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This thesis deals with the equivariant Riemann-Roch problem for curves
over perfect fields, and with the related topic of geometric Galois module
theory.

We generalize Kock's work on the equivariant Riemann-Roch problem
for curves over algebraically closed fields, proving a "weak" equivariant
Riemann-Roch formula for arbitrarily ramified Galois covers of curves over
perfect fields as well as a "strong" formula for weakly ramified covers.

As an application of our results, we show that under certain conditions,
the automorphism group of a geometric Goppa code acts faithfully on the
code, meaning that the code has in some sense "maximal symmetry".

In the last part of this thesis, we present an alternative proof for a result
of Chinburg in geometric Galois module theory, describing the equivariant"
Euler characteristic of the structure sheaf of a curve in terms of epsilon
constants.
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Index of notations and conventions

Different notions of "characters"

For a topological group H (finite or infinite), a quasi-character of H is a
continuous homomorphism H —> C*. If it has absolute value 1 (i.e. if its
image lies in the unit circle), it is called a character.
Let now H be a finite group, endowed with the discrete topology. Then all
homomorphisms H —> C* are characters in the above sense.
Homomorphisms from H into the multiplicative group of a field other than
C will also be called characters. Care has been taken to avoid confusion
with the notion of a character afforded by a representation of H, i.e. a map
of the form h i—> Tr&ce(h\V), and the notion of a virtual character, i.e. a
Z-linear combination of these, which we will need in Chapter 4. However,
where there is no risk of confusion, we use the word "character"
indifferently.

If K is any field, then a multiplicative character is a character (continuous
homomorphism of absolute value 1) K* —> C* of the multiplicative group
of K', and an additive character of K is a character K —> C* of the
additive group of K.

The general setting and frequently used notations

Throughout this thesis, ir : X —> Y is a cover of nonsingular projective
curves such that the corresponding extension of function fields, denoted
K(X)/K(Y), is a finite Galois extension. Its Galois group is denoted G.

The table below gives an overview of notations that are frequently used in
this thesis. Where applicable, numbers at the end of entries indicate the
Chapter, section and subsection in which the definition can be found.

X a nonsingular. projective algebraic curve over a field
k the underlying field (perfect in Chapter 2, finite in

Chapters 3 and 4)
k an algebraic closure of k
X{k) the set of fc-rational points on X, 2.2.1
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G a finite subgroup of
Y . the nonsingular quotient curve XjG
\X\, \Y\, etc. the set of closed points in X, in Y, etc.
X the geometric fibre X x k k
P, Q, R a closed point on X, X, Y respectively
R a point on X lying over R, E Y
L = K(X), K = K{Y) function fields of X, Y resp.
v, p a valuation, resp. place of K = K(Y)
Kv, Kp (for a global field K) completion of K with respect to

the valuation v, the place p resp.
k[G] the group ring over G with coefficients in fc
Ko(G, k) the Grothendieck group of all fc[G]-modules (k[G]-modules

are always assumed to be finitely generated), 2.2.3
K0(k[G]) the Grothendieck group of projective fc[G]-modules, 2.2.3
Ox the structure sheaf on X
Ox,p the stalk of Ox at P
ntp the maximal ideal of Ox,p
k(P) the residue field at P
£, T sheaves of modules on X
S, f pullback of £, T to X, 2.1.1
E(P) fibre of £ at P
Gp = Gpf-i the decomposition subgroup of G at P. 2.2.2 and 2.3.2
Ip = GptQ the inertia subgroup at P , 2.2.2 and 2.3.2
Gp.i the higher ramification groups at P, 2.3.2
n the order of G
ep the ramification index at P; ep = |G\p,o|
ep the tame part of the ramification index; ep — \Gpfi/Gpti\
ef, the wild part of the ramification index; ep' = \Gptx\
fP the inertia degree at P; fP = [k{P) : k(-ir(P))] = '{GP : IP)
D a divisor on X
C(D) the invertible sheaf associated to D, 2.3.1
L(D) (in Chapter 3) the Riemann-Roch space of a divisor D]

L(D) = H°(X,C(D))
OK (for a local field K) the ring of integers in K
XVIK (for a local field K) the maximal ideal in OK

Trace(—|V) (modular) character afforded by V, 4.2.3
Greg Elements of G whose order is coprime to the

characteristic of k, 4.2.3

vm



V* (for a vector space V) the dual vector space
V* (for a group representation V) the contragredient (dual

representation)
k* (for a field fc) the multiplicative group of k
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Chapter 1

Introduction

Like many other areas in Algebraic Geometry, Riemann-Roch theory
originally arose from the study of Riemann surfaces.
Given a compact Riemann surface X and a map D : X —> Z of finite
support ("divisor"), one considers the set L(D) of meromorphic functions
on X whose pole and zero orders are bounded by the values of D:

L(D) := {/ : X -> C | / meromorphic and ordP(/)+D(P) > 0 for all P G X}

It turns out that L(D) is always a finite-dimensional vector space over C.
Its dimension, denoted l(D), is computed by the Riemann-Roch
Theorem:

1{D) -l{K-D) = degD+l-g

Here, degD := Ylp&x D(P) *s *ne degree of D, g is the genus of X and K
is a canonical divisor of X, a divisor coming from some differential on X.
This is a very deep result that is not easy to prove. One proof of the
Riemann-Roch theorem can be given by viewing Riemann surfaces as
nonsingular, projective algebraic curves over C and by using the language
of schemes and sheaves. In particular, L{D) can be considered as the O-th
cohomology group of an invertible sheaf on the algebraic curve X:

where C(D) is the invertible sheaf associated to D by the 1-1
correspondence between invertible sheaves and divisors (as explained in
[Ha], Chapter II.6).

1



CHAPTER 1. INTRODUCTION

Similarly, we have

i.e. L(K — D) is dual (as a vector space over k) to the first cohomology
group of C(D). This follows from Serre duality (cf. Chapter III.7 in [Ha]).
Thus the quantity on the left-hand side of the Riemann-Roch theorem is
just the Euler characteristic

X{X, C(D)) := dim H°(X, £{D)) - dimH\X,

In the algebro-geometric proof of the Riemann-Roch theorem, the
underlying field C can be replaced with no extra effort by any other
algebraically closed field (see for example [Ha], proof of Theorem IV. 1.3) or
even by an arbitrary perfect field. A field is called perfect if all of its finite
algebraic extensions are separable. This is a large class of fields including all
algebraically closed fields, all fields of characteristic zero and all finite fields.
Furthermore, the Riemann-Roch theorem can easily be generalized to
compute the Euler characteristic of arbitrary locally free sheaves.
In equivariant Riemann-Roch theory, we consider the same situation as
above, but additionally we fix a finite group G of automorphisms of X and
we require the divisor D to be G -equivariant, i.e.

D{P) = D(o{P)) for all P e X, a € G.

(See Definition 2.2.19 for the corresponding definition for sheaves.) In this
case, G also acts on the cohomology groups Hl(X,C(D)). The equivariant
Riemann-Roch problem consists in describing the isomorphism class of
H°(X,C(D)) as a representation of G over the underlying field k, rather
than just its dimension as a vector space. In analogy to the classical
Riemann-Roch theorem, we seek to find a formula for the quantity

X(G,X,C(D)) := [H°(X,£(D))] - [H\X,

in the Grothendieck group of finitely generated k[G]-modules, denoted
K0(G, k), which consists of equivalence classes of finite dimensional
k-representations of G and their formal inverses. More concretely, KQ{G, k)
is defined to be the quotient of the free abelian group over all (isomorphism
classes of) finitely generated k[G] -modules, by the subgroup generated by
all expressions M — M' — M", whenever there is an exact sequence

0 -f M! -» M -» M" -> 0
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of k[G] -modules. x(G,X,C(D)) is called the equivariant Euler
characteristic of C(D).
If two projective k[G] -modules are in the same class in Ko(G, k), then they
are isomorphic. However', this is not true for non-projective k[G] -modules,
which exist if the characteristic of k divides the order of G. In this case,

. an equivariant Riemann-Roch formula in Ko(G,k) does not give sufficient
information to determine the isomorphism class of H°(X, C(D))- as a
k[G]-module. One way to solve this problem is to modify the formula such
that both sides can be shown to be integer linear combinations of projective
k[G] -modules, so that one obtains a formula in the Grothendieck group of
projective k[G] -modules, denoted KQ(k[G}).

Chapter 2 of this thesis deals with finding equivariant Riemann-Roch
formulae both in K0(G, k) and in K0(k[G]), assuming that the underlying
field k is perfect and of arbitrary characteristic.
An interesting special case of the results in Chapter 2 is the case where k is
a finite field.
In Chapter 3, we explain how divisors on curves over finite fields give rise to
linear codes, the so-called geometric Goppa codes. We show that in the
setting from Chapter 2, with some additional conditions, the group G acts
faithfully on H°(X,C(D)), and we interpret this fact in the context of
geometric Goppa-codes.
In Chapter 4, we consider once again the case of a finite underlying field.
We use some results from Chapter 2 to give a more elementary proof of
Chinburg's description of the equivariant Euler characteristic of the
structure sheaf of X, x(G, X, Ox), in terms of epsilon constants. These
are the constants that appear in the functional equation for Artin
L-functions, so they are originally a concept from algebraic number theory.
Our proof is based on suggestions made by Erez in the paper [Er].
More background information can be found in the introductory sections of
each chapter. .



Chapter 2

Two equivariant Riemann-Roch
theorems for curves

2.1 Introduction

Let X be a nonsingular, projective, geometrically irreducible algebraic
curve over a perfect field k. Let G < A.ut{X/k) be a finite group of
automorphisms of X over k, and let £ be a G-sheaf on X, i.e. a locally
free sheaf that carries a group action of G. This chapter is dedicated to
proving a formula for the equivariant Euler characteristic

X(G,X,S):=[H°(X,£)}-[H1(X,S)]

both in the Grothendieck group of k[G] -modules and in the Grothendieck
group of projective k[G] -modules.
The problem of computing x(G,X, C(D)) is called the equivariant
Riemann-Roch problem and goes back to Chevalley and Weil [CW], who
described the C[G]-module structure of the space of global holomorphic
differentials on a compact Riemann surface. Ellingsrud and L0nsted [EL]
found a formula for the equivariant Euler characteristic of an arbitrary
G-sheaf on a curve over an algebraically closed field of characteristic zero.
Nakajima [Na] and Kani [Ka] independently generalized this to curves over
arbitrary algebraically closed fields, under the assumption that the
canonical morphism X —> X/G be tamely ramified. These results have
been revisited by Borne [Bo], who moreover found a formula that even
holds for wildly ramified covers TT : X —*• X/G and computes the difference
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between the equivariant Euler characteristics of two G -sheaves. In the
same setting, formulae for the Euler characteristic of a single G-sheaf have
recently been proved by Kock ([K61], [K62]). Using these formulae, he has
also given new proofs for the results of Ellingsrud-L0nsted, Nakajima and
Kani. In this thesis, we consider the case where the underlying field k is
only assumed perfect rather than algebraically closed.
Our "weak equivariant Riemann-Roch formula''-, Theorem 2.3.18, describes
x(G, X, £) in K0(G, k) in terms of the rank and degree of £, the genus of
the quotient curve X/G, and some local data determined by the sheaf £
and by the ramification of the canonical morphism n : X —> X/G. In the
case where the underlying field k is algebraically closed, Theorem 2.3.18
coincides with Theorem 3.1 in [K62]. To prove Theorem 2.3.18, we tensor
the formula of Theorem 2.3.18 with an algebraic closure k over k and
obtain a formula in K0(G, k). Since tensoring with k over" k induces an
injective map

K0(G,k)^K0(G,k),

it suffices to show that this new formula holds true in KQ{G, k). The new
formula describes the Euler characteristic of a locally free sheaf (namely the
pullback of £) on the " geometric fibre" X x ̂  k, which is a curve over k.
Hence we can use Kock's result to show that the new formula holds true.
Here various "folklore" results from algebraic geometry and representation
theory come into play. These are explained in Sections 2.1 and 2.2, where
Section 2.1 is focussed on preliminary results that hold in a very general
setting.

Section 2.3 is dedicated to showing a "stronger" equivariant Riemann-Roch
formula. A finitely generated k [G] -module M is projective if and only if
M ®kk is a projective k[G] -module. In Subsection 2.3.1, we give variants
of this well-known fact for classes in KQ(G, k) rather than for
k[G] -modules M. These variants, which are much harder to prove, are
then used for the proofs in Subsection 2.3.2. The first results in Subsection
2.3.2 give both necessary and sufficient conditions for x(G,X,£) to lie in
Ko(k[G]). In particular, if £ is the invertible sheaf C(D) associated to
some equivariant divisor D, then this holds if the canonical morphism
7T : X —> X/G is weakly ramified and the coefficients of D satisfy a certain
congruence relation. Provided that TT is weakly ramified, we derive from
the corresponding result in [K62] the existence of the ramification module
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NG,X , which is defined by the following isomorphism of k[G] -modules:

e*p-l ef-d

P€X d=l

Here Cov denotes the k[IP] -projective cover and trip/trip is the cotangent
space at P. If moreover D is an equivariant divisor, then our "strong
equivariant Riemann-Roch formula" (Theorem 2.4.15) describes
X[G,X,C(D)) in K0(k[G]) in terms of NGiX, k[G) and the induced
representations IndQp Wp^ (for P E X,d> 0) where Wpj is a projective
k[Gp] -module defined by the following isomorphism of k[Gp] -modules:

fp

WPid * Ind?f (Cov

where fp denotes the inertia degree at P. The existence of Wptd is shown
by applying a prototype of Theorem 2.4.15 to suitably chosen divisors D.
In the case where TT is tamely ramified, we consider two situations where
we can give a local proof of this divisibility result. One of these situations
includes the important case when k is a finite field. We conclude Chapter 2
with some examples to illustrate what the two Riemann-Roch theorems say
in practice.

2.2 Preliminaries

Throughout this section, let X be a scheme of finite type over a field k,
and let k be an algebraic closure of k. For any (closed) point P £ X, let
k(P) ':= Ox,p/vnP denote the residue field at P.

2 .2 .1 G e o m e t r i c fibre X Xkk a n d fc-rational p o i n t s

Proposition 2.2.1. For any closed point P E I , the extension of fields
k(P)/k is finite.

Proof. If U = Spec A is an affine neighbourhood of P, then A is a finitely
generated fc-algebra (cf. [Ha], Ex. II.3.3c), say A = k[xi,..., xm]. As a
closed point of Spec A, P corresponds to some maximal ideal m of A, and
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we have k(P) — Am/xnAm = A/xn, so the field k(P) is generated as a
&-algebra by the classes of xly... ,xm modulo m. By Hilbert's
Nullstellensatz, these generators are algebraic over k (cf. Proposition 1.3.2
in [Kul]), which implies that k(P)/k is a finite algebraic extension. •

Definition 2.2.2. We call the fibred product X := X xkk the geometric
fibre of X. The canonical projection X —»• X will be denoted p
throughout this paper.

Remark 2.2.3. The projection p is flat (because it is obtained by base
extension from the flat morphism Spec A: —* Spec A;). Furthermore, on any
afRne subset U = Spec A of X, p is induced by a homomorphism
A ^-> A <S)k k, and since A <g>k k is an integral extension of A, p is a closed
morphism. p is in general not of finite type, but has an "unramifiedness"
property, as we will see later. Since the property "being of finite type" is
stable under base extension, the geometric fibre is a scheme of finite type
over k.

Notation 2.2.4. We write \X\, \X\ for the set of closed points in X, X
respectively.

Definition 2.2.5. Let k'/k be an extension of fields. Then the set

X(k') :=Morfc(Specfc',X)

is called the set of k' -rational points of X. Similarly, the set

X(k) :=Mor-k(Speck,X)

is called the set of k -rational points of X.

Remark 2.2.6. Giving a morphism from Spec A;' to X over k is equivalent
to giving a point P G X and a k-embedding from k(P) to k' (cf. [Ha],
Ex. II.2.7). If k'/k is an algebraic extension of fields, then such an
inclusion only exists if P is a closed point. Hence, in this case, we can
identify the set of A;'-rational points on X with the set

{{p,iP)\pe\x\,iP eKomk(k(P),k')}.

Similarly, we can identify the set of k-rational points on X with the set

{{Q,iQ)\Q e \X\,iQ e Hom-k(k(Q),k)}.
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Lemma 2.2.7. The map

is bijective.

Proof. For every point Q £ \X\, k(Q) is an algebraic extension of k (by
Proposition 2.2.1) and hence isomorphic to k. So for every Q £ \X\ ,
H.om^(k(Q), k) = Homg(fc, k) = {idg} , which is why every Q G \X\ has
exactly one pre-image (namely (Q,idi)). Hence the map is bijective. •

Lemma 2.2.8. We have a canonical bijection

Proof. Let p : X —+ X, p2 : X —> k be the canonical projections. Every
morphism from Spec k to X is of the form (/, g) for some
/ € Morfc(Specfc;X) and same g E Morfc(Specfc. Specfc) satisfying
P°(f,g) = f and p2 o (/, g) = g.

Now if (f,g) is a /<;-morphism, then by definition, p2 o (f,g) must be the
identity morphism on Spec A;, i.e. g = idSpec^, and vice versa. Hence we
have

X(k) = {(/ , id) | / G Morfc(Specfc,X)},

i.e. / H^ (/, id) defines bijective map X(k) —> X(k). D

Corollary 2.2.9. The map

is bijective.
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Proof. The above map is just the composition of the bijections

X(k)^X(k), /-•(/,id)

and

from Lemma 2.2.8 and Lemma 2.2.7. •

Corollary 2.2.10. For every P G \X\, there is a bijective map

Proof. Prom what we have seen so far, we can deduce the following
sequence of bijections for any P € |X|:

Komk(k(P),k) ^ {{P,ip)\iP e Eomk(k(P),k)} 2^6 {/ e X(fc)|/((0)) = P}

2^8 {(/,id) e x(k)\Po (/,id)((0)) = P} = {(/,id) e x(fc)|(/,id)((0)) e p~l(P)}

2Xe {(Q,iQ)\Q E p-\P), iQ E Uom-k(k(Q),k)} ^ip-\P).

D

Corollary 2.2.11. For every point PE \X\, p~l{P) is finite. If the field
extension k(P)/k is separable, then Hzp~l{P) = [k(P) : k].

Proof. By Corollary 2.2.10, we have #{p-l(P)) = #Homfc(fc(P), k). Galois
theory yields that #Homk(k(P), k) < [k(P) : k], which is finite by
Proposition 2.2.1. If k(P)/k is separable, then the above inequality
becomes an equality, so #p~x{P) — [k{P) :k\. •

2.2.2 Group actions on the geometric fibre

Let X, X be as above and let G be a finite subgroup of k\xt{X/k).
By the following lemma, we may view G as a subgroup of hx\.t(X/k).

Lemma 2.2.12. The homomorphism

knt{X/k) -> Aut{X/k),a i-> a x id

'is injective.
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Proof. As before, we write p for the canonical projection from X to X.
Let a,'a' £ Aut(X/k) such that a x id = a' x id , then by the definition of
the product morphism. we have a o p = p o (a x id) = p o (a' x id) = a' o p.
For any affine subset [/ = SpecA of X , the pre-image U := p~l(U) is just
the spectrum of (A <8>fc &), which is an integral extension of A. As p\jj is
just the morphism induced by the inclusion A •—* A (gî  fc, it is an
epimorphism; hence, p is an epimorphism also, and thus cr o p — a' o p
implies a = a'. D

Since the elements of G act on the topological space of X as
homeomorphisms, they must map closed points to closed points. Hence. G
also acts on \X\, the set of closed points in X. A similar argument shows
that G acts on the set |X| of closed points in X . G also acts on X(k).
a £ G sending / £ X(k) to a o / .

Lemma 2.2.13. The bisection $ : X(k) —>• |X| /rom Lemma 2.2.9 is
compatible with the G-action on the two sets.

Proof. For all / £ X(k) and all cr £ G, we have

(a x id)(*(/)) = (a x id)((/,id)((0))) = (ao/,id)((0)) = * ( a o / ) .

D

Definition 2.2.14. Let X, G as above, and let P E \X\ or P £ |X|. We
define the decomposition group Gp and the inertia group Ip as follows:

GP := {a £ G|

I P := {a £ GP |a = idfe(F)} = ker(GP -> Aut(fc(P)/fc)).

Here a denotes the endomorphism that a induces on k(P).



CHAPTER 2. EQUIVARIANT RIEMANN-ROCH THEOREMS 11

Lemma 2.2.15. For all Q E \X\, we have GQ = IQ.

Proof. For all Q E \X\, k(Q) is an algebraic extension of k (by
Proposition 2.2.1) and hence isomorphic to k. The Galois group of k/k is
trivial, so we haye .

IQ = ker(GQ - Gal(fc(Q)/fc)) = GQ.

D

Lemma 2.2.16. For all Q E \X\, we have GQ = Ip where

p = P(Q)e\x\.

Proof. Let / := ^~r(Q) be the element of X(k) corresponding to Q. Let
a E G. By definition, a E GQ if and only if a(Q) = Q, which is equivalent
to a o f = / by Lemma 2.2.13. According to Remark 2.2.6, this holds if
and only if

(ao/)((0)) = /((0)) and foa = f, (2.1)

where / , a denote the induced homomorphism of residue fields. By
definition,

P = p(Q) = P(Hf)) = p((f,id)((0))) = (p o (/, id)((O))) = /((0)),

so the first part of (2.1) can be written as cr(P) = P. Since P is a closed
point, the homomorphism of residue fields induced by / is an inclusion
k(P) -̂> k, so the second part of (2.1) holds if and only if a = id. Sticking
the two parts together again, we get that (2.1) is equivalent to a E Ip. O

2.2.3 Euler characteristic of sheaves on a scheme and
on its geometric fibre

Let G. k, X and X be as above. Then we define the Grothendieck group
of finitely generated k[G] -modules (i.e. finite dimensional
A;-representations of G), denoted KQ{G, k), to be the quotient of the free
abelian group over all (isomorphism classes of) finitely generated
k[G] -modules, by the subgroup generated by all expressions M — M' — M",
whenever there is an exact sequence
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of k[G] -modules. In particular, this implies that for any two k[G] -modules
M, N, we have [M 0 N] = [M] + [N] in K0(G, k). One can show that
K0(G, k) is a free abelian group generated by the classes of simple
k[G]-modules (k[G]-modules that don't have a proper fc[G]-submodule).
Later in this thesis, we will also use the Grothendieck group of finitely
generated projective k[G] -modules, denoted K0(k[G]),which is defined by
requiring all k[G] -modules in the above definition to be projective, i.e.
direct summands of a free module. K0(k[G]) is a free abelian group
generated by the classes of indecomposable projective k[G] -modules
(projective k[G] -modules that cannot be written as a direct sum of proper
submodules). By mapping the class of a projective k[G]-module in
Ko(k[G]) to the class of that module in Ko{G, k), we obtain a well-defined,
injective homomorphism of groups

c:K0{k[G])^K0{G,k),

which is called the Cartan homomorphism. In particular, Ko(k[G]) is
isomorphic to the subgroup of Ko(G, k) generated by the classes of
projective k[G] -modules.
As the equivalence classes in the Grothendieck group are defined via short
exact sequences, the exact functor "tensoring with k over k" from the
category of k[G] -modules to the category of k[G] -modules induces a
homomorphism

P:KQ{G,h)-+KQ(G,k) • -.

of the corresponding Grothendieck groups.

Lemma 2.2.17. The homomorphism (3 above is injective.

Proof. See [Se2], Section 14.6. •

Lemma 2.2.18. Let £ be a locally free Ox -module. Then for every i > 0
we have a natural isomorphism

Proof. Let q,q be the structure morphisms X —> k and X —> k,
respectively. By Proposition III.8.5 in [Ha], for every i 6 ]N0 we have
natural isomorphisms

H\X, £) ^ r(Spec k, Kq*£) and

H\X,p*£) ^ JW
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where Rlq*,Rlq* are the z-th right derived functors of the direct image
functors g*,g* respectively.
Now consider the following commutative diagram:

X - ^ X

u . u
u

By Proposition III.9.3 in [Ha], for any i G IN0 we have a natural
isomorphism

u*Kq*(£) *Z-Kqit{p*£); hence

H\X, £)®kk = r(Spec k, Rlq*£) 0kk = r(Spec k, u*i?g*£)

= r(Specfc, i?g*(p*5)) = H\X,p*£).

n
Definition 2.2.19. A locally free G-sheaf (of rank r ) on X is a locally
free Ox -module £ (of rank r) together with an isomorphism of
Ox -modules va : a*£ —> £ for every a E G, such that for all a,r E G, the
following diagram commutes:

a*£

Vra

<J*(T*£) = (Ta)*£

Remark 2.2.20. It is easy to see that if £ is a locally free G-sheaf of finite
rank, then the cohomology groups Hl(X,£) (i 6 1NO) are
A;-representations of G. If moreover X is proper over k, then they are
finite-dimensional and vanish for i » 0 (see Theorem III.5.2 in [Ha]).

Definition 2.2.21. If X is proper over k, and £ is a locally free G-sheaf
of finite rank, then

X(G,X,£) := J2(-mHl(X,£)} e K0(G,k)
i •

is called the equivariant Euler characteristic of £ on X.
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Corollary 2.2.22. With X,£ as in Definition 2.2.21, we have in
K0(G,k):

where (as before) j3 denotes the injective homomorphism
Ko{G,k) -̂> Ko{G,k) defined by tensoring with k over k-.

Proof. Use Lemma 2.2.18. , •

2.2.4 Tensoring fibres

In this section, we compute the tensor products of certain vector spaces
with k. In particular, we show that for any coherent sheaf f on I , the
tensor product of a fibre T(P) (-P € \X\) with k is isomorphic to a direct
sum of fibres of p*T. It will turn out that if T is a locally free (3-sheaf,
then both sides of this isomorphism admit actions of the inertia group Ip
and are isomorphic as Ip -representations.

Lemma 2.2.23. For any separable finite field extension k'/k, the
homom,orphism,

<t>:k'®kk^ 0 k

defined by
4>{y ® z) :=

is an isomorphism.

Proof. As k'/k is separable, k' is generated by a single element over k, say
k' = k(xi). Let f(X) G k[X] be the minimal polynomial of x\ over k.
Then we have

k' = fc(zi) = k[X]/{f) and hence k'®kk = (k[X]/(f)) ®kk = k[X]/(f).
(2.2)

Let f(X) = (X — xi)... (X — x{) be the decomposition of / into (distinct!)
linear factors in k[X]. Then the Chinese Remainder Theorem yields

(2.3)
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Now for every i £ { 1 , . . . , 1} , we have an isomorphism

k[X]/(X-Xi) ^ k, h{X) mod (X-Xi) *-> h(Xi) = h(<pi(Xl)) = <Pi(h(Xl)),
(2.4)

where </?, denotes the element of Homk(k',k) given by <ft(xi) = £,.
Let now y G k',z £ k, then y = g{x\) for some g G k[X], and applying the
isomorphisms (2.2) and (2.3) maps y <g> z to (g(X) • zmod (X — Xj))i=1..._/.
Applying the isomorphism (2.4) to each component, we get

We have now verified that the homomorphism <f> is obtained by composing
isomorphisms; hence 0 itself is an isomorphism. •

In the following corollary, we will assume for the first time that the field k
is perfect, i.e. that all finite algebraic extensions of k are separable.

Corollary 2.2.24. Assume that k is perfect. Let P G |X| be a closed
point with residue field k(P). Then the canonical homomorphism

0 k(Q)
Q€P-HP)

given by
y®z^ (pQ(y) •z)Qep-i{P)

is an isomorphism.

Here, pQ : k(P) —> k(Q) denotes the homomorphism of residue fields
induced by the morphism p at the point Q.

Proof. The field extension k(P)/k is finite (by Proposition 2.2.1), hence
separable (because k is perfect), and the homomorphism above coincides
with the homomorphism defined in Lemma 2.2.23 for k' = k(P); hence it is
an isomorphism. •

Lemma 2.2.25. Assume that k is perfect. Let T be a coherent sheaf on
X, and let T := p*T. Let P be a closed point in X, and let
T{P) = Tp ®ox p M-P) ^e ^ e fibre of T at P. Then the canonical
homomorphism

is an isomorphism.
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Proof. Let U = Spec A be an affine neighbourhood of P and m the
maximal ideal associated to P as a closed point of U. Then the pre-image
of U under p : X —* X is isomorphic to the spectrum of A := A <g>fc fc. By
Lemma 2.2.11, P has finitely many pre-images under p. 'We will denote
the corresponding prime ideals of A by n 1 ; . . . , n;.
In this notation, we have ~ -

k(P) = Am/mAm = A/xn. (2.5)

Analogously, for every Q G p~1(P) with corresponding prime ideal n^, we
have

k{Q) = A/rii. . (2.6)

Since T is coherent, T\u is the sheaf F on U = Spec^l associated to
some ^-module F (cf. Proposition II.5.4 in [Ha]), and we have

F{P) = TpjmpTp = FJmFm = F <g>A A/m. (2.7)

The restriction of the pullback T := p*T to the affine subset
p~x{\J) — Spec^l is the sheaf (FT associated to the module F := F ®^k
(by Proposition II.5.2 in [Ha]), and the following analogue of (2.7) holds for
Q G p~1(P) with corresponding prime ideal riji

F®AA/nl. (2.8)

Hence we have canonical isomorphisms

HP) ®k k (=?) F ®A A/xn ®fc k
i

= F ®A ( 0 A/x\i) (by Corollary 2.2.24)

D
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Proposition 2.2.26. Assume that k is perfect. Let £lx/k be the sheaf of
relative differentials of X over k. Then for every closed point P G \X\,
the canonical map

mP/m2
P -» flX/k{P)

is an isomorphism.

Proof. We use the same "afHne" notation as in the proof of Lemma 2.2.25
above, replacing the coherent sheaf T by Vtx/k • The restriction of &x/k to
the affine subset U = Spec A is just the sheaf associated to the module
Q.A/k of relative differential forms of A over k (cf. Remark II.8.9.2 in [Ha]).
Thus Formula (2.7) yields

A/m.

Furthermore, we will use that

mP/m2
P = mAm/(mAm)2. (2.9)

We now apply a result from [Ku2] taking as input two local rings, denoted
R, S respectively, with a ring homomorphism R —•> S. In our case, we take
R := k and S := Ox.p — Am with maximal ideals (0),mAm, respectively.
Then the corresponding residue fields are k and k(P), respectively.
Proposition 2.2.1 and the perfectness of k yield that the field extension ;

k{P)/k is separable, so by Corollary 6.5 in [Ku2], the canonical sequence

0 -»• m / m 2 -»• ttAm/k ®Am A/m -y nk{P)/k -» 0

is exact. By Corollary 5.3 in [Ku2], £lk(P)/k is trivial, so the second arrow
in the above sequence is an isomorphism. We have ^Am/k — {^A/k)m, so the
object in the middle is equal to fi^/fc ®A A/m = $lx/k{P) > which proves our
assertion. •

Corollary 2.2.27. Let k be perfect. tLet T be a coherent sheaf on X,
T := p*T. For every P G \X\ and every d G IN, the canonical
homomorphism

is an isomorphism.
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Proof. By Proposition 2.2.26, the expression F(P) ®k{P) (mp/mp)®d on the
left is just the fibre of the coherent sheaf T ®ox ^x/fc on X at P .
Analogously, for every Q G p~1(P), the expression F{Q) ®k {

xnQlxn2Q)®d is

the fibre of f ®Oji ^%d/-k = P*{?' ®ox ^%k) at Q. Applying Lemma 2.2.25
to T ®ox ^x/fc completes our proof. D

In Lemma 2.2.25 and Corollary 2.2.27', we have made relatively weak
assumptions on the sheaf T. If we require T to be a locally free G-sheaf,
then for every point P G \X\, this additional structure yields an action of
the inertia group Ip on the fibre ^{P) by k(P) -automorphisms. For
example, the action of Ip on the fibre Qx{P) of the sheaf of differentials
corresponds to the natural action on the cotangent space mp/mp via the
isomorphism from Lemma 2.2.26.

By letting Ip act trivially on k, we can extend this action to an action on
the tensor product T(P) ®k k. On the other hand, since IQ — Ip for any
point Q G p~x{P) by Lemma 2.2.16 and Lemma 2.2.15, Ip acts on the
fibre Q(Q) of any locally free G-sheaf <?*on X for any point Q G p"1(P).
In particular, this holds if Q = p*^ for a locally free G-sheaf T on X.
Hence we have an Ip -action on both sides of the isomorphisms shown in
Lemma 2.2.25 and Corollary 2.2.27, and it is easy to check that the
following holds:

Lemma 2.2.28. The isomorphisms shown in Lemma 2.2.25 and Corollary
2.2.27 respect the group action, i.e. they are isomorphisms of
k[Ip) -modules.

Remark 2.2.29. We also have an action of the decomposition group Gp on
any fibre T(P), but Gp only acts on the fibre via A;-automorphisms,
whereas Ip acts via k(P) -automorphisms.

2.3 An equivariant Riemann-Roch formula

We will now make more assumptions on X than in the previous section.

Let X be a smooth, projective curve over a perfect field k. Assume that X
is geometrically irreducible, i.e. that the geometric fibre X xk k is
irreducible. Then the curve X itself is irreducible. Indeed, if X could be
written as the union of two proper closed subsets, say X = U U V, then the
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geometric fibre X would be the union of the two proper closed subsets
U xkk and V x k k.

Let G be a finite subgroup of Aut(X/&), of order n. It is a well-known
result that the quotient scheme Y := X/G is also a smooth projective
curve, with function field K(Y) = K(Xf .
Note that we do not make any assumptions on the ramification of the cover
7T : X —> Y in this section.

For every closed point P e X, let GP := {a <E G \ a(P) = P},
IP := ker(GP -» Gal(Jfc(P)/fc)) as in Section 2.2.2. Let XP • Ip -> k(P)* be
the group homomorphism defined by the action of Ip on the cotangent
space xnp/mp.

2.3.1 Invariance of the degree of a locally free sheaf
under pullback

Since X is integral and smooth over k, we have isomorphisms between the
divisor class group CHo(-A'), the Cartier class group CaClX and the Picard
group Pic X of X. Namely, we have the following 1-1 correspondences
giving rise to these isomorphisms (see also [Ha], Section II.6):

• Let D = ^2PeX np • P be & Weil divisor on X. Then D corresponds
to the Cartier divisor given by {(t/p,/p)}pe|x|, where {Up} is an
open cover of X and the fp are elements of K(X)*, such that for
every P E Supp D we have Supp D D Up = {P} and for every P € X
we have Vp(fp) = np.

• Let a Cartier divisor D on X be given by {{Ui, fa)}, where {Ui} is
an open cover of X and fo € K{X)* for every i. Then the invertible
sheaf C(D) corresponding to D is the Ox -module generated by ff1

on Ui, i.e. we have ^

Definition 2.3.1. Let D = Ylpe\x\ npP be a Weil divisor on X. Then we
define the degree of D to be

deg£>:=
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The degree of an invertible sheaf C on X is defined to be the degree of the
Weil divisor mapped to C under the above 1-1 correspondences.
The degree of a locally free sheaf J7 of rank r on X is defined to be the
degree of the invertible sheaf /\ r T. where f\r denotes the r -th exterior
power (see Exercise II.5.16 and Exercise II.6.11 in [Ha]).
We apply the same definitions to Weil divisors, invertible sheaves and
locally free sheaves on the geometric fibre X, in the obvious way.
With this definition, linearly equivalent divisors have the same degree (see
remark after Definition 1.4 in [Fu]), so the notion of degree Is well-defined
on the "class groups" CE0{X), CaClX and PicX.

Definition 2.3.2. We define the pullback of a Weil divisor on X via p by
setting

p*P,= J2 vQ(tP)-Q

for any closed point (prime divisor) P £ |X|, where tp is a local parameter
at P and VQ is the valuation of the local ring OX,Q , and by extending
linearly.

Remark 2.3.3. In the rare cases where p is a finite morphism, our definition
.coincides with the one in [Ha], Section IV.2. Furthermore, it is easy to see
that our definition coincides with the one in [Fu], where the pullback of a
prime divisor P is defined to be the 0-cycle associated to the inverse image
scheme p~1(P), i.e. the divisor X^Qep-M-f) length Cp-i(p),Q • Q- Hence,
Theorem 1.7 in [Fu] yields that the pullback gives rise to a well-defined
homomorphism

p* : C H

between the divisor class groups.

Definition 2.3A. Let a Cartier divisor D on X be given by {(Ui,
where {Ui} is an open cover of X and /, £ K(X)* for all i. Then we
define the pullback of D via p to be the Cartier divisor on X given by
{{p'1 {Ui), fi)}, where the ft are considered as elements of K(X) via the.
inclusion of function fields K{X) -̂> K(X) induced by p.

Remark 2.3.5. D is a principal Cartier divisor if and only if all the fi are
equal. Thus, the pullback of a principal Cartier divisor is again a principal
Cartier divisor, so the pullback gives rise to a well-defined homomorphism
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between the Cartier class groups.

Finally, we have the well-known notion of pullback of invertible sheaves:
For an invertible sheaf L on X, we put

P*C:=p-lC®p-iOxOx-

This gives rise to a homomorphism

between the Picard groups.

Lemma 2.3.6. The notions of pullback for the divisor class group, the
Cartier class group and the Picard group are compatible with the
isomorphisms between these groups; i. e. both squares in the following
diagram commute, where the horizontal arrows are the isomorphisms
described at the beginning of Subsection 2.3.1.

CHo(X) -^U- C a C l X ^ - Pic X

?->• CaClX -^-* PicX

Proof. Straightforward. •

The following lemma reveals that although p is usually not of finite type, it
can be thought of as an "unramified" morphism in the common sense.

Lemma 2.3.7. Let Q £ |X| be a closed point, and let P := p(Q). Then,
with the notations from Definition 2.3.2, we have

>vQ{tP) = 1.

Proof. The local parameter tp must be an element of trip \ mp , so (the
equivalence class of) tp is a generator of the one-dimensional vector space
tnp/mp over k(P). Hence, tp <E> 1 is a generator of the rank-1-module
mp/mp ®fe k over k(P) ®k k.
By Lemma 2.2.24, we have k(P) ®kk = 0Q<=P-I(P) k(Q), so mp/mp ®fc k
is also a module of rank 1 over 0Qep-i(p) k(Q) generated by tp (g> 1. By
Corollary 2.2.27, we have a canonical isomorphism

mp/mp ®fc k —»•
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which we can view as an isomorphism of modules over
k(P) <S>kk — (Boep-i(p) k(Q) • Since this isomorphism must map tp ® 1 to
a generator of the right-hand side over ©gep-i(p) k(Q), the image of

tp <g> 1 in each component trig/trig must be a generator of m<g/mg. i.e. the
image of tp under each induced homomorphism PQ : Ox,p —> OXIQ must
be a local parameter at Q. Thus, e'Q = ug(fp) = 1 for all Q G p~1(P). D

Proposition 2.3.8 (Invariance of the degree under pullback). Let £
be a locally free G -sheaf on X . Then we have

deg£" = deg(p*£).

Proof. Since the functor p* on locally free Ox -modules commutes with
exterior powers, we may assume that £ is an invertible sheaf.
Let D = ^2pe\x\

 nP " P D e the Weil divisor corresponding to £, then by
Lemma 2.3.6, the Weil divisor corresponding to p*£ is p*D, which is just

m np{Q) ' Q by Lemma 2.3.7. Hence we have

deg(p*£) = deg(p*D) = ] P [k(Q) : k] • np{Q) by definition

y np{Q) since k(Q) = k for all Q G X
Qe\x\

#P~\P) -nP= Y^ lk(p) -k]-nP by Corollary 2.2.10
P£\X{ P€\X\

= degD = deg5.

n

2.3.2 Higher ramification groups

We recall the definition of the higher ramification groups (see for example
[Ne], Definition 10.1 in Chapter II):

Definition 2.3.9. Let L/K be a finite Galois extension of local fields, and
let VK be a normed discrete valuation of K such that the residue field has
characteristic p > 0. Suppose that there is a unique valuation w on L that
extends VK , and denote the corresponding normed valuation of L by VL .
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Let O denote the ring of integers in L. For every s > — 1, we define the
s-th ramifcation group of the extension L/K to be

GS(L/K) := {a G G&\{L/K)\vL{a(a) - a) > s + 1 for all a G O}.

Definition 2.3.10. Let P G X be a closed point, R := TT(F) G Y, where
TT : X -^ Y = X/G is the canonical projection. Let vp be the unique
normed valuation of the function field K(X) associated to P, and let VR
be the unique normed valuation of K(Y) associated to R. Then vp is
equivalent to a valuation extending vR. Let K(X)Vp be the completion of
K(X) with respect to vp, and let K(Y)VR be the completion of K(Y)
with respect to VR. For s > — 1, we define the s-th ramification group GpiS

at P to be the s-th ramification group of the extension of local fields
K(X)VP/K(Y)VR.

The canonical projection vr : X —>• Y is called unramified (tamely ramified,
' weakly ramified) if Gp}S is trivial for s > 0 (s > 1, s > 2) and for all
Pel .

Lemma 2.3.11. For any P E X, we have Gp,_i = Gp and Gp$ = Ip.

Proof. Follows directly from Theorem 9.6 and Theorem 9.9 in Chapter II of
[Ne]. D

Remark 2.3.12. The obvious analogue of Definition 2.3.10 is used for points
on X, and the analogue of Lemma 2.3.11 clearly holds for these points as
well.

Notation 2.3.13. We denote the ramification index of TT : X —> Y at the
place P by ep, its wild part by ef> and its tame part by eP. In other
words, if tR is a local parameter at R := TT(P) , then we have
eP = vP(tR) = \GPi0\, ep1 = \GPtl\ and e*P = \GPfl/GPA\.

Proposition 2.3.14. For any point P G \X\, the character
XP '• Gpfl —> k(P)* afforded by the action of Gp.o on the cotangent space
mp/mp factors through Gp\, inducing an injective homomorphism
XP '• Gpt0/Gp:i —> k(P)*. The character group Kom(GPio/GPti,k(P)*) is
cyclic of order eP and is generated by XP •

Proof. Let tP be a local parameter at P. Let tp denote the class of tp in
tnp/mp. Then a defining equation for the character XP '• GP,o —* k(P)* is
given by

c(tp) = Xp(a) ' tp m tnp/mp for all a G G^o-
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Since completion of the field extension with respect to the valuation vp
changes neither the inertia group nor the residue field, we can apply
Proposition 7 in Chapter IV in [Sel], which implies that XP factors
through Gi, inducing an injective homomorphism

XP : GO/G1 -> k(py.

Corollary 1 of Proposition 7 in Chapter IV in [Sel] implies that Gp.o/Gp,i
is cyclic.
Let p be a generator of Gpfi/Gpj , i an integer. Then we have
XP(P) = XP{P%) = 1 if and only if p% = id, i.e. if and only if i is a multiple
of ep. Hence XP n a s order eP in Hom(Gp,o/Gp.i, k(P)*), i.e. it generates
a cyclic subgroup of order ep . But as every element of Hom(/p. k(P)*) is
determined by the image of p, which has to be an ep -th root of unity in
k(P), Kom(G.p.o/Gpti,k(P)*) has at most ep elements. Hence XP
generates the whole character group. •

Remark 2.3.15. For d = 0 , . . . , ep — 1. the action of IP on (mp/mp)®d is
given by the character XP •

The following proposition shows that the higher ramification groups at a
point on the geometric fibre of X are just the same as at its image under
the projection p : X —> X.

Proposition 2.3.16. Let Q e X be a closed point, P := p(Q) G X. Then
for every s > 0, we have GQIS = GptS.

Proof. Lemma 2.3.11, Lemma 2.2.15 and Lemma 2.2.16 yield that

GQfl = IQ = Ip = Gp,o-

Now Proposition 5 in Chapter IV in [Sel] yields that an element a of GQ^
belongs to GQ,S (with s > 0) if and only if

^ (2.10)
lQ

for some local parameter 1;Q at Q. (This result is only formulated for
complete fields, but completing does not change the valuation of elements.)
Let tp be a local parameter at P, and let p* denote the homomorphism
of local rings from Ox.p to OXQ induced by p. Then by Lemma 2.3.7,
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p*(tp) is a local parameter at Q, i.e. we can replace tg by p*{tp) in the
condition (2.10).
Furthermore, since the morphism of sheaves p# commutes with a, we have

so the condition (2.10) is equivalent to

^ 1 = 1 mod (p*)-\ms
Q) = mP.

tp

Using the fact that a is an element of Gp.o = GQ,O and applying
Proposition 5 in Chapter IV in [Sel] again, we see that this condition holds
if and only if a is an element of Gp}S, which proves our assertion. •

Corollary 2.3.17. / / Q e X is a closed point and P = p(Q) G X, then we
have eP = eQ, dp" = eg and ep = e^ .

2.3.3 A formula for the equivariant Euler
characteristic

We keep the assumptions and notations stated at the beginning of Section
2.3: Let X be a smooth, projective, geometrically irreducible curve over a
perfect field k, and let G < Aut(X/k) be finite, of order n. Let TT denote
the projection X —> Y = X/G. Let £ be a locally free G-sheaf of finite
rank r on X. Then the equivariant Euler characteristic of £ on X (cf.
Definition 2.2.21) is

X(G,X,£) = [H°(X,£)] - [&{X,£)]e K0(G,k).

We denote the genus of X and the genus of Y by gx and gy, respectively.

Theorem 2.3.18 ("Weak" equivariant Riemann-Roch formula). We
have in KQ(G, k): •

n-X(G,X,£) = CG,x,e-[k[G}}- J^ er E d[Indfp(£(P)®HP)(xnP/mP)®d)},
Pe\x\ d=o

(2.11)
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where

CG,x.e = n(l-gY)r+deg£-r- £ > ( P ) : k] ((e» - l)(e4
P + 1) + £(|Gj>,.| -

P&X \ s>2

Remark 2.3.19. The constant CQX,S. can be written in a simpler way as
follows:

C
G,x,e =

Froo/ of Remark 2.3.19. By Theorem 3.13 in [Ne] (Riemann-Hurwitz
formula for function fields) we have

1- 9x = n(l - fly) + - deg Ctf(jc)/jc(y), (2.12)

where Cx'(X)/Ap(y) is the codifferent of K(X)/K(Y) and the degree of a
complete fractional ideal o = ripP^ °f -^(^) is defined as the degree of
the divisor X^p^p ' P ; i-e-

deg(o) :=
p

(Here the index variable p runs through the places of K(X), and degp is
the degree of the residue field at p. over k.)

Let 1)K(X)/K(Y) '•= {^-K{X)/K{Y))~1 denote the different, then by Corollary
2.3 in Chapter III in [Ne], we have T>K(X)/K(Y) = Up&x ^K{x)Vp/K{Y)V7t{p) •
Hence Proposition 4 in Chapter IV in [Sel] yields

deg<LK(X)/K{Y) = -deg
pe\x\

Pe\x\ Pe\x\ s>o

so formula (2.12) can be re-written as

l-gx=n(l- gyj ~\
Pe\x\
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Hence we have

CG,x,e = r(l-gx + -J2 [ W : k] X)(|Gp,B| - 1))
s=0

and hence

CG,x,£ = r ( l - 9x) + ^ ^ [fc(P) : fc](eP - 1 + ew
P - 1) + deg£

pe\x\

Pel
r- J2 HP) • k](eP - 1).

Pe|x|

•
Proof of Theorem 2.3.18. In the case where the underlying field k is
algebraically closed, Theorem 2.3.18 has been shown by Kock (Theorem 3.1
in [K62]). We have seen (Corollary 2.2.22) that the injective
homomorphism /3 : KQ(G, k) —* KQ(G, k) maps the Euler characteristic of a
locally free G-module £ on X to the Euler characteristic of £ = p*£ on
the geometric fibre X. We know from Kock's result that Formula (2.11)
holds on X, so it suffices to show that (3 maps the right-hand-side of (2.11)
(applied to X, £) to the right-hand-side of (2.11) (applied to X, £).

By Lemma 2.2.28, we have for every P G \X\ and every d G {1 , . . . ep):

(£{P) ®fc(P) (mp/mpfd) ®kk= 0 £{Q) ®k{Q) (mg/m^)^

as k[Ip] -modules, where £ := p*£. Since GQ = Ip (by Lemma 2.2.16) and
k(Q) = k (by Proposition 2.2.1) for every Q G p~l(P), and since induction
of representations commutes with direct sums, this implies

([Indfp(£(P) ®fc(P)

(2.13)
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in K0(G, k). For any Q e p~l{P), we have eP = eg , ep1 = eg and eP = eg
by Corollary 2.3.17. Hence we have

£* E M.

= E eQ E d

We are now going to show that CG.X,S
 =

 CG,X.E > i-e-

^ : k] ( (e? - l)(e$, + 1)
Pex s>2

= n(l - 9y)f

where f denotes the rank of £. By Lemma 2.2.18, we have

gy = dims H\Y, OY) = dim-k{H\Y, OY) ®fe k) = dimfc H\Y,Oy) = gY.

Furthermore, we have deg£ = deg£^ (by Proposition 2.3.8), and
rankf = rank£. Using that GptS = GQJS(S > 0) for any P G \X\ and any
pre-image Q G p~1(P) (Proposition 2.3.16), and that the number of such
pre-images Q equals [k(P) : A;] (Corollary 2.2.11), we get the desired
equality CG,x,e = GGtXie •
Hence, applying the homomorphism (5 to the right-hand side of our
formula (2.11) gives

eQ-l

= CGjtfi[k[G\) - E eg E d[Ind£Q(£(Q) ®~k (mo/mQ)®d)],

which proves the assertion. • •
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2.4 An equivariant Riemann-Roch formula
in terms of projective k[G] -modules

In this section, we investigate under which conditions the Euler
characteristic x{G, X, £) lies in the Grothendieck group of projective *
modules. Under these conditions, one can find a formula for x(G, X, £) as
an integral linear combination of projective k[G] -modules. We call this a
"strong" equivariant Riemann-Roch formula because equality in K0(k[G})
is stronger than in KQ(G, k). More concretely, two modules which are in
the same class in Ko(k[G]) must be isomorphic, which is not the case in
KQ(G, k)., as can be seen from the following example.

Example 2.4.1. Let k = F p , G = Cp (the cyclic group of order p) for some
prime number p. Let a be a generator of Cp, let Cp act on Fp[x]/(x2) via
a.He := x + 1 and let Cp act trivially on F p . Then we have short exact
sequences. of Fp [Cp] -modules

0 -> Fp -> Fp © Fp -> Fp -> 0

and
0 -> Fp -* Fp[x)/(x2) -^ Fp -> 0,

whence [Fp © Fp] = [Fp[x]/(a;2)] in iro(Cp,Fp). However, the two
fc[G] -modules Fp © Fp and ¥p[x]/(x2) are clearly not isomorphic, since G
acts trivially on the first one and non-trivially on the second one.

In this section, we make the same assumptions as in the previous section; in
particular, we assume that A; is a perfect field.

2.4.1 A Cartesian diagram of Grothendieck groups

Recall that we have reduced Theorem 2.3.18 to the case of an algebraically
closed base field by applying the map

P : K0{G,k) ^ K0(G,k)

to both sides of the formula. In this subsection, we will see that the map j3
"conserves projectivity" in a strong sense. This will later enable us to use
essentially the same proof technique for a projective analogue of Theorem
2.3.18.
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Let K0(k[G]) denote the Grothendieck group of finitely generated
projective k[G] -modules. This is a free group generated by the
isomorphism classes of indecomposable projective k[G] -modules. Since the
tensor product of a projective k[G] -module with k is always a projective
k[G]-module, the exact functor "tensoring with k over k" from the
category of k[G] -modules to the category of k[G] -modules maps the
subcategory of projective k[G] -modules into the subcategory of projective
k[G]-modules. Thus, besides the homomorphism j3 : K0(G,k) —> K0(G,k)
introduced in Subsection 2.2.3, the functor also induces a homomorphism

' a : K0(k[G}) -> K0(k[G\)

between the corresponding "projective" Grothendieck groups.
By Proposition (16.22) in [CR], both homomorphisms /3,a are split
injections. Furthermore, the Cartan homomorphisms
c : K0{k[G}) -> K0(G,k) and c : KQ(k[G\) -»• K0(G,k) are injective (see for
example [Se2], 16.1, Corollary 1 of Theorem 35, or [CR], Theorem (21.22)).

Proposition 2.4.2. The following diagram with injective arrows is
Cartesian, i.e. it commutes and viewing the injections as inclusions, we
have K0(k[G\) n K0{G, k) = K0(k[G}).

K0(k[G}) - ? U K0(k[G})

K0{G,k) > K0{G,k)

In other words, given a class C in KQ(G, k), C -lies in the image of c if
and only if (5{C) lies in the image of c.

Proof. The commutativity is obvious. Now consider the extended diagram
(with exact rows)

0 - r * K0(k[G]) -2U- K0(k[G\) M 0

0 K0(G, k) — K0(G, k) N 0

where M := coka is the cokernel of a , N := cok/3 is the cokernel of (3
and / is the homomorphism M —> N induced by c. By the Snake Lemma,
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there is an exact sequence of abelian groups

0 —> ker c —• ker c —> ker / —> cok c —> cok c,

the first two modules being trivial since c and c are injective. Since a is a
split injection, M — cok a is free over Z , and therefore ker / C M must
also be free over Z . On the other hand, by Theorem (21.22) in [CR], we
have \G\ • coke = 0, so coke is a torsion module. Using the exactness of
the sequence above, this implies ker / = 0. Therefore cok c is embedded in
cok c.

Any element of Ko(k[G]) D K0(G, k) maps to zero in coke, hence in coke,
and therefore must be an element of K0(k[G]). •

Proposition 2.4.3. Let C be a class in K0(G,k). Then C is the class of a
•protective k[G] -m,odule if and only if /3(C) is the class of a projective
k[G] -module.

Proposition 2.4.3 is the main result of this subsection, and we will use it
several times in the following subsections. Before proving Proposition 2.4.3,
we will need to prove a few preliminary results on k[G] -modules.
Recall that a k[G] -module is called simple if it is nonzero and has no
proper &;[G]-submodules, and indecomposable if it is nonzero and is not a
direct sum of proper /c[G]-submodules.

Definition 2.4.4. A basic set of simple k[G] -modules is a set of
representatives of the (finitely many) isomorphism classes of simple
k[G]-modules. Once such a set has been fixed, its elements will be called
basic simple k[G] -modules. Analogously, a basic set of indecom,posable
modules is a set of representatives of the isomorphism classes of
indecomposable projective (!) k[G] -modules, and its elements are called
basic indecomposable modules.

L e m m a 2.4.5. There exists a finite algebraic extension E/k such that
every simple k[G] -module can be realized as a simple E[G) -module, i.e.
every simple k[G] -module M can be written as M = N ®E k for some
sim,ple E[G]-module N.

Proof. Let M be a simple k[G] -module. Then M is generated by a single
element, say a, over k[G], and we have a projection

PM • k[G] ->• M given by lfc[G] = 1 • [idG] >-> a.
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The kernel of PM is a finitely generated k[G] -module. We choose a
generating set, say {/?i,..., /3m} , and obtain a projection

PM • k[G]m -> kerpM, ti ^ A,

where {ej}i=lv..:m is the standard basis for k[G]m.
Let i denote the inclusion kerp^ <—» £;[(?]. Then obviously
im(t op'M) = imp^f = kerpM, and hence the following sequence is exact:

k[G]m _ ^ k * fc[G] _*«_> M > o

Let A = (a1,..., am) e k[G]mxl be the matrix representing the
homomorphism L O p ^ with respect to the bases (e 1 ; . . . , em) and 1^^ of
k[G]m and k[G], respectively.
The entries o 1 , . . . , am of A are elements of k[G], i.e. they can be written
in the form

a1 = ^ % • [g] where b^ek for all 3 e G .

We define
E(M):=k({bl\i£{l,...,m,},geG}),

i.e. E(M) is the field obtained from k by adjoining the elements 6*. Since
G is a finite group, we have adjoined only finitely many elements, i.e.
E(M)/k is a finite algebraic extension of fields.
Let now {M 1 ; . . . , Ms} be a basic set of simple k[G] -modules, and let

i.e. E is the composite of all the extensions E(Mj). Then E is a finite
algebraic extension of k.
Let now M be an arbitrary simple k[G] -module. Then there is a basic
k[G] -module Mj such that M = Mj. We choose bases and determine the
matrix A = (o 1 , . . . , am) € fc[G]mxl as described above. By construction,
the group ring E(Mj)[G] contains all the entries of A, and so does E[G]
(since E > E(Mj)). Hence, using the standard bases of E[G]m and E[G],
the matrix A defines a homomorphism

q : E[G]m -+ E[G\.



CHAPTER 2. EQUIVARIANT RIEMANN-ROCH THEOREMS 33

Let TV be the cokernel of q, then we have an exact sequence

E[G]m —2-> E[G] > N > 0

We apply the functor "tensoring with k over E" to this sequence and
obtain another exact sequence:

The "lifted" homomorphism q (g> id is still represented by the matrix A
with respect to standard bases. Therefore we have q <g> id = t o p'M, where
the latter map is defined as explained at the beginning of the proof. Hence
we have

N ®E k = cok(t o pM) = M.

Furthermore, N is a simple E[G] -module. Indeed if N contained a proper
E[G] -submodule, say N', then M would contain N' ®fc fc as a proper
submodule, but this can't happen as M is simple. •

Proposition 2.4.6. (a) For every simple k[G]-module M, the
k[G] -module M <S>k k is semisimple.

(b) Let {Pi , . . . . Ps} be a basic set of indecomposable k[G] -modules, and
. let

Ti

Pi®kk = rftOijj Qij indecomposable projective k[G]-modules.

Then every indecomposable k[G] -module is isomorphic to some Q^ .
Further Q^ = Qi'j' implies that i = i!, i.e. there is no overlap
between the sets of indecomposable k[G] -modules which come from
different indecomposable k[G] -modules.

Proof, (a) By Lemma 2.4.5, there is a finite algebraic extension E/k
such that every simple k[G] -module can be realized as a simple
E[G] -module. Since k is perfect, E/k is a separable extension of
fields. Hence. Proposition 7.4 and Proposition 7.7 in [CR,] imply that
for any simple k[G] -module M, the E[G] -module M <8>fc E is
semisimple. (This is also stated at the beginning of Theorem 7.9 in
[CR].) Thus, part (a) is proven.
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(b) For every basic indecomposable k[G] -module F,,let

Mi := Pi/rad Pi.

It is well-known that this gives a 1-1 correspondence between the
isomorphism classes of simple k[G] -modules and the isomorphism
classes of indecomposable projective k[G] -modules, whose inverse is
given by taking k[G] -projective covers. A k[G] -projective cover (or
just projective cover) of a k[G] -module M is a projective
k[G] -module P together with an epimorphism / : P —> M, such that
for all projective k[G] -modules P' and all homomorphisms
g : P' —> M, there is an epimorphism ip : P' —> P making the
following diagram (with exact rows and columns) commute.

A projective cover exists for any k[G] -module M and is unique up to
isomorphism, so we can speak of "the" projective cover of M.

The 1-1 correspondence just described means that {Mi,.'.., Ms} is a
basic set of simple k[G] -modules, and for every i we have
Pi = Cov(Mj) where Cov denotes the projective cover. Part (a)
implies that for every i, the k[G] -module M; 0^ k is semisimple, i.e.
we can write

Ni:i, Nij simple £;[G]-modules. (2.14)

Hence, for every i, we obtain a decomposition of P4 <S)k E into
indecomposable projective k[G] -modules in the following way:
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Pi<g>kk = (Cov Mi) ®fc k

— Cov(Mj ®fc k) by Lemma 2.4.7 below

y by (2.14)

= £ft Cov(iVy) by additivity of projective covers (Corollary 6.25(iii) in [CR]).

By Lemma 2.4.5, there exist E[G] -modules N^ such that
Nij = iVy (g>£ & for every i,j. Let Qy := Cov Nij and Qy : = Cov JV^
for every z , j . This yields the decomposition .

from the proposition (uniquely determined up to isomorphism and '
re-ordering). Moreover. Lemma 2.4.7 below implies that
Qij ®Ek = (Cov Nn) ®Ek = Cov(Ay ^ Qij for every i, j . By
Theorem 7.9(ii) in [CR], every simple E[G]-module is isomorphic to
some N^ . By Lemma 2.4.5, this implies that every simple
k[G] -module is isomorphic to some N^ . Every indecomposable
projective E[G] -module is isomorphic to the projective cover of a
simple one, and hence isomorphic to Cov(iVjj) = Qij for some i, j .
This proves the first assertion of part (b). Now if Q^ = Qi>j>, then
Q^ = QVj, and hence rad Q^ = rad Qi>j>, so we have
N^ = Qij/iadQij = Qiij'/xaAQi'ji = N^j,. By Theorem 7.9(ii) in
[CR], this implies that i = i', which completes the proof of part (b).

•
L e m m a 2.4.7. Let f : P —> M be a surjective homomorphism of
k[G] -modules, with P projective. If f : P —> M is a projective cover, then
so is f: P —> M, where P :— P ®kk and M := M ®kk.

Proof. Assume that / : P —* M is a projective cover. By Corollary 6.25(i)
in [CR], this is equivalent to saying that ker / C NP, where
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N := radfc[G]. Hence we have the following diagram of k[G] -modules, with
exact rows and diagonals:

' 0.

NP

• ker / •

0

We can now "lift" this diagram by applying the exact functor — <S>k k. We
thus obtain the following diagram of k[G]-modules, still with exact rows
and diagonals:

(NP) ®fc k

• ker / •

This shows that we have ker/ C (NP) ®kk. By Proposition 2.4.6, for
every simple k[G]-module S, the k[G] -module S ®kk is semisimple. By
Theorem 7.9 in [CR], this implies that

Hence we have

ker/ C (NP) ®fc k ^ (N ®k k)(P ®fc k) = (vadk[G])P.

By Corollary 6.25(i) in [CR], this implies that / is a projective cover. •
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Proof of Proposition 24-3- The "only if" direction is obvious. For the "if"
direction, we note first of all that if C is a class in K0(G, k) and f3{C) is
the class of a projective k[G] -module, then Proposition 2.4.2 yields that C
can be viewed as a class in K0(k[G]). Hence it suffices to show the "if"
direction for classes C € K0(k[G]), replacing the homomorphism j3 by its
restriction a.
Let {Pi,..., Ps} be a basic set of indecomposable k[G] -modules, and let

n
P%®kk = hft Qij, Qij indecomposable fc[G]-modules.

Every C 6 Ko(k[G]) can now be written as a Z-linear combination of the
classes [Pi]. The integer coefficients in this linear combination are all
nonnegative if and only if C is the class of a projective module. Suppose
that C is not the class of a projective module, i.e. without loss of generality,

s' s

where 1 < si < s, Oj > 0 for all % and a, > 0 for at least one i > s' + 1.
By definition of a, this implies

a(C) = Y,<K[^ ®kk] - Y,a*[Pi ®kk] =
i=l i=s' 1=1 j=l i=s' j—1

Now Proposition 2.4.6 yields that the indecomposable modules Q^
appearing in the first sum are all different from those appearing in the
second sum, so OL{C) is not a proper sum of the classes [Qij] • Therefore
a(C) cannot be the class of a projective k[G] -module. •

The following variation of Proposition 2.4.3 can directly be derived from
Lemma 2.4.7.

Lemma 2.4.8. A k[G] -module M is projective if and only if M ®fc k is a
projective k[G] -module.



CHAPTER 2. EQUIVARIANT RIEMANN-ROCH THEOREMS 38

2.4.2 The equivariant Euler characteristic in terms of
projective k[G] -modules

Recall that we are still working with the same assumptions and notations
as at the beginning of section 2.3. In particular, TT denotes the canonical
projection X —> Y = X/G, and p denotes the projection
X = X Xfrk^-X. Additionally, let ff denote the canonical projection
X —> Y := X./G = Y ®fc k, and let p denote the projection Y —»• Y. We
have the following commutative diagram:

X —?-> X

Y -^* Y

Theorem 2.4.9. / / TT is tamely ramified and £ is a locally free G -sheaf on
X, then the equivariant Euler characteristic x(G, X, £) lies in the image of
the Cartan homomorphism c : K0(k[G}) —> K0(G, k).

Proof. Follows directly from Theorem 1 in [Na]. •

Recall that IT is called weakly ramified if Gpti is trivial for all P G \X\ and
alH > 2 (see Definition 2.3.10).

Theorem 2.4.10. Let D = YliP&\x\npP be a G -equivariant divisor on X.

(a) If IT is weakly ramified and np = — 1 mod ep for all P € X, then
the equivariant Euler characteristic x{G,X,C(D)) lies in the image
of the Cartan homomorphism c : Ko(k[G}) —> K0(G, k). If moreover
one of the cohomology groups Hl(X, C(D)), i = 0 ,1 ; vanishes, then
the other one is a projective k[G] -module.

(b) Let deg D > 2gx - 2 . // the k[G] -module H°(X, C{D)) is projective,
then IT is weakly ramified and np = — 1 mod e'p for all P £ \X\.

Proof. In the case where k is algebraically closed, this theorem has been
proven by Kock (Theorem 2.1 in [K61]). We can deduce Theorem 2.4.10
from the case where k is algebraically closed by using the following facts:
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• Write p*D = Y2QS\X\ UQQ • Then by Lemma 2.3.7 and Corollary
2.3.17, we have nQ = np(Q) and eQ = ep(Q) for all Q e \X\, and hence
nP = —1 mod dp for all P € \X\ if and only if UQ = — 1 mod eg
for all Qe\X\.

• By Proposition 2.3.16, TT is weakly ramified if and only if TT : X —> Y
is weakly ramified.

• By Lemma 2.3.6, Lemma 2.2.22 and Proposition 2.4.2, x(G,X,C(D)
lies in the image of c if and only if
(3(x{G,X,C(D)) = x(G,X,C(p*D)) lies in the image of c.

• Let i G {0,1}. By Lemma 2.3.6, Lemma 2.2.18 and Proposition 2.4.3,
is projective if and only if Hi(X,C(p*D)) is.

• degD = degp*D (by Lemma 2.19) and gx — 9x-

•
The following theorem generalizes Theorem 4.3 in [K62] and will be used in
the formulation of the (main) Theorem 2.4.15.

Theorem 2.4.11. Let TT be weakly ramified. Then there is a projective
k[G] -module NQ,X such that

n e*p-l ef-d

0iVG,x = © © 0Ind£(Cov((mp/m?,)"')), (2.15)
P€\X\ d=l

where Cov denotes the k[Ip] -projective cover (as defined in the proof of
Proposition 2-4-6).

The class of NQ,X in Ko(G, k) is given by

[NG,x] = (1 - gy)[k[G]] - X(G,X, C(E)) (2.16)

where E denotes the G-equivariant divisor E := Spex( e P ~ 1) • -P-
Remark 2.4.12. The projective module NQ,X is sometimes called
ramification module because it "encodes" the ramification of the cover
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Note that NG,x is determined by what happens at the ramification points
of the cover TT : X —> Y, so it is determined by "local" data. However, in
order to obtain the divisibility by the group order n, one must sum over all
these points, so the existence of NQ,X is actually a "global" result (as
pointed out by Kock in [K62]).
Unlike our equivariant Riemann-Roch formula from Theorem 2.3.18 (and
unlike the "strong" equivariant Riemann-Roch formula we will prove later
in Theorem 2.4.15), Theorem 2.4.11 does not involve the additional data of
a locally free G-sheaf £ or an equivariant divisor D on X.
If TT is assumed to be tamely ramified, then the defining equation for
has the following somewhat simpler shape:

d=\

For the case where TT is tamely ramified and k is algebraically closed, the
existence of NG}x has already been shown by Nakajima (Theorem 2 in
[Na]), and later with other methods by Borne (Theorem 3.16 in [Bo]) and
Kock (Corollary 1.4(a) in [K61]).
Furthermore, if TT is tamely ramified, then the divisor E in the theorem is
the zero divisor, so we have C(E) — Ox and hence

[NG,x] = (1 - gy)[k[G]] - X(G,X, Ox), (2.17)

which can be considered as an equivariant Hurwitz formula. For the case
where TT is tamely ramified and k is algebraically closed, formula (2,17) has
been proven by Borne (Theorem 3.16 in [Bo]) and Kock (Remark 1.5 in
[K61]).

Proof of Theorem 2.4-11- Theorem 4.3 in [K62] yields that there is a
projective k[G] -module NGX such that

No.x = © © ©Ind^.(Cov((mg/mJ)*-)), (2.18)'Q
Q€\X\ d=l

and that the class of NGX is given by

[NG£ = (1 - 9?)[k[G\] - X(G, X, C(E)) _ (2.19)
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where E is the G-equivariant divisor E := X]gex(eg ~~ 1) ' Q •
Since E — p*E (by Lemma 2.3.7 and Corollary 2.3.17). this is just the
image of the class

" C := (l-gY)[k[G}}-X(G,X,£(E)) e K0(G,k)

under (3. Hence, we can apply Proposition 2.4.3 to see that C is the class
of some projective k[G] -module, say NG,X • Now we have in K0(k[G}):

0(n[NG,x]) = np(C) = n [NG£ V =
.18)

d=l

Pe\x\QeP-l{P) d=i
4 - 1 e%-d

,(Cov(
d=l

Here we have used that ef
P = eQ,ep = eg, /p = Gg if Q G p X(P). We

have also used the additivity of projective covers (Corollary 6.25(ii) in
[CR]) and the additivity of induction (Proposition 10.6 in'[CR]). Lemma
2.2.28 now yields that ©Qep-i( /,)(mQ/m0)®' i ^ ((mP/mp)®d) ®fc fc as
/c[Jp]-modules, and hence

/3(n[7VG>x]) =
e P - l ef,d

Indfp(Cov((mP/mp)^)®fcfc)
Pe\x\ d=\

= 13
ef

p-l ef-d

Pe\x\ d=i

since we have lndfp(V_ ®fc A;) ̂  (Indfp(y)) ®fc k (by Corollary 10.20 in
[CR]) and Cov(V ®fc fc) = (CovV) ®k k (by Lemma 2.4.7) for any
k[IP] -module V. Cov has been used to denote projective covers with
respect to k[IP] as well as k[G], k[G] and k[IP], depending on the context.
Since j3 is injective, the above yields that equation (2.15) holds for NGtx •
By construction, equation (2.16) holds as well. •
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Notation 2.4.13. For any P E X, we denote the inertia degree
[k(P) :fc(7r(P))] by / P .

Lemma 2.4.14. For every point R EY, the number of pre-images of R
under IT is equal to e

 n. , where P is any point in 7r~1(i?). In particular, if
the base field k is algebraically closed, then the number of pre-images is j - .

Proof. The number of pre-images of R is obviously equal to the length of
the G -orbit of P,

' \GP\ . \Gp[

By Theorem 9.9 in [Ne], the sequence

1 —»• Ip —> GP —> Gsl(k(P)/k(R)) —> 1

is exact, so we have \GP\ = | /p| | Gal(fc(P)/fc(.R))| = ePfP. D

Theorem 2.4.15 ("Strong" equivariant Riemann-Roch formula).
Let IT : X —> F be weakly ramified.

(a) Let P E \X\ be a closed point. For every d E {0,! . . , ep — 1}, there is
a unique protective k[G] -module WPtd such that

= ffi WP4

as k[GP] -modules.

(b) Let D = Ylpe\x\ nP ' P be a G -equivariant divisor on X with
nP = —1 mod ep for all P E X. For any P E X, we write

np = (ep — 1) + (lp + mpep)ep'

with lP E {0, . . . , eP — 1} and mP E Z . Furthermore, for any
R EY, fix a point R E 7r~1(i?). Then we have in Ko(k[G]):

X(G,X,C(D))

: k)mR )
R€Y

(2.20)
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Proof. We first show that under the conditions of (b), the following holds in
the Grothendieck group with rational coefficients K0(k[G])q :

ReY •*& d=i
(2.21)

With suitably chosen divisors D, Formula (2.21) will be used to show part
(a).. Formula (2.21) and part (a) obviously imply part (b).
For curves over algebraically closed fields, formula (2.21) coincides with
Theorem 4.5 in [K62]. We have seen (Lemma 2.2.18) that the injective
homomorphism /? : K0(G,k) —»• K0(G,k) maps x(G-,X,£) to
X(G, X,p*£), and by Theorem 2.4.10, both of these Euler characteristics lie
in the image of the respective Cartan homomorphisms. Hence, by the
injectivity of a and of the Cartan homomorphism, it suffices to show that
(3 maps every summand of the right-hand side of formula 2.20 (applied to
X,D) to the corresponding summand of the right-hand side applied to
X,p*D.
From the proof of Theorem 2.4.11, we see that (3([NG,x]) = [NGtx] •
Now write p*D — YIQ^X

 nQ ' Q • Then we have (by Lemma 2.3.7 and
Proposition 2.3.17) UQ = rip, ep = eg, eP = eg and ef, = eg if
Q G p~1(P). This also implies that IQ = lp and TUQ = mp if Q € P-1(-P) •
For any S E \Y\, fix a point 5 6 7f~1(-S'). Then we have

-* nQex

Lemma 2.4.14)

^ ]T[IndgQ(Cov((mQ/mQ)^-d)))] - (by Section 2.2)
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Moreover, we have

gY + ^iHR)--k}mR) \k[G}]\
ReY )

= p({l-9Y + Y1 ms ) [MG]] ) (by Lemma 2.2.10)

S£Y

Since we know that Formula (2.21) holds for the cover vf : X —> Y of curves
over k, this proves Formula (2.21) for the cover TT : X —* Y.
We now prove part (a). Let P G X be a closed point. For d = 0, the
statement is obvious because (mp/mp)0 is the trivial one-dimensional
k(P) -representation of Ip , so it decomposes into fp copies of the trivial
one-dimensional k(R)-representation of Ip. where R := n(P) • Hence we
only need to do the inductive step from d to d + 1, for d 6 {0,...., eP — 2} .
If 7T is unramified at P, then ep = 1, so there is no d, G {0, . . . , eP — 2} .
Hence we may assume that % is ramified at P. Set H := Gp, the
decomposition group at P, and let IT1 denote the projection
X —>• X/H =: Y'. For every closed point Q G \X\ and for every s > — 1,
let -£/Q,S be the 5-th ramification group at Q with respect to that cover, as
in Definition 2.3.10. It follows directly from the definitions that we have
HQ>S = Gp Pi GQ>S for every s > — 1 and every Q G |X|. In particular, if TT

is weakly ramified, then so is TT'. For Q = P , we get i?p]S = GpiS for all
s > — 1; in particular, the ramification indices and inertia degrees of TT and
TT' at P are equal.
Let now D := J2Qe\x\ nQ ' Q b e the i^-equivariant divisor with coefficients

d + 2 ) e g - l if Q = P
eJJ - 1 otherwise

Then formula (2.21) applied to H,X,D gives

X(H,X,C(D)) = -[NH,X] + i - 71=1

^ ( d ) ) (2-22)
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in Ko(k[H])Q. By the induction hypothesis, the sum from n = 1 to d in
this formula is divisible by fp in K0(k[H}); hence the remaining fractional
term -^[Ind£(Cov((mP/m^)®(-(d+1»))] must lie in K0{k[H}). In .
particular, when writing Ind^Cov^mp/mp)®^^"1"1^) as a direct sum of
indecomposable projective k[H] -modules, every summand occurs with a
multiplicity divisible by fp. This proves the assertion. D

In the proof of Theorem 2.4.15(a), we have used a global argument to show
the divisibility of Indf/(Cov((mp/mp)®(-d))) by fP. This tells us very
litte about the structure of the summands Wpj, which leads to the
question whether one could find a "local" proof for the divisibility. In two
different situations, the following proposition provides such a proof, yielding
a concrete description of Wp.s. • Note that in both of these situations, the
cover 7T : X —> Y = X/G has to be tamely ramified.

Proposition 2.4.16. Assume that IT is tamely ramified and let P G
and d 6 { 1 , . . . , eP — 1} .

(a) If Gal(fc(P)/fc(7r(P))) is abelian, then we have WP.d =
as k[Gp] -modules.

(b). If Ip is central in Gp, then Wp>(i is of the form Wp^
for some k[Ip] -module Xd- If moreover Gp = Ip x Gp/Ip, then
WP4 ^ (mp/mp)®^ as k[GP\-modules.

Note that since every Galois extension of a finite field is cyclic, the first
part of this proposition gives a "local" proof of Theorem 2.4.15(a) for the
important case where -IT is tamely ramified and the underlying field k is
finite.
Proposition 2.4.16 can be deduced from the following purely algebraic
result. Note that, in this result, we don't use the notations introduced
earlier in this paper; when Proposition 2.4.17 is being applied to prove
Proposition 2.4.16, the fields k and I become the fields k(ir(P)) and k(P),
respectively, the group G becomes Gp and V becomes (mp/mp)18^"^
which is viewed only as a representation of Ip (and not of Gp) in Theorem
2.4.15.

Proposition 2.4.17. Let l/k be a finite Galois extension of fields. Let G
be a finite group, and let I be a cyclic normal subgroup of G, such that
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G/I = Gal(i//c), i.e. we have a short exact sequence

1 -> / -» G -> Gal(J/fc) -> 1.

Lei V be a one-dimensional vector space over I such that G acts
semilinearly on V, that is, for anyg E G,\ E l,v,w EV, we have
g.(\v + w) — g(X)(g.v) + g.w, where g denotes the image of g in Gal(//fc).
In particular, V is then a k[G]-module and an l[I]-module. Assume
furthermore that I acts faithfully on V .

(a) If Gal(J/fc) is abelian, then we have Ind^Resf (V) = 0 ( G : 7 ) V as
k[G] -modules.

(b) If I is central in G, then there is a (non-trivial) one-dimensional
k -representation x of I such that Resf(V) = ®^ J ' \ as

k[I] -modules.

If moreover G = / x Gal(///c), then we have Indf % — V and
Indf Resf (y) = © ( G : / ) V as k[G] -modules.

Proof, (a) We have (isomorphisms of k[G]-modules):

IndGResG(V)

by Corollary 10.20 in [CR] .

(cf. §10A in [CR])

= V ®fe k[Gal(l/k)} as Gal(Z/fc) 9£ G/I

= V®kl

The last two isomorphisms can be derived as follows. By the normal
basis theorem, there is an element xQ E I such that
{fl^o)!*/ € Gal(l/k)} is a basis of I over k. The resulting
isomorphism

k[Gal{l/k)} -> I given by
[g] i-> gr(x0) for every 5-
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is obviously k[G]-linear. This is the penultimate isomorphism. For
the last one, we define

a <g) v I—> (a(a) • v)a<zGa\(i/k) for e v e r y a G l , v EV.

ip is an isomorphism of vector spaces over k, by the Galois descent
lemma. If Gal(l/k) is commutative, then tp is also compatible with
the G -action" on both sides: Let u 6 l , w G V, g G G, then we have

ip(g.(a®v)) =

= g.tp(a <S> v).

(b) Since / is cyclic and acts faithfully on 1 ,̂ it acts by multiplication
with e-th roots of unity, where e = | / | . If / is central in G, then it
follows that the e -th roots of unity are contained in k. For if h is a
generator of / and h.v = (e • v for all v G V, £e an e-th root of
unity, then we have for all g € G and all v EV:

g{Q{g-v) = g-(Cev) = (gh).v = (hg).v = (e(g.v).

Hence for every g G Gal(7/fc), we have g((e)
 = Ce-, which means that

£e lies in k. Let now {xi,..., Xf} be a A;-basis of V, where
f = (G : I). Then we have V = kxo © . . . © kxf not only as vector
spaces over k, but also as k[I] -modules, since

Ixi = {dxi\j = 0,...,e-l}CkXi

for every basis vector x^. Furthermore, the summands kxi are
isomorphic as k[I] -modules because / acts on each of them by
multiplication with the same roots of unity in k. Setting for example
kxi —'• Xi w e c a n write

as required.
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Assume now that G = I x Gal(//A;) Then by the Galois descent
lemma, we have

V = l®

as k[G] -modules, where / acts trivially on I and Gal(l/k) acts
trivially on yGal(V*0 . This is isomorphic to l®kXi where x is viewed
as a k[G] -module via the projection G = I x Gal(l/k) —> / . By the
normal basis theorem, we have

so V = Indf (x) as requested. Together with what we have shown
before, this implies the last identity of the proposition:

n
Remark 2.4.18. In the case of an algebraically closed underlying field,
Theorem 2.4.11 and formula 2.21 coincide with Theorem 4.3 and Theorem
4.5, respectively, in [K62]. He deduces both theorems from his weak
equivariant Riemann-Roch formula, Theorem 3.1 in [K62].
An alternative approach to the results of this section is to exactly imitate
this method and derive both Theorem 2.4.11 and formula 2.21 from our
weak equivariant Riemann-Roch formula, Theorem 2.3.18. For the case
where IT is tamely ramified, this has been realised in the author's diploma
thesis [Fi]. But if one were to do the same for the weakly ramified case, it
would become quite lengthy and would probably be less elegant than the
approach taken in this thesis. In particular, one would have to find an
alternative proof of Theorem 2.4.10 and do some quite tedious calculations
to show the result in the weakly ramified case.

The following Corollary of Theorem 2.4.15 is similar to a result stated (but
not proven) in [K62]. It will be useful for finding an equivariant
Riemann-Roch formula whose coefficients are nonnegative integers rather
than just integers (see Chapter 3).
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Corollary 2.4.19. Assume that n is tamely ramified. Let S be a G-stable
subset of X containing all the ramification points of TT . Furthermore, let
^T(S) : = ^iRe-Tris) -^ an^ let ^G,x denote the dual k[G] -module of NQ.X •
Then we have in Ko(k[G]):

(2.23)

Proof. By Remark 2.4.12, we have in K0(k[G])Q:

P. ID 1 &f^ 1

K d=l H

Here we have used that #{P ' G X\n(P') = ir(P)} = ^ for any P G X.
By Proposition 2.3.14, the character group Hom(/p, k{P)*) is cyclic of
order eP and generated by the character XP which represents the
Ip -action on nip/mp. Hence the one-dimensional k(P)[Ip] -modules are
just the (mp/mp)®d (d = 0 . . . . , eP - 1). For every d, Ip acts on
(mp/rrip)®d by XP a n d o n ^s dual by x~pd > s o the dual of (mp/tnp)®^ is
imP/rnP)®(ep-d). Hence we have

- ^-^ e-

es-l

Rey J « d=\ R

es-1

R

V —z^ /-,,

For any F £ |X|, the representation (rtip/mp)®0 is the trivial
one-dimensional k(P)-representation of Ip, or equivalently, a direct sum of
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fp copies of the one-dimensional k(R) -representation of Ip, where
R = ir(P) . So for any R € Y, we have in K0(k[G})^ :

fh R ' •

Hence we have

R€TT{S)

eR~1 eR~1

E V~^ rT ,G / / , 2 \®d\l V s "*• V ^ ~ ^

R d=i

E 7-

n d=l

d = l

= E 7:E ^
d=0 R£K{S) J R d=0

E TTM^C^I/])] EE T
^ ^ ^ R€w(S)

where we have used that the sum of all irreducible representations of a
finite group is the group ring. •

2.5 Some examples

The aim of this section is to give some examples to illustrate the results of
the previous sections, in particular to apply the equivariant Riemann-Roch
formulae from Theorem 2.3.18 and 2.4.15 and to give some idea of what the
ramification module NG,X can look like.
We start with some examples where both X and Y are projective 1-space
over some field whose characteristic does not divide the group order, so that
we have a tamely ramified cover. Then we consider a class of examples that
yields covers with weak ramification.
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In most of the examples, we will use the fact that if deg D > 2gx — 2, then
H1(X,JC(D)) is trivial, which follows, for example, from Lemma 3.2.2.

2.5.1 C3 acting on ¥l
€

Let X := Pj;, viewed as a curve over k = C. Since C is algebraically
closed, a point on X is C-rational if and only if it is a closed point (cf.
[Ha], Exercise II.2.15). We can identify the set of rational points on X
with the Riemann Sphere or the set C U oo, as usual. The function field
K(X) of X is the field of rational functions in one variable, C(x), and the
automorphisms of X over C are of the form x i—> ̂ ^ with a, b, c, d 6 C.

Let a denote the automorphism given by x *—> j ~ . Then a generates a
subgroup of order 3 of. Autpf/C), which we denote G. a acts on the
Riemann sphere with exactly two fixed points, i*\ = | + i^ a n d

F2 = \ — i^Y • All other points have orbits of length 3, e.g. 0 is mapped to
1, 1 to oo and oo to 0. Hence the cover TT : X —> X/G is (tamely)
ramified at F\ and Fi, with ramification index 3, and unramified
everywhere else. By the classical Hurwitz formula (Corollary 2.4 in [Ha]),
we have

- 2 = 2gx - 2 = 3 • (2gY - 2) + J ] ( e P - 1) = 3 • {2gY - 2) + 4,
Pex

so <?r = 0,i.e. y = P^ .

Remark 2.5.1. One can show with a similar computation that for any cover
•K : X —* Y = X/G as in the previous sections, then we have gx > gy • In
particular, if X is projective 1-space over a perfect field, then X/G also is
projective 1-space over that field.

Let C3 :— ~ 2 ~ ^ 2 ' a Primitive 3rd root of unity. Then G can act on C in
three ways: Either G acts trivially, or a.z = £3 • z for all z £ C, or
a.z = Cf • z for all z G C. C with these G-actions will be denoted Co, Ci,
C2 respectively. The ramification module NQ,X must satisfy equation
(2.16), so we have

[NG,x] - (l-gY)[C[G}}-X(G,X,Ox) = [C[G]]-[H°(X,OX)} + [H\X,OX)]

in K0(G, C), since gy = 0. H°(X, Ox) is the set of holomorphic functions
on X, so it consists only of the constant functions from X to C; hence it
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is isomorphic to Co as a C[G]-module. Furthermore, since
degOx = 0 > 2gx — 2, H1(X, Ox) vanishes. In other words; there are no
holomorphic differentials on X. Hence we have

[NG>X] = [C[G]] - [Co] = [ d ] + [C2],

using that Co, Ci, C2 are exactly the one-dimensional representations of G,
so that their sum is C[G].
Let now

D:=[0] + [l] + [oo],

then D is a G-equivariant divisor on X, with support disjoint from the
ramification locus of TT . The decomposition of the coefficients of
D = J^pelxi npP m the form np = mpep + lp gives lp = 0 for all P G X,
mP = 1 if P G {0,1, 00} and mP = 0 otherwise. By Theorem 2.4.15, we
have

X(G,X,C(D))

The first sum over R EY vanishes because lp = 0 for all P. Since gy = 0
and since C is algebraically closed, whence k(R) = C for all R G Y, we
obtain

since the only points on X where mP ^ 0 are 0,1 and 00, and they all
map to one point R G Y, for which m^ = 1.
As deg D > 2g — 2, we have H1(X, C{D)) = 0, and using again that the
sum of the one-dimensional representations of G is the group ring, the
above yields

= - [ d ©C2] + 2[C[G]] = [Co] + [C[G}\.

Indeed, H°(X,C(T>)) can be viewed as the set

{/ G K(X)\ordP{f) + nP > 0 for all P G
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which is generated by the rational functions l,x, ^j and ^ as a vector
space over C , and on which a acts by transforming the variable x:

a.(f(x)):=f(a-\x)).

The subspace generated by 1 is the space of constant functions, on which
G acts trivially; the space spanned by the three other generators can be
written as (x, ~^, 1 — - ) , which shows that it is isomorphic to C[G] as a
C[G]-module.

2.5.2 C3 acting on P^

Let now X = P ^ . The set of closed points of X can be identified with the
compactified upper half plane

H := H U R U {oo} = {z £ C : Sz > 0} U {oo}.

In this model, the R-rational points of P ^ correspond to the points of
R U {oo}, whereas the non-rational closed points (which all have residue
field C) correspond to the points in H. The function field of X is the field
of rational functions in one variable over R, R(x)-, and its automorphisms
are of the form x i—> ̂ r^ with a, b, c, d E R and determinant ad — be > 0.
Hence the map a : x i-» j ^ from above defines an automorphism of X. a
generates a subgroup of order 3 of Aut(X/R), which we denote G. Out of
the two fixed points of a on C U {oo}, only one lies in H, namely
F := F\ = | + i^ • Hence a has exactly one fixed point on X; the orbits
of all other points have length 3. The cover -K is (tamely) ramified at F,
with ramification index 3, and unramified everywhere else. The defining
equation of NG,X- (2-15) says that

3 e p - l d , 2 d

<2=i d=i

K £ 2 © (mF/m|)®2

The cotangent space rop/ml- is one-dimensional over k(F) — C and carries
a non-trivial G-action. Hence with the notations from Example 2.5.1, we
have either m^/tn^ = d and (mf/nif)82 = C2 or vice versa. But C1 and
C2 are isomorphic as R[G]-modules, since complex conjugation yields an
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isomorphism between them (note that this is not an isomorphism of
C-vector spaces!). Hence the above can be rewritten as

so
NG,X = d -

This gives an easy example of the fact that NG>X ®R C = NGtX, shown in
the proof of Theorem 2.4.11.
Let now D = [0] + [1] + [oo] as in the previous example. Theorem 2.4.15
yields

X(G,X,C(D))

.. (mP/r4)]+ 1 - gY + £>( /? ) : R}mR

)
In analogy to the previous example, we have lp — 0 for all P G \X\,
mP = 1 for P = 0,1, oo and rap = 0 everywhere else. Furthermore,
i^1(X, C(D)) vanishes, since degD > 2g — 2. Hence we have

[H°(X,C(D))] = - [ d ] + 2[R[G]] = [d] + 2[R[G]] = [E] + [R[G]].

Indeed, as above. H°(X,C(D)) is generated by 1.x, 1 — x and y ^ over E
and thus decomposes into the trivial representation (1) and the regular
representation (x, 1 — x, T^—) — (x, —-, 1 — - ) .

2.5.3 £3 acting on Pj,

As in Subsection 2.5.1, let X = Pj, and a(x) := yz^. Furthermore, let
T(X) := ^. Then <r and r are Mobius transformations (i.e. automorphisms
of Pjp) of order 3 and 2 respectively. An easy calculation shows that the
group generated by a and r contains exactly the following elements.

*(*) = ^
o \x) — i x,
T(x) = h
CTT(X) = 1 — YT^ = TCT2(X)

a2r(x) = 1 — x = TO(X).
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Hence a presentation of G := (a, r) is given by

This is is the presentation of the dihedral group D$. which is also
isomorphic to the symmetric group 53.
By the natural permutation representation of 53 we shall mean the
representation which consists of three copies of C that are permuted by S3
just like 53 permutes the numbers 1, 2, 3. The natural permutation
representation is reducible; namely, it decomposes into a trivial
representation (generated by (1,1, l ) r ) and a two-dimensional irreducible
complement.

The irreducible representations of S3 are:

• The trivial one-dimensional representation, which we will denote C.

• The sign representation: one-dimensional, a acts trivially and r acts
by multiplication with — 1.

• The non-trivial part of the natural permutation representation
(two-dimensional), which will be denoted U.

The following points on X = P^ have nontrivial decomposition group (i.e.
they are fixed by some nontrivial element of G).

is fixed by
is fixed by
is fixed by
is fixed by
is fixed by
is fixed by
is fixed by
is fixed by

Since C is algebraically closed, we must have fPi = 1 for all i. Therefore
we have IPi = C3 for i = 1,2 and IPi = C2 for i = 3 , . . . ; 8, and the
ramification index at Pi is 3 for i = 1,2 and 2 for i = 3 . . . . , 8.
By Remark 2.5.1, the quotient curve Y is again the Riemann sphere.
Let us now compute the ramification module NG,X • By definition, we have
in the Grothendieck group

Pi
p2

Ps
PA
P5

Pe
Pi
P«

— 1 4- 4 v
2 """ 2_ 1 jV
2 2

= 1
= - 1
= 0
= 2
_ I

2
= oo

a and
a and
f
T

OT

or
<J2T

a2r

a2

a2
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ep-1

" Pe\x\ d=i

6

+
1=3

Let Wit2 denote the two different nontrivial one-dimensional
C -representations of C3, and let V denote the unique nontrivial
one-dimensional C -representation of C2 •
As in Subsection 2.5.1, the cotangent spaces at the complex conjugates Pi
and F2 are isornorphic to W\ and W2, respectively. Furthermore, the
cotangent spaces at the other ramification points are nontrivial
one-dimensional representations of C2, so they are all isomorphic to V.
Therefore we get

[NG,X] = 1

t=3

\ ( p d g ^ ) ] pdg(W)] ) [Idg

The following lemma explains how NG,X c a n be expressed without
fractions, and in terms of the irreducible representations of G.

Lemma '2.5.2. We have the following isomorphisms of C[G] -modules.

(a)
Indg2(y) = sign0U

(b)
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Proof. By definition, Ind^2(V) = V <8>c[c2] CfG] is a three dimensional
complex vector space with basis indexed by the cosets {[id], [a], [a2]}
modulo C2 • o acts on this space by cyclically permuting the coordinates.
T acts on the first coordinate, [id], by multiplication with — 1, as it does
on V. However, r must permute the other two coordinates in order to
make the action compatible with the relations in G. Therefore we have
with respect to the.above basis:

1
The subspace generated by the vector | 1 | is obviously G -invariant and

1
isomorphic to the sign representation. Its complement is the 2-dimensional
space

(X

V

with G -action given by

which is isomorphic to U.

Hence part (a) is shown.

In part (b), the induced representation Ind^3(VKi) is two-dimensional, with
basis indexed [id], [r]. r permutes the two coordinates, and a acts on the
first coordinate by multiplication with a nontrivial third root of unity,
which we denote (3. Hence we have, with respect to the above basis:

y ) ~ \ a J'a \y
where a,b are linear functions of x,y yet to be determined.

The relations in G mean that we must have

x \ 9 / x
TO. | = olr.

y \y
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and thus

Hence the induced representation is given by

The map

U
gives an isomorphism between Ind^3(V^i)'and Ind^3(W2). Furthermore,
the above description of the group action makes it easy to see that
Indc (Wi) is isomorphic to U.

D

It follows that
NG,x = sign © U © U.

We can verify the equivariant Hurwitz formula:
Since the group ring is the sum of all irreducible representations V with
multiplicity dim V, we have

= C©sign©U©U

and hence

[NG:X] = [sign © U © U] = [C[G]] - [C] = (1 - gY)[C[G]] - x(G, X, Ox).

Of course we could also have used the equivariant Hurwitz formula to
determine NQ,X more quickly.
Let us now look at the divisor from Subsection 2.5.1,

Z?:=[0] + [l] + [oo].

D is G-equivariant as 0, 1, oo form a single G-orbit. If we make the
decomposition

+ lp
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as in Theorem 2.4.15, we get mP = 0 for all P, lP = 1 if P G {0,1, oo}
and lp = 0 otherwise. Hence Theorem 2.4.15 yields

X(G,X,C(D))

= ~[NG,x] - gY + deg
Re\Y\ d=

- [C])

= [C] + [sign] + [U]

with the notations U, V from above.
To verify this, we first note that as in Subsection 2.5.1, we have
x(G,X,C(D)) = [H°(X,C(D)}, and the latter is a complex vector space
generated by the functions 1, x, j , jr^ • With respect to this basis of
H°(X, C(D), the generators of G have the following matrix representations:

a=S:=

f 1
0
0

vo

1
0

- 1
0

1
0
0

- 1

0
1
0
0 )

T=T :=

Let now

and let

f{x) :— x + a.x + a2.x = x + (1 ) +

1
0
0
0

0
0
1
0

0
1
0
0

1

1
0
0

- 1 )

x 1 - x '

g(x) := r.f(x)

Then /(x) — g(x) is invariant under a, and r.(/(x) — p(x)) = p
Hence, f(x) — g(x) generates a copy of the sign representation.
With respect to the basis chosen above, we have

/(*)=

1 \
1

-1
\ 1

g(x)=T

1 \
1

-1
\ 1

f(x) -g(x)=

— / (x ) .
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Now we need to find a complement to (

- 1 \

) that is isomorphic to the
- 2

V 2 /
natural permutation representation of G. A necessary condition for this is
that some vector v in this complement has to have the same image under
a and r , and that this image is linearly independent of v. Hence we solve
the linear system of equations

(S - T)v = 0.

The space of solutions of this system of equations is spanned by

/1 \
0
0

and

/ 0 \
0
1

v 1 /
, so we take v =

/ o N
o
1

\ 1 /
i N
l
o

We see that a permutes these three vectors cyclically, whilst r swaps v
and v' but leaves v" invariant. Hence v, V and v" generate the natural
permutation representation. The trivial representation that it contains is

/ 3 N
0

Next we put v' := SV = and v" := 52v =

2N
- 1
- 1

\

recovered by considering the subspace generated by v + v' + v" =
0

Furthermore, if we add the vector

- 1 \
2

- 2
V 2 /

to the collection then we obtain
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a linearly independent set, which therefore is a full basis of H°(X. C(D)):

/- 1 \
2

- 2

\ 2 /

/0
0
1
1

1 \
1
0

2\
-1

2.5.4 S3 acting on P ^

Let now X := P^5 . The function field of X is the field F5(x) of rational
functions over F 5 , and the automorphisms of X over F5 (resp. of its
function field) are the maps x t—> 3^^ with coefficients in F5 . Hence the
assignments a(z) = j ~ , T(Z) = \ from the previous subsection define
automorphisms of X, and they generate a subgroup G of Aut(X/F5) that
is isomorphic to D3 = £3.
Note that F5 is not large enough with respect to this group, because it
does not contain any nontrivial third roots of unity. Here a field k is called
large enough with respect to a group G if k contains the m-th roots of
unity, where m is the p -primary part of the least common multiple of the
orders of elements in G.
The quadratic extension F5(\/3) is large enough with respect to 53, since
the nontrivial third roots of unity are C3 = 2 + y/3 and £3 = 2 — y/3.
Because it is large enough, the irreducible F5(\/3) -representations of the
abelian subgroup C3 are all one-dimensional; we call them F5(\/3), W\
and Wi.
When viewed as F5 -representations of C3, W\ and W2 are still
irreducible, and they are isomorphic as F5-representations. (Cf. the
analogous situation over E , C respectively in Subsection 2.5.2.)
F5 is large enough with respect to the subgroup C2, and therefore there is
a nontrivial one-dimensional F5 -representation of C2, which we denote V.
The irreducible representations of G over F5 are essentially the same as
over C - the trivial representation, simply denoted F 5 , the sign
representation, and the nontrivial part of the natural permutation
representation, denoted U.
All rational points of X have a nontrivial decomposition group:
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Pi

p2

PA

= 1 is fixed by r
= 4 is fixed by r
= 0 is fixed by or
= 2 is fixed by ar

P$ := 3 is fixed by <T2T

Pe := oo is fixed by o2r
The automorphism a has exactly one fixed point on X, namely the
non-rational point corresponding to 3 ± \fZ, with residue field F5(\/3). We
call this point P7.
For combinatorial reasons, we must have fpt = 1 for all i. i.e. the
decomposition group is always equal to the inertia group. Therefore we
have lpi = Ci for i — 1 , . . . , 6 and Ipr = C3. The ramification index at Pi
is 2 for i = 1 , . . . , 6 and the ramification index at P7 is 3.
The classical Hurwitz formula yields that Y = X/G is another copy of Pj-s.
Let us now compute NQ,X • By definition, we have -

, ep-l

Pe\x\ d=i
6

] + 2pndgs(Wa)]

where V denotes the nontrivial one-dimensional F5 -representation of C2,
and W\t2 denote the nontrivial one-dimensional F5(\/3)-representations of
C3 , viewed as two-dimensional F5-representations.
The analogue of Lemma 2.5.2 yields that Ind^fW!) is the irreducible
2-dimensional F5(\/3)-representation of G. As an F5-representation, it is
therefore isomorphic to two copies of the irreducible two-dimensional
F5-representation U of G.
Furthermore, an analogue of Lemma 2.5.2(a) even holds over F 5 , since F5

is large enough for C2 . This yields

with the notations from Subsection 2.5.3.
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Hence we can write

6

= [sign] + 2[U].

This is the same expression as in the example over C, and we can verify
the equivariant Hurwitz formula in the same way.
Let us now look at the divisor from the previous subsections,

With exactly the same calculation as before, we get

This can be verified exactly like in the previous subsection.

2.5.5 Artin-Schreier curves

Example 2.5 in Kock's paper [K62], which had also been mentioned by
Hasse [Has], shows how to construct classes of covers of curves with
arbitrarily wild ramification. It goes as follows.
Let k be & perfect field of positive characteristic p, and let r G N be
coprime to p. Let k(x,y) be the field extension of the rational function
field k(x) given by the Artin-Schreier equation yp — y = xr. The field
extension k(x,y)/k(x) is Galois with group G = Cp, the cyclic group with
p elements. Let TC : X —>• P£ denote the corresponding cover of nonsingular
algebraic curves. Then -n is unramified precisely over A\ C F\, and at the
unique point ooGX lying over o o e P j , the higher ramification group
Goo.s are trivial for s > r but nontrivial (cyclic of order p) for s < r.
Furthermore, the genus of X is equal to (-r~1qp~1' . .
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In particular, for r = 1 the cover is weakly ramified, but not tamely
ramified. At the point at infinity, the ramification index is ep = p, the tame
ramification index is ep = 1, and the weak ramification index is ef, = p.
The ramification module NG,X iS defined by

ep-l ef-d

©Indfp(Cov((mP/m^)^)).
Pex d=\

Since eF = 1 for all P (even for the point at infinity), the sums in the
formula all vanish, so

NG,x = 0.

Let now D be the equivariaht divisor

on X. Then D satisfies the condition np = ep — 1 for all P G X. Hence
we can apply Theorem 2.4.15. If we make the decomposition

nP ='(e«g - 1) + (lP

with lP e {0, . . . , ep — 1} and mp € Z, we get lP = mP = 0 everywhere
(even at the point at infinity).Therefore we obtain in Ko(k[G]):

X(G,X,C(D))
ik

k

= -[NG,x] + J2 X > d g A ( W % l ) ] + (l-gy + J > ( ^ ) = k]mR ) [k[G\]
R€Y d=l R<EY

Since the genus of X is (r~1^p~1^ = 0. w e have deg D > 2gx — 2 and hence
H1(X,C(D)) = {0}. Furthermore, the above calculation was done in the
Grothendieck group of projective modules, so it yields an isomorphism of
k [G] -modules

Indeed, we have



Chapter 3

On the automorphism group of
geometric Goppa codes

3.1 What is Coding Theory?

If a message is to be sent over a distance, then there are two major
problems one has to deal with. Firstly, the message could be read by an
unauthorized third party while it is on its way. Secondly, one can never
fully avoid transmission errors caused by technical unreliability, however
optimized the transmission procedure may be.
The first problem is a main subject in Cryptography, whilst Coding Theory
tackles the second problem.
The message is normally represented as a binary sequence rather than as a
sequence of characters A-Z. In the encoding process, this binary sequence is
split up into small parts of equal length, say rn. Every m -tuple is then
substituted by a longer tuple (say, an n-tuple), so that the message
becomes longer without gaining more content. This redundancy is what we
need in order to recognize and correct possible transmission errors.
The n-tuples that the encoded message consists of are called codewords;
the ensemble of codewords is called the code. The codewords can be binary
n-tuples, or they can be n-tuples over some finite field other than F2 . The
number n is called the length of the code.
If transmission errors occur in the process of sending the encoded message,
these errors are unlikely to turn a codeword into a different codeword, but

65
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will in general produce an n -tuple that is not a codeword. Hence we can
recognize that an error has occurred. By looking for the codeword which is
"closest" to the n-tuple received, we can even correct the error. How well
this works is largely determined by the choice of the code, which is why a
big part of Coding Theory just deals with the problem of finding "good"
codes.

Example 3.1.1. We assume that the message is given as a binary sequence.
We split the sequence up into binary pairs (in the terminology above, this
means m = 2) and substitute every pair by a binary 4-tuple (i.e. n = 4)
according to the following rules:

00 -»0000
01 —> 0111
10 -> 1001
11 -> 1110

We will now be able to recognize errors as long as they flip no more than
one bit per 4-tuple, but we will not always be able to correct them; e.g.:

• tuple received: 1100 —> closest codeword: 1110 —> correction to 1110
and decoding to 11.

• tuple received: 1111 .—>• there are two closest codewords, 1110 and
0111; error is recognized but cannot be corrected.

In the second case, the correction of the error is not possible because we
have two codewords that are too close together (namely 1110 and 0111).
Note that this is a property of the code, not of the encoding procedure.

3.2 Geometric Goppa codes

By what we said in the last section, a code is just an arbitrary set of
n-tuples over some finite field, i.e. a subset of F™ for some prime power q.
Now we will look at codes that are vector spaces over Fq, i.e. sub-vector
spaces of F™ . Such codes are called linear codes.
Geometric Goppa codes are linear codes which are constructed from divisors
on algebraic curves. Some of them have very good properties, and the rich
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structure of the underlying curves makes it possible to investigate them
thoroughly. We will now describe how geometric Goppa codes are
constructed.
Let X be a geometrically irreducible, nonsingular projective curve of genus
g over a finite field F g . Let \X\ denote the set of closed points of X, and
let X(Fq) : = { P e X : k(P) ^ F , } , the set of F,-rational points on X.
(This set is in 1-1 correspondence with the set MorF,(SpecFg,X) which we
called X(Fq) in Chapter 2.) Assume that X(Fq) is nonempty, i.e. that X
has rational points. Let D = ^Peixi npP be a divisor on X, and let

E := Px + ... + P
n

where the Pj are distinct points in X(Fq) \ Supp D. In particular, n must
be less than or equal to the number of rational points of X.
Following the conventions used in the existing literature on Coding Theory
(e.g. [HvLP]), the O-th cohomology group H°(X,OX{D) shall be called
the Riemann-Roch space of the divisor D and denoted L(D). Recall that
L(D) can be defined as follows:

L(D) :=.{/€ K(X)\vP{f) > -nP for all P € X}

Here K{X) denotes the function field of X. and vp(f) denotes the order
of / at P .
The elements of L(D) have poles at most at those points P where np > 0.
Since Supp E D Supp D = 0, they do not have any poles at the points
P i , . . . , P n . Furthermore, since P i , . . . , Pn are Fg-rational points, they
actually take values in Fg at these points. Hence we have a well-defined
homomorphism

_L(D) -> Maps(SuppE,Fg).

Composing this with the natural isomorphism

Maps(Supp E, Fq) ^ F£

gives rise to another evaluation map

evDiE : L(D) -* F£, / H- ( / (P^ , . . . , f(Pn)),

which is again a homomorphism of vector spaces over F g .
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We now define the geometric Goppa code C(D, E) to be the image of this
second evaluation map,

C(D, E) := im &VD,E •

Lemma 3.2.1 ([Ha]; [HvLP]). If n > degD, then <ZVD,E ̂  injective.

Proof. Assume n > degD. Let / G L(D) such that evD,E{f) = 0. This
means f{P%) = 0 for i = 1,. . . , n, i.e. the order of / at Pt is positive.
Since the divisors D and E have disjoint supports, this implies that / is
an element of the Riemann-Roch space L(D — E). On the other hand, we
have deg(D — E) = deg D — deg E = deg D — n < 0, and hence
L(D -E) = {0} by lemma 3.2.2 below. Thus, we have / = 0. •

Lemma'3.2.2 ([HvLP]). Let A be a divisor on X. If degA < 0, then
L(A) = {0}.

Proof. Suppose there was an element./ € L(A) \ {0}. Then by definition,
(f) + Ay 0, and hence deg((/) + A) > 0. On the other hand, we have
deg((/) + A) = deg(/) + deg,4•= 0 + degA < 0, which is a
contradiction. •

It follows from Lemma 3.2.1 and from the definition of C(D,E) that
C(D, E) is isomorphic to the Riemann-Roch space L(D) if n > degD.
Then we can use the classical Riemann-Roch theorem to compute the
dimension of the code, which is an important parameter if it comes to
measuring the quality of a linear code. In particular, if
n > deg D > 2g — 2, and if K denotes the canonical divisor on X, then we
have deg(K — D) = 2g — 2 — deg D < 0, so L(K — D) vanishes by Lemma
3.2.2, and hence the Riemann-Roch theorem yields

dim C(D, E) = dim L(D) = deg D + 1 - g.

3.3 Faithful group actions on Riemann-Roch
spaces

Let X be an algebraic curve as before, and let G < Aut(X/Fg) be a finite
group of automorphisms of X. Assume that the canonical projection
7T : X —> Y := X/G is tamely ramified.
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Since every automorphism of X over Fq induces an automorphism of the
function field K(X) fixing F g , G can also be viewed as a subgroup of
Aut(K(X)/Wg). If the elements of K(X) are considered as functions from
X to Pjr , then the action of G can be written in the following way:

(a.f)(P) = /(a-^P)) (aeGJe K(X),Pe X).

If D is a G -equivariant divisor, then L(D) is stable under the action of G
on K(X). The group action we get in this way is the same that we
obtained in a more abstract way in Chapter 2.
We can use the strong equivariant Riemann-Roch formula, Theorem 2.4.15,
to describe the isomorphism class of L(D) as an Fg-representation of G.
Since all finite algebraic extensions of a finite field are cyclic and hence
abelian, we can apply Proposition 2.4.16 on the structure of the spaces

and get the following refined formula. ,

Theorem 3.3.1. Let D = Ylpe\x\nP^> be a G-equivariant divisor on X.
For any P € X, we write

np = lp + mpep

with lp £ {0, . . . , ep — 1} and mp G Z . Furthermore, for any R eY, fix a
point Re ir^iR) • Then we have in K0(Wg[G]):

X(G,X,C(D))

d=i

and all other modules on the right-hand side of formula (3.1) are protective
as well.

(
d=l ReY

(3.1)

where NG,X is a protective Fq [G] -module satisfying
\G\ ep-1 d



CHAPTER 3. GEOMETRIC GOPPA CODES 70

Remark 3.3.2. If ir is unramified, then formula (3.1) has the following
simple form:

[L(D)] - [L(K - £>)] = (1 - gY + ~ degD)[Fq[G]].

Note that this is still a formula with integer coefficients, since in the
unramified case, degD is divisible by \G\.

Theorem 3.3.1 yields a representation of [L(D)\ — [L(K — D)] as a formal
Z-linear combination of projective Fg[G]-modules. In order to say more
about L(D) as an Fg[G]-module, it is useful to have a formula representing
L(D) as a proper sum of projective Fg[G] -modules, i.e. with purely
non-negative coefficients, because then we can leave the Grothendieck group
and write L(D) as a direct sum of the projective modules in question.
First of all, we have to make sure that L(D) is in fact a projective module.
By Theorem 2.4.10 (a), this is certainly true if L(K — D) vanishes, and as
we have seen in Subsection 3.2, L(K — D) vanishes if deg-D > 2gx — 2.
Therefore, we will assume deg D > 2gx — 2.

Furthermore, in order to eliminate the —[NQ,X] term, we can use the
following result, which follows directly from Corollary 2.4.19.
Let br n C Y be the set of branch points of TT . Let NQX denote the dual
(contragredient) of NQ,X as a k[G] -module. Then we have in Ko(k[G]),
the Grothendieck group of projective k[G] -modules:

-[NG,X] = [N^x] + J^ M/A(*(i2))] - (degZhrw)[k[G)}.
RCbrir

Together with Theorem 3.3.1, this yields the following result.

Corollary 3.3.3. Suppose that degD > 2g — 2. Then we have in
K0{k[G]):

ReY d=l

+ {l-gy + degDx - degEbr7r) [k[G]], (3.2)

where D\ := X îjeî i mR ' R with mR defined as in Theorem 3.3.1.
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If additionally
deg Dx > deg E b r W + gY - 1, (3.3)

then formula (3.2) gives an explicit representation of L(D) as a direct sum
of projective k[G] -modules. It will be fairly easy to show that the group
action of G on L{D) is faithful in this case; we just have to show that the
action is faithful on one of the summands, because then it will be faithful
on the whole sum. (See Theorem 3.3.7).

Remark 3.3.4. (a) Note that the assumption deg.D > 2gx — 2 does not
imply Condition (3.3) in general. For example, choose X and G such
that gY = 0 and degEbr7r > 1 • Now let
D := R^ := Ylpe\x\(eP ~ -0 ' P • Then we have

2gx - 2 = \G\(2gY - 2) + degR* by the Hurwitz formula

= —2\G\ + degi?,r since gy = 0

so" deg D > 2gx — 2. However, we obviously have D\ = 0 and hence

i.e. Condition (3.3) does not hold in this case.

(b) Condition (3.3) holds, for example, if ep\np for every P G X and
9y > W\ ̂ eS r̂am(7r) + 1 , where ram(?r) C X is the set of ramification
points of 7T and Sram(7r) := Xlperam(7r) P • Indeed, in this case we have
•K*DI = D; since 7r*Sbr(7r) = Y,pex ep • P = Rn + 2ram(7r), this yields

degDi-degSbr (7 r )

= T^ deg D - -r-r (deg R* + deg Sram(7r))

> ]G\ (2gx ~ ̂  ~ \G\ deg Rn'~ ]G\ deg EramW

= 2gY -2 -77^7 deg Eram(7r) (Hurwitz formula)
IGJ

= gY - l + gY - (l-\- —-degSram(7r)) > gY - 1.
\G\
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Lemma 3.3.5. / / brvr ^ 0 ; then G acts faithfully on NG X .

Proof. Let P be a closed point of X. Then by Proposition 2.3.14 the
character group Hom(/p, k(P)*) is cyclic of order ep and generated by XP >
where XP describes the action of Ip on (mp/mp). For d = 1.... ,ep — 1,
the Ip -action on (trip /trip )®d is described by xp- Thus the kernel of the
Ip -action on (mp/mp)®^ is just the kernel of xp > which is trivial since XP
is injective (cf. proof of Proposition 2.3.14). Hence IP acts faithfully on
(mP/mp)®d, which implies that G acts faithfully on Indfp((mP/xnp)^d) by
Lemma 3.3.6 below. Thus G acts faithfully on the sum

© ©0Ind&((mp/m3,n = ®NG,X.
P€\X\ d=\

(Note that the sum is nonempty since ir has at least one branch point.)
This implies that G also acts faithfully on NGtX, for if there was an
element of G acting as the identity on NQ,X ,• then this element would act
as the identity on the whole sum, and the action on the sum would not be
faithful. D

Lemma 3.3.6. Let H be a normal subgroup of G, and let V be a
k-representation of H. Then the kernel of the G-action on Ind#(V) lies
inside the kernel of the H -action on V.

Proof. The induced representation Ind^(V) can be written as

aeG/H

where a runs through a system of representatives of G/H (cf. [CR],
§10A). We use the symbol Yl m order to indicate that this does not
decompose as a direct sum of k[G] -modules. The elements of G that are
not in H act on the sum by permuting the summands, whilst the elements
of H act on every translate of V as they do on V itself. Let now g 6 G
belong to the kernel of the G-action on Ind#(V). This means that g acts
as the identity on Ind^(V). In particular, we must have 9.(id .V) = id .V,
i.e. g fixes the summand id.V as a set, and hence g G H. Furthermore, g
must even fix id .V pointwise, i.e. it must act as the identity on V. Hence
g belongs to the kernel of the H -action on V. O
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Theorem 3.3.7. Suppose that degD > 2gx — 2 and that moreover one of
the following conditions holds:

1. ir is ramified at at least one point, and Condition 3.3 holds, or

2. 7T is unramified and gY > 1, or

3. 7T is unramified, gy = 0 and degD > 2gx — 2 + \G\.

Then G acts faithfully on L(D).

Proof. 1. If 7T is ramified at at least one point, then by Lemma 3.3.5, G
acts faithfully on Na,x • Thus it also acts faithfully on the dual
NQ x . If additionally Condition (3.3) holds, then Corollary 3.3.3 gives
a representation of L(D) as a direct sum of projective k[G] -modules
where one of the direct summands is NQX . Hence G also acts
faithfully on L(D).

2. If 7T is unramified and gy > 1, then by Remark 3.3.2, L{D) is a free
Fg[G]-module of rank

1 ~9Y + ]G\ degD > 1 ~9Y + W\^2gx ~2)

= 1 — gy + 2gy — 2 (Hurwitz formula)

= S V - - l > 0 .

Hence L(D) has-at least one copy of Fg[G] as a direct summand.
Since G acts faithfully on FJG], it acts faithfully on L(D).

3. If 7T is unramified, gy = 0 and degD > 2gx — 2+ \G\, then by
Remark 3.3.2, L(D) is a free Fg[G] -module of rank

1 - gy + -r^r degD = 1 + — degD
IGI IGI

l

= 2 + 2gY — 2 (Hurwitz formula)

= 0.
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With the same argument as before, we can now see that G acts
faithfully on L(D).

•

3.4 Automorphisms of codes"

Let C be a linear code of length n over some finite field F g . We now
consider two groups that act on C via automorphisms, the
Wq -automorphism group and the permutation automorphism group of C.
The Fg -automorphism group Autp, C is just the group of vector space
automorphisms of C. The permutation automorphism group is obtained as
follows: Let Sn act on F™ by permutation of the coordinates. This is
obviously an action by Fg-automorphisms. The permutation automorphism
group Autp(C) is defined as the subgroup of Sn which fixes C as a set, i.e.

Autp(C) := {a <E Sn\\f c E C : a{c) G C}.

Caution 3.4.1. Note that the permutation automorphism group does not
necessarily act faithfully on the code. For example, the definitions would
admit C = {(0,0,0,0)} as a code of length 4 over, say, F 7 ; the
permutation automorphism group would be the whole of S4, and it would
obviously not act faithfully.

We will now see how group actions on algebraic curves relate to
automorphisms of geometric Goppa codes.
In the setting of Section 3.2, the divisor E — P\ + ... + Pn is equivariant if
and only if the set Supp E is stable under the action of G on X, which
means that G acts on Supp E by permutations. In other words, we have a
group homomorphism G —> Sn such that the following diagram (of sets)
commutes:

G x Supp E •- Supp E

Sn x { l , . . . , n} ^ { l , . . . , n }

The functor Maps(—,F?) now induces another commutative diagram,
namely:
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G x Maps(Supp E, F,) ^ Maps(Supp E, Fg)

Sn x
n

In particular, G acts on F™ by permutation of the coordinates. The action
of G on Maps(Supp E, Fg) explicitly looks like this:

a.a = a o (a-~1|sUpP£;) for all a € G, a e Maps(SuppE,Fg).

If the divisor D is equivariant, then G acts on L(D) via

a.f:=foa-1.

The homomorphism L(D) —> Maps(Supp E1, Fg) obviously respects the
group action on both sides, and its image in Maps(Supp E, F?) is G-stable.
Since the geometric Goppa Code C(D. E) is denned as the image of

evD,E • L{D) -> Maps(E, F9) - ^ FJ,

C(D, JE) is a G-stable subset of F" In other words, every permutation of
coordinates in F" that comes from an element of G lies in the permutation
automorphism group Antp(C(D, E)), i.e. we have a homomorphism

4>: G-» AutPC(D,E).

The following is our main result related to Coding Theory.

Theorem 3.4.2. Assume that n > degD > 2gx — 2, and assume further
that one of the conditions of Theorem 3.3.7 holds. Then G acts faithfully
on the code C(D, E). In particular, the map <fi : G —»• Autp(C(D, E)) is
injective.

Proof. By Theorem 3.3.7, G acts faithfully on L(D). Since n > degD,
the map ev^^ is injective, as seen in Subsection 3.2. Hence L(D) is
isomorphic to C(D,E) = imev£>jjB as an FQ[G]-module, and therefore the
G-action on C(D,E) must be faithful as well.
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To show the injectivity of </>, consider the following commutative diagram
of groups:

. . G .—^-> AntP{C{D, E)) .

AutF,L(D) -=-> AntWq{C(D,E))

The map G —> Aut]pg L(D) is injective because G acts faithfully on L(D).
Hence the map G —> Aut^q(C(D,E)) is also injective. Since the injectivity
of any composition of maps implies the injectivity of the first map, this
proves that cf) is injective. •

Remark 3.4.3. The permutation automorphism group Antp(C(D,E)) acts
faithfully on C(D, E) if and only if the map
Autp(C(D,E)) —» Autwq(C(D, E)) is injective. Under the assumptions of
Theorem 3.4.2, this is not necessarily the case.
Wesemeyer [Wes] investigates some (classes of) examples where 0 is
actually an isomorphism. In this case, the map in question is indeed
injective, and hence Antp(C(D,E)) acts faithfully on C(D,E). This is
particularly useful for further applications since it helps to describe, store
and manage the code efficiently.

Remark 3.4.4. The map (j) has also been investigated by Stichtenoth and
by Joyner and Ksir. Stichtenoth shows that 0 is injective whenever
n > 2gx + 2 (see Proposition 3.3(b) in Chapter III in [St]). Joyner and Ksir
show the same, but with the additional assumption that deg D > 2g (see
Lemma 11 in [JK]).



Chapter 4

Geometric Galois Module
Theory: A result of Chinburg
revisited

4.1 Introduction

In this chapter, we link our results in equivariant Riemann-Roch theory to
work of Chinburg, Erez, Pappas and Taylor, more concretely regarding
their programme to generalize the ideas of Galois module theory to a
geometric setting.
Classically, Galois module theory is a branch of algebraic number theory
and deals with the following problem. Let L/K be a Galois extension of
number fields with group G = Gal(L/K). If L/K is tamely ramified, then
the ring OL of integers in L is a projective Z[G] -module, and one would
like to describe its class in K0CZ[G]), the Grothendieck group of projective
Z[G] -modules.
In [Tay], Taylor proved Frohlich's conjecture that this class is equal to
another invariant, the root number class WL/K- It is defined in terms of
root numbers, also known as epsilon constants, of symplectic
representations of G. The epsilon constant of a representation can be
defined by means of Artin L-functions, and appears in Tate's functional
equation for the Artin L-function of a representation.
Chinburg, Erez, Pappas and Taylor have conducted a programme to prove

77
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a generalized version of Frohlich's conjecture, as well as generalisations of
other results in the field, in a geometric setting. Here the Galois extension
L/K is replaced by a tame G-cover X —> Y of schemes of finite type over
a noetherian ring, and instead of the 'Z[G] -isomorphism class of the ring
OL , one considers the equivariant Euler characteristic (in K0CZ[G])) of a
suitable bounded complex of G-sheaves on X. In particular, one considers
the equivariant Euler characteristic of the de Rham complex,

= ^ ^ ( - l ) ^ ( d - i ) [ ^ ( X , ^ ) ] G KQ(Z[G\), ••
i=o j

where d is the dimension of X. To recover the classical case, let L/K be a
Galois extension of number fields, X := SpecC^ and Y := SpecOx ,
viewed as schemes over Z . Then ip{X/Y) is just the class of OL in
K0(Z[G\).
For the important case of schemes of finite type over a finite field, Chinburg
[Ch] describes ip(X/Y) in terms of epsilon constants of representations of
the Galois group G. His proof uses crystalline cohomology and is quite
complicated, which is not surprising in such a general setting. In a later
paper [Er], Erez states the following equivalent of Chinburg's result: Let g
be an element of G of order coprime to p. Then we have

(4.1)
x

where Trace denotes the modular character (Brauer character), the sum
runs over the irreducible complex characters x of G, and Vx denotes the
irreducible representation affording the virtual character \ .
In the case of curves, Erez [Er] outlines a more elementary proof of this
result. Some basic ideas are sketched in [Er], but in order to give a full
account of the proof, a lot of details need filling in. This was supposed to
be dpne in a further paper by Chinburg, Erez, Pappas and Taylor, but that
paper was never published and in particular not available to the author.
Instead of using the Lefschetz fixed point formula as suggested by Erez, we
use our equivariant Hurwitz formula, Formula 2.16 from Theorem 2.4.11, in
order to re-write the right-hand side of formula (4.1). Note, however, that
in order to prove Theorem 2.4.11, we rely on results by Kock which were
proved using the Lefschetz fixed point formula as well.
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4.2 Preliminaries

For the convenience of the reader, we recall some basic definitions and
results from algebraic number theory and modular representation theory.

4.2.1 Global and local fields

Definition 4.2.1. A global field is a finite algebraic extension of either the
field Q or the field Fp(i) of rational functions over Fp for some prime
number p.
A local field is a field that is complete with respect to some discrete
valuation v and whose residue field is finite. Equivalently, a local field is a
finite algebraic extension of the field Qp of p-adic numbers or of the field
¥p((t)) of formal power series over F p , for some prime number p (see
Theorem II.5.2 in [Ne]).
An algebraic number field (p-adic number field) is a finite algebraic
extension of Q (of Qp).
For any underlying field k, a function field in one variable over A; is a field
extension of k of transcendence degree 1.

In particular, a field K is an algebraic number field (p-adic number field)
if and only if it is a global field (local field) of characteristic zero. Any
function field in one variable over a finite field is a global field of positive
characteristic.

Definition 4.2.2. If if is a global field, an equivalence class p of
non-archimedian valuations of K is called a finite place of K. An
equivalence class of archimedian valuations is called an infinite place of K.
In the case of finite places, we will write Kp for the completion of K with
respect to p. If L/K is a finite algebraic extension, any non-archimedian
valuation of K can be extended to a non-archimedian valuation of L. We
choose one way doing so and write Lp for the completion of L with respect
to this valuation.'

During this chapter, we will often reduce problems over a global field to
analogous problems over its completions Kp. These are local fields of the
same characteristic as K.
We will mainly be dealing with the positive characteristic case. If X is a
curve over the finite field F9 (of characteristic p), then its function field
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L := K(X) is a function field over F p , and hence a global field of
characteristic p. The closed points of X are in 1-1-correspondence with
the finite places of L. If P is a closed point on X and p is the
corresponding place of L, then the local ring Ox,p is the valuation ring of
p, and the residue field k(P) is its residue field. Equivalently, k(P) is the
residue field of the local field Lp.

4.2.2 Some local class field theory

Local class field theory is the theory of the abelian extensions L/K of a
given local field K. The theory is fully explained in Chapters IV and V of
[Ne]. For a quicker read, a nice summary of the basic ideas can be found at
the beginning of §IV.3 in [Ne].
One of the most important results of local class field theory is the local
reciprocity law (Theorem V.1.3 in [Ne]): For every finite Galois extension
L/K (not necessarily abelian) of local fields, one has a canonical
isomorphism

rL/K : Gal(L/i^)ab - K*/NL/K(L*),

where Gal(L/K)ab denotes the largest abelian quotient of Gal(L/K).
The inverse of TL/K is called the norm residue symbol and can be viewed as
a surjective map

(-,L/K) : K* -> Gal(L/K)ah

with kernel NL/K{L*).
Let now L/K be a finite Galois extension of local fields, of group G. Let x
be a character of G, i.e. a homomorphism G —> C*. Since C* is abelian, x
factors through Gab. i.e. there is a homomorphism xah '• Gab —> C* such
that the following diagram commutes:

Qoh

By the local reciprocity law, x induces a homomorphism

XK : K* - C*

making the following diagram commute.
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Let now L/K be a finite abelian extension of local fields,
G = Gal(L/K) = Gal(L/K)ab. Let Gs (s > -1) denote the higher
ramification groups of L/K, see Definition 2.3.10. Define a function

•q : [-l,

by
r dx

where (Go : Gx) shall mean the inverse of (Gx : Go) for — 1 < x < 0.
For 0 < m G IN, we have

(see §11.10 in [Ne]).
In particular, we have

77(-l)= - 1 , 77(0) - 0 ,

and if L/K is tamely ramified with ramification index e. then we have

|G|) (l + l) l

The function r\ is strictly monotonously growing on [—1, 00) and hence has
an inverse T?"1 on [—l,oo).
Let now m^ denote the maximal ideal in the ring of integers of K. Then
Theorem V.6.2 in [Ne] states that for every s > 0, the subgroup
£/(s) = 1 + m^ of K* is mapped to the ramification group Gv-i(s) under
the norm residue symbol. In particular, U° = O*K is mapped to Go, the
inertia group of L/K, and if L/K is tamely ramified with ramification
index e, then U1 — 1 + m -̂ is mapped to Ge = {1}. Hence in the tamely
ramified case, the norm residue symbol induces a surjective homomorphism
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from the multiplicative group of the residue class field k of K to the
inertia group.
Here are two diagrams to illustrate the situation. The first diagram
commutes.

k* = O*K/l + m^ K

Hence in the tamely ramified case, a character x of G induces not only a
character XK '• K* —> C*, but also a character Xk '• k* —» C* of the
multiplicative group of the residue field, which makes the following diagram
commute.

We end this subsection by proving a preliminary result that will be needed
later, in Subsection 4.5.3.
Throughout the rest of this chapter, for any n € Z and any cyclic group
H, we write n as a shorthand notation for the group endomorphism
x i—> xn of H. Furthermore, for any subgroup H' < H, we write %H>,H o r

simply i for the inclusion H' -̂> H. ,

Proposition 4.2.3. Let L/K be a tamely ramified abelian Galois
extension of local fields. Let l/k denote the corresponding extension of
residue fields. Let G denote the Galois group, I the inertia group of L/K.
Let x denote the (non-modular) character I —> /* afforded by mi /ml as a
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one-dimensional I -representation of I. Furthermore, let a : k* —> I be the
surjective homomorphism from local class field theory, and let t := ^ .
The following diagram commutes:

i r
A/ • v

I

The following lemma will later be used to reduce Proposition 4.2.3 to the
case where L is the field K(F(1)) of yr-th division points over K.

Lemma 4.2.4. Let M/K be a tamely ramified abelian extension of local
fields, and let L be an intermediate field that is Galois over K. Write
e(M/L) := \I(M/L)\ for the ramification index of M/L. Furthermore,
write m for the residue field of M, XM/K for the character
I(M/K) —> m* afforded by the action of the inertia group I(M/K) on
vc\M/xa2

M, and XL/K for the character I(L/K) —> m* afforded by the action
of the inertia group I(L/K) on vc\i/m2

L The following diagram commutes:

1{M/K) s-m ^m (4.2)

In particular, if Proposition 4-2.3 holds for M/K, then it also holds for
L/K. The converse is true if M/K is unramified.

Proof. The square commutes by functoriality of local class field theory (see
Theorem 5.8 in [Ne]). The commutativity of the rectangle follows from the
fact that if TTM is a prime element for M and TTL is a prime element in L,
then

e(L/K)

for some unit u G O*M.
Assume now that Proposition 4.2.3 holds for the extension M/K. This
means that we have

\k*\
XM/K O aM/K = ik*,m* ° ( ~ e(M/Kj ) • (4-3)
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Hence we have

«i*,m* °XL/K °OiL/K

— e(M/L) o XM/K ° CX-M/K since Diagram (4.2) commutes
\k*\

= e(M/L) o ifc.im. o ( -,M/K) ) by Formula (4.3)

It follows that
I A ; * I

i ° (ik',i* ° ( ^ ),

so Proposition 4.2.3 holds for L/fC.
For the last part of the lemma, assume that M/L is unramified and that
Proposition 4.2.3 holds for L/K. This means that we have

. XL/K O aL/K = ik.tl. o ( ~ e ( L / j ^ ) - (4-4)

Since M/L is unramified, we have e(M/L) = 1, so the map named
e(M/L) in Diagram (4.2) is the identity, and we have e(M/K) = e(L/K).
Hence we have

XM/K °
— ii*^m* o XL/K ° aL/K since Diagram (4.2) commutes

\k*
=k ° i ° ( e/L/K\ )

F o r m u l a (4-4)

-%k*>m'° y e{M/K) } \

and so Proposition 4.2.3 holds for M/K. •

In the proof of Proposition 4.2.3, we will use a little Lubin-Tate theory,
which may be viewed as a generalization of the theory of cyclotomic fields.
We first give a brief explanation of this theory, following §§4 and 5 of
Chapter V in [Ne].
Let O be a ring.
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Definition 4.2.5, A formal group over O is a formal power series
F(X,Y) <E C[psT,r]] having the following properties:

(i) F(X, Y) = X + Y mod degree 2.

(ii) F(X,Y) = F(Y,X) ("commutativity").

(iii) F(X,F(Y,Z)) = F(F(X,Y),Z) ("associativity").

Definition 4.2.6. Let F be a formal group over O. An endomorphism of
F is a power series f(X) = a\X + a2X

2 + ... G O[p^]] • s u c n that

Proposition 4.2.7. XTie endomorphism,s of a formal group F form, a ring
, where addition and multiplication are given by

(f+Fg)(X):=F(f(X),g(X))

and
(fog)(X) = f(g(X)).

Definition 4.2.8. A formal O -module is a formal group F over O
together with a ring homomorphism

O -

such that
[a]i?(X) = aX mod degree 2.

Let now K be a local field, and let O = OK be the ring of integers in K.
Let q be the order of the residue field and let n be a prime element.

Definition 4.2.9. A Lubin-Tate module over OK with respect to the
prime element TT is a formal OR- -module such that

X9 mod 7T.

Let now A" be an algebraic closure of if. Then the valuation of K has a
continuation on K. Let 0^- be the corresponding valuation ring, m -̂ its
maximal ideal.
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Proposition 4.2.10. Let F be a formal OK -module. Then the set xnK

with the operations

x+Fy:= F(x,y)]

and
a • x := [a]j?(a;)

is an OK -module in the usual sense.

Let F be a Lubin-Tate module with respect to a prime element IT . For
every n € IN, define the group of 7rn-th division points to be

F{n) := {A e mK\-Kn • A = 0} = ker([7rn]F).

This is a subset of mK and hence of K. By adjoining all 7rn-th division
points to K, we obtain an algebraic field extension K(F(n)) of K, the
field of TTn -th division points, for every n. These extensions are sometimes
also called Lubin- Tate extensions of K. They depend on the prime element
7r, but once TT is fixed, they do not depend on the choice of F. It follows
immediately from the definition that we have F{n) C F(n + 1) for all n
and hence K(F(n)) C K(F(n + 1)) for all n.

Proof of Proposition J^.2.3. Fix a prime TT of K and a Lubin-Tate module
F with respect to that prime. The generalized Kronecker-Weber theorem
(Corollary 5.7 in [Ne]) yields that there exists an n £ IN such that we have
a tower of fields

K <L< KUTK(F(n)), (4.5)

where Kur denotes the maximal unramified extension of K and K(F(n))
denotes the field of 7rn-th division points (see above). By Theorem V.5.4 in
[Ne], K(F(n))/K is a totally ramified abelian extension of degree
qn~1[q — 1), where q = j^k. Hence for any n > 1, the ramification index of
K{F(n)) over K is

e(K(F(n))/K) = [K(F(n)) : K] = ^(q - 1) = qn-le{K{F{l))/K),

which is a p-power times the ramification index of K(F(1))/K. It follows
that any tamely ramified extension that is contained in K(F(n)) for some
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n € IN is already contained in K(F(1)). Since L/K was assumed tamely
ramified, this means that (4.5) is true for n = 1, i.e. we have

K <L< KurK(F{l)).

Consider the following diagram of fields and subfields:

KurK{F{l))

Kv

Suppose that Proposition 4.2.3 holds for K{F(l))/K. Since
KurK(F(l))/K(F(l)) is unramified, Lemma 4.2.4 yields that Proposition
4.2.3 also holds for KurK{F{l))/K. Applying Lemma 4.2.4 once again, we
see that Proposition 4.2.3 also holds for L/K. Hence it suffices to show
Proposition 4.2.3 for the extension K(F(l))/K.
Assume from now on that L — K(F(l)). Let A be a 7r-th division point,
i.e. an element of F(l). Then by Theorem V.5.4 in [Ne], A is a prime
element for L.
Let now u be a unit in the ring of integers of K, i.e. u G O*K. Then by
Theorem V.5.5 in [Ne], we have

and by definition of the Lubin-Tate module structure (Definitions V.4.4 and
V.4.5 in [Ne]), we have

[u-^piX) = vTl\ mod (A2).

So (u,L/K) e I{L/K) acts on the "cotangent space" mL/m2
L = (A)/(A2)

by multiplication with (the class in /* of) u~1. Hence the following
diagram commutes:
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Since L/K is totally ramified of degree q — 1 (see above), we have
\I(L/K)\ = q — 1 and hence —1 = — .̂ A ,L, , which proves Proposition
4.2.3. . D

4.2.3 Modular characters

Most of the material in this subsection is taken from [CR] and [Ne]. In
particular, the definition of modular characters that we give below can be
found in [CR] as Definition 21.26.
In classical representation theory, one usually only considers group
representations over fields of characteristic zero. This ensures, for example,
that two representations have the same composition factors (which, in this
setting, is equivalent to the representations being isomorphic) if and only if
their characters coincide. Here the character afforded by a representation
V at a group element a is the sum of the eigenvalues of a on V, or
equivalently, the trace of a matrix representing a with respect to some
basis of the vector space V. If we were to use the same definition for
representations over fields of positive characteristic, this important result
would fail (see §17B in [CR] for examples). To work round this problem,
Brauer came up with the notion of modular characters, nowadays
frequently called Brauer characters. They are defined as follows.
Let k be a field of characteristic p > 0, let m denote the exponent of G
(the least common multiple of the orders of elements of G) and let ml
denote its p-regular part, i.e. m = paml where (m',p) = 1. Let k0 be the
prime field of k, and let k\ := &o(C) Q &(C) > where £ is a primitive m'-th
root of unity over k. Then there exists a discrete valuation ring R with
maximal ideal p, such that the quotient field K of R has characteristic
zero and the residue field R/p is k\. A triple* (K, R, k\) with these
properties is called a p-modular system.

Example 4.2.11. If k\ is perfect (which it will be in our applications), then
a p-modular system (K,R,k\) can be constructed as follows. Let W be
the ring of Witt vectors over h\, which is defined in Exercise II.4.2 in [Ne],
and let F(W) be the field of fractions of W{k\). Then by Exercise II.4.6 in
[Ne], (F(W),W,.ki) is a p-modular system.

Example 4.2.12. The triple (<QP, Zp, Fp) is a p-modular system. More
generally, if k is any finite field of characteristic p, then the field k\
constructed above is a finite algebraic extension of the prime field F p , and
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a p-modular system for it will involve some algebraic extension K of Qp

and some integral extension R of Zp .

If (K,R,ki) is a p-modular system, then R contains an ra'-th root of
unity £ such that ( = ( in R/p = fcx. This is essentially due to Hensel's
Lemma (II.4.6 in [Ne]). We denote the groups of m'-th roots of unity in kx

and K by /Jfci.m', I^K,m' respectively. Reduction mod p defines an
isomorphism, iiK,m' —* /-tfci.m' • Its inverse is called the Teichmiiller character
and will be denoted T in the following.
Let now V be a A;-representation of G, and let a be an element of G of
order I, where (l,p) = 1. Then a acts on V as an endomorphism whose
eigenvalues are all l-th roots of unity over k. Since l\m', they are also
m'-th roots of unity and hence are contained in //fc1>m'. So we can define

Trace(cx|VO := ^ T(A;) G A", (4.6)
t=i

where the Aj are the eigenvalues of a. The map

Trace(-|l/) i G ^ ^ i ^

is called the modular character or Brauer character of V-. Here Greg

denotes the set of elements of G whose order is coprime to p.
As one can see, modular characters take values in the field K, a field of
characteristic zero. If we start off with a finite field k, then as stated in
Example 4.2.12 above, K is a finite algebraic extension of Qp. One can
therefore consider K" asa subset of an algebraic closure Qp of <QP, so that
the modular characters take values "in Qp ".
It is easy to check that modular characters are well-defined on the
Grothendieck group K0(G, k).
If k is of characteristic zero, then we can take K := k, f := id to obtain
the classical definition of the character of a representation. It turns out
that (4.6) is a "good" definition, in the sense that many results from
classical representation theory can be generalized to this setting. In
particular, two k[G] -modules have the same composition factors if and only
if their Brauer characters coincide (see Corollary 17.10 in [CR]).
A virtual Brauer character relative to A; is a Z-linear combination of
Brauer characters of k[G] -modules. The set of virtual Brauer characters
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carries a ring structure (as a subset of Maps(Greg, Qp) )• It will be denoted
Ra,k or simply RG in the following. The subring generated by the
characters of projective k [G] -modules will be denoted PGtk or simply PG •
By Proposition 17.14 in [CR], the map

K0(G, k) -> RG, [V] » Trace(-|y)

is an isomorphism of rings and restricts to an isomorphism

Just as in classical representation theory, one has a character pairing

( - , - ) :RGx RG^Z

denned by

(cf. (18.18) in [CR]).
Now if V is any k-representation of G.and if xv = Trace(—|V) is the
corresponding character, then we have

(4.7)

w

in Ko(G, k), where the sum runs over the irreducible k[G] -modules W and
Xw denotes the Brauer character corresponding to W. This is a
consequence of Theorem 18.23 in [CR].
There are two important homomorphisms between Grothendieck groups
that we will need in this chapter. The first one is the Cartan
homomorphism

c:K0(k[G})^K0(G,k),

which we have already seen in Chapter 2. The second one is the
homomorphism

e:K0{k[G])^K0(G.,K)

constructed as follows (see [CR], Theorem (18.2) and the subsequent
paragraphs, up to Formula (18.3)):
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Let (K,R.k) be a p-modular system. Let P be a projective k[G] -module.
Then there is a unique R[G] -module P such that P = P ®R k. Let now

e{P):=P®RK.

If K is sufficiently large with respect to G, then the homomorphism
e : Ko(k[G]) —• KQ(G,K) is injective. and it induces an injective
homomorphism

PG,k ̂  RG,K = RG,K

which is compatible with the character pairing on both sides.

4.3 Artin L-functions and epsilon constants

The purpose of this section is to introduce Artin L -functions and epsilon
constants and state some of their properties. The presentation given here is
based on Deligne's work [De3], where the epsilon constants are defined via
their properties and in particular via a functional equation, namely the
local functional equation from Tate's thesis.

4.3.1 Tate's local functional equation

In this subsection, we attempt to give an outline of the first part of Tate's
thesis. For a more detailed explanation, we refer the reader to the
unbeatably clear and beautiful presentation in Tate's original work [Ta] and
the summary in Lang's book [La].
Let p be a-prime, and let K be a p-adic number field, i.e. a local field of
characteristic zero, with ring of integers OK and maximal ideal m^. Let
q := \OK/m.K\ • Let | |p denote the p-adic absolute value on K.
For every element y G K, Tate defines a distinguished additive character
from K to C* by the assignment

where A is an additive continuous map from K into the reals mod 1
satisfying certain extra conditions (cf. [Ta], proof of Lemma 2.2.1 on p.
309).
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Let dx be the uniquely determined Haar measure on K that satisfies

dx = \OK/*\-* , (4.8)
Jo,<oK

where D denotes the absolute different of K, i.e. the different of the field
extension K/Qp (see Definition III.2.1 in [Ne]).
We can now define the Fourier transform f of an absolutely integrable
function / £ L\{K) as follows:

f(y) •= I f(x)e-2mA^dx.
JK

Let d*a be the "multiplicative" Haar measure on K* defined by

d*a := q—— da (4.9)

We view K* as a topological group in the usual way, i.e. such that the unit
groups C/W = 1 + ms

K form a basis for the neighbourhoods of 1 £ K*. Let
c : K* —>• C* be a continuous homomorphism of topological groups. We will
call such a homomorphism a quasi-character. Then we can write
c(a) = x(o)|«r for some character (i.e. some continuous homomorphism of
absolute value 1) % of X* and some cr £ R. Assume for the moment that
the "exponent" a is greater than 0. Furthermore, let / : K —> C be a
function satisfying the following two conditions:

1. Both / and its Fourier transform / are continuous and in L\(K).

2. Both f(a)\a\a and /(a)|a|CT (as functions of a G K*) are in LX(K*).

Then we define the zeta function £(/, c) as follows:

C(/,c):= / f(a)c(a)d*a./

JK*

The following result appears in Tate's thesis [Ta] as Theorem 2.4.1.

Theorem 4.3.1 (Tate's local functional equation). The zeta function
( ( / , c) is analytic on the domain of all quasi-characters of the form
c(a) = x(a)|a|CT with a > 0. It has an analytic continuation to the domain
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of all quasi-characters (with arbitrary a £ M,) given by a functional
equation of the type

where c denotes the quasi-character given by c(a) := |a|pc~1(a).
The factor p(c), which is independent of the function f, is a meromorphic
function of quasi-characters defined in the domain 0 < a < 1 by the
functional equation itself, and for all quasi-characters by analytic
continuation.

4.3.2 A more general version of Tate's local
functional equation

Deligne [De3] quotes a slightly more general version of Theorem 4.3.1.
Let K be a local field of arbitrary characteristic with ring of integers OK ,
maximal ideal m#, valuation VK and prime element TVK • Let
Q '•= IOK/WK] • Let | | be the absolute value corresponding to the valuation
of K, i.e.

|a| = q~v^a\

Let ip : K —> C* be an additive character, let dx be a Haar measure on K
and let c : K* —> C* be a quasi-character. Define the multiplicative
measure d*a} dependent of the additive measure dx, by formula (4.9).
We define l(c) e C U {oo} as follows:

Furthermore, we define c(a) := |a|c~1(a) as before. Let / be a function
having the properties 1. and 2. from the previous subsection. We define the
Fourier transform of / to be

f(y) '•= /
JK
/ f{)^{y) dx.
K

Theorem 4.3.2. In the above situation, we have

= / ^ / ( a ) c ( a ) eTa
l{c)
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with a factor E(c,i/j,dx) independent of f .

4.3.3 A functional equation of global quasi-characters

Let now K be a global field. An adele of K is a family

a = (op)

of elements ap € Kp. where p runs over all places of K and ap is an
integer in Kp for almost all p. The adeles form a ring (with respect to
pointwise addition and multiplication), which we denote A#.
The group of ideles of K is the group of units A^- of A#-. It consists of
exactly those families (ap) where op is a unit in the local ring Op for
almost all p. (Cf. [Ne], beginning of §VI.l.)
We view A*K as a top ological group in the usual way. Let c be a
quasi-character of A*K. For every finite place p of K, let cp denote its
restriction to K*:

cp(ap) = c ( ( 1 , . . . , ap , . . . , 1) ) for ap € K*p.

Then for every p, cp is a quasi-character of K*. We define the global
I -function by

l(c):=Y[l(cp)}

p

where the local I -function l(cp) is defined by (4.10).
Let now I/J be a nontrivial additive character of AK, and for every place p,
let ipp be the restriction of ip to Kp:

ipp(ap) = ip ( ( 1 , . . . , ap , . . . , 1) ) for ap G Kp.

For each finite place p of K, let dxp be a Haar measure on Kp. We
assume these measures are chosen in such a way that

/ dxp = 1 for almost all p.
Jop

Then one can define a measure on the ring of adeles Ax by a Fubini type
construction that is due to Tate (cf. [Ta], Section 3.3). By Theorem 3.3.1
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in [Ta], the measure constructed in this way satisfies the equation

/ dx = TT / dxp
JAK „ Jo,

and may therefore be denoted dx = Y\ dxp.
Suppose that the local measures dxp are chosen in such a way that

dx = 1.
AK

Define ([De3] (3.11.3))

E(c,ip,dx) :=

where the local constants E(cp,ipp,dxp) are denned by the local functional
equation (4.11).
Since the dxp were chosen in such a way that Jo = 1 for almost all p,
(3.11.3) in [De3] yields that almost all factors in the product are equal to 1.

Proposition 4.3.3 ([De3] (3.11.3)). E(c,tp,dx) is independent of the
choice of xp and of the. decomposition dx = Y\p dxp, so that we can write

E(c) := E(c,ip,dx).

We have the functional equation

where c(a) := \a\c~1(a) and \a\ := Y\p |fl|p for &ny adele a = (ap)p-

4.3.4 The local L-function and local epsilon constant
of a higher dimensional representation

Let L/K be a finite Galois extension of local fields, in the sense of
Definition 4.2.1. Let G be the Galois group and / the inertia group of
L/K. Let l/k denote the corresponding extension of residue class fields,
and let q := \k\. Let V be a complex representation of G. Then we define
the local L-function of V as follows, where t is a complex variable.
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L(V, t) := det(l - FtlV1)-1, (4.12)

where T G G is a geometric Frobenius, i.e. the inverse of an automorphism
inducing the map x i—• x9 on the residue field of L. Furthermore, we put

When we are talking about L-functions, then we always write down the
variables, i.e. we write L(V,t) and l(V) rather than L,l, which should
avoid confusion with the notations L, I for a local field and its residue class
field.

Remark 4.3.4. Suppose V is one-dimensional, and let x be the character
afforded by V. Let XK denote the multiplicative character of K* that x
induces via local class field theory. Let l/k denote the extension of residue
class fields for L/K. One can show that the norm residue symbol
(—,L/K) : K* —»• G&\(L/K) composed with the projection
GSL\(L/K) —> Gdl(l/k) must map a prime element TTR- of K to either the
Frobenius of l/k or the geometric Frobenius (see [De3] (2.3) and [Wei]).
Deligne normalizes the norm, residue symbol in such a way that the prime
elements correspond to the geometric Frobenius. With this choice, we
obtain

l(V) = 1 if xU ^ 1, i.e. if XK\G*K^ 1

Hence in this case, l(V) = 1(XK) where the latter Z-function is defined by
Formula (4.10). In other words, the definition (4.10) of the local /-function
of quasi-characters is compatible with the definition (4.12) of the local
/-function of a representation.

Proposition 4.3.5 ([De3] (3.8.1) and (3.8.2)). (a) For any short
exact sequence

0 -> V -» V -»• V" -» 0

of complex representations of G, we have

(b) Let H < G, H = Gal(L/Z/) for some intermediate field L', and let
W be a complex representation of H. Then we have
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where the first I -function is taken with respect to the extension L/K
and the second I -function with respect to the extension L/L'.

(c) Let H, V as in part (b),. let a 6 G, Ha := a'1 Ha,
Ha = G&1(L/L") for some intermediate field L". Let Wa denote the
vector space W with the action of Ha given by

a~1ha.w := h.w for allh E H,w e W.

Then we have

where the first I -function is taken with respect to the extension L/L"
and the second I -function with respect to the extension L/L'.

Proof. Parts (a) and (b) are (3.8.1) and (3.8.2) in [De3]. For part (c), we
consider

=det

and
= det ( 1 - T\ ( Wa

It is easy to show that

It is then easy to check that the eigenvalues of T on WI^LIL'^ are the same
as those on (Way(LlL"), so the determinant of 1 — T on both spaces is the
same. The assertion follows. •

Theorem 4.3.6 (cf. Theorem 4.1 in [De3]). There is a unique function
e, satisfying 1.-4- below, which assigns a number e(V,ip,dx) 6 C* to any
isomorphism class of sextuples (L/K,ip,dx.V, p) consisting of an extension
of local fields L/K, a nontrivial additive character ip : K —> C*, a Haar
measure dx on K, a finite dimensional complex vector space V and a
representation p : G := G&\(L/K) —> GL(V).

1. For any short exact sequence

0 -» V' -» V -» V" -+ 0
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of complex representations of G, we have

• e(V, tp, dx) = e(V',ip, dx)e(V"}7Jj, dx).

Hence e is well-defined on virtual complex representations of G, i.e.
on elements of the Grothendieck group K0(C[G]).

2. For any a 6 R, we have

e(V, ip, adx) = adimVe{V, ip, dx).

In particular, if V is a virtual representation of dimension zero, then
e(V,ip,dx) =: e(V,ip) is independent of dx.

3. Let H < G, H = Gai(L/Z/) for some intermediate field L', and let
W be a virtual representation of dimension zero of H, i.e. W is an
element of K0(C[G}) that is mapped to zero under the homomorphism
K0{€[G]) -* Z , [M] ̂  dime M. Then we have

4- If dim V = 1 and \ '• G —> C* is the character afforded by V, then
we have

Here XK denotes the multiplicative character K* —>• C* that x
induces via local class field theory, and E(xK^'lP,d^) denotes the
constant from the local functional equation (4-11).

4.3.5 The global L-function of a higher-dimensional
representation — and its functional equation

Let L/K be a finite Galois extension of global fields, of group G. Let V
be a finite dimensional complex representation of G. For every place p of
K. we define

Vp:=Res°p(V),

where Gp = Gal(Lp/Kp) is the decomposition group at an arbitrary but
fixed place lying over p, and Lp is the completion of L at that place.
Furthermore, we write Ip for the inertia group of Lp/Kp and ̂ "(p) for a
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geometric Frobenius of Lp/Kp. The global L -function is then defined as
follows: ([De3] (5.11.1), [Ch])

L(V,t) :=l[L(Vp,t) = JJdet(l - ^ ( p ) ^ " ^ / " ) - 1 (4.13)
p - p

Note that L(V, t) does not depend on the choice of a "place lying over p"!
Furthermore, we put

l(V) := L{V,1). (4.14)

Lemma 4.3.7. (a) For any short exact sequence

of complex representations of G, we have

(b) Suppose now that L, K are function fields in one variable over a
finite field Fg . Let H < G, H = Gal(L/L') for some intermediate
field V, and let W be a complex representation of H. Then we have

where the first I -function is taken with respect to the extension L/K
and the second I -function with respect to the extension L/L'.

Proof, (a) Part (a) follows readily from the definition and Proposition
4.3.5 (a).

(b) Let X be a nonsingular projective curve over ¥q with function field
L, and let Y := X/G, with function field K. By definition
(Formulae (4.13) and (4.14)), £(Ind^(VF)) is equal to a product of
local I -functions as follows:

l(lndG
H(W)) = n I ( Resgp(Ind£(WO) )= J ] l ( Resg.(Indg(W)) ),

p place of K Re\Y\

where for any R G Y, R denotes an arbitrary but fixed preimage of
R on X.
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For every RE \Y\, let TR be a system of representatives of the
H — GR-double cosets, i.e. TR is such that G can be written as a
disjoint union

G = U HTGR.
T€TR

This means that the G-orbit of R G \X\ is the disjoint union of the
if-orbits of the points T(R) , r G TR, i.e. we have a bijection between
TR and the closed points of the curve Z := X/H which lie above R.

By Mackey's subgroup theorem (Theorem 10.13 in [CR]), we have

Resg.(IndG
H(W)) = ] T Ind£?nG. ResflnGj.

T{R)

reTR

Hence we have

( IndJ^ Resg . (W) )T .

I ( Resg.(Indg(W)) )= ( ( •£ (Ind°;*ResT"(S)(W) ) ^

= n
= TT I ( Ind2r(A) ResS (W) ) by Proposition 4.3.5 (c).

1 1 V Hr(R) H-r(R)K ' ) J F V '

It follows that

by Proposition 4.3.5 (b)

D
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Let ip = (ipp), dx = Y\p dxp as in Subsection 4.3.3. Then we define the
global epsilon constants as follows. ([De3] (5.11.2))

e(V,x/>,dx):=Y[e{Vpitl>p,dxp),
p

where e(Vp, ipp, dxp) are the local epsilon constants from Theorem 4.3.6.

Proposition 4.3.8. e(V,il>,dx) is independent of the choice of ip and of
the decomposition of dx, so that we can write

s(V):=e(V,i>,dx).

If L,K are of positive characteristic p, then we have the functional
equation

L(y,l) = e(V)L{Y',^), (4.15)

where V* denotes the contragredient of V.

This proposition follows from the proof of 5.11 in [De3]; in particular, the
functional equation (4.15) is Formula (5.11.3) in [De3].

Remark 4.3.9. The functional equation (4.15) is part of the Weil
conjectures, which are no longer conjectures - the proof of the most general
case was completed by Deligne in [Del] and [De2] - and play a very
important role in algebraic number theory. The Weil conjectures also state
that the global epsilon constants are always algebraic numbers, i.e. that
they lie in Q*. For the special case where L/K is a cyclic extension, we
will see this more explicitly in Subsection 4.5.1.

From the functional equation (4.15) and from Lemma 4.3.7, we easily
deduce the following properties of the global epsilon constants.

Lemma 4.3.10. fa) For a short exact sequence

, 0 -> V -» V -» V" -> 0

of representations, we have

e{V) = e{V')e{V").

(b) For H < G, defining an intermediate field V, and V a virtual
representation; we have

e(lndG
H(V)) = e(V).
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4.4 Chinburg's theorem

Let 7r : X —> Y be a tamely ramified' cover of nonsingular, geometrically
irreducible projective curves over a finite field F m of characteristic p, such
that the corresponding extension of function fields, denoted L/K, is a
Galois extension, of group G.

Definition 4.4.1. The equivariant Euler characteristic of the de Rham
complex of X/Y is defined as

4(X/Y) := [H°(X,OX)} - [H\X,OX)\ G KO(G,WP).

By Theorem 2.4.10, we may view ip(X/Y) as an element of the
Grothendieck group ifo(Fp[G]) of projective Fp[G]-modules.

Remark 4.4.2. In the literature, depending on the author, the notation
ip(X/Y) can mean the Euler characteristic in i^0(Z[G]), in K0(Fp[G]) (cf.
[Ch]), or in K0(Fm[G]) (cf. [Er]).

In order to state Chinburg's formula for ip(X/Y), we first have to explain
the "Horn description" of the Grothendieck group K0(Fm[G]).
For k = Q, C, or Qp, let RG,K denote the ring of virtual characters from
G to K, i.e. the ring formed by linear combinations of characters afforded
by if-representations of G.

Proposition 4.4.3 (Horn description). Let W be the Witt ring of F m .
Fix an embedding of W into Qp, and let F(W) be the fraction field of W.
Let QF(W) '•= G&\(QP/F(W)). Then there is an injective homomorphism

A : K0(Fm[G}) -> EomnF{W)(RGAp, Q*p)

as follows:
Suppose P is a finitely generated projective ¥m[G]-module. Then P is
isomorphic to P/pP for some finitely generated projective W[G] -module
P. This follows from the Cartan-Brauer triangle (see §^5^4 in [CR], in
particular Proposition 18.5).
Let now X§p®wp be the character of the Qp -representation Qp <S)w P •
(The tensor product is defined via the embedding W —> Qp fixed earlier.)
Note that Qp (8>vv P is the image of P under the map e from the
Cartan-Brauer triangle (see (18.3) in [CR] for the definition of e).
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Write XQP®WP as a sum of irreducible characters in RQ.Q ,

(4.16)

then A(P) is the element of HomnF(w.)(i?G.Qp,Q*) given by

for any irreducible character x S RG,QP •

Proposition 4.4 in [Ch] shows that this construction does define a (uniquely
determined) homomorphism A, which appears in,his formula for the
equivariant Euler characteristic.

We are now in position to explain Chinburg's formula. Throughout the rest
of this whole chapter, we consider the algebraic closure Q of Q as a subset
of C and fix an embedding jp : Q —»• Qp. We also write jp for the induced
map i?c,Q ~^ R-GMp °f character rings. Since all p-adic virtual characters
of G take values in Q, this map is an isomorphism. Similarly, the
embedding Q —> C induces an isomorphism between RQ.Q a n d RG:G •

RGtc

Theorem 4.4.4 (Theorem 5.2 in [Ch]). Let \v £ RG,C be the character
of the complex representation V of G, and let V* be the dual
(contragredient) of V . Let A : K0{Fp[G}) --> RomnF{W){RGAp, Q*p) be the
injective homomorphism from Proposition 4-4-3 relative to the prime field
F p . Let | \p be the extension of the standard absolute value on Qp to Qp.
Then we have

A(iP(X/Y)){jpXv) = \3j£(V*YX- .

In particular, \jP{s{V*)~l\p is an integral power of p and hence an element

o / Q .
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Note that in order to formulate this theorem, it is crucial that the epsilon
constants are algebraic numbers, so they lie in Q and we can consider their
image in Qp under the embedding j p , to which we can then assign a p-adic
value.
Next, we state Erez' reformulation of Chinburg's theorem.

Definition 4.4.5. For any g G G, let

• jP(x(g)) e Qp,

where the sum is taken over all irreducible complex characters of G, and

C(g) := Trace(g\iP(X/Y)) e Qp,

where Trace(—,.—) denotes the modular character denned in Subsection
-4.2.3.

Theorem 4.4.6 (Theorem 2.1 in [Er]). For any g 6 G of order prime
to p, we have

S(g) = C(g).

Lemma 4.4.7. Theorem J^.4-6 and Theorem 4-4-4 are equivalent.

Proof. Assume first that Theorem 4.4.4 holds for any complex
representation V of G.
In analogy to Formula 4.16, we write

mxX(g), (4.17)
X irred.

where x r u n s o v e r the irreducible Qp-representations of G.
In the following calculation, x r u n s n r s t o v e r ^ne irreducible complex
representations of G and then later over the irreducible Qp representations
of G. The map jp fixed earlier maps these 1-1 to each other.
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X complex irr.

= - ] T \ogp(A(^(X/Y))(jp(x)))(jPx){9) by Theorem 4.4.4 for each X
X complex irr.

= - E iogp(A(v(x/y))(x))(x)(9)
X p-adic irr.

= - E logP(P~mjpX) ' x(flO by definition of A
X p-adic irr.

= E mxX(5)
X p-adic irr.

= Trace{g\il>(X/Y))

= C(g)

Assume now that Theorem 4.4.6 is true, that is,

for all g G Greg. With the notation (4.17) from above, we have the
following, where all sums run over the irreducible complex characters:

'by Theorem 4.4.6

The first and last line are just the characters of two Qp- representations of
G. Since the above expression holds for any g e Greg, the representations
are equal, and by taking the character pairing with every irreducible
character, we see that the coefficients are equal.
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Hence we have

-v

and so

for any irreducible character x • It follows from the proposition below that
Theorem 4.4.4 then holds for all characters afforded by complex
representations of G. •

Proposition 4.4.8. To prove Theorem 4-4-4> it suffices to prove it for G
cyclic and V irreducible.

Proof. We use Artin's induction theorem (Theorem (15.4) in [CR]): Any
character of a finite group can be written as a rational linear combination
of characters induced from characters of cyclic subgroups, i.e.

x= NT mHInd%(xii)
H<G cyclic

with coefficients m# 6 Q.

Equivalently, there exists d 6 IN such that we can write

d-X=. J2 nHInd%(XH) (4.18)
H<G cyclic

with integer coefficients n# 6 Z.

Since induction commutes with direct sums and since every character is a
Z-linear combination of irreducible ones, we may assume that the XH are
irreducible characters.

With the notation of Formula 4.18, we get

e{x)d = e{d • x) by property (Gl) from Lemma 4.3.10

H<G cyclic

= TT e(Ind^XH)nH by property (o) from Lemma 4.3.10
H<G cyclic

= TT e(xn)nH by property (b) from Lemma 4.3.10.
H<G cyclic
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Hence the d-th power of the right-hand side of Chinburg's theorem can be
written as follows:

H<G cyclic

On the other hand, because A(ip(X/Y)) is a homomorphism, we have

H<G cyclic

H<G cyclic

(^(X/Y)){lndG
H(XH)))nH

H<G cyclic

The last step is due Frobenius reciprocity; see also Proposition 4.7 in [Ch].
Assume now that Chinburg's theorem holds for cyclic groups. Then we have

for all cyclic subgroups H of G. '
This together with the above calculation yields

(A(v(x/r))(x) )d= J ] HxH)\-p
nH = HxYX

H<G cyclic

Hence the d-the powers of both sides of Chinburg's theorem are equal.
Since the p-adic absolute value | \p only takes values in the positive
rational number Q+ (even when it is extended to Qp), both sides are in
it is uniquely determined by its d-th power. Hence we have

and Theorem 4.4.4 holds. •

Remark 5.4 in [Ch] yields another useful reduction:

Lemma 4.4.9. In order to prove Theorem 4-4-4 for nonsirigular,
geometrically irreducible projective curves over a finite field F m , it suffices
to prove it for the case in which the underlying field is a prime field ¥p .
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Proof (Chinburg). Let p be the characteristic of F m . Let X —> Y be the
cover X —»• Y
Then we have
cover X —• Y viewed as a cover of curves over F p rather than over F m

in KO(WP[G\).

Let a := [Fm : Fp], and let V ve a complex representation of G. Let
L(V, t). denote the Artin L-function associated to V and to the cover
X/Y. Let L(V,t) be the Artin L-function associated to V and to the
cover X/Y. One easily verifies that

L(V,ta) = L(V,t).

It follows that the corresponding epsilon constants are equal.
So if theorem 4.4.4 holds for the cover ,X —»• Y, then it also holds for the
cover X -> Y. D

4.5 Proof of Theorem 4.4.6

In this section, we prove Theorem 4.4.6 for the case of curves over F p , and
for a cyclic group G. By the reductions above, this is enough to prove both
Theorem 4.4.4 and Theorem 4.4.6 in the general form quoted earlier.
As before, L, K denote the function fields of X, Y respectively, and p
usually denotes a place of K.
We choose local additive characters ipp : Kp —• C* that satisfy the following
conditions.

• For every ramified place p, we have ipp\mf, = 1, such that ipp induces
an additive character ipkp of the residue class field kp. We require
this induced character to be of the form

where CP '•— e ~ and Tr(x) = Tracefcp/Fp(^) •

• For every unramified place p , we have 4>p\of = 1-
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These local characters can then be "glued together" to an additive
character ip of AK via the assignment

Since there are only finitely many ramified places and therefore only finitely
many p with ipp{ap) ^ 1, the product is finite, so tp is well-defined.
Now we choose local Haar measures dxp that satisfy

/ dxp = 1 for all places p.

Furthermore, we write
dxp := qdxp,

where q is the number of elements in kp. One easily checks that

Jm,
dxp = 1

imp

(see also [Wei]). Moreover, the measure

dx ~~ \ \ QjXp

p

on A/f satisfies
r

dx = 1.
JA;

4.5.1 The left-hand side of Theorem 4.4.6 for g ^ id

Assume that g is an element of G whose order is coprime to p. and that g
is not the identity. By definition, we have

S(g) = -
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where the sums run over the irreducible complex characters of* G, the
product in the second line runs over the finite places of K = K(Y), and xp
denotes the restriction of x to Gp. (Cf. Subsection 4.3.5.)
If p is an unramified place, then for any character x i the restriction xp
and the corresponding character XKP of K* are "unramified" in the sense
of Deligne (2.3 in [De3]). It then follows from Formula 5.9 in [De3] that

For Formula 5.9 in [De3] to hold, we need that Jo dxp = 1, which is true
because of our choice of dxv.
Hence only the ramified places contribute to the product above, so the
formula remains true if p runs only over the ramified places.
Let now p be a ramified place. Let V be an irreducible representation of
G, affording the character x • We define the "twisted epsilon constant"

by
det(-Frob(p),1/p

t>) .

using the same notations as in the definition of the Artin L-function, see
Formula (4.13).
The p-adic valuations of s(xp,ipp,dxp) and £o(Xt>>V'p>ckcp) a r e the same.
Indeed, since the determinant term is a product of /p-th roots of unity, it
has valuation zero.
Hence the left-hand side of Theorem 4.4.6 becomes

p ramified

X p ramified

X P ramified

VP{ 3peo(xp, Vv dxp) J

In [De3], Deligne expresses the twisted epsilon constants as a Gauss sum.
We explain the terms in this Gauss sum before stating it.
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Local class field theory yields, for every place p of K{Y), a surjective
homomorphism

a 'k; = o;/mp -> ip

(see Subsection 4.2.2). The existence of-the surjective homomorphism a
implies that #&;* is divisible by ep.
As explained in Subsection 4.2.2, if x is a character of G or Gp. then x
defines a character Xkv of k* making the following diagram commute:

c*
The character Xkp only depends on the restriction of x to /p , and thus is
trivial if this restriction is.
Recall that we had chosen the local additive characters ipp : K —> C* in
such a way that ipp\mp = 0 for every'place p of if. Hence for every p, we
have an additive character if:^ '• kp —> C* making the following diagram
commute.

kp

By (5.10) in [De3], the twisted epsilon constant defined above can be
written as a Gauss sum as follows:

(4.19)

(With Deligne's notation, this Gauss sum would be denoted — T(xkp,'ipkf,) •)
In this formula, we have used the measure dxp rather than the measure
dxp, because (5.10) in [De3] requires the measure to be normalized in such
a way that the volume of the maximal ideal is equal to 1. Now since
dxp — q dxp, the second property of the local epsilon constants (cf.
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Theorem 4.3.6) yields that

Vv> ~dxp)

It follows that

vP(zo(Xp,^pidxp)) = -[kp : Fp] + up(r(xfcp)).

Remark 4.5.1. Since the Gauss sum in Formula (4.19) is a sum of products
of roots of unity, it is an algebraic number. Hence Formula (4.19) shows
that the local epsilon constants at ramified places are algebraic numbers.
As seen above, they are equal to 1 at the unramified places, so the product

is an algebraic number, too. The fact" that both the global and local epsilon
constants are algebraic numbers means that "taking the p-adic valuation of
their image under jp " always makes sense, a fact that we have already been
using above.

For the left-hand side of Theorem 4.4.6, we can now write

- E E (-[kp-Fp} + vv
X p ramified

X P X P

X X P

• F l i> • •"• p\ Jp

P X P

Z.^/ Z—/ p

x P
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Here we have used that g is not the identity, and hence Trace(g|C[G]) = 0..
Theorem 27 in [Fr] gives a formula for the p-adic valuation of the Gauss
sums T(X/CP) , which we will now explain. The same result can be found in
[La], see Theorem IV.3.9 on p. 94 in [La] and the lemma on p. 96 in [La].
Let q be the order of kp. For any h € {0, . . . , q — 2}, let s(h) denote the
sum of the p-adic digits of h. For any x € Q, let {x} denote the
fractional part of x, i.e. {x} G Q, 0 < {x} < 1 and x = {x} mod Z. For
any h G {0, . . . , q — 2} , define a rational number r(h) as follows:

i=i

Finally, we define the integer / x p e {0, . . . , q — 2} as follows.
The character values of Xkp '• kp —* C* are (q — l)-st roots of unity in Q,
and the embedding jp : Q —>• Qp maps them to (g — l)-st roots of unity in
Qp., Writing [iK,q-i for the group of (q — l)-st roots of unity in any field
K, we obtainthe following commutative diagram:

k*ftp

k*ftp

Xkp

Xkp '
*• ^ Q . g

*. J j )

— 1 9- A1! P.9-1

Let now M C Qp be a p-adic number field with residue field F q . Then M
contains all (q — l)-st roots of unity; in other words, we have
ÂQ ,9-1 = fJ>M,q-i • As seen in Subsection 4.2.3, "reduction modulo m^"
defines an isomorphism (the inverse of the Teichmiiller character)
T~l : fJ*M,q-i —* MFg.g-i = F*. Write c for the homomorphism kp —> F*
making the following diagram commute:

If we now identify kp with F g , then c can be viewed as an automorphism
of the group F*. Since F* is a cyclic group, this means that there exists a
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unique / = /XiP 6 {0, . . . ,q - 2} such that c(x) = x~f for all i 6 F * . In
other words, there exists a unique / = /X;P such that the following diagram
commutes.

We are now in position to state the expressions for the p-adic valuation of
the Gauss sum given in [Fr] and [La]):

vP ( JPr(Xkp) ) = r(/Xit)) - s(fXtP) • - J - ' (4.20)
p — l

This also shows that the quantities s(fXtP) and r(fXtp) appearing in this
formula do not depend on the choice of the identification A;p = Wq.
Using the first part of Formula (4.20) (we will not need the second part), •
we can write

4.5.2 The right-hand side of Theorem 4.4.6 for g ̂  id

We now consider the right-hand side of Theorem 4.4.6, again in the case
where g ^ id. Since Trace(g'|Fp[G']) = 0, the equivariant Hurwitz formula
(Formula (2.16) in Theorem 2.4.11) yields that

-C(g) = -Trace(g\X(G,X,Ox)) = Trace(g\NG,x).

Recall that NQ,X denotes the ramification module, denned by Formula
(2.15) in Theorem 2.4.11, which is a projective module encoding the
ramification of the cover TT : X —>• Y.

By Formula (4.7) and by the relations between the various character rings
developped earlier, we have

Trace(-|iVG,x) = ^ (X,Trace(-|iVGiX)) • x.
X6Hom(G,Q;)
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Here we have used that G is cyclic and Qp is algebraically closed, so that
the irreducible (modular) characters from G to Qp are just the
homomorphisms from G to Q*.
Let n denote the order of G. Using the definition of NG,x (Formula (2.15)
in Theorem 2.4.11), we obtain

-C(g) = Trace(g\NG,x)

X€Hom(G,Q;)

^ E
Pe\x\ d=i

^ E E^-(x|/p;Trace ( -
x Pe|x| d=i

The last step in this calculation is due to Frobenius reciprocity. Up to the
penultimate line, (—, —) denotes the pairing of modular characters of :
Fp[G]-modules: in the last line, it denotes the pairing of modular characters
of Fp[/p]-modules. Trace.(—|—) denotes modular characters of
Fp[G]-modules and Fp[/p]-modules, respectively.
By Lemma 2.4.14, every closed point R on Y has exactly ^rjr preimages

-R** Ft.

on X, where R denotes an arbitrary but fixed preimage. We can thus
rewrite the above as follows.

es-1

(4.22)
x Re\Y\ R-

Let now P be a closed point on X. Our next aim is to compute the
modular characters Trace(— |(mp/mp)'8"i) (d = 1,. . . ,ep). Let XP denote
the "naive" character XP '• Ip ~^ k(P)*, defined by

a.x = xp(a) " x f°r a u x € mp/rrip, a G G.

Furthermore, let R := TT(P) denote the image of P on Y. As explained in
Subsection 4.2.2, local class field theory gives a surjective homomorphism
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. • a : Ip -> k{R)\

so fc(i?) contains the ep-th roots of unity. Hence XP factors through
k(R)*:

k{R)*

The character
XR- Ip -> fc(^)*

which makes the above diagram commute determines a one-dimensional
k(R) -representation of Ip, which we denote Vp.i. There obviously is an
isomorphism of k(R)[Ip]-modules

fp

For any d G { 1 , . . . , ep — 1}, the character xp '• Ip ~* k(P)* also factors
through k(R)*, defining a /c(i?) -module Vptd, and we have

fp

We will now compute the modular character of Vpj viewed as an Fp-vector
space. To this end, we note that the eigenvalues (and their multiplicities) of
a group element a on Vptd viewed as an Fp-vector space are equal to the
eigenvalues of a ® id on the tensor product Vp^ ®wp k{R) viewed as a
k(R) -vector space. The latter space is described by the following lemma.

Lemma 4.5.2. For d = 1,..., ep — 1, we have

\k{R):Wp]

as k(R)[Ip] -modules.
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Proof. We define a'homomorphism of k(R) -vector spaces

[k(R):Wp]

¥pk(R)^ 0 k(R)= 0 k(R),
aeGal{k(R)/Wp) i=l

a (8) b h-> (a (a ) • 6 ?

This is an isomorphism of fc(i?) -vector spaces, by the Galois descent lemma.
We now define a homomorphism of k(R) -vector spaces

[k(R):¥p]

Since Vp^ is one-dimensional over k(R), it follows from the bijectivity of (p
that if also is an isomorphism of vector spaces over k(R) . It is compatible
with the action of Ip on both sides, since the following diagram commutes
for every cr E Ip, « 6 Vp^ and b G k(R).

cr®id (<T,...,<T)

a{v)®b\ ( <J{V)®P' • b ) .

•
We now define a character XP '• Ip ~^ Qp a s follows. We identify k(R) with
F g , where q = #k(R), and write T for the Teichmiiller character
k(R)* —> Q* (cf. Subsection 4.2.3). Let XP denote the composition

XP

Then by the above considerations, in particular by Lemma 4.5.2, we have
for d = { l , . . . , e P - l } :

[k{R):Fp]

Trace (-\{mP/m2
P)9d)= V) fPxf •
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We can now plug this into Formula (4.22) and obtain

i £ d- (JPx\i,,
X R€\Y\ R J R d=l

eR-l [k(R):Wp}

X R<E\Y\ R R d = l »=1

e A - l .

£ / d E
x Re\Y\ RjR d=i i=i

[fc^Fp]

T- E "<
x fle|y| rf=i H i=i

By Proposition 2.3.1-4, for every P G \X\, XP generates the character
group Hom(/p, k(P)*). Therefore XP generates the character group
Hom(/p, Q*). So for each x € Hom(G, Q*), there is exactly one
d' = d'{Xi P) S {0, . . . , ep — 1} for which the scalar product (x|/P, XP') li

equal to 1; for all other values of d' in the range from 0 to ep —'1, the
scalar product is equal to zero. Hence the scalar product (x\iP,Xp ) is
equal to 1 if dp1 = d'(x,P) mod ep, and 0 otherwise. If we define

I(d,P) :={ i G {l,...,[k(R) : Fp]} : dp1 = d'(x,P) mod e P },

then we can write

= E E £ ^
x /ee|y| d=i R

4.5.3 Completion of the proof for g ^ id

Let x : C —»• C* be an irreducible character, let P be a closed point on X,
and let p be the place of K = -fC(F) corresponding to the image of P in
Y, which we will denote R. As defined in the previous subsection, let
d,' = d'(x, P) G {1, • • -, eP - 1} such that x\iP = Xp • We identify kp_ with
Vq, for q := #fcp, and write T for the Teichmiiller character k* —> Q*
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Proposition 4.2.3 implies that,both triangles in the following diagram
commute,

Here the diagonal arrow represents the character XR' , where XR is defined
as in the previous subsection.
Recall that in Subsection 4.5.1, we had denned fxP 6 {0, . . . ,q — 1} in such
a way that the following diagram commutes:

lr* a T«,p =»- ip

fx.P \ I X\lp
Y

Kp —TjT*' Hp

Here the diagonal arrow represents the character Xk? • Given that
x\ip = xP' , it follows from the commutativity of these diagrams that the

d'(q-l) '

assignments x t—> x ep and x i—* a;-'x'p define the same automorphism of
fcp . Since the automorphism group of k* is cyclic of order q — 1, we
conclude that

/ x p = mod (q — 1).

Thus we have

d= EE (T^f }=q

For d G { 1 , . . . , ep — 1} define

J(d,P):={ je{l,...,[k{R):Wp}} : d'p> = d mod eP

and, as at the end of Subsection 4.5.2,

I{d, P) :={ i G { 1 , . . . , [k(R) : Fp]} : d' = dp' mod eP } .
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Lemma 4.5.3. The two index sets have the same cardinality,

Proof. L e t i E { 1 , . . . , [k(R) : k]}, a n d le t j : = [k(R) : W p } - i . T h e n i l ies
in l(d, P) if and only if j lies in J(d, P). Here is a short proof of this fact:

i e l(d, P) <(=> d! = dp* mod eP

4$ d' pi = dpl+j mod eP ', because (p, ep) — 1

<=> d' pi = d mod eP because pl+j = q = 1 mod eP

It follows that I(d, P) and J{d, P) have the same cardinality. •

We can now prove Theorem 4.4.6. We have

by Formula (4.21)
x P

= - V V V { — } -x(g) by Formula (4.24)
x R£\Y\ i=i R

Hence

=

S(g)

v^ \~̂  v^
X R£\Y\ d=l R

C(g)

— C(g) as required

by Lemma 4.5.3

by Formula (4.23).
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4.5.4 Proof of Theorem 4.4.6 for g = id

In the case where g = id, we have X(Q) = 1 f°r anY irreducible
character x • Hence we have

S(id) =-

/ by Lemma 4.3.10

= -Vp(Jpe(€[G}))

= -«p(jpe(Indf (C)))
—-vp(jpe(C)) by Lemma 4.3.10

In order to compute the epsilon constant of the trivial representation C.
note that the L-function L(X,C,t) with respect to the trivial group {1} is
the same as the non-equivariant Zeta function Z(X,t) as defined by Milne:

L(X, C,t)= II (1 - tW)**])"1 = Z(X, t)

(cf. proof of Theorem 12.4 in [Mi]). The (non-equivariant) Weil conjectures
yield that Z(Y, t) satisfies the functional equation

Z(X,—) = ±pex/2texZ(X, t).
pt

where ex = 2<?x — 2 is the topological Euler characteristic of X (cf. (W3)
at the beginning of §VI.12 in [Mi], or Section 2a in [Er]).

Setting t := 1 and comparing with the functional equation (4.15). we obtain

e(C). = ±pe*/2

and thus
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It is then easy to check that Trace(id | V) = dimFp(^) for any
Fp[G]-module V. Hence we have

C(id) =
= dimFp(H°(X, Ox)) - dimFp(H\X, Ox))

r

= S(id)

as required.
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