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GENERALIZED OPERATIONS ON HYPERMAPS 
by Anton Prowse 

Just as a map on a surface is an embedding of a topological realization of a graph, 
a hypermap is an embedding of a topological realization of a hypergraph. Well-known 
transformations of maps and hypermaps (such as the operations which interchange 
hypervertices, hyperedges and hyperfaces) arise naturally in the algebraic theory of 
maps and hypermaps which we summarize in Chapter 1. 

There is a group of six invertible topological operations on maps which are induced 
by automorphisms of a certain Coxeter group that can be identified with an extended 
Fuchsian triangle group. In Chapter 2 we study how these operations behave with 
respect to the property of orientability of maps, and we determine the orbits under the 
group of operations on reftexible torus maps of Euclidean type. 

The corresponding groups of operations on hypermaps are infinite, and they par
tition the sets of symmetrical hypermaps having the same automorphism group into 
orbits. In Chapter 3, given a group from one of several infinite families (cyclic, dihe
dral, affine general linear), we use the theory of T -systems to examine how the size of 
the orbits increase with the size of the group. 

In Chapters 4 and 5 we generalize the concept of (hyper)map operations by con
sidering functors induced by more general homomorphisms between triangle groups 
and extended triangle groups. In the Fuchsian and Euclidean cases we determine the 
automorphisms, and then we make use of the classification of two-generator Fuchsian 
groups to determine the remaining homomorphisms subject only to the constraint that 
they send (possibly infinite-order) rotations to rotations. This gives a classification 
of such functors, some of which correspond to well-known transformations (such as 
truncation, induced by a triangle group inclusion) while others are new. 

The concept of a 2-dimensional algebraic map can be generalized to n dimensions, 
and the group of operations on n-dimensional maps has order 8 for n > 2. In Chap
ter 6 we give a combinatorial description of these operations, and examine the orbits 
of small 3-maps and of certain reftexible n-torus maps. We then consider a further 
generalization of operations as isomorphism-induced equivalences between categories 
of different map-like objects. In particular, we exhibit a representation of orientable 
3-maps without boundary by (unrestricted) hypermaps, and another of general 3-maps 
by a certain family of maps. 
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I 1 Chapter 

Introduction 

1.1. Orientable maps without boundary 

1.1.1. Two different viewpoints 

Topological maps 

Initially, we define a map vii to be a connected graph (J (possibly with loops, multiple 

edges and free edges) embedded without crossings in a connected, orientable surface 

S without boundary, thefaces of vii (the connected components of S\(J) being home

omorphic to an open disc. This definition is widened in § 1.2. 

vii has type (m, n) if m and n are respectively the least common multiples of the 

valencies of the vertices and faces. We say that vii has finite type if m and n are 

finite, and that vii is finite if the total number of vertices, edges and faces is finite (or 

equivalently, if the underlying surface is compact). Further, vii has type dividing (a, b) 

if m I a and nib. 

Algebraic maps 

Each topological map vii can be described by means of two permutations Po, PI of its 

set Q of darts, or directed edges: each non-free edge carries two darts (one for each 

incident vertex), and PI is the permutation transposing each such pair while fixing the 

single dart carried by each free edge. Around each vertex v of vii, the orientation of S 

imposes a cyclic order on the darts directed into v, and Po is the permutation with these 

as its disjoint cycles. The cycles of Po and PI thus correspond to the vertices and edges 

1 



1.1. Orientable maps without boundary 2 

of JIl, while the cycles of P2 = (POPIt i correspond to the faces, again following the 

orientation. Since () is connected, Po and PI generate a transitive group G ~ So., the 

monodromy group of JIl. Thus JIl determines an algebraic map, that is, a transitive 

permutation representation IT: ~/ ~ G, ri H Pi of the cartographic group 

On the other hand, every map arises from some algebraic map, and so we have a 

correspondence which forms the basis of a unified theory of maps developed in [31]. 

We give here a brief outline of some of the fundamental aspects of this theory. 

1.1.2. The unified theory of maps 

Triangle groups and universal maps 

If a map JIl has type (m, n) dividing (a, b) then we can equally well represent JIl as a 

permutation representation IT of the group 

Each such group can be represented as a group ilea, 2, b) of conformal transformations 

of a simply-connected Riemann surface X", leaving invariant a triangular tessellation 

of X", 1 the internal angles of each triangle T being ~, ~, ~. Such a group il(mo, m" m2) 

is known as a triangle group, and when"'!" + ...!.. + ...!.. < 1 it is an example of a Fuchsian 
mil 11/1 1112 

group-a discrete group of orientation-preserving isometries of the hyperbolic plane 

1-f. Fuchsian triangle groups have the rigidity property of being determined, up to con

jugation in Aut(1-f) = PSL(2, lR), by the mi. The theory of the geometry of Fuchsian 

groups (see, for example, [1]) has close links with much of the theory of maps, and 

results concerning Fuchsian triangle groups and their subgroups usually have analo

gies in the Euclidean and spherical cases. The union of one of the triangles T with 

its reflection in one of its sides is a fundamental region R for ilea, 2, b). The universal 

map CWl1(a,2,b) of type (a, 2, b) is the map on X" (or on the augmentation of X" by ideal 

vertices in the case that a or b is infinite) whose edges and vertices are the images un

der the action of ilea, 2, b) of the side of T subtended by the angle ~ and the vertex of T 

1 If a or b is infinite then the corresponding vertices of the triangular tessellation are taken to be ideal 
vertices adjoined to !!C. 



1.1. Orientable maps without boundary 

at the angle ~ respectively. We may identify the darts of %'L\(a.2.b) with the fundamental 

region R and its images. 

Map subgroups, paths and coverings 

We define the map subgroup Min 1f2+(a, b) of a map .4t of type (m, n) dividing (a, b) 

to be M = rr-'(Stabc(a)) for some a E .0. It is said to be canonical for.4t in the case 

(m, n) = (a, b). M is uniquely determined up to conjugacy, and it is natural to identify 

.0 with 1ft(a, b)IM via the bijection wg H Mg so that the action of 1ft(a, b) by right 

multiplication on the cosets Mg is isomorphic to its action on .0. In this way, words 

in 1f2+(a,b) correspond to paths through the darts of .4t, with group multiplication 

corresponding to composition of paths. Indeed, a map is essentially equivalent to the 

Schreier coset diagram of the subgroup M of 1f2+ (a,b). 

Map coverings 

For i = 1,2, let Mi be the map subgroup in 1f2+(a, b) for a map~. We say that .4t1 

covers .4t2 if there is a branched covering of the underlying surface of .4t2 by that 

of .4t, which maps the vertices and edges of .4t, onto those of .4t2, branching being 

permitted only over the vertices, midpoints of edges and centres of faces. Then.4t1 

covers.4t2 if and only if M, ~ M2 (up to conjugacy) . 

.4t is covered by ~6t(a.b): it is isomorphic to ~(,'t(a.b)IM, and its underlying sur

face is homeomorphic to :r 1M. Conversely, any subgroup M ~ 1f2+(a,b) is the map 

subgroup for the quotient map ~6'{(a.b)1 M. 

Map automorphisms 

An orientation-preserving automorphism of a map .4t is a permutation ofn preserving 

the relations of incidence; in other words, it is a permutation which commutes with 

Po and PI, or equivalently with G. Automorphisms are clearly determined by their 

effect on anyone dart, and they form a group Aut+(.4t)-the orientation-preserving 

automorphism group of .4t-which is the natural generalization of the rotation group 

of a polyhedron or tessellation. This group is the centralizer Csn(G) of G in So., and 

it acts faithfully and freely on .0. If N'6Y(a.b/M) denotes the normalizer of the map 

subgroup M of .4t in 1f2+(a, b) then Aut+(.4t) can be identified with Nctl'{(a.b)(M)IM; 
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its action on Q can be realized as the action of N<(';/(a,b)(M)/M by left multiplication on 

the set Cf!t (a, b) / M of M -cosets. 

Actions of triangle groups 

We observe from the above remarks that ~(a, 2, b) has two different actions on 0lt''''(a,2,b): 

it acts as the monodromy group (via a right action) and as the orientation-preserving 

automorphism group (via a left action). In this thesis we use the convention that au

tomorphisms of every mathematical object considered are composed on the left, so 

that h 0 k means "apply k then h". Identifying Q with Cf!t(a, b)/M as before, the right 

monodromy action is Mg H Mga while the left automorphism action is Mg H Mhg 

(or equivalently, Mg H hMg since hE N",(M)). 

1.2. Extensions to the theory 

1.2.1. More general surfaces 

Maps on more general surfaces 

Analogous to (and encompassing) the theory of orientable maps on surfaces without 

boundary, a theory of maps on more general surfaces has been established [4]. In this 

theory, the surface S may be non-orientable and may have boundary; the graph g is 

embedded in such a way that vertices and free ends of free edges may be contained 

within the boundary, while no interior point of a (possibly free) edge may be thus con

tained unless the whole of that edge is. Edges which intersect the boundary are called 

boundary edges, while other edges are called interior edges. Faces may intersect the 

boundary in (at most) one component. The set Q now consists of the blades-triples 

consisting of a vertex, edge and face, all mutually incident-and three permutations 

of Q are specified: TO transposes any pair of blades at either end of an edge but on the 

same side of it; TI transposes any pair of blades with a vertex and face in common; T2 

transposes any pair of blades with a common vertex on either side of an edge. Further, 

TO acts by transposing the two blades incident with any free edge whose free end lies 

in the interior of the surface. Each permutation then fixes any blade which does not 

form part of an appropriate pair. Two blades are adjacent if they make up a 2-cycle of 

some Ti. 
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The type of a map is the triple (IT1T21, IT2TOI, IToTd), which coincides with the ear

lier definition in terms of the least common multiples of the valencies of the vertices, 

edges and faces for maps without boundary (but which is slightly more cumbersome 

to describe when boundary is present). 

The algebraic theory 

A correspondence may be established between maps and permutation representations 

of the full cartographic group 

and between maps of type dividing (a, b) and permutation representations of the group 

All of the results for orientable maps without boundary go through with only slight 

modification in this wider theory. We may identify the blades with the triangles T 

discussed in §1.1.2 for oa'll(a,2,b); these are the fundamental regions for 1f2(a,b). While 

we lose the connection with Riemann surface theory, the maps can instead be regarded 

as lying on Klein surfaces. 

A (possibly non-orientable) map has neither boundary nor free edges if and only 

if its map subgroup in 1f2 is torsion-free. Indeed, much of the theory of general maps 

restricts to this smaller category. 

1.2.2. Hypermaps 

Generalizations of maps 

We can go further and remove the somewhat artificial restriction that an edge must be 

at most 2-valent. Informally, an orientable hypermap without boundary is a cellular 

embedding in an orientable surface without boundary of a hypergraph: a set .Q of ele

ments called hyperdarts which has two partitions, the elements of each partition being 

known as hypervertices and hyperedges respectively, with incidence corresponding to 

non-empty intersection. (See [7] for a survey of combinatorial hypermap theory.) Note 

that there is an obvious correspondence between maps and those hypermaps whose hy-
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peredges have valency at most 2. We often describe the hypervertices, hyperedges and 

hyperfaces of a hypermap as the i-components of the hypermap for i = 0, I, 2 respec

tively, and i is called the dimension of the component. 

The Cori and Walsh representations 

Whereas there is a natural topological definition of a map, there are several ways of 

representing an orientable hypermap de on a surface S. The Cori representation [6] of 

orientable hypermaps without boundary uses closed polygonal discs to represent the 

hypervertices and hyperedges. Hypervertices are mutually disjoint, as are hyperedges, 

and hypervertices meet hyperedges at a finite set of points-the hyperdarts (Cori called 

them 'brins'). The hyperfaces are the complementary regions of S, homeomorphic to 

open discs. The orientation of S induces cyclic orderings of the hyperdarts around 

each hypervertex and hyperedge, and these are the cycles of two permutations Po and 

PI; the cycles of P2 = (PoP I t I correspond to the hyperfaces. 

In the Walsh representation [60], an orientable hypermap is modelled by an em

bedding of a bipartite graph as a map J1t. The vertices in one partite set represent the 

hypervertices; those in the other represent the hyperedges; the faces of JIt represent 

the hyperfaces; and the edges of JIt represent the hyperdarts. 

The James representation 

Both the Cori and Walsh representations disguise the clear algebraic triality between 

the i-components. In the James representation [24], a hypermap is modelled as a triva

lent map g on S with the faces labelled i = 0, 1 and 2 so that each edge of g separates 

faces with different labels. The i-components are represented by the faces labelled i. 

When Sis orientable, the hyperdarts are represented by those edges of g which border 

a hypervertex and a hyperedge. The James representation also extends naturally to sur

faces which may be non-orientable or with boundary. As with maps, we must replace 

the concept of hyperdarts (corresponding to hypervertex-hyperedge incidence) with 

that of hyperblades which correspond to hypervertex-hyperedge-hyperface incidence. 

The set .Q of hyperblades is easily identified with the vertex set of g; we label each 

edge of g with the complement of the labels of its incident faces, and for i = 0, 1, 2 

we define Tj to be the permutation of.Q which transposes each pair of hyperblades that 

form the ends of an edge coloured i. (If S has boundary then further conditions have 
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to be imposed on the embedding of g, and the Ti must be allowed fixed points.) 

The algebraic theory 

Every aspect of the theory of algebraic hypermaps follows analogously to the theory 

of maps [59, 8] but using the hypercartographic andfull hypercartographic groups 

and 

and their quotients Jt2+(mo, ml, m2) and Jt2(mo, mJ, m2). 

The definition of type given for general maps is equally valid for hypermaps. The 

Euler characteristic of a hypermap £ on a surface without boundary is No + Nl + N2 - N 

where Ni denotes the number of i-components and N denotes the number of hyperdarts. 

1.3. Symmetry in hypermaps 

A hypermap £ without boundary of type (mo, ml, m2) is said to be uniform if every i

component has the same valency mj for each i. If £ is of finite type, then it is uniform 

if and only if its canonical hypermap subgroup is torsion-free; and if £ is finite, then 

it is uniform if and only if its canonical hypermap subgroup is a surface group. 

A hypermap Jt is reflexible if its full automorphism group Aut(Jt) (consisting 

of those permutations of the hyperblades which commute with the permutations TO, T) 

and T2) acts transitively and hence regularly on Q. Note that every reflexible hyper

map without boundary must be uniform; in fact reflexible hypermaps have the greatest 

possible degree of symmetry. Equivalent ways of expressing the reflexibility condi

tion are: Aut(Jt) is as large as possible; the monodromy group G acts regularly as 

a permutation group on Q; the hypermap subgroup M is the kernel of the natural ho

momorphism 7r: Jt2 -7 G; M is normal in Jt2. When N = IQI is finite, an equivalent 

condition is that Aut(Jt) has order N = IQI. 
This definition of reflexibility is equivalent to that given by Coxeter and Moser 

[11, §8.1] for maps without boundary; Wilson [61] calls such maps 'regular', a term 

which Coxeter and Moser use for a condition which is equivalent to reflexibility for 
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non-orientable maps without boundary, but slightly weaker for orientable ones, merely 

requiring that M be normal in the even subgroup (which may be identified with <~+) 

consisting of the words of even length in the generators TO, T] and T2. This latter 

condition is equivalent to Aut+(.4l) acting transitively on the hyperdarts of ,41, and it 

is this meaning that we too attach to the term regular in the more general context of 

orientable hypermaps without boundary. (Some authors use the term rotmy in place of 

regular.) Every reflexible orientable hypermap without boundary is regular. A regular, 

non-reflexible hypermap is called chiral. 

On the sphere, the reflexible maps are the platonic solids, the finite maps of type 

(m, 2, 2) and (2, 2, m) (dipoles and dihedra), and the finite star maps. The sphere admits 

no chiral hypermaps. 

For conciseness, we may use the term symmetrical in place of regular (respec

tively, reflexible) when we are talking in the context of orientable hypermaps without 

boundary (respectively, completely general hypermaps), particularly if do not wish to 

distinguish these contexts. 

1.4. Triangular groups 

We have seen that the groups ~+(mO,m],m2) and ~(mO,m],m2) (which include the 

groups ~2+(a, b) and ~2(a, b» are central to the algebraic theory of hypermaps. These 

groups have the abstract structure of triangle groups and extended triangle groups, the 

former being generated by rotations (orientation-preserving isometries) of a simply

connected Riemann surface X about the (possibly ideal) vertices of a triangle T, and 

the latter being generated by reflections (orientation-reversing isometries of X') in the 

sides of T. We attach to triangle groups and extended triangle groups the adjective 

triangular, and describe them as spherical, Euclidean or Fuchsian according to the 

geometry of the surface of X, often using the term planar for the non-spherical ones. 

(Of course, an extended Fuchsian triangle group is not itself Fuchsian!) 

Abusing the common notation l1(mo, m], m2) for triangle groups, we will usually 

use it to denote the abstract structure as given by ~+(mO,m],m2)' as well as to denote 

concrete isometry groups. We call the mi the periods of the group, and we regard them 

as ordered in this notation so that there is more than one notation for the same triangle 

group. This removes any ambiguity as to the universal hypermap %'A(mo,m"m2) that the 

group induces, whose quotients are the hypermaps of type dividing (mo, m1, m2) where 
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mi represents the valency of the i-component of %''''(I//(} ,1//1 ,1//2)' This hypermap lies on the 

Riemann sphere, the complex plane or the hyperbolic plane 11 (with adjoined ideal 

Points if some ml = (0) according as ...L + ...L + ...L > 1, = 1, < 1. We often ignore 
1//0 1//1 1//2 

the complex structure and identify the Riemann sphere and the complex plane with the 

topological sphere S2 and the Euclidean plane respectively. The universal hypermaps 

on the sphere are the reflexible maps, while the infinite-valent dipole all'''(''-0,2,2) and the 

infinite-valent star map %''''(00,1,00) both lie on the Euclidean plane augmented by ideal 

points; the former consists of parallel lines (with two ideal vertices) and the latter 

consists of parallel half-lines (with one ideal vertex). 

We use the notation ~[mO,ml,m2] for extended triangle groups. (Note that 1(f2 == 

~[oo, 2, 00] and that 3f2 == ~[oo, 00, 00].) Such a group has ~(mo, ml, m2) as a sub

group of index 2. There is no distinction between %''''(mo,/fq,1//2) and %'t,[I//(},I//I,m21, but of 

course the subtessellations consisting of fundamental regions for ~(mo, ml, m2) and 

~[mo, ml, m2] differ. 

1.5. Signatures of Fuchsian groups 

The theory described here shall be useful for §4.S. Every finitely-generated Fuchsian 

group G has a signature 

(g; mo, ... , mr-I; s; t), (i) 

which means that G has a presentation with generators 

ao, bo, ... , ay_l, by-I, (hyperbolic elements) 

Xo, ... , Xr-I , (elliptic elements) 

Yo, . .. ,Ys-I, (parabolic elements) 

Zo, . .. ,Zt-I (hyperbolic boundary elements) 

and defining relations 

where [a, b] = a-1b-1ab. The measure j.1(G) of G is the measure (or hyperbolic area) 

j.1(R) of a fundamental polygon R for G; if j.1(G) < 00 then there are no hyperbolic 
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boundary elements, and the signature is written (g; mo, . .. , mr-I; s). In this case, 

and 9 is the genus of the compactification of the quotient surface RIG. The subgroups 

< Xi ), each of order mi, are representatives of the conjugacy classes of maximal elliptic 

subgroups of G, while the subgroups < Yi ), each of infinite order, are representatives of 

the conjugacy classes of maximal parabolic subgroups. 

We are interested in these matters from the point of view of triangle groups, where 

R is the union of a hyperbolic triangle with its reflection in one of its sides. In this 

case, 9 = 0 and the s parabolic elements are often regarded as 'infinite-order elliptic 

rotations' (with periods mi = 00) about a vertex subtending an angle of ~ = O. This 

gives rise to a common alternative signature: (3,2,00) in place of (0; 3, 2; 1), for exam

ple. (We note here that much of the theory described in the section applies equally or 

has a close analogue in the case of Euclidean or spherical triangle groups.) 

If /-leG) < 00 and H is a subgroup of finite index in G, then 

/-l(H) = IG: HI /-leG) < 00; 

this is the Riemann-Hurwitz formula. Moreover, H is finitely-generated and has a 

signature that is closely related to that of G, through the action of G by multiplication 

on the set GIH of cosets Hg of H in G. This relationship is embodied in Singerman's 

Theorem [55]. 

Theorem 1.5.1 (Singerman). Let G have signature (i). Then G contains a subgroup 

H of index n with signature 

(g'; lOb l02,"" lopo"'" lCr-1) I, lCr-1) 2, ... , lCr-I)Pr_l; S'; t') 

if and only if 

(i) There exists a finite permutation group P transitive on n points, and an epimor

phism f): G ~ P satisfying the following conditions: 

(a) The permutation f)(xa has precisely Pi cycles of lengths less than mi, the 

lengths of these cycles being mi I li 1, ... , mi I li Pi' 
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(b) Ifwe denote the number of cycles in the permutation (}(y) by o(y) then 

(ii) J..l(H) = nJ..l(G). 

s-I 

s' = L o(Yj), 
j=O 

t-I 

t' = Lo(zd. 
k=O 

11 

A sketch proof of part of this result is as follows. An elliptic generator Xi of G, of order 

mi, must be represented on G I H by cycles (the orbits of the induced action of (Xi) on 

G I H) of lengths Ii) dividing mi, with Lj Ii) = IG: HI. If H g lies in a long cycle of Xi 

(one of length mi) then no conjugate of a non-trivial power of Xi lies in H and hence Xi 

does not give rise to an elliptic element of H. 

On the other hand, if Hg lies in a short cycle of Xi (one of length lij < mi) then 

Hgx~ij = Hg, so gx~ijg-I is an elliptic element xij of H of order mi) = mdli). Chang

ing the coset representative from g to g' = hg (h E H) merely replaces xi) with the 

conjugate element hXijh- 1 of H, and choosing a different coset Hgi! from the same 

cycle has no effect on xi)' Thus each short cycle of Xi gives rise to a conjugacy class of 

elliptic elements of H, conjugate in G to a power of Xi. 

Conversely, every elliptic element of H is also an elliptic element of G and is 

therefore conjugate to a power of some Xi, so it arises in this way. Thus the conjugacy 

classes of maximal elliptic subgroups of H correspond to the short cycles of the elliptic 

generators of G, each cycle of Xi of length Ii) < mi yielding an elliptic period mij = 

md lij of H. (Note that fixed-points count as cycles of length 1, even though they are 

often omitted when writing a permutation as a product of disjoint cycles.) 

We can show similarly that the conjugacy classes of maximal parabolic subgroups 

of H correspond to the cycles of the parabolic generators Yi of G on the cosets of H, 

each cycle of length Ii) yielding a parabolic element conjugate in G to y~ij. Hence the 

parabolic class number of H is equal to the total number of cycles of the parabolic 

generators of G on G I H. 

When J..l(G) < 00 the Riemann-Hurwitz formula can now be used to determine the 

genus of H. 
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is a Klein four-group and 

is a cyclic group of order 2. It is shown in [35] that Aut(1&'2) is a split extension of 

Inn(1&'2) == 1&'2 by a complement S == S3 which fixes r and permutes {I, t, tl}. Thus 

Out(1&'2) is isomorphic to S3, and the six cosets of Inn(1&'2) in Aut(1&'2) are represented 

by the elements of S. Since a map's vertices, edges, faces and Petrie circuits (closed 

'zig-zag' paths in the underlying graph such that at each vertex the adjacent edges 

enclose a single face on the right and on the left alternately) correspond to the orbits of 

the subgroups < r, t), < I, t), < I, r) and < r, tl), we see that there are precisely six distinct 

map operations (including the identity operation I which acts trivially): their effect on 

a map is to interchange the sets of vertices, faces and Petrie circuits while leaving the 

set of edges invariant. 

Since Aut(1&'2) preserves inclusions and normalizers of subgroups, the induced op

erations preserve coverings and automorphism groups of maps. Moreover, Aut(ct'2) 

preserves normality and finiteness of index of subgroups of 1&'2, and so the operations 

preserve refiexibility and finiteness of maps. If M is a torsion-free map subgroup in ~2 

then so is Me, and thus map operations restrict to the category of maps without free 

edges on surfaces without boundary. 

An earlier, non-algebraic description of these six map operations was given by Wil

son [61] and Lins [41]. Moreover, the operation P described in Example 2.1.2 below 

is implicit in [11]. More recently, map operations have been considered by Leger [38] 

as part of a wider characterization of autoequivalences, up to natural equivalence, of 

the category of G-sets as outer automorphisms of G, where G is any group. 

Example 2.1.1. The familiar duality operation D, which transposes the sets of vertices 

and faces of a map JIt whilst leaving edges and Petrie circuits invariant, is induced by 

the automorphism of 1&'2 which transposes I and t. D(JIt) is respectively refiexible, 

regular, uniform if and only if JIt is. 

Example 2.1.2. If we 'dissolve' the faces of a map JIt to leave a skeleton of vertices 

and edges, and then span by a membrane each cycle of edges which forms a Petrie 

circuit in JIt, then the resulting object (the Petrie dual of JIt) is also a map on a 

surface, although in gen,?ral a different surface from that of JIt. This operation P 

is induced by the automorphism of 1&'2 which transposes I and tl, and it interchanges 

faces and Petrie circuits whilst leaving the underlying graph of JIt invariant. P(.41) is 
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reftexible if and only if JIt is; however, if JIt is chiral, P(JIt) must be uniform but not 

necessarily regular. 

Example 2.1.3. Wilson [61] described a third map operation, Opp, called the oppo

site operation. This involution is obtained by composing the dual and Petrie dual 

operations as Opp = PDP = D P D, and it is induced by the automorphism of ~2 

which transposes t and tl. Opp(JIt) can be obtained from a map .4 by making a cut 

along each edge and rejoining corresponding sides of the cut in opposite directions. 

Thus Opp preserves faces, but Petrie circuits in JIt correspond to vertices in Opp(.4), 

and vice versa, with circuit length corresponding to vertex valency. If JIt is chiral, 

Opp(JIt) must be uniform but not necessarily regular. • 

We note that the group of map operations is generated by any two of D, P and Opp. 

2.2. Orientability of maps 

In this section we provide topological and combinatorial criteria for the image of a 

map under a map operation to be orientable. 

Proposition 2.2.1. Duality is the only non-trivial operation which necessarily pre

serves orientability. 

Proof. It is immediate that duality preserves orientability since it preserves the under

lying surface of a map. The simple example shown in Figure 2.1 demonstrates the 

result: JIt is a loop incident with a second edge, embedded in the sphere, while P(.4) 

and Opp(JIt) are a dual pair of maps on the projective plane. • 

A map is orientable without boundary if and only if its map subgroup in 1ff2 lies in 

the index-2 even subgroup < rt, tl, lr) which can be identified with 1ff2+' Hence, if we 

let 0 be a map operation and JIt be a map, then 0(JIt) is orientable without boundary 

if and only if Me ~ 1ff/, that is, M ~ e- 1(1ff/). An equivalent condition is that .4 

covers the 2-blade map A8 whose map subgroup is e-1(1ff2+). 

Theorem 2.2.2. Let JIt be a map on a surface without boundary. 

(i) JIt is orientable if and only if it is possible to 2-colour the blades so that adjacent 

blades have different colours. 
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FIGURE 2.1. A self-dual map JIt on the sphere, and its images under P and Opp on the 
projective plane. 
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(ii) Opp(.4') is orientable without boundary if and only if it is possible to direct the 

edges of .4' so that around each face, the edges follow a constant direction. The 

same is true for D P(.4'). 

(iii) P(.4') is orientable without boundary if and only if .4' has no free edges and it 

is possible to 2-colour the blades of.4' so that for each blade f3, f3 and f3,1 have 

the same colour, while f3T and f3p have the other colour. The same is true for 

PD(.4'). 

Proof. For each operation 8, Table 2.1 gives the permutation of {l, t, tl} induced by (), 

together with the image under ()-l of 1&"2+, and the map uf8 such that 8(,4) is orientable 

without boundary if and only if.4' covers uf8. Observe that uf8 = J1be. We see that 

uK is the trivial orientable map without boundary consisting of a single vertex and a 

free edge on the sphere; AP consists of a single vertex in the interior of the disc, with 

a free edge whose free end lies on the boundary; and J1bpp consists of a loop running 

around the boundary of the disc. The map .4' covers uf8 if and only if it is possible to 

2-colour the blades of .4' so that the monodromy action of 1&"2 restricts to an action on 

the colour sets that is isomorphic to the monodromy action of 1&"2 on uf8. Each of A, p 

and T interchanges the two blades of uK and so (i) follows immediately. 

Both A and p interchange the two blades of J1bpp while T fixes them, and so .4' 

covers J1bpp if and only .4' has no free edges and there is a 2-colouring of its darts2 

such that the two darts on each edge are coloured differently, and the valency of each 

vertex is even with the darts alternating in colour in cyclic order around the vertex. An 

2Por a map without boundary, a dart can be represented as the union of a blade and its image under 
the permutation T. 
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Operation 8 Permutation B- 1 (Yf2+) JVe 

I 1 < rt, ti, ir) = Yf2+ } @ D (i, t) < ri, it, tr) = Yft 

P (I, tl) < rt, i, tir) = < rt, i)} G) DP (t, i, ti) < rti, i, tr) = < rt, i) 

PD (I, t, ti) < ri, t, tir) = < ri, t )} 0 DPD = Opp (t, ti) < rti, t, ir) = < ri, t). 

TABLE 2.1. The six map operations. 

equivalent condition is given in (ii). 

To prove (iii), we may either argue directly as before, or note that JYP = D(fiopp), 

while JIt covers JVe if and only if D(JIt) covers D(JVe), so that the condition in (iii) 

is the dual of that given above for Opp. • 

Theorem 2.2.2 (i) gives the (almost classical) criterion for a map to be orientable with

out boundary. However, when attempting to apply a map operation 8, it is also useful 

to have criteria for properties of 8(JIt) based on properties of JIt itself. This theorem 

provides such criteria. 

Remark 2.2.3. Recall that the map operations restrict to the category of maps without 

free edges and boundary. For non-trivial 0) other than D, Theorem 2.2.2 shows that if 

JIt is without boundary and 8(JIt) is orientable then in fact both . .$1 and 8( . .$1) are 

without free edges and boundary. • 
Remark 2.2.4. For an orientable map JIt without free edges and boundary, Theo

rem 2.2.2 tells us that Opp(JIt) is orientable if and only if JIt is 2-face-colourable, and 

that P(JIt) is orientable if and only if JIt is 2-vertex-colourable. The latter extends the 

analogous result of Wilson [61] in the case that JIt is, in addition, reflexible. 

We shall soon see that when JIt is orientable and without boundary, but has free 

edges, the 2-vertex-colourability of JIt is still equivalent to the orientability of P(JIt) 

(but the presence of free edges in JIt ensures that P(JIt) has boundary); however, this 

criterion fails when JIt is non-orientable or with boundary, as shown in Figure 2.2. 
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FIGURE 2.2. A self-dual map JIt on the Mobius band, and its images under P and Opp 
on the disc. 
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Likewise, when At is orientable and without free edges, but has boundary, the 2-face

colourability of At is still equivalent to the orientability of Opp(At) (but the presence 

of boundary ensures that Opp(At) has boundary or free edges); however, this criterion 

fails when At is non-orientable or has free edges, as Figure 2.2 also demonstrates. + 

We now develop criteria for the orientability of the images under the six map opera

tions of a map At on a surface which possibly has boundary. 

Definition 2.2.5. A 2-colouring of the blades of a map is called proper if adjacent 

blades (distinct blades in each orbit of the elements I, rand t of ~2) have different 

colours. • 

The following criterion for the orientability of a map is given in [4] as an immediate 

consequence of results in [22] on the structure of subgroups of discontinuous groups 

containing reflections. 

Theorem 2.2.6 (Bryant and Singerman). A map At is orientable if and only if it 
admits a proper 2-blade-colouring. 

Hence the result for maps without boundary extends to the category of all maps. 

Let us define another blade colouring property which a map At may possess. 

Property (Pt). There exists a 2-colouring of the blades of At such that the following 

hold. 

(i) For each blade f3 of At not fixed by A, f3 and f3A have different colours if and 

only if their common edge is free or contained in the boundary of At. 

(ii) For each blade f3 of At not fixed by p, f3 and f3p have different colours. 
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(iii) For each blade 13 of JIt not fixed by T,f3 and f3T have different colours. 

Note that if a map JIt containing a loop has Property PI then that loop is completely 

contained in a boundary component. 

Proposition 2.2.7. Let JIt be a map, possibly with boundary. Then P(.$l) is orientable 

if and only if JIt has Property P 1. 

Proof. Suppose P(JIt) is orientable. Then we may properly 2-colour the blades so 

that adjacent blades have different colours. Applying the operation P to P(.$l) then 

induces a colouring of the blades of the map P(P(JIt» = JIt. Denote the longitudinaL 

rotary and transpose permutations of the blades of P(JIt) by .1, f5 and T. 

Since p = f5 we have 13 =/:- f3p = f3f5. As 13 and f3f5 have different colours in P(.$l), 

so 13 andf3p have different colours in the induced colouring of JIt. The same argument 

holds for 13 and f3T. 
Now suppose 13 =/:- 13.1· 
If 13 and 13.1 lie on a free edge of JIt then the free end of this free edge does not lie 

- -
on the boundary. Hence 13 = f3.1T = 13.1 and thus f3T = f3.1T = 13.1. As 13 and f3T have 

different colours in P(JIt), so 13 and 13.1 have different colours in the induced colouring 

of JIt. 

Iff3 and 13.1 lie on a non-free edge contained in the boundary of JIt then 13 = f3T = f3T 
and thus f3'l = f3T'l = 13.1. Thus 13 and 13.1 have different colours in the colourings of 

both P(JIt) and JIt. 

If 13 and 13.1 lie on a non-free edge which is not fully contained in the boundary of 

JIt then 13,13.1 and f3.1T are mutually distinct, and hence so are 13, f3'lT and f3T Thus 13 
and f3.1T = 13.1 have the same colour. 

Conversely, suppose we can 2-colour the blades of JIt according to Property Pl. 

Then essentially the same argument in reverse shows that in the induced colouring of 

P(JIt), adjacent blades have different colours. • 

For an orientable map JIt, possibly with boundary, Property PI is equivalent to 

Property (P2). The vertices of JIt may be 2-coloured such that those joined by an 

edge contained in the boundary have the same colour, while those joined by other 

edges have different colours. 
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Proof. If the blades of JIt are 2-coloured according to Property PI then two blades 

in an orbit of T, when regarded as part of a cyclic ordering of blades around a vertex 

following the orientation of the surface, induce an ordering of their distinct colours. 

The ordering is the same for all such pairs of blades at a given vertex, and it is clear 

from Property PI that we can 2-colour the vertices accordingly. 

Conversely, given such a 2-vertex-colouring of ,4, we may also take a proper 2-

blade-colouring since JIt is orientable. Choose one of the vertex colours and then 

reverse the colour of each blade incident with each vertex of that colour. The resulting 

colouring exhibits Property PI for J1t. • 

Note that no orientable map with Property PI may possess two vertices joined both 

by an edge contained in the boundary and another not. A circuit of a map ,41 is a circuit 

of its underlying graph, that is, a finite ordered set {eJl of distinct non-free edges such 

that ej and ej+l (modulo I{ej}l) are adjacent; we regard a loop as a circuit of length 1. It 

is easy to verify that Property P2 is equivalent to 

Property (P3). The number of interior edges in any circuit of JIt is even. 

When JIt is without boundary, Properties P2 and P3 simply reduce to the criterion of 

2-vertex-colourability presented in Remark 2.2.4. 

Another blade colouring property which a map JIt may possess is the following. 

Property (01). There exists a 2-colouring of the blades of JIt such that the following 

hold. 

(i) For each blade 13 of JIt not fixed by ,1,13 and 13,1 have different colours. 

(ii) For each blade 13 of JIt not fixed by p, 13 and f3p have different colours. 

(iii) For each blade 13 of JIt not fixed by T,f3 and f3T have different colours if and only 

if their common edge is free. 

Proposition 2.2.8. Let JIt be a map, possibly with boundary. Then Opp(JIt) is ori

entable if and only if JIt has Property 01. 

Proof. Suppose Opp(JIt) is orientable. Then we may properly 2-colour the blades so 

that adjacent blades have different colours. Applying the operation Opp to Opp(JIt) 

then induces a colouring of the blades of the map Opp(Opp(JIt)) = J1t. Denote the 
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longitudinal, rotary and transpose permutations of the blades of Opp(vI/) by A, P and 

T. 

Since p = p we have {3 *- {3p = [Jp. As {3 and {3p have different colours in Opp(.4'1), 

so {3 and{3p have different colours in the induced colouring of .4t. The same argument 

holds for {3 and {3A. 

Now suppose {3 *- {3T. 

If {3 and {3T lie on a free edge of .4t whose free end intersects the boundary then 
- -

{3 = {3A = {3A and thus {3T = {3AT = {3T. As {3 and {3T have different colours in Opp(.4'/), 

so {3 and {3T have different colours in the induced colouring of .4'1. 

If {3 and {3T lie on a free edge whose free end is contained in the interior of .4'/ then 
- - -

{3 = {3AT = {3T and thus {3A = {3TA = {3T. Thus {3 and {3A have different colours in the 

colourings of both Opp(.4t) and.4t. 

If {3 and {3T lie on a non-free edge of .4t then {3, {3T and {3AT are mutually distinct, 

and hence so are {3, {3T A and {3T. Thus {3 and {3AT = {3T have the same colour. 

Conversely, suppose we can 2-colour the blades of .4t according to Property 01. 

Then essentially the same argument in reverse shows that in the induced colouring of 

Opp(.4t), adjacent blades have different colours. • 

When .4t has no free edges, Property 01 simply reduces to 

Property (02). The edges of .4t may be directed so that around each face, the edges 

follow a constant direction. 

This is the property given in Theorem 2.2.2. In general, this property is not equivalent 

to 2-face-colourability. However, when we restrict our attention to less general maps, 

the following result shows that they are closely related. 

A map .4t is almost 2-face-colourable if it admits a 2-colouring of its faces in 

which the faces on either side of a non-free edge have different colours. Let.4to be 

the map-like structure obtained from .4t by erasing any free edges. (If.4t has free 

edges which intersect a boundary component only at their free ends then the 'faces' 

of .4to may not be homeomorphic to an open disc or half disc.) Then.4t is almost 

2-face-colourable if .4to is 2-face-colourable. 

For an orientable map.4t, Property 01 is equivalent to 

Property (03) • .4t is almost 2-face-colourable. 
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Proof. It is easy to see that J/t has Property 01 if and only if v1to has, which is the 

same as saying that the edges of J/to can be directed so that the edges around each face 

follow a constant direction. Since J/to is orientable, this is equivalent to saying that the 

faces are 2-colourable, as we may colour them according to whether the direction of 

their incident edges agrees with a chosen orientation. • 

For maps without free edges and boundary, this property simply reduces to that 

presented in Remark 2.2.4. 

2.3. Map operations and reflexible torus maps 

In this section we examine the orbits of the reflexible torus maps of type (4,2,4), 

(3,2,6) and (6,2,3) under the action of the group of map operations. It is well known 

(e.g. [11, Ch. 8]) that all uniform torus maps are of one ofthese types, and that they can 

all be obtained as quotients of the universal maps of these types by identifying opposite 

sides of a parallelogram or hexagon with parallel opposite sides in the complex plane 

(the underlying Riemann surface of these universal maps). To simplify the notation, 

we identify the complex plane with the real plane 1R2 in the usual way. 

2.3.1. Reflexible torus maps of type (4,2,4) 

Consider the universal map %' = %'~(4,2,4) on 1R2
, whose vertices are the points with 

integer coordinates and whose edges join all pairs of vertices that are unit length apart. 

Note that the Petrie circuits of %' are of infinite length (with ends 'at infinity') and 

fall into two infinite classes of parallel paths. We obtain a uniform map J/t of type 

(4,2,4) on the torus by identifying opposite sides of the parallelogram whose vertices 

have coordinates 

(0,0) (b,c) (-p,q) (b-p,c+q) 

for integers b, c and positive integers p, q. The parallelogram has area bq + cp and 

hence J/t has this number of vertices. This map is regular if and only if p = c and 

q = b (the parallelogram is actually a square), and all regular torus maps of type 

(4, 2,4) can be constructed in this manner. Following [11] we denote such a regular 

map by {4,4h,c; an example is shown in Figure 2.3. The map is reflexible if and only 

if it is regular with bc(b - c) = 0. 
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FIGURE 2.3. The map {4,4}6,2 with two of its Petrie circuits highlighted. 

Let b = rj and c = rk where r = HCF(b, c), and let p = de and q = df where 

d = HCF(p, q). We say that two vertices on the universal map %' are equivalent if 

they cover the same vertex on JIt via the obvious covering. We may write the relative 

coordinates of one vertex VI from an equivalent vertex Va on %' as A(b, c) + j1( - p, q), 

where A and j1 can range over the integers. If in particular we set A = dee + f) and 

j1 = r (j - k) then these relative coordinates become (rd(fj + ek), rd(fj + ek) ) and so 

Va and VI lie on the same Petrie circuit P of %' (as do their images on JIt). Now let 

h = HCF(A,j1), s = HCF(r, d) and t = HCF(e + f, j - k); simple calculation gives 

h = st. The relative coordinates from Va to the nearest equivalent vertex on P in the 

direction of VI are clearly ~(b, c) + ¥z( -p, q) = (';~(fj + ek), I;~ (fj + ek)). 

The set of Petrie circuits on JIt can be partitioned into two parallel classes (i.e. 

the graph-paths induced by the circuits in each class have no edges in common). Our 

calculations above tell us that the length (number of edges) of each path in the class 

containing P is 2~~d (fj + ek), and since each vertex lies on two circuits in each class, the 

number of circuits in that class is 

2(bq + cp) 
-:--=--.:..- = st. 
2rd(fj + ek) 
st 

Similar calculations tell us that the number of circuits in the second class is st' where 

t' = HCF(j + k, e - f), and each has length 2 ~~ (fj + ek). We define the intersection 

multiplicity of a circuit to be the number of distinct edge-intersections of that circuit 

with any given one which it intersects, which is simply the length of the first divided 

by the size of the class to which the second belongs. If all circuits have the same 

intersection multiplicity, we call this common value the intersection multiplicity of the 
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map. 

Property .d' Opp(.d') P(.d') 

Number of vertices b2 2b b2 

Vertex valency 4 2b 4 
Number of edges 2b2 2b2 2b2 

Number of faces b2 b2 2b 
Face valency 4 4 2b 
Number of Petrie circuits 2b b2 b2 

Petrie circuit length 2b 4 4 

TABLE 2.2. Properties of the torus map Jft = {4,4}b,O and of its images under the 
group of map operations. 
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In determining the orbits of the reflexible torus maps {4,4}b,c, there are essentially 

just two cases to consider: c = 0 and b = c. (The cases c = 0 and b = 0 give rise to 

isomorphic maps.) All torus maps .d' = {4,4lb,c are self-dual and so lie in an orbit of 

length at most 3; we need only determine Opp(.d') and its dual P(.d'). 

Case c = 0 

The Petrie circuits of .d' = {4,4}b,O have length 2b and fall into two parallel classes, 

each of size b. Hence the underlying graph of Opp(.d') is bipartite, each partite set 

having size b, and each vertex having valency 2b. The intersection multiplicity of.4 

is 2 and so this is the edge multiplicity of Opp(.d'). 

Table 2.2 summarizes some basic combinatorial information. The underlying graph 

of Opp(.d') is K~~i, the graph obtained from the complete bipartite graph Kb,b by 'dou

bling up' each of its edges. Opp(.d') is a map of type (2b, 2, 4) on a surface of charac

teristic b(2 - b). By Theorem 2.2.2, Opp(.d') is orientable if and only if b is even, in 

which case the genus is !(2 - 2b + b2
). 

The dual P(.d') of Opp(.d') is an embedding of the underlying graph of .d' as a 

map of type (4,2, 2b) on the underlying surface of Opp(.d'). 

The automorphism group of these maps is 

(4,412,b) = (A,B,CIA4 = ~ = (ABf = (A-JB)b = 1 > 

in the notation of [11, Table 7], isomorphic to 7t'2+(4, 4)/( (rOrJro)b > in the notation 
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Property JIt Opp(JIt) P(JIt) 

Number of vertices 2b2 4b 2b2 

Vertex valency 4 2b 4 
Number of edges 4b2 4b2 4b2 

Number of faces 2b2 2b2 4b 
Face valency 4 4 2b 
Number of Petrie circuits 4b 2b2 2b2 

Petrie circuit length 2b 4 4 

TABLE 2.3. Properties of the torus map ~ = {4,4}b,b and of its images under the 
group of map operations. 
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of § 1.1 (identifying A with r2 and B with ra). This group is a semi direct product 

of a normal subgroup Cb x Cb (acting as 'translations' of JIt) by a complement DR 

(stabilizing a vertex); it has order 8b2
. 

Note that JIt is invariant under the group of map operations if and only if b = 2. 

Case b = c 

The Petrie circuits of JIt = {4,4}b,b have length 2b and fall into two parallel classes, 

each of size 2b. Hence the underlying graph of Opp(JIt) is bipartite, each partite set 

having size 2b, and each vertex having valency 2b. The intersection multiplicity of.41 

is 1 and so the underlying graph of Opp(JIt) is simple. 

Table 2.3 summarizes some basic combinatorial information. Opp(.41) has the 

complete bipartite graph K2b,2b as its underlying graph. It is a map of type (2b, 2, 4) on 

a surface of characteristic 2b(2 - b). By Theorem 2.2.2, Opp(JIt) is orientable for all 

b, with genus (b - 1)2. Hence Opp(JIt) is the map {4, 2b}4 described in [I 1, §8.6]. 

P(JIt) is then {2b, 4}4 listed in [1 1, Table 8]. The automorphism group of these 

maps IS 

G4,4,2b = < A, B, C I A 4 = s4 = C2b = (AB)2 = (BC)2 = (CA)2 = (ABC? = I ) 

in the notation of [11, Table 7], isomorphic to ~2(4,4)/< (trifb) in the notation of 

§ 1.1 and §2.1 (identifying A with ir, B with rt and C with tri). This group, of order 

16b2, has the same structure as in the case c = 0 except that the 'translation' group is 

C2b X Cb. 
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Note that Jit is invariant under the group of map operations if and only if b = 2. 

2.3.2. Reflexible torus maps of type (3,2,6) and (6,2,3) 

Consider the universal map %' = %'t.(6,2,3) on the plane lR2
, a tessellation by equilateral 

triangles. The Petrie circuits of %' are of infinite length and fall into three infinite 

classes of parallel paths. We construct two axes aligned at an angle 27f /3, with the 

centre C of one of the equilateral triangles T as origin, each axis passing through the 

midpoint of an edge of that triangle; and we define the unit length to be the distance 

from C to a vertex of T. We obtain a uniform map Jit of type (6,2,3) on the torus by 

identifying opposite sides of the hexagon whose vertices have coordinates 

(0,0) (b+e,e) (-e,b) (b-e,2b+e) (2b,2b+2e) (2b+e,b+2e) 

for integers b, e. The hexagon has area b2 + be + e2 and hence Jit has this number of 

vertices. Following [11] we denote this map Jit by {3, 6lb,c. This map is in fact regular, 

and all regular maps of this type on the torus are constructed in this way. The map is 

reflexible if and only if be(b - e) = 0. 

Let b = rj and e = rk where r = HCF(b, e). We may write the relative coordinates 

of one vertex VI from an equivalent vertex Vo on %' as A(b + 2e, e - b) + j1(b - e, 2b + e), 

where A and j1 can range over the integers. If in particular we set A = k and j1 = j + k 

then these relative coordinates become (r(p+ jk+k2), r(p+ jk+k2)) and so Vo and VI lie 

on the same Petrie circuit P of %' (as do their images on Jit). Now let h = HCF(A,j1); 

the relative coordinates from Vo to the nearest equivalent vertex on P in the direction 

of VI are clearly (~(p + jk + k2), ~(P + jk + k2)). 

The set of Petrie circuits on Jit can be partitioned into three parallel classes. Our 

calculations above tell us that the length of each circuit is ¥z(p + jk + k2), and since 

each vertex lies on two circuits in each class, the number of circuits in each class is 

2(b
2 + be + e

2
) = rho 

¥Z(P + jk + k2) 

Here, the intersection multiplicity of the map is equal to the length of the Petrie circuits 

divided by twice the class size. 

We denote the dual of the map Jit = {3,6}b,c by {6,3lb,c; this is a uniform torus 

map of type (3,2,6). The orbit of Jit under the group of map operations usually has 
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Property J/t D(J/t) P(J/t) D P(J/t) PD(J/t) Opp(.$l) 

Number of vertices b2 2b2 b2 3b 2b2 3b 
Vertex valency 6 3 6 2b 3 2b 
Number of edges 3b2 3b2 3b2 3b2 3b2 3b2 

Number of faces 2b2 b2 3b b2 3b 2b2 

Face valency 3 6 2b 6 2b 3 
Number of Petrie circuits 3b 3b 2b2 2b2 b2 b2 

Petrie circuit length 2b 2b 3 3 6 6 

TABLE 2.4. Properties of the torus map JIt = {3,6}b,Q and of its images under the group of 
map operations. 

length 6. In considering the reftexible torus maps {3,6h,e and {6,3h,e, there are two 

cases to consider: c = 0 and b = c. 

Case c = 0 

The Petrie circuits of J/t = {3, 6h,Q have length 2b and fall into three parallel classes, 

each of size b. Hence the underlying graph of Opp(J/t) is tripartite, each partite set 

having size b, and each vertex having valency 2b. The intersection multiplicity of J/t 

is 1 and so the underlying graph of Opp(J/t) is simple. 

Table 2.4 summarizes some basic combinatorial information. Opp(.L) has the 

complete tripartite graph Kb,b,b as its underlying graph. It is a map of type (2b, 2, 3) on 

a surface of characteristic b(3 - b). By Theorem 2.2.2, Opp(J/t) is orientable for all b, 

with genus (b - 1)(b - 2)/2. Hence Opp(J/t) is the unique reftexible orientable trian

gular embedding of Kb,b,b, uniqueness following from Theorem A.I.l in Appendix A. 

D P(J/t) = Opp(D(J/t)) is an embedding of Kb,b,b as a map of type (2b, 2, 6) on a 

non-orientable surface of characteristic b(3 - 2b). Indeed, the orbit of .L consists of 

the maps {p, q}r of [11, § 8.6] where {p, q, r} = {3, 6, 2b}. The automorphism group of 

these maps is 

G3,6,2b = (A, B, C I A3 = B6 = C2b = (AB)2 = (BCi = (CA)2 = (ABC)2 = I ) 

in the notation of [11, Table 7], isomorphic to 1&'2(3, 6)/( (trl)2b) in the notation of § 1.1 

and §2.1 (identifying A with lr, B with rt and C with trl). Similarly to the previous 

cases, this group is a semidirect product of Cb x Cb by D 12 ; it has order 12b2 . 
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Property JIt D(JIt) P(JIt) D P(JIt) PD(.4) Opp(.4't) 

Number of vertices 3b2 6b2 3b2 3b 6b2 3b 
Vertex valency 6 3 6 6b 3 6b 
Number of edges 9b2 9b2 9b2 9b2 9b2 9b2 

Number of faces 6b2 3b2 3b 3b2 3b 6b2 

Face valency 3 6 6b 6 6b 3 
Number of Petrie circuits 3b 3b 6b2 6b2 3b2 3b2 

Petrie circuit length 6b 6b 3 3 6 6 

TABLE 2.5. Properties of the torus map .4' = {3,6}b,b and of its images under the group of 
map operations. 

JIt is neither self-dual nor self-Petrie, but it is self-Opp when b = 3 in which case 

P(JIt) and D P(JIt) = Opp(D(JIt) are self-dual. In the case b = 2 we obtain the cube 

PD(JIt) and its images, as shown in [61]. 

(Let Xb be the generalized Fermat curve given by xb + l = 1. The projection 

7f: (x, Y) H X has critical values at the b th roots of 1 (and possibly 00), so if we compose 

it with f3b: x H xh we obtain a Belyl function f3 = f3b 0 7f: (x, Y) H xb of degree b2• The 

maps in the orbit of JIt = {3,6}b,O arise from the generalized Fermat hypermap §b of 

genus (b-1)(b-2)/2 associated withf3 [33]: the Walsh representation W(§b) of §b is 

a regular map with 2b vertices of valency band b faces, all 2b-gons. Opp(JIt) carries 

a triangulation isomorphic to the Fermat triangulation obtained by stellating W(§b) 

[32].) 

Caseb = c 

The Petrie circuits of the torus map JIt = {3,6lh,b have length 6b and fall into three 

parallel classes, each of size b. Hence the underlying graph of Opp(JIt) is tripartite, 

each partite set having size b, and each vertex having valency 6b. The intersection 

multiplicity of JIt is 3 and so this is the edge multiplicity of Opp(JIt). 

Table 2.5 summarizes some basic combinatorial information. Opp(JIt) has K~~l,b as 

its underlying graph. It is a map of type (6b, 2, 3) on a surface of characteristic 3b(1-b). 

By Theorem 2.2.2, Opp(JIt) is orientable for all b, with genus (3b2 - 3b + 2)/2. 

D P(JIt) = Opp(D(JIt) is an embedding of K~~l,b as a map of type (6b, 2, 6) on a 

non-orientable surface of characteristic 3b(1 - 2b). The automorphism group of these 
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maps is 

Aut(.4') = 1f2(3, 6)/( (lrtrtr)b, (lrtrt)2b > 

[11, §8.4]. This group, of order 36b2, has the same structure as in the case c = 0 except 

that the 'translation' group is C3b x Cb • 

.4' is neither self-dual nor self-Petrie, but it is self-Opp when b = 1 in which case 

P(.4') and D P(.4') = Opp(D(.4')) are self-dual. 

1i 





3.1. Outer automorphisms of oYez and -Yti+ 
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FIGURE 3.1. The procedure for applying Hopp to a simple torus hypermap. 

30 

We see that the effect of Hopp on a hypermap £ is to shrink the hyperfaces of the 

James representation of £ to obtain the (2-face-coloured) dual Jft* of the Walsh rep

resentation of £, then to perform the map operation Opp on Jft*, and then to expand 

the vertices to obtain hyperfaces again. It follows that Hopp preserves hyperedges and 

hyperfaces (since Opp preserves faces) but not hypervertices in general. Figure 3.1 

shows this procedure being applied to a simple torus hypermap (obtained by identify

ing opposite sides of the hexagon); Jft* is the torus map {3, 6}I ,O, whose image under 

Opp we know from §2.3.2: it is the digon of type (2, 2,3) on the sphere. 

Clearly, £ is self-Hopp if and only if Jft* is self-Opp. Despite the close relation

ship between Hopp and Opp, the two operations act very differently on maps: 

Proposition 3.1.2. All maps are self-Hopp. 

Proof. Let £ be a map, and consider the James representation of ,Ytf in which each 

face is coloured with the dimension of the component which it represents. This induces 

a 2-face-colouring of the map Jft* , in which the faces coloured 1 are all 1- or 2-valent. 

It is easy to see that any such map is self-Opp since applying Opp amounts to ' flipping' 

these faces . 

Alternatively, simply note that the permutations TO and T 2 of § 1.2.2 commute for 

hypermaps which are maps, and so Hopp acts trivially on such objects. • 
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Many topological and combinatorial properties of hypermaps are equivalent to al

gebraic properties that are preserved by Aut(~). In particular, the induced operations 

preserve coverings, automorphism groups, reftexibility, and compactness. Moreover, 

it is shown in [24] that Aut(~) preserves ~+ so that the induced operations restrict 

to orientable hypermaps without boundary. Note that this is unlike the situation for 

maps, where the restriction was to (possibly non-orientable) maps without free edges 

and boundary. 

Since inner automorphisms of G = ~ (respectively G = ~+) act trivially on con

jugacy classes of subgroups, Out(G) induces the group f> of operations on hypermaps 

(respectively the group f>+ of operations on orientable hypermaps without boundary). 

Theorem 3.1.3 (James [24]). f> == Out(~) == PGL(2, Z), and Aut(JV~) is generated 

by Hopp and the Machi operations. Further, f>+ == Out(~+) == GL(2, Z). 

3.2. Orbits of bypermap operations 

3.2.1. Systems of transitivity 

Each finite hypermap (or orientable hypermap without boundary) lies in an orbit of 

finite size under f> (respectively f>+) since ~ and ~+, being finitely generated, have 

only finitely many subgroups of a given finite index. Regular orientable hypermaps 

without boundary are in one-to-one correspondence with normal subgroups of Y~+, 

which is isomorphic to the free group F2 = < Xl, X2 ) of rank 2. Of these hypermaps YC, 

those for which Aut+(£) == G for some fixed group G correspond to subgroups N such 

that F21N == G under an isomorphism denoted by CPN. Note that such hypermaps can 

exist only if G is a one- or two-generator group. In order to count-or estimate-the 

number of such hypermaps, we turn to the theory of generating bases and T-systems 

(see, for example, [20], [48], [47], [15]). 

For what follows, let F be a finitely-generated group with generators Xl, ... ,XII and 

defining relations R/Xl, . .. , Xn) = 1 (j E J), and let G be a group. 

Definition 3.2.1. A G-defining subgroup of F is a normal subgroup N ~ F such that 

FIN == G. If {Wk(Xt. ... ,xn)} is any set of elements whose normal closure in F is N 

then the relations Wk(Xl,' .. , xn) = 1 and R/Xl, ... , xn) = 1 form a system of defining 

relations for G. Such a system is called an F-definitionfor G belonging to N. 
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An F -base of G is an ordered set a = (al, ... , an) of n elements (not necessarily 

distinct) which generate G and for which 'Rj(a) = I for all j E 1. Denote by (/YF(G) 

the cardinality of the set 23~ of all F -bases of G. Two F -bases a, b of G are equivalent 

if there is an automorphism a of G for which a(a;) = b; for each i E {I, ... , n}. The 

equivalence classes of F-bases are called Aut(G)-classes. 

In the case where F is the free group Fn of rank n, we talk of n-bases (rather than 

Fn-bases) and denote (/YFJG) by ¢n(G). -

The following theorem is given in [20]. 

Theorem 3.2.2 (Hall). Let G be a group. There is a one-to-one correspondence be

tween the Aut(G)-classes of F-bases ofG and the G-defining subgroups of F. 

Proof. To each F-base a of G corresponds the G-defining subgroup R(a) of F (called 

the relation group for a) consisting of all the elements Wk(Xl, .•. , xn) of F for which 

wk(a) = I in G. (In fact, the F -definition for G involving these elements is the max

imal F-definition for G belonging to R(a) with respect to inclusion of subsets.) Con

versely, each G-defining subgroup N of F is R(a) for all F-bases a which are images 

of (Xl, . .. , xn) under isomorphisms FIN == G. 

It is easy to see that F-bases of G in the same Aut(G)-class have the same relation 

group, and that two F-bases with the same relation group satisfy the same F-definitions 

for G and are thus equivalent. • 

Another way to view this is to identify 23~ with the set of epimorphisms a: F ~ G 

via a H a(xl, ... , xn), observing that the kernel of each epimorphism F ~ G is a 

G-defining subgroup of F, and that two such epimorphisms have the same kernel if 

and only if they differ by an automorphism of G. 

Clearly Aut(G) acts freely (although generally intransitively) on 23~, and so each 

Aut(G)-class is of size a(G) := IAut(G)I. Hence we may write 

where dF(G) is the number of G-defining subgroups of F. Given that we know a(G), 

finding dF(G) amounts to counting F-bases or epimorphisms. 

For various groups G we wish to count symmetrical hypermaps which have G as 
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their automorphism group, and so we must determine dF(G) where F is Jf:2+ or Jf:2.! 

Note that in the case F = Jf:2+, the formula above gives an obvious upper bound on 

this number: 
IGI2 - 1 

dF(G) ~ IAut(G)I· 

This bound is sharp since it is attained for cyclic groups of prime order. In general, 

however, it is crude. More than calculating or estimating dF(G) where F is Yt2+ or 

Jf:2, we are ultimately interested in how our symmetric hypermaps are partitioned 

into orbits under the action of the groups f>+ and f> of operations induced by Out(F). 

Agreeably, this too arises naturally in the theory. 

For general F, Aut(F) has an induced action on the set 13~ of F -bases of G via 

!/fa = b where !/f(Xi) = Wi(X" ... , x,J and bi := wi(a" . .. , an); in general this action is 

neither free nor transitive. The actions of Aut(G) and Aut(F) commute, and we denote 

by pt; the group generated by all the permutations of 13~ arising from the action of 

Aut(G) x Aut(F). 

Definition 3.2.3. Let G be a group. The transitivity classes (orbits) of 13~ under pt 
are called the Trsystems of G. When F is the free group of rank n we denote dF(G) 

by dn(G), p2 by p~ and we talk of Tn-systems or simply of T-systems. • 

Rather than regarding a TF-system as being a transitivity class of F -bases of G, it is 

often more useful to regard it as a transitivity class of Aut(G)-classes of F-bases, or 

(equivalently) of G-defining subgroups of F. 

Example 3.2.4. Consider G = Cp , the cyclic group of prime order p. The number of 

generating pairs for G is p2 - 1 (since only the identity fails to generate the group), 

while Aut(Cp ) == Cp _' (since it is the group of units of a finite field); thus there are 

(p2 - l)/(p - 1) = p + 1 Aut(Cp)-orbits of generating pairs, each of size p - 1. These 

orbits correspond to the different normal subgroups N of F2 such that F2/N == Cp , 

and so there are p + I regular orientable hypermaps without boundary with cyclic 

orientation-preserving automorphism group of order p. 

Representatives of the Aut( C p)-orbits are gi = (1, i) for i = 0, 1, ... , p - 1, and 

gp = (0,1). Now, Aut(F2) == Aut(~+) is generated by the automorphisms p: x, H X" 

X2 H X,X2 and J.l: Xl H X2, X2 H Xl (see §3.2.2 below). It is easily verified that the 

1 Although we shall enumerate the F-bases of various groups G directly, dFCG) can also be calculated 
indirectly-and elegantly-using Hall's Enumeration Principle [20]; see also §3.2.6. 
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induced action of p, via the Aut(Cp)-orbits, on the subscripts of the representatives 9j 

is given by the permutation 

(0, 1,2, ... , p - l)(p) 

while that of j1 is given by the permutation 

n (j,r l
) 

O.;,J.;,p 
j<r i 

where r l is the multiplicative inverse of j modulo p for 1 ~ j ~ p - ], and 0-1 = p. It 

follows immediately that Out(F2 ) acts transitively on the Aut(Cp)-orbits, and our p + I 
hypermaps lie in a single orbit under the group b + of operations. 

Knowledge of the F -bases theoretically provides us with complete insight as to the 

nature of the symmetrical hypermaps de, since G also acts as their monodromy group 

G'. The right action of F on the co sets of a hypermap subgroup N is isomorphic to the 

right regular action of G on itself. The monodromy generators which, together with 

G', define the hypermap are the images of the generators of F under the corresponding 

permutation representation. On the other hand, the images of the generators of F 

under the homomorphisms ¢;N: F ~ G whose kernel is N together form an Aut(G)

class of F-bases a of G; and each permutation group P generated by the images of the 

components of some such a under the permutation representation of G is isomorphic 

as a permutation group to G'; the P differ from each other only by a relabelling of the 

points on which they act. 

It follows that each de can be reconstructed by choosing one F -base a from each 

Aut(G)-class and considering how its components ai act on G. In particular, basic 

combinatorial information about de such as the number of components of each di

mension can be obtained simply by observing the order of each ai and of some of their 

binary products. Such details regarding the cyclic groups of Example 3.2.4 above are 

discussed in §3.2.3. 
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3.2.2. Orbits of -il + and -il 

Generating sets of automorphisms 

To facilitate the calculation of orbits of the groups f>+ and f> of hypermap operations, 

it is useful to identify some sets of generators. If Fn is a free group of finite rank n with 

basis X, then every automorphism of Fn carries X onto another basis, and, conversely, 

every injective map from X onto any basis for F;, determines an automorphism. The 

following result is proved in [42, Prop. 4.1]. 

Theorem 3.2.5. Let Fn be afree group of rank n with basis (XI,"" XII)' Let (Y, be the , 
endomorphism x' H [I, x' H x' (J' "* 0. LetfJ·· be the endomorphism x. H X.X,. 

I I j j l,j 1 1 .I 

xk H xk (j, k "* 0. Then the (Y. and the fJ, , are automorphisms, and together thev 
I ',j . 

generate Aut(Fn). 

Of course, there are other possibilities for elementary generators of Aut(F2 ) == Jit2 1 

and we will choose whichever suits our purpose. For example, a presentation given in 

[48] is 

where p and (T are the automorphisms p: XI HXI' x2 H X IX2 and (T: XI H x2' 

x2 H x2'I XI ; also Aut(F2) = <P,J1) whereJ1 = P(T: XI H x2' x2 H XI' 

It is shown in [24] that the restriction Aut(£Z) ~ Aut(£Z+) is surjective, and so 

the automorphisms inducing Hopp and the Machf operations, which generate Aut(£Z), 

restrict to generating automorphisms for Aut(£Z+). These are given in Table 3.1. 

(Note that we use the presentation < to' t l , t21 tg = ti = t~ = 1) for £Z, and we set 

x3 = (XI X2)-1 and identify XI and x2 with tl t2 and t2to respectively, which gives the 

alternative presentation < xl' x2' t21 (XI t2)2 = (t2X2? = t~ = 1) for Jit2.) We shall not 

need to make use of any other generating sets for Aut(£Z). 

Invariants of the orbits 

For a 2-base (a, b) of a group G, the union of the conjugacy classes of the commutator 

[a, b] = aba-Ib- I and its inverse is a well-known invariant of the Aut(F2)-class of 

(a, b),2 called the Higman invariant [47]. (This is easily checked using any generating 

2 An Aut(Fn)-class is often called a Nielsen class and the automorphisms of Fn , Nielsen moves. 
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Operation Automorphism of Jf2 

Hopp 
<l>(O,I) 

<l>(O,2) 

<l>(I,2) 

<l>(O,I,2) 

<l>(O,2,1) 

to H t2tOt2' tl H t l , t2 H t2 

to H tl' t2 H t2 

to H t2, tl H tl 

t I H t2, to H to 

to H t l , tl H t2, t2 H to 

to H t2, t2 H tl' tl H to 

Restriction to Jf2+ 

XI H xl' x 2 H Xii, X3 H (X2xltl 
-I -I -I 

XI H X2 'X2 H XI 'X3 H X3 
-I -I 

X I H X I X2' X2 H X2 'X3 H X I 
-I -I 

XI H XI 'X2 H XI X2' X3 H X2 

XI H X2' X2 H X3' X3 H XI 

XI H X3' X2 H XO' X3 H XI 

TABLE 3.1. The restrictions to ~+ of the automorphisms of ~ which induce Hopp 
and the Machi operations. 

36 

set of automorphisms of F2.) It follows that the order c of [a, b] is an invariant of the T

system of (a, b). We may interpret this as follows. The element [a, b] induces a Petrie 

circuit in a hypermap (see §4.4.3) under the action of G as the monodromy group of 

the hypermap £ induced by (a, b). The Petrie circuits of £ all have length 2c since 

£ is regular; Higman's result thus implies that Petrie circuit length is an invariant of 

the action of the group t)+ of operations on orientable hypermaps without boundary.3 

These facts motivate us to determine whether Petrie circuit length is also an invari

ant of the action of the group t) of general hypermaps, and indeed it proves to be so: let 

(TO, TI, T2) be an Jf2-base of a group G which gives rise to a hypermap fe satisfying 

Aut(£) = G. The element TOTIT2 induces a Petrie circuit (of length 21ToTIT21) in f{! 

(ibid.). 

Proposition 3.2.6. The union of the conjugacy classes of the element TOTIT2 and its 

inverse is an invariant of the Aut(Jf2)-class of (TO, TI, T2). 

Proof. The image of (TO, TI, T2) under the action of Machf automorphism of fez in

duced by a permutation 7f of {a, 1, 2} is (Tn(o), Tn(l), Tn(2»). The element Tn(0)Tn(l)Tn(2) is a 

conjugate of TOTIT2 or its inverse by one of TO, TI or T2. 

Let ¢(I,2) be the Machf automorphism which fixes TO and transposes TI and T2. Let 

~ be the automorphism which induces Hopp. The image of (TO, TI, T2) under the action 

of ¢(I,2)~ is (Ti ITOT2' T2, T 1); we observe that T2 1TOT2 T2 TI = T2TOTI = (TOT I T2Y2. 
Since the Machf automorphisms and ¢(I,2)~ form a generating set for Aut(Jf2), the 

result holds. • 
3Similar arguments show that the length of a (j, j)th-order Petrie circuit (an orbit of aj bja- j b- j; ibid.) 

is also such an invariant. 
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Transitivity properties 

Theorem 3.2.7. An abelian group possessing n-bases has just one Tk-systelnfor all 

k?; n. 

This result appears to be part of folklore. It was known to Neumann [47] in 1956 

but a proof is not readily found in the literature. In fact, the best point of reference is 

the following recent result [12]:4 

Theorem 3.2.8 (Diaconis and Graham). Let G be ajinite abelian group, given as 

where Inj I 1n2 I ... I Inr. Then G possesses r-bases but not (r - 1 )-bases and 

(i) the k-bases of G lie in a single Aut(Fk)-class for all k ?; r + 1, 

(ii) the r-bases ofG lie in ¢(lnj) Aut(Fr)-classes of equal size. 

The Aut(Fr)-classes can be shown to lie in the same Aut(G)-orbit. We provide here an 

alternative direct proof of the transitivity of Aut(F2) on the 2-bases of a cyclic group 

since this at least can be done briefly and we make use of the result later. 

Proposition 3.2.9. Aut(F2 ) acts transitively on the 2-bases of a cyclic group. 

Proof. We first show that the 2-bases in any given Aut(C,n)-class lie in the same orbit 

under Aut(F2 ). Denote the elements of Cm by 0, 1, ... ,In - 1 with addition taken 

modulo In. An automorphism of Cm is determined by the image of the element 1, and 

so the Aut(Cm)-class of a 2-base (u, v) consists of 2-bases (zu, zv) where z generates 

Cm· 

Given a 2-base (u, v), let j be the product of those prime divisors of In which divide 

neither u nor v, taking the empty product to be 1. Then both ju + v and u + jv are 

generators of c'n since each prime divisor of In divides precisely one of the summands 

in each case. The generating automorphisms p, j1 of Aut(F2 ) given on page 35 give us 

4The result in [12] is formulated in the slightly different language of product replacement graphs. 
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the following elements in the orbit of (u, v): 

(u, v) H (u, ju + v) 

H (ju+ v,u) 

under the /h power of p 

under J1 

H (ju + v, z(u + jv)) under a power of p, noting that ju + v is a generator 

H (z(u + jv), ju + v) under J1 

H (z(u + jv), zv) 

H (zv, z(u + jv)) 

H (zv,zu) 

H (zu,zv) 

under a power of p, noting that z(u + jv) is a generator 

under J1 

under the ( - j) th power of p 

under J1. 

Now, similarly, (u, v) H (ju + v, u) H (ju + v,O) under automorphisms of F2, 

and the latter 2-base is in the same Aut(C,n)-class (and hence Aut(F2)-class) as (1,0). 

Hence there is just one Aut(F2)-class. • 

3.2.3. Cyclic groups 

Consider Cpa, a cyclic group of prime-power order. A 2-base for such a group must 

contain a generator, and so 

¢2 (C prY) = ¢(pa) pa + (pa _ ¢(pa)) ¢(pa) 

= ¢(pa) (2pa _ ¢(pa)) 

= p2a( 1 - ~2). 

Let us denote the distinct primes dividing m by PI, ... ,Pk; for general m we may write 
k 

Cm == $ C/,;. A 2-base of Cm may be identified with a generating pair (u, v), where u = 
i=1 ; 

[Ul, . .. , Uk] and v = [VI, ... , Vk] are elements of Cp71 $ .. ·$Cp~k. Clearly (Ui' Vi) is then a 

2-base of Cp~; for each i. Conversely, any choice of 2-base (Ui' Vi) of Cp;r;, one for each 

i, gives a 2-base (u, v) for Cm; this is because the group generated by (u, v) contains 

an element of the form [1, W2, ... , wd and hence contains P2 ... pdl, W2, ... , Wk] = 

[P2 ... Pb 0, ... ,0] and then [1,0, ... ,0], and similarly it contains the other standard 
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generators [0, 1,0, ... ,0], ... , [0, ... ,0, 1]. We thus have 

k 

¢2(C,n) = n ¢2(Cp~i) 
i=l 

Now, since IAut(Cm)1 = ¢(m) = m n(I - *) we have 
plm 
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and the regular orientable hypermaps without boundary whose orientation-preserving 

automorphism group is c'n lie in a single ~+ -orbit of this size. 

When m = per we have d2(C,n) = per + per-I. As was seen in the calculation of 

¢2 (C per), the 2-bases for C ptr either consist of a generator in the first component and 

an arbitrary element in the second, or a non-generator in the first component and a 

generator in the second. Representative 2-bases from the Aut(Cp" )-c\asses may be ob

tained by choosing the generator in question to be 1 in each case. It is convenient now 

to represent each 2-base (go, gd as a 't?2+ -base (go, gl, g2) by adjoining a third compo

nent g2 = (gOgl)-I. For i E {O, 1, 2} the number of i-components of the corresponding 

hypermap is m/Igil (where Igil is the order of gJ, and they each have valency Igil-

Three of the representative 't?2+ -bases contain 0: they are (0, 1, -1), (1, 0, - 1) and 

(1, -1,0). These correspond to the star hypermaps which form the Machi orbit of 

the star map consisting of a single (hyper)vertex and (hyper)face, both of valency per, 

together with per I-valent (hyper)edges. These elementary hypermaps are all spherical. 

The per - 2 per- I representatives consisting of three generators correspond to hypermaps 

consisting of one per-valent component of each dimension i; they lie on a surface of 

genus (per -1) /2. The remaining representative 't?2+ -bases consist of two generators and 

a non-trivial non-generator. The non-generator is of the form c per-f3 where HCF( c, p) = 
I,f3 < a; it is not difficult to see that there are pf3-1(p-l) such elements, corresponding 

to hypermaps consisting of a single i-component and a single j-component (both of 
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FIGURE 3.2. Forming orientable hypermaps Yt' without boundary having a component 
of valency m and satisfying Aut+(Yt') ~ c,n. 
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valency pO: ) and po:-f3 k-components (each of valency p(3 ), where i, j , k (distinct) vary 

over {O, 1, 2}. These hypermaps lie on a surface of genus (p O: - po:-(3 )/2. 

For general m, similar calculations go through but the enumerations are more in

volved and we do not include them here. One point to note is that for fixed i E to, 1, 2} 

there are m regular orientable hypermaps £ without boundary satisfying Aut+(Yt') == 

C,1l and whose i-component has valency m-the maximum possible. For 1 ~ t ~ m 

they are formed by identifying side So of the polygon of Figure 3.2 with side S2t- l and 

then making similar identifications with the remaining sides. For example, Figure 3.3 

shows the orientable hypermaps £ without boundary which satisfy Aut+(Yt') == e6, 

and of these, all nine with positive genus arise in thi s way, although the di agrams are 

not centred about the 6-valent components. (The Walsh representation is used for the 

three star hypermaps, and the James representation is used for the remainder. To form 

the genus-2 hypermaps, identify each side of the 12-gon with the side at distance 3 

away to form two 12-sided polygons representing 6-valent components. To form the 

torus hypermaps simply identify opposite sides of the hexagon in the usual way. Note 

that two of the torus hypermaps are maps.) 

Of course, it is not necessarily the case that an orientable hypermap without bound

ary satisfying Aut+(Yt') == c'n must have an i-component of valency m; there exist 

Cff/ -bases of em consisting of three non-generators whenever three or more distinct 

primes divide m. For example six such hypermaps exist when m = 30: they have two 

i-components of valency 15, three j-components of valency 10 and six k-components 

of valency 5 (where i, j, k vary over {O, 1, 2}) and they lie on a surface of genus I I. 

It is clear that em has no Yt2,-bases for m > 2, and so there are no reflexible hyper-
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maps with cyclic (full) automorphism group of order greater than 2. The hypermaps 

with two hyperblades are simply the seven two-blade maps and are all reflexible; the 

six which lie on the disc are partitioned into two Machf orbits of size three, while the 

trivial orientable hypermap without boundary (consisting of a free hyperedge on the 

sphere) is invariant under all the hypermap operations. 

3.2.4. Dihedral groups 

We denote by D2/11 the dihedral group of order 2m (m ~ 3) with presentation 

The powers of the generator 9 are termed rotations and the remaining elements (which 

are all involutions and can be written in the form gir) are termed reflections, in accor

dance with the common realization of the group as the isometry group of an m-gon. 

A 2-base for D2m cannot consist of two rotations. Hence if it contains a rotation 

then this rotation must generate Cm ; its other component can be any reflection. On the 

other hand, if the 2-base consists of two reflections gir and gir then, since the only 

powers of 9 which they generate are powers of gi-J, i and j must differ by a unit of C/II' 

It follows that there are m ¢(m) 2-bases consisting of two reflections. Hence 

Now, Aut(D2m ) = C,1l ><l c,p(m) where the normal factor C,1l consists of the auto

morphisms 9 H g, r H gi r and the complement C¢(m) consists of the automorphisms 

9 H gk, r H r where HCF(k, m) = 1. Hence Aut(D2m ) has order m ¢(m). The 

d2(D211J = 3 orbits of Aut(D2m) on the 2-bases each consist of pairs of the same type: 

(rotation, reflection), (reflection, rotation), (reflection, reflection). 

It follows that there are three regular orientable hypermaps without boundary with 

automorphism group D2m . Moreover, it is immediate that the automorphisms p, j1 of 

Aut(F2 ) given on page 35 act transitively on the three Aut(D2m)-classes, and so these 

three hypermaps form a single orbit under the group of hypermap operations. This 

is the orbit of the dipole {m,2}; note that Hopp and half of the Machf operations act 

trivially. 

To determine the Yt2-bases of D2m we consider the cases where m is even and odd 



3.2. Orbits of hypermap operations 43 

separately. When m is odd, the only involutions are the m reflections. We have seen 

that there are m ¢(m) 2-bases consisting of reflections, and so there are 3m ¢(m) .Y~

bases which contain the identity, partitioned into three Aut(D211l )-classes and forming 

a single T-system: the automorphisms inducing the Machf operations act tran itively 

on the three classes while that inducing Hopp acts trivially. Now, a triple (gir,gir,lr) 

of reflections generates the group 

which we may rewrite as 

using the correspondence (a, b, c) ~ (a, ab, ac), and so the triple is an .Y~-base if 

and only if a = (i - j, i - k) is a 2-base of CIIl' Hence there are m¢2(CIIl ) such 

~-bases . Moreover, we claim that they lie in a single T-system. Consider the .Y~

automorphisms p: to H to, tl H t2, t2 H t\ and {j- : to H t2, t\ H t2tot2, t2 H tl' (p. 

induces a Machi operation while (j- induces the composition of a MachI operation with 

Hopp.) Under the action of p, the ~-base (gir, gi r, lr) ~ (gir, gi-i, gi- k) is mapped to 

(gi r, lr, gir) ~ (gi r, gi-k, gi-i); this induces the map a = (i - j, i - k) H (i - k, i - j) 

which is the action of J.1 E Aut(F2 ) (from page 35) on a. Under the action of {j-, 

(gir,gir,gkr) is mapped to (lr,g2k-i r,gir) ~ (gkr,gi-k,l- i), which is then mapped to 

(gir, gkr, gi+i-kr ) ~ (gi r, gi-k, gk- i ) under the action of the D211l -automorphism 9 H g, 

r H gi-kr; this induces the map a = (i - j, i - k) H (i - k, k - j) which is the action of 

(T E Aut(F2) on a . Hence the combined action of (P, (j-) and Aut(D211l ) on 'y~-bases 

(gi r, gi r, gkr) where i is fixed induces an action on 2-bases (i - j, i - k) with a subaction 

isomorphic to that of (J.1, (T) = Aut(F2) on these 2-bases. The latter is transitive by 

Proposition 3.2.9, and since Aut(D2m ) acts transitively on reflections gir the claim is 

proved. 

Thus for odd m, 

¢.Y{1 (D211l ) = 3m¢(m) + m¢2(C,n) 

= 3m ¢(m) + m ¢(m) d2(C,n) 

and 
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The hypermaps with automorphism group D 2111 (m odd) lie in two orbits under 5: one 

of size three and one of size d2(C/lJ The orbit of size three consists of the disc star 

hypermaps; it is the orbit of the disc star map which lies on the di sc and consists of 

a single (hyper)vertex in the interior and m I-valent (hyper)edges incident with the 

boundary. The other orbit simply consists of the orientable hypermaps ,Ye without 

boundary satisfying Aut+(£ ) == c'n, described in §3.2.3; this shows that each of these 

regular hypermaps is reflexible with dihedral full automorphism group. 

When m is even there is a rotation glll /2 of order 2. The Jti-bases consisting of 

reflections are enumerated as before, as are those involving the identity. Consider a 

D2m-triple consisting of glll/2 together with two reflections gir, giro These elements 

generate the group 

and so the triple is an Jti-base if and only if (i - j , m12) is a 2-base of c,n. This is 

certainly the case when i - j is a generator of C,1l, and since < glll/2 ) is characteristic in 

Aut(D2m) it is easy to see that the Jti -bases (gir, gir, glll/2 ) with i - j as such lie in a 

single Aut(D2m)-class. Further, since the Jti-automorphism which induces Hopp acts 

trivially on this class, the three such classes (indexed by the position of glll /2) together 

form a T-system. Now, by representing C,1l as C2"1 EEl C,{t2 EEl · .. EEl C,{tk and representing 
2 k 

1 as [1, 1, . . . , 1] which identifies ml2 with [2a, - I , 0, ... ,0] we see that (i - j , m12) is a 

also a 2-base of c'n when al = 1 and i - j is twice a generator of C,1l , yielding m¢(m) 

further Jti-bases; again they lie in a single T-system. 

and 

Thus for even m, 

{

6m¢(m) + m¢2(CIII ) 

¢ yt1 (D2m ) = 
9m¢(m) + m¢2(Cm ) 

= {6m ¢(m) + m ¢(m) d2(C,n) 

9m¢(m) + m¢(m)d2(C,n) 

if ml2 is even, 

if ml2 is odd; 

if ml2 is even, 

if ml2 is odd ; 

if ml2 is even, 

if ml2 is odd. 

There are three orbits under 5 of hypermaps with automorphism group D211l when 4 I 
m: two of size three and one of size d2(C,n). Of these, the orbit of size three not present 
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when m is odd is a Machi orbit of the map on the projective plane consisting of the 

reftexible embedding of a circuit of length 2m to give a single 2m-valent (hyper)face. 

When 4fm there is another orbit in addition to these three; this is the orbit of the dipole 

£ = {mI2,2} and it too has size three; note that the elements of Aut(Jltf) :::: D 2111 of 

order m are not rotations about the vertices of the dipole. However, we have already 

seen that Aut+(£) :::: Dill, whence the orientation-preserving automorphisms of order 

ml 2 are indeed such rotations. 

3.2.5. Affine general linear groups 

The group AGL(l, q) is the group of all affine transformations 

f H uf +a (u, a E GF(q), u "* 0) 

of the field F = GF(q) of prime-power order q = pe . It has a normal subgroup T :::: 

(F, +) consisting of the translations 

ta: f H f +a (a E F) 

complemented by S, the stabilizer of 0, consisting of the scalar transformations 

Su: f H uf (u E F \ {On, 

and isomorphic to the multiplicative group F * = F \ {O}. The order of AGL(l, q) is 

q(q - 1), and each element can be written uniquely in the form 9 = suta. Moreover, 

and 

(so that u is an invariant of the conjugacy class of suta). Hence for q > 2, AGL(l, q) 

has trivial centre and so Inn(AGL(l,q)):::: AGL(l,q). 

Suppose q > 2. Let suta, Sutb be elements of AGL(1, q) which do not both lie 

in the same cyclic subgroup. Consider the case e = 1: AGL(l, p) has order pep -

1) and so it is clear that these elements form a 2-base if and only if (u, v) is a 2-
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base for F * == Cp- l . For e > lone cannot see from the group order alone that the 

latter condition is sufficient. However, the result still holds: for fixed u, v E F \ {O}, 

Inn (AGL(l, q)) preserves and acts freely on the set Lu,u of 2-bases (suta, Sutb). This set 

contains at most q(q-1) pairs since AGL(l, q) is the disjoint union of cyclic subgroups, 

namely T and the q conjugates S9 of S (which are the stabilizers of the q elements of 

GF(q)), and suta and Sutb cannot lie in the same such subgroup. Yet q(q - 1) is the 

order of Inn(AGL(l, q)), and so Lu,u has precisely this size. It follows that every pair 

(suta, Sutb) for which (u, v) is a 2-base for F * == Cq- l is a 2-base for AGL(1 , q) unless 

both components are powers of a common element. (We note here that su ta sutb = 

Suutub+a and Sutbsuta = suutua+b, and so < suta, Sutb ) is non-abelian if and only if ub + a =1= 

va + b, that is, if and only if a =1= 0 and v =1= 1 when u = 1, and b =1= a(v - l)/(u - 1) 

otherwise.) Thus 

q(q - 1) <P2(Cq- l ) = q(q - 1)3 n (1 - t~) if q > 2, 
tiq- l 

I prime <P2(AGL(l, q)) = 

3 if q = 2. 

Let Gal(F) denote the Galois group of F = GF(q) (over its prime field GF(p)) . 

Every automorphism of AGL(1, q) is the composition of an inner automorphism and 

a 'field automorphism' [26]; in other words, Aut(AGL(1, q)) can be identified with 

the group of transformations f H u!,J + a (u E F *, a E F, () E Gal(F)), acting by 

conjugation on its normal subgroup AGL(1, q) . Now, Gal(F) is cyclic of order e, being 

generated by the Frobenius automorphism f H fP . It follows that 

d2(AGL(1, q)) = 

(fJ2(Cq- l ) = (q_ l )2 n (1 -~) if q > 2, 
e e p 

liq- I 
I prime 

3 if q = 2. 

An Aut(AGL(1, q))-class of 2-bases may be represented by anyone of e 2-bases 

of the form (su, sutl)' corresponding to e 2-bases (u, v) of Cq- l . Since Aut(F2) acts 

transitively on the 2-bases of cyclic groups by Proposition 3.2.9, the Aut(AGL(1, q))

classes lie in a single T-system. The types of the hypermaps in the corresponding f> + -

orbit are easily determined: if we represent (u, v) as a ~2+ -base (u, v, (uvt l) then the 

corresponding hypermap £ has type (lui, lvi, I(uvtll). (The e ~2+ -bases representing 



3.2. Orbits of hypermap operations 47 

£ are conjugate in the obvious way under Gal (F) and so the stated type is independent 

of the choice of representative.) 

It is of interest to partition the T-system into orbits according to the action of 

Aut(Cq-d on the 2-bases of Cq- 1; using the results from §3.2.3 we have that 

for q > 2. Thus there are d2(Cq_r) such sets, each of size ¢(q - l)/e, and hypermap 

type (and hence genus) is an invariant of the set. Note that different sets may give rise 

to the same type (as can easily be seen when q is prime; cf. §3.2.3). One of these sets 

consists of the regular orientable embeddings of the complete graph Kq classified in 

[26]; these were demonstrated to form an orbit under the action of Wilson's operators 

Hi described in §4.4.3 below. In general however, our sets are not orbits under the 

Hi or even under the more general operators Hi,k (ibid.), as can be seen by observing 

that these operators do not in general preserve type, sending a ~2+ -base (u, v, (uvtl) to 

(ui , Vk, (uivk)-l) which corresponds to a hypermap of type (lui, lvi, I(uivktll) . However, 

all of these operators do at least act transitively within the T-system on hypermaps of 

a given type, since elements of the same order in a cyclic group are necessarily powers 

of each other. 

3.2.6. Asymptotic behaviour of orbits 

Let F be ~+ or ~, and let {Gd be a sequence of groups belonging to the same 

infinite 'family' (cyclic groups, dihedral groups, etc.), such that IGi+11 > IGil. Define 

f: N -----7 N such that f(i) = IT maxi where T max is the largest TF-system of Gi • It is 

interesting to examine the asymptotic behaviour of f. Can we have arbitrarily large 

orbits of hyperrnap operations, and if so how fast can they grow? To approach these 

questions, it is natural to first determine the asymptotic behaviour of dF (where, as 

usual, dF(Gi ) is the number of symmetric hypermaps with automorphism group Ga, 

and then to ask how these are partitioned into orbits under f>+ or f>. It seems that the 

latter question is rather difficult. 

Historically, the problem of evaluating dF goes back to Philip Hall [20], who ex

pressed the function as a Mobius-type summation of dF(H) over all intersections of 

maximal subgroups H c G. This shifted the focus of the problem from F-bases to 

subgroup lattices. He referred to dF as an Eulerian function of G since in the special 
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case of cyclic groups we have d1 (en) = ¢(m). Hall used the principle to calculate 

dF for a number of low-order groups and for the simple groups PSL(2, p) of order 

!p(p2 _ 1) where p is a prime exceeding 3.5 More recently, its application has led 

to formulae (involving elementary number-theoretic functions) for dF(GJ in the case 

where F = L1(3, 2, 7) and {Gd is the family of simple groups of Ree type of charac

teristic 3 [27] , and in the case where F = L1(4, 2, 5) and {G;} is the family of simple 

groups of Suzuki type [30]. 

One may also employ probabilistic methods to estimate ¢F(G) and hence dF(G). 

Attention has mainly been focused on the case F = Fn (see, for example, surveys in 

[54], [50]). Dixon [13] showed that two randomly-chosen elements of the alternating 

group G = An form a 2-base with probability approaching 1 as IGI ~ 00, and that 

for G = Sn this probability approaches ~. The result for An has been generalized to all 

finite simple groups G ([36], [40]). Moreover, Inn(G) == G for all finite groups G which 

are either simple or non-abelian symmetric. It follows that for alternating groups All 

(which satisfy Aut(An) == Sn for all n > 3 and n ;/; 6) we have 

while for symmetric groups Sn (which have no non-trivial outer automorphisms for 

n ;/; 2, 6) we have 

d2(G) ~ 3;'; 
and for the Chevalley and twisted Chevalley groups G we have 

IGI2 IGI 
d2(G) ~ IAut(G)1 = IOut(G)I ' 

The remaining non-abelian finite simple groups are sporadic. The outer automorphism 

group Out(G) of a Chevalley or twisted Chevalley group G is usually a very low mul

tiple of the degree f of the finite field GF(pf) over which G is constructed [5]. In 

particular, Out(G) is cyclic of order f for many of the families when p = 2 and for 

some of these when p is almost unrestricted. Most notably, the families G2(p), F4 (p) 

and E8(P) have trivial outer automorphism group for p > 3, and for these groups G we 

have d2(G) ~ IGI. 

It is also possible-although rather difficult in general-to estimate the asymptotic 

5Hall denotes the group PSL(2, p) by MP. 
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behaviour of the number of T-systems of a family of groups. A recent result of Gu

ralnick and Pak [19] which states that the number of T-systems of generating pairs of 

SL(2, p) approaches 00 as primes p ~ 00 is a notable success in this regard. 

Despite all this, the techniques used for estimation shed little light on individual 

T-systems, and asymptotic formulae for the size of T-systems seem hard to achieve. 

(Describing the T-systems of the alternating groups is an open problem proposed by 

Pak [50].) 

Of course, as we have demonstrated in the previous sections, T-systems can be 

calculated directly for certain families of groups whose elements are 'well understood', 

and here we can make better progress. Consider first the cyclic groups. Recall from 

§3.2.3 that 

If m = p for some prime p then the size of the orbit or regular orientable hypermaps 

without boundary with automorphism group Cp is p + 1 and thus grows linearly with 

the order of the groups in this family. We can do better if we let mk = P,P2 ... Pk be 

the product of the first k primes. In this case we have 

The sum of the reciprocals of the first k primes is divergent, while the other terms in 

the product expansion above converge. Hence the hypermap orbit grows faster than 

linearly for this family. The rate of divergence is known from a standard result of 

analytic number theory (e.g. [49]): there exists a constant C such that 

'\:' .!. = log log N + C + 0(_1_). 
~ P 10gN 

p prime 

Now consider the affine general linear groups. Recall from §3.2.5 that 

d2(AGL(I, q)) = (q ~ 1)2 n (1 - t;) 
tlq-l 

I prime 
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if q = pe > 2 is a prime power. By the Euler product formula for the Riemann zeta 

function ~(s) we have 

and so 

We see that the orbit of regular orientable hypermaps without boundary with automor

phism group AGL(1, q) grows linearly with the size of this group. 
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In this and the following chapter we concern ourselves with the related problem in 

which the epimorphism is from G1 onto a subgroup of G2-in other words, a homo

morphism from G1 to G2 . (Of course, the two approaches to representations coincide 

when the epimorphism is injective, giving an inclusion of G, in G2 .) In particular, 

we investigate functors between categories of hypermaps defined by type induced by 

homomorphisms between triangle groups and between extended triangle groups. To 

elaborate, if ¢: !1(mo' m" m2) ~ !1(m~, m;, m;) is a homomorphism between triangle 

groups then it induces a functor <D (which we shall call an operational Junctor) be

tween C (IIl
Q
,IIl

I
,1Tl

2
) and C(l1lo,II1; ,IIl;) : for a hypermap £ of type dividing (mo' m" m2) with 

hypermap subgroup H , the image <D(£) is the hypermap of type dividing (m~, m; , m; ) 

with hypermap subgroup H¢ = ¢(H). This is well-defined since hypermap subgroups 

are defined up to conjugacy and any homomorphism sends conjugate subgroups into a 

single conjugacy class. 

If ¢ is not surjective and yet its image has the structure of a triangle group, then <D 

can be regarded as the composition of two operational functors corresponding to the 

composition of an epimorphism with an inclusion . 
.:.-" -

These ideas go through in exactly the same way for homomorphisms between ex-

tended triangle groups. 

4.1.2. Restrictions 

Each operational functor <D can be restricted to a functor <DI from a subcategory of 

its domain defined by type. On the other hand we mayor may not find it possible to 

regard the range of <DI as a proper such subcategory of that of <D. 

We also note that restrictions of operational functors are not necessarily themselves 

operational functors. For example, the topological representations of orientable hyper

maps discussed in § 1.2 give rise to functors C (oo,oo,oo) ~ C (oo.2,oo) by regarding the image 

of a hypermap £ to be the underlying map of its topological representation. These 

functors permit l1estrictions as follows: 

Cori representation C: C (IIlQ.I1l I .1112) ~ C (4.2,LCM(IIlQ.IIII ,2m2)) 

Walsh representation W: C (ITlQ.II/J ,1112) ~ C (L CM(IIlQ,1II1 ).2,21112) 

James representation J: C (IIlQ,II/J ,1fl2) ~ C (3,2.2 L CM (mQ,IflI ,m2)) 
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and the functor arising from the James representation extends naturally to one defined 

similarly between categories of general hypermaps. For certain types (111.0, ml, 17'1,2) 

some of these restrictions coincide with operational functors, as discus ed further in 

§4.5.1. In the main, however, these restrictions do not arise from homomorphi m . 

4.2. Inclusions as functors 

In this chapter we classify the operational functors arising from inclusions between 

triangle groups and between extended triangle groups. In Chapter 5 we classify the 

remaining homomorphisms and their functors . 

Inclusions fall into three classes: automorphisms of a given triangular group; iso

morphisms between different triangular groups; and proper inclusions ¢ : /1 C-7 f (for 

which ¢(/1) is a proper subgroup of f). As discussed in § 1.4, we regard the order of the 

periods in the notation as fixed, so that /1(a, b, c) and /1(c, b, a) denote different-but 

isomorphic-groups. 

Any inclusion ¢: /1 C-7 f between triangle groups is an identification of /1 with 

a subgroup of f, and so we may treat the fixed points of the rotation elements of /1 

as being fixed by elements of f. In other words, the centres of the hypermap com

ponents of the universal hypermap CIlIc. can be identified with a subset of those of CIlIr 
(not necessarily respective of the dimension i of the component), thus superimposing 

%'c. on CIlIr . If /1 = /1(mo' m1, m2) and f = /1(m~, m~, m;) then ¢ gives rise to a functor 

<D : C CIllO
,IIl, ,1Il

2
) --7 CClIlo,m; ,1Il2). Let !!£ be the simply-connected Riemann surface (aug

mented by ideal points if some mi = 00) on which CIlIr (and hence %'c.) lies. Then /1 

is the hypermap subgroup of itself corresponding to the trivial hypermap g on the 

Riemann surface !!£ / /1 homeomorphic to S2; it is also the hypermap subgroup within 

f of a hypermap 9 = CIlIr //1 on !!£ //1. This hypermap, the image under <D of g, is 

the quotient of CIlIr obtained by identifying sides of a fundamental region for /1. We 

actually have a functor from C(IIlO,IIl,,1Il2) to the subcategory of CCIIl
O
,IIl; ,1Il2) consisting of 

hypermaps which cover 9 (Figure 4.1). 

The image under <D of a regular hypermap Y'e with hypermap subgroup H is not 

necessarily regular since normal subgroups of /1 need not be normal in f . On the other 

hand, preimages under <D of a regular hypermap <D(ye) covering 9 are themselves 

regular. The automorphism group of £ is a subgroup of that of <D(ye) and has index 

INr(H) : Nc.(H)I · 
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r 

¢(/>.) } Cjj 
<D(£ ) 

¢(H) 

1 1 

FIGURE 4.1. Homomorphism diagram for an inclusion ¢ between triangle groups. 

An inclusion functor <I> sending £ to <D(YC') does not in general have an inverse; 

rather, each hypermap <D(£) has an inverse image which may consist of several hy

permaps. This is because subgroups H ~ fl. which are conjugate in r need not be 

conjugate in fl., and so the mapping between conjugacy classes of subgroups of fl. and 

r induced by an inclusion is not necessarily injective. As a result, a number of arbi

trary choices will need to be made in the reverse construction. In particular, if fl. has 

index n in r then there are n distinct ways of superimposing a marked %'t. on %'r so 

that the marked hyperdart lies within a given fixed fundamental region for fl.. Any 

attempt to reverse the construction for <I> will necessarily involve (at least) making an 

arbitrary choice from n possibilities, giving rise to n preimages, no two of which need 

necessarily be isomorphic. 

These reverse constructions can be obtained in a straightforward manner when 

<D(YC') is regular and ¢(H) is canonical in r, simply by reversing the description for 

<D . We provide examples of this in §4.5.1. To find the inverse image of a more general 

hypermap JI( covering !2, one has little choice but to find the inverse image of the 

minimal regular cover of JI( and form quotients of the hypermaps by the appropriate 

group. 

4.3. Functors from isomorphisms 

The Machi operations on the category C(oo,oo,oo) of orientable hypermaps without bound

ary are induced by permutations of the i-components and hence by permutations 7f of 
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the elements of to, 1, 2}. The range of their restriction to a category C (IIIQ, II/t ,1II2) can it

self be restricted to C (mJr(o),m
lr

(l ), lIl
lr

(2») (or to any supercategory) to give Machfjunctors cDJr. 

The Machf automorphisms are the only isomorphisms between triangle groups up to 

composition with group automorphisms; this follows from the geometric definition of 

the groups. 

Let 1[ and 1[' be two permutations of to, 1, 2}. The effect of an operational functor 

arising from a homomorphism 

is the same as the effect of the composition cD1f 0 cD 0 <l>1f'-1 where cD arises from a 

homomorphism if;: l1(mo' ml' m2) ~ l1(m~ , m;, m;). It follows that when determining 

operational functors it is enough to work with just one of the possible orderings of the 

periods of each triangle group involved. 

These ideas also hold true in the wider context of general hypermaps and extended 

triangle groups. 

4.4. Functors from automorphisms 

4.4.1. Triangle groups with finite periods 

The automorphisms of a triangle group l1(mo, m" m2) give rise to functors from the cat

egory C(IIlQ,IIlI ,1Il2) to itself. When the periods are finite the group is cocompact; it is well 

known that the automorphisms of finitely-generated planar discrete cocompact groups 

are geometrically induced (see, for example, [62, §6.6]). For infinite triangle groups 

with finite periods, it follows that none, two or six Machi functors are induced by outer 

automorphisms according as none, two or all three of the periods are the same; and that 

there is precisely one other outer automorphism, represented by the automorphism v 

which maps a given pair of standard elliptic generators to their inverses. This outer 

automorphism induces the chiral duality Junctor Y which sends each orientable hyper

map £ without boundary to its mirror image or chiral dual, the hypermap obtained 

by reflecting £ in the projection onto Yt' of that side the principal fundamental trian

gle of f/t, which joins the fixed points of the given generators. (This same geometric 

transformation induces an inner automorphism of the corresponding extended triangle 
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group, and so there is no notion of chirality in the wider context of hypermaps which 

may be non-orientable or have boundary.) 

For the spherical triangle groups the situation can be different. The automorphism 

v which induces chiral duality represents the only non-trivial outer automorphi m of 

the group b.(3, 2, 3) :::: A4 :::: Aut+(T) where T is the tetrahedron; it is induced by 

conjugation in b.[3, 2, 3] :::: S4 . (Note that the maps in C(3,2,3) are all self-dual.) This au

tomorphism is inner (as are all automorphisms) in the case of b.(3 , 2, 4) :::: S4 :::: Aut+(C) 

where C is the cube. Hence the quotients of the cube are all non-chiral. Likewi e, v is 

inner in the case of b.(3, 2, 5) :::: As :::: Aut+(2)), where 2) is the dodecahedron. There 

does however exist one outer automorphism in this case, represented by an automor

phism ¢, and it is not geometrically induced. (It is induced by conjugation in Ss.) Yet 

although there exist subgroups of b.(3, 2, 5) which are not invariant under ¢, the conju

gacy classes of subgroups are invariant since representatives from different classes are 

of different sizes. Hence ¢ simply induces the identity functor. 

The groups b.(n, 2, 2) = < x, y I xn = y2 = (xy? = 1) :::: D2n are the orientation

preserving automorphism groups of the dipoles {n, 2} (using the notation of [11 D. Now, 

Aut(D2n) :::: Cn><lC¢(n); when n is odd we have Inn(D2n) :::: D2n and IOut(D21l )1 = ¢(n)/2, 

while when n is even we have Inn(D2n) :::: Dn and IOut(D2n )1 = ¢(n). The outer 

automorphisms when n is odd are represented by automorphisms which-with the 

exception of the identity-permute the subgroups of D2n non-trivially but act trivially 

on the conjugacy classes of subgroups. Hence there are no non-identity operational 

functors in this case. If n is even then for positive divisors m of n there are precisely 

two conjugacy classes of subgroups D211l in D2n . A subgroup of index 2 in Out(D2/l) 

preserves them, and the other coset transposes them. Hence there is one non-identity 

operational functor <1>, represented by x H x, Y H X- I y. Regarding D2n as acting on 

the n-gon in the usual way, this automorphism interchanges a reflection which fixes 

two vertices of the n-gon with one which preserves two edges. It follows that <1> is the 

Machf automorphism which fixes the vertices of a map ..4 but transposes edges and 

faces. 

As for each group b.(n, 1, n) :::: Cn, which is the orientation-preserving automor

phism group of the star map with n free edges, its subgroups are of course invariant 

under all of its automorphisms and so there are no non-identity functors induced in this 

case. 
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"~-<- -~ 

--0 

1 

FIGURE 4.2. The non-trivial orbits of the functor induced by the non-identity outer auto
morphism of Ll[3, 2,4]. 

4.4.2. Extended triangle groups with finite periods 

As was the case for planar triangle groups with finite periods, the automorphisms of 

their extended counterparts are geometrically induced [43]. Hence the Machf functors 

are the only possibilities here. The automorphisms of the group .6.[3,2,3] = S4 = 
Aut(r) are all inner. The group .6.[3,2,4] = S4 X C2 = Aut(C) has inner automorphism 

group S4; the non-identity outer automorphism is represented by an automorphism 

which transposes the two subgroups isomorphic to S4, namely the rotation group of 

the cube and the full symmetry group of the two inscribed tetrahedra. Hence there is 

a single non-identity operational functor in this case; Figure 4.2 shows its effect. The 

automorphism group of .6.[3, 2, 5] = As X C2 = Aut(V) is isomorphic to Ss, with inner 
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automorphism group As; automorphisms representing the non-identity outer automor

phism act non-trivially on the subgroups of Ll[3 , 2, 5] but trivially on the conjugacy 

classes of subgroups in this case, and so no extra functor arises. 

The groups Ll[n, 2, 2] = D2n X C2 are the automorphism groups of the dipole {n,2}. 

When n is odd, D 2n X C2 = D 41H and we have seen that there is just one non-identity 

functor induced in this case. When n is even, a number of distinct functors are induced; 

however, since the category of quotients of the dipole is not a particularly interesting 

one, we shall not investigate their nature here. 

Finally, we have already discussed the automorphisms of the groups Ll[n, ] , n] ~ 

D 2n which are the automorphism groups of the star maps. 

4.4.3. Triangle groups A(a, b, 00) 

Consider the triangle group Ll = Ll(a, b, 00) with presentation < x, y I x a = yb = ] ) = 
Ca * Cb, where a and b are finite. By a result of Schreier [53], 

when a *- b; 

when a = b, 

where Un is the group of units of the ring of integers modulo nand Ua 2 C2 is the 

wreath product of Ua and C2, a semidirect product of Ua x Ua and C2 . (This result 

is a consequence of the Torsion Theorem for Free Products which implies that the 

images under an automorphism of x and y, being torsion elements, are conjugates of 

powers of x and y. Since we can express x and y as words in their images, their simple 

form allows us to use standard cancellation arguments together with the Normal Form 

Theorem for Free Products to determine the possible images and hence calculate the 

automorphism group.) The outer automorphisms are represented by compositions of 

the following automorphisms of Ll: 

and if a = b, 

X H xi, Y H Y 

X H x, Y H y k 

X H y, Y H x. 

where 0 < j < a, HCF(j, a) = 1; 

where 0 < k < b, HCF(k,b) = 1; 

When a = b the automorphism <P(D,l ) : x H y, Y H X induces a Machi functor. The 

following definitions were first introduced by Coxeter [9]. 
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Definition 4.4.1. Let Jft be an orientable map without boundary. A ph-order hole in 

Jft is a cyclic sequence of edges, each two consecutive sharing a vertex, such that at 

each vertex, the surrounding two edges in the sequence subtend j faces on one side, 

either the right or the left but consistently throughout. 

A ph-order Petrie circuit is a similar sequence of edges, but at each vertex, j faces 

are subtended on the right and on the left alternately. • 

First-order holes and Petrie circuits are simply the familiar notions of faces and or

dinary Petrie circuits. Algebraically, ph-order holes correspond to the cycles (on the 

set of darts) of the element (ri r1 )-1 of an appropriate triangle group (§ 1.1.2) while 

ph-order Petrie circuits correspond to the cycles of rirlr~jrl' These concepts can 

be applied equally well to all maps by considering orbits on the set of blades of the 

subgroups «(tl(t2tl)j-1r1,to) = (tl(t2tdj-\to) and (t,(t2t,)j- l,t2tO) of an appropriate 

extended triangle group (§ 1.2.1). 

The nature of the automorphisms above motivates us to extend these concepts to 

hypermaps. We make the following definition. 

Definition 4.4.2. Let £ be an orientable hypermap without boundary. A (j, k)'h -order 

hole in £ is a cyclic, alternating sequence of hypervertices and hyperedges, each pair 

of consecutive components adjacent, such that each hypervertex and its surrounding 

two hyperedges in the sequence subtend j hyperfaces consistently on one side (either 

the right or the left) and such that each hyperedge and its adjacent hypervertices sub

tend k hyperfaces consistently on that same side. 

An (j, krh-order Petrie circuit is a similar sequence such that at each hypervertex 

and its surrounding two hyperedges, j hyperfaces are subtended on the right and on the 

left alternately; and such that at each hyperedge and its surrounding two hypervertices, 

k hyperfaces are subtended on the same side as that for the previous hypervertex in the 

sequence. • 

So (j, 1)th-order holes and Petrie circuits in hypermaps correspond to ph-order 

holes and Petrie circuits in maps. Algebraically, (j, k)th-order holes and Petrie circuits 

in orientable hypermaps without boundary correspond to the cycles on the hyperdart

set of (rir~)-1 and rir~r~jrlk . When applied to all hypermaps, these two concepts 

correspond to orbits on the hyperblade-set of the subgroups ( (t, (t2t, )j- ' r l
, to(t2tol- ' ) 

. I k) and ( tl (t2tl )J- , (t2tO) . 
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We now see that our automorphisms x H x j
, Y H l of t1 induce operational 

functors Hj,k whose effect on a hypermap can be realized by dissolving the hyperfaces 

and then spanning by a membrane each cycle of hyperdarts which form a (j, k)th-order 

hole. This has the effect of transforming Petrie circuits into (j, k) th-order Petrie circuits. 

In general these functors come in chiral pairs: H - j,-k = Hj,k 0 Y where Y is the chiral 

duality functor and subscripts j and k are to be taken modulo a and b. 

A family Hj of map operations which fix the underlying graph but transform faces 

into ph-order holes was introduced by Wilson [61]. When j is relatively prime to the 

least common multiple a of the valencies, the resulting object is a legal map. We see 

now that these operations arise naturally as the group of all operational functors for the 

category of maps of type (a, 2, 00). 

4.4.4. Triangle groups Li( 00, b, 00) 

Consider the triangle group t1 = t1( 00, b, 00) with presentation < x, y Il = 1 ) ~ Z * Cb , 

where b is finite. 

Proposition 4.4.3. Out(Z * Cb ) ~ D2b ><l Ub. 

Proof. Representatives for an obvious family of outer automorphism classes are x H 

x, Y H l where 0 < k < b, HCF(k, b) = 1. Through composition with one of these 

representatives and an inner automorphism we may assume, by the Torsion Theorem 

for Free Products, that a given automorphism B of Z * Cb fixes y. We write B(x) as a 

word w = w(x, y) and then express x as a word w' = w'(B(x), y) in the images of the 

generators. The word w' is of the form yil wjl yi2wh ... yil/ wjll . Examining the reduction 

that occurs in the product ww = w2, we see that if half or more of the powers of x in 

either factor ware annihilated then they all must be; this cannot happen since w has 

infinite order. Hence there is a positive number of powers of x in the middle of each w 

which do not cancel in the reduced form of w2 . This is also true of the reduced forms 

of w±yillw± and w~yiIlW~. Applying the Normal Form Theorem, we conclude that the 

expression of w' as a product involves precisely one w which itself involves precisely 

one power of x, namely x or x-1• By composition with an inner automorphism we 

may finally assume that B(x) = x±yi. We deduce that the outer automorphism group is 



4.4. Functors from automorphisms 61 

represented by the automorphisms in the group which is generated by 

XHX yHy
k , where 0 < k < b, HCF(k, b) = 1; 

X H xy, Y H y; 

X H X-I, Y H y. 

The factor D2b of Out(Z * Cb) is normal: it is the kernel of the action on (y). However, 

an automorphism x H x, Y H yk commutes with the automorphism x H xy, Y H Y 

only when k = 1. The result follows. • 

It follows that the group of operational functors here is generated by three of its 

subgroups. The first, induced by the group of automorphisms {x H x, Y H yk I 0 < 

k < b, HCF(k, b) = I} == Vb, is realized by dissolving the hyperfaces of each hypermap 

and then spanning by a membrane each cycle of hyperblades which form a (1, k)th_ 

order hole. The second, induced by the group of automorphisms {x H xyi, Y H 

Y I 0 ~ i < b} == Cb, is realized by dissolving the hypervertices and hyperfaces of each 

hypermap to leave a skeleton of hyperedges and Petrie circuits and then recreating the 

hypervertices (which are (1, O)th-order holes) as (1, i)th-order holes. This has the effect 

of transforming each (l,n)th-order hole into a (l,n + i)th-order hole. To facilitate a 

simple combinatorial description, we take the third subgroup of operational functors 

to be the involutary group generated by the chiral duality functor Y (induced by the 

automorphism v: x H x-I, Y H y- I). Note that the Machf functor is induced directly 

here by x H xy, Y H y- I; when b = 1 it acts as the identity functor and v is the 

identity automorphism, corresponding to the fact that the quotients of the infinite star 

map %'~(oo.l.oo) are all self-dual and non-chiral. When b > 1 this functor has order 2. 

4.4.5. Extended triangle groups A[a, b, 00] 

Let i1[a, b, 00] have presentation (I, r, t 1/2 = r = t2 = (rt)G = (tli = 1). When b = 2 

let 7r be the automorphism r H r, t H t, I H tl. When a = 2let T be the automorphism 

r H rt, t H t, I H I. 

Theorem 4.4.4. 

a 1= b, a 1= 2, b 1= 2 

a = b, a 1= 2. 
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Out(~[a, 2, 00]) - Ual ( -1) x (7r) when a =1= 2. 

Out(~[2,b,00]) - Ub/( -1) x (T) when b =1= 2. 

Out(~[2, 2, 00]) - ( 7r) X (T») )<I C2 == Dg• 

We begin the proof with the following lemma. 

Lemma 4.4.5. Let r = ~[mo, ml, m2] be an extended planar triangle group with pos

sibly infinite periods. Then an automorphism of r is fully determined by its effect on 

the even subgroup r . 

Proof. Let f have presentation (l, r, t I z2 = ? = t2 = (rty'o = (tl)1II1 = (lr)1II2 = 1 ). By 

identifying x with rt and y with tl, we have the alternative presentation (x, y, t I (ty)2 = 
(xt)2 = t2 = r"O = yllli = (xyt lll2 = 1) for f . Let a, [3 be automorphisms of f 
with identical effect on r = (x, y) . Then (J = a[3- 1 fixes r pointwise and is hence 

determined by its effect on t. Now, t inverts x and y, and so (J(t) also inverts (J(x) = x 

and (J(y) = y. Thus t(J(t) is an element of the even subgroup r centralizing x and y; so 

t(J(t) E Z(r). But planar triangle groups have trivial centre, and so t = (J(t) . • 

Consider first those automorphisms of ~ = ~[a, b, 00] which leave the even sub

group ~ invariant (and hence restrict to automorphisms of ~) . Inner automorphisms 

of ~ extend in an obvious way to inner automorphisms of ~, and so we examine 

whether representative automorphisms for Out(~) extend. Let ~ have presentation 

(x, y I x a = yb = 1) and let ~ have alternative presentation (x, y, t I (ty? = (xt? = 

t2 = x a = yb = 1). It was shown in §4.4.3 that when a =1= b, Out(~) is isomorphic 

to Ua X Ub and is represented by the automorphisms x H xi, Y H yk where j E Ua, 

k E Ub; while when a = b it is isomorphic to (Ua x Ua)<I C2 and is represented by these 

same automorphisms together with their compositions with the MachI automorphism 

¢(O,I): x H y, Y H X . It is clear that each of these representatives extends to an auto

morphism of ~ which fixes t. We immediately recognize v: x H X - I , Y H y - I , t H t 

as the inner automorphism induced by t. That this is an inner automorphism is not 

surprising; the restriction of this automorphism to ~ induces a chiral duality functor 

on orientable hypermaps without boundary, which acts trivially in the wider context of 

all hypermaps. (In the case a = b = 2 this automorphism is the identity, and ¢ (O,l) is 

the only non-identity extended automorphism.) 

Lemma 4.4.6. The identity and v are the only extended representatives which are in

ner automorphisms of~· 



4.4. Functors from automorphisms 63 

Proof. The extended representatives all fix t. Now, the fixed points fx and f!J of x and 

y lie on the axis of reflection Rr of t. Two geometric transformations which commute 

preserve each other's fixed point set, and so it is not difficult to verify that the central

izer of t in the group of isometries of the hyperbolic plane 1{ (or of C if a = b = 2) 

consists of the hyperbolic elements whose axis is Rr (or the translations of C along 

Rt ), the glide reflections along Rr , the rotations of order 2 about points on Rr. and the 

reflections whose axes perpendicularly bisect Rr• However, t is the only element w of 

the centralizer for which w- I xw and w- I yw preserve the set {ix, fy} (as do the extended 

representatives) while lying in 11. • 

The effect of the functors induced by the extended automorphisms is the same as in the 

category of orientable hypermaps without boundary (with some extra considerations 

when the hypermaps have boundary). 

It remains to investigate whether there exist automorphisms of 11 which map 11 

to some other index-2 subgroup. We begin by determining presentations for such 

subgroups. There are at most seven epimorphisms from 11 onto 7l,2, and hence at most 

seven index-2 subgroups of 11. We enumerate these as follows, giving the conditions 

for their existence: 

Kl = ker((h) where ()I : l H 1, rHO, tHO (exists if and only if b is even); 

K2 = ker(()2) where ()2: l H 0, r H 1, tHO (exists if and only if a is even); 

K3 = ker(()3) where ()3: l H 0, rHO, t H 1 (exists if and only if a and b are even); 

K4 = ker(()4) where ()4: l H 1, r H 1, tHO (exists if and only if a and b are even); 

Ks = ker(()s) where ()s: l H 1, rHO, t H 1 (exists if and only if a is even); 

K6 = ker(()6) where ()6: l H 0, r H 1, t H 1 (exists if and only if b is even); 

K7 = ker(()7) where ()7: l H 1, r H 1, t H 1 (always exists: K7 = 11). 

We see that if a and b are both odd then 11 is the unique index-2 subgroup of 11. When 

one of a and b is even we shall determine whether 11 is isomorphic to any other index-2 

subgroup using knowledge of a presentation for each subgroup, which we obtain using 

the Reidemeister-Schreier method [42]. For KI (b even) the non-trivial generators 

obtained are 

P, r, lrrl, t, ltl- 1; 
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and the relators obtained are 

giving the presentation (after dropping the redundant generator (1) 

KJ = (r,t,lrZ-',ltl-') 

= (/3,"1,0,EI/32 = i = 02 = ~ = (f3"1)Q = (c5E)Q = ("1E) ~ = 1), 

(respectively denoting the generators by Greek letters). Presentations for the other Ki 

are as follows. 

K2 = (l,t,rlr- ' ,rtr-') 

= (a,"1,o, Elc/ = i = 02 = ~ = (E"1) ~ = ("1a)b = (EO/ = 1), 

K3 = (l, r, tlr', trt- J 
) 

2 2 2 _2 " b = (a,/3,o,Ela =/3 = 0 = c = (f3E) 'i = (oa)2 = 1) 

K4 = (rr',t,ltZ-') 

= (/3, "1, Ell = E2 = (f3E/3-'''1) ~ = ("1E)~ = 1 ), 

Ks = (r, tl, lrZ-' ) 

= (/3,0, E 1/32 = E2 = (f3c5E0- ')~ = Ob = 1 ), 

K6 = (l, rt, rlr-' ) 

= (a, 0, E I a2 = E2 = oa = (0- ' Eoa)~ = 1 ). 

A presentation for the even subgroup K7 = ~(a, b, CXJ) we know already, of course. 

When a = 2 there is an isomorphism ~ ---7 K6 given by x H 0, Y H a; this extends 

to an automorphism 7f: r H r, t H t, l H tl of ~ of order 2. When b = 2 there is 

an isomorphism ~ ---7 Ks given by x H /3, y H 0; this extends to an automorphism 

T : r H rt, t H t, l H l of ~ of order 2. When a = b = 2 there is an additional 
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isomorphism 11 ~ K3 which extends to the automorphism nOT of 11 of order 2. We can 

see that there are no other cases in which 11 is isomorphic to another index-2 subgroup 

of 11 by examining the abelianizations of these subgroups; they are straightforward to 

calculate using the presentations above. 

C2 X C2 X C2 X C2 

K
ab 

"" 

C2 X C2 X C2 
I -

C2 X C2 

C2 

C2 x C2 X C2 X C2 

K
ab 

"" 

C2 X C2 X C2 
2 -

C2 X C2 

C2 

a even, b == 0 mod 4 

a even, b == 2 mod 4 

a odd, b == 0 mod 4 

a odd, b == 2 mod 4, 

a == 0 mod 4, b even 

a == 2 mod 4, b even 

a == 0 mod 4, b odd 

a == 2 mod 4, b odd, 

a == 0 mod 4, b == 2 mod 4 

a == 2 mod 4, b == 0 mod 4 

a, b == 2 mod 4, 

a, b == 0 mod 4 

a == 2 mod 4 or b == 2 mod 4, 

a == 0 mod 4 

a == 2 mod 4, 

b == 0 mod 4 

b == 2 mod 4. 

Of course, l1ab == Ca X Cb , and the claim follows immediately. 

Thus when a*"2 and b *" 2, all automorphisms of 11 preserve 11 and we obtain 

the first statement in Theorem 4.4.4. When a*"2 and b = 2, we must have Aut(l1) = 
Aur\l1) U Aut"\I1).n, the union of the two cosets of the index-2 subgroup Aut"~'(I1) of 

Aut(l1) whose elements preserve 11. Moreover, n is easily seen to commute with our 

extended representatives of outer automorphisms of 11. Similar arguments go through 



4.4. Functors from automorphisms 66 

for T when a = 2 and b '* 2. Finally, when a = 2 and b = 2 the subgroups 11, K3, 

Ks and K6 are mutually isomorphic under restrictions of the group of automorphisms 

< 7[, T). This completes the proof of Theorem 4.4.4. 

When a = 2 the automorphism 7[ induces the restriction to C[2,b,oo) of the Petrie dual 

operation P which interchanges faces and Petrie circuits. The automorphism T = ;rr¢(O. I) 

induces the conjugation T of the Petrie dual operation by a Machf operation. In the 

case a = b = 2, the universal hypermap %'6[2,2,(0) is an infinite path in the Euclidean 

plane augmented by two ideal points, and so any proper quotients without boundary 

are on the sphere or projective plane. The functors T and P act trivially on paths and 

even circuits on the sphere, while they both interchange odd circuits on the sphere with 

those on the projective plane. However, the two functors act differently in general on 

maps with free edges or boundary. 

4.4.6. Extended triangle groups A[ 00, b, 00] 

Let 11 = 11[00, b, 00] have presentation < l, r, t I z2 = r2 = t2 = (tl)b = 1 ). 

Theorem 4.4.7. 

where Cb ><l C2 is D2b, the dihedral group of order 2b. 

b>2 

b = 2, 

We proceed as in §4.4.5 and begin the proof by considering those automorphisms of 

11 = 11[00, b, 00] which leave the even subgroup 11 invariant. 

By identifying x with rt and y with tl we have the presentation < x, y, t I (xt)2 = 
(ty)2 = F = yb = 1 ) for 11. It was shown in the proof of Proposition 4.4.3 that Out(l1) 

has the automorphisms x H x-1
, Y H y; X H xy, Y H Y and {x H x, Y H yk Ik E Vb} 

as generating representatives. The first automorphism and each from the last fam

ily extends to an automorphism of 11 which fixes t. (Lemma 4.4.5 ensures that these 

extensions are unique.) By Lemma 4.4.6 the only composite of these particular auto

morphisms which is inner is x H x- 1
, Y H y- l, t H t (induced by t); so again we have 

a chiral duality functor Y on orientable hypermaps without boundary which acts triv

ially in the wider context of all hypermaps. The second representative automorphism 
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X H xy, Y H yin Out(L\) extends to one which sends t to ty = I; it is not inner since ro

tations about different vertices of a given fundamental triangle of an extended triangle 

group are non-conjugate. We conclude that every element of Out(L\) extends uniquely 

to L\, as was the case for L\[a, b, 00]. Again, the functors induced by an original auto

morphism and its extension have the same effect (with some extra considerations when 

the hypermaps have boundary). 

To determine whether there exist automorphisms of L\ which map L\ to some other 

index-2 subgroup, we use the same enumeration of the seven epimorphisms from L\ 

onto Z2, noting that (h, 8s and 87 exist for all values of b, while 81, 83, 84 and 86 exist 

if and only if b is even. Presentations for the kernels K j can be read directly from 

the presentations derived for the case of L\[a, b, 00] by taking a = 00 and omitting any 

resulting vacuous relations: 

Kl = (r, t, Irrl, ltl- 1 
) 

2 _2 2 2 b = (/3,y,o,EI/3 = y = 0 = E = (YE) 2 = 1) 

K2 = (1, t, rlr-l, rtr-1 
) 

= (a, Y, 0, E 1 a2 = y2 = 02 = E2 = (ya/ = (EO)b = 1 ) 

== Db * Db, 

K3 = (1, r, tIC I , trt- I 
) 

2 2 2 2 b = (a,/3,o,Ela =/3 = 0 = E = (oa) 2 = 1) 

K4 = (rrl, t, ltl- I ) 

= (/3,y,E II = E2 = (YE)~ = 1) 

Ks = (r, tI, Irr I ) 

= (/3,0, E 1/32 = Ob = ~ = 1 ) 
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K6 = (1, rt, rlr- 1 
) 

= (a,o,Ela2 = E2 = (o-IEOa)~ = 1), 

K7 = (rt, tl) 

= (x,y Il = 1) 

= Z * Cb . 

It is easy to show that 

b = 0 mod 4 

b = 2 mod 4, 
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and by comparing the abelianizations of the Ki we readily verify that isomorphisms 

can only exist between !J. = K7 and other index-2 subgroups of !J. when b = 2. In this 

case we have !J. = K4 = (lr, t) = K6 = (rt, l). Here, !J. is the full cartographic group 

<itf2 and we are in the familiar territory of §2.1: the automorphism x H xy, Y H y, 

t H ty = l (which fixes r) is the automorphism which induces the duality operation 

D, representing the sole non-trivial element of Out(<itf2) which preserves !J. = <itft . The 

existence of three mutually isomorphic index-2 subgroups of !J. confirm the result of 

Jones and Thornton [35] that Out(<itf2 ) = S3, giving the six operations on the category 

of all maps. (See also Table 2.1.) 

4.5. Functors from non-elementary proper inclusions 

Definition 4.5.1. An inclusion ¢ : !J. ~ r between triangle groups is said to be el

ementary if !J. is a finite cyclic or dihedral group. Similarly, an inclusion ¢: !J. ~ f 
between extended triangle groups is elementary if ¢ restricts to an elementary inclusion 

- -
!J. ~ r, where !J. and r are the even subgroups of!J. and r respectively. • 

In this section we examine non-elementary inclusions. 
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4.5.1. Inclusions between Fuchsian triangular groups 

Triangle groups 

A group is said to be co-hopfian if it is not isomorphic to any of its proper subgroups. 

The spherical triangle groups and Fuchsian triangle groups with finite periods are co

hopfian, while Euclidean triangle groups and the Fuchsian triangle groups with infini te 

periods are not. Non-co-hopfian groups have an infinite number of self-inclusions, 

but we shall only concern ourselves with inclusions which map parabolic elements to 

parabolic elements, which excludes all but a small number of cases. 

In [56] , Singerman determines all pairs of di stinct triples (mo' m l , m2) and (m~ , m~ , 

m; ) for which there is such an inclusion between the corresponding (finite- or infinite

period) Fuchsian triangle groups /J. and r . We need only consider inclusions up to the 

action of the Machi functors, and so we may order each triple in whichever way is 

most convenient. In every case except one in the list, r has a period equal to 2; we 

take this to be m; so that where possible, <D(£ ) is a map for each YIf E C (III
O

,' II. I,1Il
2
). In 

all but three cases, r has a period equal to 3; we take this to be m~ so that <D(YIf) is 

trivalent. 

We use the notation /J. <li rand /J. <i r to denote that /J. is a normal or non

normal subgroup of index i in r . Excluding the cases of cyclic and dihedral groups, 

Singerman's list is as follows. 

(a) (s, s, t) <l2 (s, 2, 2t) 

(A) (7,7,7) < 24 (3,2, 7) 

(D) (8,8,4) <1 2 (3 , 2,8) 

(G) (4,4,5) <6 (4, 2, 5) 

(1) (3t, 3, t) <4 (3,2, 3t) 

(b) (t, t, t) <l3 (3 , 3, t) 

(B) (7,2, 7) < 9 (3, 2, 7) 

(E) (8,8, 3) < 10 (3 , 2, 8) 

(H) (4t, 4t, t) <6 (3 , 2, 4t) 

(K) (2t, 2, t) <3 (3, 2, 2t) 

(c) (t, t, t) <l6 (3, 2, 2t) 

(C) (3, 3, 7) <8 (3,2, 7) 

(F) (9, 9, 9) < 12 (3,2, 9) 

(I) (2t , 2t, t) <4 (4,2, 2t) 

Singerman gives the permutations B(x;) where the x; are the generators in the standard 

presentation for rand B is the epimorphism of Theorem 1.5.1; these can be used to 

determine ~ = Oltr / /J. . (The hypermaps of the form <D(YIf) in C(mo , lIl~ ,III; ) are precisely 

those which cover ~.) It is then possible to construct a model of <D(YC') which is 

combinatorially correct (if not always conformally correct with geodesic edges) . 

Note how some of the inclusions give rise to 'generic ' functors, ones which exist 
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between an infinite number of pairs of categories. Most of these correspond to well

known transformations; for example (K) is the truncation operation of [57], while (a), 

(c) and (I) correspond to the formation of the topological hypermap representations 

defined in § 1.2: they induce restrictions of the functors W, J and C realized by forget

ting the component colours of the Walsh, James and Cori representations re pectively. 

The inclusion (b) is shown in [28] to induce a restriction of W- 1 
0 J. 

In [28], Jones describes many of the functors and their inverses. Below we describe 

the remaining ones. Note that since this work was done, a paper by Girondo [18] has 

been released in which also contains a description of these functors (although not their 

inverses) as applied to regular hypermaps. In that paper it is recognized that some of 

the inclusions in Singerman's list are compositions of others, so that any inclusion can 

be expressed as a chain of inclusions involving just eight from the list (up to Machf 

automorphism of the triangle groups) . These chains are: 

(c): 

(A) : 

(D ): 

(F): 

(H) : 

(I) : 

(b) (a) 
(t, t, t) <13 (3,3, t) <12 (3,2, 2t) 

(a) (K) 
(t, t, t) <12 (t, 2, 2t) == (2t, 2, t) <3 (3,2, 2t) 

(b) (C) 
(7,7,7) <13 (3,3, 7) <8 (3,2,7) 

(I) (K) 
(8,8,4) <4 (4,2,8) == (8,2,4) <3 (3,2,8) 

(b) (1) 
(9,9,9) <13 (3,3,9) == (9,3,3) <4 (3,2,9) 

(a) (K) 
(4t, 4t, t) <12 (4t, 2, 2t) <3 (3,2, 4t) 

(a) (a) 
(2t, 2t, t) <12 (2t, 2, 2t) == (2t, 2t, 2) <12 (2t, 2, 4) == (4,2, 2t). 

However, while compositions of the descriptions of the effect of the eight basic func

tors will give a description of the others, the descriptions that we derive directly in 

what follows are often simpler. 

(B) A(7, 2, 7) <9 A(3, 2, 7) 

The action of r on the cosets of b. is given by 

x~ H (123)(456)(789), 

x; H (12)(34)(5)(67)(89), 
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(i) 

(ii) (iii) 

FIGURE 4.3. (i) The map !!J, (ii) a fundamental region for /1, and (iii) the universal 
tessellations for the inclusion (B): /1 = /1(7,2,7) <9 /1(3,2,7) = r. 

x; H (1)(2369754)(8). 
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To determine 9 , we observe that it must contain the following components: three 

vertices, each of valency 3 due to the three 3-cycles in the permutation 8(xb); four 

edges and one free edge due to 8(x;), and one 7-valent face and two I-valent face due 

to 8(x;) . 9 is pictured in Figure 4.3(i). We then apply the arguments of the di scussion 

following Theorem 1.5.1: 8(xb) has no short cycles and so none of the centres of 

rotation of %'L'l coincide with vertices of %'r; 8(x;) has one short cycle of length 1 and 

so the midpoints of the edges of %'L'l coincide with midpoints of edges of %'r; and 8(x;) 

has two short cycles of length 1 and so the centres of the 7-valent faces and 7-valent 

vertices of %'L'l coincide with face centres of %'r. A fundamental region for b. is pictured 

on part of the map %'r in Figure 4.3(ii); identify sides to obtain 9 . 

From this we can see, as described in [28], that to apply <I:> to eYe we represent 

,Ye as a map; truncate it; and place an n-gon inside each old face f of eYe of valency 

n E {l,7}, joining its vertices by edges to points two-thirds of the way along what 

remains of the old edges of f (in directions consistent with cyclic rotation around 

f) . The resulting trivalent map is <I:>(£). This combinatorial procedure is shown in 

Figure 4.3(iii), where we have distorted the edges of <I:>(,Ye) in order to make the 7 -gons 

regular. 



4.5. Functors from nOll-elementary proper inl.:lusiolls 72 

To apply the inverse construction to a regular map <1>(£) of type (3,2,7) covering 

?J, form two sets F, C of faces of <1>(£) satisfying the following conditions. (F shall 

correspond to the set of 7-gons introduced to £ when applying <1>, while C shall 

correspond to the set of faces of £ which are formed by truncation.) 

(i) For each c E C, there are precisely seven f E F such that the number of edges 

d(c, f) in the shortest path between c and f is 2, and there is no f in F with 

d(c,j) < 2, 

(ii) for all f, l' in F, d(j, 1') ~ 3, 

(iii) for all f E F there are precisely seven c E C such that d(c, f) = 2. 

This gives rise to 18 possible distinct ordered pairs (F, C) comprising of both orderings 

of each of nine unordered pairs of sets of faces. Choose any such pair and stellate each 

face c E C by placing a new vertex in the centre, joining it to each surrounding vertex 

by an edge and then deleting the old edges and vertices which bound c. Then, for each 

face f E F, delete every edge incident with a vertex bounding f, along with all vertices 

incident with such edges. The resulting map is £. 

(C) A(3, 3, 7) <8 A(3, 2, 7) 

The action of r on the cosets of /),. is given by 

x~ H (123)(456)(7)(8), 

x; H (12)(34)(57)(68), 

x; H (1)(2368754). 

?J is shown in Figure 4.4(i), while a fundamental region for /),. is pictured on part of 

the map %'r in Figure 4.4(ii). 

From this we can see, as described in [28], that to apply <1> to J"f1 we 2-colour the 

vertices of the James representation A of £ and place an n-gon in each hyperface f 
of valency n E {I, 7} of A, joined by new edges to the purple vertices incident with f; 

then we semi-stellate the hypervertices and hyperedges by placing a new vertex in the 

centre of each and joining it to the incident purple vertices. Finally we delete all the 

edges and yellow vertices of A (and forget the remaining vertex colours) to obtain the 

map <1>(£). This procedure is shown in Figure 4.4(iii). 
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(i) 

(ii) (iii) 

FIGURE 4.4. (i) The map !7), (ii) a fundamental region for f.., and (iii) the universal 
tessellations for the inclusion (C): f.. = f..(3, 3, 7) <8 f..(3 , 2, 7) = r. 
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To apply the inverse construction to a regular map ..$I = <1>(£) of type (3,2, 7) 

covering ~, define a relation ---7 on the faces of ..$I as follows: faces f '* l' of ..$I 

satisfy f ---7 l' if and only if l' shares an edge e* with a face /*, and there is an edge e 

meeting /* at a single vertex u opposite e*, and meeting f at a single vertex. There are 

eight equivalence classes under the equivalence 'relation generated by ---7; choose one 

and denote it by F. (This class corresponds to the set of 7-gons introduced to ye when 

applying <1>.) For each face f E F, let /* and u be as above and let VI and V2 be the 

two vertices incident with /* for which d(vj, u) = 2. Then semi-stellate /* by joining a 

new vertex in the centre of /* to u, VI and V2 . Finally, delete..$l. The resulting trivalent 

map is J(£): the 14-gons represent the hyperfaces of ye, while the 6-gons can be 

coloured in the appropriate way as to represent the hypervertices and hyperedges (two 

choices). 
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0-0-0 

(iii) 

FIGURE 4.5. (i) The map ~, (ii) a fundamental region for 11, and (iii ) the universal 
tessellations for the inclusion (D): 11 = 11(8,8,4) <12 11(3,2,8) = r . 

(D) A(8, 8, 4) <12 A(3, 2, 8) 

The action of r on the cosets of 11 is given by 

xb H (123)(456)(789)(XYZ) , 

x; H (l2)(34)(57)(69)(8X )(YZ) , 

x; H (l)(2368ZX74)(59)(Y). 
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The map !!J is shown in Figure 4.5(i). A fundamental region for 11 is pictured on part 

of the map %'r in Figure 4.5(ii) ; the upper diagram shows the region in a form which 

matches Figure 4.5(iii), while the lower diagram best illustrates the symmetry of the 

region. 

From this we can see, as described in [28], that to apply <D to Jle we form C(Jle) 

by omitting the face colours of the Cori representation of Jle, fo rming the dual map, 

and then fully truncating it so that no original edges of the map remain. Alternatively, 

we 2-colour the vertices of the James representation JIt of £ and pl ace an n-gon in 

each hypervertex (O-labelled face) v of valency n E {I , 2, 4, 8} of J1t, joined by new 

edges to the yellow vertices incident with v; then we place an n-gon in each hyperedge 
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e of valency n of ..4t, joined by new edges to the purple vertices incident with e. 

Finally we delete any edges separating a hypervertex from a hyperedge, forgetting the 

vertex colours and face labels to obtain the map <D(£). This procedure is shown in 

Figure 4.5(iii). 

To apply the inverse construction to a regular map .4t = <D(£) of type (3,2,8) 

covering !!2, define faces f, l' of ..4t to satisfy f H l' if and only if there exist 

opposite edges e, e' of a third face j* such that e borders f and e' borders 1'. Now 

choose an equivalence class F under the equivalence relation generated by H; there 

are six choices. For each triple (j, 1', j*) as above, place a single new edge e* inside 

f* such that e* meets each of f, l' in a single vertex v, v' respectively, with v and v' 

being distance 4 apart around f*, and such that every vertex bounding every face in F 

is 4-valent. (The two ways of doing this consistently are equivalent in that they give 

rise to the same hypervertex, hyperedge and hyperface centres of the hypermap ft', 

and so they do not count as a 'choice' in the sense used elsewhere in these descriptions; 

this is due to the existence of a reflection in a side of a fundamental region for ~ which 

preserves the tessellations of both %'I'! and %'r and leaves each orbits of elliptic fixed 

points invariant. This is discussed further in the treatment of extended triangle groups 

below.) Now delete all edges and vertices of..4t apart from those bounding the faces in 

F. The resulting map is J(£): the faces in F represent the hyperfaces of ft', and the 

16-gons can be chosen in such a way as to represent the hypervertices and hyperedges 

(two choices). 

(E) A(8, 8, 3) <10 A(3, 2,8) 

The action of r on the cosets of ~ is given by 

x~ H (l23)(456)(789)(X), 

x; H (l2)(34)(9X)(57)(89), 

x; H (l)(236X5974)(8). 

!!2 is shown in Figure 4.6(i), while a fundamental region for ~ is pictured on part of 

the map %'r in Figure 4.6(ii). 

From this we can see, as described in [28] using the Cori representation, that to 

apply <D to £ we 2-colour the vertices of the James representation ..4t of £ and 

place an n-gon inside each hypervertex and hyperedge of valency n E {I, 2, 4, 8} of 
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(i) 

(ii) (iii) 

FIGURE 4.6. (i) The map ~, (ii) a fundamental region for /1, and (iii) the universal 
tessellations for the inclusion (E): /1 = /1(8, 8,3) < 10 /1(3,2, 8) = r. 
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Jit, joined by new edges to the yellow vertices incident with that component; then 

we semi-stellate each hyperface by placing a vertex in the centre and joining it by new 

edges to its incident yellow vertices. Finally we delete all the edges and yellow vertices 

of Jit (and forget the remaining vertex colours) to obtain the map <D(Yf'). 

To apply the inverse construction to a regular map Jit = <D(Yf') of type (3,2, 8) 

covering !!), define faces j , l' of Jit to satisfy j 4 l' if and only if there is a face 

1* and an edge e of Jit such that e meets both j and 1* at single vertices v and v· 

respectively, while 1* and l' have an edge e' in common, where e' is one of the edges 

of 1* opposite v*, chosen consistently according to the orientation of Jit. The relation 

4 generates an equivalence relation on the faces for which there are ten equivalence 

classes. (Choosing the edges e' against the orientation of Jit gives a different set of 

ten equivalence classes. This is not a problem since each of the classes in a set gives 

rise to a tessellation of the surface underlying Jit as we describe below, and the ten 

tessellations are the same for both sets. The choice for the e' simply corresponds to 

whether certain faces of the tessellations should represent hypervertices or hyperedges; 

thus we go with the orientation now-without regarding this as a 'choice'-and allow 

a choice later on as to the hypervertices and hyperedges.) Next, choose an equivalence 
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FIGURE 4.7. (i) The map 9, (ii) a fundamental region for 11, and (iii) the universal 
tessellations for the inclusion (F): 11 = 11(9,9,9) < 12 11(3,2,9) = f. 

77 

class F, and for each f E F join its corresponding vertex u* to new vertices in the centre 

of each of its three incident faces. Finally, delete JIt . The resulting map is J(Yt'): the 

6-gons represent the hyperfaces, while the 16-gons can be chosen in such a way as to 

represent the hypervertices and hyperedges (two choices). 

(F) A(9, 9, 9) <12 A(3, 2, 9) 

The action of r on the co sets of /J.. is given by 

x~ H (123)(456)(789)(XYZ), 

x; H (12)(45)(78)(3X)(6Y)(9Z), 

x; H (1)(4)(7)(23Z89Y56X). 

!J1 is shown in Figure 4.7(i), while a fundamental region for /J.. is pictured on part of 

the map %"r in Figure 4.7(ii) . 

From this we can see, as described in [28] , that to apply <I> to YC' we 2-colour 

the vertices of J(YC') and place an n-gon in the centre of each face of valency n E 
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{l, 3, 9}, joined by new edges to the bounding white vertices. Then we delete lVYf') 

(and ignore the remaining vertex colouring) to obtain <D(£). This procedure is shown 

in Figure 4.7(iii). 

To apply the inverse construction to a regular map .41 = <D(Yt') of type (3,2,9) 

covering ~, define faces j, l' of uIt to satisfy j H l' if and only if they are connected 

by a single edge to a vertex v. Choose an equivalence class F under the equivalence 

relation generated by H (there are four choices), and let V be the corresponding set of 

vertices v. Join each v E V by an edge to new vertices in the centre of its three incident 

faces. Finally delete uIt to obtain J(£). (There are six ways of choosing the 18-gons 

to be the hypervertices, hyperedges and hyperfaces.) 

Extended triangle groups 

We shall see in §S.4.1 that any inclusion ~ = ~[mo' m1, m2] ~ ~[m~, m~, m;] = r 
between extended triangle groups whose even subgroups are Fuchsian or Euclidean 

restricts to one between the even subgroups. Here we determine which of the triangle 

group inclusions of §4.S.1 are such restrictions. By identifying ~ with its image we 

regard ~ as a subgroup of r; it is generated by reflections in the sides of a fundamental 

triangle for ~ and gives rise to a tessellation 5i: by triangles of a simply-connected 

Riemann surface :r (augmented by ideal vertices if some m; = 00). Each such reflec

tion, being in r, is a reflection in a side of some fundamental triangle for r, and hence 

it leaves each orbit of elliptic fixed points of r invariant. In paIiicular, a reflection in 

an edge of the tessellation 5i: leaves Sf invariant. 

To check whether the triangle group inclusion 

extends to an inclusion between extended triangle groups ~ and r, it is enough to check 

that just one reflection R in an edge of 5i: preserves Sf and leaves the elliptic fixed 

point orbits invariant. This is because R is conjugate in r to a composition of any other 

reflection R' in an edge of TX with a rotation in~. (Rotations in ~ are rotations in ~ 

and hence in r and so they certainly preserve Sf.) 
It is straightforward to check that for each of the inclusions (B), (C), (E), (F) and 

(G) of Singerman's list, a reflection corresponding to ~ is not a reflection correspond

ing to r and so the inclusion does not extend to the extended triangle groups. Fig-
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FIGURE 4.8. A fundamental region for /1 in inclusion (b): /1 = /1(n, n, n) <l3 /1(3,3, n) = f. 

ure 4.4(ii) shows this situation for inclusion (C); notice how one fundamental triangle 

T for 11 contains three whole edges of Db!r, whereas its reflection in a side of T contains 

none. Further, while a reflection for 11 in inclusion (b) preserves the tessellation for r as 

shown in Figure 4.8, it does not leave each orbit of elliptic fixed-points in r invariant; 

hypervertices and hyperedges are interchanged. On the other hand, the remaining in

clusions do extend to the extended triangle groups. For example, Figure 4.5(ii) shows 

the situation for inclusion (D), where a common reflection of 11 and r is evident. 

The inclusions between extended triangle groups are less well represented in the 

literature. However, the extension of inclusion (a) which induces the functor W is pre

sented in [3], along with its compositions with map operations, one of which induces 

another well-known topological hypermap representation due to Vince [59] . 

In the situations where the inclusions do not extend, it is interesting to examine 

why the combinatorial description of how to apply the functors and their inverses to 

orientable hypermaps on surfaces without boundary fails to be applicable to the wider 

class of hypermaps. In the case of inclusion (B), to apply the corresponding functor 

<1> to a map Ye we are required to identify points two-thirds of the way along certain 

edges of Ye, consistent with the orientation of Ye. Hence the orientability of the 

map is fundamental to the application of the functor. In the case of inclusions (C), 

(E), (F) and (G) it is necessary to 2-colour the hyperblades of the hypermap Yf1 to 

apply <1>; however, such a 2-colouring is impossible when Yf1 is non-orientable. Note 

that in the case of inclusion (D) where the inclusion does extend, one description of 

the application of <1> given in §4.5.1 in terms of the James representation requires a 

2-colouring of the hyperblades and hence fails in the extended setting; yet the other 

description given there in terms of the Cori representation requires no such colouring 
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and is applicable to hypermaps on non-orientable surfaces. 

4.5.2. Inclusions between Euclidean triangular groups 

Triangle group monomorphisms A y A 

The Euclidean triangle groups are non-co-hopfian and so there exist non-smjective 

monomorphisms ¢: I:-.. ~ 1:-... Consider the triangle group 

and suppose that ¢(I:-..) is also a triangle group 1:-..(4,2,4). Consider the universal map 

%'t. in the plane JR2 (which we identify with the complex plane C in the usual way). 

Its vertices can be taken to be the points in Z2 c JR2 so that its edges join all pairs of 

vertices unit length apart. Then ¢(I:-..) has a presentation 

where xo, Xl, X2 are respectively rotations about points P, Q, R (say) in Z2. A funda

mental region F for ¢(I:-..) is obtained by taking the union of the triangle PQR (whose 

internal angles are rr/4, rr/2 and rr/4) with its reflection in one of its sides, QR say, 

to form a quadrilateral PQRP' which is degenerate in the sense that P, Q and P' are 

collinear. Define a point in Z2 to be a Yi-point if it is the fixed point of a conjugate in r 
of the generator Yi. It is clear that P and P* are either both yo-points or both Y2-points 

since they are fixed by conjugate elements of order 4. 

Suppose first that P and P* are both yo-points. The universal map o/./</J(t-.) is deter

mined by the relative coordinates (m,n) of P from P*, and a choice of point (a, b) 

corresponds to a choice of P. The square S m,ll with vertices 

(a, b) (a + m, b + n) (a + m - n, b + m + n) (a - n, b + m) 

forms a face of %'cp(t.). By modifying our choice of F if necessary, we may suppose 

that m, n ~ O. A subgroup A of I:-.. is conjugate to ¢(I:-..) if and only if A gives rise to a 

universal tessellation %'1\ whose square faces can be obtained from S m,n by translation 

along the coordinate axes. (If %'1\ contains S m,n as a face then ¢(I:-..) and A coincide and 

so, since S m,ll has area m2 + n2
, there are precisely m2 + n2 translates of S m,ll which 
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correspond to mutually distinct conjugates of ¢(/1).) 

Now, Xo has order 4 and so is conjugate to either Yo or yol. The inclusion is thus one 

of two which are possible; one is the composition of the other with the chiral duality 

automorphism v of ¢(/1) given by Xo H XOI, XI H XlI. Denote these two inclusions 

by ¢!Io,(a,b),(m,n) where i = 1, -1. Since each is also a composition of ¢Y;J,(II,b),(Il,III) with 

v, it follows that there is a distinct <DYlI ,(III,Il) for each choice of m, n > 0, and that 

<DYo,(O,n) = <DYO ,(Il,O). The image of a uniform map of type (4,2,4) under a functor <D!JO,(III,Il) 

is obtained by subdividing each face of the map into m2 + n2 square faces. 

When P is a Y2-point it is easy to see through composition of the monomorphisms 

1'1 ~ /1 with the automorphism of /1 transposing Yo and Y2 that the functors arising in 

this case are the functors of the previous case composed with the duality operation. 

Similar arguments hold for the triangle groups /1(6, 2, 3) and /1(3, 3, 3); we consider 

%'l>.(6,2,3) as the tessellation of R2 by equilateral triangles and the Walsh representation 

of %'l>.(3,3,3) as the 2-vertex-coloured tessellation by regular hexagons, and we take coor

dinate axes to be inclined at an angle of 27f /3. In the case of /1(00,2,2) == Do:> there are 

n isomorphic subgroups of each index n ~ 1, forming a single conjugacy class when 11 

is odd (and hence inducing a single functor) but forming two classes when n is even; 

one of the two functors induced is the composite of the other with the Machf functor 

which arises for this group. Finally, in the case of the triangle group /1(00, 1,(0) == C,,' 

there is one functor for each positive integer; the duality operation acts as the identity. 

This gives us 

Theorem 4.5.2. Up to the action oj the Machi operations there is, Jor each Euclidean 

triangle group /1, a Junctor arising Jrom monomorphisms /1 ~ /1 Jor each positive 

integer n. Further, Jor the triangle groups /1 = /1(4,2,4), /1(3,2,6) and /1(3,3,3), 

there is an additional such Junctor Jor each ordered pair (m, n) o.t"positive integers. • 

As discussed in §4.2, the effect of each functor <D derived from such an inclusion 

¢ can be reversed (up to several arbitrary choices), and the domain of the reverse 

constructions is restricted to those maps J/t which cover some spherical map !J3. In 

the case of /1 = /1(4,2,4), !J3 has 2(m2 + n2) darts, and is the quotient of the torus map 

J/to, formed by identifying opposite sides of the square S m,1l by a reflection in one of 

the edges. For example, m = 2 and n = 1 gives J/to as one of the chiral pair of regular 

embeddings of Ks on the torus. The possible values for the total number of faces for 

such an J/to is given by the theorem of Fermat which states that a positive integer k is 
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the sum of two squares if and only if all prime factors of the form 4,. - I have an even 

exponent in the prime-power factorization of k. Further, the number of non-isomorphic 

maps!!) with this face sum is given by Jacobi's Two Square Theorem, which states that 

the number of representations of a positive integer k as the sum of two squares is equal 

to 4(t1 - t3) where ti is number of divisors of k congruent to i modulo 4. 

Triangle group inclusions A ~ r 

A fundamental region for 11(3, 3, 3) is the union of an equilateral triangle with its re

flection in one of its sides. We have already discussed functors induced by inclu

sions 11(6,2, 3) ~ 11(6,2,3) corresponding to superimpositions of different tessella

tions of R2 by equilateral triangles, and so it is easy to see that up to composition 

with these and MachI functors, there is just one functor arising from an inclusion 

11(3,3, 3) ~ 11(6,2,3); this is the Walsh functor W induced by the Euclidean ana

logue of inclusion (a) between Fuchsian groups listed in §4.S.1. 

Let r be a non-cyclic Euclidean triangle group: 11(4,2,4), 11(3,2,6), 11(3,3,3) or 

11( 00,2,2). We realize %'~(00,1,00) as an infinite set of equally-spaced parallel rays in 

the plane R2 augmented by an ideal vertex, superimposed on %'r as follows. We have 

seen that the translations in r (the elements of infinite order) determine the functors (}) 

arising from inclusions ¢: 11 ~ 11 up to the action of the MachI operations. Moreover, 

these translations send Yi-points in %'r to Yi-points; given such a translation w we may 

take a distinguished Yi-point P, and then the images of P under the group generated by 

w lie on a line A and form the free ends of the free edges of %'1\(00,1,00)' The free edges 

themselves can be realized as rays R in R2 which end at the images of P, and which 

lie perpendicular to and on the same side of A. It follows that, up to composition with 

inner automorphisms, Machi automorphisms, and the inclusions ¢, there is just one 

inclusion of 11(00, 1,(0) in r. The images of a finite star map under the corresponding 

operational functors lie on the doubly infinite cylinder obtained by identifying a ray 

R with its image under w (and identifying their corresponding reflections in A). The 

images themselves are the corresponding quotients of the images under the Machf 

functors and the inclusion functors <D of %'r. 

Up to reordering the periods, the Euclidean triangle groups r containing involu

tions are 11(4,2,4) and 11(3,2,6). To realize %'~(00,2,2) as an infinite set of equally

spaced parallel lines in R2 augmented by two ideal vertices, superimposed on %'r, we 

do the same thing as in the previous case except that this time each edge (line) is the 
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union of a ray R with its reflection in A. Up to composition with inner automorphisms, 

Machi automorphisms, and the inclusions <jJ, there are two inclusions of ~(oo, 2, 2) in r 
corresponding to the fact that there are three conjugacy classes of subgroups of order 

two in L1(4, 2, 4) forming two orbits under Machf automorphisms, and two conjugacy 

classes of such subgroups in ~(3, 2, 6). Under one of the inclusions in each case, the 

free ends of the rays R lie on edge centres in °l/r; under the other they lie on the centres 

of (even-valent) faces. The images of the quotients of %'1'1(00,2,2) under the correspond

ing operational functors lies on a 'squashed cylinder' (topologically a plane): starting 

with the doubly infinite cylinder obtained by identifying a ray R with its image under 

w (and identifying their corresponding reflections in A), take the quotient by a rotation 

through 7f about the diameter through the free end of R of the circular cross-section at 

that point. 

Extended triangle groups 

It is geometrically clear that, up to inner automorphism, all monomorphisms ~ ~ r 
between Euclidean triangle groups extend uniquely to monomorphisms between the 

corresponding extended triangle groups. Hence there is essentially nothing new to 

consider here, and all the functors described above extend to the wider setting of hy

permaps which may be non-orientable or have boundary. 

4.5.3. Inclusions between spherical triangular groups 

Triangle groups 

Up to inner automorphism and Machf automorphism the only non-elementary proper 

inclusions between spherical triangle groups are the obvious ones: a single inclusion of 

~(3, 2, 3) into each of ~(3, 2, 4) and ~(3, 2, 5). The former is the analogue on the sphere 

of inclusion (a) between Fuchsian groups listed in §4.5.1, and it induces a restriction 

of the composition of W with a Machf functor. The latter induces a functor <D whose 

combinatorial effect can be deduced using the method of §4.5.1. To apply <D to a map 

JIt of type dividing (3,2,3) we edge-stellate each face f of JIt by placing a new vertex 

in the centre of each face and joining it by half-edges to the midpoints of the edges of 

f. We then place a vertex two-thirds of the way along each new half-edge, joining it 

by an edge to an original vertex of f consistent with a given orientation of JIt so that 

no edges cross. Finally we delete the edges of JIt to obtain <D(JIt). 
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Extended triangle groups 

The inclusion ~(3, 2, 3) ~ ~(3, 2, 5) does not extend to an inclusion between the 

extended triangle groups. In fact, up to inner automorphism and Machf automor

phism, the only non-elementary proper inclusions between spherical extended trian

gle groups are two inclusions ~[3, 2, 3] ~ ~[3, 2,4]. One of these restricts to the 

inclusion ~(3, 2, 3) ~ ~(3, 2, 4), and the functor induced is essentially nothing new. 

The other inclusion does not restrict to one between the even subgroups; the functor 

it induces is the composite of the first with the functor induced by the unique outer 

automorphism of ~[3, 2,4] represented by an automorphism which transposes the two 

subgroups isomorphic to S4. 

4.6. Functors from elementary inclusions 

As discussed in § 1.5, the only finite cyclic subgroups of a triangle group 

are the finite subgroups of the < Yi ) and their conjugates. Hence we have inclusions 

of cyclic groups en == ~(n, 1, n) ~ r whenever n divides some m;. We postpone 

further discussion of these inclusions until §5.3.2, where their pre-composition with 

epimorphisms onto cyclic groups are considered. 

The following results may be obtained by inspection, and are given up to inner 

automorphism and Machf automorphism. There is one inclusion D4 == ~(2, 2, 2) ~ 

~(3, 2, 3); it is the analogue of inclusion (b) between Fuchsian groups listed in ~4.5.1, 

and here (as it does there) it induces a restriction of the functor W- I 
0 J where Wand .J 

are the Walsh and James functors. There are two inclusions ~(2, 2, 2) ~ ~(3, 2,4) as 

a normal or non-normal subgroup; the first is analogous to inclusion (c) and induces 

a restriction of J. Next, there is one of each inclusion D6 == ~(3, 2, 2) ~ ~(3, 2,4) 

and D8 == ~(4, 2, 2) ~ ~(3, 2, 4); the second is analogous to inclusion (K) which 

induces the functor realized by vertex truncation. Further, there is one of each inclusion 

~(2, 2, 2) ~ ~(3, 2, 5) and ~(3, 2, 2) ~ ~(3, 2, 5). Then there are two inclusions 

DIO == ~(5, 2, 2) ~ ~(3, 2, 5), corresponding to the fact that each of these triangle 

groups has an outer automorphism of order 2, transposing the two conjugacy classes of 

elements of order 5. Finally, there is at least one inclusion Dn == ~(n, 2, 2) ~ ~(m, 2, 2) 
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for each n I m; we do not investigate these further. 

All inclusions of extended triangle groups ~[n, 1, n] and ~[n, 2, 2] in spherical ex

tended triangle groups are elementary. However, in general the inclusions between the 

even subgroups do not extend uniquely; again, we do not investigate these inclusions 

further. 
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Generalized operations II 

5.1. Homomorphisms as functors 

In Chapter 4 it was shown how homomorphisms between triangular groups give rise to 

operational functors between categories of hypermaps defined by type, and the possible 

inclusions between such groups were determined. In this chapter we investigate the 

remaining homomorphisms. 

Let ¢: ~ = ~(mo' m1, m2) ---7 ~(m~, m~, m;) = r be a homomorphism between 

triangle groups with kernel K. Associated to each orientable hypermap ye without 

boundary of type dividing (mo, ml, m2) is a hypermap subgroup H ~ ~. In particular, 

K and HK are respectively hypermap subgroups for hypermaps X and Ye, say. Since 

H K is the smallest subgroup of ~ containing both Hand K, ye is the largest hypermap 

covered by both £ and X (in the sense that if ye and X cover another hypermap .4/ 
- -

then £ also covers JIt). Moreover, since ¢(H) = ¢(H K), ye and ye have the same 

image under the functor <D induced by ¢ (see Figure 4.1). This image has I¢(H) : fI 
hyperdarts; it covers the hypermap :» whose hypermap subgroup is ¢(~) with degree 

IH K: ~I, and it is covered by the universal map %'r = <D(X) for r with degree I¢(H)I = 
IK: HKI. Note that since K is normal, X is regular (with IK: ~I hyperdarts); hence if 

£ is regular then so is £, although the converse is false in general. As we require, all 

these arguments still hold-with the same hypermaps described-when H is replaced 

by a conjugate subgroup. 

In the case that a homomorphism ¢: ~ -* r between triangle groups is an epi

morphism, the Correspondence Theorem for groups leads to a category equivalence 

86 
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£{ 
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</J(/).) £ 
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~ 

) 

FIGURE 5.1. Homomorphism diagram for a homomorphism ¢ between triangle groups. 

between orientable hypermaps without boundary of type (mo' m l , m2 ) covered by £, 

and orientable hypermaps without boundary of type (m~, m~, m;). In particular, ev

ery such hypermap £' of type (m~, m~, m;) and with hypermap subgroup H' in r has 

a canonical preimage under cD, namely the hypermap whose hypermap subgroup is 

</J-l(H'). This is the smallest of the hypermaps in the preimage of £', and it is unique 

amongst these in that it is covered by £. (For non-surjective homomorphisms it is 

not generally possible to distinguish such a hypermap, since the mapping induced by 

</J between conjugacy classes of subgroups is not necessarily injective.) (D sends a reg

ular hypermap £ to a regular hypermap £', since if H ~ /). then </J(H) ~ </J(/).) = r. 
Conversely, if £' is regular then so is its canonical preimage. Moreover, these two 

hypermaps can be regarded as sharing the same monodromy group but arising from 

(usually different) canonical generating sets, and so could potentially lie in the same 

orbit under the groups f>+ and f> of hypermap operations. (This is demonstrated in 

Example 5.4.10.) These ideas hold equally in the wider context of general hypermaps 

and extended triangle groups. 

5.2. Epimorphic images of triangular groups 

5.2.1. Triangle groups 

Let </J: /). = /).(mo, m1, m2 ) ~ /).(m~, m;, m;) = r be a homomorphism between triangle 

groups. Since </J can be written as /). -» </J(/).) ~ r, we have the problem of determining 
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the possible epimorphic images of triangle groups, and the possible inclusions of these 

images into triangle groups. /1 has presentation < xo' x I' x2 I X~'O = x';/i = X~'2 = xox I x2 = 
1 ) and so ¢(/1) is generated by elements ¢(xo), ¢(Xl), ¢(X2) which satisfy the relations 

¢(xo)m~ = ¢(Xl )'n;' = ¢(X2)'"~ = ¢(XO)¢(XI )¢(X2) = 1, where ¢(Xi) has order m;' dividing 

mi (0 :::; i :::; 2), with the usual convention that every element of Z U {(X)} divides 00. 

Throughout this chapter, as in Chapter 4 with the exception of automorphisms, the 

homomorphisms we consider are assumed to map parabolic elements to parabolic or 

elliptic elements; this assumption shall be reiterated in the statement of theorems, but 

shall otherwise be used implicitly. 

The group ¢(/1) is some quotient of a (m~, m;', m~) triangle group, and certainly 

¢(/1) may actually be such a triangle group with presentation 

(i) 

so that ¢ maps the generating triple for /1 onto a canonical generating triple for A. 

Conversely, for any choice of positive integers m;' satisfying m;' I m i for 0 :::; i :::; 2 

there is, by von Dyck's Theorem [52], an epimorphism from /1 onto the group A with 

presentation (i), defined on the generators by ¢(Xi) = Wi for 0 :::; i :::; 2. 

Definition 5.2.1. Let /1 and A be non-cyclic triangle groups. An operational functor 

induced by an epimorphism /1 --» A which maps a canonical generating triple for 

/1 onto a canonical generating triple for A is called a direct derivative functor. An 

operational functor induced by any other epimorphism /1 --» A is called an indirect 

derivative functor. The image of a hypermap de under such operational functors is 

respectively called a direct derivative or an indirect derivative of .Ye. • 

It would be futile to attempt to determine all other possibilities for ¢(/1) by ex

amining the proper quotients of an infinite (m~, m;', m~) triangle group, because even 

the finite quotients are infinite in number. (A well-known theorem of Mal' cev [45] 

says that every finitely-generated linear group is residually finite, that is, has normal 

subgroups Hi (i E J) of finite index such that niEJ Hi = 1. Since subgroups of residu

ally finite groups are also residually finite, infinite triangle groups have infinitely many 

finite-index normal subgroups and the claim follows.) Instead, given that we intend 

to embed ¢(/1) in another triangle group, and knowing that two-generator subgroups 

of spherical and Euclidean triangle groups may be determined directly, our main task 

is to examine the possibilities for ¢(/1) as a two-generator Fuchsian group. (/1 can 
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clearly be generated by two elements and any subgroup of a Fuchsian (triangle) group 

is Fuchsian.) Such groups have been fully classified; we state the relevant parts of the 

classification in §5.4.1. 

We now know enough to begin to determine all possible epimorphic images of 

triangle groups which can be embedded into other triangle groups. In §5.3.1 we in

vestigate cyclic epimorphic images. In §5.4.1 we determine the remaining triangular 

epimorphic images. As a consequence, we will see there that there are no other possi

bilities. 

5.2.2. Extended triangle groups 

Proposition 5.2.2. Let ~ be an extended triangle group, let f£ be a simply-connected 

Riemann surface, and let G be a discrete subgroup of Aut(f£). The image of a ho

momorphism ¢: ~ ~ G which maps (possibly infinite-order) rotations to rotations 

or reflections is either trivial, cyclic of order 2, a triangle group ~(2, 2, m) where 

2 ~ m ~ 00, a dihedral group, or an extended triangle group. 

Proof. It is convenient to use the presentation < xo' XI' t I (XOt)2 = (tx 1)2 = t2 = X~III = 

X;nl = (XOX\)m2 = 1 > for ~. Under such an homomorphism ¢: ~ ~ G, the triangle 

subgroup ~ = < Xo, XI > of ~ is mapped to a discrete group G which, as introduced in 

§5.2.1 and proved in the sections below, has the structure of a cyclic group or a triangle 

group. Let x~, xi and t' respectively be the images of Xo, XI and t. By examining the 

action of x~t' and t' xi on the fixed points of G and t', we observe the following. If 

t' is the identity then G = ¢(~) is either trivial, cyclic of order 2 or a triangle group 

~(2, 2, m) with canonical generating involutions x~ and xi where 2 ~ m ~ 00. So 

suppose henceforth that t' is a rotation of order 2, or a reflection. 

Suppose that G is cyclic and consists of rotations. If it is trivial then ¢(~) = < t' > is 

cyclic of order 2; so suppose it is non-trivial. If t' is a reflection then either its axis R, 

passes through the fixed point(s) f of G (in which case ¢(~) is dihedral), or !K is the 

sphere and Rt is the equator to the polar axis of G (in which case x~ and xi have orders 

at most 2 and ¢(~) is a Klein four-group). Otherwise, t' is either an order-2 rotation 

about f, or f£ is the sphere and t' is an order-2 rotation about the axis orthogonal to 

that fixed by G; either way, x~ and xi have orders at most 2 and G = ¢(~) is cyclic of 

order 2. Now suppose that G is generated by a reflection v with axis Ru. If t' = v then 

G = ¢(~) is cyclic of order 2. Otherwise t' is either a reflection with axis orthogonal 
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to Rv, or an order-2 rotation. Either way, ¢J(Il) is a Klein four-group since, in the latter 

case, either t' fixes a point on Rv, or !!£ is the sphere and Rv is the equator to the polar 

axis of t'. 

Finally, if G is a non-cyclic triangle group then t' must be the reflection whose 

axis passes through the fixed points of x~ and x;; it follows that ¢J(Il) is the extended 

triangle group whose even subgroup is G. • 

Suppose that ¢J: Il ~ r is a homomorphism between extended triangle groups. 

The proof of Proposition 5.2.2 shows that when the image of the restriction ¢JI of ¢ 

to Il is not dihedral and has order greater than 2, the homomorphism ¢J is the unique 

extension of ~ to Il. Moreover, ¢J(Il) is the 'expected' group in this situation: it is either 

a dihedral group with cyclic subgroup ¢J(Il), or it is an extended triangle group with 

¢J(Il) as its even subgroup. As a result, there is little to say about most of the functors 

which arise from homomorphisms between extended triangle groups and which map 

parabolic elements to parabolic or elliptic elements, beyond what can be said about 

their restriction to orientable hypermaps without boundary. (Note that four of the 

six map operations-and the related functors T and P of §4.4.5-did not arise from 

extensions in this way; this is because their corresponding automorphisms map certain 

parabolic elements to hyperbolic ones.) We shall not consider extended triangle groups 

henceforth in this chapter. 

5.3. Functors from epimorphisms onto cyclic groups 

5.3.1. Cyclic epimorphic images 

Let Il be a triangle group (xo,xl'x2Ix~n() = X'l
nl = X~12 = XOX I X2 = 1), let Il' be its 

commutator subgroup and let Ilab = III Il' be its abelianization. In order to deter

mine the orders of the possible cyclic epimorphic images-or equivalently, the cyclic 

quotients--of Il we shall make use of the following fact, which is an elementary ap

plication of the isomorphism theorems. 

Lemma 5.3.1. Let G be a group and let H be a normal subgroup of G. The quotients 

of G I H are identified by isomorphism with the quotients G I J of G where H ::::; J ~ G .• 

Remark 5.3.2. As a consequence of Lemma 5.3.1, any quotient of Ilab corresponds 

to an abelian quotient III K where Il' ::::; K ~ Il. Conversely, if ¢J: Il --» ¢J(Il) is any 
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epimorphism with abelian image then ¢;(!l) == !lab /(ker(¢;)/ !l'). This gives a bijection 

between cyclic quotients of !l and !lab. • 

We shall determine the orders of the cyclic quotients of !lab by finding the structure 

of !lab as the direct sum of its Sy low p-subgroups, or equivalently, of its largest p-group 

quotients. Suppose first that !l has finite periods. !lab has presentation 

!lab = (xo,xl,x2I moxo = mixi = m2X2 = Xo +XI +X2 = 0) 

= (xo,xllmoxo = mixi = m2(xO + XI) = 0) 

(written in additive notation as abelian groups). It is clear from the first presentation 

that if we let 

and we let H be the cyclic subgroup (xo + XI + X2), then we have IGI 
IHI = LCM(mo,ml,m2) and !lab = G/H, which gives 

For any prime p, write mo = pClpm~, ml = rpm; and m2 = pypm; where HCF(m~, p) = 
HCF(m;, p) = HCF(m;, p) = 1. Without loss of generality we may suppose temporar

ily that CYp ~ j3p ~ Yp' The quotient 

of !lab has simplified presentation 

and so Fp is the direct sum of at most two cyclic groups; it is cyclic if and only if 

CYp = 0, and it has order IFpl = pClp+/3p, which is the highest power of p dividing 

HCF(pClp+/3pm~m;, pClp+ypm~m;, rP+YPm;m;) = l!labl. Thus Fp is the largest p-group 

quotient of !lab. 
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For each prime p, let op, sp' ~p respectively be the minimum, median and maximum 

of the exponents O:p, /3p, Yp. Then we have 

Ll
ab 

== E9 CpOI' E9 Cp"l' , 

primes p 

a direct sum of cyclic p-groups. It is clear that Llab is trivial if and only if sp = ° for 

all p, that is, the mi are pairwise coprime. Similarly, Llab is cyclic if and only if each 

of its Sylow p-subgroups is cyclic, which is the case precisely when op = ° for all 

p, equivalently when no prime p divides each mi, that is, when HCF(mo, ml, m2) = 1. 

Now, a largest cyclic quotient of Fp is Fp/Cp/ip , of order pSI', so we have 

Proposition 5.3.3. For a prime p let sp be the median value of the three exponents 01" 

sP' ~p of the largest powers of p dividing mo, mi. m2, so that 

Then a largest cyclic quotient of Llab has order n pSI' and the order of any cyclic 
primes p 

quotient of Ll ab divides this. • 

We note that this result is valid when some or all of the mi are infinite, provided that we 

treat the exponent of the largest power of p dividing oo-and the prime-power itself

as infinite; indeed, it is trivial to check that the expression given above for Llab as a 

direct sum of cyclic p-groups holds when Ll = Ll(a, b, 00). In addition, Ll ab == Z X CI; 

when Ll = Ll( 00, b, 00), and Llab == Z x Z when Ll = Ll( 00,00,00) and so the result is 

immediately verified in these cases too. 

Example 5.3.4. Let Ll be the triangle group 

Write 18 = 2.32,21 = 3.7 and 30 = 2.3.5. Then 02 = 0, S2 = ~2 = 1; 03 = S3 = 1, 

~3 = 2; Os = Ss = 0, ~s = 1; 07 = S7 = 0, ~7 = 1. We have 

and a largest cyclic quotient of Ll has order 21.31 = 6. Table 5.1 gives all possible 
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Homomorphism Image order Homomorphism Image order 

Xo I-> 0 (1) Xo I-> 2 (3) Xo I-> 4 (3) 
Xl I-> 0(1) 1 Xl I-> 4 (3) Xl I-> 2 (3) 3 
X2 I-> 0 (1) X2 I-> 0 (1) X2 I-> 0 (1) 

Xo I-> 0 (1) Xo I-> 0 (1) Xo I-> 2 (3) Xo I-> 4 (3) 
Xl I-> 2 (3) Xl I-> 4 (3) 3 Xl I-> 2 (3) Xl I-> 4 (3) 3 
X2 I-> 4 (3) X2 I-> 2 (3) X2 I-> 2 (3) X2 I-> 4 (3) 

Xo I-> 3 (2) Xo I-> 1 (6) Xo I-> 5 (6) 
Xl 1->0(1) 2 Xl I-> 0 (1) Xl 1->0(1) 6 
X2 I-> 3 (2) X2 I-> 5 (6) X2 I-> 1 (6) 

Xo I-> 3 (2) Xo I-> 3 (2) Xo I-> 1 (6) Xo I-> 5 (6) 
Xl I-> 2 (3) Xl I-> 4 (3) 6 Xl I-> 2 (3) Xl I-> 4 (3) 6 
X2 I-> 1 (6) X2 I-> 5 (6) X2 I-> 3 (2) X2 I-> 3 (2) 

Xo I-> 2 (3) Xo I-> 4 (3) Xo I-> 1 (6) Xo I-> 5 (6) 
Xl 1->0(1) Xl I-> 0 (1) 3 Xl I-> 4 (3) Xl I-> 2 (3) 6 
X2 I-> 4 (3) X2 I-> 2 (3) X2 I-> 1 (6) X2 I-> 5 (6) 

TABLE 5.1. The homomorphisms from the triangle group fl. = (Xo' Xl' x21 x~8 = xfl = ~o = 
XOXI X2 = 1 ) into Z6, and the orders of their images. 
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homomorphisms from /1 into Z6. The homomorphisms are described by specifying 

the images of the generators Xo, XI, X2 of /1; the numbers in parentheses are the orders 

of these elements in Z6' Some of the homomorphisms have been grouped together in 

pairs according to the orders of the images of the generators. It is a necessary condition 

for two of the homomorphisms to have the same kernel that these orders are the same 

under both maps. In general this is not a sufficient condition, but in this case it can 

be seen that one homomorphism in each pair is the composition of the other with an 

automorphism of Z6, namely that which inverts each element. ... 

5.3.2. Functors from cyclic group inclusions 
, , , 

L r A(' , ') ( I IIlO Ill, 1/l2 1 > b . I et = il mO,ml'm2 = wO,wl'w2 Wo = WI = w2 = wOwIW2 = e a tnang e 

group. The only cyclic subgroups of r are the subgroups of the (Wi> and their con

jugates. Hence if ¢: /1 ~ r is a homomorphism from /1 = /1(mo, ml, m2) into r with 

cyclic image ¢(/1) then the order n of ¢(/1) must divide one of the periods m; of r (with 

the usual convention that every positive integer and 00 divides a period m; = 00). 

Let <l>i,n be the functor induced by ¢, and let £ be a hypermap of type dividing 

(mo, ml, m2) with hypermap subgroup R ~ /1. The hypermaps <l>;,nCYt') are covered 

by the universal map %'r for r with degree r = I¢(R)I; they are (usually infinite) maps 

on simply-connected Riemann surfaces (augmented by ideal points if some m; = 00), 

invariant under a rotation of order r about the centre of the hypervertex, hyperedge or 

hyperface corresponding to the fixed point of Wi. Denote these hypermaps by °ab,,., 
noting that %'r,i,1 = %'r. 

The functor <l>i,n is completely determined by the integer i and the normal subgroup 

K = ker(¢). Remark 5.3.2 tells us that normal subgroups K which give cyclic quotients 

/1/ K are in one-to-one correspondence with the cyclic quotients of /1ab. Hence for a 

positive integer n, the number of distinct functors <l>i,n: C(1Il
1
I'm,,1Il

2
) ~ C(II1;I'IIl;,II1;) induced 

by homomorphisms ¢: /1 ~ r with cyclic epimorphic images of order n is simply td, 

where t is the number of periods of r which are multiples of n, and d is the number of 

distinct cyclic quotients of order n of /1 ab. 

Example 5.3.5. Here we consider functors from spherical triangle groups. The group 

/1 = /1(3,2,4) == S4 gives rise to the category e(3,2,4) of the eleven spherical maps 

covered by the cube, corresponding to the conjugacy classes of subgroups of S4' The 

only non-trivial cyclic epimorphic image of /1 has order 2, and so there exist non-trivial 
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functors <1>;,2 from C(3,2,4) into each category C(m;plll'l,m;) for which m; is even. The kernel 

K of all homomorphisms into r = fl(m~, m~, m;) inducing such a functor is a normal 

subgroup of index 2 in fl; if we identify fl with S4 then K = A4 and X is the map of 

type (1,2,2) consisting of two 1 -valent vertices and single edge. The maps in C(3,2,4) 

whose image under <1>;,2 is Wr are the five which cover X, namely the even-face

valent maps without free edges. These are precisely the bipartite maps. The image of 

the other six maps in C(3,2,4) is Wr,;,2, the quotient of Wr by a half-turn about the centre 

of an i-component. 

If fl = fl(3, 2, 3) == A4 then flab == C3. The only non-trivial functors <1>: C(3,2,3) ---7 

C(mo,m;,m;) induced by homomorphisms fl(3, 2, 3) ---7 fl(m~, m~, m;) = r with cyclic 

image are the <1>;,3 where 3 I m;. The map X whose map subgroup in fl = fl(3, 2, 3) 

is the kernel of all epimorphisms ¢: fl --* C3 ~ r consists of one trivalent vertex and 

three half-edges. Of the five maps covered by the tetrahedron, those which cover Jf 

are precisely the three 3-vertex-valent, 3-face-valent ones; their image under <1>;,3 is 

Wr. The image of the two other maps is Wr,;,3, the quotient of Wr by a rotation of order 

3 about the centre of an i-component. 

The triangle group fl = fl(3, 2, 5) gives rise to the icosahedral and dodecahedral 

maps. This group is perfect, and so its only cyclic epimorphic image is trivial. It 

follows that the only functors <1>;,1l from C(3,2,5) and C(5,2,3) are trivial in the sense that 

the image of every map under such a functor is Wr. A 

Example 5.3.6. Let fl = fl(18, 21, 30) and let C(18,21,30) be the category of hypermaps 

which it determines. We showed in Example 5.3.4 that there are four different functors 

<1>;,6 induced by four pairs of epimorphisms from fl onto a given cyclic subgroup of 

order 6 of a triangle group r, corresponding to the four distinct cyclic quotients of order 

6 of flab. One of these functors, <1>, is induced by a pair of epimorphisms whose kernel 

is the map subgroup in fl for a hypermap X whose i-components have maximum 

possible valency; it consists of one 6-valent hypervertex, two 3-valent hyperedges and 

one 6-valent hyperface on a surface whose genus is thus 2. (See Table 5.1; X also 

features in Figure 3.3.) X covers just the four hypermaps shown in Figure 5.2 and so 

there are four possible images under <1>. All spherical hypermaps in C(18,21,30) which 

are bipartite and even-hypervertex-valent have image Wr,;,3; the remaining spherical 

hypermaps in this category have image Wr. A 



5.4. Functors from epimorphisms onto triangle groups 

(i) 
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(iii) (iv) 

FIGURE 5.2. (i) The Walsh model of the hypermap X of Example 5.3.6. (ii- iv) The 
hypermaps covered by X. 
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5.4. Functors from epimorphisms onto triangle groups 

5.4.1. Triangular epimorphic images 

Fuchsian triangle groups 

The two-generator Fuchsian groups- discrete two-generator subgroups of the group 

Aut+(1{) == PSL(2, JR.) of conformal automorphisms of the hyperbolic plane 1{-have 

been fully classified, and we state the results we need in the theorem below. We are 

interested in the cases where the two generators A and B are parabolic or elliptic ele

ments acting with distinct fixed points. Following the geometric approach of Matelski 

[46] we normalize such A and B by replacing one of them with its inverse if need be so 

that the rotations through an angle of at most 1f which they determine are in opposite 

senses. 

Definition 5.4.1. An element of Aut+(1{) is primitive if it is hyperbolic, parabolic, or 

elliptic of finite order n rotating by 21f/n. • 
Theorem 5.4.2 ([37], [46]). If elements A and B of PSL(2, JR.) are non-hyperbolic, 

primitive and normalized as above, then they generate a discrete group if and only 

if AB- i is primitive or one of the following five conditions holds: let A, B, AB- 1 have 

orders n, m, 1 respectively and let AB-1 rotate by k(21f/l) with k and 1 relatively prime. 

(i) k = 2, n = m, 1/1 + l/n < 1/2. Then < A, B) == fl(n, 2, 1); 
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(ii) k = 2, n = 2, m = I, m;;:: 7. Then (A,B) ~ ~(3,2,m); 

(iii) k = 3, n = 3, m = I, m;;:: 7. Then (A,B) ~ ~(3,2,m); 

(iv) k = 4, n = m = I, m;;:: 7. Then (A,B) ~ ~(3,2,m); 

(v) k = 2, n = 3, m = I = 7. Then (A,B) ~ ~(3,2, 7). 

When AB-1 is primitive and either elliptic or parabolic, the elements B, A -I and AB- 1 

are canonical generators for a triangle group ~(l, m, n). In just five cases (one sporadic; 

four concerning infinite families) is the product of the primitive generators imprimi

tive: in each case the group is a triangle group with a period 2. Figure 5.3 illustrates 

how these elements act as non-canonical generators of triangle groups. 

The Fuchsian group generated by a pair of (possibly imprimitive) elliptic elements 

with distinct fixed points is the same as that generated by the primitive powers of 

these elements, and so the triangle groups just described are the only groups obtained 

when we insist upon the generators having an elliptic product, irrespective of their 

primitivity. However, since we are interested not only in the structure of the group 

generated but also in its specific sets of generators-which, ultimately, will determine 

the epimorphisms onto the group-we must examine the possibilities for imprimitive 

generators in full detail. 

The following result is familiar to us in the case of canonical triangle group gen

erators (which are primitive by definition). Its application to imprimitive rotations is 

fundamental to the investigation. 

Lemma 5.4.3. Let 9x, 9y, 9z be rotations of the Euclidean or hyperbolic plane which 

do not all fix the same point. Then they satisfy 9x9y9z = 1 {f and only if their fixed 

points form the vertices of a triangle such that each rotates with the same orientation 

through twice the angle subtended by its fixed vertex. 

Proof. Let x, y, z be the fixed points of 9x, 9y, 9z respectively. Since 9x9y9z = 1, x is the 

fixed-point of 9~1 = 9y9z, that is, 9Y(9zCX)) = x, and since 9y is a rotation with respect 

to the usual planar metric p we have p(y, 9z(X)) = p(y, x) . Yet 9z is also a rotation and 

so p(z, x) = P(Z,9z(X)) and we have either x = 9z(X) (that is, x = z) and thus all three 

fixed points are coincident, or both y and z lie on the perpendicular bisector of x and 

9zCX) and hence are not collinear with x. 



5.4. Functors from epimorphisms onto triangle groups 98 

(i) (ii) 

~--=..L::""""""::........lL....=:.....-....:.:..:....------==!==o--'\ 

B 
(iii) 

(iv) 

~--~~--~~~\ 

(v) 
'-B 

FIGURE 5.3. The cases (i)-(v) of Theorem 5.4.2. 
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In the latter case the points x, y and z form the vertices of a triangle T whose 

reflection in the line segment yz is a triangle with vertices 9z(x), y and z. Thus 9z is a 

rotation through twice the internal angle of T at z. 

Conjugations of 9x9y9z give 9y9z9x = 9z9x9y = 1 and so similar arguments yield 

that 9x and 9y are rotations through twice the internal angle of T at x and y respec

tively. • 

This result also applies to rotations of the sphere, but we must be more careful in 

choosing which particular triangle to consider. 

Theorem 5.4.2 describes all Fuchsian triangle groups generated by two elliptic or 

parabolic elements such that there is at most one imprimitive element amongst these 

and their product. We shall prove the following. 

Theorem 5.4.4. Let A, B E PSL(2, JR) be elliptic and normalized with orders n, III 

respectively. Let the product C = AB- 1 be elliptic or parabolic. Suppose that at least 

two of A, Band Care imprimitive. Then they generate a discrete group if and only ~t' 

n is odd, n ;;::: 7 and they are all imprimitive with the same order n, in which case the 

group is a (3,2, n) triangle group. 

We begin by setting out some notation. Let A and B be the primitive powers of A 

and B. Let I be the order of AB-1 (not the order of C = AB- 1); let a, band c be the 

fixed points of A, Band C; let T be the triangle with these fixed points as vertices; and 
- ~~ 

let Rc be the reflection in the line through A and B. Let G = < A, B, Rc > = < A, B, Rc ); 

then G = < A, B > = < A, B > is the orientation preserving subgroup of G of index 2. 

There are reflections in G whose axes pass through a and making angles of 0, 

n/n, ... , (n - l)n/n with the line segment ab; we denote these reflections and their 
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corresponding axes--context will make clear which we mean-by Rao ' Ral , ... , Rall._ 1 

so that Rao = Re·; similarly we denote the axes of reflection through b by Rbo = K, 
RbI' ... , Rbm_1 • 

Proof. If A and B rotate through k(2lf/n) and k'(2lf/m) where k and n (respectively k' 

and m) are relatively prime then, by Lemma 5.4.3, the sides of T are segments of K, 
Rak and Rbe' (Hence A = RbeRe·, B = RakRe· and C = RbeRak') The lines Ral , . .. , RaH 

pass through the interior of T, as do RbI" .. , Rbe_l. Since at least one of A and B 

is imprimitive, either k > 1 or k' > 1 and so the fixed point d of AB- I (which, by 

the lemma, is the intersection point of Ral and RbI) lies on or inside T. Let T denote 

the triangle whose vertices are a, band d. We suppose that G is discrete, and we let 

T denote a fundamental triangle of G. One of the situations of Theorem 5.4.2 now - -applies to A and B. 

Consider first the case where As-I is primitive (and hence elliptic). In this case, 

T = T and G is the extended triangle group /1 = /1[n, m, 1]. We determine which axes 

through a and b intersect to give a candidate for the triangle T in o/t',A,[n,m,lj' We assume 

that n ~ m; the case m ~ n is entirely similar and gives the same results. 

If n ~ 3 then for Ral to intersect Rb2 or for Ra2 to intersect Rbi we must have 1 = 2 

(and hence l/m + l/n < 1/2). Then RaJ intersects Rb2 to give T with J1(T) = 2J1(T) 

and angles If/n, 2lf/m and If/n (see figure below); this gives two primitive generators 

A and C (and if B is imprimitive then m must be odd and we have simply arrived at 

case (i) of Theorem 5.4.2). Axes Ra2 and RbI intersect to give T with J1(T) = 2J1(T) 
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and angles n/m, 2n/n and n/m; this gives two primitive generators Band C (and if A 

is imprimitive then n must be odd and we have case (i) again). Axes Ra2 and R b2 do not 

intersect. 

If n = 3 there is a further intersection: axes Rat and Rb3 give T with J1(T) = 4J1(T) 

and angles n/3, 3n/m and n/m; this gives two primitive generators A and C (and if B 

is imprimitive then 3 f m and we have case (iii) of Theorem 5.4.2). If n = 2 then m, 

1 ~ 3 and for Rat and Rb2 to intersect we must have 1 = 3 and hence m ~ 7, giving T 

with J1(T) = 3J1(T) and angles n/2, 2n/m and n/m; this gives two primitive generators 

A and C (and if B is imprimitive then m must be odd, giving case (ii» . The axes R at 

and Rh do not intersect. To summarize, if A'B-l is primitive then so is one of A and B. 

Now consider the situation where A'B-I is imprimitive according to case (i) of 

Theorem 5.4.2. We have %'Mn,2,1] with fundamental region T, and T is a configuration 

consisting of two adjacent copies of T . The vertices a and b of T subtend angles of 

n/n, while the third vertex d (the fixed point of A'B-I) subtends an angle of 2n/l. We 

determine which axes through a and b intersect to give a triangle T containing T, and 

we thus infer the possible identities of A and B. 

We know that 1 is odd. If 1 = 3 then n ~ 7 and there are four distinct possibilities 
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for T up to interchanging A and B. Axes Ral and Rb2 give T with J1(T) = 3J1(T) and 

angles 7r/n, 27r/n and 7r/2; this gives case (ii) with A and C primitive, B imprimitive 

and n odd. Axes Ral and Rb3 give T with J1(T) = 4J1(T) and angles 7r/n, 37r/n and 7r/3 ; 

this gives case (iii) with A and C primitive, B imprimitive and 3 f n. Axes R al and R b4 

give T with J1(T) = 6J1(T) and angles 7r/n, 47r/n and 7r/n; this gives case (iv) with A 

and C primitive, B imprimitive and n odd. Lastly, axes R a2 and Rb2 give T equilateral 

with J1(T) = 6J1(T) and interior angle 27r/n; this gives A, Band Call imprimitive and 

n odd, which is the situation described in the statement of the theorem. When 1 ~ 5 

there are no possibilities for T arising from imprimitive A or B. 

Now consider the situation where AB- 1 is imprimitive according to case (ii) of 

Theorem 5.4.2. We have %' ..... [/11,2,3] with fundamental region T, and A and B inducing 

two vertices of T subtending angles of 7r/2 and 7r/m, with .A:B-I inducing the third 
~ -

subtending an angle of 27r/m so thatJ1(T) = 3J1(T). We know that m is odd and m ~ 7; 

there are no possibilities for T arising from imprimitive A or B. 
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We may proceed in a similar manner to examine the situations where AB- 1 is im

primitive according to cases (ii)-(v) of Theorem 5.4.2. We find that the only possibili-

ties for T are those already given by the cases of that theorem. • 

Remark 5.4.5. This result shows that there is just one infinite family of possibili

ties for A and B with elliptic product AB-1 that is not covered by the cases of Theo

rem 5.4.2; this situation is derived from case (i) and so we refer to it as case (i'). • 

Euclidean triangle groups 

We now tum our attention to epimorphic images of triangle groups as discrete groups 

of conformal automorphisms of the Euclidean plane. The results we seek may be ob

tained directly as follows. In 1.\(4, 2, 4) the possible orders of elliptic elements are 2 and 

4 corresponding to rotations through If and lf/2. Hence the only possible (unordered) 

triple of angles for the triangle T of Lemma 5.4.3 is (lf/2, lf/4, lf/4), and so the corre

sponding rotations are canonical generators for a 1.\(4,2,4) triangle group. In 1.\(3, 3, 3) 

every elliptic element has order three, T is equilateral and the corresponding rotations 

are canonical generators for a 1.\(3, 3, 3) group. Lastly, in 1.\(3,2,6) the possible orders 

of elliptic elements are 2, 3 and 6; possible triples of angles for Tare (If 12, If 13, If 1 6), 

(If 13, If 13, If 13) and (If 16, If 1 6, 2lf 13). In the first two cases the corresponding rotations 

are canonical generators for 1.\(3,2,6) and 1.\(3,3,3). In the third case the rotation of 

order 3 is imprimitive; T has angles (If 16, If 13, If 16) and is the union of two triangles 

with angles (lf/2,lf/3,lf/6). This is the analogue in the Euclidean plane of case (i) of 

Theorem 5.4.2, and the group generated is a 1.\(3, 2, 6) group. 

Spherical triangle groups 

To determine the epimorphic images of triangle groups 1.\ within spherical triangle 

groups r, we may simply examine these finite groups themselves. Up to automor

phism action there is just one unordered generating triple (A, B, AB- 1
) for 1.\(3,2,3) 

containing imprimitive elements; each generator has order 3, and this is an analogue 

on the sphere of case (i) of Theorem 5.4.2. An analogue of this case is also the only 

imprimitive situation for 1.\(3,2,4); the orders of the generators are 4, 4 and 3 here. 

Two further analogues of this case occur for 1.\(3, 2, 5); the orders of the generators are 

3, 3 and 5 for the first, and 5, 5 and 3 for the second. (The latter triple is the image 

under a representative of the non-identity outer automorphism of 1.\(3, 2, 5) of a triple 
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which gives rise to an analogue of case (iii) of Theorem 5.4.2.) Next, there is an ana

logue of case (ii); the orders of the generators are 5, 5 and 2. Then there is an analogue 

of case (i'), in which the generators are all of order 5. One final imprimitive situation 

arises for this group, and it is not the analogue of any Euclidean or Fuchsian case. The 

generators have orders 5, 5 and 3 as shown below. 

There are no generating triples (A, B, AB-1
) for !:J.(n, 2, 2) containing imprimitive rota

tions. 

Remark 5.4.6. We refer to the spherical case pictured above as case (vi). • 

Summary of results 

The results of the investigation can now be summarized as follows. 

Theorem 5.4.7. The epimorphisms in the following list, together with isomorphisms 

between triangle groups, are sufficient to describe, through composition, any epimor

phism !:J. --* r between triangle groups which takes parabolic elements to parabolic or 

elliptic elements . 

• !:J.(mo, ml, m2) --* !:J.(1, d, 1) for d dividing Il pep where, for each prime p, cp is 

the median value of the three exponents op, cp' (p of the largest powers of p 

dividing mo, ml, m2 (the cyclic group case); 

• !:J.(mo' m), m2) --* !:J.(m~, m;', m~) where m;' I m i for each i (the direct derivative 

case); 
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• /1(n, n, 1) -* /1(n, 2, l) where l is odd and l, n E {2, 3, ... } (arises ji-om case (i) 

of Theorem 5.4.2 and its Euclidean and spherical analogues); 

• /1(n, n, n) -* /1(n, 2, 3) where n is odd and 7 ~ n < 00 (arises from case (i' )); 

• /1(2, m, m) -* /1(2, 3, m) where m is odd and 5 ~ m < 00 (arises from case (ii) 

and its spherical analogues); 

• /1(3, m, m) -* /1(2,3, m) where m is odd, 7 ~ m < 00 and 31' m (arises from 

case (iii) and its spherical analogues); 

• /1(m, m, m) -* /1(2,3, m) where m is odd and 7 ~ m < 00 (arisesfrom case (Iv)); 

• /1(3,7,7) -* /1(2,3,7) (arisesfrom case (v)); 

• /1(3,5,5) -* /1(3,2,5) (arises from case (vi)). • 

5.4.2. Functors from triangle group surjections 

Direct derivatives of bypermaps 

Let /1 be the triangle group given by /1(mo' m1, m2) = < xO' Xl' x21 x~no = X';ll = X;12 = 
XOX 1X2 = 1 ). We have seen in §5.2 that each triangle group r satisfying 

where m;' I mi (0 ~ i ~ 2) is the image of an epimorphism ¢ which maps a canonical 

generator Xi of /1 onto a canonical generator Yi of r. This epimorphism induces a 

direct derivative functor <D: C(nl m nl) -7 C(m" Ill" Ill") which sends i-components to i-
I)' I' 2 0' I' 2 

components. 

The kernel K of ¢ is the normal closure of the set {x;n;1 I 0 ~ i ~ 2}; this is the 

hypermap subgroup in /1 for a hypermap X. As discussed in §5. I, the image un

der <D of a hypermap £ with hypermap subgroup H in /1 is the same as that of the 

largest hypermap £ (with hypermap subgroup H Kin /1) covered by both X and d[. 

Moreover, in the case of these direct derivative epimorphisms, it is clear from the point 

of view of hypermaps as permutation representations of triangle groups that H K and 

¢(RK) = ¢(R) are the hypermap subgroups for £ in /1 and r respectively. It follows 

that all hypermaps of type dividing (m~, mi', m~) are invariant under <D. Hence X is 
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the universal hypermap C1/r corresponding to r, and <1>(£) = £ is the largest quotient 

of £ of type dividing (m~, m;', m~). 

Example 5.4.8. Let b.. = b..(3,2, 10) = < xO' xl' x21 x~ = xT = xio = xox, x2 = 1), 

r = b..(3, 2, 5) = < Yo, Yl' Y21 y~ = YT = y~ = YOY'Y2 = 1 ) == As, and let ¢ be the epi

morphism induced by Xi H Yi (0 ~ i ~ 2) so x~ H 1. r determines the category C(3.2.5l 

consisting of the nine quotients of the dodecahedron, and ¢ determines a covering of 

the dodecahedron by the universal map C1/"" branched at the face centres. This is a 

covering of infinite degree, although locally (at the level of an individual face of 'f,(L\) 

it is a degree 2 covering resulting from a half-turn about the face centre. The relation 

H on the set of faces of C1/", defined by j H f' if and only if the faces j, f' are inci

dent with opposite edges of a third face gives rise to twelve equivalence classes; these 

correspond to the classes of faces covering the twelve faces of the dodecahedron. 

Since As is a simple group, the image of any regular hypermap in CO.2.'O) which 

covers the dodecahedron is the dodecahedron, while all other regular hypermaps are 

sent to the trivial map and hence cover no non-trivial quotients of the dodecahedron .... 

In general, to construct the image of any hypermap £ of type dividing (mo, m" m2) 

under a direct derivative functor <1>, we consider the permutation representation of b.. 

which determines £, take each of the three elements P;";' of the monodromy group 

of £ (where Pi permutes the hyperdarts in cyclic order around the i-components of 

£), and identify the hyperdarts which form a cycle in any of these permutations. 

In other words, for each hypermap component c of dimension i and valency v of ,:y{J 

we identify incident hyperdarts which are consecutively m;' apart around it to obtain 

an i-component of valency h = HCF(v, m;'). Unless £ already has type dividing 

(m~, m;', m~), this process gives a covering of <1>(Jlt') by <1> which has infinite degree 

when b.. is Euclidean or Fuchsian, but which has degree * at the level of c. 

While direct derivative functors send regular hypermaps to regular hypermaps, they 

are not so well-behaved with respect to other properties of hypermaps. The size of the 

automorphism group may decrease or increase: if Jlt' is regular and distinct from ,y{~ 

then its automorphism group is of course larger than that of £, whilst in the category 

C(3,2,4) the irregular 12-dart map with automorphism group of order 4 is sent to the 

unique regular 6-dart map of C(3,2,2) by the functor which reduces face valency. Next, 

if.fft and ~ are hypermaps within an infinite category C(mo.ml,m2) and .fft covers Jlt2 

with degree n, then we may ask how the degree n' of the covering of <1>(~) by <1>(,}fJ) 
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compares with n. Certainly n' ~ n, since if there are n cosets Hlg in H2/HI then there 

are at most n sets Hlg' K = HI Kkg' in KH2/HIK = H2K/HIK. On the other hand, the 

following example shows that n may be arbitrarily large compared to n', even when 

n' = 1 and <D(£!) = <D(~). 

Example 5.4.9. Take the functor <D: C(3,2,1O) ~ C(3,2,5) of Example 5.4.8. The do

decahedron has a reflexible double cover Ala of type (3,2, 10) [34]; this map has 

twelve lO-valent faces on a surface of genus g = 5. Its canonical map subgroup Mo 

in /:1 = /:1(3,2, 10) is torsion-free since Ala is uniform, and so Mo is a surface group, 

free of rank 2g - 1 = 9. Clearly such a group has a subgroup MI of index 2 (say): 

the kernel of any epimorphism onto a group of order 2. This is the map subgroup in 

/:1 of a uniform map All of type (3,2, 10). MI has rank 2(9 - 1) + 1 = 17 and so 

All lies on a surface of genus 9. This argument can be repeated arbitrarily often; the 

map Aln is uniform of type (3,2, 10) on a surface of genus 2n+2 + 1. It is a degree 211 

covering of Ala or equivalently, IMo: Mnl = 2n. However, both Ala and Aln cover the 

dodecahedron, which is thus the image of each under <D. 

Indirect derivatives of hypermaps 

It remains to determine the functors corresponding to the epimorphisms of Theo

rem 5.4.7 under which the image of a canonical generating triple for a non-cyclic 

triangle group /:1 = /:1(mo, ml, m2) is not itself canonical. There are seven cases to 

consider. 

(i) /:1(n, n, 1) -» /:1(n, 2, 1) with 1 odd and 1, n E {2, 3, ... } 

Consider inclusion (a) of §4.5.1: /:1(n, n,~) <l2 /:1(n, 2, 1) where 1 is even. By setting I 

even in the configuration for case (i) in Figure 5.3, we see a fundamental triangle for 

/:1[n, n, ~] as the union of two fundamental triangles for /:1[n, 2, 1]. The functor induced 

by the inclusion is W, which is applied to a hypermap by forgetting the vertex colours 

of its Walsh representation. When 1 is odd rather than even, this construction 'folds 

up' to describe the functor <D induced by our epimorphism if;: /:1(n, n, 1) = < x, y, z I xn = 
yn = Zl = xyz = 1 > -» < p, q, r I pn = q2 = ~ = pqr = 1 > = /:1(n, 2, 1) as follows. One 
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realization of ¢ is given by 

yH qpq 

(xyr1 = z H r2 = (pqr2. 

This is a composition of inclusion (a) given by x H a, y H bab, z H c2 (where 

l1(n, 2, 21) = (a, b, c I an = b2 = c21 = abc = 1 ») with the direct derivative epimorphism 

l1(n, 2, 21) ~ l1(n, 2, I) given by a H p, b H q, C H r. It follows that <D is simply the 

composition of W with a direct derivative functor; it is applied to a hypermap YC of 

type dividing (n, n, I) where I is odd and 1/ I + 1/ n ~ 1/2 by identifying, around each 

face of W(Yt'), darts which are I edges apart. 

(i') l1(n, n, n) --* 11(3,2, n) with n odd, 7 ::::;; n < 00 

Consider inclusion (c) of §4.5.1: I1G,~,~) <16 11(3, 2,n) where n is even. By setting 11 

even in the configuration for case (i') illustrated within the proof of Theorem 5.4.4 on 

page 102, we see a fundamental triangle for 11[~, ~, ~] as the union of six fundamental 

triangles for l1[n, 2, nl The functor induced by the inclusion is J, which is applied to 

a hypermap by forgetting the face colours of its James representation. When n is odd 

rather than even, this construction folds up, in a manner similar to the previous case, to 

describe the functor <D induced by our epimorphism ¢: l1(n, n, n) = (x, y, Z IX' = y" = 
Z" = xyz = 1) --* (p, q, r I p3 = q2 = ~ = pqr = 1 ) = 11(3,2, n). One realization of ¢ 

is given by 

X H (prp-1i 

y H (qrq)2 

(xyr 1 = z H r2 = (pq)-2. 

This is a composition of inclusion (c) given by x H (aca- I )2, y H (bcb)2, Z H c2 

(where 11(3,2, 2n) = (a, b, c I a3 = b2 = c2n = abc = 1» with the direct derivative 

epimorphism 11(3,2, 2n) ~ 11(3,2, n) given by a H p, b H q, C H r. It follows 

that <D is simply the composition of J with a direct derivative functor; it is applied to a 

hypermap Yt' of type dividing (n, n, n) where n is odd and n ~ 7 by identifying, around 

each face of J(Yt'), darts which are n edges apart. 
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FIGURE 5.4. An application of the indirect derivative functor induced by the homomor
phism of case (ii). 

(ii) /1(m, 2, m) ~ /1(3,2, m) with m odd, 5 ~ m < 00 
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Consider inclusion (K) of §4.5.1: /1(m, 2,~) <3 11(3, 2,~) where m is even. By setting 

m even in the configuration for case (ii) in Figure 5.3, we see a fundamental tri angle 

for /1[m, 2, ~] as the union of three fundamental triangles for /1[3, 2, m]. The functor 

induced by the inclusion is applied to a map JIt by truncating its vertices. When m is 

odd rather than even, this construction folds up to describe the functor cD induced by 

our epimorphism ¢: /1(m, 2, m) = < x, y, z I xl! = y2 = zll1 = xyz = 1 ) ~ < p, q, r I p3 = 

l = r'n = pqr = 1 ) = /1(3,2, m), in a sense that we now make clear. 

Figure 5.4 shows parts of the universal maps for /1(m, 2, m) = < x, y, z I XIII = y2 = 

Zlll = xyz = 1) and /1(3,2, m) = < p, q, r I p3 = q2 = r'" = pqr = 1) in the case m = 7. 

cD describes a particular covering (which is branched over the face centres) of the latter 

by the former as follows. One realization of the epimorphism ¢ is given by 

X H prp- l 

yHq 

(xyr l = z H r2 = (pqr 2, 
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whence yz m~l H p-I and ker(¢) = < (yzm~I)3 ). Let T and U be the triangles in °71"'0.2.7) 

and %'L'.(3.2,7) whose vertices are the fixed points of the canonical generating triples. Let 

V be the triangle whose vertices are the fixed points of prp-I, q and r; V contains 

U and the triangle 0 whose vertices include the fixed points of prp-l and p, and it 

corresponds to the configuration for case (ii) in Figure 5.3. Truncate °71"'(7.2.7) so that 

T is subdivided into a triangle S and a kite, and then divide the kite into two triangles 

down its axis; let S be the one whose vertices include the fixed point of y. We intend 

that T covers V, that S covers U and that S covers O. Finally, let S be the reflection 

of the triangle T \ {S US} in the side of T common to Sand S. 
The element yzm~l = yi is a hyperbolic translation in /1(7, 2, 7) which moves Sand 

S to triangles S' and S' in a neighbouring face. Since p-I is the image of this element 

in /1(3,2,7) and moves 0 to U we require that S' covers U. But if Sand S' are to 

cover the same triangle then so are Sand S'; and these two triangles are equivalent 

under a rotation through 7 edges about the centre of their common 14-valent face. We 

may argue in the same way for the other triangles of the maps, and we see that the 

covering is described by identifying, around each 14-valent face of the truncation of 

%'L'.(7.2,7), darts which are 7 edges apart to obtain %''''(3.2,7). (We may verify that T and its 

image under (YZ m;I)3 are identified, as we require.) 

In general, <D is applied to a regular map J/l of type dividing (m, 2, m) by truncating 

it and then, around each face which originates from a face of J/l, identifying darts 

which are m edges apart. Unlike in the previous two cases, <D in this case and the ones 

which follow cannot be expressed simply as the composition of the inclusion functor 

with a direct derivative functor. Rather, once the inclusion functor has been applied, 

the direct derivative construction must only be applied to a subset of the hypermap 

components. 

(iii) /1(m, 3, m) """* /1(3,2, m) with m odd, 7 ~ m < 00, 3{m 

Consider inclusion (J) of §4.5.1: /1(m, 3, 1) <4 /1(3,2, m) where 3 I m. By setting mas 

a multiple of 3 in the configuration for case (iii) in Figure 5.3, we see a fundamental 

triangle for /1[m, 3, 1] as the union of four fundamental triangles for /1[3,2, m]. The 

functor induced by the inclusion is applied to a hypermap £ by replacing each hy

peredge of the Cori representation of £ with its stellation, that is, by placing a vertex 

in the centre of each hyperedge, joining it by a new edge to each bounding vertex, and 

then deleting the bounding edges. When 31' m this construction folds up to describe 
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the functor <I> induced by our epimorphism ¢: ll(m, 3, m) = (x, y, z I XII = y3 = Zlll = 
xyz = 1) ~ (p, q, r I p3 = q2 = rm = pqr = 1) = 1l(3, 2, m); one realization of the 

epimorphism ¢ is given by 

XHp 

Y H (qr-1r1r(qr- l ) 

(xyr l = z H r3 = (pq)-3, 

whence Z::Xx H q and ker(¢) = < (Zax)2) where a = Z n {'II; 1 , 211;+1}, and a similar 

argument to that used in the previous case shows that <I> is applied to a regular hy

permap Ye of type dividing (m, 3, m) by performing the stellation procedure and then, 

around each face which originates from a hyperface of Ye, identifying darts which are 

m edges apart. 

(iv) ll(m, m, m) ~ 1l(3, 2, m) with m odd, 7 ~ m < 00 

Consider inclusion (H) of §4.5.1: ll(m, m,~) <6 1l(3, 2, m) where 4 I m; it is the 

composition of two inclusions (a) and (K). By setting m as a multiple of 4 in the 

configuration for case (iv) in Figure 5.3, we see a fundamental triangle for ll[m, m, ~] 

as the union of six fundamental triangles for 1l[3, 2, m] (and as the composition of 

the configuration for case (i) with that for case (ii)). Indeed, one realization of the 

epimorphism ¢: ll(m, m, m) = (x, y, z I XIII = ylll = Zlll = xyz = 1) ~ (p, q, r I p3 = 
l = rm = pqr = 1) = 1l(3, 2, m) induced here is given by 

X H prp-I 

y H (qp)r(qpr 1 

(xy)-I = z H r4 = (pqr4, 

which is the composition of the epimorphisms given by x H a, y H bab, z H c2 

and a H prp-I, b H q, e H r2 from cases (i) and (ii) discussed above (where 

ll(m, 2, m) = (a, b, e I alll = b2 = elll = abc = 1»). Correspondingly, the functor <I) 

induced by ¢ is the composition of the functors from cases (i) and (ii). To apply it 

to a regular hypermap Ye of type dividing (m, m, m), we may choose to leave all edge 

identifications until last by truncating the Walsh representation W(Ye) of Ye and then, 

around each face which originates from a hyperface of Ye, identifying darts which are 
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m edges apart. 

(v) ~(3, 7, 7) ~ ~(3, 2, 7) 

Although not quite so closely related as the previous cases to the inclusions of §4.5. 1, 

this case does bear a strong similarity to inclusion (E), ~(8, 8, 3) < 10 ~(3, 2, 8), dis

cussed in §4.5.1 and pictured in Figure 4.6. Here, one realization of our epimorphism 

¢: ~(3, 7, 7) = (x,y,zjx3 = y7 = Z7 = xyz = 1) ~ (p,q,rj p3 = l = r7 = pqr = 
1 ) = ~(3, 2, 7) is given by 

yHr 

Z H ((qpqp)-l r(qpqp)i, 

whence Z3y-Iz3 H p, yz3y-Iz3 H q and ker(¢) = < (Z3 y-l Z3)3, (yz3y-l Z3)2); a similar 

argument to that used in earlier cases leads to a description of lD. However, to illustrate 

the similarity with the functor arising from inclusion (E), we first perform a Machi 

operation and then we apply our functor to a regular hypermap £ of type (7,7,3) 

as follows: we place an n-gon inside each hypervertex in the Cori representation of 

£, joining it by a new edge to each bounding vertex; then we semi-edge-stellate each 

hyperface by placing a vertex in the centre and joining it by new edges to the midpoints 

of the bounding edges which separate the hyperface from hyperedges; then we delete 

the edges which bound the hypervertices; and finally, around each 14-gon arising from 

the hyperedges, we identify darts which are 7 edges apart. 

(vi) ~(3, 5, 5) ~ ~(5, 2, 5) 

This case does not relate to an inclusion between triangle groups, yet it involves fa

miliar constructions. One realization of our epimorphism ¢: ~(3, 5, 5) = (x, y, Z j x3 = 
y5 = Z5 = xyz = 1 ) ~ (p, q, r j p3 = q2 = ? = pqr = 1 ) = ~(3, 2, 5) is given by 

X H (pr-2)p(pr-2)-1 

y H (qrq)3 

zHr, 
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whence Z2 y2z-2y2 H p, y2z-2 y2 H q, and ker(¢) = < (Z2 y2Z-2 y2)3, (y2 z-2y2)2). A 

similar argument to that used in previous cases shows that <1> is applied to a regular hy

permap £ of type (3,5,5) as follows: first, take the James representation of £; then 

semi-edge-stellate each hypervertex by placing a vertex in the centre and joining it by 

new edges to the midpoints of the bounding edges which separate the hypervertex from 

hyperedges; and finally, around each 15-gon enclosing the hyperedges and around each 

lO-gon arising from the hyperfaces, identify darts which are 5 edges apart. 

Example 5.4.10. Let Q be Klein's quartic curve regarded as a tessellation by 24 7-

gons of a genus 3 surface (see, for example, [39]); it is a regular map of type (3,2,7) 

with 168 darts. There are indirect derivative functors <1>i, <1>ii,"" <1>y and <1>i" arising 

from the cases (i)-(v) and (if) respectively, whose range is C(3,2,7); and we may enquire 

as to the nature of the canonical preimage <1>-1 (Q) of Q under each such functor <}). 

Note that each is regular with 168 (hyper)darts. 

<1>jl(Q) has type (3,3,7), with 56 hyp~ertices, 56 hyperedges and 24 hyperfaces; 

it lies on a surface of genus 17. The map <D~I (Q) has type (7,2,7), with 24 vertices, 84 

edges and 24 faces; it lies on a surface of genus 19. The hypermaps <1>~i (Q) and <1>~1 (Q) 

both lie on a surface of genus 33; they have type (7,3,7) and (7,7,3) respectively. - -
The highest genus is obtained by <1>v l (Q) and <1>;~/(Q), having type (7,7,7) with 24 

components of each dimension, and lying on a surface of genus 49. 

Using GAP [17] we can calculate the monodromy group G === Aut(Q) === PSL(2,7) 

of Q and the canonical monodromy generators in G of each <1>-I(Q) (which are the 

images of x, y and z under the permutation representations defining the hypermaps 

<1>-1 (Q)). We can then determine whether or not the triples of canonical monodromy 

generators-regarded as &z+ -bases of G-lie in the same T-system of G (of which 

there are four: T1, T2, T3, T4 say, respectively of size 16, 16, 18, 7 with Higman in

variant 4,4, 3, 7). This tells us which of the <1>-1 (Q) share an orbit of the group f>+ of 

operations on orientable hypermaps without boundary (see Chapter 3). We discover - -
the following: <1>0g) is the same genus-49 hypermap as <1>~1 (Q), and i~s in the 

same orbit T2 as <1>~i (Q) and hence the Petrie circuits all have length 8; <1>i l (Q) and -<1>~I(Q) lie in T3 and have Petrie circuits of length 6; while <1>~I(Q) and Q itself lie 

in TI and have Petrie circuits of length 8. In particular, we may apply Machf opera

tions to <1>~l (Q) and <D2 (Q) to obtain two regular genus-33 hypermaps of type (3, 7, 7) 

which share the same combinatorial data (i-component numbers, Petrie circuit length, 

automorphism group) and yet lie in different orbits of f> + . A 
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As seen in the example, it is often possible to compose two of the indirect deriva

tive functors with Machi functors to obtain functors which share the same domain 

and range. However, we can see from the differing kernels of the indirect derivative 

epimorphisms that these functors are necessarily distinct, even if they have the same 

action on some non-empty subdomain. 

5.5. Composition of functors 

We have seen that the building blocks of operational functors between categories 

CCmo,ml,mz) of hypermaps of finite type dividing (mo, mh m2) are: functors arising from 

automorphisms of triangle groups; functors arising from proper inclusions between 

triangle groups; and direct and indirect derivative direct functors arising from epimor

phisms between triangle groups. We have also seen that the functors arising from 

the formation of topological hypermap representations restrict from the infinite period 

case to certain finite-period cases, as do the Machi operations. (These latter are the 

only map and hypermap operations which admit such restrictions.) 

We may compose any number of such functors with the necessary proviso that the 

image of one is contained in the domain of the next. In §4.1 an operational functor was 

defined to be one which is induced by a homomorphism between (extended) triangle 

groups. Where the epimorphic image of the homomorphism is cyclic, some examples 

of the action of the induced functors have been given in §S.3.2. Where the epimorphic 

image is itself a triangle group, the homomorphism may be regarded as the composi

tion ¢E 0 ¢I of an epimorphism with an inclusion, which itself can be regarded as a 

composition ¢Ml b ¢E 0 ¢Mz 0 ¢I 0 ¢Ml where the ¢M; are automorphisms of triangle 

groups, such as those giving rise to the restricted Machi functors. 
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involution is defined to fix {3. 

The involutions satisfy (T2TOf = (TOT3)2 = (T3T])2 = 1, corresponding to the fact 

that three of the dihedral angles of a tetrahedral flag are right angles. We would like 

to reverse the process by starting with four involutions, generating a group which is 

transitive on n objects and satisfying these relations, and then constructing a 3-map by 

considering images of a base tetrahedral flag, the action of the involutions being reflec

tions in the appropriate faces of the flag; this is the familiar 'paste construction' that 

works equally well for 2-maps. Unfortunately, the resulting topological structure may 

not be a manifold (even one with boundary), and we find that there are a number or 
deficiencies with Harding's definition in the general setting. It is here that we begin to 

see how the agreeable unification of disparate theories of 2-maps-topological, com

binatorial, algebraic, geometric-fails to hold in higher dimensions. (However, for 

some of the 3-maps considered below we will exhibit visual 'approximations'; these 

attempt to reconcile the simplicial complex approach with that of cell decompositions 

of manifolds by accepting structures which are more exotic than the initial topological 

definition allows.) 

Other generalizations of the concepts and theory of maps and hypermaps to higher 

dimensions include the study of polytopes (such as in [14]), and the work of Tits [58] 

on buildings and subsequent work of Ronan [51] on coverings, carried out in the more 

general context of geometries and chamber systems (of which maps may be considered 

a "thin" case). Vince [59] approaches the subject from a combinatorial point of view 

in terms of edge-coloured graphs, or combinatorial maps. (Related concepts include 

the crystallizations of Gagliardi [16] and the graph-encoded maps of Lins [41].) This 

theory is particularly general, and is the most natural to work with for our purposes 

since the algebraic language used-that of Coxeter groups, Schreier representations 

and map subgroups-is very close to that employed in this thesis. Moreover, there is 

a correspondence between the set of topological 3-maps on manifolds with boundary 

and a certain class of combinatorial maps, while topological 3-maps of certain (very 

limited) types have a natural geometry arising from their representation as quotients or 

universal 3-maps in spherical, Euclidean and hyperbolic 3-space. 

Accordingly, in this chapter we regard an n-map as being a transitive permutation 

representation of the following group. 

Definition 6.1.1. For n ~ 2 the group 1&"n = (to' tl' ... , tn I tf = (t/k)2 = 1, 0 ~ i, j, k ,,;; 

n, Ij - kl > 1 ) is the n-cartographic group. • 



6.2. Operations on n-maps 117 

For n = 2, this agrees with the earlier definition of'it'2 (§ 1.2.1). The Coxeter diagram 

for'it'n is a path on n vertices with distinct endpoints. (Such a diagram is called linear.) 

Components of dimension i correspond to orbits on the set of flags of the subgroup 

(t1, t2,"" i;, ... , tn ) (where ~ denotes the omission of t;), with incidence of compo

nents of different dimensions corresponding to non-empty intersection of these orbits. 

6.2. Operations on n-maps 

6.2.1. The group of operations 

Generalizing the result of Jones and Thornton [35] that the outer automorphism group 

of'it'2 is isomorphic to S3 (§2.1), James [23] has shown the following. 

Theorem 6.2.1 (James). Let Hn be the subgroup of automorphisms of'it'n that is gen

erated by Gn: t; H tn-i, 0 ~ i ~ n, and ¢n: t2 H tOt2; t; H ti, 0 ~ i ~ n, i =1= 2. Then 

Aut('it'n) is a split extension oflnn(~l) by Hn. For n ~ 3, Hn is dihedral of order 8. >I< 

As discussed in §2.1, H2 is symmetric of degree 3, permuting to, t2 and tOt2. 

We may interpret this result in terms of operations on n-maps. As was the case 

for 2-maps, the automorphisms for n ~ 3 induce n-map operations, and Inn(ce,,) acts 

trivially giving an induced action of Out('it'n). This action is faithful: if T; is the per

mutation induced by t; (0 ~ i ~ n) then the 4-flag n-map given by TO = (1 4)(2 3), 

Tj = (l 3)(24) (1 ~ j ~ n) lies in an orbit of size 8 for all n ~ 3. Hence the group 

of n-map operations is isomorphic to Out(~l)' Table 6.1 lists representative automor

phisms of 'it'n; for example, the operation D induced by the automorphism Gil is the 

duality operation which interchanges i-components with (n - i)-components. 

The automorphism ¢n maps the subgroup ( tl, t2, t3, ... , tn ) to the subgroup < tl, tOt2, 

t3, ... , tn ). The orbits on Q of the latter subgroup are the higher-dimensional general

izations of Petrie circuits of maps on surfaces. These Petrie webs are more complex 

than the Petrie polygons defined by Coxeter [10] for 3-maps-and generalizable to 

higher dimensions-as orbits of tOtlt2t3 ... tn = (tltOt2t3'" t,JIIi and their images under 

reflections. Figure 6.1 shows part of the Petrie webs for the universal cubic tessellation 

of Euclidean 3-space; this is discussed in more detail in §6.2.3. The Opp operation in

duced by ¢n interchanges vertices and Petrie webs but leaves the other i-components 

unchanged. 
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Operation e Automorphism Order 

I 1 1 

D ti H tn-i 2 

Opp t2 H tOt2, ti H ti (i '* 2) 2 

D Opp t2 H tntn-2, ti H tll-i (i '* 2) 4 

D OppD tn-2 H tntn- 2, ti H ti (i '* n - 2) 2 

D Opp D Opp t2 H tOt2, tn-2 H t/ltl1-2, ti H ti (i '* 2, n - 2) 2 

Opp D Opp t2 H tntn-2, tll-2 H tOt2, ti H t l1- i (i '* 2, n - 2) 2 

Opp D tl1-2 H tOt2, ti H tn- i (i '* n - 2) 4 

TABLE 6.1. The eight n-map operations (n ;;.: 3). 

FIGURE 6.1. Part of a Petrie web for the universal cubic tessellation of Euclidean 3-
space. (The green right-angled triangles are the intersections of the con
stituent flags with their incident faces, and hence each represents two flags, 
one in each incident celL) 
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FIGURE 6.2. Visualizations of the groups Dg and D6 of 3-map and 2-map operations. 
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Observe that in these higher-dimensional situations, the elementary combinatorial 

structures which are transformed by the operations comprise not just the i-components 

and Petrie webs but also dual Petrie webs-the duals of Petrie webs-which are the 

orbits on the flags of the subgroup (to, . .. , tn-3, tntn-2, tn-l ). For example, D Opp inter

changes i-components with (n - i)-components (1 ~ i ~ n - 1) and sends vertices to 

dual Petrie webs, dual Petrie webs to Petrie webs, Petrie webs to n-components (cells), 

and cells to vertices. (Hence this operation has order 4.) 

For n ~ 3 the structure of the group of n-map operations is best understood as the 

wreath product C2 2 C2 . The two factors in the base group C2 x C2 are generated by 

Opp and D Opp D respectively, and correspond to activity at either end of the Coxeter 

diagram for ?1in , namely the transposing of vertices and Petrie webs, and of n-cells 

and dual Petrie webs. The copy of C2 forming the complement in the wreath product 

is generated by D and corresponds to reflecting the Coxeter diagram. For 2-maps, 

the base group collapses to C3 as Petrie webs and dual Petrie webs coincide as Petrie 

circuits. The alternative representation of these groups as dihedral groups Dg and 

D6 = S3 is depicted in Figure 6.2, where they are regarded as acting in the usual way 

as the isometry groups of the square and triangle respectively. 

6.2.2. Orbits of small 3-maps 

To provide a quick visual cue as to the nature of small 3-maps, we illustrate in Fig

ure 6.3 the five (algebraic, combinatorial) 3-maps with three flags, all of which lie on 

D3 (the 3-ball with boundary S2). In [21], Harding illustrates all fifteen 3-maps with 
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o 
FIGURE 6.3. The five 3-ftag 3-maps. 

two flags l (all lying on orientable manifolds, of which all but one have boundary) and 

the 64 four-flag 3-maps which lie on manifolds (often with boundary) .2 His essentially 

topological definition of 3-maps does not permit other underlying structures; moreover 

he seems to discount non-orientable manifolds. However, in the algebraic and combi

natorial context (which is the foundation for the 3-map operations above) we may still 

find it possible to represent more general 3-maps in a topological manner. Examining 

the effect of the eight operations on the 3-maps with four flags, we find that there are 

two which are invariant under all operations (both lying on D3); eight orbits of size two 

(of which only one contains a non-orientable 3-map); fourteen orbHs of size four (of 

which four contain non-orientable 3-maps and two others contain orientable 3-maps 

which do not lie on a manifold or manifold with boundary); and one orbit of size eight 

(containing four non-orientable manifolds with boundary). This gives a total of 82 

objects, of which 18 do not lie on orientable manifolds with or without boundary. 

There exist two orbits of size four which contain 3-maps that are orientable but 

which do not lie on a manifold with or without boundary. There are two such 3-

maps in each orbit, forming a dual pair in both cases. Figure 6.4 shows the 'paste 

construction' of one of these 3-maps Jft from its constituent flags: the underlying 

I In general, %, has 2,,+1 - 1 subgroups of index 2, so this is the number of 2-ftag n-maps. 
2 A small error exists in three of Harding's drawings: in numbers 32, 33 and 52 the 'free side' of the 

free face should be incident with some point on the equator which does not lie on the free edge. 
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FIGURE 6.4. A 4-flag 3-map ..4. 

TO = 0 
T\ = (23) 

T 2 = (1 3)(24) 

T 3 = (1 4) 
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orbifold is the intersection of a solid cylinder with the closure of the complement of 

a solid double cone. There are two faces, one lying on one of the conical boundary 

portions and the other forming a membrane joining the conical boundary portions to 

the boundary of the cylinder. The single vertex lies at the cone apex, and the single 

edge runs along one side of the membrane. Figure 6.5(i) shows the dual 3-map D(Al); 

its minimal regular cover is given in Figure 6.S(ii), where the exteriors of the two 

conical portions should be identified as indicated so that the boundary of the 3-map 

(which is entirely facial) is simply the exterior of the cylinder shown ; and the orientable 

double cover without boundary of D(Al) is given in Figure 6.S(iii) where, in addition 

to the same identification as before, the front and back of the (facial) exterior of the 

cylinder should be identified. Respectively, Figures 6.S(iv), 6.S(v) and 6.5(vi) show 

possible representations of these 3-maps as structures whose underlying topological 

spaces are manifolds (possibly with boundary) . None of these representations is a 

valid topological 3-map as defined by Harding, but they indicate how the definiti on 

might be loosened to admit a wider range of combinatorial 3-maps: we see a 'cell ' (in 

D3) with disconnected non-facial boundary components; a toroidal 'cell ' (in the solid 

2-torus); and an annular 'face' (in S3). Finally, Figure 6.6 shows the orbit of Al under 
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FIGURE 6.S. (i) The 3-map D(.4); (ii) its minimal regular cover; (iii) its orientable 
double cover without boundary; (iv-vi) possible representations of these 
as objects on manifolds. 

FIGURE 6.6. The orbit of .4 under the group of 3-map operations. 
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the group of 3-map operations. 

6.2.3. Orbits of certain reflexible n-torus maps 

The 'box' tessellation !Y of Euclidean n-space by n-cubes (whose SchIafli symbol 

is the n-tuple {4, 3, 3, ... ,3, 4}, the (n - i)th component being the period mi,i+1 of 1&';/) 

is one of just four universal combinatorial n-maps which can be realized in one of 

the Thurston model geometries for each integer n, the other three being the self-dual 

(n + I)-simplex {3, 3, ... , 3} (or rather its boundary) and the dual pair consisting of the 

(n + I)-cross-polytope {3, ... ,3,3, 4} and the (n + 1 )-hypercube {4, 3, 3, ... ,3}, all of 

which lie on the n-sphere. 

We saw in §2.3.1 that there are an infinite number of Petrie circuits in the universal 

map of type (4,2,4) (with SchHifli symbol {4,4}) forming two parallel classes. For 

n ~ 3 the Petrie webs in the universal n-cube tessellation are rather different. 

Theorem 6.2.2. The universal tessellation of Euclidean n-space by n-cubes possesses 

1 + (~) Petrie webs. 

Proof. The permutations TI and T3, T4, ... , Tn send a flag jJ to flags which differ from 

jJ by precisely one incident i-component, which is neither a vertex or a face. Consider 

Figure 6.1 for the case n = 3 and observe that the element T2T3T2 sends a flag to its 

reflection in its incident face. For general n, the permutation (T = T~"-IT,,+.T2 sends a 

flag jJ to its reflection jJ' in an (n - l)-cell orthogonal to the plane IT determined by its 

incident face: jJ' lies in a neighbouring n-cell and shares the same vertex and edge as 

jJ while its incident face is distinct from that of jJ and also lies in IT. It follows that jJ' 

is also the image of jJ under (TTl) = T~"-I ... T3(T2TI)) and hence the two flags lie in the same 

Petrie web (which is an orbit of (TI, TOT2, T3,"" Tn »). 
Let P be a Petrie web containing a flag jJ incident with a vertex v and a face f. The 

flags in P incident with v are thus precisely those whose incident faces lie in the same 

plane IT as f, and we call this subset of flags of P a star configuration at v aligned to 

IT (or to some parallel plane); such configurations are readily recognized in Figure 6.1. 

If we examine a Petrie web in the vicinity of a cubic 3-cell we find (by considering the 

orbit of ( TOT2, TI ») that the configurations at diagonally opposite vertices are aligned 

to the same plane; and that three of the four pairs of opposite vertices give rise to three 

pairs of star configurations parallel to the three pairs of planes in which the faces of 

the 3-cell lie, while there is no star configuration at either vertex of the fourth pair. 
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Finally, by looking at how adjacent 3-cells come together within the i-cells (4 ~ i ~ 11) 

we see how the pattern of star configurations repeats: at any vertex v incident with a 

Petrie web, the set of flags in the web form a single star configuration aligned to one 

of the facial planes passing through v, while the vertices at distance 1 from a vertex [I' 

which is not incident with the web are themselves all incident with it, those opposite 

each other across v' having parallel star configurations. 

It follows that the number of Petrie webs is simply one greater than the number 

of distinct star configurations which can exist at a given vertex, or equivalently, one 

greater than the number of facial planes passing through that vertex. The result fol-

lows. • 
Hence there are four Petrie webs in the universal tessellation g of Euclidean 3-

space by 3-cubes. If we give g the usual Cartesian coordinate system so that its 

vertices are the points of Z3 then, for a, b, c > 0, we may identify opposite sides 

of a cuboid whose vertices are the points (0,0,0), (a, 0, 0), (0, b, 0), (a, b, 0), (0,0, c), 

(a, 0, c), (0, b, c), (a, b, c) to obtain a 3-map JIt on a 3-torus; since the Schltifli symbol 

for g is {4, 3, 4} we denote JIt by {4, 3, 4L,b,c. JIt is reflexible if and only if a = b = c. 

The self-dual 3-map JIt = {4, 3, 4h,I,1 consists of one vertex, three edges, three 

faces and one 3-cell, and it has a single Petrie web (of size 48). The 3-map Opp(.4't) 

also has these properties, but each cell comer consists of six face-corners coming to

gether at the vertex. These 3-maps form an orbit of size two under the group of 3-map 

operations. In general, JIt = {4, 3, 4}a,b,c consists of abc vertices, 3abc edges, 3abc 

faces and abc 3-cells, and is self-dual. The number of Petrie webs depends upon the 

parity of a, band c: if they are all even then there are four; if just one of them is odd 

then there are two; while if two or all three of them are odd then there is a single Petrie 

web. In particular, by taking a = b = c to be successive odd integers and applying Opp 

we have a sequence of increasingly large reflexible 3-maps with cubic cells but with 

just one vertex. 

6.3. Even subgroups of Coxeter groups 

For a given set of (possibly infinite) periods mj,k> let D.n be the Coxeter group with 

presentation 
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Let !:J.n be the even subgroup of !:J.n consisting of all words of even length in the gener

ators ti. We may find a presentation P for!:J. lI as follows. Let K = KIl+1 be the complete 

graph on n + 1 vertices, and let us label its vertices with the generators ti of !:J.1l' We di

rect the edges from vertices with lower subscripts to vertices with higher, and we label 

each edge th with lj,k' The generating set of Pis {lj,k} where Ij,k = th' Now, <'t = I, 

and the only other relators in P are the words of the form tiJi2·ti2t;".ti.1ti4 ... till/til; these 

correspond to circuits in K, with an edge contributing respectively lj,k = th or IjJ/ = tk'i 

to the word when it is traversed according to or against its direction. The relators given 

by triangles (circuits of length 3) in K are sufficient to induce relators given by longer 

circuits, and so we need just (11;1) further canonical relators. For example, 

When !:J.n has a linear Coxeter diagram, we have mj,k = 2 whenever Ij - kl ~ 2. 

In this case, the groups !:J.n = ~n+ play the same role for orientable n-maps without 

boundary as ~2+ plays for orientable maps without boundary. Note that the I-dart 

orientable 3-map without boundary consists of an incident vertex, free edge, free face 

and cell in S3. 

6.4. Representing 3-maps by hypermaps 

6.4.1. Motivation 

In this final section we exhibit representations of 3-maps by maps and hypermaps. This 

is motivated by the idea in [25], discussed previously in §4, in which two categories 

C]' C2 of objects corresponding to the categories of conjugacy classes of subgroups 

of groups G1, G2 respectively, are associated by taking preimages of an epimorphism 

from a subgroup of G2 onto G1• We have examined the related idea in which the 

epimorphism is from G1 onto a subgroup of G2, in other words, a homomorphism 

from G1 to G2• An example is given in [25] of a representation of the category of 

all 3-maps by the category of orientable maps without boundary via preimages of an 

epimorphism from an index-3 subgroup of ~2+ onto ~3. Whereas before we classified 

the operational functors arising in the case where G1 and G2 were both triangle groups 



126 6.4. Representing J-maps by hypermaps 
----=--------"'------=--~~--~------------ ------_ .. _------

or were both extended triangle groups, we too now look to represent three-dimensional 

objects by two-dimensional ones; we shall do this using inclusions, which give rise to 

faithful representations. 

6.4.2. Representing orientable 3-maps without boundary 

A correspondence with hypermaps 

Consider the case in which mj,j+l = 00 for each j E {O, 1, ... , n - I} in the presentation 

for I!l.n described in §6.3. It is not difficult to see that the generators lj,j+l and all of the 

relators given by triangles involving them may be eliminated from the presentation, 

leaving (usually longer) relators given by circuits in the complement in the complete 

graph Kn+l of the path rO,lrl,2 ... rn-l,n. However, when n = 3 there are no such circuits 

and hence the presentation becomes 

the free product of three cyclic groups. In particular, the even subgroup ~,+ of (if, is 

the free product of three cyclic groups of order 2, and so it is isomorphic to the fu II 

hypercartographic group~. This gives us 

Theorem 6.4.1. There is an isomorphism between the category of orientable 3-maps 

without boundary and that of (unrestricted) hypermaps. • 
Hence we have a 2-dimensional representation of orientable 3-maps without bound

ary. The correspondence preserves automorphism groups and coverings, as well as 

symmetry (discussed below). 

It is useful to use the alternative notation I, r, t, p for the generators to, ... , t3 of~:, 

so that 

the corresponding monodromy permutations of 3-map darts are A = To, P = Tl, T = T2 

and cp = T3. Then 

<t'3+ = (Ip, rp, It I (lp)2 = (rpf = (It)2 = 1 ), 

while ACP, pcp and AT are half-turns about edges of the fundamental tetrahedra repre

sented by 3-map flags. Indeed, ACP induces the rotation of each face f and its two 
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incident cells about the perpendicular bisector through f of an incident edge; p¢ in

duces the rotation of each face f and its two incident cells about the bisector through 

f of the angle subtended by two adjacent edges; and AT induces the rotation of a cell 

about the midpoint of an edge. 

Let £z have presentation 

- _ - -2 -2 -2 £z = < I, r, t II = r = t = 1 ) 

with corresponding monodromy permutations A, p and T (to complement the presenta

tion for?t'2 used in §2.1). We choose the isomorphism between £z and ?t'..,,+ to be given 

by 

I HIp 

rH rp 

i HIt, 

although, by Theorem 3.1.3, there are an infinite number of possible isomorphisms at 

our disposal. Under the resulting correspondence between hypermaps and orientable 

3-maps without boundary we have < I, r) H < Ip, rp ) and so hyperfaces in a hypermap 

£ represent faces in the corresponding 3-map~. We also have < 1, i) H < Ip, It) so 

that hyperedges in £ represent edges in ~. Further, we have < r, iI) H < rp, tp) and 

so (1, l)th-order Petrie circuits (Definition 4.4.2) represent cell corners in .4. Lastly 

we have < r,t) H < rp, It) and so hypervertices in £ represent right-handed Petrie 

circuits as defined by Coxeter [10].3 

It is also interesting to examine how the existence of boundary in YC translates to 

the 3-map ~. Fixed points of 1 (which result from a hyperedge meeting a hyperface 

on the boundary) correspond to fixed points of A¢, which result from the free end of 

free edges lying on the free side of a free face. Similarly, fixed points of p correspond 

to vertices incident with the free sides of free faces, and fixed points of T correspond 

to free edges which are incident with precisely one face. In brief, the existence of 

boundary in £ ensures the existence of either free edges or free faces in ~. 

3Strictly speaking, Coxeter's right-handed Petrie polygons are orbits of the subgroup generated by 
APT¢ = (AT¢p);/P, and thus consist of one flag from each edge rather than two. This minor difference 
between Coxeter's definition and ours also arises in the 2-map case discussed in earlier chapters. 
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Example 6.4.2. Consider the 3-torus 3-map JIt = {4, 3, 4}1,I ,]. In forming the corre

sponding hypermap &, reflexible and non-orientable of characteristic - 2, the three 

4-valent faces of JIt become hyperfaces, the three edges become 4-valent hyperedges, 

and the four right-handed Petrie circuits become 3-valent hypervertices. Both JIt and 

& are pictured in Figure 6.7. To obtain JIt , identify opposite sides of the cube; to ob

tain & , identify the directed edges of the region according to their labels, and identify 

the remaining sides in the same way according to the symmetry of & . 

Remark 6.4.3. Orientable hypermaps without boundary correspond to 3-maps which 

cover the particular 4-flag one shown in Figure 6.9 (discussed below). It is more dif

ficult to see how general orientability of hypermaps translates to orientable 3-maps 

without boundary under the correspondence. Figure 6.8 shows two small (hyper)maps 

and their corresponding 3-maps. The first pair consists of a loop on the projective 

plane, and a 3-map comprising an edge on the 2-sphere embedded as a face in S3. The 

second pair consists of an edge on the 2-sphere, and a 3-map comprising a loop on 

the projective plane embedded as a face in S3. In particular, the non-orientable hyper

map translates to a 3-map without any non-orientable components, while the orientable 

hypermap-which can in some sense be regarded as the 'orientable analogue' of the 

first-translates to a 3-map with a non-orientable face. (Of course, the 3-map itself is 

orientable.) + 
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Figure 6.9 shows a subgroup diagram for the correspondence. It is natural to ask 

how symmetry in hypermaps translates to 3-maps. Recall that the hypermap operation 

Hopp is induced by the automorphism of ~ which fixes tl and t2, and conjugates to 

by t2 (in the notation of the presentation in §3.1). 

Theorem 6.4.4. Under the correspondence established between hypermaps and ori

entable 3-maps without boundary, 

(i) regular 3-maps correspond to reflexible hypermaps; 

(ii) reflexible 3-maps correspond to reflexible self-Hopp hypermaps. 

Proof. A hypermap is reftexible if and only if its hypermap subgroup in y~ is nor

mal. Under the correspondence these subgroups are seen as subgroups of 1ff3+ , and 

the first claim is immediate. Now consider the Coxeter group 1ff3 which contains 1ff3+ 

as an index-2 subgroup; 1ff3 is a split extension of 1ff3+ = < lp, rp, it I Clp)2 = (rp? = 
(it? = 1) by the involutary subgroup < p). This extension can be regarded as the ex

ternal semidirect product of 1ff3+ and < p ) specified by the conjugation action of p on 

1ff3+ . (The isomorphism between 1ff3 and this product is given by cq H (c, q) where 

c E 1ff3+ and q E < p), and the elements of this product satisfy the multiplication rule 

(CI, ql)(C2,q2) = (Clqjic2q1, qlq2) .) 
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/H lp, rHrp 
(Hit 

?t3 

(rpit, tp, ir) 

FIGURE 6.9. A subgroup diagram for the correspondence between hypermaps and ori
entable 3-maps without boundary. 
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Correspondingly, we construct the extension of y~ by the automorphism ¢ which 

has the same action on ~ as p has on ?t3+: ¢ fixes I and r, and sends t to its conjugate 

by I since (It)P = pitp = ip.ti.ip = (ltYp. Hence ¢ is the automorphism g which induces 

the hypermap operation Hopp. A normal subgroup of ~ is normal in the extension jf 

and only if it is invariant under g. Such a subgroup gives rise to a reflexible self-Hopp 

hypermap and, via the correspondence, to a reflexible 3-map. • 

Remark 6.4.5. By Proposition 3.1.2, all maps are self-Hopp and hence the reftexible 

ones correspond to a subset of the reftexible orientable 3-maps without boundary. Such 

3-maps represented by maps are rather degenerate since each edge must be incident 

with at most two cells. • 
In [2], Breda d' Azevedo defines a K-conservative hypermap to be one whose hy

permap subgroup H in ~ lies in some normal subgroup K :::;J Y~ . If H is normal 

in K then the hypermap is said to be K-restricted-regular. Much of the theory of 

K-conservative hypermaps and K-restricted regularity described therein can be gener

alized to n-maps by taking ?f,! or ?tn+ in place of Y~. 

Orientable hypermaps without boundary are regular if and only if their hypermap 

subgroups in ~+ are normal. The corresponding 3-maps, whilst not necessarily reg

ular, are restricted-regular with respect to the image (rpit, tp, ir) of y~+; they are the 

regular covers of the 4-flag 3-map shown in Figure 6.9. 
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6.4.3. Representing a1l3-maps 

A correspondence with certain 2-rotationally-edge-colourable maps 

We see from the presentations of the index-2 subgroups ofthe extended triangle groups 

~[a, b, 00] given in §4.4.5 that three of them-KJ, K2 and K3-are rank-4 Coxeter 

groups. By setting a = 4 and b = 2 we see that the subgroup K2 of ~[4, 2, 00] = 
(I, r, I I i = i = i = (rl)4 = (tty2 = 1) is isomorphic to ~, as follows. Let ~, have 

presentation 

1&'3 = (l,r,t,pIP =? = r = p2 = (lp)2 = (rp)2 = (It)2 = 1) 

as before. We know that K2 = (I, I, iff 1, rlr- 1 
) has presentation 

We choose the isomorphism to be given by 

I HE = rlr 

t H 8 = rIT 

pH Y = t. 

Again, much of the theory of K-conservative hypermaps described in [2] can be 

generalized from normal subgroups K of ~ to normal subgroups of any triangular 

group. We shall describe maps whose map subgroups lie in K2 as K2-conservative 

(with respect to ~[4, 2, 00 D. Such maps cover the 2-blade map consisting of a single 

vertex and two incident half-edges, both lying on the boundary of a disc. 

Definition 6.4.6. A map is n-rotationally-edge-colourable if its blades f3 can be fl

coloured so that f3 and f3p have different colours while the set of blades incident with 

each edge have the same colour. • 
Theorem 6.4.7. There is an isomorphism between the category of 3-maps and the 

category of K2-conservative maps, that is, 2-rotationally-edge-colourable maps whose 

interior vertices are 2- or 4-valent and whose boundary vertices have a neighbourhood 

containing no facial boundary. • 
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... - ~ 

~ -
~ ~ , r .. .. .. ... 

~ Il , r 
- ... 

~ -
j ~ 
,Ir r .. .. ... 

FIGURE 6.10. The typical appearance of 'runged ladders', ' runged poles' and ' train 
tracks' in a K2-conservative map. 

Under this correspondence we have < r, t, p) H < l , rir, t) and so vertices in a 3-map 

.d represent 'runged ladders' (orbits of the latter group) in the corresponding map C; 

these features are shown in Figure 6.10. Similarly, we have < l , t, p) H < rtr, r ir, t) so 

that edges in .d represent 'runged poles' in C . We also have (t, r, p) H (rtr, l,t ) 
and so faces in .d represent monochrome paths in C. Finally, we have < l , r, t ) H 

< rtr, l, rlr) and so cells in .d represent 'train tracks' in C. 

Conversely we have < rtr, t) H < l, p) and so vertices in C represent face-edge 

incidence in.d. Next, we have < l , t) H < r, p) so that edges in C represent face

vertex incidence in.d. We also have (rir, l) H (t, r) and so faces in C represent 

cell comers in .d. Finally, we have < rtr, l) H < l, r) and so second-order holes in C 

represent faces in .d. 
- -

Fixed points of l (and hence ofrlr) correspond to fi xed points of r and t, while fi xed 

points oft (and hence ofrtr) correspond to fixed points of p and l . It follows that C has 

boundary if and only if .d has. Moreover, if /'1 = K7 is the even subgroup of /'1 [ 4,2, 00], 

then K2 n /'1 = < (rt)2,lt,rtlr) H (tp, r p, It) = 1f3+ and so the correspondence also 

preserves the property of being orientable without boundary. 

Example 6.4.8. Consider again the 3-torus 3-map .d = {4, 3, 4h ,I,I' Figure 6.1] 

shows its corresponding K2-conservative map C, which is reflexible with 12 vertices, 

24 edges and eight 8-valent faces, and lies on an orientable surface of genus 3. .A 

A description of symmetry 

Figure 6.12 shows a subgroup diagram for the correspondence. We conclude by ex

amining how symmetry in K2-conservative maps translates to 3-maps. 
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... T - - - - - - - - - - - - - - ... ' 
... I ... ... ... 

_J _ __ _ 
I 
I 
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"" ::. __ _ ______ __ _ _ .L'" 

FIGURE 6.11. The 3-torus 3-map {4, 3, 4h ,],] and its corresponding K2-conservative 
map. 

i1 [4, 2, 00] 

o 
/<-,Flr, I'HI 
fHrlr, pHI 

~3 

FIGURE 6.12. A subgroup diagram for the correspondence between K2-conservative 
maps and 3-maps. 
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Theorem 6.4.9. Under the correspondence established between K2-collservative maps 

and 3-maps, reflexible maps correspond to refLexible self-dual 3-maps. 

Proof. /1 = /1[4,2,00] is a split extension of K2 by the involutary subgroup (r). We 

construct the extension of % by the automorphism () which has the same action 011 

~3 as r has on K2: () transposes I and p, and transposes rand t. Hence () is the au

tomorphism which induces the duality operation D. Reflexible K2-conservative maps 

correspond to 3-maps whose map subgroups are normal not only in 1f, but also in 

the extension, so they are invariant under (); such subgroups gives rise to reflexible 

self-dual 3-maps. • 
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a group G of automorphisms acting regularly on each inter-partite edge set then T 

arises in the above way: label the edges of /). with the identity, label with a those 

edges that are the image under the automorphism a of some edge of Ll, and take X, 

Y and Z to be the subgroups of G fixing one of the three vertices of /).. Under this 

construction, T contains no multiple edges if and only if X, Y and Z are mutually 

disjoint, and is complete (as a tripartite graph) if and only if G can be written as a 

product G = XY = XZ = YZ. 

Secondly, if X = < x), Y = < y) and Z = < z) are cyclic groups then a local ori

entation can be established around each vertex which determines an embedding .41 

of T in an oriented surface; the action of G on T extends to an action on the map 

Jf(, preserving its partite sets of vertices and its orientation. Conversely, given an ori

ented embedding of a tripartite graph containing a triangular face (with vertices u, v, 

w say) such that there exists a group of orientation- and partite-set-preserving map

automorphisms acting regularly on each set of interpartite edges, then X (respectively 

Y, Z) can be taken as the cyclic subgroup generated by the automorphism x (y, z) fixing 

u (u, w) and sending the edge uu (uw, wu) to the 'next' edge around u (u, w) which joins 

vertices from the same two partite sets, following the orientation. Such an embedding 

is regular if and only if xyz = 1 and there exists a group S3 of automorphisms of G 

permuting x, y and z. Our correspondence is thus established. 

The reftexible orientable triangular tripartite maps Jf(,1,1l,1l have type {3, n} with 311 

vertices, 3n2 edges, 2n2 faces, and lie on a surface of genus (n - I )(n - 2)/2. The 

corresponding triples (G, x, y) are such that G possesses an automorphism fixing z but 

transposing x and y. But then G is abelian, and since G = XY and X n Y = 1 we have 

G = X X Y ~ Cn X Cn. The result follows. • 
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