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ABSTRACT

This thesis considers the construction of simultaneous confidence bands
for a normal-error linear regression model and a linear logistic regression
model with a binary response variable respectively. For linear regression,
‘three general methods are summarized to construct exact one-sided and two-
sided confidence bands over an ellipsoidal restricted region of the predictor
space, and they are found to have the equivalent formulae for calculating
critical values. Also, several methods are available to construct confidence
bands over a rectangular region. We compare these methods in terms of the
_ critical value. For logistic regression, several methods are considered for the
construction of confidence bands with or without predictor constraint, which
is based on the asymptotic normality of the estimator. Simulation studies
are provided to assess the performances of some key bands. Several useful

conclusions can be drawn.
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Chapter 1

Introduction

1.1 Background

Counsider the classical normal-error linear regression model
Y=X3+¢

where Y. is the vector of the observed responses, X, «, is the design matrix
with the first column given by (1,...,1)7 and the jth (2 < § < p) column
given by (214, ..., 20 )%, B= (B1,...,B,)7 is the vector of regression coeffi-
clents, and & is the error vector which has the N,(0,027) distribution with
o? unknown. Assume X7 X is non-singular, then the least squares estimator
of B is given by 3 = (X* X)~'X?'Y which has the N,(3, 02(X? X)~1) distri-
bution. Let 62 denote the usual unbiased estimator of o2, then 6% ~ o%x%/v
with the degree of freedom v = n — p and is independent of 3.

For statistical inference, the commonly considered pointwise confidence
interval plays an important role which is concerned for the mean response
xJ 3 at one specific point xg. It has the form given by

x3B e xTB E 1,1 i/ xT (X X)1x, (1.1)

where ©,1_4/0 1s the percentage point of a ¢ random variable with v degrees
of freedom that leaves a probability «/2 in the upper tail, and so 1 —a/2 in

the lower tail.



A simultaneous confidence band is constructed for the mean responses
xT 3 for all possible values of x within a given region X of p — 1 predictor
variables. The most popular simultaneous confidence band is of hyperbolic

shape, and has the following form
- ~ / _ 3
x'Bextp+ c6 4/ xT(XTX)=1x forallx € X, (1.2)

where c is the critical value such that the confidence band has the simultane-
ous coverage probability equal to a preassigned confidence level 1 — . The
key of constructing a confidence band is to find the appropriate critical value
c. Another frequently mentioned confidence band is of fixed band width,

which has the form given by
xTBexTB+cs forallxe X. (1.3)

It is of natural interest to compare the simultaneous confidence band with
the pointwise confidence interval. The key difference between them is that
the simultaneous confidence band is constructed for all possible x while the
pointwise confidence interval is only at a specific point xg.

On the other hand, consider a confidence interval for the parameter vector
3, which is given by

BepB+ tu1 asese(B), (1.4)

where sAe.(B) is the standard error of ,@ and is formed by the square roots
of the diagonal terms of the matrix &%(X” X)~1. The confidence interval for
[ contains p individual confidence intervals for p regression coefficients re-
spectively. And these individual intervals can be used to define a rectangular
region in the parameter space. Note that this rectangular region is not a
proper simultaneous confidence region for 3.

To obtain a simultaneous confidence region for 3, we start with the fact

that 3 ~ Np(B,a2(XTX)~1). Define a p x p non-singular matrix P such that



PP = (X" X)L Then we have

(PT(B=8)/c ~ Ny (0, )
= (B-B)TFP)HB-8)/c* ~ P

- T
R (B~ B)TX'X(3 - B)/po? ~F,., (1.5)

G2/0?

where x; and F,, denote the Chi-square distribution with p degrees of free-
dom and the £ distribution with p and v degrees of freedom. Therefore, a
(1 — a)-level simultaneous confidence region for 8 can be obtained from the
inequality

(6-B)"XTX(B~B) <p6*Frpi-a, (1.6)
where £}, 1o is the upper o point of the £, distribution. The equality

w__»

obtained by changing “<” to in (1.6) specifies the boundary of an ellip-
soidal contour in the parameter space.

Note that the simultaneous confidence region for 8 in (1.6) can also be
obtained from the simultaneous confidence band for x*3 in (1.2) when X' =
RP~! which is the setting in Scheffé (1953). Assume the band (1.2) has 1 —«

confidence level. Then we have

P(xTBex"B+co/xT(XTX)x,x € RF 1} =1—a. (1.7)

With P consistently defined, we have the probability on the left-hand side of
(1.7) further equal to

P{ sup Ix7(8— B)| < ci4/xT(XT X)-1x}

xERP~1

= P{ sup XTPT(PUT(B- B) <coVxT P Px}
xeRP—1

= P{ swp |[(Px)T - (PT)T(8~ B)| < e5+/(Px)T(Px)}
xERPL

= P{Px|-[(PHT(B-P)| <6 Px|]}
= P{(F)(B-B)(F (B -B) <6}

= P{(B-D) (PP (B~ B) < 6%
= P{(B-B)X'X(B-B) <} =1-0 (1.8)

3



Figure 1.1: Simultaneous and individual confidence statements.

' Therefore & = PFpu1-a, and the link between (1.2) and (1.6) is obtained.
For all x € RP™!, any point within the simultaneous confidence region for 3
in (1.6) one-to-one corresponds to a straight line which is completely inside
the simultaneous confidence band for x? 3 in (1.2).

Figure 1.1 indicates a possible situation that may arise when p = 2. The
(1 — a)-level simultaneous confidence region for (fy, 51) is displayed by the
shin ellipse which encloses points of (5, 51) that are considered as simulta-
neously appropriate for the true parameters. The individual (1 — a)-level
confidence intervals for 3y and §; specify the ranges for the candidates of
the true parameters separately irrespective with the value of the other pa-
rameter. Both ellipse and the rectangular region are centered at the point of
the estimates of the two parameters (/5’0; ’3’1) Note that a point, for example,
E lying inside the rectangular region but outside the ellipse illustrates that
the coordinates of the point E are regarded as reasonable for parameters g
and /) by the individual confidence intervals but not so by the simultane-
ous confidence region. For details, see, e.g., Draper and Smith (1998, pages
142-146). This thesis focuses on the construction of hyperbolic-shape simul-
taneous confidence bands rather than bands of other shapes or pointwise

confidence intervals.
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Table 1.1: Observations for simple linear regression model

Next, we come to see two examples of constructing simultaneous con-
fidence bands for a linear regression model. The first example is of one
dimension, where we have 10 observations for the only predictor variable
and the response y respectively. These observations are given in Table 1.1.
We fit this data using a simple linear regression model and construct a si-
multaneous confidence band over the restricted interval [-0.1, 5.5] with 95%
confidence level. The critical value of the confidence band is 2.9201 compared
with the critical value 2.3060 for the 95%-level pointwise confidence interval.
The confidence band constructed is shown in Figure 1.2.

The second example is for two-dimensional case. Consider the acetylene
data of Snee (1977) which was very popular in published papers and can
be fitted by a bivariate linear regression model. We construct the 95%-
level simultaneous confidence band over X =[1100, 1300]x [5.3, 23] and then
picture it in Figure 1.3. The critical value of the confidence band is 3.1137
while that of the pointwise confidence interval is 2.1604.

A simultaneous confidence band provides useful information on where-
abouts of the true regression function. Any regression function which lies
completely inside the confidence band over the whole given region of the pre-
dictor variables is deemed by the band as a plausible candidate of the true
function; any regression function that lies outside the confidence band for at

least one point in the given region of the predictor space is not considered as
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Figure 1.3: Confidence band for a bivariate linear regression



a potential candidate of the true function.
Specifically, a simultaneous confidence band can be used to test the fol-

lowing hypotheses
Hy:B=5, against H,: B # 3,
in the following way

reject  Hp if and only if

xT3, is outside the band for at least one x € X.  (1.9)

This test is of size « since the confidence band has a simultaneous confidence
level 1 — o

The problem of constructing simultaneous confidence bands has a history
going back to Working and Hotelling (1929). Scheffé (1953) considered the
whole predictor space as the given region of predictor variables which is
equivalent to setting no constraint at all on predictor variables.

For p = 2, that is, there is only one predictor variable, Gafarian (1964)
considered a two-sided constant-width confidence band with the only pre-
dictor variable restricted in an interval. His effort was followed by Bowden
(1970) who considered two-sided confidence bands of other shapes by making
use of Holder’s inequality. Piegorsch et al. (2000) considered the calculation
of the critical values of a family of confidence bands from Bowden (1970).
Wynn and Bloomfield (1971) and Uusipaikka (1983) provided exact two-sided
hyperbolic-shape confidence bands, with the band width proportional to the
standard error of the estimated regression function, when the only predictor
variable is restricted in an interval or the union of disjoint intervals. Bohrer
and Francis (1972) proposed exact one-sided confidence bands with the only
predictor variable constrained to an interval.

For p > 2, there are at least two predictor variables in the model. In
such a case, the (p — 1)-dimensional region X may have various forms. Con-
struction of exact confidence bands becomes much harder. Bohrer (1967)

considered a hyperbolic-shape confidence band when the predictor variables

7



are all non-negative. Bohrer (1973) presented the construction of an exact
one-sided confidence band over an ellipsoidal predictor region by evaluating a
multivariate ¢ probability. Halperin and Gurian (1968) provided conservative
confidence bands over an ellipsoidal region. Wynn (1975) developed a gen-
eral result on the calculation of the confidence levels for one-sided confidence
bands in regression analysis. Casella and Strawderman (1980) proposed ex-
act confidence bands over a region of the same shape. The most frequently

used region is of rectangular shape, and it is given by

where —oo < a; < b; < 00,7 = 2,...,p are given constants. Knafl, Sacks
and Ylvisaker (1985) obtained an approximate two-sided hyperbolic-shape
confidence band when p < 3 by using an up-crossing inequality. This ap-
proach was further developed in Faraway and Sun (1995), Sun and Loader
(1994), and Sun, Loader and McCormick (2000) to produce approximate
two-sided confidence bands for a more general regression model. However,
multiple integrations are involved in the calculation of these approximations
and the dimensionality of the integrations increases with p. Naiman (1986)
discussed the construction of conservative simultaneous confidence bands for
curvilinear regression functions by applying the tube volume theory. For
the construction of confidence bands for a more general regression model,
more references can be found in Johnstone and Siegmund (1989), Knowles
and Siegmund (1989), Johansen and Johnstone (1990), and Sun, Loader and
McCormick (2000). Recently, Liu, Jamshidian, Zhang and Donnelly (2005)
proposed the simulation-based two-sided simultaneous confidence bands over
a rectangular predictor space for generally p > 2, and the critical value based
on this method can be as accurate as one expects if the number of simulations
is set to be sufficiently large. Moreover, this simulation-based method can
be adapted to the construction of one-sided confidence bands over a similar
region. Liu, Jamshidian, Zhang and Bretz (2004) considered constructing
two-sided constant-width confidence bands for a multiple regression model

over a rectangular region by using both numerical integration and simulation.



The existing literatures of the construction of simultaneous confidence
bands for logistic regression models are very limited. The main contribu-
tions to this area are: Brand, Pinnock and Jackson (1973) which described
a method of obtaining a confidence band for a simple logistic regression
based on the large sample distribution of the maximum likelihood estimators,
Hauck (1983) which further developed the previous work to the multiple case
by applying the Cauchy-Schwartz inequality, Piegorsch and Casella (1988)
which first discussed the confidence bands for a logistic regression with re-
stricted predictor variables, and Sun, Loader and McCormick (2000) which
developed their approximate method of Sun and Loader (1994) applicable to

the generalized linear models.

1.2 The organization of this thesis

We continue to introduce some concepts and basic tools in the rest of this
chapter on large sample theory, which include some important inequalities
and theorems required in the subsequent chapters but without explicit proof
here. In Chapter 2, we describe the generalized linear models, specially, the
logistic regression model, involving the large sample asymptotic distribution
of the estimators and related inferences. In Chapter 3, our attention is fo-
cused on the construction of exact one-sided and two-sided hyperbolic-shape
simultaneous confidence bands for a simple linear regression model with re-
stricted predictor variable based on three methods. Chapter 4 continues to
talk about the construction of confidence bands using the same methods
for a multiple linear regression over an ellipsoidal region. In Chapter 5, we
consider the construction of simultaneous confidence bands for a regression
model over a rectangular region based on several methods and then compare
these methods in terms of critical values. In Chapter 6, we discuss the con-
struction of simultaneous confidence bands for a logistic regression model and
then give simulation studies to check the goodness of the considered bands.

Finally, Chapter 7 provides some main conclusions and the future work.



1.3 Concepts and basic tools

‘Definition 1.3.1 (Convergence in probability) A sequence {T,} of ran-
dom variables is said to converge in probability to a (possibly degenerate) ran-
dom variable T, if for every positive numbers € and 7, there ezists a positive

integer ng = ng(e,n), such that
P{A(T,T) > 2} <1, 0> o, (1.10)

where d(-) denotes a distance function (or norm). This mode of convergence
1s usually expressed by T, — T 50, In the case where T is non-stochastic,

. P
we may write T, — T.

Definition 1.3.2 (Convergence in distribution) A sequence {T,} of ran-
dom wvariables with distribution functions F, is said to converge in distribu-
tion (or in law) to a (possibly degenerate) random variable T with a distribu-
tion function I, if for every € > 0, there exists an integer ng = ng(e), such

that at every point of continuity of F,
Fo(z) — F(z)] <e, n>mng. (1.11)
This mode of convergence is denoted in this thesis by T, 2T

Definition 1.3.3 (Almost sure convergence) A sequence {T,} of ran-
dom variables ts said to converge almost surely (a.s.) to a (possibly degener-
ate)' random variable T, if for every positive € and 1, there exists a positive

integer ng = ngle,n), such that
P{d(Ty,T) > ¢ for some N >n} <n, n > ng. (1.12)

In symbols, we write this as T, — T =% 0, and if T is non-stochastic, it may

also be written as T, == T,

Theorem 1.3.1 (Chebyshev Inequality) Let U be a non-negalive ran-
dom variable with a finite mean u = E(U). Then for every t > 0,

P{U >tu} <t™.. (1.13)

10



Theorem 1.3.2 (Lindeberg-Feller) Let Xy, k > 1, be independent ran-
dom wariables such that E(Xy) = g and Var(Xy) = o2,k > 1; also let
Tn = >piXe, & = E(Th) = 320, 55 = Var(Th) = 327 0% and
Zy = (Tn — &n)/8n = 22:1 Yo, where Yy, = (Xy — pr)/Sn. Consider the
following conditions:

A) Uniform asymptotic negligibility condition:

2

max —-£ — 0 as n — oo.
1<k<n .s%

'B) Asymptotic normality condition:

\/1_/2 exp(%ﬁ)dt:@(z) as m— 0.

V2T J o

P{Zn < z} —
C) Lindeberg-Feller condition:
1 n
Ve >0, =z ZE[(X;: — uk)zfﬂxk_#kbﬁn}} —0 as n— .
" k=1
Then, (A) and (B) hold simultaneously if and only if (C) holds.
Theorem 1.3.3 (Slutsky) Let {X,} and {Y,.} be sequences of random vari-
ables such that X, P, X and Y, L, ¢, where ¢ 18 a constant. Then, it
follows that '
)X, +Y, 2 X+
i) Y, X, X,
i) Xa/Y, = X/c if c#0.
Theorem 1.3.4 (Khintchine Strong Law of Large Numbers) Let X; i >

1 be independently identically distributed random variables. Then X, <2 ¢,
and only if E(X,) exists and ¢ = E(X7).

Theorem 1.3.5 (Delta Method) Let {T,} be a sequence of random vec-
tors such that v/n(T, — 0) N N(0,%) and consider a real-valued function
9(T,) such that ¢'(6) is non-null and continuous in a neighborhood of 6.
Then

Vlg(Ts) — 9(8)] =5 N(0,4%) with ~%=[g'(8)]T=[¢'(8)].

11



Chapter 2

Generalized linear models and
logistic regression model with

binary data

2.1 Introduction

As we intend to construct simultaneous confidence bands for both linear
and logistic regression models, it is motivated to introduce the generalized
linear models first. The so-called generalized linear models, an extension
of the classical linear modelling process that allows models to be fitted to
data, can be analogously used in the following more general situations: first,
the response variables have probability distributions other than the normal
distribution, such as poisson, binomial, multinomial and etc; second, the rela-
tionship between the response and the predictor variables are not necessarily
of the linear form. Also, generalized linear models relax the requirement of
equality or constancy of variances that is required for hypothesis testing in
traditional linear models. Generalized linear models include, as special cases,
the linear regression and analysis of variance models, the log-linear models
for categorical data, the product multinomial response models, the logistic

model with binary data as well as some simple statistical models arising in
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survival analysis. In particular, the logistic regression model with a binary
response variable is of our interest in this thesis.

In this chapter, we first specify the models, followed by the consideration
of the parameter estimation based on the maximum likelihood and Newton-
Raphson iterative method. Then, we focus on the asymptotic behavior of
the estimators. Some related statistical inferences are considered after that

specially for the logistic regression model.

2.2 Model specification

2.2.1 Generalized linear models

Consider a single random variable Y whose probability distribution depends
on a single parameter . The distribution belongs to the exponential family

if it can be written of the form given by
£(4,6) = expla(y)b(6) + c(6) + d(y), 2.1)

where a, b, c and d are known functions. Specially, if a(y) = y, the distribu-
tion is said to be in canonical form. If there are other parameters, in addition
to the parameter of interest 6, they are regarded as nuisance parameters form-
ing parts of the functions a, b, ¢ and d, and they are treated-as though they
are known. Many familiar distributions belong to the exponential family. For
example, the poisson distribution, the normal distribution and the binomial
distribution can all be written in the canonical form. Details can be found
in, e.g., Dobson (2001).

The idea of a generalized linear model was introduced by Nelder and
Wedderburn (1972) to demonstrate a unity of many statistical methods. This
model is defined in terms of a set of independent random variables Y7, ..., Yy

each with a distribution from the exponential family and has the following

properties:

1. the distribution of each Y, has the cancnical form and depends on a

13



single parameter 6;, thus
T, 0:) = explyabi(6:) + ¢i(0:) + di(yi) (2.2)

2. the distribution of all Y;’s are of the same form so that the subscripts
on b, ¢, and d can all be ignored, thus the joint probability density

function of Y7,..., Yy is given by

=1
N N N 1
= exp| > yb(6) + S cf6) + > d(yy)] (2.3)
i=1 i=1 i=1
‘The parameters #; and the observations of y;,4 = 1,..., NV may one-to-one

correspond, which leads that 6;’s are typically not of direct interest. A smaller
set of parameters fy,...,/, (where p < N) are usually adopted. Suppose
that E(Y;) = p; where p; is some function of §;. In a generalized linear model,

a relationship between y; and a linear combination x? 3 is specified as
g(w) = %] B, (2.4)

where ¢ is a monotone and differentiable function called the link function,
X; 15 a p-dimensional vector of the predictor variables and the ith column of
the design matrix X as well, and 8 = (01,...,5,)" is the parameter vector

of interest. Different link function determines different class of generalized

linear models the considered model belongs to.

2.2.2 Binary response and logistic regression model

In this subsection, we consider a generalized linear model in which the out-
come variable is measured on a binary scale. ‘Success’ and ‘failure’ are usually

used as generic terms of the two categories.
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Define the binary random variable

7 { 1 if the outcome is a success,

0 if the outcome is a failure,
with probabilities P{Z = 1} = 7 and P{Z = 0} = 1 — 7. If there are n such
random variables Z,,. .., Z, which are independent and with P{Z; = 1} =
7, then their joint probability is

H"?(l ) = exp{z log T Zlog(l — 7—] (2.5)
7j=1

7=1

which obviously is a member of the exponential family. For the case when

7;’s are all equal, a new random variable can be defined by

Y = iZj
g=1

so that Y is the number of successes in n ‘trials’. Then Y has the bino-
mial distribution with parameters n and 7, and its probability distribution

function is given by

P{Y:y}:(’,;)ﬁy(l—’ﬁ\)n_y, y=0,1,...,n

Now consider m independent such random variables Y7, ...,Y,, corre-
sponding to the numbers of successes in m different subgroups. Each sub-
group is of size n;,¢ = 1,...,m such that > .- ,n;, = N. Since ¥; ~

binomial(n;, 7;), the log-likelihood function is therefore given by

Uy, oo s T YLy - s Y
m - \
Z [yz log ( ) + n; log(l —m;) + log ( ) J (2.6)
i=1 T Y

The proportion of the successes in each subgroup, i.e., P = y;/n;, 1 =

1,...,m, is of interest. Note that E(Y;) = n;m implies E(F;) = 7;. The
probability 7 is linked with the parameters of interest by

g(ﬁi) :X'L'Tﬁv



where x; and 3 are the same as before, g is the link function. Therefore, the

general linear logistic regression model is defined by setting the link function

):x?,& i=1,....m, (2.7)

~lo<r
Q—gl

[

where log[m; /(1 — 7;)] is sometimes called the logit function.

2.3 Parameter estimation

To estimate parameters in a generalized linear model, we use a method based
on the maximum likelihood. Although explicit mathematical expression can
be obtained for the estimators of the parameters in some special cases, nu-
merical method is usually needed which is typically iterative and based on
the Newton-Raphson algorithm.

Consider the independent random variables Y7, ...,Y,, that fulfil the re-
quirements of a generalized linear model. We have E(Y;) = u; and g{u;) =
xI'3 = n;, where x; is the vector with the elements z;;, 7 = 1,...,m indicat-
ing which subgroup the observation belongs to and j = 1,...,p indicating

which predictor variable is observed. For each Y, the likelihood function is

Fi, 0:) = exply:b(8:) + c(0:) + d(v:)), (2.8)

where the functions b, ¢ and d are known. In order to derive the score
functions as well as the information matrix, expressions for the expected
value and variance of V;’s are needed. The following method is used to find
the score functions and the information matrix by changing the order of
integration and differentiation provided a density function.

By the property that a probability density function integrates to 1, we

have 5
9 .
i 0)dy; = = 1=0. 2.9
a@i/f(y Jdvi = 75 0 (2.9)
Changing the order of the integration and differentiation, (2.9) becomes
6f(yi> 67) 3\
——2 dy; = 0. 2.10
/ g6, =0 (2.10)
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Similarly, when the differentiation in (2.9) is of second order, then we have

52 iy Vi
/——%%_2———)@1- = 0. (2.11)

These results can be used to obtain the expectations and the variances of

V’s. (2.10) can be further written as

[ 180wt 09 + c60)
:/f(yl, )b (9:) /fu

= 00w+ (6 )
Thus, we have
B(Y;) = ps = —c/(6:)/0(63). (2.12)
Similarly, we have
Var(¥;) = [0'(6:)¢(0:) — <" ()0 (6.]/ ¥/ (60} (2.13)

Now we turn to derive the score function and the information matrix.
The log-likelihood function for all the ¥,’s is

m

=3 L= yb(B)+ > cl0) = dlys). (2.14)
=1 i=1 i=1

i=1
We use the chain rule for differentiation to obtain the score function which

is given by

o I ol 96 on )

Consider each term on the right-hand side of (2.15) separately. 0l;/90; can
be obtained from (2.14), 96;/0u; can be obtained from (2.12), and du,; /353,
can be obtained from the link function. Substituting these three individuals

into (2.15) finally gives
N~ O
oo 72—1: L Var(Y;) <57 N (2.16)
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The variance-covariance matrix of U; has the terms
Jie = E(U;Uk)

- S5 2

where 7,k =1,...,p.

An iterative procedure is usually adopted for parameter estimation. The
most commonly used method is the following Newton-Raphson approxima-
tioﬁ. Suppose t is a function of z, Newton-Raphson method is the iterative

process described by

)
R A S— (2.18)

¥ (:E(T—l;‘)

to find the value of z such that ¢(z) = 0. It starts with an initial guess

T

&y

to obtain successive approximation until the iterative process converges.
By Newton-Raphson’s formula, the rth approximation of the parameter

vector 3 is given by

b — =1 _< Al )‘1 ye-n (2.19)
0B0B" / p=b—2) ’ -

where b denotes the vector of the estimates of the parameter vector
at the rth iteration, U=Y is the vector of the first order derivatives U,’s
evaluated at 8 = b1, By the method of scoring which replaces the matrix

of the second order derivatives in (2.19) by its expectation, and the fact that

2
T _E<£J_T)
oBos
we have (2.19) equal to
v ¢ 5 i1y ] -1 7 5 N
b(T“) — bz\rfl) - {Jx\r—-.i)J U‘\rfl;T (220)

ryr—1)1—1 - . . L. . .
where [J7Y]7! is the inverse of the information matrix with the elements

Jix given by (2.17) all evaluated at b=, An alternative version gives
J(r~l)b(r) _ ‘](r—ljb(r—l>+U(jr—l)_ (221)
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By (2.17) J can be written as
J= XWX,

where Wis an m X m diagonal matrix with the elements given by

1 O\ ?
= ) 2.22
i Var(Y;) <8m ) (2:22)

By (2.16) and (2.17), the right-hand side of the equation (2.21) can be written

as X? Wz, where z has the elements

r
- (r—1) anz

z= myb; Ut (- Mz‘)( ) (2.23)
=1

0 y2%

with y; and 9, /Ou; evaluated at bV, Hence the iterative equation (2.21)
is equal to
XEWr D xb) = XT it n (2.24)

which has to be solved iteratively because, in general, z and W depend on
b. Thus for generalized linear models, the maximum likelihood estimates are
obtained by an iterative weighted procedure.

In particular for logistic regression model, we have the log-likelihood func-

tion given by

Tor 7 7\
l(my) = 21 {yi log <1 —74'1-) + nylog(1l — m;) + log < " )Ja
where m = (m1,...,7n)7 and y = (y1,...,9m)7. Also, we have the link

function

Using the chain rule in (2.15), we have

a & <azr om Omy O \
s ‘71 - ; qL = (,i—mm‘aji;.
5;3] 1 071—7; 6?7L 0/JJ) ; Y ) Eig

The fisher information for 3 is therefore

9?1 e .
= _E<——) =S nem(1 = m)msma = (X WX},
Jik 77,00 3 nmi(l — 7wz = { X7 WX},
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where 7,k =1,...,p and Wis a diagonal matrix of the weights given by
W= diag{n;m; (1 — m) }.

Following the Newton-Raphson procedure, define z with the elements given
by
Y —ngfy O

i or;’

zZ =1+
then the maximum likelihood estimates can be obtained from the equation
(2.24).

Most statistical packages include the algorithm of estimation for gener-
alized linear models. They begin by evaluating z and W using some initial
approximation b(®, then solve the iterative equation (2.24) to obtain b
which in turn is used to get better approximations for z and W, and so on
until adequate convergence is reached. When the difference between the two
successive approximations b and b is sufficiently small, then b is

taken as the maximum likelihood estimate of the parameter vector 3.

2.4 Asymptotic behavior of estimators

2.4.1 Introduction

Since most distributional inferences on generalized linear models are valid
based on large samples, there is a need to lock into the large sample asymp-
totic theory so that some desired distributional properties for the estimators
can be obtained. Specifically, the asymptotic normality of the maximum
likelihood estimators is of interest.

Recall the specification of a generalized linear model in Section 2.2. Con-
sider the vector of observations y = (y1,...,ym)? corresponding to m inde-
pendent random variables Y;, i = 1,..., m, each with a distribution in the

i b

exponential family. We have the density function for each ¥; given by

Py, 0i,6) = clys, @)exp{luith — 0(6:)]/a(@) }, (2.25)
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where 6;'s are parameters, ¢ > 0 is a scale and a(-), b(:) and ¢(-) are all
known functions which are distinguishable from those appeared previously.

Therefore the joint density function is

f(yly---:ym§€17-~->9m§¢)
m

= Hf(ylaglé)
i=1

m

— cly,S)exn{ Y. lbs ~ b(61)]/a(0) }, (2.26)

i=1
where .
o(y,0) = [ [ e(w, 9).
i=1
Review that
E(Y;) = ui{6:) = ¥'(0,), ) (2.27)
Var(¥;) = a(@)¥'(8:) = a(6)ulum (6, (2.28)

where v;14;(6;)] is known as the variance function of §; which depends solely
on p;(6;) for 1 <4 < m. Furthermore, conceive of a transformation which

provides the link between u; and xI' 3 of the form

gl =x78, i=1,...,m, (2.29)
where g(-) is a monotone and differentiable function and 3 = (S, ..., 5,)7 is

the p-dimensional parameter vector. Alternatively, the link can be arranged

in multi-dimensional version that

T
G = (glw),. - glum)) = X8, (2.30)
where X = (x1,...,%,,)7 denotes a known m x p matrix.

Now we turn to find the asymptotic distribution of B; the maximum likeli-
hood estimator of 5 in the generalized linear model. Usually it is assumed in
the asymptotic sense that the total sample size N — oc, where N = 37" n;
with n; being the sample size of the ith subgroup of observations. However,

there may be another situation where for each 4, the ¥; may be a statistic
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given the subsample size n;. In such a case, a second type of asymptotic
might be considered where it is not crucial to have N large, provided the n;’s
are themselves large. In the rest of this section, we focus on the regular case
first, where N — oo, and briefly talk about the second type of asymptotic

after that.

2.4.2 The first type of asymptotic

Define h(:) = (g o p) () so that (2.29) is transformed to
0.=h(xB), i=1,...,m, (2.31)

where h is monotone and differentiable. The parameter vector 8 is of di-
rect interest. By reviewing (2.25) and (2.26), we may note that the nuisance
parameter ¢ does not affect the estimation of 8 and it influences the in-
formation matrix J only by a multiplicative factor [a(¢)}=2 which may be
estimated consistently. Therefore, for the sake of simplicity and without loss
of generality, a(¢) = 1 is taken. Consider (2.31), the log-likelihood function
in terms of 3 is given by

m

log Ly (3) = Z {myih(xfﬁ) - nﬁ{h(x?ﬁ)}} — constant, (2.32)

=1

where the constant term does not depend on 3, the subscript of the likeli-
hood, i.e., IV, indicates that it is for the first type of asymptotic, and the
quantities with such a subscript hereafter in this chapter are of the same
meaning. Recall (2.27) and (2.28), then we have

wi(8) = ulh(x{ B)] = V' [h(x B)), (2.33)
u(B) = ’uihf\xqj,@ﬂ = b'[h(x! B)]. (2.34)
Thus, the score function of 3 is given by

gy O o N = (B
Un ) = gg e e = 2 g e )
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from which it follows that whenever ¢'(-) and v(-) = V”() are both differen-

tiable, then we have

52
~ 3565 log Lx(8) = Jn(B) + Rx(8), (2.36)
where -
In(B) = nidg' (B} i (B)) xex] (2.37)
i=1
and

Ry(B) = Zﬂi[%—m(ﬁﬂ
=1

() L1 R WS
x{{g’[m(ﬁﬂ}z ’ {g/%(ﬁ)i}?{u;(ﬁ)}S} i (238)

Remark 2.4.1 Recall (2.31) that when g = p™, go p 1s the identity func-

tion, hence, 6; = x2 3. In such a case, g(-) is termed o canonical link func-
3 s Yy it )

tion. By (2.86)-(2.88), we have that for canonical link functions, Ry(8) = 0.

Proof. For canonical link functions, we have h(x; 3) = x! 3 and g = u .

Thus

O Ih(x{ B)] = u(xi B) = g7 (x{ B)
= glU[hx{B)]} =x B
= glb'(x B) =%/ B, (2.39)

Differentiate the both sides of the last equality in (2.39) with respect to 3

and obtain
ACC RUCHE) R (240)

which implies
H'(xi B) = {d W (x 8)} (2.41)

Differentiate twice and obtain
G TB)] - B xox - g (KT 0 ) xexT =0 (242)
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which, in connection with (2.41), implies

{ g//\ /( )J . b”%X?ﬁ) XXT
{ } o
B)
B}

g/ b/ ) }2 /11 ) . {b//(xj‘l’lg)ﬂlg}
// b/( J N b///( Tﬁ) . XT B '

We therefore simply obtain By (3) =10. #

In order to obtain the asymptotic distribution of the estimator of 8 under

the consistent setup, we need to discuss some required assumptions.

Assumption 2.4.1 Assume that

1
th T]_\ (B) = J(B), finite and positive definite. (2.44)
N—-oo N

Assumption 2.4.2 Let

4: g/“,uz(ﬁﬁ b/”[h< Tﬁ”
G {(g (B g B)] P8

e }X X7 = wxx] (2.45)

where

[ 9" (B)] b [h(x7B)] . i n
w={ GO TR s T 2

and assume that

N2 T (2.47)
Nh_n:l)cN Zﬂ vilp(B))tr(Gi G, ) = 0. (2.47)

By directly applying Chebyshev Inequality (1.11) to (2.38) that for Ve >
0,

P{]\'TilRN(ﬁ\) > E}
— P{NTRy(B)F > <%

7—1
< E[N iw (8)]°
,7_2 2’1; - - T
— ‘17\ Zi:l ”’1, Li[g‘(ﬁ)]tr(GlGl ) 7 (248)
£



in connection with Assumption 2.4.2, we can simply obtain N ! Ry (3) Ny}

From (2.36), we have

g Lu(8) + I(8)| <0 (2.49)

Next, we find the asymptotic normality of the score function given in
(2.35). Observe that E[Ux(8)] = 0 and Var[Uy(3)] = Jy(B). To apply
Lindeberg-Feller Theorem to the independent but not necessarily identically
distributed random vectors, it is needed to show the Lindeberg-Feller condi-
tion is satisfied. For ¥V ¢ > 0, consider

m

R 0)Y B

it > ell In (81}, (2.50)

where t; is defined such that

Z {”1 v — 1l Zt (2.51)

g’ i

By applying Chebyshev Inequahty, we have

ZE (et P{Netl | > el I (B)11}

Eltit] ] -
< § BE(t;t]) (2.52)
‘HJN( i
max(E\tt \ T “on
——"J E E(tt;) 2.53)
£llIn (B : (258,

ttl) as i = 1,2,...,m. Also
it is known that J3'(8) > E(t:t]) is equal to the identity matrix. From

where max(E|/t;t7]) i

/ — oo. Thus, we have

Assumption 2.4.1, we know that || Jx(3)
that the right-hand side of (2.53) converges to zero as N — oo so that (2.50)
converges to zero as N — oo. Lindeberg-Feller condition is satisfied. By
Lindeberg-Feller Theorem in connection with Assumption 2.4.1, we therefore

have the asymptotic normality of Ux(3) that

o

[

™
N>

(8) — N(0, J(3)). (2.

1
VN
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Now we turn to our central work to show the asymptotic normality of the
maximum likelihood estimator 3. Let |ulj < k,0 < k < oo and consider the
Taylor Expansion of log Ly (3 + N‘%u) around log Ly (). Define

An(u) = logLy(B+4 N 2u)— log Ly(B)
- UM
TN TYYTUANT 0BT

where 8" is a point belonging to the line ended by 8 and (3 + N'%u) in the

log L ()] | u, (2:55)

parameter space. Also, define

1 T 2 | 82
7 =i e o T — ,( ‘
Zn(u) = - \/QN{u 53057 8 n(8)] =T s log L(8)
2
+uT saa57 o8 i ) ‘ﬁu uT gy (,B)u}‘ (2.56)

Then (2.55) can be alternatively written as

dv(u) = u Uy (8) - u? Iy (B)u + Zn(u). (2.57)

1
V2N

Observe that

s 1 Zw (u)]]

julj<k
1 o2 1 52

s g, Sw sLn(B)] -~ log L ()
Qﬁ‘em/m‘f\ 0808" ) & NopgosT ‘ H
_A_kz‘ 1 62 , 1 H ,
"2\ N opasT log LN(ﬁ)‘B + N8|, (2.58)

where B(k/+/N) is defined in the following assumption. From (2.49), the
second absolute value on the right-hand side of (2.58) converges to zero in
probability as N — oo. Next we consider the first term on the right-hand
side of (2.58).

Assumption 2.4.3 Suppose that {¢'[1:(87)]} 7%, [v(B")]7°, ¢"[w:(B7)] and

/

V' [h(xTB%)] are uniformly continuous in an infinitesimal neighborhood of the

true 3, 1.e., in the set
B@)={8"eR: |8 -8 <}, dl0. (2.59)
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Let
wii(B) = {g'[u(B)]} *[w:(B)] ™
and
wa(B) = w(B)wi(B),
where w;(B) is defined in (2.46), i =1,...,m.
1. Fork=1,2,a56 |0,

sup, Hus(87) = w8l | 0. (2.60)
BEB(4)
2. Asé |0,
Eof sup_[yslwi(@) — wi(B)xad |} = v — 0, (2.61)
B*€B(4)

where ¥ 15 a scale.

Observe according to (2.36)-(2.38) that

Es { sup {ibgf(y"ﬁ) g —log f(y:: )| ‘E}
grengi v || 0B0BT “Pe T 98087 vl
l i
= Eg { sup } {wi + [yi — ui(ﬁ)]wi}xixﬂ )
B*eBk/VN)' B
_{wli + ]\:yl - /J ‘,U/z}X'L }
< osup Jfw(B8T) - %u(ﬁﬂXiXi | (2.62)
B*EB(k/VN)
+ osup [fwsi(87) — wa(B)xix | (2.63)
BB/ V)
CEa{ swlul fwi(87) — w(B)xal ) (2.64)

B €B(k/VN)
By Assumption 2.4.3, (2.62)-(2.64) converge to zero separately as k/v/N — 0,
which implies that the left-hand side of the ahove inequality converges to zero
as A/\ﬁ\ — 0. In addition, observe that /

1 I | & O
= Ly — —————log Ly(B8)| |
wﬁmLWng“w%*K%%“)(mm
. . |
< = dom s log (45 8)|_ — 7 log f(:8)] |
2N ; BV ’aﬁa,@T e 9pas” |
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By the Khintehine Strong Law of Large Numbers, since

2

log f(%éﬁ)!

E -9
o, o 0poaT

\} 02 log ( ﬁ)l ‘} 0
_9 .
aengev) | 08087 g7 B}, o

as k/v/N — 0, we have the right-hand side of the inequality (2.65) converges
to zero almost surely. And this implies the left-hand side of (2.65), which is
the same as the first term on the right-hand side of (2.58), converges to zero

almost surely. Consequently, from (2.58), we have

sup |[Zy(u)| 23 0. (2.66)
l[uli<k
Rewrite (2.57) as
I 7 L 7 9 a7
/\N(U) = —=1u UN(B) — —u JN(B)U + Op(l>. (26/)

VN 2N
By Assumption 2.4.1, (2.67) is equal to
1 P
Anv(u) = WuTUN(B) - iuTJ[ﬂ;u +o0,(1),

when N — co. Maximize Ay (1) by solving Ay (u)/0u = 0, and then obtain
1

THBYUN(B) + op(1).

a=

By the definition of Ay (u) in (2.55), it is clear that G makes Ly (3+ N~V%u)
maximal, and the maximum of which is obtained at B Therefore, we have

B = B+ N+, (N7
= B+ NTHB)UN(B) +op(NT2), (2.68)
which implies
. 1
VN(@B-p8) = TA—,J*I(B)UN(Q) + 0p(1).

Apply Slutsky Theorem in connection with (2.54) and then obtain

VN(B - 8) T N0, TH(B)).

—~
o
(@)
o]

~
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The idea of how to obtain (2.69) for the first type of asymptotic comes from
Sen and Singer (1993). /

In particular, consider a logistic regression model. For the sake of sim-
plicity, we assume that there is only one predictor variable and no intercept
term is included in the model, ie., p = 1. To avoid a degenerate binomial
distribution, take z; # 0. The canonical link function is given by

g(m) = 10”( . )

1—m

Accordingly, we have

1 __ew(fs)

/ o — d i 8) = ¥
q (7T> 7T(1—7T> an v ( ) {1+eXp(K3$z‘)j2

By Assumption 2.4.3, we have

(3) { l—eXp ,3@ } { exp( QUI 2}71
W1 = J;i
1(; exp(Bzy) 1+ exp( BSCZ

= {1+ exp(Fa) i}

Congidering Remark 2.4.1, the assumptions required for obtaining the asymp-

totic normality of the maximum likelihood estimator ﬁ reduce to

1. Assume that

o1& ) N
lim N Zm{l +exp(Bz;)] 72 = J(B) < oo,
i=1

N—oe IV
2. Forsome k: 0 <k <oo,as N — o0

sup {1+ expl(8+ hjail} * — [+ exp(fzi)] 2
Ri<k/VN
|

| N N N ‘ —_
= H{1+expl(8+ k) Nz} 2 = [1+ exp(Bz;)] 2’ — 0.

If we suppose the only predictor variable is bounded, then both conditions

hold. Thus, we have
VN(B - 8) 25 N0, THB)).

29



In this case, the design matrix X reduces to the m-dimensional vector x such
that
J(B) = xT Wx,

where W is the diagonal weight matrix with the elements given by

exp(fz;) 1
Wy =t g=1...,m
1+ exp(fz;)}?

z; 1s the i-th element of x.

'2.4.3 The second type of asymptotic

We considered the first type of asymptotic behavior of 3 in last subsection,
Le., set the total sample size NV large. As for the second type of asymptotic,
we do not necessarily set NV large and may consider the subsample sizes
ni,t = 1,...,m are themselves large.

Take the case of m = 2 for example. Consider the independent binary
variables z;;, 1 = 1,2,5 = 1,...,n;, which have the Bernoulli distribution

and are defined by

1 with probability
- 0 with probability 1 — 7.

Then, we have E(z;) = m; and Var(z;) = m;(1 —;). Define a random vector
Y such that
vi=Y ¥ =12 (2.70)

Then Y can be viewed as the vector of the frequencies of the independent
binomial random variables.

Consider the second type of asymptotic, i.e., set the subsample sizes n; —
oo for 4 = 1,2. A common subsample size n — oo is introduced to replace
the individuals. Then by Classical Central Limit Theorem, the asymptotic

normality of the random vector Y can be simply obtained as
VA(Y — p) 25 N0, 5) (2.71)
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where p = (m,m)7 is the mean vector of Y, and ¥ is the asymptotic
variance-covariance matrix given by
m(l—m7 0 .
SE LD . (2.72)
0 72(1 - 772)

If the parameter vector 3 is of direct interest, therefore, it is specified by

a generalized linear model with a link to a linear combination that

9(m) = X8, (2.73)

where g satisfies the properties of a link function, X is the design matrix with
specific entries. Then Delta Method may be applied appropriately to (2.71)

to obtain the asymptotic normality of 8 given by

V(B - B) = N(0,J71(8)), (2.74)
where
J(B) = XT WX,
W is the diagonal’ weight matrix with the elements given by
T
e — exp(x; B) i—19,

Y T texp(xB)P

and x; is the i-th row of the design matrix.

2.5 Goodness of fit statistics

2.5.1 Deviance

One way of assessing the adequacy of a model is to compare it with a more
general model, called a saturated model, with the maximum number of pa-
rameters that can be estimated. It is a generalized linear model with the
same distribution and link function as the model of interest.

Let k denote the maximum number of parameters that can be estimated
for the saturated model. Then k is equal to the number of potentially differ-

ent linear components, which may be less than the number of observations
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N. Let B, denote the parameter vector for the saturated model and ;imx
The likelihood function

for the saturated model evaluated at Bmax, noted by L(Bmax; v), will be larger

denote the maximum likelihood estimator of 3, ...
than any other likelihood function for these observations with the same as-
sumed distribution and link function. That is because it provides the most
complete description of the data. Also, denote L(B;y) the maximum value
of the likelihood function for the model of interest. Therefore, the likelihood

ratio R
LB v
)\ — \ﬁn;ax; Y)

L(B;y)

provides a way of assessing the goodness of fit for the model. In practice,

(2.75)

the logarithm of A, which stands for the difference between the log-likelihood

functions ‘

10g A = {(Bracy) — 1B y)
is used. Large values of log A suggest that the model of interest is a poor fit
of the data relative to the saturated model.

In next section, the sampling distributions will be discussed. Then we
may notice that 2log A rather than log X is the most commonly used statistic
and is referred to as the deviance termed by Nelder and Wedderburn (1972).
In particular, for linear logistic regression, it is given by

D=2>" [y log (y—) + (n; — y) log (M)J (2.76)
i=1

N7y Ty — n,ﬁl

2.5.2 Pearson chi-squared statistic

Instead of using maximum likelihood estimation we could estimate the pa-

rameters by minimizing the Pearson chi-squared statistic

where o represents the observed frequencies and e represents the expected
frequencies. In particular, for linear logistic regression, the Pearson chi-

squared statistic evaluated at the estimated expected frequencies is given
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2.5.3 Equivalence

The Taylor Expansion of slog(s/t) about s =t is given by
slogj—‘:(s~7f)+—*———+"~

By applying the above expansion to (2.76), we have

= 1(y —nifi)®
D = QZ {(yq — ngfy) + E(U—u +[ne — wi) — (ng — )]
i=1

Ll =) = (=t |y

= - T
2 Ty — My

2
(]2
L&
B
3
|
>
N2

(2.78)

Thus, it is that the deviance in (2.76) is asymptotically equivalent to the

Pearson chi-squared statistic in (2.77}.

2.6 Sampling distributions of statistics

We write the first three terms of the Taylor Expansion of the log-likelihood

at 8 = B as
8) = 1(B) + (8- B)TUB) - (8- B UBB-B),  (279)

where U(8) is the score vector evaluated at 8 = 38 and U’(8) is the derivative
of U with respect to 3 at 8 = B
Note that U(8) = 0 in (2.79) is due to the maximum likelihood estima-

tion. If U'(8) is approximated by its expected value E(U’) = J, (2.79) is

therefore equal to
1(B) ~ UB) = 58~ B IB)B - B), (2.80)
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where J(,@) is the information matrix evaluated at 3 = ,fi Therefore, we

have
21(B;y) = UBy) = (B-B) BB -B). (2.81)

From the asymptotic distribution of 3, we have
(BB IB)B ~B) ~xp,

where X;Q; stands for the Chi-square distribution with p degrees of freedom,
and p here is also the dimensionality of 3.
Thus, the sampling distribution for the deviance can be derived. Observe

that

D = 20(Bousy) — UBY)]

= Q[Z(ﬁmaw Y) - Z(/Ls’nuax; y”
=203 ¥) = UGB+ 20 Bancr y) —UB ¥ (2.82)

The first term on the right-hand side of (2.82) has the x? distribution where
k is the number of parameters in the saturated model. The second term
has the Xg distribution where p is the number of parameters in the model of
interest. The third term, v = 2[(8,,.,;y) — l(B;¥)], is a positive constant
which will be near zero if the model of interest fits the data almost as well as
the saturated model. Consequently, the sampling distribution of the deviance
1s, approxirﬁat.ely, Xi_p;v, where v is the non-central parameter.

For logistic regression, considering the equivalence between the deviance
and the Pearson chi-squared statistic, we have approximately X? ~ an_p‘
The choice between D and X? depends on the adequacy of the approxima-
tion to the an_p distribution. D has a general advantage as a measure of
discrepancy in that it is additive for nested sets of models if maximum like-
lihood estimates are used, whereas X? in general is not. However, there is
some evidence to suggest that X2 is often better than D because D is unduly
influenced by very small frequencies (see Cressie and Read, 1989). Both of

them are likely to be poor when the expected frequencies are too small.
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2.7 Residual analysis

Measures of agreements between observations on a response variable and the
corresponding fitted values are known as residuals. These quantities, and
summary statistics derived from them, can provide much information about
the adequacy of the fitted model.

For logistic regression there are two main forms of residuals corresponding
to the goodness of fit measures D and X2 respectively. Let m denote the
number of observations of Y, Y; denote the number of successes, n; denote
the number of trials in subgroups and 7; denote the estimated probability of
being success for the ith subgroup of samples. Then the Pearson residual is
defined by .
3 (yi — i) (2.83)

Az:f:Zzl’..../m.
\/TLM’{(l — 7&'1')
From (2.77), >_7-, X7 = X2, the Pearson chi-squared goodness of fit statis-
tic. The standardization used in the construction of the Pearson residuals
does not yield residuals that have even approximate unit variance, since no
allowance has been made for the inherent variation in the fitted values of the
response n;7;. A better procedure is to divide the raw residuals y; — n;7; by
their standard error. This standard error is quite complicated to derive, but

it is found to be given by

se. = /(1 — hy),

where 0; = n;®;(1 — 7;), h; is the ith element on the diagonal of the hat
matrix H = X(XT X)7' X7 and the quantities h; can be easily found through

many statistical packages. So the resulting standardized residuals are

Ppy = et (2.84)

Another type of residual can be constructed from the deviance, given by

di = sign(ys — i) {2 i log (o) + (s — yi) log (-2 ) }%, (2.85)

Ty g — ’I'L/,;’/AT-L‘
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where the term sign(y; — n;7;) ensures that d; has the same sign as X;. From
(2.76), >_ d? = D, the deviance. Also standardized deviance residuals are

defined by ;

T = —1___71_;

These residuals can be used for checking the adequacy of a model. For

(2.86)

instance, they should be plotted against each covariate in the model to check
whether the assumption of linearity is appropriate. They should be plotted
in the order of the measurements, if applicable, to check for serial correlation.
Normal probability plots can also be adopted, since the standardized resid-
uals should approximately have a standard normal distribution provided the
numbers of observations for each covariate are not too small.

In the case that the data are binary or n; is small for most covariate
patterns, there are few distinct values of the residuals and, consequently, the
plots may be less informative. Under this sitﬁation, the aggregated goodness
of fit statistics X2 and D may be necessary to be considered.

Sections 2.5-2.7 take Dobson (2001) for main reference.
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Chapter 3

Exact simultaneous confidence
bands for a simple linear
regression with restricted

preydictﬂr variable

In following two chapters, we consider the construction of exact hyperbolic-
shape simultaneous confidence bands for a linear regression model. This
chapter focuses on the construction of exact one-sided and two-sided cohﬁ—
dence bands for a simple linear regression model with constrained predictor
variable using the following three methods: the method following the idea of
Bohrer (1973), the algebraical method and the tubular neighborhood method.
The equivalence of the computational formulae based on these three methods

is given for both one-sided and two-sided cases.

3.1 Exact one-sided confidence bands

Bohrer and Francis (1972} considered an one-sided confidence bound of hy-

perbolic shape for a simple linear regression model
yi = filz; B) + & (3.1)
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with
filz; B) = B+ Bold: — Z),i=1,...,m,

where y;’s are the observations of the response, the differences between the
observations of the only predictor variable and their mean value (z; — Z)’s
are restricted in a given interval {a,b], 8 = (51, £2)7 is the vector of unknown
regression coefficients, g,’s are independent and identically distributed normal
random errors with mean 0 and unknown variance o?. If we define S, =
So(x;—z)? and Spy, = > (: — )y, then the least squares estimator of 3 and
the usual unbiased estimator of o2 are given by 8 = (3 v;/n, Szy/Sz)T and
62 = S(3 — 1 — Palz; — &)/ (n — 2) respectively, which are independent by

studying least squares theory and have the following distributions

- Je; nlo? 0 |
(27 )

(n— 2)‘32/02 ~ Xi—z-

An one-sided hyperbolic-shape simultaneous confidence band for the mean

responses
flz;8) =61+ folz — I)
is centered by f(a",@) and with band width proportional to the standard
deviation of f(x,@) Specifically, the band, e.g., with upper bound, is given
by
Fl2;8) < flz:B) + c6H(z: B), for all z — 7 € [a, D],

where ¢ 18 a critical value and
H(z;8) = [Varf(z; B)] o =n~" + S (z - 3)*.

The key of constructing a simultaneous confidence band is to find an appro-
priate critical value ¢ such that the band has the coverage probability defined
by

P(c) = P{f(z;8) < f(z;8) + c6H(z; B),z — T € [a,b]} (3.2)

equal to a preassigned confidence level 1 — a.
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Let z = (n™Y2, (z — 2)S7 /%) and N = (61 — )2, (82 — (o) S2/*)7.
Note that since 3 = (Bl;ﬁng is independent of &, so is N. Let t = IN/g,

then we have

Bi+Palz~2) < Br+ Bolz — 2) + ol + 5. (z — 7))

& (B-B)+ (G- B)e—5) <ol + S (e — @)
: it A1 A S
& (7 @2 (8- Bont, (8 - BSE) /6
<o(nt, e - D)
Consequently, the confidence level of the band in (3.2) is equal to

P(c) = P{z"t < ¢l|z||, for z — z € [a,b]}, (3.3)

where © — T € [a,b] determines a restricted region for z in terms of a and
b. From the definition of z, it is clear that z has the fixed first coordinate
and the second coordinate bounded by an interval as S, 2 is known. This
implies that z varies within a circular cone Z = {z: z; > ¢/z|/}, where z; is
the first coordinate of z and ¢ is a constant which will be explicitly given in

the following text when needed. Therefore, P(c) is equal to P{t € R}, where
R={t:z7t <c|z], all z € Z}. (3.4)

This is the starting point of the following three methods we are going to

discuss.

3.1.1 Method following the idea of Bohrer (1973)

1 —1/27 1] — Nza . .
Let a = (n™%/2, aSII"Z}T and b = (n712,05; 1/2)7 be the boundaries of Z,
and ¢* € [0, 7] be the angle between a and b. Set up a coordinates system
such that the horizontal axis has the same direction as a. Let ¢ be the angle

of t turned moving anti-clockwise from a to t.

Lemma 3.1.1 Under the notations of t, ¢* and ¢, R in (5.4) can be par-
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Figure 3.1: For the method following Bohrer (1973) in one-sided case

titioned into four disjoint parts according to the location of t:

Ry = {t:|t]|<c,0<¢s <o}, (3.5)

By = {t:0<bTt <c[b],¢" < 6 <¢*+%7r}, (3.6)
1 3

R3 = {t . ¢* + ‘2‘7T S ¢t < 57'(}, ) (37)

Ry = {t:0<a’t<clal, gw < ¢, < 27}, (3.8)

Proof. When t € Ry, then t € Z. We have [[t]|? < ¢|/t]| from (3.5), and
further tTt < ¢|/t|| which implies t € R by studying (3.4). When t € Ry,
since b € Z, obviously t € R. Similarly, when t € Ry, t € R. Finally when
t € R3, since z € Z, we have 7/2 < ¢ — ¢, < 37/2. Hence z7t g' 0 which
implies t € R. Therefore, U:_ | R; C R.

Conversely, when t € R and 0 < ¢y < ¢*, we have t € Z from the
definition of ¢*. Then tTt < c|/t|| implies ||t|| < ¢ which is equivalent to
t € Ry. Consider t € R and ¢* < ¢y < ¢* + /2, only b € Z in this case,
so we have bTt < ¢||b|| which implies t € R,. Similarly, when t € R and
3m/2 < ¢y < 27, we have a’t < c||a]| which implies t € R4. As for the case
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when t € R and ¢" + 7/2 < ¢ < 37/2, 27t < 0 for all z € Z, we therefore
have t € R;. Consequently, R C UL | R;. Overall, U*_ | R, = R. #
By applying Lemma 3.1.1 to P{t € R} with R defined in (3.4), we have

the confidence level of the band based on this method equal to

Pp(c) = ZP{t € R}, (3.9)

where the four individual probabilities on the right-hand side of (3.9) can be
evaluated separately. Define the polar coordinates of t in terms of (R, ¢¢)
that t = (Rycos ¢y, Rysin ¢g). Note that t can be written in terms of the
polar coordinates of N as ((Rn/6)cosdn, (Rn/d)singn). Note that ¢n
and ¢; denote the same angle because N/& does not change the location
of N. As we know that N has a bivariate standard normal distribution,
one may find the joint density function of RN and ¢n via the transfor-
mation of random variables. By finding the individual marginal density
functions of Ry and ¢n, we have that the joint density is equal to the
product of the individual marginal densities. And this implies that Ry
is independent of ¢n. Accordingly, R; is independent of ¢;. In addition,
[t112/2 = (|IN[]?/2)/6% = (|IN/o||?/2) /(62 /o?) has the F,,, distribution, and
¢¢ has the uniform marginal distribution.

Now, we turn to evaluate the probabilities on the right-hand side of (3.9)

individually. Specifically, we have

P{t € B} = P{|t[|<c,0<¢; <}
= P{fit] <c} P{O< o <o}

x

——P"t§22<c2424—"
I >
' 27

o* 2. ,
C RS, (3.10)
o, L .3
P{te R} = P{o +§7T§@t<5’/‘r}

3 1,

= égﬁ—(¢*‘+ 5™l 2
1 ¢

= - _ 3.11
2 2w ( )



where £}, stands for the F' cumulative distribution function with 2 and v
degrees of freedom. As for the other two probabilities, take the case of t € Ry
for example. From (3.6), b7t < c|/b|| implies |{t| cos[¢s — @(b)} < c. If we
rotate the coordinates system such that the horizontal axis has the same
direction as b, then |t| cos[g+ — @(b}] can be thought as the projection of t
on the horizontal axis, namely, the first coordinate of t. Doing this does not

change the probability. Thus we have

Plte Ry} = P{0<ti<c}-P{§" <<+ )
= P{lalF <6+ T - )2
= SR | (3.12)
4 s N
Similarly,
P{t ERé}‘ F11/<C)
Overall,
¢* _ c* 1 SO B
PB\(C) = %ﬁQ)]/(E) -+ §F17V<C ) + (5 - E) (313)

3.1.2 Algebraical method

From (3.3) and (3.4), the confidence level can be alternatively written as
, Tt
P(c):P{Sup%gc}. (3.14)
scz |2
The key idea of the algebraical method is to find the explicit form of the

supreme in (3.14).

Lemma 3.1.2 Rotating the coordinates such that the horizontal azis reaches
the central direction of Z. Let §* = (1/2)¢" be the angle between the hori-
zontal axis and one of the bounderies of Z, say, b. Also, let 0y denote the

angle between the horizontal axis and t. Then we have

It if -0 <6, <07,
|It]l cos(fy — 67) if <6<,
It]cos(2m — 0 — 67) if 7 < <2m—0".



Figure 3.2: For the algebraical method in one-sided case

Proof. When —6* < 8; < 8*, t € Z which implies the supreme is equal to
tTt/||t|| = ||t||. When 6* < §; < 7, the supreme is equal to ||t cos(6; — 6*)
since cos @ decreases with 6. Similarly, the supreme is equal to ||t|| cos(2m —
Oy — 0*) when m < 0y < 2m — 0%, #

Applying Lemma 3.1.2, the confidence level (3.14) based on the alge-
braical method becomes

Palc) = P{supﬂ < c}
zez |||
= P{lit] <c,~6" < 6. < 8"}
+P{||t|| cos(b; — 6*) < ¢, 6" < 6, < 7}

+P{||t|| cos(2m — 6, — 6*) < ¢, 7 < Oy < 2w — %} (3.15)

Note that the second and the third terms on the right-hand side of (3.15) are
in fact the same because the regions of t corresponding to these two cases

are graphically symmetric. Therefore, (3.15) is further equal to
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Pic) = P{lt] e~ <6 <07
+2P{|/t]|cos(fy — ") < ¢, 0" < By <7}
— Pt <o <b <)
+2<P{O < |lt||cos(by, — 67) < c,yé* <Oy <O+ g}

+P{|t] cos(6; — 67) < 0,6+ 5 <6, < w})

Z

2 CQ ‘
< 5} P{-0" <6, <67}

'2<P{ (il < ¢ PoP{Or <6 <67 + z}
2 7 2cos?(by —0%) ’ 2

+P{6" + % <y < 7."})

2 2 U c? 7/2 -
_ W, A, B —>d9 )
o fal ) * </9 L <2c082(@ o) n

9* 2 2 6* .
= LR (T )fi/ Fy (-—— )def(i_f), (3.16)
0

w3

a T 2 cos? g it

where F5,, denotes the cumulative distribution function of F5, distribution.

3.1.3 Tubular neighborhood method

The idea of this method seems similar to the thoughts in Naiman (1986,
1990), Sun and Loader (1994). Here, the exact volume of the tubular neigh-
borhood of a circular cone is calculated to evaluate the coverage probability
of the one-sided confidence band.

From (3.14), the confidence level is given by the alternative form

. 7't c .
P(C)ZP{ rg Hl?t\f S]‘—J} (3‘1/)
ZEL il gl

Note that t/[[t]| 1s independent of |jt|| and so is ¢/|it||. And the supreme in



Figure 3.3: For the tubular neighborhood method in one-sided case

(3.17) is no larger than one. Then (3.17) is further equal to

2Tt c
—Pisupr——>—
{2 e > 1)
o0 7Tt c
= 1- Pdsup —— > —— ¢ - dFy  (w
|, M va) ene
o zTt c
= 1- Plsup—— > -dFy ,(w). 3.18
/_ {so i > 75} Pt (319

Let 0 < h = c¢/v2w < 1. The set

zTt
B(h) =4t . sup——— > h
() = {5 sup e >

contains all possible t’s with the angle between t and z being at largest
cos™ R, So E(h) is in fact a fan with vertex at the origin, symmetrically
containing the region of Z, and has the angle cos™' h between one of its
bound and the nearest bound of Z. Therefore, P{t € E(h)} is equal to
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2P{0 < 6; < 6" +cos™? h}. Consequently, (3.18) becomes

= gt cos (¢/v/Tm
1_/ o 0" +cos (¢/V2w) QP (w)
2 2m ’
o0 g% -1 . ]
_ 1_/ 6% + cos ™ (¢/V2w) dFy, (w),
& T '

p)

3.1.4 Equivalence of the formulae

(3.19)

It is of natural interest to compare the three computational formulae (3.13),

(3.16) and (3.19) corresponding to the three methods respectively. Formula

(3.13) comes from the original paper of Bohrer and Francis (1972). We first

derive the equivalent formula of (3.13) by rotating the coordinates system.

Rotating the coordinates system such that the central direction of Z is

given by z; axis. In this case, by defining 8* = ¢*/2 and 6 as the angle

between 2z axis and the vector t, the confidence level based on the first

method is the

n Pglc) =51 P{t € R}, where

B = {t:t] <c—6" <8 <0},
R;:{mmwm@—WSQW<@<w+§L
a 37
R, = {t: 0+ <o <L _¢g
3 { 5 <ty < 7 }s
. 3 ‘
R, = {t:HtHCOS(@t—e*)SC,7‘9*<94E<2’7T}.
So we have
{ o q 6+% 1
Prlc) = —P{|lt)| <c}df+2 —P{[[t] <
s = [ sPlth=cos2 [ Sp{e <
3m__ g~
1
+/2 —df
*+T 27
* A1 [3F c? m — 26*
A s ey N 4o
72 (2) ’/’A : \200_29> 27
2
97 -2 1 Z r; N ’7—25*
== _FZV(%>—L-—/2 de/z edpzy(w)+/ .
7 27w Jo 0 7
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}db
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(3.22)



Z1

Figure 3.4: Picture obtained by rotating the coordinates system

Note that (3.21) is the same as (3.16) which implies that the method follow-
ing the idea of Bohrer (1973) can have the same formula as the algebraical

method. The second term of (3.22) is further equal to

/ d9/ dFy,(w / d9/2°°”dF2,,( ))

= RS / / 4 - dFy . (w). (3.23)

_l(m)

By substituting (3.23) into (3.22), we have
g 1 . om—20*

Po(d) = (= +35)FRau(5)+ 7

1 [> [%
;r‘ /c2 / . de - dFZV(w). (324)

< cos—l(m)

+
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Now consider formula (3.19). It can be further written as

g * cos~1(c//T0
1—/2 " dFy,(w) - / cos (V) iy )

E E] 0
2
9* 2 1 oo COS——I( C‘IU) N
_ 1»—Fz.u(rw>c—)——/ / A R, (w)
T 2 mJe o ‘
g* 2 =0 1 [* B B
- ThG e (- e amuw
T 2 m TJ2 Mo cos=1 (=)
2 V2w
g* c? T—0* 1 c? 1 [ [z ,
= —Fy_+ __Frl/-(r>__r— dQFU'
p 2, (2) - 52, (w 2) W/i /coslfc_) dFy, (U)
V2w
o 1 A7 —20 3
= Cepmg e e [T @), @29
x 2 2 cos1(—E=) o

which is equivalent to (3.24).

Hence, it can be concluded that the three methods of constructing one-
sided confidence bands for a simple linear regression model give the same
result mathematically. Clearly, (3.13) is relatively simple compared with
(3.16) and (3.19) since both (3.16) and (3.19) involve an integration.

3.2 Exact two-sided confidence bands

t is also of interest to think about constructing exact two-sided simultaneous
confidence bands for a simple linear regression. Recall (3.4), we have the

following setting corresponding to the two-sided case that
R=1{t:|z7t| <c|z|, allz € Z}, (3.26)

where t = N/&, N has the No(0, %]} distribution, & is the usual unbiased
esumator of unkmown ¢ and has the o/ x2/v distribution with v degrees of

freedom, ¢ is a critical value, and
Z={z:|z| 2 ql=[}, (3.27)

where ¢ is a non-negative constant.



Figure 3.5: For the method following Bohrer (1973) in two-sided case

3.2.1 Method following the idea of Bohrer (1973)

R is shown in Figure 3.5. Since R has a symmetric structure, the probability
P{t € R} equals four times the summation of the probabilities P{t € Ri}
and P{t € Ry}, where

6* = coslg,
Ry = {t:|t]| <¢c0<8 <6},
Ry = {t:|t|cos(ts —8) <c8 <6 < g}, (3.28)

0, is the angle between t and the z; axis.
Note that ||IN]|| is independent of & by studying the least squares theory
and ||t||?/2 has the F distribution with 2 and v degrees of freedom. Also, note

that ||t|| is independent of 8, which has been shown previously. Therefore,
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we have
Pp{t € R}
= 4<P{t SR} +P{te RQ})
- 4<P{\ftH <0< <6}

+P{fit]| cos(fy — 67) < ¢, 6" < 6 < g})

g* c? 71 c?
= 4<—F v __\ _F ]l(f\ /6)
o (2)+/ﬂ 7 2’”2008‘(9—(9*})6{
26~ . 2 Y Z \
= Do () 4+ = F (———)d#. 3.29
i £, (2/ W/D > ‘QCOSQH) ( )

Note that this method agrees with that of Wynn and Bloomfield (1971).

3.2.2 Algebraical method

According to (3.26) and (3.27), R has the alternative form

2" t| \
R= {t : sup 2 < c}, (3.30)
where the supreme can be found directly and explicitly.

Lemma 3.2.1 Under the notaiions of 0y and 8%, we hove

Il if 60 € (0,67 Ulm— 6,7+ 7]
=Y Ujr — 67, 27),
SUp —— = | \ | o -6 o
=z 2] It cos(6e—67)] b6 5] Um+ 6% ],

i

lt | cos(r — 6 = 67)| if 6, €[5,

m

m— 67 U 22, 27 — 67).

The proof of Lemma 3.2.1 is very similar with that of Lemma 3.1.2. #



By applying Lemma 3.2.1, we have

4{t € R}

29*
= 2. P{tl < ¢}

=

+/ L P{ |t cos(e — %) < c}af
. 27 ' ‘
37

+/2 L Pyl cos(d — 7 — 6%)| < c}df

+6 £

—6*
+/ iP{I.tHl cos(m — 6 — §7) < c}df
z 2 '

2r—8* -
l N o B Ay
‘T/ —P{|lt|ll cos(2m — 8 — 6%} < c}db (3.31)
Joz 2m ' '
207 c? | c?
= Fy(=)+2 —Fy  (——)df
T > (2) /o o % (200829)
) 0 1 C2
- ée 27 21/(2 ‘29)
20* A 2 [ c
= B(=)+= Fy (———)df. (3.32)
T O <2) 7(—/0 & <26082c9) ' )

3.2.3 Tubular neighborhood method

R in (3.30) can be further written as
[ A

izt
R= {t sup [Z < i} (3.33)
zez |z|[[t] — fit]
Then the confidence level is equal to
Pry{t € R}
IzZ t] c
- i-r{ap o )
ez 2Tl ~ el
= 1,/ P< sup il } dFy,, (w). (3.34)
< Lgez |z [t \/Qw

Note that the supreme in (3.34) can not be larger than one. Let 0 < h =
¢/v2w < 1 such that cos *h € (0,7/2). The set

E(h) = {t : Sup iﬂ— h}

zcz |\z]|||t]]

m

ot
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Figure 3.6: For the tubular neighborhood method in two-sided case

consists of two opposite circular cones in R? with their common vertex at
the origin, symmetrically containing the smaller cones graphically produced
by Z with the angle cos™ h between the boundaries. So we have E(h) equal

to

{t:0,€[0,0+costhlU[r—6*—cos™th] if 0*+costh<Z,
Ulr + 0* + cos™ h| U [27r — % — cos™! h[}

{t: 0, €0,2x]} if 6*+costh>Z%.
Note that
6* + cos™H( ¢ )<7T<:> < ¢
Vow' T2 TS o

where b = /1 —¢2. Since 0, was proven to be uniformly distributed in
Section 3.1, we have, for ¢2/2 < w < c%/(2b%),

P{t € E(h)}
= P{6 €[0,0"+ cos_l(\/;_w)] Ulr—6" — cos_l(\/%_w)]
Ulr+ 6" + cos_l(\/z_w)] Ulor — 6" — cos_l(ﬁ)]}
- 4/0“605_1(“%) %d@, (3.35)

52



and, for w > ¢*/{2b%),
P{t e E(h)} = P{0; € [0,27]} = 1. (3.36)

In connection with (3.34), the confidence level is equal to

% +cos™ \,;_w gee)
/" / ) ﬁdé' dFy,(w )—/2 1-dF,,(w). (3.37)

3.2.4 Equivalence of the formulae

We are also interested in finding the equivalence of the formulae (3.29), (3.32)
and (3.37) corresponding to the three methods respectively. Obviously (3.29)
and (3.32) are the same. So our attention moves to show that (3.32) is
equivalent to (3.37).

Consider the double integral in (3.37). It is further equal to

c

cos™I( yornd)
*_/ / df - dF,,(w). (3.38)

Note that 8% = cos™' g and b = /1 — ¢ imply cos ' b = /2 — §*. Thus, the
last term on the right-hand side in (3.38) can be further written by changing

the order of the integrations as

2:)526
2 [ c? ¢?
=z Fo(-=) - F ld
'/T/U L E’V(Q 2/ (ZCOSQQ)
26~ c? 2 3% el
- 1- (- 2 (= )dp. 3.39
( T ), (sz) 77/0 £, “200528)@ ( )
Substitute (3.39) into (3.38), and then we have (3.38) further equal to
o200 A 2 c ‘
By g Gy 2 Foo (-5 )de. (3.40)
2, <2b2) . FZ; (2) 7‘./; 2, (ZCOS‘ZQ) : )



By replacing the double integral in (3.37) by (3.40), in connection with that

o] 2
1= [, 1B, (w) = FQW(;—bQ),
202
we have (3.37) equal to
26~ 2 9 [ 2 \
=)+ - Foy(———)db, 3.41)
7T 2’(2)7_71'/0 % (200829) ’ ( J

which is the same as (3.29) and (3.32). Consequently, the equivalence of the

three computational formulae is obtained.



Chapter 4

Exact simultaneous confidence
bands for a multiple linear
regression over an ellipsoidal

region

This chapter continues to discuss the construction of exact one-sided and two-
sided hyperbolic-shape simultaneous confidence bands for a multiple linear
regression model over an ellipsoid that is centered at the point of the means
of the predictor variables using the same methods as shown in last chapter.
Also, the equivalence of the computational formulae of the methods is given

for both one-sided and two-sided cases at. last.

4.1 Exact one-sided confidence bands.

Bohrer (1973) presented a method of constructing an exact one-sided confi-
dence band for a multiple linear regression model by evaluating a multivariate
t probability.

Consider an one-sided hyperbolic-shape simultaneous confidence band

e.g., with upper bound, for a classical normal-error multiple linear regres-
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sion model

B <xTB+ro/xT(XTX)"1x  x€X, (4.1)

where ,fi is the maximum likelihood estimator of the p-dimensional parameter
vector 3, & is the usual unbiased estimator of ¢ which is the standard variance
of the independent and identically distributed random errors in the linear
regression model, the nx p design matrix X can be expressed by X = (1, X(3),
where 1 is the vector containing n ones, Xy is the n x (p — 1) matrix
containing the observed predictor variables, and r is a non-negative critical
value.

Consider the restricted region of the predictor space, X, which has the

- .
form given by

X = {x:x"vufa” vu)~tu? ¥x > AxT AL, (4.2)
where V = (XT)Q_l, u is a p-dimensional vector such that u? Vu = 1,
¢ is a non-negative constant. Define z; = 3" z;,7 = 2,...,p and
X@) = (Ta,...,%p). Then X( is the mean vector of the observed predic-

tor variables. And, we have

n nirﬁ)

XTX= ) .
nX(1) Aﬁ?legl')

Furthermore, the inverse is given by

177 o T o-1g _ 1T o-1
Ve (3Tt = | R TE@ST R RS
v _lg-1x,. lg-1 ’
7 (1) 7"
where
/8 o T <7
nS = (X(l; — }L(l:,l )(—X(l) - 1X(i/)

T s
Let u= \/ﬁ(li:f))T so that u” "u = 1 and u? Vx = 1/4/7. In addition,

T o \To-1 N
x Vx=1+(xq—X0)' 5 (xqy) — X)),

o6



N

where x(y is defined such that x — (1,,X?U,)T. Hence, (4.2) can be further
written as

VA 2T = Tao—1/ =

X = {x:c1+ (X(lj - X(1)> ST{xy — X(l‘)}] <1}

_ _ _ 1—c?
= {X F(xqy = %) ST x — Xqy) < = }, (4.3)

which is, in fact, an X)-centered ellipsoid in the predictor space, and whose
size can be controlled by (1 — ¢?)/c?.

Next, we transform the ellipsoidal region X to a corresponding region
of our interest. For a u, there exists a p x (p — 1) matrix U such that
7V = I,—1 and uT VU = 0. So u and the columns of U, which are linearly

independent, form an orthogonal basis of the p-dimensional predictor space.

Define
Z1 uT N
z= = o | V= (4.4)
Z(l) L‘

“Vx = ¥ V(u D(u OV 0] u )T v

T e = T
_ [( ‘;T ) & [(u 0 V{u U)} ( I;T ) Vx

T
= [ 7 ) =g (4.5)
2(1) 7

Since z; = u? Vx = 1/4/n > 0 and u? Vu = 1, therefore, the region X' given

We have

in (4.2) can be transformed to the following region
E(0) = {z: 2 > cfz]). (16)

Consequently, any x belonging to X definitely has a corresponding z belong-
ing to E(c); conversely any z € E(c) corresponds to an x € X as well.

Now, we consider the one-sided confidence band given in (4.1]. It has the
coverage probability given by

(8- 8)
P< sup X <rr,
{ng G4/ xT (X7 X)71x }

/

(@)
-~



which is equal to

P{ TV U)(u OV YB - B) - T}-

su 7
XEE OA—(XT T/X) 12

By recalling the definition of z in (4.4) and the derivation in (4.5), in con-
nection with the fact that an x € X one-to-one corresponds to a z € E(c),
then above probability is equivalent to
T
: z't
P{ sup T < } (4.7)
z v

zEE(c)
where t = N/& with N = (u 0)7' V18 - 3) = (u U)T(8 — 3). Note that
N has the N,(0,02]) distribution, & has the o/x2/v distribution, and they
are independent by studying the least squares theory. Thus, t has a so-called
multivariate ¢ distribution with v = n — p degrees of freedom. This is the

starting point of the three methods given in the rest of this section.

4.1.1 Method of Bohrer (1973)

Define a p-dimensional vector v in terms of the polar coordinates R, and

9‘,: (9‘,17.“.9‘,1; 1) by

v1 = Ry cos By,
V9 = Ry sinfy1 cos B0,

Uz = Fy sin By sin B cos Bys,

Up—1 = Ry sintyy sinflyy - - -sinby ,_ocosfy, ,_1,

Up = Ry sinfyysinfyg - -sinfy ,_gsinty 1,

where

IA

5

o o
IA

> D
<

(3]
VANRRVAN
:] “~

0 S 9v,p—2 S T
0 S 9v,p—1 S 2777
R, > 0.




Furthermore, the Jacobian of the transformation from v to the polar coordi-
nates is

|J| = RE71 sinP ™2 0,1 8inP 2 b, - - - sin Oy p—2.

Also, note that
ZTt = Rthfp~1> (48)

where f; = cos(f, -1 — Ot p—1) and
f3=cosbp_jcoslp s+ fj_18inf,, ;sinb; s

fory=2,...,p— 1L
The probability in (4.7) can be alternatively written as P{t € A.(c)},
where
A = A {c) ={t 2"t < r|z|, all z in Elc)} (4.9)

with E(c) defined in (4.6) which is a spherical cone with the vertex at the

origin. A,{c) and E(c) are graphically shown in Figure 4.1.

Lemma 4.1.1 Define 6 = cos™ ¢, then A, is partitioned by the following

three disjoint sets:

Ty = {t:0<0s <0 R <1},
Ty = {t:0,—6 <0, ;Z},Rt cos(fy — 6%) < 1},

Ty = {t:6 +g <0y <7} (4.10)

Proof. When t € 71, then t; = Rycosfhy > Rycosf* = c||t] so that
t € E(c), which in connection with the fact that RIR; < r|t| implies
t A(c). When t € Ty, since z € E(¢), then 0 < 6,; < 6% so that
RyRy cos(0u1—0,1) < RyR: cos(B—0%) < r|z||, which implies that t € A,(c).
When t € T3, obviously cos(fy1 — 1) < 0 which implies t € A.(c). Hence
U Ty C A,

Conversely, when t € A, N{t : 0 <8y < 6%}, then t; = Ry coslyy > rHtU
so that t € E(c) and hence we obtain Ry < r from t“t < r|t||. Therefore,
t €T, Whent € A, N{t: 0y — 60 € (0,7/2)}, since z € E(c), we have

m

m
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Figure 4.1: For the method of Bohrer (1973)

Rycos(byy —6*) <r. Sot €T, Andfinallyt € A.N{t: 0" +7/2 <6y <}
obviously implies t € T5. Hence A, C U;q-’:lT]-. Overall, A, is composed of
T j=1,23 #

Applying Lemma 4.1.1, we have

3
P{te 4.} =) P{teT;}. (4.11)
j=1
Recall that t = N /&, where N ~ N,(0,021), and 6 ~ 01/x2/v. Moreover,
N is independent of 6. Thus ||t||?*/p = (||[N/o|?/p)/(6%/0?) ~ F,., where
F,, is the F' distribution with p and v degrees of freedom. Also t can be

- expressed in terms of the polar coordinates Ry and 8y = (641, . - ., 6t p-1), and
N can be expressed in terms of Ry and On = (Ony, ... ,0np-1). Note that
Ot1, ..., 0 p-1 and On1, . .., On -1 denote the same p— 1 angles because N/§

does not change the location of N. One can easily find the joint density
function of Ryn and 8y via the transformation of random variables in con-
nection with the fact that IN has a p-variate standard normal distribution.
By finding the individual marginal density functions, we find that the joint
density is equal to the product of the individual marginal densities which

implies Ry is independent of fn;,7 = 1,...,p — 1. Thus, the independence
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between Ry and 6,7 = 1,...,p — 1 can be obtained. In particular, ;; has

the marginal density function
f1(Ba) = ki sin® ? 6y, (4.12)

where kp is normalizing constant such that foﬁ kysin? 2 0df = 1.

Based on the analysis above, we have

P{t€Ti} = P{0<8y <O R <r)
9*
= / kysin®?0d6 - P{R, < r}
0

o -2
= / ky sin? % 6d6 - Fou(—), (4.13)
0 p
P{t €Ty} = P{g" *5 <By <7}
= / Ky sin?~* 6d6
6" +3
0"
= / Ky sin? 2 646, (4.14)
0
P{t € TQ} = P{O < Qtl — S g, Rt COS(QH — 9*) S 'f'}

6+
= / ki sinP 28 - P{R;cos(0 — 6*) < r}df
0

.
z 2

= /2 ]{31 Sil’lp~2<e + Q*) : Fpﬂ}( i’
0

)dé (4.15)

3

pcos?

where [, stands for the /7 cumulative distribution function with p and v
degrees of freedom.
Consequently, by (4.11), the confidence level of the one-sided confidence

band based on the method of Bohrer (1973) is given by
o -2 -
Prp = / ky sin?=? 0df - F, . (—) + / kysin? 2 0df +
0 b 0

3 2
/ kl Sinp-z(g -+ 9,) : pr(:’-"r:“—)dg (416)
0



4.1.2 Algebraical method

Recalling (4.7), the confidence level of the band has the form

Tt
P{ sup 27 < 7'}, (4.17)
z€E(c) ‘IZ|
where r is a critical value, and
E(c) ={z: 2 > c||z|l} (4.18)

with ¢ non-negative.

Lemma 4.1.2 Let t; be the first element of t, tqy be the (p— 1)-dimensional

vector contasning the rest elements of t in order. Then we have

so IRl ve ),
sup = Q triliel
wemo ol | A v€ BlO)
VT2

/S o 774 o8
where g = +/c2/(1 — c2).
Proof. Note that it is obvious when t € E(c). So our attention focuses

on the case when t € E(c). Define z = (21, Z:tq))T such that
E(c) = {z:z: >0,2 >’z + iz ||*}
= {z:2 > qllzml}, (4.19)

where ¢ is defined in Lemma 4.1.2.
Consider t ¢ E(c) which leads that ¢; < ¢|lt(|| from (4.19). For ¢; # 0,

define
. 1
2 = ty /4l ’
qlitey/all;
then 27 = 1 and g[jzf;,|| = 1 so that z* € E(c). So generally we consider
z € E(c) hes the similar form with z* that z = (1,2{;,)" and 1 > gllz)]/.
Therefore, we have
z't i1+ Z%q}t(l)
(g4 1+ [z

t+ |zt

VI [zml?
= ¢t1 + 1 -ty = (o), (4.20)
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I3 t i
leayll :

it

gty + eyl _,
Vet

— 0 ¥ y

Figure 4.2: For the algebraical method in one-sided case

where
. 1 o 1
V14 lzgl? T 141/

Also, from t; < g||ty)||, we have
AU ) < il
Vi—yarie) T img

So it is clear that f(¢) is monotonously decreasing because, by (4.20) and
(4.21), we have

1 < (4.21)

/ 1 -1
fg)=t— 5(1 —¢°)77 - 20|ty < 0.
Consequently,

1 _t+ (1/9) It

Jirue . Jirye (422

Fle) < f(

63



The probability in (4.17), therefore, can be evaluated straightforward by
applying Lemma 4.1.2. We have

i

zE€E(c) “Z !

= P{t €B(g). [t <r}+

Ve

= P{t; > qlitey |, tu)? + ity |1* < )+

gty + |t
| P{tl < gt gt + [t | < 7«}

V& +1
::Pﬂﬁgrﬂ+P%3<Rﬂ<m,
_ 2 _ 2
: tll c <—oo; ar —b/Rf —r )} (4.93)
It br+ay/RE —~r?

where R? = 3 +{[t(y]|%, a = ¢/+/¢* +1,b = 1/+/¢? + 1, and the upper bound
of w is obtained by solving the equation set formed by [[t1]|% + |[ty|/* = 7

and {(gt1 + [tyl])/+/¢* + 1 = r. The accomplishment of the last equality in
(4.23) is graphically because the total area of the light shadowed region and

w =

the dark shadowed region is equal to the total area of the half circle and the
rest light shadowed part in the left top corner. The first probability on the
right-hand side of the last equality in (4.23) equals F,,(r?/p) which is the
F cumulative distribution function with p and v degrees of freedom, and the
second probability is further equal to

/OC glw)dF, ,(w), (4.24)

2

14

where

g(w\xzp{fl <a7"—b\/pwi—7"2}.
o It = br+ av/pw — 2

To evaluate g{w), note that

ar — by/pw —r? <0 <= w > r?/pb’.
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For w € (r?/p,r?/pb?), (ar — by/pw — 72}/ {br + a+/pw — r2) > 0, then
. t — by/pw —
gw) = P{t; <0} + P{ 1o pw — 12 }

Tl T bT‘Ta pw*r2
‘lP{ N <1 ar—b\/m)}
fol/e=0 =" T aiw

ar — by/pw — r?

+ Fl,p 1{(19 )( —ovE )} (4.25)
N+ an/pw — 1

for w € (r?/pb?, o), (ar — by/pw — 12)/(br + a~/pw — r2) < 0, then

P{ 12 >(a,7"—b\/pu)—7"2 }

[tell® — br—a\/pu,—r?

1 1 t2 ar — by/pw — r2\2
S R
2 2 Itwyl?/(p—1) ( ) br 4+ av/pw — r?

1

2

§F1p 1{@—1)(2:;2\/%)2}, (4.26)

where a=q//¢* +1=c, b=1/y/¢? +1=+1-c%.

1
2
1
2

glw) =

4.1.3 Tubular neighborhood method

Again from (4.7), the confidence level of the one-sided confidence band can

be further written as

2Tt
P{ sup — }
zEE(c) H ‘|
o0 T
= 1—/ P{ sup Zit — +dF,, (w)
0 z€E(c) ‘EZH‘W‘ \/pw
7o) Tt
- 1—/ P{ }d o (w (4.27)
= L2 Tellel ~ Vpw

Note that the supreme on the right-hand side of the last equality in (4.27)
is no larger than one. Let 0 < h = r/,/pw < 1 such that cos™ h € (0,7/2),
the set

—~
tb
N
co

N

Tt
E(h) = {t : sup L ~ h}
2<i(o) [12]/[/t]
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Figure 4.3: For the tubular neighborhood method in one-sided case

graphically .is a spherical cone with the vertex at the origin and has the angle
cos™! h between a ray of E(h) and the nearest ray from E(c). By the definition
of the polar coordinates, P{t € E(h)} is equal to P{0 < 61 < 8* + cos™' h},
and ||t|| = Ry is independent of ;1. Therefore, (4.27) is further equal to

1-— /,2 P{O< by < 6"+ COS-I(\/%)MFP,V(W)

T

co  pf"+cosT( _pw)
= 11— /2 / vEe kl Sirlp_2 9d9 . de,V ('LU), (429)
—’—‘p— 0

where
1

R — 4.30
! Jo sin”*6d6 (4.30)

k

is the normalizing constant.

4.1.4 Equivalence of the formulae

It is of interest to show the equivalence of (4.16), (4.29) and that based on

the algebraical method. First, we come to show (4.29) is equivalent to (4.16).
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Further write (4.29) as

oo, o8 pircosTH(L) |
1— / (/ - / - ) o sin”* 0df) - dFp, (w)
- o
= 1- / , (W) / kr sin?~? 0df
T 0

oo peosTY /;ﬁ)
— /2 / kl Sinp‘2<9 + 9x>d9 ! de,u(w>
et 0
6

2

. . or ]
= <1 — / ky sinP~? Gdﬁ) + / Ky sin? 2 649 - Fpﬁy(q—)
0 0 D

— /2 ki s~ (0 + 0" )dIF,, (w) - df
0 -

A
pous< 6

2 2

o* ] z n
= kﬁp_QQdQ-Fyq— +/ kysin? (0 + 07)F,, — T )df
/o 1 sin ’p,(p) ; 18in? "4 (0 + 67) "(pCOSQt?)
9* % .
*(1— / ky sin? ™% 0df — / oy sin” (0 + 6°)df ). (4.31)
0 0

The terms in the big bracket on the right-hand side of the last equality in

(4.31) together as a whole is further equal to

7 6* 6*+Z | z_p*
( / - / — / )kl sinP~20df = / ki sin?~2 0de. (4.32)
0 0 6+ 0

- Substituting (4.32) into {4.31) gives the same formula as (4.16).
Next, we turn to find the equivalence between (4.16) and that got from

the algebraical method. Recall (4.23), with 6* defined consistently, the last
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equality is equal to

m

P{R; < 7?01 € {0,067} + P{Rycos(by; — ) < 7,0i1 € (67,7}

= P{R?< 12,6, €[0,67} + P{0 < Ry cos(By — 6°) < 7,64 € (67,7])
+P{Rycos(fy1 — 07) < 0,641 € (6%, 7]}

= P{R2< 1% 0, € (0,67} + P{0< Rycos(fu — 6%) < 1,64 € (67,6 + g}

m

T

+P{Rt COS(th — 9) < O 01 € (8* 3 7’}}

ﬁ

6 0 +% 2
= ky sin?=20d6 - F, ,(— by sinP20 - Fy(————\df
/O sin . \P)T/e* 1 sin 5 \pcos~(€—9)

+ / k1 sin? =2 6d6
g* T

\7
O\
[NE]
ol
[
wn
E.
=3
b
—~
D
D
*
~—
~
[ )

e’k
= / ky sin?~% 6d8 - pr\—) )de
0

- Fp(

pcos?d
Z—p"

+ / ky sin? =2 8d#. (4.33)
0

Obviously, (4.33) is the same as (4.16). So a conclusion can be drawn that

the three methods give the same computational formulae.

4.2 FExact two-sided confidence bands

In this section, we consider exact two-sided simultaneous confidence bands
for a multiple linear regression over an ellipsoidal region based on the same

methods.

4.2.1 Method following the idea of Bohrer (1973)

Recall (4.6) and (4.9). We change E(c¢) and A,(c) slightly to make them
correspond to the two-sided case. Therefore, we have for two-sided confidence
bands

A, ={t:|27t] < rllz||, all z in E(c)}, (4.34)

where

E(c) = {z: |z] > cllz}.
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Figure 4.4: For the method following Bohrer (1973) in two-sided case

Recall the definitions of the polar coordinates (Rs, 041, . .. ,0tp—1), Where
b; € [0,7],5=1,...,p—2and 6;,-1 € [0,27]. Note that when we consider
f¢1 moving throughout [0, 7], A, actually looks like the full region rather than
just the upper half due to the effects of other angles 8,7 = 2,...,p — 1.
Also, note that A, has a graphically symmetric shape for the two-sided case
as shown in Figure 4.4. So we only need to consider the region produced by

6¢1 moving throughout [0, 7/2].

Define
6* = cos'c,
Tl = {t:oggt,lsg*)RtS'r})
T2 = {t . g S gt,l S g,Rt COS(gtyl - 9*) S 'f‘}. (435)

We have the confidence level of the two-sided band simply equal to
P{t € A} = 2<P{t €T} +P{te TQ}). (4.36)
Recall that 6;; has the density function given by
f(8) = k;sinP~24 (4.37)
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with k; being the normalizing constant, R?/p has the F,, distribution and
g t/P P,

is independent of 8;;. Thus, we obtain
P{t & Tl} = P{O S Qﬂ S 9*,Rt S 7"}
i
- / kysin??0df - P{R, <r}
0
6~ 2
= / kysin? 2 6d0 - F, ,(—), (4.38)
0 b
PlteTy}) = P{# <by < g,Rt cos(fy, — 67) <}
= /2 ki sin?™20d0 - P{ R cos(fy — 0%) < rh
J

50"
- / kysin? (0 + 0%) - F,
0

—0

o]

- * .
kysin? 2(6 4 67)df - P{R, < COSG}

2/

e - .
—=)d. 4.39
cos? Q)dg ( )

Overall, the two-sided simultaneous confidence band can be constructed

with the confidence level given by

6" r2 T-0* 7'2/]? .
/ 2k sin? ™2 9d9-Fp,y(—)+/ 2k, sinP2(0467)-F,,, (—5—)df. (4.40)
0 i 0 " cos? )

4.2.2 Algebraical method

Casella and Strawderman (1980) considered the construction of a two-sided
hyperbolic-shape confidence band over an ellipsoidal region A. And the

structure of this X can be transformed as

m D
Blg)={z:) z>¢ ) =}
=1 i=m—+1

where g > 0 is a fixed constant.



From the result of Casella and Strawderman (1980), it is that the two-
sided confidence band of hyperbolic shape

x'BexTBxroy/xT(XTX)"1x xe X, (4.41)

where r is a critical value, has its simultaneous confidence level given by

2, /(%) Lsor —by/pw — 12\2 . .
Fou(—) +/ Fl,p—l{(p - 1)( P ) }dey,,(w), (4.42)
p r2/p br + CW

where c=¢q/+/1+¢>and b=1/4/1+ ¢

4.2.3 Tubular neighborhood method

Recall (4.7), the confidence level of the two-sided band is alternatively given
by

o

Tt \
P{ sup ‘Zil < IL} (4.43)

Note that t/[|t] is independent of [jt]|, the supreme in (4.43) is no larger
than one, and
r/ypw <1 <= w>7r?/p.
Therefore, (4.43) is further equal to
1—/ P{ sup i\y ,‘ > L }dFﬁ,,(w)
0 vee Y[t~ /W

1 /mp{ RAAIIN T}M’(“ (4.44)
- T Sup e plw). A44)
2 Lyen I T Pwl T

Let 0 < h =r/,/pw < 1 such that cos™' h € (0,7/2). The set

lzTt
E(h) = {t : sup Lk > h}

zei(o) 117 [[t]

consists of two opposite spherical cones in RP. One cone, C, has its vertex
at the origin and its central direction given by z;-axis, symmetrically and
centrally containing one smaller cone with the angle cos™t A between a ray

on its surface and the nearest ray from the smaller cone. The other cone is
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Z1

Figure 4.5: For the tubular neighborhood method in two-sided case

simply —C. The two smaller cones are produced by E(c¢). Then, in connection

with the definition of the polar coordinates, we have E(h) equal to

{t:04 €[0,0"+cos thlU[mr —0* —cos™t h,7|} if 6*+cos™'h <
: {t : 91;1 € [O,?T]} if 6%+ COS_lh >

)

SIERESIE]

Note that _ )
0* + cos™ (r//pw) < T s w< T—,
2 b2%p _
and the density function of 6;; is given by (4.37), we therefore have, for
r?/p < w <r?/(B*p),

P{t € E(h)}

P{;1 € [0,0" + cos™}(r/\/pw)] U [x — 0* — cos™}(r //pw), 7]}
6*+-cos~(r/./pw)
/ 2k, sinP~2 d0;

0

and, for w > r2/(b%p),

P{t € B(h)} = P{6;, € [0,7]} = 1.
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Consequently, the confidence level (4.44) is equal to
r2/(8%p)  pO*+cosiHr/\ /W)
/ / 2k, sin?~? 6d0dF, , (w)
2
- / 1dF, . (w). (4.45)
2 /%)

4.2.4 Equivalence of the formulae

By changing the order of integrations, the double integral in (4.45) simplifies
as

o= . T‘2 702
2y sin? 1 BdO{ Fpo(7—) — Fpo(—)
/D ky sin aly) = Fonl )

+ /
-

Substitute (4.46) into (4.45) and note that

[SIE]

2

s ; 2
2k sin”™ 0 Foulpe )—pry(

r

: ) }de. (4.46)

pcos?(f — &%)

2 2/(6%p)
/5 2%k sin?~! 0d6 - F (o s )= / dFy,, (w).
0

We finally have that the confidence level based on the tubular neighborhood
method is equivalent to the expression given in (4.40).
Change (4.23) slightly to make it corresponding to the two-sided case.
We therefore have the confidence level of the two-sided band is
] r? i
P{RfST2}+P{T <Rf_ w=—
b2’ ‘it(l) |
6(_ar—b\/R%—7"2 ar—b\/Rf—ﬁ)} (4.47)
br+a\/m7br+a\/]%§——ﬁ ) s

where a = ¢/+/1+¢*> and b = 1/4/1+ ¢°. The first probability is simply

equal to F,,,(r?/p), and the second one is further equal to

7‘2 n
/EP{ It1] < T‘—b\/p%—'l"Z}dF w)
2 toy | br 4+ a+/pw — 1?2 Pl

o b Sy — 2
= [T Ao (EE I Vs, ). (448)
§ r br + ar/pw — r2 P
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It can be found that (4.47) is equivalent to (4.42). On the other hand, we
can write (4.47) according to the location of the vector t. It is that (4.47)

can be evaluated in terms of the regions #¢; belongs to, as

P{R2< 7% 0,100,071 U[r -6, 7}
+P{Rycos(f — 0") <70 € (07,7 —07)}

6= r2
= / kysin?™20d - Fp,(—)
0 b
T T'2
+/ ky sin?~2 0df - Fy, (—)
7—g* p

0% ) ,,,.2
+ kysin?~*0 - F, (——————)df
/9 L P (pCOSZ(Q—Q*))

T'2

o
= / 2ky sin?~? 0df - F(—)
0 p

,,,.2

= _g»
+ /2 2k sinP (0 + 0F) - Fy o ( )dé, (4.49)
0 .

pcos?

which is the same as (4.40). Consequently, we obtain the equivalence of the

three formulae corresponding to the three methods respectively.
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Chapter 5

Simultaneous confidence bands
for a regression model over a
rectangular region and

comparisons

In last two chapters, we discussed the construction of exact simultaneous
confidence bands with the predictor variables restricted in an ellipsoidal re-
gion. In this chapter, we turn to consider the construction of two-sided
simultaneous confidence bands over the most popular rectangular region of
the predictor space based on several methods, including Naiman (1986)’s
conservative method by applying the tube volume theory, the approximate
method proposed by Sun and Loader (1994) presenting an approximation to
the tube formula to construct confidence bands for a parametric or nonpara-
metric regression function, and the simulation-based method of Liu, Wynn
and Hayter (2005) and Liu, Jamshidian, Zhang and Donnelly (2005) to con-
struct confidence bands for polynomial regression and multiple linear regres-
sion respectively. Also, comparisons for these methods are given in terms of
critical values. All critical values are calculated by running programmes on

MATLAB 7 platform. Conclusions are drawn in the end.
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5.1 Conservative confidence bands

Naiman (1986) presented a method of constructing conservative hyperbolic-
shape simultaneous confidence bands for an one-dimensional curvilinear re-
gression over finite intervals. This method is, by using a geometric inequality,
to obtain an upper bound for the volume of a tube with a fixed distance from
an arbitrary path which is piecewise differentiable and has a finite length on
the surface SP~! of the unit sphere in p-dimensional real space.

Consider the regression model

y=f(x)'B+e¢, (5.1)

where y is the response, f(z) is the p-dimensional vector of known functions
of the only predictor variable z, (3 is the p-dimensional vector of unknown
regression coefficients, ¢ is the random error which is normally distributed

2. For a special case when f(z) =

with mean 0 and unknown variance o
(1,z,22, ..., 2P~ 17, (5.1) is the usual polynomial regression model of p — 1
degrees. Let X C R be a restricted interval containing all possible values of
z. Denote 3 and 62 the maximum likelihood estimator of 3 and the usual
unbiased estimator of o2 respectively. Also, assume the design matrix is of
full rank so that f;’ ~ N,(3,0%%) for some known positive definite matrix 3.
And v6?/0? ~ x2 with v degrees of freedom. Let P be a p x p non-singular
matrix such that PYP = 3.

A two-sided hyperbolic-shape simultaneous confidence band for the mean

regression function f(z)7 3 over the restricted predictor space is given by
f(2) 8 ef(ax)'B+cop(z) alzeli, (5.2)

where p(z) = {f(z)TSf(2)}/? = || Pf(=)||, and ¢ > 0 is a critical value.
Define N = (P~17(3 — 3)/0 which in fact has a p-variate standard normal
distribution by studying the least squares theory. Then the confidence band
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(5.2) has the confidence level given by

Pl <)

_ [PE(2)T (PN (B - B) o] _ c&
N P{fﬁ%ﬁ PE@)| ?}

ol [EE@IN| i/
= P{o i < T

— q_pl oy IPE@I'N] oo '
- P{ze}? PE()][[|N]] HNf}' (5:3)
Define
(z) = P(z) . oy 5.4
=@ T -

which is a path in SP~!, the surface of the unit sphere centered at the origin
in R?. And assume the length of the path given by A(y) = [, |7/ (z)]/dz is
finite. Also, define the random vector U = N/|[N|.. Consider N in terms
of the polar coordinates Rx = ||N|| and fn. Then U only depends on On.
Since N has the p-variate standard normal distribution, one may directly
find the joint density function of |N|| and 8n. Furthermore, by finding the
individual marginal density functions, we obtain that the joint density is
equal to the product of the individual marginal densities, which implies that
|IN|| and € are statistically independent. So are U and [[IN][.

If I'() and p are used to denote the image of the path and the uniform

probability measure on SP! respectively, define for r € [0, 1]
T(¥)p ={ue S i sup(u’v) > r forv e L(v)}. (5.5)

Recall (5.3). Since the supreme is no larger than one, we have 0 < (6/0)/||IN|l <

1/c. Hence (5.3) is further equal to

1/ec
1= [ () U =P b ) (5.6)

where fr denotes the density function of T = (6/0)/|{N|| such that pT? ~

F, p, the F' distribution with v and p degrees of freedom.

-~
-~



Figure 5.1: Tubular neighborhood of a path

The central part of Naiman (1986) is to find an upper bound of u{T'(7) }
so as to construct a conservative confidence band. Consider the case when
I'(v) can be piecewise approximated by great circular arcs using geomet-
ric inequalities. The great circular curve obtained after approximation can
then be replaced by a curve of the same length on a single great circle by
straightening out the curve at each point where the circular arcs are joined.

*

Equivalently, if + is replaced by ~*, a path of equal length but whose im-
age lies on a great circle, then the bound may be thoughtl of as pu{T{(v*)(»}-
Thus, a bound is obtained which depends only on the length of the path and
consists of two terms. The first term is proportional to the length of the
path corresponding to the points in the middle tubular part of I'(y*)(,). The
second term is the sum of the measures of two half spherical caps of angular

1

radius cos™! r corresponding to the points in the two half spherical ends of

the tube I'(*)(y. Hence, the upper bound of u{I'(v)(} is given by

pT)m) < min{Fy 0202 = 1)/(p - 2)] x A7)/ (2n)
+Falr = 1)/(p - 1)/2,1). (5.7)

The minimum used here is to avoid overlapping.
From (5.7), a lower bound for the coverage probability of the confidence
band (5.2) is obtained as

1= [ minEaala((e)? - 1)/l - 2] x Al/r
© Fyal((et)™ — 1)/(p — 1)) 1} fr(8)dt, (5.9)
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where fr is the density function of the random variable 7T') ¢ is a critical
value.

In a special case when p = 2 and f(z) = (1,z)7 where z belongs to a
subset X, the given model reduces to a usual simple linear regression model
with a restricted predictor variable. Accordingly, the conservative confidence
band becomes exact, because, for this special case, the path v(z) is already
on the unit circle so that it is unne;:essary to straighten it out. One may find
p{T(~v)(} directly. Then the confidence level is

1

1= /0 min{A(vy)/m + F1[(ct) ™ — 1], 1} fr(t)dt, (5.9)

where A(-y) is the length of the path.

It is of natural interest to show the equivalence between (5.9) and one of
the computational formulae obtained in Chapter 3, which is used to calculate
the critical values for the exact two-sided confidence bands for a simple linear
regression.

Note that, in connection with (5.5), (5.6) can be written alternatively as

1- /1; P{ sup [uTv| > ct}fT(t)dt. (5.10)

vel

By changing the variable of the integration, we have (5.10) further equal to

1— P sup [uTv] > o ary,(w), 5.11
J. o> o Yamw) 5.11)

where F; , stands for an F random variable with 2 and v degrees of freedom.

Recall (3.34) and the definitions of v and v in (5.11), and we find that
(5.11) is equivalent to formula (3.34). In connection with the equivalence of
the formulae in Section 3.2, it can be concluded that the formula of Naiman’s
conservative method for the simple linear regression case is equivalent to that

obtained by the exact method, e.g., formula (3.41).
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5.2 Approximate confidence bands

Sun and Loader (1994) stated a method of constructing approximate 1 — «
simultaneous confidence bands for a parametric or nonparametric function
over a constrained predictor space. This method, which is in fact an approx-
imation to the tube formula, can be applied to the multiple regression case,
and is adaptable for a wide class of linear estimators. More details about the
volume-of-tube formula, see, e.g., Loader (2004).

Consider the multiple regression model

yi = f(x:) +¢, (5.12)

where x;,7;,¢ = 1,...,n are the observations, x; € R?% is a vector of the
predictor variables, f(-) is an unknown function which needs to be estimated
based on the observations, and £ is the normally distributed random error
with mean 0 and variance o which is assumed to be unknown. A linear
estimator of the mean response f(x) is given by

.

Fo0) =) L=y =17, (5.13)

i=1
where 1(x) = (1,(%x),.. ., l(x)T and Y = (y1, ..., yn)T.
A simultaneous confidence band for f(x) over a subset X of the predictor

space has the form given by
{(F(x) = e [U)II, f(x) + o |10)]) - x € X, (5.14)

where ¢ is a critical value and & is the usual unbiased estimator of o. If we

assume the band (5.14) has 1 — « confidence level. Then, we have
l-—a = }gipf{f(X) —co 1] < flx)
< fx) + i) Y e XY, (5.15)

where F is a wide suitable class of functions. Next, we evaluate the prob-
ability on the right-hand side of (5.15) in order to obtain a computational

formula for calculating the critical value c.
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A class F, of natural interest, is a set of functions for which f(x) is an

unbiased estimator, i.e.,

F=A{f: f(x) =1x)"p,vx},

where g = (f(x1),..., f(x,))T. In this case the probability that coverage
fails for the band (5.14) has the following expressions

~

o = oy FOIEI

NS A TTES T
167 167!
= AR Te et

sup | T(x)Tel > cc}}
XEX

cup =) > 7}
(x)TN Glo
AT e

pIT()TU| > Z fg(z)dz, (5.16)

il
r\
8
g
I_H
%
mn o
~

where T(x) = 1(x)/|[1(x)|/, € = Y — p is an n-dimensional vector of random
errors, g(z) is the density function of the random variable Z = |[N||/(¢/0),
N = g/0 has the N,(0,1(x)T1(x)) distribution, and U = N/|IN|| is a unit
vector on the surface of the unit sphere S"~! and is independent of | N]|.

Letting M = {T(x) : x € X'}, the probability on the right-hand side of
the last equality in (5.16) is simply the volume of a tubular neighborhood
of M U—M on the surface of S""1. Here, approximate formulae for one-
dimensional and two-dimensional cases are given. Although this approximate
method can be applied to high dimensional case by following the similar idea,
lots of geometric constants are needed to be calculated. So we only consider
the low dimensional cases, i.e., d < 2. The difficulty on the computation of
the geometric constants is thought as the drawback of this method.

Assume the manifold M is the third order continuous with a positive
critical radius. Suppose T : X — M is one-to-one, three times differen-

tiable and there exists a vector A such that /\TT(X) > ( for all x € X which

81



ensures the tubes around M and —M do not intersect for sufficiently small

radii.

Proposition 5.2.1 (One-dimensional) Suppose z € |a,b]. The length of
M is ry = [TIT(x)|dz, where T(x) = 1(x)/|[1(x)]| with 1(x) = X(XTX)'x

for linear regression models, X 1s the design matriz. And v&?/o* ~ x2. Then
ko C2 9 —
am 21+ )24 Pllt,] > ¢, (5.17)

T v

where the last term on the right-hand side of (5.17) is the probability of the

absolute value of a t random variable with v degrees of freedom larger than c.

Proposition 5.2.2 (Two-dimensional) Suppose X is a rectangle in R*.
Let vy be the area of M, (y be the length of the boundary of M. Then

T

2 T(w/2) v v

; Co CZ —v/2 |
+Z(1 + ;) + P{jt,| > c}. (5.18)

ko D((r +1)/2) ¢ (1; 02)*(u+1)/2

For computing constants kg and ¢y, denote T;(x) = 0T (x)/0z;,j=1,2. Then

Ko = / det'?(AT A)dx, (5.19)
X

(o= /8 det!?(A,TA), (5.20)
X

where A = (T1(x), To(x)), A, = T1(x) or Ty(x).

5.3 Simulation-based confidence bands for a

polynomial regression

Liu, Wynn and Hayter (2005) proposed the simulation-based method for con-
structing simultaneous confidence bands for an one-dimensional polynomial
regression model with the only predictor variable restricted in an interval.

Monte Carlo simulation is used to find an accurate approximation to the
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critical value of the confidence band when the number of simulations is set
to be sufficiently large.

Consider the one-dimensional polynomial regression model
Y =X3+¢, (5.21)

where Y1 is the vector of the observed responses, X,x, is the full column-
rank design matrix with the ith (1 < i < n) row given by (1,z;,...,2°"),
B = (B,...,8,)" is the vector of unknown regression coefficients, and € is
the vector of independent and identically distributed normal random errors
with mean 0 and variance o2, which is assumed to be unknown. Denote the
maximum likelihood estimator of 8 by 3, therefore, 3 ~ Ny (B, o (XT X)),
Also, denote an unbiased estimator of o2 by 2 so that v5?/c? ~ x2. More-
over, 3 and 62 are independent.

A hyperbolic-shape simultaneous confidence band for the mean response

xT 3 over the restricted predictor space when z € (a,b) is given by

xTB e xT8 + co/xT (X X)~1x,Vz € (a, b), (5.22)

where x = (1,z,...,277!), ¢ is a critical value such that the confidence band
(5.22) has the confidence level equal to 1 — a. Alternatively, (5.22) can be

arranged as

sup xT(8 — B)/o] <c (5.23)
a<z<b (5,/0,> /XT(X—TAXj_lx
Define A
T = sup X (8- B)/o] (5.24)

a<e<b (5 /o) /xT(XT X)~1x
the confidence level of the band (5.22) is given by P{T < ¢}. The following

procedure shows how to use Monte Carlo simulation method to approximate

the critical value c.
Step 1 Generate N = (8 — 8)/0 ~ N,(0, (XTX)™1).

Step 2 Generate s =6/0 ~ /x2/v.
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Step 3 Calculate T from (5.24). To find the supreme in (5.24), firstly find

all the stationary points of
xTN| )‘2 _ x'NN”x
A/ xT(XTX)x

by solving #/(z) = 0, i.e.,

hle) = ( xT(XT X)~1x

g(z) = (ENNTX> x (X7 X) x| — (x" NNTx) {E (XTX)_IX} =0.
' dr L dzr
Since g(z) is a polynomial of order 4p — 6, it has at most 4p — 6 zero
points. If they are denoted by 1, ..., z,, from (5.24) we have
T = max{~+/h(a),\/h(b), T vV h(z)}/s.
<i<g;Ti€le,b)
Step 4 Simulate R independent replicates of T, say, 11,. .., Tg, and use the
[(1 — &) Rlth largest T; as an approximation of ¢, denoted by é.

The base of this approach is that the sample 100(1 — «) percentile ¢
converges almost surely to the population 100(1 — o) percentile ¢ when the
number of simulations R goes to infinity. Furthermore, to gauge the accuracy
of &, it is useful to estimate its standard error. It is known that, under certain
regularity conditions, ¢ is asymptotically normal with mean ¢ and standard
error

s.e = —C;SGQ(S), (5.25)
where G(c) is the density function of 7' evaluated at ¢ (see, e.g., Serfling,

1980). And G(c) may be approximated by the kernel density estimator

R

1 P AW 2

Gle) = S e,
(@ Rdv/27 %

where T; is the ith simulated value and d is the smoothing parameter. We
usually set d = 0.1, 0.01, 0.001.
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5.4 Simulation-based confidence bands for a

multiple linear regression

Liu, Jamshidian, Zhang and Donnelly (2005) presented a method of con-
structing simultaneous confidence bands for a normal-error multiple linear
regression model based on Monte Carlo simulation procedure. The confi-
dence bands constructed via this method have hyperbolic shape and can be
applied to a model with any number of predictor variables.

Consider the multiple linear regression model

Y = X8+,
where X, is the design matrix with the first column given by (1,...,1)7
and the jth (2 < j < p) column given by (71 -1,...,Zn;—1)7. Inferences on

estimators of unknown parameters 8 and ¢? can be obtained as usual.
It is of interest to construct a simultaneous confidence band on the most

popular rectangular region X’ of the predictor space, which is of the form
X = {(311,‘ ,.,Clip_l\)T L4y < I S bi,’I; = 1!. Y 1}, (526)

where —oco < a; < b; <oo,i=1,...,p— 1 are given constants. The central
task is to find an appropriate critical value ¢ such that the confidence band
has the confidence level equal to a preassigned 1 — «.

Note that the confidence level of the band is given by P{7T" < ¢}, where

T = sup 7B —B)jo] (5.27)

Ti€las,bili=1,..p~1 ((3/0)\ XT(XTvX)—IX

The distribution of 7" depends on the design matrix and the intervals (a;, b;)
in a complicated manner. This makes a challenge to derive the distribu-
tion function of 7' directly. In such a case, it is motivated to introduce a
simmulation-based method to find an approximation to the critical value c,
say é, which can be as accurate as one wants by simulating a sufficiently

large number of 77s.



It is clear from (5.27) that the calculation of 7" is in fact an optimization
problem. ‘Consequently, our analysis focuses on the optimization algorithm.
Let P be a p x p non-singular matrix such that (X’ X)~! = PTP. Then
generate one N = (P7)~1(8 — 8)/0 ~ N,(0,]) and one independent &/c ~
\/x2/v. Therefore, T becomes

N
T -, (5.28)

where (POTN]
Q= sup R/
zelasbili=lop-1 [ DX
Accordingly, the optimization problem of 7" transforms to the optimization
of @@ which involves the maximization of a p-variate function over the given
rectangular region of the predictor space. T'wo methods were included in Liu,
Jamshidian, Zhang and Donnelly (2005) to solve such a maximization prob-
lem. They are the branching method and the active set method respectively.
T can be obtained after () is ready.
As stated in Section 5.3, we simulate R replicates of the random variable
T, and set the [(1 — a)R]th largest simulated value ¢ as an approximate of
the critical value ¢. Also, one may estimate the standard error of ¢ using

(5.25) to gauge its accuracy.

5.5 Comparisons

For the methods of constructing confidence bands introduced in this chapter,
we are interested in comparing them in terms of the critical value to have a
general view on the goodness of each. All the critical values in this section

are calculated using MATLAB programmes.

5.5.1 For simple linear regression

We start with the comparison for a simple linear regression model. As already

pointed out, for simple linear regression case, Naiman’s method turns to be
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exact. So the methods in our first comparison include: the exact method,
the approximate method of Sun and Loader (1994), and the simulation-based
method of Liu, Wynn and Hayter (2005).

Note that, all the methods depend on the design matrix, the restricted
interval for the only predictor variable and the confidence level. However,
one may go further to consider the nature of the methods.

For the exact method, we have the computational formula for the critical

value given by

26 c? 2 [z ¢ c?
l—a="FR, ()42 By (—2)de, 5.29
“ T (2) 7('/0 2 (200520) (6:29)

where Fh, stands for the F' cumulative distribution function with 2 and
v = n — 2 degrees of freedom, and 6* can be found in the following way:
define a = (1,a)7, b = (1,b)T where a, b are the lower and upper bounds of
the restricted interval, then we have

1 al (X' X)™'b

§* = — arccos

2 (aZ(XT X)~1a - bT(XT X)~1b)1/2’ (5.30)

It is clear that the critical value depends on the angle 6*, the degree of
freedom v and the given confidence level 1 — o, where #* is half the angle
between Pa and Pb with P consistently defined as before.

Similar argument can be applied to the approximate method, the key of
which is to compute the length of the path on the surface of the unit sphere
in R™. So we are interested in finding the relationship between the length of
the path and the angle §*.

For linear regression models, vector 1(x) in the approximate method has

the explicit form given by
I(x) = X(XT X)"'x = XPT Px,

where X is the design matrix, x is the vector of the covariates, and

[T

Nl = 1607160]* = [ (2] = e
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Then we have

_Ix)  XPT.Px
IR TCS ]

T(x) = XPT . ~(x)

by studying (5.4) for Naiman’s method. Furthermore, we have

1T Ge)I?

fl

which implies that

1T ()l = [Iv'(=)]- (5.31)
Thus, by assuming the only predictor variable z € [a,b], since the length of
the path

b b
Aly) = / ) lldz = / I T () dz = mo, (5.32)

then we obtain the equivalence between the length of the path in Naiman’s
method and that in the approximate method of Sun and Loader (1994).

In particular for simple linear regression case, the path in Naiman’s
method is on the unit circle, which, in connection with the fact that 26~
is equal to the angle between the two unit vectors starting from the origin
and pointing to the two ends of the path, implies that 26* = A(~y) = k.

Therefore, formula (5.17) becomes

fog

260*
(1+°

™ 14

)72 - P{lt,| > ¢}, (5.33)

o =

where ¢, is a ¢ random variable with v degrees of freedom. Clearly, the critical
value depends on 6%, v, 1 — o as well.

For the simulation-based method, a suitable manipulation simplifies the
computation of T' defined in (5.24). Define U = (U;, Us)T = N/||IN||, where
N = (PT)"}(8 — B)/o. Let u, and uy be the generated values of random
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variables U; and Us. Then, under the definition of ¢* = 26* T can be

calculated in the following way:

N

if juy| > cos &,

(6/0)
N ol - A o B
T (C}/U\)\ulcos2 Fugsin G| i 0 <uy <cosG, ug > sin G
* i L
or —cos% <up <0, up < —sin%,
N & o :
& |uy cos & — upsin 5| otherwise.

By following the procedure stated in Section 5.3, an approximation of the
critical value can be found. Also, one may calculate the standard error
accordingly. Overall, all these methods depend on 8%, v and 1 — a.

Now, we design the levels for these three factors. Since 6* € [0,7/2], set
g* =0.0,0.1,0.2,--- ,1.3,1.4,1.5,1.57. Set the degree of freedom v = 2,4,
6,8,10, 15,20, 30,40, 60, from small to large, to see how this factor affects
the critical value. In addition, the three most popular confidence levels
90%, 95%, 99% are used. Tables 5.1-5.10 contain the critical values com-
puted based on these methods. The simulation results are based on 100,000
simulations. Results with a star behind in the tables are based on 200,000
simulations in order to make the distinction more clear.

From the results, we can draw some conclusions. For each method, the
critical value increases with the angle 6* and the confidence level, and de-
creases with the degree of freedom. The critical values based on the ap-
proximate method are generally larger than those of the exact method, good
enough when 6* takes small values, but being worse and worse as 8* goes
large. This trend becomes less and less evident as v goes large, but the gap
still exists clearly. The simulation-based method computes as good critical
values as the exact method. The difference between the critical values of the
simulation-based method and those of the approximate method is basically
at the second or third decimal place, increasing with the confidence level and

decreasing with the degree of freedom.
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df. =2

cl [ tv.ext | cv nal | cv app | cv simu| se.

0.00 2:9200  2.9200 2.9200 2:9103 0.0153

0.10 34200 31200 3.1208  3.112% 0.0161 -
0.20 33055  3.305% 33114 3.2976 0.0210

0.30 34746 34746 34927 3458% 0.0128 |*
0.40 3.6280 3.6260  3.8660 3.6050 0.0132 |*
0.50 3,792 37592 3:8321 37488 0.0937 |*
0.60 36742 38742 3.9918 3.8454 0.0228

070 3.9712 39712  4.1458 3.8522 0.0180 .
90% 0.80 4.0509 4.050% 4.2945  4.0505 0:0154 |*
080 41142 41140 44385 4.1056 0.0244 .
1.00 41822 41622  4.5782 41489  0.0215

1.10 41989 41968  4.7140 41871 0.0447 |*
1.20 42200 42200 4.845% 4.2068. 0.0180

1.30 42337 42337 48746 41875 0.0189',
140 42404  4.2404 51000 4.2238  0.0223 :
1.50 42425 42425 52226 42422 0.0202

1.57 42427 42427 53067 4.2432 0DIS§ |-
0.00 43027 43026 4.3027 4.2814 0.0302 -
018 45816 45816  4.5828  4.5012 0.0299

0.20 4.8403 48403 486478 4.B374 0.0344

0.30 507685  5.0765 5.1000 5.0591 0.0308 |[*
0.40 59687 52687 5.3408 5.2892 D0.0453

0.50 54761 5.4761 5.5718 54712 0.0331
0:60 §.6386  5.6386 5.7937 5.6107  0.0281 |*
0.70 57760 57758 60078 57418  0.0393

95% 0.80 58892 5.8892 62148 57967 0.0402
0:90 58794 58794 654182 59549 0.0485 .
1.00 60486  6.0484 - 66097 60284 0.0317 |*
1.10 6.0984  £.0984 £.7988  6.0639 0.0453
120 6.1317  6.1317 £.9828 6:1348 0.0553
1.30 6.1516  B.1518 7.1621 5127 0.0521
140 6.1611 6.1611 7.3372 6.1563 0.0310 |*
1.50 6.1644 61641 7.5082 6 1580 0:0297 |*
1.57 61643  B.1643  7.B256  6.1350 0.0478
0.00 9.9249 99247 8.9243  9.6140 0.0862 [*
0.10 10.5420 10.5420 10.5441 10.6691  0.1004 |*
0.20 111141 114941 111206 114316 0.1312
6.30 11.6370 11.6370¢  11.6858 115289  0.0833
0:40 121081 121079 122173 120786 0.1430 |
g.50 125250 12.8250 127267 125740 0.4a41
0.60 12.8872 12.8872 13.2167 127368 0.2089
0.70 131948  13.1947 13.6891 13.2857 0.1347
99% 0.80 134491 134481 14.1460 130626 0.1470
0.90 13:6525 13.6523 14.5885 13.1477 0.2324
1.00 138082 13:8082 15.0182 13.7085 0.1167 |*
1.10 13.8213 13.9211 154359 142853 0.3344
120 13.9920 139920 15.8425 14.0088 0.2436
1.30 14.041%  14.041%  16.2391 14.2307 02019
1.40 14.063% 14.0637 16.6263 13.8603 0.1011 |*
1.50 14.0707 14.0705 17.0047 14.0654 0.2143
1.57 | 14.0713 14.0713 17.2645 14.0603 0,1750

Table 5.1: Critical values for simple linear regression
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df. =4

chi B T cvext | ovnal [ cvapp |cv.simu]| s.e.
1 0:00 21313 2437 21319 271280 . 0.0057 |
0.10 22505  2.2503 22505 2.2515 0.0081
0.20 2.3590 23590 23592 2.3604 0:0082
030 24583 2.4583 24584 24575 0.0080 .
0.40 2:5485 25485 25523 25432 00085
0.50 2.6293 2.6283  2.5290 2.6265 0.0065
0.60 2.7006 27006 2.7202  2.6980 0.0067
0.70 2.7618 2.7618 27867 27504 0.0063
90% 080 2.8131 28131 2:8688 2.8160 0.0077
6.90 28545  2.8545 2.9372 23503 0.0100
1.00 2.88685  2.8865 3.0022  2.8654 0.0101
1.10 2.9097 29097 3.0642 - 2.9063 0.0097
1.20 28254 29254 31234 2.9224 0.0108
130 | 2933 29M9 31808 29360 00074 [*
1.40 28396 243193 3.2348 2.9435 0.0072 |*
1.50 29408  2.9408 3.2872 29364 00111
1.57 2.9410. 29410 33227 29324 00074 |*
folili} 2.7765 27785 27765 27776 0.0138
010 29147 29145 29147 28079 0.0132
0.20 3.0403 3.0403 3.0405 3.0M37 0.0148
0.30 3.1549 3.1549 3.1559 31362 0.0151
0.40 32592 3.2392 3.2626  3.2580 0.0134
0.50 3.3532 3.3532  3.3619 3.3510 00169 .
0:60 3.4367 34367 3.4550 3.4397 0.0146
0.70 3.5091 3.5081 3.6423 35132 00100 |*
95% 0.80 3:5703 3.5701 3.6248 3.573%  0.0160
Q.90 3.5201 3.6201 37030 36169 0.0108 |
1.00 3:6691 3.6591 37773 386472 © Q0172
110 3.6877 3.6877 3.8463 3.8765 0.0148
1.20 37074 3.7074 3.9161 3.7085 00110 |
1.30 3.7180 37180  3.9309 3.7098 0.0168
140 3.7247 3.7247 4.0433 37119 0.0183.
1.50 3.7266 3.7266 41033 37181 040148
1457 3.7268 37268 4441 . 37210 0.0112. . |°
0.00 4.6049 4.6040 46044 45947 0.0305 |*
0.10 4.8056  4.8056 4.8056 4.8122 0.0425
0.20 496873 49873 438875 49801 0.0385
0.30 5.1826  5.1526 5.1636 5.1292 0.0316
- 040 5.3030 5.3030 5.3065 5.2951 0.0321 |*
0.50 54391 543 54485 54124 0.0357
080 5.5608  5.5608 55812 55327 00420
0.70 5.6677 5.6675 5.7058 5.6595 0.027%
99% 0.80 5.7588  5.7588 5.8235 5.7466 0.0320
0.90 5.8343 5.8343 5.9348 58554 0.0351
1.00 5.8840 5.8940 6.0408 58222 0.0315
1.10 5.9386 5.9384 6.1418 58970 0.0347
1.20 59681 59651 £.2385 5.9874 0.0324°
1.30 5.9876 5.9876 6.3311 3.9580 0.0445
1.40 59970  5.9968 64202  5.8860 0.0428
1.50 5.9998 5.9998 6.5058 59738 0.0499
1.57 6.0000 6.0000 £.5639 6.0047 003398 |*

w & ¥ = »

*>

=~ 3 % % % m

" Table 5.2: Critical values for simple linear regression
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df. =6

¢l | 8" T cvext] cvnal | cyapp [cvsimu| s.e.
0.00 1.9432 1.9432 1.9432 18493 0.0050 |*
0.10 2.0440 2.0440 2.0440° 20332 0.0067
0.20 21354 21354 21384 21287 0.0068
0.30 2.2183  2:2183 22185 22007  0.0071
040 2.2938 2.2938 22947 22944  0.0048 |*
0:50 23618 23618 2.3653 2.358% 0.0072
0.60 24225 24225 24305 2:42% O,UU'?_"G_
0.70 24749 24748 24813 24665  0.008 1
9% 0.80 25193 25183 25483 25155 0.0074
0.90 25553 245533 2.6019 2_5;190 0.0077
1.00 25836 25838  2.6524 23851 0.0072
1.10 2.6041 25041 2.7000  2.6018 0.0077
1.20 25181 26181 27454 26232 00056 |*
1.30 26264  2.6264 2.7887  2.6231 0.0053 |~
140 26305  2.6305 2.8299 2.6348 0.007% -
1.50 2.6318° 26318 28633 26318 0.007&
1.57 26318 26318 289586  2.6295 0.0075
0.00 24489 24489 24469 24509 0.0071 |*
0.10 2.5578 25578  2.5578  2.5564 0.0105
020 2.6573 2.6573 2:6573  2.6526 0.0116
0.30 2.7471 2.74T1 27473 21410 0.0079 |*
0.40 2.8287 2:8287 2.8295 2.8263 - 0;007:‘4 ’
0.50 29027 29025 23050 2.8947 U.OOQB
0.60 2:.9636 29686 29747  2.9650 0.011%
0.70 3.0268 302668 30398 3.0231 0.0075 [*
95% 0.80 30765  3.0765 3.1006 3.0686 . 0.0078 |*
0.90 31175 31175 3.1578 31098 0.0113
1.00 31499  3.1499 32115 3.1458 0.0120
1.10 31742 3.1742 32626  3.1675 0.0113
1.20 3.1807 3.1906  3.3108 3.1882  0.0130
1.30 32007  3.2007 3.3570 3.1998 0.0088 |
140 3.2056  3.2056  3.4008 3.1871 0.0107
150 3.2071 3.20M 3.4428 32046  0.0103
1.57 3.2073 3.2073 34712 32002 00113 |
0.00 37074 3.7074 3.7074 36413 0.0252
0.40 38484 38484 3.3484 3.3314  0.0267
0.20 3.9731 3.7 3.9 3.9349 0.0234
6.30 4.0848 4.0847 4.0848 4.1056 0.0340
0:.40 41857 4.1857  4.1861 4.1426 0.031%
0.50 42772 42770 42787  4.2697 0.0387
0.60 4.3597 43595  4.3641 4.3371 0.0239
0.70 44331 4.4331 44436  4.4598 0.0198
99% 0.80 44972 44972 45176  4.50%86  0.0200 |*
0.90 4.5511 4.551 45872 45135 00295
1.00 45946 45946  4.6528 45632 0.0298
110 4.6276 4.6276 47147  4.6103 0.0213 |*
1.20 46507 4.6507 47736 4.6337 0.0260
1.30 46648 4.6648  4.8297  4.6455 00177 |
. 140 46718 46718 4.8830  4.6695 0.0302
1.50 46741 4.6741 4,9341 4.6181 0.0279
1.57 46743 4.6743  4.9886 4.6226 0.0380

Table 5.3: Critical values for simple linear regression
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df.=8

ol B "Tovext | v uai | cvapp |cv simu]  s.e.
0.00 | 16595 18595 18585 1.8595 0.0042 |
010 | 18529 19527 19528 19518  0.0042 |
020 | 20368 20368 2.0368 2.0312  0.0067
030 | 21127 21127 24127 21130 0.0042 |*
040 | 21817 21817  2:182t 21706  0.0068
D50 | 22440 22440 2.2456 22442  0.0066
060 | 22987 292995 23043 22963 0.0066
070 | 23483 23481 23586 23432  0.0U67
80% 080 | 23895 23895 24093 23910  0.0066
090 | 24232 24232 24568 24299  0.0065
100 | 24485 24495 25012 24451 0.0046 |
110 | 24690 24690 25431 24628  0.0065
1.20 | 24821 24821 25830 2.4847  0.0065
130 | 24901 24901 26205 24850 0.0069-
140 | 24980 24940 26564 24916  0.0067
150 | 24951 24851 26905 24890 0.0045 |«
157 | 24953 24953 27436 24858  0.0056
0.00 | 23080 - 23080 2.3080 23095 0.0062 |
010 | 24059 24055 24058 24108 00062 |
020 | 24945 24945 24945 24903 00087
030 | 25742 25742  2:5742  2.5867  0:0095
040 | 26463 26463 2:5465 26494 0.0068 |*
050 | 27115 27115 27124 27051  0.0095
060 | 27700 27700 27731 27703  0.0084 .
070 | 28220 28219 28291 28165 0.0082 |*
95% 0.80 | 28667 28667 2:8813  2.8604  0.0073 |*
0.90 | 28040 29038 29303 29002 0.0070 |*
100 | 29336 29336 29761 28251 00080
140 | 29557 29557  3.0192  2:9374  0.0085
120 | 29703 29703 3.0602 29540 0.0097
130 | 209801 2:9801 3.0980° 2:97%68  0.0083
140 | 29847 2.9847 31356 28777  0.008%
150 | 29862 29862 31707 28708 08068 |
157 | 29864 29864 31944 29846  0.0073 |
000 | 33555 33553 3.3555 33805 00144 |*
010 | 34740 34740 34740 34398  0.0213
020 | 35776 35775 35776 35720 0.0157 |*.
030 | 36684 36594 36684 36514 00144 |*
040 | 37518 37518 37520 37517 0.0221
0:50 | 3.6263 3.8263  3.8267 37964  0.0205
060 | 3.8936 38936 3.8953 36705 00143 |
0.70 | 39843 39541 39586 3.9431 0.0203
9% 080 | 4.0074 4.0073 4.0174 40125 00167 |*
0980 | 4.0528 4.0526 40721  4.0323 0.0169 |
100 | 4.0898 40698 41235 4.0885 00257
110 | 4.1182 41182 41720 41471 0.0233
120 | 41382 41382 42177 41273 0:.0180 |F
130 | 41508  4.1506  4.2610  4.1396 0.0213
140 | 41569 41569 43022 41405 0.01B1 |*
150 | 41590 41580 43416 41434 0.0141 |*
157 | 41592 41592  4.3679 41477 0.017B

Table 5.4: Critical values for simple linear regression
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df. =10

cl B cv ext | ov nai | cv app |cv.stmu | 5.8,
0.00 1:8124 1.8124 1.6124 1.8109 0.0041 |*
0.10 1.9016 1.9016 1.9016 1.8993 0.0044 |~
0.20 1:9815 19813 1.9815 19797 0.0060
0.30 2.0534 2.0534- 2.0536- 2.0490 0.0060
040 2.1188  2.1188 21190 21180 0.0058
0.50 21779 21777 21788 2.1791 0.0041 |~
0.60 2.2307 22307 22337 2.2320 0.0041 |*
07D 22770 2.2770 22846 2.2773 0:0060
90% 0:30 2.31865 2.3165 23318 23120 0.0056
090 | 23488 23489 23750 23485  0.0054
1.00 23744  2.3744 24173 2.3750 0.0064
1.10 2.3931 2.3531 24562 2.3852° 0.0064
1.20 24059 24083 24928 2.3958  0.0058
1.30 24135 241356 248275 24134 0.0062
140 24171 2417 2.5605 24140 0.0058
1.50 2.4183 24183 28918 24135 0.0067
15T 24185 24185 26129 24177 00063
Q.00 2.2282 22280 22282 22182 0.0077
010 2.3220 2.3220 2:3220 23101 0.0086 .
0.20 2.4049 2.4048 24049 24042 0.0083
0.30 24791 24791 24791 24790 0.0084
0.40 25456 25458 25460 25236  0:0085
0.50 2.5064 26062 2.6068 235976 0.0077
0.60 2.6608 2.6608 2.6B27 26513 0.0087
0.70 27092 27082 27140 2.70%2  0.0093
95% 0.80 2.7511 2.7511 27616  2.7382 0.0084
.90 2.7862 2.7862 28062 2.7853 0.0082
1.00 2.8142 28142 28478 28124 Q.0090
11 2.8354 2.8362 28865 28332 0.0087
1.20 28499  2.84989 28237 2.8398 0.0087
1.30 2.8586 2.8586 28585 28557  0.0086
140 2.8630 28630 29917 28365 0.0064 |*
140 2.8634 2.8644 3.0232 28607 00060 |*
1.57 2.9646 2.8646 30443 28595 0.0088
0.00 3.1692 3.1692 31692  3.1689 0:0154
010 3.2765 3.2763 32765 32794 0:0123 |*
0.20 3.3692 33692 3.3892 33656  0.07190
0.30 3:4510 3.4510 3.4510 3.4360 0.01486
0.40 3:5238 3.5238 3.5240 3.5137 0.0165
0.50 3.5896  3.5B9%6 35998  3.56B8 0.0218
0.60 3.6490 3.6490 36488  3.6539 0.0154 |*
0.1 3.7026 3.7026 3.7051 3.7003 0.0196
99% 0.80 3.7501 3.7501 3.7562 3.7300 05132 |*
0.90 3.7909 3.7909 3.8038 3.7711 0.0214
1.00 3.8244 3.8244 3.8479 38110 0.0190
1.10 3.8505 3.8505 3.8896 3.8230 0.0158 |*
120 3.8690 3.8688 3.9289 3.8625 001368 |*
1.30 3.8805 3.8803 3.9661 3.8943 0.0196
140 3.8862 3.8862  4.0013 3.8513 0.0140 |*
1.50 3.8881 3.,8881 4.0347 348726 0.0168
157 3.8883 3.9883 4.0574 3.8586 00141 |~

Table 5.5: Critical values for simple linear regression
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df. =15

cl [ cv_ext | cv nai | ov app |cv simu]  se.
0.00 1.7531 17529 1.7531 1.7534 0.0052
0.10 1.8370 1.8370 1.8370  1.8343 0.0057
0.20 1.9119 19117 18119 18117  0.0038 |*
0.30 1.5790 1.9790 1.9790 1.9792 0.0056
0.40 2.0397 2.0397 2.03%7 20383 0.0052
0:50 2.0946 2.0946 20949 20905 0.0054
0.60 2.1439 21439 21455 2.1505 0.0053
070 2.1874 2.1874 21922 21846 0.0040 |*
90% 0.80 22246  2.224B 22353 22218 00040 |
0.90 29553 29583 22753 22532 00038 |*
1.00 22795 22795 23127 22812 0.0057
1.10 22974 22974 2.3477 2.2955 0.0041 |~
120 | 23096 23096 2.3807 2.3078  0.0051
1.30 2.3169 23168 24118 2.3174 0.0039 |*
140 23205 23205 24413 23193 0.0057
1.50 23216 23216 24892 23129 0.0055
1.57 23216 23216 . 24878 23157 . 0:DO3B |
0:00 24314 21314 21314 21358 0.0056 |*
010 | 22178 22179 22179 22154  0.0075
020 22840 22940 22940 22843 0.0075
0.30 23615 23615 23615 23491 0.0063
0.40 24219 24218 24218 24201 0:0069
0.50 24764 24764 24766 24662 0.0049 [*
0:60 25256 25256  2.5264 25222  0.0056 |*
0.70 2.5696° 25696 25723 25621  0.0073
95% 0:80 2.60871 2.6081 26144 26142  0.0049 [~
0.90 26406 26406 2.6537  2.6263 0.0078

1.00 2.6665 2.6B65 26903 26668 0.0071 .
1.10 26663 2:68683 27246 2.6893 0.0051 |*
120 2.6998 26998 27568 2.6953 0.0053 |*
1.30 27082 27082 27872  2.7061 0:0077
140 27124 27124 28159 27083 0.0082
1.50 2.7138 7138 28432 27090 0.0079
157 27138 27438 2:8613 2.7086  0.0075
0.00 (29467 29467 29467 29381 0.0159
0.10 3.0406  3.0405 3.0405  3.0384 0.0038 *
.20 31208 3.1208  3.1208 3.1187 0.018%
0.30 31907 3.1507 3.1907 31902  0.017%
0.40 3.2529 3.2529 3.2529 3.26M11 0.0145
0:50 3.3084 33084  3.3084 3.2960 0.0133
0.60 3.3585  3.3585 3.358T  3.3589 0.0412 |*
0.70 34039  3.4039 3.4048 3.3911 0.0153
99% 0.80 3.4445 34443 3.4472 34244 0.0149
0390 3.4796  3.4796 3.4862 34700 0.0140
1.00 3.5091 35083  3.5226 34641 0.0149
1.10 3.5320 3.5320 3.5568 3.5154 0.0118
1.20 35486 35486  3.5888 35527 0.0112
1.30 3.5591 3.55%1 3.6189 356814 0.0117
1.40 3.5644 3.5644 3.6475 3.5767 0.0106
1.50 35661 35661 3.6746  3.5595  0.0148
1.57 3.5661 3.5661 3.6827 3.55592 0.0110. |*

> = = %

Table 5.6: Critical values for simple linear regression
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‘df. =20

cl [ cv ext | cv nal | cv app |cv simu| s.e.
0.00 1.7247 1.7247 - 1.7247 1.7089 0.0050
0.10 1.8063 18063 1.8083 1.7968 0.0052
0.20 1.8786  1.8788 1.8788 1.87%0 0.0038. |*
0.30 1.9436 1.9436 1.9436 1.8479 0.0036 |
040 2:0021 20021 20021  1.8982 0.0036 |*
0.50 2:0549 2:0549  2.0553 20565 00054
080 21026 21028 21037 21032 0.0052
i 070 2.1447 2.1447 21483 21361 0.0053
90% 0380 21808 . 21807 21895 21810 00035 |*
0390 2:2109 22108 22276 22071 0.0055
1.00 2.2343 22343 22633 22308 0.0053
110 2.2518 22518 22966  2.2488 0.0037 |-
120 2.2639 2:2637  2.3278 22627 0.0050
1.30 2.2709-  2.2709 2.3573 2.2667 0.0055
140 2.2745 2.2743 2.3851 22747 0.0052
150 2.2758 22755 24116 22699 0.0054
1.57 2.2751 22767 24291 29675 0.0054
0.00 2.0860 2.0B60  2.0860 2.0838  0.004% |*
0.10 2.1691 2.1691 21691 2.1667 0.0048 |*
020 2.2419 22417 22419 22253 0.0069
0.30 23062 23062 23062 22981 0.0045 |[*
0.40 23637 23637 2.3637 23618 00048 |*
0.50 24156 2.4156 24156 24111 0.0067 -
0.60 2.4623 24623 2.4629  2.4601 0.0077
0.70 25043 25043 25060 25206 0.0072
95% 0.80 2.5410 2:5410  2.5458  2.8422 00078
0.90 2:5721 25671 2.5828 2.5706 0.0073
1.00 25973 256973 2.6169 2.5810 00072 .
1.10 268163 26163 2.6491 2.6059 0.0071
120 2.6295 2.6285 26791 28313 0.0065
1.30 26377 26377 27075  2E363 0.0072
140 2.6417 26417 27342 26425 00049 ¥
1.50 2.6428 26428 27595  2.6501 0.0p50° [*
1.57 26430 26430 27765 28349 0.0069
0.00 28453 28453 2.8453 28386 00099 [
0.10 29332 28332 23352 245295 0.0124
0.20 3.0078 3.0079  3.0079 299313 0.0152 .
0.30 3.0727 3.0727 30727 3.0786 0.0147
.40 3.1299 3.1299 3.1299 3.1259 0.0104 |
0.50 3.1810 31810 3.1810 31807 0.0141 -
0.60 | 3.2272 3.2270 32272 3.2252 0.0144
0.70 3.2687 3.2687 3.2691 3.2535 0.0098 |*
99% 0.80 3.3061 3.3059 3.3078 3.3163 00095 |*
090 3.3387 3.3387 3.3433 3.3333 00090 [*
1.40 3.3661 3.3664 3.371 3.3479 0.0128
1.10 3.3879 3.387% 34071 3.3824 0.0100 -
1.20 34035 34035 3.4339 3.3848 0.0120
1.30 3.4134 3.4134 3.4632 34028 00101 |*
140 | 3.4184 34184 3.4887 3.4343 0.0129 -
1.50 34201 34201 35128 34158  0.0155
1.57 3.4203 3.4203 3.5291 3.4212 0.0102 |*

Table 5.7: Critical values for simple linear regression
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df. =30

cl B [cvext | cvunai | cvapp |[ovsimu] se.
0:00 1.8973 1.6973 16473 1.6983 0.0037 |*
0.10 1.7764 1.7764 1.7764 17752 0.0048
0:20 1.84567 1.8467 1.8467 1.8450 0.0049
0.30 1.9085 1.9095 1.9095 1.9041 0.0048
0.40 1.9659 1.9657 1.9658 1.9601 00049
0.50 2.0168 2.0168 20168  2.0162 0.0047
060 2.0625 2:0625  2.0633° 210614 0.0D35 |*
0.70 2.1033 2.1033 2.1060 21033 0.0034 |*
9% 0.80 2.1384 21384 2.'14_55 21268 0.0047
© 030 2.1676 21676  2.181% 21665 0.0049
1.00 2.1906 2.1908 2.2156  2.1866 0.0050°
1.10 292078 22078 22473 22041 0.0051
1.20 22194 22194 22770 22183 0:0037 |*
1.30 22265 22265 2.3048 2.2208 0.0036 *
140 2.2298 22299 2:331 2.2285 0.0050
1.50 22308  2.2309 2.3561 22332 0:0048
1.57 22311 . 22311 2.3729  2.223% 0.0047
.00 2.0423  2.0423 2.0423  2.0407 0.8046 |*
0.10 2.1222 21222 2122 21204 0.0063
020 2.1920 21918 21920 21931 0.0063
0.30 2.2534 22534 22534 22496 0.0063
0.40 2.3081 23081 2.3081 2.3010 0.0045 [*
0.50 23573 23573 2.3573 23552 0.0084
0.60 24M7 24017 24021 2.4023 0.0045 |*
0.70 24417 24415 24429 24360 0.006%
95% 0.80 24768 24768  2.4802 24795 0.0062
0.90 250685 25066  2.6149 2.4998 0.00486
1.00 25307  2:5307 2:54T1 2.5252 0.0045 |[*
1.10 25492 25492 25T 25361 0.0068
1.20 2.5620 25620 2.6051 2.5609 0.0062
1.30 25700 25700 26316 2:5692  0.004% |~
140 25738 2.5738 2.6566 25768 0.0068
150 25752 25752 2.6800 25656 0.0063
1.57 25752 2.5752 2B358 25705 0.0065
0.00 2.7500 27500 27500 27273 00081 |*
0.10 2.8323 2.8321 2.8323 2.8278 0.0134
0.20 29019 29019 2.301% 28936 0.0120
030 | 289620 2.9620 2.9620 249523 0.0102 |*
040 3.0148 3.0448 3.0148 30035 0.0081 |*
0.50 3.0617  3.0617 3.0617 3.0600 0.0113
0.60 31040  3.1040 3.1040 3.1005 0.0148
0.70 3.1421 31421 3.1423 3.1382 0.0104
g99% 0.80 3.1764 3.1763 3.1774 3.1838 0.0098 [*
0.40 3.2066 3.2066 32096  3.2083 0.0137
1.00 32323 3.232% 3.2395 3.2264 0.0093
110 3.2625 3.2525 3.2674 3.2540 0.0093
1.20 3.2674 3.2674 3.2933 3.2507 0.0085
1.30 3.2769 3.2769 33179 3.2657 0.0086
1.40 3.2817 3.2817 3.3408 3.2828 0.0093
1.50 3.2832 3.26832 3.3627  3.2830 0.0116
1.57 3.2834 3.2834 3.3772  3.2827 0.0166

% A 4 %

Table 5.8: Critical values for simple linear regression
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d.f. = 40

cl [ cv ext | cv.nai | cv.app |ov simu | s.e.
000 | 16833 16837 1.6839 1.6826  0.0050
0.10 17619 17613 17619 17600 00035 |*
020 | 18311 18311 1.8311 18303  0.0047
030 | 1.8927 1.8927 18927 158848 00044

040 | 19482 1.0482 1.9482 18491  0.005%

050 | 19981  1.9981  1.9981 2.0005 00035 |
UB0 | 20431 20431 2:0437 20454 00033 [*
070 {20831 20831 20854 20816 0.0032 |*
50% 080 | 21178 21478 21238 21178  0.004§
080 | 21486 21485 21596 21453 00034 |*
100 | 21893 21893 21926 21899  0.0033 .|
110 | 21863 2.1883 22234 21834 00034 |
120 | 21977 21977 22522 21967  0.0048

130 | 22048 22048 22795 21987  0.0051
140 | 22080 22080 23050 22047  0.0047 -
150 | 22031 22091 23282 22141 0.0049

157 | 22083 22093 23454 29095 0.0033 [*
0.00 | 20212 20210 20212 20186 0:0064 °
010 | 20895 2.0995 2.0935 20973 00045 |
020 | 2.1678 21678 21676 21665 0.0046 [*
030 | 22278 22276 22278 22294 00062
040 | 2:2812 22612 22812 22752  0:.0044 |*
050 | 23291 23291 23292 23265 0.0041 |
060 | 23723 23723 23725  23W04 0.0041 |
070 | 24112 24112 24122 24056  0.0060

95% 080 | 24455 24455 24486 24385  0.0062
090 | 24749 24749 24821 24643  0.0055
1.00 | 24987 24985 25134 24939  0.0059

110 | 25168 25186 25424 25163  0.0062

120 | 25294 26234 25694 25230  0.0043 |
130 | 25372 25370 25950 25366  0.0062
140 | 25410 25410 26190 25364  0.0081
150 | 25422 25422 26419 25422 00067
1.57 | 25424 25424 26570 25437 00046 |
000 | 27042 27044 27044 27154 00082 |
010 | 27841 27841 27841 27770  0.0123

020 | 28514 2.8514 28514 28459  0.0137 .
030 | 258092 23092 29092 28342  0.012%

040 | 28599 29599 2.9598 29500 0.6119

050 | 30649 3.0649 3.0649  3.0338  0.0122

0.60 | 3:.0453 3.0453 3.0453 3.0468 00081 [*
0.70 | 3.0819 3.0817 30813 3.0753  0.0096
9% 0.80 | 31147 31147 31154 31164 0.0108
090 | 3.1437 31437 31461 34427 00112
100 | 3.1684 3.1884 31745 31579 00094 |
110 | 3.1683 31883 3.2010 31813  0.0105
120 | 32026 32026 32258 31346 0.0124
130 | 32119 32119 3.2488 32015 0.0137
140 | 32165 32165 3.2708  3.2098  0.0109
150 | 32182 32180 32814 32158 0.0080 |
157 | 32162 32182  3.3051  3.2170 _ 0.0138

Table 5.9: Critical values for simple linear regression

98



d.f. = 60

"l BT cv_ext | cv nal- | cv.app |cv.simu| s.e.
0.00 1.6706 1.6706 1.6705 1.6652 0.0034 |*
010 | 1.7476 17476 . 17476 1.7516 0.0p48
0.20 1.8157 1.8157 1.8157 1.8133 00035 |*
030 | 1.8783 1.8763 1.8763 1.86713 0.0045
.40 1.9306 1.9306 1.9306 1.9281 0.0034 |*
0.50 1.9798 1.9798 1.9798 1:9856  D.0050
0.60 2.0240 2.0240 2.0244 20237 0.0045
070 2.0633 2.0633  2.0654 210608 0.0045
9% 080 2.0974 20974 21030 Z.0955 0.0034 |*
0.90 24258 21258 21377 21232 0.0045
1.00 2.1483 21483 21899 2.1463 0.0049
1.10 21648 21643  2.2000 21642  0.0034 |
1.20 21784 21764 - 2.2280 2.1743 0_003'4'
1.30 2.1832 21832 22548 24626  0.0033 |-
140 21866  2.1866 22795 21846 0.0045
150 2.1878 21878  2.3029 2.1863 00035 |*
1.57 21878 21878 23186 21904 0.0047

0.00 2.0004 20002 2.0004 1.9950 0.0066
0.10 2:0772 20772 2.0772 2.0780 0.0042 |*
0.20 2.1439 2.1439 2.1439 21384 0:0062
030 22027 22027 22027 2 1996 ).
0.40 2.2349 22647 22549 22589 0.0058
0:50 23016 23016 23016  2.3008 0.0042
060 23437 23437 23437 23415 0.0047
0.70 23817 23817 23822 23841  0.0044
95% 0.30 24150 24150 24177 2.4180 0.0043
0.90 24438 24438 24501 24395 0.005E
1.00 24671 24671 2.4804 24702
1.10 24850  2.4850 25084 24791 0.0041 |*
1:20 24874 24973 25348 2.5028 0.0064
1.30 25050  2.5050 2.5593 2.5056 0.0043 |~
140 2.5088 2:5088 2.5826 2.5078 0.0058
1.50 25100 25100 2.6045  2:5094 00081
157 | 25102 25102 28190 25078 00042 |*
0.00 26602 26602 26602 26544 00079 -.[*
010 2.7374 27374 2.7374 2.7313 0.0078 |*
0.20 2.8024 28024  2.8024 2.7978 0.0136
0.30 2.8581 2.8581 2.8581  2.8581 0.0128
0.40 2.9069 29067  2.9069 2.9066 0.0131
0.50 2.9500 29500  2.9500 2.9479 0.0077 |~
.60 2.9887 29885 29887  2.9831 0.0082 |*
0.70 3.0236  3.0236  3.0236 3.0153 p.o08d *
99% 0.80 3.0650 3.0530 30854 3.0461 0.0119
0.30 3.0628 3.0828 3.0847 3.0798 0.0081 |*
100 3.1067 31067 3.1118 3.0803 0.0102
110 3.1259 3.1259 31370 3.1044 0.0124
1.20 3.1398 31398 31604 21382 0.0101
1.30 3.1488 3.1488  3.1824 3.1477 g.co8g |
1.40 3.1536  3.1536 3.2031 3.1445 0.0102
1.50 31551 31548 32226  3.1599  0.0075 |*
1.57 3.1551 31551 3.23556 3.1428 0.0106

26
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Table 5.10: Critical values for simple linear regression
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5.5.2 For polynomial regression of various orders

In this subsection, we compare the conservative method of Naiman (1986),
the approximate method of Sun and Loader (1994), and the simulation-based
method of Liu, Wynn and Hayter (2005) for an one-dimensional polynomial
regression of (p—1)th order. In our comparison, we set p = 3, 4, 5 respectively
corresponding to the quadratic regression, the cubic regression, and the 4th
order polynomial regression.

For Naiman’s method, we calculate the critical values via the following

formula

1/c .
l—a = 1- / min{ Fyp2{2((ct) ™2 — 1)/(p — 2)] x A(y)/7

+Fpa[((et)™ = 1)/(p = )], 1} fr(2)dt, (5.34)

where fr is the density function of the random variable 7" such that p7? ~
F

»p, the I distribution with v = n—p and p degrees of freedom, c is a critical

value, and A() can be obtained from

Aty) = / (0l

where v'(x) denotes the derivative of y(x) with x = (1,z,z?,...,2F"*) for
all z € {a,b]. Specifically, A(7y) can be calculated in the following way. We
have
! PX !

"6 = () |
(Px) |1 Pxfi = (| Px[) (Px)

| Pxlj?
(Pso)' (| Px]|*)*2 — (|| Px][*)*2) (Px)

=k
(P (| P22 = 51 PxI2) (] P2 (Px)
| Px|? ’

\Nhere PX = (p07 Pi,--- 7pp—l)(17$> IQ: o . :Ip—l)T = Po -+ pP1T -+ p2$2 + -+
Pp-12771, Po, ..., Pp-1 are the p columns of the matrix P. Note that || Px||*
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is the polynomial of order 2p — 2, whose coefficients can be obtained by using
commands conv and sum, (Px)" and (|| Px||*)" are the polynomials of order
| p — 2 and 2p — 3 respectively, where their coefficients can be obtained by
using command polyder. Then, 4/(x) can be found. By using command
quad to implement the numerical integration, we can easily compute A(7).

For the approximate method, critical values can be calculated from

2
Ko

01+ Sy 4 (s > (5.35)

=

where k¢ is the length of the path on the surface S™ ! of the unit sphere.
Note that ko = A(y) from (5.32).

For the simulation-based method, we obtain the critical values by follow-
ing the procedure in Section 5.3.

From (5.34) and (5.35), it is clear that both Naiman’s method and the
approximate method depend on the length of the path, the degree of freedom
and the confidence level. However, it is not clear that the simulation-based
method depends on the same factors. So we use three general common factors
here, i.e., the design matrix, the restricted interval for £ and the preassigned
confidence level.

First, we come to choose the design matrix. This can be done by choosing
some design points of different locations on preassigned design intervals. Now
we choose three design intervals [-1, 1], [0, 2] and -2, 0]. For each interval,
we have four structures of 8 design points. Take the case when the interval

considered is -1, 1] for example, the four structures are:

1. 51=[-0.2-0.16 -0.13 -0.06 0 0.07 0.11 0.18], where the design points are
distributed around the middle of the interval,

0o

Ss=[-1-0.95 -0.9 -0.89 0.92 0.95 0.98 1], where the design points con-

centrate on the two ends of the interval,

3. 53=[0.86 0.89 0.91 0.93 0.96 0.98 0.99 1], where the design points are

-near the upper bound of the interval,
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4. S4=[-1-0.7 -0.4 -0.1 0.2 0.5 0.8 1.1], where all the design points are

equally spaced.

3

Such four structures of 8 design points are also adopted for the design in-

tervals [0, 2] and -2, 0]. So we have another 8 sets (four structures x two

design intervals)

Ss
Se
S7
Sg

of 8 design points given by

[0.85 0.88 0:93 0.97 1 1.04 1.09 1.12},
-0.05 -0.02 0 0.03 1.94 1.99 2 2.03],

(-0.01 -0.03 0 0.02 0.05 0.06 0.09 0.1},
00306091215 1.82.1],

-1.11 -1.08 -1.01 -1 -0.99 -0.97 -0.95 -0.92],
-2 -1.99 -1.96 -1.91 -0.08 -0.05 -0.01 0.02],
0.1 -0.07 -0.02 0 0.03 0.09 0.15],
-2-1.7-14-1.1-0.8-0.5-0.2 0.1].

Therefore, 12 design matrices can be obtained so far which are marked by

D1,...,D12. In addition, it is motivated to choose extra 12 design matrices

of 35 design points in order to make the degree of freedom be both small

(v < 5) and large (v > 30) in our comparison. We choose these extra 12

design matrices also of the same four structures as described previously, still

on the three design intervals [-1, 1], [0, 2] and [-2, 0] respectively. The 12

sets (four structures x three design intervals) of 35 design points are:

1. 813=[-0.39 -0.36 -0.31 -0.29 -0.23 -0.21 -0.2 -0.18 -0.17 -0.14 -0.13 -0.11
-0.1 -0.07 -0.06 -0.03 -0.01 0 0.02 0.03 0.05 0.09 0.11 0.13 0.14 0.18 0.2
0.21 0.24 0.25 0.3 0.32 0.36 0.39 0.4],

2. S14=[-1.23 -1.21 -1.15 -1.1 -1.08 -1.02 -1 -0.99 -0.95 -0.94 -0.92 -0.89
-0.82 -0.73 -0.72 -0.71 -0.7 0.71 0.73 0.76 0.79 0.81 0.84 0.85 0.88 0.92
0.95 0.98 0.99 1.02 1.04 1.08 1.12 1.13 1.19],

3. S15=[0.710.72 0.74 0.75 0.77 0.78 0.81 0.82 0.85 0.88 0.9 0.91 0.93 0.94
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10.

11.

0.9811.01 1.07 1.08 1.09 1.11 1.12 1.13 1.16 1.19 1.2 1.22 1.25 1.26
1.28 1.29 1.3 1.31 1.35 1.4],

. S16=[-1.36 -1.28 -1.2 -1.12 -1.04 -0.96 -0.88 -0.8 -0.72 -0.64 -0.56 -0.48

-0.4 -0.32 -0.24 -0.16 -0.08 0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72
0.8 0.88 0.96 1.04 1.12 1.2 1.28 1.36]

3

. S17=[0.65 0.69 0.71 0.72 0.75 0.76 0.78 0.82 0.85 0.88 0.89 0.9 0.93 0.95

0.97 099 11.021.04 1.07 1.08 1.13 1.15 1.19 1.2 1.21 1.23 1.25 1.26
1.28 1.3 1.32 1.33 1.35 1.4],

. S15=[-0.13 -0.12 -0.1 -0.09 -0.07 -0.05 -0.03 -0.01 0 0.03 0.05 0.09 0.12

0.16 0.170.18 0.23 0.28 0.31 0.351.721.76 1.81 1.83 1.85 1.94 1.95 1.97
1.99 2 2.02 2.05 2.07 2.14 2.16],

. S19=[1.68 1.71 1.73 1.76 1.77 1.79 1.8 1.82 1.85 1.87 1.88 1.91 1.92 1.94

1.95 1.99 2 2.01 2.03 2.07 2.12 2.13 2.15 2.18 2.19 2.24 2.26 2.29 2.31
2.33 2.34 2.37 2.39 2.4 2.42],

. Sp=[-0.36 -0.28 -0.2 -0.12 -0.04 0.04 0.12 0.2 0.28 0.36 0.44 0.52 0.6

0.680.76 0.8409211.081.161.241.321.41.481.56 1.64 1.72 1.8 1.88
1.96 2.04 2.12 2.2 2.28 2.36],

. Sy=[-1.7-1.62 -1.5 -1.43 -1.41 -1.38 -1.37 -1.35 -1.31 -1.28 -1.22 -1.2

-1.18-1.15-1.13-1.11 -1.09 -1.07 -1.05 -1.04 -1.02 -1.01 -0.98 -0.96 -0.95
-0.92 -0.85 -0.81 -0.78 -0.72 -0.71 -0.69 -0.68 -0.65 -0.61],

S9p=1[-2.36 -2.31 -2.28 -2.27 -2.25 -2.2 -2.12 -2.09 -2.06 -2.01 -2 -1.99 -
1.97-1.93-1.91-1.86-1.81-0.53 -0.44 -0.42 -0.41 -0.38 -0.35 -0.33 -0.31
-0.27 -0.26 -0.24 -0.2 -0.15 -0.12 -0.11 -0.08 -0.05 0],

S93=[-2.36 -2.31 -2.29 -2.28 -2.26 -2.25 -2.2 -2.18 -2.12 -2.09 -2.06 -2.01
-2-1.99 -1.97 -1.93 -1.91 -1.86 -1.85 -1.81 -1.77 -1.75 -1.73 -1.72 -1.68
-1.66 -1.64 -1.61 -1.56 -1.53 -1.52 -1.49 -1.48 -1.45 -1.41],
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12, Soy=[-2.2 -2.13 -2.06 -1.99 -1.92 -1.85 -1.78 -1.71 -1.64 -1.57 -1.5 -1.43
-1.36 -1.29 -1.22 -1.15 -1.08 -1.01 -0.94 -0.87 -0.8 -0.73 -0.66 -0.59 -0.52
-0.45 -0.38 -0.31 -0.24 -0.17 -0.1 -0.03 0.04 0.11 0.18].

We denote the 12 design matrices obtained from Sis, ..., So4 by D13, ..., D24,
Consequently, we have totally 24 design matrices D1,..., D24 for our com-
parison.

Next, we choose the restricted intervals of z on which confidence bands
are constructed. For each design interval, we choose two restricted inter-
vals. One is the same as the design interval, the other is of smaller length.
Specifically, these six restricted intervals are: [-1, 1], [-0.7, 0.7], [0, 2], [0.6,
1.4}, [-2, 0] and [-1.5, -0.5]. Note that since both the design matrices and the
restricted intervals are chosen according to the design intervals, in our com-
parison, the first two restricted intervals are used together with D1,..., D4
and D13,..., D16, the middle two with D5,..., D8 and D17,..., D20, and
the last two with D9,..., D12 and D21,...,D24.

Finally, 90% and 95% confidence levels are employed. The choice of such
designs is to obtain as many combinations of the three factors as possible
such that our comparison gives a general view.

We calculate the critical values of the confidence bands based on the three
methods for polynomial regression of up to the 4th order, and record them
in Tables 5.11-5.16. The columns titled k¢ contain the values of the length
of the path.

From the results, we may draw some conclusions. When the degree of
freedom is small (v < 5), Naiman’s method and the approximate method of
Sun and Loader (1994) have alinost the same critical values for kg < 0.6;
when sy > 0.6, the critical values of Naiman’s method are generally smaller

than those of the approximate method and the difference between the critical
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values of these two methods follows that:

0.6 < kg < 1.5 the difference is at the third decimal place,
1.5 < Ky < 3 the difference is at the second decimal place,
3 < kg <4 the difference is around 0.15,
4 < kg <5  the difference is around (.25,
5 < kg <6  the difference is around 0.3,
6 < Ky <7  the difference is around 0.5,
7 < kg < 8.5 the difference is around 0.7,
8.5 < kg < 10 the difference is around 0.9.

The critical values of the simulation-based method are even smaller than
those of Naiman’s method, with the difference generally at the second dec-
imal place. When v > 30, the distinctions among the critical values of the
three methods are not evident relative to the case when v < 5, generally
at the second decimal place. Also, the simulation-based method obtains the
smallest critical values.

Consider that for a large number of simulations, the simulation-based
method seems to be able to compute as accurate critical values as the exact
method. Therefore, we may conclude that Naiman’s method is good enough
because it is basically a conservative method but its critical values are not
much conservative actually, the approximate method is not good as its critical
values are even larger than those of the conservative method. However, in

particular, three methods give almost the same critical values when k¢ < 1.
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df.=5

106

Rl.. | ‘DM Ko cl cv_nai [cv app [cv simu] " se.
BT | 53026 | 90% | 3.1396 34360 30844 00106
95% | 38404 41381 37748 0.0
DZ | 45157 | 90% | 20847 33124 30831  0.0152
1. 1) 95% | 37672 40018 37635  0.0221
D3 | 435376 | 90% | 3.0961 33160 3.0728  0.01M
95% | 37890 4.0057 37365  0.0206
D4 | 35219 | 0% | 30091 34334  3.0200 00118
95% | 36863  3:8048 37208  0.0476
D1 | 52058 | 90% | 34348 34215 31091 0.0
95% | 38348 41220 37943 0.0185
D2 | 03200 | 90% | 21823 21824 21754 04119
0.7, 0.7} 85% | 27583 2,754 27590  0.0173 :
B35 | 01544 | 90% | 2.0390 20989 21068  0.0095
95% | 2.6651 28651 26728  0.0192
D4 | 22914 | 90% | 28244 23606 28286 00116
95% | 34734 36053 35166 0.0200
DS | 53104 | 90% | 314000 34372 34004  0.0115
95% | 3IB40B 41394 37724 0.0195
06 | 3.0408 | 90% | 2:9499 3.0M% 29222  0.0128
{0.2) 95% | 36176 36966 36108 0.0186
D7 | 35613 | 90% | 30132 31411 28373 0O0MM5
5% | 36312 38133 36221  0.0188
DE | 35219 | 90% | 30091 31334  3.0330 00135
95% | 36863 28048 37318  0.0183
05 | 50467 | 90% | 3.4267 3.3977 3.0855. 0:0134
95% | 3.8251 40867 37755  0.0191
D6 | 00637 | 90% | 20504 20504 20562 = 0:0113
(0.6, 1.4) 95% | 26105 26106 25969  O.0M67
D7 | 00373 | 90% | 20353 20359 20523  0.01H
95% | 25843 25842 28870 0.0144
Dé | 08B11 | 90% | 24608 24619 28057 00113
95% | 30668 3.0677 31145 - 0.0143
D9 | 53275 | 90% | 34408, 34398 3.0870, 0.0123
95% | 88418 41422 37878 00182
D10 | 41462 | 90% | 3.0676. 3.2432 30676 00135
{2, 0} 95% | 37549 3.8321 37248 0.0184
D11 | 25200 | 90% | 30811 34579 30077  0.0145
95% | 3.8793 39553 37830  0.0245
D12 | 35219 | 90% | 30091 3133 30230 00142
95% | 3.6863  3.8048  3.6984  0.0225
D9 | 52084 | 90% | 31350 34218 3.07%5  0.0128
| o5% | 38350 41225 3774 0.0133
D10 | 01205 | 90% | 20811 20811 20536 : 0.0105
15, 0.5) 95% | 26451 2:6451 26568  0.0167
D11 | 00982 | 90% | 21914 21314 21994  0.0123
95% | 2.8480 20460 28235 0.0184
D12 | 1.3623 | 90% | 25893 25944 26163  0.0135
95% | 32094 32134 . 3.2078 00181 -
Table 5.11: Critical values for quadratic regression




df. =4

Rl DM ko | el cv_nai | cv app |ev gimu|  s.e.

D1 | 74228 | 90% | 36452 41263 35498 0.0158
95% | 45508 50693 44358 00349
D2 60073 90% 3.5609 385054 34880 0.0157
1. 1) 95% | 44482 46133 43232 .0.0271
D3 | 65732 | 90% | 35982 38978 31142 00163
95% | 44936 48202 39330  0.0289
Da | 49461 | 90% | 34728 37157 34588  D.0173 -
95% | 43415 415952 43415 0.0244

D1 | 7322 | 90% | 35403 41128 35432 00156
95% | 45450 50528 44443  0.0283
D2 | 12913 | 90% | 27504 27557 27376 0.01%7
0.7, 0.7) 95% | 34300 34955 34896 00206
D3 | 04528 | 90% | 22233 22234 22077  0.0118
95% | 28833 28832 28176  0.0166
D4 | 27636 | 90% | 34614 32249 30335  D0.0150
95% | 3.9697 4.0322 39233 00208

1] 76387 | 90% | 26585 44580 33457  0.0151
95% | 4.5636 51052  4.1663  0.0304
D6 | 41300 | 90% | 33852 3.5555 3211F  0.0155
{. 2} 95% | 42361 44111 4.0381  0.0204
D7 | 4913 | 9% | 34893 37030  3:2998  0.0154
95% | 4.3375 45875 441284 00234
DB | 49461 | 90% | 34728 37157 33184 -0.0132
95% | 43415 4.5952  4.1728  0.0251

5 74255 90%. 36452 41273 33499 00144
95% | 45811 50697 42144 0.0253
D§ 0.7692 0% 28317 25385 25121 0.0162
{0.8, 14) 95% | 3.2461  3:2467 32211 0.0209
D7 0.0367 90% 21545 21545 21528  0.0147
95% 28028 2.8028 26375  0.0234
D8 1.6600 90% 28766 2.88%8 27986  0.0113
95% 38367 3.6488 35487  0.0218

D8 | 7.7237 | 90% 3.8597 4017020 3.2333 0:0138
¥B% 45886 51182 40554  0.0255
D10 5:6165 90% 35315 38384 33497  0.0153
(2, 0} 95% 44125 47363 41687  0.0259
D11 34267 90% 37321 3843 35419 00176
95% 48315 51318 416957  0.0460
D12 4.9461 0% 34728 37157 34284  0.0145
95% 4.3415  4.5952  4.2536  0.0243

D9 7.6347 90% 3.6553 41575 32417 0.0157
| 95% 45634 51046 4.0763  0.0254
D10 0.9690 90% 26242 26258 26024 00118
15,05 95% 3.3456 33470 33338 0.0203
D11 0:0788 90% | 24100 24101 24075  0.0144
95% 32326 323826 12787 0.0247
D12 1.9718 90% 23700 29933 28802  0.0137
95% 37452 37671 38658  0.0232

Table 5.12: Critical values for cubic regression
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df=3

RI._ ] DM ) ¢l [ cv.nai | ov app [cv.simu] se.
D1 5:5821 90% | 4.4008 53870 4:2972  0.0232
95% | 57397 B9125 56521  0:0376
D2 81877 | 90% | 43208 51235 4.2871  0.0208
1.1 95% | E6370 65862 53020 . 0.0388
D3 85104 | 90% | 43411 51859 30442  0.0157
95% | 56632 66846 - 4.0336  0.0338
D4 6.2883 | 90% | 41715 47173 41753 0:0235
95% | 54458  6.0843 53716 . 0.0456
Bl 94935 | 90% | 43962 537100 42923 0:0217
95% | 57340 68926 55911 '0.0488
D2 02424 90% | 25223 25223 25073  49.0157
{0.7. 0.7} 95% | 33311 33911 3.3863 0.0205
D3 01246 | 90% | 24421 24421 24872  (.0167
95% | 32923 32923 3.2890  0.0250
D4 37802 [ 90% | 38356 4.0542 3.7480  0.0193
95% | 50191 52678  4.9218-  0.0311
96723 | 90% | 44053 54033 31014  0.0130
95% | 57455 69326 41288  0:0342
D6 52263 | 90% | 40558 44585 38988  0.0185
{0. 2) 95% | 52884 57651 51019 00352
DY 64701 90% | 41885 47591 4:0562 00205
95% | 54676 61356 52982  :0.0472
i 62884 | 90% | 44715 47173 41360  0.0268
95% | 54458 B.0843 54158  0.0488
D5 94445 | 90% | 4.333F 53621 31369 0.0180
95% | 57306 6.8816 40577  0.0310
D6 0:0600 | 90% | 23967 23967 23813 0:.0147
{0.5, 1.4) 95% | 3.2362 32360 32062 .0.0249
D7 0.0281 | "90% | 23737 23738 23895  0.0157
| 95% | 22078 32077 3.2094  0.0247
D8 21478 [ 90% | 34282 34852 34198  D.0195
95% | 4.5077 - 45700  4.5244  0.0323
D9 9.6721 | 90% | 44053 54033 28066  0.0162
9% | 57455 69326 37636  0.0237
D10 75293 | 90% | 42754 4.9857 4.1819  0.0212
{-2. 0) 95% | 55789 64206 64942  0.0320
D11 45032 | 90% | 5.2095 5.0663 4.8847  0.0382
95% | 75187 7.9999 71059  0.0641
D12 | 62884 | 90% | 4.1715 47173 41431  0.0218
95%. | 54458 60843 54060 . 0.0419
DY 95552 | 90% | 43994 53822 28201 0.0181
95% | 5.7380 6.8065 3.7483  0.0274
D10 0:0320 | 90% | 24193 24194 24388  0.0142
1.5, -0.5}) - '95% | 32642 32641 32449 0.0208
D11 0.0757 | 80% | 25974 29873 3.0243 00215
95% | 44105 44105 43834 0.0411
D12 | 27749 | 90% /| 36135 37234 35764  0.0176
95% | 4.7382 4.8619  4.6602 - 0.0328

=

Table 5.13: Critical values for 4th order polynomial regression
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af =32
Ri DM K0 | i ] cv.nai | cvapp LoV simu] se-
D13 4.9197 90% 24691 25355 - 24382 0.0085
| o5% | 218000 2.B462° 27746 0.0089
D14 | 31530 | 90% | 23533 23675 23498  0.0064
1. 1) 95% | 26800 26875 206718  0.0082
D15 | 25281 | 90% | 22842 2.2887 22341  0.0071
95% | 26111 2:6131 25730  0.0086
D16 | 29626 | 90% | 2.3344 23449 23605  0.0067
95% | 2.6607 2:6662  2.6815  0.0083
D13 | 46777 | 90% | 24582 25153 24877 00074
| 95% | 27883 28277 27728  0.0085
D14 | 10013 | 90% | 20125 20125 20029  0.0076
+07.0.7) 95% | 203505 2:350 23554 00088
D15 | 06974 | 90% | 1.9315 1.8316 18276  0.0069
95% | 2725 22725 22476 0.0078
D16 | 17778 | 90% | 21720, 21723 22024  0.0073
95% | 25028  2.5030 25401 . 0.0086
DI7 | 50496 | 90% | 24747 25457 24520  0.0066
95% | 28057 28558 27696  0.0094
D18 | 22985 | 90% | 23664 23835 23757  0.0083
{0.2) 95% | 28931 27026 26776 00077
D19 | 24902 | 90% | 22798 2.2835 2:2359. 0.0071
95% | 26064 26082 25724  0.0086
D20 | 29628 | 90% | 23344 23449 23519  0.0066
95% | 26607 2663 26045 - 0.0102
DI7T | 41075 | 90% | 24273 24660 24333  0.0081
8% | 27557 27806 27461 0:0078
DTS | 0.2096 | 90% | 19088  1.8087 18073  0.0073
{0.6,1.4) 95% | 21520 21522 21339 0.0087
D19 | 04976 | 90% | 17748 47720 17763  0:0065
95% | 21156 21156 21129  0.0086
D20 | 07648 | 90% | 1.9573 1.9573 19816  0.0070
95% | 22873 220874 23296  0.0086
D24 | 46422 | 90% | 24564 25130 24466  0.0064
95% | 27865 2.8248 27731 (0074
D2 | 31580 | 90% | 2.3537 23678 23298  (.0067
2.9 ' 95% | 26802 26878 26763  0:0082
D23 | 28052 | 90% | 2.3283 2:3379 22900  0.0077
95% | 26548 26695 26175  0:.0080
D24 | 34004 | 9D% | 23765 23962 23978  0.0071
95% | 27034 27146 27133 0.0079
D21 | 355653 | 90% | 2.3884 24117 23952  0.0086
95% | 27157 27202 27239  0.0080
D22 | 06325 | 90% | 19147 19147 19245  0.0070
15, 0.5) | os% | 22561 22562 22638 0.0080
D23 | 08735 | 90% | 13805 1.9806 1.9765  0.0070
95% | 23199 23199 23127  0.0088
D24 | 12693 | 90% | 20798 20798 21136  0.0089
95% | 24182 24151 24545  0.0083
Table 5.14: Critical values for quadratic regression
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df. =31

Rl oM W T d cv nal | ov app | cv simu|  sa.

D13 | 70873 | 90% | 26222 26824 25529  0.0067
95% | 29472 29871 28868  0.0083
: D14 | 39602 | 90% | 24463 24559 24316  0:0068
1,1 95% | 27680 27726 . 27421 00093 -
D15 | 3.3518 | 90% | 23890 23933 22818  0.0068
95% | 27117 27135 26085  0.0087
D16 | 36551 | 90% | 24188 24256 24021  D.008
95% | 27411 27440 27063  0.0078

D13 | 67966 | 90% | 26128 26675 2567  0.0064
95% | 29369 29729 28835  0.0085
D14 | 15989 | 90% | 21424 21424 24347  0.0085
(0.7, 0.7) 95% | 24750 24760 24677  0.0084
D6 | 08327 | 80% | 1.9722 1.9721 189681  0:0076
95% | 23130 23130 22950  0.0083
06 | 22531 | 90% | 22519 22522 22280  0.0074
95% | 25800 25801 26531  0.0004

D17 | 71833 | 90% | 206262 26884 24989  0.0072
85% | 29511 29927 28375  0.0088
D18 | 42371 | 90% | 24891 24816 23972 00064
{0. 2) 95% | 27807 27871 27251 Q0095
D19 3:3726 0% 23912 23955 22941 00073
95% | 27137 27157 26332  0.0108
D20 | 38581 | 90% | 24189 24266 23320  0.0065
95% | 27414 27440 26387 - 0.0086

BI7 | 60044 | 90% | 25780 26180 24901  0.0063
95% | 29009 29260 28361  0:0090
D18 | 09008 | 90% | 1.9898 1.9898  1.9874  0.00B8
(0.6, 1.4) 95% | 23301 23300 23184  0.0080
D19 | 02084 | 90% | 17776 17777 1.7852  0:0068
95% | 211224 21223 21200  0.0093
D20 | 14320 | 90% | 24099 21098 2.0644  0.0064
95% | 24443 24450 23394  0.0082

D21 6.3471 90% | 26143 2.6704 2.3760  0.0075
95% | 29388 29756 27088  0.0085
D22 | 4:0813 | 90% | 24564 24673 23510  0.0062
2.0 . 95% | 27782 27835 26671  0.0089
023 | 4.3276 90% | 24761 24898 23165  0.0073
95% 27976  2.8047 26534  0.0077
D24 | 46027 | 90% | 24963 25136 24314  0.0058
95% | 28178 2.5272 27686 0.00BS

D21 4:8340 90% 25120 25327 23435  0.0083
95% 28337 28452 26628  0.0082
D22 1.1504 90% 20498 2.0497 20327  0.0073
i 95% 23876 23875  2.3488  0.00%4
D23 1.4132 0% 271061 24081  2.0828  0.0071
95% 24413 24494 24096 0.0091
D24 1.8895 90% 21942 21943 21269 0.0062
85% 25252 25252 24756 0.0090

Table 5.15: Critical values for cubic regression
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d.f. =30

‘Rl DM KD’ il | cv.nai | ey app | cv simu| se.
D13 92648 | 90% | 27391 27977 26963  0.0081
' 95% | 30604 3.09686 3.0410 0:0091
D14 40910 [ 90% | 25483 25573 25154 0.0064
1. 1) 95% | 28650 28703 28452  0.0034
D15 4.3951 90% | 24939 24998 24406  0.0067
95% | 2.8135 28160 2.7865  0:0081
D16 | 44047 | 90% | 24947 25006 24883  D:0060
95% | 28141 2.8168  2.8012 . 0.0077
013 90285 | 80% | 27317 27870 27080  £:0071
95% | 3.0527 30885 3.0113  0.0088
D14 1.6200 90% 21491 21491 21477  G:0069
{(0.7. 0.7} 95% | 24838 24839 24955 00094
D15 09211 | 90% | 1.9972 1.9972 189358  0.0086
95% | 23386 23385 23342 0.0089
D16 31220 | 90% | 23597 23707 23558  0.0089
g5% | 2.6937 256939 27003 . 0.0088
D17 91250 | 90% | 27349 27945 2718  0.0084
95% | 30561 3.0927 3.0191  0.0097
D18~ | 54371 | 90% | 205693 2.5832 25350  D.0068
0.2 95% | 28879 28849 2.8714  0.0089
019 44390 | S0% | 24975 25036 22388  D0065
95% | 28168 28187 25548  0.0100
D20 44047 | 9% | 24847 2:5006 24807  0.0056
95% | 28141  2.8168 28113  :0.0091
D17 77445 | 9% | 26853 27250 26734  0.0061
95% | 3.0055 3.0284 29965  0:0082
D18 04016 | 90% | 1:8472 18473  1.8433  0.0077
{0.6. 1.4) 95% | 24924 21924 21882  0.0077
D19 02045 | 0% | 17782 17782 1.7843  0.0071
| 9% | 21240 21239 21238  0.00%4
D20 16349 90% | 21521 21521 21825 0.0068 .
95% | 24868 24867 25118  0.0078 .
D21 9.0585 | 80% | 27327 27885 26984  0.0067
95% | 30539 20898  3:0313  0.0085
B22 58540 | 90% | 25947 26125 25742  0:0058
{2, 0 | 88% | 29132 29227 26825  0.0082
D23 53951 | 90% | 25667 2.5801 247058  0.0063
95% | 2.8851 2.8920 27948  (.0096
024 55182 | 90% | 25744 25890 25778  0.0073
95% | 2.8930. 2.9004 28764  0.0083
D21 6.3495 | 90% | 26220 25450 25889  0.008%
95% | 29408 29534 29319  0.0032
D22 09055 | 90% | 19934  1.8933 19995  0.0073
4.5, -0.5) 95% | 23346 23347 23367  0.0095
D23 20226 80% | 22184 22193 22092  D.0066
95% | 25506 25305 23419 0.0087
024 25298 | 90% | 22051 22952 23250  0.0063
i 95% | 26224 26025 26458  0.0090

Table 5.16: Critical values for 4th order polynomial regression
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5.5.3 For bivariate linear regression

Also, it is of interest to compare the methods of constructing confidence
bands for a multiple linear regression. Here, we consider the bivariate lin-
ear regression model, which is the simplest one in multiple case, with the
predictor variables restricted in a rectangular region X C RZ. ‘The meth-
ods concerned in this comparison are the approximate method of Sun and
Loader (1994) and the simulation-based method of Liu, Jamshidian, Zhang
and Donnelly (2005).

For the approximate method, we calculate critical values using the for-

mula given in Proposition 5.2.2 that

L~ o T(r+1)/2) . C_2>~(V+1>/2
72 T(v/2) v v
2
+—<3(1+C—)‘”/2+P{}m > c}. (5.36)
2 v ' :
Constants xg and (p can be computed by
Ko = / det'/?(AT A)dx, (5.37)
X
G = / det'/2(ATA,), (5.38)
ax

where A = (T4(x), T2(x)), and A, = Ty(x) or Ty(x) with T,;(x) defined
by T;(x) = 0T(x)/0z; for j = 1,2. Note that T(x) = 1(x)/|l1(x)||, where
I(x) = X(XT X)7'x, and x = (1,21, 7,)7. Thus, we have

VeI | = 169G

T1 (X) =

10 |2
V() (1160 ) = 1) () [
()12
_ YEREa) = (/216 (L)1) T2 e (5.39)
()2 > (9-
where

I'(x) = 0l(x)/0z; = X(X*X)7*(0,1,0)7,
1) % 7 (301(x) = x" (X" X) "',
NEIP = 27V (x) =2-17(x) - X(X*X)7*(0,1,0)".
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Similarly, we can obtain Ty(x) by replacing (0,1,0)7 by (0,0, 1)7 and T;(x)
by Ty(x) in (5.39). Then both A and A, are ready. Numerical integrations
may be used to compute constants sy and (g.

For the simulation-based method, as described in Section 5.4, the main
task is to solve the optimization problem to find T'. In practiyce7 we compute
critical values using StmReg software from Jamshidin, Liu, Zhang and
Jamshidian (2004) on MATLAB 7 platform.

Now, we turn to choose the levels of the common factors for our com-
parison. Apparently, both methods depend on the design matrix, restricted
intervals of the two predictor variables z; and z,, and the confidence level.
Furthermore, recall (5.28) that

]

T = .
/o)

where (PN
Q= sup TooT T
z1€(a1,b1),z2€(az,ba) |;PXHHNH
Since N and (6/0) are generated numbers, the simulation-based method, in
fact, depends on the 3-dimensional vector Px together with the two restricted

intervals (a1, b1) and (as, b2). Let P = (po, p1, p2) and define the set

L = {Px:xe€ X}

= {po+ x1p1+ z2p2 : 1 € a1, 1}, 22 € [ag, ba}}.

Then, we have
vIN

) =sup

T (5.40)
ve || V]I

where vI'N/|v|[||IN|| is simply the cosine of the angle between v and N. This
determines that, in order to obtain @, it is sufficient to find the smallest angle

between either N and v or —IN and v, as v ranges in £. Note that £ is the
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Figure 5.2: The cone determined by three angles

cone spanned by the following four vectors

v(a1,a2) = Pg+ a1p1+ a2P2,
v(bi,a3) = P+ bip1 + agpe,
v(ay,ba) = po+ aip1+ bapo,
v(bi,ba) = Ppo-+ bip1 + bapy,

and it is depicted in Figure 5.2. ,
Define three angles that « is the angle between v(ai, as) and v(by, az),
3 is the angle between v(by,az) and v(by,b2), # is the angle between the
two planes S7 and Sy, where ) is spanned by v(ay,a2) and v(by,as), Se is
spanned by v(by, ay) and v(b1,by). Then the cone £ is determined by these
three angles. Therefore, we may conclude that the simulation-based method
essentially depends on the three angles «, 3, 8, the degree of freedom, and the
confidence level. This is the nature of the simulation-based method. Also,
the approximate method depends on the three angles via the design matrix
and the two restricted intervals of the predictor variables. In this comparison,
we fix a design matrix and then appropriately choose the restricted intervals

such that their combinations determine manifold levels of the three angles.

First, we come to choose the design matrix. The acetylene data of Snee
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(1977) is adopted here, since it was used to construct confidence bands in
many papers. Another reason to select this dataset is that the critical value
computed by my MATLAB programme of the approximate method is the
same as the one given in Sun and Loader (1994) for this data when the
confidence level is 95% and X = [1100,'1300} x [5.3,23]. So we can reasonably
think that my programme is reliable.

Next, we turn to choose the restricted intervals of the two predictor vari-
ables. First consider the three angles o, § and . We are willing to obtain
various structures of the cone determined by these three angles. Set three
levels for each angle from small to large within its range [0, #]. So we have
3 X 3 x 3 = 27 structures for the cone. However, realize that for a fixed
0 when a and [ switch their values, the cone newly obtained has a similar
structure with the original cone. Also, note that for fixed & and g, the cone
with large 6 is similarly structured with the one having small §. Thus, for
the sake of similarity, the cone finally has 12 structures of interest. They
are SSM, SMM, SLM, MMM, MLM, LLM, SSL, SML, SLL, MML,
MLL, LLL, where characters S, M, L stand for small value (around = /12),
medium value (around 7/2) and large value (around 8z /9) respectively for
the three angles, and the 3-character string denotes the level of each angle
in order, e.g., SLM describes the situation that « is small, 3 is large, and 8
is medium. Now, it is ready to choose the restricted intervals for predictor
variables. We use the design matrix and any two initial guesses of restricted
intervals to calculate &, § and €, then adjust the restricted intervals to ensure
the three angles each is near the level of our interest. One may follow the

procedure below to find the restricted intervals:
Step 1 Adjust b and a, to ensure 8 is Qk.

Step 2 Fix b, and a,, adjust a; to ensure « is ok.
Step 3 Fix b and aq, adjust by to ensure 7 is ok.

In such a way, we obtain 12 pairs of the restricted intervals for the predictor

variables z; and zs according to 12 structures of the cone.
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df.=5

Restricted Three angles [Confidence ~ Critical values
intervals | alpha heta theta level cv app  cv simu  s.e.
(10,950} [ 0:2183 02315 16041 890% | 21691 22749  0.0081
{13. 15} = = & 95% 27441 28654  0.0122

(1070, 125D} 0:3071 15148 15630 90% 3.20080 3.1088  0.0098
{10. 50y s it M 95% 3.8945 37947  0.0128

[920. 1620} 04079 27006  1.6081 90% 3.3834  3.1857  0.0089
(12, 130} S L i 95% 40881 3.9022 0.0152

(100, 1220) 1.6414 16184 15686 | 90% 3.0510 29914 ° 0.0082

{0. 12} i 4 B 95% 37272 3.683%  0:0147

(650. 1600} | 1.6860 2.8126  1.6059 90% 3.3808  3.1713  0.0088
{12. 403 I L ! 95% 4.0847 36897  06.0158
{10. 1600) | 2.8843 2.8546  1.6059 90% 31580  2.929%  0.0090
{12. 15} Ak L 1 95% 3.8405 35917  0.0148

(1450, 16503 02418  0.1853 28146 | 90% 23135 23478 0.0077
{-10. 5% 8 S L 95% 2.9053 28487 0.0123

(950. 1800} |- 0.2485 16552  2.8438 90% 3.6521 32924 0.0104
{10, 250} N t i 95% 44000 4.0240 0.0137

{900, 1750} ©0.2677 27231 2.9895 90% 32545 30841  0.0094
{=200. 10 5 L L 95% 3.9523 3.7844: -0.0134

‘850, 1800} | 1.6552  1:6400 28438 90% 3.6341 32920  0.0105
10, 41 il ] L 95% 4.3798 40229  0.0137

{800, 2000} 1.6351  2.8342  2.9377 90% 3.2630 30733  0.0105
{-22. 10} M L L 95% 319613 37748 Q0131

{400, 2200} | 2.7204 2.8541 2.7026 90% | 3.0603 2.8362  0.0084

{0. 8} L L i 95% 3.7286  3.5086  1.0163

Table 5.17: Critical values for bivariate linear regression

We still use 90% and 95% confidence levels. Moreover, we manually set
the degree of freedom equal to 5 and 30 to have a general view. Critical
values are computed based on the designs described above. All the results
are contained in Tables 5.17 and 5.18. Note that the critical values of the
simulation-based method are based on 100,000 simulations.

From the result, we can draw some conclusions. The simulation-based
method obtains smaller critical values than the approximate method gener-
ally, except for the cases when « and f are both small. When v = 5, the
difference between the critical values of the two methods is generally around
0.2; the critical values of the approximate method are at most 11% larger
than those of the simulation-based method. When v = 30, the difference
between the critical values of the two methods is not apparent, generally at

the second decimal place.
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d.f. =30

Restricted | - Three angles Confidence|  Critical values
intervals | alpha. beta theta | level | cvapp cvsimu  se.
(10, 950) | 02183 02315 1.6041 90% 1.8405 1.8808 0:0052
(13. 181 5 3 M| 95% | 21568 22243  0.0b66
(1070, 1250) 0.3071  1.514% 15630 | 90% 24885 24657 0.'605:1
(10, 501 5 M o 95% 28211 2.8037  (0.00866
{820, 16203 0.4079 27006 1.BO81 90% 25937 25257  0.0047
{12. 1303 S i {8 95% 29223 28866 0.0066
{100, 1220} 18414 1.8184 1.5886 | 90% 2.3370 23846  0.004%
0. 12} & oM B 95% 27318 2.7247 0.0064
{650, 1600)| 1.6860 256125  1.6059 90% | 25911 25158  0:0045
{12, 40} M [4 M 95% 2.9196 2.8579 0.0066
{10, 1600} | 2.8843 28546 16038 | 90% | 2.4485 23550  0.0055
(12, 158 L L i 95% 2.7764 26967  0.0071
(1450, 1650)| 02418 01853 - 28146 90% 1.9131 19404 0.0050
(0.5 | .S s L 95%. | 22583 22629 0.0066
{950, 1800} 0.2485 16552  2.8438 90% 27480 26028 0.0051
10.250) | & 5 L] o 30725 28533  0.0063
1900, 1750)| 0.2677 27231 2.9895 90% 25146 24507 ﬁDZﬁU{B
20010 | & = 5} 95% 2.8443 27820 - 0:0068
{950, 1800} | 1.6552 16400 2.8438 90% 2:7382 26016  0.0051
i-10, 40} | & [ o ¢ 95% 3.0630 29528 00063
{300, 2000}| 1.6351 2.8342 2937 90% 25183 24453 0:0047
{=22. 10) # L L 95% 28474 27861 0.0069
{400, 2200} 2.7204  2.8531 2.7026 90% 2.3842 2.2862 0.0050
{0. 5 L i L 95% 2,711 25270 0.0069

Table 5.18: Critical values for bivariate linear regression
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5.5.4 Conclusions

Overall, it may be concluded from our comparisons that the simulation-
based method computes as good critical values as the exact method, better
than either the conservative method or the approximate method. When we
increase the number of simulations, the simulation-based method may get
even accurate critical values. Meanwhile, it can be found that Naiman’s
method is good enough. That is because Naiman’s critical values are for
conservative confidence bands but they are actually not much conservative.

Comparatively speaking, the approximate method is bad, but not seriously.

5.6 Numerical examples

5.6.1 FExample for simple linear regression

In an 1857 article, a Scottish physicist named James D. Forbes discussed a
series of experiments that he had done concerning the relationship between
atmospheric pressure and the boiling point of water. He believed that altitude
could be determined by atmospheric pressure, measured with a barometer
which was a fragile instrument in the middle of the nineteenth century, with
lower pressures corresponding to higher altitudes. Forbes wondered whether
a simpler measurement of the boiling point of water could substitute for a
direct reading of barometric pressure to determine the altitude. He collected
data in the Alps and in Scotland and measured pressure in inches of mercury
with barometer and boiling point in degrees Fahrenheit using a thermometer
at each location. Boiling point measurements were adjusted for the difference
between the ambient air temperature when he took the measurements and
a standard temperature. The data for 17 locations are reproduced in Table
5.19, which is taken from Weisberg (2005, page 22).

A simple linear regression model is used to fit the data. Atmospheric
pressure is viewed as the response and the boiling point of water is regarded

as the only predictor variable in the model. Therefore, we have the fitted

118



CGase Number |  Temperature | Pressure
9 154 5 20.79
2 194.3 20.79
3 197.9 22 40
4 196.4 2267
5 199.4 2315
5 199.9 23.35
7 200.8 . 23.69

8 201.1 2399
9 2014 24.02
10 201.3 24.01
11 203.8 25.14
12 204.8 26.57
13 209.5 28.49
14 208.6 2176
18 210.7 29.04
16 2118 29.88
17 212.2 30.06

Table 5.19: Forbes’ 1857 data on boiling point and barometric pressure for
17 locations in the Alps and Scotland

regression model given by
7y = —81.0637 + 0.5229z. (5.41)

Simultaneous confidence bands can be constructed then over a restricted in-
terval, say, [194.3, 212.2] which takes the smallest and largest observations
as the lower and upper bounds. The exact method provides critical values
2.2822, 2.6693 and 3.5122 for 90%, 95% and 99% confidence levels respec-
tively; the approximate method suggests 2.3171, 2.6946, 3.5270, and the
simulation-based method gives 2.2837, 2.6715, 3.4968 correspondingly. Note
that the simulation-based method is on a basis of 100,000 replicates, and
will be so for the other examples in this chapter. The confidence bands are

plotted in Figures 5.3-5.5.

5.6.2 Example for polynomial regression

Table 5.20 presents data concerning the strength of kraft paper and the per-
centage of hardwood in the batch of pulp from which the paper was produced.
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Figure 5.3: Confidence bands for 90% confidence level
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Figure 5.4: Confidence bands for 95% confidence level
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Figure 5.5: Confidence bands for 99% confidence level

These data is taken from Montgomery, Peck and Vining (2006, page 205).
A scatter plot of the data displays that a quadratic regression model may
adequately describe the relationship between tensile strength and hardwood

concentration. According to these data, the fitted model is given by
§ = —6.6742 + 11.7640z — 0.6345z%. (5.42)

Note that z% here is a percentage so that z should be bounded by the
interval [0, 100]. Then we construct simultaneous confidence bands over
this restricted interval using Naiman’s methods, the approximate method,
and the simulation-based method. Consequently, these three methods give
critical values 2.5661, 2.6476, 2.5483 for 90% confidence level, and 2.9482
3.0095, 2.9396 for 95% level, respectively. We plot the confidence bands in
Figures 5.6 and 5.7. Note that the bands plotted in the figures are parts of
the whole bands over the restricted interval. Doing this is in order to make

the observed points more clear.
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" Hardwond ' Tensile
concentration{%) | strength{psi}
y 63
15 ey
2 20.0
3 24:0
4 281
4.5 30.0
5 334
5.5 340
B 38.1
6.5 399
7 42.0
AL - 46.1
g 531
10 . 52.0
11 52.5
12 48.0
13 49:8
14 27.8
15 21.9

Table 5.20: Hardwood concentration in pulp and tensile strength of kraft
paper
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Figure 5.6: Confidence bands for 90% confidence level
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Figure 5.7: Confidence bands for 95% confidence level

5.6.3 Example for bivariate linear regression

A soft drink bottler is analyzing the vending machine service routes in his
distribution system. He is interested in predicting the amount of time re-
quired by the route driver to service the vending machines in an outlet. This
service activity includes stocking the machine with beverage products and
minor maintenance or housekeeping. It is suggested by the industrial engi-
neer for this study that the two most important factors affecting the delivery
time (y) are the number of cases of product stocked (z;) and the distance
walked by the route driver (z3). 25 observations on the delivery time has
been collected by the engineer, and they are shown in Table 5.21. These
data is also taken from Montgomery, Peck and Vining (2006, page 70).

We fit the data using a bivariate linear regression model. Therefore, the

fitted model is given by
7 =2.3412 + 1.6159z; + 0.0144 .. (5.43)

We assume the maximum capacity of product stocked is 30 cases and the

distance is preferred within 2000 ft. Then z; and x5 should be bounded by
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-Observation | Delivery Time | Numberof | Distance
number {min) cases ()
1 16.68 7 560
2 11.60 4 220
3 12.03 3 340
4 14.88 4 80
5 13.75 6 150
8 18.11 7 330
7 8.00 2 110
B 17.83 7 218
g 7924 30 1460
1 21,50 5 505
oF 4033 16 568
12 2100 10 215
13 13.50 4 255
14 19.75 6 462
15 24 00 9 448
16 29.00 10 776
17 15.35 6 200
18 15.06 7 132
19 9.50 3 36
20 . 350 17 770
21 17.90 10 140
22 52.32 26 8410
23 18.75 9 450
24 19.83 8 B35
25 10.75 4 150

Table 5.21: Delivery time data for bivariate example
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Figure 5.8: The approximate band for 90% confidence level

the intervals [0, 30] and [0, 2000] respectively. In such a case, simultaneous
confidence bands can be constructed accordingly based on the approximate
method and the simulation-based method. As results, these two methods
suggest critical values 2.7234, 2.6409 for 90% confidence level, and 3.0707,
2.9787 for 95% confidence level, respectively. To be clear, we plot single band

in each picture. So the four confidence bands are shown in Figures 5.8-5.11

respectively.

125



o
o
!

60 ~
a5
£
o)
< 40
=
©
a
20| =
=
0. s e 1500
0
25 30 O Distance

Number of cases

Figure 5.9: The approximate band for 95% confidence level

80 —

Delivery time

2000

20

25
30 O

Distance

Number of cases

Figure 5.10: The simulation-based band for 90% confidence level

126



80 ~

[op]
o
i

e E R
e
e

=
S et e
e S

Delivery time
EN
o
L

20—
2000

2
5 a0

Distance

Number of cases

Figure 5.11: The simulation-based band for 95% confidence level
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Chapter 6

Simultaneous confidence bands

for a logistic regression model

The analysis of dichotomous response data has been popular due to the in-
creasing use of the logistic regression model which enjoys a wide variety of
applications nowadays, such as medical treatment, clinical trials, epidemio-
logical test and risk management. Construction of simultaneous confidence
bands for a logistic regression model is therefore of interest. However, the
existing literatures on this are very limited.

Since the asymptotic distributional approximation of the parameter es-
timators of interest is the base of construction of confidence regions for a
generalized linear model, we first briefly review relevant literatures on, for
example, the construction of asymptotic intervals for the binomial parameter.
By recalling related works, a general profile on the quality of the asymptotic
approximation based on several methods would be obtained. The most fre-
quently mentioned interval in many statistical textbooks is the standard or
Wald confidence interval. This interval was shown to perform poorly unless
the sample size is guite large in, e.g., Ghosh (1979), Blyth and Still (1983).
Clopper and Pearson (1934) proposed “exact” confidence interval based on
inverting equal-tailed binomial tests. The “exact” interval is usually neces-

sarily conservative. Therefore, it is inappropriate to treat it as optimal for
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statistical practice. Agresti and Coull (1998) discussed that the score confi-
dence interval first presented by Wilson (1927) tends to perform much better
than the Wald or “exact” intervals in terms of having coverage probabili-
ties close to the nominal confidence level. Zheng and Loh (1995) and Zheng
(1998) considered bootstrapping binomial confidence intervals via bootstrap
calibration. Brown, Cai and DasGupta (2000, 2001, 2002) provided a survey
of these intervals as well as the Bayes credible intervals, and gave compar-
isons. Chen (1990) demonstrated the accuracy of such approximate intervals
for a binomial parameter.

For the construction of simultaneous confidence bands, an alternative of
the methods based on the asymptotic distributional property is the bootstrap
percentile method, which was proposed by Yeh (1996) to construct confidence
bands for unknown curves based on the bootstrap and the concept of “curve
depth”. However, it is not considered further in this thesis.

In this chapter, we first introduce some key methods of constructing two-
sided simultaneous confidence bands for the probability of the dichotomous
response in a logistic regression model with or without constrained predictor
variables. Two examples are given for one-dimensional and two-dimensional
cases respectively. Then simulation studies are given for the comparison of
the methods. Meanwhile, the simulation results can be used to gauge the
accuracy of the asymptotic distributional approximation. That is to check
whether the simulated coverage probability of certain band is close to the

nominal confidence level, and how far between them.

6.1 Confidence bands for a logistic regression

without constraint on predictor variables

6.1.1 For a simple logistic regression

Brand, Pinnock and Jackson (1973) described a method of constructing large

sample confidence bands for the logistic response curve for the case of p = 1,
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where p is the number of the predictor variables in the regression model.

A data set in this case consists of pairs (z;,y;),2 = 1,2,3,..., N, where
z; is, say, a measure of dose received by the ith test subject and y; is set to 1
or 0 respectively corresponding to that the response does or does not occur
in the ith subject. IV is required sufficiently large for large sample normality
to be a reasonable approximation.

The probability of the response corresponding to dose z, 0 < 7(z) < 1,

is defined in terms of parameters Jy and 5, as

(z) = exp(fo + Sriz)

O S TGt e (61

Suppose By and B are the maximum likelihood estimators of parameter [y
and ;. Thus the components of the information matrix Iy, [1s, I3 can be

expressed by

N

I, = Z{GXP(,BO + 31271)/J1 —+ eXP(Jjo + 5571567;)}2}:

=1

-[12 = Z{‘T{,exp(,[;)(] + 51271)/[1 + exp(/éo + BerMQ}’

=1

Iy = Z{xfexp(;é’o + lei)/[l =+ eXP(Bo + /31I1>J2}

=1

Recall the large sample asymptotic normality of ,@ = Bo, ﬁI)T given by
VN(B — ) == Nao(0,), (62)

D e . , o
where — denotes convergence in distribution, N, denotes the bivariate nor-
mal distribution, and X is the asymptotic covariance matrix. Note that the
asymptotic covariance matrix for 8, ¥ /N, can be estimated by the inverse

of the information matrix J%, i.e., 3 ~ NJ™!. Therefore, we have

N(B-B)T=B - B)
~ (B-pB)TIB-B)
= (B — Bo)® + 20a(Bo — Bo) (B — B1) + Ina(Br — B1)? == x2,(6.3)
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where x7 is the Chi-square distribution with two degrees of freedom. A large

sample 1 — « confidence set for (fy, 1) is therefore given by
111(,570 ~Bo)* + 2]12([370 - 50)(31 —01)+ 122(31 —B1)? < Xria, (6.4)

where nga denotes the upper o percentage point of the x2 distribution. Note
that the confidence set given by (6.4) is an ellipse centered at (3p, 51). A
100(1 — &)% level confidence band for 7(z) can be obtained by finding the
maximal and minimal values of m(z) over the confidence ellipse of (5o, /51)
for each z.

Transform (6.1) to the form of interest

7(z)

)\(CL’) = /6)0 +,31I =1In (m)

(6.5)

which is a monotone function of 7(z). We can equivalently find the extremal
values of A(z) over the confidence ellipse (6.4) of (5y, 1) for each z.

For afixed z, {8+ 01z = ¢ : —00 < ¢ < oo} stands for a family of parallel
straight lines in the (0o, f1)-plane with z as the slope. Extremal values of
Mz) = By + Biz over the confidence set (6.4) of (g, 1) are attained when
the lines in the family are tangent to the boundary of the confidence ellipse
(6.4). Each tangent line corresponds to one (8y, $1) which can be viewed as a
solution to the pair of equation (6.5) and the equality obtained by changing
the sign from “<” to “=” in (6.4). Expressing fy = A(z) — Sz from (6.5)
and substituting in the obtained equality gives a quadratic equation in terms

of A, which has the form given by
afi 4+ b3 +c=0
with

a = dai,

5

c = ¢ +cA(z) +esA(z)?
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where

a1 = Inz® — 20z + I,

by = 20af + 2112(5@ - /éo) - 2]22,31,
by = —2I11z+ 21,

a = ]1153 -+ 2112;50/31 -+ ]22/9;% —_'Xg,m

¢ = —2Info— 21251,

cz = Ii1.

Notice that there is only one solution of 5 for a straight line tangent to the

confidence ellipse. We have
b — dac =0,

which gives a quadratic equation in terms of A(z). And the resulting roots
provide the extremal values of A(z) over the confidence set (6.4) of (5o, 51).
We denote the maximum and minimum values of A(z) by Ag(z) and Ap(z)

respectively, which are therefore given by

—(2b1by — 4aycs)
2(b3 — 4aic3)
[(2b1by — daycs)® — 4(b2 — dases) (b2 — 4aycy)]?
2(b3 — 4aics)

)\H(Z)7 )\L(Z) =

+

. (6.6)
Also, Ag(z) and Ar(z) can be written in matrix form as

Ap(x) = XTB-%—(X%}aXTJ_lX)%,

A(x) = x'B— (X%,QXTTIX)

[N

3

where x= (1,2)7 and 8 = (o, 5,)7.

Then the confidence band for the probability of the dose-response with

100(1 — @)% confidence level is given by

expAr(e)] _ explru(z)]
TFoppe@) T epba@) e (6.7)
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6.1.2 For a multiple logistic regression

Hauck (1983) considered the construction of simultaneous confidence bands
for the logistic response function with any number of predictor variables. He
presented a computationally easier and more general method than that in
Brand, Pinnock and Jackson (1973).

Let v be a dichotomous response with possible values 1 or 0. The prob-

ability of y = 1 denoted by 7(x), which is in terms of the predictor vector

x = (z1,...,2,)7, is given by
T ,
exp(x ,
r(o) = 22 B) (6.8)
1+ exp(xT3)
where 8 = (5, 51, .., 8,)7 is the vector of the regression coefficients. Alter-

natively, (6.8) can be transformed as
, 7(x)
Ax)=xT8 =In (—=—).
() P (1 — r(x))
Now, we assume observations x and y are of sample size NV, which is large
enough for the asymptotic normality of the maximum likelihood estimator

vector 3 to be a good approximation, i.e.,
VN@B - 8) 2 N,y1 (0, %), (6.9)

where 3 /N can be estimated by J~! with J being the information matrix of

3, which has the elements given by

N
I = Y ) — ATz
i

N

= > {exp(x"B)/[1 + expx" B)}aiszan, (6.10)

1
1=1,...,N:5,k=1,...,p. We subsequently have
P . p D
(B~8)"JB—=B8) — Xou,
where J can be obtained from most statistical package directly. Let X§+1,a

denotes the upper « peréentage point of the y2., distribution, then

P{B-B)JB~-B)< et ®1—c (6.11)
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An approximate 1 — o confidence set for 8 is therefore given by

~ ~

(B =B)J(B ~B) < Xorra (6.12)

which is an ellipsoidal region centered at B

Recall the Cauchy-Schwartz inequality which is of the form given hy
T1.12 2 2
[a”bi* < fial” - [|b]]

for all vectors a and b in the inner product space. Applying the Cauchy-

Schwartz inequality, we have for all x,
XT(B-0)? = KT i@ -8))
()T (2B - B)]]°
[(T72) x| | J2(8 - B)|?

IN

1

|
(T x]T[(75)Tx] - [J2(B - B)]"[J2(3 - B)]
= XTTIX)B-B) (B - B). (6.13)

Substitute (6.13) into (6.11) to obtain

I

P{x"(B = B)P/x" T x| < Xpan o for all x}
= P{xT(B - B)| < (x2,ox T x)%, for all x}
= P78 <xTB+ (2, X T x5, for allx}.  (6.14)

11—«

Therefore a 1 — « level confidence band for x¥' 3 is given by

(Ar(x), A (x))

= (XTB - (ngﬂ-l,aXTJ_lX)%:XTB + (X123+1,aXT J—IX)%) (6.15)

for all x. By malking use of the logistic relationship, the corresponding con-

fidence band for w(x) is given by

< exp[Az(x)] exp[Ay (x)] > for all x (6.16)
1+ exp[Ar(x)]’ 1+ expAy(x)] '
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6.2 Confidence bands for a logistic regression

with restricted predictor variables

In real problems, some constraints may be imposed on the predictor vari-
ables. In this case, a confidence band is restricted to some subset of possible
x’s. Therefore, the bands described in section 6.1 are unnecessarily wide and
conservative. Naturally, it is of great interest to consider methods of con-
structing confidence bands for a logistic regression with restricted predictor
variables. In this section, we focus on this problem. The restricted predictor

space considered is the most popular rectangular region, which has the form
X={x=(z1,...,2p),0; <z; < by, i=1,...,p} (6.17)

where a;, b;’s are given real constants.

6.2.1 For a simple logistic regression

Band based on the method of Wynn and Bloomfield (1971)

For simple logistic regression, we have the asymptotic property that fi is
approximately normally distributed with mean 3 and estimated covariance
matrix J~! when the sample size NV is sufficiently large. Then a confidence

band can be constructed for x* 3 of the form
xIBexTB+ceVxTJxT all z € [a, b}, (6.18)
which can be written alternatively as

sp B B)]
z€fab] V XT.]_IX

where z is the only predictor variable which is restricted in the interval [a, ],

<c (6.19)

¢ is the critical value such that the band has the simultaneous coverage

probability of 1 — .
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Figure 6.1: For Wynn and Bloomfield’s method

Assume that there is a 2 x 2 non-singular matrix P such that PTP = J*.
Then (6.19) can be further written as
|(Px)"(P)T(B - B)| ((PX)TN] _

sup = sup ———— < g 6.20)
sefa) (Px)T(Px) ecap) |(PX)] (

where N = (P~1)T(83 — ) has a bivariate standard normal distribution, and
so | IN|? has the x2 distribution.

Now, we turn to evaluate the probability of the event in (6.20) so as to
find a computational formula for calculation of the critical value ¢. Define
a=(1,a)7,b=(1,b)T, and 6* is half the angle between Pa and Pb. Figure
6.1 may be useful to easily calculate the last supreme in (6.20). Px is a
vector moving within the circular cone bounded by Pa and Pb, whereas N is
a vector that can freely locate at any position in the plane. When N is within
the circular cone or its opposite, the supreme is equal to ||IN||; otherwise it
equals the the projection of IN on the nearest bound of the cones.

Assume 0 is the angle between the positive horizontal axis and N. As the

picture is symmetric, it is only needed to consider the part for 6 € [0,7/2].
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We have

il

7

IN|| cos(d — 8*) for 6 € (67, Z]

bl 2_

(Px)TN| IN| for 6 € [0, *
sup ———— =
z€(a,b] HPX“

The probability of the confidence band (6.18) is therefore equal to

P{ sup %le < c}

zE[a,b]

= 4(P{IN| <c0<6<6)
+P{|N|fcos(f —6") < ¢,8" < 0 < g})

g* 1 (% c?
— 4 Y202 ; _/ 2 d
(27.'X2(C ) 21 S XQ(COSZ(Q — 9*)) 9)
20 5, 5 2 [,
= C : — Vo | — dg. 21
T+ [T ), (6.21)

where 6* can be calculated via the following formula

alJ b

(aTJ la- bTJ‘lb)1/2)’ (6.22)

1
g =-a
5 8Iccos (

where J can be obtained directly from most statistical packages.
Consequently, given a confidence level, critical value ¢ can be calculated
from (6.21) and (6.22), which is used to construct confidence band (6.18) for
x? 3. Hence, a confidence band can be obtained for the logistic respohse 7(z)
by making use of the logistic relationship. This method is from Wynn and
Bloomfield (1971), so we call the band of this method WB band hereafter.

Type 4 band of Sun, Loader and McCormick (2000)

Sun, Loader and McCormick (2000) considered confidence bands for gen-
eralized linear models. In their paper, it is stated that the approximation to
the coverage probability of simultaneous confidence bands for the mean re-
sponse function in linear models is still applicable without any change to the
generalized linear models. However, in generalized linear models, the errors

are often non-additive and non-normal. This may influence the accuracy of
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the approximation when the sample size is not large enough. Under this situ-
ation, they proposed to use an Edgeworth expansion for the distribution of B
in connection with the idea of the Skorohod construction to convert an error
term in the Edgeworth expansion to a bias term; then estimate and correct
it to adjust the approximation formula such that the coverage probability of
the corrected confidence band is much closer to the nominal confidence level.
The correction proposed in the paper has two components: one is to apply
the tube formula to some modified process; the other uses the method of bias
correction in Sun and loader (1994).

For simplicity, only one-dimensional case was studied in Sun, Loader and
McCormick (2000) but their method may be applied to cases of multiple
dimension. They recommended their Type 4 confidence band which is givén

by
xTB = (c— /) xTJ %) forallz€ab], (6.23)

where ¢ and 7, are a critical value and a corrected constant respectively.
Their other types of bands are proven not to perform as well as Type 4 band
for the logistic regression model when the sample size N > 200. Note that
(c—17p]) in (6.23) as a whole can be obtained directly by using their software
parfit, which can be downloaded from www.locfit.info/.

Note that the band in (6.23) is for x” 3. The band for the logistic response

7(z) can be obtained from the band (6.23) in the usual way.
A numerical example

Consider the example of Anti-pneumococcus serum in Collett (2003, pages
6-7). This example is based on the assay taken from Smith (1932), who de-
scribed a study of the protective effect of a particular serum, ‘Serum number
32, on pneumococcus, the bacterium associated with the occurrence of pneu-
monia. Each of 40 mice was injected with a combination of an infecting dose
of a culture of pneumococci and one of five doses of the anti-pneumococcus
serum. For all mice that died during the seven-day period following inoc-

ulation, a blood smear taken from the heart was examined to determine
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Dose of serum | Number of deaths out of 40
0.00628 35
0.0056 79
0:0112 g
0:0225 v B
0.0450 1

Table 6.1: Number of deaths to different dosés of serum

whether pneumococci were present or absent. Mice that still lived on the
seventh day were regarded as survivors and not further examined. The di-
chotomous response variable is therefore death from pneumonia within seven .
days of inoculation. The numbers of mice succumbing to infection out of 40
exposed to each of five doses of the serum, measured in cc, are given in Table
6.1. .

Obviously, a simple logistic regression model is used to fit the data in
order to find the relationship between the probability of deaths and dose of
serum. A simultaneous confidence band can be constructed. Here we choose
[0, 0.0450] as the restricted interval for the dose of serum.

With the same notations as before, we have

Bo = 1.2179, [ = —146.6927,
= ( 0.0858  —6.1499 ) |
—6.1499 695.0059
Also, we have the critical values 2.4304 for a WB band and 2.3700 for a Type
4 band respectively at 95% confidence level. Therefore, two simultaneous
confidence bands for the probability of deaths can be constructed accordingly.

Both bands are given in Figure 6.2.

6.2.2 For a multiple logistic regression
Method of Piegorsch and Casella (1988)

Piegorsch and Casella (1988) proposed a method of constructing confi-
dence bands for a multiple logistic regression with predictor variables re-

stricted in a rectangular region given by (6.17).
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Figure 6.2: 95%-level confidence bands for probability of deaths

The key idea is to embed the rectangular region (6.17) into an ellipsoidal
restricted region of predictor variables described in Casella and Strawderman
(1980), and then to apply Casella and Strawderman (1980)’s Table 1 to obtain
a conservative critical value. In particular, the ellipsoidal region is centered at
the means of the predictor variables. If the rectangular region is not centered
at the mean point, the critical value obtained from Casella and Strawderman
(1980)’s results can be extremely conservative.

Consider, for example, the quantal data in Table 1 of Piegorsch and
Casella (1988). Table 5 gives values of ¢ for 95% confidence level based
on their method . Note that this is a one-dimensional example, and all three
restricted intervals in Table 5 are asymmetric about the mean of the only
predictor variable, which is 1.4862. We used the method of Wynn and Bloom-
field (1971) to calculate the critical values for the confidence bands with these
three restricted intervals respectively and then compare the squared values
of them with those of Piegorsch and Casella (1988). All the values are given
in Table 6.2.
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"Restricted interval | | &2 | cowk®
113.20] | 588 654943
[-1.3. 0.8] - 547 48838
{-1.3. -0.2] 4.71 4 2737

“alues n first tweo celumns taken from Plegorach
and Caselis (1888},

Table 6.2: Squared critical values for 95% confidence levei

From the table, the squared critical values based on the inethod of Piegorsch
and Casella (1988) are, respectively, 8.8%, 6.3% and 10.2% larger than those
based on the method of Wynn and Bloomfield (1971). Consequently, the
method of Piegorsch and Casella (1988) is not considered further in this
chapter.

Simulation-based method

Liu, Jamshidian, Zhang and Donnelly (2005) construct simultaneous con-
fidence bands for a multiple linear regression over a rectangular restricted
predictor space based on simulation. We apply the method to the logistic
regression case.

For a logistic regression with at least one predictor variables, B is ap-
proximately normally distributed with mean 8 and estimated asymptotic
covariance matrix J~'. Then the coverage probability of a confidence band

for xT3 over x € X is given by P{T" < ¢}, where
(6.24)

¢ is a critical value, and X is a rectangular region of the form given by (6.17).
Assume there is a p x p non-singular matrix P such that PXP = J*. Then

(6.24) can be further written as

(P)" (P 1T (B - B)|

T = sup
e (PX)T(Px)
PN
= S A (6:25)
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where N = (P"))7(3 — ) has a multivariate standard normal distribution.

The key of the simulation-based method is to generate an N so as to find
a T via (6.25); repeat this process R times, and set the [(1 — o) R]th largest
value of 7', ¢, as an approximate of the critical value ¢. For each simulation, T’
is obtained by solving an optimization problem. Details can be found in Liu,
Jamshidian, Zhang and Donnelly (2005). After ¢ is obtained, a confidence

band can be constructed for the logistic response as before.
A numerical example

This is another example from Collett (2003, pages 8-9). The erythrocyte
sedimentation rate (ESR) is the rate at which red blood cells (erythrocytes)
settle out of suspénsion in blood plasma, when measured under standard
conditions. The ESR increases if the level of certain proteins in the blood
plasma rise, such as in rheumatic diseases, chronic infections and malignant
diseases; this makes the determination of the ESR one of the most commonly
used screening tests performed on samples of blood. One aspect of a study
carried out by the Institute of Medical Research, Kuala Lumpur, Malaysia,
was to examine the extent to which the ESR is related to two plasma pro-
teins, fibrinogen and ~-globulin, both measured in gm/l, for a sample of
32 individuals. The ESR for a ‘healthy’ individual should be less than 20
mm/hr and since the absolute value of the ESR is relatively unimportant,
the response variable used here will denote whether this is the case. A re-
sponse of zero will signify a healthy individual (ESR<20), while a response
of unity will refer to an unhealthy individual (ESR>20). The original data
were presented in Collett and Jemain (1985) and are relisted in Table 6.3.

In this case, a bivariate logistic regression model is applied to obtain
the relationship between the probability of an ESR reading greater than 20
mm,/hr and the levels of two plasma proteins. When construct a simultaneous
confidence band, we set an restricted interval for each predictor variable
formed by the smallest and largest values of the observations. Specifically,

they are [2.09, 5.06] and [28, 46] for Fibrinogen and 7-globulin respectively.
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Individual |Fibrinogen| r-globulin [ Response
; 1 252 - 38 o
2 256 31 0
3 21% 33 0
4 218 31 0
5 341 37 0
6 2:48 36 0]
7 3.22 38 0
8 2.21 37 0
9 315 39 g
10 260 41 0
11 2.29 36 (]
12 2.35 29 0
13 5.06 37 1
14 3.34 32 kil
15 2.38 37 1
16 3.14 36 0
17 3.53 48 1
18 2.68 34 g
18 2.80 38 0
20 2.23 37 i}
21 2.88 30 0
22 2:65 48 0
23 2.09 44 1
24 2.28 36 0
25 267 39 0
26 2.29 3 0
27 215 31 0
28 2.54 28 0
29 3.93 32 1
30 3.34 30 0
31 2.89 3B 0
32 3.32 35 0

Table 6.3: The levels of two plasma proteins and the value of a binary re-

sponse that denotes whether ESR>20 for each individual
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Probabilily of that ESR larger than 20

v-globuiin

Fibrinogen

Figure 6.3: 90%-level confidence band for probability of that ESR larger than
20

With the same notations as before, we have

~12.7921 33.5985 —3.6718 —0.5987
8= 1.9104 and J7'= | —3.6718 0.9428  0.0224
0.1558 —0.5987 0.0224  0.0143

Also, we have the critical values 2.1291 and 2.4118 based on the simulation
method of 100,000 simulations for 90% and 95% confidence level respectively.
Two simultaneous confidence bands can be constructed then. They are plot-

ted in Figures 6.3 and 6.4.

6.3 Simulations

All these methods of constructing simultaneous confidence bands for a logistic
regression is based on the large sample asymptotic normality of 3. So the
bands constructed have an approximate 1 — a confidence level. It is therefore
of interest to simulate the coverage probabilities of the bands to check how

close they are to the nominal level, and what factors affect the accuracy.
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Figure 6.4: 95%-level confidence band for probability of that ESR larger than
20

We have carried out simulation studies for the one-dimensional and two-

dimensional cases, respectively.

6.3.1 For one-dimensional case

In this subsection, we compare the confidence band based on the method of
Wynn and Bloomfield (1971) with the Type 4 band recommended in Sun,
Loader and McCormick (2000). We call them WB band and Type 4 band
for simplicity.

With consistent notations, the specific procedure is as follow:

Step 1 Given a set of m values of the only predictor variable z, z1,..., Tm,
together with a pair of true regression coefficients fy and 1, we obtain
the probabilities of the logistic response based on the true model via

exp(Bo + fiz:)

i) = i=1,...,m. 6.26
") = T p(Bot ) m (6:26)
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Step 2 Generate the logistic response y;, corresponding to z;, which has a
binomial distribution with parameters n(z;) and n;, where n; is the

sub-sample size.

Step 3 Estimate Jy and g, based on (z;,vy:,7n;),4 = 1,...,m to obtain 50

and ;’3’1, then calculate J™! accordingly.

Step 4 Construct a simultaneous confidence band. WB band is of the form
Go+ b+ eiy/(1,2)07 (1, 2)T z € la,b), (6.27)
where ¢; can be calculated using (6.21) and (6.22) for a given nominal

confidence level cl. Type 4 band is of the form
Bo+ iz = (e — 7,04/ (1, 2)J (1, 2)T  z € [a,b], (6.28)
where (c; — i7,|) as a whole can be obtained directly by using the

software parfit mentioned in Sun, Loader and McCormick (2000).

Step 5 Check whether the true function 5y + 51z is completely in the band

for all 2’s within the restricted interval [a, b].

We repeat Step 1 to Step 5 nsim times. Out of the nsim simulations,
the proportion of times that the confidence band includes the true regression
model is taken as an approximation of the true coverage probability. It is clear
that this simulated coverage probability depends on x;, n;, 8a, 51, [a, b}, cl, nsim,
1=1,...,m.

Now, we turn to the design of these common factors so that various
combinations can be obtained to make the comparison as general as possible.
First, we choose five design points for the only predictor variable, that is
m = 5, which seems reasonable in real problems. Furthermore, we choose
four different types of five design points on the design interval [—1,1]. The
first type of design is to set the design points equally spaced throughout
the interval [—1,1]. The second type corresponds to the design points near

the center of the design interval. The third type corresponds to the design
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‘Structure’ _Designpoints [ Restrictedinterval | &~

TPl 1, -05.0, 05 1] [:0.5, 0.5] 0.6155
P2 Eguallv-spaced [-2, 2] 1.2310
P3 [-0.08, -0.05, 0.02, 0.04. 0.09] [-0.5. 0.5] 1.4484
P4 Cermtrad ' [2. 2] 1.5400 |
P5 [0.89, 0.92, 0.95, 0.98, 1]. [-0.5. 0.5) 0.0305
P8 Ons-snded [:2. 2 1.5452
PY [, -0.91, 0.84, 0.98. 1] [-0:5, 0:5] 0.4721
P8 Two-ended [-2, 2] _.1.1260

Table 6.4: Designs for predictor variable and restricted interval

‘Structure] | Sample size . | Total
1 [10. 10, 10, 10, 10) N=50
M2 [22. 35, 58, 456, 39) =200

Table 6.5: Design for total sample size

points concentrated around the upper bound of the design interval. And the
last type corresponds to the design points located at the two ends of the
interval [—1,1]. Second, two restricted intervals are chosen, one of which
is short and the other is long. These choices of the design points and the
restricted intervals provide various values of the angle 6* in (6.21) to give
various critical values. In fact, based on our designs, values of §* varies in
the range [0, | from small (0.0305) to large (1.5452). Third, we choose two
sample sizes N = Z?=1 n; of 50 and 200 to check its effect on the simulated
coverage probability. Finally, we choose eight pairs of §y and f; so that the
straight line By + Biz has various slopes and intercepts. The designs are
contained in Tables 6.4-6.6.

Structure] g0 | Bt

Ok 0.75 . 0.5
Q2 2.55 17
Q3 -0.39 -0.26
4 -1.5 -1
Q5 -0.75 0.5
Qe -2.56 1.7
Q7 0.39 -0.26
Q8 1.5 -1

Table 6.6: Designs for true regression coeflicients
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The simulated coverage probabilities of WB bands are calculated by the
programmes running on MATLAB 7 platform, while those of Type 4 bands
are obtained by using parfit on S-plus 6.2 platform. As it is not clear how
to change the default confidence level 95% in parfit, confidence level 95% is
used in our comparison. To reduce the simulation error, we set nsim equal
to 10,000. Based on the above designs, simulated coverage probabilities are
obtained and listed in Tables 6.7-6.10. Note that, in some cases, the simulated
coverage probability can not be worked out. If this is the case for both bands
hased on the same designs, it is because the maximum likelihood estimates
of (S, 51) can not be found within the pre-specified 30 iterations. The case
that only Type 4 band can not find the simulated coverage probability is due
to the fact that the corrected critical value (¢ — |7,!) can not be found using
parfit. In this case, a sentence “warning: compparcomp: perfect fit”
was displayed.

From the results, some conclusions can be drawn. First, the simulated
coverage probabilities of both bands are often larger than 95%. Second,
when the sample size N = 50, both bands can be quite conservative with
the simulated coverage probabilities being around 97%. When N = 200, the
simulated coverage probabilities of WB bands are very close to 95% except
few cases, whereas Type 4 bands may still be quite conservative or liberal.
Third, the corrected critical value of Type 4 band may not be found for small
sample size.

Also, it is motivated to compare the widths of the WB bands and Type
4 bands. Note that there are 128 design structures in our comparison, such
as PI,N1,Q1l and P5,N2,Q8. For each design structure, we calculate 100
simulated critical values for each band. Therefore, we have totally 12,800
critical values for each band. Ignore the cases that one or both bands can
not find the critical value. The left 10,476 cases are viewed as being valid.
Then it is found that the proportion of the cases that the critical value of WB
band is smaller than that of Type 4 band, out of the valid cases, is 68.36%.

Consequently, WB band seems to be better than Type 4 band generally,
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. Structure . | scp.wb | scp ©d
Qi 0.8702 0.9652

Q2 Na Na
Q3 | 09730 0.9706
MY Q4 0:89539  0:8417
Q5 0.9720  0.9652
Q6 Na Na
Q7 0.9728 08715
P1 Q8 0.9529  0.9409

a1 0:9510  0.9582 .
Q2 0.9431 09412
Q3 0.9529 09575
W2 Q4 0.9568  0.9587
Q5 0.9521  0.95%0
Q6 0.9238  0.9320
Q7 0.9497  0.9569
Q8 0.9511  0.9559
Q1 0.9728  0.9832

Q2 Na Na
Q3 0.9684 0.3801
N1 Q4 08575 09672
Qs 0.9744 0.9807
Qs Na Na
Q7 0.9681  0.9805
p2 Q8 0.9612  0.9685

@1 1 09484 0.9615
Q2 0.9446 09537
@3 0.9523  0.9548
N2 Q4 0.9558  0.9673
Q5 | 0.8510  0.8672
(0133 0.9358  0.9536
Q7 0.9533  0.9663
Q8 0.9588  0.9683

Table 6.7: Simulated coverage probabilities for 95% confidence level

especially when the total sample size is large.
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Stucture hs'cp whb | sép "
a1 08730 Na

Q2 Ma Na

Q3 0.96986 Na

K1 Q4 0.9879 Na

Q5 0.9717 Na

Q6 Na MNa

Q7 0.9703 Na

P3 Q8 0.9878 Na

Q1 0.949¢  0.9666 |
Q2 0.9753  0.9782
Q3 0.9470 Na

N2 Q4 0:9565  0.9702
Q5 0.9516  0.9666
@6 ' | 0.9658 0.9735
Q7 0.9518  0.9695
@B 0.9620  0.9722
Q1 | 09733 Na

Q2 Na Na

Q@3 0.9648 Wa

N1 Q4 0.9833 Na

Q5 0.9736 Na

Q6 Na Na

Q7 0.9638 Ha

P4 Q8 0.9889 Na

Q1 | 08482 09675
Q2 | 09686 09803
Q3 | 09582  Na

N2 Q4 | 09515 09732
Q5 | 0.9501 0.9598
Q6 | 0.9530  0.9787
Q7 | 08523 09703
Q8 | 09551 09733

Table 6.8: Simulated coverage probabilities for 95% confidence level
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Stucture scp_wh | scp
@1 0.9859 Na

Q2 Ma Ma |
@3 0.9744  0.9343
N4 Q4 Ka Na

Q5 0.9628 Ma
Q6 09784 Ma

1 Q7 0.9633 Na
P4 ag 0.9665  Na

Qi 0.9532 0.9369

Q2 Na Na

Q3 0.9466  0.9245
N2 Q4 0.9688  0.9588

Q5 0.5489  0.9282
Q6 09550 089344
Q7 0.0490  0.8305
Qs 0.9504  0:9258
Q1 0.9527 Na

Q2 Ma Na
Q3 0.9677  0.980%
N1 Q4 Na Ma

Q5 0.9652 Na
Qs 0.8743 Ma
Q7 0.9644 Na

P Qs 0.8705 Na
Q1 09519  0.968%

Q2 Ma Na
Q3 0.9523 0.4718
N2 Q4 0.9660 0.9798

Qb 0.940  0.9702
Qs 0.9536  0.9638
Q7 0.8493  0.9688
a8 0.9502  0.9709

Table 6.9: Simulated coverage probabilities for 95% confidence level
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Structure ‘sc;; wb | s-cp‘ﬂ
Q1 09598  0.9546

Q2 Na Na
Q3 0.9588 0.9651
1 Q4 0:9443 0.9311

Q5 0.9678  0.9561
Q6 08803 - Na
Q7 0.9751  0.9620
P7 Q8 0.9574  0.9205
a1 0.953%  0.9548
Q2 0:9129  0.8814
Q3 0.9542  0.8542
M2 Q4 0.9584  0.9857
Q5 0.9564 Na
Q6 0.8150 . 0.8630
Q7 0.9542  0.8540
Q8 0.9585  0.9492
Q1 0.9693 0.9712

Q2 Na Na
Q3 0:9683 0.9726
N1 Q4 0.9464  0.9345

Q5 | 08701  0.9662
Q6 0.3027 Na
Q7 0.9707 0.9739
P8 Q8 0.9586  0.9325
Q1 0.9551  0.9680
Q2 0.9344  0.9308
Q3 0.9539  0.9702
K2 Q4 0.9579  0.9671
Q5 0.9597 Na
Q6 09318  0.9256
Q7 09501  0.9652
Q8 0.9569  0.9653

Table 6.10: Simulated coverage probabilities for 95% confidence level

152



Structure Design poinits . Types
P1 x1=[0.35, 0.39. 0.48, 0.52, 0.57, 0.61] Centred
Cenfrad x2=[0.37, 0.41, 0.5. 0.53. 0.56, 0.5B] Centred
P2 . | x1=[0.85, 088, (.92, 0.94. 0.98, 1] Right-ended
. Ong-comersd *2=[0.03, 0.07..0.11. 0.14. 0.16. 0.19] Left-anded
P3 x1=[0.05, 0.08, 0.1, 0.92, 0.95. 0:98] Two-endsd
Two-comered x2=[0.02, 0.04.0.07. 0.81, 0.96. 0.99] Two-ended
P4 x1={0.2. 04,07, 0.5 0.8 0.9] Nom-sgually-spaced
Dispersed x2=[0 15, 0.3, 0.45, 0.6, D.75, 0.9] 1 Eguahespaced

Table 6.11: Design points for two predictor variables

Structure Restricted intervals Type

[ Ri [0.2]. 0.2} Long - Long
R2 [05 1. [05.1] ShoA - Short
R3 [0.5.1].10.2] Sherd - Long

Table 6.12: Designs for restricted intervals of predictor variables

6.3.2 For two-dimensional case

For the two-dimensional case, we find the simulated coverage probabilities
of the confidence bands constructed based on the simulation method of Liu,
Jamshidian, Zhang and Donnelly (2005), and compare the results with the
nominal confidence level.

The procedure is very similar to that in the one-dimensional case. The
only difference is to change the number of predictor variables from 1 to 2 and
the consequential changes to the regression coefficients, the restricted region,
and the critical values. |

Specifically, we choose four different designs P1,P2,P3,P4 in the predictor
space, three pairs of restricted intervals R1,R2,R3, two levels of the total
sample size N1,N2, and eight sets of the true regression coefficients QI1-Q8.
Details are clearly shown in Tables 6.11-6.14.

Structure| Sample size Total
141 [10. 10, 10, 18, 10, 10] N=60
H2 [16. 25. 29. 34. 46. 50] N = 200

Table 6.13: Designs for total sample size
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Structure] g0 [ st | g2
ot 0.7 17 17
Q2 025 0.5 9
@3 1.25 0.5 -1
Q4 15 0.5 0.5
Q5 2.7 1.7 i
| @b A.75 0.5 1
o7 -0.75 0.5 &
@B 0.5 0:5 -0.5

Table 6.14: Designs for true regression coefficients

90% and 95% confidence levels are chosen in this simulation study. Note
that this time when we coﬁstruct confidence bands, the critical values come
from the simulation-based method. We set the number of simulations equal
to 5,000 for the calculation of the critical value, and the number of simu-
lations equal to 10,000 for the calculation of the coverage probability. We
consider this setting of the number of simulations as Type 1 setting. Al-
ternatively, we may set 10,000 simulations for the critical value’s calculation
and 5,000 simulations for the coverage probability’s calculation, which is con-
sidered as Type 2 setting. We have tried ten specific cases based on both
settings, among which five are for the small sample size and the other five
are for the large sample size. By comparing the resulting simulated coverage
probabilities, it is found that the difference between the simulated coverage
probabilities for the Type 1 and Type 2 settings is at the third decimal place
for all ten chosen cases. So we reasonably believe that using either one may
not influence our conclusions. Since it will take long time to do simulations
for both settings, we just choose Type 1 setting here. Results are given in
Tables 6.15-6.18.

From these results, it can be concluded that when N = 60 the confidence
bands constructed based on the simulation method are much conservative
with the simulated coverage probabilities generally larger than 93% for 90%
confidence level and 97% for 95% level. When N = 200 the simulated cover-
age probabilities are pretty close to the nominal confidence levels, sometimes

larger and sometimes smaller. Consequently, we reasonably believe this kind
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of confidence bands are good enough when N is large.



Structurs scp -

combinations 30% 5%
1 @ 0:9404 0.8775

Qz | 0.9418 0.9798
) Q3 0.9395  0.9763

M1 04 0.9428 0.9785
; @5 | 09454 09776
Qs 0.9417 09780
Q7 0.9437 0.9785

1. R QB 09360  (.9804
Q1 0.8945 0.9445
Q2 0:9077 09525
Q3 0.9033  0.9508
N2 Q4 0.8956 0.9501 °
Q5 09022  0.9554
Qb 0.9021  0.9513
Q7 0.8977 0:9485
Q8 0.8996 . 0.8476
Q1 | 0.9401 09786
Q2 09393  0.9763
Q3 0.9455 09777
N1 Q4 pod46e0  0.9799
a5 0.9382 0.9757
Q6 0.9408  0.8730
Q7 0.9447  0.9784
. P11 B2 QB 0.9420  0.9757
! o] 08943 . 0.9456
Q2 09067 0.954%°
a3 0.9012 . 0:9456
N2 Q4 0:9028  0.9525
Q35 0.9138 0.9587
Qs 09034 09514
Q7 08967  0.9519
Q8 08934  0.9488
ok| 0.9343° 08736
Q2 0.8323 09737
Qa3 0.9306 09744
N1 Q4 0.9332  0.9746
Q5 09275  0.9749
Q6 0.9291  0.9752
i Q7 09316 0.9748
| PR3 Qs 0.9341  0.9722
‘ o1 0.9014 0.9543
Q2 0.9050 0.9523
Q3 0.8916  0.8490
2 a4 0.9043  0.9553
65 0.9005 09493
Q6 0.8026  0.9496
Q7 | 08890  0.9471
Q8 0.8969 0.9458

Table 6.15: Simulated coverage probabilities for two-dimensional case
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Structure 1. " scp
comhinations . 80% 5%
@1 | 09372 0.8801
Q2 | 09262 0.9694
Q3 0:9559  0.9870
M1 Q4 09360  0.9774

1 @5 09268 0.5735
Qb 09376 09T
Q7 0.9158  .0:9588
CP2 R | oB 0.9390  0.9758
a1 0.8990° 0.9535
Q2 | 0.9065 0.9526
Q3 0.9046 09551
N2 Q4 0.8589  0:9467
Qs 0:9068  0.9526
Qb 0.8945.  0.9500
Q7 0R952  0.9502
Q8 (.8887  0.9465
Q1 0.9374 09772
Q2 0.9294  0.9667
03 09644 (9895
M1 04 0.9264 09708
Qs 09187  0.9745
QB 89378  0.9743
a7 0.9064  0.9622
C P2 R2 Q8 0:9381  0.9754
Of 08875  0.9439
Q2 0:8976  0:9445
Q3 09054 0.9550
N2 Q4 0:8982  0.9515

| @5 [08975 03486
Qs 0.8953  0.9464
Q7 0.8998  0.9505
Q8 0.8868  0.9430
o 09370 0.9758
Q2 0.9207  0.9739
Q3 0.9587 0:9868
G Q4 0.9268  0.9726

1 a8 0.9176  0.9664
Q6 0.9393 0.9782
f | a7 09131  0.9588
[ P2.R3 Q8 09374  0.9738
o1 08968  0.9460
Q2 0.8947  0.9413
Q3 09010 0.9467
N2 Q4 0.8958  0.8443
| s 0.8887  0.9479
Qb 0.8995 09494
i Q7 0.9027  0.9515
Ty Q8 0.8971.  0.9438

Table 6.16: Simulated coverage probabilities for two-dimensional case
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Structure | ~scp
combinatiens 30% 95% .
i QN 0.9243 09687
Q2 | 09447 09747
Q@3 | 08400 0.9739
N1 04 | 0935 09779
Q5 0.8200 0.964%
Q6 0.9285 0.9746
Q7 | 0421 o0978D
P PIRY QB8 0.9454 0.9796
i Q1 { 0.9092 0:9521
Q2 0.8006  0:9454
Q3 0.9042 0.9553
N2 Q4 0.8045 09566
Q5 0.9049 0.9560
Qs " 0.9004 0.9496
Q7 0.8912 0.8474
Q8 0.8979 0.9485
Q1 0.9087 0.9584
Q2 0.9378 0.9731
Q3 | 09393 0.9739
N1 Q4 0.9365 09750
Q5 0.9338 0.9775
Qe 0.9282 0.9704
Q7 0.9414 0.9742
P3 R2 Q8 0.9391 0.9706
Q1 | 09074 09627
Q2 0.8929 0.9463
Q3 0.9001 0.9505
N2 Q4 0.8969 0.9521
Qs 0.8029 0.8552
' Qs 0:8963  0.9540
Q7 0:8956. 0.9486
Q8 0.8871 0.8472
6] 0.9504 0.9813
Q2 0.9442  0.9827
Q3 0.9286 0:9753
1 o4 0.9229 0.9689
Q5 0.9127 0.9670
Qb 0.9220 0.9688
Q7 0.9428 0.9748
P3.R3 Q8 0.9471 0.8808
0k 0.9045 0.9540
Q2 08918 0.9446
Q3 0.8942 0.9475
N2 Q4 0.8963 0.9503
Q5 0.8994 0.9494
Qb 0.8997 0.9505
Q7 0.8930 0.94£8
QB 0.9026 0.9521

Table 6.17: Simulated coverage probabilities for two-dimensional case
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Structure 1 scp
combinations : 30% - 95%
1 0.9350  0.9691
Q2 0.9407  0.9796
|1 @3 0.9444 09746
N1 | Q4 0.9388  0.9754
Q5 09278  0.9702
QB 09412 09734
IR T Q7 | 09457  0:9798
P4 RY QB 0.9467  0.9776 .
‘ Q1 08913  (.9482
Q2 0.8874  0.9432
Q3 0.8978. 09499
M2 Q4 0:9031  0:9511
Q5 0.9046. 0.9467
Qs 09046 :0.9512
Q7 0.9059 0.9514
Q8 0.8912  0.9443
Q1 09181  0.9628
Q2 | 08337 0.9728
Q3 0.9431 0.977%
N1 Q4 0.9363  0.9776
@5 | 089306 09707
Qb 0.9378 09762
i Q7 09428  0.9737
P4 R2 Q8 09415 0.9713
! a1 p.9016 09459
Q2 0:8977  0.9488
Q3 0.8930  0.951%
N2 @4 0.8943-  0.9554
as 09084  0.9508
Q6 0:9007 08505
Q7 0.8961 0.9495
Q8 0:8951 0.9458
Q1 0.9457°  0.9764
@ | 09376 09757 -
a3 0.9386  0.9718
1 Q4 0.9342  0.9736
Qb 0.9246  0.9740
Qb 0.9352 0.8706
Q7 0.9394  0.9740
i P4, R3 08 0.9413  0.9740
1 09030  0.9534
Q2 0.9043  0.9533
Q3 0.8963  0.9551
N2 Q4 0.9035  0.9517
Q5 0.9061  0.9516
(013 0.8995  0.9499
7 (.8943  (.9478
Q8 08968 0.9521

Table 6.18: Simulated coverage probabilities for two-dimensional case
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6.3.3 Conclusions

From the simulation results for both one-dimensional and two-dimensional
cases, it is clear that the total sample size N plays a central role. When N
is small, the confidence bands tends to be conservative. But for a sufficiently
large N, the simulated coverage probabilities are often very close to the
nominal confidence levels. This observation agrees with the large sample
theory which is the base of the construction of simultaneous confidence bands

for generalized linear models.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis considers the construction of simultaneous confidence bands for
a classical normal-error linear regression model and a general linear logistic
regression model with a binary response variable. From the work in the last

few chapters, some main conclusions can be drawn.

7.1.1 For linear regression

For linear regression, the confidence bands, centered by the estimated mean
respornses XTB and with the band width proportional to the standard error
of xT3, are of interest. This type of confidence bands are of hyperbolic shape
following Scheffé (1953)’s procedure, and are more popular than the bands
of other shapes. Also, it is important to impose a constraint on each pre-
dictor variable so that the confidence bands constructed over the obtained
restricted region are not unnecessarily wide when we deal with a real prob-
lem. Therefore, constructing exact confidence bands over different restricted
regions becomes the central task. Two most frequently mentioned regions are
the ellipsoidal region that centered at the point of the means of the predictor
variables, and the rectangular region that is formed by imposing an interval

constraint on each predictor variable.
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Over an ellipsoidal region, this thesis summarizes three methods to con-
struct both one-sided and two-sided exact simultaneous confidence bands for
a linear regression model. These three methods are: the method following the
idea of Bohrer (1973), the algebraical method, and the tubular neighborhood
method. They start from the same point and are proven to have the equiva-
lent computational formulae for calculation of critical values. Furthermore, it
is found that the first method has a relatively simple computational formula
for both simple and multiple linear regression cases. In addition, for some
special cases, these three methods agree with some other well-known meth-
ods in statistical literatures. For instance, the first method of constructing
one-sided and two-sided bands for a simple linear regression was considered
by Bohrer and Francis (1972) and Wynn and Bloomfield (1971) respectively.
The algebraical method of constructing two-sided bands for a multiple linear
regression was considered by Casella and Strawderman (1980). Moreover, the
idea of the tubular neighborhood method also appeared in Naiman (1986),
Sun and Loader (1994).

To construct simultaneous confidence bands for a regression model over
a rectangular region, several methods are available. Among these methods,
Naiman (1986) produced a conservative confidence band for one-dimensional
regression models, and his idea may be applied to the high dimensional cases
but no explicit computational formula was given. The approximate method
of Sun and Loader (1994) considered an approximation to the tube formula.
The simulation-based method of Liu, Wynn and Hayter (2005) and Liu,
Jamshidian, Zhang and Donnelly (2005) for polynomial regression and mul-
tiple linear regression respectively used Monte Carlo simulation. This thesis
compares these methods in terms of critical values for simple linear regression,
polynomial regression and bivariate linear regression respectively. From the
simulation results, several conclusions can be drawn. The simulation-based
method of Liu et al. (2005) can compute critical values almost as accurate
as the exact method for a simple linear regression. It is better than the

conservative method of Naiman (1986) and the approximate method of Sun
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and Loader (1994) for polynomial and bivariate linear regressions. Naiman’s
method is quite good in the sense that it is a conservative method but its
critical values are actually not too conservative. The approximate method,
comparatively speaking, is bad but not seriously. These conclusions may be
useful for someone who wants to construct simultaneous confidence bands

for data analysis.

7.1.2 For logistic regression

For logistic regression, the base of constructing simultaneous confidence bands
is the asymptotic normal distribution of the estimator. Hence, this thesis first
illustrates a way of finding the asymptotic normality of the maximum likeli-
hood estimator of the parameters of interest following the idea presented in
Sen and Singer (1993).

Existing literatures on the construction of confidence bands for a logistic
regression model are very limited. Methods of Brand, Pinnock and Jackson
(1973) and Hauck (1983) construct confidence bands over the whole pre-
dictor space for simple and multiple regression cases respectively. Over a
rectangular restricted region, we consider the Type 4 band of Sun, Loader
and McCormick (2000) specially for the one-dimensional logistic regression.
The method of Piegorsch and Casella (1988) for the construction of confi-
dence bands for a multiple logistic regression is found not to be recommend-
able. This thesis considers two new methods following the ideas of Wynn
and Bloomfieid (1971) for simple regression and Liu, Jamshidian, Zhang and
Donnelly (2005) for multiple regression. The confidence bands produced by
these two methods are named WB band and Simulation-based band accord-
ingly.

To assess the performance of these confidence bands, this thesis provides
simulation studies for both one-dimensional and two-dimensional cases. From
the simulated results, some useful conclusions can be drawn. The bands
obtained based on large-size samples are better than those with small-size

samples in the sense that the simulated coverage probabilities of the bands
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are clearly more closer to the nominal confidence levels for larger sample
sizes. For one-dimensional case, WB band seems to be better than Type
4 band recommended by Sun, Loader and McCormick (2000), and it often
performs very well when the sample size N is 200. For two-dimensional
case, the Simulation-based bands are quite conservative when N = 60 , and
its simulated coverage probabilities are very close to the nominal confidence
levels when N = 200.

7.2 Future work

This thesis considers constructing simultaneous confidence bands for only
one regression model. The construction of confidence bands for two or more
than two regression models may be of interest in the future work. Also, we
only focus on the construction of confidence bands for a logistic regression
with binary data in the thesis. We may consider constructing confidence
bands for the ordinal logistic regression and the multinomial logistic regres-
sion. Moreover, we may think about other classes of regression models in
the family of generalized linear models. Since all members of the generalized
linear models share the large sample asymptotic property, the methods of

constructing confidence bands should be similar.
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Appendix A

Codes for computing the
critical value and simulated

coverage probability

This appendix provides the codes for computing the critical values using var-
ious methods for simple linear regression, polynomial regression and bivari-
ate linear regression, and for computing the simulated coverage probabilities
for the one-dimensional and two-dimensional linear logistic regressions. All
codes in this appendix are written using MATLAB unless it is particularly

specified.

A.1 For computing the critical value for lin-

ear regression

A.1.1 Obtaining ¢, using the exact method for simple

linear regression

function c_wb=wb_cv(k0,nu,cl)

%f0utput

—
(@)
(@2



%c_wb: the critical value of WB method
JihInput

%k0: the angle theta

%nu: the degree of freedom

%cl: the confidence level

t01=0.0001;
NO=10000;
aa=1;bb=10;
faa=0(beta)fcdf((aa"2)/(2*(cos(beta))"2),2,nu);
int_faa=quad(faa,0,pi/2-k0/2);
HA=(2/pi)*(k0/2)*fcdf ((aa~2)/2,2,nu)+(2/pi)*int_faa;
i=1;
while i<=NO

c(i)=aa+ (bb-aa)/2;

f=0(beta)fcdf ((c(i)~2)/(2*(cos(beta))~2),2,nu);

int_f=quad(f,0,pi/2-k0/2);

HI=(2/pi)*(k0/2)*fcdf ((c(1)"2)/2,2,nu)+(2/pi) *int_£f;

if HI-c1==0 | (bb-aa)/2<tol

c_wb=c(i) ;break

end

i=i+1;

if HA*(HI-cl)<0

aa=c(i-1);
HA=HI;
else
bb=c(i-1);

end

end

return
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A.1.2 Obtaining ¢, using the approximate method for

simple linear regression

function c_app=app_cv{k0O,nu,cl)

%%0utput
%hc_app: the critical value of the approximate method
% Input

%k0,nu,cl: the same as before

t01=0.0001;
NO=10000;
aa=1;bb=10;
alpha_aa=(k0/pi)*(1+aa"2/nu) " (-nu/2)+2%(1-tcdf(aa,nu));
i=1; '
while i<=NO
c(i)=aa+(bb-aa)/2;
alpha_I=(k0/pi)*(1+c(i)~2/nu) " (-nu/2)+2*(1-tcdf (c(i),nu));
if alpha_I-(1-c1)==0 | (bb-aa)/2<tol
c_app=c(i);break
end
i=i+1;
if alpha_aa*(alpha_I-(1-cl1))>0
aa=c(i-1);
alpha_aa=alpha I;
else
bb=c(i~1);
end
end

return
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A.1.3 Obtaining c, using the simulation-based method

- for simple linear regression

function [c_simu,se]=simu_cv(k0,nu,cl,nsim)

hhOutput

%c_simu: the critical value of the simulation-based method
%se: the standard error V
%%Input

%k0,nu,cl: the same as before

Ynsim: the number of simulations

%Generate sigma”/sigma

S=sqgrt (sum(randn(nu,nsim) . 2)./nu);

%Compute T
for j=l:mnsim
N=randn{(1,2):
u=N. /norm(N) ;
if abs(u(l1))>=cos(k0/2)
Q(j)=norm(N) ;
elseif ((u(1)>=0) & (u(1)<cos(k0/2)) & (u(2)>sin(k0/2))) |
((u(1)<=0) & (u(1)>-cos(k0/2)) & (u(2)<-sin(k0/2)))
Q(j)=norm(N) *abs (u(1)*cos(k0/2)+u(2)*sin (k0/2)) ;
else
R(j)=norm(N)*abs(u(1)*cos(k0/2)-u(2)*sin(k0/2));
end
end

T=Q./8;

%Compute the quantile of the simulated values
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T=sort (T);
r=nsim*cl;

c_simu=T(xr);

%.Compute the standard error of c¢

d=0.01; '

K=(c_simu-T)/d;

g=sum ( (1/ (d*sqrt (2*pi)))*exp(-0.5%(K."2))) /length(T);
se=sqrt ((cl*(1-cl))/(g"2*1length(T)));

return

A.1.4 Obtaining ¢, using Naiman’s method for poly-

nomial regression

function c_naiman=naiman_1d_cc(w,cl,pl,a,b);

%A0utput ,

%c_naiman: the critical value of Naiman’s method

%4 Input

%w: the design points of the only predictor variable
%cl: the confidence level

%pl: the order of the polynomial regression plus 1
%ha: the lower bound of the restricted interval

%b: the upper bound of the restricted interval

n=length(w) ;

nu=n-pl;
for j=1l:pil

X, =w .~ (§-1);
end
P=sqrtm(inv(X’*X));
p=fliplr(P);
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for j=1:pil ,
sqp(j, :)=conv(p(j,:),p(i,:));
end
sqmolp=sum(sqp) ;
x=a: (b-a)/1000:b;
for k=1:length(x)
for j=1:(pl1-1)
xdp(j)=xX&) "~ (p1-1-3);
end
for j=1:((p1-1)*2+1)
xsqmolp(j)=x (k) ({pl-1)*2+1-3);
end
for j=1:pi
xp(j)=x(k) "~ (p1-3);
end
for j=1:(pi-1)x*2
xdsqmolp(j)=x(k) "~ ((pl-1)*2-3j);
end
for j=1:pi
dT(j)=(polyder(p(j,:))*xdp’*sqrt(sqmolp*xsqmolp’)-
p(j,:)*xp’*(1/(2*sqrt(sqmolp*xsqmolp’)))* ’
(polyder(sqmolp)#*xdsqmolp’))/(sqmolp*xsqmolp’);
end
moldT (k) =norm{dT) ;
end
for m=1:(length(x)-1)
T(m) = (mo1dT (m) +moldT (m+1))/2;
end

k0=((b-a) /1000) *sum(T’) ;

t01=0.0001;
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NO=100000;
aa=1;bb=10;
t=0: (1/(aa*1000)): (1/aa);
for m=1:length(t)
faa(m)=min((fcdf (2% ((aa*t(m)) " (-2)-1)/(p1-2) ,p1-2,2)*
(k0/pi)+fcdf (((aaxt(m)) " (-2)-1)/(p1-1),p1-1,1)) ,1)=
fpdf (pi*t(m) "2, nu,pl)*2*pl*t(m);
end
for k=1:(length(t)-1)
Func_aa(k)=(faa(k)+faa(k+1))/2;
end
alpha_aa=(1/(aa*1000))*sum(Func_aa’) ;
i=1;
while i<=NO
c(i)=aa+(bb-aa)/2;
t_I=0:(1/(c(i)*1000)):(1/c(i));
for m=1:length(t_I)
f I(m)=min((fcdf (2*((c(i)*t_I(m)) (-2)-1)/(p1-2),p1-2,2)
*(k0/pi)+fcdf (((c()*t_I(m)) " (-2)-1)/(p1-1),pl-1,1)),1)*
fpdf (pi*t_I(m) 2,nu,pl)*2*pl*t_I(m);
end
for k=1:(length(t_I)-1)
Func_I(k)=(f_I(R)+f_I(k+1))/2;
end
alpha_I=(1/(c(i)*1000))*sum(Func_I’);
if alpha_I-(1-cl)==0 | (bb-aa)/2<tol
c_naiman=c (i);
alpha=alpha_I;break
end
i=1+1;

if alpha_aa*(alpha_I-(1-c1))>0
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aa=c(i-1);
alpha_aa=alpha_TI;
else
bb=c(i-1);
end
end

return

A.1.5 Obtaining ¢, using the approximate method for

polynomial regression

function c_app=approxi_ld_cc(w,cl,pl,a,b);

%%0utput
%c_app: the critical value of the approximate method
%%hInput

%w,cl,pl,a,b: the same as before

n=length(w) ;
nu=n-pl;
for j=1:pl
XCL,=w .7 (G-1);
end
g=X*inv (X’ *X) ;
1=fliplr(q);
for j=1:n
sgl(j, )=conv(1(j,:),1(]j,:));
end

sgmoll=sum(sql) ;

x=a: (b-a)/1000:b;
for k=1:length(x)
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for j=1:(pi-1)
xd1(j)=x(k) " (p1-1-7);
end
for j=1:((p1-1)*2+1)
xsqmoll (§)=x(k) " ((p1-1)*2+1-3);
end
for j=1:pil
x1(P)=x(X) " (p1-7);
end
for j=1:(p1-1)*2
xdsqmoll (j)=x(k) "~ ((p1~-1)*2-3);
end
for j=1:n
dT(j)=(polyder(1(j,:))*xdl’*sqrt(sqmoll*xsqgmoll’) -
1(3,:)*x17*(1/(2*sqrt (sqmoll*xsgmoll’)) ) *
(polyder (sqmoll)*xdsqmoll’))/(sgmoll*xsqmoll’);
end
moldT (k) =norm(dT) ;
end
for m=1:(length(x)-1)
T(m)=(moldT (m)+moldT (m+1))/2;
end

k0=((b-a)/1000) *sum (T’ ) ;

£01=0.0001;
NO=10000;
aa=1;bb=10;
alpha_aa=(k0/pi)*(1+aa~2/nu) "~ (-nu/2)+2*(1-tcdf (aa,nu));
i=1;
while i<=N0D

c(i)=aat(bb-aa)/2;
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alpha_I=(k0/pi)*(1+c(i)"2/nu) "~ (~nu/2)+2* (1-tcdf (c(i),nu));
if alpha_I-(1-c1l)==0 | (bb-aa)/2<tol
c_app=c(i);
alpha=alpha_I;break
end
i=i+1;
if alpha_aa*(alpha_I-(1-cl))>0
aa=c(i-1);
alpha_aa=alpha_T;
else
bb=c(i-1);
end
end

return

A.1.6 Obtaining ¢, using the simulation-based method

for polynomial regression

For quadratic regression

function [c_simu,sel=simu_quadratic_c(w,a,b,cl,nsim);

%hhoutput

%C_simu: the critical value of the simulation-based method
%se: the standard error of c_simu

%hinput

%w,a,b,cl: the same as before

%nsim: the number of simulations

n=length (w);
for m=1:3
X(:,m)=w’. (m-1);



end
g=inv (X’ *X);
P=sqrtm(q) ;nu=n-3;

%Generate (beta”-beta)/sigma

V=Pxrandn(3,nsim) ;

%#Generate sigma”/sigma

S=sqrt (sum(randn(nu,nsim)."2)./nu);

%#Compute T

for m=1:nsim
U=V(:,m)*V(:,m)’;
a1=U(2,1);
a2=2xU0(3,1)+U(2,2);
a3=2xU0(3,2)+U0(2,3);
a4=2xU(3,3);
polyi=[ad a3 a2 all;

bl=q(1,1);
b2=q(2,1)+q(1,2);
b3=q(3,1)+q(2,2)+q(1,3);
b4=q(3,2)+q(2,3);
b5=q(3,3);

poly2=[b5 b4 b3 b2 bil;

c1=U(1,1);
c2=U(2,1)+U(1,2);
c3=U(3,1)+U(2,2)+U(1,3);
c4=U(3,2)+U(2,3);
cb=U(3,3);



poly3=[c5 c4 c3 c2 c1];

d1=q(2,1);
d2=2x%q(3,1)+q(2,2);
d3=2xq(3,2)+q(2,3);
d4=2%q(3,3) ;
poly4=[d4 d3 d2 d1l;

g=conv(polyl,poly2)-conv(poly3,poly4);
y=roots(g);
for j=1:3
A()=a"(§-1);
B(j)=b~(j-1);
end
ha=abs (A*xV(:,m) ) /sqrt (A*xqxA’);
hb=abs (B*V(:,m)) /sqrt(B*gxB’) ;
for j=1:(4%3-6)
for k=1:3
Yi)=y (3~ (k-1);
end
if y(j)>a & y(j)<b
h(j)=abs (Yj*V(:,m)) /sqrt(Yj*q*Yj’);
else
h(j)=0;
end
end
H=[real(h) ha hb];
H_max=max (H) ;
Q(m)=H_max;
end
T=Q./S;
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%Compute the guantile of the simulated values
T=sort (T);
r=nsim*cl;

c_simu=T(r);

%Compute the standard error

d=0.01;

K=<c_simu-T)/d;
g=sum((1/(d*sqrt (2*pi))) *exp(-0.5%(K."2)))/length(T);
se=sqrt ((clx(1-cl)) /(g 2*length(T)));

return

For cubic regression

function [c_simu,se]=simu_cubic_c(w,a,b,cl,nsim) ;
»A11 outputs and inputs are the same as before

n=length(w);
for m=1:4

XC:,m=w’. (m-1);
end
g=inv(X’*X);
P=sqrtm(q);

nu=n-4;

hGenerate (beta”-beta)/sigma

V=P*randn(4,nsim) ;
JGenerate sigma”/sigma
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S=sqrt (sum(randn(nu,nsim) . 2)./nu);

Jicompute T

for m=1:nsim
U=V{(:,m)*V{:,m)’;
al=U(z,1);
a2=2xU(3,1)+U(2,2);
a3=3xU(4,1)+2xU(3,2)+U(2,3);
ad=3xU(4,2)+2xU(3,3)+U(2,4);
a5=3%U(4,3)+2xU(3,4);
a6=3*U(4,4) ;
polyi=[a6 ab a4 a3 a2 all;

bi=q(i,1);

b2=q(2,1)+q(1,2);
b3=q(3,1)+q(2,2)+q(1,3);
bd=q(4,1)+q(3,2)+q(2,3)+q(1,4);
b5=q(4,2)+q(3,3)+q(2,4);
b6=q(4,3)+q(3,4);

b7=q(4,4);

poly2=[b7 b6 b5 b4 b3 b2 bill;

cl=U(1,1);

c2=U(2,1)+U(1,2);

c3=U(3, 1)+U(2,2)+U(1,3);
c4=U(4,1)+U(3,2)+U(2,3)+U(1,4);
cb=U(4,2)+U(3,3)+U(2,4);
c6=U(4,3)+U0(3,4);

c7=U(4,4);

poly3=[c7 c6 ¢5 c4 c3 c2 cl];
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d1=q(2,1);
d2=2%q(3,1)+q(2,2) ;
d3=3%q(4,1)+2%q(3,2)+q(2,3) ;
d4=3%q(4,2)+2%q(3,3)+q(2,4);
db=3xq(4,3)+2xq(3,4) ;
d6=3+*q(4,4);

poly4=[d6 d5 d4 d3 d2 d1];

g=conv(polyl,poly2)-conv{poly3,poly4);
y=roots(g);
for j=1:4
A(3)=a"(3-1);
B(j)=b"(j-1);
end
ha=abs (A*V (:,m))/sqrt (A*xq*L’) ;
hb=abs (BxV(:,m))/sqrt (B*q*B’);
for j=1:(4%4-6)
for k=1:4
Y=y (3) " (k-1);
end
if y(j)>a & y(§)<b
h(j)=abs(Yj*V(:,m))/sqrt (Yi*g*Yj’);
else
h(j)=0;
end
end
H=[real(h) ha hb];
H_max=max(H) ;
Q(m)=H_max;
end

T=Q./8;
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%#Compute the quantile of the simulated values
T=sort (T);
r=nsim*cl;

c_simu=T(r);

%Compute the standard error

d=0.01;

K=(c_simm-T)/d;

g=sum ((1/(d*sqgrt (2*pi)))*exp(-0.5%(K."2)))/length(T);
se=sqrt ((cl*x(1-cl))/(g~2*length(T)));

return

For 4th order polynomial regression

function [c_simu,sel=simu_poly_c(w,a,b,cl,nsim);

%A1l outputs and inputs are the same as before

n=length (w) ;

for m=1:5
XG,m=w’ . (m-1);

end

g=inv (X’ *X);

P=sqrtm(q) ;

nu=n-5;

hGenerate (beta"-beta)/sigma

V=P*randn(5,nsim) ;

JiGenerate sigma”/sigma
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S=sqrt (sum(randn(nu,nsim) .~2)./nu);

%compute T

for m=1:nsim
U=V{(:,m)*V{:,m)’;
al=u(2,1);
a2=2*U(3,1)+U0(2,2);
a3=3*U(4,1)+2+U(3,2)+U0(2,3);
ad=4+1(5,1)+3*U(4,2)+2*U(3,3)+U(2,4);
ab=4xU(5,2)+3*U(4,3)+2*U(3,4)+U(2,5);
a6=4%U(5,3)+3*U(4,4)+2*U(3,5);
a7=4*U(5,4)+3%U(4,5);
a8=4*U(5,5) ;
polyl=[a8 a7 ab ab a4 a3 a2 all;

bl=q(1,1);

b2=q(2,1)+q(1,2);
b3=q(3,1)+q(2,2)+q(1,3);
bd=q(4,1)+q(3,2)+q(2,3)+q(1,4);
bb=q(5,1)+q(4,2)+q(3,3)+q(2,4)+q(1,5);
b6=q(5,2)+q(4,3)+q(3,4)+q(2,5);
b7=q(5,3)+q(4,4)+q(3,5);
b8=q(5,4)+q(4,5);

b9=q(5,5) ;

poly2=[b9 b8 b7 b6 b5 b4 b3 b2 bi];

c1=U(1,1);

c2=U(2,1)+U(1,2);
c3=U(3,1)+U(2,2)+U(1,3);
c4=U(4,1)+U0(3,2)+U(2,3)+U(1,4);
cb=U(5,1)+U(4,2)+U(3,3)+U(2,4)+U(1,5);
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c6=U(5,2)+U(4,3)+U(3,4)+U(2,5);
c7=U(5,3)+U(4,4)+U(3,5);
c8=U(5,4)+U(4,5);

c9=U(5,5);

poly3=[c9 c8 c7 c6 cb c4 c3 c2 cil;

d1=q(2,1);

d2=2*g(3,1)+q(2,2);
d3=3%q(4,1)+2%q(3,2)+q(2,3);
d4=4%g(5,1)+3%q(4,2)+2%q(3,3)+q(2,4);
db=4x%q(5,2)+3*q(4,3)+2%q(3,4)+q(2,5);
d6=4x*q(5,3)+3*q(4,4)+2%q(3,5);
d7=4%q(5,4)+3*q(4,5);

d8=4%q(5,5);

poly4=[d8 d7 d6 d5 d4 d3 d2 d1];

g=conv{polyl,poly2)-conv(poly3,poly4);
y=roots(g);
for j=1:5
A(§)=a~(j-1);
B(j)=b~(j-1);
end
ha=abs (A*V(:,m))/sqrt (A*q*A’);
hb=abs (BxV(:,m)) /sqrt (Bxq*B’);
for j=1:(4%5-6)
for k=1:5
Vi) =y(3) " (k-1);
end
if y(§)>a & y(j)<b
h(j)=abs(Yj*V(:,m))/sqri(Yi*xq*Yj’);

else
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h(j)=0;
end
end
H=[real(h) ha hb];
H_max=max (H) ;
Q(m)=H_max;
end

T=Q./S;

%Compute the quantile of the simulated values
T=sort(T);
r=nsim*c1}

c_simu=T(r);

%Compute the standard error

d=0.01;

K=(c_simu-T)/d;

g=sum( (1/ (d*sqrt (2*pi))) *exp(-0.5%(X."2)))/length(T);
se=sqrt((cl*x(1-cl))/(g"2*length(T)));

return

A.1.7 Obtaining ¢, using the approximate method for

bivariate linear regression

function cc_app=approxi_2d_cc(X,a,b,c,d,cl)

%%h0utput

hcc_app: the critical value of the approximate method
%hInput

%X: the design matrix

%a,b: the lower and upper bounds of the restricted interval

%c,d: the lower and upper bounds of the restricted interval
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%cl: the confidence level

n=length(X(:,1)’);

nu=n-3;

1=X*inv (X’ *X);

for j=1:n
sql(j,)=[1(,1)"2 1(§,2)°2 1(§,3)"2 2%1(j,1)*1(j,2)
2x1(3,1)*1(3,3) 2%1(j,2)*1(j,3)];

end

sqmoll=sum(sql);

Ldx1=1(:,2);

dyl=1(:,3);

dxsgmoll=[2*sqmoll(2) sgmoll(4) sqmoll(6)];

dysqmoll=[2%sqmol1(3) samoll(5) sqmoll(6)];

x=a: (b-a)/1000:b;

y=c:(d-¢)/1000:4d;

%Compute kO
for j=1:length(x)
for k=1:length(y)

xysqmoll=[1 x(§)°2 y(&k)"2 x(3) y&) x(G*y(k)];
xyl=[1 x(j) vyx1;
xydxsgmoll=[x(j) 1 y(&)];
xydysqmoll=L[y(k) 1 x(jJ];
Tx=(dxl*sqrf(sqmoll*xysqmoll’)—(l*xyl’)*
(1/(2*sgrt(sqmoll*xysqmoll’)))*
(dxsgmoll*xydxsqmoll’))/ (sqmoll*xysqmoll’) ;
Ty=(dy1*sqrt(sqmoll*xysqmoll;)-(l*xyl’)*
(1/(2xsgrt(sgqmoll*xysqmoll’)) ) *
(dysqmoll*xydysamoll’))/(sqmoll*xysqmoll’) ;
A=[Tx Ty];
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f(k)=sqgrt(det (A’ *A));
end
for m=1:(length(y)-1)
g(m)=(f (m)+f (m+1))/2;
end
k_int(3)=(d-c)/1000%sun(g’);
end
for 1i=1: (length(x)-1)
K_int(ii)=(k_int(ii)+k_int(ii+1))/2;
end
k0=((b-a)/1000) *sum(K_int’);

%Compute s0

for k=1:length(y)
aysqmoll=[1 a"2 y(k)"2 a y(k) a*xy(k)]1;
ayl=[1 a y(k)];
aydxsgmoll=[a 1 y(k)J;
aydysqmoll=[y(k) 1 al;
Ty=(dyl*sqrt(sqmoll*aysqmoll’) - (1xayl’)x*
(1/(2+sqrt (sqmoll*aysqmoll’)))*
(dysgmoll*aydysqmoll’))/(sqmoll*aysqmoll’);
f(k)=sqrt(det(Ty’*Ty));

end

for m=1:(length(y)-1)
g(m)=(f (w)+f(n+1))/2;

end

ka_int=((d-c)/1000)*sum(g’);
for k=1:length(y)

bysqmoll=[1 b~2 y(k)"2 b y(k) bxy(k)];
byl=[1 b y(k)];
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bydxsqmoll=[b 1 y(k)];
bydysgmoll=[y(k) 1 b];
Ty=(dyl*sqrt(sqmoll*bysqmoll’)—-{1*byl’)*
(1/(2*sqgrt (sqmoll*bysqmoll’)))*
(dysgmoll*bydysgmoll’))/(sqmoll*bysgmoll’) ;
f(k¥)=sqrt(det(Ty’*Ty));

end

for m=1:(length(y)-1)
g(m)=( (m)+f(n+1))/2;

end

Kb_int=((d-c)/1000)*sum(g’) ;

for j=1:length(x)
xcsgmoll=[1 x(j)"2 c¢2 x(j) ¢ x(j)*cl;
xcl=[1 x(j) cJ;
xcdxsgmoll=[x(j) 1 c];
xcdysqmoll=[c 1 x(j)J;
Tx=(dx1l*sqrt(sgmoll*xcsqmoll’ )~ {(1*xcl’)*
(1/(2*sqrt(sqmoll*xcsémoll’)))*
(dxsgmoll*xcdxsqmoll’))/(sgmoll*xcsgmoll’) ;
f(j)=sqrt(det (Tx’*Tx));

end

for m=1:(length(x)-1)
gm)=F m)+f(m+1))/2;

end

kc_int=((b-a)/1000) *sum(g’) ;

for j=1:length(x)
xdsqmoll=[1 x(j)"2 d°2 x(j) d x(j)*d];
xdl=[1 x(j) dJ;
xddxsqmoll=[x(j) 1 d];
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xddysqmoll=[d 1 x(j)7;
Tx=(dx1l*sqrt (sqmoll*xdsgmoll’)-(1xxdl’)*
(1/(2*sqrt (sqmoll*xdsqmoll’)))*
(dxsqmoll*xddxsgmoll’)) /(sqmoll*xdsqmoll’);
f(j)=sqrt(det (Tx’*Tx));
end
for m=1:(length(x)-1)
g(m)=(f (m)+£f (m+1))/2;
end
kd_int=((b-a)/1000)*sun(g’) ;
s0=ka_int+kb_int+kc_int+kd_int;

~ t01=0.0001;
NO=10000;
aa=1;bb=10;
alpha_aa=(k0/pi~(3/2))*(gamma ((nu+1)/2)/gamma (nu/2) ) * (aa/sqrt (nu) ) *
(1+aa~2/nu) " (- (nu+1) /2)+(s0/ (2*pi) ) * (1+aa"2/nu) " (-nu/2) +2* (1-tcdf (aa,nu) ) ;
i=1;
while 1<=NO
c(i)=aa+(bb-aa)/2;
alpha_TI=(k0/pi~(3/2))* (gamma ( (nu+1)/2) /gamma (nu/2))*(c(i)/sqrt(nu))*
(1+c (1) "2/nu) " (- (nu+1) /2)+(s0/ (2*pi) ) * (1+c (i) "2/nu) ~ (-nu/2)+
2% (1-tcdf (c(i) ,nu));
if alpha_I-(1-cl)==0 | (bb-aa)/2<tol
cc_app=c(i);
alpha=alpha_I;break
end
i=1i+1;
if alpha aa*(alpha_TI-(1-c1))>0
aa=c(i-1);

alpha_aa=alpha_ I;
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else
bb=c(i~-1);
end
end

return

A.2 For computing the simulated coverage

probability for logistic regression

A.2.1 Obtaining scp, using the WB method for simple
logistic regression

function scp_wb=wb_scp(x,N,b,al,a2,nsim)

%h0utput

%scp_wb: the simulated coverage probability of WB method
hhInput

%x: the design points of the omnly predictor variable

%N: the vector of sub-sample sizes

%b: the vector of true regression coefficients

%al: the lower bound of the restricted interval

%a2: the upper bound of the restricted interval

%cl: the confidence level

Ynsim: the number of simulations

n=length(x);.
for k=1:msim
for j=1:n
p_1(§)=exp(b(1)+b(2)*x(3)) ./ (1+exp(b(1)+b(2)*x(j)));
z(j)=binornd (N(j),p_1i(j),1,1);
if z(§)==N(j) | z(j)==
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end

y=z.

z(j)=binornd(N(j),p_1(j),1,1);

end

/N;

diff=1;
b_es=[0;0]; %initial guess of b_es

while diff>0.0001

end

b_old=b_es;

p=exp(b_es(1)+b_es(2)*x) ./ (1+exp(b_es(1)+b_es(2)*x));

for i=1:length(x)
J1(D)=N{D*p(D)*(1-p(i));
J2(1)=J1(1)*x(1);
J3(1)=J2(1) *x (1) ;

end

s=[sum (y-p) ; sun((y-p) . *x)];

J=[sum(J1) sum(J2);sum(J2) sum(J3)];

b_es=b_old+J\s;

diff=sum(abs(b_es—b_old));

f_inv=inv(J);

P=sgrtm(f_inv);

vector_a=(P*[1;al1])’;
vector_b=(P*[1;a2])’;

theta_ast=acos((vector_a*vector_b’)/(norm(vector_a)*

norm(vector_b)))./?;

t01=0.0001;

NDO=10000;

aa=1;bb=10;

f=0(w)chi2cdf (aa."2./(cos(w) . 2),2);
g=quad (f,0,pi/2-theta_ast);
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HA=(2/pi)*theta_ast*chilcdf (aa"2,2)+(2/pi) *g;
i=1;
while 1<=NO
c(i)=aa+(bb-aa)/2;
f1=@(y1)chiZ2cdf (c(i)."2./(cos(y1).72),2);
gl=quad(f1,0,pi/2-theta_ast);
HI=(2/pi)*theta_ast*chi2cdf (c(i)~2,2)+(2/pi)*gl;
if HI-0.95==0 | (bb-aa)/2<tol
cc_wb=c(i) ;break
end
i=i+1;
if HA*(HI-0.95)<0
aa=c(i-1);
HA=HT;
else
bb=c(i-1);
end
end
vi=P(:,1)+P(:,2) .*al;
v2=P (:,1)+P(:,2) .*a2;
M=inv(P) ’*(b’-b_es);
if (M>=vl & M<=v2)
Q=norm(M) ;

| (-M>=v1 & -M<=v2)
else
Qi=abs (v1’*M) /norm(vl)
Q2=abs (v2’*M) /norm(v2) ;
Q=max (Q1,Q2) ;
end
T=Q;
if T>cc_wb

r(k)=0;



else
r(k)=1;
end
end
r_sum=sum(r’);
scp_wb=r_sum/nsim;

return

A.2.2 Obtaining scp of Type 4 band for simple logistic

regression, using parfit on S-plus

library(locfit,first=T)

scpT4<-function(x,N,b,al,a2,nsim)
{

for(i in 1:nsim)

{
pr<—exp(b[1]+b[2]*x) /(1+exp (b[1]+b[2]*x))
z<-¢c(0,0,0,0,0)
y<-¢(0,0,0,0,0)

Ji<-¢(0,0,0,0,0)
J2<-¢(0,0,0,0,0)
J3<-¢(0,0,0,0,0)

v<-¢(0,0,0)
vi<-¢(0,0,0)
cc<-¢(0,0,0)
for(i in 1:length(x))
{
z[i]<-rbinom(1,N[i],prli])
+
y<-z/N

bb<-glm(y~x,family=binomial)
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bes<-unlist(bb[1],use.names=F)

p<—exp(bes [1]+bes [2]*x)/ (1+exp (bes[1]+bes [2] *x) )

for(i in 1:length(x))

{

J1[i]<-N[i]l*pl[i]*(1-p[i])
J2[11<=-J1[1]*x [1]
J3lil<=J2[1]*x [1]

+

JO<=¢c (sum (J1) ,sum(J2) ,sum(J2),sum(J3))

J<-matrix (JO,nrow=2,byrow=T)

finv<-solve ()

t<-data.frame(x,z,N)

fit<-scb(z7x,type=4,w=N,data=t,deg=1,family="binomial",

kern="parm",xlim=c(al,a2))

xp<-unlist (fit[1],use.names=F)

11<-unlist(fit[4],use.names=F)

ul<—unlist(fit[5],use.names:F)

for(i im ¢(1,10,20))

{
cclil<=(ul[1]-11[41)/ (2xsqrt (c(1,xp[1])%x%Einvi*Y
patrix(c(l,xpli]) ,nrow=2)))

N ,

ccapp<—(cc[1]+cc[10]+cc[20])/3

R<-seq(0,by=0,length=nsim)

q<-0

while (q<=20)

{
u<-al+g*(a2-al) /20
Gi<~c(1,u) %*Ymatrix(b-bes,nrow=2)

G2<-sqrt (c (1, w) %YL invi*Ymatrix (c(1,u) ,nrou=2))
H<-abs (G1) /G2

192



if (H>ccapp)

{
R[1]<-0
break

}
R[iJ<-1
q<-gq+1

b
Rsum<-sum(R)
scpapp<-Rsum/nsim

return(scpapp)

A.2.3 Obtaining scp, using the simulation-based method

for bivariate logistic regression

function scp_simu=simu_scp(x1,x2,N,b,al,a2,a3,a4,cl,nsiml,nsim2)

%hH0utput

%scp_simu: the simulated coverage probability of the confidence
A band constructed based on the simulation method

%/ Input

%x1: the design points of the first predictor variable
%%2: the design points of the second predictor variable
%N: the vector of sub-sample sizes

Jb: the vector of true regression coefficients

%al: the lower bound of the first restricted interval
%a2: the upper bound of the first restricted interval
%a3: the lower bound of the second restricted interval
%a4: the upper bound of the second restricted interval

%cl: the confidence level
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%nsiml: the number of simulations for computing critical value

%nsim2: the number of simulations for computing coverage probability

for k=1:nsim?2
P_i:exp(b(1)+b(2)*x1+b(3)*x2)./(1+exp(b(1)+b(2)*x1+b(3)*x2));
for j=1:length(x1)
z(j)=binornd(N(i),p_i(j),1,1);
if z(§)==0 | z(j)==N(j)
z(j)=binornd(N(j),p_i(j),1,1);
end
end
y=z./N;
diff=1;
b_es=[0;0;0]; %initial guess of b_es
while diff>0.0001
b_old=b_es;
pr=exp(b_es(1)+b_es(2)*x1+b_es(3)*x2) ./
(1+exp(b_es(1)+b_es(2)*x1+b_es(3)*x2)) ;
for i=1:length(x1)
J1(1)=N(1)*pr(i)*(1-pr(i));
J2(1)=J1(1)*x1(1);
J3(i)=J2(1)*x1(1);
J4(1)=J1(1)*x2(1);
J5(1)=J2(1)*x2(1);
J6(1)=J4(1)*x2(1);
end
s=[sun(y-pr) ;sun((y-pr) . *x1) ;sun((y-pr) . *x2)];
J=[sum(J1) sum(J2) sum(J4);sum(J2) sum(J3) sum(J5);
sum(J4) sum(J5) sum(J6)];
b_es=b_old+J\s;
diff=sum(abs(b_es-b_old));
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end
f_inv=inv(J);
P=sqrtm(f_inv) ;
vi=P(:,1)+P(:,2) .*al+P(:,3) .*a3;
v2=P(:,1)+P(:,2) .*al+P(:,3) .*a4;
v3=P(:,1)+P(:,2).%a2+P(:,3) .*a3;
v4=P(:,1)+P(:,2).*a2+P(:,3) .*a4;
for i=1:nsiml
M=randn(3,1);
if (M>=vl & M<=v4) | (-M>=vl & -M<=v4)
- Q=norm(M);
else
Bi=[vl v2];
B2=[v1l v3];
© B3=[v2 v4];
B4=[v3 v4];
[Q1,R1]=qr(B1,0);
[Q2,R2]=qr(B2,0);
[Q3,R3]=qr (B3,0);
[Q4,R4]=qr(B4,0);
Di=dot (Q1(:,1),M)*Q1(:,1)+dot(QL1(:,2) ,M)*Q1(:,2);
D2=dot (Q2(:,1) ,M)*Q2(:,1)+dot(Q2(:,2) ,M)*Q2(:,2);
D3=dot (Q3(:,1),M)=*Q3(:, 1)+dot (R3(:,2) ,M)*Q3(:,2);
Da=dot (Q4(:,1),M)*Qa(:, 1)+dot (Qa(:,2) ,M)*Qa(:,2);
if (Di1>=vl & Di<=v2) | (-Di>=vl & -Di<=v2)
Q11=abs(D1’*M) /norm(D1) ;
else
Qill=max(abs(v1’#*M) /norm(vl),abs (v2’*M) /norm(v2));
end
if (D2>=vl & D2<=v3) | (-D2>=vl & -D2<=v3)
Q12=abs(D2’*M) /norm(D2) ;



else

Q12=max(abs(v1’*M)/norm(vl) ,abs(v3’*M) /norm(v3));

end
if (D3>=v2 & D3<=v4) | (-D3>=v2 & -D3<=v4)
Q13=abs (D3’ *M) /norm(D3) ;

else

Q13=max(abs(v2’*M) /norm(v2),abs(v4’*M) /norm(v4));

end
if (D4>=v3 & Da<=v4) | (-D4>=v3 & -D4<=v4)
Q14=abs (D4’ *M) /norm(D4) ;

else

Ql4=max(abs(v3’*M)/norm(v3),abs(v4’*M)/norm(v4));

end
Qarray=[Q11 Q12 Q13 Q14];
Q=max(Qarray) ;
end
T(1)=Q;
end
T=sort(T);
r=nsimlx*cl;

cc_simu=T(r);

MM=inv{(P) ’*(b’-b_es);

if (MM>=v1 & MM<=v4) | (-MM>=vl & -MM<=v4)
QQ=norm(MM) ;

else
DDi=dot (Q1(:,1) ,MD)*Q1(:,1)+dot(Q1(:,2) ,MM)*Q1(:
DD2=dot (Q2{(:,1) ,MM)*Q2(:,1)+dot (Q2(:,2) ,MM)*Q2(:
DD3=dot (Q3(:,1) ,MM)*Q3(:,1)+dot(Q3(:,2) ,MM)*Q3(:
DD4=dot(Q4(:,1),MM)*Q4(:,1)+dot(Q4(:,2);MM)*Q4(:
if (DD1>=v1 & DD1<=v2) | (-DDi>=vl & -DD1<=v2)
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QQ11=abs{(DD1’*MM) /norm(DD1) ;
else
QQ11¥max(abs(v1’*MM)/norm(vl),abs(v2’*MM)/norm(v2));
end
if (DD2>=v1 & DD2<=v3) | (-DD2>=vl & -DD2<=v3)
QQ12=abs (DD2’*MM) /norm(DD2) ;
else
QQ12=max{abs{v1’*MM) /norm(vl) ,abs(v3’*MM) /norm(v3));
end
if (DD3>=v2 & DD3<=v4) | (-DD3>=v2 & -DD3<=v4)
QQ13=abs (DD3’*MM) /norm(DD3) ;
else
QQ13=max{(abs(v2’*MM) /norm(v2) ,abs(v4d’*MM) /norm(vd)) ;
end
if (DD4>=v3 & DD4<=v4) | (-DD4>=v3 & -DD4<=v4)
QQ14=abs (DD4’*MM) /norm(DD4) ;
else
QQ14=max (abs{v3’*MM) /norm(v3) ,abs(v4’*MM) /norm(vd)) ;
end
QRarray=[QQi1 QQ12 QQ13 QQ14];
QQ=max{QQarray) ;
end
TT=QQ;
if TT>cc_simu
rr{k)=0;
else
rr(k)=1;
end
end
rr_sum=sum(rr’);

scp_simu=rr_sum/nsim2; return
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