable in situations 

where significant backwatering is expected (e.g. where there are interactions between 

tidal and fluvial flows). 
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Codes based on dynamic wave models such as ISIS Flow (HR Wallingford) and 

MIKE 11 (Danish Hydraulic Institute) can be applied where waves propagate both 

downstream due to catchment runoff and upstream due to tidal forcing. When the 

domain of interest includes areas of floodplain it is common for one-dimensional 

models to be coupled to a separate model of floodplain flow that calculates flow 

based on the water surface elevation and Manning's equation. This can be done on 

either a regular grid (e.g. LISFLOOD-FP) or for irregular reservoirs (e.g. ISIS Flow). 

More details are given in section 3.1.2. 

Further to the choice of process representation, and thereby model code, the spatial 

and temporal domain over which state is simulated must be discretised due to finite 

computational resources. Thus, for a given code the amount of computation and 

number of parameters required by the model will increase as the spatial resolution 

becomes finer. That is, it becomes more difficult in terms of computer time and 

memory to implement models as the size of the domain increases, the discretisation 

of the domain becomes finer and the process representation becomes more complex. 

Unfortunately, the spatial resolution of the model elements has been found to affect 

inundation extent estimates due to the topographic smoothing and loss of small scale 

features that accompany coarser resolutions (Yu and Lane, 2006), especially in urban 

areas where the presence of small linear features such as hedges and curb stones can 

have significant effects. This means that parameter values are often not directly 

transferable between model codes, model structures and model applications. 

2.1.1 Data sources and issues arising therein. 

Some of the most important parameters of hydraulic models such as the wetted 

perimeter, channel width, slope etc. are those which relate to the topography of the 

model domain. Digital elevation models (DEM) have become the principal methods 

of representing these parameters. Taking the measurements needed to generate a 

DEM of a natural river and its floodplain is not trivial, since thousands of elevation 

observations are usually required to provide the necessary spatial detail, especially 

since topographic variation as small as 10 cm can have a significant effect on 
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inundation extent (Anderson et al., 1996). One approach applicable to small domains 

or providing cross sections for one-dimensional models is to survey the area of 

interest with a total station (Nicholas and Mitchell, 2003) or differential global 

positioning system. These methods provide point elevations that can be targeted by 

the surveyor to breaks in slope so that important topographic features are retained at 

minimal sampling expense. However, ground surveys are impractical over large 

areas (such as floodplains) and for measuring more than a few thousand points 

because the surveyor must physically move between sample points. 

Data for generating DEM's of floodplain topography or areas over a few hundred 

square metres can come from a number of sources including contour maps, 

interferometric synthetic aperture radar (lnSAR) and airborne laser altimetry 

(LiDAR). Wilson and Atkinson (2005) found that contour data lead to an overly 

smoothed representation of floodplain topography, which omitted many features that 

might act as important controls on floodplain flow, whilst currently available InSAR 

data were found to give an overly rough representation of floodplain topography. 

Both data were found to demonstrate significant problems when used to estimate 

flood risk using a raster cell inundation model. In contrast LiDAR can provide point 

measurements of surface elevation over large areas, often at a finer spatial resolution 

than the grid, mesh or node spacing of the hydrodynamic model (Marks and Bates, 

2000; French, 2003). Prior to the availability of LiDAR data, providing suitable 

topographic parameters was a major barrier to the development of two-dimensional 

hydrodynamic models of out-of-bank flows at the reach scale (Bates et aI., 1998). 

One difficulty with LiDAR data is that the elevation points collected relate to the 

surface off which the laser pulse returned. Therefore, raw LiDAR data can only be 

used to generate digital surface models (DSM), which include vegetation, trees and 

buildings, along with the ground level points needed to generate a DEM. A number 

of image segmentation algorithms have been developed to separate the underlying 

topography from the features present in the raw data (Cobby et aI., 2001). The 

motivations behind removing these features include: 
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1. They are often much smaller than the resolution at which the model 

simulation is conducted making it impossible to account for all of them as 

surface features. 

2. They may be porous rather than solid surfaces that must be overtopped for 

flow to occur, especially in the case of vegetation. 

The DSM features removed when generating a DEM are often either assumed to 

have little influence on flow and ignored or treated at a sub-grid scale using 

roughness or porosity terms. Current LiDAR technology has been found to predict 

the elevation of short vegetation (such as grass) with a root mean squared error of 

0.14 m and the elevation of the underlying surface to around 0.17 m (Cobby et al., 

2001). Cobby et al. (2001) also found that the accuracy of ground elevation estimates 

decreases over dense and tall vegetation. Recently, a method for fusing Ordnance 

Survey map data with LiDAR data from urban areas has been developed (Mason et 

al., 2007) allowing the location of features such as building edges, roads, hedges and 

pavements to be defined more accurately. 

Removing features such as trees and buildings from raw LiDAR data or any DSM 

may results in gaps in the spatial coverage. It may be necessary to interpolate 

between these gaps using methods such as inverse distance weighting or kriging 

(Lloyd and Atkinson, 2006) before parameterisation of the hydrodynamic model. If 

the simulation model operates over a regular grid it will also be necessary to 

interpolate from the LiDAR point data to a regular grid (Lloyd and Atkinson, 2002). 

For hydraulic models with flexible grids, methods have been developed to generate 

model discretisations from raw topographic data that take account of local 

topographic variation (Bates et al., 2003), vegetation cover (Cobby et al., 2003) and 

urban features (Mason et aI., 2007). 

Measurements of state variables such as stage and flow are often required for the 

purpose of calibration and validation (explained in more detail in the next section). 

Distributed flood inundation models are difficult to calibrate and validate because it 

is difficult to take spatial and temporal observations of flood extent, stage and flow. 

Several studies such as Horritt and Bates (2001; 2002) have cited a lack of suitable 
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validation and calibration data as a barrier to further model development. However, 

progress is being made. Recently, multiple images of flood inundation at different 

times have become available for a single flood event (Bates et aI., 2006). These have 

allowed dynamic changes in inundation extent to be validated for the first time, 

although, more data is still required. Furthermore, the use of in situ or ground-based 

measurements is becoming more feasible with the advent of simpler and cheaper 

sensors, gauges, and loggers (Troch et aI., 2003). The type of sensor nodes 

introduced in section 6.3.1 is an example. 

Hunter et al. (2005) investigated the utility of five data sources for calibrating flood 

inundation models derived from; two gauges measuring stage internal to the model 

domain, the discharge at the downstream boundary of the model, a shoreline estimate 

from a satellite radar image, a shoreline estimate from an air photo and a ground 

survey of maximum free surface elevation conducted after the event. Internal stage 

values and the shoreline estimates were found to offer considerable potential for 

reducing uncertainty in parameter specification, whilst the discharge at the 

downstream boundary was less effective. 

2.1.2 Parameter estimation, calibration and validation 

F or most applications the quickest and easiest method of parameter estimation is to 

guess parameters based on the modeller's experience. An educated guess can usually 

be made based on prior experience from other locations or applications of the 

simulation model that appear to have similar properties. In some cases, conceptual 

models may have been developed to aid this process. Estimation of the roughness 

coefficient in Manning's equation based on lookup tables is one example where 

conceptual models and user experience are commonly used. Many textbooks on river 

hydraulics or geomorphology will quote roughness values suitable for 

parameterisation of different geomorphologic features such as gravel bedded rivers, 

open grasslands or floodplain forests, to list just a few. 

If parameters relate to something physically meaningful and observable it may be 

possible to determine values by taking measurements in the laboratory or field. In 
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general, measurements collected in the field tend to be made on small supports, 

which are sparsely spread over the domain of interest, where the support is defined 

the area, shape and orientation of space represented by a sample (Curran and 

Atkinson, 1998). As a consequence parameters are often estimated from 

measurements that are inherently uncertain with disparities existing between the 

scales of measurement, the scale of the process and the scale of the model (Atkinson 

and Tate, 2000). Where measurements are collected sparsely in space, parameters 

may need to be interpolated or scaled to meet model requirements, introducing 

additional uncertainties. 

For models that are distributed over large spatial domains remote sensing provides an 

attractive means of estimating model parameter values, mainly due to its low cost 

and continuous spatial coverage relative to ground survey. A by-product of the 

LiDAR image segmentation algorithms introduced in the previous section is a set of 

point data representing above surface features. Mason et at. (2003) used this 

information to classify the floodplain into regions of differing vegetation height, 

which were subsequently used to specify spatially distributed friction coefficients. 

Wilson and Atkinson (2007) used Landsat TM imagery to classify different 

vegetation types from which spatially distributed friction was estimated. Although, 

distributed friction has a small effect on inundation depths and inundation extent for 

a study site on the river Nene, UK. 

One problem with measuring or guessing parameter values is that parameters found 

to be appropriate at one location or for a particular model structure are by no means 

guaranteed to be appropriate in another context, when subjected to validation. For 

example, it is now widely established that calibrated bed roughness is scale 

dependent (Lane, 2005) both in terms of the model architecture and the volume of 

flow (Romanowicz and Beven, 2003). This means that there may be one or more 

region( s) of parameter space that are more accurate simulators of state measurements 

than the physically meaningful value of the parameters, which themselves may have 

been imprecisely defined and subject to errors. These regions of parameter space 

occur because the model process representation and structure are a simplification of 

an unknown reality that has only been partially sampled by the measurement data, 
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which will also contain errors. In fact all measurements, process representations and 

state estimates will contain errors as they are all simplified representations of reality. 

The process of identifying parameter values that lead to the most accurate 

simulations of observed conditions is known as model calibration. When model 

parameters are calibrated to some measurement data they are generally referred to as 

effective parameters rather than physically meaningful, because they may no longer 

pertain to the properties which they represent. Cunge (2003) argued that the 

calibration of model parameters to a particular event destroys the predictive 

capabilities of the model for other magnitude events. For this reason, Connell et at. 

(200 1) applied published parameter values for two 'un-calibrated' distributed flood 

inundation models, despite both models underestimating flood level and extent. 

However, it may be possible to avoid reducing a models predictive capability should 

enough data be available on events of differing magnitude to conduct a split-sample 

calibration and validation approach, where the data is divided into two sets of 

independent measurements. The first measurement set is then used to calibrate the 

model, whilst the second is reserved to validate the simulations made by the 

calibrated model. 

Here, it will be argued that there is not a single set of 'correct' parameter values, but 

that many possible combinations of parameter values will be reasonable simulators 

of the system, given some validation data, thereby endorsing the belief that 

distributed hydrodynamic models are equifinal. The concept of model equifinality 

(Beven and Binley, 1992) rejects the notion of an optimal model structure, set of 

parameters and forcing terms. Instead, many different combinations of model 

structures, parameters, and forcing terms within a pre-defined space will perform 

equally or almost as well as simulators of state, when subjected to measurement data. 

On this basis, it can be argued that the idea of an optimal parameter set is generally 

ill-founded and should be rejected, if uncertainty in a model is to be recognised 

explicitly. Allowing multiple parameter sets and/or forcing terms to be considered as 

simulators of the system within a specific model structure, it follows that multiple 

state predictions will be made. The challenge is, therefore, to represent the 

uncertainty in model forcing terms and parameters such that they feed through to 
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create a range of predictions that can be considered to represent prediction 

uncertainty. 

Several hydrological studies in applications such as rainfall-runoff modelling (Freer 

et aI., 1996; Lamb et al., 1998; Cameron et aI., 1999; Beven and Freer, 2001), two

dimensional river flow modelling (Hankin et aI., 2001), soil saturation (Franks et al., 

1998), one-dimensional hydrodynamic flow (Pappenberger et al., 2005a; Werner, 

2004), flood inundation prediction (Aronica et al., 1998, 2002; Bates et al., 2005; 

Romanowicz et aI., 1996), and atmospheric pollutant deposition (Zak and Beven, 

1999; Page et al., 2004a, 2004b) have found that for a given model structure many 

different parameters and forcing term sets perform almost as well as simulators of the 

system, given the available validation data. To a lesser extent equifinality in model 

codes and structures (Butts et al., 2004; Georgakakos et al., 2004) has also been 

investigated. 

Hankin et al. (2001) point out that for distributed models of channel and floodplain 

flow, equifinality is not surprising as there are typically many degrees of freedom in 

the specification of parameters and forcing terms, within even a single model 

structure. Often there are many more parameters than can be supported by the 

available calibration data. Thus, distributed models are generally overparameterised 

(Beven, 1989) in that the parameters of each model element, cell or node (depending 

on the model type) cannot be treated in isolation from its spatial neighbours. To 

address this problem parameters tend to be lumped together either spatially or 

according to some system of classification. For example, estimates of Manning's 

roughness coefficient are frequently calibrated on a global basis or by partitioning 

the model into a few parameter regions based on land cover (Wilson and Atkinson, 

2004) or by separation of channel and floodplain (Nicholas and Mitchell, 2003). 

Furthermore, it is often necessary to fix some parameters or link parameters using 

fixed ratios to prevent the problem getting out of hand (Refdgaard, 1997), even 

though this is tantamount to saying there is no uncertainty in that particular 

parameter. The selection of 'fixed' parameters is usually a combination of how well 

the modeller thinks a particular parameter can be estimated from observations and 

the sensitivity of model output to changes in that parameter. In addition to 
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parameterisation problems errors can be expected to propagate from incomplete and 

biased model structure, random and systematic errors in model forcing terms, and 

random and systematic errors in validation and calibration data (Butts et aI., 2004). 

2.2 Data assimilation and flood forecasting 

Data assimilation is the process of optimising the extraction of information from 

observations for combination with numerical models (Babovic et aI., 2001). 

Depending on the problem to be solved, data assimilation methods can be sorted into 

three categories: interpolation, smoothing and filtering (McLaughlin, 2002). 

McLaughlin (2002) defines each category as follows; interpolation characterises a 

time-invariant system at a single measurement time, smoothing characterises a time

dependent system through a time interval, and filtering characterises a time

dependent system at the most recent measurement time. This thesis addresses the 

problem of forecasting river level (stage) and flow from the most recent 

measurement time. To this end, data assimilation will be considered predominantly 

from a filtering viewpoint because is provides the most efficient means of 

assimilating real-time data into simulation models. 

When filters are combined with simulations from numerical models the 

implementation of the filtering process is commonly referred to by the term model 

updating. Thus, numerical model simulations, such as those that predict river state 

variables such as flow and stage, can be updated using measurement data by a filter. 

A forecast is only made when the updated model is used to simulate to a time ahead 

ofthe most recent measurement. It is usually assumed that the accuracy of forecasts 

produced by such systems depends on the accuracy of the simulation model and the 

efficiency of the updating routine (Refsgaard, 1997). Updating methods can be split 

into four categories depending on the variables being modified (Refsgaard, 1997). 

These are: 

1. Input updating 

2. Parameter updating 
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3. Error prediction or correction 

4. State updating. 

Each of these model updating categories will now be introduced in more detail. 

Input updating 

Input updating methods involve generating new estimates of input data and then 

running them through the simulation model. Input updating for river flow models 

may be as simple as using the most recently available measurement data from 

upstream of the forecast location and using the time lag between the hydro graphs at 

the upstream and forecast location to determine the forecast lead time. However, 

forecast lead times can be significantly increased by taking updated outputs from 

hydrological and meteorological models as input data (Knebl et aI., 2005). 

Numerical models that might act as inputs to hydraulic models have received 

research attention, including forecasting models of rainfall using weather radar 

(Moore et al., 2004), soil moisture and catchment properties (Walker et aI., 2003; 

Reichle et al., 2002), catchment runoff (Aubert et al., 2003; Schreider et aI., 2001; 

Lee and Singh, 1998; Todini, 1994), snowmelt, river flow (Shiiba et aI., 2000; 

Hartnack and Madsen, 2001) and tidal surge (Cafiizares et aI., 1998). Research has 

recently been undertaken into model coupling and the propagation of uncertainty 

between models (Pappenberger et aI., 2005b). 

Parameter updating 

Parameter updating methods seek to update the parameters of simulation models 

based on observed errors. For the purpose of river flow forecasting these methods are 

less common than the other three types, but, have been utilised by simulation models 

based around transfer functions (Young, 1984). An example can be found in Lees et 

al. (1994) where a single input-single output transfer function was used to predict 

downstream water level based on upstream observations along the River Nith at 

Dumfries. A gain parameter was included in the transfer function which was then 

estimated in real-time by comparison with downstream observations using a 
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stochastic time variable parameter estimation algorithm (Young, 1984). The adaptive 

gain approach allowed seasonal changes in the catchment characteristics and river 

dynamics to be accounted for by the transfer function, resulting in an increase in 

forecast accuracy compared to the equivalent non-adaptive model. There may be 

similar benefits in updating certain distributed hydrodynamic models parameters. 

Error prediction 

Error prediction methods analyse past errors between observations and model 

predictions to predict future model errors (Dobson and Davies, 1990). One example 

is the autoregressive moving average (ARMA) technique used as part of the River 

Flow Forecasting System (RFFS) (Moore et ai., 1990). More details on ARI'v1A type 

models can be found in Bras and Rodrigues-Iturbe (1985). It could be argued that 

error prediction is conceptually unappealing in the sense that it does not make 

changes to model state that may have a significant influence on post update state 

dynamics (Moore et al., 1990). However, error prediction is usually easy to 

implement and does not seek to intervene in any way with the operation of the 

simulation model, unlike the other three methods. Cunge (2003) argues that this is 

beneficial because it limits the scope for corrections or adjustments to the model 

itself that do not have a physical basis. 

State updating 

State updating methods can be used to adjust internal model state based on observed 

errors and can be coupled with input and parameter updating algorithms (Refsgaard, 

1997). The principal aim is to estimate state as accurately and precisely as possible at 

the initialisation of the forecast. The correction of physically meaningful state 

estimates is appealing because in theory this has the potential to provide a more 

accurate starting point from which to simulate future model state than a non-updated 

model (Aubert, 2003). More accurate definitions of initial states leads to more 

accurate forecasts because the errors in a short forecasts are different from those over 

the longer time periods that were relevant to the simulation model structure and 

calibration (Young, 2002). Bearing in mind the above point made by Cunge (2003) 

regarding the benefits of error prediction, state updating assumes that the dynamics 
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of the simulation model will not be significantly affected, in an adverse manner, by 

the update process. This includes numerical instability which may result from the 

specification of physically unrealistic initial conditions and an assumption that the 

model parameters are suitably based on the physical processes that their location in 

parameter space does not change markedly during the short time period after the 

update. 

2.2.1 Flood forecasting 

Systems designed for processing real-time data to produce flood forecasts tend to be 

individually tailored to meet various requirements such as the spatial scale over 

which they are required to operate, the desired accuracy of forecasts and the length of 

the lead time (Werner et at., 2005). Pre-warning systems such as the European Flood 

Forecasting System (De Roo et at., 2003), have the ability to provide lead times of 5-

10 days through the utilisation of medium range numerical weather prediction 

models. However, at shorter lead times or for longer rivers, operational flood 

forecasting systems begin to take account of measured hydrological and 

meteorological data to enable a more accurate forecast than can be achieved with the 

pre-warning systems. Examples include the River Flow Forecasting System (Moore 

et at., 2004), and the Hydrologic Engineering Center's Hydrologic Modelling 

System/ River Analysis System (HEC-HMSIRAS) (Knebl el aI., 2005). In large river 

basins a combination of rainfall-runoff models, routing models and gauge data will 

generally give adequate lead times, such that flood warning can be issued. For 

example, the FloRIJN system on the Rhine has a 3-4 day lead time between flows 

observed upstream and their downstream impact (Sprokkereef, 2001). In this thesis, 

only the distributed hydrodynamic channel and floodplain flow component of basin 

hydrology will be investigated further such that a single process model could be used 

when running the forecasting model, avoiding the need to run and couple other 

model types. 

The use of dynamic physically-based spatially distributed models for flood 

inundation and flow prediction has led to interest in the application of these models 

in a flood-forecasting context. The detail with which processes are represented 
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within a domain of interest both in terms of spatio-temporal resolution and code 

complexity is often driven by the application. For flood-forecasting applications the 

speed of model execution is critical if forecast with sufficient lead-times are to be 

issued (Cunge, 1980). This inevitably leads to a preference for the simplest model 

capable of simulating state variables to a desired accuracy. For operational systems 

one-dimensional flood models are often used (if at all) in preference to more 

complex process representations because they require less input, validation and 

calibration data and are computationally less intensive. Many distributed flood 

models were developed primarily with the aim of producing a single deterministic 

prediction of flood inundation given a set of driving forces and optimal or best guess 

parameters that were either estimated through calibration or determined from field 

measurement. Whilst this type of model can be applied easily in a flood-forecasting 

context, through the input of the most recently available forcing data (see example in 

Knebl et al. 2005), conveying a realistic estimate of forecast uncertainty and taking 

advantage of real-time data for state correction is difficult. 

2.2.2 State updating with Kalman filters 

For linear models, a Kalman filter (Kalman, 1960) provides the optimal solution to 

the state correction problem and may be extended to give an approximate solution for 

non-linear models (Refsgaard, 1997). The extended Kalman filter (EKF) (Maybeck, 

1979) is one such method for non-linear systems. Aubert et al. (2003) used an EKF 

to assimilate soil moisture measurements into a conceptual rainfall-runoff model, 

finding that the method could increase the accuracy of streamflow forecasts, 

especially during flood events. However, the high computational cost incurred when 

obtaining covariance estimates is a significant drawback of this method, which 

several studies have sought to address using reduced rank square root filters (Verlaan 

and Heemink, 1997; Madsen and Cafiizares, 1999; Cafiizares et at., 1998). This 

filtering method was applied by Shiiba et al. (2000) to a one-dimensional hydraulic 

flood routing model to forecast stage and discharge. The model was found to make 

precise estimates of channel state without an excessive increase in computational 

time relative to the deterministic model. 
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In an ocean modelling context, Evensen (1992) found that unbounded error growth 

as a result of approximations in the EKF error covariance propagation equations 

caused instability and closure problems, even though the model under investigation 

was only weakly non-linear. Evensen (1994), therefore, proposed a Monte Carlo 

based approach to approximate the KF, which has since become known as the 

ensemble Kalman filter (EnKF). Hartnack and Madsen (2001) used an EnKF to 

remove various errors in boundary conditions from a synthetic one-dimensional 

hydraulic model (MIKE 11) with simulated input data sets. Madsen and Skotner 

(2005) continued this theme by using a fixed user-specified Kalman gain (weighting 

given to errors between observations and model states) for measurement locations, as 

a computationally cost-effective alternative to propagating an ensemble of model 

runs. The method was applied to an operational flood forecasting model of Metro 

Manila, the Philippines. Another computationally cost-effective method would be to 

compute the Kalman gain from an EnKF off-line and use a steady Kalman filter 

implementation (Cafiizares et aI., 2001). Recently, more efficient square root 

implementations of the EnKF that do not require measurements to be perturbed have 

become available (Tippett et a!., 2003; Evensen, 2004). Andreadis et al. (2007) used 

the square root implementation of the EnKF from Evensen (2004) to recover depth 

and discharge estimates for a reach of the Ohio River by assimilating synthetic 

satellite altimetry measurements into an ensemble of corrupted simulations from a 

LISFLOOD-FP based model. The synthetic measurements were sampled from an 

arbitrary 'truth' simulation using the Jet Propulsion Laboratories Instrument 

Simulator. Andreadis et al. (2007) concluded that estimates of discharge from 

altimetry measurements would be best provided through a data assimilation strategy 

built around a river hydrodynamic model; although no alternative methods were 

presented. 

2.3 Adaptive sampling 

There is always a cost of some form associated with the collection, storage and 

processing of data. Data on the environment form a representation of reality through 

the sampling framework used in the collection of data (Atkinson and Tate, 2000). It 
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is therefore important that this sampling framework maximises the delivery of 

information given the resources available for data collection. The sampling 

framework within a domain of interest has several parameters that when changed can 

influence information content of data. These include: the density of samples, the 

sampling scheme, the sample size and the support of each sample. The sampling 

scheme, density and sample size can be split into the spatial sampling framework and 

the temporal sampling framework. Snepvangers et al. (2003) states that the spatial 

and temporal domains are fundamentally different and that time should not be 

thought of as an additional dimension to the spatial sampling problem. This is 

because observations over space represent a multidimensional state that shows a 

degree of autocorrelation depending on the scale of spatial variation. Observations 

over time are one-dimensional and describe the evolution of state, which is 

dependent on the previous state and the factors driving the state change. 

For many applications (including flood forecasting) the resources available for data 

collection will be limited. When considering the deployment of resources to provide 

measurements to an updating routine there are numerous decisions to make that 

relate to the sampling framework. For example: 

1. The number of sensors to deploy needs to be decided as this is likely to determine 

the sample size and density. This number is likely to be constrained by the cost of the 

sensors and their intrusiveness, which in tum is influenced by the type of sensor 

used. The precision and accuracy of the sensor measurements should also be taken 

into account. For example, installing a weir in a river channel may help make more 

accurate estimates of the stage-discharge relationship at a monitoring site than 

deploying a pressure transducer in the existing channel but will be more expensive 

and invasive. 

2. The location of sensors and rate at which they sample will determine the spatio

temporal pattern of the data, which should ideally be informed by the spatial and 

temporal variability of the state being observed. For example, the sampling rate 

required to reconstruct flow variation past a point on a lowland river, where flow 

changes gradually over time, would be different to that for an upland river where 
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flow is known to change rapidly. When deciding the spatial location of samples, 

spreading them evenly throughout the domain being monitored may be a good first 

approximation of an efficient sampling strategy. However, the presence of floodplain 

storage areas and tributaries at certain locations may cause uncertainty to propagate 

in a manner that is not easily approximated by distance. Furthermore, it may not be 

possible to deploy sensors in certain locations. 

3. The optimal location of sensors and the required sampling rate may not be 

constant over time. For example, as a flood wave travels along a river the optimal 

location for collecting data on the flood peak will change. Furthermore, errors in 

measurements may change with the state being measured. 

In the spatial domain geostatistical methods have been utilised for around 25 years to 

make decisions about spatial sampling strategies (Burgess and Webster, 1980; 

Heuvelink and Webster, 2001). These strategies usually have the objective of finding 

the smallest sample size that constrains the uncertainty in the phenomena under 

observation within acceptable limits. Assuming that there are no abrupt changes in 

spatial structure over the domain to be sampled, the most efficient sampling scheme 

in a two-dimensional space will be a systematic one based on an equilateral 

triangular grid (Burgess et al., 1981). Similarly, when sampling over time the most 

efficient method where no prior information is available will be a systematic one 

with equal sampling interval. 

However, in a non-linear dynamic system where state and state uncertainty varies 

sampling with an even spatio-temporal coverage may not be the most efficient 

framework, particularly if the covariance between points in space and time varies 

with state. Furthermore, extremes of state (that occur infrequently and space and 

time) may be of more interest, especially if the state extreme poses a risk to some 

asset. For example, above a particular volume of flow a river may burst its banks and 

flood the area adjacent to it. As these volumes of flow occur infrequently in space 

and time data collected at certain times and locations will be more informative 

regarding the magnitude of the flow than others. Furthermore, it may be important to 
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have an accurate estimate of the flow magnitude at locations where valuable assets 

reside, but not at locations where overbank flows will cause little or no damage. 

Robinson and Glenn (1999) define adaptive sampling as measurements whose 

distribution in time and space are adjusted. By taking this very general definition 

almost any sampling scheme that changes over space or time when historical or prior 

information is taken into account could be called adaptive. In a forecasting context 

the objective of the sampling scheme should be such that data is collected in a way 

that facilitates future forecasts meeting some objective. Ideally this should be done in 

an optimal manner, given the a priori information available in the current or most 

recent forecast. If the optimal sampling scheme that achieves this objective changes 

over time given the most recent a priori forecast then sampling will need to be 

adaptive. 

Adaptive sampling strategies may include both a routine component and an adaptive 

component (Bishop et at., 2001). The routine component comprises measurement 

devices that are fixed spatially and temporally, such as satellite remote sensing 

platforms and traditional data loggers. The adaptive component comprises devices 

that can vary their sampling such as; pervasive sensor networks (DeRoure, 2005), 

robotic vehicles (Curtin et at., 1993; Rahimi, 2003), people, airborne remote sensing 

platforms etc. The Long-term Ecosystem Observatory (LEO) (Glenn et at., 2000) is 

an example of an observational system where adaptive sensor networks have been 

deployed 9 km off the coast of Tuckerton, New Jersey, USA. The network allows a 

variety of sensors to be controlled from remote locations via electrical or fibre-optic 

cables on the sea floor. Another oceanographic application of adaptive sampling was 

the Haro Strait experiment, where a fixed network of buoys was deployed along with 

two autonomous underwater vehicles (AUV) (Curtin et at., 1993) to monitor the 

boundary between fresh and saline water in the Haro Strait. The AUV were 

controlled by a feedback loop from an onshore data-analysis effort (Nadis, 1997). 

One approach to adaptive sampling is to target measurements to minimise state error 

variance. In geostatistics this can be done using kriging, by targeting measurement 
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locations with the greatest kriging variance. For spatio-temporal problems a Kalman 

filter based approach can be used. 

2.3.1 Adaptive sampling with Kalman filters 

As mentioned previously, the KF is a recursive optimal means of estimating the state 

of a linear process by minimising the mean squared error of the state estimate 

(Kalman, 1960), which can be extended to give approximate solutions for non-linear 

models or applied to error statistics generated from state ensembles (Evensen, 1994). 

KF's provide a framework for propagating different sources of uncertainty through 

hydrological models (Butts et aI., 2005), whilst incorporating uncertainty in 

measured properties. Thus, KF-based approaches to state updating have several 

properties which make them attractive tools for supporting adaptive space-time 

sampling. Four properties are introduced here: 

1. Estimates of state error covariance can be used to identify locations in the model's 

state space with the greatest uncertainty at a particular point in time. Observations 

can then be targeted to these locations. 

2. The effects of reducing state uncertainty through the assimilation of observations 

can be propagated to future 'validation times', which may be of more interest than 

the present time. Furthermore, any location or region in model state space may be 

used as a 'validation location', regardless of where observations are taken. 

3. The filter can estimate state uncertainty for a sequence of 'what if scenarios. 

whereby a given observation may be considered in the light of other observations, 

allowing efficient comparisons between different sampling routines. Sampling 

components that are not adaptive can also be incorporated into estimates of error 

covariance before the adaptive component is designed using a technique known as 

serial assimilation (Bishop et aI., 2001). 

4. The contribution of a particular observation and its uncertainty in reducing state 

uncertainty can be quantified in terms of its effect on error covariance (the reduction 
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is hereafter termed signal variance), allowing rigorous comparisons to be made 

between sensor deployment options. Comparisons can also be made between 

deploying competing instrument types provided that the error statistics of each 

instrument are known. 

F or a linear process the reduction in forecast state error variance or 'signal variance' 

(Majumdar et at., 2002) brought about by assimilating a possible measurement set 

can be calculated prior to the measurements being taken, provided that the 

covariance between measurement errors is known. To calculate signal variance the 

likely magnitude of the state measurements, which are needed to issue an updated 

forecast, need not be known. Instead it is only necessary to define possible times 

when and locations where measurements could be taken and the error covariance 

between measurements. These properties are usually available prior to measuring, 

unlike the magnitude of the measurements which by definition are unknown until 

they are taken. Repeatedly calculating signal variance for different measurements or 

measurement sets provides a quantitative framework for targeting measurements. 

The linear KF may not be suited to applications involving non-linear models. An 

obvious alternative would be to use an ensemble based approach. Bishop et at. 

(2001) developed a version of the KF known as the ensemble transform Kalman 

filter (ETKF) to assess the ability of a fixed observational network and adaptive 

airborne reconnaissance missions to reduce forecast variance in a non-linear 

atmospheric winter storm model. 

2.3.2 The ensemble transform Kalman filter 

Along with other Kalman filters the ETKF estimates the reduction in error variance 

as a result of observations (Bishop et al., 2001). Since its conception by Bishop el al. 

(2001) the ETKF has been used as a tool for targeting observations in several 

meteorological and oceanographic applications. The underlying objective is usually 

to predict the reduction in state error variance at a pre-defined validation location or 

region that would result from collecting data at a target location some time before the 

validation time. Bishop et al. (2001) and Majumdar et al. (2002) refer to the 
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validation time as a verification time. However, as this thesis is primarily concerned 

with validating forecasts against observations rather than verify against other 

forecasts it seems counterintuitive to create a verification time and location. 

Majumdar et al. (2002) used an ETKF for planning flight tracks, along which GPS 

dropwindsondes were deployed to monitor winter storm systems off the US western 

seaboard. The ETKF was able to estimate the signal variance via a statistical 

rescaling of the National Centres for Environmental Predictions (NCEP) medium

range forecasting model (MRF). Signal variance was deduced by running parallel 

implementations of the MRF model with and without the targeted data. The 

statistical rescaling was necessary because the covariance estimates used by the MRF 

and ETKF were different. 

ETKF based adaptive sampling techniques have been employed in an oceanographic 

context to adjust the behaviour of autonomous ocean vehicles, collecting data on cold 

water up welling around Monterey Bay, California, USA, for the purpose of 

increasing the forecast accuracy of models of ocean circulation 

(http://www.mbari.org/mb2006/). An overview of oceanographic data assimilation 

and uncertainty propagation focusing on examples from Monterey Bay was 

presented by Lermusiaux et al. (2006). 
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2.4 Summary 

This literature review focused on three aspects of the distributed flood forecasting 

problem: 

1. It provides a narrative on recent developments in the field of flood inundation 

modelling and the parameterisation of these distributed models. 

2. It reviews recent innovations in the data assimilation literature with a specific 

focus on a family of sequential methods based on the Kalman filter. 

3. It introduces adaptive sampling, with a focus on examples of the Kalman 

filter being used as an aid to sampling design in the fields of oceanography 

and meteorology. 

The review indicates that there are few instances of Kalman-type data assimilation 

algorithms being applied to distributed inundation models for the purpose of 

estimating terrestrial water storage, flood forecasting and adaptive sampling. 

Especially for situations where out-of-bank flows are simulated or measured. Thus, 

the potential of Kalman-type data assimilation methods to increase the accuracy of 

simulations and the efficiency of data collection campaigns is unknown and for the 

most part can only be inferred from analogous situations in other research fields. 

However, before these methods can be evaluated in a state estimation, forecasting 

and sampling context that is specific to a flood inundation application, a description 

of potential methods and their practical implementation is required. Therefore, the 

next chapter provided additional technical detail on a chosen subset of simulation, 

filtering and sampling methods. 
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3 Methods 

In this chapter, background information is presented on the methods subsequently 

applied to the problem of flood forecasting and adaptive sampling on the River 

Crouch. The chapter is divided into five sections that describe the background theory 

to the methods applied in chapters 4,5,6, and 7. The structure of this chapter is 

intended to be similar to the literature review. Thus, the chapter begins with 

simulation modelling and parameterisation followed by model updating, it then ends 

with sampling design methods. 

3.1 Hydraulic modelling 

Chapter 2.1 provided a short review of the different types of hydraulic models and 

some example applications. In this thesis, only one model code, ISIS (HR 

Wallingford), will be used to simulate water flows at the study site. The theoretical 

background behind this code will now be introduced as two coupled components. 

1. An in-channel flow model 

2. An out-of-channel or floodplain flow model 

3.1.1 Channel model 

Open-channel flows are often considered only in the dominant stream-wise flow 

direction as, for example, in the popular one-dimensional models based around the St 

Venant equations (Cunge et al., 1980). The ISIS code used in this study estimates 

open-channel flow by solving numerically a dynamic wave model that comprises a 

pair of one-dimensional non-linear partial differential equations. The first of these is 

the conservation of mass or continuity equation (3.1), which controls the balance 

between discharge from a cross-section and the area of flow at the cross-section: 

aQ aA 
-+-=q aL at (3.1 ) 
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where Q is the within-channel volumetric flow rate or discharge, L is the distance to 

the next downstream cross-section, A is the cross-sectional area of flow, q is the 

lateral flow into or out of the channel and t is the time step. The second equation is 

the conservation of momentum or dynamic equation (3.2), which seeks a balance 

between gravity, inertia, diffusion and friction: 

aQ a (f3Q
2 J ah -+- -- +gA--gAS =0 

at aL A aL I 
(3.2) 

where fJ is the momentum correction coefficient, g represents acceleration due to 

gravity and h is the water surface elevation above datum or stage. The frictional 

slope Sjis found by: 

S _ Qn 
( )

2 

I - AR2i3 (3.3) 

where n is Manning's roughness coefficient and R is the hydraulic radius. The 

hydraulic radius being equal to the cross sectional area of flow A divided by the 

wetted perimeter P. A number of assumptions are made when applying these 

equations (Chow et aI., 1988): 

1. Within-channel flows are predominantly one-dimensional, in that single 

values of discharge and stage are sufficient to describe state at a particular 

cross-section. 

2. The bed slope is fixed and small enough to allow the small angular 

approximation to be used. This approximation assumes that the component of 

the water mass between cross-sections that generates the force that drives 

flow indicated by sin (OJ) in Fig. 3.1 can be approximated by tan (OJ). 

3. The channel is approximately straight and not subject to significant secondary 

flows. 

4. The density of water plus solutes and sediment remains constant. 
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5. The effects of channel roughness, turbulence, lateral and vertical flows are 

accounted for by the channel conveyance through an estimate of Manning's 

coefficient and the momentum correction coefficient. 
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Fig. 3.1: Simplified diagram of the forces acting on the water mass in an open 

channel, where G is the weight of the water mass. The bed slope tan (co) can replace 

the direction of flow component sin (co) when the angle is small. 

3.1.2 Floodplain flows 

ISIS represents out-of-bank flows using a network of storage cells (reservoirs) 

connected by floodplain sections which control the flow between adjacent reservoirs. 

Reservoirs are coupled to channel nodes via spill units. It is assumed that inertial 

effects across reservoirs are negligible and that the water level within the reservoir is 

flat. Conservation of mass is ensured during simulations for each reservoir by the 

continuity equation: 

(3.4) 

Where qnet is net flow from all floodplain sections or spill units connected to the 

reservoir, h is water surface elevation or stage and A is the surface area of the 

reservoir. Since the surface area of the reservoir may change with stage, surface area 

is treated as a function of stage generated from topographic data. One method of 

parameterising this relationship is illustrated by Fig. 3.2 where a LiDAR derived 
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DEM has been used to estimate the area of a flat water surface (planar area) at 

different elevations. This stage-area relationship is then plotted on the reservoir 

geometry graph. Between approximately 1 m and 2.4 m above datum water surface 

area increases slowly with water level elevation as only the small channels in the 

reservoir fill. Between 2.4 m and 3 m above datum there is a rapid increase in water 

surface area with water surface elevation as the salting is inundated. Above 3 m the 

reservoir is almost fully inundated causing surface area to rise slowly with elevation . 
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Fig. 3.2: DEM and example reservoir used to parameterise ISIS floodplain reservoir 

nodes . 
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As stated previously qnet is the combined effect of flow to and from the reservoir 

either from the channel nodes via spills or between reservoirs via floodplain sections. 

Flow between reservoir units is controlled by Manning's frictional flow equation: 

(3.5) 

where n is Manning's friction coefficient, s is water surface slope between reservoir 

centroids, A is the flow area taken from a cross-section of elevation between the two 

reservoirs and P is the wetted perimeter of the flow. Flow is calculated for each 

break in slope on the elevation cross-section known as a segment. Fig. 3.3 shows the 

cross-section from the top edge of the reservoir in Fig. 3.2. Eq. 3.5 can be applied to 

each of the 49 segments in this cross-section by first calculating the flow area, wetted 

perimeter and water surface slope as follows: 

Area 

(3.6) 

Wetter perimeter P 

(( )2 2 )112 P = ~ gil - g'2 + b , (3.7) 

Slope 

(3.8) 

where C1 is the water depth above section in the upstream reservoir, C2 is the water 

depth above section of the downstream reservoir, gn is the ground level at the left 

hand end of segment, g12 is the ground level at the right end of segment, d1 is the 

distance from the centre of the upstream reservoir to the centre of the floodplain 

section, d2 is the distance from the centre of the downstream reservoir to the centre of 
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the floodplain section, m is the modular limit, b is the width of the segment and dis 

the distance between the upstream and downstream reservoirs. Flows between 

reservoirs and the channel are controlled by weir-type equations. The equation used 

varies between free flow, drowned flow and zero flow depending on the difference in 

stage between the river and reservoir and the modular limit. These equations are 

described in detail in the ISIS user manual (HR Wallingford, 2007). 
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floodplain sections. The same principle applies to ISIS spill sections between the 

channel nodes and floodplain reservoirs. 
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3.2 Model calibration: GLUE 

The Generalised Likelihood Uncertainty Estimator (GLUE) procedure (Beven and 

Binley, 1992) is a procedure for estimating uncertainty in sets of model parameters. 

It has been applied to physically-based distributed models for the purpose of 

estimating: effective roughness parameters of one-dimensional hydrodynamic 

models (Pappenberger et al., 2005), flood inundation probability (Aronica el al., 

1998b, 2002; Romanowicz and Beven, 1998; Romanowicz et al., 1996) and two

dimensional river flow estimation (Hankin et al., 2001). GLUE is not restricted to 

parameter space as it can also be used to assess uncertainties in boundary conditions 

(Page et aI., 2004; Zack and Beven 1999), initial conditions and model structure 

(Hankin et al., 2001; Butts et al., 2004). Although this brief introduction will 

concentrate on parameter uncertainty, the principles described will in most cases be 

equally applicable to model structure and boundary conditions. 

GLUE requires a large number of model simulations for which state estimates can be 

extracted and compared with observations. Each model run has a parameter set 

drawn randomly from a pre-defined parameter space, where the parameter space 

must be large enough to encompass all model parameter sets which lead to 

'behavioural' simulations. The term behavioural is used to describe all parameter sets 

which lead to a reasonable simulation of observed state. Sets of parameters are 

considered, rather than the effect of varying a single parameter, meaning that 

interactions between parameters are explicitly considered within this process (Beven 

and Binley, 1992). Here, changes to parameter sets refer to changing the numeric 

values of parameters as opposed to selecting different parameter combinations, in the 

sense that a model may attempt to represent reality using a number of different 

parameter combinations. 

For each parameter set likelihood can be calculated based on the fit between the 

simulation produced by that parameter set and the observations (section 3.2.1). The 

likelihood values can then be used to estimate the uncertainty in the parameters 

which make up the parameter set. The GLUE procedure upholds a concept known as 

34 



equifinality because no single parameter set is assumed to be optimal within the 

given model architecture (Beven, 2000). Although one parameter set may achieve the 

largest likelihood based on some objective function and validation data, other 

parameter sets that achieve user defined reasonable or behavioural predictions are 

also considered. Parameter sets that give predictions which do not meet the user's 

definition of reasonable are termed 'non-behavioural' and removed from further 

analysis. Whilst this method allows the user to accept any number of parameter sets 

as behavioural, the weighting given to each parameter set by the pre-defined 

likelihood function will give less weight to parameter sets that do not recreate 

observations accurately. 

GLUE is an extension of Bayesian inference that is less formal but easier to 

implement (Beven et aI., 2000). A disadvantage of the method, when compared with 

a classical Bayesian inference approach, is that it assumes all errors (between 

observed and simulated states) are due to uncertainty in the parameters being 

estimated, thereby not accounting for other error sources such as measurement errors 

and input errors. As a consequence estimates of parameter values will be biased 

because no account will be taken of the variability introduced by the other error 

sources (Mantovan and Todini, 2006). 

There are five requirements to conduct a GLUE procedure outlined by Beven and 

Binley (1992): 

1. A definition of a likelihood measure (referred to more generally as an 

objective function). 

2. An initial range of parameters from which to take parameter sets and a 

method to select parameter sets, based on a uniform distribution of an unduly 

wide parameter range, in the absence of information to the contrary. 

3. A procedure for using likelihood weights in uncertainty estimation. 

4. A procedure for updating likelihood weights recursively as new data become 

available. 

5. A procedure for evaluating the value of additional data. 
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These steps are discussed in detail by a number of authors (such as: Beven and 

Binley, 1992; Beven 2000; Hunter et al. 2005). Only the choice of likelihood 

measure will be introduced here because the GLUE method is being used as a 

parameter estimation tool in support of other thesis aims, rather than an integral 

component of the thesis aims in its own right. 

3.2.1 The Likelihood Measure 

The likelihood of a particular set of parameters being a simulator of a system within 

the constraints of the model structure can be tested by comparing simulated state 

with observation. Likelihood is a function of how well the model conforms to the 

observed behaviour of the system. A set of parameters with a likelihood of zero 

indicates that the set does not represent the behaviour of the system given the 

available observations. A likelihood of 1 would indicate that the parameter set was a 

perfect representation of the system, given the available observations. Often the user 

will define a lower limit of likelihood at some value above zero, below which 

parameter sets are considered not to represent the behaviour of the system and are re

set to a likelihood of zero and termed 'non-behavioural'. Once 'non-behavioural' 

parameters are removed the likelihood values can be scaled to give a likelihood index 

between zero and one. 

The likelihood measure can be anything that evaluates the goodness-of-fit between 

the model predictions and observations. The choice of likelihood measure is subject 

to the judgment of the modeller and will usually depend on the overall objectives of 

the modelling process. The simplest likelihood measure would evaluate the 

difference between the predicted and observed state estimates for a given point in 

time: 

1 
£=~ 

(3.9) 
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where e is the residual of the observation from the prediction. Another simple 

measure might be the sum of squared error or the error variance (Beven, 2000): 

2 1 I 

O'e = -. -1 L (YI - X1•k) 
1 - 1=1 

(3.10) 

Where Y/ is an observation at time t, X/,k is the simulated state given parameter set k 

and i is the number of time steps. A transformation is required to calculate 

likelihood. Nash and Sutcliffe (1970) suggest the following formulation, which they 

term a measure of model efficiency: 

(3.11 ) 

where 0'; is the variance of the observations. This likelihood measure constrains 

behavioural parameters to those with a residual variance within the variance seen in 

the observations. The likelihood will be zero when the variance of the residuals 

equals the variance in the observations (the model is no better than the mean of the 

observations) and one when all the residuals are zero (Beven and Binley, 1992). 

Another likelihood function might be an inverse scaled sum of squares of the 

residuals (Box and Taio, 1992): 

(3.12) 

where n is a user-defined parameter that scales the sum ofthe squares of the 

residuals. If n = 0 all simulations will have equal likelihood and when n = 00 the most 

accurate parameter set will have a likelihood of 1 whilst all others will have a 

likelihood of O. The selection of n will affect the shape of the likelihood distribution 

with larger n values accentuating the weight given to more likely parameter sets. The 

scaling function n can also be applied to the Nash-Sutcliffe method as discussed in 

Franks et al. (1998) and Freer et al. (1996): 
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(3.l3) 

There are many other possible likelihood functions including Bayesian likelihood 

functions (Romanowicz, 1996) and pseudo maximum likelihood functions (Van 

Straten, 1983). There are also functions where the likelihood value is one if the 

prediction falls within measurement uncertainty, but, less than one either side of this 

range (Page et al., 2004). Likelihood measures have also been developed to use 

binary pattern flood inundation data collected synoptically by remote sensors. In 

these situations simulated flood inundation can be treated as a binary output (e.g. wet 

or dry) and compared with the observed inundation extent using a contingency table 

(Aronica et ai., 2002; Hunter et al., 2005). 

3.3 Data assimilation with the Kalman filter 

Kalman filter type algorithms can be traced from the 1960s with the development of 

the discrete linear Kalman filter (KF) (Kalman, 1960). The KF provides an optimal 

recursive solution to the discrete-data linear filtering problem, where a process 

governed by a linear stochastic differential equation controls the system state (Welch 

and Bishop, 2002). Put simply, the KF algorithm can be used to recursively 

assimilate observations ofa system's state into a model of that system's state. The 

KF relies on input variables generated by two models: a system model and a 

measurement model. The system model simulates changes in model state over time 

and the growth of model uncertainty, whilst the measurement model accounts for 

measurement uncertainty and maps measurements onto the system model states. 

These two models will now be introduced along with the assumptions that must be 

satisfied for the KF to be considered optimal, followed by a description of the KF 

itself. 
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3.3.1 The system model 

The state of a system of interest at a specific time t can be represented by the state 

vector XI, which is made up of n predicted states within the model domain. 

X = ( (3.14) 

Uncertainty in these state estimates can be included through the addition of a 

stochastic component to the state vector, such that the true state of the system is a 

realisation of the state vector plus an unknown process error EI' 

X = xtrue + E / ( / (3.15) 

Here, it will be assumed that this process error term is a random variable which is 

Gaussian with zero mean, such that the probability distribution of E/ is: 

(3.16) 

Where QI is the n-by-n process noise covariance matrix describing the covariance 

between the systems state errors at time step t. The diagonal terms of the matrix Q 

are the variances of each state estimate. 

The first step of the KF is to represent the propagation of the state vector from time {

I to time t as a linear stochastic difference equation. 

(3.17) 

Where M is a n-by-n state transition matrix that describes how the state of the system 

changes linearly from the previous time interval t-I to the next t. XI-I is the n-by-I 

state vector from the previous time step and XI is the n-by-I predicted state vector for 
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the next point in time t. Ut is a forcing term or boundary condition, and B is an n-by-l 

matrix that relates this boundary condition to the state vector, where I is the number 

of boundary conditions. The vector Et-l is the stochastic component representing 

system uncertainty or process noise described above. 

3.3.2 The measurement model 

The measurement model describes the relationship between system state and 

available measurement data. Assuming there are no errors in the measurements and 

that the measurements and system states relate linearly to each other, the vector of 

measurements y;rue will relate to the true system state x;n,e via the m-by-n 

measurement operator H: 

Y true = Hx true 
I I (3.18) 

Where there are m measurements y;rue is an m-by-l vector. Measurement uncertainty 

can be accounted for by including a stochastic term in this equation, such that x;rue 

represents the true state of the system that is unknown due to the effect of 

measurement noise 'Il/: 

H true 
YI = XI +f1 / , (3.19) 

Here 'Ill is assumed to be a Gaussian white noise process with zero mean that is 

uncorrelated with the process noise Et. As with the system model the probability 

distribution of the random variable 'Ill is 

(3.20) 

where R t is an m-by-m measurement noise covariance matrix describing the 

covariance between the measurement errors at time step t. For simplicity, it is usually 

assumed that there is no correlation between measurement errors. Under these 
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circumstances R is a matrix of zeros, except for the variance values for each 

measurement making up its diagonal terms. As 111 is assumed to be independent of Er, 

R is independent of Q and B. 

The system and measurement models from equations 3.17 and 3.19 respectively, can 

be used to form the algorithm for the KF. The KF algorithm is based on two sets of 

equations usually known as the predictor and analysis equations (Welch and Bishop 

2001). These equations are sometimes referred to as the time and measurement 

update equations or prediction and correction schemes, depending on the author. The 

two-step cycle of the filter uses the predictor equations to estimate the a priori state 

of the system and its covariance for a future point in time using the system model. 

This state estimate is then adjusted using the corrector equations when measurement 

data become available, resulting in a posteriori state and covariance estimates. Here 

superscript a signifies a posteriori state at the previous time step and superscript/is 

forecasted state. 

3.3.3 The predictor step 

The system model simulates the state vector and its uncertainty at a future point in 

time based on the system state and state uncertainty at the previous time step. This is 

achieved by advancing a deterministic estimate of system state (Eq. 3.21) and adding 

noise to the estimate of the uncertainty in state (Eq. 3.22). The resulting state vector 

and error covariance estimates are a priori as indicated by the superscript/symbol 

because they represent our knowledge of state before measurement assimilation: 

(3.21-22) 

Where p/ is the error covariance matrix associated with x/ and PI~I is the error 

covariance matrix associated with X~_I . The n-by-n process noise covariance matrix 

QI = cov {Er} is taken from Eq. 3.16 and T indicates the transpose. The simulation of 

state is deterministic as it is based on the change from the previous state described by 
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the state transition matrix plus any input driving forces. Since t( is assumed to have a 

mean of zero it does not occur here. 

When initialising the KF it is necessary to make an initial estimate of Xo and Po. Xo 

can be anything but Po must be positive and non-zero if observations are to be 

assimilated at to. If Po is zero then there is no uncertainty in the system model and 

therefore no reason to assimilate noisy measurement data. Furthermore, if Po is small 

the filter will initially adjust very slowly to new measurement data, whereas if Po is 

large the filter may initially adjust very rapidly to new measurements leading to 

initial instabilities. Nevertheless, Cahill et at. (1999) found the KF to be quite robust 

when given reasonable initial conditions, finding them to have little effect on the 

final result given enough time steps and measurement data. 

3.3.4 The Analysis step 

The predictor step simulates the state of the system based on a linear process model. 

It also passes an estimate of uncertainty in that state estimate. The objective of the 

analysis step is therefore to gain a more accurate understanding of the current state of 

the system and to reduce the uncertainty in that estimate through the assimilation of 

measurement data that are themselves uncertain. For linear systems where there is 

uncertainty in both the simulation model and measurements, optimal state updating 

can be done by minimising the errors between model state predictions and 

measurements using a KF algorithm (Kalman, 1960; Refsgaard, 1997; Schreider et 

at., 2001; Young, 2002). This is achieved by first calculating the Kalman gain matrix 

K, which is then used as a weighting matrix for assimilating measurement 

innovations y - Hxl into the state vector x to give an updated estimate of system 

state that is conditioned in an optimal manner on both modelled and measured state, 

such that: 

K = p/H'l'(Hp/H T + Rt 
xG = xl + K(Y - HxI) 

(3.23-24 ) 
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Where H is a linear observation operator that maps measurements onto states. Here, 

the reference to time t is dropped as all state vectors and covariance matrices accrue 

simultaneously in time. The difference between state and measurement vector 

(y - Hxf) is the innovation vector d (Welch and Bishop 2002). To clarify this 

process a hypothetical example for a single point based on a bucket filling with 

rainwater is presented in Appendix A. The sequence of equations 3.23 to 3.24 shows 

how the Kalman gain K is used to weight the difference between the a priori state 

vector xl and the measurement vector y when updating to the posterior state vector. 

The Kalman gain can also be used to update state error covariance such that, 

(3.25) 

where I is an n x n identity matrix. See Appendix A for a single point example. 

The KF is the best unbiased linear predictor of state because it estimates the posterior 

state vector by adjusting the a priori state vector depending on the weighted 

difference between the a priori state vector and the measurement model, in a way 

that minimises a posteriori state error variance (Maybeck, 1979). The KF uses all the 

state information available, in the form of the system model, measurement model and 

initial conditions. This means that any measurement data, however corrupted by 

noise (that is assumed to be Gaussian in this case), will be beneficial to the 

estimation of state because noisy measurement data will be given less weight by the 

Kalman gain matrix when updating the state vector. Similarly, even inaccurate 

models can be corrected by measurement data, although the quality of forecast may 

deteriorate rapidly in such circumstances. In systems that require complex non-linear 

models to represent physical processes the Kalman filter has been used as a means of 

correcting much simpler linear models. Dee (1991), for example, uses a 

simplification of model dynamics for data assimilation into an atmospheric flow 

model. 

Feedback from the KF analysis is accomplished by using the a posteriori state vector 

as the initialisation for the next model time step. This process is often described as 

recursive or a predictor-corrector loop because predictions are made into the future 
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and then that prediction is adjusted in real-time, before predicting again at the next 

time step, as illustrated by Fig. 3.4. 
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Fig.3.4: Schematic diagram of the KF. The predictor step advances the model state 

and state error covariance to the next time step using the system model. The corrector 

step then updates these forecasts with measurements of the state variables. Analysed 

state and state error variance estimates are then returned to the system model as 

updated initial conditions. 

The KF recursive nature is advantageous as there is no need to store or conduct 

computations on historical data. In fact, the analysed state variable xa and its error 

covariance matrix pa consider all previous states, with previous state estimates 

becoming less influential on the current state estimate as they move further back in 

time. This is advantageous for large system models and situations where there are 

many measurement times. 

For completeness, it is worth listing the assumptions that are made by the KF : 

1. The state transition matrix, measurement operator and relationship between 

the model forcing terms and state are all linear. 

2. The process noise and measurement noise are independent of one another and 

can be represented as Gaussian white noise processes with zero mean. 
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When these assumptions can be satisfied, the filter is the best linear unbiased 

predictor of state because it minimises the estimated error covariance of the posterior 

state based on the process and measurement error covariance prior to filtering 

(Welch and Bishop, 2002). When the above assumptions are not valid the KF will 

still provide the best linear estimate of state, but not the best estimate of state. It may 

be the case that the filter can still provide reasonable estimates of state and state error 

covariance. However, it may be necessary to use a version ofthe filter which 

attempts to account for the nonlinear behaviour of the system. 

3.3.5 Parameter estimation 

In the previous sections, the Kalman filter was expressed as a means of updating 

internal model state through the assimilation of measurement data. For most models. 

including those of environmental systems, the values of model parameters are almost 

guaranteed to be uncertain to some degree. The use of Kalman type filters for the 

estimation and adjustment of parameters is an appealing extension, especially if the 

scheme permits the adjustment of parameters in real-time. Here, only one method is 

presented based on augmentation of the state vector to include a parameter vector. 

Alternative methods such as one based on maximum likelihood and another based on 

a dual Kalman filter have been applied in a hydrological context by Bras and 

Rodrigues-Iturbe (1985) and Moradkhani et al. (2004), respectively. 

3.3.5.1 Augmented state vectors for parameter estimation 

In this section, a method of joint parameter-state estimation or state augmentation 

will be described, where errors in parameter and boundary condition estimates are 

assumed to be correlated with both time and errors in state estimation. Recalling the 

system model from section 2.3.1 (Eq. 3.17) the model operator is re-expressed as 

being dependent on the unknown parameters 8 to give: 

(3.26) 
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Therefore, the propagation of the state vector x is described by the linear model M 

which is a function of the parameters 9, and boundary conditions u. The parameter 

vector to be estimated can now be augmented with the state vector and updated as 

part of the KF analysis, such that the state vector becomes (Bras and Rodriguez

iturbe, 1985): 

(3.27) 

Measurements can now be assimilated using the KF analysis algorithm described 

previously. If the parameters are known to be a constant then their values at the next 

time step can be identical to the analysed estimate. However, in situations where the 

parameters might change over time it may be desirable to treat them as random 

variables. One method of doing so, presented by Bras and Rodriguez-Iturbe (1985), 

assumes that the parameter values follow a random walk, such that: 

(3.28) 

where Ell is a zero mean random variable. This allows the parameter to be 

continuously re-estimated over time as new measurement become available. 

However, since the parameters change over time the state transition matrix becomes 

nonlinear. To solve this problem a method for dealing with nonlinear state transitions 

and error propagation is required. The next section of this review will move onto 

methods for dealing with nonlinear systems, with the subject of parameter estimation 

revisited for an ensemble-based method in section 3.5.4. 

3.4 Dealing with non-linearity 

The KF is the best linear unbiased predictor of system state in terms of error 

variance, where the state can be described by a linear stochastic difference equation. 

For many environmental applications, including river flow forecasting, the 

representation of process with a linear model has been found to be inappropriate 
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(Evensen, 1994). When the system is nonlinear, forecast state becomes some 

functionJofmodel state at the previous time step X~_I (analysed in the case ofEg. 

3.29), the model forcing terms Ut and any model errors Et: 

(3.29) 

rather than a linear state transition matrix (Drecourt, 2003). The relationship between 

measurements and the system state may also be nonlinear such that the measurement 

model becomes: 

(3.30) 

There are various approximations to the Kalman filter that support the use of 

nonlinear system and measurement models including the extended Kalman filter 

(EKF) (Maybeck, 1979) and the unscented Kalman filter (UKF) (Drecourt, 2003). 

However, for complicated highly nonlinear systems with a large number of states 

typical of many geoscience applications, including flood forecasting, determining the 

probability distribution of forecast state can be computationally expensive and 

mathematically difficult with these methods (Evensen 1992; 1994, Drecourt, 2003). 

An alternative approach is to use a scheme based on Monte Carlo simulation, where 

the probability distribution of forecast state is estimated from an ensemble of model 

simulations. 

3.5 Ensemble Methods: The ensemble Kalman filter 

The EnKF was developed by Evensen (1994) as an alternative to the EKF, for 

dealing with non-linear data assimilation problems. The need for the EnKF arises 

from several implementation problems associated with the EKF. Firstly, the state 

transition matrix must be re-defined based on the trajectory of the model at the point 

of data assimilation. This does not affect the state estimation, but will affect error 

covariance propagation and becomes more of a problem as the non-linearity between 

time step increases. Evensen (1992) found that unbounded error growth as a result of 
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approximations in the error covariance propagation equation caused instability and 

closure problems, even though the model under investigation was only weakly non

linear. For the EKF to be used in this situation Evensen concluded that an extensive 

coverage of measurement data or higher order closure equations would be necessary 

to dampen out instability. Such measures are often impractical in an operational 

sense, especially as the inclusion of higher order error statistics would result in 

additional computational expense. As noted previously the computational expense of 

the EKF is a significant drawback of the method. Evensen (1994) therefore proposed 

a Monte Carlo based approach to approximate the Kalman filter error covariance 

matrix P, which has since become known as the EnKF. 

3.5.1 State propagation 

The EnKF represents the probability density of the system state estimate by Monte 

Carlo sampling of the state variable. An ensemble of state vectors X replaces the 

model state vector used by the KF such that: 

Xl,l X l ,2 Xl,K 

X= 
X 2,1 X 2,2 X 2,K 

(3.31) 

XN,1 X N ,2 XN,K 

Where k denotes an ensemble member and there are K ensemble members. The 

'predictor step' propagates each of the ensemble state estimates forward in time 

according to the non-linear simulation model M, the state vectors from the previous 

time step X~,/_l' the models boundary conditions (forcing terms) and any model 

parameters. Stochastic terms should be included for all sources of input and 

parameter uncertainty such that the ensemble spread is appropriate for the accuracy 

of the simulation model. In practice, it is not possible to represent or define all 

sources of model uncertainty, so only the dominant sources of uncertainty are usually 

considered. These can usually be selected by a combination of sensitivity tests and 

uncertainty estimation procedures conducted off-line or by adopting a previously 
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applied approach from the literature. In the example below the system model has one 

source of uncertainty at the model boundary condition: 

xL = M(X~,(_I' u( + £ k,t ) (3.32) 

Further stochastic terms can be added to represent uncertainty in model parameters 

should this be desired. The mean of the state vector ensemble will be equivalent to a 

deterministic model run and, therefore, represents the most accurate estimate of state 

when the ensemble distribution of states is Gaussian: 

1 K 

x/ =-"'xI ( K~ k,( 
k=l 

(3.33) 

where the overline denotes an average over the ensemble. The error covariance 

matrices can be represented by the difference between the ensemble members and 

the true state of the system: 

pI = (xI _ x true XxI _ Xtrue)T 
k,( t k,t ( (3.34) 

becoming Eq. 3.35 after the assimilation of measurement data. 

(3.35) 

The true state xtrue is of course unknown, preventing the calculation of true error 

covariance matrices. However, it is possible to estimate the error covariance matrix 

for each ensemble by calculating the ensemble covariance matrices around the 

ensemble mean (Evensen, 2004) 

(3.36) 

and 
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(3.37) 

The spread of the ensemble around the ensemble mean is, therefore, used to 

approximate the error covariance. It should of course be noted that even if state 

uncertainty is Gaussian this approximation will contain errors proportional to one 

over the square root of the number of ensembles, meaning that the larger the number 

of ensemble members the more accurate the approximation of P. Since there can be 

an infinite number of ensembles there will also exist an infinite number of ensemble 

covariance matrices. When the number of ensembles reaches infinity the distribution 

of states over the ensemble will describe the true probability density function of the 

system's state variables. 

3.5.2 Measurement model 

The formulation of the measurement equation for the EnKF was described by 

Burgers et al. (1998), clarifying earlier work by Evensen (1994), by stating the need 

to treat measurements as random variables to prevent a fall in the estimate of forecast 

error covariance caused by neglecting measurement uncertainties in the forecast 

ensemble of state. To treat measurements as random variables it is necessary to 

create an ensemble of measurements based on the addition of noise to the 

measurement data before assimilation with the ensemble of system model states. The 

magnitude of this noise is dependent on the uncertainty in the measurement data, 

which may result from instrument errors, scaling issues etc. It is assumed here that 

the uncertainty in measurements is Gaussian and that errors are unbiased and not 

correlated with each other. Errors in measured and simulated state are also assumed 

to be uncorrelated. The ensemble of measurements can be generated by: 

Y k.1 = Y 1 + II k,l (3.38) 

Where 11 is a Gaussian white noise process representing the uncertainty in 

measurement, Y is the measurement vector, t is the time and k counts from 1 to the 
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number of ensembles K. If the relationship between measurements and model state is 

linear the EnKF measurement model can be defined in a similar manner to the KF 

measurement model in Eq. 3.19 as: 

H 111/e 

Y k,1 = XI + 11k,t (3.39) 

The covariance of the measured data R may also be calculated from the measurement 

ensemble to be used in the analysis step. Although the analysis step presented here 

will use R, calculating this matrix is not an efficient means of implementing the filter 

in practice as shown in section 3.5.5. 

3.5.3 Analysis step 

In the EnKF analysis step a perturbed measurement vector from the measurement 

model is assimilated with a member of the forecast state ensemble to yield analysed 

state, such that: 

a _ f pfHT (HpfH T R)-I ( HI) 
xk,1 - xk,t + + Y k,1 - xk,t (3.40) 

This equation is similar to the KF analysis equation in that pfHT (Hp/HT + Rr l is 

the Kalman gain and Y k,1 - HxL is an innovation vector. The difference with the KF 

is that: 

1. The analysis is repeated for K ensemble members rather than a single 

deterministic state vector. 

2. Error covariance is approximated from the state ensemble as explained in 

section 3.5.1. 

An efficient matrix-based solution to this analysis developed by Evensen (2003) is 

presented in section 3.5.5 of this thesis. 
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By using an ensemble of model simulations to propagate state errors there is no need 

to calculate a linear state transition matrix based on the trajectory of the model at 

time t. Hence the problems introduced by the EKF at this stage are avoided. 

Furthermore, the computational burden of propagating the error covariance is now 

linked to the size of the ensemble and the speed of the simulation model rather than 

the size of the covariance matrix, although calculating the Kalman gain can still be 

expensive when the number of measurements and states is large. 

The EnKF assumes the distribution of ensembles to be Gaussian for the purpose of 

calculating the mean and covariance statistics to be used in the data assimilation or 

corrector stage. If the state ensemble is non-Gaussian this distribution will be 

preserved to some extent in the updated state ensemble. However, the error statistics 

used to calculate the Kalman gain weighting matrix assume normally distributed 

error statistics for both the measurement and system models. In the context of flood 

inundation modelling ensemble distributions are unlikely to be Gaussian. 

Nevertheless, if the errors introduced by assuming a Gaussian distribution are small 

relative to other error sources this assumption is appealing because it makes filtering 

easier. Methods for considering non-Gaussian error statistics include kernel based 

approximation of the probability distribution (Anderson and Anderson, 1999) and the 

so called particle filter. 

3.5.4 Parameter estimation 

In section 3.3.5 a state augmentation based method of using the KF to estimate an 

unknown parameter was presented. The incorporation of a dynamic parameter caused 

the state transition to become nonlinear, thereby presenting a problem that was not 

suited to the KF analysis. The EnKF provides a framework for approximating state 

and state error covariance propagation of a nonlinear simulation model. Therefore, 

we now revisit the parameter estimation problem with the EnKF instead of the KF 

for a boundary condition error estimation problem that is analogous to a parameter 

estimation problem. Recalling the system model in section 3.5.1, correlation would 

be expected between the state errors and the errors in the boundary conditions 

(and/or model parameters). 
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(3.41 ) 

In fact for a ID hydrodynamic river flow model with a stage-time boundary 

condition the correction made to state at the model boundary must be similar to that 

made to the boundary condition error at that time. Failure to adjust the boundary 

condition error in a consistent manner with state at the boundary of the model 

domain will result in a discontinuity between model state and boundary conditions, 

which has the potential to cause significant model instability. Therefore, the 

boundary condition error must be augmented with the state vector (Riche I et a!., 

2002) such that: 

(3.42) 

where xL is an augmented state vector containing both forecast model states and 

boundary condition errors. This augmented state vector can be updated using the 

analysis equation in section 3.5.3, provided the measurement operator H is adjusted 

to take account of the larger state vector by including a matrix of zeros, to indicate 

that measurements do not map onto the boundary condition error component of the 

state vector xf! : 

(3.43) 

The filter will require an initial distribution of errors EO such that there is initial 

uncertainty in the boundary condition error. If the boundary error is believed to be 

constant the filter can be run as is without any error dynamics. Under these 

circumstances, the overall variance of the boundary error ensemble will be reduced 

each time the analysis step is run, along with the model state x. Therefore, the 

boundary error distributions produced by the filter will converge towards a single 

value. If the boundary error is not constant over time the filter will eventually diverge 

or move away from the truth (Jazwinski, 1970) as the distribution of errors becomes 
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too narrow. A consequence of divergence is that additional observations have little 

impact on boundary errors once divergence has occurred (Anderson and Anderson, 

1999). To avoid the analysis phase progressively reducing the distribution of errors, 

they must be treated as dynamic variables (Aksoy et al., 2004). For the boundary 

errors to be dynamic a technique must be chosen to inflate the posterior error 

variance to counter the effect of the EnKF analysis. 

The dynamics of the boundary errors (or parameters) can be governed by almost any 

process that is an appropriate representation of the error dynamics. This process will 

vary depending on the application and may not be fully understood. Here an example 

will be presented where the boundary condition error is represented using a first 

order autoregressive process, which is often adequate for short forecasts (Bras and 

Rodriguez, 1985): 

(3.44) 

where p is a lag-one auto-correlation coefficient the boundary errors at (-1 and f, (J is 

the variance and W is a zero mean, variance one, normally distributed random 

variable, thus if Gk,l-l is the boundary error then Gk,1 is the boundary error at the next 

time step. The time step must be defined prior to calculating p and W. Madsen and 

Canizares (1999) present a similar approach for a distributed boundary condition, 

where spatial correlation existed between the distributed errors. This needed to be 

specified through a covariance model such that a random field could be generated 

(Evensen, 2003). 

3.5.4.1 Dual Kalman filters for parameter estimation 

In dual estimation, parameter evolution needs to be defined. This is usually done 

with a random walk model (state augmentation) although Moradkhani e( al. (2004) 

suggest the use of kernel smoothing. For dual estimation the EnKF system model is 

described by: 
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XL+1 = M(x~'I' Uk,I' OL+I) 

~ I _ H( f Of ) Y k,HI - Xk,I+I' k,I+1 

(3.45-46) 

Parameters are updated by assimilating the perturbed observations 

(3.47) 

where K~+l is the Kalman gain for the parameters. The updated parameters are then 

used to regenerate the system model with updated parameters after which the state 

vector is updated using the standard EnKF prediction and analysis schemes. 

Using the conceptual hydrologic model HyMOD as the system model Moradkhani et 

al. (2005) applied this method for parameter estimation and one-day ahead 

streamflow forecasting on the Leaf River (USA). The EnKF was found to estimate 

similar parameter values to a conventional batch simulation approach but had the 

capability to update in real time and did not require the storage of past model results. 

3.5.5 Practical implementation 

The computational scheme outlined here for implementing the EnKF is based on that 

of Evensen (2003). In the following examples the time notation has been dropped to 

simplify the notation. Firstly, the ensemble of state vectors must be placed in the 

state ensemble matrix X, the superscript/has been dropped to simplify the notation: 

(3.48) 

The state ensemble matrix X has the dimensions N-by-K, where N is the size of the 

state vector and K is the number of ensemble members. The ensemble mean can be 

calculated by: 

(3.49) 
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Where h is a K-by-K matrix where each element is equal to 11K. This allows for an 

ensemble perturbation matrix to be calculated: 

x'=x-x (3.50) 

An estimate of the covariance matrix pi can then be made for the ensemble 

perturbation matrix: 

~ X'(X'y 
p = -----''-------'-

N -1 
(3.51 ) 

However, it will be shown later that the covariance matrix P need not be calculated, 

thus saving on computational time. Measurements are treated in the same way as the 

state ensemble: 

(3.52) 

where Yk is a vector of measurements perturbed by 11k and Y is an M-by-K matrix, 

where M is the number of measurements and K is the ensemble size. An ensemble 

perturbation matrix Y' can be calculated using the same method used to calculate 

the state perturbation matrix or defined as: 

(3.53) 

Measurement error covariance can be calculated using Eq. 3.51 by substituting X' 

with Y' . The KF analysis Eq. 3.23-24 can be adapted to run on the approximate 

ensemble covariance matrices: 

(3.54) 
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where PH T (HPH T + R t is the Kalman gain matrix K. H is the m-by-n linear 

measurement operator that map's measurements onto the state vector. The most 

accurate estimate of the state vector can be found by the mean of the ensemble X. 

The computation of P and R can be avoided by: 

(3.55) 

A scheme for solving (HX'X,THT + y'y,T t using eigenvalue decomposition and an 

alternative analysis scheme for situations where m is very large was presented by 

Evensen (2003). Further work has been done to develop analysis schemes that do not 

require measurements to be perturbed (Whitaker and Hamill, 2002; Tippett et at., 

2003; Evensen, 2004). By removing the noise introduced by the perturbed 

measurement data, Anderson (2001) found the filter was more accurate relative to the 

standard EnKF analysis scheme presented here for a global atmospheric model. The 

increase in accuracy was expected to be most noticeable for small ensembles, 

although it was noted that the improvement may not occur for all cases. 

3.6 Adaptive sampling: The ensemble transform Kalman filter 

Ensemble based Kalman filters (Evensen, 1994) assume state error covariance P can 

be approximated from an ensemble of perturbations around the ensemble mean that 

have been scaled by the square root of K-1, where K is the number of simulations in 

the ensemble. When the perturbations in question have been generated by an 

ensemble of model simulations, the error covariance of these background ensembles 

can be approximated by: 

(3.56) 

Where superscript T indicates a matrix transpose, t is time and Z is a matrix of state 

perturbations with K columns scaled by the square root of K-1 (K being the number 

of ensemble members) such that: 
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(3.57) 

where x is the state vector of an ensemble member k at time t, the over-line denotes 

the ensemble mean and the linear observation operator Hi indicates that the 

perturbations are conditioned on any measurements that may have been assimilated 

up to time fi. State error covariance can be updated at the measurement time tm using 

the standard KF update 

(3.58) 

where R is measurement error covariance. The ETKF analysis is different in that a 

linear transform T of the ensemble perturbations is calculated such that analysed 

error variance from Eq. 3.59 is consistent with that from Eq. 3.58 

(3.59) 

A detailed derivation of the ensemble transform T was presented by Bishop et at. 

(2001). Therefore, the following section will present only the information required 

for its practical implementation. Since this article focuses on adaptive sampling an 

additional complication will be added to the notation at this point to deal with the 

possibility of there being Q potential measurement sets rather than one. Thus, in 

accordance with Table 5.1 the qth measurement set has the operator Hq and error 

covariance Rq. It will be assumed that the measurement error covariance matrix of 

the qth potential sample set is known and can be mapped onto state with the linear 

observation operator Hq. A further assumption is that errors in these targeted 

measurements are uncorrelated with errors in any previously assimilated 

measurements. Under these assumptions Wang et at. (2004) defined the transform 

associated with the qth sample set as: 

(3.60) 
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Where I is a K by K identity matrix, Cq is a K by K matrix of eigenvectors and r is a 

Kby K diagonal matrix of eigenvalues of the matrix Z/Z where 

(3.61 ) 

One useful aspect of the ETKF is that transformed ensemble perturbations 

ZV m IH~ ) = Z~ m IH i)rq represent ensemble perturbations given the measurements 

used to calculate the transform. This allows routine measurements to be assimilated 

once before multiple adaptive sampling scenarios are considered (Bishop et aI., 

2006). Furthermore, what-if scenarios can be built up where the decision to make a 

measurement is based on the previous decisions to make other measurements. This 

'serial' approach (Bishop et aI., 2001) vastly reduces the size of the adaptive 

sampling problem. For example, for a situation where there are 10 possible sampling 

locations, but the means to take only three samples there are 120 possible sampling 

designs. However, if the location of each sample is decided in series only 27 possible 

sample locations need to be evaluated. Although, this approach is not optimal in 

terms of data redundancy, it provides a practical means of conducting a procedure 

that would otherwise be computationally excessive in situations where there are 

many possible measurement locations. 

At this point, a KF would propagate the analysed covariance matrix through time to 

the next time of interest, which in this example is the validation time v, using linear 

dynamic operator M and adding model error covariance Q such that: 

PVv IH;,)= M(tv ,tm )PVm IH,%)Mr (tv ,tm)+ Q(t" ,f m)' (3.62) 

whereas an EnKF based approach would propagate the ensemble to the validation 

time using the simulation model. The ETKF implementation in Majumdar et al. 

(2002) avoids this computationally expensive operation by substituting the 

perturbations at the validation time Z~ v IH i) for the linear dynamic operator giving: 
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The validation time can now be any time at which background ensemble 

perturbations are available. Note that, this is only valid if the dynamics of the 

(3.63) 

ensemble perturbations about the ensemble mean x(tlH f) are similar to those that 

would have been obtained from x(tlH m ). 

In situations where the objective of the adaptive sampling problem is limited to 

choosing between feasible sample sets, it is only necessary to calculate the reduction 

in error covariance expected from each of the Q sample sets. This reduction in error 

covariance is known as 'signal covariance'S, with diagonal terms giving the signal 

variance. The motivation behind calculating signal covariance instead of error 

covariance is that it is theoretically easier to calculate because it is independent of 

model errors pI (Majumdar et a!., 2002). Using the eigenvalues and eigenvectors 

calculated previously signal variance is defined by Bishop et a!. (2001; 2006) as: 

(3.64) 

Analysed error covariance is, therefore, the forecast covariance minus the signal 

covanance 

pa = pI -So (3.65) 
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3.7 Summary 

This methodology chapter in conjunction with chapter 2 has reviewed selected data 

assimilation methods, which in fields such as oceanography and meteorology have 

been shown to provide solutions to aim similar to those in section 1.1. Specifically, 

data assimilation and sampling design methods have been presented that can, in 

theory, be used in conjunction with nonlinear process models and noisy 

measurements. Over the next four chapters these methods will now be tested through 

as series of experiments using the study site introduced in the next chapter. 
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4 Flood inundation model updating using an 

Ensemble Kalman filter and spatially distributed 

measurements. 

4.1 Introduction 

The Environment Agency of England and Wales (EA) aims to deliver accurate, 

reliable and timely flood forecasts, such that action can be taken to alleviate risks to 

person and property (Environment Agency, 2003). This objective involves the 

development of systems for real-time flood forecasting which estimate the 

probability of a threshold level or flow being exceeded in the near future. Making 

such a forecast requires some form of real-time enabled model and updating 

procedure that estimates these states along with their associated uncertainty (Young, 

2002). Forecasting state uncertainty requires the identification and estimation of the 

sources of model and observational uncertainties, and robust methods for dealing 

with them. An understanding of the spatio-temporal distribution and propagation of 

these sources of uncertainty and the sensitivity of forecasts to them within the model 

domain are also required. 

Many physically-based distributed flood models were developed primarily with the 

aim of producing a single deterministic prediction of flood inundation given a set of 

driving forces and optimal or best guess parameters. The aim of this chapter is to 

utilise a state updating method and a hydraulic model to estimate stage and stage 

uncertainty, over a 4 hour forecast period, at specific validation locations. Integral to 

this aim was the accuracy of state forecasts, and uncertainty estimates, and the 

robustness of the model when subjected to different spatio-temporal sampling 

regimes. In turn, the accuracy of state forecasts was dependent on the structure, 

boundary conditions and parameterisation of the simulation model and the 

identification of sources of uncertainty within both the system model and 

observational data. The principal reason for choosing a 4 hour forecast period was a 

lack of measurement data at low flows for the study site (section 4.4.1), which was 
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chosen because it provided an opportunity to repeatedly test the assimilation of both 

floodplain and channel stage data. Although, longer lead times would have been 

preferable this is more than the 2 hour minimum required by the Environment 

Agency of England and Wales (EA) (Defra, 2004). 

The hyperparameters of the updating procedure were set up for a particular data set. 

These parameters controlled the source and propagation of errors within the 

simulation model and, therefore, the weight given to observations by the updating 

procedure. The accuracy of the forecasts relative to the simulation model alone and 

the validity of the uncertainty estimates were then assessed under these ideal 

conditions. The effect on forecast accuracy of reducing the number of data points 

available to the filter was then assessed, along with the objective of maintaining 

realistic uncertainty estimates when subjected to different spatio-temporal sampling 

frameworks. 

4.2 Methods 

4.2.1 Hydraulic modelling 

The ISIS code (HR Wallingford) was used in this study to estimate within channel

flow by solving numerically a dynamic wave model that comprises a pair of one

dimensional non-linear partial differential equations, based around the St Venant 

equations (Cunge et al., 1980). The first of these is the conservation of mass or 

continuity equation (4.1), which controls the balance between discharge from a 

channel cross-section and the area of flow at the cross-section: 

aQ aA 
-+-=q 
ad at 

( 4.1) 

where Q is the within-channel volumetric flow rate or discharge, d is the location 

coordinate, A is the cross-sectional area of flow, q is the lateral flow into or out of the 

channel and t is time. The second equation is the conservation of momentum or 
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dynamic equation (4.2), which seeks a balance between gravity, inertia, diffusion and 

friction: 

aQ a (fiQ
2 J ah -+- -- +gA--gAS =0 

at ad A ad f 

where fJ is the momentum correction coefficient, g represents acceleration due to 

gravity and h is the water surface elevation above datum or stage. The frictional 

slope Sf is found by: 

S _ Qn 
( )

2 

f - AR2/3 

where R is the hydraulic radius and n is Manning's roughness coefficient. 

(4.2) 

(4.3) 

Out-of-bank flows were represented using storage cells (reservoirs) connected by 

floodplain sections where flow was controlled by Manning's equation. These 

reservoirs were connected to the channel via spill units based on weir type equations. 

It was assumed that dynamic effects across reservoirs were negligible. 

4.2.2 Forecasting: The Ensemble Kalman Filter 

The discrete dynamic deterministic hydraulic model or simulation model outlined 

above can be described by: 

(4.4) 

where u represents model forcing terms such as the upstream and downstream 

boundary conditions, e represents the model parameters such as bed roughness and 

M represents the nonlinear model operator which, in this case, represents advancing 

the hydraulic model state from time step k-l to k. Superscript a denotes a posteriori 

state whilst, superscript/is forecasted state (a priori). x is the model state vector, 
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which is made up of all the state variables in the model domain that are to be updated 

by the filter. 

Uncertainty in the state estimate is generated by adding errors to the model forcing 

terms and parameters or even to the state vector itself depending on the source of the 

uncertainty. Error covariance matrices P for each ensemble member can be estimated 

from the difference between the ensemble member and the true state. The true state 

xtrue is unknown, preventing the calculation of true error covariance matrices. 

However, error covariance P can be estimated by calculating the ensemble 

covariance matrices P around the ensemble mean (Evensen, 1994): 

(4.5) 

where i counts from one to the number of ensembles. Measurements can be treated in 

a similar manner. The EnKF measurement equations outlined by Burgers et al. 

(1998) treat measurements as random variables through the generation of a 

measurement ensemble. The measurement model can be defined as: 

H true 
Y',k = kXk + TJ"k (4.6) 

where y is the measurement vector and 1J is a Gaussian white noise vector 

representing the uncertainty in the measurements. H is the measurement operator that 

maps measurements Y onto the state vector x. The measurement error covariance 

matrix R must also be defined as with the state covariance matrix, such that R = 

cov{1Ji,d. Errors in measurement and state estimates are assumed to be uncorrelated. 

Recently, ensemble Kalman filters that do not require perturbed measurements have 

become available but are not considered here. The interested reader is referred to 

Madsen and Caiiizares (1999), Whitaker and Hamill (2002) and Evensen (2004). 
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4.2.2.1 Analysis step 

In the analysis step each randomly perturbed measurement vector is assimilated with 

a member of the prior system model state vector ensemble to generate an updated 

estimate of model state. The algorithm used in this study can be found in Evensen 

(2003). At this point it should be noted that the matrices P (Eq. 4.5) and R are not 

explicitly calculated for computational efficiency. However, the EnKF state update is 

easier to keep track of when described as follows, with reference to time removed. 

Firstly, the gain matrix K (Eq. 4.7) is calculated. This forms a weighting matrix 

which is used to assimilate members of the measurement ensemble into the state 

vector ensemble. 

(4.7) 

Secondly, each member of the measurement ensemble is assimilated with a member 

of the state ensemble, resulting in an ensemble of analysed state estimates. 

(4.8) 

The analysed state error covariance pa of the state estimate can be calculated using 

equation 4.5 by substituting analysed state vectors for forecast state vectors. The 

sequence of equations 4.7 to 4.8 shows how the Kalman gain K is used to weight the 

difference between the a priori state vector and the measurement vector when 

updating to the posterior state vector. The KF is optimal in the sense that it estimates 

the posterior state vector by adjusting the a priori state vector depending on the 

weighted difference between the a priori state vector and the measurement model, in 

a way that minimises a posteriori state variance. However, the KF is only optimal in 

a minimum a posteriori variance sense in the linear case. Furthermore, the EnKF is 

suboptimal in the sense that covariance is estimated from the ensemble. Feedback 

from the analysis equations is accomplished by using the a posteriori state vector as 

the initialisation for the next model time step. The recursive nature of the KF is 

advantageous as there is no need to store or conduct computations on historical data. 
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4.3 Application Case study 

4.3.1 Study area and data 

The field site used in this study lies 20 km inland along the River Crouch (Essex, 

UK). The river flows for approximately 30 km west to east from Basildon (British 

grid reference TQ 730 895) into the North Sea (British grid reference TR 037961) 

(see Fig. 4.1) The underlying geology of the region is that of soft sedimentary rock 

laid down during the Tertiary Period, overlain by deposits from Pleistocene glacial 

periods. The catchment land use is predominantly agricultural with a number of large 

towns including Basildon, Wickford, South Woodham Ferrers and Burnham-on

Crouch, along with numerous small towns and villages. The flow duration summary 

for the river provided by the EA notes that a steady base flow is maintained above 

the tidal limit by discharge from sewage treatment works at Basildon. The Crouch 

basin covers an area of 71.8 km2 with an average annual rainfall of 572 mm per year 

(Environment Agency). It is relatively flat and low lying to the extent that the 

maximum altitude within the catchment is 118 m and tidal conditions extend some 

20 km inland, two thirds of the total length of the river. Non-tidal flows on the upper 

third of the river are monitored by an EA gauge at Wickford (British grid reference 

TQ 748 934). A summary of the flow duration observed at this gauge is shown in 

Table 4.1. Saline conditions at the study site range from near fully marine (-35 ppm) 

to partial influence (-10 ppm). A tidal site was chosen to ensure repeated 

observations of flood inundation, whilst the long and narrow estuary (see Fig. 4.1) 

allowed flow between the study site and the reaches tidal boundary to be treated as a 

one-dimensional problem. 
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Fig. 4.l: Map of the River Crouch and River Roach, Essex, UK. Scale 1: 150,000. To 

the south is the Thames estuary, with the North Sea to the East. The box indicates the 

field site where FloodNet sensors have been deployed. 

Table 4.1: Summary of Flow duration for EA gauge on the River Crouch at 

Wickford. 

Grid Reference 51 (TQ) 748 934 

Mean Flow 0.35 mJs-1 

95% exceedance (Q95) 0.046 mJs· 1 

10% exceedance (Q10) 0.776 mJs· 1 

The lower 2/3 of the river is characterized by estuarial silt and mud ofless that 0.2 

mm. Where sea walls or embankments are not present the river is flanked by areas of 

tidal salting. The tidal range at Burnham-on-Crouch varies between 3.2 meters at 

neap tide and 5.0 meters at spring tide. Flow velocities are approximately 0.8 mls 

during mean tidal conditions. A dredging experiment conducted by Winterwerp et al. 
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(2002) at Burnham-on-Crouch concluded that the channel bed sediment consisted of 

40% Clay, 59% silt and 1 % sand. The grain sizes Dso and D90 were estimated to be 4 

/-Lm and 40 /-Lm respectively. To the east of Burnham-on-Crouch approximately 5 km 

from the sea the River Roach flows into the Crouch (Fig. 4.1). 

An ISIS 1 D hydraulic model was created of a 21 km stretch of the river from 

Battlesbridge to Burnham-on-Crouch (RC model). Channel cross-sections at the 

monitoring site (Brandy Hole, Fig. 4.2) were spaced at approximately 200-250 m 

intervals and were created using bathymetry data provided by Associated British 

Ports marine environmental research, whilst cross-sections upstream and downstream 

of the site were provided by Halcrow Ltd, based on bathymetry data. Cross-sections 

upstream of the study site were separated by 75-300 m, whilst downstream cross

sections were spaced at 350-1500 m intervals. Downstream boundary conditions 

were set using tidal predictions at 10-minute intervals for the port of Burnham -on

Crouch. These were supplied by The United Kingdom Hydrographic Office and are 

based on adjusted harmonic constants calculated for the standard port of Walton-on

the-Naze (Essex). Upstream boundary conditions were set at 0.35 m3s- 1 based on the 

mean flow recorded by the EA gauge at Wickford, approximately 2 km upstream of 

Battlesbridge. The principal reason for setting this flow constant was that no flow 

data were available from this gauge. However, running identical model simulations 

with the Q90 and Q 1 0 flows derived from the gauges flow duration curve resulted in 

a change in stage at the study site of <0.01 m. Therefore, the stage and flow at the 

study site are tidally dominated. 

The study site at Brandy Hole consisted of 2.5 km of estuary and approximately 1 

km2 of tidal salting situated behind a derelict sea wall (see Fig. 4.2). At its mouth the 

river is approximately 700 m wide and up to 14 m deep at high tide. By the eastern 

extent of the Brandy Hole site the channel width has decreased to around 350 m at 

high tide with a depth of up to 10m. At the western extent of the field site channel 

width is up to 190 m with a depth of up to 5 m (see Fig. 4.3). At low tide the channel 

becomes un-navigable at the study site (see Fig. 4.4). 
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Fig. 4.2: Topographic map of study site derived from LiDAR data overlain by sensor 

locations and model topology. 

Fig. 4.3 : The River Crouch at sensor 3 looking west. Sensor 1 is located on the far 

bank of the river in the centre of the image. Photo was taken approaching high tide 

on the 26th March 2004. 
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FigAA: The River Crouch near sensor 1 and Hullbridge, looking west. Sensor 1 is 

located next to the boat. Photo was taken approaching low tide on the 26th March 

2004. 

The tidal saltings at Brandy Hole are characterised by numerous small channels 

typically with steep banks up two a meters high. Some of these channels were 

artificially cut when the sea wall was first breached, whist others have formed 

without human intervention. The presence of artificial channels leads to the striped 

drainage pattern that can be seen on some areas of the salting particularly around 

sensor 4 (Fig. 4.2). The eastern and southern limits of the salting are set by an 

embankment. The river flows across the northern side of the salting whilst its 

western extent is limited by a gentle slope towards higher ground that makes the 

salting edge difficult to delineate. At low tide the salting was observed to almost 

completely drain (Fig. 4.5) whilst becoming fully inundated on a spring tide (Fig. 

4.6). 
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Fig. 4.5: Area of floodplain near to sensor 4 looking north west at low and mid tide. 

Fig. 4.6: Area of floodplain looking south towards sensors 4 and 5. Photo was taken 

at high tide on the 16th March 2004. 

The 2.5 km stretch estuary at Brandy Hole was represented using 13 cross-sections, 

with the salting or floodplain characterised by 22 reservoir units connected to each 

other by floodplain sections and coupled to the channel. Reservoir units were defined 

by extracting stage area relationships for polygons overlaying a digital elevation 

model (DEM). The DEM (Fig. 4.7) was derived from Light detection and ranging 

(LiDAR) data (Markes and Bates. 2000), flown at low tide on 26th December 2003 . 

The user defined reservoir polygons were intended to be as square and similar in size 
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as possible, with boundaries between polygons drawn at right angles to the perceived 

flow direction based on user interpretation of the DEM (Fig. 4.2) and an air photo. 

When placing floodplain sections between two reservoirs it is necessary to choose a 

cross-section that is representative of the average ground conditions between the two 

reservoir centroids . Although every effort was made to achieve this, it is in essence a 

subjective process and there may be no single cross-section that best represents the 

ground surface at all flows and stages. Spill units where more easily defined and for 

the most part follow the derelict sea wall that runs parallel to the channel or the 

highest ground between channel and floodplain . However, where the sea wall has 

been removed or seriously degraded the boundary between floodplain and channel is 

less clear. The embankment to the south and east of the floodplain formed the edge 

of the model domain although the ground on the landward side of the embankment is 

below high water the embankment was never overtopped during the study period. 

The model topology can be seen in Fig. 4.8. 

Fig. 4.7: LiDAR DEM of Brandy Hole, with air photo overlay. Looking west over 

Brandy hole towards Hullbridge. 
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The study site was monitored using four pressure transducers measuring water level 

in the channel and on the floodplain (Fig 4.2). The measurements taken by these 

sensors are subject to uncertainties that will now be summarised. The combined 

effect of non-linearity, hysteresis and repeatability on the accuracy of measurement 

is ±0.1 % for water depths above 1 m of H20. A further ±0.1 % per annum may be 

added to account for long-term stability, whilst temperature effects result in a further 

±0.3% in depths above 3.5 m and ±0.6% below 3.5 m (Druck, 2004). 

Floodplain cross section 

Channel node 

Spill node 

Reservoir node 

Floodplain cross section 
node 

Fig. 4.8: Diagram showing model topology at Brandy Hole. The areas that contribute 

to each reservoir are also shown as polygons in Fig 4.2. The area shown is 2.5 km 

across. 

The Druck sensors self calibrate using atmospheric pressure as a baseline. Changes 

in atmospheric pressure are small relative to water pressure and are not listed as a 

cause of inaccuracy in the published specifications table (Druck, 2004). Differences 

in the density of fresh and saline waters will affect sensor readings . The manufacture 

specifies a density of 1.00 g/cm3 for fresh water and 1.025 g/cm3 for saline water 

(Druck 2004b). Estuaries present a problem in this case as their brackish waters vary 

in density over time. The sensors at Brandy Hole have been calibrated for fresh 

74 



water. EA data from Hullbridge (TQ 80982 95565) collected between 1997 and 2000 

indicate that salinity varied between 2.3 gil and 33.4 gil, where a fully marine 

environment would have a salinity of around 35 gil. As a consequence dense saline 

water could result in overestimates of stage by up to 2.5%, based on these figures. 

Sensor locations were measured using differential GPS with an estimated accuracy in 

the vertical plane in this case of ± 0.02 m (Bowdidge, 2004). 

Each sensor measurement comprised the mean and variance of 32 samples taken 

over a 30 second period. Each sensor used IEEE 802.11 wireless Ethernet to transmit 

its data to a database. Although sensors could transmit data via each other to the 

database, the limited range of the wireless technology prevented anyone sensor 

being placed more than ~ 700 m from another. This and a desire to have at least one 

sensor on the floodplain were the principal constraints on the location of each sensor 

in the network. However, there were a number of technical and computer science 

issues that put additional constraints to the locations of the 4 sensors: 

1. Sensor 1 required mains power. Hence its location on a pier (see Fig. 4.1). 

2. Sensor 1 was the only node capable of sending measurements off-site, 

meaning all other sensors required some means of transmitting their 

measurements to this node. 

3. At least 1 sensor should be unable to directly communicate with sensor 1 

without routing its measurement data via another sensor. Sensor 4 met this 

aIm. 

4. There must be more that one route that a sensor unable to directly 

communicate with sensor 1 could transmit its data to sensor 1. Sensors 2 and 

3 served this purpose by both providing a possible means of sensor 4 routing 

its measurement data to sensor 1. 

Data acquired over 18 consecutive tidal events from 21 st May to 30th May 2004 were 

used to calibrate the River Crouch (RC) model (calibration data), with data from 11 

tidal events from the 1 st June to 6th June 2004 used as forecasting test data 

(forecasting data). A summary of the forecasting data set is provided in Table 4.2. 

The number of data produced by each sensor is related to its elevation and spatial 
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location, which resulted in sensor 1 delivering more samples than the other sensor. 

Stage measurements from sensors 1,2 and 4 were typically similar, with differences 

between sensors measurement in the range of 0.01 to 0.03 m. There was little 

structure to these differences suggesting they were most likely the result of local 

effects such as wind, waves and measurement errors, rather than a combination of 

tidal forcing and estuary morphology. At sensor 3 stage was observed to be 0.05 to 

0.1 m below that at sensor 1 during the incoming tide and at high tide. On the 

outgoing tide the difference was typically less than 0.01 m and could be both positive 

and negative, giving the appearance of a time lag between the two locations on the 

incoming tide and a flat water surface on the outgoing tide. This effect was observed 

repeatedly from tidal event to event. 

Table 4.2 Summary of forecasting data set. All samples collected at 15 minute 

intervals. 

Measurements available Sensor elevation Location of sensor 

Sensor 1 198 0.66m Channel 

Sensor 2 112 1.59 m Channel 

Sensor 3 l37 1.07 m Floodplain 

Sensor 4 89 1.77 m Channel 

4.3.2 Model calibration 

The generalised likelihood uncertainty estimator (GLUE) procedure (Beven and 

Binley, 1992) has been applied to physically-based distributed models for the 

purpose of estimating effective roughness parameters (Pappenberger et af., 2005a) 

and flood inundation probability (Romanowicz and Beven, 1998). A detailed 

description of the procedure will not be presented here as the method used has been 

published elsewhere (Beven and Binley, 1992). 

A comparison of model predictions of stage with observations of stage at sensor 1 

was used to evaluate the likelihood of a particular set of parameters being an 

acceptable representation of the system within the constraints of the model structure. 

A measure of model efficiency was used: 
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(4.9) 

Where a; is the variance of the residuals between observations and the downstream 

tidal boundary and a; is the variance in the residuals between observations y and 

model state predictions x given variable set <D i . As a consequence, the likelihood 

measure was a measure of the hydraulic model performance above that of the tidal 

harmonic. Known limitations associated with this likelihood measure include an 

inability to consider autocorrelation between measurement errors or variations in 

measurement variance. The main reason for using equation 4.9 is its widespread use 

in other hydrological applications. However, a heteroscedastic maximum likelihood 

estimator measure could have been used to consider autocorrelation in measurement 

variance. The interested reader is referred to Hunter et al. (2005). 

The GLUE procedure was used to estimate uncertainty in three variables from the 

RC model. The three variables of interest were a global channel roughness 

parameter, a global floodplain roughness parameter and the magnitude of the 

downstream tidal boundary. The initial uniform range or prior distribution of each 

variable to be calibrated is shown in Table 4.3. Uniform priors were used to reflect a 

lack of knowledge regarding the distribution of variable uncertainty prior to the 

calibration procedure being run. 

Table 4.3: Initial sampling range for input variables calibrated using GLUE. 

Variable Range sampled (uniform distributions) 

Channel roughness 0.01 - 0.04 (Manning's n) 

Floodplain roughness 0.02 - 0.1 (Manning's n) 

Boundary error -0.5 - 0.5 (m) 

All other model parameters and boundary conditions were held constant, based on 

either published or default values. An identical initial stage and flow condition for 

each model simulation based on a steady state simulation at low flow was created 24 
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hours before the start of the calibration period. The intervening period, comprising of 

approximately 2 tidal cycles was necessary to remove the effect of the constant initial 

conditions on simulation likelihood. The GLUE calibration procedure consisted of 

1000 model runs over the calibration data period. State predictions were extracted 

from each model run for comparison with observations. The parameter likelihood 

distributions were found to vary between incoming and outgoing tides. As such 

calibrating model parameters to data on the incoming tide was detrimental to 

prediction accuracy on the outgoing tide when compared with fitting to the complete 

data set. Adjusting the timings of the simulations and re-calculating the likelihood 

distributions did not align the distributions. Therefore, as the objective of this 

particular model was to produce short-range forecasts the model calibration 

considered observations from the incoming tide only rather than the complete time 

series. The calibration results can be seen in Fig. 4.9a-9c. 
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Fig. 4.9a: Likelihood histograms for 18 consecutive tidal events between the 21 5t and 

30th May 2004. Plots show the effect on likelihood of varying channel roughness , 

using measurements from sensor 1. 
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Fig. 4.9b: Likelihood histograms for 18 consecutive tidal events between the 21 51 and 

30th May 2004. Plots show the effect on likelihood of varying floodplain roughness, 

using measurements from sensor 3. 
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Fig. 4. 9c: Likelihood histograms for 18 consecutive tidal events between the 21 SI and 

30th May 2004. Plots show the effect on likelihood of varying boundary condition 

magnitude, using measurements from sensor 1. 

Fig. 4.9a shows that the best estimate of the global channel roughness coefficient 

remained reasonably stable over the 18 tidal events at 0.024, although any physically 

meaningful value ofroughness within the prior range of 0.01 and 0.04 could produce 

reasonable results. Larger values of roughness tended to require an increase in 

boundary condition magnitude relative to smaller values of roughness to maintain 

behavioural likelihood values. Fig. 4.9b indicates that the value of floodplain 

roughness, which influences flow between reservoir units on the floodplain , had a 

limited effect on simulation likelihood (at sensor 3) relative to the other variables 

during most events. Although simulations with larger roughness values tended to 

have lower likelihoods during some events any of the values sampled could produce 
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a behavioural simulation. Fig. 4.9c shows that the best estimate of boundary 

condition magnitude error 11 varied from event to event around a mean of +0.12 m. It 

is not clear from this limited time series of results whether the RC model would have 

a tendency to under-predict stage at sensor 1 given unaltered boundary conditions 

because the prevailing atmospheric conditions over the 18 tidal cycles or 

measurement errors could have produced this effect. However, the results do show 

that uncertainty in boundary condition magnitude over anyone event was generally 

less than the variation in boundary condition magnitude between events. 

Consequently, errors in simulations were most likely to have propagated from the 

model boundary because simulation predictions are less sensitive to channel 

roughness. 

4.3.3 Application of EnKF to a 1 D hydraulic model of the River 

Crouch 

An EnKF was applied to the RC model for the purpose of updating model state and 

boundary conditions. The state vector was made up of 161 stage and flow values 

from each channel, reservoir and floodplain section in the model. Unique stage and 

flow initial conditions were created for each ensemble member by running 

simulations with perturbed boundary conditions from 21 5t May to 30th May 2004. 

Initial conditions in the channel did not persist from one tide to the next, although 

water depths of a few centimetres were predicted to reside at some floodplain 

locations between tides. 

Sensors were located either along cross-sections in the channel or close to reservoir 

centroids on the floodplain (Fig. 4.2). This allowed observations to be mapped 

directly onto the corresponding model predictions in the state vector. The water 

surface was assumed to be flat across channel and floodplain sections. Measurements 

of flow were not taken. However, in channel flow needed to be updated, along with 

stage, to prevent state instabilities when the RC model was initialised with updated 

state and boundary conditions. Flow can be estimated using stage-discharge 

relationship for each cross-section built up for several steady flow simulations. 
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However, such a method is not appropriate here where the tide creates strong 

backwatering effects that lead to a varying relationship between stage and discharge 

over time. Therefore, flow values were augmented with stage values into the state 

vector and updated as part of the EnKF analysis phase (Hartnack and Madsen, 2001) 

such that: 

[hk] 
Xi,k = ~' (4.10) 

"k 

where h is a vector containing the stage at each cross-section and Q is the associated 

flow (note Q is a vector not matrix despite capitalisation). Consequently, the EnKF 

was permitted to alter the volume and spatial distribution of water within the RC 

model domain based on observations of stage within the channel and on the 

floodplain. 

It was assumed that the downstream tidal boundary Uk was the only source of 

uncertainty, although this setup could be extended to include other inputs or any 

model parameter such as channel roughness. Under this assumption the model was 

formulated as a stochastic nonlinear dynamic system with errors c"k_1 in forcing 

terms: 

(4.11) 

Errors in forcing terms (the downstream tidal boundary) were assumed to be 

correlated in time and adequately approximated by a first-order autoregressive 

model, due to the short periods of time between state updates: 

Ck = aCk_1 + 6k ( 4.12) 

where a is a lag-one autocorrelation coefficient and 6 is a zero-mean Gaussian white 

noise component with variance 6. Errors in the forcing term were updated as part of 

the data assimilation scheme by augmenting them with the state vector (Madsen and 
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Cafiizares, 1999). Consequently, the state vector now comprises of estimates of 

stage, flow and forcing term errors. However, the variance and autocorrelation 

coefficient of the forcing term error model were not known a priori and needed to be 

estimated. 

4.3.4 Estimation of autoregressive model coefficients 

The coefficient of the autoregressive model had an impact on the spread of the state 

ensemble at future points in time and therefore the weighting given to measurements 

at future time steps. If the autocorrelation is too small the ensemble will spread 

rapidly as the model is advanced to future points in time. This is likely to result in an 

over-estimate of model uncertainty, degrading the value of the forecast. It will also 

result in more weight being given to measurements at future time steps, which may 

lead to rapid adjustments in model forecasts based on uncertain measurements and in 

some cases increase the likelihood of model instabilities. An autocorrelation 

coefficient that is too large may result in an ensemble spread which is too narrow at 

future points in time. This has the effect of giving less weight to measurements at 

future time steps and could result in divergence, where the prior distribution is so 

narrow that further observations become essentially irrelevant (Anderson and 

Anderson, 1999). 

The method used to optimise the coefficients of the autoregressive model is 

presented below. The objective was to find a decay coefficient that led to an 

ensemble forecast distribution that was statistically indistinguishable from the truth 

as approximated by future observations, over many filter time steps. This method 

was applied by Anderson and Anderson (1999) and Anderson (2001) for tuning a 

filter operating on the Lorenz-63 weather forecasting model and is presented below. 

Firstly, the time averaged root mean squared error between the ensemble forecast 

mean and measurement data RMSEem was calculated by: 
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(4.l3) 

where YJ is a measurement, n represents the number of measurements at times) and 

Xj is the ensemble forecast mean. 

Secondly, the time averaged root mean squared error was calculated for each 

ensemble member RMSEe. This was achieved by substituting the predictions from 

each ensemble member XiJ for the ensemble mean in the above equation. Thirdly, the 

ratio (Ra) between RMSEen and RMSEe was calculated. Given an ensemble of size N 

the expected value of this ratio (where the truth represented by the time series of 

measurements is statistically indistinguishable from the ensemble mean) should be 

(Anderson, 2001): 

E(Ra) = ~(N + 1)/2N (4.14) 

Finally, the ratio of Ra and E(Ra ) can be calculated. 

Ra 
r=--

E(Ra) 
(4.15) 

If r is greater than 1 the spread of the ensemble forecast is on average too small to 

represent subsequent measurement. If r is less than 1 the spread of the forecast 

ensemble is too large hence, the closer the value of r to 1 the better the estimate of 

forecast uncertainty according to this measure. Since all uncertainty in the RC model 

was assumed to propagate from the downstream boundary condition the amount of 

noise introduced at this location will be related to the value of r. Good values for the 

autocorrelation coefficient a and variance of the noise component will results in a 

value of r closest to 1. 

An r value of 0.995 at sensor 1 was achieved based on data from all sensors over the 

forecasting test period, using a correlation coefficient of 0.995 and variance of 0.035 

as parameters of the downstream boundary condition AR( 1) model, with 10 minute 
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time steps. These coefficients represent the best value of r achieved by changing 

manually the autoregressive model coefficients and running the filter. 

4.4 Results and discussion 

4.4.1 Increasing forecast accuracy using the EnKF 

A simulation by the RC model with boundary conditions set using deterministic tide 

predictions was produced for the forecasting test period between the 15t and 6th June 

2004. A scatter plot of predicted against observed stage at the four monitored 

locations can be seen in Fig. 4.10. Fig. 4.10 shows that the RC model had a tendency 

to over-predict stage during the simulation period by up to 0.4 m. This is most likely 

due to the variations in boundary condition magnitude identified by the calibration 

procedure in Fig. 4.9c. Fig. 4.11 plots the residuals from Fig. 4.10 (predicted minus 

observed stage) grouped by event against predicted stage at sensor 1. The plot shows 

some evidence of hysteresis indicating a lag between predicted and measured stage, 

with residuals tending towards greater positive errors at predicted stages of 

approximately 2 m. The residuals highlight some possible limitations associated with 

the parameters, boundary conditions and structure of the RC model. However, it is 

possible that this effect may be due to the sensor calibration being less effective in 

shallow water. Nevertheless, the pattern of the residuals indicates the dominance of 

inter event prediction errors over intra event prediction errors. There is a temptation 

to conclude that the RC model systematically over-predicts stage. However, this was 

not the case for the calibration data set (where it generally under predicted) and may 

not have occurred if a longer time series of data had been available. Furthermore, 

action to correct this globally over the test data would be to the detriment of the 

events that are predicted well by the RC model. The RMSEs of the simulation model 

predictions are shown in Table 4.4. The degree to which these can be accounted for 

by the proposed updating scheme will now be investigated. 
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Fig. 4.10: Plot of RC model stage predictions against stage measurements at four 
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Fig. 4.11: Plot of residuals between RC model predictions and measured stage 

against predicted stage at sensor 1. Dots are joined by event. 
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Table 4.4: Table ofRMSE in metres between forecasted and measured stage 

averaged over the forecast period. 

Sensor No Update 1 update time 2 update times 4 update times 

1 (channel) 0.211 0.116 0.071 0.064 

2 (channel) 0.250 0.231 0.178 0.165 

3 (floodplain) 0.393 0.267 0.214 0.201 

4 (channel) 0.289 0.243 0.190 0.177 

An objective of the updating procedure was to facilitate a forecast of stage that was 

more accurate than the prediction by the simulation model alone. For the remainder 

of sections 4.5 and 4.6 a forecast by the RC model covers the period of time between 

the most recent state update (filter time step) and the expected time of high tide. The 

ensemble mean was assumed to be the most accurate estimate of state made by the 

model. Therefore, statistics regarding the accuracy of the forecast refer to the 

forecast mean, unless stated otherwise. Fig. 4.12 is a scatterplot of forecasted versus 

observed stage at sensor 1 after one and four filter time steps each of which was 15 

minutes apart. Errors between forecast and measured stage in Fig. 4.12 are smaller 

than those between predicted and measured stage in Fig. 4.10. The magnitude of 

these errors also decreases as more filter time steps elapsed on an event as 

summarised by the RMSE errors in Table 4.4. The largest reductions in forecast 

RMSE occur as a result of the first two filter time steps (falling from 0.22 m to 0.07 

m at sensor 1) indicating a rapid response to measurement data. Further decreases in 

RMSE were much smaller in magnitude and are to some extent likely to be the result 

of shorter forecast lead times. RMSE was smallest at sensor 1, especially for 

forecasts. However, this is not unexpected because most ofthe measurements early 

on in each tidal cycle were collected by sensor 1, during which time the ensemble 

was usually less constrained relative to later in an event. 

Fig. 4.13 compares forecasted stage estimates at sensors 1 and 3 with measurements 

after four filter time steps. At both locations the magnitude of errors in stage 

forecasts decreased relative to the RC model alone in Fig. 4.10. However, the errors 

between the updated RC model and measurements from sensor 3 were systematically 
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larger than for sensor 1. This is because over-fitting of state to the more numerous 

measurements from sensor 1 caused systematic state errors at sensor 3 to remain 

uncorrected by the filter. The source of the systematic error may be due to an 

unrepresentative model structure or parameters. However, the consistency of the 

error over a range of stages and tidal events suggests measurement bias may be 

influential in producing this error. Nevertheless, the RMSE between forecasts and 

measurements after four filter time steps (Table 4.4) decreased by almost 70% at 

sensor 1 and 50% at sensor 3, when compared to the simulation model alone. 

Therefore, the EnKF based updating procedure facilitated the delivery of more 

accurate forecasts of river stage by the simulation model, although it was only 

possible to test over forecast lead times of less than 4 hours with the available data. 

Example forecasts are shown in Fig. 4.14. 

0.5 1 1.5 2 2.5 3 
Measured stage in metres above datum (Newlyn) 

Fig. 4.12: Plot of updated RC model stage forecasts against measured stage at sensor 

1 after one time step /). and after four time steps *. Data are shown from 11 tidal 

cycles. 
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Fig. 4.13: Plot of updated RC model stage forecasts against measured stage at sensor 

1 * and sensor 3 0, after 4 time steps. 
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Fig. 4.14: Example forecast at sensor 1 during tidal cycle 6. Forecast stage after 1 

(yellow lines), 2 (green lines) and 4 (red lines) filter time steps with measurement 

data overlain. Stage measurements are shown as stars. 
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4.4.2 Forecast accuracy in relation to sampling design 

Four sampling strategies were simulated from the forecasting data archive. These 

were: 

Run A: All data, Collect measurements every 15 minutes from sensors 1 to 4 

Run B: Collect measurements every 15 minutes from sensor 1 

Run C: Collect measurements every hour for sensors 1 to 4 

Run D: Collect measurements every hour from sensor 1 

The accuracy of stage forecasts when all spatial measurement data were included 

(run A) increased at sensor 3 relative to using only sensor 1 as shown by the upper 

plot in Fig. 4.15, where the squared errors in run A were subtracted from the squared 

errors of run B. No discernible increase in forecast stage accuracy was observed at 

sensor 1 (Fig. 4.15. lower plot). A similar effect was seen when comparing runs C 

and D. In some cases, the inclusion of spatially distributed measurements lead to an 

increase in errors at sensor 1. Once again this is the product of the systematic errors 

between locations 1 and 3. The outliers in the bottom left comer of Fig. 4.15 indicate 

a substantially less accurate forecast by run A, which occurred due to a combination 

of the state ensemble being less constrained early on in an event, large state error 

covariance between channel and floodplain and the measurement uncertainty at 

sensor 3 being small relative to that at sensor 1. Therefore, the inclusion of spatially 

distributed measurements led to an increase in forecast accuracy at the locations 

included away from sensor 1, at least for a short period of time. The inclusion of 

measurements from all four sensors had less effect overall on forecast accuracy at 

sensor 1 and was detrimental to forecast accuracy under some conditions (assuming 

unbiased measurements at sensor 1) again due to systematic errors and the large state 

error covariance at this site. 
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Fig. 4.15: Difference between squared errors in forecast from run A and run B, for 

sensor 3 (upper plot) and sensor 1 (lower plot). A positive value indicates an 

improved forecast of stage from run A over run B. 

4.4.3 Estimating forecast uncertainty using the EnKF 

The accuracy ofthe forecast mean is an important consideration of any forecasting 

model. However, to estimate flood risk (in this case derived from an ensemble of 

peak stage values) over the forecast period a realistic measure of uncertainty in peak 

stage is required (as represented by the variation within the ensemble). For any 

location within the model domain this is dependent on the error covariance estimates 

made by the simulation and measurement models and the error covariance 

propagated by the system model ensemble. 

Fig. 4.16 shows the decrease in the standard deviation of analysed state at sensors 1 

and 3 after each filter time step during an event. For runs A and B, with a 15 minute 

sampling interval, state uncertainty decreases rapidly over the first three to four filter 
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time steps before stabilising at around 0.05 m. This is seen at both sensors 1 and 3, 

although the first three filter time steps at sensor 3 are affected by predictions of zero 

flow at this location by some ensemble members, resulting in very small estimates of 

standard deviation. In this case study, almost all ensemble members have predicted 

flow at sensor 3 before measurements from this location are used for updating. 

However, had data not been available in the channel or the spread of the ensemble 

been such that a number of ensembles predicted zero flow on the floodplain, it is 

possible that there would be an overly low covariance between floodplain and 

channel node, potentially, allowing the floodplain to be updated whilst leaving the 

channel at a lower stage. Runs C and D exhibit a relatively small fall in state standard 

deviation as a result of the 1 hour sampling strategies compared to runs A and B. 

Therefore, the reduction in analysed state variance brought about by using four 

sensors rather than just one was small relative to the effect of altering the temporal 

sampling rate from 1 hour to 15 minute intervals. Although, the covariance between 

measurement locations was large due to the sensors being only around 500 m apart, 

meaning that there was a substantial amount of data redundancy spatially at this site. 

Fig. 4.16 also shows that run A produced fewer extremely small state standard 

deviation estimates compared to run B. Therefore, the inclusion of spatially 

distributed measurements tended to prevent the creation of the very constrained 

ensembles in run B, which resulted from the occasional very small estimate of 

measurement uncertainty by sensor 1. This effect illustrates a problem with using 

dynamic estimates of measurement uncertainty based on repeat sampling over a short 

period, in favour of a stationary estimate of measurement uncertainty calculated 

offline. 
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Fig. 4.16: Post analysis ensemble state standard deviation, with the number of 

measurement time steps / filter time steps shown on x-axis. The y-axis shows 

analysed state standard deviation in metres. 

Table 4.5 analyses the suitability of the uncertainty estimates at each sensor location 

(r value) over the forecasting test period using the RMSE based method presented in 

section 3.4. Forecasted uncertainty at sensor 1 using a 15 minute sampling interval 

was the most representative of forecast accuracy, achieving an r value of 1.02. This 

result was expected as the boundary condition model was calibrated using this sensor 

and sampling setup. During run A forecast uncertainty was underestimated at sensors 

2,3 and 4, indicated by r values of 1.25,1.51 and 1.52 respectively, mainly due to 

the systematic errors identified in Fig. 4.10 and 4.13. Therefore, the presence of 

systematic errors at some locations in either the RC model or measurement data 

adversely affected the filter's ability to adequately forecast uncertainty away from 

sensor locations. The average magnitude of forecasted stage errors at each sensor 

location increased with distance from sensor 1, although more sensors with greater 

distances between them will be required to assess to what extent this occurred 
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because of coincidental sensor bias or some form of model structural or 

parameterisation problem. 

Table 4.5: r values for forecasted uncertainty with different sampling strategies 

denoted by: (A) 15 minute sampling interval from sensors 1 to 4, (B) 15 minute 

sampling interval from sensor 1, (C) hourly samples from sensors 1 to 4 (D), hourly 

samples from sensor 1. h indicates that the r value was calculated using hourly 

measurements only, whilst the 'adjusted' results use a linear regression model to 

remove systematic errors. 

Sensor Run A RunAh RunB RunBh RunCh RunDh 

1 1.03 1.05 1.04 1.04 0.91 0.94 

2 1.25 1.26 1.29 1.27 1.34 1.34 

3 1.51 1.46 1.53 1.51 1.59 1.51 

4 1.52 1.58 1.54 1.49 1.65 1.66 

3 adjusted 1.18 1.18 1.12 

The residual errors between measurements and RC model predictions at sensors 1 

and 3 are shown in Fig. 4.17 (left). A linear regression of these variables gives a 

gradient of 1.05 and offset of -0.141 m, with an R2 of 0.90. If the gradient is set as 1 

the offset changes to -0.147. The inverse of this offset was applied to sensor 3 

measurements resulting in an r value of 1.18 at sensor 4 for run B. Therefore, 

accounting for the systematic error using a linear model improved the 

representativeness of the forecast ensemble. Fig 4.17 (right) plots the difference 

between residual errors at sensors 1 and 3 against measured stage at sensor 1 and 

indicates a slight linear relationship (R2 
= 0.24) between the difference in errors and 

stage, suggesting a similar stage-error relationship to that shown in Fig 4.10, 

indicating errors in the RC model or measurements are slightly stage dependent. 

Nevertheless, model errors are still greater at sensor 3 and therefore, an additional 

source of uncertainty is required between sensor 1 (channel) and sensor 3 

(floodplain) for this particular model. Alternatively, it may be desirable to reduce this 

uncertainty by using a different model for the floodplain flows, especially as how 

best to characterise this uncertainty (given that the calibration procedure showed the 

roughness parameter had very little effect on flow) is not clear and likely to depend 
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on floodplain discretisation. Considering the coarse spatial discretisation of the 

floodplain and one-dimensional flow equations used by the RC model, a two

dimensional flow model may be better able to represent the characteristics of the 

measurement data, although at an increased computational cost. 

The one hour sampling setup was found to be more accurate at sensor 1 than the 

uncertainty estimates suggest as indicated by r values of 0.91 and 0.94 for runs C and 

D, suggesting the filter gave insufficient weight to measurement data in this example. 

The tendency to over-estimate uncertainty at sensor 1 when using the coarser 

temporal sampling strategies of runs C and D suggests that a more representative 

propagation of uncertainty over time may be required, especially in the case of run 0 

where the model was updated with data from the validation location only, thus, to 

some extent negating difficulties with systematic differences with other sensors. To 

clarify that this effect did not occur because the regularity of forecasts varied 

between runs [A, B], and [C, D], r values were calculated for runs A and Busing 

hourly forecasts only (Table 4.5) and show only small differences from the 15 

minute forecasts at sensor 1, relative to those between runs [A, B] and [C, 0]. 

The use of the downstream boundary condition and an ARCl) model as a means of 

introducing simulation errors into the ensemble was in this case unable to generate 

representative stage uncertainty when exposed to different sampling regimes, 

although the uncertainties allocated to measurement data may also have a role here. 

Furthermore, uncertainty due to internal model errors, particularly between channel 

and floodplain were under-estimated with this setup. More measurements from other 

locations on the floodplain are required if the relative influences of model error and 

measurement error on predicted state uncertainty are to be identified. Given that the 

GLUE procedure conducted on the calibration data set identified uncertainty in the 

value of channel roughness the inclusion of this source of uncertainty in future 

versions of the EnKF-RC model seems a logical next step. The inclusion of additive 

or multiplicative noise into state estimates as filter hyperparameters in order to 

represent structural uncertainties may also be worth pursuing. The ARC 1) model at 

the boundary condition may be more appropriate when not used to compensate for 

the under-representation of model structural and parameter errors. However, 
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substituting the tidal harmonic with an ensemble of tide and surge predictions would 

be a useful experiment for generating longer forecast lead times and accounting for 

structural changes to the downstream boundary other than stage magnitude. 
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Fig. 4.17: Scatter plots of forecast error at sensor 1 against sensor 3 and difference in 

forecast error against stage at sensor 1. 

4.5 Conclusions 

The RC simulation model was applied in a forecasting context by updating state 

predictions with an EnKF. Forecasts made after updating model state and boundary 

conditions were more accurate in terms of RMSE than pre-update simulations by 

0.147 m to 0.046 m depending on measurement location, forecast lead time and 

number of measurements assimilated (Table 4.4). The dominant factor preventing 

further increases in analysed state accuracy was the presence of spatially-distributed 

systematic errors either in the RC model or measurements. 
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The RC model state ensemble converged after 2-3 measurements from sensor 1 early 

on in each event, meaning that the more numerate measurements from this sensor 

and any accompanying systematic errors tended to dominate updated state 

predictions not just locally but globally over the study site. 

The filter over-predicted state uncertainty, as indicated r values of 0.91 and 0.94, 

when the sampling rate was reduced to hourly, indicating that measurements were 

not given enough weight relative to model predictions. Estimation of state 

uncertainty was also hampered by spatially-distributed systematic errors. Although 

the EnKF-RC model formulated here could be calibrated to make representative 

estimates of uncertainty at a single location, the extrapolation of these uncertainties 

to other locations was not adequate. When the systematic error at sensor 4 was 

removed state uncertainty was still under-estimated at this location, as shown by an r 

value of 1.18. Therefore, additional uncertainty sources within the simulation model 

domain were required along with an improved method for determining filter 

hyperparameters. Furthermore, a two-dimensional model of the floodplain flows may 

be able to replicate more accurately the observed differences between channel and 

floodplain stage measurements. More spatially distributed sensor data are required to 

establish to what extent the systematic errors observed are due to model or sensor 

bias. Ideally further tests of this approach would involve a complete temporal 

coverage of measurements from at least one location and an increased distance 

between sensors. 
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4.6 Summary 

This chapter examined critically the application to a site along the River Crouch, 

Essex of a river-flow forecasting approach based on a one-dimensional hydraulic 

flow simulation model updated using real-time data within an ensemble Kalman 

filtering framework. Given a specified validation location and forecast period the 

objective of the forecasting model was to estimate water level more accurately with 

updating than without. The method used to estimate both model state and state 

uncertainty was evaluated in terms of its forecast accuracy and representation of 

forecast uncertainty. The ensemble Kalman filter lead to an increase in forecast 

accuracy of between 50% and 70% depending on location. The hyperparameters of 

the filter could be calibrated to make estimates of forecast uncertainty at a specific 

location, where the most data were available. However, the presence of systematic 

errors in the simulation model and especially measurement data meant that 

uncertainty estimates were inaccurate at other locations. Although, the major source 

of uncertainty in this model came from the boundary condition, additional 

uncertainty within the model domain was required, particularly between channel and 

floodplain. Changing the temporal sampling rate and spatial density of samples had 

little effect on the accuracy of forecasts at this site. However, uncertainty was under

estimated when the temporal sampling rate was decreased, indicating that the relative 

uncertainties prescribed to the simulation model and measurement model were 

inadequate. 
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5 Evaluating the utility of the ensemble transform 

Kalman filter for adaptive sampling when updating a 

hydrodynamic model 

5. 1 Introduction 

Numerical models that simulate river states variables such as flow and stage can be 

used for the purpose of forecasting by incorporating real-time observations using a 

process often referred to as model updating. Assuming that the accuracy of forecasts 

produced by such a system depends on the accuracy of the simulation model, the 

efficiency of the updating routine and the measurement data available (Refsgaard, 

1997). The sampling framework which determines the supply of measurements to the 

updating routine will also affect forecast accuracy. For example, when updating 

model states collecting too few data can lead to consequent uncertainties in the initial 

state, which when propagated through to a forecast time, can lead to unacceptably 

uncertain state forecasts. Collecting many data may provide a more precise (in terms 

of variance) definition of initial state, but conversely may be inefficient due to data 

redundancy. Bearing in mind that there is generally a cost associated with measuring, 

storing and utilising data, optimising data acquisition becomes important, particularly 

where model outputs may be utilised in a real-time decision making process. This 

chapter addresses the issues associated with the application of this process to flood 

modelling, with a particular interest in the application of adaptive data sampling. 

Data on river flow, level and flood inundation extent can be collected by in situ 

sensors connected to data loggers or, for inundation extent, by remote sensors 

(Horritt, 2001). Where real-time data are desired gauge data can be transferred off

site using telemetry (Knott, 1999). Systems designed for processing real-time data to 

produce flood forecasts tend to be individually tailored to meet various requirements 

such as the spatial scale over which they are required to operate, the desired accuracy 

of forecasts and the length of the lead time (Werner et al., 2005). Pre-warning 

systems such as the European Flood Forecasting System (De Roo et al., 2003), have 
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the ability to provide lead times of 5-10 days through the utilisation of medium range 

numerical weather prediction models. At the forecast lead times associated with pre

warning systems the assimilation of river flow data is generally unnecessary since 

any effect on state variance is likely to be washed out of the model domain before the 

5-10 day lead time. 

At the river basin scale, operational flood forecasting systems begin to take account 

of measured hydrological and meteorological data to enable a more accurate forecast 

than can be achieved with the pre-warning systems. Examples include the River 

Flow Forecasting System (Moore et aI., 2004), and the Hydrologic Engineering 

Center's Hydrologic Modelling System/ River Analysis System (HEC-HMSIRAS) 

(Knebl et al., 2005). In large river basins a combination of rainfall-runoff models, 

routing models and gauge data will generally give adequate lead times, such that 

flood warnings can be issued. For example, the FloRIJN system on the Rhine has a 

3-4 day lead time between flows observed upstream and their downstream impact 

(Sprokkereef, 2001). 

The motivation behind the study presented here was to utilise data collected by a 

network of wireless sensor nodes, with limited power resources for transmitting data 

in real-time (De Roure, 2005), to forecast water level (stage) and flow in a short lag 

time response basin. The deployed sensor nodes carried out point measurements of 

stage at specific locations along the main channel of the river and on the floodplain, 

using pressure transducer based instrumentation. 

Each sensor node on the network was 'intelligent' in that it could be reconfigured, 

perform automated decisions based on protocols and carry out basic data processing 

in real-time. Due to a research interest in power conservation the nodes were 

configured to transmit real-time data at a low background reporting rate, but could be 

reconfigured to increase reporting rates at specific data-critical time periods. 

Adapting the framework under which data are transmitted as an event of significance 

unfolds is necessary if these limited but flexible resources are to be used efficiently. 

Key to this adaptive sampling was a method of prioritising at what time and, 
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critically, from which sensors to transmit data to a forecasting model, a process 

otherwise known as targeting. Describing adaptive sampling in a data assimilation 

context led Bishop et al. (2001) to suggest an extension to the unified data 

assimilation notation proposed by Ide et al. (1997). The motivation behind the 

extension to this notation was that it is necessary to distinguish between routine and 

adaptive components of the observation network, as well as defining the times at 

which sampling decisions are made and the validation times and locations for which 

the sampling is being optimised. Table 5.1 describes the suggested notation as 

described by Bishop et al. (2001), whilst Fig. 5.1 illustrates this notation for a simple 

scenario. This notation is adopted in this thesis. 

Table 5.1: Description of adaptive sampling notation. 

Notation Description 

( y Superscript r denotes routine measurements. These measurements 

are those expected regardless of any possible adaptive components 

to the sampling framework. Decisions regarding the deployment of 

adaptive resources should take into account the likely effect of these 

measurements on error covariance. 

( y Superscript q denotes adaptive measurements. There may be many 

Q possible combinations of measurements (sometimes referred to as 

measurement networks) that could form the adaptive component. It 

is usually assumed that q includes routine measurements collected at 

the same time. 

( )m Subscript m denotes the 'target time' at which the adaptive 

observations are to be collected. 

( )d Subscript d denotes the time at which a decision regarding which of 

the Q possible measurement combinations will be collected must be 

made such that time is available to collect the data. 

( )v Subscript v denotes the validation time and location time and 

sometimes location for which the observation network has been 

optimised. This time can be the same as the target time, but is more 

likely to be some point in time after the target time. 
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Fig. 5.1: Adaptive sampling timings. 

This chapter evaluates a method, known as the ensemble transform Kalman filter 

(ETKF) (Bishop et al., 2001), to estimate quickly the error variance of a stage 

forecast given one or more possible stage measurements from the sensor network. 

The ETKF is part of a family of sequential data assimilation algorithms based around 

the Kalman filter and was introduced in section 3.6. Given the information from the 

ETKF (i.e., given that the ETKF works satisfactorily), the expected best 

measurement times and locations in terms of forecast stage error variance can be 

targeted. This chapter does not execute the actual targeting, which is left for the next 

chapter, but rather focuses on a thorough evaluation, using archive data from the 

FloodNet sensor network (section 6.1.1), of the ETKF method on which the targeting 

will be based. 

5.2 Implementation of the ETKF on the RC model. 

In this thesis, a numerical model was used to simulate stage dynamics. The model 

was a one-dimensional hydrodynamic model of a 22 km reach of the River Crouch 

(Essex, UK), referred to hereafter as the RC model, and is known to be process 

nonlinear. Therefore, a Monte Carlo based approximation of the KF called the 

ensemble Kalman filter (EnKF) (Evensen, 1994), was used to perform the state 

updates. The RC model and the setup of the EnKF were described in more detail by 

chapter 4.4. However, it is worth noting that propagating the ensemble ofRC model 

simulations after each measurement time to the next and issuing ensemble forecasts 

to a validation time were computationally expensive relative to implementing the 

EnKF update (see Chapter 4). Together, the RC model and EnKF form what is 

described as the RC forecasting model in the remainder of this paper. 
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The forecasting model as presented in chapter 4 is unsuitable as an adaptive sampling 

tool because the EnKF required the measurement magnitudes to update the state 

ensemble. If measurements with appropriate covariance are simulated, the RC 

forecasting model could be used to choose between different measurements sets. 

However, repeatedly propagating the ensemble to estimate the effect of different 

measurement sets on forecast error variance would be computationally unworkable. 

Therefore, the principal reason for using an ETKF is that it can rapidly obtain signal 

variance estimates at future times using a linear transformation of ensemble state 

perturbations (Majumdar et al., 2002). Providing it is acceptable to assume that the 

propagation of the ensemble perturbations is approximately linear, which is presently 

untested in a flood forecasting and ETKF context, the same transformation can be 

applied to the ensemble perturbations at the validation times. The advantage of this is 

that once the perturbations have been generated (by the RC model in this case) they 

can be used repeatedly for different sample sets, at no additional computational cost 

except that incurred by calculating the transform and transforming the perturbations 

(Majumdar et al., 2002). The ETKF estimates the effect of potential measurements 

on the ensemble of state perturbations, rather than the states themselves as would be 

the case with an EnKF. Therefore, it does not update mean state or require the likely 

magnitude of the measurement to be known (Wang and Bishop, 2003). 

To the authors' knowledge, the ETKF has not been applied previously to a 

hydrodynamic model. The principal aim of this chapter was, therefore, to verify the 

signal variance forecasts made using the ETKF by comparison with stage variance 

estimates from the RC forecasting model. The results of this comparison are 

presented in section 5.4, followed by a discussion and a conclusion. The ability to 

use the ETKF to support adaptive sampling, e.g., in future studies, depends critically 

on the benchmarking of the ETKF against the EnKF presented in this chapter. 

For simplicity, the method for estimating forecast error variance prior to data 

collection will be known as the ETKF approach, the state updating algorithm will be 

known as the EnKF approach, whilst the simulation model on which both the ETKF 

and EnKF depend will be referred to as the RC model. The next section describes the 

setup of the simulation model which generates the ensemble of flow and stage (these 
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include background forecasts for the ETKF), the EnKF based model updating 

method and the measurement data. 

5.2.1 Simulation model and updating procedure 

A hydrodynamic model of the River Crouch (RC model) was built on the ISIS flow 

program (HR Wallingford) and was used to estimate within channel-flow by solving 

numerically a dynamic wave model that comprises a pair of one-dimensional non

linear partial differential equations, based around the St Venant equations (Cunge et 

aI., 1980). As the simulation model used was presented in section 4.4 the following 

section acts as a reminder of the model function and parameterisation rather than a 

comprehensive description, although an adjustment to the treatment of roughness 

uncertainty is made. The RC model domain extended 21 km along the river from 

Battlesbridge to Burnham-on-Crouch. Out-of-bank flows at the study site were 

simulated using Manning's equation and represented using a network of 22 

interlinked storage cells (reservoirs). The RC model was used to simulate an 

ensemble of river flows based on ensembles of initial conditions, tidal boundary 

conditions and, in a change from section 4.3, the global roughness parameter. 

Forecasting was implemented by updating the model's initial and boundary 

conditions with measured data, using an EnKF (Evensen, 2003). This algorithm 

updated estimates of initial stage and flow in a near optimal manner (in terms of 

minimising error variance). The updated or analysed initial and boundary conditions 

were then used to initialise further model simulations. The RC model can be 

described by the following state-space formulation. 

x{ (t;+1 ) = M(x~ (t;), ek , U, + E: k (t,)) (5.1 ) 

Where, a state vector x is made up of the state variables stage and flow, M is the non

linear model operator which, in this case, represents advancing the hydraulic model 

state from ti to ti+l, e represents the global channel and floodplain roughness 

parameters, sampled from a pre-defined distribution, superscript a denotes analysed 

state (a posteriori) whilst superscriptfis forecasted state (a priori) and U represents 
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the downstream boundary conditions which have been corrupted by errors e. These 

errors were assumed to be correlated in time and were approximated by a first-order 

autoregressive model (Bras and Rodrigues-Iturbe, 1985; Madsen and Cafiizares, 

1999): 

(5.2) 

where p is a lag-one autocorrelation coefficient, (J is the variance of the error process 

and W is a zero-mean Gaussian white noise random variable with variance of 1. The 

variance (J and autocorrelation coefficient p of this model are estimated in section 

5.2.2. The downstream boundary condition u was set using tidal predictions at 10-

minute intervals for the port of Burnham-on-Crouch. These were supplied by The 

United Kingdom Hydrographic Office and are based on adjusted harmonic constants 

calculated for the standard port of Walton-on-the-Naze (Essex). A flow-time 

hydro graph was used at the upstream boundary and was set at a constant 0.35 m3s- 1 

based on the mean flow recorded by the Environment Agency gauge at Wickford, 

approximately 2 km upstream of Battlesbridge. 
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Fig. S.2: Map of sensor locations and RC model topology around the validation 

location at sensor 2. 

An archived measurement data set from eight sensors (Fig. S .2) was used in this 

study. Measurements were available at S minute intervals from the 4 th to 26th 

November 200S . This will be referred to as the test period and was chosen because it 

represented the only period oftime during which eight sensors were operational at 

this site. As the principal purpose of this test was to compare the two error variance 

estimation methods all measurements were assigned a variance of 0.00 S m to 

simplify the procedure. This information was used to generate Gaussian 

measurement ensembles, which were mapped onto the RC model state vector using 

the linear measurement operator H. Four of the eight sensor nodes were located in 

the channel with the rest spread over the salting. The varying heights of the sensors 

meant that most were dry at some point over the tidal cycle. The measurement model 

was defined as (Burgers et aI., 1998): 

H Irue ( ) Y i ,k = iX k ti + 'l i ,k 

where y is the measurement vector and IJ is a Gaussian white noise vector 

representing the errors in the measurements. H is the measurement operator that 

(S.3 ) 
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maps measurements y onto the state vector x and is linear in this example. Errors in 

measurements and state estimates were assumed to be uncorrelated, whilst each 

measurement was assumed to map directly onto a point on the model state vector. 

The EnKF analysis step updated each model state ensemble member to give updated 

initial conditions for the RC model using (Evensen, 2003): 

(5.4) 

where pi is the forecast state error covariance estimated from the forecast state 

ensemble (Evensen, 1994). The RC model and forecasting approach were described 

in more detail in section 4.3. 

5.2.2 Parameterisation issues 

A generalised likelihood uncertainty estimation (GLUE) procedure (Beven and 

Binley, 1992; Romanowicz and Beven, 1998; Pappenberger et ai., 2005) was used to 

estimate channel and floodplain roughness uncertainty. The procedure assumes 

equifinality in that many combinations of parameters and boundary conditions may 

result in acceptable simulated results, given the data available to validate each 

simulation. The procedure comprised 1500 simulations by the RC model from the 4th 

to 26th November 2005. The three variables selected for calibrations were channel 

roughness, floodplain roughness and the magnitude of errors at the tidal boundary 

condition. The Nash-Sutcliffe efficiency measure (Nash & Sutcliffe, 1970) was used 

to calculate the likelihood of each parameter set: 

(5.5) 

where 0"; is the variance of the observations and 0"; is the variance in the residuals 

between observations y and model state predictions x. The method was identical to 

that of section 4.3.2 although the measurement data were different. 
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The purpose of the calibration was to estimate channel roughness uncertainty such 

that an ensemble of channel roughness parameters could be generated. The resulting 

roughness mean and standard deviation are shown in Table 5.2. 

The parameters of the tidal boundary autoregressive model were estimated from the 

errors e between measurements and a best estimate simulation by the Re. The 

simulation used the most likely roughness parameters found during the GLUE 

procedure and unaltered tidal boundary conditions. The variance and autocorrelation 

coefficients were estimated from sample data using measurements from sensor 2 

(Bras and Rodrigues-Iturbe, 1985): 

(5.6) 

and 

(5.7) 

where the over-line denotes the mean of the errors between simulated and measured 

stage. Sensor 2 was chosen because it provided the most continuous record of stage 

over the study period. It is noted that the statistics calculated here may differ from 

those that would have been calculated had measurements of stage been available at 

the model boundary. The resulting coefficients and model parameters are shown in 

Table 5.2. Note that these calibration methods were chosen for their simplicity and 

ease of implementation, and are designed to give reasonable parameters to support 

the subsequent tests rather than provide an example of best practice. An example of a 

parameter estimation algorithm that is integrated with an EnKF can be found in 

Vrugt et al. (2005). 
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Table 5.2: Selected RC model parameters 

Mean channel roughness f) 0.030 

Channel roughness standard deviation a () 0.004 

AR model correlation p 0.987 

AR model variance 0-; 0.322 

5.3 Results: A comparison between EnKF and ETKF 

forecasts of error covariance. 

The suitability of the ETKF as a means of targeting measurements was assumed to 

be dependent on its ability to estimate analysed error variance and signal variance, 

which resulted from assimilating the same measurements with the EnKF based 

forecasting model, as well as the ETKF's ability to estimate forecast error variance 

and signal variance at future validation or target times. This leads to two questions, 

which form the focus of the present investigation: 

1. To what extent can the ETKF estimate the analysed error variance and signal 

variance that results from implementing the EnKF analysis CEq. 5.4) at the 

measurement time. 

2. To what extent can the ETKF estimate the forecast error variance and signal 

variance that results from implementing the EnKF at the measurement time and 

propagating the updated initial conditions to future measurement times and the 

validation time with the RC model. 

Section 5.3.1 compares analysed error variance estimates from the ETKF and EnKF 

methods. The comparison of forecast error variances has been split into those 

obtained using a single measurement location (section 5.3.2) and those obtained 

using multiple measurement locations (section 5.3.3). In both cases, two parallel 

implementations of the EnKF were run: one using real measurements and the other 
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using synthetic measurements generated from the ensemble state mean, but with the 

same error statistics. 

5.3.1 Analysed variances 

A comparison of the EnKF and ETKF analysis algorithms was conducted by 

assimilating measurements from sensor 2 (BNG easting 582758) into a background 

ensemble of simulations produced by the RC model. Measurements were assimilated 

during 39 tides at eight times equally spaced between 3 hours 40 minutes and 1 hour 

20 minutes prior to high tide. The estimates of analysed error variance and signal 

variance were all conditioned on single measurements, and were independent of 

previous measurements in this sense. Fig. 5.3 is a scatter plot of analysed error 

variance estimated by the EnKF (Eq. 5.3-4) against analysed error variance estimated 

by the ETKF (Eq. 3.59-61), whilst Fig. 5.4 shows the same but for signal variance. 

There was a correlation of 1.000 between the analysed signal variance estimates in 

Fig. 5.3, and a correlation of 1.000 between estimates of error variance in Fig. 5.4. 

These correlations between the EnKF and ETKF were expected as the two 

algorithms use the same forecast error covariance, making them equally sensitive to 

measurements, unlike the example in Majumdar et ai. (2002). The same correlations 

were found when using four sensors instead of one. This indicates that at the 

measurement time the ETKF analysis is constant with the KF analysis when given 

the same error statistics. 
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Fig. 5.3: ETKF analysed error variance plotted against the EnKF analysed error 

variance, for 39 tidal events at the validation location, after six target times. 
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39 tidal events at the validation location, after six target times. 
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5.3.2 Forecast variances: Single sensor example 

Having established that the ETKF estimates of analysed error variance at the routine 

measurement time were identical to those of the EnKF, the focus was shifted to its 

ability to predict forecast error variance at future times. Ideally, the estimates of error 

variance and signal variance from the EnKF -based forecasting model and the ETKF 

would be equivalent. However, as the processes underpinning the RC model are 

known to exhibit non-linear behaviour there is unlikely to be an exact 

correspondence. 

A direct comparison between the ETKF and EnKF was made for a scenario where a 

time series of measurements from sensor 2 (BNG easting 582758), with variance 

0.005, were assimilated at 20 minute intervals from 3 hours 40 to 1 hour 20 minutes 

prior to the validation time. The time when the first of these measurements was taken 

will be referred to as the routine measurement time fr (Fig. 5.1). The experiment was 

set up in five steps and conducted repeatedly over 39 tidal cycles. 

Step 1: The ETKF was run on the background forecasts to estimate signal variance 

(Eq. 3.65) and analysed error covariance (Eq. 3.59-61) at the routine measurement 

time fr. 

Step 2: The transform T from step 1 was used to update the background ensemble 

state perturbations at the validation and target times CEq. 3.64). These updated 

ensemble perturbations were then used to estimate forecast error variance, expected 

from further observations at the next target times (Eq 3.59-61). 

Step 3: The EnKF was used to update the ensemble state based on a real 

measurement with the same variance as the synthetic measurement used in steps 1 

and 2 CEq. 5.4). The updated state was then propagated by the RC model CEq. 5.1-2) 

to the target and validation times. 

Step 4: Ensemble state perturbations generated after the measurement had been 

assimilated in step 3 were then calculated. These were then used as a background 
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forecast by the ETKF to estimate the signal variance from further measurements at 

the target times (Eq. 3.65). 

Step 5: Steps 1 to 4 were repeated for a further measurement collected by sensor 10 

at the first target time 20 minutes after the measurement time. 

Ensembles of stage simulations produced by the RC model after steps 3-5 are shown 

for an example tide in Fig. 5.5. The background forecast ensemble made at time ti is 

also shown as lighter lines behind the updated forecast. Fig. 5.6 plots the ETKF (red) 

and EnKF (black) predictions of error variance at the validation time and seven target 

times at 20 minute intervals from the routine measurement time, against the 

background error variance at those times. Background error variance refers to the 

variance before the measurement was assimilated. Thus, each simulation was 

dependent on the RC model and the kth roughness parameter and boundary condition. 

All RC model nodes are included as single points on the plots. 

Target time 1 Target time 2 Target time 3 
4,-------------, 4,-------------, 4,-------------, 

3 3 

o o o 

_1L _____ ~ ______ ~ _1L-____ ~ ______ ~ -1~----~------~ 

7726 7728 7730 7726 7728 7730 7726 7728 7730 
TIme (hours) TIme (hours) TIme (hours) 

Target time 4 Target time 5 Target time 6 
4,-------------, 4,-------------, 4.-------------, 

3 3 

o o o 

-1 L _____ ~ ______ ~ )~----~------~ J------~--------' 
7726 7728 7730 7726 7728 7730 7726 

TIme (hours) TIme (hours) 
7728 

TIme (hours) 
7730 

Fig. 5.5: Time series plots showing forecast stage at sensor 2 from target times 1 to 6 

(dark lines). Observations were available from sensor 2 at each target time. The 

background forecast is indicated by the light lines, whilst measurements at five 

minute intervals from sensor 2 are shown as stars. 
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Fig. 5.6: ETKF predictions of error variance (red) and EnKF predictions of error 

variance (black) at varying times from the assimilation of the routine measurement 

against background error variance. The green line is a representation of perfect 

agreement between the EnKF and ETKF forecast variances. 

A continuous line demarks y = x. For any point above this line error variance 

increased as a result of assimilating the routine measurement, conversely error 

variance decreased for any point below the line. For target times close to the routine 

measurement time the scatter of points predicted by the EnKF and ETKF were 

similar, both in terms of the extent and clustering of points. As the time between the 

routine measurement time and the target time increased the ETKF approach began to 

under predict the variance of the EnKF approach. The correlation between EnKF and 

ETKF error variance estimates decreased as the time from the routine measurement 

increased (Table 5.3, correlation A). Table 5.3 , correlation B, shows the correlation 

between the background forecast error variance at each target time and the validation 
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time. The correlation increased as the lag between times decreased. The decrease in 

correlation coefficient A (Table 5.3) from 0.796 to 0.292 suggests that the dynamics 

of the updated ensemble perturbations about the ensemble mean x{t[H,} are different 

to those of the background forecast x~[H i) . 

When signal variance was compared the two approaches were more alike. The 

correlations between ETKF and EnKF signal variance (Table 5.3, correlation C) 

remain above 0.95 for two hours after the routine measurement, but drop to 0.679, 20 

minutes later and 0.445 by the validation time. 

Table 5.3: This table contains the correlations between ETKF and EnKF (Correlation 

A) estimates of forecast error variance at seven times between a measurement time tr 

and a validation time tv. From a background forecast ti an EnKF was used to 

assimilate one measurement tr . Forecast error variance was then calculated by 

propagating an ensemble of RC model simulations to tv. The ETKF used the same 

background forecast and the same measurement error to calculate an ensemble 

transform. This transform was then applied to the background forecast at the selected 

times up to the validation time. The correlation between background error variance at 

the target times and the validation time are shown as correlation B. Correlations 

between the ETKF and EnKF estimates of signal variance are shown as correlation 

C. 

Time from tr 20 40 60 80 100 120 140 220 

Time to tv 200 180 160 140 120 100 80 a 
Correlation A 0.796 0.870 0.750 0.597 0.568 0.550 0.292 0.397 

p_value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Correlation B 0.005 0.004 0.036 0.051 0.053 0.462 0.832 1 

p_value 0.000 0.001 0.000 0.000 0.000 0.000 0.000 -

Correlation C 0.997 0.993 0.983 0.969 0.968 0.959 0.679 0.445 

p_ value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

A box plot of the signal variance at the target and validation times (Fig. 5.7) shows a 

tendency for the ETKF to over predict the EnKF signal variance, especially at the 

validation time where the upper quartile of the EnKF distribution is less than the 
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lower quartile of the ETKF distribution. There were some noticeable EnKF outliers 

at the last target time and validation time caused by model instability during two of 

the 39 tides. These increases in variance show up as clusters of points above the 

continuous line in Fig. 5.6 and correspond to tides 13 and 40. The ETKF rarely 

predicted that the error variance would increase after assimilating the routine 

measurement and never to the extent of the EnKF approach. Relative to the ETKF, 

the EnKF based approach predicted more occasions where error variance increased 

after assimilating the routine measurement (Fig. 5.8). The most noticeable instances 

of increased error variance occur for very low values of background error variance. 

Conversely, the EnKF was also observed to predict greater decreases in error 

variance than the ETKF, when the background variance was low. 
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Fig. 5.7: Signal variance at seven target times and the validation time after the 

assimilation of the routine measurement. Results are shown using the EnKF 

approach (En) and the ETKF approach (ET). Target times are at 20 minute intervals 

from the routine measurement. Boxes show the upper quartile, median and lower 

quartile of forecast signal variance; whiskers extend over the range of the data with 

crosses indicating outliers. 
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Fig. 5,8: Forecast error variance at seven target times and the validation time after 

the assimilation of the routine measurement. Results are shown using the EnKF 

approach (En) and the ETKF approach (ET), Target times are at 20 minute intervals 

from the routine measurement. Boxes show the upper quartile, median and lower 

quartile of forecast error variance; whiskers extend over the range of the data with 

crosses indicating outliers. 

A long section of the river, plotting the background forecast of stage and error 

variance during a tidal event (Fig. 5.9), shows that the lowest values of signal 

variance occurred upstream of the incoming tide. To a certain extent this is a trait of 

this river because the fluvial component of the flow was small relative to the tidal 

component. However, it does confirm that the difference in error variance between 

the EnKF and ETKF method when the background error variance was low was an 

effect seen at the edge of the incoming tidal wave. In this case, the edge included 

areas of the floodplain not already inundated. Therefore, the location of the front 

edge of the incoming tide was more sensitive (in terms of variance) to changes in the 

ensemble mean than the main body of the estuary, where it seems more appropriate 
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to assume that the dynamics of the ensemble perturbations are similar after 

assimilating the routine measurement. 
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Fig. 5.9: Plot of model background states (stage and flow) and their variance for 

channel cross sections, with signal variance at validation time and location shown for 

theoretical measurements taken at any RC model node along the river at target time 

one. Measurement variance was 0.005 m. 

The propagation of ensemble perturbations was sensitive to changes in the ensemble 

mean, particularly around the interface of tidal and fluvial flows. An experiment to 

compare the ETKF to the EnKF estimates of forecast error variance when the 

ensemble mean remained approximately constant was conducted. In this experiment, 

synthetic measurements were generated from the ensemble mean rather than 

measurement data. Errors in the synthetic measurements were assumed to be 

independent of each other and normally distributed around the mean, with a variance 

equal to that used by the ETKF. Except for the synthetic measurement ensembles, 

steps 1 to 5 of the experimental setup shown above were conducted to give the 

following results. 
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Fig. 5.10 plots the ETKF (red) and EnKF (black) predictions of error variance at the 

validation time and seven target times at 20 minute intervals from the routine 

measurement time, against the background error variance at those times. The ETKF 

predictions of error variance were identical to those shown in Fig. 5.6 because the 

background forecasts were identical for the two experiments. When measurements 

were generated from the ensemble mean the EnKF made different predictions of 

error variance to the real measurement case. There were fewer black dots above the 

green line, indicating that the updating process did not increase error variance as 

often when the mean remained constant. In contrast to the real measurement example 

the ETKF tended to slightly over predict error variance at target times one to five 

when the background variance was below 0.05. Correlations between EnKF and 

ETKF predictions of forecast error variance (Table 5.4, correlation A) ranged from 

0.858 at the first target time to 0.437 at the validation time, with the largest fall 

occurring between target times two and four. Correlations A were greater than those 

in Table 5.3 where real measurements were used. The correlations between EnKF 

and ETKF estimates of signal variance were 0.670 at the validation time compared 

with 0.445 when the EnKF ensemble mean was allowed to change. 
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Fig. 5.1 0: ETKF predictions of error variance (red) and EnKF predictions of error 

variance (black) at varying times after assimilating the routine measurement against 

background error variance. Measurements were simulated from the ensemble mean. 
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Table 5.4: This table contains the correlations between ETKF and EnKF (Correlation 

A) estimates of forecast error variance at seven times between a measurement time tm 

and a validation time tv. From a background forecast an EnKF was used to assimilate 

one measurement. The forecast error variance was then calculated by propagating an 

ensemble ofRC model simulations to the validation time. The ETKF used the same 

background forecast and the same measurement error to calculate an ensemble 

transform. This transform was then applied to the background forecast at the selected 

times up to the validation time. The correlation between background error variance at 

the target times and the validation time are shown as correlation B. Correlations 

between the ETKF and EnKF estimates of signal variance are shown as correlation 

C. 

Time from tr 20 40 60 80 100 120 140 220 

Time to tv 200 180 160 140 120 100 80 0 

Correlation A 0.858 0.887 0.787 0.686 0.612 0.620 0.638 0.431 

p_value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Correlation B 0.005 0.004 0.036 0.051 0.053 0.462 0.832 1 

p_value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -
Correlation C 0.998 0.994 0.987 0.975 0.964 0.963 0.956 0.670 

P value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Fig. 5.11 is a box plot of the forecast error variance from Fig. 5.10. The ETKF under 

predicted error variance and over predicted signal variance (Fig. 5.12), especially as 

the time lag from the routine measurement increases (this was as also seen when 

using real measurements in Fig. 5.7 and 5.8). However, the two clusters of outliers at 

target time seven (En 7) and the validation time (En v) in Fig. 5.7 and 5.8, which 

occurred when the simulation model became unstable, were not outliers in Fig. 5.11 

or 5.12. 
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Fig. 5.11: Forecast error variance at seven target times and the validation time after 

the assimilation of the routine measurement. Results are shown using the EnKF 

approach (En) and the ETKF approach (ET). Target times are at 20 minute intervals 

from the routine measurement. Measurements were simulated from the ensemble 

mean. Boxes show the upper quartile, median and lower quartile of forecast error 

variance; whiskers extend over the range of the data with crosses indicating outliers. 
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Fig. 5.12: Signal variance at seven target times and the validation time after the 

assimilation of the routine measurement. Results are shown using the EnKF 

approach (En) and the ETKF approach (ET). Target times are at 20 minute intervals 

from the routine measurement. Measurements were simulated from the ensemble 

mean. Boxes show the upper quartile, median and lower quartile of forecast signal 

variance; whiskers extend over the range of the data with crosses indicating outliers. 

The outliers in Fig. 5.7 and Fig. 5.8 caused by model instability were not evident 

when the ensemble mean remained constant, suggesting that changing the ensemble 

mean was a potential cause of instability in RC model simulations. Whether or not 

the model instabilities apparent in Fig. 5.7 and Fig. 5.8 are linked to large changes in 

the ensemble mean can be crudely inferred by comparing the signal variance at the 

validation time with the change in ensemble mean at the routine measurement time. 

This is shown by the dots on Fig. 5.13, where mean signal variance was negative 

after assimilating the routine measurement during four tides, all of which coincided 

with falls in the ensemble mean greater than 0.3 m. Furthermore, the greatest 

decrease in ensemble mean (0.85 m) corresponded with the greatest increase in mean 

error variance (0.22 m). The same affect was not observed for increases in the 
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ensemble mean although these changes were of smaller magnitude than those which 

caused an increase in error variance. Bearing in mind that a decrease in ensemble 

mean should result in a smaller mean variance over the whole model domain as the 

tide advances up the river more slowly than expected, the increase in variance is 

likely to be due to model instability. Generating synthetic measurements from the 

ensemble mean always resulted in a positive signal variance, although there was one 

outlier close to zero and three cases where the ensemble mean increased by up to 0.2 

m. 
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Fig. 5.13: Plot of the signal variance at the validation time against change in 

ensemble mean (after assimilating the routine measurement). There are 39 dots in 

total each of which is a separate tidal event. Crosses indicate the corresponding 

results where the measurement was generated from the ensemble mean. 

After assimilating the routine measurement with the EnKF the RC model generated a 

new background forecast, from the analysed initial conditionsXVrIH,). The EnKF 

and ETKF were both used to assimilate a measurement at the first target time from 

the same location as the routine measurement. Tides 13 and 40 were removed from 
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the analysis because the RC model had become unstable during these events. 

Comparisons of the EnKF and ETKF predictions of error variance at the validation 

time and seven target times are shown in Fig. 5.14, whilst the corresponding results 

using the ensemble mean as the measurement are shown in Fig. 5.15. 
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Fig. 5.14: ETKF predictions of error variance (red) and EnKF predictions of error 

variance (black) at varying times from the assimilation of a measurement at the first 

target time after assimilating the routine measurement. 
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Fig 5.15: ETKF predictions of error variance (red) and EnKF predictions of error 

variance (black) at varying times after assimilating a measurement at the first target 

time against the background error variance after the routine measurement. 

Measurements were simulated from the ensemble mean. 

Increases in error variance for small values of background variance, attributed to 

changes in the ensemble mean when assimilating the routine measurement, were not 

evident in Fig. 5.14. The scatter plots of forecast error variance in Fig. 5.14 are 

similar to those obtained when using the ensemble mean as the measurement (Fig. 

5. 15). The box plots of forecast error variance supported this, as the median and 

spread of error variance that resulted from assimilating the actual measurement was 

similar to that of the synthetic measurement (Fig. 5.16 and 5.l7 respectively). These 

results indicate that the ensemble mean changed less when assimilating the 

measurement at the first target time relative to the routine measurement time. This 

was expected due to the short time between the measurements and reduction in 

forecast variance at the target time as a result of the routine measurement. 
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Fig 5.16: Forecast error variance at seven target times and the validation time after 

the assimilation of a measurement at the first target time and routine measurement 

time. Results are shown using the EnKF approach (En) and the ETKF approach (ET). 

Target times are at 20 minute intervals from the routine measurement. Boxes show 

the upper quartile, median and lower quartile of forecast error variance; whiskers 

extend over the range of the data with crosses indicating outliers. 
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Fig 5,17: Forecast error variance at seven target times and the validation time after 

the assimilation of a measurement at the first target time, Results are shown using the 

EnKF approach (En) and the ETKF approach (ET). Target times are at 20 minute 

intervals from the routine measurement. Measurements were simulated from the 

ensemble mean. Boxes show the upper quartile, median and lower quartile of 

forecast error variance; whiskers extend over the range of the data with crosses 

indicating outliers. 

Fig. 5.14 shows that the ETKF tended to under predict error variance when compared 

to the EnKF based approach, except at the validation time. Unlike when the routine 

measurement was assimilated, the under prediction was greater at lead times closer to 

the measurement time. This was supported by the box plots of forecast error variance 

in Fig 5.16, where the EnKF approach resulted in a convex shape to the growth in 

median error variance over time, whereas the ETKF predicted a concave shape in 

median error variance growth between target times two and seven. Therefore, over 

the 37 tidal cycles shown here; errors initially grew quicker in the EnKF based 

approach than the ETKF approach before becoming more alike. This result suggests 

that the growth in error is slightly different after data assimilation or that the 
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assumptions made by the ETKF are not ideal. Model instabilities caused by large 

changes in the ensemble mean relative to the ensemble spread have previously been a 

cause of error growth in this model. These cannot be ruled out as a cause of the 

convex shape of the error growth when using the EnKF approach. 

Despite the above problems the ETKF was able to make predictions of error variance 

and signal variance that were significantly correlated with the EnKF (Table 5.5). 

Forecast error variance was reduced by around one order of magnitude due to the 

assimilation of the routine measurement, with the magnitude of the fall depending on 

the time lag from the routine measurement. The lower error variance relative to 

measurement variance of this background forecast made it easier for the ETKF to 

predict error variance relative to before the routine measurement was assimilated. 

Hence, the correlations between ETKF and EnKF predictions of error variance 

tended to be greater in Table 5.5 than Table 5.3. Conversely, the correlations 

between signal variances were not as large in Table 5.5. 
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Table 5.5: This table contains the correlations between ETKF and EnKF estimates of 

forecast error variance at seven times between a measurement time tr and a validation 

time tv. The background forecasts were produced assimilating one measurement with 

the EnKF at tr, then running an ensemble of RC model simulations to tv. From the 

background forecast an EnKF was used to assimilate one measurement at the first 

target time. The forecast error variance was then calculated by propagating an 

ensemble of RC model simulations to the validation time. The ETKF used the same 

background forecast and the same measurement error to calculate an ensemble 

transform. This transform was then applied to the background forecast at the selected 

times up to the validation time. Correlation A lists the correlation between EnKF and 

ETKF error variance estimates. Correlation B lists the correlation between the 

background forecast error variances at each target time and the validation time. 

Correlation C shows the correlation between signal variance estimates. 

Time from tm 20 40 60 80 100 120 140 200 

Time to tv 180 160 140 120 100 80 60 0 

Correlation A 0.929 0.896 0.856 0.805 0.792 0.739 0.565 0.682 

p_value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Correlation B -0.019 0.033 0.103 0.164 0.198 0.269 0.428 1 

p_value 0.138 0.011 0.000 0.000 0.000 0.000 0.000 -

Correlation C 0.968 0.892 0.798 0.712 0.602 0.555 0.379 0.211 

p_value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

The test carried out here was limited in that measurements from only one location 

were assimilated. A more extensive test would include measurements from locations 

in the model domain which were not strongly correlated with each other. The close 

proximity of the sensors to one another in this case study meant that the 

measurements from them were highly correlated, which made it difficult to run data 

sampling scenarios which were spatially more complex with real data. It is possible 

to simulate measurements at other locations in the RC model domain and run them 

through the ETKF. However, error variance predictions by the RC model were 

sensitive to changes in the ensemble mean, especially at the flood edge. Therefore, it 

was not possible to assess how well the ETKF would approximate the behaviour of 

the EnKF with measurements from other locations because it is likely to depend on 
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the magnitude of the change in the ensemble mean. Nevertheless, the ETKF and 

EnKF can be compared against one another when given data from the floodplain 

sensor nodes as well as the channel sensor nodes. 

5.3.3 Forecast variances: multiple sensor example 

This experiment used sensors two, four and six, each of which was around 700 m 

apart. A routine measurement from sensor two was assimilated at the routine 

measurement time by the EnKF to give an updated set of initial conditions. From 

these initial conditions a background forecast with error variance identical to that in 

Fig. 5.6 was created. As in the previous section events 13 and 40 were discarded due 

to RC model instability. The two sensors on the floodplain were at higher elevations 

than sensor two in the channel, meaning that data were unavailable at these locations 

until the water levels were higher. Therefore, this experiment assimilated data from 

target time five, one hundred minutes after the routine measurement time rather than 

target time one as used previously. Despite choosing a target time closer to high tide 

measurements from sensor six were not always available hence causing the 

measurement model to vary between using two and three measurements. 

The top three plots in Fig. 5.18 show forecast error variance estimates at the 

validation time, and target times six and seven obtained using the EnKF approach to 

assimilate measurements at target time five. The lower three plots show forecast 

error variance using the ETKF approach to assimilate the same data. Both 

approaches predict that error variance will increase between target time five and the 

validation time. Complementary to the single sensor example, after the routine 

measurement the ETKF and EnKF error variances were similar. However, the ETKF 

predicted a greater range of variances than the EnKF at the validation time. The 

correlation between estimates of error variance was small at target times six (0.509) 

and seven (0.307) but increased to 0.516 at the validation time (Table 5.6). Estimates 

of signal variance had correlations between 0.811 and 0.318 at target time six and the 

validation time, respectively (Table 5.6). The most obvious difference between the 

EnKF and ETKF scatter plots of forecast error variance (Fig. 5.18) was the greater 

scatter of the EnKF error variances at background error variances below 0.1 m. As 
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shown by Fig. 5.19, this scatter was less evident when measurements were generated 

from the ensemble mean, an observation supported by the correlation of 0.979 and 

0.660 at target time six and the validation time respectively (Table 5.7). The model 

instability at target time seven during one event, seen as a cluster of points above the 

continuous line reduced the correlation at this target time to 0.554. 
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Fig 5.18: ETKF predictions of error variance (lower plots) and EnKF predictions of 

error variance (upper plots) at three times after assimilating two or three 

measurements at target time 6 against the background error variance after the routine 

measurement. 
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Fig 5.19: ETKF predictions of error variance (lower plots) and EnKF predictions of 

error variance (upper plots) at three times after assimilating two or three 

measurements at target time 6 against the background error variance after the routine 

measurement. 
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Table 5.6: This table contains the correlations between ETKF and EnKF (Correlation 

A) estimates of forecast error variance at two times between a measurement time tm 

and a validation time tv. From a background forecast an EnKF was used to assimilate 

two or three measurements. The forecast error variance was then calculated by 

propagating an ensemble of RC model simulations to the validation time. The ETKF 

used the same background forecast and the same measurement error covariance to 

calculate an ensemble transform. This transform was then applied to the background 

forecast at the selected times up to the validation time. The correlation between 

background error variance at the target times and the validation time are shown as 

correlation B. Correlations between the ETKF and EnKF estimates of signal variance 

are shown as correlation C. 

Time from tm 20 40 100 

Time to tv 100 80 0 

Correlation A 0.509 0.307 0.565 

p_value 0.001 0.000 0.000 

Correlation B 0.089 0.229 1 

p_value 0.000 0.000 -

Correlation C 0.811 0.710 0.318 

p_value 0.000 0.000 0.000 
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Table 5.7: This table contains the correlations between ETKF and EnKF (Correlation 

A) estimates of forecast error variance at two times between a measurement time tm 

and a validation time tv. From a background forecast an EnKF was used to assimilate 

two or three measurements. The forecast error variance was then calculated by 

propagating an ensemble ofRC model simulations to the validation time. The ETKF 

used the same background forecast and the same measurement error covariance to 

calculate an ensemble transform. This transform was then applied to the background 

forecast at the selected times up to the validation time. The correlation between 

background error variance at the target times and the validation time are shown as 

correlation B. Correlations between the ETKF and EnKF estimates of signal variance 

are shown as correlation C. 

Time from tm 20 40 100 

Time to tv 100 80 0 

Correlation A 0.979 0.554 0.660 

p_value 0.000 0.000 0.000 

Correlation B 0.035 0.098 1 

p_value 0.009 0.000 -
Correlation C 0.988 0.717 0.489 

p_value 0.000 0.000 0.000 

5.4 Discussion 

The ETKF allowed model state error covariance estimates to be obtained rapidly 

from an ensemble of background forecasts at both the time of the observation and 

future validation times. This approach made it computationally feasible to test many 

observation sets or sequences because the ensemble of model states needs to be 

propagated only twice: once to issue the background forecast and then again after the 

data collected have been assimilated to issue a forecast. Forecast error variance was 

shown to change when the ensemble mean changed as a result of assimilating actual 

measurements particularly at the flood edge, as this was the most sensitive region of 

the model domain to changes in the ensemble mean. This is not ideal given that the 
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location of the shoreline is likely to be a primary concern to the user, along with the 

flood depth duration and arrival time at validation locations. 

The ETKF was dependent on the RC process model providing state error statistics. 

Like most model updating algorithms including the EnKF used here, the ETKF 

variance forecasts were strongly coupled to the simulation model. In this paper, we 

have not compared the forecasted errors with observed errors but have seen evidence 

of how instabilities in the RC model have an adverse effect of the correlation 

between error variance estimates made by the ETKF and EnKF based approaches. 

This makes it difficult to assess the significance of the assumptions made by the 

ETKF such as linear error propagation, over the EnKF based approach. 

The introduction of unsuitable initial stage and flow conditions into the RC model by 

the EnKF was the principal factor that caused RC model instability. Incidentally, 

there was no evidence of model instability when stopping and restarting simulations 

with unaltered states. It could be argued that the weak point in the comparison made 

here was the stability of the RC model when given updated initial and boundary 

conditions, implying that the ETKF would be a more accurate predictor of signal 

variance had the simulation model on which the two data assimilation methods rely 

been more robust. Given the instability of the forecasting model used here constraints 

need to be developed on the updating process to ensure the stability of model 

simulations after the update. Especially, as Fig. 5.13 showed evidence that the 

likelihood of model failure increased with the difference between simulated and 

measured stage. 

As a means of targeting data the ETKF has several properties which make it a useful 

tool for targeting measurements. It provides a rigorous framework for assessing the 

contribution of measurement data to forecast error variance based on the Kalman 

filter, hence it is able to incorporate uncertainty from both the measurement and 

simulation models. Furthermore, as the error statistics can be derived from 

distributed process models it is possible to consider measurements from previously 

unrnonitored locations based within the model domain. The link to the process model 

should in theory allow the extrapolation of results to previously unmonitored 
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conditions, such as those occurring during extreme events, with some degree of 

confidence. 

The instability of the RC simulation model when updated would be a significant 

barrier to its use in an operational context. However, the information on spatio

temporal signal variance generated by the ETKF such as that in Fig. 5.9 may be 

useful when planning the deployment of a sensor network like the one used here. 

Although the RC model was calibrated using data collected by the sensor network, 

the ETKF could be applied to simulation models of previously unmonitored reaches 

or to climate based what-if scenarios. 

The ETKF method can potentially provide a platform for assimilating data from a 

number of diverse sources; not just the point measurements of stage used here. For 

example, targeting techniques similar to the one developed here may be applicable 

when collecting data on flood inundation extent, either through remote (Horritt, 

2001) or ground based survey (Nicholas & Mitchell, 2003). Ground based surveys, in 

particular, are generally conducted on an opportunistic basis where a method for 

estimating the likely benefit of the sampling effort could be useful, not least because 

a lot of effort is required to collect even a small data set. The collection of flood 

inundation images could be timed to coincide with time periods where the process 

model was most sensitive to inundation extent. The ETKF is relatively easy to 

implement in a situation where an ensemble model is present since the model 

statistics necessary to run the algorithm can all be generated from the state 

ensembles. Therefore, in circumstances where ensemble simulation models have 

been developed previously much of the work necessary to apply the ETKF has been 

done already. 

This study has not attempted to compare the performance of the ETKF against any 

other method of adaptive sampling. Principally this was because the stability of the 

RC model was a barrier to a more detailed analysis of the efficiency and accuracy of 

the ETKF approach. Thus, other adaptive sampling methods may prove to be more 

appropriate in this context. Another, possible avenue of research is that the models 
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used to process data may also be adapted where misfits occur between model 

estimates and data (Lermusiaux et ai., 2004). 

5.5 Conclusions 

The RC model was used to simulate 60 background stage predictions for 40 

consecutive tides. Errors were introduced to each simulation by varying the 

roughness parameter of the model and introducing coloured noise at the model 

boundary. The first tide was used as a warm-up period for the model and discarded 

from further analysis. 

An EnKF assimilated measurements of stage for the purpose of updating RC model 

state variables (stage and flow) and boundary conditions. These updated state 

variables and boundary conditions were used as initial conditions for further 

simulations (or forecasts) of state variables, principally stage. The ability of the 

ETKF to estimate forecast error variance and signal variance a posteriori of these 

measurements, before they were assimilated was assessed by comparison with 

simulations by the RC model which were updated with an EnKF. At the 

measurement time signal and error variance estimates by both methods were similar. 

Two experiments were conducted. The first used a series of measurements from a 

single location and the second measurements from 2-3 locations. For both 

experiments estimates of forecast error covariance from the two filters were 

significantly correlated. Correlations ranged between 0.979 and 0.292. Correlations 

tended to be lower as time after the measurement time increased. The ETKF 

underestimated forecast error variance and conversely overestimated signal variance 

relative to the EnKF approach, when assimilating the routine measurement. 

Correlations between the variance estimates of the two approaches were reduced 

during some tides due to simulation instability, the likelihood of which increased the 

greater the change in ensemble mean. 
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Error variance was most sensitive to changes in the ensemble mean at the boundary 

between tidal and fluvial flows and in shallow regions towards the edge of the flood 

envelope on the salting. Therefore, when the EnKF changed the mean of subsequent 

simulated ensembles the ETKF was a less accurate predictor of error variance at 

these locations, relative to locations that had been inundated for some time. 

The ETKF was a useful tool for quickly estimating the effect on state variance of 

assimilating measurement data into the hydrodynamic model used here. It, thus, 

provides a means of quantifying the 'usefulness' (in terms of error or signal variance) 

of possible sampling schemes. Since the Kalman filter provides a framework for 

considering errors resulting from uncertainty in both the simulation model and 

measurement data, it seems natural to base any adaptive sampling framework on 

similar principles, not least because measurements could be collected by different 

sensor platforms with different error statistics. 
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5.6 Summary 

This chapter compares two Monte Carlo sequential data assimilation methods based 

on the Kalman filter, for estimating the effect of measurements on simulations of 

state error variance made by a one-dimensional hydrodynamic model. The first 

method used an ensemble Kalman filter to update state estimates, which were then 

used as initial conditions for further simulations. The second method used an 

ensemble transform Kalman filter to quickly estimate the effect of measurement error 

covariance on forecast error covariance without the need to re-run the simulation 

model. Estimates of forecast error covariance from the two filters were significantly 

correlated, with correlations ranging between 0.979 and 0.292. The motivation 

behind the study was to assess the ability of the ETKF to target possible 

measurements, as part of an adaptive sampling framework, before they are 

assimilated by an EnKF based forecasting model on the River Crouch, Essex, UK. 

The ETKF was found to be a useful tool for quickly estimating the error covariance 

expected after assimilating measurements into the hydrodynamic model. It, thus, 

provided a means of quantifying the 'usefulness' (in terms of error variance) of 

possible sampling schemes. Since the Kalman filter provides a framework for 

considering errors resulting from uncertainty in both the simulation model and 

measurement data, it seems natural to base any adaptive sampling framework on 

similar principles, not least because potential measurements could be collected by 

multiple sensor platforms with different error statistics. 
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6 Adaptive space-time sampling with wireless sensor 

nodes for flood forecasting 

6.1 Introduction 

Several studies such as Sprokkereef (200 1), Madsen and Skotner (2005) and chapter 

4 of this thesis have reported increases in forecast accuracy when implementing state 

updating techniques on hydrodynamic models with stage measurements. This chapter 

is concerned with the supply of measurement data to a state updating forecasting 

model based on an EnKF and a hydrodynamic simulation model of the River Crouch, 

UK (chapter 4). Specifically, adaptive sampling techniques that facilitate a reduction 

in the need to transmit real-time data from a network of sensor nodes in the field to 

the forecasting model are developed and evaluated. The motivation behind this aim 

and some objectives are outlined in section 6.1.1, followed in section 6.2 by a 

description of the study site, sensor nodes, measurement data and forecasting model. 

Section 6.3 proposes two adaptive sampling methods and tests them with the 

forecasting system outlined in section 6.4, followed by a discussion and some 

conclusions. 

6.1.1 The FloodNet approach 

The use of in situ or ground-based measurements to provide inputs to flood 

forecasting systems has become more feasible with the advent of simpler and 

cheaper sensors, gauges, and loggers (Troch et al., 2003). The FloodNet project, 

which advocated the movement of computational power and communications 

capabilities onto networks of sensors in the environment through the concept of 

pervasive or ubiquitous computing, has initiated opportunities for the delivery of 

ground-based data in real-time and the development of adaptive monitoring systems. 

The FloodNet network is adaptive in the sense that individual sensors on the network 

are able to change their behaviour depending on the prevailing environmental and 
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infrastructural circumstances, whilst considering the status of other sensors on the 

network as well as data requests from external sources (DeRoure, 2005). 

The FloodNet sensor network presents an opportunity to develop a monitoring 

system (Fig. 6.1) where the collection and communication of real-time data is 

influenced by requests from an offsite flood forecasting model, although simulations 

from a local model on the sensor nodes could in theory also be used by such a 

network instead or in addition to the offsite forecasting model (Hughes et al., 2006). 

One objective of the approach adopted in the project was to reduce the power drain 

on the sensor nodes by communicating data in real-time only when required by a 

forecasting model, hence reducing the need to generate or store as much power at 

each individual sensor, extending the lifespan of sensors for a given power resource 

and reducing maintenance requirements. 

Field Site 

The outer loop links to the 
gateway. Information is then 
relayed to sensor nodes 

Users 

data 

Sampling 

Outer loop 

Web/GIS 

Sampling requests and 
forecast stage at sensor nodes 

Fig. 6.1: Conceptual diagram of the two FloodNet control loops. An inner loop 

comprising of a peer-to-peer wireless network and an outer loop moving 

measurements from the sensor network to a database and forecasting model , and then 

returning sampling requests to the sensor network. 

The functionality of the FloodNet system was based on two control loops (Fig. 6.1). 

The 'inner loop' operated on the wireless sensor nodes themselves and could be 

autonomous of any off-site intervention as required. Each sensor node on the 
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network had a set sampling rate, requiring samples to be taken at 5 minute intervals. 

However, an individual node was able to decide its reporting rate (regularity of data 

transmission) based on a 'demand value'. This could be derived locally based on a 

local metric such as the residual error between expected and observed water level or 

it could be prescribed by an external source. The adaptive behaviour was enabled 

through the FloodNet Adaptive Routing protocol (FAR) (Zhou and De Roure, 2007), 

which sets out rules for the operation of the network. When battery power was 

limited the protocol included this factor when deciding the reporting rate and the 

route data take through the network to the gateway node. The gateway node being a 

special node linked to a General Packet Radio Service (GPRS) modem that relays 

data to an off-site database. The 'outer loop' facilitated feedback from external users 

ofthe data by allowing 'demand values' to be prescribed for each sensor on the 

sensor network. 

In the present application, the forecasting model was a principal component of the 

outer loop. Therefore, data leaving the study site were archived and then assimilated 

with predictions made by the simulation model. Hence, demand values returned to 

the 'inner loop' should reflect the data requirements of the forecasting model. The 

novelty of this approach lies in the feedback of information from the forecasting 

model to the sensor nodes in the field as the driver ofthe network's adaptive 

behaviour. 

So far the topology of the FloodNet system has been considered from the point of 

view of the sensor network. However, it is also useful to consider the operation of the 

FloodNet system as an extension of a more general model updating problem. Using 

the schematic diagram from Refsgaard (1997) and WMO (1992) as a base to describe 

the process of forecasting and model updating, the effect of adaptive sampling on 

model updating is described in Fig. 6.2. This illustrates how outputs from the process 

model, which may have been updated previously, are the basis for determining 

demand. When transferred to the inner loop these demand values influence the future 

measurements that are provided to the updating procedure, completing the cycle. 

Two methods for generating demand values based on ensemble predictions are 
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discussed later in this paper, after a description of the study site, process model and 

updating procedure on which they depend. 

asted state variables ~ ------------i ------------------------1 ~-~ ~~ ~-

Process model 
'"\ 

t 
State Parameters 

va riables 

12 13 1 
Feedback loop 

Updating 
Procedure 

I 
~ 

: 

Adaptive 
sampling 

I
FloodNet I 
Outer loopl 

- - . - -
Measurements 

Forecasting and simulation after Refgaard (1997) and WMO (1992) 

Fig. 6.2: Schematic diagram of four different updating or data assimilation methods : 

1. Input updating. 2. State updating. 3. Parameter updating. 4. Error prediction. Also 

shown is the adaptive sampling concept, where grey boxes define FloodNet specific 

control loops. 

6.2 Study site and model setup 

The field site used in this study lies along the River Crouch in Essex, UK. The river 

flows for approximately 30 km west to east from Basildon (BNG: TQ 730 895) into 

the North Sea at BNG: TR 037 961 (Fig. 6.3). The underlying geology of the region 

is that of soft sedimentary rock laid down during the Tertiary Period, overlain by 

deposits from Pleistocene glacial periods. The catchment land cover is predominantly 

agricultural with several large towns including Basildon, Wickford, South Woodham 

Ferrers and Burnham-on-Crouch, along with numerous small towns and villages. The 

Crouch basin covers an area of 71.8 km2 with an average annual rainfall of 572 mm 

per year (Environment Agency) . It is flat and low lying to the extent that the 

maximum height above datum of the catchment is 118 m and tidal conditions extend 

some 20 km inland, two thirds of the total length of the river. Non-tidal flows on the 

upper third of the river are monitored by a gauge at Wickford (BNG: TQ 748 934). 

The contribution of flow to the estuary from the upstream non-tidal river is small 
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relative to the tidal flows. The lower two thirds of the river are characterized by 

estuarine silt and mud of less that 0.2 mm. Where embankments are not present the 

river is flanked by areas oftidal salting. The tidal range at Burnham-on-Crouch 

varies between 3.2 m at neap tide and 5.0 m at spring tide. 

The field site itself was situated in the Brandy Hole area of the river. It consisted of a 

2.5 km stretch of estuary and approximately 1 km2 of tidal salting that sits behind a 

derelict sea wall (Fig. 6.3). At its mouth the river is approximately 700 m wide and 

up to 14 m deep at high tide. By the eastern (downstream) extent of the field site the 

channel width decreases to around 350 m at high tide with a depth of up to 10m. At 

the western (upstream) extent of the field site the channel width is up to 190 m with a 

depth of up to 5 m. The tidal salting is characterised by numerous small channels 

typically with steep banks around one or two metres high. Some of these channels 

were cut artificially when the sea wall was first breached, whist others have formed 

over time. The presence of artificial channels leads to the striped drainage pattern 

that can be seen on some areas of the salting particularly around sensor 5. The 

eastern and southern limits of the salting are set by an embankment. The river flows 

across the northern side of the salting whilst its western extent is limited by a gentle 

slope towards higher ground that makes the salting edge difficult to delineate. At low 

tide the salting was observed to drain almost completely whilst becoming fully 

inundated on a spring tide. 
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Fig. 6.3: Location of sensor nodes and RC model topology. 

6.2.1 Sensor node hardware 

The study site was monitored using eight Druck 1830 series pressure transducers 

(GE Druck) measuring water level in the channel and on the floodplain. Each 

pressure transducer formed part of a FloodNet sensor node, which included a BitsyX 

single board computer (Applied Data Systems), an Intel PXA255 RISC 

microprocessor to provide field processing capabilities and a solar panel as a power 

source. The sensor nodes were linked via a wireless IEEE 802.11 b computer network 

to a GPRS modem on a gateway node, enabling real-time data transmission to the 

user from the site. The nodes were able to communicate over a range of around 600 

to 800 m. A combination of this and the presence of obstructions such as sea walls, 

trees and buildings at the Brandy Hole field site, meant that most nodes did not have 

a direct link with the gateway node. Consequently, data from sensors on the 

periphery ofthe network had to route their data via other nodes to reach the gateway. 

Taking measurements and storing them locally on a sensor requires very little power 

(around 60 m W) relative to activating the single board computer and transmitting 

data (around 1200 m W). Power can be saved by collecting and sending data less 

often. A FloodN et sensor can store up to 12 measurements (a measurement includes 
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the sensor measurement, a measurement variance estimate, the battery power and the 

time) before it needs to transmit the measurements, overwrite previous measurements 

or move the measurement data onto the single board computer. This functionality 

allows a short archive of data to be collected regardless of the need for the data in 

real-time. It also allows nodes that become isolated for any reason to continue 

collecting data until they re-establish connectivity with the gateway or have their 

data downloaded manually. Therefore, it is power efficient to send data in larger 

batches rather than as a continuous stream. More information on the FloodNet sensor 

nodes can be found in Kaun (2005). 

6.2.2 Measurement data 

The archive of data used in this paper was collected between 4th and 26th November 

2005 by eight sensors. Selected attributes of the eight sensors deployed at the filed 

site are summarised in Table 6.1. No sensor was inundated all of the time. Sensor 2 

was located at the lowest elevation and collected the most complete time series of 

data typically collecting measurements in excess of 4 hours prior to high tide. The 

other sensors were at higher locations and collected less data. A measurement is 

defined as the mean of 32 repeat samples from which an estimate of measurement 

variance was also made. These variance values could have been used, as 

demonstrated in chapter 4. However, to simplify the implementation the average of 

these variance values (0.005 m) was taken and applied to all measurements. 
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Table 6.1: Sensor nodes and measurement data. 

Sensor Elevation No Easting (m) 

(m) measurements 

1 0.634 m 2439 582311.7 

2 -0.917 m 4143 582980.9 

3 -0.278 m 3424 583356.3 

4 0.397 m 2688 583861.1 

5 1.340 m 800** 583142.3 

6 1.518 m 1345 583559.8 

7 1.244 m 1781 583554.7 

8 1.820 m 1000 583859.8 

* Sensor node was <100m from channel. 

** Data missing due to sensor node failure 

6.2.3 Forecasting model 

Northing (m) Location 

195783.1 Channel 

195958.4 Channel 

195660.0 Floodplain* 

196189.6 Floodplain* 

195096.2 Floodplain 

195270.1 Floodplain 

196016.5 Floodplain 

195531.7 Floodplain 

Measurements from the FloodNet sensor network were assimilated with state 

simulations from a one dimensional hydrodynamic model (RC model), using an 

ensemble Kalman filter (EnKF). The RC simulation model was based on the ISIS 

flow code (HR Wallingford). The model simulates stage and flow over 161 spatially 

distributed nodes of which measurements were available at up to eight. The model 

can be described in its state space format as: 

x(t,k) = M(x(t -1,k), e(k ),u(t -1)+ &(t -1, k )), (6.l) 

where x is the N-by-one model state vector (stage and flow at each node and the 

downstream boundary condition error), M is the model operator, e is the global 

roughness parameter of all model nodes, u is the downstream stage-time boundary 

condition of the model and G is an error in the downstream boundary condition 

generated by a first order autoregressive model. Superscript a refers to 'analysed' 

state estimates made after the assimilation of measurements, whilst/is forecasted 

state made by the simulation model, but based on previously assimilated 

measurements. Subscript k indicates that the variable is part of an ensemble, whilst t 
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is the time step. In this paper, the ensemble size K was always 60. More details on 

the structure and parameterisation of the RC model were presented in chapter 5. 

State was updated by an EnKF with the general form 

where y is a vector of perturbed measurement data, R is the measurement error 

covariance and H is a linear measurement operator which maps the measurement 

vector y onto the state vector x. A detailed description and derivation of the EnKF 

algorithm can be found in Evensen (2003). The relationship between measurements 

and the true state of the system can be expressed by the measurement model 

(6.3) 

where 11 is a vector of un correlated errors sampled randomly from a distribution with 

zero mean and variance 0.005, which when added to the measurement data is used to 

generate the measurement ensemble. pI is the forecast state error covariance 

estimated from the forecast state ensemble (Evensen, 1994) such that: 

(6.4) 

where the over-line denotes the ensemble mean. Modelled state error covariance P 

was assumed to be independent of the measurement error covariance R. 

6.3 Adaptive sampling methods and results 

The RC simulation model produced ensemble state estimates between a time Ii and a 

validation time tv at high tide. For the purpose of this experiment ti was always four 

hours prior to the validation time. This maximum forecast lead time would ideally be 

greater. However, the location of the FloodNet sensors limited the lead time on 
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measurements to four hours. The measurement data from the eight FloodNet sensors 

were collected at five minute intervals and could have been transmitted at this rate 

for short periods should this have been necessary. However, two practical 

considerations prevented this entire data set from being considered. Firstly, each 

snapshot ofRC model state required 16Kb of memory, which, for the 60 model 

ensembles used here, summed to approximately 1Mb. Archiving these snapshots for 

the 40 tidal cycles would have required almost 2Gb of memory before any analysis 

had been conducted. The second reason for not considering more target times was 

related to the setup of the hydrodynamic model. Put simply, the parameter files that 

control the operation of the ISIS flow model permit the user to specify only ten state 

snapshot times during any particular simulation. These snapshot files were needed to 

provide the state vector of each ensemble member Xk to the EnKF. One snapshot file 

was needed at the validation time and one to record the initial conditions. Therefore, 

it was convenient to have eight target times between the first background forecast 

and the validation time. Target times were set at 20 minute intervals from ti, which 

left the last target time at 1 hour 20 minutes prior to the validation time, as illustrated 

by the adaptive sampling timings in Fig. 6.4. 

I IIIIIII I 
f. z ti+m, m=r+l ti+m, m=r+6 

Fig. 6.4: Adaptive sampling timings. 

Measurements taken by the FloodNet sensor nodes had a single purpose, which was 

to populate the EnKF measurement model CEq. 6.3) such that the simulation model 

state could be updated CEq. 6.2) and an ensemble forecast issued. The theoretical 

starting point for the adaptive sampling problem was that more data would give a 

more accurate representation of current reality and that this more accurate 

representation of initial reality will then lead to an increase in forecast accuracy. 

Ideally, there would be no uncertainty in initial conditions; i.e., an infinite number of 

measurements with no uncertainty had been collected over the model domain. This is 
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not possible, especially in this case where there are only eight sensors with limited 

power. Therefore, the adaptive sampling problem was defined as comprising of two 

competing objectives: 

1. To supply measurements such that a sufficiently accurate forecast can 

be issued as early as possible or before a given time. 

2. To make as few real-time data transmissions as possible in order to 

save power on the sensor node. 

Two adaptive sampling scenarios called Method 1 and Method 2 were implemented 

in this study and are described below. Broadly speaking, the first is designed to 

complement objective 1 and the second is designed to complement objective 2. 

6.3.1 Method 1 

In Method 1 data are requested from the FloodNet sensor nodes until the probability 

of the water level at a validation location exceeding a threshold over a pre

determined forecast period is less than 5%. The ensemble of model simulations was 

used to calculate the probability p of the water level h exceeding a threshold level a 

at a validation location} at a validation time tv , It was assumed that the validation 

location could be directly mapped onto the model state vector. Therefore, the 

forecasted probability was conditional on the parameters, initial conditions and 

boundary conditions of the forecasting model as well as the measurement data used, 

leading to: 

(6.5) 

where I represents an indicator function. A default reporting rate of once every 20 

minutes was set for each sensor. For this test, sensor 8 (see Fig. 6.3) was selected as 

the validation location because of its location away from the main channel at a high 

point on the salting (Table 6.1). The threshold a was set to 3.2 m. After each new 

measurement set was received the RC model ensemble was updated and simulations 
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were run to the validation time. The probability of the threshold a being exceeded at 

a validation location (at sensor 8) was then estimated. If this probability was above 

0.05 the reporting rate would remain at the default level. However, if this was not the 

case the reporting rate could be reset to something less frequent when the next report 

was sent. In this example, no more reports were made between the decision being 

made and the validation time. 

The threshold a from Eq. 6.5 was set at 3.2 m above ordnance datum (Newlyn) for a 

validation location at sensor 8. The measured maximum stage at this location for 

each tide is shown in Fig. 6.5, along with the mean of the background simulations 

made by the RC model without data assimilation. Only events 21 and 23 were 

observed to cross the threshold, whilst events 20, 21 and 23 were predicted to exceed 

the threshold by the background simulations. Observed maximum stage was both 

greater than and less than the simulated values. None of the tides shown in this series 

breached the sea defences along the river and, therefore, did not represent conditions 

where flows and stores of water might occur in areas outside the model domain. 
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Fig. 6.5: Scatter plot of 39 high tides at the location of sensor 8 as predicted by the 

RC model without data assimilation (Dots) and measured by sensor 8 (crosses). 
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The results of adaptive sampling Method 1 will now be summarised. Fig. 6.6 shows 

the forecasted probability of exceeding threshold a, the number of reports needed to 

reach the stopping criteria and forecast peak stage as boxplots. For 27 of the 39 tides 

one report at the first target time was required to meet the stopping criteria. Of the 

remaining 12 tides five met the stopping criteria after the first target time but before 

the final target time, whilst seven required all nine target times of which two were 

observed to exceed the stage threshold. The probability of flooding was one during 

tide 21 indicating that all the 60 forecast state estimates exceeded threshold a and 

0.67 for the other event observed to exceed the threshold (tide 23). The two tides 

observed to exceed the threshold had the greatest probability estimates. Other events 

with a significant probability of exceeding the threshold after nine target times were 

2, 16, 17,24 and 25 with probability values of 0.23,0.52,0.07, 0.13 and 0.08 

respectively. For 22 tides no simulations exceeded the threshold; therefore, returning 

a probability of zero due to the finite number of ensembles. 
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Fig 6.6: Results of adaptive sampling Method 1. Box plots show the upper quartile, 

median and lower quartile of simulated high tide; whiskers extend over the range of 

the data with crosses indicating outliers. Circles indicate observed stage peaks. 
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If measurements had been reported at each of the nine target times over the 39 tides 

there would have been 351 reports from the sensor network. In this example, only 

120 were required by the adaptive sampling method, leaving 231 reporting times that 

were not required. However, as the instruction to stop reporting was retrospective of 

the measurement being assimilated an additional report (at the next target time) was 

required for each tide where all nine target times were not used. Therefore, an 

additional 32 reports were needed, giving a total of 152 reports, or a saving of 199 

reports. These results are likely to change markedly for different periods of time and 

different thresholds. 

The boxes at the bottom of Fig. 6.6 show the upper quartile, median and lower 

quartile of the simulations of peak tide; whiskers extend over the range of the data 

with crosses indicating outliers. The observed stage peaks are shown as circles. 

Ideally, observed peak stage should almost always fall within the range of box plot 

whiskers and occur within the boxes around 50% of the time. However, there were 

eight tides (numbers 11, 13, 14, 15, 16, 17 and 40) during which the observed stage 

was below the box plot distribution. This represents a significant number of events 

where the uncertainty in the forecasts has been under-estimated the bias being 

induced by the updating procedure or the simulation model becoming unstable. 

Evidence for the latter two will now be presented in the form of example events. 

For tides 11 and 13 there was a phase difference between the background predictions 

and observed stage. This phase difference manifested itself as a large stage error in 

the subsequent forecast as shown by event 13 in Fig. 6.7. The subsequent simulations 

were less accurate because the updating procedure assumes that all observed errors at 

the boundary condition constitute a magnitude error. The correction to the 

downstream boundary conditions drives the forecast above observations rather than 

adjusting the timing of the event. This trait represents a significant limitation of the 

error model at the downstream boundary of the RC model. 
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Fig_ 6.7: Event 12 showing evidence of a phase difference between the background 

forecast mean and the observed tide along with major model instability. The dots are 

observed stage; the bold line is the RC model prediction of stage without data 

assimilation; the thin lines are RC model forecasts with data assimilation at the 

stopping time for this event. 

Event 13 shows model instability shortly after the update time, which has caused the 

mean state estimates to fall rapidly, before the driving forces at the model boundary 

take over to wash out the effect of the instability. Tides 14-17 were all neap tides of a 

lesser magnitude than expected. It could be argued that the filter was reacting 

sluggishly to the measured data and, thus, the forecasts were inaccurate. However, 

the error model at the model boundary is the principal cause of the error rather than 

the filter. Example tides where the simulation model and observations were in phase 

and free of major instabilities are shown for a tide similar to the background forecast 

(Fig. 6.8, event 35), a tide of lower than expected magnitude (Fig. 6.9 event 18) and 

a tide of greater than expected magnitude (Fig. 6.10 event 5). These forecasts were 

made from the stopping target times. 
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Fig. 6.8: Tide 35 where the background simulation was similar to the actual tide. 

Includes the model forecast at stopping point. The dots are observed stage; the bold 

line is the RC model prediction of stage without data assimilation; the thin lines are 

RC model forecasts with data assimilation at the stopping time for this event. 
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Fig 6.9: Tide 18 where the background simulation was greater in magnitude than the 

actual tide. Includes model forecast at stopping point. The dots are observed stage; 

the bold line is the RC model prediction of stage without data assimilation; the thin 

lines are RC model forecasts with data assimilation at the stopping time for this 

event. 
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Fig. 6.10: Tide 5 where the background simulation was less than the actual tide. 

Includes the model forecast at stopping point and shows evidence of model 

instability. The dots are observed stage; the bold line is the RC model prediction of 

stage without data assimilation; the thin lines are RC model forecasts with data 

assimilation at the stopping time for this event. 

6.3.2 Method 2 

This method aims to inform the reporting pattern of each sensor using an ensemble 

transform Kalman filter (ETKF) (Bishop et al., 2001). This method was shown to 

make reasonable estimates of analysed and forecast error variance under certain 

conditions for the RC model in chapter 5. Ensembles of RC model simulations were 

available from 4 hours prior to the validation time ti to the validation time tv (high 

tide). The EnKF was used to assimilate a routine measurement from sensor 2,20 

minutes after t i • From these updated initial and boundary conditions a 'background' 

forecast made up of 60 RC model simulations was issued. From these background 

simulations an N-by-K state matrix X was extracted at five target times equally 
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spaced at 20 minute intervals between 3 hours 20 minutes and 2 hours prior to the 

validation time. A state ensemble was also extracted at the validation time (Fig. 6.4 

timings plot). Perturbations about the mean state were calculated for each state 

ensemble member and scaled by the square root of the ensemble size minus one, to 

gIve z: 

(6.6) 

where t is the time and superscript r indicates that the forecasted state perturbations 

were dependent on the routine measurement 3 hours 40 minutes prior to the 

validation time. By repeating Eq. 6.6 for each member of the ensemble the columns 

of the state perturbation matrix ZVIH r ) can be populated. This was done for each of 

the target times and the validation time. State error covariance at any of the 

validation or target times was approximated by: 

(6.7) 

As shown by Figs 6.3 and 6.4 and Table 6.1 there were five target times and eight 

sensor locations at which measurements could be taken. Each possible measurement 

was considered independently giving up to 40 or Q possible measurements. For the 

qth measurement the signal covariance matrix S was calculated using the method 

described by Majumdar et al. (2002) whereby: 

where I is a K-by-K identity matrix, Cq is a K-by-K matrix of eigenvectors and r is a 

K-by-K diagonal matrix of eigenvalues of the matrix ZTZ(Livings, 2005) where: 

(6.9) 
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and subscript m indicates the target time of the qth measurement. An approximation 

of the signal covariance matrix at the validation time given the qth measurements 

S(tvIHq) was then provided by substituting the ensemble perturbations at the target 

time in Eq. 6.8 with those at the validation time (Bishop et al., 2006): 

(l0) 

From this matrix the signal variance at the validation time and location was extracted 

as a measure of the information content of the qth measurement, given the routine 

measurement. This allowed a table of the expected signal at each sensor location and 

target time to be built up. This is illustrated for tide 21 by Fig. 6.11, where signal 

variance at the validation time and location is shown for eight sensor locations and 

five target times. The signal tended to increase the closer the target time to the 

validation time, with the exception of sensor 6. The signals obtained from the four 

sensors nearest the channel (sensors 1,2,3 and 4) were similar. Sensor 7 was 

forecasted to be dry at each target time and was, therefore, expected to yield no 

signal. Sensor 5 (the furthest sensor from the channel) provided a weaker signal than 

the other sensors, whilst sensor 6 initially provided a relatively strong signal until 

target times 4 and 5. The measurement with the greatest signal was that from sensor 

2 at target time 5. However, it is worth noting that all the sensors close to the 

floodplain produced similar signals at this target time. Therefore, it may be equally 

acceptable to choose one of the other sensors should there be circumstances which 

make using sensor 2 less appealing. For example, sensor 2 reported the routine 

measurement, whilst the other sensors were dormant. Should sensors 1, 3 or 9 have 

more power as a result it may be desirable to use these sensor instead of sensor 2. 
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Fig. 6.11: Bar chart of signal variance for Q possible measurements spread over eight 

sensor locations and five target times. 

Upon choosing the measurement from sensor 2 at target time 5 the next step was to 

update the ensemble perturbations at each target time and the validation time such 

that the next measurement could be chosen. For the chosen measurement location 

and time a transform matrix Tq was calculated such that: 

(6.11) 

where P~i+M IHq ) is the analysed error covariance at the target time associated with 

having assimilated the routine measurement and the qth expected measurement. 

Wang and Bishop (2003) showed that T could be calculated by: 

(6.12) 
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The ensemble state perturbations were updated at the other four target times and the 

validation time by substituting the ensemble perturbations at the chosen 

measurement time with those at the other times in Eq. 6.11. Conveniently, the state 

perturbations after assimilating the chosen measurement zvlHq) are the product of 

ZVIH r )rq . The next measurement, of a possible Q-l measurements , was chosen by 

repeating Eq's 6.8 to 6.12 using the updated state perturbations instead of the routine 

state perturbations. For the previous example tide, the signal variances at each sensor 

location and target time after assimilating a potential measurement from sensor 2 at 

target time 5 are shown in Fig 6.12. Relative to the signal variances in Fig. 6.11 the 

signal variances at target time 5 are reduced six fold for the channel sensor nodes, 

but less so at earlier target times and for the floodplain sensor nodes . The greatest 

signal variances now tended to occur 60 minutes earlier at target time 2, with sensor 

six providing the single largest signal variance at this time. 

2.5 

2 

I 
~ 1.5 
c:: 

'" . ~ 

..': 1 
'" c:: 
Cl 

iJi 
0.5 

o 

5 

Sensor location 

Target time 

Fig. 6.12: Bar chart of signal variance for Q possible measurements spread over eight 

sensor locations and five target times, given a measurement from sensor 2 at target 

time 5. 
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In theory, Method 2 has targeted measurements within the constraints of the sensor 

network topology in terms of the reduction in peak tide variance or signal variance. 

From here onwards, sets of measurements that are believed to lead to the greatest 

reduction in state variance at high tide will be called 'best' measurement sets. It 

should be equally possible to target the measurements that are believed to lead to the 

smallest reduction in state variance at high tide. These measurement sets will be 

referred to as the 'worst' measurement sets. For tide 21 this was done by selecting 

the measurement with the least signal (sensor 5 at target time 3) from Fig. 6.11. 

Sensor measurements of no water (zero depth) were removed from the list of 

possible sensor measurements prior to the implementation of Method 2. This was 

necessary because the sensors were not always at the lowest point of the channel 

cross section or floodplain reservoir, meaning that the RC model nodes could be wet 

without a measurement being taken. Therefore, the absence of a measured water 

depth did not confirm that the area represented by the model node was dry; only that 

the water level was below the sensor. In a real time context, prior knowledge of when 

sensors are dry can only be estimated from the state ensemble. So there is a risk of 

targeting measurements at dry sensor nodes, especially if the validation time and 

location is such that the method prefers measurements towards the flood edge. 

Method 2 was used to select the six best and worst measurements in terms of peak 

signal variance for 39 tides. For tide 21 the six best measurements in order of 

preference are shown in Table 6.2, with the six worst shown in Table 6.3. The first 

and second columns of Tables 6.2 and 6.3 list the sensor node and target time from 

which to take a measurement. Also shown are the ETKF estimates of signal variance 

and error variance a posteriori to the measurement being assimilated. The final 

column contains the measurement itself. The first sensor selected by the best 

algorithm was a channel node at the closest target time to the validation time. The 

next sensor selected (sensor 6) was on the floodplain towards the validation location 

around the time this location would have been inundated for the first time. The 

remaining measurements are near the main channel at either early or late target 

times. Signal variance drops by about half between the first and second targeted 

measurement and then by a further two thirds by measurement three. Incidentally, 
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the signal variance of the routine measurement at sensor 2 was 0.0508 m, almost ten 

times the first targeted measurement, whilst being further in time from the validation 

time than any of the potential targeted measurements. 

Table 6.2: Selected measurements from tide 21 chosen by adaptive sampling Method 

2 in terms of signal variance. 

Sensor Target time Signal variance (m) Error variance (m) Measurement (m) 

- pnor - 0.0951 -

2 routine 0.0508 0.0443 0.892 

2 5 0.0052 0.0390 2.385 

6 2 0.0024 0.0366 2.005 

3 5 0.0008 0.0358 2.375 

2 2 0.0005 0.0353 1.958 

4 1 0.0005 0.0349 1.552 

3 2 0.0004 0.0345 1.988 

Table 6.3: Selected measurements from tide 21 chosen by adaptive sampling Method 

2 in terms of least signal variance. 

Sensor Target time Signal variance (m) Error variance (m) Measurement (m) 

- pnor - 0.0951 -

2 routine 0.0508 0.0443 0.892 

5 3 <0.0000 0.0442 1.248 

9 1 0.0001 0.0441 1.552 

6 2 0.0008 0.0434 0.848 

5 5 0.0008 0.0426 2.411 

5 4 0.0004 0.0422 1.622 

5 5 0.0008 0.04l3 2.022 

Selecting the measurements that were expected to yield the least signal variance at 

the validation time resulted in a preference for floodplain sensors at target times 

away from the validation time. Table 6.3 shows that sensor 5 at target time 3 was 

selected as the least useful measurement in terms of signal variance. Referring to the 

sensor locations map in Fig. 6.3 this sensor was farthest from the channel and 
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farthest from the validation location of all the floodplain sensors. Since most of the 

errors in this model propagate from the RC model's tidal boundary it seems 

reasonable to assume that error propagation is the principal driver when selecting 

sensor locations rather than the proximity to the validation location. Conceptually, 

this makes sense as the tide is a wave of low frequency relative to the sampling 

interval, such that, sampling the peak of the tide gives more information on its 

amplitude at a distant point in space and time, than sampling the validation location 

prior to the arrival of the wave peak. 

When targeting measurements to obtain the greatest signal variance (Table 6.2), 

signal variance decreased rapidly as the number of measurements increased. This 

was not the case when selecting the worst signal, where signal variance fluctuated as 

more measurements were selected due to the combined effect of selecting the worst 

measurements (hence leaving those with greater signals) and decreasing error 

covanance. 

Testing the ETKF estimates of signal variance against those from the EnKF approach 

was computationally difficult, as it involved running the RC model repeatedly from 

the target times to the validation time. For each tide, the EnKF and simulation model 

was run from ti to tv for one measurement, then again for two measurements, and 

again for measurements three through six. To mitigate this problem the test was run 

only on tides 18 to 40, the reasons being that tides 18 and 19 were the first not to 

require one or all of the available target times when applying Method 1 and tide 21 

was the largest tide in the series. Since the ETKF required only a few minutes on a 

2.4 GHz PC to conduct the same analysis, it was run for all 39 events, with events 2 

through 17 discarded from subsequent analysis so that a direct comparison could be 

made with the EnKF results. For both the EnKF and ETKF based approaches the 

variance forecasts for each tide were calculated given varying numbers of 

measurements. From tides 18 to 40 the median, greatest and smallest estimates of 

forecast error variance made by the two approaches were extracted. The median was 

used because the distribution was skewed towards larger variances. A comparison 

between the two approaches is made in Fig. 6.13, with forecast error variance at the 

validation time and location on the y-axis, and the total number of targeted 
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measurements assimilated on the x-axis. Also shown are the prior error variance and 

the forecast error variance at the validation time and location, after assimilating the 

routine measurement. The bold lines on Fig. 6.13 indicate the median forecast error 

variance, with the thinner lines indicating the largest and smallest variances. The 

continuous lines are taken from the EnKF -based forecast error variance, whilst the 

broken lines are variances estimated by the ETKF. Results are shown for the best 

measurement case (darker lines) and the worst measurement case (lighter lines) 

described above. There were, therefore, four sets of results: 

1. EnKF with best measurement set. 

2. EnKF with worst measurement set. 

3. ETKF with best measurement set. 

4. ETKF with worst measurement set. 

The plot shows that the greatest fall in forecast error variance usually occurred as a 

result of assimilating the routine measurement, followed by the first targeted 

measurement in the best measurements case, but the third targeted measurement in 

the worst measurement case. The worst measurement scenario tended to be 

distributed over greater values of error variance than the best measurement scenario. 

The upper and lower extent of the variances as denoted by the thinner lines shows a 

closer agreement between the lower extents than the upper extents. Therefore, the 

ETKF was more accurate when predicting the lower extent of the variance range than 

the upper extent, where anomalies are present after targeted measurements 1 and 5. 
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Figure 6.13: Results of adaptive sampling Method 2. The plot shows forecast error 

variance prior to data assimilation, after the routine measurement and after 

assimilating a further one to six measurements chosen by the ETKF. Continuous 

lines summarise the median (thick line) or range (thin lines) of forecast error 

variance from the EnKF, whilst broken lines denote equivalent estimates by the 

ETKF. Black lines indicate that the 'best' measurement set was assimilated; whilst 

read lines indicate that the 'worst' measurement set was assimilated. 

The ETKF always predicted that assimilating a measurement would result in a 

decrease in forecast error variance, although, these decreases were small for the first 

worst measurement and later best measurements. This is easier to see in the close-up 

of the median error variance estimates from the four sets of model runs shown in Fig 

6.14. The median of the ETKF predictions were similar to the EnKF for the first and 

second targeted measurements, with the worst measurement set having the greater 

median error variance. When more than two targeted measurements were assimilated 

the ETKF variance forecast was less than the EnKF variance forecast. In fact, the 

median error variance increased as more measurements were assimilated. This 

increase in EnKF error variance was due to the likelihood of model instability in RC 
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simulations increasing as more measurement data were assimilated by the EnKF (see 

chapter 5). 
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Fig. 6.14: Results of adaptive sampling Method 2 with median results only. 

6.4 Discussion 

As with many sampling design problems, adaptive sampling is a trade off between a 

desire to collect as much information as possible through observation and the 

limitation of only being able or willing to make a finite number of observations. The 

river monitoring problem outlined here is both spatial and temporal in that state 

changes over both of these dimensions. Crucially, these changes are not entirely 

random but are correlated in a manner that can be partially predicted. Through an 

understanding of the processes and driving forces that govern these changes it was 

possible to simulate state with the RC model. By incorporating uncertainty into the 

forcing terms and parameters of the process representation ensembles of equally 

likely states were simulated, allowing state to be treated as a random variable rather 

168 



than a deterministic prediction. In this application, state error covariance was 

approximated from state ensembles generated by the RC model, and used as part of a 

near-optimal sequential data assimilation process based on an EnKF. The outcome of 

this process was an updated state ensemble conditioned on both the model 

predictions and measurements of state, which was used to provide the initial 

conditions for a state forecast. Method 1 was based upon these forecasts since it 

demanded data from sensor nodes until the probability of state exceeding a threshold 

was less than 5%. 

Method 1 was inefficient in that the measurement data collected were not prioritised 

based on any measure of their usefulness, but were collected simply because the 

forecasting model predicted a significant probability of flooding. This inefficiency 

contradicted objective two of the adaptive sampling problem outlined in section 3. 

The ensemble of model simulations needed to be propagated from the time of the 

targeted measurement to the validation time each time a decision about further 

sampling was made. This was computationally expensive since the simulations were 

by far the most computationally intensive component of the forecasting model. To 

implement Method 2 the simulation model had to be run twice between the routine 

measurement time and the validation time, once to generate the background forecasts 

and once to assimilate the measurements and issue a forecast. Therefore, when 

Method 1 required more than one target time it was computationally more intensive 

than Method 2. Furthermore, the computation required to implement Method 2 is 

known a priori whereas the computation required for Method 1 is not. A further 

problem with Method 1 is that it is not suitable as a means of deciding when and 

where to collect measurements as it only provides a stopping criterion, rather than a 

framework for targeting observations. 

The information content or usefulness of the measurements fed into the EnKF was 

directly related to the reduction in error (co )variance brought about by assimilating 

them. It follows that the greater the reduction in error variance the more useful a 

given number of measurements and the more efficient the sampling design, 

complementing adaptive sampling objective two. Method 2 complements objective 

two because it provided a framework for targeting measurements based on signal 
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variance. This allowed it to be more efficient than Method 1 because measurements 

were targeted based on their signals, rather than simply measuring at the next 

opportunity. However, the probability of flooding could only be estimated if it was 

assumed that the ensemble mean was not changed by the subsequent measurement 

data. Herein lies the principal problem with Method 2 in that it does not provide a 

direct solution to objective one of the adaptive sampling problem. For example, 

although signal variance can be estimated the change in the ensemble mean is 

unknown and, thus, the probability of state exceeding a threshold is also unknown. 

Therefore, Method 2 would appear best suited to a scenario where only a finite 

number of resources are available with which to take measurements, rather than the 

more flexible situation found here because it cannot provide a probability value until 

after the measurements have been collected. However, for the River Crouch example 

presented here the increase in signal variance decreased rapidly as more 

measurements were assimilated (Fig. 6.13). The ETKF predicted that 95% of the 

signal variance from the routine measurement plus six targeted measurements was 

available from two targeted measurements and that 99% was available from three 

targeted measurements. In fact, this estimate is probably conservative because the 

routine measurement would not have been selected as the optimal first measurement 

due to its timing. A further point, which is possibly specific to this model, was that 

state instabilities in the simulation model increased as more measurement data were 

assimilated, making it counterproductive to assimilate more than two-to-three 

targeted measurements in practice. This may be solved through improvements to the 

simulation model or additional rules concerning the specification of initial conditions 

prior to issuing forecasts. 

Method 2 raises a number of issues for the design and operation of the sensor 

network at this site: 

1. Most of the sensors at this site add little to signal variance since model errors 

develop and propagate over much greater distances than those of the 

deployment. 

2. Taking the maximum 12 measurements in an hour and then transmitting a 

real-time measurement once an hour is likely to provide almost as much 
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signal variance as transmitting every 20 minutes. Thus, for an adaptive 

sampling procedure to be required the sensors would need to be capable of 

storing more measurement data but need not transmit data as often. 

3. In theory Method 2 could be used to plan a redeployment of the sensor nodes, 

such that, the sensor network layout is optimised for signal variance, 

potentially providing a framework for mitigating the situation outlined in 

point 1, where most of the sensors add little to the signal variance. 

The final point in the above list is as yet untested. It is not known to what extent 

ETKF will be able to distinguish between potential sensor locations, especially as the 

distance between a sensor and the validation location increases. For example, will 

spurious covariance relationships between possible sensor locations and other 

locations in the model state space lead to a physically umealistic sampling 

framework being proposed? This issue will be investigated further in the next 

chapter. 

One thing to consider about both adaptive sampling methods is that they collect 

measurements only on certain aspects of the state dynamics as determined by the 

simulation model. The preference for certain measurements may lead to bias if used 

as part of a parameter estimation procedure because the model parameters would be 

tuned to the targeted measurement(s). Thus, forecasting algorithms with online 

parameter estimation may not be suitable in situations where adaptive sampling has 

been used to collect measurements, instead of a sampling framework designed to 

gather calibration data. This is especially true in the case of the ETKF where the 

targeting of measurements relates directly to the parameterisation of the simulation 

model and sources of uncertainty used to generate the state ensemble. 

Whilst the adaptive sampling methods presented here both meet the original aim of 

providing a framework for transmitting less real-time data from the FloodNet sensor 

network there are several outstanding issues raised by the experiments conducted. 

For the forecasting model, simulation instability had a detrimental effect on model 

forecasts not accounted for by the ETKF. An improved definition of model 

parameters and sources of uncertainty was also required, especially as they may be 
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different to those of relevance in a model calibration situation. From an adaptive 

sampling viewpoint the test needs to be conducted at a location where there are 

significant differences between the information provided by different sensors and a 

genuine need for multiple sensors. A larger river catchment with multiple regions of 

rainfall-based flow generation or significant tidal and precipitation induced flows 

would provide a more robust test. This is particularly important for Method 2 where 

the assumptions made by the ETKF over those of the EnKF were not adequately 

tested by the topology of the sensor network. For example, how accurate would the 

ETKF estimates of signal variance be in a situation where the validation location was 

displaced spatially from possible target locations, and there was a two day lead time 

between a flood peak arriving at each? 

Not all FloodNet sensor nodes had a direct link to the gateway node, with which to 

transmit their data offsite. These nodes required intermediate nodes through which 

data could be routed to the gateway node. Method 2 did not consider this routing 

component when targeting measurement from sensor nodes on the periphery of the 

sensor network relative to the gateway node. Since a node would need to be on and 

using power in order to act as a relay between a targeted node and the gateway node 

it could send its own measurements at little extra power cost. This property of the 

FloodNet network needs to be incorporated into Method 2 to more accurately reflect 

the cost of taking a measurement. Furthermore, there is the potential to speed up 

sampling decisions by making them on the FloodNet 'inner loop' in a more bottom 

up approach than those advocated here. 

6.5 Conclusions 

For the RC forecasting model used here measurements taken systematically over 

space and time were shown to be less efficient than those targeted by an ETKF at 

reducing forecast state errors. Therefore, when the propagation of state errors can be 

simulated and the objective of the exercise is to forecast certain extreme conditions, 

rather than characterise the spatio-temporal state dynamics as a whole, adaptive 
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sampling can be a more efficient means of sampling than a simple systematic 

method. 

Measurements taken by the FloodNet sensor network were highly spatially correlated 

due to the relatively small distances between sensor nodes. This meant that 

assimilating measurements from multiple sensors had a limited effect on error 

variance and provided a limited test of the ETKF used by Method 2. The forecasting 

model was prone to state instability, especially as more measurements were 

assimilated. This issue requires further investigation and prevented a more detailed 

analysis of the difference between ETKF and EnKF derived estimates of error 

covanance. 
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6.6 Summary 

The movement of computational power and communications capabilities onto 

networks of sensors in the environment through the concept of pervasive or 

ubiquitous computing has initiated opportunities for the delivery of ground-based 

data in real-time and the development of adaptive monitoring systems. 

Measurements of water level taken by a network of wireless sensors called 

'FloodNet' were assimilated into a one-dimensional hydrodynamic model using an 

ensemble Kalman filter, to create a forecasting model. This research focused on 

methods for targeting measurements in real-time to be assimilated by the forecasting 

model, such that these power limited but flexible resources could be used optimally. 

Two targeting methods were developed. The first targeted measurements 

systematically over space and time until the forecasting model predicted that the 

probability of the water level exceeding a pre-defined threshold was less than 5%. 

The second method targeted measurements based on the expected decrease in 

forecasted water level error variance at a validation time and location, quickly 

calculated for various sets of measurements by an ensemble transform Kalman filter. 

Targeting measurements based on the decrease in forecast error variance was found 

to be more efficient than the systematic sampling method. 
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7 Optimal sampling design with an ensemble 

transform Kalman filter 

7.1 Introduction 

The principal objective of chapter 6 was to adapt the sampling framework of the 

FloodNet sensor network in real-time to enable a power saving on the sensor nodes. 

A method was developed that could target stage measurements to a set of discrete 

times and sensors based on signal variance at a validation time and location. Signal 

variance was calculated from an ensemble of background simulations by the RC 

model using an ETKF and estimates of measurement variance. In the discussion, it 

was suggested that the ETKF may be used to target measurements to any 

computational node in the RC model domain (e.g. any point at which stage was 

simulated) and to assess the use of sensors with different error statistics (e.g. 

different measurement variance). Targeting measurements to previously unmonitored 

locations is appealing in the FloodNet case study because it provides a means of re

deploying the sensor nodes to optimal locations along the river. More generally, 

when this capability is combined with the capability to consider different sensor error 

statistics, the ETKF provides a quantitative means of assessing the benefits (in terms 

of signal variance) of sampling with almost any sensor type at any location. 

To the author's knowledge the ETKF has not been applied previously to the problem 

of designing an optimal sampling framework for a river flood forecasting model. 

Therefore, the response of the algorithm to a number of test scenarios, useful for the 

design of a sensor network deployment, was investigated. Specifically, the spatio

temporal changes in signal variance from theoretical sensors within the main river 

channel were calculated for the validation location at the target times and validation 

time (section 7.2). The same analysis was conducted for measurements taken on the 

floodplain (section 7.3) and measurements with different variances (section 7.4). 

These results are followed by a discussion and some conclusions. 
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Targeting measurements to previously unmonitored locations is possible because the 

RC model simulates stage and flow at distributed locations, where state 

measurements need not be available. A number of assumptions were made when 

implementing the tests in sections 7.2 to 7.4. These include: 

1. The RC model simulations of error (co )variance were equally accurate at all 

locations and between all locations in the model domain (e.g. the RC model 

and EnKF parameters were not tuned to measurement locations by the 

calibration process in section 5.2.2). 

2. The same measurement error statistics would apply at all locations and to all 

sensors. 

3. The errors in theoretical measurements were uncorrelated with each other and 

the system state. 

4. A linear transform of the forecast state perturbations was a reasonable 

analogue for the error propagation of an ensemble of RC model simulations. 

In chapter 4 assumption 1 was shown to be untrue because error variance forecasts 

on the floodplain were too small and the covariance between channel and floodplain 

errors was too large. Nevertheless, the approach did forecast increases in analysed 

state uncertainty with distance from measurements that were consistent but not equal 

to what was observed. Despite the approach requiring further sources of uncertainty 

it was more representative than assuming a flat water surface with equal uncertainty 

everywhere. Furthermore, in later chapters, roughness uncertainty was included in 

RC model simulations. In the context of this study, assumptions 2 and 3 are likely to 

be met because each location would be monitored by a different sensor, although it 

may be possible to argue that sensor error statistics are related to the depth, 

temperature and salinity of the water being measured and thus not equal at all 

locations. Assumption 4 was tested in chapter 5. The linear transform was not an 

exact predictor of the EnKF approach due to RC model instability and nonlinear 

error propagation. However, it did exhibit the same pattern behaviour to the EnKF 

approach in terms of error and signal variance, when assimilating measurements. 

These assumptions are revisited in chapter 8. 
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7.2 Signal variance for in-channel sensors 

In this experiment, the ETKF was used to calculate expected target time signal 

variance S j Vm!Hm) at the validation location} and target time tm (see Fig. 6.4) for a 

measurement at the location of any of the RC model channel computational nodes 

using Eq. 3.65. The analysis was conducted at nine target times equally spaced 

between 4 hours and 1 hour and 20 minutes prior to the validation time. The 

validation time signal variance at the validation location S j (t h!H III) was also 

calculated. A fixed measurement variance of 0.005 m was adopted for each possible 

measurement. Only one measurement was used to calculate signal variance in this 

case. 

Figs. 7.1.a-i show mean ensemble state (stage and flow) and state uncertainty 

(variance) during tide 26 for each channel node in the RC model at nine 20 min time 

steps starting 4 hours prior to the validation time, which was at high tide. All 

distances on the x-axis are in km from the upstream model boundary at Wickford. A 

map ofRC model channel nodes and a long section of the river thalweg can be seen 

in Fig. 7.2. The tide was coming in from east to west (right to left) at all nine target 

times in this example, as indicated by the negative flow values at the downstream 

boundary (Fig 7.1). In Fig 7.1.a there was positive flow between 0 and 2.5 km 

downstream (BNG easting 577000 and 579000 respectively) because the incoming 

tide has yet to inundate this section of the estuary. As time progresses towards high 

tide this area of positive flow became progressively smaller until the whole domain 

was affected by tidal flow in Fig 7.1.f, 2 hours 20 minutes before high tide. The 

estimated confluence between incoming tidal and fluvial flows during this time was 

demarked by the lowest points on the mean stage plot. Values of ensemble mean 

stage ranged between -0.79 m in Fig. 7.l.a and 2.24 m in Fig. 7.1.i, whilst mean flow 

ranged from almost -2000 cumecs to 0.35 cumecs. 
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Fig 7.1.a-i: Plots of model states (stage and flow) and their uncertainties (variance) 

for channel cross-sections, with log signal variance at validation location for 

validation and target times given a measurement with variance 0.005. Note: all axes 

are constant between plots except log signal variance. a) Plots of states and signal 4 

hours prior to validation time. b) Plots of states and signal 3 hours 40 minutes prior 

to validation time. c) Plots of states and signal 3 hours 20 minutes prior to validation 

time. d) Plots of states and signal 3 hours prior to validation time. e) Plots of states 

and signal 2 hours 40 minutes prior to validation time. f) Plots of states and signal 2 

hours 20 minutes prior to validation time. g) Plots of states and signal 2 hours prior 

to validation time. h) Plots of states and signal 1 hour 40 minutes prior to validation 

time. i) Plots of states and signal 1 hour 20 minutes prior to validation time. 
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Fig. 7.2: Top: Map ofRC model channel nodes (black dots) . The study site is at 

Hullbridge. Bottom: Long section of river thalweg and bank heights . 

State variance increased between the tidal boundary at 20.3 km downstream (BNG 

easting 595000) and the validation location at 6.3 km downstream (BNG easting 

583500). The increase in stage variance was more pronounced at lower stage values, 

with almost no increase after 2 hours prior to high tide. This increase in variance is 

believed to be predominantly due to the nonlinear manner in which the model 

simulates flow along the river for different stages and the affect of variations in the 

value of Manning's rouglmess coefficient over the ensemble. Variance at the 

downstream boundary of the RC model was roughly constant at around 0.1 m. State 

variance rose to 0.137 m (a change of 0.037 m from the downstream boundary) at the 

183 



validation location at the first target time (Fig. 7.1.a). At the ninth target time (Fig. 

7.1.i) the change in variance over this distance was less than 0.001 m with variance 

falling slightly at some intermediate RC model nodes. The greatest values of stage 

variance were upstream of the study site at the confluence of fluvial and tidal flows. 

As such the region of greatest stage uncertainty in the model domain migrated 

upstream with the incoming tide. The greatest stage variance estimate at any of the 

nine discrete time steps was 0.274 m and occurred at 1.4 km downstream (BNG 

easting 578800) in Fig. 7 .1.f. Upstream of the confluence stage variance was 

approximately two orders of magnitude smaller, which was expected as no errors 

were added to the upstream boundary condition. Therefore, any stage variance in this 

region of the model domain was due to the variation of channel roughness over the 

ensemble. The variance in flow increased with mean flow, thus, the largest variances 

were towards the tidal boundary, where flow magnitude was greatest. Unlike stage 

variance, flow variance was not greatest at the confluence of fluvial and tidal flows. 

However, the standard deviation in flow as a proportion of flow was greater where 

state variance was greatest. Flow variance ranges between 0 cumecs upstream of any 

tidal influence and 19740 cumecs at the downstream boundary in Fig 7.1.i. 

Figs. 7.1.a-i plot estimated signal variance at the validation location for a theoretical 

measurement at each channel node in the RC model. Signal variance at the validation 

location is shown at the target time and the validation time. Note that the distribution 

of signal variance on the x-axis is determined by the location of the measurement not 

the validation location, which remained constant. 

Target time signal variance at the validation location varied with the spatial location 

of measurements. Target time signal variance ranged from 1.4 xl 0-4 m upstream of 

the confluence to 0.145 m close to the maximum stage variance in Fig 7.1.a. Both of 

these extremes occurred upstream of the validation location. The smallest values of 

signal variance occurred upstream of the flow confluence, indicating that fluvial 

flows had very little influence over stage variance at the validation location, 

according to the RC model setup used to generate the background ensemble. In Fig 

7.1.a the largest values of target time signal variance did not occur at the validation 

location but sat between the validation location and the location of peak stage 
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variance. Closer (temporally) to the validation time, such as in Fig 7.1.f, this 

relationship was no longer as prominent, with the peak target time signal variance 

closer to the validation location relative to the peak stage variance, despite peak 

target time stage variance being greater. In fact target time signal variance became 

spatially more correlated over the length of the river as the tide came in, whilst 

decreasing with falling stage variance. Downstream of the validation location the 

signal is seen to decrease with distance from the validation location but not as 

dramatically as upstream of the validation location. This was reflected by a range of 

target time signal variance of 0.088 m to 0.142 (Fig. 7.1.i and Fig. 7.1.a 

respectively). The range in stage variance was also less than upstream of the 

validation location. 

The pattern in target time signal variance occurred due to a combination of the 

sensitivity of the state ensemble at the target location to measurement data and the 

covariance structure between the target location and validation location. This 

relationship is illustrated by the next series of plots. These plots contain points for all 

RC model nodes at 8 target times between 3:40 and 1 :40 hours prior to the validation 

time calculated over 39 tides. 

Fig. 7.3 plots the target time signal variance against target time stage variance at the 

target location. The plot indicates a positive relationship between signal variance and 

the variance at the target location, which was relatively straightforward (linear) until 

stage variance reaches a value of just less than 0.1 m, which coincides with the 

minimum state variance seen downstream of the validation location. Above a stage 

variance of 0.1 m the signal variance trace splits into two clusters, the first shows 

little increase in signal variance with variance. The second trace shows signal 

variance varying between 0.1 m and 0.18 m, of which a proportion could be 

attributed to stage variance. Fig. 7.4 compares the distance between the target 

location and the validation location with stage variance. This plot supports the 

pattern in Figs. 7.1.a-i which showed that stage variance was greatest towards the 

front edge of the incomming tide and was greater in magnitude the further the flow 

wave had travelled upstream. The state variance was very small upstream of the 

incoming tide principally due to the manner in which the ensemble was generated. A 
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comparison of the target time signal variance at validation location with the error 

covariance between target location and validation location is shown in Fig. 7.5. 

There was a stronger positive relationship between these two variables than between 

signal variance and stage variance in Fig 7.3. Nevertheless two distinct point clusters 

can be seen above a signal variance of 0.08 m. Covariance decreased with distance 

from the validation location as illustrated by Fig. 7.8. The smooth and relatively 

uniform relationship in the downstream section of the river contrasted markedly with 

that of the upstream section. A 3D plot of signal variance, stage variance and 

covariance (Fig. 7.6) again demonstrates the two traces present in Figs 7.3 and 7.5. In 

this plot the nodes downstream of the validation location have been highlighted in 

red. These red dots occupy a relatively small range of state variances compared to the 

upstream nodes, with signal variance mainly determined by the covariance and the 

stage variance at the validation location. Viewed from a different angle in Fig. 7.7 

the scatter of points forms a near flat surface in the covariance/signal variance space. 

Referring back to plot 7.1.a-i the cause of the peak in signal variance just above the 

validation location was believed to be the combination of the covariance and state 

variance upstream of the validation location. The point cloud on Fig. 7.6 supports 

this conclusion as, although, the covariance between validation location and target 

location was the dominant factor in determining signal variance stage variance did 

have a secondary effect. Values of stage variance above around 0.15 m were split 

into two distance signal variance clusters depending on covariance, indicating that 

covariance decreased rapidly at the edge of the incoming tide relative to stage 

variance. 
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In Figs. 7.1.a-i the validation time signal variance was less than that at the target time 

at all eight target times represented. In general, the difference between the signal 

variance at the validation and target times decreased with the lead time between the 

two. This decrease resulted from two factors. Firstly, the signal variance at the target 

time decreased as the tide came in because of reducing stage variance at locations 

that strongly co-varied with the validation location. Secondly, signal variance at the 

validation time tended to increase as lead time reduced (Fig. 7.1.a-i). 

Another difference between validation and target time signal variances was that the 

peak in validation time signal variance occurred downstream of the validation 

location, rather than at the location with the most favourable combination of target 

time variance and covariance. Therefore, peak validation time signal variance 

calculated here acknowledges the principal source of errors in the RC model at the 

downstream boundary condition, recognising that, in this model, error propagation is 

dependent on the flow of errors upstream from the downstream boundary. 

If error propagation was sufficiently dependent on errors propagating upstream (a 

flow of errors) from the model boundary then it should be possible to create a 

situation where the signal variance at the validation location from a downstream (or 

up-flow) sensor is greater at the validation time than the target time. This is not the 

case for any of the examples in Figs 7.1.a-i. Therefore, an experiment was conducted 

in the next section with the validation location moved upstream. 

7.2.1 Flow dependent error propagation and signal variance 

Floods propagate through space over time, as a wave. As a consequence, an adaptive 

sampling approach should ideally be able to target a 'flood wave' before any affect 

from that wave is noticed at the validation location. The ability of the ETKF to 

predict signal variance before the incoming tide has reached the validation location 

was tested by moving the validation location to the upstream sensor location (see 

Table 7.1 for definition of upstream location). Signal variance was then calculated 

for theoretical sensors at each of the RC model channel nodes at the nine target times 

used in the previous section. The results are plotted in Fig. 7.9.a-i. 
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Table 7.1: Table describing example sensor locations. Distances upstream of the 

validation location are denoted by negative numbers. 

Name of Distance Distance from BNG BNG 

theoretical downstream (m) validation location (m) Basting Northing 

sensors 

Upstream 1,940 -4,367 579216 195470 

Validation 6,304 0 582758 195902 

location 

downstream 18,576 12,272 593814 593814 

For Figs. 7.9.c-i the pattern of validation and target time signal variances was similar 

to those in Figs 7.1.a to 7.1.i, in that, the target time signal variance was greater than 

the validation time signal variance at all locations along the river. Interestingly, in 

Figs. 7.9.c-i the validation time signal variance was similar to the equivalent times in 

Figs. 7 .1.c-i, whilst the target time signal variance was greater. This occurred 

because the stage variance at the upstream validation location was greater at these 

target times than that at the study site, but, similar at the validation time. At the time 

of Fig. 7.9.a the incoming tide had yet to reach the upstream validation location. 

Therefore, collecting data at almost any location along the river resulted in very little 

target time signal variance. Nevertheless, the validation time signal variance was 

similar to the signal variance in Fig 7.1.a. 
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Fig 7.9.a-i: Plots of model states (stage and flow) and their uncertainties (variance) 

for channel cross sections, with measurement with variance 0.005. Validation 

location was 1.9 km downstream. a) Plots of states and signal 4 hours prior to 

validation time. 

b) Plots of states and signal 3 hours 40 minutes prior to validation time. c) Plots of 

states and signal 3 hours 20 minutes prior to validation time. d) Plots of states and 

signal 3 hours prior to validation time. e) Plots of states and signal 2 hours 40 

minutes prior to validation time. f) Plots of states and signal 2 hours 20 minutes prior 

to validation time. g) Plots of states and signal 2 hours prior to validation time. 

h) Plots of states and signal 1 hour 40 minutes prior to validation time. i) Plots of 

states and signal 1 hour 20 minutes prior to validation time. 

In Fig. 7.9.b some of the ensemble members predicted that the tide had reached the 

validation location whilst others did not. Under this circumstance, the peak target 

time signal variance was at the validation location. Target time signal decreased 

between the validation location and 5.5 km downstream but then increased slightly 

towards the downstream boundary. Validation time signal variance was similar to 
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that in Fig. 7.1. b due to the large covariance between all the locations in the RC 

model at high tide. 

7.2.2 Signal variance after one measurement 

A scenario was set up where the one measurement r was assimilated 4 hours prior to 

the validation time (referred to as the measurement time). This was achived by using 

Eq. 3.60 and 3.61 to calculate the transform matrix T. This transform was then used 

to update background ensemble perturbations Z(t) at eight target times and the 

validation time. This was repeated for 39 consecutive tides. The updated ensemble 

perturbations z&IHr) were then used as the background forecast in equation 3.65 to 

calculate signal variance for a theoretical measurement at each channel node in the 

RC model (see Fig. 7.2). There were 161 possible locations in the RC model where 

the initial measurement used to calculate T could have been taken. This series of 

calculations took less than 0.1 seconds on a 2.4 GHz PC for a possible sensor 

location and time. However, the computation of signal variance at 161 nodes and 

eight target times for 39 tides at both the target and validation time took around one 

hour. The number of data was also difficult to summarise concisely. Therefore, each 

example shown in Fig. 7.10.a-h used a 'measurement' taken from one of the three 

locations called the upstream, validation and downstream location (Table 7.1), during 

tide 26 only. Since no measurements were available at the upstream of downstream 

sensor location the variance of the measurements from these locations was assumed 

to be the same as that used for the validation location sensor. 
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Fig 7.1 O.a-h: Plots of model states (stage and flow) and their uncertainties (variance) 

for channel cross sections, with measurement with variance 0.005. After assimilating 

one measurement at one of three locations 4 hours prior to the validation time with 

the ETKF. a) Plots of states and signal 3 hours 40 minutes prior to validation time. b) 

Plots of states and signal 3 hours 20 minutes prior to validation time. c) Plots of 

states and signal 3 hours prior to validation time. d) Plots of states and signal 2 hours 

40 minutes prior to validation time. e) Plots of states and signal 2 hours 20 minutes 

prior to validation time. f) Plots of states and signal 2 hours minutes prior to 

validation time. 

g) Plots of states and signal 1 hour 40 minutes prior to validation time. h) Plots of 

states and signal 1 hour 20 minutes prior to validation time. 

Mean stage estimates from the background ensemble were plotted for each channel 

node in the RC model domain in the uppermost plot of Figs. 7.1 O.a-h. Estimates of 

target time stage variance using the above method are displayed for each of the three 

example sensors on the second plot in each figure. Target time signal variances for 

each target time and location were plotted for the example measurement locations in 

Table 7.1. The RC model predicted that stage variance would increase as the target 

time moved away from the measurement time. This increase was more pronounced 

for the downstream and validation location measurements, reflecting the greater 

signal variance available from measurements downstream and at the validation 

location. Disregarding stage variance in the upper 2.5 km of the river, the lowest 

stage variance associated with the downstream and validation location measurements 

always occurred close to the measurement location, although, this became less 

apparent as the time between the measurement time and target time increased. 

Signal variances after assimilating a measurement from the upstream sensor were 

similar to those in Fig 7.1 O.a-h. This was expected given the relatively small signal 

variance predicted at this node (see Fig. 7. 1. a) and supported by the relatively large 

stage variances (relative to the other two locations) after assimilating the synthetic 

measurement from this location. The target and validation time signal variances after 

assimilating a measurement at the validation location sensor indicated a decrease in 

signal variance of approximately one to two orders of magnitude, compared with 

202 



Figs. 7.1.b-i. Decreases in signal variance were not constant over either space or 

time. For the first target time after the measurement time (Fig. 7.10.a) target time 

signal variance was greater than validation time signal variance at most locations 

between 0 km and 12 km downstream. This trend was reversed between 12 km and 

21 km downstream as validation time signal variance increased towards the tidal 

boundary of the RC model. As time progressed away from the measurement time, the 

crossover described above moved upstream, until reaching 5 km downstream 1 hour 

40 minutes after the measurement time (Fig. 7.IO.e). From this time onwards the 

crossover remained constant around 8 to 9 km downstream. The downstream sensor 

yielded the greatest validation time signal variance of the three locations tested. In 

Figs. 7.1 O.a-c target time signal variances peaked between 3 and 5 km downstream, 

whilst validation time signal variance was greater towards the tidal boundary. For 

Figs. 7.10.d-h target time signal variances were slightly larger than at the validation 

time for all locations greater than 3 km downstream. However, there was little to 

choose between possible measurement locations greater than 3 km downstream at the 

target or validation time in these plots. 

7.2.3 Signal variance and time series data 

Once a sensor has been deployed it is unlikely to collect a single measurement. In the 

case of a pressure transducer measuring water depth the sensor is able to collect a 

time series of data at almost any sampling interval, provided sufficient power and 

data storage is available on the sensor node. Therefore, it is imperative that any 

method used to determine the location of a sensor can accommodate time series data 

in addition to data points. The signal variance of a measurement in addition to a time 

series of measurements was estimated by using the ETKF to update RC model 

ensemble perturbations with a theoretical time series of measurements from one of 

three locations at eight target times, using Eq. 2.59-64. Since chapter 4 did not 

compare ETKF and EnKF estimates of error variance given a time series of 

measurements the EnKF forecasting model was run in parallel with the ETKF 

experiment, using a time series of measurements from the validation location. 
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Fig. 7.11.a-h shows stage variance and signal variance assuming a time series of 

measurements were collected and assimilated from BNG easting 581000 (upstream, 

short dashes) or BNG easting 595500 (downstream, long dashes). Predictions of 

mean stage, mean flow and flow variance were not updated. For Figs. 7.11.a-h 

assimilating the upstream measurement time series resulted in a greater average stage 

variance over the whole river, compared to the time series from the downstream and 

validation location sensors. For all measurement locations stage variance increased 

with distance from the sensor location. 

204 



(a) 

(b) 

1;:: : : : , : , 1- St,,,,m) 11 

~....J8'~ -1-:0 Ok=:, u~ -'~~,_~===cuu8_¥ .. _10 I + 12 ~~;;~~;~~~~7:~ ~lidat::n locati:: sensor22 
. . _ _ Stage ~riance (m) upstream sensor 

Stage ~riance (m) downstream sensor 

o 5 10 15 20 
0.01i--.-----,--,----,-----,----r;===========~ 

1
- Signal ~riance at ~Iidation time (m) l 
----. Signal ~riance at target time (m) 

Upstream sensor 
0,005 

o --
<k 10.3 16 18 20 22 6 8 10 12 14 
1~~--~--~--~--~--~==~==c=~==~==~ 

Signal ~riance at ~lidation time (m) 
Signal ~riance at target time (m) 0,5 

8 10 12 

8 10 12 
Distance (km) 

14 16 18 20 

Signal ~riance at ~lidation time (m) 
Signal ~riance at target time (m) 

14 16 18 20 

22 

I 
22 

}';:;;-: -:--: .--;::::=~ 1- Stage (m) ~ ! 

18 20 22 

~ ~ _ - Stage ~riance (m) ~lidation location sensor 
Q) oo~~ 4. 6 ~~10 I +12sensor1~ation:6 
~ _1-0

5 
(-t_,_-. ,-t_~~-=--:..:.:n---- .--~"'~ L __ S_t-'ag"-e_~_ri_an_c_e-'('-m..:..)...::u...::p_st_re:..:a:..:m~se_n:..:s:..:.o:.::.r ~_---.J 

~ _ . _ _ _. Stage ~riance (m) downstream sensor 

o 5 10 15 20 
0,01

i
-,-------,--.----,-----,---r;============;l 

Signal ~riance at ~lidation time (m) _I 
Signal ~riance at target time (m) _ 

Upstream sensor 
0,005 

...... ---------------------------------------------- --
0~~10~·3r=~2--~-'4~--~6~--~8----~----~----L---~----~-----L----~ 

1~~~~--~--~--~--~===c===c==~==~~ 

0,5 

Downstream s~[l~o~ .. 
0,005 

o --'. 
o 2 4 6 8 10 12 14 16 18 20 22 

Distance (km) 

205 



(c) 

(d) 

18 20 22 

10 15 20 

Upstream sensor Signal variance at validation time (m) i i 

000: u m mum uum um m U U "9M) ~"~."",,,)tim. :ml j 
(k 10-3 2 4 6 8 10 12 14 16 18 20 22 

2~~--~--~--~--~--~~~==c=~==~==~ 

A 1

- Signal variance at validation time (m) ! 
1 ----- Signal variance at target time (m) , 

O ~alid tion ~_~ation-se~sor 
------ ---------=!----------I----------I----- ____ .J _____ ___ d. 

o 2 4 6 8 10 12 14 16 18 20 22 
0.011--,---.,-----,--.,----,-----,;==~===========;-] 

1
- Signal variance at validation time (m) l 
----- Signal variance at target time (m) 

Downstream sensor 
0.005 

°o~--~==--~----~--~----~--~-------------~-----------~--~;--~--~--~--~--~--=--=--~-~----~--~ 
2 4 6 8 10 12 14 16 18 20 22 

Distance (km) 

iE • 

' ~ 
'-1 ~~-S-t~-ge-(m-)-Il 

-'1 -1-0: o~:= ___ :._.u 4u. 'u m.m' .;1
0 

I L~+_~12_~_~_;g=_se_o~_1~_~c_aa_n~_i~_n~'_~...:.~_va_l_id_a_t:o_8n_lo_ca_t_i:_~_s_e_n_so_r2....J2 a .. ~ .. Stage variance (m) upstream sensor 
_. Stage variance (m) downstream sensor 

o 5 10 15 20 
0.01 i --,---,.---,---,----,----,-;==::=============;__J 

1
- Signal variance at validation time (m) l 
----. Signal variance at target time (m) 

Upstream sensor 
0.005 

O~ 
/------------------------------------------------------------------------------

(k 10-3 2 20 22 6 8 10 12 14 16 18 
2~~~~--~--~--~--~==~===c===c==~~ 

vA 1

- Signal variance at validation time (m) 

l~~~--__ ----------~--=-=--=S=i=g=na=l=va=n=·a=n=c=e=a=t=ta=rg=e=t=ti=m=e=(~m~)-~ Va datio location_sensor 

O~O~--~--=-~~~--~-~--~--~--~--~--~-~--~--~-'~--~--'--------~-~--...:.-~--~--~-L--...:.--...:.-...:.--~--~--...:.--...:.-...:.--_--_-L-...:.-...:.-...:.--...:.--....J-...:.--...:.-...:.--...:..-~~ __ ~ 
2 4 6 8 10 12 14 16 18 20 22 

0.011---,----,---,,---.----,-----,-;==~===r===.=====:::;l 

1
- Signal variance at validation time (m) l 
----. Signal variance at target time (m) 

Downstream sensor 
0.005 

O~O~~--~--~--------------~--~--~--~--~--~-r~--~--~--~--~-~--~--~--~--~-~--=--~--~--~--~-~--~--~--~--~~~----~--~----~ 
2 4 6 8 10 12 14 16 18 20 22 

Distance (km) 

206 



(e) 

(f) 

.if : == : : : : : : 1:- SI;g"m) 1 
:...J8'~ _1-

5
0

0 0~, __ =->~:.~ •. m .. 6m .... m8n •••. 10. +12 ~~;;:~;~~~~n~: validat~:n locati:: sensor22 
__ .. -'=: . . . Stage variance (m) upstream sensor 

Stage variance (m) downstream sensor 

5 10 15 20 

Upstream sensor 
0.005 

o~ 

!k 10.3 2 4 6 8 10 12 14 16 18 20 22 

~ .............................. .. 

2~-,~~--~--~--~---~~~==~==~~==~ 

l&: 1

- Signal variance at validation time (m) l 
1 ..... Signal variance at target time (m) 

o ~. lid ·~~.:oca:n~s:en:s~o:~~.~."",,,"",,,,,-:.-:-: .. :-::.:-: .. ::-.::: .. -::-.. ::,~,,::,~,,::,::-:,,-:-,,;,,~,,~,~,,~,~,,~,,~,~,,~,~,,~,~,,~,,~,~,,~,~,,~.~ .. ~.~. ====-!'-"-_....J 
o 2 4 6 8 10 12 14 16 18 20 22 

o.o1i--,-----,---,----,---,,---';:::=~=====::!:::=:=:::r===::;-l 

1

- Signal variance at validation time (m) l 
..... Signal variance at target time (m) 

Downstream sensor 
0.005 

°o~~·'~ .. -.. ~'-.. -.. -.. ~ .. ~~~·= .. ~·~ .. ~ .. = .. =·~·~ .. ~ .. --~----~--~----~----~----~--~ 
2 4 6 8 10 12 14 16 18 20 22 

Distance (km) 

.J : ~ : 
...J;o~ '1-0: 0E::=;c='.' ' ....... 6.,..... 8. .10 I L~+_12 _ sS_ t_e:..::.gs_:_~_I~_.~_~_~_~_'7_:..:.~_va_l_id_a_t~_:_n _lo_c_a_ti_:n_0_s_en_s_o_r2_2 ~. '_'" --= Stage variance (m) upstream sensor 

Stage variance (m) downstream sensor 

o 5 10 15 20 
0.01

i
--.-----,--,----,---,-----r;==:::::=r===========::;_l 

Signal variance at validation time (m) . I 
Signal variance at target time (m) J Upstream sensor 

0.005 

°!k~1~0·~3~2~~--4~--~6~--~8~--~10~---1~2-----1~4-----1~6-----1L8-----2LO----~22 
2~~~~--~--~--~--~==~===c===c==~~ 

1
- Signal variance at validation time (m) l 
..... Signal variance at target time (m) 

o 2 4 6 8 10 12 14 16 18 20 22 
0.011--,-----,----.---r--.----~=::;;:r:::~===r::=====::;l 

Downstream sensor Signal variance at validation time (m) 
Signal variance at target time (m) 0.005 

°O~----.. ~·-.. -·-.. -.. ~·~ .. = .. ~ .. = .. ~ .. ~·= .. =·= .. = .. ~=---~--~----~----~--~----~--~ 
2 4 6 8 10 12 14 16 18 20 22 

Distance (km) 

207 



(g) 

(h) 

J ' : , : : :' 1- St~" 'ml J 

~..JQ)8' -1-:0 0F:=--:. +u'. u'm. ' •• :10 I +12 ~f;;~~~~~~n~~~ validat::n locati:: sensor22 
_ . . .. Stage variance (m) upstream sensor 

Stage variance (m) downstream sensor 

5 10 15 20 

Upstream sensor 
0.005 

o ----
(k 10-3 2 16 18 20 22 
11\~--~--~--~--~--~==~====~~~==~· 

6 8 10 12 14 

Signal variance at validation time (m) i I 
_~ign_al_~_nan.ce_attarget time (m) J alidation location sensor 

0.5 

4 6 8 

Downstream sensor 
0.005 

o -------------------,---------- """"""""- """"""-"" """"""""-
o 2 4 6 8 10 12 14 16 18 20 22 

Distance (km) 

.if ' , : : : : , : I:-st;g"mll 

~..J8'~ _1-:0 O~~. _.u. m 4 u. u' mm 'u.~1 
0 

I L~_+~12_~:...~ __ an~gS __ eO __ ~:...I;L·~ __ ~:.::~ __ ~n...:~ __ ~6.:...) :.::va:.::l __ id __ a::..:t~::..:8n=lo __ c.::.a:::tio:.:.:2 nO:.: ::.se_n_s_o_r

2

.J2 
. =. Stage variance (m) upstream sensor 

= - Stage variance (m) downstream sensor 

o 
0.01

i
--,----,-----,--,----,-----.;==============;-c 

I 
Signal variance at validation time (m) :; 

5 10 15 20 

. ~ Signal variance at target time (m) 
Upstream sensor 

0.005 

°(k~10~-33~2~--~4~--~6----~8-----1~0-----1L2-----1L4-----1L6----..J1L8----..J20----~22 
1~~--~--~--~--~--~===c===c==~==~~ 

r
- Signal \6riance at validation time (m) 1 
"""". Signal \6riance at target time (m) 

Validation location sensor 
0.5 

o .~---""---""-""-----""""---- ------------------------------------------------------

o 2 4 6 8 12 14 16 18 20 22 
0.01i--,-----,-----,---.,----,--~====c:::======c==~~~ 

1- Signal \6riance at validation time (m) 1 
I """". Signal \6riance at target time (m) 

10 

Downstream sensor 
0.005 

00~--~~-----""-""--~""-""~""~""~-~"""~--~""~""~--~-~-~-~""~""~""~-~-=""=""~""=-~-=""=--=--~""~-~~ __ ~ __ ~ ____ _L ____ ~ 
2 4 6 8 10 12 14 16 18 20 22 

Distance (km) 

208 



Fig. 7.11.a-h: Results of assimilating a time series of synthetic measurements at 3 

locations within the RC model domain. The top plot in each figure displays mean 

stage estimates from the background ensemble. Estimated stage variance after 

assimilating a measurement 4 hours prior to the validation time is displayed for each 

of the three example sensors. Signal variance for the target time and locations was 

plotted for each example sensor. Flow, flow variance and stage were not updated 

during the ETKF analysis. Note: all axes are constant between plots except signal 

variance. The lower three plots on each figure show the target and validation time 

expected signal variance given either the upstream, validation or downstream sensor. 

a) Plot of signal variance 3 hours 40 minutes prior to the validation time. b) Plot of 

signal variance 3 hours 20 minutes prior to the validation time. c) Plot of signal 

variance 3 hours prior to the validation time. d) Plot of signal variance 2 hours 40 

minutes prior to the validation time. e) Plot of signal variance 2 hours 20 minutes 

prior to the validation time. f) Plot of signal variance 2 hours prior to the validation 

time. g) Plot of signal variance 1 hour 40 minutes prior to the validation time. h) Plot 

of signal variance 1 hour 20 minutes prior to the validation time. 

For the upstream measurement time series, target and validation time signal variance 

increased with distance from the sensor location. Since this sensor location resulted 

in the smallest fall in state variance the signals available from other locations are 

generally greater than those after assimilating the validation and downstream sensor 

time series. 

After assimilating the validation location measurement time series, target time signal 

variance was greatest just upstream of the validation location in Figs 7.11.a-c. For 

Figs 7.11.d-h the greatest target time signal variances occurred towards the 

downstream boundary. Validation time signal variance tended to increase towards 

the downstream boundary, but, also spiked in conjunction with the greatest state 

variance upstream of the validation location. This is a potentially undesirable trait of 

this approach as there seems little reason to believe that flows upstream of the 

validation location could increase forecast accuracy at the validation location by such 

an amount in this particular model, even though the greater state variance upstream 
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of the validation location will make state at these location more sensitive to 

measurements. 

After assimilating the downstream measurement time series, target time signal 

variance was predicted to increase with distance from the downstream sensor until 

the upstream edge of the incoming tide. The magnitude of this increase decreased for 

target times closer to the validation time as model error covariance increased 

between the locations of the downstream and validation location sensors. Validation 

time signal variance was less than 0.001 mat all locations and for all eight target 

times. These signal variances are lower than those predicted after assimilating the 

upstream and validation location time series. Therefore, according to the ETKF 

algorithm, the optimal location (within the RC model domain) for a sensor collecting 

a time series of measurements given the validation location and target times used 

here was the downstream boundary. 

An experiment was conducted on tide 26 to compare the ETKF predictions of stage 

error variance with EnKF predictions of stage error variance. The EnKF was used to 

assimilate a time series of measurements from sensor 2, which was also the 

validation location. After each update time (target time) the RC model simulated a 

set of updated state estimates at subsequent target times and the validation time (high 

tide). The forecasts issued after each target time are shown in Fig. 7.12 as dark lines 

overlaying RC model background predictions (lighter lines) made before any data 

assimilation. Fig. 7.13 contains a histogram of background state at the validation 

time (top left), followed by histograms of validation time forecast state after 

assimilating one through to six measurements from sensor 2. The bottom right plot of 

Fig. 7.13 plots the changes in the ensemble mean at the validation time and location 

as more measurements were assimilated (left hand y-axis, darker line). The lighter 

line and right hand axis plots the changes in error variance as more measurements 

were assimilated by the EnKF. The dots are corresponding error variance predictions 

made by the ETKF. The ensemble perturbations used by the ETKF were calculated 

from an ensemble ofRC model simulations made after assimilating the measurement 

at target time 1 with the EnKF. 
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Fig. 7.12: Forecast state at sensor 2 at six target times (dark lines). Light lines show 

background simulations made before data assimilation, whilst black stars are 

measurements at five minute intervals from sensor 2. 
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Fig. 7.13: Histogram of background validation time simulated state (top left), 

followed by histograms of validation time forecast state after assimilating 1 through 

to 6 measurements from sensor 2 with the EnKF approach. The bottom right plot 

shows the mean EnKF simulations of state (dark line) and state error variance 

(lighter line). Also shown are the corresponding ETKF predictions of state error 

vanance. 

The ETKF estimates of error variance were less than those made by the EnKF after 

measurements 2,3,4 and 6. As seen previously in chapters 5 and 6 when 

assimilating measurements at multiple times, stage error variance estimates made 

using the EnKF approach both increase and decrease after each update, whereas the 

ETKF always causes error variance to decrease as more measurements are 

assimilated. 

Interestingly, the forecast made after target time 5 was closer to a normal distribution 

than the other forecasts, where either a positive or negative skew was more evident. 

Furthermore, the difference between EnKF and ETKF estimates of target time error 

variance was less after this target time than the other four. This supports the 
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conclusions in chapters 5 and 6 that the majority of the difference between EnKF and 

ETKF estimates of error variance was due to RC model instability. 

7.3 Signal variance at the study site 

In this section, areas of floodplain were considered as possible locations for sensors. 

Figs 7 .14.a-f track changes in signal variance over time, for hypothetical 

measurements at RC model nodes in and around the Brandy Hole study site. RC 

model nodes were represented as coloured dots, overlaying a topographic image, 

located according to their BNG references and labelled with either a C or F 

indicating a channel section or floodplain reservoir, respectively. Channel nodes are 

labelled 1-12, upstream to downstream, with floodplain nodes labelled 1 to 22. Dot 

colour represents validation time signal variance, with greater signal variances 

having colours towards the red end of the spectrum. In some cases, RC model nodes 

were dry and gave zero signal variance because the ensemble predicted zero state 

variance at these nodes. Each image in Fig.7.14 is 20 minutes apart starting at 3 

hours 40 minutes prior to the validation oftide 26. For this experiment, the validation 

location was set at sensor 8 on the floodplain (see Fig. 6.3). This location 

corresponds with node F 17. The background state simulations used to calculate 

ensemble state perturbations were the same as those in the previous section. Thus, 

the background forecasts in Fig. 7.12 correspond with the location of node C6. Note 

that that the coloured dots on Fig 7.14.a and 7.14.b are displayed on a log scale 

whilst the latter plots are linear. 
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Fig. 7. 14.a-f: Signal variance at the validation time and sensor 8 (Re model node 

FI7) during tide 26. Signal variance is shown for theoretical sensors at 22 locations 

on the floodplain and 12 locations in the channel for six target times. The 

background image is a DEM derived from LiDAR data. a) Log signal variance 3 

hours 40 minutes prior to the validation time. b) Log signal variance 3 hours 20 

minutes prior to the validation time. c) Signal variance 3 hours prior to the validation 

time. d) Signal variance 2 hours 40 minutes prior to the validation time. e) Signal 

variance 2 hours 20 minutes prior to the validation time. f) Signal variance 2 hours 

prior to the validation time. 
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The channel nodes at the downstream end of the study site had the greatest signal 

variances. Relative to the channel nodes the floodplain nodes had a range of signal 

variances several orders of magnitude greater. In Fig. 7.14.1 signal variances of less 

than 10-11 essentially zero were predicted at nodes F2, F6, F8, F9, F14 and F2l 

because these locations were not inundated at this time. Weaker signal variances than 

those seen in the channel of between 10-2 and 10-10 were predicted at the other 

floodplain nodes, except nodes F5, FlO, Fll, FI2, F16, F17 and FI8 where signal 

variances were of the same order of magnitude as the channel nodes. These nodes are 

distinct from other floodplain nodes with weaker signals in that they contain deep 

channels and have topographic connectivity with the channel. As time progresses and 

the tide came in, as captured by Figs. 7.l4.a-f, more floodplain nodes yielded similar 

signal variances to the channel nodes. By Fig.7.l4.f only nodes F3, F4 and F22 on 

the edge of the floodplain yielded signal variances that differed from the channel 

nodes by more than 0.02 m. The validation location never produced the largest 

signal. 

Fig 7.15 plots validation time signal variance with the validation location at the 

upstream sensor location (Table 7.1) over eight target times. Overall, signal 

variances at all locations were lower than those on the floodplain. However, the 

pattern of signals was similar with channel nodes yielding greater signals than 

floodplain nodes. 
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theoretical sensors at 22 locations on the floodplain and 12 locations in the channel for six target times. 



To summarise, floodplain nodes that were dry provided no signal, as would be 

expected. As a floodplain node was inundated signal variance progressively rose 

towards a value that was similar to the nearest channel node. Thus, as the floodplain 

filled up the covariance between floodplain nodes and channel nodes increased, 

causing sensors at these locations to yield similar signals. 

7.4 The influence of measurement variance on signal 

variance 

The previous sections explored the links between possible sensor location and the 

signal variance at a validation location using an ETKF. In this section, the affect of 

measurement variance on this relationship will be examined with the same algorithm. 

The setup of the RC model and the ensembles of state perturbations are identical to 

those used in section 7.2, with the exception that measurement variance was varied 

between 10m and 0.0001 m. This range is intended to cover the feasible range of 

measurement variance which might be expected from a variety of sensors. The 

measurement variance values tested were: 10 m, 5 m, 1 m, 0.8 m, 0.5 m, 0.1 m, 0.08 

m, 0.05 m, 0.01 m, 0.008 m, 0.005 m, 0.001 m, 0.0008 m, 0.0005 m and 0.0001 m. 

Fig. 7.16 compares the scatter of signal variance values when prescribing different 

variances to measurements. Values are shown for all RC model channel nodes and 

39 consecutive tides at each of the nine times when target and validation time signal 

variance estimates were made in Figs 7.1.a-i. The x-axis of these plots displays the 

signal variances obtained from measurements with a variance of 1 m. This is then 

plotted against signal variances obtained using measurement variances of 0.5 m, 0.1 

m, 0.05 m, 0.01 m, 0.005 m, 0.001 m, 0.0005 m and 0.0001 m. Peak values of signal 

variance vary between 0.024 m for a measurement variance of 1 m and 0.12 m for a 

measurement variance of 0.0001 m. The plots show an inverse relationship between 

signal variance and measurement variance, with the spread of the point cloud 

becoming greater with the disparity between measurement variances. Therefore, the 

affect of measurement variance differs from location to location with signal variance 
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at some locations being more sensitive in terms of signal variance than other 

locations. 
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Fig. 7.16: Plots showing signal variance estimates when assimilating one 

measurement during any of the 39 consecutive tidal events or at any channel node in 

the RC model assuming a measurement variance of I m on the x-axis against the 

signal variance assuming the measurement error to be either 0.5,0.1,0.05,0.01, 

0.005,0.001,0.0005,0.0001. 

In Fig. 7.17a, log measurement variance is plotted against the mean target and 

validation time signal variance for the three sensor locations described in Table 7.1. 

In this plot, the signal variance is always greater at the target time than validation 

time when compared to a sensor at the same location and with the same measurement 

variance. The maximum mean signal variance of 0.1 08 m was achieved by the 

validation location sensor at the target time with a measurement variance of 0.0001 

m. The smallest signal variance of 0.0009 m was achieved by the downstream sensor 

at the validation time with a measurement variance of 10m. 
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Fig. 7.17.a-b: a) Plot of measurement variance against mean signal variance at the 

target time and validation time at the validation location. The mean is taken from 39 

consecutive tides and all channel nodes in the RC model. b) Plot of measurement 

variance against mean signal variance at the target time and validation time at the 

validation location (log scales). 

The plot indicates that much of the variation in signal variance as a result of 

measurement variance occurred between a measurement variance of 1 m and 0.001 

m. When measurement variance is above 1 m the signal variance decreased into the 

lower 5% of the distribution of these results. For variances above 1 m the signal 

decreases log linearly with increasing variance (Fig. 7.17b). When measurement 

variance was below 0.001 m the gain in signal variance with increasing measurement 

accuracy decreased exponentially. Thus, the signal has begun to saturate at this level 

of measurement accuracy. 

7.5 Discussion 

Figs 7.9.a-i has shown that the region of the RC model with the greatest stage 

variance was close to the confluence of fluvial and tidal flows and, thus, migrated 

upstream with the incoming tide. The increase in stage variance corresponded with 

increasing distance from the downstream boundary condition, along with decreasing 

channel width and depth (Fig.7.2). The variance increase lead to RC model nodes 

upstream of the validation location being more sensitive to measurement data than 

those downstream of the validation location, to the extent that target time signal 

variance was greatest upstream of the validation location rather than at the validation 

location. Note that because this is a tidal estuary upstream of the validation location 

was down flow from the validation location. Since roughness was the only internal 

RC model parameter to which errors were added (see chapter 5), it seems appropriate 

to assume that at least some of this variance increase was due to the increasing 

influence of this parameter on stage as distance from the boundary condition 

increased and the channel cross-sectional area decreased. Consequently, the 

propagation of errors was partially dependent on the RC model parameterisation 
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decisions made in chapter 4, which were based on measurement data from the study 

site rather than measurements distributed over the RC model domain. It was not 

possible to test if the stage error variance dynamics were appropriate at node 

locations, other than those near the study site (e.g. the analysis conducted in section 

4.4.3), due to a lack of measurements distributed along the river with which to 

validate the way in which spatio-temporal errors evolved within the model domain. 

Regardless of the validity of the RC model state ensembles, the ETKF was used to 

identify optimal sampling location away from the study site. Strictly speaking, 

adaptive sampling or measurement targeting can only be applied with confidence 

when the validity of the state ensembles is known. Further research requires more 

distributed measurement data to validate the RC model ensemble on which the ETKF 

depends. If the ETKF is used to target measurements to previously unmonitored 

locations, where prior model calibration is not possible, a detailed understanding of 

error sources and propagation from auxiliary data will be required. 

In section 7.2.2, the validation location was placed at the upstream sensor location, as 

defined in Table 7.1. At target time one the incoming tide had not reached the 

validation location, meaning almost no target time signal variance was available 

from locations downstream of the validation location. Nevertheless, measurements 

from locations downstream of the validation location did yield validation time signal 

variance. This demonstrated an important capability of the ETKF in that it made an 

estimate of validation time signal variance prior to the validation location being 

inundated, whilst recognising that the target time signal variance will be low. Thus, 

the ETKF can be applied when errors propagate over space and when the state 

anomaly of interest was spatially separated from the validation location. This would 

be crucial in an operational river flood forecasting context where it is desirable to 

have as long a lead time as possible between observations of the flood wave and the 

arrival of the flood wave at the validation location. One aspect of a likely operational 

scenario, such as the river Rhine example in Sprokkereef (2001), which could not be 

simulated by the RC model, was the distance between the region of flow generation 

and the validation location. Therefore, it is worth testing the ETKF on a set of 

ensembles generated on a much larger river. 
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When the validation location was on the edge of the incoming tide in Fig. 7.9.b, only 

measurements at the edge of the incoming tide gave large signals. If the objective of 

the data assimilation process is to map the flood edge; measurements at the flood 

edge will be of most use. However, they will be less useful in a forecasting context 

where measurements up-flow of the validation location resulted in larger signals. 

In this thesis, stage measurements were taken by pressure transducers linked to a 

digital sensor node. The sensor nodes collected time series of measurements at a 

fixed location. Therefore, for this type of sensor it is imperative that an adaptive 

sampling algorithm can account for a time series of data as well as the simpler single 

measurement scenario. Section 7.2.3 used the ETKF to assimilate a time series of 

measurements from a single location and then target an additional measurement. 

The results indicated that target time and validation time signal variance was an order 

of magnitude or two less than the single measurement example. Thus, the value of an 

additional measurement was predicted to be small relative to the previous sections. 

Overall the ETKF was able to deal with the time series of data with no evidence of 

numerical instability in estimates of signal or stage variance. However, after 

assimilating the time series of measurements from the validation location sensor 

validation time signal variance was expected to be greatest upstream of the validation 

location in Figs 7.11.d-h. Although, the signal variances are at least an order of 

magnitude less than those after assimilating one measurement and backwatering 

from upstream of the validation location may have some effect on validation time 

stage. It is difficult to justify signal variance from measurements upstream of the 

validation being greater than those at the downstream boundary based on the findings 

in section 7.3.2. Therefore, this anomaly may represent a limitation of using a 

covariance model to target measurements when the principal dimensions of the 

covariance matrix have been reduced through data assimilation. It may be necessary 

to incorporate additional rules into the targeting algorithm such that spurious weak 

correlations that have no physical justification do not influence measurement 

targeting. Alternatively, the first occurrence of validation time signal variance being 

greatest over a region of the model domain known to have no physically justifiable 
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association with the validation location may indicate a reasonable time to stop 

targeting measurements with this method. 

EnKF and ETKF validation time stage error variance estimates were similar after 

each measurement in the time series was assimilated. Although, the ETKF tended to 

underestimate the EnKF, the ETKF would seem to have reasonable predictive ability 

as supported by chapters 5 and 6. As in chapters 5 and 6 RC model instability was a 

significant factor in the differences between the two algorithms, making it difficult to 

assess the linear error propagation assumptions made by the ETKF when calculating 

the transform matrix. 

In section 7.3, the validation time signal variances from measurements on the 

floodplain at the Brandy Hole study site were calculated. Signal variance increased 

as the tide came in and as the connectivity between the channel and floodplain 

increased. Signal was always greater at channel nodes even though the validation 

location was on the floodplain. Therefore, at this study site, when the validation time 

was at least 2 hours prior to the validation time stage measurements in the channel 

and towards the RC model downstream boundary yielded greater validation time 

signal variance than measurements on the floodplain. 

If the validation location is moved to the upstream sensor location channel nodes 

continue to yield the greatest signal variance (Fig. 7.15), indicating that uncertainty 

in floodplain level has little influence on down flow stage forecasts at this site. 

However, this may not be representative of other scenarios, especially as the area of 

floodplain at the study site (approximately 2 km2
) is not especially large relative to 

the length of the river (21 km). For situations where floodplain storage is much 

greater and has a significant influence on down flow stage, floodplain measurements 

may become more useful, particularly as state variance is generally greater on the 

floodplain and at the flood edge than in the channel. 

The ETKF could deal with a realistic range of measurement variances and, thus, has 

the potential to deal with alternative measurement types, as shown by Fig. 7.17a-b. 

However, errors in measurement data were assumed to be approximated well by a 
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normal distribution, which may not be the case for measurements errors from certain 

sensor types. No attempt was made to propose a framework or conduct an analysis of 

sensor cost verses signal variance. However, the ETKF may provide a means of 

quickly deriving the signal from a number of different sensor deployment options. 

For example, are three sensors with variances of 0.005 m likely to yield a greater 

validation time signal variance than two sensors with variance of 0.00 1 m, and what 

are the optimal sensor locations in each case? 

7.6 Conclusions 

The ETKF could be used estimate target time and validation time signal variance at 

previously unmonitored locations at any RC model node. However, confidence in the 

targeting was partly dependent on the accuracy of the RC model simulation of error 

variance. As would be expected, when the validation time was not at the target time, 

signal variance was greatest from measurements up-flow of the validation location. 

Therefore, measurements from these locations were of more use for the purpose of 

flood forecasting than measurements at the validation location. 

Target time signal variance was greatest at or close to the validation location 

depending on the structure of the covariance matrix. Covariance between RC model 

nodes was greatest towards the downstream model boundary where the river was 

deeper and wider, and where the wave is strongest. Water surface slope and the 

influence of the uncertain roughness parameter was also less in this region of the 

model domain during the test period, although, more distributed validation data is 

required to calibrate and validate variance estimates. 

Target locations could be selected at target times when the validation location was 

unaffected by the anomaly of interest. Thus, the ETKF could deal with flow 

dependent errors, suggesting that the ETKF can be applied to rivers where the region 

of flow generation is some distance from the validation location. However, as the test 

conducted using the RC model covered a river only 21 km long, further work is 

required, on a larger river, to assess the suitability of error covariance as a means of 
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targeting measurements and the impact of the linear error propagation assumed by 

the ETKF, in likely operational scenarios. 

As in chapters 4, 5 and 6 RC model instability prevented a more comprehensive 

comparison of the EnKF and ETKF error variance estimates. 

At the Brandy Hole field site measurements of floodplain stage were less useful than 

measurements of channel stage for forecasting error variance at future validation 

times, even when validation location was on the floodplain. However, this may not 

be the case in locations where errors in floodplain stage have a significant influence 

on down flow stage forecasts. 

The ETKF could consider a range of measurement error variance values, meaning 

that the signal variance of measurements from different sensor hardware could be 

considered as part of the sampling strategy, provided that the error statistics of the 

sensor measurements can be approximated well by a normal distribution. 
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7.7 Summary 

The location, timing and accuracy of measurements are critical to the performance of 

data assimilation algorithms such as the Kalman filter. Near-optimal sequential 

sampling frameworks can be designed for non-linear models using an ensemble 

transform Kalman filter, provided a linear transform of error perturbations is 

reasonable. Here, an ensemble transform Kalman filter was applied to an ensemble 

of simulations from a one-dimensional hydrodynamic model of a 21 km reach of the 

River Crouch, Essex, UK. This model-based targeting method was able to estimate 

the 'signal variance' of theoretical measurements at any computational node in the 

hydrodynamic model. Time series data, different sensor types and measurements of 

floodplain stage could all be taken into account either as part of the targeting process 

or prior to measurement targeting. The River Crouch provided a useful test scenario. 

However, it is significantly shorter in physical length than a likely operation 

scenario, meaning that further tests are required at a different study site. Confidence 

in measurement targeting was partly dependent on the accuracy of the hydrodynamic 

model ensemble's simulation of error variance, which could not be validated due to a 

lack of measurement data. 
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8 Discussion 

8.1 Updating hydrodynamic model state 

Increasingly, stochastic predictions of state variables and the delivery of probabilistic 

rather than deterministic predictions have been sought by environmental managers 

interested in hydrological forecasting (Krzysztofowicz, 2001). It follows that in 

situations where the latest measurement data is used to update simulation models to 

increase simulation accuracy in the near future, a similar product would be desirable 

to decision makers. The KF provides an optimal sequential data assimilation 

framework by minimising the mean squared error between measurement data and the 

simulated state of a system. In chapter 4 a Monte Carlo version ofthe KF known as 

the EnKF was used to update the state (stage, flow) and boundary condition error of 

a hydrodynamic model of the River Crouch (RC model). The EnKF analysis was 

computationally quick «1 second) to implement on the 2.4 GHz Pentium 4 

processor and posed no problems in terms of memory requirements. However, there 

were only 323 states in the RC model state vector, 60 ensemble members and up to 4 

measurements at any single update time, making this a small problem relative to 

those commonly found in meteorology and oceanography. The propagation of the 

ensemble to the next measurement time step using the RC model was by far the most 

demanding computational task required by the RC forecasting model. However, 

running multiple model simulations, of identical length, can be easily posed in a grid 

computing framework. 

In the RC model example the EnKF was an efficient means of reducing state error 

variance with measurement data. However, the EnKF update caused state 

instabilities in some ensemble members, which generated unwanted perturbations in 

simulated state. These instabilities did not occur when the RC model was run without 

the update. More efficient 'square root' versions of the EnKF which do not introduce 

error through the use of perturbed measurements (Anderson 2001; Whitaker and 

Hamill, 2002; Tippett, 2003; and Evensen 2004) have been developed and should 
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supersede the Evensen (2003) version of the filter used here. These square root filters 

may help to reduce post update model instability by not introducing errors into the 

water surface from perturbed measurements. 

Mass was not conserved by the EnKF update of RC model states. This implies that 

the filter can adjust the volume of water within the model domain in addition to its 

distribution. This seems a reasonable assumption in the case of the RC model given 

that the volume of water entering the model domain is one of the principal sources of 

state uncertainty. However, when the coverage of measurements over the model 

domain is far from comprehensive (such as the case with the FloodNet sensor nodes) 

but, the flows into and out of the model domain are well known (such as the situation 

where the upstream and downstream boundaries of the model domain are gauged) a 

redistribution of water may be more appropriate than a change in the overall volume. 

In other words, if the principal source of state uncertainty is the process 

representation within the model rather than the flows into and out of the model then 

changing the volume of water stored becomes less relevant. An update that conserves 

the volume of water within the model domain within certain bounds, in affect, adding 

a constraint on the update would be of potential value. One possible approach might 

be to move water into and out of floodplain storage, although this would pose 

implementation issues within the statistical constraint of the data assimilation tools 

available. However, the accuracy of such an update could be easily assessed by 

comparison with the EnKF based forecasting model. 

Flood inundation applications that use two-dimensional simulation models or cover 

much larger spatial domains may raise some additional issues not covered by this 

thesis. For instance, in atmospheric applications of ensemble data assimilation 

methods it is often necessary to limit the impact of observations to a subset of model 

state variables (Anderson, 2004). This often entails only allowing state variables to 

be influenced by measurements that are physically close, such that errors are not 

introduced by spurious linear relations between distant states. A similar approach 

may be necessary for river simulation models that cover larger domains or simulate 

state variables at finer resolution than the RC model. It may also be necessary to 
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introduce rules that prevent measurements on one tributary influencing state variable 

on another. 

There are many types of simulation model that could be used to simulate river stage 

in place of the distributed hydrodynamic model used here, these including statistical 

or data based models such as transfer functions (Lees et at., 1994), database 

mechanistic model (Young, 2002; 2003) and neural networks. These data driven 

methods are computationally less demanding than the hydrodynamic model used 

here, have fewer state variables, have been shown to perform well where sufficient 

data are available and are not prone to the same state instabilities. Furthermore, they 

do not require the costly topographic and land cover data required by distributed 

hydrodynamic models (see section 2.1.1). Thus, in situations where forecasts are 

required at locations where sufficient data are available there is a compelling case of 

using these approaches. However, these methods only simulate states at 

measurement points, thereby not directly estimating flood inundation; meaning flood 

inundation must be inferred by comparing forecasted state with offline simulations of 

flood inundation. Other advantages to using the distributed process based approach 

used in this study include: 

1. The simulation of state dynamics is governed by a physical process representation, 

which in theory can provide a means of extrapolating to previously unseen situations 

with greater reliability than a data driven method. However, the parameter and 

structural uncertainties outlined in section 2.1.2 that are inherent in the process of 

simplifying reality will introduce errors. 

2. Historical records of the system's state dynamics are not required to build the 

model and as such a monitoring program need not be in place prior to model 

building. However, prior state data would be beneficial for calibrating model 

parameters and necessary if model simulations are to be validated. 

3. State is simulated at unmonitored locations and can be updated as part of the 

forecasting process. 
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4. Changes to the geomorphology of the model domain (e.g. dredging, meander cut

off etc.) can be accounted for explicitly by adjusting the process model. The 

propagation errors, error sources and parameter values may all be affected by change 

in the geomorphology of the model domain. 

5. The combination of both a distributed process model and KF allows measurements 

to be incorporated on an ad-hoc basis from previously unmonitored locations where 

model state estimates are made (see chapter 7 for a more detailed discussion). Thus, 

data from opportunistic or infrequent sources can be incorporated into forecasts as 

and when they are available. A consideration of measurement error also allows 

multiple sensor types and noise corrupted data to be assimilated. 

The final point listed led to the research conducted on the collection of ad-hoc data 

via an adaptive sampling methodology presented in chapters 5 and 6, and 7 and will 

be returned to later in this discussion. 

8.1.1 Error sources and parameter uncertainty 

In chapter 4, the autoregressive model at the downstream boundary was the only 

source of model error modelled, thus, contributions from three error sources, namely 

the model structure, parameters and upstream flow boundary were neglected. The 

coefficients of this model were manually calibrated such that the error forecasts 

made by the RC model ensemble were consistent with the errors observed between 

forecasts and measurements from the key data gathering source (sensor 1). However, 

the ensemble error statistics were not suitable at a location on the floodplain. Thus, 

the model had been tuned to a single measurement location and as a consequence did 

not have the same predictive ability at other locations or a framework for introducing 

errors between sensor locations. In chapter 5, roughness uncertainty was 

incorporated into the ensemble simulations using GLUE. However, the approach 

used here (as opposed to the methodology in general) was inconsistent with the data 

assimilation process not least because measurement errors were not considered and 

the parameter uncertainty relevant to a short forecast may have been different to 

those that dominated over the calibration period. It may be beneficial for the 
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calibration of model parameters to be directly integrated with the KF, such as seen in 

Vrugt et at. (2005) where an ensemble Kalman filter was integrated with a global 

parameter estimation scheme, although this was not carried out within the scope of 

this study. As a result further research was required into the identification of the 

sources of model error and their quantification. 

B.2 Adaptive sampling 

Chapter 6 compared two adaptive sampling methods to inform the real-time 

measurement reporting of a network of wireless sensor nodes, with limited power. 

These were called Method 1 and Method 2. Method 1 used a systematic sampling 

framework with a stopping criteria based on the probability of validation location 

stage exceeding a threshold over a validation period. The KF's stochastic framework 

is well suited to this type of adaptive sampling strategy as it allows forecasts to be 

posed in a probabilistic context with little additional effort. To convert state forecasts 

to probabilistic forecasts managers and stakeholders, who might use the forecasts 

produced by a KF based forecasting model, need only decide which region(s) of 

model state space are of interest, the value of the threshold and the period of time 

over which they wish to forecast. The sequential nature of the KF also fits well with 

a system that regularly collects measurements until some stopping criteria is met. 

For the River Crouch case study no criteria were devised to decide when to restart 

real-time reporting after the decision to stop. Instead, each tide was treated in 

isolation from previous tides, such that, reporting always began four hours prior to 

the validation time (high tide). In a river system where the tide does not dominate the 

flow pattern the regularity of stage fluctuations required by this approach would not 

be suitable. One alternative might be to periodically issue longer forecasts after the 

decision to stop reporting and use them to decide when to restart reporting 

measurements in real-time. This would require a method to decide when 

measurements at a particular target time would first become relevant to the time at 

which the probability of exceeding the threshold becomes significant, such as, 

Method 2. 
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Adaptive sampling Method 2 targeted measurements based on their expected signal 

variance, quickly calculated by transforming ensemble state perturbations, using an 

ETKF. For the RC model case study a minimum forecast lead time was also required 

because the signal variance expected from sensors at the study site increased as time 

to the validation time decreased. Method 2 was more efficient in terms of signal 

variance yield per measurement collected. However, unlike Method 1, the stopping 

criteria could not be probabilistic, since the sampling decisions were made before 

data collection. Therefore, Method 2 was best suited to targeting situations where a 

flexible but finite sampling resource exists or when sampling decisions need to be 

made before the 'event' of interest begins. For example, situations where sensors are 

mobile, directional or it is expensive to measure. For the River Crouch case study the 

ETKF indicated that a few samples «5 see section 6.3.2) close to the time at which 

forecasts were issued could be almost as effective in terms of signal variance as 

collecting data systematically over eight target times because signal had saturated. 

One problem with both the above adaptive sampling methods is that state dynamics 

not anticipated by the simulation model may be missed. This could also introduce 

bias into the measurement selection and consequently bias in simulated state. In the 

context of wireless sensor nodes this problem could be solved by engineering the 

sensor nodes such that real-time reports are sent at regular intervals, hence avoiding 

the need to adapt the sensor node reporting in real-time. However, this may be 

undesirable when, for example, sensors are battery powered or the network has other 

tasks to perform. Since each FloodNet sensor node was capable of local processing it 

may be worth seeking further innovations that allow sensors to perform simple 

operations, which could influence real-time reporting, such as spotting state 

anomalies. Alternatively, computationally 'lightweight' forecasting models such as 

those discussed in section 8.1 could be deployed on the sensor network, as discussed 

by Hughes et al., (2006). 
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8.2.1 Adaptive sampling with the ETKF 

In chapter 5, the ETKF was used to rapidly obtain estimates of system model error 

covariance at measurement times and validation times using estimates of 

measurement error covariance. Due to its speed of execution it was possible to test 

many possibly measurement sets and build up near-optimal sampling strategies using 

serial assimilation. Given that this method was originally applied to a meteorological 

application (Majumdar, 2002) it seems likely that its computational burden will not 

pose a significant barrier to its use in flood forecasting, where the size of the model 

state vector and number or measurements tend to be less. The ETKF was easy to 

implement provided suitable state ensembles and estimates of error covariance were 

available, as all the information required by the filter is contained in the state 

ensemble. 

The EnKF was found to be strongly dependent on the error statistics generated from 

the state ensemble, supporting the conclusion made by Refsgaard (1997) that KF

based data assimilation is strongly dependent on simulation model accuracy. This 

conclusion was equally applicable to the ETKF, meaning that the accuracy of the RC 

model was integral to the performance of both the forecasting model and the adaptive 

sampling. Instability in the RC model after data assimilation did not effect the ETKF 

forecasts of error or signal variance, unless the background forecasts used contained 

instabilities relating to measurements previously assimilated by the EnKF. However, 

the comparisons of EnKF and ETKF forecast error variances made in chapter 5 were 

affected by these instabilities to the extent that ETKF error variance predictions were 

generally lower than those based on the EnKF. This made it difficult to assess the 

disadvantages of using the linear transform of ensemble state perturbations at 

validation times rather than the RC simulation model. Therefore, simulation stability 

after data assimilation would be of utmost importance to further research with the 

EnKF and ETKF with the RC model. Nevertheless, the ETKF made reasonable 

estimates of forecast error variance at this site despite the presence of instabilities in 

some of the RC model simulations. 
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The performance of the ETKF as a targeting tool and specifically the suitability of 

using a linear transform of error perturbations on longer or non-tidal rivers are not 

well understood. Further research is required to assess the applicability of the ETKF 

in situations when the distance between validation location and target location is 

greater than 21 km, as it is possible that error propagation will be more complex as 

distance increases. The influence of tributaries entering the river between the target 

location and validation location on error perturbations is also unknown, as is the 

effect of areas of floodplain adjacent to the river channel that are larger than those on 

the River Crouch. Furthermore, the RC model does not incorporate inputs from 

base flow or outputs due to infiltration or evaporation, which were believed to be 

insignificant on the River Crouch relative to tidal forcing. 

It should be possible to generate state ensembles prior to the deployment of any 

monitoring equipment in most cases. For example, in a situation where boundary 

conditions are generated from uncertain rainfall fields and translated to river flows 

by a hydrological model. Therefore, it may be possible to use the ETKF as a means 

of designing a monitoring network prior to its implementation, especially as different 

sensor types can be considered (see section 7.4 and subsequent discussion). 

Alternatively, an overly dense monitoring network could be deployed during an 

initial calibration phase, before being reduced in size after careful consideration of 

the signal variance and data redundancy. 

8.3 Measurement data issues 

In chapter 4, measurement bias was found to be a significant problem. The pressure 

transducers used by the FloodNet sensor nodes are designed to self calibrate to 

atmospheric pressure in order to prevent sensor drift. However, errors in 

measurements of sensor height (differential global positioning system readings in 

this case) will be constant over time. Measurement bias was identified in chapter 4 

due to the close proximity of other sensors, which it was believed should have 

yielded similar water levels. However, it may be more difficult to distinguish 

measurement bias from system model bias in situations where the spatial density of 
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measurements is less. Nevertheless, methods for using the KF to identify 

measurement and system model bias have been developed. 

As introduced in section 2.1.1 the development of LiDAR technology has allowed 

floodplain topography to be mapped at finer spatial resolutions than the grid, mesh or 

node spacing of hydrodynamic models (Marks and Bates, 2000; Cobby et a!., 2001; 

French, 2003), whilst techniques for flood edge delineation have been developed 

using synthetic aperture radar and optical remote sensing imagery (Hunter et al., 

2005; Bates et a!., 2006). It follows that it should be possible to assimilate estimates 

of stage at the flood edge derived from remotely sensed data and a fine spatial 

resolution DEM, where the intersection of flood edge and DEM leads indirectly to a 

stage measurement. This is especially true given that in section 8.1 one of the 

benefits of using a hydrodynamic model as a component of an EnKF based 

forecasting model was argued to be an ability to assimilate measurements collected 

on an ad-hoc basis from previously unmonitored locations. The benefits of such 

measurements are not well understood and would probably depend on the sensitivity 

of validation location error variance to error variance at the flood edge and how 

accurately the flood edge could be delineated. The accuracy of flood edge delineation 

is likely to depend on the accuracy of the DEM, the spatial resolution of the image, 

floodplain topography (specifically the slope of the floodplain relative to the range of 

possible stage values or range of flood inundation estimates) and above surface 

features on the floodplain such as vegetation and buildings. A further problem that 

would need to be addressed might include the risk of introducing bias into state 

estimates and correlation between errors in multiple estimates of stage from a single 

image. 

Before the above is attempted, further research is required into the benefit of 

assimilating flood inundation data into simulation models of a number of study sites 

and at a range of different scales. Especially, given that at the River Crouch site: 

1. Stage measurements at the flood edge were found to yield less signal variance 

than those in the channel. 
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2. Floodplain measurements were found to yield very small signals when 

considered in addition to channel stage measurements, despite stage error 

variance being greater towards the floodplain edge (see discussion in chapter 

7). 

3. Error in floodplain stage had little influence on down flow error propagation. 

Nevertheless, these properties may not be repeated on alternative rivers with much 

larger areas of floodplain storage relative to the channel, where present storage has 

an impact on downstream stage errors. 

With the growing availability of multi-temporal satellite and airborne data from 

which flood inundation can be estimated (Smith, 1997) it may be possible to use 

adaptive sampling techniques to target or design image acquisition during flood 

events to optimise signal variance, especially given the ongoing research concerning 

the assimilation of swath-altimetry into hydrodynamic models (Andreadis et al., 

2007). In theory, the ETKF could be used to estimate the signal variance expected 

from assimilating stage estimates made from a remotely sensed image prior to its 

acquisition, provided that a linear transform of error perturbations is appropriate and 

the errors in measurements are close to normally distributed. Given these 

assumptions it would also be possible to use the ETKF to assess the likely benefit in 

terms of signal variance of building a forecasting model to assimilate remotely 

sensed flood inundation or any other data source prior to building the forecasting 

model. Obviously, an ensemble of model simulations would be required, but, the 

EnKF would not need to be implemented, avoiding the associated risk or model 

instability. In fact the ETKF could be used to optimise a sensor network deployment, 

the measurements from which could then be used by a forecasting model not based 

on a hydrodynamic model. However, it may be difficult to justify the simulated error 

perturbations used by such an approach without calibration or validation data. 
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9 Conclusions 

In section 1.1 the aims of this thesis were set out along with some more specific aims 

for each of the four research chapters. By considering the results from each of the 

four research chapters some concluding remarks will now be made in reference to 

each of these thesis aims: 

1. Build a forecasting model based on: 

a. A simulation model capable of simulating river states at un monitored 

locations. 

b. A data assimilation algorithm that can utilise real-time measurement 

data that are spatiotemporally discontinuous and corrupted by errors. 

The EnKF provided a framework for assimilating stage measurements into stage and 

flow simulations made by a one-dimensional non-linear hydrodynamic model with a 

quasi two-dimensional representation of floodplain flow dynamics. In contrast to 

previously published forecasting models of this type, floodplain storage cells were 

updated in addition to the channel nodes. Explicitly accounting for areas of 

floodplain storage using the ISIS storage cell technique allowed measurements of 

floodplain stage to be assimilated with model states, without having to assume a flat 

water surface between channel and floodplain. The ability to assimilate 

measurements of floodplain stage may, in the future, generate opportunities to 

assimilate measurements derived from remotely sensed data sources, including 

images of flood inundation. Further simulation model developments might include 

changing the representation of floodplain processes through the use of more complex 

floodplain flow equations or including smaller scale floodplain features that could 

not be accounted for by the resolution of the storage cells used here. 

The principal difficulties with the approach used here were integrating the analysed 

state estimates with the hydrodynamic model and simulating stage and flow 

uncertainty rather then the estimation problem itself. Thus if the lessons of this case 

study are applicable in a general sense, the data assimilation tools cUD'ently available 
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would appear more than adequate given the difficulties associated with generating 

realistic state ensembles based on the present degree of understanding of error 

propagation in river flow models. However, as discussed in chapter 8 this may not be 

the case in situations where the simulation model has many more state variables or 

the ensemble size is smaller because of errors introduced by spurious long distance 

relationships between state variables and the finite ensemble size. 

2. Assess the ability of the forecasting model to simulate state error propagation. 

In chapter 4 the parameters that introduced errors into the RC model at the 

downstream tidal boundary were calibrated by trial and error such that the 

forecasting model made reasonable estimates of forecast error variance over a 4 hour 

forecast period. However, the RC forecasting model was unable to make variance 

forecasts that were as accurate at a location on the floodplain. It was suggested that 

errors introduced by uncertainty in internal model structure, roughness parameters 

and measurement bias may have been responsible for this. Uncertainty in the global 

roughness parameter was subsequently incorporated into the RC forecasting model. 

However, the close proximity of the sensor nodes made it difficult to identify 

weaknesses in the model structure or parameterisation since each sensor collected 

very similar information. A conclusion subsequently supported by the rapid decrease 

signal variance as measurements from the FloodNet sensors were assimilated in 

chapter 6. 

Forecasting over periods of time longer than 4 hours was limited because this 

essentially depended on the errors introduced first order autoregressive model at the 

downstream tidal boundary. An improvement on the experiments conducted here 

might include running the simulation model on larger river and spreading the sensor 

nodes out over a larger area. 

3. Assess the ability of an ETKF to quickly estimate forecast error variance 

simulated by the forecasting model. 
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Estimates of forecast error variance made by an ETKF were compared with those 

made by the EnKF based RC forecasting model in situations where the measurement 

data available to the RC forecasting model changed and did not change the ensemble 

mean state. For both situations the ETKF made estimates of error variance that were 

correlated significantly with those from the forecasting model. Correlations were 

higher when the ensemble mean did not change, particularly towards the edge of the 

incoming tide where forecast uncertainty was highest and most sensitive to changes 

in ensemble mean. Although, the decrease in correlations when the ensemble mean 

changed was also partly due to the greater prevalence of model state instability when 

the ensemble mean changed. The ETKF was therefore a useful tool for quickly 

estimating forecast error variance after assimilating a given set of measurements. 

This supports conclusions made previously in an atmospheric sciences context (e.g 

Bishop et al., 2001; Majumdar et al., 2002; Bishop et al., 2006). 

4. Develop and evaluate an adaptive sampling framework that could be applied 

to a network of wireless sensor nodes with limited power. 

Two approaches to adaptive sampling with wireless sensor nodes were implemented 

in this thesis. The first (Method 1) used the probability of flooding derived from an 

ensemble forecast to determine if further measurements were required, thereby 

updating the sampling framework systematically after each forecast was issued. The 

second (Method 2) used and ETKF to calculate the expected signal variances that 

would result from Q sampling options. The approach based on an ETKF facilitated 

the development of a more efficient sampling framework, in terms of signal variance 

per measurement, than the systematic approach. It also allowed the sampling 

framework to be planned in advance of any data collection. 

Targeting measurements with a simulation model has a number of drawbacks. 

Numerical process models that inherently ignore or simplify various processes that 

influence system dynamics may lead to bias into model state simulations. A filter 

using measurements collected systematically or randomly has a fair chance of 

correcting such errors, depending on the sampling density and sensitivity of state to 

the unrepresented process. Targeted measurements preferentially update state errors 
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based on the setup of the simulation model and therefore may actively under correct 

for un-modelled processes in accordance with the limitations of the simulation 

model. This is important since one of the principal reasons for updating is that errors 

in simulated state often build up over time because of processes not accounted for by 

the simulation model. Similarly, targeting measurements based on the assumptions 

made about error sources will lead to sampling bias based on the models prior or 

assumed representation of error sources and propagation. 

5. Develop and test a methodology to design optimal sampling frameworks for 

flood forecasting. 

The ETKF used by adaptive sampling Method 2 can be used to design optimal 

spatio-temporal sampling frameworks in much the same way that geostatistical 

methods can be used to design spatial sampling frameworks. Namely sensors can be 

placed in locations where their measurements yield the greatest signal variance when 

assimilated with state estimates from a simulation model. However, the scope of the 

tests carried out at the River Crouch field site was limited by the size of the river 

network, the size of the floodplain storage, the spatial extent of validation data and a 

lack of significant inflow from tributaries. Thus, whilst it was possible to 

demonstrate the methodology, assess its numerical stability, conclude that the quality 

of the simulation model ensemble is likely to be a key factor and conduct a limited 

comparison with the EnKF. Anything approaching a comprehensive assessment of 

the accuracy of error variance estimates made by the ETKF was not possible in this 

case. 
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Appendices 

Appendix A: Simple KF example: bucket water levels 

To help clarify KF analysis scheme in conjunction with section 3.3.4 a hypothetical 

example for a single point based on a bucket filling with rainwater is presented here. 

The TV weatherman states that 4 cm of rainfall is expected to fall overnight (x = 4 

cm). However, he also states that the forecast is not certain but decides to show off 

by stating that it has a variance of 1.5 cm (0'; = 1.5 cm). By observing a bucket 

placed outside overnight by eye it appears that around 5 cm or rain has fallen (y = 5 

cm) However, without a more accurate instrument to take the measurement you 

assume that your measurement has a variance of 1 cm (0'; = 1 cm). The Kalman 

filter analysis from Eq. 3.24 can give you a more accurate estimate of how much rain 

fell into the bucket by combining these two sources of information. Recalling Eq. 

3.23-24: 

K = pfHT(HPfH T + Rt 

x G = xf + K(Y - Hxf) 
A1.1-2 

Under the single point circumstance the observation operator H becomes 1, as the 

measurement maps directly onto the model state. This effectively means the 

innovation matrix (y - Hxf) becomes the difference between the measured and 

simulated state (d = y - x = 1). For a point model the Kalman gain K simplifies to k 

= (Jx I (Jx + (Jy = 0.6. Thus by using equation 3.24/A1.2 the analysed estimate ofx is: 

x G = xf + kd 

x
G = 4 + 0.6 * 1 

x G = 4.6 

(A1.3-5) 

The variance of the analysed state estimate can also be calculated by recalling Eq. 
3.25: 
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Which when applied to the single point bucket example simplifies to become 

(Ya = 1.5 - 0.6 * 1.5 

(Ya = 0.6 

(A 1.6) 

(A1.7-9) 

Thus the analysed estimate of the bucket water level is 4.6 cm variance 0.6 cm, 
which is less than both the forecasted and measured values. 

Appendix B: Ensemble transform Kalman filter code. 

This appendix contains the Matlab 6 (R12) code used to implement the ETKF (Note: 
there is no reason why it shouldn't also work in Matlab 7). Assuming there are N 
model states, K ensemble members and M measurements the following matrices 
must be specified: 

Z N-by-K 

Zval N-by-K 

H M-by-K 
R M-by-M 
I K-by-K 

Ensemble perturbations at target time scaled by the square root 
of K-1 
Ensemble perturbations at validation time scaled by the square 
root of K-I 
Measurement operator 
Measurement error covariance 
Identity matrix 

The code below calculates the following: 

T 
Za 
Zaval 
Pa 
Paval 
S 
Sval 
A 
C 
Y 

K-by-K 
N-by-K 
N-by-K 
N-by-N 
N-by-N 
N-by-N 
N-by-N 
K-by-K 
K-by-K 
K-by-K 

Using the function: 

Ensemble transform matrix 
Analysed ensemble perturbations 
Analysed ensemble perturbations at validation time 
Analysed error covariance 
Analysed error covariance at validation time 
Signal covariance 
Signal covariance at validation time 
Prediction error covariance matrix 
Eigenvalues of A 
Eigenvector of A 

function [T, Za, Zaval, Pa, Paval, S, Sval] = ETKF (Z, Zval, H, R, I) 
% Ensemble transform Kalman filter for Matlab 6 (R12) 

% Calculate the prediction error covariance matrix associated with the measurements 
H2 = (RA_0.5)*H*Z; 
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A=H2'*H2; 

% Calculate the eigenvalues and eigenvectors of the matrix A 
[C,Y] = eig (A); 

% Calculate the transform matrix T 
T = C*((Y+I)"'-O.5)*C'; 

% Calculate updated ensemble perturbations at the target time and validation time 
Za = Z*T; 
Zaval = Zval *T; 

% Calculate analysed error covariance at the target and validation time (optional) 
Pa = Z*Z'; 
Paval = Zaval* Zaval'; 

% Calculate the signal covariance at the target time and validation time (optional) 
S = (Z*C)*Y*((Y+I)",-I)*(Z*C),; 
Sval = (Zval*C)*Y*((Y+I)"-I)*(Zval*C),; 
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