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ABSTRACT 

This thesis considers the construction of simultaneous confidence bands 

for a normal-error linear regression model and a linear logistic regression 

model with a binary response variable respectively. For linear regression, 

three general methods are summarized to construct exact one-sided and two­

sided confidence bands over an ellipsoidal restricted region of the predictor 

space, and they are found to have the equivalent formulae for calculating 

critical values. Also, several methods are available to construct confidence 

bands over a rectangular region. \iVe compare these methods in terms of the 

critical value. For logistic regression, several methods are considered for the 

construction of confidence bands with or without predictor constraint, '\'hich 

is based on the asymptotic normality of the estimator. Simulation studies 

are provided to assess the performances of some key bands. Several useful 

conclusions can be drawn. 
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Chapter 1 

Introduction 

1.1 Background 

Consider the classical normal-error linear regression model 

y = X{3+ e 

where Y nxl is the vector of the observed responses, Xnxp is the design matrix 

with the first column given by (1, ... , 1)T and the jth (2 S j S p) column 

given by (Xl,j," . ,Xn,j)T, {3 = (PI,' .. , Pp)T is the vector of regression coeffi­

cients, and e is the error vector which has the Nn(O, (T21) distribution with 

(T2 unknown. Assume XT X is non-singular, then the least squares estimator 

of {3 is given by (3 = (XTX)-lXTy which has the Np({3,(T2(XTAj-l) distri­

bution. Let &2 denote the usual unbiased estimator of (T2, then &2 rv (T2x~/ l/ 

with the degree of freedom l/ = n p and is independent of 13. 
For statistical inference, the commonly considered pointwise confidence 

interval plays an important role which is concerned for the mean response 

x6 {3 at one specific point Xo. It has the form given by 

(1.1) 

where is the percentage point of a t random variable with l/ degrees 

of freedom that leaves a probability 0!/2 in the upper tail, and so 1 0!/2 in 

the lower tail. 
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A simultaneous confidence band is constructed for the mean responses 

x T (3 for all possible values of x within a given region X of p - 1 predictor 

variables. The most popular simultaneous confidence band is of hyperbolic 

shape, and has the following form 

(1.2) 

where c is the critical value such that the confidence band has the simultane­

ous coverage probability equal to a preassigned confidence level 1 - Ct. The 

key of constructing a confidence band is to find the appropriate critical value 

c. Another frequently mentioned confidence band is of fixed band width, 

which has the form given by 

x T (3 EXT (3 ± c(j for all x E X. (1.3) 

It is of natural interest to compare the simultaneous confidence band with 

the pointwise confidence interval. The key difference between them is that 

the simultaneous confidence band is constructed for all possible x while the 

pointwise confidence interval is only at a specific point Xo. 

On the other hand, consider a confidence interval for the parameter vector 

(3, which is given by 

(3 E (3 ± t v ,l-o:j2s.e. ((3), (1.4) 

where s.e. ((3) is the standard error of (3 and is formed by the square roots 

of the diagonal terms of the matrix (j2 (XT X) -1. The confidence interval for 

(3 contains p individual confidence intervals for p regression coefficients re­

spectively. And these individual intervals can be used to define a rectangular 

region in the parameter space. Note that this rectangular region is not a 

proper simultaneous confidence region for (3. 

To obtain a simultaneous confidence region for (3, we start with the fact 

that (3 rv N p ((3, u 2 (XTXr1). Define a p x p non-singular matrix P such that 
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(p-lf(j3 - (3)/a rv Np(O, 1) 

=? (13 (3f(pT p)-l(j3 - (3)/a2 
rv x; 

(13 (3f XT X(j3 - (3) / pa2 

=? -'------'-------'-------::-:-~-----'-'------=--- rv Fp,v, a2/a2 
(1.5) 

where X; and Fp,v denote the Chi-square distribution with p degrees of free­

dom and the F distribution with p and v degrees of freedom. Therefore, a 

(1 - a)-level simultaneous confidence region for (3 can be obtained from the 

inequality 

(1.6) 

where Fp,v,l-o: is the upper a point of the Fp,v distribution. The equality 

obtained by changing ":::;" to "=" in (1.6) specifies the boundary of an ellip­

soidal contour in the parameter space. 

Note that the simultaneous confidence region for (3 in (1.6) can also be 

obtained from the simultaneous confidence band for x T (3 in (1.2) when X = 

Rf-1 which is the setting in Scheffe (1953). Assume the band (1.2) has 1- a 

confidence level. Then we have 

With P consistently defined, we have the probability on the left-hand side of 

(1.7) further equal to 

P{ sup IxT((3 13)1:::; caJxT(XT_X';-lx} 
xERp-l 

P{ sup \xT pT(p-l f((3 - 13)1 :::; caV xT pT Px} 
xERp-l 

P{ sup i(Pxf· (p-lf((3 13)1:::; caV(Px)T(Px)} 
xERp-l 

P{ II Pxll . II (p-l)T ((3 13) II :::; cal: Pxll} 
p{[(p-l)T((3 - j3)]T[(p-1f((3 13)]:::; c2a2 } 

P { ((3 - 13 f ( pT P) -1 ((3 - 13) :::; c2 a2 } 

P{ ((3 - j3f XT X((3 - 13) :::; c2a2
} = 1 - a. 

3 
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Figure 1.1: Simultaneous and individual confidence statements. 

Therefore c2 = pFp,v,l-a, and the link between (1.2) and (1.6) is obtained. 

For all x E RP-l, any point within the simultaneous confidence region for f3 
in (1.6) one-to-one corresponds to a straight line which is completely inside 

the simultaneous confidence band for x T f3 in (1.2). 

Figure 1.1 indicates a possible situation that may arise when p = 2. The 

(1 - a)-level simultaneous confidence region for (Po,f3r) is displayed by the 

shin ellipse which encloses points of (Po, PI) that are considered as simulta­

neously appropriate for the true parameters. The individual (1 - a)-level 

confidence intervals for Po and PI specify the ranges for the candidates of 

the true parameters separately irrespective with the value of the other pa­

rameter. Both ellipse and the rectangular region are centered at the point of 

the estimates of the two parameters (bo) ). Gote that a point, for example, 

E lying inside the rectangular region but outside the ellipse illustrates that 

the coordinates of the point E are regarded as reasonable for parameters Po 

and PI by the individual confidence intervals but not so by the simultane­

ous confidence region. For details, see, e.g., Draper and Smith (1998, pages 

142-146). This thesis focuses on the construction of hyperbolic-shape simul­

taneous confidence bands rather than bands of other shapes or pointwise 

confidence intervals. 
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Xi :"i 

1 'L9 0.7 
2 0.8 -10 
3 1.1 -0.2 
4 OJ -1 2 
5 "0.1 ·01 
6 44 34 
7 4.6 0:0 
8 1.6 0.8 
9 5.5 3.7 
10 34 2.0 

Table 1.1: Observations for simple linear regression model 

Next, we come to see two examples of constructing simultaneous con­

fidence bands for a linear regression modeL The first example is of one 

dimension, where we have 10 observations for the only predictor variable x 

and the response y respectively. These observations are given in Table 1.1. 

VVe fit this data using a simple linear regression model and construct a si­

multaneous confidence band over the restricted interval [-0.1, 5.5J with 95% 

confidence leveL The critical value of the confidence band is 2.9201 compared 

with the critical value 2.3060 for the 95%-level pointwise confidence interval. 

The confidence band constructed is shown in Figure 1.2. 

The second example is for two-dimensional case. Consider the acetylene 

data of Snee (1977) which was very popular in published papers and can 

be fitted by a bivariate linear regression model. We construct the 95%­

level simultaneous confidence band over X =[1100, 1300] x [5.3, 23] and then 

picture it in Figure 1.3. The critical value of the confidence band is 3.1137 

while that of the pointwise confidence interval is 2.1604. 

A simultaneous confidence band provides useful information on where­

abouts of the true regression function. Any regression function which lies 

completely inside the confidence band over the whole given region of the pre­

dictor variables is deemed by the band as a plausible candidate of the true 

function; any regression function that lies outside the confidence band for at 

least one point in the given region of the predictor space is not considered as 

5 



The confidence bands and the leasl squares line 
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;::., 
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a 2 3 4 5 6 
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Figure 1.2: Confidence band for a simple linear regression 

The confidence bands and tile least squares plene 
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40 
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Figure 1.3: Confidence band for a bivariate linear regression 
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a potential candidate of the true function. 

Specifically, a simultaneous confidence band can be used to test the fol­

lowing hypotheses 

Ho : /3 = /3 0 against 

in the following way 

reject Ho if and only if 

x T /30 is outside the band for at least one x EX. (1.9) 

This test is of size 0: since the confidence band has a simultaneous confidence 

level 1 0:. 

The problem of constructing simultaneous confidence bands has a history 

going back to \i\Torking and Hotelling (1929). Scheffe (1953) considered the 

whole predictor space as the given region of predictor variables which is 

equivalent to setting no constraint at all on predictor variables. 

For p = 2, that is, there is only one predictor variable, Gafarian (1964) 

considered a two-sided constant-width confidence band with the only pre­

dictor variable restricted in an interval. His effort was followed by Bowden 

(1970) who considered two-sided confidence bands of other shapes by making 

use of Holder's inequality. Piegorsch et al. (2000) considered the calculation 

of the critical values of a family of confidence bands from Bowden (1970). 

Wynn and Bloomfield (1971) and Vusipaikka (1983) provided exact two-sided 

hyperbolic-shape confidence bands, with the band width proportional to the 

standard error of the estimated regression function, when the only predictor 

variable is restricted in an interval or the union of disjoint intervals. Bohrer 

and Francis (1972) proposed exact one-sided confidence bands with the only 

predictor variable constrained to an interval. 

For p > 2, there are at least two predictor variables in the model. In 

such a case, the (p - 1 )-dimensional region X may have various forms. Con­

struction of exact confidence bands becomes much harder. Bohrer (1967) 

considered a hyperbolic-shape confidence band when the predictor variables 

7 



are all non-negative. Bohrer (1973) presented the construction of an exact 

one-sided confidence band over an ellipsoidal predictor region by evaluating a 

multivariate t probability. Halperin and Gurian (1968) provided conservative 

confidence bands over an ellipsoidal region. Wynn (1975) developed a gen­

eral result on the calculation of the confidence levels for one-sided confidence 

bands in regression analysis. Casella and Strawderman (1980) proposed ex­

act confidence bands over a region of the same shape. The most frequently 

used region is of rectangular shape, and it is given by 

where -DO ::s: ai < bi ::s: 00, i = 2, ... ,p are given constants. Knafi, Sacks 

and Ylvisaker (1985) obtained an approximate two-sided hyperbolic-shape 

confidence band when p ::s: 3 by using an up-crossing inequality. This ap­

proach was further developed in Faraway and Sun (1995), Sun and Loader 

(1994), and Sun, Loader and McCormick (2000) to produce approximate 

two-sided confidence bands for a more general regression model. However, 

multiple integrations are involved in the calculation of these approximations 

and the dimensionality of the integrations increases with p. Naiman (1986) 

discussed the construction of conservative simultaneous confidence bands for 

curvilinear regression functions by applying the tube volume theory. For 

the construction of confidence bands for a more general regression model, 

more references can be found in Johnstone and Siegmund (1989), Knowles 

and Siegmund (1989), Johansen and Johnstone (1990), and Sun, Loader and 

McCormick (2000). Recently, Liu, Jamshidian, Zhang and Donnelly (2005) 

proposed the simulation-based two-sided simultaneous confidence bands over 

a rectangular predictor space for generally p > 2, and the critical value based 

on this method can be as accurate as one expects if the number of simulations 

is set to sufficiently large. Moreover, this simulation-based method can 

be adapted to the construction of one-sided confidence bands over a similar 

region. Liu, Jamshidian, Zhang and Bretz (2004) considered constructing 

two-sided constant-width confidence bands for a multiple regression model 

over a rectangular region by using both numerical integration and simulation. 

8 



The existing literatures of the construction of simultaneous confidence 

bands for logistic regression models are very limited. The main contribu­

tions to this area are: Brand, Pinnock and Jackson (1973) which described 

a method of obtaining a confidence band for a simple logistic regression 

based on the large sample distribution of the maximum likelihood estimators, 

Hauck (1983) which further developed the previous work to the multiple case 

by applying the Cauchy-Schwartz inequality, Piegorsch and Casella (1988) 

which first discussed the confidence bands for a logistic regression with re­

stricted predictor variables, and Sun, Loader and ::\1cCormick (2000) which 

developed their approximate method of Sun and Loader (1994) applicable to 

the generalized linear models. 

1.2 The organization of this thesis 

'Ale continue to introduce some concepts and basic tools in the rest of this 

chapter on large sample theory, which include some important inequalities 

and theorems required in the subsequent chapters but without explicit proof 

here. In Chapter 2, we describe the generalized linear models, specially, the 

logistic regression model, involving the large sample asymptotic distribution 

of the estimators and related inferences. In Chapter 3, our attention is fo­

cused on the construction of exact one-sided and two-sided hyperbolic-shape 

simultaneous confidence bands for a simple linear regression model with re­

stricted predictor variable based on three methods. Chapter 4 continues to 

talk about the construction of confidence bands using the same methods 

for a multiple linear regression over an ellipsoidal region. In Chapter 5, we 

consider the construction of simultaneous confidence bands for a regression 

model over a rectangular region based on several methods and then compare 

these methods in terms of critical values. In Chapter 6, we discuss the con­

struction of simultaneous confidence bands for a logistic regression model and 

then give simulation studies to check the goodness of the considered bands. 

Finally, Chapter 7 provides some main conclusions and the future work. 
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1.3 Concepts and basic tools 

Definition 1,3.1 (Convergence in probability) A sequence {Tn} of ran­

dom variables is said to converge in probability to a (possibly degenerate) ran­

dom variable T, if for every positive numbers E and 7), there exists a positive 

integer no = no (c ,17), such that 

P{d(Tn, T) > E} < 7), n 2: no, (1.10) 

where de) denotes a distance function (or norm). This mode of convergence 

is usually expressed by Tn T ~ O. In the case where T is non-stochastic, 

we may write Tn T. 

Definition 1,3.2 (Convergence in distribution) A sequence {Tn} of ran­

dom variables with distribution functions Fn is said to converge in distribu­

tion (or in law) to a (possibly degenerate) random variable T with a distribu­

tion function F, if for every E > 0, there exists an integer no = no (c), such 

that at every point of continuity of F} 

IFn(X) - F(x)1 < c, n 2: no· (1.11 ) 

This mode of convergence is denoted in this thesis by Tn T. 

Definition 1,3.3 (Almost sure convergence) A sequence {Tn} of ran­

dom variables is said to converge almost surely (a.s.) to a (possibly degener­

ate) random variable T} if for every positive c and 17, there exists a positive 

integer no = no (c, 7)), such that 

P{d(TI\',T) > c for some N 2: n} < 17, n 2: no· (1.12) 

In symbols, we write this as Tn - T ~ 0, and ifT is non-stochastic, it may 

also be written as Tn T. 

Theoren"l 1,3.1 (Chebyshev Inequality) Let U be a non-negative ran­

dom variable with a finite mean f-L = E(U). Then for every t > 0, 

(1.13) 
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Theorem 1.3.2 (Lindeberg-Feller) Let X k, k ~ I, be independent ran­

dom variables such that E(Xk) = f-Lk and Var(Xk ) = (J~, k ~ 1; also let 

Tn = L~=l X k, ~n = E(Tn) = L~=l f-Lk, s~ = Var(Tn) = L~=l (J~ and 

Zn = (Tn ~n)/sn = L~=l Ynk where Ynk = (Xk f-Lk)/Sn' Consider the 

following conditions: 

A) Uniform asymptotic negligibility condition: 

(J2 

max --'E. -7 0 as n -7 oc. 
l:Sk:Sn s~ 

B) Asymptotic normality condition: 

1 jZ t
2 

P {Zn :S z} -7 fCC exp (=-) dt = <I> (z ) 
V 271 -00 2 

C) Lindeberg-Feller condition: 

1 n 

'iE > 0, L E [(Xk - f-Lk)2 I{IXk -l1ki>c:sn }] -7 0 
k=l 

as n -7 oc. 

as n -7 oc. 

Then, (Aj and (Bj hold simultaneously if and only if (Cj holds. 

Theorem 1.3.3 (Slutsky) Let {Xn} and {Yn} be sequences of random vari­

ables such that Xn ~ X and Yn ~ c, where c is a constant. Then, it 

follows that 

i) Xn + Y,1 ~ X + c, 

ii) YnXn ~ cX, 

iii) Xn/Y,l ~ X/c if c of 0. 

Theorem 1.3.4 (Khintchine Strong Law of Large Numbers) LetXi,i ~ 

1 be independently identically distributed random variables. Then Xn c, 

and only ifE(Xl) exists and c = E(X1). 

Theorem 1.3.5 (Delta Method) Let {Tn} be a seqv,ence of random vec­

tors such that fo(Tn - 8) N(O,:E) and consider a real-valued function 

geT n) such that g' (8) is non-null and continuous in a neighborhood of 8. 

Then 
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Chapter 2 

Generalized linear models and 

logistic regression model with 

binary data 

2.1 Introduction 

As we intend to construct simultaneous confidence bands for both linear 

and logistic regression models, it is motivated to introduce the generalized 

linear models first. The so-called generalized linear models, an extension 

of the classical linear modelling process that allows models to be fitted to 

data, can be analogously used in the following more general situations: first, 

the response variables have probability distributions other than the normal 

distribution, such as poisson, binomial, multinomial and etc; second, the rela­

tionship between the response and the predictor variables are not necessarily 

of the linear form. Also, generalized linear models relax the requirement of 

equality or of variances is for 111 

traditional linear models. Generalized linear models include, as special cases, 

the linear regression and analysis of variance models, the log-linear models 

for categorical data, the product multinomial response models, the logistic 

model with binary data as well as some simple statistical models arising in 
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survival analysis. In particular, the logistic regression model with a binary 

response variable is of our interest in this thesis. 

In this chapter, we first specify the models, followed by the consideration 

of the parameter estimation based on the maximum likelihood and Newton­

Raphson iterative method. Then, we focus on the asymptotic behavior of 

the estimators. Some related statistical inferences are considered after that 

specially for the logistic regression model. 

2.2 Model specification 

2.2.1 Generalized linear models 

Consider a single random variable Y whose probability distribution depends 

on a single parameter 8. The distribution belongs to the exponential family 

if it can be written of the form given by 

f(y, 8) = exp[a(y)b(8) + c(8) + d(y)], (2.1) 

where a, b, c and d are known functions. Specially, if a(y) y, the distribu­

tion is said to be in canonical form. If there are other parameters, in addition 

to the parameter of interest 8, they are regarded as nuisance parameters form­

ing parts of the functions a, b, c and d, and they are treated as though they 

are known. Many familiar distributions belong to the exponential family. For 

example, the poisson distribution, the normal distribution and the binomial 

distribution can all be written in the canonical form. Details can be found 

in, e.g., Dobson (2001). 

The idea of a generalized linear model was introduced by NeIder and 

Wedderburn (1972) to demonstrate a unity of many statistical methods. This 

model is defined in terms of a set of independent random variables 1'1, ... 
each with a distribution from the exponential family and has the following 

properties: 

1. the distribution of each Yi has the canonical form and depends on a 
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single parameter ai, thus 

(2.2) 

2. the distribution of all ii's are of the same form so that the subscripts 

on b, c, and d can all be ignored, thus the joint probability density 

function of Yi, ... , YN is given by 

N 

i=1 

N N N 

eXP[LYib(ai ) + LC(ai) + Ld(Yi)]' (2.3) 
i=1 i=1 i=1 

The parameters ai and the observations of Yi, i = I, ... ,lV may one-to-one 

correspond, which leads that ai's are typically not of direct interest. A smaller 

set of parameters PI, ... ,/3p (where p < N) are usually adopted. Suppose 

that = ILi where ILi is some function of ai . In a generalized linear model, 

a relationship between ILi and a linear combination xr f3 is specified as 

(2.4) 

where g is a monotone and differentiable function called the link function, 

Xi is a p-dimensional vector of the predictor variables and the ith column of 

design matrix X as well, and f3 = (PI, ... , pp) T is the parameter vector 

of interest. Different link function determines different class of generalized 

linear models considered model belongs to. 

2.2.2 Binary response and logistic regressIon model 

In this subsection, we consider a generalized linear model in which the out­

come variable is measured on a binary scale. 'Success' and 'failure' are usually 

used as generic terms of the two categories. 
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Define the binary random variable 

if the outcome is a success, 

if the outcome is a failure, 

with probabilities P{ Z = I} = 7r and P{ Z = O} = 1 - 7r. If are n such 

random variables Zl, ... ,Zn which are independent and with P {Zj = I} = 
7rj, then their joint probability is 

n n n 

IT (1 7rJ )l-Zj = exp [~ Zj log (--'!!L) + ~ 10g(1 
L 1-7r L 
j=l J j=l 

(2.5) 
j=l 

which obviously is a member of the exponential family. Fbr the case when 

'if/s are all equal, a new random variable can be defined 

n 

so that Y is the number of successes in n 'trials'. Then Y has the bino-

mial distribution with parameters nand 7r, and its 

function is given by 

distribution 

y = 0, I, . ,n. 

Now consider m independent such random variables Yi, ... , Ym corre­

sponding to the numbers of successes in m different subgroups. Each sub­

group is of size ni, i = 1, ... , m such that 2::::::1 ni = N. Since Yi rv 

binomial (ni, 'if,), the log-likelihood function is therefore 

(2.6) 

The proportion of the successes in each subgroup, i.e., = ydni, i 

1, ... , m, is of interest. Note that E(Yi) = ni7ri implies E(Pi ) = 7ri. The 

probability 'ifi is linked with the parameters of interest by 
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where Xi and f3 are the same as before, 9 is the link function. Therefore, the 

general linear logistic regression model is defined by setting the link function 

9 i = 1, ... ,m, (2.7) 

where 10g[7I;j(1 - 7Ii)] is sometimes called the logit function. 

2.3 Parameter estimation 

To estimate parameters in a generalized linear model, we use a method based 

on the maximum likelihood. Although explicit mathematical expression can 

be obtained for the estimators of the parameters in some special cases, nu­

merical method is usually needed which is typically iterative and based on 

the Newton-Raphson algorithm. 

Consider the independent random variables Yi, ... , that fulfil the re-

quirements of a generalized linear model. We have E(Yi) = (ti and g(fLi) = 

x; f3 = 'TJi, where Xi is the vector with the elements Xij, i = 1, ... ,m indicat-

ing which subgroup the observation belongs to and j = 1, ... ,p indicating 

which predictor variable is observed. For each Yi, the likelihood function is 

(2.8) 

where the functions b, c and d are known. In order to derive the score 

functions as well as the information matrix, expressions for the expected 

value and variance of Yi's are needed. The following method is used to find 

the score functions and the information matrix by changing the order of 

integration and differentiation provided a density 

By the property that a probability density function integrates to 1, we 

have 

o J 0 Oei f(Yi, 8i )dYi = Oei . 1 = O. (2.9) 

Changing the order of the integration and differentiation, becomes 

(2.10) 
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Similarly, when the differentiation in (2.9) is of second order, then we have 

= O. (2.11) 

These results can be used to obtain the expectations and the variances of 

'so (2.10) can further written as 

Thus, we have 

Similarly, we have 

J f(Yi, ei)[Yibl(ei) + c'(ei )] 

J f(Yi, ei)Yib'(ei ) + J f(Yi, ei)c'(e;) 

b'(ei)Pi + c'(e;) = 0 

(2.12) 

Now we turn to derive the score function and the information matrix. 

The log-likelihood function for all the Yi's is 

m m m m 

l = L li LYib(ei) + L c(ei ) T L d(Yi)' (2.14) 
i=l ;=1 i=l i=l 

We use the chain rule for differentiation to 

is given by 

the score function which 

al 
88j 

~ (ali) ~ ali aei a{Li) 
= L a(l = L ae' afL . a{3 . 

i=l J i=l t t J 

(2.15 ) 

Consider each term on the right-hand side of (2. separately. aldaei can 

be obtained (2., aed api can be (2. ,and afLd a;3j 

can be obtained from the link function. Substituting these three individuals 

into (2.15) finally gives 

u = f [(Yi Pi) x. (a fLi
)] 

J . Var(Yi) 2J aTJi . 
2=1 

(2.16) 
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The variance-covariance matrix of Uj has the terms 

(2.17) 

where j, k = 1, ... ,p. 

An iterative procedure is usually adopted for parameter estimation. The 

most commonly used method is the following 1'\ ewton-Raphson approxima­

tion. Suppose t is a function of x, Newton-Raphson method is the iterative 

process described by 
t (x(r-I l ) 

x(r) = x(r-I) _ ---';--_~ 

t f 
( x(r-l)) 

(2.18) 

to find the value of x such that t(x) = O. It starts with an initial guess X(I) 

to obtain successive approximation until the iterative process converges. 

By Newton-Raphson's formula, the rth approximation of the parameter 

vector (3 is given by 

(2.19) 

where b(r) denotes the vector of the estimates of the parameter vector (3 

at the rth iteration, u(r-l) is the vector of the first order derivatives Uj's 

evaluated at (3 = b(r-l). By the method of scoring which replaces the matrix 

of the second order derivatives in (2.19) by its expectation, and the fact that 

J 

we have (2.19) equal to 

+ (2.20) 

where is the inverse of the information matrix with the elements 

Jjk given by (2.17) all evaluated at b(r-I). alternative version gives 

(2.21) 
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By (2.17) Jean written as 

J= XTWX, 

where Wis an m x m diagonal matrix with the elements given by 

Wii = __ 1_ (8/-Li)2. 
8r;i 

(2.22) 

By (2.16) and (2.17), the right-hand side ofthe equation (2.21) can be written 

as XT Wz, where z has the elements 

P 

Zi= L (2.23) 
j=l 

with /-Li and 8r;;j8/-Li evaluated at b(r-1) Hence the iterative equation (2.21) 

is equal to 

(2.24) 

which has to be solved iteratively in general, z and W depend on 

b. Thus for generalized linear models, the maximum likelihood estimates are 

obtained by an iterative weighted procedure. 

In particular for logistic regression we have the log-likelihood func-

tion given by 

l(7r; y) 

where 7r 

function 

~ [Y'lo" (~) ..l.. '(1·10,,(1 -~ 2 b 1 _ 11' I " b 

i=l 2 

l' .. ,11m? and y = (Y11'" 1 Ym? Also, we have the link 

o9(1Ii)=r;i 109( 1Ii~)=xrf3. 
1 - "i 

U sing the chain rule in (2.15), we have 

~ (~. . 87li )' = ~(Yi 
~ 811 8r;· ~ 
i=l 2 2 i=l 

The fisher information for f3 is therefore 

82l m 

Jjk = -E(8(38(3 ) = L ni1li(1 
) k i=l 
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where j, k = 1, ... ,p and W is a diagonal matrix of the weights given by 

W = diag{n7T(l - 7T)}. 't. 2\ 7., 

Following the Newton-Raphson procedure, define z with the elements given 

by 
, Yi - O'T)i 

Zi ='T); + .-
n; 07T; , 

then the maximum likelihood estimates can be obtained from the equation 

(2.24). 

Most statistical packages include the algorithm of estimation for gener­

alized linear models. They begin by evaluating z and W using some initial 

approximation b(O), then solve the iterative equation (2.24) to obtain bel) 

which in turn is used to get better approximations for z and W, and so on 

until adequate convergence is reached. \iVhen the difference between the two 

successive approximations b(r-l) and b(r) is sufficiently small, then b(r) IS 

taken as the maximum likelihood of the parameter vector (3. 

2.4 Asymptotic behavior of estinl.ators 

2.4.1 Introduction 

Since most distributional inferences on generalized linear models are valid 

based on large samples, there is a to look into the large sample asymp­

totic theory so that some desired distributional properties for the estimators 

can be obtained. Specifically, the normality of the maximum 

likelihood estimators is of interest. 

Recall the specification of a generalized linear model in Section 2.2. Con­

sider vector of y = (Yl, ... , to m inde­

pendent random variables }i, i = 1, ... , m, each with a distribution in the 

exponential family. We have the density for each Yi given by 

(2.25) 
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where B/s are parameters, ¢ > 0 is a scale and aC), be) and c(-) are all 

known functions which are distinguishable from those appeared previously. 

Therefore the joint density function is 

where 

Review that 

m 

i=l 
m 

c(y, ¢)exp { ~[YiBi - b(Bi)l!a(¢)}, 
i=l 

m 

c(y, ch) II C(Yi' ¢). 
i=1 

E(Yi) = lIi(B i ) = b'(Bi ), 

Var(Yi) = a(ch)b"(Bi) = a(ch)vdlIi(Bi)], 

(2.26) 

(2.27) 

(2.28) 

where vdlIi(Bi)] is known as the variance function of Bi which depends solely 

on lIi(Bi) for 1 SiS m. Furthermore, conceive of a transformation which 

provides the link IIi xT f3 of the form 

(2.29) 

where g(.) is a monotone and function and f3 (PI, ... ,ppl is 
the p-dimensional parameter vector. Alternatively, the link can be arranged 

in multi-dimensional version 

(2.30) 

'where X = (Xl; ... ,xm)T denotes a known m X p matrix. 

N ow we turn to find the distribution of /3, the maximum likeli-

hood estimator of f3 in the generalized linear model. Usually it is assumed in 

the asymptotic sense that the total sample size N -+ x, where N = :L:l ni 

with ni being the sample size of the ith subgroup of observations. However, 

there may be another situation where for each i, the Yi may be a statistic 
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given the subsample size ni. In such a case, a second type of asymptotic 

might be considered where it is not crucial to have N large, provided the n/s 

are themselves large. In the rest of this section, we focus on the regular case 

first, where N ---+ 00, and briefly talk about the second type of asymptotic 

after that. 

2.4.2 The first type of asymptotic 

Define hC) = (g 0 /-1)-10 so (2.29) is transformed to 

Bi = h(x[(3), i = 1, ... , m, (2.31) 

where h is monotone and differentiable. The parameter vector (3 is of di­

rect interest. By reviewing (2.25) and (2.26), we may note that the nuisance 

parameter ¢ does not affect the estimation of (3 and it influences the in­

formation matrix J only by a multiplicative factor [a(¢)]-2 which may be 

estimated consistently. Therefore, for the sake of simplicity and without loss 

of generality, a(¢) 1 is taken. Consider (2.31), the log-likelihood function 

in terms of (3 is given by 

m 

log LN ((3) = L { niYih(x[ (3) - n;b[h(x[ (3)]} - constant, (2.32) 
i=l 

where the constant term does not depend on (3, the subscript of the likeli­

hood, i.e., N, indicates that it is for the first type of asymptotic, and the 

quantities with such a subscript hereafter in this chapter are of the same 

meaning. Recall (2.27) and (2.28), then we have 

(2.33) 

Vi((3) = V [h(x['(3)] = b"[h(x[ (3)]. (2.34) 

Thus, the score function of (3 is given by 

(2.35) 
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from which it follows that whenever g' (-) and vC} == b" (-) are. both differen­

tiable, then we have 

(2.36) 

where 
m 

IN((3) L ni {g'[/Ii ((3)]} -2 [Vi ((3)r 1Xi X T (2.37) 
i=1 

and 

m 

L ndYi - /Ii ((3)] 
i=l 

Remark 2.4.1 Recall {2.31} that when 9 = /I-I, go /I is the identity func­

tion, hence, Bi = xT (3. In such a case, gO is termed a canonical link func­

tion. By {2.36}-{2.38}, we have that for canonical link functions, RN ((3) = o. 

Proof For canonical link functions, we have h(xT (3) = xT (3 and 9 = /I-I. 

Thus 

b'[h(xT (3)] = /I(xT (3) = g-l(xT (3) 

==? g{b'[h(xT (3)]) = xT (3 

==? g[b' (xT (3)] = xT (3. (2.39) 

Differentiate the both 

and obtain 

of the last equality in (2.39) with respect to (3 

"b'( T(3)l bl/( T(3) 9 l Xi J' Xi . Xi Xi (2.40) 

which implies 

Differentiate twice and obtain 

gf/[b'(xT(3)]· [b"(xT(3W· xixT + g'[b'(x;(3)]. bl!!(xT(3)· XiX; = 0 (2.42) 

23 



which, in connection with (2.41), implies 

(2.43) 

We therefore simply obtain RN ((3) = O. # 
In order to obtain the asymptotic distribution of the estimator of (3 under 

the consistent setup, we need to discuss some required assumptions. 

Assumption 2.4.1 Assume that 

and positive definite. (2.44) 

Assumption 2.4.2 Let 

where 

gil [fLi ((3)] b"'[h(x; (3)] 
Wi = {{9'[,LLi((3)]P + {g'[fLi((3)] P [Vi ((3)]3 }, i = 1, ... ,m, (2.46) 

and assume that 

By directly applying Chebyshev Inequality (1.11) to (2.38) that for > 

0, 

P{N-1RN ((3) > s} 

P{ ((3W > 

< 
E[N-1 R1,,,((3)j2 

S2 

N-2 2:Z:1 n;vdfLi((3)]tr(GiGf) 
(2.48) 
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in connection with Assumption 2.4.2, we can simply obtain N-1 RN(j3) ~ O. 

From (2.36), we have 

1 [ EP ] p 
N 8j38j3T log LN(j3) + IN(j3) ---+ O. (2.49) 

Next, we find the asymptotic normality of the score function given in 

(2.35). Observe that E[UN (j3)] = 0 and Var[UN (j3)] = I N (j3). To apply 

Lindeberg-Feller Theorem to the independent but not necessarily identically 

distributed random vectors, it is needed to show the Lindeberg-Feller condi­

tion is satisfied. For \:j E > 0, consider 

m 

J1/(j3) LE(titf)P{lltitTiI > I N (j3)II}, (2.50) 
i=1 

,vhere ti is defined such that 

m 

By Chebyshev Inequality, we have 

m 

i=1 

-1 ~ T Elltittll 
< I N (13) i:t E(titi ) Ell I

N
(j3) II (2.52) 

m 

< (13) L E(titf), (2.53) 
i=1 

where II) is the maximum of EI!tittll as i = 1,2, ... , m. 

it is known that J-;/(j3) :Z:1 E(titf) is equal to the identity matrix. From 

Assumption 2.4.1, we know that II IN(j3) II -+ 00 as N -+ 00. Thus, we have 

that the right-hand side of (2.53) converges to zero as N -+ CXJ so that (2.50) 

converges to zero as N -+ 00. Lindeberg-Feller condition is satisfied. By 

Lindeberg-Feller Theorem in connection with Assumption 2.4.1, we therefore 

have the asymptotic normality of U N (j3) that 

(2.54) 
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Now we turn to our central work to show the asymptotic normality of the 

maximum likelihood estimator 13. Let Ilull < k, 0 < k < 00 and consider the 

Taylor Expansion of log LN(f3 + N-~u) around log LN(f3). Define 

(2.55) 

where f3* is a point belonging to the line ended by f3 and (f3 + N-~u) in the 

parameter space. Also, define 

(2.56) 

Then (2.55) can be alternatively written as 

1 TIT 
\/V(u) = fATu UN(f3) - lni\Tu IN(f3)u + ZN(U). (2.57) 

vN v2N 

Observe that 

sup I!ZN(u) II 
lI u ll<k 

< ~ sup II ~ 8f3~f3T log LN(f3) If?* ~ 8f3~f3T log LNeS) 1f?11 

k
2

111 8
2 

I 1 II + 2 N 8f38f3T log LN(f3) f? + N IN(f3) , (2.58) 

where is defined in the following assumption. From (2.49), the 

second absolute value on the right-hand side of (2.58) converges to zero in 

probability as N -7 00. Next we consider the 

side of (2.58). 

term on the right-hand 

A . S h {r (f3~)'} 2 r (f3*" 3 ff'l (f3~')1 d ssumptlOll 2.4.3 uppose t at g [!Li . J - ) lVi )j-) g!Li . IJ an 

b!!f[h(x; f3*)] are uniformly continuous in an infinitesimal neighborhood of the 

true (3) i. e.) in the set 

B(S) = {f3* E RP : 11f3* - f311 < S}, S 1 o. (2.59) 
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Let 

and 

W2i((3) = f-Li((3)Wi((3), 

where Wi((3) is defined in {2.46}, i I, ... ,m. 

1. For k 1,2, as r5 1 0, 

2. As r5 1 0, 

sup II 
/3"E:B(o) 

(2.60) 

E,i3{ sup IYill!wi((3)* Wi((3)XiXfll} = 7jJ --7 0, (2.61) 
,i3*EB(5) 

where 7jJ is a scale. 

Observe according to (2.36)-(2.38) that 

E,i3 { sup 118(3~(3T log !(Yi; (3)1 13* - 8(3~(3T log !(Yi; (3)I,i3II} 

E,i3 { sup II{Wli [Yi - f-L;((3)]wi}x;xfl,i3* 

-{ Wli + [y; - f-Li((3)]Wi}XiXf 113 II } 
< sup II [Wli((3*) - wli((3)]x;xfll 

+ sup II [W2i((3*) w2i((3)]xixfll 

+E,i3 { sup IYi[ Ii ((3*) Wi((3)]Xixf!l}. 

(2.62) 

(2.63) 

(2.64) 

By Assumption 2.4.3, (2.62)-(2.64) converge to zero separately as k/ VN --7 0, 

which implies that the left-hand side of the above inequality converges to zero 

as k/VN --7 o. In addition, observe that 

1 II 1 I 1 8
2 

I II "2 sup I N 8(38(3T log L.T\T((3) 13* - N 8(38(3T log 113 

< 2~ t, ni j3* sup 118(3~(3T log !(Yi; (3) 113* - 8(38(3T log !(Yi; (3) 11311· 

(2.65) 
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By the Khintehine Strong Law of Large Numbers, since 

as k/0 -70, we have the right-hand side of the inequality (2.65) converges 

to zero almost surely. And this implies the left-hand side of (2.65), which is 

the same as the first term on the right-hand side of (2.58), converges to zero 

almost surely. Consequently, from (2.58), we have 

Rewrite (2.57) as 

sup IIZN(U)II ~ O. 
Ilull<k 

By Assumption 2.4.1, (2.67) is equal to 

~UT j({3lu + 2 ,/ ' 

(2.66) 

(2.67) 

when N -7 00. Maximize AN(U) by solving 8AN(U)/8u 0, and then obtain 

By the definition of AN( u) in (2.55), it is clear that u makes 

maximal, and the maximum of which is obtained at 13.' Therefore, we have 

13 {3 + N-1
/

2 U + op 

(3 + N- 1 r 1({3)UN ({3) + op(1V-1
/

2
), (2.68) 

which implies 

r;;r A 1 
v N({3 - (3) = 

Apply Slutsky Theorem in connection with (2.54) and then obtain 

(2.69) 

28 



The idea of how to obtain (2.69) for the first type of aSYIllptotic comes from 

Sen and Singer (1993). 

In particular, consider a logistic regression model. For the sake of sim­

plicity, we assume that there is only one predictor variable and no intercept 

term is included in the model, i.e., p = 1. To avoid a degenerate binomial 

distribution, take Xi =1= O. The canonical link function is given by 

g(7T) = log (~) . 
1-71 

Accordingly, vve have 

By Assumption 2.4.3, we have 

{ 
[1 + exp(pxi)]2 }-2 . { exp(28xi) 2}-1 

exp(pxi) [1 + exp(Bxi)]2 X
Z 

{[I + expU7xi)Fxn -1. 

Considering Remark 2.4.1, the assumptions required for obtaining the asymp­

totic normality of the maximum likelihood estimator /3 reduce to 

1. Assume that 

2. For some k: 0 < k < 00, as N -7 00 

sup 1{1 + exp[(p + h)Xi] [1 + 
I !{1 + exp[(8 + } -2 '1' - l T exp 

If we suppose the only predictor variable is bounded, 

hold. Thus, we have 

29 
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In this case, the design matrix X reduces to the m-dimensional vector x such 

that 

J({3) = x T Wx, 

where W is the diagonal weight matrix with the elements given by 

Xi is the i-th element of x. 

2.4.3 The second type of asymptotic 

Vye considered the first type of asymptotic of ,13 in last subsection, 

i.e., set the total sample size N large. As for the second type of asymptotic, 

we do not necessarily set N large and may consider the subsample sizes 

ni, i = 1, ... ,m are themselves large. 

Take the case of m = 2 for example. the independent binary 

variables Zij, i 1,2, j = 1, ... , ni, which have Bernoulli distribution 

and are defined by 

{
I with probability 11" 

- 0 with probability 1 T.i. 

Then, we have E(Zij) = 1Ii and Var(zij) 1Ii(1- . Define a random vector 

Y such that 
ni 

Yi = L i = 1, 2. (2.70) 
n 

j=l ' 

Then Y can be viewed as the vector of the 

binomial random variables. 

Consider the second type of asymptotic, i.e., set the 

of the independent 

sizes ni -+ 

CX) for i = 1,2. A common subsample size n -+ CX) is introduced to replace 

individuals. Then Classical Central Limit Theorem, the asymptotic 

normality of the random vector Y can be simply obtained as 

71) 
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where {t = (711) 7I2)T is the mean vector of Y, and :E IS the asymptotic 

variance-covariance matrix given by 

(2.72) 

If the parameter vector (3 is of direct interest, therefore, it is specified by 

a generalized linear model with a link to a linear combination that 

g({t) = X(3, (2.73) 

where 9 satisfies the properties of a link function, X is the design matrix with 

specific entries. Then Delta Method may be applied appropriately to (2.71) 

to obtain the asymptotic normality of /3 given by 

(2.74) 

where 

J((3) = XT WX, 

W is the diagonal weight matrix with the elements given by 

exp(xf (3) 
Wii = [1 + exp(xf (3)]2 i = 1,2, 

and Xi is the i-th row of the design matrix. 

2.5 Goodness of fit statistics 

2.5.1 Deviance 

One way of assessing the adequacy of a model is to compare it with a more 

general model, called a saturated model, with the maximum number of pa-

rameters that can be estimated. It is a linear model with the 

same distribution and link function as the model of interest. 

Let k denote maximum number of parameters that can be estimated 

for the saturated model. Then k is equal to the number of potentially differ­

ent linear components, which may be less than the number of observations 
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N. Let f3max denote the parameter vector for the saturated model and i3max 

denote the maximum likelihood estimator of f3max' The likelihood function 

for the saturated model evaluated at i3max, noted by L(i3max; y), will be larger 

than any other likelihood function for these observations with the same as­

sumed distribution and link function. That is because it provides the most 

complete description of the data. Also, denote L(i3; y) the maximum value 

of the likelihood function for the model of interest. Therefore, the likelihood 

ratio 

(2.75) 

provides a way of assessing the 

the logarithm of A, which stands for 

functions 

of fit for the model. In practice, 

between the log-likelihood 

is used. Large values of log A suggest that model of interest is a poor fit 

of the data relative to the saturated model. 

In next section, the sampling distributions will be discussed. Then we 

may notice that 2 log A rather than )\ is the most commonly used statistic 

and is referred to as the deviance termed Kelder and Wedderburn (1972). 

In particular, for linear logistic regression, it is given by 

D ----,--)] . (2.76) 

2.5.2 Pearson chi-squared statistic 

Instead of using maximum likelihood estimation we could estimate the pa­

rameters by minimizing the Pearson chi-squared statistic 

where 0 represents the observed frequencies and e represents the expected 

frequencies. In particular, for linear logistic regression, the Pearson chi­

squared statistic evaluated at the estimated expected frequencies is given 
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by 

(2.77) 

2.5.3 Equivalence 

The Taylor Expansion of s log(s/t) about s = t is given by 

s 1 
slog t = (s t) + 2'--t- I ... 

By applying the above expansion to (2.76), we have 

m 

D = 2 ~ {(Yi 
i=l 

+~ [(ni - Yi) (ni~- ni7Ti)]2 + ... } 
2 ni - ni1Ti 

(2.78) 

Thus, it is that the deviance in (2.76) is asymptotically equivalent to the 

Pearson chi-squared statistic in (2.77) 

2.6 Sampling distributions of statistics 

We write the first three terms of the Taylor Expansion of the log-likelihood 

at f3 13 as 

l(f3) = l(j3) (f3 - j3)TU(j3) - ~ (f3 - j3fU'(j3)(f3 - 13), (2.79) 

where U(j3) is the score vector evaluated at f3 = 13 and U'(j3) is the derivative 

of U with respect to f3 at f3 13. 
that U(j3) = 0 in (2.79) is due to maximum likelihood estima-

tion. If U' (13) is approximated its value E(U') = J, (2.79) is 

therefore to 

l(f3) l(j3) = ~(f3 - j3f J(j3)Cf3 - 13), (2.80) 
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where J(j3) is the information matrix evaluated at f3 = 13. Therefore, we 

have 

2[l(j3; y) -l(f3; y)] = (f3 - j3f J(i3)(f3 - 13). (2.81) 

From the asymptotic distribution of 13, we have 

where X~ stands for the Chi-square distribution with p degrees of freedom, 

and p here is also the dimensionality of f3. 

Thus, the sampling distribution for the deviance can be derived. Observe 

that 

D 2[l (j3ma:x; y) l (/3; y) 1 

2[l(j3ma:x; y) -l(f3max; y)] 

-2[l(j3; y) l(f3; y)] 2[l(f3max; y) -l(;3; y)]. (2.82) 

The first term on the right-hand of (2.82) has the distribution where 

k is the number of parameters in saturated modeL The second term 

has the X; distribution where p is number of parameters in the model of 

interest. The third term, v = (f3ma:x; y) - l(f3; y)], is a positive constant 

which will be near zero if the model of interest fits the data almost as well as 

the saturated model. Consequently, the sampling distribution of the deviance 

is, approximately, xLp,v, v is the non-central parameter. 

For logistic regression, considering the equivalence between the deviance 

and the Pearson chi-squared we have approximately X 2 
r-.J X~-p. 

The choice between D and X 2 depends on the of the approxima­

tion to the X~-p distribution. D has a general advantage as a measure of 

discrepancy in that it is additive for nested sets of models if maximum like­

lihood estimates are used, X 2 in general is not. However, there is 

some evidence to suggest that X 2 is often better than D because D is unduly 

influenced by very small frequencies (see Cressie and Read, 1989). Both of 

them are likely to be poor when the expected frequencies are too small. 
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2.7 Resid ual analysis 

Measures of agreements between observations on a response variable and the 

corresponding fitted values are known as residuals. These quantities, and 

summary statistics derived from them, can provide much information about 

the adequacy of the fitted model. 

For logistic regression there are tvvo main forms of residuals corresponding 

to the goodness of fit measures D and X 2 respectively. Let 771 denote the 

number of observations of Y, Yi denote the number of successes, ni denote 

the number of trials in subgroups and ifi denote the estimated probability of 

being success for the ith subgroup of samples; Then the Pearson residual is 

defined by 
(y - n7T) 

Xi = ' " . i = 1, .... 771. (2.83) 
Vn(7ri(l - ITi)' , 

From (2.77), 2:7:1 X; = X2) the Pearson chi-squared goodness of fit statis­

tic. The standardization used in the construction of the Pearson residuals 

does not yield residuals that have even approximate unit variance, since no 

allowance has been made for the inherent variation in the fitted values of the 

response niifi . A better procedure is to divide the raw residuals Yi - ni7Ti by 

their standard error. This standard error is quite complicated to derive, but 

it is found to be given by 

where Vi ni7Ti(l - ,hi is the ith element on the diagonal of the hat 

matrix H X(XT X)-1 XT and the quantities hi can be easily found through 

many statistical packages. So the resulting standardized residuals are 

Xi 
r . = --=== 

p" ~1 l' y' - 1i 
(2.84) 

Another of residual can constructed from the deviance, given by 

1 

Yi)log( n
i

-
Y:)]}2, (2.85) 

ni - niJli 
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where the term sign(Yi - ensures that di has the same sign as Xi. From 

(2.76), =:1 d; = D, the deviance. Also standardized deviance residuals are 

defined by 

(2.86) 

These residuals can be used for checking the adequacy of a model. For 

instance, they should be plotted against each covariate in the model to check 

whether the assumption of linearity is appropriate. They should be plotted 

in the order of the measurements, if applicable, to check for serial correlation. 

Normal probability plots can also be adopted, since the standardized resid­

uals should approximately have a standard normal distribution provided the 

numbers of observations for each covariate are not too small. 

In the case that the data are binary or ni is small for most covariate 

patterns, there are few distinct values of the residuals and, consequently, the 

plots may be less informative. Under this situation, the aggregated goodness 

of fit statistics X 2 and D may be necessary to be considered. 

Sections 2.5-2.7 take Dobson (2001) for main reference. 
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Chapter 3 

Exact simultaneous confidence 

bands for a simple linear 

regression with restricted 

predictor variable 

In following two chapters, we consider the construction of exact hyperbolic­

shape simultaneous confidence bands for a linear regression model. This 

chapter focuses on the construction of exact one-sided and two-sided confi­

dence bands for a simple linear regression model with constrained predictor 

variable using the following three methods: the method following the idea of 

Bohrer (1973), the algebraical method and the tubular neighborhood method. 

The equivalence of the computational formulae based on these three methods 

is given for both one-sided and two-sided cases. 

3.1 Exact one-sided confidence bands 

Bohrer and Francis (1972) considered an one-sided confidence bound of hy­

perbolic shape for a simple linear regression model 

(3.1) 
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with 

where Yi'S are the observations of the response, the differences between the 

observations of the only predictor variable and their mean value (Xi - x)'s 

are restricted in a given interval [a, b], 13 = (/31, ,82f is the vector of unknown 

regression coefficients, Ci'S are independent and identically distributed normal 

random errors \'lith mean 0 and unknown variance (J2. If we define Sx = 

:Z(Xi - and SXy = :Z(Xi - then the least squares estimator of 13 and 

the usual unbiased estimator of (J2 are given by 13 = (:ZYdn, Sxy/ Sxf and 

fJ2 = :Z(Yi - /31 - 82 - x))/(n - 2) respectively, which are independent by 

studying least squares theory and have the following distributions 

An one-sided hyperbolic-shape simultaneous confidence band for the mean 

responses 

f(x; (3) = (h + 

is centered by f(x; 13) and with band width proportional to the standard 

deviation of f(x; 13). Specifically, the band, e.g., with upper bound, is given 

by 

f(x;f3) :.; f(x;/3) + cfJH(x;/3), for all X - x E [a,b]' 

where c is a critical value and 

H(.r;;j3) = [Varf(x;j3)]! /(J = --L C;-I(x -)2 
I U x X. 

The key of a confidence band is to find an ELPpro­

priate critical value c such that the band has the coverage probability defined 

by 

P(c) = P{f(x;f3):'; f(x;j3) + cfJH(x;j3),x - x E [a,b]} (3.2) 

equal to a preassigned confidence level 1 - u. 
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Let z = 
Note that since /3 = (~L~2? is independent of {Y, so is N. Let t = N/{Y, 

then we have 

+ (x 

{::? (131 3d + (fh - ~2)(X - x) S; 

{::? (n-~,(x-x)S;~?[((P1-

+ , S-l( 
T x x-

+ S;l(X-

, ({32 - ) /0-1 
J 

Consequently, the confidence level of the band in (3.2) is equal to 

(3.3) 

where x x E [a, b] determines a restricted region for z in terms of a and 

b. From the definition of z, it is clear that z has the fixed first coordinate 

and the second coordinate bounded by an interval as is known. This 

implies that z varies within a circular cone Z = {z : Zl 2 qllzlt}, where Zl is 

the first coordinate of z and q is a constant which will be explicitly given in 

the following text when needed. Therefore, P ( c) is equal to P {t E R}, where 

R = {t : zTt S; cllzll, all z E Z}. (3.4) 

This is the starting point of the following three methods we are going to 

discuss. 

3.1.1 Method following the idea of Bohrer (1973) 

Let a = (n-1/2 , as:;1/2? and b = (n-1/2 , bS:;1/2 be the boundaries of Z, 

and cp* E [0,71] be the angle between a and b. Set up a coordinates system 

such that the horizontal axis has the same direction as a. Let C/Jt be the angle 

of t turned moving anti-clockwise from a to t. 

Lemma 3.1.1 Under the notations of t; and CPt; R in (3.4) can be par-

39 



Figure 3.1: For the method following Bohrer (1973) i~ one-sided case 

titioned into four disjoint parts according to the location of t : 

RI {t : Iltll ::; c,O < cPt < cP*}, (3.5) 

R2 
1 

{t : 0::; bTt::; cli bl l,cP*::; <Pt < cP* + 2 7r} , (3.6) 

R3 { * 1 3 } t : cP + 27T ::; cPt < "27T , (3.7) 

R4 
3 

{t : 0::; aTt ::; el lal l' "27T::; cPt ::; 27T}. (3.8) 

Proof When t E R I , t hen t E Z. We have IItl12 ::; cllt ll from (3.5), and 

further et ::; elltl l which implies t E R by studying (3.4) . When t E R2 , 

since b E Z, obviously t E R. Similarly, when t E R4 , t E R. Finally when 

t E R3 , since z E Z, we have 7T /2 ::; cPt - cPz ::; 37T /2. Hence zT t ::; 0 which 

implies t E R. Therefore, Ut=1 Ri C R. 

Conversely, when t E Rand 0 < cPt < cP* , we have t E Z from the 

definition of cP* . Then e t ::; cllt II implies lit II ::; e which is equivalent to 

t E R I · Consider t E Rand cP* ::; cPt < cP* + 7T /2, only b E Z in this case, 

so we have bTt ::; elib ll which implies t E R2 . Similarly, when t E Rand 

37T /2 ::; cPt ::; 27T, we have aTt ::; ell all which implies t E R4 . As for the case 
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when t E Rand cP* + 11/2 ::::: cPt < 31':/2, zT t ::::: 0 for all z E Z, we therefore 

have t E R3 . Consequently, R c U;=lRi' Overall, U;=lRi = R. # 
By applying Lemma 3.1.1 to P{ t E R} with R defined in (3.4), we have 

the confidence level of the band based on this method equal to 

4 

PB(C) = ~P{t E R i }, (3.9) 
i=l 

where the four individual probabilities on the right-hand side of (3.9) can be 

evaluated separately. Define the polar coordinates of t in terms of (Rt, cPt) 

that t = (Rt cos cPt, Rt sin cPt). Note that t can be written in terms of the 

polar coordinates of N as (( RN / (j) cos cPN, (RN / (j) sin cPN)' Note that cPN 

and cPt denote the same angle because N / (j does not change the location 

of N. As we know that N has a bivariate standard normal distribution, 

one may find the joint density function of RN and cPN via the transfor­

mation of random variables. By finding the individual marginal density 

functions of RN and cPN, we have that the joint density is equal to the 

product of the individual marginal densities. And this implies that RN 

is independent of cPN. Accordingly, Rt is independent of qJt. In addition, 

Ilt112/2 = (liNI12/2)/(j2 (1IN/aI1 2/2)/((j2/a 2) has the F2 ,v distribution, and 

cPt has the uniform marginal distribution. 

Now, we turn to evaluate the probabilities on the right-hand side of (3.9) 

individually. Specifically, we have 

P{litl! ::::: c,O < cPt < cP*} 

P{litll ::::: c}· P{O < dJt < } 

Il t 11
2/2 ::::: c

2
/2} . t~ 

dJ* c2 

2
' ~F2.lJ( -? ), 

h ~ 

P + ~1': ::::: cPt < ~1':} 
r3 ( ,* 1 )1/ '-71 - flo -L -1': . 2"" l2 'f' I 2 'J " 

1 cP* 
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where F2,v stands for the F cumulative distribution function with 2 and v 

degrees of freedom. As for the other two probabilities, take the case of t E R2 

for example. From (3.6), bTt :S cllbll implies Iltll cos[¢t - ¢(b)] :S c. If we 

rotate the coordinates system such that the horizontal axis has the same 

direction as b, then Iltl! cos[q\t - ¢(b)] can be thought as the projection of t 

on the horizontal axis, namely, the first coordinate of t. Doing this does not 

change the probability. Thus we have 

Similarly, 

Overall, 

P{O < t 1 :S c}· P{q\*:S q\t < ¢* +~} 

P{lltl l1 2 :S c2
} . (¢* + ; - ¢*)/21l 

1 2 4F1 ,v(c ). 

1 + (--
2 211 

3.1.2 Algebraical method 

(3.12) 

(3.13) 

From (3.3) and (3.4), the confidence level can be alternatively vvritten as 

{ 
zTt } 

= P ~~~ w:S c . (3.14) 

The key idea of the algebraical method is to find the explicit form of the 

supreme in (3.14). 

Lemma 3.1.2 Rotating the coordinates such that the horizontal axis reaches 

the central of Z. Let 6* = (1/2 )¢* be the angle between the hori­

zontal axis and one of the boundaries of Z, say; b. Also; let 6t denote the 

angle between the horizontal axis and t. Then we have 

{ 

Iltl' T I i 
z t 

sup -If -II = Iltll cos(6t 6*) 
zEZ IZ 

Iltll cos(211 - 6t - 6*) if 

if - 6* < 6 < 6~. _ t _ , 

if 6* < 6t < 1l) 

11 < 6t < 27f - 6*. 
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Figure 3.2: For the algebraical method in one-sided case 

Proof When -8* :::; 8t :::; 8*, t E Z which implies the supreme is equal to 

tTt/lltll = Iltll· When 8* < 8t < 7f, the supreme is equal to IItll cos(8t - 8*) 

since cos 8 decreases with 8. Similarly, the supreme is equal to lit II cos(27f -

8t - 8*) when 7f < 8t < 27f - 8*. # 
Applying Lemma 3.1.2, the confidence level (3.14) based on the alge­

braical method becomes 

= p{ sup zTt < c} 
ZEZW-

P{lltll :::; c, -8* :::; 8t :::; 8*} 

+P{lltll cos(8t - 8*) :::; c,8* < 8t < 7f} 

+P{ lI tll cos(27f - et - e*) :::; C,7f < et < 27f - e*}. (3 .15) 

Note that the second and the third terms on the right-hand side of (3.15) are 

in fact the same because the regions of t corresponding to these two cases 

are graphically symmetric. Therefore , (3 .15) is further equal to 
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P{lltll :S c, 

where F2,v denotes the cumulative distribution function of F2 ,v distribution. 

3.1.3 Tubular neighborhood method 

The idea of this method seems similar to the thoughts in Naiman (1986, 

1990), Sun and Loader (1994). Here, the exact volume of the tubular neigh­

borhood of a circular cone is calculated to evaluate the coverage probability 

of the one-sided confidence band. 

From (3.14), the confidence level is given by the alternative form 

{ 
zTt C } 

P(c) = P sup II Illi Ii :S . 
z",Z I Z i lit i 

(3.17) 

Note that t/lltli is independent of litll and so is c/lltll. And supreme 111 
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Figure 3.3: For the tubular neighborhood method in one-sided case 

(3.17) is no larger than one. Then (3.17) is further equal to 

(3.18) 

Let 0 < h = c/ ffw < 1. The set 

{ 
zTt } 

E(h) = t : :~~ Ilzl llltll > h 

contains all possible t's with the angle between t and z being at largest 

cos-1 h. So E(h) is in fact a fan with vertex at the origin, symmetrically 

containing the region of Z , and has the angle cos-1 h between one of its 

bound and the nearest bound of Z . Therefore, P {t E E (h)} is equal to 
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2P{0 ::; et ::; e* + COS-
1 h}. Consequently, (3.18) becomes 

1 _ (00 2. 8* + cos-
1 
(c/v2W) . dF

2
,v(w) 

J <;2 211 
"2 

1 _ (00 e* + cos-
1 
(c/v2W) . dF2,v(W). (3.19) 

I,,2 11 
"2 

3.1.4 Equivalence of the formulae 

It is of natural interest to compare the three computational formulae (3.13), 

(3.16) and (3.19) corresponding to the three methods respectively. Formula 

(3.13) comes from the original paper of Bohrer and Francis (1972). We first 

derive the equivalent formula of (3.13) by rotating the coordinates system. 

Rotating the coordinates system such that the central direction of Z is 

gIven Zl axis. In this case, by defining 8* = cjJ* /2 and Bt as the angle 

between Zl axis and the vector t, the confidence level based on the first 

method is then PB(C) L;=l P{t E R~}, where 

R~ {t: Iltll ::; c, -8* < 8t < 8*}, 

R' 2 

R' 3 

R' 4 

So we have 

PB(C) = 

{t: lit II cos(8t 8*)::; c,8* < 8t < 8* + ;}, 

* 
11 311 

{t : e +"2 < 8t < 2 e*}, 

{t: lit II cos(8t - 8*) ::; c, 3; - 8* < et < 211}. 
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Figure 3.4: Picture obtained by rotating the coordinates system 

Note that (3.21) is the same as (3.16) which implies that the method follow­

ing the idea of Bohrer (1973) can have the same formula as the algebraical 

method. The second term of (3.22) is further equal to 

(3.23) 

By substituting (3.23) into (3.22), we have 

(3.24) 
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Now consider formula (3.19). It can be further written as 

r= e* 
1 J!2 --;dF2,v(w) 

2 

e* 
1- 1 r= 

'if j E3-
2 

which is equivalent to (3.24). 

(3.25) 

Hence, it can be concluded that the three methods of constructing one­

sided confidence bands for a simple linear regression model give the same 

result mathematically. Clearly, (3.13) is relatively simple compared with 

(3.16) and (3.19) since both (3.16) and (3.19) involve an integration. 

3.2 Exact two-sided confidence bands 

It is also of interest to think about constructing exact two-sided simultaneous 

confidence bands for a simple linear regression. Recall (3.4), we have the 

following setting corresponding to the two-sided case that 

(3.26) 

where t = Nja, N has the (0, CJ21) distribution, a is the usual unbiased 

estimator unknown CJ and v 

freedom, c is a critical value, 

(3.27) 

where q is a non-negative constant. 
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Figure 3.5: For the method following Bohrer (1973) in two-sided case 

3.2.1 Method following the idea of Bohrer (1973) _ 

R is shown in Figure 3.5. Since R has a symmetric structure, the probability 

P {t E R} equals four times the summation of the probabilities P {t E Rr} 

and P{t E R2 } , where 

{t: Iltl l ::s: c,O < Bt < B*}, 

{t: lit II cos(Bt - B*) ::s: c, B* < Bt < ~} , (3.28) 

Bt is the angle between t and the Zl axis. 

Note that IINII is independent of Cr by studying the least squares theory 

and IIt11 2/2 has the F distribution with 2 and v degrees of freedom. Also, note 

that Iltll is independent of Bt , which has been shown previously. Therefore, 
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we have 

PB{t E R} 

4(P{t E R1 } + P{t E Rz}) 

4(P{I!tll :::; c,O < Bt < B*} 

+P{lltll cos(Bt - B*) :::; c, B* < Bt < ~}) 

( 
B* C

2 (7fz 1 C
Z 

) 

4 27f Fz ,v(2 + Je* 27fF2,u(2cosZ(B_B*))dB 

2B* c2 217fz-e* CZ 

-F2,u( -2) + = F2,v(? 2 B)dB. 7f II 0 ~ cos 
(3.29) 

Note that this method agrees with that of Wynn and Bloomfield (1971). 

3.2.2 Algebraical Inethod 

According to (3.26) and (3.27), R has the alternative form 

where the supreme can be found directly and explicitly. 

Lemma 3.2.1 Under the notations of Bt and B*! we have 

Iltll 

IzTtl 
sup-' - = 
zEZ Ilzll Iltlli cos(Bt - B*)I 

if Bt E [0, U [7f - 8*, 7f + B*] 

U[27f - 6*, 21fJ, 

"f Dt r;:. 1fi U f",. , 6* 31f] 
v (7 - ) 2"J ld T ) 2 ) 

(3.30) 

Iltlll cos(7f - Bt - B*] U ,27f-B*]. 

The proof of Lemma 3.2.1 is very similar with that of Lemma 3.1.2. 
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By applying Lemma 3.2.1, we have 

e*):~c}de 

(3.31) 

(3.32) 

3.2.3 Tubular neighborhood method 

R in (3.30) can be further written as 

{ 
IzTtl c } 

R = t: ;~~ Ilzlllltll ~ W . (3.33) 

Then the confidence level is equal to 

PTlv{t E R} 

{ 
IzTtl c } 

1 - P sup II I1II II > II zEZ !Z I tit 

1 (3.34) 

Note that the supreme in (3.34) can not be larger than one. Let 0 < h = 

cj.J2W < 1 such that cos-1 hE (O,JTj2). The set 

E(h) = {t: sup~~ > h} 
zEZ Z 
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Figure 3.6: For the tubular neighborhood method in two-sided case 

consists of two opposite circular cones in R} with their common vertex at 

the origin, symmetrically containing the smaller cones graphically produced 

by Z with the angle cos-1 h between the boundaries. So we have E(h) equal 

to 

{t : et E [0, e* + cos-1 h] U [1f - e* - cos-1 h] 
U[1f + e* + cos-1 h] U [21f - e* - cos-1 h]} 

{t: et E [O,21f]} 

if e* + cos-1 h < 7!. 
2 ' 

Note that 
2 

e* + cos-1(_C_) < ~ ¢:=} w < ~ 
vI2tU 2 2b2 ' 

where b = y'l=q2. Since et was proven to be uniformly distributed in 

Section 3.1, we have, for c2 /2 :S w < c2 /(2b2
), 

P{ t E E(h)} 
C C p{et E [0, e* + cos-1

( ~)] U [1f - e* - cos-1
( ~)] 

v2w y2w 
C C 

U[1f + e* + cos-1 
( ~)] U [21f - B* - cos-1 

( ~)]} 
v2w y2w 

(3.35) 
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P{t E E(h)} = p{et E [0, 27i;} = 1. (3.36) 

In connection with (3.34), the confidence level is equal to 

4 j'CXJ -de· dF2v (w) - 1· dF2v {w). (3.37) 27i ' 0 2 ' • 

2b7 

3.2.4 Equivalence of the formulae 

We are also interested in finding the equivalence of the formulae (3.29), (3.32) 

and (3.37) corresponding to the three methods respectively. Obviously (3.29) 

and (3.32) are the same. So our attention moves to show that (3.32) is 

equivalent to (3.37). 

Consider the double integral in (3.37). It is further equal to 

2 /" 
+;Jr2 

2 

(3.38) 

Note that e* = cos-1 q and b = .j1=q2 imply cos-1 b = 7i /2 8*. Thus, the 

last term on the right-hand side in (3.38) can be further written by changing 

the order of the integrations as 

(3.39) 

(3.40) 
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By replacing the double integral in (3.37) by (3.40), in connection with that 

we have (3.37) equal to 

(3.41) 

which is the same as (3.29) and (3.32) Consequently, the equivalence of the 

three computational formulae is obtained. 
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Chapter 4 

Exact simultaneous confidence 

bands for a multiple linear 

regression over al1 ellipsoidal 
• regIon 

This chapter continues to discuss the construction of exact one-sided and two­

sided hyperbolic-shape simultaneous confidence bands for a multiple linear 

regression model over an ellipsoid that is centered at the point of the means 

of the predictor variables using the same methods as shown in last chapter. 

Also, the equivalence of the computational formulae of the methods is given 

for both one-sided and two-sided cases at last. 

4.1 Exact one-sided confidence bands 

Bohrer (1973) presented a method of constructing an exact one-sided confi­

dence band for a multiple linear regression model by evaluating a multivariate 

t probability. 

Consider an one-sided hyperbolic-shape simultaneous confidence band 

e.g., with upper bound, for a classical normal-error multiple linear regres-
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sion model 

xE X, 1) 

where j3 is the maximum likelihood estimator of the p-dimensional parameter 

vector j3, (j is the usual unbiased estimator of (j which is the standard variance 

of the independent and identically distributed random errors in the linear 

regression model, the nxp design matrix X can be expressed by X = (1, X(I)), 

where 1 is the vector containing nones, X(l) is the n x (p - 1) matrix 

containing the observed predictor variables, and T is a non-negative critical 

value. 

Consider the restricted region of the predictor space, X, which has the 

form given by 

( 4.2) 

where V = (XT X)-l, U is a p-dimensional vector such that uT Vu = 1, 

C IS a non-negative constant. Define = ~ 'Z~=l ,j = 2, ... ) p and 

. Then x(1) is the mean vector of the observed predic-

tor variables. And, we have 

Furthermore, the inverse is given 

where 
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where x(1) is defined such that x = (1, x~)? Hence, (4.2) can be further 

written as 

( 4.3) 

which is, in fact, an x(l)-centered ellipsoid in the predictor space, and whose 

size can be controlled by (1 - c2
) / c2

. 

Next, we transform the ellipsoidal region X to a corresponding region 

of our interest. For a u, there exists a p x (p - 1) matrix U such that 

UT VU = Ip- 1 and u T VU = O. So u and the columns of U, which are linearly 

independent, form an orthogonal basis of the p-dimensional predictor space. 

Define 

( 4.4) 

We have 

xTV(u u)(u U)- l V-1[(U -l(U U)TVx 

[ ( ;~ ) Vxn(u WV(u Ur ( ~ ) Vx 

( 
Zl ) T ( Zl ) = Ilz112. 

Z(l) Z(l) 
(4.5) 

Since Zl = uT Vx = 1/ Vii> 0 and uT Vu = 1, therefore, the region X given 

in (4.2) can be transformed to the following region 

(4.6) 

Consequently, any x belonging to X definitely has a corresponding z belong-

to any z E E(c) to an x E X as ·well. 

Now, we consider the one-sided confidence band given in (4.1). It has the 

coverage probability given by 

{ 
XT(f3 13) } 

p sup < T , 

x"'X ~ / T(XTX)-l -
~ (TV X X 
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which is equal to 

By recalling the definition of z in (4.4) and the derivation in (4.5), in con­

nection with the fact that an x E X one-to-one corresponds to a z E E(c), 

then above probability is equivalent to 

p{ sup ~Tt < r}. 
ZEE(c) lizll - . 

where t = N/o- with N = (u 0,)-1 V-I (,6 /3) = (u UyT(,6 - /3). Note that 

N has the I\Tp(O, 0-
2 f) distribution, 0- has the o-vxUv distribution, and they 

are independent by studying the least squares theory. Thus, t has a so-called 

multivariate t distribution with v n - p degrees of freedom. This is the 

starting point of the three methods given in the rest of this section. 

4.1.1 Method of Bohrer (1973) 

Define a p-dimensional vector v in terms of the polar coordinates Rv and 

Bv = (ev1 ,' .. ,ev,p-d by 

where 

VI = Rv cos ev1 , 

1'2 = Rv sin ev1 cos ev2 , 

V3 = Rv sin ev1 sin ev2 cos ev3 ) 

Vp-l = Rv sin ev1 sin ev2 ... sin ev ,p-2 cos ev ,p-l, 

vp = Rv sin ev1 sin ev2 ... sin ev ,p-2 sin ev ,p-l, 

o :::; ev1 :::; 71, 

o :::; :::; 71) 

0:::; ev ,p-2 :::; 71, 

0:::; ev ,p-l :::; 271, 

Rv 2 o. 
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Furthermore, the Jacobian of the transformation from v to the polar coordi­

nates is 

] J] - RP-l . p-2 e . p-3 e . e - v Sln vl sln v2' .. sln v,p-2' 

Also, note that 

(4.8) 

where h = cos(ez,p_l et ,p-1) and 

fj cos ez,p_j cos et,p_j + fj-1 sin ez,p_j sin et,p_j 

for j = 2, ... ,p - 1. 

The probability in 7) can be alternatively written as P{t E Ar(c)}, 

where 

Ar = Ar(c) = {t : zTt ::; r]]z]], all Z in E(c)} (4.9) 

with E(c) defined in (4.6) ·which is a spherical cone with the vertex at the 

origin. Ar ( c) and E( c) are graphically shown in Figure 4.1. 

Lemma 4. L 1 Define = cos-1 c) then Ar is partitioned by the following 

three disjoint sets: 

T1 {t : 0 ::; etl ::; e*, Rt ::; r}, 

T2 {t: etl e* E (O,~],RtCOS(et1-e*)::; r}, 

{t : 
7f 

+"2 < etl ::; 7f}. (4.10) 

Proof When t E ,then t1 = R t cos et1 ?: R t cos B* = cllt II so that 

t E E(c), which in connection 'Nith the fact that R[Rt ::; rllt]1 implies 

t E Ar(c). When t E T2, since z E E(c), then 0 ::; Bz1 ::; B* so that 

RzRt cos (Btl ::; RzRt cos(etl ::; rllzlj, which implies that t E Ar(c). 

When t E T3 , obviously cos(etl Bz1 ) < 0 which implies t E (c). Hence 

U1=lTj cAr. 

Conversely, when tEAr n {t : 0 ::; Btl ::; B*}, then tl Rt cos Btl ?: cllt II 
so that t E E(c) and hence we obtain Rt ::; r from tTt ::; rlltl]. Therefore, 

t E Tl . vVhen tEA,. n {t : etl - B* E (0, 7f/2)} , since Z E E(c), we have 
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A,.{c) 

E(c) 

Figure 4.1: For the method of Bohrer (1973) 

Rt cos(Btl - B*) ::; T. SO t E T2 . And finally tEAr n {t : B* + 7r /2 < Btl ::; 7r} 

obviously implies t E T3. Hence Ar C U1=lTj . Overall, Ar is composed of 

Tj,j = 1,2,3. # 
Applying Lemma 4.1.1, we have 

3 

P {t E Ar} = L P {t E Tj }. ( 4.11) 
j=l 

Recall that t = N/fT, where N rv Np(O, (j2 I), and fT rv aJx~/v. Moreover, 

N is independent of fT. Thus Iltl1 2/p = (1IN/aI1 2 /p)/(fT2
/(j2) rv Fp,l/) where 

Fp,v is the F distribution with p and v degrees of freedom. Also t can be 

expressed in terms of the polar coordinates R t and et = (Btl, ... , Bt,p-l), and 

N can be expressed in terms of RN and eN = (BN!, ... ,BN,p-l). Note that 

Btl,· .. , Bt,p-l and BN! , . .. , BN,p-l denote the same p -1 angles because N/ fT 
does not change the location of N. One can easily find the joint density 

function of RN and eN via the transformation of random variables in con­

nection with the fact that N has a p-variate standard normal distribution. 

By finding the individual marginal density functions , we find that the joint 

density is equal to the product of the individual marginal densities which 

implies RN is independent of BNj , j = 1, ... ,p - 1. Thus, the independence 
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between Rt and etj,j = 1, ... ,p 1 can be obtained. In particular, etl has 

the marginal density function 

(4.12) 

where kl is normalizing constant such that 10K 

kl sinp
-

2 eda = l. 

Based on the analysis above, we have 

P{O ~ atl ~ a*, Rt ~ 7"} 
(1* 1 kl sinp

-
2 ada· P{Rt ~ 7"} 

~ 2 1 kl sinp
-

2 ada· Fp,v (~ ), (4.13) 

p{a* + ~ < etl ~ 11} 

1~+7l kl sin
P

-
2 

ada 
2 

l'i-(l* kl sinp - 2 ada, (4.14) 

P{O < atl - a* ~ ~, Rt cos(atl e*) ~ r} 
(1* , TC 

1 '"2 k1sinP-2 e·P{Rtcos(a-a*) ~ r}da 
(I' 

l if 7"2 
kl sinP- 2 (e + e*) . Fp,v( 2 e)da, 

o ' pcoo 
(4.15) 

where Fp,v stands for the F cumulative distribution function with p and v 

degrees of freedom. 

Consequently, by (4.11), the confidence level of the one-sided confidence 

band based on the method of Bohrer is given by 

ada + 

(4.16) 
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4.1.2 Algebraical method 

Recalling (4.7), the confidence level of the band has the form 

(4.17) 

where r is a critical value, and 

E(c) = {z : Zl :::: cllzll} (4.18) 

with c non-negative. 

Lemma 4.1.2 Let t1 be the first element of t) t(l) be the (p - 1) -dimensional 

vector containing the rest elements of t in order. Then we have 

Tt {lltll 
sup ~I' II = tl-i-~lIt(l)11 

ZEE(c) IZ I '1 
Vl+~ 

where q = vc2 /(1 c2 ). 

if t E E(c) , 

if t t/:. E(c), 

Proof Note that it is obvious when t E E( c). So our attention focuses 

on the case when t t/:. E(c). Define z = (Zl' z~)? such that 

E(c) {z : Zl > 0, zi :::: c2zi + c2 1Iz(1) li 2
} 

(4. 

where q is defined in Lemma 4.1.2. 

Consider t t/:. E(c) which leads that h < qlit(1)11 from (4.19). For t1 1= 0, 

define 

Z* = ( t(l)~ltll ), 

qllt(l)/Itlill 

then zr = 1 and qllz(l) II = 1 so that z* E E(c). So generally we consider 

Z E E(c) has the similar form with z* that Z (1, and 1 :::: qllz(llll. 

Therefore, we have 

ZT t t1 + z~) t(ll 
Ilzll VI + IIZ(l) li2 

< t1 + IIz(l)llllt(1)11 

V1 + IIZ(l) 112 
1Jtl J1=¢2ll t (l)II = f(1J), 
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tl 
.,.,...------,,- = q 
Ut (l) II 

qt l + Il t(1) II 
--;:=;;c===:-- = 'r 

yfq'2 + 1 

Figure 4.2: For the algebraical method in one-sided case 

where 
¢ = 1 > 1 

VI + IIZ(lJ 112 - )1 + l /q2 

Also, from tl < qllt(lJII, we have 

So it is clear that j(¢) is monotonously decreasing because, by (4.20) and 

(4.21), we have 

Consequently, 

j(¢) < j( 1 ) = tl + (l/q) llt(lJII. # (4.22) 
- VI + l / q2 VI + l / q2 
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The probability in (4.17), therefore, can be evaluated straightforward by 

applying Lemma 4.1.2. 'I've have 

W= ( 
ar - bJ R2 - r2) } 

E - 00, br + aJ.m _ r2 ' 
(4.23) 

where R; = tiT Ilt(1) 1[2, a = q/.jQ2+l, b = 1/.jQ2+l, and the upper bound 

of w is obtained by solving the equation set formed by IIt l l1 2 + lit(l) 112 = r2 

and (qtl + Ilt(l)II)/ J q2 + 1 = r. The accomplishment of the last equality in 

(4.23) is graphically because the total area of the light shadowed region and 

the dark shadowed region is equal to the total area of the half circle and the 

rest light shadowed part in the left top corner. The first probability on the 

right-hand side of the last equality in (4.23) equals Fp,v(r2/p) which is the 

F cumulative distribution function with p and v degrees of freedom, and the 

second probability is further equal to 

/2= g(w)dFp,Aw), (4.24) 
p 

where 

=p { 
tl ar - bJ pw - r2 } < . 

- br+aJpw-r2 

To evaluate g(w), note 
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~ 0, then 

g(w) = { 
t1 ar b Ipw - r2 } P{t < O} + P 0 < __ < V 

1 - - II t (1) II - --br-,-' -a-'Jrp=l=U =-=r==2 

1 1p{ . ti (. (ar - bJr-pw---r~2)2} - -. < p - 1) 
2 2 Ilt(lJII2/(p - 1)- \br + aJpw - r2 

1 1 { - + -F1 -1 (p 2 2 ,p 

g(w) 

l)(ar bJpW-r2)2}; 
.br+aJpw-r2 

where a = q/R+i = c, b = 1/R+i = yl-C2. 

4.1.3 Tubular neighborhood method 

(4.25) 

:s: 0, then 

( 4.26) 

Again from (4.7), the confidence level of the one-sided confidence band can 

be further written as 

{ 
zTt } 

P sup < r 
ZEE(c) Z -

l
x 

{ zTt r} 
1- P sup 1'111'11 > r:n:m dFp,v(w) o zEE(c) IZ It v pw 

l
x 

{ zTt r} 1 - 2 P sup > -- dFp,v(w). 
I:-. zEE(c) VfiW p . 

( 4.27) 

Note that the supreme on the right-hand side of the last equality in (4.27) 

is no larger than one. Let 0 < h = r/VfiW < 1 such that cos-1 hE (0,71/2), 

the set 

{ 
zTt} 

E(h) = t: sup II I'll II > h 
zEE(c) IZ I t I 

( 4.28) 
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Figure 4.3: For the tubular neighborhood method in one-sided case 

graphically is a spherical cone with the vertex at the origin and has the angle 

cos-1 h between a ray ofE(h) and the nearest ray from E(c). By the definition 

of the polar coordinates, P{t E E(h)} is equal to P{O < Bt,l :::; B* + cos-1 h}, 

and lit II = Rt is independent of Btl. Therefore, (4.27) is further equal to 

(4.29) 

where 
k _ 1 

1 - J; sinp - 2 Bde 
(4.30) 

is the normalizing constant. 

4.1.4 Equivalence of the formulae 

It is of interest to show the equivaleBce of (4.16) , (4.29) and that based on 

the algebraical method. First, we come to show (4.29) is equivalent to (4.16). 
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Further write (4.29) as 

The terms in the big bracket on the right-hand side of the last equality in 

(4.31) together as a whole is further equal to 

8* , ?T 1. '2") kl sinp
-

2 ada = 1 (4.32) 

Substituting (4.32) into (4.31) gives the same formula as (4.16). 

Next, we turn to find the equivalence between (4.16) and that got from 

the algebraical method. Recall (4.23), with f)* defined consistently, the last 
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equality is equal to 

P{R~ S; r2, Btl E [0, B*]} + P{Rt cos(Btl - B*) S; r, Btl E , } 

P{R~ S; r2, Btl E [0, } + P{o S; Rt cos(Btl - B*) S; r, Btl E (B*, } 

+P{Rt cos(Btl B*) < 0, Btl E (B*, 71~} 

P{R~ S; r2, Btl E [0, B*]} P{O S; Rt cos (Btl - B*) S; r, Btl E (B*, B* +~]) 

+P{Rt cos(Btl - B*) < 0, Btl E (8* + ~,71]) 
e* r2 0*+; r2 r kl sinp

-
2 8d8 . Fp,v( -) + r kl sinp

-
2 8· Fp,v( 2( B*) )dB J 0 P J 0* P cos 8 

+ le~..L2': kl sin
p

-
2 

8d8 
, 2 

1
e* r2 1; , r2 

kl sinp
-

2 Bd8 Fp,v( -) + k1 sinP-
2 (B + 8~) . Fp,v( 2 B)dB 

o PoP cos 

+ i';-O* kl sinp - 2 8d8. (4.33) 

Obviously, (4.33) is the same as (4.16). So a conclusion can be drawn that 

the three methods give the same computational formulae. 

4.2 Exact two-sided confidence bands 

In this section, we consider exact two-sided simultaneous confidence bands 

for a multiple linear regression over an ellipsoidal region based on the same 

methods. 

4.2.1 ]Vlethod following the idea of Bohrer (1973) 

Recall (4.6) and (4.9). \Ve change E(c) and AAc) slightly to make them 

to the two-sided case. we V-O"U~.u confidence 

bands 

AT = {t : jzTtj S; rjjzj[, all z in }, (4.34) 

where 

E(c) = {z : [zll 2': cl!zll}· 
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Zl 

Figure 4.4: For the method following Bohrer (1973) in two-sided case 

Recall the definitions of the polar coordinates (Rt, Btl, ... ,Bt,p-l), where 

Btj E [0,71"], j = 1, ... ,p - 2 and Bt,p-l E [0, 271"J. Note that when we consider 

Btl moving throughout [0, 71"J, Ar actually looks like the full region rather than 

just the upper half due to the effects of other angles Btj , j = 2, . .. ,p - 1. 

Also, note that Ar has a graphically symmetric shape for the two-sided case 

as shown in Figure 4.4. So we only need to consider the region produced by 

Btl moving throughout [0,71" /2J. 

Define 

B* cos-l c, 

Tl = {t : ° :S Bt,1 :S B*, Rt ::; r}, 

T2 = {t: B* :S Bt,l :S ~,Rt cOS(Bt,l - B*) ::; r} . (4.35) 

We have the confidence level of the two-sided band simply equal to 

( 4.36) 

Recall that Btl has the density function given by 

( 4.37) 
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with kl being the normalizing constant, RUp has the Fp,v distribution and 

is independent of etl. Thus, we obtain 

P{t E } P {O :::; etl :::; e*, Rt :::; r} 
e* 1 kl sinp

-
2 ede· P{Rt :::; r} 

e* 2 1 kl sinp
-

2 ede· Fp,A:), 

p{e* :::; etl :::; ~,Rt cos(etl e*):::; r} 

{'i kl sinp - 2 ede . P{ Rt cos(etl e*):::; r} 
ie* 

( 4.38) 

1 
1 

2/ 
kl sinP-

2 (e + e*) . Fp.v( r 12Pe)de. (4.39) 
. cos 

Overall, the two-sided simultaneous confidence band can be constructed 

with the confidence level given by 

4.2.2 Algebraical method 

Casella and Strawderman (1980) considered the construction of a two-sided 

hyperbolic-shape confidence band over an ellipsoidal region X. And 

structure of this X can be transformed as 

m p 

E(q) = {z: ~ ~ q2 ~ 
i=l i=m+l 

Specially when m 1, E(q) becomes the structure of our interest that 

E(q)={z: I~Allzll}, 
1 + q2 

where q > 0 is a fixed constant. 
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From the result of Casella and Strawderman (1980), it is that the two­

sided confidence band of hyperbolic shape 

xTj3 E xT/3±rajxT(XTX)-lx x E X, (4.41 ) 

where r is a critical value, has its simultaneous confidence level given by 

1) (cr bJpw - r
2
)2}dF

p
)v(w), (4.42) 

br+cJpw-r2 

where c = q/~ and b = 1/J1 + q2. 

4.2.3 Thbular neighborhood method 

Recall (4.7), the confidence level of the two-sided band is alternatively given 

by 

{ 
IzTtl r} 

p z~~fc) Ilzlllltll ::: W . ( 4.43) 

Note that t/lltil is independent of Iltll, the supreme in (4.43) is no larger 

than one, and 

rlvfPW < 1 ~ w > r2lp· 

Therefore, (4.43) is further equal to 

100 { I yT t I r}, 
1- P sup Ii 111' I' > . dFp,v(w) 

o yEE(c) IY It I .JPW 

1'00 { lyTtl r} 
1 - P sup " > --

r2jp YEE(c)llylllltll .JPW 
(w). 

Let 0 < h r I VPw < 1 such that cos-1 h E (0, . The set 

E(h) = {t : IzTtl } 
1!~I:lltll > h 

( 4.44) 

consists of two opposite spherical cones in RP. One cone, C, has its vertex 

at the origin and its central direction given by zl-axis, symmetrically and 

centrally containing one smaller cone with the angle cos-1 h between a ray 

on its surface and the nearest ray from the smaller cone. The other cone is 
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Figure 4.5: For the tubular neighborhood method in two-sided case 

simply -C. The two smaller cones are produced by E(c). Then, in connection 

with the definition of the polar coordinates, we have E( h) equal to 

{t : Btl E [0 , B* + cos-l h] U [7f - B* - cos-l h, 7f]} if 

{t : Btl E [0,7f]} if 

Note that 

B* + cos- l h < !!: 
2 ' 

B* + cos- l h 2': ~. 

7f 1'2 
B* + cos- l (r/VfYW) < - ~ w < -b2 ' 

2 p 

and the density function of Bt ,l is given by (4.37) , we therefore have, for 

r2 / p:::; w < r2 / (b2p) , 

P{t E E(h)} 

P{Bt,l E [0, B* + cos- l (r / VfYW)J U [7f - B* - cos- l 
(1' / VfYW), 7f]} 

1
()*+cos-1 (r IVPW) 

= 2kl sinp -
2 BdB; 

o 

P{t E E(h)} = P{Bt,l E [0,7f]} = 1. 
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Consequently, the confidence level (4.44) is equal to 

1 

(4.45) 

4.2.4 Equivalence of the formulae 

By changing the order of integrations, the double integral in (4.45) simplifies 

as 

~ r2 r2j(b2p) 1 2kl sinP
-

1 BdB· Fp'V(b2p) = 1 dFp,Aw). 

We finally have that the confidence level based on the tubular neighborhood 

method is equivalent to the expression given in (4.40). 

Change (4.23) slightly to make it corresponding to the two-sided case. 

We therefore have the confidence level of the two-sided band is 

{ 
2 2} { 2 2 r2 tl 

P Rt:S: r +P r < Rt:S: b2 'W = IftWlT 
~ ( ar - bVR'i - r2 ar - bVR~ - r2)} 
c: - (4.47) 

br + avR~ - r2' br + avR~ - r2 ' 

where a = q/jl+qi and b = 1/V1 + q2. The first probability is simply 

equal to Fpy (r2 /p), and the second one is further equal to 

( 4.48) 
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It can be found that (4.47) is equivalent to (4.42). On the other hand, we 

can write (4.47) according to the location of the vector t. It is that (4.47) 

can be evaluated in terms of the regions Btl belongs to, as 

( 4.49) 

which is the same as (4.40). Consequently, we obtain the equivalence of the 

three formulae corresponding to the three methods respectively. 

74 



Chapter 5 

Simultaneous confidence bands 

for a regression model over a 

rectangular region and 
• comparIsons 

In last two chapters, we discussed the construction of exact simultaneous 

confidence bands with the predictor variables restricted in an ellipsoidal re­

gion. In this chapter, we turn to consider the construction of two-sided 

simultaneous confidence bands over the most popular rectangular region of 

the predictor space based on several methods, including Naiman (1986)'s 

conservative method by applying the tube volume theory, the approximate 

method proposed by Sun and Loader (1994) presenting an approximation to 

the tube formula to construct confidence bands for a parametric or nonpara­

metric regression function, and the simulation-based method of Liu, Wynn 

and Hayter (2005) and Liu, Jamshidian, Zhang and Donnelly (2005) to con­

struct confidence bands for polynomial regression and multiple linear regres­

sion respectively. Also, comparisons for these methods are given in terms of 

critical values. All critical values are calculated by running programmes on 

MATLAB 7 platform. Conclusions are drawn in the end. 
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5.1 Conservative confidence bands 

Naiman (1986) presented a method of constructing conservative hyperbolic­

shape simultaneous confidence bands for an one-dimensional curvilinear re­

gression over finite intervals. This method is, by using a geometric inequality, 

to obtain an upper bound for the volume of a tube with a fixed distance from 

an arbitrary path which is piecewise differentiable and has a finite length on 

the surface Sp-l of the unit sphere in p-dimensional real space. 

Consider the regression model 

Y=f(xf,B+E, (5.1) 

where y is the response, f(x) is the p-dimensional vector of known functions 

of the only predictor variable x, ,B is the p-dimensional vector of unknown 

regression coefficients, E is the random error which is normally distributed 

with mean 0 and unknown variance (J2. For a special case when f(x) = 

(1,x,x2, ... ,xp-1f, (5.1) is the usual polynomial regression model of p-1 

degrees. Let X c R be a restricted interval containing all possible values of 

x. Denote j3 and a-2 the maximum likelihood estimator of ,B and the usual 

unbiased estimator of (J2 respectively. Also, assume the design matrix is of 

full rank so that j3 rv Np(,B, (J2L.,) for some known positive definite matrix L.,. 

And va-2 / (J2 rv X~ with v degrees of freedom. Let P be a p x p non-singular 

matrix such that pTp = L.,. 

A two-sided hyperbolic-shape simultaneous confidence band for the mean 

regression function f(x f,B over the restricted predictor space is given by 

(5.2) 

where p(x) = {f(xfL.,f(x)}1/2 = liPf(x)li, and c 2': 0 is a critical value. 

Define N = (p-l)T(,B j3)/(J which in fact has a p-variate standard normal 

distribution by studying the least squares theory. Then the confidence band 
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(5.2) has the confidence level given by 

p{ sup If(x)Y(j3 - ,8)1 ~ cO-} 
xEX p(X) 

p{ I [Pf(X)jT(pT)-l(j3 - ,8)/0'1 CO--} 
sup <-
xEX IIPf(x) II - 0' 

{ 
I [Pf(x )jTNI cO-IO'} 

P ;~E IIPf(x)III;NII ~ IINII 

{ 
I [Pf(x)]TNI cO-I O'} 

1 - P ;~E liPf(x)IIIINII > liN II . (5.3) 

Define 
Pf(x) 

,(x) = liPf(x) II for x E X, (5.4) 

which is a path in Sp-l, the surface of the unit sphere centered at the origin 

in RP. And assume the length of the path given by Ab) = Ix 11,/(x)lldx is 

finite. Also, define the random vector U = N/IINII. Consider N in terms 

of the polar coordinates RN = IINII and eN. Then U only depends on eN. 

Since N has the p-variate standard normal distribution, one may directly 

find the joint density function of IINII and eN. Furthermore, by finding the 

individual marginal density functions, we obtain that the joint density is 

equal to the product of the individual marginal densities, which implies that 

IINII and eN are statistically independent. So are U and IINII· 
If f(,) and f.L are used to denote the image of the path and the uniform 

probability measure on Sp-l respectively, define for r E [0, 1] 

fb)(r) = {u E Sp-l . sup(uTv) > r for v E f(r)}. (5.5) 

Recall (5.3). Since the supreme is no larger than one, we have 0 ~ (0-IO')/IINII ~ 
lie. Hence (5.3) is further equal to 

tic 
1- Jo f.L{[fb) U -fb)](ct)}fr(t)dt, (5.6) 

where fr denotes the density function of T = (o-IO')/IINII such that pT2 rv 

Fv,p, the F distribution with v and p degrees of freedom. 
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Figure 5.1: Tubular neighborhood of a path 

The central part of Naiman (1986) is to find an upper bound of !'I{f({) (r)} 

so as to construct a conservative confidence band. Consider the case when 

f({) can be piecewise approximated by great circular arcs using geomet­

ric inequalities. The great circular curve obtained after approximation can 

then be replaced by a curve of the same length on a single great circle by 

straightening out the curve at each point where the circular arcs are joined. 

Equivalently, if I is replaced by ,*, a path of equal length but whose im­

age lies on a great circle, then the bound may be thought of as /-l{f({*)(r)}. 

Thus, a bound is obtained which depends only on the length of the path and 

consists of two terms. The first term is proportional to the length of the 

path corresponding to the points in the middle tubular part of f({*h). The 

second term is the sum of the measures of two half spherical caps of angular 

radius cos-1 r corresponding to the points in the two half spherical ends of 

the tube f({*h). Hence, the upper bound of /-l{f({) (r)} is given by 

/-l{f({) (T)} :s: min{Fp _ 2,2[2(r-2 
- l)/(p - 2)] x A({)/(27r) 

+Fp _ 1,1[(r-2 l)/(p 1)J/2, I}. (5.7) 

The minimum used here is to avoid overlapping. 

From (5.7), a lower bound for the coverage probability of the confidence 

band (5.2) is obtained as 

1 

1 1e 
min{Fp_ 2,2[2((ct)-2 -l)/(p - 2)] x A({)/7r 

+ Fp _ 1,d((ct)-2 - l)/(p - 1)], 1} fr(t)dt, (5.8) 
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where h is the density function of the random variable T, c is a critical 

value. 

In a special case when p = 2 and f(x) = (1, x)T where x belongs to a 

subset X, the given model reduces to a usual simple linear regression model 

with a restricted predictor variable. Accordingly, the conservative confidence 

band becomes exact, because, for this special case, the path ,(x) is already 

on the unit circle so that it is unnecessary to straighten it out. One may find 

p,{r(t)(r)} directly. Then the confidence level is 

1 

1 - 1e 
min{A(t)j1T + F1,d(ct)-2 - 1], I} h(t)dt, (5.9) 

where A(t) is the length of the path. 

It is of natural interest to show the equivalence between (5.9) and one of 

the computational formulae obtained in Chapter 3, which is used to calculate 

the critical values for the exact two-sided confidence bands for a simple linear 

regression. 

Note that, in connection with (5.5), (5.6) can be written alternatively as 

1 

1 - (e p{ sup luT vi > ct}h(t)dt. 
)0 vEr 

(5.10) 

By changing the variable of the integration, we have (5.10) further equal to 

(5.11) 

where F2 ,v stands for an F random variable with 2 and v degrees of freedom. 

Recall (3.34) and the definitions of u and v in (5.11), and we find that 

(5.11) is equivalent to formula (3.34). In connection with the equivalence of 

the formulae in Section 3.2, it can be concluded that the formula of Naiman's 

conservative method for the simple linear regression case is equivalent to that 

obtained by the exact method, e.g., formula (3.41). 
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5. 2 Approximate confidence bands 

Sun and Loader (1994) stated a method of constructing approximate 1 - 0; 

simultaneous confidence bands for a parametric or nonparametric function 

over a constrained predictor space. This method, which is in fact an approx­

imation to the tube formula, can be applied to the multiple regression case, 

and is adaptable for a wide class of linear estimators. More details about the 

volume-of-tube formula, see, e.g.) Loader (2004). 

Consider the multiple regression model 

(5.12) 

where Xi, Yi, i = 1, ... , n are the observations, Xi E n d is a vector of the 

predictor variables, f(·) is an unknown function which needs to be estimated 

based on the observations, and E is the normally distributed random error 

with mean 0 and variance (j2 which is assumed to be unknown. A linear 

estimator of the mean response f(x) is given by 

n 

A '" T f(x) = L.,; l;(X)Yi = l(x) Y, (5.13) 
i=l 

where l(x) = (h(x), ... , In(x))T and Y = (Y1,"" Ynf. 

A simultaneous confidence band for f(x) over a subset X of the predictor 

space has the form given by 

{(j(x) - co-lll(x) II, j(x) + co-lIl(x) II) : X E X}, (5.14) 

where c is a critical value and 0- is the usual unbiased estimator of (j. If we 

assume the band (5.14) has 1 - 0; confidence level. Then, we have 

1 0; = inf P J{j(x) co-lll(x) II ~ f(x) 
JEcF 

~ j(x) + co-lll(x)ll, 'l/x EX}, (5.15) 

where F is a wide suitable class of functions. Next, we evaluate the prob­

ability on the right-hand side of (5.15) in order to obtain a computational 

formula for calculating the critical value c. 
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A class F, of natural interest, is a set of functions for which j(x) is an 

unbiased estimator, i.e., 

F = {f : f(x) = l(xf J..L, "Ix}, 

where J..L = (f(Xl),"" f(xn)f. In this case the probability that coverage 

fails for the band (5.14) has the following expressions 

0; = { 
Ij(x) - f(x)1 A} 

P ~~x Ill(x) II > CO" 

p{ Il(xfY -l(xjT J..LI } sup > cO-
xEX Ill(x) II 

p{ sup IT(x)T 1::1 > CO-} 
xEX 

p{ sup I T(xjT I:: I > CO-} 
xEX ~ ~ 

{ 
T(xjTN (0-I~) } 

P ~~xl IINII l>clNf 

100 

p{ ~~x IT(xjTul > ; }g(z)dz, (5.16) 

where T(x) = l(x)/lll(x)ll, I:: = Y - J..L is an n-dimensional vector of random 

errors, g(z) is the density function of the random variable Z = IINII/(o-/~), 

N = I::/~ has the Nn(O, l(x)Tl(x)) distribution, and U = N/IINII is a unit 

vector on the surface of the unit sphere sn-l and is independent of IINII. 

Letting M = {T(x) : x E X}, the probability on the right-hand side of 

the last equality in (5.16) is simply the volume of a tubular neighborhood 

of M U - M on the surface of sn-l. Here, approximate formulae for one-

dimensional and two-dimensional cases are given. Although this approximate 

method can be applied to high dimensional case by following the similar idea, 

lots of geometric constants are needed to be calculated. So we only consider 

the low dimensional cases, i.e., d ::; 2. The ~ifficulty on the computation of 

the geometric constants is thought as the drawback of this method. 

Assume the manifold M is the third order continuous with a positive 

critical radius. Suppose T : X ~ M is one-to-one, three times differen­

tiable and there exists a vector A such that .x?T(x) > 0 for all x E X which 
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ensures the tubes around M and - M do not intersect for sufficiently small 

radii. 

Proposition 5.2.1 (One-dimensional) Suppose x E [a, b]. The length of 

M is K,o = J: IIT'(x)lldx; where T(x) = l(x)/lll(x)11 with l(x) = X(XTX)-lX 

for linear regression models; X is the design matrix. And l/(j2 / (T2 rv XZ. Then 

(5.17) 

where the last term on the right-hand side of (5.11) is the probability of the 

absolute value of a t random variable with l/ degrees of freedom larger than c. 

Proposition 5.2.2 (Two-dimensional) Suppose X is a rectangle in n2. 
Let K,o be the area of M, (0 be the length of the boundary of M. Then 

~f((l/ + 1)/2) ~(1-L c2 
t(v+l)/2 

713/ 2 f(l/ /2) fo [l/ 

( c2 

+~(1 + - )-V/2 + P{ltvl > c}. 
21T l/ 

(5.18) 

For computing constants K,o and (0; denote Tj(x) = 8T(x)/8xj,J=1,2. Then 

K,o = 1 det1
/

2 (AT A)dx, 

(0 = r det1
/

2 (A* T A*), Jax 

(5.19) 

(5.20) 

5.3 Simulation-based confidence bands for a 

polynoluial regression 

Liu, Wynn and Hayter (2005) proposed the simulation-based method for con­

structing simultaneous confidence bands for an one-dimensional polynomial 

regression model with the only predictor variable restricted in an interval. 

Monte Carlo simulation is used to find an accurate approximation to the 
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critical value of the confidence band when the number of simulations is set 

to be sufficiently large. 

Consider the one-dimensional polynomial regression model 

Y = X(3+e, (5.21) 

where Y nxl is the vector of the observed responses, Xnxp is the full column­

rank design matrix with the ith (1 ::; i ::; n) row given by (1, Xi, ... , xf-I
), 

(3 = (PI, ... , Pp f is the vector of unknown regression coefficients, and e is 

the vector of independent and identically distributed normal random errors 

with mean 0 and variance a2 , which is assumed to be unknown. Denote the 

maximum likelihood estimator of (3 by /3, therefore, /3 rv Np((3,a2 (XTX)-1). 

Also, denote an unbiased estimator of a2 by fJ2 so that vIJ 2 / a 2 
rv X~. More­

over, /3 and fJ2 are independent. 

A hyperbolic-shape simultaneous confidence band for the mean response 

x T (3 over the restricted predictor space when X E (a, b) is given by 

(5.22) 

where x = (1, x, ... ,xp
-

I
), c is a critical value such that the confidence band 

(5.22) has the confidence level equal to 1 - 0:. Alternatively, (5.22) can be 

arranged as 

sup Ix
T (/3 - (3) /0-1 < c. 

a<x<b (fJ / a) J xT (XT X)-Ix -
(5.23) 

Define 
T = sup Ix

T(/3 - (3)/al 

a<x<b (fJ /a)vxT(XT ~X)-IX' 
(5.24) 

the confidence level of the band (5.22) is given by P{T ::; c}. The following 

procedure shows how to use Monte Carlo simulation method to approximate 

the critical value c. 

Step 1 Generate N = (/3 (3)/a rv Np(O, (P X)-l). 

Step 2 Generate s = fJ/a rv Jx~/v. 
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Step 3 Calculate T from (5.24). To find the supreme in (5.24), firstly find 

all the stationary points of 

( 
IXTNI ) 2 xTNNT X 

h(x) = = --=---
JXT(XT X)-lx XT(XT X)-lx 

by solving h'(x) = 0, i.e., 

Since g(x) is a polynomial of order 4p - 6, it has at most 4p - 6 zero 

points. If they are denoted by Xl, ... ,xq , from (5.24) we have 

T = max{ yih(0, /hCb), . max Jh(Xi)} / S. 
l:5ySq;xiE(a,b) 

Step 4 Simulate R independent replicates of T, say, Tl, ... ,TR , and use the 

[(1 - a)R]th largest Ti as an approximation of c, denoted by c. 

The base of this approach is that the sample 100(1 - a) percentile c 
converges almost surely to the population 100(1 - a) percentile c when the 

number of simulations R goes to infinity. Furthermore, to gauge the accuracy 

of c, it is useful to estimate its standard error. It is known that, under certain 

regularity conditions, c is asymptotically normal with mean c and standard 

error 

s.e. = 
a(l - a) 
RG2(C) , 

(5.25) 

where G(c) is the density function of T evaluated at c (see, e.g., Serfiing, 

1980). And G(c) may be approximated by the kernel density estimator 

1 R 

G(c) = ~ 
RdJ'Iif i=l 

where Ti is the ith simulated value and d is the smoothing parameter. Vie 

usually set d = 0.1,0.01,0.001. 
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5.4 Simulation-based confidence bands for a 

multiple linear regression 

Liu, Jamshidian, Zhang and Donnelly (2005) presented a method of con­

structing simultaneous confidence bands for a normal-error multiple linear 

regression model based on Monte Carlo simulation procedure. The confi­

dence bands constructed via this method have hyperbolic shape and can be 

applied to a model with any number of predictor variables. 

Consider the multiple linear regression model 

Y = Xf3+e, 

where Xnxp is the design matrix with the first column given by (1, ... ,1)T 

and the jth (2 :::; j :::; p) column given by (Xl,j-l, . .. ,Xn,j_l)T. Inferences on 

estimators of unknown parameters f3 and (J2 can be obtained as usual. 

It is of interest to construct a simultaneous confidence band on the most 

popular rectangular region ;:t' of the predictor space, which is of the form 

(5.26) 

where -00 :::; ai < bi :::; 00, i = 1, ... ,p - 1 are given constants. The central 

task is to find an appropriate critical value c such that the confidence band 

has the confidence level equal to a preassigned 1 0:. 

Note that the confidence level of the band is given by P{T < c}, where 

T = sup ixT(,B - (3)/(Ji 
x,E[a,.b,],2=1.. .,p-l (a / (J) J x T (XT X)-lx 

(5.27) 

The distribution of T depends on the design matrix and the intervals (ai, bi ) 

in a complicated manner. This makes a challenge to derive the distribu­

tion function of T directly. In such a case, it is motivated to introduce a 

simulation-based method to find an approximation to the critical value c, 

say c, which can be as accurate as one wants by simulating a sufficiently 

large number of T's. 
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It is clear from (5.27) that the calculation of T is in fact an optimization 

problem. Consequently, our analysis focuses on the optimization algorithm. 

Let P be a p x p non-singular matrix such that (XT X)-I = pT P. Then 

generate one N = (pT)-I((3 - {3)/a rv Np(O, 1) and one independent a-/a rv 

VX~/l/. Therefore, T becomes 

where 

IINII 
T = Q (a-/a)' 

Q = sup I(Px:~NI 
xiE[ai,bi],i=I, ... ,p-1 IIPxIIIINII 

(5.28) 

Accordingly, the optimization problem of T transforms to the optimization 

of Q which involves the maximization of a p-variate function over the given 

rectangular region of the predictor space. Two methods were included in Liu, 

Jamshidian, Zhang and Donnelly (2005) to solve such a maximization prob­

lem. They are the branching method and the active set method respectively. 

T can be obtained after Q is ready. 

As stated in Section 5.3, we simulate R replicates of the random variable 

T, and set the [(1 - a)R]th largest simulated value C as an approximate of 

the critical value c. Also, one may estimate the standard error of c using 

(5.25) to gauge its accuracy. 

5.5 Comparisons 

For the methods of constructing confidence bands introduced in this chapter, 

we are interested in comparing them in terms of the critical value to have a 

general view on the goodness of each. All the critical values in this section 

are calculated using MATLAB programmes. 

5.5.1 For simple linear regression 

We start with the comparison for a simple linear regression model. As already 

pointed out, for simple linear regression case, Naiman's method turns to be 
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exact. So the methods in our first comparison include: the exact method, 

the approximate method of Sun and Loader (1994), and the simulation-based 

method of Liu, Wynn and Hayter (2005). 

Note that, all the methods depend on the design matrix, the restricted 

interval for the only predictor variable and the confidence level. However, 

one may go further to consider the nature of the methods. 

For the exact method, we have the computational formula for the critical 

value given by 

(5.29) 

where H,v stands for the F cumulative distribution function with 2 and 

1/ = n - 2 degrees of freedom, and e* can be found in the following way: 

define a = (I, af, b = (I, bf where a, b are the lower and upper bounds of 

the restricted interval, then we have 

(5.30) 

It is clear that the critical value depends on the angle e*, the degree of 

freedom 1/ and the given confidence level 1 - Q, where e* is half the angle 

between Pa and Pb with P consistently defined as before. 

Similar argument can be applied to the approximate method, the key of 

which is to compute the length of the path on the surface of the unit sphere 

in nn. So we are interested in finding the relationship between the length of 

the path and the angle e*. 
For linear regression models, vector l(x) in the approximate method has 

the explicit form given by 

where X is the design matrix, x is the vector of the covariates, and 

1 1 

Ill(x)11 = [1(xf1(x)r = [xT(XTX)-lxr = IIPxII· 
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Then we have 

l(x) XpT . Px T 
T(x) = III(x)11 = IIPxII = XP 'I(x) 

by studying (5.4) for Naiman's method. Furthermore, we have 

IIT'(x) 112 

which implies that 

[TI(X) r [T'(X)] 

[ I' (X) ] T P XT . XpT [ I' (X) ] 

[I' (X) r [P( pT P) -1 pT] [I' (X) ] 

[1'(X)r1p[I'(X)] = 111'(x)11
2
, 

IIT'(x)11 = III'(X)II· (5.31) 

Thus, by assuming the only predictor variable x E [a, b], since the length of 

the path 

Ab) = lb Ib'(x)lldx = lb IIT'(x)lldx = ""0, (5.32) 

then we obtain the equivalence between the length of the path in Naiman's 

method and that in the approximate method of Sun and Loader (1994). 

In particular for simple linear regression case, the path in Naiman's 

method is on the unit circle, which, in connection with the fact that 2e* 

is equal to the angle between the two unit vectors starting from the origin 

and pointing to the two ends of the path, implies that 2e* = Ab) = ""0. 

Therefore, formula (5.17) becomes 

2e* c2 

a = -(1 + - )-v/2 + P{ltvl > c}, 
7T V 

(5.33) 

where tv is a t random variable 'with v degrees of freedom. Clearly, the critical 

value depends on e*, v, 1 a as well. 

For the simulation-based method, a suitable manipulation simplifies the 

computation of T defined in (5.24). Define U = (U1 , U2? = N/IINII, where 

N = (pT)-l((3 - f3)/CJ. Let U1 and U2 be the generated values of random 
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variables UI and U2 . Then, under the definition of ¢* 

calculated in the following way: 

2e*, T can be 

T= 

IINII 
(u /a) 
IINII I ¢* . 

(u/a) UI cos 2 + U2 sm 

. I I ¢' If iUI 2: cos 2' 
. (j,* 

if 0 ::; UI < cos j U2 > sm 2 
dJ* . ¢* 

or - cos "2 < Ul < 0 , U2 < sm 2' 

otherwise. 

By following the procedure stated in Section 5.3, an approximation of the 

critical value can be found. Also, one may calculate the standard error 

accordingly. Overall, all these methods depend on e*, v and 1 - 0:. 

Now, we design the levels for these three factors. Since e* E [0,71/2]' set 

e* = 0.0,0.1,0.2,· .. ,1.3,1.4,1.5,1.57. Set the degree of freedom v = 2,4, 

6,8,10,15,20,30,40,60, from small to large, to see how this factor affects 

the critical value. In addition, the three most popular confidence levels 

90%,95%,99% are used. Tables 5.1-5.10 contain the critical values com­

puted based on these methods. The simulation results are based on 100,000 

simulations. Results with a star behind in the tables are based on 200,000 

simulations in order to make the distinction more clear. 

From the results, we can draw some conclusions. For each method, the 

critical value increases with the angle e* and the confidence level, and de­

creases with the degree of freedom. The critical values based on the ap­

proximate method are generally larger than those of the exact method, good 

enough when e* takes small values, but being worse and worse as e* goes 

large. This trend becomes less and less evident as v goes large, but the gap 

still exists clearly. The simulation-based method computes as good critical 

values as the exact method. The difference between the critical values of the 

simulation-based method and those of the approximate method is basically 

at the second or third decimal place, increasing with the confidence level and 

decreasing with the degree of freedom. 
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1.40 6,1611 6.1611 7;3372 M5S;i 0.031Q · 
1.50 6;1641 6.1641 ] ,5062 6,1560 0,0297 · 
1:57 J3:1643 6.1.643 7.6256' 6.1350 0,0479 
0:00 9.9249 9.9247 9.9249 9J'J140 (L0662 
0.10 10.5420 10.5420 10.6#1 10;6691 0;1004 

., 

D.20 11.1141 11J 141 11 .1295 11.1316 0.U12 
(L30 11 ;S370 11:6370 11,6858 ' 11.52!l9 0:{)S33 
DAO 12..1081 1:::'1079 12.2173 12.0786 0;1430 
0,50 12.525.0 12,5250 123267 12.5740 0<4441 
0.60 1:::'5S72 1L8872 132 167 12.73S8 0:2089 
0:70 13.194fl 13;1947 13.689.1 132957 0,1347 

B9% iuto 13-4491 13.4491 14.1460 13,0&2& 0,1170 
0,90 '13:6525 13.6523 14.5885 13,1477 0,2324 
1,\)0 13~BllS2 13:8082 15;0182 13,1085 0,1167 · 
1.10 13:9213 13.9211 15.4359 14.2853 0.3344 
1.20 13.9920 13 .9920 15,8425 i4 ,nOGS O ~2436 
1.30 14.041:1 14.0419 16.2391 142307 0.2019 
1.40 1.1.0(;39 14,0637 16.6263 13.8603 0.1011 · 
1.50 14 ,0707 14,0705 17.0047 14.0654- 0 .~143 

1.57 14.0713 14;0713 17.2645 14.0603 0.1750 

Table 5.1: Crit ical values for simple linear regression 
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dJ. - 4 

MID 2:1319 2:1311 2;1319 2.1250 0.0057 • 
MO 22505 2:2503 22505 2;2515 O.UOIl1 
0.:20 2.35~O 2:3590 2.3592 2.3604 O.UQlt2 
0.30 2A583 2.4583 2.4594 2.4575 0.\1(190 
0040 2.&485 2.5485 2.5523 2.5.432 0;0095 • 
0.50 2J~2g3 2;6293 2.6290 2.6265. 0;0065 ' • 
MO 2.7006 2.1-006 2c7202 2.0980 OJ)06-1 • 
0.70 2.7618 2.7618 2.7961 2.7504 (),0063 • 

9D% 0.80 2,6131 2.a131 2:868a 2,H160 0{)017' 
O£JO 2,8545 2;8545 2.9312 2.'8503 0.01()O 
1,DU 2;11865 2:8865 BJlO22 2.8:654 O;()1()1 
1.1() 2~9097 2.9091 3 :()S4~ 2:9063 0.00S7 · 
1.20 2.:9254 2;9254 ' 3:1234 2.9224 0:0108 
1.30 2;9349 2:9349 3.1803 ~9360 O.O(}74 * 
1.40 2.9395 2.9393 32348 2,9435tt0072 * 
1.50 2;9408 2;9408 32872 2.9364 1l.011, 
L57 2:9410. 2.9410 3.3227 2..fB24. 0;0.074 • 
O,tlO '2::77.65 ... 2.7765 2.716li. 2:7776 0.0136 
O.lQ 2:9147 2.9145 2.9141 2.907S OJ)132: 
0.2U 3.0403 3.0403 3.0405 3:0137 M148 
1).3.0 3.1549 3.154£1 3.1559 3J3.62 0:0151 
0.40 3;2592 3.2592 3:2626 3.2560 0,0134 
0:50 3:3532 3.3532 3:3619 3;3510 0;0169 
O;€Q 3..4367 304367 3)1550 3:4397 0,0146 
Q.71l 3.50'91 3;5091 ;3:54.23 3:5132 0;0100 • 

95% MO 3;51:03 3.570'1 3.6246 3,5739 0;n1Sl} 
0;.90 3,6201 3.6201 3.7U3ii .3J5169 0.010a * 
1000 3~6591 3.65~1 3.m3 3,6472 O.U112 
1.10 3.1,877 3.6an 3:84a3 3;S765 0,0148 
L2D 3.7(}74 3.7074 :tB161 3.7095 M110. · 
1.30 3.7190 3.7190 3.98as 3.7099 M168 
1AfO 3.7241 3.1247. 4.0433· 3.7119 0 .01~3 
1.50 3.7266 3.7266 4.1033 B.7181 O.{t148 . 
1;57 H2GS 3.72684.1441 3.7210 0.01-12· 
0:OQ4.S041 4.6040 406041 40(i947 0:0305 • 
O. Hl 4;8056 4,6056 4.3056 H122 0.0425 
0.20 4.9873 4.9873 4.9675 4.9801 0.0395 
0.30 5.1526 5.1526 5.153& 5.1292 O.031S 
DAD 5.3030 5.3030 5.3065 52951 O.G32:1 • 
0;50 5.4391 5.4391 5.4485 5'.4124 0.0357 • 
O;SO 5.5606 5..5608 5.5812 5 .. 5327 OJI420 
0.70 5.6677 5.6675 5.7056 5,6595 0.0"279 • 

99% 0;80 5:7538 5.7588 5.8235 5.1466 0.0320 • 
0.90 5.8343 5.8343 5.9348 5.8554 0.0351 • 
1.00 5.8940 5.8940 6.l1408 5.8222 0.0315 • 
1.1D 5.9386 5.9384 6 .. 1418 5.897G 0.0347 • 
1.20 5 .. 9691 5 .9691 6.2385 5.9874 0.0324' 
1.30 5.9876 5.9876 6.3311 5.9580 0.0445 
1.40 5,9970 5.9968 6.4202 5.88Gb 0.0428 
1:50 5:9993 5,9998 6.5058 5.9138 0.0499 
1.57 6.0000 6.0000 6,5639 6.0047 0;0339 • 

Table 5.2: Critical values for simple linear regression 
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dJ. - 6 

cd " 11" . '. ci/.eXt I Cv n'al 1 cy _<llPP .1 c;'l .simile! ·s.a. 
0;00 1,9432 1;9432 1.9432 1.9493 0.0050 · 
0,10 2J0440 2,044'0 2.0440 2,.0332 0~0067 
0.20 2.'1354 2. 1~54 2.1354 2.1297 0.1JQ$8 
030 2218:3 2;2183 22185 22007 0;0071 
0.40 2.2938 2:.2!l3B 2:2947 2:2944 OJir.l48 • 
.0,5.0 2:3618 2.361B 2.3.653 .z:3S59 ritm72 
o;so 2.4225 2.4225 2.4:305 Z,,1215 IhOG7$ 
0.70 2.4749 2.4749 2.4913 2 :4669 0 0UB1 

9D% o.ao 2.5193 2.5193 2 .. 5483 2 .. 5155 0.0.074' 
0.90 2.5553 2~5553 2:6019 25'490 O.tiOP. 
1:00 2;:;836 2:.5836 2 .. 6524 2:.5851 0,or172 
1.10 2;6rJ41 2.6rJ41 2.7000 2.6:()18 0.0017 
1.g0 2;!;1~i 2.li181 2:7454 2.6232 0:0055 · 
1.30 2;£;264 2.6264 2.78B7 2:.62:31 0.0054. 
1.40 2..6305 2;6305 2.8299 2;6::348 0:0079 
1.50 2.6318 2.6318 2Jl693 2.6318 0;0076 · 
1;57 2;6318 2..6318 2Jl958 ZG295 0:0.075 .. · 
0.'00 2.'4469 2;4469 2.4469 2.4509 (LOO.]1 • 
0.10 2.5578 2:.657B 2.5578 2;5564 0.:0·105 
0:20 2£573 2;6573 2:l,573 2.SS26 0;0111$ 
0.30 2]471 2,7471 2.7413 2::7410 0,o07fj · 
CAP 2.8287 2,8287 2;829.5 Z8263 0,0074 · 
0,50 2,9027 2.9!i25 2.9050 2.\3.947 0;0098 
0160 2;96.86 2.9686 2:9747 2.9650 0.0,11 
O:711 3;026a 3;1)268 3.1}:398 M231 0c001O' o· 

95% 0;80 3~07S5 3.0765 3;1~ti6 3.0686. M075 * 
0.90 3.~1175 3,1175 3-1578 3~1098 0.0114 
uio 3.1499 3.1499 3:21'!~ 3J458 OJt12.0 
U!J 3.1742 3.1142 .32626 3:1675 0;0113 
120 3.19(jl 3.1906 3j108 301882 0;0130 
1.30 3~2007 3.20'07 3.3570 3.1998 o.oo~a · 
lAO 3,;WS6 3.2056 3.4008 3.1871 0.0'107 
1:50 3.aD71 3:2071 3AA2!l 32046 0.01 0:3 
1.51 3.:2(}73 3;2073 3'4712 3.2002 0;0113 
ll :OP 3:7074 3.71174 3.7074 3:6413 0.0252 
(};10 3,8484 3Jl484 3.8:484 3.8314 0.0287 
0·2.0 3.9731 3.9731 3:9731 3:9349 0.0234 
0.30 4.0848 4.0847 4.0848 4.10'56 0.0340 
0:4.0 4.1857 4.1857 4.1861 4.1426 OJJ319 
0.50 4.2772 4,2770 4.27tH 4.1697 0.0387 
0;60 4.3597 4.3596 4.3641 4.3371 0.0239 
0.70 4.4331 4.43j1 4.4436 4.4598 0.0199 

99% 0:90 4.497Z 4.4972 4.5176 4:5096 0.0200 · 
O.9Q 4;5511 4.5511 4.5872 4.5135 0.1)295 
100 4.5946 4.5946 4.6528 4.5632 0.0298 
1.10 4.6276 4.6276 4.T1.47 4.6103 0 .. 0213 · 
1.20 4,6507 4.6507 4:ms 4.6337 0.0260 
1.30 4.6648 4.6648 4.8297 4,6455 0.0177 
1.41) 4.6718 4.(;713 4.8830 4.669S 0.0302 
1.S0 4:1$741 4,6741 4.9341 4.6181 0;0279 
1.57 ,U743 4 .. 6743 4:96t1G 4.6.226 0.0360 

Table 5.3: Critical values for simple linear regression 
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dJ. - 8 

d II ' ev e~ " 1 ¢,V. llaLi cv. ilulU cV slfuuJ s:;;e ..... . 
0;00 1:8595 1.8595 US9S 1.66f)5 0.0042 · 
0.10 1;9529 1.9527 1.9529 1.951~ OJJ042 · 
020 :W368 2JI368 2.Q366 2Jl'~12 0,o.os7 
03.0 i1127 2.1127 2A12T i 1130 0.:0042 · tL411 2.1611 2.1817 2:1821 2.1106 0.0066 
0;5.0 2.2440 2.2441) 2;2456 22442 0;0066 
0;60 2;2997 2.2995 2:~043 2.29.6$ 0;1)066 
0.70 2;34B3 2.3461 2.3586 2.3432 0 . .0067 

90% .0 ;80 i3B95 2,3895 2.4093 2.391.0 0;.0066 
0.90 2,4232 2.4232 2;4568 24299 0.0065 
1.00 2.# 95 2.4495 2.50'12 2:4451 OJ'Q4S: * 
1.10 2.4690 2.:4690 2.5431 2.4628 0.0066 
1.20 ,24 821 24.821 25830 2.4347 O~OQe5 
1.30 2:4901 24901 2:6205 2.4850 0.0069 
1.40 24940 2.4940 2.6564 2.4916 M OST 
1.50 2.4.951 2.4951 2.6905 2.4890 0 .. .0048 · 1.5.7 2:4953 2.4953 2c71.36 2.4859 MOSS ' 
0.00 2.3060 2;3060' 1.3060 2 .3D95 0;0062 ' • 
OeU) 2.4059 1.4059 2.4059 2,410B 0:00$2' · 
0.20 2.<t945 2A945 2.4945 2.4903 0 .~Oa1 
O,·3{l 2;5742 2.5742 25142 2S8S7 0:0095 
CAO 2~6463 2;6463 2;'646'5 2.6494- 0,0066 " 
0;50 2]115 2.1'115 2.7124 2 7051 0;0095 
O;€O 2.7700 2.1100 2.7731 2.7703 0;0091 
0.10 2;8220 2.8219 2.11291 2:8165: O.QQ~ · 

95% 0.:60 2;8667 2.B667 2;8013 2.8604 0~tI,07~, · 
It gO 2,9040 i9038 2;93(B 2;9002 0;0070 • 
Mll 2.9336 2.933& 2.9761 2,$251 0.tlO90 
1.10 2.9557 2.96$7 :t01ll2 2:!1374 M O.8S 
120 2:9709 2.~709 :ttl602 2.9540 0:0097 
1..30 2;9-IJ01 2;9801 3;0009 ' 2;9'7£6 MOB3 
1,40 2;9847 2;9841 , 3:1356 2.9177 0.0.086 
1.50 2,9862 2.9862 3.1707 2.~7a8 0:0068 · 
1.57 2,9864 2.9864 3.1944 2.9S4S O;()o13 · 
0;00 3,3555 3;3553 3:355'5 3.3605 O;U144 · 
0.10 3)1·740 3.4740 304740 3,4396 0.0213 
0.20 3;517'6 3.5176 3.5776 3.5720 0.0157 · 
0.30 3.6694- 3.6694 3.£694 3.6514 0.0144 · 
OAO 3,75Hl 3.7518 3.7520 3.7517 0,0221 
0,50 3:8263 3,8263 3.8267 3.7964, 0.0205 
0.60 3.11936 3.8936 3.8953 3.8705 0:(1143 · 
0.70 3.9543 3.9541 3JJ586 3.9431 0.020.3 

99% 0.80 4,0074 4.0073 4.0174 4.0125 0:0167 • 
0,90 4.0528 4.0526 4.0721 4.0323 0,0169 · 
1.00 4.0898 4.0696 4.1235 4.0865 0.0257 
1.10 4. t182 4.1182 4.1120 4.1171 00233 
1.20 4.1382 4.1382 42 177 4.1273 0:0180 
1.30 4.1508 4.1506 4.2610 4.1396 0.0213 
1.40 4.1 569 4,1569 4;3022 4 .1405 0.0161 

,. 
1.50 4.1590 4.1590 4.3416 4.1434- 0.0141 · 
1.57 4,1592 4.1592 4.3679 4,1471 0.0178 

Table 5.4: Critical values for simple linear regression 
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dJ. -10 

cI II t.V eXt. ,\ .i:vnal '\ ,cv,.,app I,e,v ~Imii 'I .$,8. 

0:00 H~124 1.8124 1.$124- U '109 0:0041 
0.10 1.9015 1.901.6 1:901S 1;89S3 0.0044 
0.:20 19815 1;SS13 1 .981~ 1;9797 0..0Q60 
0.3.0 2.0534 2.0534 2.1)536 2.0490 0:OD60 
~All 2.1188 2.11aa 2.1190 2.1180 0.ii05~ 
0.50 :U77S 2.;1177 2..1788 2.1791 l};DeWl 
0.60 22307 2.2301 22337 2.2320 0.004:1 
0 .. 70 JUmO 2. 2m 2.2846 .2.2773 0;0060 

.90% 0:80 2.3165 2.3165 2;;1319 2.3.120 0:(lp56 
090 2.3489 2.3489 2.37,59 2.3465 0;00/34 
1.00 2.3744 2.3744 2.4173 2.:mo (l:(lQ64 
1.1<) 2.~931 2.393·j 2.4562 2.38$2 0.00'64 : 
U!l 2.4059 2.:4059 2.4926 2.3958 M 059 . 
1.30 2:4135 2.4135 2.5275 2.4134 0.0062 
1.40 2.4171 2.4171 2:5605 2.4140 0.0058 
1.50 2..4163 2.4183 2.5918 2.4135 OJI067 
1:57 2A1BS 2.4·1B5 .2.1i129 2,4177 0.'0063 
0:00 2:2282 2.2280 2.2262 22162 . 0.0077 
0.1{) 2~3220 2.3220 2j22lJ 2:3101 () ~OO86 . 

0.2'0 U049 2.4049 z:4049 ZA042 o.iioM : 
0.30 2.47S1 2.4191 24791 2.4790 0.n084 
OAO 2;5,458 2.5458 2.5450 2;52;3.6 0.:0065 
0.50 2j~064 2.6062 2.60~a 2.5916 (tOO77 
{l.tiO 2.6608 2::6608 2.6627 2:6513 0.0067 
0:7~ 2.7092 2.7092 2:.7140 2.70g.2 ()'OO93 .. 

95% 0;80 2.7 511 2..7511 2.7616 2.7382 0.00B4· 
0.90 Z}S62 2.7862 2.60&2 2.7853 0;0'092 
ao 2:8142 2.8142: 2J3478 2:8.124 QilUllo. 
1.10 2.:8354 2.8352 2~8869 211332 0.0087 
1.20 2.3499 . 2.8499 .2.;9237 2.83M 0:0081 
1"30 2.3586 2:8586 2.9595 2:8S57 0.0066 
1,40 2,a630 2;8630 2J1917 2;8585 o .Ob~ · 
150 2,8644 2.8644 3.0232 2,8607 0.0060 · 
4,57 2.8646 2;8641> 3,044.3 2Ji595 0.0088 
0.00 3.1692 3.1692 3.1692 3.1659 0:0,94 
0.10 3:2765 3.2763 3.2765 3.2:794. 0;0123 .. 
0.2:0 3.3692 3;3!i92 3.3692 3.3656 0.Oi90 
030 3:4510 3,4510 3.4510 3.4360 0.014S 
0.40 3;5238 3,5236 3.5240 3.5137 0.0165 
O.tiD 3.589.6 3;5896 3;5898 3.5688 0.0218 
0.6D 3:6490 3.6490 3.6498 3.6539 0:0154 • 
0.70 3.7026 3.7026 3.7051 3.7003 0.0196 

99% 0;80 3.75a1 3.7501 3.7562 3.7300 0.0132 · 
0.90 3.7909 3.7909 3.8036 3.7711 0.0214 
1{)O 3J t244 3.8244 3.6479 3.8110 0.0190 
UO 3.8505 3.8505 3.8896 3.8230 0.0156 .. 
1.20 3.8690 3.8688 3.9289 3.8625 0.0136 · 
1.30 3.8805 3.8805 3.9661 3.3943 0.019& 
1.40 3iB862 3.8S62 4.0013 3.8513 OJ)140 
1.50 3:8881 3.8B81 4.0347 3.8726 0.0168 
1.57 3.8863 3.8883 4.0574 3,8596 0.0141 * 

Table 5.5: Critical values for simple linear regression 
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dJ. -15 

d " 0' Cv, eXt I C\I riaf I I~ cv,,~pp It;& $iiiliHl :s:,e. 
0.00 1.7531 1.7529 1..7531 1.7534 O.llO52 
0.10 1:8370 1.ll3T0 1:8370 1.8343 OJI051 
0;20 1.911S 1;9117 1.9119 1.911.7 OJI03B ~ 

030 1 ~!mio 1.9790 1.9790 1.9.m 0.0056 
0.40 ~039i 2.03S? 2..0397 2Q383 0.0052 
0;50 2Jl94S M94S 2.0949 ~O905 0.0054-
0;60 2.1439 2.1439 2..1455 2,1505 0;0053 . 
0.70 2c1874 2,1874 2.1922 21846 G.Oll4G · 

90% 080 Z'ZZ46 2:2246 2.2353 2:.2218 0:0040 · 
0.90 2..2553 2.2553 2;2753 2..2532 OJ)~38 · 
Ull 2.2795 ~27.95 2.3127 2..2612 0.0951 
1.10 22Ej74 2,2974 Z:~71 2..2955 0:'0041 .. 
1-20 2::3096 2.3096 2,3807 2:3078 0:0051 
1.30 2;3169 2.316S 2.4118 2.3174 0.0039 " 
VW 2.3205 2.3205 2.4413 2.31ir3 0.0057 
1.50 2~3216 2.3216 2.4692 2.3129 0.0055 
1.57 2:3216 2.321£ 2..4B7B 2.3157. .. (toOSS ' 
0,00 2,1314 2.1314- 2,1314 21358. OcQ056 • 
0.10 2~2179 2.2119 2:2179 22154 !taO?S 
020 2;2940 2;2940 2.2940 2284$. O.Oti111 
D.30 2 .. 3615 2.3615 2:3615 2.3491 OiOOe3 
0:40 2;4219 2;421.9 2:4219 2.4201 0;0069 
o.so 2.47&4 2..4764 2.4766 2.4662 0~OO49 * 
0:£0 2,~256 2.5256 2.5264 ~5222 0,0056 .. 
0;10 2.55M 2;5696- 2.·5723 ~66.21 ocoan 

95% lH10 2j ;oa1 2.6081 2.6144 2.£142 0.0049 " 
0;90 2,6406 2;,640.0 2,6537 2.62&3 o.Gaia 
1;00 2;6665 2.6665 2,.6903 2JiS68 0;01171 
Ull ~6tl63 2..6863 2.7246 2.6893 0.0051 · 120 2.6gga 2,6998 23568 2.6953 0.{)053 · 
1.30 2.1082 2..7.082 2.7872 2.7061 o~OO11 
1:4ll 2:.:7124 2.7124 2.B159 2;7093 0;0082 
1.50 2.1138 U :138 2.8432 2.7090 0:6079 
1-57 2,1138 2.7138 2.8613 .. 2;7086 0.0016 
oraD 2:9467 2.9457 2:94&7 ~9381 0.0159 
11.10 3.0405 3;0405 3;0405 3.0364 0:0096 · 
021) 3;12011 3.1208 3;1208 3.1167 0.0185: 
0.30 3.1907 3.1901 3.1901 3.1S02 0.0115 
MD 32529 3.2529' 32529 3.2611 0,0145 
D;5D 3.3084 3.3084 3.30ff4 3.29.60 0.0133 
OJlO 3.3585 3j51lS 3.3587 3:3569 0.0112 • 
O.7ll 3A039 3.4039 3.4048 3.3911 0.015.3 

99% 0.00 3.4445 3.4443 3.4472 3_4244 0.0149 
0.90 3.4796 3.4796 H8G2 3,4700 0,0140 
1.00 3,5091 3.5089 3.522& 34641 0_0149 
110 3.5320 3_5320 3.55GB 3.5154 0,0116 

,. 
1.20 3.5486 15485 3.5688 3_5527 0.011.2 
1.30 3.5591 3.5591 3.6189 3.5614 0.0117 
1.40 3,5644 3,5644 3.6475 3.5767 0.0106 · 
1.50 3.5661 3,5661 3:6746 3.5595 0.0148 
1.57 3;5661 3.5661 3.6927 3.5592 0.0110 " 

Table 5.6: Critical values for simple linear regression 
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d.f. - 20 

0.00 U247 1.7247 U,247 1.7089 O.OOSl} 
0.10 1:6063 1:8063 1:8063 1.7968 O.tlO5z, 
0:20 '!J17sa tlms 1.6766 1.6790 OiOOaS • 
0.30 1:9436 1.943£ 1.9436 1.9479 0;0036 • 
0.40 2.'0021 2J)021 2;0.021 11)982 OJ),o~§ • 
0.5D 2'Q549. 2:0549 2.0553 2"{)S68 0;1)054 ' 
OliO 2.10.26 2.1626 2.10.'31 2A032 0:0052 
n.70 2.1447 2.1447 2,1:463 21361 000,53 

90% 1J.80 2.180S 2.1607 2.1895 2 .1810 ' 0.0035 • 
0.9.0 2:2109 2.2109 2..2276 2;,2071 iJ:OOS5 
1.ob 2.2343 2.2343 2.2633 2..2308 0.0053 
UO 2:2518 2;2518. 2.296S 2.2488 o.oo:ri • 
1.20 2.2639 2.2637 2.3279 2.2627 MOSO 
qo 2.2709 2;2709 2.35'73 22667 0.0'055 
1 All 2;.2'745 2.2743 2.:385'1 2.2747 O.ti051 
1.'!)1) 2.2755 2.illi 2.4116 U6!i!} 0;0051 
1.57 2;2757 2.2757 24291 2..2675 0;0.05:4 
o.no 2.'0860 2.0860 2.0860 2.0,896 0:0049 • 
0.10 2:1691 2.16S1 2..1691 2.1li67 0;0048 • 
0.20 2"2419 22417 2.2419 2.2253 MG6S 
0:3.0 23002 2c3.o~ 230~ 2.2981 ri.Q045· 
0 . .40 2:3531 2.3637 2.3637 2.3619 0,0046 • 
O:S'O 2,A.!156 2.4156 2.4156 2.04111 0.ri067 
0.60 2:.4623 2.04623 24629 2.460.1 0.0017 
0.70 2~b43 2.5043 26060 U;206 0.00:72, 

95% 0.60 2;5410 2;5410 2.545.6 2.5422 0;0078 
0.90 2;5721 2.5721 2;5826 25706 0;0013 
1.00 2;5973 2:.597.3 2.6169 2.5910 0.1)tl72 
1.10 2:.6163 2.6163 2.649.1 2,1)059 0:0011 
1.20 2~&295 2.6295 2.&791 2.13313 Q,OMS 
1.30 2.s:m 2.5377 2.7.015 2:.5363 0,00'12 
1,40 2;j;417 2,6417 2.7342 2 ,642;; 0.0.049 • 
1,50 2.6428 2.6428 2.7595 2:0501 O.OOSO ·· . • 
1.57 2:6430 2.6430 2.7765. .2.~0.b069 · 
.0.tlO 2;8453 .2i8453 2.8453 2.338& 0,0099 • 
0.10 2.93.32 2;9332 2.9332 2.9225 0:0124 
0:20 3,0079. 3Ji07~ 3.00792:9913 0:0152 .. 
0;30 3:0727 3.0127 3.0127 - 3.!l166 OJl141 
oJi1l 3.1299 3.1299 3.1299 3.1259 0.0104 * 
0.5:0 3.1810 3:1810 3.1810 3.1807 0.0141 
0.60 3.2272. 3;227.0 3:2272 3.2252 0.0144 
0.70 3.2687 3.26873.1691 3.25l5 0.0.096 • 

99% 0.80 3.3061 3.3059 :,D076 3.3163 0.0095 • 
0.903.3387 3.3387 3.3433 3.3333 0.0090 • 
1.00 3.3661 3.3661 3.3762 3.3419 O.012a 
110 3.3S79 3.3879 3.4071 3.3824 0.0100 • 
1.20 3.4035 34:035 3.4359 3.3848 0.0120 
1.30 3.4134 3.4134 3,4632 3.4028 0.0101 
1.40 3.4184 3..4184 3.4887 3.04343 0.0129 
1.60 3.4201 3.4201 3,512~ 3.415S 0.0155 
1.57 3.4203 3.4203 3.5291 3.4212 0,0102 • 

Table 5.7: Critical values for simple linear regression 
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dJ." 30 

cl ,0: \ CV oixt Iii d/.,flai l cY aiiiJ,] it<v slrn.u. I, S~. 
Y 

MO 13)973 1.6973 U i973 1.6983 M OS7 
0.1.0 1.7764 1.7764 1.7164 1.7752 .oJ.l048 
0.:20 1 .. 84$7 1Jj46.7 H467 1;6450 .0.0049 
.0.:30 1.9095 1.9095 H095 UI041 0;0049 
CAD 1JiS59 1-965:7 U609 1.9601 0:tI049 
0.50 2.0168 200168 20016l! %0162 M047 
O.SO 2,0625 2,0625 2.0633 2.0614 O.OQ35 
0.7.0 2.1.033 2.1033 2.1.060 2.1:053 0:0.034 · 

90% O.SO .2.1384 2013.84 21455 2.1268 M .o47 
0.90 2.1676 2c.1676 i 1819 2..1665 0.0049 
1,.00 2.1 9.06 201906 2.2156- 2.1866 0.0050 
1.10 2.2078. 2.2078 2.2473 Z.Z()4.1 0.0051 
1.2.0 2,41$4 a194 2.2170 2,21.83 0;0037 · 
1.30 2.2265 2.2265. 2.304.8 202208 0.OOS5 · 
1.41) 22299 2.2299 2;3311 2:2285 0;0056 
HiD 2'.'2309 2.2309 2.35G1 2.2332 0:0048 
1.57 U:H1 2:2311 2.3.129 2.2239 0;U047 
.o~UO 2.042,3 2.0423 2;0423 2.0407 .0:0046 ·· .• 
0.1,1) 2.1222 2.1222 21222 2,12"()4. MOpJ 
1),20 2.1920 2;1S1B 2.192.0 2 .1931 D.{)069 
0;30 2.2534 2.2534 2:2:;34 2.24S6 0.0063 
DAD 2,3081 2.308.1 2.3081 2.3010 0,0.045 · 
0.50 203573 2.3~73 203573 2;35.52. 0.0064-
0;60 2.40F 2;4017 204021 2;4023 0.OO~5 · 
0]0 2.4417 2.4415 . 2,4429 2,4360 0.00S9 

95% OJiO .2;.4768 2.476.8 2.4aOZ 2';4795 0;0062 
1);90 2;5065 2.5065 2:.5149 2.4998 O.O'04S " 
1.00 2','5307 2;5307 2:5471 2:5252 0.0'045 
1.10 2.5492 2o$4S2 2.5771 205361 0;0068 
1:2:0 2.562.0 20562.0 206051 2.5609 MU62 
1.30 2.51:00 2.5700 2.6316 2..5692 0;0046 · 
1.4D 2:5na 2.5736 2.6566 2 .5768 0.0(166 
HO 2:;5752 2.5752 2.6600 2 .5656 0;0.0$3 
1.57 2:5752 1.5752 2.6958 2.5705. 0.Oll6'6 
0;00 2.7500 2.7500- 2.7500 20727:3 0 0061 · 
0.10 2:11323 208321 2,s:m 2.8278 0.0134 
0.20 2~9019 2~9019 2.901 9 2;8936 0;0120 
9.30 2.~62() 2,9620 2.9620 2.9523 0.0102 .. 
OAD 3.014B 3,014B 3 .. 0148 3:.0035 0-.0081 · 
0;5.0 3.0617 3,0617 3.0617 3.0.600 0;0113 
0;6'0 3.1040 3.1040 3.1040 3.1005 r;ro146 
D]1J 3.1421 3;1421 3.1423 3.1382 0.0104 

99% 0:80 3 .. 1764 3.1793 3.1774 3.1838 0.1)098 • 
0.90 3.2066 3.20as 3.2096 3.2053 0.0137 
1.00 3 .. 2323 3.2321 3.2395 3.22.64 0.0093 · 
1 10 3.2515 3.2525 3.2674 3..2540 0.0093 · 
1.20 3.2674 3.2674 3.2933 3.2507 0.0085 · 
1.30 32769 3.2769 3.3179 3.2657 0.008& · 
1.40 3:2817 3.2ft17 3.3408 3.2828 0.0093 .. 
1.50 3..2832 :3.2832 3.3627 3.2830 0.0116 
1.57 3,2834 3.2£134 3.3772 3.2827 OJ)166 

Table 5.8: Critical values for simple linear regression 
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d.f. - 40 

d 8 cv ext I IN "ai Jcv~appJ cV;.sirilu1i a.~e. 

0.00 1,683$ 1;(;837 1;6839 1.6a26 OJ)OSO 
0.10 HG19 1.7619 1.7619 1 ~i600 0,0035 · 
0.20 1;8311 1;11311 U31;1 1.8303 0.9047 
0.3.0 1.8927 1.8927. U92Y 1:8.848 Qn044 
n.4!l 1:9482 1;9482: t94S2 1:9491 ri.n051 
0;50 1:$981 1.9981. 1,9981 2:0005 O;{lQ35 · 0:60 :/,0431 2Jj431 2;0437 2,1):454 0;0033 · 
0.71) 2.0831 2.0831 2.0854 2.0615 00032 · 

SO% 0.80 2:111a 2.1178 2.1239 2.117.8 0.0046 
OjlO 2.1466 2; 1466 2;1596 2.1.453 O.{lO34 • 
1.011 2.1693 2;1693 2.1926 2.1699 iJ .003~ .' # 

H O 2:1863 2.1863 22234 2.ia94 O.{t034 • 
1.20 2;1917 2.1977 2.2522 2.1967 0;00.46 
1.30 2.2048 2,.2D48 2,2795 2.1997 0,0051 
lAO 22080 22080 1.3050 2.?0:47 0.0047 
HiO 22091 2:.2(19.1 2;.3292 2:.2141 0.0049 
1.57 2.20fl3 2.20.93 2;3454 2;2095 OJ)033 ... · 0,00 2~O212 2.0210 2;0212 2;0186' 0',00.64' 
0,10 2:0995 2;0995 2J)9s5 2;09.73 0~bil45 · 
020 2.1678 2.1676 2.1676 2 .1665 O .ri04~ · 
03.0 2-11278 2.2276 2.2278 2 .. 2294 0;OO!;i2 
0.40 22812 2~2S12 2.2S12 2.2752 ' OlOO44 " 
0;511 2::3291 2.3291 2.3292 2;3265 O;ti041 · 
0.60 2.3723 2,3723 2;3125 2.3704' 0.0041 .. 
0]0 2;4112 2;4112 2.4122 2..4056 0.0060 

95% 0.80 2..4455 2;4455 2.4486 2:4385 0;0062 
1h9.0 2;4749- 2..4J49 2,..1821 2.4643 0.OO5~ 
MO 2.4987 2.4985 2:5134 2.49~9 O,OOS!} 
1.10 2:5168 2,5.166 2.5424 2;5i 6J O.OO$~ 
.1,20 2~5294 2;5294 2.:5694 2;5230 0.0043 ' · 
1:30 2,5372 2.6370 2~5950 2:.5366 M062 
1.40 2~5410 2..6410 2.£190 2.5364 O,OQsj 
1.50 2,5422 2:5422 2.6419 2..5422 0.006] 
1.57 2.5424 2.5424 2Ji5TiJ 2;5437 0.C046 " 
0:!l0 2.7044 2.7044 2:.7044 2.7154 0.00,62 " 
0.111 2]841 H841 2;7841 2.7770 0.0123 
0.20 2:8-514 2.8514 U1514 2.8459 0.0137 
0.30 2.-9092 2,9092 2.9092 2.8942 0.0129 
OAO 2,,9599 2.959.9 2.9599 2.!lSOO 0,0119 
O.tiD :t0649 3~0649 3.0649 3;0338 0.11122 
0.60 3;0453 3,0453 3.0453 3.0468 0.0.081 · 
0.70 3.0819 3:0817 3.0819 3,0753 0.0096 

99% 0.60 3.1147 3.1147 3.1154 3.1164 a.D1M 
0.90 3.1437 3.143.7 3.1461 3.1427 0.0112-
HiO 3.1684 3.1684 3.1745 3.1579 0.0094 · 
1.10 3.1883 3.1883 3.2010 3.1813 0,01 05 
1.20 3.2026 3.2026 3 .. 2258 3.1946 0.0124 
1.30 3.2119 3.2119 3.2489 3.2015 0.0137 
1.40 3.216£ 3.2165 3.2708 3.21198 0.0109 
1.50 32162 3.2.180 3.2914 32158 0.0090 · 
1.57 3,2162 32182 3.3051 3.2170 0.0138 

Table 5.9: Crit ical values for simple linear regression 
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dJ. - 60 

d ' 0·' cf eit ,I CII niiW! CII :apiJ II 'OI...simil"i, a.e. 
0.00 1,6706 1,6706 UTOS 1:6651 o.Q034 · 
IUO 1.7416 1.7476 1.1476 1.7516 0.0046 
0.20 1;8157 U!157 1.6157 U133 0 ~OO35 · 030 1~a763 1.8763 U763 1.8713 0.0046 
OAD 1.9306 1.9306 1:9306 1:9281 (1.0034 • 
0.50 1.97Sa U7S£ ullia 1:9856 M050 
0.60 2.0240 2.0240 2.0244 2.1)237 OJlD45 
{) ] J) 2,0633 2.0633 2:0654 .20GOS 0.0045 

90% o:ao 2.0974 2.0974 2.1030 2. {)955 0.0J)34 · 
O ,~JO 2 .12.58 2..1258 2.1377 2.1232 OJJ045 
1.0.0 2.1483 2..1483 2.169:9 2. '463 0;0049 
1.10 2:164!j. 2.1649 22000 2. 1642 0.6034 · 
1.20 2.1764 2.1764 2,22S0 2.1743 0;0044 
1.30 2,1.ll32 2.1832 22.545 2.1826 0,0033 
uil 2;1866 .2..1866, 227.95 2.1846 . 0.0045 
1.5D 2..1878 2:1876 2:3029 , 2.1863 OJ)035 • 
1:57 2;1818 2..1678 2.3186 .2:1904 0.0041 
0.00 210004 2.on02 2JIOO4 1.9950 0;0.0.66 
0.10 2;0772 2..0772 2;0772 2..0780 (1.0042 · 
0.20 2.1439 2,14J9 2:1439 .2.1384 0;0062 
0.30 2.,2027 2:2027 2.2027 2;.1996 Q,0046 · 
Ik40 2i549 2.2547 2;2549 2,2569 ' 0,0066 
0;5ll 2:3016 2..3016 2..3016 2.3008 0.0042 ~ 

0:60 2..3437 2.3437 2:3437 Bil S 0.0041 · 
ofq 2'.3817 2.3S17 2:3822 2.3841 0;0'044 · 

95% O.:ao 2,4150 2,4150 2.4177 2.4160 0;1)043 * 
0,90 2.4438 2.4436 2.4501 2.4395 0~Od56 
1;00 2.4671 2.4671 2.4804 2.4702 0.tl041 · 1.10 2A850 2..485.0 2..5084 2.4791 O.{j041 · 
120 2.4974 2,4974- 2.5348 2..5028 0;0064 
1.30 2.5050 2.5Q50 2.5593 2.5056 0.0043 · 
1.40 2.5068 2;50118 2.5826 2.507B OJi05B 
1.50 2.5100 2.5100 2.1,045 .2 '5094 0;0061 
-t,Sfl 2.5102 2;5102 U;190 2:5078 . 0~Otr42 · 
0:00 :2d~6()2 2.1;602 2..6602 2.6544- 0 . .(Jot9 · 
0.10 2.7374 2.7374 2.7374 2.7313 O.M I 9 · 
0.20 2.8.024 2.1102:4 2,8024 2.7978 0.0'136 
0.30 2.8561 2.6531 2.8581 2.8Sfl1 0.0128 
0.4'0 2.9069 2.9067 2.9069 2.fJOB6 0.0131 
o.5il 2.95DO 2.950'0 2.9500 2.9479 0.0071 · 
0.60 2.9887 2..9885 2.98SJ 2.9881 0.0082 · 0;70 3;0236 3.0236 3.0236 3.0153 0.1)080 · 

.99% 0.80 3.05.50 3.0550 3;0554 3.Q:451 0.0119 
0;9.0 3:0628 3;0828 3.,0847 3,Q799 0.0081 · 
HlO 3.1067 3.1067 3.1118 3.0903 0.0102 
1.10 3.1259 3,1259 3.1370 3.1044 00124 
1.20 3.1398 31398 3.1604 3.1382 0.010'1 
1.30 3.1488 3.1488 3 .. 1824 3.1477 MOSS o' 

1.40 3.1536 3.1536 3.2(131 3.1445 0.0102 
1.50 3.1551 3.1549 3.2226 3.1599 0.0075 · 
1.57 3.1551 3.1551 3.2355 3.1428 0;0106 

Table 5.10: Critical values for simple linear regression 
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5.5.2 For polynomial regression of various orders 

In this subsection, we compare the conservative method of Naiman (1986), 

the approximate method of Sun and Loader (1994), and the simulation-based 

method of Liu, Wynn and Hayter (2005) for an one-dimensional polynomial 

regression of (p -1 )th order. In our comparison, we set p = 3, 4, 5 respectively 

corresponding to the quadratic regression, the cubic regression, and the 4th 

order polynomial regression. 

For Naiman's method, we calculate the critical values via the following 

formula 

1 - a 1 _l l

/

c 

min{Fp _ 2,2[2((ct)-2 l)/(p - 2)] x A(t)/,lr 

+Fp_1,l[((ct)-2 -l)/(p -1)], l}fr(t)dt, (5.34) 

where fr is the density function of the random variable T such that pT2 rv 

Fv,p, the F distribution with v = n - p and p degrees of freedom, c is a critical 

value, and A(,) can be obtained from 

A(t) = lb 11i'(x)lldx, 

where " (x) denotes the derivative of ,(x) with x = (1, X, x 2
, ... ,xp

-
l

) for 

all x E [a, b]. Specifically, A(t) can be calculated in the following way. We 

have 

,'(X) (II~II)' 
(Px)'IIPxII - (1IPxII),(Px) 

IIPxl12 
(Px)' (II PxI12)1/2 [(IIPxI1 2)1/21' (Px) 

liPxl12 
(Px)'(IIPxI12)1/2 ~ (II PxI1 2 )-1/2(IIPxI1 2

), (Px) 

IIPxl12 

where Px = (Po, PI,"" pp-l)(l, x, x2
, ... , xp- l f = Po + PIX + P2 X2 + ... + 

Pp-1XP-1, Po, ... ,Pp-l are the p columns of the matrix P. Note that IIPxl12 
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is the polynomial of order 2p - 2, whose coefficients can be obtained by using 

commands conv and sum, (Px)' and (1IPxI12)' are the polynomials of order 

p - 2 and 2p 3 respectively, where their coefficients can be obtained by 

using command polyder. Then, i'(X) can be found. By using command 

quad to implement the numerical integration, we can easily compute A({). 

For the approximate method, critical values can be calculated from 

K c2 

0: = ~(1 + - )-v/2 + P{ltvl > c}, 
'iT v 

(5.35) 

where KO is the length of the path on the surface sn-l of the unit sphere. 

Note that KO = A({) from (5.32). 

For the simulation-based method, we obtain the critical values by follow­

ing the procedure in Section 5.3. 

From (5.34) and (5.35), it is clear that both Naiman's method and the 

approximate method depend on the length of the path, the degree of freedom 

and the confidence level. However, it is not clear that the simulation-based 

method depends on the same factors. So we use three general common factors 

here, i.e., the design matrix, the restricted interval for x and the preassigned 

confidence level. 

First, we come to choose the design matrix. This can be done by choosing 

some design points of different locations on preassigned design intervals. Now 

we choose three design intervals [-I, 1], [0, 2] and [-2, 0]. For each interval, 

we have four structures of 8 design points. Take the case when the interval 

considered is [-1, 1] for example, the four structures are: 

1. ,ch =[-0.2 -0.16 -0.13 -0.06 0 0.070.11 0.18], where the design points are 

distributed around the middle of the interval, 

2. S2= -0.95 -0.9 -0.89 0.92 0.95 0.98 1], where 

centrate on the two ends of the interval, 

design points con-

3. S3=[0.86 0.89 0.91 0.93 0.96 0.98 0.99 1], where the design points are 

'near the upper bound of the interval, 
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4. S4=[-1 -0.7 -0.4 -0.1 0.2 0.5 0.8 1.1], where all the design points are 

equally spaced. 

Such four structures of 8 design points are also adopted for the design in­

tervals [0, 2] and [-2, 0]. So we have another 8 sets (four structures x two 

design intervals) of 8 design points given by 

S5 [0.85 0.88 0:93 0.97 1 1.04 1.09 1.12], 

S6 [-0.05 -0.02 0 0.03 1.94 1.99 2 2.03]' 

S7 [-0.01 -0.03 0 0.02 0.05 0.06 0.09 0.1], 

S8 [0 0.3 0.6 0.9 1.2 1.5 1.8 2.1], 

S9 [-1.11 -1.08 -1.01 -1 -0.99 -0.97 -0.95 -0.92]' 

SlO [-2 -1.99 -1.96 -1.91 -0.08 -0.05 -0.01 0.02]' 

S11 [-0.1 -0.07 -0.02 0 0.03 0.09 0.15], 

S12 [-2 -1.7 -1.4 -1.1 -0.8 -0.5 -0.2 0.1]. 

Therefore, 12 design matrices can be obtained so far which are marked by 

D1, . .. ,D12. In addition, it is motivated to choose extra 12 design matrices 

of 35 design points in order to make the degree of freedom be both small 

(v < 5) and large (v > 30) in our comparison. We choose these extra 12 

design matrices also of the same four structures as described previously, still 

on the three design intervals [-I, 1], [0, 2] and [-2, 0] respectively. The 12 

sets (four structures x three design intervals) of 35 design points are: 

1. [-0.39 -0.36 -0.31 -0.29 -0.23 -0.21 -0.2 -0.18 -0.17 -0.14 -0.13 -0.11 

-0.1 -0.07 -0.06 -0.03 -0.01 0 0.02 0.03 0.05 0.09 0.11 0.13 0.14 0.18 0.2 

0.21 0.24 0.25 0.3 0.32 0.36 0.39 0.4]' 

2. S14=[-1.23 -1.21 -1.15 -1.1 -1.08 -1.02 -1 -0.99 -0.95 -0.94 -0.92 -0.89 

-0.82 -0.73 -0.72 -0.71 -0.70.71 0.73 0.76 0.79 0.81 0.84 0.85 0.88 0.92 

0.95 0.98 0.99 1.02 1.04 1.08 1.12 1.13 1.19], 

3. S15=[0.71 0.72 0.740.750.770.780.81 0.820.850.88 0.90.910.93 0.94 
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0.98 1 1.01 1.07 1.08 1.09 1.11 1.12 1.13 1.16 1.19 1.2 1.22 1.25 1.26 

1.28 1.29 1.3 1.31 1.35 1.4], 

4. S16=[-1.36 -1.28 -1.2 -1.12 -1.04 -0.96 -0.88 -0.8 -0.72 -0.64 -0.56 -0.48 

-0.4 -0.32 -0.24 -0.16 -0.08 0 0.08 0.16 0.240.32 0.4 0.48 0.56 0.64 0.72 

0.8 0.88 0.96 1.04 1.12 1.2 1.28 1.36], 

5. S17=[0.65 0.69 0.71 0.72 0.75 0.76 0.78 0.82 0.85 0.88 0.89 0.9 0.93 0.95 

0.97 0.99 1 1.02 1.04 1.07 1.08 1.13 1.15 1.19 1.2 1.21 1.23 1.25 1.26 

1.28 1.3 1.32 1.33 1.35 1.4], 

6. S18=[-0.13 -0.12 -0.1 -0.09 -0.07 -0.05 -0.03 -0.01 0 0.03 0.05 0.09 0.12 

0.160.170.180.230.280.31 0.35 1.72 1.76 1.81 1.83 1.85 1.941.95 1.97 

1.99 2 2.02 2.05 2.07 2.14 2.16], 

7. S19=[1.68 1.711.73 1.76 1.771.79 1.8 1.82 1.85 1.871.88 1.91 1.92 1.94 

1.95 1.99 2 2.01 2.03 2.07 2.12 2.13 2.15 2.18 2.19 2.24 2.26 2.29 2.31 

2.33 2.34 2.37 2.39 2.4 2.42], 

8. S2o=[-0.36 -0.28 -0.2 -0.12 -0.04 0.04 0.12 0.2 0.28 0.36 0.44 0.52 0.6 

0.680.760.840.92 1 1.08 1.16 1.24 1.32 1.4 1.48 1.56 1.64 1.72 1.8 1.88 

1.96 2.04 2.12 2.2 2.28 2.36]' 

9. S21 =[-1.7 -1.62 -1.5 -1.43 -1.41 -1.38 -1.37 -1.35 -1.31 -1.28 -1.22 -1.2 

-1.18 -1.15 -1.13 -1.11 -1.09 -1.07 -1.05 -1.04 -1.02 -1.01 -0.98 -0.96 -0.95 

-0.92 -0.85 -0.81 -0.78 -0.72 -0.71 -0.69 -0.68 -0.65 -0.61]' 

10. S22=[-2.36 -2.31 -2.28 -2.27 -2.25 -2.2 -2.12 -2.09 -2.06 -2.01 -2 -1.99 -

1.97 -1.93 -1.91 -1.86 -1.81 -0.53 -0.44 -0.42 -0.41 -0.38 -0.35 -0.33 -0.31 

-0.27 -0.26 -0.24 -0.2 -0.15 -0.12 -0.11 -0.08 -0.05 0], 

11. S23=[-2.36 -2.31 -2.29 -2.28 -2.26 -2.25 -2.2 -2.18 -2.12 -2.09 -2.06 -2.01 

-2 -1.99 -1.97 -1.93 -1.91 -1.86 -1.85 -1.81 -1.77 -1.75 -1.73 -1.72 -1.68 

-1.66 -1.64 -1.61 -1.56 -1.53 -1.52 -1.49 -1.48 -1.45 -1.41], 
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12. S24=[-2.2 -2.13 -2.06 -1.99 -1.92 -1.85 -1.78 -1.71 -1.64 -1.57 -1.5 -1.43 

-1.36 -1.29 -1.22 -1.15 -1.08 -1.01 -0.94 -0.87 -0.8 -0.73 -0.66 -0.59 -0.52 

-0.45 -0.38 -0.31 -0.24 -0.17 -0.1 -0.03 0.04 0.11 0.18]. 

\iVe denote the 12 design matrices obtained from Sl3, ... ,S24 by DI3, . .. ,D24. 

Consequently, we have totally 24 design matrices D1, ... ,D24 for our com­

parison. 

Next, we choose the restricted intervals of x on which confidence bands 

are constructed. For each design interval, we choose two restricted inter­

vals. One is the same as the design interval, the other is of smaller length. 

Specifically, these six restricted intervals are: [-I, 1], [-0.7, 0.7]' [0, 2], [0.6, 

1.4], [-2,0] and [-1.5, -0.5]. Note that since both the design matrices and the 

restricted intervals are chosen according to the design intervals, in our com­

parison, the first two restricted intervals are used together with D1, ... ,D4 

and D13, ... ,D16, the middle two with D5, ... , D8 and D17, ... , D20, and 

the last two with D9, ... , D12 and D21, ... , D24. 

Finally, 90% and 95% confidence levels are employed. The choice of such 

designs is to obtain as many combinations of the three factors as possible 

such that our comparison gives a general view. 

We calculate the critical values of the confidence bands based on the three 

methods for polynomial regression of up to the 4th order, and record them 

in Tables 5.11-5.16. The columns titled "'0 contain the values of the length 

of the path. 

From the results, we may draw some conclusions. \iVhen the degree of 

freedom is small (v < 5), Naiman's method and the approximate method of 

Sun and Loader (1994) have almost the same critical values for "'0 < 0.6; 

when "'0 > 0.6, the critical values of Naiman's method are generally smaller 

than those of the approximate method and the difference betvveen the critical 
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values of these two methods follows that: 

0.6 < "'0 < 1.5 the difference is at the third decimal place, 

1. 5 < "'0 < 3 the difference is at the second decimal place, 

3 < "'0 < 4 the difference is around 0.15, 

4<"'0<5 

5<"'0<6 

6 < "'0 < 7 

the difference is around 0.25, 

the difference is around 0.3, 

the difference is around 0.5, 

7 < "'0 < 8.5 the difference is around 0.7, 

8.5 < "'0 < 10 the difference is around 0.9. 

The critical values of the simulation-based method are even smaller than 

those of Naiman's method, with the difference generally at the second dec­

imal place. \Vhen v > 30, the distinctions among the critical values of the 

three methods are not evident relative to the case when v < 5, generally 

at the second decimal place. Also, the simulation-based method obtains the 

smallest critical values. 

Consider that for a large number of simulations, the simulation-based 

method seems to be able to compute as accurate critical values as the exact 

method. Therefore, we may conclude that Naiman's method is good enough 

because it is basically a conservative method but its critical values are not 

much conservative actually, the approximate method is not good as its critical 

values are even larger than those of the conservative method. However, in 

particular, three methods give almost the same critical values when "'0 < 1. 
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RI iDM, I«l ' Pl cY .riai :1 ,$imu~I ' ,llle':' '" 
01 5.3026 90% 3.139& 3:4360 3.0844' 0,010& 

95% 3.6404 4.1381 3.7748 (L0111 
D2 4.5157 90% 3.0947 3.3124 3:0631 0.0152 

(-1, 1) 95% 3.7672 4.0018 3763,9 0;1)221 
03 ,t5376 90% 3.09&1 3:3160 3;0728 0:0114 

95% 3;1B90 4;!)fi57 3.73a5 0;020$ 
D4 3:5219 90% 3.0091 3.1334 3.0200 £1;0119: 

95% 3,6863 3;8048 3.721)9 0:0116 
D1 5.205& 90% 3:1348 3.4215 3:1°91 OA1141 

95% 3.8348 4.1220 3,7943 0;1:1185 
D2 0,3200 90% 2.1823 2.1824 2.1754 OAl119 

t·O.7. lL7} 95% 2.7583 2.7584 2]59() Od1173 
03 0.1544 90% 2.0990 2,0969 2.1068 {EOOSS 

95% 2;6551 2,6651 2.6128 0.0192 
D4 Z2914 90.% 2.6244 2;8606 2..S286 !l.tl116 

95% 304,134 3;5053 3;5166 OJiZOQ 
D5 5.3104 90% 3;1400 3.4372 3.1004 0.01'15 

95% 3X6408 4.1394 3.7724 Ik01€!5 
06 3104(J9 90% 2:9499 3;(1349 2.9222 (J,0128 

(O. 2j !- ' .:Ui176 3.1)966 3:6108 l)(01l1S 
D7 325613 1.0.132 3.1411 2,9373 Ollt15 

3.Sfl1.2 3.8133 3:6221 0;0168 
DB 3;5219 90% 3.0091 3.1334 3.0330 ~Ig~T5 95% 3;6863 3,8041) :U3113 M 
05 5,0487 ·SOo/.. '3.1267 3.3977 3;0g5S·· 0;0134 

95% 3,1)251 401)957 3 .. 7756 ();0191 
OS 0;0637 90% 2.ll504 2JI~04 2.0562 M113 

(OJ), 1.4) 95% 2J>105 2.S1116 Z5969 0;0167 
07 0,0373 90% 2,Q359 2JJ35.9 2,0523 O,!i1'f4 

95% 2.5943 2Ji!l42 2.SfliO 0.0144 
D8 {);9811 90% 2AGOS 2:4619 2:5051 tL0113 

95% 3;0668 3.0611 3.1145 0.0143 
D9 5;32711 90% 3. 140ll 3:4398 s,oam ·· 0.0123 

95% 3.8418 4.1422 3]876' . 0;0162 
D10 4.1462 flO% 3.0676 3;2492 3.0676 0:0135 

{·2. Q} 95% 3.7549 3.ga21 33248 o.o1iH 
011 2Ji200 90% 3.0811 3.1579 3.0077 0.0145 

95% 3.8793 3,9553 3.7830 !l;0245 
012 3.5219 90% 30091 3.1334 3.0230 0;0142 

95% 3:6663 3.8043 3.6984 0.0225 
D9 5.2064 90% 3;1350 3.4219- 3:0795 0.0128 

95% 3.6350 4.1225 3.7704 0.0133 
010 0:1205 90% 2.0611 2.0811 2.0536 ito 1 05 

(-1.5 • ..j}.5) 95% 2.6451 2.6451 2.6566 0.1)197 
011 0.(}S62 90% 2.1914 2.1914 2.1994 0.0123 

95% 2Jl460 2.2>460 2.8239 0.0164 
D12 1.3623 90% Z5893 25944 2.6163 0.0125 

95% 32094 3;2134 3.2979 0.0181 

Table 5.11: Critical values for quadratic regression 
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d.f. a 4 

III OM ldl. d t.V'driaiT c"' ~8nb Lev !jiinu~ l , s~e. 

D1 7.4228 90% 3;6452 4.1269 3.5498 0.0158 
95% .4.5509 5.0G93 4;41159 0.0349 

02 6;0073 .90% 3}3609 3;9054 :l48aO 0,0157 
{~1. 1} 95% 4.4482 4:8138 4.3232 0.0271 

D3 6;5732 .90% 3,5982 3.99'18 3.1112 OJl153 
95% 4.4936 4.9202 3.9330 tL02S9 

D4 4;9451 90% 3.4728 3.7157 3.4598 0,0173 
95.% 4:3415 4;6952 4.3415 .. O;{lZ44 

D1 7,3252 90% 3.6403 4.1128 3;5432 0.tli56 · 
95% 4.5450 5:0529 4.4449 lH}Z63 

02 1:2913 90% 2.7604 2.7557 2,7376 0.0137 
(.0.7. 0.?} 95% 3.4909 3.4955 3.4896 0,.0206 

D3 0.1528 ,90% 2.2233 2~234 2.2277 M118 
95% 2.8833 2.8832 2.81'75 O.DiGS 

04 2.763£ 90% 3.1£14 3.2249 3,Og35 O.D150 
95% 3.9697 4.m22 iL9233 0.0.228 

05 7:6387 90% 3013555 4..1560 3:345.1 0;0151 
95% 4.5636 5;10.52 4.1663 . ll:0304 

06 4.15ll0 90% 3.3852 3.5555 3:2111 (t()155 
(ll. 2) .95% 4.2361 4.4111 4.0381 0.0204 

1)7 4;9113 $0% 3A693 3:1:090 322998 O,()154 
950/. 4.3375 4;5'875 4.1284 (1:0234-

OS 4)9461 $0% 3,4726 3.7157 3.3164 0;0132 
.95% 4.3415 4.5952 4.1123 0.0251 

OS 7:4255 '.90% 3;(i452 4.1273 323499 0;0144 
95% 4;;5511 5.0.697 4:2.144 0;Q253 

D6 0:ra92 90% 2,5377 2.5385 2;5121 0,0152 
(0.6, 1.4) S5% 3:2461 3:2467 3.2211 OJl209 

07 0;0367 90% 2.1545 2.1545 2.1529 0:0117 
95% 2.8028 2:8028 2;1l375 0.0234 

D8 1£600 90% 2.6765 2.88:98 2]966 O:U113 
95% 3:6367 3.6488 3.54137 11:'0219 

09 7.7237 90% 3.6597 4,1702 312333. IL0139 
95% 4.5686 5.1192 4,0554 0 .O2~5 

010 5:6165 90% 3.5315 3Jm4 3.3497 0;0153 
(~2, 0) 95% 4.4125 43'363 4.1687 0;0259 

011 3.4267 90% n321 3.9436 3.5419 0;0176 
95% 4.8915 5.1318 4Jl957 0.0460 

012 4.9461 00% 3.4728 H1S7 3.4284 0,0145 
95% 4.3415 4.5952 4:2536 0.0243 

09 7.6347 90% 3.6553 4.1575 3:2417 0,0157 
95% 4.5634 5.104S 4.0763 0.0254 

D.10 0.9690 90% 2.6242 2,6259 2.6024 O.fr119 
(-U, -'0.5) 95% 3.3455 3.3470 3.3339 0.0;;103 

D11 {LOIBS 90% 2A100 2.4101 2.4075 0.0144 
95% 3.2526 3.2526 3.2787 0.0247 

012 HJ718 90% 2:!}700 2 .. 9933 2.8602 0,0.137 
95% 3.7452 3.7671 3.6658 0.0232 

Table 5.12: Critical values for cubic regression 
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dJ. - 3 

111 ;1:"- DM_ kO' el C\<_,ri~r ~I .iii (pi>, l!cv.;slinuAI $,(lf-
01 9 '5821 9i)% 4_400~ 5.3870 ·· 4:2.972 0;0232 

95% 53 397 6.9125 5.652,1 O:031S··· 
02 BA8H 90% 4:3208 5.1235 4.2911 tL020S 

{-1. 1} 95% 5,6310 6:51162- 5;SDZO OdJ368 
03 8;5104 90% 4.3411 5.1869 3:044~ 6.0157 

95% 5:6632- 6.6646 4.0336 0:0338 
D4 6:2884 9.0% 4 .1715 4.7173 ' 4.1753 0;(1235 

95% . 5:4458 6;0843 5.3716 . O.1J456. 
D1 lM93.5 90% 4.3962 5.:mO 4~2S2.3 O:~f1! 

95% 5.1340 61892& 5.:;911 (J.(J.489 
02 (t2424 90% 2:5223 2;5223 2;5073 OJ1157 

('0.7. 0.7) 95% 3:3911 3.3911 3.3663 lL0205 
D3 0.124:1> 90% 2A421 2,4421 2:46'72 0;0161 

$5% 3:292-3 32923 3.:2890 0.0250 
D4 3.7S02 9Q% 3.6355 4;l)542 3:7:480 0:0193 

95% 5.01!l1 5;2678 4.921B 0.0311 
DB 9:0723 90% 4.4053 5:4033 3:1914 0.0190· . 

95% 5.1455 6:9326 4:1268 0:0342-
06 5:2263 90%· . 4;0558 4.4585 3.8asa il: 01~§ . 

to. 2) 95% 52984, 5.7651 5.1019 O;U3$Z 
D7 6.4701 90% 4.1S85 4.7591 ,tO$2 0.0205 

95W. 5:4676 6.1356 5~29B2 0;0472 
DB 6.2884 1I0% 4,1715 4.71~ 4<1380 (L0268 

95% 5:4458 6;0843· 5.4158 OJ1488 
D5 9.4448 90% 4 ,393(1 5,3621 3.1369 O.O181l 

115% 5.7306 6.SB16 4 ;057-7 0;031.0 
06 0;0600 90% 2;3967 2;3967 2.3913 Oi0147 

(0.1), 1.4) 95% 3.2362 32360 3.2062 0.1)249 
07 0;0281 90% 2.3731 2.3138 2.3895 Olli5! 

95% 3.2078 3;2.077 3.2094 0.024<7 
D8 2:1419 90% 3:4282 3:4852 3.4198 n,t1195 , 

.95% 4.5077 4:5702 ,1;5244 6.lm23 
D9 !l 672,' 90~ 4A053 M 033 2.806.6 0.0:162 

95% 5.7455 6~9326 3.7635 0,0237 
010 7.5293 90% 4;2754 4.,9897 4.1B19 0.02.12 

(.2, 0) .9:5% 5.5789 S.420G 6.4942 0.0320 
()1i 4;5032 90% 5.2095 lL0663 4.1iB47 0;03S2 

95% 7~~1e7 7;9999 7.1059 O.064J 
012. 62864 90% 4.1715 4.7173 4.1431 0.02113 

95% 5.4456 60843 5,4060 0.04·19 
00 9,5552 90% 4:3994 5.3822 1.8201 0.0181 

95% 5]380 6.9065 3.74133 O.1l2:76 
D10 0,0920 90% 2:.4193 2.4194 2.4388 O.1l142 

(-1.5, -0.5) 95% 3.2542 3.2641 3.2449 0.0208 
011 0:0757 90% 2.B974 2.9973 3.0243 0.0215 

95% -1.4105 4,4105 4.3834 0.0411 
D12 2.7749 90% 3.6135 3.7234 3 .57~ 0.01.7£ 

95% 4.7392 4.8619 4.6602 0.0326 

Table 5.13: Critical values for 4th order polynomial regression 
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d.f. = 32 

013 90% 2A582 2.5159 2,4371 0,0074 
95%2.zaa3 2;6277 2~772S OJI085 

014 1,0013 .90% 2;,0.125 2.01.25 200029 0,0016 
{,M, O.7),f-=:--1h=,,--t----::9~5'*:;::.. -l 2:35nS 2;3501> 2,3554 0,0088 

015 0.6914 90% 1;5315 1J1316 1.927S 0.006$ 
95% 2;2725 22725 22476 0.00713 

016 sO,% 2.172ll 2,1723 2.2024 (LOQ73 
95% .2.5028 2,50:30 .(L008S 

D17 5.0496 S6%2:.4747 2.5457 2.. MlOnS 
f-==--+-:::=:':::-'j-...-.;:S5~%;:;...· ~I,2,B'057 2J3556 2.7696 0.0094 

DiB 3.:29!l5 90% If,'~~~ · 2,3835 2.3757 O:lJ063 
95% 2.6931 2:7026 2.6776 0;0077 

I--=-01..,.,9,....-+--2..-:'4""90=-=2-+-'9'="O""%:..-.,j· I ;~: ;t2835 2;2359 (hOOn 
95% 26082 2.5124 0:0066 

f-::::02:::P;-' -f--;;2-;;:9:;;:;S2~8-f---;';:902-.%;:---J ' .. . ... .. , £3449 2..3519 O,.006S 

950/" 2;6601 2;6662 2.6946 0, ~',;.',P,1"O, 2, ," G'rT 4.1075 90% 2..4'2:73 2.4660 2.4333 0; 
f-=--I~==-+-,::9?5%:;::.' -l 2;1551 2.1606 2.746:1 O. . 

otB 0;2998 90% 1,60B8 1;8067 HlO73 0,0073 

to. 2} 

(fiJi, 1.4) f-=:--+-:::=;::-j-...-.9;: .. 5;;;:%;:---J 2.1521. 2.1522 2.1339 0.0097 
D'tS ,O.i91E 90o~1.1119 '1 .7720 1.7763 0;0065 

96% 201156 2,1156 2..1129 0.0086' 
f-'=-Q2::-'O'--+-:::O'-::7""B4="=8-+-,9:::(l2-%~ 1Jl573 1 ~9573 1;!lS1£ lb007~ 

95%2.2511:3 2.2974 2.3296 {tO06S 
021 4.6422 90% 2.4564 ~5130 2A4?6 0:0064 

f-==--1-;:-=:7""t-9;:5;;;:%;:---J 2.7BG5 2:13249 2.7131 0;0074 
.022 3.156.0 90% 23531 23678 203.298 (hOOS7 

(-2, O} 95% 2..6802 2.5678 2.6763 0;0082 
023 2.9052 90% 2.32B3 2:3379 2.2900 0.0077 

95% 2.6548 2.6595 2.6115 0;0080 
024 3.4094 90% 2.3765 2.3962 2,397a 0:0071 

95.% 2J034 2.1146 2,7133 0.0079 
021 3.55,53 90% 2.3884 2.4117 2,3952 fL006S 

f-=::-+-:::-=::::-+-.;:95:'=%7-· ~ 2.7157 2.7292 2.723S G.ooao 
D22: 0.6325 90% 1,9147 U1141 1:9245 OJ1070 

{-H, .O.5Jf-=::-t-;;=:;;:--+-~95=%;:---J 2.25Gi 2.2562 2.2638 0.0080 
D23 0;6735 90% UJ605 1.,9806 1.9765 0.0010 

f-=c~t-;~::=-j-...-.-=;95=%;:---J 2.3199 2.3199 2.3127 o,Qoas 
024 12993 90% 2.0799 2.0799 2.1136 0;0069 

95% 2A152 2.4151 2.4545 0.0083 

Table 5.14: Critical values for quadratic regression 

109 



d.L =31 

Rl PM tro cl 61, n1n T::~aflii I.c'ir .slmulL s.e. 
Em 7:0573 90% 2:~ 2;682-4 .2:5529 °iOO1i7 

95% 2:9412 .2:SS71 2;$868 O .OO8~ 
014 3.9£02 90% 2.4463 24559 2.4316 0,0068 

t"1.1} 95% Hl2t 2.7421 K0093 
D15 3.3519 90% 2:3933 2.2818 0:006a. 

95% 2~1117 2]135 2Ji065 (LOost 
016 3;6551 90% 241$9 2:4256 2.4021 0;0058 

95% 2..1411 2.7440 2.7063 0:007£ 
013 13.,7986 90% 2,6123 2;61i75 2Ji4S1 00064-

95e<> 2.9369 .2:S129 2,8635 0.0085 
014 1 i5~189 90% 2.1424 2.1424 2.1347 0.1'101)5 

(~;7 . om 95% 2.4159 2.476,0 2:-4677 !to084 
015 018327 90% 1;9722 1.9721 1:9681 {L007S 

95% 2,3130 2.3130 .2.2959 d~O.083 
016 22531 911% ' 2.2519 2,2522 22280 0.0074 

95% 2.5600 2.5801 2;5531 B-D17 U539 90% 2J3262 216864 2.498$ 
95% 2~951' 2.9927 2.8375 

018 4.2371 90% 24691 2.481& 2.3912 0;00$5 
(Il, 2) 95% 2.790.7 2.7971 2'1251 0.0095 

019 3,3726 I- .2.3912 2:3955 2:2$:1-1 OOtl7S 
2,7157 2J3332 1l.a106 

020 3:6551 2A256. 2:332n n.nOS5 
95% 2:7411 2.7440 2;6387 0.008S 

D47 11lO()4iI '90% 2.5.760 2;(181) 2.,4901 0,0063 
95% 2;9009 2,9260 2.:13361 0;0090 

[J18 omOO$ 90% 1~9899 '\.98911 1.9874 O;()OS8 
(0.6, 1.4} 95% 2.:3.301 2.3300 2.31114 0.OQ91} 

[Ji9 0.2084 .90% 1..7175 1.7171 1.7852 0;0068 
95% 2i1224 2.1223 2,.1200 001)093 

020 1.4320 90% 2,1099 2.1Q!l8 2;0644 o,no64; 
95% 2.4449 2.4450 2.3894 1l.0082. 

021 6;8471 90% Z.1.)143 2.6104 2.3760 (LO.075 
95% ,2>9388 V~156 aOS8 0.0085 

D22 4:0813 90% 24564 2.4673 2.3510 0.0062 
(·2, 0) 95% 2.7762 2.1835 2,6671 0.0069 

D23 4.3276 90% 2A761 2A8e9 2,,316.5 0.0073 
95% 2.1916 !Uf041 2.6534 0.0071 

024 .1:6027 90% 2A963 2.5136 2.4314 0.0068 
95% 2.8178 2.8212 2..7686 0.0089 

021 4.8340 90% 2.512tl 2.5327 2.3435 0.0063 
95% 2.6337 2Jl452 2;.6626 0.0092 

D22 1.1504 90% 2.0498 2,0497 2.0327 0.0013 
(-1.5, -0.5) 95% 2.3876 2.3B15 2.3488 OJlO~ 

D23 1.4132 90% 2.1061 2 .. 1061 20828 on071 
95% 2.4413 2.4414 2 .. 4096 0.0091 

024 1.8895 90% 2.1942 2.1943 2,1269 0.0062 
95% 2.5252 2,5252 2.4756 O.OOSID 

Table 5.15: Critical values for cubic regression 
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dJ. = 30 

RI · !OM kO' ";'(il cv"hai I' CY .app, :I.CJI · slmiJ "- J),e . . . 

013 9::2646 90% 2..7391" 2~7:977 U961. 0.0061 
'950/0 3 ~OW4 3;D98'~ 3.0410 . 0;0091 

014 5~D910 90% 2,5463 2.5.573 2..5154 0.0064 
(-1 , 1} 9.5% 2,8650 2.8703 2..8492 OJ)094 

01.5 4.3951 90% 2..4939 2.~ga 2.440& 0.0067 
9.5% 2.8135 2.B160 2.7965. 0;0061 . 

016 4.4047 90% 2A.947 2,5006 2"~8e3 MIOGO 
95~f, .2,6141 2.8168 2,8(112 Oe0077 

013 9;0265 90% 2.7317 2.7870 V06t) 0:0071 
95% 3.0527 3.0885 3:0113 . 0,OO?6 

014 U '200 90% 2.149·1 2.1491 2.141'l MOSS 
(·0.7, 0.7) 95% 2..4SJa 2.4839 2..4955 ~l:OO .94 

D15 0;9211 90% US.72 1';9972 1;995B ~.iOQS6 
95% 2:3366 2.3385 23342 tUiOa9 

016 '3;1220 .90% 23697- 2;3i07 2;355£ O.1J.OG9 
95% 2.6937 2J,939 iiOo3 O~O88 

D17 9~1250 90% 2.1349 2.7915 2:.7116 0:1)064 
95% 3:0561 3;()927 3.0191 0;0097 

018 K4371 90% 2;::;693 2.5tl32 2.5350 0.0068 
{ll. 2} 95% .2:SB.79 2;8949 2.1.'1714 RobBS 

019 4.4390 90% .2.4975 2.5036 2.2366 lM065 
95% 2..81G6 2oS197 2..5548 0.0100 

020 4.4047 90% 2.<w47 2;5006· 2..4807 0,0066 
95% 2.81'{1 2.816.6 2.13113 ·0.0091 

D17 7.7445 90.% 1 ,6359 2.72:5'0 2,6734 Oi()Q1l1 
95% 3.0055 3.0294 2.9965 O;OQ~2 

018 OA016 90% 1i8472 1.,Ei<\;73 1.6443 0:0077 
{(to. 1.4) 95% 1.1924 2.1924 2..1BBZ O.uoir 

0·19 0.2045 90% 1.7782 HiB2 ti84:3 0::0071 
95% 2..1240 2.1·239 2.1236 O.OD!14 

D20 1,6359 90% 2;152J 2;1'521 2.11l26 ·0.0068 
95% 2.4668 2.4BS7 2,5119 (LOOTa 

D21 9.1)565 90% 2]321 2;7885 2.6984 0;0067 
95% :H)539 3Ji8.9/l 3;0313 0,0085 

D22 5cll540 90% 2.,5947 ; .6125 2.5742 0:0068 
\,2. 0) 95% 2.;91:32 2,9227 2.SB29 O.DOBi 

023 5.3951 90% 2.56.61 M801 2A705 0,0063 
95% 2.8651 2..8920 23948 0;009& 

024 5,5182 SU% 2.5744 2.Sgg0 2.5tts (h0073 
85% 2.8930 . 2.9004 2.8764 a.ODS3 

021 6.3495 90% 2.6220 2.6450 2.5889 O.U06!:! 
95% 2.940a 2.9534 2.9319 0,0092 

D22 0.9055 90.% 1.9934 1.9933 1:9995 0.0073 
H .ii, ·0.5) 95% 2.3346 2,33'47 2.3361 0.0095 

023 2.0225 90% 2.21S4 2.2193 2.2092 0.0066 
95% 2..5506 2~550,5 2 .. 5419 0.0087 

024 2.5298 90% 2.2951 22952 2.3250 0,0063 
95% 2 .. 6224 2:6225 2.6458 0.0090 

Table 5.16: Critical values for 4th order polynomial regression 
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5.5.3 For bivariate linear regression 

Also, it is of interest to compare the methods of constructing confidence 

bands for a multiple linear regression. Here, we consider the bivariate lin­

ear regression model, which is the simplest one in multiple case, with the 

predictor variables restricted in a rectangular region X C R2. The meth­

ods concerned in this comparison are the approximate method of Sun and 

Loader (1994) and the simulation-based method of Liu, Jamshidian, Zhang 

and Donnelly (2005). 

For the approximate method, we calculate critical values using the for­

mula given in Proposition 5.2.2 that 

a = ~ f((1/ + 1)/2) ~(1-+- c
2 

)-(v+1)/2 
113/ 2 f(1/ /2) Vv '1/ 

( c2 

+~(1 + - )-v/2 + P{ltvl > c}. 
211 1/ 

(5.36) 

Constants /'\,0 and (0 can be computed by 

/'\,0 = l detl/2(ATA)dx, (5.37) 

(0 = r detl/2(A~ A*), (5.38) Jax 
where A = (T1(X), T2(x)), and A* T1(X) or T 2 (x) with Tj(x) defined 

by Tj(x) = 8T(x)/8xj for j = 1,2. Note that T(x) = l(x)/lll(x)ll, where 

l(x) = X(XT .A)-lX, and x = (1, Xl, x2f. Thus, we have 

where 

nx) 

III(x)112 

(1II(x)112)' 

11(x)lll(x)ll-l(x)III(x)II' 

III(x) 112 

l' (x) (1II(x) 112) 1/2 - I(x) [( III(x) 112)1/2]' 

III(x) 112 

l' (x) (1II(x) 112)1/2 - (1/2)I(x) (1II(x) 112) -1/2 (1II(x) 112)' 
III(x)11 2 ' (5.39) 

8l(X)/8X 1 = X(XT X)-l(O, 1, O)T, 

IT(x)I(x) = xT(XT X)-l X , 

2 .IT(x)I'(x) = 2 ·IT(x) . X(XT X)-1(0, I, of. 
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Sim.ilady, we can obtain T 2 (x) by replacing (0,1, of by (0,0, I? and TI(x) 

by T 2 (x) in (5.39). Then both A and A* are ready. Numerical integrations 

may be used to compute constants ""0 and (0' 

For the simulation-based method, as described in Section 5.4, the main 

task is to solve the optimization problem to find T. In practice, we compute 

critical values using SimReg software from Jamshidin, Liu, Zhang and 

Jamshidian (2004) on MATLAB 7 platform. 

Now, we turn to choose the levels of the common factors for our com­

parison. Apparently, both methods depend on the design matrix, restricted 

intervals of the two predictor variables Xl and X2, and the confidence level. 

Furthermore, recall (5.28) that 

where 

T=Q~ 
(0-10-)' 

Q = sup 1,(Px?NI. 
Xl E(al ,bl),X2E(a2,b2) II PxIIIINII 

Since Nand (0-10-) are generated numbers, the simulation-based method, in 

fact, depends on the 3-dimensional vector Px together with the two restricted 

intervals (aI, bl ) and (a2' b2). Let P = (Po, PI, P2) and define the set 

£ {Px: x EX} 

Then, we have 

(5.40) 

where vTN IllvllllNl1 is simply the cosine of the angle between v and N. This 

determines that, in order to obtain Q, it is sufficient to find the smallest angle 

between either N and v or -N and v, as v ranges in £. Note that £ is the 
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Figure 5.2: The cone determined by three angles 

cone spanned by the following four vectors 

v(a1' a2) 

v(b1, a2) 

V(a1' b2) 

v(bl, b2) 

and it is depicted in Figure 5.2. 

Po + a1P1 aZPZ, 

Po + b1P1 + a2P21 

Po + a1P1 + b2P2, 

Po + b1P1 + b2P2, 

Define three angles that 0 is the angle between v(a1' a2) and v(b1, a2), 

;'3 is the angle between v(b1, a2) and v(br, b2), e is the angle between the 

two planes 51 and 52, where 51 is spanned by v(a1' a2) and v(b11 a2), 52 is 

spanned by v(br, a2) and v(b1, b2). Then the cone;': is determined by these 

three angles. Therefore, we may conclude that the simulation-based method 

essentially depends on the three angles 0, e, the degree of freedom, and the 

confidence level. This is the nature of the simulation-based method. Also, 

the approximate method depends on the three angles via the design matrix 

and the two restricted intervals of the predictor variables. In this comparison, 

we fix a design matrix and then appropriately choose the restricted intervals 

such that their combinations determine manifold levels of the three angles. 

First, we come to choose the design matrix. The acetylene data of Snee 
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(1977) is adopted here, since it was used to construct confidence bands in 

many papers. Another reason to select this dataset is that the critical value 

computed by my MATLAB programme of the approximate method is the 

same as the one given in Sun and Loader (1994) for this data when the 

confidence level is 95% and X = [1100,1300] x [5.3,23]. So we can reasonably 

think that my programme is reliable. 

Next, we turn to choose the restricted intervals of the two predictor vari­

ables. First consider the three angles C\;, {3 and e. We are willing to obtain 

various structures of the cone determined by these three angles. Set three 

levels for each angle from small to large within its range [0, Til. So vve have 

3 x 3 x 3 = 27 structures for the cone. However, realize that for a fixed 

e when C\; and {3 switch their values, the cone newly obtained has a similar 

structure with the original cone. Also, note that for fixed C\; and {3, the cone 

with large e is similarly structured with the one having small e. Thus, for 

the sake of similarity, the cone finally has 12 structures of interest. They 

are SSM, SMM, SLM, MMM, MLM, LLM, SSL, SML, SLL, MML, 

M LL, LLL, where characters S, M, L stand for small value (around Ti /12), 

medium value (around Ti/2) and large value (around 8Ti/9) respectively for 

the three angles, and the 3-character string denotes the level of each angle 

in order, e.g., SLM describes the situation that C\; is small, {3 is large, and e 
is medium. Now, it is ready to choose the restricted intervals for predictor 

variables. We use the design matrix and any two initial guesses of restricted 

intervals to calculate C\;, 6 and e, then adjust the restricted intervals to ensure 

the three angles each is near the level of our interest. One may follow the 

procedure below to find the restricted intervals: 

Step 1 Adjust b1 and a2 to ensure e is ok. 

Step 2 Fix b1 and a2, adjust al to ensure C\; is ok. 

Step 3 Fix b1 and a2, adjust b2 to ensure {3 is ok. 

In such a way, we obtain 12 pairs of the restricted intervals for the predictor 

variables Xl and X2 according to 12 structures of the cone. 
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Restricted rhrft~lfngl~ . 7 . ill' (iorifideriiie' . Cnnciif:values 
intetliall; dll5hl! •. betatheta level t!V 811P cv simu. s ,e. 
(10, 950) 0:2183 o.ms 1.6041 30% : 2,1691 22749; 0;0061 
J1:3. 15) S S M 95~f, 2.1441 2,8654- 0~O1 22 

(1070, 1250} 0.;'3071 1;5149 1:5630 90% 3.200S :uoaB, a.D098 
(10. 50) S M M 95% 3;8945 3.7947 0.0126 

(920, 1fi20) OA079 UOO6 1.6081. 90% 3.3834 3,1657 (lel)O,B!) 
(12. 130) S L M 95% 4:0981 3.9022 0.0152 

(100, 1220} 1.6414 H1S4 HiS8G 90% ~ .O510 2.9914 . 0;0082 
{D. 12} M M WI ~5% 3.7272: l oll:!9 0.0147 

(650; 1600) tG860 2;B126 1.6059 90% :3.3808 3.1713 0.008S 
(12.40l M .L M 95% iL0947 3.aS97 0:0158 

(10. 160G) 2.884a 2;8546 1-6G59 90% 3;1580 2.9299 0:0090 
/12. 15t L L M 95% 3.8405 3.Bin! OJ1149 

(1450. '1650) n2 41B 0.1853 '2;8146 90% 2.3135 234111 0.007:7 
1~1D.5} S S l. 95% 2.9053: 2.94B7 O;ci123 

(950. laOO} .0.2485 Ui552 2.8438 90% 3:6521 3.2924 0;11,104 
{,10. Z50} S It!. L 95% 4.4000. 4.0.240 OJJjsl 

{SOD. 1750) 0"2617 2.7231 2;9895 90% 3.2545 .3.0e41 OJ~a94 
(eQOQ , 1Q) S L L 95% 3,.9523 3.7344 0;0134 

i{950. 11300) 1,6552 U400 2Jl431l 90% 3'.6~1 3.2920 {).0.105 
Hll.. 401 M: M L 95% 4.3198 4.02:29 :: OJ'137 

(1l00, 20aO) 1,63.51 2.8342 2.S377 90% 3;2,63,0 3.0733 o.OlliS ' 
( ... 22. l0i M L L 95% .3;9613 3.7748 '0;0131 

(400, '22(0) 2.7204 2.8541 2.7026 90% 3:0603 2.8362 (L0084 
(O. Sl . L L L 95% .. ,3.7288 3.5096 I};0163 

Table 5,17: Critical values for bivariate linear regression 

We still use 90% and 95% confidence levels. Moreover, we manually set 

the degree of freedom equal to 5 and 30 to have a general view. Critical 

values are computed based on the designs described above. All the results 

are contained in Tables 5.17 and 5.18. Note that the critical values of the 

simulation-based method are based on 100,000 simulations. 

From the result , we can draw some conclusions. The simulation-based 

method obtains smaller critical values than the approximate method gener­

ally, except for the cases when a and f3 are both small. When v = 5, the 

difference between the critical values of the two methods is generally around 

0.2; the critical values of the approximate method are at most 11% larger 

than those of the simulation-based method. When v = 30, the difference 

between the critical values of the two methods is not apparent, generally at 

the second decimal place. 

116 



dJ." 30 

ER~aell ) Thiee angles <lonfiatlOce 
al hI!: beta tnetll J evet 
02163 0.2315 1.6041 90% 

S S M 95% 
0.3Q11 1:5149 U£30 90% 

S M J;f 95% 
0.4079 2]006 1,l)OIl1 90% 

S L M 95% 
1,6414 1.6164 1.568£ 90% 

lid M hf 95% 
U8eO 2J112& U059 90% 

Nt L M 95% 
2,8843 2.8546 1.0069 90% 

L I- M 95% 
02418 0;1853 2J~146 90% 

s., s L 95% 
02485 Hi552 2;8438 90% 

S M L 95% 
0.2&71 2]231 2.96gS 90% 

s L L 95% 
1.6552 1A,40D 2,6438 90% 

f~f lit L 95% 
1;6351 2J1342 2.9377 90% 

frt L L '95% 
2]204 2.13541 2.7026 90% 

L I.. L 95% 

,r:.v, It 

1;8105 
2.1556 
2ASBS 
2Jl211 
2.5931 
2.9223 
2.397Q 
27318 
7·5911 
2Jf196 
2.4485 
2) 764 
1.a131 
225Sa 
2:7480 
3:0725 
2:S.145 
2J1443 
2,1382 
:tOG30 
25183 
2.6474 
2.3642 
2.7111 

2.5257 
2,8656 
2,3846 
2 ,1247 
251~ 
2.8579' 
2.3550 
2.SSGi 
1..9404 
:t2!l29 
Z6()26 
2,9533 
2)15il7 
2]920 
.:2;601.6 
2,9528 
2.4453 
2.7861 
2.2BQ2 
2,13270 

0.0052 
a.M6B 
(} 

ROM7 
0.0066 
o.o64g 
0;0064 
O:·{j04B 
O.ilOGB 
OJl055 
0.0011 
M050 
0.0066 

0;\)064-
0.0047 
0,0069 
0.0050 
0.0069 

Table 5.18: Critical values for bivariate linear regression 
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5.5.4 Conclusions 

Overall, it may be concluded from our comparisons that the simulation­

based method computes as good critical values as the exact method, better 

than either the conservative method or the approximate method. When we 

increase the number of simulations, the simulation-based method may get 

even accurate critical values. Meanwhile, it can be found that Naiman's 

method is good enough. That is because Naiman's critical values are for 

conservative confidence bands but they are actually not much conservative. 

Comparatively speaking, the approximate method is bad, but not seriously. 

5.6 Numerical examples 

5.6.1 Example for simple linear regression 

In an 1857 article, a Scottish physicist named James D. Forbes discussed a 

series of experiments that he had done concerning the relationship between 

atmospheric pressure and the boiling point of water. He believed that altitude 

could be determined by atmospheric pressure, measured with a barometer 

which was a fragile instrument in the middle of the nineteenth century, with 

lower pressures corresponding to higher altitudes. Forbes wondered whether 

a simpler measurement of the boiling point of water could substitute for a 

direct reading of barometric pressure to determine the altitude. He collected 

data in the Alps and in Scotland and measured pressure in inches of mercury 

with barometer and boiling point in degrees Fahrenheit using a thermometer 

at each location. Boiling point measurements were adjusted for the difference 

between the ambient air temperature when he took the measurements and 

a standard temperature. The data for 17 locations are reproduced in Table 

5.19, which is taken from Weisberg (2005, page 22). 

A simple linear regression model is used to fit the data. Atmospheric 

pressure is viewed as the response and the boiling point of water is regarded 

as the only predictor variable in the model. Therefore, we have the fitted 
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1 
2 
3 
4 
~ 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

194.5 
194.3 
197.9 
198;<1 
199.4 
19fL9 
200;9 
201 .1 
201.4 
201.3 
203.£ 
204,6 
209.5 
20M; 
210.7 
211.9 
212;2 

20.79 
21L19 
22.40 
22J)7 
23.1£ 
23.3£ 
23;89 
23_99 
24.02 
2·U1 
25.14 
26.57 
28.49 
27.76 
29J)4 
29.88 
30,06 

Table 5.19: Forbes' 1857 data on boiling point and barometric pressure for 

17 locations in the Alps and Scotland 

regression model given by 

y = -81.0637 + 0.5229x. (5.41) 

Simultaneous confidence bands can be constructed then over a restricted in­

terval, say, [194.3, 212.2] which takes the smallest and largest observations 

as the lower and upper bounds. The exact method provides critical values 

2.2822, 2.6693 and 3.5122 for 90%, 95% and 99% confidence levels respec­

tively; the approximate method suggests 2.3171, 2.6946, 3.5270, and the 

simulation-based method gives 2.2837, 2.6715, 3.4968 correspondingly. Note 

that the simulation-based method is on a basis of 100,000 replicates, and 

will be so for the other examples in this chapter. The confidence bands are 

plotted in Figures 5.3-5.5. 

5.6.2 Example for polynomial regression 

Table 5.20 presents data concerning the strength of kraft paper and the per­

centage of hardwood in the batch of pulp from which the paper was produced. 
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Figure 5.3: Oonfidence bands for 90% confidence level 
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Figure 5.4: Confidence bands for 95% confidence level 
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Figure 5.5: Confidence bands for 99% confidence level 

These data is taken from Montgomery, Peck and Vining (2006, page 205). 

A scatter plot of the data displays that a quadratic regression model may 

adequately describe the relationship between tensile strength and hardwood 

concentration. According to these data, the fitted model is given by 

f) -6.6742 + 1l.7640x 0.6345x2
. (5.42) 

Note that x% here is a percentage so that x should be bounded by the 

interval [0, 100]. Then we construct simultaneous confidence bands over 

this restricted interval using Naiman's methods, the approximate method, 

and the simulation-based method. Consequently, these three methods give 

critical values 2.5661, 2.6476, 2.5483 for 90% confidence level, and 2.9482, 

3.0095, 2.9396 for 95% level, respectively. We plot the confidence bands in 

Figures 5.6 and 5.7. Note that the bands plotted in the figures are parts of 

the whole bands over the restricted interval. Doing this is in order to make 

the observed points more clear. 
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(t5 
7 
8 
9 
11L 
11 
12 
13 
14 
15 

It3 
11.1 
2(t!} 
24:0 
26.1 
30.0 
33Jl 
34Jl 
38.1 
39]9 
42,0 
4.G.1 
53.1 
52 ell 
52,5 
4U 
42;8 
2.7.8 
2t9 

Table 5,20: Hardwood concentration in pulp and tensile strength of kraft 

paper 
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Figure 5.6: Confidence bands for 90% confidence level 
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Figure 5.7: Confidence bands for 95% confidence level 

5.6.3 Example for bivariate linear regression 

A soft drink bottler is analyzing the vending machine service routes in his 

distribution system. He is interested in predicting the amount of time re­

quired by the route driver to service the vending machines in an outlet. This 

service activity includes stocking the machine with beverage products and 

minor maintenance or housekeeping. It is suggested by the industrial engi­

neer for this study that the two most important factors affecting the delivery 

time (y) are the number of cases of product stocked (xd and the distance 

walked by the route driver (X2). 25 observations on the delivery time has 

been collected by the engineer, and they are shown in Table 5.21. These 

data is also taken from Montgomery, Peck and Vining (2006, page 70). 

We fit the data using a bivariate linear regression model. Therefore, the 

fitted model is given by 

i) = 2.3412 + 1.6159xI + 0.0 144x2· (5.43) 

We assume the maximum capacity of product stocked is 30 cases and the 

distance is preferred within 2000 ft. Then Xl and X2 should be bounded by 
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11£.sa 
2 11;50 , 
'3 12:;f,13 
4- 14.88 
5 13.15 
6 1t3.11 
1 8ol)O 
S 17':83 
9 79.24 
10 21 ,50 
11 4,0.$3 
12 2hOO 
13 ' 13.50 
14 19;75 
15 ," 24JlfJ 
16 2~LOO 
17 15.35 
18 19~DO 
19 9;50 
20 35.10 
21 17.£10 
2:2 52.32 
2$ 18.75 
24 19.83 
25 10.75 

7 
3 
3 
4 
6 
7' 
2 
'"I 
( 

31) 
5 

1() 
io 
4-
S 
9 
10 
6 
7' 
g 
17 
10 
26 
9 
B 
.4 

560 
22U 
'340 
130, 
150 
330 
11'0 
210 

14'6:Q 
S05 
6aB 
215 
255 
462 
«8 
77£) ' 

2(10 
132 
36' 
RO 
140 
810 
450 
635 
150 

Table 5.21: Delivery time data for bivariate example 
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Figure 5.8: The approximate band for 90% confidence level 

the intervals [a, 30] and [a, 2000] respectively. In such a case, simultaneous 

confidence bands can be constructed accordingly based on the approximate 

method and the simulation-based method. As results, these two methods 

suggest critical values 2.7234, 2.6409 for 90% confidence level, and 3.0707, 

2.9787 for 95% confidence level, respectively. To be clear, we plot single band 

in each picture. So the four confidence bands are shown in Figures 5.8-5.11 

respectively. 
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Figure 5.9: The approximate band for 95% confidence level 
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Figure 5.10: The simulation-based band for 90% confidence level 
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Figure 5.11: The simulation-based band for 95% confidence level 
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Chapter 6 

Simultaneous confidence bands 

for a logistic regression model 

The analysis of dichotomous response data has been popular due to the in­

creasing use of the logistic regression model which enjoys a wide variety of 

applications nowadays, such as medical treatment, clinical trials, epidemio­

logical test and risk management. Construction of simultaneous confidence 

bands for a logistic regression model is therefore of interest. However, the 

existing literatures on this are very limited. 

Since the asymptotic distributional approximation of the parameter es­

timators of interest is the base of construction of confidence regions for a 

generalized linear model, we first briefly review relevant literatures on, for 

example, the construction of asymptotic intervals for the binomial parameter. 

By recalling related works, a general profile on the quality of the asymptotic 

approximation based on several methods would be obtained. The most fre­

quently mentioned interval in many statistical textbooks is the standard or 

Wald confidence interval. This interval was shown to perform poorly unless 

the sample size is quite large in, e.g., Ghosh (1979), Blyth and Still (1983). 

Clopper and Pearson (1934) proposed "exact" confidence interval based on 

inverting equal-tailed binomial tests. The "exact" interval is usually neces­

sarily conservative. Therefore, it is inappropriate to treat it as optimal for 
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statistical practice. Agresti and Coull (1998) discussed that the score confi­

dence interval first presented by Wilson (1927) tends to perform much better 

than the Wald or "exact" intervals in terms of having coverage probabili­

ties close to the nominal confidence level. Zheng and Loh (1995) and Zheng 

(1998) considered bootstrapping binomial confidence intervals via bootstrap 

calibration. Brown, Cai and DasGupta (2000, 2001, 2002) provided a survey 

of these intervals as well as the Bayes credible intervals, and gave compar­

isons. Chen (1990) demonstrated the accuracy of such approximate intervals 

for a binomial parameter. 

For the construction of simultaneous confidence bands, an alternative of 

the methods based on the asymptotic distributional property is the bootstrap 

percentile method, which was proposed by Yeh (1996) to construct confidence 

bands for unknown curves based on the bootstrap and the concept of "curve 

depth". However, it is not considered further in this thesis. 

In this chapter, we first introduce some key methods of constructing two­

sided simultaneous confidence bands for the probability of the dichotomous 

response in a logistic regression model with or without constrained predictor 

variables. Two examples are given for one-dimensional and two-dimensional 

cases respectively. Then simulation studies are given for the comparison of 

the methods. Meanwhile, the simulation results can be used to gauge the 

accuracy of the asymptotic distributional approximation. That is to check 

whether the simulated coverage probability of certain band is close to the 

nominal confidence level, and how far between them. 

6.1 Confidence bands for a logistic regression 

without constraint on predictor variables 

6.1.1 For a simple logistic regression 

Brand, Pinnock and Jackson (1973) described a method of constructing large 

sample confidence bands for the logistic response curve for the case of p = 1, 
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where p is the number of the predictor variables in the regression model. 

A data set in this case consists of pairs (Xi, Yi), i = 1, 2, 3, ... , N) where 

Xi is, say, a measure of dose received by the ith test subject and Yi is set to 1 

or 0 respectively corresponding to that the response does or does not occur 

in the ith subject. N is required sufficiently large for large sample normality 

to be a reasonable approximation. 

The probability of the response corresponding to dose x, 0 ::; 7f( x) ::; 1, 

is defined in terms of parameters Po and PI as 

exp(po + PIX) 
7f(X) = 1 + exp(po + /3I x) (6.1) 

Suppose /Jo and are the maximum likelihood estimators of parameter 

and Pl. Thus the components of the information matrix Ill, Ir2) 122 can be 

expressed by 

N 

III ~ {exp(/Jo + /JIXi)/[l + exp(/Jo + /JIXi)F}, 
i=l 
N 

Ir2 ~ {Xiexp(/JO + /JIXi)/[l + exp(/Jo + /JI XiW}, 
i=l 
N 

122 = ~{x~exp(Bo+/JlXi)/[l+exp(/Jo+/JlXiW}, 
i=l 

Recall the large sample asymptotic normality of 13 = (/Jo, /Jlf given by 

(6.2) 

where ~ denotes convergence in distribution, N2 denotes the bivariate nor­

mal distribution, and 2:: is the asymptotic covariance matrix. Note that the 

asymptotic covariance matrix for 13, 2:: / N, can be estimated by the inverse 

of the information matrix r 1, i.e., 2:: ~ N rl. Therefore, we have 

N(j3 - j3f2::-1(j3 13) 

~ (13 - j3)T J(j3 - 13) 
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where x~ is the Chi-square distribution with two degrees of freedom. A large 

sample 1 - 0; confidence set for (Po) pd is therefore given by 

111 (/30 (6.4) 

where xL" denotes the upper 0; percentage point of the x~ distribution. Note 

that the confidence set given by (6.4) is an ellipse centered at (~o) 81)' A 

100(1 0;)% level confidence band for 7f(x) can be obtained by finding the 

maximal and minimal values of 7f(x) over the confidence ellipse of (PO,P1) 

for each x. 

Transform (6.1) to the form of interest 

( 
7f(x) ) 

A ( x) = Po + P1 X = In ( ) 1-7fX 
(6.5) 

which is a monotone function of 7f(x). We can equivalently find the extremal 

values of A(X) over the confidence ellipse (6.4) of (30 ) P1) for each x. 

For a fixed X) {Po + P1 x = q : -()() < q < ()()} stands for a family of parallel 

straight lines in the (Po) P1)-plane with x as the slope. Extremal values of 

A(X) = Po + P1X over the confidence set (6.4) of (Po) P1) are attained when 

the lines in the family are tangent to the boundary of the confidence ellipse 

(6.4). Each tangent line corresponds to one (po, P1) which can be viewed as a 

solution to the pair of equation (6.5) and the equality obtained by changing 

the sign from "::;" to "=" in (6.4). Expressing Po = A(X) - ,31x from (6.5) 

and substituting in the obtained equality gives a quadratic equation in terms 

of ,which has the form given by 

with 

b b1 +b2A(X), 

C C1 + C2A(X) + C3A(X)2, 
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where 

al 1nx2 2112 X + 122 ) 

b1 21nx/30 + 2112 (/31 X - /30) - 2h2/31, 

b2 -2In x + 2h2, 
'2 ' A '2 

X2 
Cl I 11PO + 2112PoPl + h2P1 2,Q) 

C2 - 2111/30 - 2h2/31) 

C3 111. 

Notice that there is only one solution of PI for a straight line tangent to the 

confidence ellipse. We have 

b2 
- 4ac = 0, 

which gives a quadratic equation in terms of A (x). And the resulting roots 

provide the extremal values of A(X) over the confidence set (6.4) of (Po,/31). 

We denote the maximum and minimum values of A(X) by AH(X) and AL(X) 

respectively) which are therefore given by 

(2b1b2 - 4a1c2) 

2(b~ - 4a1c3) 

± [(2b1b2 - 4a1c3)2 - ;(b~ - 4alC3)(bi - 4a1cd]~ . (6.6) 
2(b2 4alC3) 

Also, AH(X) and AL(X) can be written in matrix form as 

AH(X) xT j3 + (X~,QXT J-IX)~, 
AL(X) xTj3 (X~,QxT rlx)~, 

where X= (1, X)T and j3 = (/30, )y. 

Then the confidence band for the probability of the dose-response with 

100(1 - 0:)% confidence level is given by 

exp[AL(X)] exp[AH(X)] 
(1 + exp[AL(X)] , 1 + eXP[AH(X)]) 

for all x. (6.7) 
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6.1.2 For a multiple logistic regression 

Hauck (1983) considered the construction of simultaneous confidence bands 

for the logistic response function with any number of predictor variables. He 

presented a computationally easier and more general method than that in 

Brand, Pinnock and Jackson (1973). 

Let y be a dichotomous response with possible values 1 or O. The prob­

ability of y = 1 denoted by 7T(X) , which is in terms of the predictor vector 

x = (Xl, ... ,xp)y, is given by 

exp(xT (3) 
7T(X) = 1 + exp(xT (3) , (6.8) 

where (3 = (po, PI) ... ,Pp)y is the vector of the regression coefficients. Alter­

natively, (6.8) can be transformed as 

A(X) = x T (3 = In ( 7T(X) ). 
1 - 7T(X) 

Now, we assume observations x and yare of sample size N, which is large 

enough for the asymptotic normality of the maximum likelihood estimator 

vector 13 to be a good approximation, i.e., 

(6.9) 

where b/N can be estimated by ;-1 with Jbeing the information matrix of 

13, which has the elements given by 

N 

Jjk = L *(xi)[l - *(Xi)]XijXik 

N 

L {exp(xT 13)/[1 + exp(xT j3W}Xij Xik, (6.10) 

i = 1, ... ,N; j, k = 1, ... ,p. We subsequently have 

(13 T A 1) 2 
(3) J((3 - (3) ---7 Xp+1' 

where J can be obtained from most statistical package directly. Let X;+1,a 

denotes the upper Ct percentage point of the X;+l distribution, then 

(6.11) 
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An approximate 1 - Q confidence set for f3 is therefore given by 

(6.12) 

which is an ellipsoidal region centered at f;. 

Recall the Cauchy-Schwartz inequality which is of the form given by 

for all vectors a and b in the inner product space. Applying the Cauchy­

Schwartz inequality, we have for all x, 

[xT(f; - (3)]2 IxT ;-~J~(f; - f3W 

1[(;-~fxlT[J~(f; - (3)W 
< II (;-~ f xl1 2 

. II J~ (f; (3) 112 

[(J-~fxf[(J-~fx]. [J~(f; - (3)lT[J~(f; - (3)] 

Substitute (6.13) into (6.11) to obtain 

1 Q ~ P{[xT (f; - (3)? /[xT ;-lx] ::; X;+l,a' for all x} 

P{lxT(f; - (3)1 ::; (X;+l,axT ;-lx)~,for all x} 

(6.13) 

P{ x T f3 ::; x T f; ± (X;+l,axT ;-lX) ~,for all x}. (6.14) 

Therefore a 1 - Q level confidence band for x T f3 is given by 

(6.15) 

for all x. By making use of the logistic relationship, the corresponding con­

fidence band for n(x) is given by 

( 
exp[AL(X)] eXP[AU(X)]) for all x. 

1 + exp[AL(X)] , 1 + exp[Au(X)] 
(6.16) 
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6.2 Confidence bands for a logistic regression 

with restricted predictor variables 

In real problems, some constraints may be imposed on the predictor vari­

ables. In this case, a confidence band is restricted to some subset of possible 

x's. Therefore, the bands described in section 6.1 are unnecessarily wide and 

conservative. Naturally, it is of great interest to consider methods of con­

structing confidence bands for a logistic regression with restricted predictor 

variables. In this section, we focus on this problem. The restricted predictor 

space considered is the most popular rectangular region, which has the form 

( 6.17) 

where ai, b/s are given real constants. 

6.2.1 For a silnple logistic regression 

Band based on the method of Wynn and Bloomfield (1971) 

For simple logistic regression, we have the asymptotic property that f3 is 

approximately normally distributed with mean f3 and estimated covariance 

matrix r 1 when the sample size N is sufficiently large. Then a confidence 

band can be constructed for x T f3 of the form 

(6.18) 

which can be written alternatively as 

(6.19) 

where x is the only predictor variable which is restricted in the interval [a, b], 

c is the critical value such that the band has the simultaneous coverage 

probability of 1 - 0:. 
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Figure 6.1: For Wynn and Bloomfield's method 

Assume that there is a 2 x 2 non-singular matrix P such that pT p = rl. 
Then (6.19) can be further written as 

1 (Px)T(p-If(,8 -,8)1 1 (Px)TNI 
sup = sup < C, 

xE[a,bJ J(Px)T(Px) xE [a,bJ II (Px) II 
(6.20) 

where N = (p-I)T (,8 - /3) has a bivariate standard normal distribution, and 

so IINliz has the X~ distribution. 

Now, we turn to evaluate the probability of the event in (6.20) so as to 

find a computational formula for calculation of the critical value c. Define 

a = (1, af, b = (1, bf, and e* is half the angle between Pa and Ph. Figure 

6.1 may be useful to easily calculate the last supreme in (6 .20) . Px is a 

vector moving within the circular cone bounded by Pa and Ph, whereas N is 

a vector that can freely locate at any position in the plane. When N is within 

the circular cone or its opposite, the supreme is equal to IINII; otherwise it 

equals the the projection of N on the nearest bound of the cones. 

Assume e is the angle between the positive horizontal axis and'N. As the 

picture is symmetric, it is only needed to consider the part for e E [0, 7r /2]. 
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We have 

I (Px)TNI {IINII for e E [0, e*], 
x~~t,b] IIPxII = IINII cos(e - e*) for e E (e*, n 

The probability of the confidence band (6.18) is therefore equal to 

I(PxfNI 
p{ sup I'PxII ::;c} 

xE[a,b] I 

4(P{IINII ::; c,O ::; e ::; e*} 
+P{IINII cos(e - e*) ::; c, e* < e ::; ~}) 

7C 2 

( e* 2 2 1 r'2 2 ( C )) 
4 21TX2(C) + 21T Je* X2 cos2(e _ e*) de 

2e* 21,,--e* 2 2 2 2 2 c 
-X2(C ) + - X2( ~e)de, 

1T 1T 0 cos 
(6.21) 

where e* can be calculated via the following formula 

1 aT rIb 
e* = arccos ( 1 1) . 

2 (aTra·bTrb)I/2· 
(6.22) 

where J can be obtained directly from most statistical packages. 

Consequently, given a confidence level, critical value c can be calculated 

from (6.21) and (6.22), which is used to construct confidence band (6.18) for 

x T (3. Hence, a confidence band can be obtained for the logistic response 1T(X) 

by making use of the logistic relationship. This method is from Wynn and 

Bloomfield (1971), so we call the band of this method 'llB band hereafter. 

Type 4 band of Sun, Loader and McCormick (2000) 

Sun, Loader and McCormick (2000) considered confidence bands for gen­

eralized linear models. In their paper, it is stated that the approximation to 

the coverage probability of simultaneous confidence bands for the mean re­

sponse function in linear models is still applicable without any change to the 

generalized linear models. However, in generalized linear models, the errors 

are often non-additive and non-normal. This may influence the accuracy of 
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the approximation when the sample size is not large enough. Under this situ­

ation, they proposed to use an Edgeworth expansion for the distribution of j3 
in connection with the idea of the Skorohod construction to convert an error 

term in the Edgeworth expansion to a bias term; then estimate and correct 

it to adjust the approximation formula such that the coverage probability of 

the corrected confidence band is much closer to the nominal confidence level. 

The correction proposed in the paper has two components: one is to apply 

the tube formula to some modified process; the other uses the method of bias 

correction in Sun and loader (1994). 

For simplicity, only one-dimensional case was studied in Sun, Loader and 

McCormick (2000) but their method may be applied to cases of multiple 

dimension. They recommended their Type 4 confidence band which is given 

by 

(6.23) 

where c and r p are a critical value and a corrected constant respectively. 

Their other types of bands are proven not to perform as well as Type 4 band 

for the logistic regression model when the sample size N 2:: 200. Note that 

(c-Irpl) in (6.23) as a whole can be obtained directly by using their software 

parfit, which can be downloaded from www.locfit.info/. 

Note that the band in (6.23) is for x T (3. The band for the logistic response 

7f(x) can be obtained from the band (6.23) in the usual way. 

A numerical example 

Consider the example of Anti-pneumococcus serum in Collett (2003, pages 

6-7). This example is based on the assay taken from Smith (1932), who de­

scribed a study of the protective effect of a particular serum, 'Serum number 

32', on pneumococcus, the bacterium associated with the occurrence of pneu­

monia. Each of 40 mice was injected with a combination of an infecting dose 

of a culture of pneumococci and one of five doses of the anti-pneumococcus 

serum. For all mice that died during the seven-day period following inoc­

ulation, a blood smear taken from the heart was examined to determine 
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Table 6.1: Number of deaths to different doses of serum 

whether pneumococci were present or absent. Mice that still lived on the 

seventh day were regarded as survivors and not further examined. The di­

chotomous response variable is therefore death from pneumonia within seven 

days of inoculation. The numbers of mice succumbing to infection out of 40 

exposed to each of five doses of the serum, measured in cc, are given in Table 

6.l. 

Obviously, a simple logistic regression model is used to fit the data in 

order to find the relationship between the probability of deaths and dose of 

serum. A simultaneous confidence band can be constructed. Here we choose 

[0, 0.0450] as the restricted interval for the dose of serum. 

With the same notations as before, we have 

/30 = l.2179, /31 = -146.6927, 

J-1 = (0.0858 -6.1499 ) 
-6.1499 695.0059 

Also, we have the critical values 2.4304 for a WB band and 2.3700 for a Type 

4 band respectively at 95% confidence level. Therefore, two simultaneous 

confidence bands for the probability of deaths can be constructed accordingly. 

Both bands are given in Figure 6.2. 

6.2.2 For a multiple logistic regression 

Method of Piegorsch and Casella (1988) 

Piegorsch and Casella (1988) proposed a method of constructing confi­

dence bands for a multiple logistic regression with predictor variables re­

stricted in a rectangular region given by (6.17). 
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Figure 6.2: 95%-level confidence bands for probability of deaths 

The key idea is to embed the rectangular region (6.17) into an ellipsoidal 

restricted region of predictor variables described in Casella and Strawderman 

(1980), and then to apply Casella and Strawderman (1980) 's Table 1 to obtain 

a conservative critical value. In particular, the ellipsoidal region is centered at 

the means of the predictor variables. If the rectangular region is not centered 

at the mean point, the critical value obtained from Casella and Strawderman 

(1980)'s results can be extremely conservative. 

Consider, for example, the quantal data in Table 1 of Piegorsch and 

Casella (1988). Table 5 gives values of c2 for 95% confidence level based 

on their method. Note that this is a one-dimensional example, and all three 

restricted intervals in Table 5 are asymmetric about the mean of the only 

predictor variable, which is 1.4862. We used the method of Wynn and Bloom­

field (1971) to calculate the critical values for the confidence bands with these 

three restricted intervals respectively and then compare the squared values 

of them with those of Piegorsch and Casella (1988). All the values are given 

in Table 6.2. 
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Table 6.2: Squared critical values for 95% confidence level 

From the table, the squared critical values based on the method of Piegorsch 

and Casella (1988) are, respectively, 8.8%, 6.3% and 10.2% larger than those 

based on the method of Wynn and Bloomfield (1971). Consequently, the 

method of Piegorsch and Casella (1988) is not considered further in this 

chapter. 

Simulation-based method 

Liu, Jamshidian, Zhang and Donnelly (2005) construct simultaneous con­

fidence bands for a multiple linear regression over a rectangular restricted 

predictor space based on simulation. We apply the method to the logistic 

regression case. 

For a logistic regression with at least one predictor variables, j3 is ap­

proximately normally distributed with mean f3 and estimated asymptotic 

covariance matrix J-1
. Then the coverage probability of a confidence band 

for x T f3 over x E X is given by P{T ~ c}, where 

(6.24) 

c is a critical value, and X is a rectangular region of the form given by (6.17). 

Assume there is a p x p non-singular matrix P such that PI' P = J-1
. Then 

(6.24) can be further written as 

(6.25) 
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whereN = (P-lf(j3 - (3) has a multivariate standard normal distribution. 

The key of the simulation-based method is to generate an N so as to find 

a T via (6.25); repeat this process R times, and set the [(1 - a)R]th largest 

value of T, C, as an approximate of the critical value c. For each simulation, T 

is obtained by solving an optimization problem. Details can be found in Liu, 

Jamshidian, Zhang and Donnelly (2005). After c is obtained, a confidence 

band can be constructed for the logistic response as before. 

A numerical example 

This is another example from Collett (2003, pages 8-9). The erythrocyte 

sedimentation rate (ESR) is the rate at which red blood cells (erythrocytes) 

settle out of suspension in blood plasma, when measured under standard 

conditions. The ESR increases if the level of certain proteins in the blood 

plasma rise, such as in rheumatic diseases, chronic infections and malignant 

diseases; this makes the determination of the ESR one of the most commonly 

used screening tests performed on samples of blood. One aspect of a study 

carried out by the Institute of Medical Research, Kuala Lumpur, Malaysia, 

was to examine the extent to which the ESR is related to two plasma pro­

teins, fibrinogen and i-globulin, both measured in gm/l, for a sample of 

32 individuals. The ESR for a 'healthy' individual should be less than 20 

mm/hr and since the absolute value of the ESR is relatively unimportant, 

the response variable used here will denote whether this is the case. A re­

sponse of zero will signify a healthy individual (ESR<20), while a response 

of unity will refer to an unhealthy individual (ESR2::20). The original data 

were presented in Collett and Jemain (1985) and are relisted in Table 6.3. 

In this case, a bivariate logistic regression model is applied to obtain 

the relationship the probability an ESR than 20 

mm/hr and the levels of two plasma proteins. ViThen construct a simultaneous 

confidence band, we set an restricted interval for each predictor variable 

formed by the smallest and largest values of the observations. Specifically, 

they are [2.09, 5.06] and [28, 46] for Fibrinogen and i-globulin respectively. 
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Table 6.3: The levels of two plasma proteins and the value of a binary re­

sponse that' denotes whether ESR2::20 for each individual 
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Figure 6.3: 90%-level confidence band for probability of that ESR larger than 

20 

Viith the same notations as before, we have 

( 

-12.7921 ) (33.5985 -3.6718 
iJ = 1.9104 and rl = -3.6718 0.9428 

0.1558 -0.5987 0.0224 

-0.5987 ) 
0.0224 . 

0.0143 

Also, we have the critical values 2.1291 and 2.4118 based on the simulation 

method of 100,000 simulations for 90% and 95% confidence level respectively. 

Two simultaneous confidence bands can be constructed then. They are plot­

ted in Figures 6.3 and 6.4. 

6.3 S ilnulat ions 

All these methods of constructing simultaneous confidence bands for a logistic 

regression is based on the large sample asymptotic normality of iJ. So the 

bands constructed have an approximate 1 a confidence level. It is therefore 

of interest to simulate the coverage probabilities of the bands to check how 

close they are to the nominal level, and what factors affect the accuracy. 
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Figure 6.4: 95%-level confidence band for probability of that ESR larger than 

20 

We have carried out simulation studies for the one-dimensional and two­

dimensional cases, respectively. 

6.3.1 For one-dimensional case 

In this subsection, we compare the confidence band based on the method of 

Wynn and Bloomfield (1971) with the Type 4 band recommended in Sun, 

Loader and McCormick (2000). We call them WB band and Type 4 band 

for simplicity. 

VVith consistent notations, the specific procedure is as follow: 

Step 1 Given a set of m values of the only predictor variable x, Xl, ... ,Xm , 

together vvith a pair of true regression coefficients (30 and ,we obtain 

the probabilities of the logistic response based on the true model via 

(6.26) 
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Step 2 Generate the logistic response Yi, corresponding to Xi, which has a 

binomial distribution with parameters lI(Xi) and ni, where ni is the 

sub-sample size. 

Step 3 Estimate and PI based on (Xi, Yi, ni), i 1,.. ,m to obtain ~o 

and ,then calculate rl accordingly. 

Step 4 Construct a simultaneous confidence band. WB band is of the form 

(6.27) 

where Cl can be calculated using (6.21) and (6.22) for a given nominal 

confidence level el. Type 4 band is of the form 

(6.28) 

where (C2 - lipl) as a whole can be obtained directly by using the 

software parfi t mentioned in Sun, Loader and McCormick (2000) 

Step 5 Check whether the true function Po + PIX is completely in the band 

for all x's within the restricted interval [a, b]. 

We repeat Step 1 to Step 5 nsim times. Out of the nsim simulations, 

the proportion of times that the confidence band includes the true regression 

model is taken as an approximation of the true coverage probability. It is clear 

that this simulated coverage probability depends on Xi, ni, Po, (31, [a, b], el, nsim, 

i= 1, ... ,771. 

Now, we turn to the design of these common factors so that various 

combinations can be obtained to make the comparison as general as possible. 

First, we choose five design points for the only predictor variable, that is 

771 = 5, which seems reasonable in real problems. Furthermore, we choose 

four different types of five design points on the design interval 1, 1]. The 

first type of design is to set the design points equally spaced throughout 

the interval 1,1]. The second type corresponds to the design points near 

the center of the design interval. The third type corresponds to the design 
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Table 6.4: Designs for predictor variable and restricted interval 

N'=50 
N =200 

Table 6.5: Design for total sample size 

points concentrated around the upper bound of the design interval. And the 

last type corresponds to the design points located at the two ends of the 

interval [-1,1]. Second, two restricted intervals are chosen, one of which 

is short and the other is long. These choices of the design points and the 

restricted intervals provide various values of the angle B* in (6.21) to give 

various critical values. In fact, based on our designs, values of B* varies in 

the range [O,7r] from small (0.0305) to large (1.5452). Third, we choose two 

sample sizes N = I:~=1 ni of 50 and 200 to check its effect on the simulated 

coverage probability. Finally, we choose eight pairs of (30 and (31 so that the 

straight line (30 + (31X has various slopes and intercepts. The designs are 

contained in Tables 6.4-6.6. 

Structure: 
Gl1 
0.2 
03 
Q4 

05 
06 
07 
cis 

0.75 
2.55 
-039 
-t5 

-0:75 
~2:55 

0.39 
1.5 

0.5 
1.7 

-0.26 
-1 
0"5 
1.7 

·(}.26 
-1 

Table 6.6 : Designs for true regression coefficients 
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The simulated coverage probabilities of WB bands are calculated by the 

programmes running on MAT LAB 7 platform, while those of Type 4 bands 

are obtained by using parfi t on S-plus 6.2 platform. As it is not clear how 

to change the default confidence level 95% in parfi t, confidence level 95% is 

used in our comparison. To reduce the simulation error, we set nsim equal 

to 10,000. Based on the above designs, simulated coverage probabilities are 

obtained and listed in Tables 6.7-6.10. Note that, in some cases, the simulated 

coverage probability can not be worked out. If this is the case for both bands 

based on the same designs, it is because the maximum likelihood estimates 

of (Po, f3d can not be found within the pre-specified 30 iterations. The case 

that only Type 4 band can not find the simulated coverage probability is due 

to the fact that the corrected critical value (c Irpl) can not be found using 

parfit. In this case, a sentence "warning: compparcomp: perfect fit" 

was displayed. 

From the results, some conclusions can be drawn. First, the simulated 

coverage probabilities of both bands are often larger than 95%. Second, 

when the sample size N = 50, both bands can be quite conservative with 

the simulated coverage probabilities being around 97%. When N = 200, the 

simulated coverage probabilities of WB bands are very close to 95% except 

few cases, whereas Type 4 bands may still be quite conservative or liberal. 

Third, the corrected critical value of Type 4 band may not be found for small 

sample size. 

Also, it is motivated to compare the widths of the WB bands and Type 

4 bands. Note that there are 128 design structures in our comparison, such 

as P1,N1,Q1 and P5,N2,Q8. For each design structure, we calculate 100 

simulated critical values for each band. Therefore, we have totally 12,800 

critical values for each band. Ignore the cases that one or both bands can 

not find the critical value. The left 10,476 cases are viewed as being valid. 

Then it is found that the proportion of the cases that the critical value of WB 

band is smaller than that of Type 4 band, out of the valid cases, is 68.36%. 

Consequently, \iVB band seems to be better than Type 4 band generally, 
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.....-- strociUte ~£ scii~r S'EP,- ti "'-' 
'Q1 {)J}702 0;9652 
Q2 Na Na 
0.3 0;9.130 {t9706 

N1 : 04 (L9539 0;9417 
05 0,9120 O~9652 
06 Na Na 
Q7 :(LS729 lUll15 

'P1 as (LS529 0.9409 
Q1 0:9510, 0::9582 
Q2 {L9431 0,9412 
0 3 0,9529 OJJ515 

N2 04 0.9568 O ~fl:5a7 

05 0.9521 0:9570 
US 0.92'38 0.9320 
07 0.9497 0;·9'569 
os 0:.. 0 .. 9559 
Q1 (L 0.9832 
Q2 fila Na 
Q3 0.9684 0.9801 

N1 Q4 0:;957'5 ij.9672 
0 5 0.!:l744 0,9807 
OS Na Na 
OTl .0.9681 0:..9805 · 

P2 QS OA3612 (L96SS 
Oil '(1.9484 (L9615 
Q2 11.9.446 0.9537 
Q3 0.9523 0:.9&4.8 

N~ ~ll 0.9558 0;9673 
05 0.9510 0.96<12 
06 ,{Ul358 0J1536 
07 n.9533 0.9663 
0;8 .0~9588 0;968:3 

Table 6.7: Simulated coverage probabilit ies for 95% confidence level 

especially when the total sample size is large. 
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S:tJ:)'Jmq(~ -Scp;jwb T sop_t4 . 
Q1 0::.9730 fila 
0 2 hJa: Na 
0 3 (L9596 Na 

N1 Q4 tL9B79 Na 
0 5 1L9717 Na 
QS Ns Na 
Q'I O,S7{}3 Na 

pa oa. {LSa7a Na 
01 11:9490 tl,.,9606 
Q2 0.9753 0;9782 
03 0.9470 Na 

N2 Q4 O~9565 0.9702 
Q5 ~ ;9516 0:9666 
0 6 {LeS5S 0 .. 9135 
OJ OJJ518 0.9695 
oi3 0:9620 OJl122 
01 O~9739 1'4a 
02 hla hla 
QS tl.9048 Na 

:N1 Q4 0,9833 Na 
05 {l;gns Na 
'06 Na fila 
0.7 0:9638 Na 

P4 08 0.9889 Na 
01 (t9492 0;9675 
Q2 (leSG8S 0,9803 
03 0.9:582 Na 

N2 Q4 tl.9515 0.973.2 
05 0.9501 0.9698 
as 0.9630 0.9787 
OJ 0.13523 0.9703 
08 .0.9551 0.9733 

Table 6.8: Simulated coverage probabilities for 95% confidence level 
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t - Stru~ure SeD WIlT ~c,P. t4 
01 0.S8S9 fila 
Q2 fila Na 
Q3 0~9744 0.9343 

141 04 fila Na 
05 'O,962fl Na 
06 (U}784 Na 
0.7 0.9633 Na 

P5 OS 0;9665 Na 
01 {UJ532 OJ1369 
@2 Na Na 
03 {1.94GB O,S245 

N2 04 0:9888 0;95SS 
05 0.9489 0.9292 
06 0;9550 (Ul344 
0] 0.9490 0.1J3tl5 
0.8 .O ;~504 {l;92Ii9 
01 0.9827 fila 
Q2 Na '/IJa. 
03 {L9677 {L9aOS 

N1 @4 fila Na 
@5 OJj652 Na 
06 OJ}743 Na 
a7 U,9641 Na 

Po as O}3105 lila 
0.1 ,lLS519 0.96S9 
Q2 Na Na 
Q3 O.SS23 0.9718 

N2 Q4 0.9660 0.97.98 
05 0.9490 O~g;702 ' 

06 0.9536 (L9B99 
Q7 0.9493 0.9688 
as 0,9502 lUl109 

Table 6.9: Simulated coverage probabilit ies for 95% confidence level 
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Structure --:- $,~_ 'wb · l · SCP .. f4 
01 1L9699 0:0046 
Q2 fila r~a 
03 0~9£a8 0_9/3.5.1 

N1 Q4 0;-9443 0.9341 
Q5 '0.9678 0.956;1 
as 0.8803 Na 
0.1 {L9151 0.9620 

P7 OS 0,$574 ,(LaZOS. 
OJ 0.9539 OJt548 
Q2 {L9129 0:~14 
Qj 0.9542 t:t9542, 

N2 Q4 0~95'e4 0:9557 
a5 0.9569 Na 
0 6 0'.9150 0';8630. 
Q7 0.9542 0.9540 
'a8 0.:9589 !};9492 

- (;1,;1 0,9693 0,911:2 
Q2. Na his 
Q3 0:9683 0.9726 

N1 04 0.,9464 (l;9~5 

0 5 0;9·701 0;9f)p2 
06 0:9027 Ni. 
0.7 o Jl707 0.9.739 

P8 DB .(L9566 (L9325 
01 C.9551 0.9680 
Q2 0.9344 0.9309 
0.3 U539 0.9702 

N2 Q4 0.9579 (L9.o71 
05 0.9597 /lIa 
06 0:9318 0.9256 
Q7 0.9501 0.9652 
08 0.9569 0.9$53 

Table 6.10: Simulated coverage probabilities for 95% confidence level 
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,. P2 
.. ()t$-cor;;~r;;;d 

P3 

P4 

xi =[0.3$, DAB. (1:52. 0.57, tL61] 
)(2= 0.37, 0:41 , 0:5. 0:53, 0;56, 0~5B 
x1=rO~85. 0,8B, (1;92, 0:94. 0.98, 11 
,x2= 0,03. 0.117. 0.1'1. 0.14. 0.1:&, lUS 
;;:1=[0.05. 0;08, 0.'1 , IL92, (t9E, 0;98J 
x2= 0.02, OJJ4. 0;[jI. Q.91.l).96'. O~g9: 

X1=[O;2. OA, 'tH, R5, 0.8. OJl] 
x2= 0.15, 03, 0.45. 0,6, 0.75. ·0:9; 

Tlt~~ 
TWO'end'Jd. 

Table 6.11: Design points for two predictor variables 

fS't(uctur:e , 
R1 
R2 
R3 

R€st!icted il'lt~rvais 
EO, 2] , [0, 2] . 

TO~5. tJ, .(0.5. 1J 
rO.5. 11 • roo 21 

Lciig. -L~llP 
Short, Short 
8iJo,1 -Lon.Cf . 

Table 6.12: Designs for restricted intervals of predictor variables 

6.3.2 For two-dimensional case 

For the two-dimensional case, we find the simulated coverage probabilities 

of the confidence bands constructed based on the simulation method of Liu, 

Jamshidian, Zhang and Donnelly (2005), and compare the results with the 

nominal confidence level. 

The procedure is very similar to that in the one-dimensional case. The 

only difference is to change the number of predictor variables from 1 to 2 and 

the consequential changes to the regression coefficients, the restricted region, 

and the critical values. 

Specifically, we choose four different designs Pl,P2,P3,P4 in the predictor 

space, three pairs of restricted intervals Rl ,R2 ,R3 , two levels of the total 

sample size Nl ,N2, and eight sets of the true regression coefficients QI-Q8. 

Details are clearly shown in Tables 6.11-6.14. 

N1 
N2 

{10; to, 10, 10, 10, 10] 
16, 25, 29,34.46.50 

Table 6.13: Designs for total sample size 
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01 -0.7 1.7 1.7 
Q2 tt25 n.s 1 
03 1.25 0;5 ·1 

I Q4 1,5 r 05 .. 23 
! 06 ·1]5 

-0.5 -0.5 
1.7 1.7 
(l.S 1 

I .. 0.7 -0.75 {le5 -1 
I em ~o. t; -0:5 -a.5 

Table 6.14: Designs for true regression coefficients 

90% and 95% confidence levels are chosen in this simulation study. Note 

that this time when we construct confidence bands, the critical values come 

from the simulation-based method. We set the number of simulations equal 

to 5,000 for the calculation of the critical value, and the number of simu­

lations equal to 10,000 for the calculation of the coverage probability. We 

consider this setting of the number of simulations as Type 1 setting. Al­

ternatively, we may set 10,000 simulations for the critical value's calculation 

and 5,000 simulations for the coverage probability's calculation, which is con­

sidered as Type 2 setting. We have tried ten specific cases based on both 

settings, among which five are for the small sample size and the other five 

are for the large sample size. By comparing the resulting simulated coverage 

probabilities, it is found that the difference between the simulated coverage 

probabilities for the Type 1 and Type 2 settings is at the third decimal place 

for all ten chosen cases . So we reasonably believe that using either one may 

not influence our conclusions. Since it will take long time to do simulations 

for both settings, we just choose Type 1 setting here. Results are given in 

Tables 6.15-6.18. 

From these results, it can be concluded that when N = 60 the confidence 

bands constructed based on the simulation method are much conservative 

with the simulated coverage probabilities generally larger than 93% for 90% 

confidence level and 97% for 95% leveL When N = 200 the simulated cover­

age probabilities are pretty close to the nominal confidence levels, sometimes 

larger and sometimes smaller. Consequently, we reasonably believe this kind 
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of confidence bands are good enough when ]I! is large. 
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· .~ . $truCture .: "'"'" sqp 
combination!; ao"A 9&h 

01 0:9404 0~9775. 

Q2 0.941B 0.9798 
03 O.939S 0:9153 

f~1 04 O.942S 0.9785 
05 0.9454. 0.977£ 
as (1.9417 0.9780 
07 0.9431 0;9185 

P1. R1 as tU3S0 0.9804 
01 II8945 0.9445 
Q2 0;9D77 0.9525 
03 0.9.033 O.95tlB 

H2 04 0.8955 0.95.01 
05 (1.9022 (1:9554 
Q6 0.9021 fL9513 
07 (1.6977 0,9465 
as 0.8996 0.947£ 
01 0.9401 0.9756 
02 OJ}399 0.9753 
03 (1;9455 OJJiT! 

N1 04 0.9460: 0.STS9 
05 0.9382 0.9757 
06 0.9409 OJi790 
07 0;9447 . 0:9794 

P'1. R2 08 0.9420 • 0:91tl7 
01 0.8943 0;9456 
Q2 0.$057 0.95.49 
03 0.9012 0.9456 

fil2 04 0;9028 0.9525 
as 0.9'138 0.9587 
06 O~$034 0,9514 
0 7 tC6967 0;9519 
as lL8934 0.9499 
01 0.934.9 0.9736 
Q2 0;9329 0.9737 
03 0.9305 (1.9744 

N1 Q4 1);9332 (1.9748 
05 ();s;m; 11.9749 
os 0.9291 0.9752: 
07 0.9316 0.9748 

P1. R3 06 (L934:l 0.9722: 
01 0.9014 0.9543 
02 0.9050 0.9523 
03 0.8916 0.9490 

fil2 04 0.9049 0.9553 
05 0.9005 0.9493 

i 
as 0.9026 0.9496 
07 [L8890 0:9471 
as O,89GfJ 0.9468 

Table 6.15: Simulated coverage probabilities for two-dimensional case 
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Sttuctln:e '?' I"'" sCp 
cbmliinatiQru; c,,~9(J% .55$ I 

01 0.9312 0;9801 
Q2 0:9262 11:9694 
Q3 (U1S59 0.9870 

N1 Q4 0:9360 0.9771 
Q5 0,9268 0.9735 
Q5 0;9376 0:9791 
Q7 0,9156 0:956e 

P2. R1 QS tL9390 0.9758 
01 0,8SSD OJl535 
Q2 0.90G5 U526 
Q3 (L9MS 0.9551 

1112 04 0.8S89 Ml4.67 
05 0:9068 0;952$ 
06 Oce194s 0.9500 
Q7 OJl952 OJ1S02 
08 OJl8S7 0;9465 
OJ 0.9374 0:9172 
Q2 0,9294 0.9567 
OJ 0:9614 uMs 

N1 Q4 0;9Z64- 0;9708 
05 0.9197 0;9745 
OS 0;9378 0:9749 
07 0:90.64 0.9622 

P2.. R2. 08 1};93B1 11;9154 
Q1 0:8975 0;f),439 
02 (Hl976 tL9445 
03 OJla54 0.9550 

N2 04 O,89S2 0.9516 
05 MI9T5 0.9466 
06 flct1953 0.9464 
Q7 0,8g98 {L951l5 
08 O:889fJ 0.9430 
01 0:9370 0;9758 
Q2 0.9207 0;9739 
03 0;9587 Oi9ass 

N1 04 lt9Z6S 0.972S 
05 0.9.171> 0.9S64 
OS 0.9393 0.9762: 
07 0.9131 0:958S 

P2. R3 08 0.9374 0.973S 
Q1 0.8968 - 0;9460 
02 0.8S47 0.9413 
03 IL90iO 0.9457 

1>12 04 0.8958 0.9443 
05 OJ,887 0,S479 
06 0.8995 0.9494 
Q7 0.9027 0.9515 
013 0;8971 0.9436 

Table 6.16: Simulated coverage probabilities for two-dimensional case 
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- Structur;e . scp 

" comninations. 9{}~h ~5~ 
01 0,924.9 : 0,96l!T 
Cl2 Q~94l!7 .0:9741 
03 0,9400 O.9.Y3S 

f1I1 04 0;9.325 O;9.71!l 
05 0.9200 0~964!l 

06 0.92.115 0.9,745 
07 0,9421 0;9,750 

I 
P3, R1 OS 0.9464 0.9:796 

01 0.9092 0;9521 
02 0,8906 0:9464 

I 
03 0.9042 0;9553 

N2 04 0.9045 0;!l566 
05 0.9049 0·9560 

I 06 ,0:90.04 0.949'6 
07 O,~9' 1:2 0;9474 

I as 0;13979. 0~9465 

I Qj 0:9067 0,9584 
02 0,9376 0.9731 

! 03 [1:9393 ,Q.97.3S 

I 
N1 04 O;~j65 0;9750 

Gis 0.93,36 .0;9775 
06 . 0.92'82 O ~~7M 
07 OJ14,1.4 0:9:742 

I P3. R2 08 0,!l391 0.97'06 
I 01 O~9()14 .0.9.627 

I Cl2 Q,6SZ9 0.9463 
I 03 0~!l'.o01 0.9505 

I rll2 04 0.6969 0;9521 

I 05 O.9Q~9 . 0.9552 
.06 0,6963 O.9'S4{} 

I 
07 0:9486 I 0,6956 
as 0;8971 0.9412 , 01 0:9504 0,9S1~ 

f 
Q2 0;9442 0:9827 

! 03 0.9lSt; Q:915'3 
I' 

0.92209 ! 111 Q4 O.96BS 
i 
i os 0.9127 0.9670 

I 06 0.9220 0.96B6 
07 0;9428 0:9748 

P3, R3 as 0;$471 0.9809 
01 0.9045 0.9540 
02 0:8916 0.9441) 
03 0.8942 0.9475 

N2 04 0.8963 0.9503 , 
05 0.6994 0.9494 , 

I 
06 0,8997 0.95.05 
07 0,8930 0.94&8 

I as .0.9025 0.9521 

Table 6.17: Simulated coverage probabilities for two-dimensional case 
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~T Structum scp 
.: '"" combInations" . I'! 90%· . 9~J. , Q1 0;935!J 0.9&91 

J ... Q2 0.9407 0.9796 , 
O~94# 0;974S 

I 
03 

N1 Oil 0,9389. 0;9754 
05 0;9276 0.97D2: 

I 
06 0:9412 0.9734 
07 0:9457 0:~m~.8 

P:4.R1 OS 0.9467 0;97:& . 

I 
01 0;8913 0.9482 
02 0,8874 Ml432 

I 913 0,a97.8 0 ;949~ 

!112 04 0;9031 0.9511 
, 05 0,9(t46 . 0.9487 
i. 06 0.9U4:& ·0.9512 

I 07 0.9059 0.9514 
l OS OJ!912: 0;9443 

I 
01 019191 OJl628, 
Q2 0;9337 0.9728 
03 O~9431 · o;e7ts 

I N1 04 0,9363 0;9778 ' 

I 05 0.93!16 O,g7.ot 
06 0:9378 0:97S2 
07 0:9428 0.9737 

P4. R2 aS 0:9415 0.~713 
01 O:9lr16 O;~4S:S 
Q2 u19n 1l.94l!a 
03 0.8990 0:9515-

N2 04 0;8943 . 0.955:4 
05 O:SU94 0;9506 

I 
06 lUlan7 0,9505 

I 07 U961 0:9495 
os Q;8951 '0;94:56 

I 
01 0.9451 0;9764 
Q2 0.9375 OJ~757 
03 0.9386 O;971~ 

I N1 Q4 0.9342 0;9736 , 
Q5 0.914S 0;9740 , 

I OS 0 ;~p52 0.97!i& 

i 07 0;9394 0~9740 
I P4, R3 08 0.9413 0.9740 
I 

I 01 0.903'0 0.9534 

I Q2 O.9a43 0;9533 

I ci3 0.8963 0.955:1 

! 1112 04 0.9035 0.9517 
05 0.9061 0.9516 

l 06 0.899.8 0.9.49'9 
, Q7 OJf943 (1.9478 
i OS 0;8968 1.1;9521 i 

Table 6. 18: Simulated coverage probabilit ies for two-dimensional case 
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6.3.3 Conclusions 

From the simulation results for both one-dimensional and two-dimensional 

cases, it is clear that the total sample size N plays a central role. When N 

is small, the confidence bands tends to be conservative. But for a sufficiently 

large N, the simulated coverage probabilities are often very close to the 

nominal confidence levels. This observation agrees with the large sample 

theory which is the base of the construction of simultaneous confidence bands 

for generalized linear models. 
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Chapter 7 

Conclusions and future work 

7.1 Conclusions 

This thesis considers the construction of simultaneous confidence bands for 

a classical normal-error linear regression model and a general linear logistic 

regression model with a binary response variable. From the work in the last 

few chapters, some main conclusions can be drawn. 

7.1.1 For linear regression 

For linear regression, the confidence bands, centered by the estimated mean 

responses x T 13 and with the band width proportional to the standard error 

of x T 13, are of interest. This type of confidence bands are of hyperbolic shape 

following Scheffe (1953)'s procedure, and are more popular than the bands 

of other shapes. Also, it is important to impose a constraint on each pre­

dictor variable so that the confidence bands constructed over the obtained 

restricted region are not unnecessarily wide when we deal with a real prob­

lem. Therefore, constructing exact confidence bands over different restricted 

regions becomes the central task. Two most frequently mentioned regions are 

the ellipsoidal region that centered at the point of the means of the predictor 

variables, and the rectangular region that is formed by imposing an interval 

constraint on each predictor variable. 
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Over an ellipsoidal region, this thesis summarizes three methods to con­

struct both one-sided and two-sided exact simultaneous confidence bands for 

a linear regression model. These three methods are: the method following the 

idea of Bohrer (1973), the algebraical method, and the tubular neighborhood 

method. They start from the same point and are proven to have the equiva­

lent computational formulae for calculation of critical values. Furthermore, it 

is found that the first method has a relatively simple computational formula 

for both simple and multiple linear regression cases. In addition, for some 

special cases, these three methods agree with some other well-known meth­

ods in statistical literatures. For instance, the first method of constructing 

one-sided and two-sided bands for a simple linear regression was considered 

by Bohrer and Francis (1972) and Wynn and Bloomfield (1971) respectively. 

The algebraical method of constructing two-sided bands for a multiple linear 

regression was considered by Casella and Strawderman (1980). Moreover, the 

idea of the tubular neighborhood method also appeared in Naiman (1986), 

Sun and Loader (1994). 

To construct simultaneous confidence bands for a regression model over 

a rectangular region, several methods are available. Among these methods, 

Naiman (1986) produced a conservative confidence band for one-dimensional 

regression models, and his idea may be applied to the high dimensional cases 

but no explicit computational formula was given. The approximate method 

of Sun and Loader (1994) considered an approximation to the tube formula. 

The simulation-based method of Liu, Wynn and Hayter (2005) and Liu, 

Jamshidian, Zhang and Donnelly (2005) for polynomial regression and mul­

tiple linear regression respectively used Monte Carlo simulation. This thesis 

compares these methods in terms of critical values for simple linear regression, 

polynomial regression and bivariate linear regression respectively. From the 

simulation results, several conclusions can be drawn. The simulation-based 

method of Liu et al. (2005) can compute critical values almost as accurate 

as the exact method for a simple linear regression. It is better than the 

conservative method of Naiman (1986) and the approximate method of Sun 
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and Loader (1994) for polynomial and bivariate linear regressions. Naiman's 

method is quite good in the sense that it is a conservative method but its 

critical values are actually not too conservative. The approximate method, 

comparatively speaking, is bad but not seriously. These conclusions may be 

useful for someone who wants to construct simultaneous confidence bands 

for data analysis. 

7.1.2 For logistic regression 

For logistic regression, the base of constructing simultaneous confidence bands 

is the asymptotic normal distribution of the estimator. Hence, this thesis first 

illustrates a way of finding the asymptotic normality of the maximum likeli­

hood estimator of the parameters of interest following the idea presented in 

Sen and Singer (1993). 

Existing literatures on the construction of confidence bands for a logistic 

regression model are very limited. Methods of Brand, Pinnock and Jackson 

(1973) and Hauck (1983) construct confidence bands over the whole pre­

dictor space for simple and multiple regression cases respectively. Over a 

rectangular restricted region, we consider the Type 4 band of Sun, Loader 

and McCormick (2000) specially for the one-dimensional logistic regression. 

The method of Piegorsch and Casella (1988) for the construction of confi­

dence bands for a multiple logistic regression is found not to be recommend­

able. This thesis considers two new methods following the ideas of Wynn 

and Bloomfield (1971) for simple regression and Liu, Jamshidian, Zhang and 

Donnelly (2005) for multiple regression. The confidence bands produced by 

these two methods are named WB band and Simulation-based band accord­

ingly. 

To assess performance of these confidence this thesis 

simulation studies for both one-dimensional and two-dimensional cases. From 

the simulated results, some useful conclusions can be drawn. The bands 

obtained based on large-size samples are better than those with small-size 

samples in the sense that the simulated coverage probabilities of the bands 
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are clearly more closer to the nominal confidence levels for larger sample 

sizes. For one-dimensional case, WE band seems to be better than Type 

4 band recommended by Sun, Loader and McCormick (2000), and it often 

performs very well when the sample size N is 200. For two-dimensional 

case, the Simulation-based bands are quite conservative when N = 60 , and 

its simulated coverage probabilities are very close to the nominal confidence 

levels when N = 200. 

7.2 Future work 

This thesis considers constructing simultaneous confidence bands for only 

one regression model. The construction of confidence bands for two or more 

than two regression models may be of interest in the future work. Also, we 

only focus on the construction of confidence bands for a logistic regression 

with binary data in the thesis. \Ve may consider constructing confidence 

bands for the ordinal logistic regression and the multinomial logistic regres­

sion. Moreover, we may think about other classes of regression models in 

the family of generalized linear models. Since all members of the generalized 

linear models share the large sample asymptotic property, the methods of 

constructing confidence bands should be similar. 
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Appendix A 

Codes for computing the 

critical value and simulated 

coverage probability 

This appendix provides the codes for computing the critical values using var­

ious methods for simple linear regression, polynomial regression and bivari­

ate linear regression, and for computing the simulated coverage probabilities 

for the one-dimensional and two-dimensional linear logistic regressions. All 

codes in this appendix are written using MATLAB unless it is particularly 

specified. 

A.1 For computing the critical value for lin-
. ear regressIon 

A.1.1 Obtaining c, using the exact method for simple 

linear regression 

%%Output 
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%c_wb: the critical value of WB method 

%%Input 

%kO: the angle theta 

%nu: the degree of freedom 

%cl: the confidence level 

tol=O.OOOl; 

NO=10000; 

aa=1;bb=10; 

faa=@(beta)fcdf((aa~2)/(2*(cos(beta))-2),2,nu); 

int_faa=quad(faa,O,pi/2-kO/2); 

HA=(2/pi)*(kO/2)*fcdf((aa~2)/2,2,nu)+(2/pi)*int_faa; 

i=l; 

while i<=NO 

end 

c(i)=aa+(bb-aa)/2; 

f=@(beta)fcdf((c(i)~2)/(2*(cos(beta))~2),2,nu); 

int_f=quad(f,O,pi/2-kO/2); 

HI=(2/pi)*(kO/2)*fcdf((c(i)~2)/2,2,nu)+(2/pi)*int_f; 

if HI-cl==O I (bb-aa)/2<tol 

c_wb=c(i) ;break 

end 

i=i+1; 

if HA*(HI-cl)<O 

aa=c(i -1) ; 

HA=HI; 

else 

bb=c(i-l) ; 

end 

return 
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A.1.2 Obtaining c, using the approximate method for 

simple linear regression 

function c_app=app_cv(kO,nu,cl) 

%%Output 

%c_app: the critical value of the approximate method 

%%Input 

%kO,nu,cl: the same as before 

tol=O.0001; 

NO=10000; 

aa=1;bb=10; 

alpha_aa=(kO/pi)*(1+aa-2/nu)-C-nu/2)+2*(1-tcdf(aa,nu)); 

i=1; 

while i<=NO 

end 

c(i)=aa+(bb-aa)/2; 

alpha_I=(kO/pi)*(1+c(i)-2/nu)-(-nu/2)+2*(1-tcdf(c(i),nu)); 

if alpha_I-(1-cl)==O I (bb-aa)/2<tol 

c_app=c(i);break 

end 

i=i+1; 

if alpha_aa*(alpha_I-(1-cl))>O 

aa=c (i -1) ; 

alpha_aa=alpha_I; 

else 

bb=c(i -1) ; 

end 

return 
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A.1.3 Obtaining c, using the silnulation-based method 

for simple linear regression 

function [c_simu,se]=simu_cv(kO,nu,cl,nsim) 

%%Output 

%c_simu: the critical value of the simulation-based method 

%se: the standard error 

%%Input 

%kO,nu,cl: the same as before 

%nsim: the number of simulations 

%Generate sigma-/sigma 

S=sqrt(sum(randn(nu,nsim).-2)./nu); 

%Compute T 

for j=l :nsim 

N=randnCl, 2) ; 

u=N./norm(N); 

if abs(u(1»>=cos(kO/2) 

Q(j)=norm(N); 

elseif ((u(l»=O) & (u(1)<cos(kO/2» & (u(2»sin(kO/2») I 

((u(l)<=O) & (u(1»-cos(kO/2» & (u(2)<-sin(kO/2») 

Q(j)=norm(N)*abs(u(1)*cos(kO/2)+u(2)*sin(kO/2»; 

else 

end 

end 

T=Q./8; 

%Compute the quantile of the simulated values 
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T=sort(T); 

r=nsim*cl; 

c_simu=T(r); 

%Compute the standard error of c 

d=O.Ol; 

K=(c_simu-T)/d; 

g=sum((1/(d*sqrt(2*pi)))*exp(-O.5*(K.-2)))/length(T) ; 

se=sqrt((cl*(1-cl))/(g-2*length(T))); 

return 

A.1.4 Obtaining c, uSIng Naiman's method for poly­

nomial regression 

function c_naiman=naiman_ld_cc(w,cl,pl,a,b); 

%%Output 

%c_naiman: the critical value of Naiman's method 

%%Input 

%w: the design points of the only predictor variable 

%cl: the confidence level 

%pl: the order of the polynomial regression plus 1 

%a: the lower bound of the restricted interval 

%b: the upper bound of the restricted interval 

n=length(w); 

nu=n-pl ; 

for j=l:pl 

XC: ,j)=w'. -(j-i); 

end 

P=sqrtm(inv(X'*X)); 

p=fliplr(P); 
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for j=1 :p1 

sqpCj, : )=conv(p(j,:) ,pCj, :)); 

end 

sqrnolp=surn(sqp); 

x=a:(b-a)/1000:b; 

for k=1:1ength(x) 

end 

for j=1: (p1-1) 

xdp(j)=x(k)-(p1-1-j); 

end 

for j=1:((p1-1)*2+1) 

xsqrnolp(j)=x(k)-((p1-1)*2+1-j); 

end 

for j=1:p1 

xp(j)=x(k)-(p1-j); 

end 

for j=1:(p1-1)*2 

xdsqrnolp(j)=x(k)-((p1-1)*2-j); 

end 

for j=1 :p1 

end 

dT(j)=(polyder(p(j, :))*xdp'*sqrt(sqrnolp*xsqrnolp')­

p(j,:)*xp'*(1/(2*sqrt(sqrnolp*xsqrnolp')))* 

(polyder(sqrnolp)*xdsqrnolp'))/(sqrnolp*xsqrnolp'); 

rnoldT(k)=norrn(dT); 

for rn=1: (length(x)-1) 

T(rn)=(rnoldT(rn)+rnoldT(rn+1))/2; 

end 

kO=((b-a)/1000)*surn(T'); 

tol=O.0001; 

170 



NO=100000; 

aa=1;bb=10; 

t=O:(1/(aa*1000)): (l/aa); 

for m=l:length(t) 

end 

faa(m)=min((fcdf(2*((aa*t(m))~(-2)-1)/(pl-2) ,pl-2,2)* 

(kO/pi)+fcdf(((aa*t(m))-(-2)-1)/(pl-l),pl-l,1)),1)* 

fpdf(pl*t(m)~2,nu,pl)*2*pl*t(m); 

for k=l:(length(t)-l) 

Func_aa(k)=(faa(k)+faa(k+l))/2; 

end 

alpha_aa=(1/(aa*1000))*sum(Func_aa'); 

i=l; 

while i<=NO 

c(i)=aa+(bb-aa)/2; 

t_I=O:(1/(c(i)*1000)):(1/c(i)); 

for m=l:length(t_I) 

end 

f_I(m)=min((fcdf(2*((c(i)*t_I(m))~(-2)-1)/(pl-2),pl-2,2) 

*(kO/pi)+fcdf(((c(i)*t_I(m))~(-2)-1)/(pl-l),pl-l,1)),1)* 

fpdf(pl*t_I(m)-2,nu,pl)*2*pl*t_I(m); 

for k=l:(length(t_I)-l) 

Func_I(k)=(f_I(k)+f_I(k+l))/2; 

end 

alpha_I=(1/(c(i)*1000))*sum(Func_I'); 

if alpha_I-(l-cl)==O I (bb-aa)/2<tol 

c_naiman=c(i); 

alpha=alpha_I;break 

end 

i=i+l; 
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else 

end 

end 

return 

aa=c(i-1) ; 

alpha_aa=alpha_I; 

bb=c(i-1); 

A.1.5 Obtaining c, using the approximate method for 

polynomial regression 

function c_app=approxi_1d_cc(w,cl,p1,a,b); 

%%Output 

%c_app: the critical value of the approximate method 

%%Input 

%w,cl,p1,a,b: the same as before 

n=length(w); 

nu=n-p1 ; 

for j=1:p1 

XC: ,j)=w'. -Cj-1); 

end 

q=X*inv(X'*X); 

l=fliplr(q); 

for j=1:n 

sql(j, : )=conv(l(j , :) , lCj , :)) ; 

end 

sqmoll=sum(sql) ; 

x=a:(b-a)/1000:b; 

for k=1:length(x) 
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end 

for j =1: (p1-1) 

xdl(j)=x(k)-(pl-l-j); 

end 

for j=1:((pl-l)*2+1) 

xsqmoll(j)=x(k)-((pl-l)*2+1-j); 

end 

for j=1:p1 

xl(j)=x(k)-Cpl-j); 

end 

for j=1:(p1-1)*2 

xdsqmoll(j)=x(k)-((p1-1)*2-j); 

end 

for j=1:n 

end 

dT(j)=(polyder(l(j, :))*xdl'*sqrt(sqmoll*xsqmoll')­

I(j, :)*xI'*(1/(2*sqrt(sqmoll*xsqmoll')))* 

(polyder(sqmoll)*xdsqmoll'))/(sqmoll*xsqmoll'); 

moldT(k)=norm(dT); 

for m=1:(length(x)-1) 

T(m)=(moldT(m)+moldT(m+1))/2; 

end 

kO=((b-a)/1000)*sum(T'); 

tol=O.0001; 

NO=10000; 

aa=l ;bb=10; 

aIpha_aa=(kO/pi)*(1+aa-2/nu)-(-nu/2)+2*(1-tcdf(aa,nu)); 

i=l ; 

while i<=NO 

c(i)=aa+(bb-aa)/2; 
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alpha_I=(kO/pi)*(1+c(i)-2/nu)-(-nu/2)+2*(1-tcdf(c(i),nu)); 

if alpha_I-(1-cl)==O I (bb-aa)/2<tol 

c_app=c (i) ; 

alpha=alpha_I;break 

end 

i=i+1; 

if alpha_aa*(alpha_I-(1-cl))>O 

aa=c(i-1); 

alpha_aa=alpha_I; 

else 

bb=cCi -1) ; 

end 

end 

return 

A.1.6 Obtaining c, using the simulation-based m.ethod 

for polynomial regression 

For quadratic regression 

function [c_simu,se]=simu_quadratic_c(w,a,b,cl,nsim); 

%%output 

%c_simu: the critical value of the simulation-based method 

%se: the standard error of c_simu 

%%input 

%w,a,b,cl: the same as before 

%nsim: the number of simulations 

n=length(w); 

for m=1:3 

XC: ,m)=w'. -(m-1); 
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end 

q=inv(X'*X); 

P=sqrtm(q);nu=n-3; 

%Generate (beta--beta)/sigma 

V=P*randn(3,nsim); 

%Generate sigma-/sigma 

S=sqrt(sum(randn(nu,nsim). ~2)./nu); 

%Compute T 

for m=l :nsim 

U=V(: ,m)*V(: ,m)'; 

a1=U(2,1); 

a2=2*U(3,1)+U(2,2); 

a3=2*U(3,2)+U(2,3); 

a4=2*U(3,3); 

poly1=[a4 a3 a2 a1J; 

b1=q C1, 1) ; 

b2=q(2,1)+q(1,2); 

b3=q(3,1)+q(2,2)+q(1,3); 

b4=q(3,2)+q(2,3); 

b5=q(3,3); 

poly2=[b5 b4 b3 b2 b1J; 

c1=UC1,1) ; 

c2=U(2,1)+U(1,2); 

c3=U(3,1)+U(2,2)+U(1,3); 

c4=U(3,2)+U(2,3); 

c5=U(3,3); 
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end 

poly3=[c5 c4 c3 c2 c1J; 

d1=q(2,1); 

d2=2*q(3,1)+q(2,2); 

d3=2*q(3,2)+q(2,3); 

d4=2*q(3,3); 

poly4=[d4 d3 d2 d1J; 

g=conv(poly1,poly2)-conv(poly3,poly4); 

y=roots(g); 

for j=1:3 

end 

A(j)=a-Cj-1) ; 

B(j)=b- (j-1); 

ha=abs(A*V(:,rn))/sqrt(A*q*A'); 

hb=abs(B*V(:,rn))/sqrt(B*q*B'); 

for j=l: (4*3-6) 

end 

fork=1:3 

Yj(k)=y(j)-(k-1); 

end 

if y(j»a & y(j)<b 

h(j)=abs(Yj*V(:,rn))/sqrt(Yj*q*Yj'); 

else 

h(j)=O; 

end 

H=[real(h) ha hbJ; 

H_rnax=rnax(H); 

Q(rn)=H_rnax; 

T=Q./S; 
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%Compute the quantile of the simulated values 

T=sort(T); 

r=nsim*cl; 

c_simu=T(r); 

%Compute the standard error 

d=O.Ol; 

K=(c_simu-T) /d; 

g=sum((1/(d*sqrt(2*pi)))*exp(-O.5*(K.-2)))/length(T); 

se=sqrt((cl*(1-cl))/Cg-2*length(T))); 

return 

For cubic regression 

function [c_simu,se]=simu_cubic_c(w,a,b,cl,nsim); 

%All outputs and inputs are the same as before 

n=length(w); 

for m=1:4 

XC: ,m)=w'. -(m-1); 

end 

q=inv(X'*X); 

P=sqrtm(q); 

nu=n-4; 

%Generate (beta--beta)/sigma 

V=P*randn(4,nsim); 

%Generate sigma-/sigma 
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S=sqrt(sum(randn(nu,nsim).-2) ./nu); 

%compute T 

for m=l:nsim 

U=V(: ,m)*V(: ,m)'; 

al=U(2,1); 

a2=2*U(3,1)+U(2,2); 

a3=3*U(4,1)+2*U(3,2)+U(2,3); 

a4=3*U(4,2)+2*U(3,3)+U(2,4); 

a5=3*U(4,3)+2*U(3,4); 

a6=3*U(4,4); 

poly1=[a6 a5 a4 a3 a2 a1J; 

b1=q (1,1) ; 

b2=q(2,1)+q(1,2); 

b3=q(3,1)+q(2,2)+q(1,3); 

b4=q(4,1)+q(3,2)+q(2,3)+q(1,4); 

b5=q(4,2)+q(3,3)+q(2,4); 

b6=q(4,3)+q(3,4); 

b7=q(4,4); 

poly2=[b7 b6 b5 b4 b3 b2 blJ; 

c1=U(1,1); 

c2=U(2,1)+U(1,2); 

c3=U(3,1)+U(2,2)+U(1,3); 

c4=U(4,1)+U(3,2)+U(2,3)+U(1,4); 

c5=U(4,2)+U(3,3)+U(2,4); 

c6=U(4,3)+U(3,4); 

c7=U(4,4); 

poly3=[c7 c6 c5 c4 c3 c2 c1J; 
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end 

dl=q(2,1); 

d2=2*q(3,1)+q(2,2); 

d3=3*q(4,1)+2*q(3,2)+q(2,3); 

d4=3*q(4,2)+2*q(3,3)+q(2,4); 

d5=3*q(4,3)+2*q(3,4); 

d6=3*q(4,4); 

poly4=[d6 d5 d4 d3 d2 dl]; 

g=conv(polyl,poly2)-conv(poly3,poly4); 

y=roots(g); 

for j=1:4 

end 

A(j)=a-Cj-i) ; 

B(j)=b-Cj-l); 

ha=abs(A*V(:,m))/sqrt(A*q*A'); 

hb=abs(B*V(:,m))/sqrt(B*q*B'); 

for j=l: (4*4-6) 

end 

for k=1: 4 

end 

if y(j»a & y(j)<b 

h(j)=abs(Yj*V(:,m))/sqrt(Yj*q*Yj'); 

else 

h(j)=O; 

end 

H=[real(h) ha hb] ; 

H_max=max(H); 

Q(m)=H_max; 

T=Q./S; 
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%Compute the quantile of the simulated values 

T=sort (T) ; 

r=nsim*cl; 

c_simu=T(r); 

%Compute the standard error 

d=O.Ol; 

K=(c_simm-T)/d; 

g=sum((1/(d*sqrt(2*pi)))*exp(-O.5*(K.-2)))/length(T) ; 

se=sqrt((cl*(1-cl))/(g-2*length(T))); 

return 

For 4th order polynomial regression 

function [c_simu,se]=simu_poly_c(w,a,b,cl,nsim); 

%All outputs and inputs are the same as before 

n=length(w); 

for m=1:5 

X(: ,m)=w' . - (m-i); 

end 

q=inv(X'*X); 

P=sqrtm(q); 

nu=n-5; 

%Generate (beta--beta)/sigma 

V=P*randn(5,nsim); 
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S=sqrt(sum(randn(nu,nsim).~2) ./nu); 

%compute T 

for m=1:nsim 

U=V(:,m)*V(:,m)'; 

a1=U(2,1); 

a2=2*U(3,1)+U(2,2); 

a3=3*U(4,1)+2*U(3,2)+U(2,3); 

a4=4*U(5,1)+3*U(4,2)+2*U(3,3)+U(2,4); 

a5=4*U(5,2)+3*U(4,3)+2*U(3,4)+U(2,5); 

a6=4*U(5,3)+3*U(4,4)+2*U(3,5); 

a7=4*U(5,4)+3*U(4,5); 

a8=4*U(5,5); 

poly1=[a8 a7 a6 a5 a4 a3 a2 a1J; 

b1=q(1,1); 

b2=q(2,1)+q(1,2); 

b3=q(3,1)+q(2,2)+q(1,3); 

b4=q(4,1)+q(3,2)+q(2,3)+q(1,4); 

b5=q(5,1)+q(4,2)+q(3,3)+q(2,4)+q(1,5); 

b6=q(5,2)+q(4,3)+q(3,4)+q(2,5); 

b7=q(5,3)+q(4,4)+q(3,5); 

b8=q(5,4)+q(4,5); 

b9=q(5,5); 

poly2=[b9 b8 b7 b6 b5 b4 b3 b2 b1J; 

c1=U(1,1); 

c2=U(2,1)+U(1,2); 

c3=U(3,1)+U(2,2)+U(1,3); 

c4=U(4,1)+U(3,2)+U(2,3)+U(1,4); 

c5=U(5,1)+U(4,2)+U(3,3)+U(2,4)+U(1,5); 
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c6=U(5,2)+U(4,3)+U(3,4)+U(2,5); 

c7=U(5,3)+U(4,4)+U(3,5); 

c8=U(5,4)+U(4,5); 

c9=U(5,5); 

poly3=[c9 c8 c7 c6 c5 c4 c3 c2 c1J; 

d1=q(2,1); 

d2=2*q(3,1)+q(2,2); 

d3=3*q(4,1)+2*q(3,2)+q(2,3); 

d4=4*q(5,1)+3*q(4,2)+2*q(3,3)+q(2,4); 

d5=4*q(5,2)+3*q(4,3)+2*q(3,4)+q(2,5) ; 

d6=4*q(5,3)+3*q(4,4)+2*q(3,5); 

d7=4*q(5,4)+3*q(4,5); 

d8=4*q (5,5) ; 

poly4=[d8 d7 d6 d5 d4 d3 d2 d1J; 

g=conv(poly1,poly2)-conv(poly3,poly4); 

y=roots(g); 

for j=1:5 

end 

A(j)=a~Cj-1) ; 

BCj)=b~Cj-1) ; 

ha=abs(A*V(:,m))/sqrt(A*q*A'); 

hb=abs(B*V(:,m))/sqrt(B*q*B'); 

for j=1: (4*5-6) 

for k=1:5 

Yj(k)=y(j)-(k-1); 

end 

if y(j»a & y(j)<b 

h(j)=abs(Yj*V(: ,m))/sqrt(Yj*q*Yj'); 

else 
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end 

h(j)=O; 

end 

end 

H=[real(h) ha hb]; 

H_max=max(H); 

Q(m)=H_max; 

T=Q./S; 

%Compute the quantile of the simulated values 

T=sort(T); 

r=nsim*cl; 

c_simu=T(r); 

%Compute the standard error 

d=O. 01; 

K=(c_simu-T)/d; 

g=sum((1/(d*sqrt(2*pi»)*exp(-0.5*(K.-2»)/length(T); 

se=sqrt((cl*(1-cl»/(g~2*length(T»)); 

return 

A.I. 7 Obtaining c, using the approxirnate method for 

bivariate linear regression 

function cc_app=approxi_2d_cc(X,a,b,c,d,cl) 

%%Output 

%cc_app: the critical value of the approximate method 

%%Input 

%X: the design matrix 

%a,b: the lower and upper bounds of the restricted interval 

%c,d: the lower and upper bounds of the restricted interval 
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%cl: the confidence level 

n=length(X(:,l)'); 

nu=n-3; 

l=X*inv(X'*X); 

for j=l:n 

sqlCj,:)=[lCj,1)-2 lCj,2)-2 lCj,3)-2 2*lej,1)*lCj,2) 

2*1(j,1)*1(j,3) 2*1(j,2)*1(j,3)]; 

end 

sqmoll=sum(sql) ; 

dxl=lC: ,2) ; 

dyl=lC: ,3) ; 

dxsqmoll=[2*sqmoll(2) sqmoll(4) sqmoll(6)]; 

dysqmoll=[2*sqmoll(3) sqmoll(5) sqmoll(6)]; 

x=a:(b-a)!1000:b; 

y=c:(d-c)!1000:d; 

%Compute kO 

for j=1:1ength(x) 

for k=1:1ength(y) 

xysqmoll=[l x(j)-2 y(k)~2 x(j) y(k) x(j)*y(k)]; 

xyl=[l x(j) y(k)]; 

xydxsqmoll=[x(j) 1 y(k)]; 

xydysqmoll=[y(k) 1 x(j)]; 

Tx=(dxl*sqrt (sqmoll*xysqmoll') - (l*xyl') * 

(1!(2*sqrt(sqmoll*xysqmoll')))* 

(dxsqmoll*xydxsqmoll'))!(sqmoll*xysqmoll') ; 

Ty=(dyl*sqrt(sqmoll*xysqmoll')-(l*xyl')* 

(1!(2*sqrt(sqmoll*xysqmoll')))* 

(dysqmoll*xydysqmoll'))!(sqmoll*xysqmoll') ; 

A=[Tx Ty]; 
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end 

f(k)=sqrt(det(A'*A)); 

end 

for m=l:(length(y)-l) 

g(m)=(f(m)+f(m+l))/2; 

end 

for ii=l:(length(x)-l) 

K_int(ii)=(k_int(ii)+k_int(ii+l))/2; 

end 

%Compute sO 

for k=1:1ength(y) 

end 

aysqmoll=[l a-2 y(k)-2 a y(k) a*y(k)]; 

ayl=[l a y(k)]; 

aydxsqmoll=[a 1 y(k)]; 

aydysqmoll=[y(k) 1 a]; 

Ty=(dyl*sqrt(sqmoll*aysqmoll')-(l*ayl')* 

(1/(2*sqrt(sqm?11*aysqmoll')))* 

(dysqmoll*aydysqmoll'))/(sqmoll*aysqmoll'); 

f(k)=sqrt(det(Ty'*Ty)); 

for m=l:(length(y)-l) 

g(m)=(f(m)+f(m+l))/2; 

end 

ka_int=((d-c)/1000)*sum(g'); 

for k=1:1ength(y) 

bysqmoll=[l b-2 y(k)-2 b y(k) b*y(k)]; 

byl=[l b y(k)]; 
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end 

bydxsqmoll=[b 1 y(k)] ; 

bydysqmoll=[y(k) 1 bJ; 

Ty=(dyl*sqrt(sqmoll*bysqmoll')-(l*byl')* 

(1/(2*sqrt(sqmoll*bysqmoll')))* 

(dysqmoll*bydysqmoll'))/(sqmoll*bysqmoll'); 

f(k)=sqrt(det(Ty'*Ty)); 

for m=l:(length(y)-l) 

g(m)=(f(m)+f(m+l))/2; 

end 

kb_int=((d-c)/1000)*sum(g'); 

for j=1:1ength(x) 

end 

xcsqmoll=[l x(j)-2 c-2 x(j) c x(j)*c]; 

xcl= [1 x(j) cJ; 

xcdxsqmoll=[x(j) 1 cJ; 

xcdysqmoll=[c 1 x(j)]; 

Tx=(dxl*sqrt(sqmoll*xcsqmoll')-(l*xcl')* 

(1/(2*sqrt(sqmoll*xcsqmoll')))* 

(dxsqmoll*xcdxsqmoll'))/(sqmoll*xcsqmoll'); 

f(j)=sqrt(det(Tx'*Tx)); 

for m=l:(length(x)-l) 

g(m)=(f(m)+f(m+l))/2; 

end 

for j=1:1ength(x) 

xdsqmoll=[l x(j)-2 d-2 x(j) d x(j)*d]; 

xdl = [1 x (j) dJ; 

xddxsqmoll=[x(j) 1 dJ; 
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end 

xddysqmoll=[d 1 x(j)] ; 

Tx=(dxl*sqrt(sqmoll*xdsqmoll')-(l*xdl')* 

(1/(2*sqrt(sqmoll*xdsqmoll')))* 

(dxsqmoll*xddxsqmoll'))/(sqmoll*xdsqmoll'); 

f(j)=sqrt(det(Tx'*Tx)); 

for m=1:(length(x)-1) 

g(m)=(f(m)+f(m+1))/2; 

end 

kd_int=((b-a)/1000)*sum(g'); 

sO=ka_int+kb_int+kc_int+kd_int; 

tol=0.0001; 

NO=10000; 

aa=1;bb=10; 

alpha_aa=(kO/pi-(3/2))*(gamma((nu+1)/2)/gamma(nu/2))*(aa/sqrt(nu))* 

(1+aa-2/nu)-(-(nu+1)/2)+(sO/(2*pi))*(1+aa-2/nu)-(-nu/2)+2*(1-tcdf(aa,nu)); 

i=1 ; 

while i<=NO 

c(i)=aa+(bb-aa)/2; 

alpha_I=(kO/pi-(3/2))*(gamma((nu+1)/2)/gamma(nu/2))*(c(i)/sqrt(nu))* 

(1+c(i)-2/nu)-(-(nu+1)/2)+(sO/(2*pi))*(1+c(i)-2/nu)-(-nu/2)+ 

2*(1-tcdf(c(i),nu)); 

if alpha_I - (i-cl) ==0 I (bb-aa) /2<tol 

cc_app=c(i); 

alpha=alpha_I;break 

end 

i=i+1; 

if alpha_aa*(alpha_I-(1-cl))>0 

aa=cCi -1) ; 

alpha_aa=alpha_I; 
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else 

end 

end 

return 

A.2 

bb=c(i-l); 

For computing the simulated coverage 

probability for logistic regression 

A.2.1 Obtaining scp, using the WB m.ethod for silnple 

logistic regression 

function scp_wb=wb_scp(x,N,b,al,a2,nsim) 

%%Output 

%scp_wb: the simulated coverage probability of WE method 

%%Input 

%x: the design points of the only predictor variable 

%N: the vector of sub-sample sizes 

%b: the vector of true regression coefficients 

%al: the lower bound of the restricted interval 

%a2: the upper bound of the restricted interval 

%c1: the confidence level 

%nsim: the number of simulations 

n=length(x); 

for k=1:nsim 

for j=l:n 

p_i(j )=exp (b(1)+b(2) *xCj)) . / (1 +exp(b(1)+b (2) *x(j))) ; 

z(j)=binornd(N(j),p_i(j),l,l); 

if z(j)==N(j) I z(j)==O 
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z(j)=binornd(N(j),p_i(j),l,l); 

end 

end 

y=z./N; 

diff=l ; 

b_es=[O;O]; %initial guess of b_es 

while diff>O.OOOl 

end 

b_old=b_es; 

p=exp(b_es(1)+b_es(2)*x)./(1+exp(b_es(1)+b_es(2)*x»; 

for i=l:length(x) 

end 

Jl(i)=N(i)*p(i)*(l-p(i»; 

J2(i)=Jl(i)*x(i); 

J3(i)=J2(i)*x(i); 

s=[sum(y-p);sum((y-p).*x)] ; 

J=[sum(Jl) sum(J2);sum(J2) sum(J3)]; 

b_es=b_old+J\s; 

diff=sum(abs(b_es-b_old»; 

f_inv=invCl) ; 

P=sqrtm(Linv); 

vector_a=(P*[l;al]), ; 

vector_b=(P*[1;a2])'; 

theta_ast=acos((vector_a*vector_b')/(norm(vector_a)* 

norm(vector_b»)./2; 

tol=O.OOOl; 

NO=10000; 

aa=1;bb=10; 

f=©(w)chi2cdf(aa.-2./(cos(w) .~2),2); 

g=quad(f,O,pi/2-theta_ast); 
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HA=(2/pi)*theta_ast*chi2cdf(aa~2,2)+(2/pi)*g; 

i=1; 

while i<=NO 

c(i)=aa+(bb-aa)/2; 

end 

f1=<il(y1)chi2cdfCc(i). ~2./(cos(y1). ~2) ,2); 

g1=quad(f1,O,pi/2-theta_ast); 

HI=(2/pi)*theta_ast*chi2cdf(c(i)~2,2)+(2/pi)*g1; 

if HI-O.95==O I (bb-aa)/2<tol 

cc_wb=c(i);break 

end 

i=i+1; 

if HA*(HI-O.95)<O 

aa=c(i -1) ; 

HA=HI; 

else 

bb=c(i-1); 

end 

v1=P(. ,1)+P(:,2).*a1; 

v2=P(: ,1)+P(:,2) .*a2; 

M=inv(P)'*(b'-b_es); 

if (M>=v1 & M<=v2) (-M>=v1 & -M<=v2) 

else 

end 

T=Q; 

Q=norm(M); 

Q1=abs(v1'*M)/norm(v1); 

Q2=abs(v2'*M)/norm(v2); 

Q=max(Q1,Q2); 

if T>cc wb 

r(k)=O; 
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else 

r(k)=l; 

end 

end 

r_sum=sum(r'); 

scp_wb=r_sum/nsim; 

return 

A.2.2 Obtaining scp of Type 4 band for simple logistic 

regression, using parfit on S-pI us 

library(locfit,first=T) 

scpT4<-function(x,N,b,al,a2,nsim) 

{ 

for(i in l:nsim) 

{ 

pr<-exp(b[1]+b[2]*x)/(1+exp(b[1]+b[2]*x)) 

z<-c(O,O,O,O,O) 

y<-c(O,O,O,O,O) 

Jl<-c(O,O,O,O,O) 

J2<-c(O,O,O,O,O) 

J3<-c(O,O,O,O,O) 

v<-c(O,O,O) 

vl<-c(O,O,O) 

cc<-c(O,O,O) 

for(i in l:length(x)) 

{ 

z[i]<-rbinom(l,N[i] ,pr[i]) 

} 

y<-z/N 

bb<-glm(y-x,family=binomial) 
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bes<-unlist(bb[1] ,use.names=F) 

p<-exp(bes[1]+bes[2]*x)/(1+exp(bes[1]+bes[2]*x)) 

for(i in 1:1ength(x)) 

{ 

} 

J1 [i] <-N [i] *p [i] * (1-p [i] ) 

J2 [i] <-J1 [i] *x [i] 

J3[i] <-J2 [i] *x [i] 

JO<-c(sum(J1),sum(J2),sum(J2),sum(J3)) 

J<-matrix(JO,nrow=2,byrow=T) 

finv<-solve (J) 

t<-data.frame(x,z,N) 

fit<-scb(z-x,type=4,w=N,data=t,deg=1,family="binomial", 

kern="parm",xlim=c(a1,a2)) 

xp<-unlist(fit[1] ,use.names=F) 

11<-unlist(fit[4] ,use.names=F) 

ul<-unlist(fit[5] ,use.names=F) 

for(i in c(1,10,20)) 

{ 

cc[i]<-(ul[i]-11[i])/(2*sqrt(c(1,xp[i])%*%finv%*% 

matrix(c(1,xp[i]),nrow=2))) 

} 

ccapp<-(cc[1]+cc[10]+cc[20])/3 

R<-seq(O,by=O,length=nsim) 

q<-O 

while (q<=20) 

{ 

u<-a1+q*(a2-a1)/20 

G1<-c(1,u)%*%matrix(b-bes,nrow=2) 

G2<-sqrt(c(1,u)%*%finv%*%matrix(c(1,u),nrow=2)) 

H<-abs(G1)/G2 
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} 

} 

} 

if(H>ccapp) 

{ 

} 

R[i]<-O 

break 

R [i] <-1 

q<-q+1 

Rsum<-sum(R) 

scpapp<-Rsum/nsim 

return(scpapp) 

A.2.3 Obtaining scp, using the simulation-based method 

for bivariate logistic regression 

function scp_simu=simu_scp(x1,x2,N,b,a1,a2,a3,a4,cl,nsim1,nsim2) 

%%Output 

%scp_simu: the simulated coverage probability of the confidence 

% 

%%Input 

%x1 : the 

%x2: the 

%N: the 

%b: the 

%a1 : the 

%a2: the 

%a3: the 

band constructed based on the simulation method 

design points of the first predictor variable 

design points of the second predictor variable 

vector of sub-sample sizes 

vector of true regression coefficients 

lower bound of the first restricted interval 

upper bound of the first restricted interval 

lower bound of the second restricted interval 

%a4: the upper bound of the second restricted interval 

%cl: the confidence level 
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%nsiml: the number of simulations for computing critical value 

%nsim2: the number of simulations for computing coverage probability 

for k=1:nsim2 

p_i=exp(b(1)+b(2)*xl+b(3)*x2) ./(1+exp(b(1)+b(2)*xl+b(3)*x2»; 

for j=l:length(xl) 

z(j)=binornd(N(j),p_i(j),l,l); 

if z(j)==O I z(j)==N(j) 

z(j)=binornd(N(j),p_i(j),l,l); 

end 

end 

y=z./N; 

diff=l; 

b_es=[O;O;O]; %initial guess of b_es 

while diff>O.OOOl 

b_old=b_es; 

pr=exp(b_es(1)+b_es(2)*xl+b_es(3)*x2)./ 

(1+exp(b_es(1)+b_es(2)*xl+b_es(3)*x2»; 

for i=l:length(xl) 

end 

Jl(i)=N(i)*pr(i)*(l-pr(i»; 

J2(i)=Jl(i)*xl(i); 

J3(i)=J2(i)*xl(i); 

J4(i)=Jl(i)*x2(i); 

J5(i)=J2(i)*x2(i); 

J6(i)=J4(i)*x2(i); 

s=[sum(y-pr);sum((y-pr).*xl);sum((y-pr).*x2)] ; 

J=[sum(Jl) sum(J2) sum(J4);sum(J2) sum(J3) sum(J5); 

sum(J4) sum(J5) sum(J6)]; 

b_es=b_old+J\s; 

diff=sum(abs(b_es-b_old»; 
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end 

f_inv=inv(]); 

P=sqrtm(Cinv); 

v1=P(: ,1)+P(: ,2) .*a1+P(: ,3) .*a3; 

v2=P(: ,1)+P(: ,2) .*a1+P(: ,3) .*a4; 

v3=P(: ,1)+P(: ,2).*a2+P(: ,3) .*a3; 

v4=P(:,1)+P(:,2).*a2+P(: ,3).*a4; 

for i=1 :nsim.1 

M=randn(3,1); 

if (M>=v1 & M<=v4) I (-M>=v1 & -M<=v4) 

Q=norm.(M); 

else 

B1=[v1 v2J; 

B2=[v1 v3J; 

B3=[v2 v4J; 

B4=[v3 v4J; 

[Q1,R1J=qr(B1,O); 

[Q2,R2J=qr(B2,O); 

[Q3,R3]=qr(B3,O); 

[Q4,R4J=qr(B4,O) ; 

D1=dot(Q1(: ,1) ,M)*Q1(: ,1)+dot(Q1(: ,2) ,M)*Q1(: ,2); 

D2=dot(Q2(:,1),M)*Q2(: ,1)+dot(Q2(:,2) ,M)*Q2(:,2); 

D3=dot(Q3(:,1),M)*Q3(:,1)+dot(Q3(:,2),M)*Q3(:,2); 

D4=dot(Q4(: ,1),MY*Q4(: ,1)+dot(Q4(:,2) ,M)*Q4(:,2); 

if (D1>=v1 & D1<=v2) I (-D1>=v1 & -D1<=v2) 

Q11=abs(D1'*M)/norm(D1); 

else 

Q11=m.ax(abs(v1'*M)/norm.(v1),abs(v2'*M)/norm.(v2); 

end 

if (D2>=v1 & D2<=v3) I (-D2>=v1 & -D2<=v3) 

Q12=abs(D2'*M)/norm(D2); 
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end 

end 

else 

Q12=max(abs(v1'*M)/norm(v1),abs(v3'*M)/norm(v3)); 

end 

if (D3>=v2 & D3<=v4) I (-D3>=v2 & -D3<=v4) 

Q13=abs(D3'*M)/norm(D3); 

else 

Q13=max(abs(v2'*M)/norm(v2),abs(v4'*M)/norm(v4)); 

end 

if (D4>=v3 & D4<=v4) I (-D4>=v3 & -D4<=v4) 

Q14=abs(D4'*M)/norm(D4); 

else 

Q14=max(abs(v3'*M)/norm(v3),abs(v4'*M)/norm(v4)); 

end 

Qarray=[Q11 Q12 Q13 Q14J; 

Q=max(Qarray); 

T(i)=Q; 

T=sort(T); 

r=nsim1*cl; 

cc_simu=T(r); 

MM=inv(P)'*(b'-b_es); 

if (MM>=v1 & MM<=v4) (-MM>=v1 & -MM<=v4) 

else 

QQ=norm(MM); 

DD1=dot(Q1(:,1),MM)*Ql(: ,1)+dotCQ1(:,2),MM)*Ql(: ,2); 

DD2=dot(Q2(:,1),MM)*Q2(: ,1)+dot(Q2(: ,2),MM)*Q2(:,2); 

DD3=dot(Q3(:,1),MM)*Q3(: ,1)+dot(Q3(:,2),MM)*Q3(:,2); 

DD4=dot(Q4(: ,1),MM)*Q4(: ,1)+dot(Q4(:,2),MM)*Q4(:,2); 

if (DD1>=v1 & DD1<=v2) I (-DD1>=v1 & -DD1<=v2) 
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end 

end 

QQ11=abs(DD1'*MM)/norm(DD1); 

else 

QQ11=max(abs(v1'*MM)/norm(v1),abs(v2'*MM)/norm(v2)); 

end 

if (DD2>=v1 & DD2<=v3) I (-DD2>=v1 & -DD2<=v3) 

QQ12=abs(DD2'*MM)/norm(DD2); 

else 

QQ12=max(abs(v1'*MM)/norm(v1),abs(v3'*MM)/norm(v3)); 

end 

if (DD3>=v2 & DD3<=v4) I (-DD3>=v2 & -DD3<=v4) 

QQ13=abs (DD3' *MI"l)/norm(DD3) ; 

else 

QQ13=max(abs(v2'*MM)/norm(v2),abs(v4'*MM)/norm(v4)); 

end 

if (DD4>=v3 & DD4<=v4) I (-DD4>=v3 & -DD4<=v4) 

QQ14=abs(DD4'*MM)/norm(DD4); 

else 

QQ14=max(abs(v3'*MM)/norm(v3),abs(v4'*MM)/norm(v4)); 

end 

QQarray=[QQ11 QQ12 QQ13 QQ14J; 

QQ=max(QQarray); 

TT=QQ; 

if TT>cc simu 

rr(k)=O; 

else 

rr(k)=1; 

end 

rr_sum=sum(rr'); 

scp_simu=rr_sum/nsim2; return 

197 



References 

1. Al-Saidy, a.M., Piegorsch, W.W., West, RW. et al. (2002). "Confi­

dence bands for low-dose risk estimation with quantal response data," 

Biometrics, 59, 1056-1062. 

2. Agresti, A., and Coull, B.A. (1998). "Approximate is better than 'ex­

act' for interval estimation of binomial proportions," American Statistician, 

52, 119-126. 

3. Blyth, C.R, and Still, H.A. (1983). "Binomial confidence intervals," 

Journal of the American Statistical Association, 78, 108-116. 

4. Bohrer, R (1967). "On sharpening Scheffe bounds," Journal of the 

Royal Statistical Society (B), 29, 110-114. 

5. Bohrer, R. and Francis, G.K. (1972). "Sharp one-sided confidence 

bands for linear regression over intervals," Biometrika, 59, 99-107. 

6. Bohrer, R (1973) "A multivariate t probability integral," Biometrika, 

60, 647-654. 

7. Bowden, D.C. (1970). "Simultaneous confidence bands for linear re­

gression models," Journal of the American Statistical Association, 65, 

413-421. 

8. Brand, RJ., Pinnock, D.E., and Jackson, KL. (1973). "Large sam­

ple confidence bands for the logistic response curve and its inverse," 

American Statistician, 27, 157-160. 

198 



9. Brown, L.D., Cai, T.T., and DasGupta, A. (2000). "Interval esti­

mation in exponential families," Technical report, available at www­

stat.wharton.upenn.edu/~ tcai/. 

10. Brown, L.D., Cai, T.T., and DasGupta, A. (2001). "Interval estimation 

for a binomial proportion," Statistical Science, 16, 101-133. 

11. Brown, L.D., Cai, T.T., and DasGupta, A. (2002). "Confidence inter­

vals for a binomial proportion and asymptotic expansions," Annals of 

Statistics, 30, 160-201. 

12. Casella, G. and Strawderman, W.E. (1980). "Confidence bands for 

linear-regression with restricted predictor variables," Journal of the 

American Statistical Association, 75, 862-868. 

13. Chen, H. (1990). "The accuracy of approximate intervals for a binomial 

parameter," Journal of the American Statistical Association, 85, 514-

518. 

14. Clopper, C.J., and Pearson, E.S. (1934). "The use of confidence or 

fiducial limits illustrated in the case of the binomial," Biometrika, 26, 

404-413. 

15. Collett, D. (2002). "Modelling Binary Data," 2nd ed, Chapman & 

Hall/CRC. 

16. Dobson, A.J. (2001). "An Introduction to Generalized Linear Models," 

2nd ed, Chapman & Hall/CRG 

17. Gafarian, A.V. (1964) "Confidence bands in straight line regression," 

Journal of the American Statistical Association, 59, 182-21.3. 

18. Ghosh, B.K. (1979). "A comparison of some approximate confidence in­

tervals for the binomial parameter," Journal of the American Statistical 

Association, 74, 894-900. 

199 



19. Graybill, F.A. and Bowden, D.C. (1967). "Linear segment confidence 

bands for simple linear regression models," Journal of the American 

Statistical Association, 62, 403-408. 

20. Halperin, M. and Gurian, J. (1968). "Confidence bands in linear re­

gression with constraints on independent variables," Journal of the 

American Statistical Association, 63, 1020-1027. 

21. Halperin, M., Rastogi, S.C., Ho, 1., and Yang, Y.Y. (1967). "Shorter 

confidence bands in linear regression," Journal of the American Statistical 

Association, 62, 1050-1067. 

22. Hauck, W.W. (1983). "A note on confidence bands for the logistic 

response curve," American Statistician, 37, 158-160. 

23. Hayter, A.J., Liu, W., and Wynn, H.P. ,(2005). "Easy-to-construct 

confidence bands for comparing two simple linear regression lines," 

Manuscript, Georgia Tech, USA. 

24. Hsu, J.C. (1996). "Multiple Comparisons - Theory and Methods," 

Chapman &, Hall. 

25. Johansen, S. and Johnstone, 1. (1990). "Hotelling's theorem on the 

volume of tubes: some illustrations in simultaneous inference and data 

analysis," Annals of Statistics, 18, 652-684. 

26. Knafi, G., Sacks, J., and Ylvisaker, D. (1985). "Confidence bands for 

regression-functions," Journal of the American Statistical Association, 

80, 683-691. 

27. Kosorok, ~1.R. and Qu, R. (1999). "Exact simultaneous confidence 

bands for a collection of univariate polynomials in regression analysis," 

Statistics in Medicine, 18, 613-620. 

28. Liu, W., Jamshidian, M., Zhang, Y., and Bretz, F. (2004). "Con­

stant width simultaneous confidence bands in multiple linear regression 

200 



with predictor variables constrained in intervals," Journal of Statistical 

Computation & Simulation, 00, 1-12. 

29. Liu, W., Jamshidian, M., Zhang, Y., and Donnelly, J. (2005). "Exact 

simultaneous confidence bands in multiple linear regression with pre­

dictor variables constrained in intervals," Journal of Computational 

and Graphical Statistics, 14(2),459-484. 

30. Liu, W., Wynn, H.P., and Hayter, A.J. (2005). "Statistical inferences 

for polynomial regression models." 

31. Loader, C. (2004). "The Volume-of-Tube formula: Computational 

methods and statistical applications." 

32. Montgomery, D.C., Peck, E.A., and Vining, G.G. (2006). "Introduction 

to Linear Regression Analysis," 4th ed, Wiley. 

33. Kaiman, D.Q. (1983). "Comparing Scheffe-type to constant-width con­

fidence bounds in regression," Journal of the American Statistical 

Association, 78, 906-912. 

34. Naiman, D.Q. (1986). "Conservative confidence bands in curvilinear 

regression," Annals of Statistics, 14, 896-906. 

35. Naiman, D.Q. (1987). "Simultaneous confidence-bounds in multiple­

regression using predictor variable constraints," Journal of the American 

Statistical Association, 82, 214-219. 

36. Kaiman, D.Q. (1990). "Volumes of tubular neighborhoods of spherical 

polyhedra and statistical inference," Annals of Statistics, 18,685-716. 

37. Piegorsch, W.W. and Casella, G. (1988). "Confidence bands for logistic 

regression with restricted predictor variables," Biometrics, 44, 739-750. 

38. Scheffe, H. (1953). "A method for judging all contrasts in analysis of 

variance," Biometrika, 40, 87-104. 

201 



39. Seppanen, E. and Uusipaikka, E. (1992). "Confidence bands for linear­

regression over restricted regions," Scandinavia Journal of Statistics, 

19, 73-81. 

40. Snee, RD. (1977). "Validation of regression models: methods and 

examples," Technometrics, 19,415-428. 

41. Sun, J.Y and Loader, C.R (1994). "Simultaneous confidence bands for 

linear regression and smoothing," Annals of Statistics, 22, 1328-1346. 

42. Sun, J.Y, Loader, C.R, and McCormick, W.P. (2000). "Confidence 

bands in generalized linear models," Annals of Statistics, 28, 429-460. 

43. Sun, J.Y, Raz, J., and Faraway, J.J. (1999) "Confidence bands for 

growth and response curves," Statistica Sinica, 9, 679-698. 

44. Uusipaikka, E. (1983). "Exact confidence bands for linear-regression 

over intervals," Journal of the American Statistical Association, 78, 

638-644. 

45. Weisberg, S. (2005). "Applied Linear Regression," 3rd ed, Vi/iley. 

46. Wilson, E.B. (1927). "Probable inference, the law of succession, and 

statistical inference," Journal of the American Statistical Association, 

22, 209-212. 

47. Working, H. and Hotelling, H. (1929). "Applications of the theory of er­

ror to the interpretation of trends," Journal of the A merican Statistical 

Association, 24, 73-85. 

48. Wynn, H.P. and Bloomfield, P. (1971). "Simultaneous confidence bands 

in regression analysis," Journal of the Royal Statistical Society (B), 

33, 202-217. 

49. Wynn, H.P. (1975). "Integrals for one-sided confidence bounds: A 

general result," Biometrika, 62, 393-396. 

202 



50. Wynn, H.P. (1984). "An exact confidence band for one-dimensional 

polynomial regression," Biometrika, 71, 375-379. 

51. Yeh, B. (1996). "Bootstrap percentile confidence bands based on the 

concept of curve depth," Communications in Statistics - Simulation 

and computation, 25, 905-922. 

52. Zheng, X.D., and Loh, W.Y. (1995). "Bootstrapping binomial confidence­

intervals," Journal of Statistical Planning and Inference, 43, 355-380. 

53. Zheng, X.D. (1998). "Better saddlepoint confidence intervals via boot­

strap calibration," American Mathematical Society, 126, 3669-3679. 

203 


