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Design problems in electrical engineering are typically solved using a computationally
expensive numerical method, such as the finite element method. As the designs of
most interest are those which are optimal in some way, any algorithm used to search
for such designs must perform well in a low number of iterations, if they are to be

identified within a reasonable time.

Kriging is a method of making predictions (based on a set of observations) which has
been used as a surrogate model to reduce computational cost in optimization searches.
After reviewing the state-of-the-art in kriging-assisted single and multi-objective opti-
mization, this thesis proposes several novel algorithms for efficiently solving constrained
(or unconstrained) multi-objective optimization problems. Using a combination of
these novel algorithms and existing methods, a practical optimization tool is integrated
into commercial electromagnetic design software (Opera). The tool is demonstrated
on four different optimal design problems, which cover the four possibilities of un-
constrained and constrained single and multi-objective optimization. Some areas of

potential future work are given in the final chapter.
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Chapter 1

Introduction

1.1 Background

1.1.1 Electromagnetic Design Problems

Electromagnetic design problems (as with all engineering design problems), may be

divided into two broad categories [16]:

Direct Problems, in which a design is specified, and the effects are found.

Inverse Problems, in which a design is sought which produces a specific effect, which
may be measured or assumed. If the effect is measured, the problem is an iden-
tification problem. If the effect is assumed, the problem is a synthesis problem, to

which a solution may not exist.

This is summarized in Figure 1.1. To solve the direct problem, either analytical, semi-
analytical or numerical methods are used. Often analytical methods cannot be used,
and so the direct problem is usually solved using a numerical method, such as finite-
difference (FD), finite-element analysis (FEA) or boundary-element analysis (BEA). The
numerical method can often be computationally expensive (i.e. it is time-consuming),

depending on the complexity of the design problem.

The solution of the inverse problem, and in particular the optimal design problem, is
an active area of research. The optimal design problem phrases the effects as objectives,
which must be minimized or maximized, and so is a synthesis problem. In general, it
can only be solved by solving the direct problem multiple times; thus it is inherently

more time-consuming than the direct problem.
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Design Problem

e e

Direct Problem Inverse Problem

/ \

Identification Problem Synthesis Problem

FIGURE 1.1: Types of design problem.

———  Specialized algorithm
———  General-purpose algorithm
————— Average performance

Algorithm performance

Type of problem

FIGURE 1.2: No Free Lunch theorem of optimization.
1.1.2 Solving Inverse Problems in Electromagnetic Design

The ‘No Free Lunch’ (NFL) Theorem [17, 18] of optimization denies the existence of any
optimization algorithm which outperforms all other optimization algorithms, when av-
eraged over all possible optimization problems. In fact, averaged over all optimization
problems, every optimization algorithm performs the same. At first, this seems a dire
predicament; however, for design engineers, it is advantageous that this is the case, as
their domain of interest is not every possible optimization problem, but rather a subset
of them. Thus, because of the NFL Theorem, it is possible to identify an algorithm (or
more generally, a set of algorithms) which do outperform others over our domain of in-
terest [19] (as a consequence of the same algorithms then being outperformed by other
algorithms on problems outside our domain of interest), as illustrated in Figure 1.2. The

domain of interest in this thesis is that of electromagnetic design problems.

The range of algorithms which now exist for solving optimization problems is vast.
They may be categorized in many ways: single-objective or multi-objective; determin-
istic or stochastic; global or local; greedy or cost-effective; and so on .... As may be
expected, the wide range of electromagnetic optimal design problems do not fall neatly
into one category: they may be single or multi-objective; their objective function land-

scapes may be simple or relatively complex (although not pathological); the objective




Chapter 1 Introduction 4

functions may take anything from a few seconds to several days to evaluate; they may
be constrained or unconstrained; and so on .... Any attempt to identify a single algo-
rithm to deal with them all would be futile, and so instead ideally a set of algorithms
should be available to meet electromagnetic design engineers needs. In particular, the
family of problems with multiple computationally expensive objective and constraint
functions need to be catered for, and it is algorithms which deal with this family of

problems which this thesis focuses on.

Several different methods exist for achieving cost-effectiveness in multi-objective opti-
mization, including small population genetic algorithms, hybrid algorithms, reduction
of design variables and fitness inheritance. These methods are not pursued in this the-
sis, but brief descriptions of these techniques may be found in Appendix A. Instead,
the cost-effective method pursued in this thesis is that of surrogate modeling, which is

introduced in detail in Chapter 3.

1.2 Motivation

1.2.1 Vector Fields Software

Vector Fields Ltd. is a software company based in Oxford, England, which produces
CAD software for electromagnetic design. It produces both low and high frequency
simulation software, called Opera and Concerto respectively. Opera is further divided
into Opera-2d and Opera-3d. The software is capable of modelling a wide range of

applications including antennas, motors, and MRI devices.

Opera calculates electromagnetic field values by solving the governing partial differ-
ential equations using the finite element method (FEM), whilst Concerto uses the finite
difference time domain (FDTD) method. Both methods are (or rather, can be) computa-
tionally expensive, and typically a model may take anything from a few seconds (for a
simple 2d problem) to several hours or even days (for a complex, long time-domain 3d

model) to solve.

Prior to this work, Vector Fields software was analysis driven, that is, it could only be
used to solve the direct design problem. It was the purpose of this work to make the
software goal oriented, that is, capable of solving the inverse design problem, and in

particular the optimal design problem.
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KTP objectives

Scope of research

Academic objectives

/ \ This thesis focuses on the academic

Existing methods| | Novel methods | |— objectives of the project.

\ / Existing methods are reviewed in

Vindication of choice of Part II (Chapters 3-6), while novel

methods through results algorithms, along with results, are
given in Part I (Chapters 7-9).

Academic objectives met

Methods integrated into

Vector Fields software

KTP objectives met

FIGURE 1.3: Objectives and scope of the research.
1.2.2 Objectives and Scope of the Research

The research was undertaken as part of a Knowledge Transfer Partnership (KTP) Scheme
between the University of Southampton and Vector Fields Ltd. As such, two sets of ob-
jectives existed for the research: the KTP objectives (which focused on the company
perspective), and the academic objectives. The two sets were closely related: the KTP
objectives defined the overall scope of the research, within which the set of academic
objectives were specified. The integration of the methods used in the fulfilment of the
academic objectives into Vector Fields software then resulted in the business aims being

met, thus satisfying the KTP objectives. This is illustrated in Figure 1.3.

1.2.2.1 KTP Objectives

As stated in the KTP Partnership Proposal and Grant Application Form for the scheme,

‘the primary objective is to integrate state-of-the-art optimization tools into Vector Fields’ soft-

ware products for electromagnetic design.’
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As other electromagnetic design software companies have already started to develop
and release optimization tools in their software [20], the need for a state-of-the-art opti-
mization tool in Vector Fields software is vital in order to remain competitive. In order
for the above general objective to be met effectively, the tool must be better than existing
rival tools, in terms of capability, versatility, and ease-of-use. Thus the main objective
may be met effectively by introducing an optimization tool into the software which

satisfies the following more precise objectives:

1. To match features available, and provide features currently unavailable, in rival

optimization tools.

2. To provide results which are superior to rival optimization tools in the widest

range of design problems possible.

3. To provide a user-friendly interface to the tool.

Optimization facilities available within other commercial electromagnetic design soft-
ware include optimization of 2d or 3d models, specification of multiple design vari-
ables, constraints and objective functions, ability to run in parallel on multiple com-
puters, and continuous progress updates as the optimization proceeds. These features
should serve as a minimum specification for the eventual Vector Fields optimization

tool (even though no existing tool has all these features themselves).

Furthermore, facilities currently unavailable in all other commercial electromagnetic
optimization tools should be included in the software. The most important such facility
which will be considered is the approximation of the Pareto-optimal front in multi-
objective optimization problems. Offering a commercial multi-objective optimization
tool which yields a set of Pareto-optimal solutions, particularly for computationally

expensive problems, would give Vector Fields a distinct advantage in the market.

As noted before, the range of problems which exist in electromagnetic design is vast,
and vary widely in their characteristics. Some problems may be low-dimensional, and
have a single objective which is relatively simple, whilst others may have dozens of de-
sign variables and multiple objectives and constraints which require hours to evaluate.
Ideally, the tool should be able to cope with the widest range of problems possible. This
precludes the use of problem-specific methods, including sensitivity-based approaches
to optimization [21], which have been used successfully with Opera in the past [22, 23].
Such approaches have the advantage of having computation times independent of the
number of design variables, thus making them useful in topology optimization [24],

where the parameterization enables all feasible shapes of electromagnetic devices to be
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User-interface:| Problem Specification

Optimization tool: Black Box

User-interface: Results

FIGURE 1.4: Interaction between the user and optimization tool.

explored. However they are restrictive in the number of systems they can solve, and so

are not deemed versatile enough to be included in the eventual tool.

The generic nature of the tool should not, however, come at a price to the tool’s per-
formance. As mentioned before, no single algorithm will be universally applicable to
all design problems. Instead, a range of methods should be available, which may be
combined to give the most appropriate algorithm, given a particular problem. The
existence of a range of different methods within the tool, however, should not (neces-
sarily) be matched by a wide range of options available to the user. Between setting up
the problem and receiving the results, ideally the user should not have to interact with
the optimization tool. This means that the tool should be a ‘black box’ from the user’s
point of view: the user will provide a design, and then wait for results, without caring
for how the results are arrived at (this is illustrated schematically in Figure 1.4). Thus,
the software should make an automated, intelligent choice of which methods to use
to solve a given problem, based on all the initial information which can be extracted
from the problem. In addition, the setting of any parameters internal to the methods
used should be automatic - or at the very least - sensible default parameters should be

provided.

The actual interaction of the user with the optimization tool occurs at two main stages
of the optimization process: during the setting up of the problem, and when viewing
the results. Regardless of the capability and versatility of the tool, if it is to be ac-
cepted and used by design engineers the interface providing this interaction must be
user-friendly. Thus, the user should be able to define all the design variables in a pa-
rameterized model, along with the required objective functions and constraints, with
ease. The results which are presented should be useful, clear, and produced at relevant

times.
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1.2.2.2 Scope of the Research

As suggested by the black-box model of the optimization tool, there are three main
stages in the optimization process: problem specification, solving the problem with an
appropriate algorithm, and the presentation of the results. The scope of the work is

defined by what has to be achieved within each of these stages:

I Problem Specification

1. Statement of design variables (parameterization of the problem).

2. Statement of constraints and objectives.
II  Solving the Problem

1. Choice of initial set of designs to evaluate.

. Optimization using an appropriate algorithm.

2

3. Parallelization.

4. Validation of the obtained solutions.
5

. Selection of solutions to display to the user.
III Presentation of Results

1. Presentation of the selected solutions to the user.

Some of these areas contain methods which do not require much development per se,
whilst others have the potential for investigation and improvement. In particular, most
of the areas within stage II are active areas of research, and as such have much po-
tential for development. On the other hand, methods used within stages I and III do
not allow much scope for improvement, and may be implemented directly into Vector
Fields software, without much modification. Work done in these areas will certainly
contribute to satisfying the KTP objectives, but it is within stage II that most originality

will be sought, and which this thesis concentrates on.

1.2.2.3 Academic Objectives

The general academic aim of the work is the creation of an optimization tool which is
sufficient to effectively solve any electromagnetic optimal design problem which may
be set up using Vector Fields software. More precisely, the research will attempt to

satisfy the following objectives:
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Al. To extend well-established cost-effective single-objective optimization techniques

to the multi-objective case.

A2. To integrate constraint handling methods into cost-effective multi-objective algo-

rithms.

A3. To use surrogate modelling techniques which are novel to electromagnetic design

optimization.

A4. To automate the choice of methods used to solve a given electromagnetic optimal

design problem.

A5. To allow sufficient flexibility in parameterization to allow the design variables,
constraints and objective functions in an electromagnetic design problem to be

easily set up.

A6. To test the developed strategies on a variety of real-life test problems within elec-

tromagnetic design.

Implementation of the methods used to achieve these academic objectives into Vector
Fields software then leads to the fulfilment of the KTP objectives.

1.3 Methodology

As already mentioned, electromagnetic optimal design problems vary widely in their
characteristics. Plenty of algorithms exist for dealing with the simplest: a standard
genetic algorithm can deal with single-objective problems with inexpensive objective
functions; whilst a standard Multi-Objective Evolutionary Algorithm (MOEA), such as
Multi-Objective Genetic Algorithm (MOGA) [25], the Non-dominated Sorting Genetic
Algorithm (NSGA, NSGA-II) [26, 27], the Niched-Pareto Genetic Algorithm (NPGA) [28],
the Pareto-Archived Evolutionary Strategy (PAES) [29] or the Strength Pareto Evolu-
tionary Algorithm (SPEA, SPEA-II) [30, 31] can deal with multi-objective problems
with inexpensive objective problems. This thesis concentrates exclusively on algo-
rithms dealing with the most complex type of problem: those with objective functions

so computationally expensive that the use of a cost-effective technique is essential.

The cost-effective technique used within this thesis is that of surrogate modeling, in
particular kriging. A wide range of effective kriging-assisted algorithms exist for single-
objective optimization problems [14], although their application to electromagnetic de-

sign problems has been slow. After providing an introduction to kriging (and more
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generally, surrogate modeling) in Chapter 3, these existing single-objective optimization

algorithms are reviewed in Chapter 4.

The extension of the ideas in cost-effective single-objective optimization to cost-effective
multi-objective optimization has also been slow; indeed all of the algorithms reviewed
in Chapter 5 have appeared in the literature since the beginning of this research. The
dearth of literature on cost-effective multi-objective optimization is reflected by the ab-
sence of a doctoral thesis on the topic (the evolution of thesis topics in the field of
cost-effective optimization (shown in Table 1.1) is illustrative of the progress made in
the field generally over the past decade). Clearly cost-effective multi-objective opti-

mization is a field in its infancy.

TABLE 1.1: Table of recent PhD theses on cost-effective optimization.

Year Title Author University Scope
SOOPs | MOOPs | Constraint- | Applications
handling
1997 Computer Experiments and Global M. Schonlau Waterloo, Y N N Automotive
Optimization Canada
1997 Aircraft  Multidisciplinary Design A. A. Giunta Virginia, Y N N Aerospace
Optimization Using Design of Ex- USA.

periments Theory and Response
Surface Modeling Methods

2001 Radial Basis Function Methods for H-M. Gutmann Cambridge, Y N N Test-functions
Global Optimization UK.
2001 Cost-Effective Evolutionary Strate- M. Farina Pavia, Italy N Y N Electromagnetic

gies for Pareto Optimal Front Ap-
proximation in Multiobjective Shape
Design Optimization of Electromag-
netic Devices

2002 Flexibility and Efficiency Enhance- M. ]. Sasena Michigan, Y N Y Mechanical Engineering
ments for Constrained Global De- US.A.
sign Optimization with Kriging Ap-
proximations

2004 Efficient Global Aerodynamic Ophi- A. ). Forrester Southampton, | Y N Y Aerospace
misation Using Expensive Compu- U.K.
tationai Fluid Dynamics Simulations

Completing the review Part, Chapter 6 deals with many of the practical issues involved
in cost-effective optimization, which are often neglected in the literature. This chapter
is intended to be useful to anyone implementing the algorithms in this thesis for them-

selves.

Chapter 7 then introduces novel algorithms, building mainly on the ideas already dis-
cussed. It is the intention that Chapter 4 and Chapter 5 will have presented existing
methods in such a way that the inspiration for these novel algorithms is immediately
obvious. The emphasis is on constructing algorithms to solve computationally expen-
sive, constrained multi-objective optimization problems, thus providing a natural pro-

gression from the work covered in Table 1.1.

Chapter 8 provides details of the implementation of the optimization tool within Opera,
and Chapter 9 gives results of this tool on some electromagnetic design problems.

Chapter 10 finishes with conclusions and proposals for further work.
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Chapter 2
Optimization
2.1 Single-Objective Optimization

211 The Single-Objective Optimization Problem

The Single-Objective Optimization Problem (SOOP) may be stated as follows !:

Minimize f(x)
subject to gj(x) >0 j=L2,...,[; 2.1
he(x) = k=12,...,K;
fo)§x1<xf ) i=12,...,d

The problem is said to be unconstrained if ] = K = 0; otherwise it is said to be con-
strained. Each design variable has a lower and an upper bound between which it may
vary continuously (however, more generally the design variable may also only be al-
lowed to vary discretely [20]). In order to be feasible, a design vector must satisfy the
J inequality and K equality constraints. This gives rise to the feasible region S which is a

subset of the decision variable space R4,

S = {x € R*s.t. g(x) > 0and h(x) = 0}, (2.2)

! Alternatively, it may be formulated as a maximization problem; however this thesis will assume all
objective functions are to be minimized.

12
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and its image the feasible objective space Z which is a subset of the objective space R,

Z = {f(x) € Rs.t x € S}. (2.3)

Within the feasible region S, f takes some global minimum value fmi,: for some par-
ticular optimization problems, the value of fnin may be known a-priori, and this can
be useful for some algorithms in determining where to evaluate (see Section 4.4). In
general however, fnin is unknown. The aim of single-objective optimization is to locate

the design vector(s) in S which have the objective function fmin.

2.1.2 Difficult Features of Objective Functions

Several features of an objective function may provide particular difficulty to optimization
algorithms in locating its global minimum. In [32], five such particularly significant
features are identified:

1. The degree of modality.

2. The size of basins of attraction of local minima.

3. The size of improving regions (and the magnitude of oscillations).

4. The degree of randomness in the positions of the minima.

5. The dimension of the search space.
The first four of these features are discussed in detail in [32]. The fifth feature, the so-
called ‘curse of dimensionality’, is a well known problem in optimization, and is best
tackled through reduction of the number of design variables, which may be achieved

by identifying and eliminating those variables which have least effect on the objective

function (see Section A.4).
Performance criteria (and other details) of global optimization algorithms which are
often used for comparison in the literature are listed in [33]. These include:

1. Best function value found.

2. CPU time.

3. Number of function evaluations.

4. Accuracy.
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5. Average number of iterations required per replication (in multiple replications).
6. Number of replications.

7. Success rate.

8. Tuning parameters.

9. Stopping criteria.

10. Platform.

Many of these performance criteria are trivially obvious: for best function value, closer
to optimal is better; for CPU time, faster is better; for number of function evaluations,
fewer is better; and so on .... However, some may not be so obvious. For example,
the number of tuning parameters is an important detail when recommending a global
optimization algorithm: in this case, fewer tuning parameters is (generally) better. Ex-
amples of tuning parameters include mutation rate in genetic algorithms, and cooling
schemes in simulated annealing algorithms. Because of the importance of this feature
(from a user’s point of view), this thesis will pay particular attention to distinguishing

between algorithms which require tuning parameters, and those which do not.

2.1.3 Single-Objective Test Functions

The most popular suite of test functions for single-objective optimization is the Dixon-
Szego test set [34]. Unfortunately, whilst this set still serves as a common test-set for
single-objective optimization algorithms in the literature, it has long been recognized
that the problems in this set are too simple for most modern algorithms, particularly

surrogate model-assisted algorithms.

Using the features identified Section 2.1.2, a new set of test functions for global opti-
mization was proposed in [35]. The severity of the difficult features in these functions
can actually be controlled through several parameters, and it is anticipated that these
functions, and others like them, shall become a new standard in assessing the perfor-

mance of single-objective optimization algorithms in the future.
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T2

1 fi
FIGURE 2.1: Example feasible region and feasible objective space.

2.2 Multi-Objective Optimization

2.2.1 The Multi-Objective Optimization Problem

The Multi-Objective Optimization Problem (MOOP) may be stated as follows 2:

Minimize fm(x) =012, =< M:
subject to gj(x) >0 j=12%,....% (2.9)
m(x)=0 k=1,2,.. K

W <x <™ i=1,2,...,4

i

Again, in order to be feasible, a design vector must satisfy the | inequality and K equal-
ity constraints. As before, this leads to a feasible region S existing within the decision
variable space R"; in this case, its image the feasible objective space Z is a subset of the
objective space RM,

Z = {f(x) e RMs.t. x € §}. (2.5)

An example feasible region S and feasible objective space Z are illustrated for a two-
objective problem in Figure 2.1. Such graphical illustration is useful when the number
of objectives or dimension of the design vector is less than or equal to three, but for
M, d > 3, such a graphical illustration becomes impossible. The aim of the problem is
to try to simultaneously minimize the M different objectives f,, something which in
general is not possible, leading to the necessity of defining exactly what constitutes a
solution to the MOOP in Equation 2.4.

2 Again, it may be formulated instead as a maximization problem; however this thesis will gssume all
objective functions are to be minimized.
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f2 (to be minimized)

f1 (to be minimized)

FIGURE 2.2: Ideal and utopian objective vector.
2.2.2 Special Solutions

Definition 2.1 (Ideal Objective Vector). The m-th component of the ideal objective
vector z* is the constrained minimum solution of the following problem:

Minimize fp(x)
subjectto x€ S
form=1,..., M.

Definition 2.2 (Utopian Objective Vector). A utopian objective vector z** has each of
its components marginally smaller than that of the ideal objective vector:

ok Lk )
Z; =2zZ; —€

withe; >0,i=1,..., M.

Both of these special solutions are illustrated in Figure 2.2. It should be noted that the
utopian objective vector is not a feasible solution. The ideal objective vector is feasible
only when the M objectives of the MOOP are not competing. In this special case, the
ideal objective vector z* is then the solution to Equation 2.4.

2.2.3 Pareto-Optimality

In general, the M objectives of Equation 2.4 are competing, and so the ideal objective
vector is of little use. Another definition of optimal is needed, and the definition usually
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adopted is that of Pareto-optimality.> Central to the idea of Pareto-optimality is the

notion of dominance, and a non-dominated set:

Definition 2.3 (Dominance). For any two solutions x(D and x@ € S, x(1 is said to

dominate x(?) if and only if both the following conditions are true:

1. fi(x(l)) < f,-(x(z)) foralli=1,2,..., M

2. f;(xM) < fi(x'?)) for at least one i € {1,2,..., M}

Thus, a solution x(!) is said to dominate another solution x(?) if and only if it is better
in at least one of the objectives, and it is no worse in all other objectives. In this sense,

x(1) is a better solution than x(?). We say that x(!) is non-dominated by x(?).

Definition 2.4 (Non-dominated set). Among a set of solutions P € S, the non-dominated

set of solutions P’ are those that are not dominated by any member of the set P.

Out of a set of feasible solutions P to problem Equation 2.4, the solutions which may be
considered optimal from the set are those in the non-dominated set. When the set P of
feasible solutions is the entire feasible region S, then the non-dominated set P is called

the (global) Pareto-optimal set.

Definition 2.5 ((Global) Pareto-optimal set). The non-dominated set of the entire fea-

sible search space S is the global Pareto-optimal set.

The global Pareto-optimal set is not dominated by any other solutions in S, and so is the
solution to Equation 2.4. As well as the global Pareto-optimal set, local Pareto-optimal

sets may also exist:

Definition 2.6 ((Local) Pareto-optimal set). A set of solution vectors L is a local Pareto-

optimal set if 36 > 0 such that Vx € L, x is non-dominated in L () B(x, J).

The set of values in the objective space which correspond to the solutions in the global

(local) Pareto-optimal set is called the global (local) Pareto-optimal front.

Definition 2.7 ((Global) Pareto-optimal Front). The image of the global Pareto-optimal

set in the feasible objective space is the global Pareto-optimal front.

Definition 2.8 ((Local) Pareto-optimal Front). The image of a local Pareto-optimal set

in the feasible objective space is a local Pareto-optimal front.

The Pareto-optimal front for an objective space Z is highlighted in Figure 2.3. This

objective space also has a local Pareto-optimal front, which is also highlighted.

31t should be noted that other definitions of optimality exist, such as that of Nash Equilibrium, which
is beginning to find applications in electromagnetic design engineering [36, 37].
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Global POF

f2 (to be minimized)

POF

f1 (to be minimized)
FIGURE 2.3: Global and local Pareto-optimal fronts.

2.2.4 Related Concepts

In addition to Pareto-optimality, two other related concepts are widely used, namely
weak and proper Pareto-optimality. The relationship between the concepts is that the
properly Pareto-optimal set is a subset of the Pareto-optimal set, which is a subset of

the weakly Pareto-optimal set.
Weak Pareto-optimality is based on the notion of strong dominance:

Definition 2.9 (Strong Dominance). A solution x(!) strongly dominates a solution x(?)
if f;(xV) < fi(x®) fori=1,..., M.

Thus if a solution x(!) is better than another solution x(?) in all objectives, then x(1) is
said to strongly dominate x(?). Using the notion of strong dominance, the weakly non-

dominated set of solutions can be identified from a general set of solutions.

Definition 2.10 (Weakly non-dominated set). Among a set of solutions P € S, the
weakly non-dominated set of solutions P’ are those that are not strongly dominated by

any other member of the set P.

When the set P of feasible solutions is the entire feasible region, then the non-dominated
set is called the weakly Pareto optimal set, of which the Pareto optimal set is a subset.

The idea behind proper Pareto optimality is that unbounded trade-offs between objec-
tives are not allowed. Several definitions exist for proper Pareto optimality, see [38] for

details.
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Level 4

f2 (to be minimized)

. Level 3

Level 1
Level 2

f1 (to be minimized)

FIGURE 2.4: Non-domination levels.

2.2.5 Identification of Non-Dominated Sets

The identification of the non-dominated set from a set of solutions is a task which is
central to any algorithm which tries to yield the Pareto-optimal set. The methods of
Kung [39] and Bentley [40], which are based on a divide-and-conquer strategy, have be-
come the standard methods used, however recently Yukish [41] has developed an effi-
cient hybrid method for identification of Pareto-optimal points from multi-dimensional

data sets.

2.2.6 Non-Dominated Sorting

Some multi-objective optimization algorithms require solutions in a set to be classified
into different non-domination levels. The best non-dominated solutions are called non-
dominated solutions of level 1. The next best non-dominated solutions, non-dominated
solutions of level 2, are the solutions in the non-dominated set which result by ignoring
the non-dominated solutions of level 1 from the population. Non-dominated solutions
of level 3 are then found by finding the non-dominated set which result by ignoring
the non-dominated solutions of level 1 and 2, and so on. The procedure is continued
until all population members are classified into a non-dominated level. Many different

algorithms exist for carrying out non-dominated sorting.

The concept of non-dominated sorting can be the source of some confusion. For exam-
ple, its explanation in [42] finishes with the statement that ‘it is important to reiterate that
non-dominated solutions of level 1 are better than non-dominated solutions of level 2, and so
on.” This however is rather misleading: one could erroneously assume from this state-
ment that a solution of level 1 must be better than a solution of level 2, which is clearly

not the case, as can be seen from Figure 2.4. Shown is a set of solutions which has been
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classified into four different non-domination levels. Three solutions are labeled: A, B
and C. Solutions A and B are of level 1, whilst solution C is of level 2 (as it is domi-
nated by B). Although of a higher non-domination level than C (where by ‘higher” it is
meant a low number, with ‘1" deemed the highest level), solution A does not dominate
C: instead it is equivalent to it. The reason A and C are not in the same non-domination
level is because of the existence of B, which, while equivalent to A, does dominate C, thus

pushing it down a non-domination level.

So it is important to be clear what can and cannot be said about solutions in different
non-domination levels. While it is not (necessarily) the case that a solution of level N
dominates every solution of level N + 1, it is the case that each solution of level N + 1
is dominated by at least one solution in level N. This is essentially all that the notion
of non-dominating sorting has to offer: when comparing two solutions of level N; and
N, (N1 # N,), we can only say something definite about the relationship between the
two groups of solutions, viz. for N; < N, a solution in level N; either dominates the
solution in level N, outright, or if not, is equivalent to another solution which does
dominate it. Thus, the group of solutions of level N; considered as a whole, is better
than the group of level N, solutions, again considered as a whole, in that for every
solution in level N,, there exists at least one solution in level N; which dominates it. It

is this property which makes non-dominating sorting a useful concept.

2.2.7 General Objectives in Multi-Objective Optimization

In the absence of higher-level information, all Pareto-optimal solutions are equally im-
portant. Therefore it is important that as many Pareto-optimal solutions are found as

possible. This leads to there being two main goals in multi-objective optimization:

1. To find a set of solutions as close as possible to the Pareto-optimal front.

2. To find a set of solutions as diverse as possible.

The first goal is simply stating that the solutions found are to be as close to the true op-
timal solutions as possible. The second goal is specific to multi-objective optimization,
and is important because a diverse set of solutions assures us that no single objective
is being favoured over any other in the search. It should be noted that the diversity
among solutions may be measured in two different spaces, the decision variable space
and the objective space. Achieving a good balance between convergence to and di-
versity along the Pareto-optimal front is important to all multi-objective optimization
algorithms [43].
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Different performance indicators exist to assess and rank an algorithm’s performance in
converging to the Pareto-optimal Front, maintaining diversity in solutions, and overall
performance considering both convergence and diversity together [44]. These indica-
tors enable easier comparison between multi-objective optimization algorithms. Popu-
lar performance indicators (as used in the assessment of the performance of the multi-
objective algorithm ParEGO [45], described in Section 5.2.3) include the S measure [46],

the additive epsilon indicator [30] and median and worst attainment surface plots [47].

2.2.8 Difficult Features of Pareto-Optimal Fronts

Objective function space may possess certain features which make it particularly diffi-
cult for a multi-objective algorithm to locate the Pareto-optimal front. Some of the more

common features encountered are described below.

2.2.8.1 Multi-Modality

Definition 2.11 (Multi-modal). A MOOP is multi-modal if and only if more than one

local Pareto-optimal Front exists.

Multi-modality is the multi-objective equivalent of multiple solutions in single-objective
optimization. The MOOP with objective space as shown in Figure 2.3 is multi-modal

(a global Pareto-optimal front is also a local Pareto-optimal front).

2.2.8.2 Isolated Optimum

An algorithm relies on the features of objective space to be able to search for the opti-
mum. If the objective space is relatively featureless, except for the optimum, then any

algorithm will have difficulty converging, as it will have no information to guide it.

2.2.8.3 Convexity

Definition 2.12 (Convexity). A MOOP is convex if and only if all objective functions

are convex and the feasible region is convex.

Convexity may lead to the failure of some algorithms in maintaining diversity. In the
objective space shown in Figure 2.3, the global Pareto-optimal front is non-convex,
while the local Pareto-optimal front is convex. In particular, as the feasible region is

non-convex, the MOOP is non-convex.
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f2 (to be minimized)

f1 (to be minimized)

FIGURE 2.5: Discontinuous Pareto-optimal front.
2.2.84 Discontinuity

Definition 2.13 (Discontinuous MOOP). A MOOP is discontinuous if and only if the
Pareto-optimal front is discontinuous.

An example of a discontinuous Pareto-optimal front is shown in Figure 2.5. Such fronts
present difficulties to optimization algorithms as it is then the duty of the algorithm to
approximate all branches of the global Pareto-optimal front.

2.2.8.5 Non-Uniformity

When the distribution of points in objective space around the Pareto-optimal front is
non-uniform, algorithms will tend to converge where the density of points are higher.
Thus diversity of solutions is not well maintained. Figure 2.6 illustrates an objective
space which has a non-uniform Pareto-optimal front; in this case it is likely that the

algorithm will favour minimizing objective f5.

2.2.9 Multi-Objective Test Functions

As with single-objective optimization, sets of test functions, which have one or more
of these difficult features, exist to allow comparison of multi-objective algorithms (us-
ing the different performance indicators mentioned in Section 2.2.7). Some of the most
popular sets include the Ziztler-Deb-Thiele (ZDT) problems [48], and Veldhuizen and
Lamont’s (VLMOP) [49]. However, as with the Dixon-Szego test set in single-objective
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fa (to be minimized)

f1 (to be minimized)

FIGURE 2.6: Non-uniformity in the Pareto-optimal front.

optimization, these have recently received some criticism for being too simple for mod-
ern multi-objective algorithms. More difficult test problems have recently been pro-
posed [50, 51], and as with the modern single-objective test functions, they have pa-
rameters allowing their difficulty to be fine-tuned.

2.3 Cost-Effective Optimization

Optimization algorithms may be classified by many criteria: single-objective or multi-
objective; constrained or unconstrained; cost-effective or ‘greedy’; stochastic or deter-
ministic; those requiring derivatives, and those which are derivative-free;and soon....
The possibility of creating hybrid algorithms, combining different classes, only compli-
cates producing a full classification. Furthermore, the number of heuristic algorithms is
constantly growing, with inspiration taken from all aspects of nature, including particle
swarms [52], ant colonies [53] and artificial immune systems [54] (of particular interest
to electrical engineers, an optimization algorithm based on principles from electromag-

netics has even appeared [55]).

As the computational expense of objective functions in electromagnetic design is typ-
ically high, the family of cost-effective algorithms (those which attempt to minimize
the number of objective function evaluations) is of particular importance. Algorithms
within this family may be categorized according to how they achieve cost-effectiveness:
several of the most popular techniques are illustrated in Figure 2.7. Four of the tech-
niques, namely hybrid algorithms, small population evolutionary algorithms, fitness
inheritance and reduction of design variables, are generally not versatile enough for
our purposes (e. g. reduction of design variables is irrelevant for design problems with

a low number of design variables, and fitness inheritance is only suitable for convex
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MOOPs [56]), and so they will not be developed further in this thesis; their discussion

is reserved for Appendix A. The cost-effective technique used and developed within

this work is surrogate modelling, which is introduced in the next chapter.




Chapter 3

Surrogate Modelling

3.1 Introduction

At the most general level, the problem of estimating dependencies using a set of obser-
vations is known as machine learning [57, 58]. This is a broad field, which encompasses
the problems of regression, where the inputs are mapped to a continuous function, and
classification, where the inputs are mapped to discrete categories. Due to its general
nature, methods from machine learning are used in many areas of science and engi-
neering, and so it is perhaps inevitable that along the way, different communities have

adopted their own terminologies.

In optimization, the estimation of the relationship between design vector space and
objective function space, based on a set of observations, has been used as a tool in
lowering the number of iterations used by algorithms in the search for the optimal
solutions (thus reducing computational cost). An example of regression, the technique
goes by several different names within the engineering community: the three most
popular are response surface modelling, meta-modelling, and surrogate modelling, the

name adopted in this thesis.

This chapter begins by discussing the theory of surrogate modelling generally, using
the example of polynomial fitting as an introduction. The idea of basis functions is
introduced through the example of radial basis functions, a popular type of Artificial
Neural Network used for surrogate modelling. The method known as kriging is then
introduced in detail. The use of kriging surrogate models for optimization purposes is

then discussed in Chapter 4 and Chapter 5.

25
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3.2 General Theory of Surrogate Modelling

3.21 Example: Polynomial Models

The simplest type of surrogate model to visualize (and construct) is a polynomial model;
that is, one only involving terms of the form xfl x‘gz ... x‘g", where x1,x2, ..., x4 are the
components of the d-dimensional design vector x and where Y% ,¢; < G, G being
the order of the polynomial. For example, the prediction § of a first order polynomial

model is given by
d
§(x) = Bo+ Y_ Bixi, (3.1)
i=1

whilst that of a second order polynomial model is given by

d d d

G(x) = Bo+ Y Bixi+ Y Y Ba1+i+Xi¥j, (3.2)
i=1 j=1i=1

where the values of the coefficients ; are to be determined. In general, denoting a basis

of the set of all polynomials in x of degree G by {fx(x)lk = 1,2,...,m}, the prediction

made by a polynomial model may be written as
mn
9(x) =} Bif(x) (3.3)
k=1

where the B;s are determined by fitting the polynomial to the observed data through
minimization of an error function, which measures the discrepancy between the predic-
tion § (for a given B) and the observed data. One popular error function is the sum of
the squares between the prediction and the observations

N
E(B) = ;(?(Xk) —y(xx))* (3.4)
=1

N =

Minimization of this function is known as least-squares fitting. In general, interpolation
can only be achieved if the number of coefficients being fit, m, is equal to the number
of observations, N. This is a drawback when modelling deterministic computer ex-
periments: because running such a computer experiment with the same inputs twice
yields the same outputs, it is desirable that surrogate models approximating such ex-
periments always be interpolating. Furthermore, even when polynomial models do
interpolate the observations, this can often be at the expense of over-fitting: wildly os-
cillating polynomials are fit to the data as a result of the 8;, which minimize the error
function, being very large in magnitude. Ways to alleviate this problem exist: for exam-

ple, in regularization, a penalty term is added to the error function in order to penalize
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Bis of large magnitude:

NI*—*

N
E() = 5 L(90x) — )" + Hﬁll? (3.5)
This technique is common in the surrogate modelling literature, and not surprisingly,
goes by different names depending on which model is being used: with artificial neural
networks, it is known as weight decay; in statistics it is known as shrinkage. It should be
noted that while this technique can resolve the problem of over-fitting, the problem
arises of finding a suitable value for A; furthermore, the fact remains that the model

will only be interpolating for a particular number of observations.

3.2.2 Basis Functions

In order for a surrogate model to be interpolating in general, it is necessary to use some
additional basis functions, each centered around one of the n sampled points. Then the

prediction of the surrogate model may be written as

j(x) = kﬁﬁkfkm Y bp(x - x;). (3:6)
=1 j:l

Some of the choices for ¢ include:

P(r) = exp ( — pr?) (Gaussian) (3.7)
P(r) = r (linear) (3.8
¢(r) = r (cubic) (3.9)
p(r) = VI + 2 (multiquadric) (3.10)
P(r) = r?logr (thin plate spline) (3.11)
¢(r) = exp(—Li,6/n") (kriging) (3.12)

where r = ||x — x;||, v > 0 in the multiquadric case, and 6, > 0, p € (0, 2] in the kriging
case. The first five of these belong to a class of functions known as radial basis functions,

which are now briefly discussed.

3.2.2.1 Radial Basis Functions

In the radial-basis function approach, the approximation model is usually written as
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9(x) = )_ Big(lIx — xil)) (3.13)
i=1
where | - || denotes a norm (usually the Euclidean norm). Using the interpolation con-
ditions
9(xi) = y(xi), (3.14)
and denoting
Pij = ¢llIxi — x]), (3.15)

@ as the n x n matrix with elements ¢,

y=[yLy2. -y, (3.16)
and
B=1B1B2--,Bul", (3.17)
then the coefficients B may be found by
p=aly. (3.18)

The non-singularity of ® is guaranteed by Micchelli’s theorem [59].

Figure 3.1 shows approximations to the Schwefel function (which will be used in the
next chapter to demonstrate optimization methods) using linear, cubic and thin plate
spline radial basis functions; Figure 3.2 shows approximations using the multiquadric

radial basis function for different values of .

Review papers appear regularly comparing the merits of different types of surrogate
model, see e. g. [60, 61, 62, 63] for four recent reviews. One surrogate model which
stands out, due to its solid statistical foundations, is kriging, to which the remainder of

this chapter is devoted.

3.3 Kriging

3.3.1 Background

In the 1960s, geologists such as Matheron [64], developed a statistical method for mak-
ing predictions, and named it kriging, after D. G. Krige who had originally used the
technique to analyze mining data [65] in the 1950s. Since then it has formed the basis

of the field of geostatistics, and has found applications in fields of research far removed
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from geology. A version for predicting computer experiments with deterministic out-
put, known as Design and Analysis of Computer Experiments (DACE), was developed
in the late 1980s [66]. The following section derives the main DACE equations, neces-

sary for the optimization methods which follow in later chapters.

A comprehensive treatment of kriging may be found in [67], and [68] provides further
theory. The original DACE approach to kriging is given in [66], whilst a more detailed
and up-to-date discussion may be found in [69]. Alternative approaches to kriging are
given in [14, 70]. In the machine learning literature, the method is known as Gaussian

Processes: a recent overview of this approach may be found in [71].

3.3.2 Design and Analysis of Computer Experiments
3.3.21 Curve Fitting: A Probabilistic Perspective

The standard linear regression model takes the form [57, 71]
m
=Y Bifi(x) + €e(x). (3.19)
k=1

The sum Y ; Bi f(x) may be viewed as a global approximation to the true function,
and € as an additive Gaussian noise, representing our uncertainty. By considering this

model at the sampled points

i Befi(x') +e(x), (3.20)

it can be seen that to be interpolating, the Gaussian distribution €(x') must be (0, ¢?),

where 02 is to be determined.

By considering two design vectors x/, X/, close to each other in design variable space,
it can be expected that their corresponding objective function values will be similar.
This is modeled statistically by saying that the errors €(x') and €(x/) are correlated. In

kriging, this correlation is modelled by the function
) ) n L
R(e(x'), e(x)) = [ ] e Okl (3.21)
k=1

Here 6 determines how fast the correlation between design vectors drops away in the
k™ coordinate direction, and p; determines the smoothness of the function in the k"

coordinate direction.
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The kriging model may be simplified further by replacing the polynomial in Equa-

tion 3.19 by a constant term (a technique known as ordinary kriging)
9(x) = p+e(x). (3.22)

In doing so, the kriging model is then a probabilistic model which has 2d + 2 param-
eters: y, 02,6,...,64, p1,--.,pa- These are chosen to maximize the likelihood of the
observations (essentially, the probability of the observations, given the model parame-

ters - see [57] for an introduction), which for this model is given by

! ~(y =10 "R ! (y— 1)
(2m)n 2 (g2)n72[R[1/2 eXp[ y }4202 y—F }, (3.23)

where R is the correlation matrix, which represents the correlation between each pair of
evaluated design vectors, defined as the n x n matrix whose i — j entry is R(x',x/), y

is the n x 1 vector of observed objective function values,

y = ly(xM), y(x?), .., y(x")]T, (3.24)

and 1 is the n x 1 vector filled with ones. It is more common to maximize the log of

Equation 3.23, which, ignoring constant terms, is

n 1 (y = 11)"R™(y — 1)
~ 2 log(?) — 5 log (IR]) - 2 - (325)

By setting the derivatives of Equation 3.25 with respect to 0% and u equal to zero, it is

found that

. 1TR7!
= 1TR_11’ (3.26)
and TR-1 0
52— y=1p) IZ (y—14) (3.27)

where the hats signify that these are the optimal values of 4 and ¢. Substituting Equa-
tion 3.26 and Equation 3.27 into Equation 3.25, the ‘concentrated log-likelihood” func-

tion is formed:
n . 1
— 5 log(¢?) — 5 log (IR|) (3.28)

which only depends on 8 and p. By maximizing this to find § and p, Equation 3.26 and

Equation 3.27 may be used to compute i and &~
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3.3.2.2 The Kriging Prediction Formula

Consider an unevaluated design vector x*. Suppose y* is an estimate of the func-
tion value for x*. Now consider the ‘augmented” log-likelihood function, obtained
by adding (x*,y*) to the observations, and using the parameter values obtained by
maximizing the likelihood (for the observations) as explained in the previous section.
With the model parameters fixed, the augmented log-likelihood function is a function
of y*. As y* varies, its value is a measure of how consistent the estimate (x*,y*) is
with the description of variation, as determined by the observed points. Intuitively,
a good prediction for the function is the value of y* which maximizes the augmented

log-likelihood: this indeed is the kriging prediction.

To derive the expression for ¥, it is necessary to set the derivative of the augmented
log-likelihood with respect to y* equal to zero, and rearrange for y*. First denote by
¥ = (y",y*)7T the vector of function values composed of the observed values, and the
estimated value §, and further denote by r the correlation vector, which expresses the
correlation between an unevaluated design vector x and the n evaluated design vectors,

defined as
r(x) = [R(x,xV), R(x,x@), ..., R(x,x")T. (3.29)

Then, writing the correlation matrix for the augmented set as R

_ R r
R = ( T ) (3.30)

the part of the augmented likelihood which is dependent on y* is

(y —1p)"R1(y - 14)
- 552 . (3.31)

Substituting in for ¥ and R, this becomes

T -1
* T * _ 5
y* -4 r 1 y - p (3.32)

2072 ’

Using the following identity for the inverse of a partitioned matrix
A B\ M MBD"!
= (3.33)
CD -D-!CM D"!+D"'CMBD!

M= (A-BD!c)7}, (3.34)

where
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the matrix R™! may be written as

R_1+R_l 1—TR 1)1 TR —R1¢(1 = TR 11)?
( r(l—r r)”'r r(l—r r) . (3.35)

—(1 —rTR71r)" /TR (1-r"TR71r)!

Substituting into Equation 3.32, the terms of the augmented log-likelihood depending

ony”* are

= g, [FRT -1 L
[2?72(1 - rTer)} =)+ {m v = p). (3.36)
As said at the outset, the expression for y* is found by setting the derivative of the

augmented likelihood with respect to y* equal to zero, i. e. by solving

_1 * R rTR—l(y_ lﬁ) B
[m] " =m+ [ml—,)] =0. (3.37)

This gives
9(x*) = a+ "Ry —1p), (3.38)

which is the general expression for the kriging predictor.

As a final note, it should be pointed out that Equation 3.38 is consistent with the general
surrogate model equation, Equation 3.6. By letting the polynomial terms equal I, and
b; be the i"element of R~!(y — 1#2), the kriging predictor becomes a linear combination

of polynomial terms (a constant), and a set of basis functions.

3.3.2.3 The Standard Error Formula

As shall be made clear in the following chapters, an estimate of the potential error in
the kriging prediction is extremely useful when using the model to decide where to

evaluate next in design variable space.

From the derivation of the kriging prediction above, intuitively the less consistent the
prediction is for other values of y* (around the value predicted by the kriging model),
as measured by the value of the augmented log-likelihood, the higher our confidence
in the prediction y* should be. This is illustrated schematically in Figure 3.3. Two pos-
sible augmented log-likelihood functions are plotted for the optimal value of y*. In
Figure 3.3(a), values around the optimal value of y* also give high values for the aug-
mented log-likelihood, and so our confidence in value of y* is reduced. In Figure 3.3(b)
however, the augmented log-likelihood drops off rapidly away from the optimal value

of y*. Thus, non-optimal values of y* are much less consistent with the observations,
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augmented log-likelihood function.

and so our confidence in the kriging prediction (which maximizes the augmented log-
likelihood) is relatively high.

Mathematically, the curvature of the augmented log-likelihood function around the
optimal value of y* (i. e. the kriging prediction), is inversely related to our estimate of
the potential error in the prediction. The curvature is measured by the absolute value
of the second derivative of the augmented log-likelihood function with respect to y*:

1

02(1—rTR-1r)’ b

Therefore, using the intuitive argument above, an estimate of the potential error in the
kriging prediction is given by
o*(1—r"R71r). (3.40)

The full derivation of the mean-squared error s?(x) (which may be found in, e. g. [66]),
is given by
(1—-rTR71r)

Sz(x) = 0-2 1-— rTR_lr i lTR_ll ’

(3.41)

where the extra term is interpreted as representing an additional uncertainty which

results from having to estimate the value of /I (as opposed to knowing it exactly).
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The notion of the mean squared error, and its square root, the ‘standard error’, s(x), is
useful in quantifying uncertainty in kriging predictions, as shall be made clear in the

following chapter.




Chapter 4

Kriging-Assisted Single-Objective

Optimization

4.1 Introduction

In the previous chapter, kriging surrogate models were introduced as a method of es-
timating an unknown function, based on a set of observations. The purpose of this
chapter is to review how such models may be used to select design vectors for eval-
uating in order to achieve the goal of single-objective optimization, that is, to locate
the global minimum of a single unknown function in as few objective function evalu-
ations as possible. Complications such as handling of constraints and choice of initial
experimental design, common to both single and multi-objective optimization, are left

to Chapter 6.

4.1.1 Jones’ Taxonomy

Jones’ taxonomy of surrogate model based (single-objective) optimization methods [14],
reproduced in Table 4.1, uses two main criteria to classify methods: the kind of surro-
gate model used, and the method of selecting search points. These two main criteria are
then further subdivided: surrogate models are divided into those which interpolate the
observed points and those which do not, and selection methods are divided into two-
stage and one-stage varieties. Two-stage selection methods are so called because each
iteration involves two main stages: fitting the surrogate model to the observed points,
and then constructing a utility function based on this surrogate model to determine
the next search point. One-stage methods are so called because each iteration involves

only one-stage: determining the design vector which, if it had a value f* (which is an

36
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TABLE 4.1: Jones’ taxonomy of surrogate model-assisted optimization methods, taken

from [14].
Method for selecting search points
Two-stage approach One-stage approach
Kind of Surrogate Model Minimize Minimize Maximize the Maximize Goal  seeking: Optimization:
the  Re- a  Lower Probability of Expected find point that find point that
sponse Bounding Improvement {mprovement achieves a given minimizes  an
Surface Function target objective
Not inter- | Quadratic  polyno- Not  dis- s '
polating mials  and  other cussed
(smoothing) regression models
Fixed Thin-
basis plate
func- splines,
tions. NO Hardy
statistics. multi-
; quadrics Section TS L S Section 4.4.2.1 Section 4.4.2.2
Interpolating ™, ned Kriging 421 Section 4.4.1.1 | Section 4.2.2
basis
functions.
Statistical
Interpre-
tation.

estimate of the minimum) would yield the most credible response surface interpolating
it and the already observed design vectors. Almost all surrogate-model assisted opti-
mization algorithms used in the literature are two-stage, however one-stage algorithms
have been successfully constructed using both kriging [14] and radial basis function

surrogate models [72, 73, 74].

Although extremely useful, the taxonomy in [14] is too broad for the purposes of this
thesis. In particular, this thesis only considers kriging models. Furthermore, the tax-
onomy does not address some practical issues: methods are not classified according to
how ‘tunable’ a selection method is, that is whether they have parameters which can
(and must) be set to control the balance between exploration and exploitation; nor are
they classified by how capable each method is of selecting multiple points for eval-
uation each iteration, something which is extremely important if parallelization is to
be taken advantage of. For this reason, a new kriging-only taxonomy, based on more

practical criteria, is now proposed.

4.1.2 Taxonomy of Kriging-Assisted Single-Objective Optimization Methods

The alternative taxonomy, for kriging-assisted methods only, is shown in Table 4.2. The
two main criteria used to classify the methods are the number of design vectors which
are to be evaluated each iteration, and how ‘tunable’ each method is to the balance be-
tween exploration and exploitation. Methods are divided at the broadest level between
those which are tunable, that is those which do allow control over this balance through
a changeable parameter, and those which allow no control, and so are non-tunable;
tunable methods are then further divided into those which require an estimate of the

minimum, and those which do not.
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TABLE 4.2: Taxonomy of kriging model-assisted single-objective optimization

methods.
Method for selecting search points
Number of Non-tunable Utility Functions: Tunable Utility Functions: Parameters allowing the balance be-
Points to No parameters to set tween exploration and exploitation to be altered
Evalu.ale per Non-target based: does not re- Target-based: requires an esti-
Heration quire an estimate of the optimum mate f* of the optimum
Surface Mini- Expected Generalized Weighted Probability Credibility (of
mum Improvement Expected Expected (of achieving) hypothesis)
Improvement Improvement
Single Section 4.2.1 Section 4.2.2.1 Section 4.3.1.1 Section 4.3.2.1 Section 4.4.1.1 Section 4.4.2.1
Point
Multiple Section 4.2.2.2 Section 4.3.1.2 Section 4.3.2.2 Section 4.4.1.2 Section 4.4.2.2
Points

In this chapter, each utility function in Table 4.2 will be demonstrated on the multi-

modal Schwefel test function [75]:
d
f(x) =} —xisin(4/]xi]) 4.1)
i=1

To allow plotting of the kriging surfaces, and utility functions, the one-dimensional

case (d = 1) is used:
f(x) = —xsin(+/|x]). 4.2)

The six starting design vectors x = —450, —230, —150, —40, 160, 500 are used to initial-

ize each approach.

4.2 Non-tunable Utility Functions

Non-tunable utility functions are characterized by having no parameters which need to
be defined in order to select a point to evaluate. Two such methods are now discussed,
namely minimizing the constructed response surface, and maximizing the expectation

value of the improvement.

4.2.1 Minimum of Response Surface

The most natural (and naive) approach to selecting where to evaluate, based on a sur-
rogate model, is to simply interpret the surrogate model as an accurate representation
of the true function, and to evaluate the minimum of the surface. This approach has
been used by practitioners of optimization for many years, however the approach is

fraught with potential failure modes, even for kriging surrogate models.

Typically, the point chosen to be evaluated will be a false minimum - a point which is a
minimum of the surrogate model but not of the true function. Even worse, if the false

minimum is actually an observed design vector, that is, one which has been used to




Chapter 4 Kriging-Assisted Single-Objective Optimization

39

(z)

#lz)

#(z)

T T T T T
400
200 — b
0
O
22009
-400 - o
Kriging surface minimum e o e e
-600 True function
Kriging prediction
1 1 1 I I

-400 -200 0 200 400

FIGURE 4.1: Minimum of the surrogate model has already been sampled.

- T T T T T . T T T T T
200 200 /\ -
8 AT /
0 . 0
» % / O\
\ /
-400 a0 | \ /
600 H Kriging prediction ——— 600
Next iterate -------
e — .. I 1 L Y 1 1 I
-400 -200 0 200 400 -400 ~200 0 200 400
(a) Start (b) Iteration 1
» _/ﬁr T T r T ] T
200 - \\ & \ 200 [\ -
" / \ N\p=A ; ‘av
\ Q( O / /
a0 [ \J 200 \ /
-400 | -400 \/
-600 600 |
w0 ™ w ™ ™ ™
(c) Iteration 2 (d) Iteration 3
. T T T T T I o, T T T T
200 200 N \ .
\ A
0 0 M7\ 4 / \
E / \ /I
-200 - = 200 o \\ /
400 400 | \/
600 |- 600
™ w0 ™ w ™ w0 ™
(e) Iteration 4 (f) Iteration 5

FIGURE 4.2: Iterations of the ‘strawman’ approach using a kriging model on the
Schwefel test function.




Chapter 4 Kriging-Assisted Single-Objective Optimization 40

construct the kriging model, as shown in Figure 4.1, then an algorithm using this ap-
proach will chose to evaluate a design vector which has already been evaluated. Not
only is sampling an already evaluated design vector clearly of no use when using deter-
ministic computer code to evaluate the objective function (as the output will be exactly
the same as before), using the same solution twice in the construction of a surrogate

model leads to the inversion of a singular matrix. At this point, this approach fails.

Even if the minimum of the kriging model is not an observed point, but instead close
(in the Euclidean sense) to one, then the resulting change in the kriging model during
reconstruction in the first stage of the subsequent iteration may be insignificant, mean-
ing that many iterations are then wasted sampling around a false optimum. For an
example of this occurring with a kriging model on the Schwefel test function, see Fig-
ure 4.2. (In this case, the false optimum is actually a local optimum of the true function.
However it is still undesirable behaviour for an algorithm to have no other option other
than terminate at a given iteration, especially when the global optimum has not even

been located.)

Clearly this ‘strawman approach’ (as dubbed by Jones in [14]) is fraught with potential
failure. Its main problem is that it does not take into account how unexplored a region
of design variable space is when deciding where to evaluate: it simply exploits the
most promising region of design variable space. Furthermore, there is no obvious way
to select multiple points using this method: unless several global minima exist in the

surrogate model, only one design vector can be chosen.

4.2.2 Expected Improvement: The EGO Algorithm

From Chapter 3 the prediction made by a kriging surrogate model may be viewed as
the realization of a Gaussian process Y. This allows for the concept of improvement to
be defined: for a single-objective to be minimized, the improvement may be measured by
how far the value realized by the objective function is below the current minimum, and

so may be written as [70]:
I(x) = max(fmin — Y(x),0). 4.3)

Now the expectation value of the improvement (commonly referred to as the expected
improvement) may be found by integrating it over the likelihood of achieving it (given

by the normal density function):

© ] —(x 2
E[I(x)] :/0 I{ﬁexp [— (fomin 2s§(x)y( ) ”d[ (4.4)
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which turns out to be [70]:

Umin = 9 (25800 ) £ s(xp (o5f ) (o) > 0
0 ifs(x) =0

E[I(x)] = (4.5)

where §(x) is the objective function value of x as predicted by the kriging model, given
by Equation 3.38, s(x) is the root mean squared error in this prediction, given by Equa-
tion 3.41, and ¢ and & are the standard Gaussian density and distribution functions

respectively.

The expected improvement function may be viewed as a fixed compromise between
exploration and exploitation: the first term in Equation 4.5 is large when the kriging
prediction is lower than the current minimum, and so favours searching promising
regions of design variable space, whilst the second term is large when the standard
error is large, and so favours searching regions with a high uncertainty in their values.
In particular, note that it does not have any parameters which need to be set, hence its

classification as a ‘non-tunable’ utility function.

4.2.2.1 Single Point

The Efficient Global Optimization (EGO) algorithm [70] uses the expected improve-
ment in Equation 4.5 as a utility function to determine the next point to evaluate from
a kriging model. Results on standard 1d test functions show it to be extremely effec-
tive, and convergence to the global minimum is guaranteed [76]. Its impressive perfor-
mance is recognized not only through significant attention in the literature, but also its
inclusion in the TOMLAB optimization environment ! as one of the methods chosen to
optimize SOOPs with a computationally expensive objective function. Recently, it has
been proven that, under mild assumptions, the EGO algorithm converges to the global
minimum [78]. It is demonstrated on the Schwefel test function in Figure 4.3: the global

minimum is located in just 11 iterations.

4.2.2.2 Multiple Points

In [79], the natural multi-modality of the expected improvement function was used

to select multiple design vectors for evaluation each iteration, as parallelization was

ITOMLARB is one of the most powerful pieces of commercial optimization software available. The
other algorithm included for computationally expensive SOOPs is rbfsolve [73]. A third algorithm is to be
added in the future, based on extended radial basis functions [77].
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FIGURE 4.3: Iterations of the expected improvement approach on the Schwefel test

function.

taken advantage of. Given N}, processors, the best N local maxima of Equation 4.5

were selected for evaluation.

4.3 Non-Target Based Tunable Utility Functions

Non-target based tunable utility functions are characterized by allowing the balance
between exploration and exploitation to be controlled by a parameter, which is not

an estimate of the global minimum. Two simple utility functions exist which are of
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TABLE 4.3: Values of g, as used in a cooling scheme in [15].

Iteration | g | Iteration | g
1-4 20| 2024 |2
5-9 10| 25-3¢ |1

10-19 5 > 35 0

this type (both based on the expected improvement utility function): the generalized

expected improvement, and the weighted expected improvement.

4.3.1 Generalized Expected Improvement
4.3.1.1 Single Point

By defining the generalized improvement as
I8(x) = max {(fmin — Y(x))¢,0}, (4.6)

where g is an integer, the expectation value of this, known as the Generalized Expected

Improvement (GEI), may be shown to be [15]

wher
) T, = _(P(fnﬁns(x)y(x)) (fmms(x)“( ))H +(k—1)Te_s (4.8)
" _¢(M) ws
s(x)

The higher the value of the integer g, the greater the level of improvement is being
sought, and consequently the more emphasis is placed on searching regions of high

uncertainty. For the case of ¢ = 1, Equation 4.7 reduces to the expression for EI

In practice, a cooling scheme, or cyclic scheme is used to control the balance between
exploration and exploitation during an optimization search. For example, in [15], the
cooling scheme in Table 4.3 is used. The GEI criterion (normalized to 1) for several

values of g is shown for the first iteration of the Schwefel function in Figure 4.4.
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FIGURE 4.4: Generalized Expected Improvement for different values of g
4.3.1.2 Multiple Points

By using several values of g per iteration, several points may be selected for evaluation
each iteration. In practice, these points usually group together, and so only one design
vector from each group is chosen for evaluation (the design vector associated with the
largest ¢ should be chosen, to ensure the search is more global). This has not been pur-
sued in the literature, but is a natural method for selecting multiple points to evaluate

each iteration.

4.3.2 Weighted Expected Improvement
4.3.2.1 Single Point

GEl is useful for placing a greater amount of emphasis on searching regions of high un-
certainty than is given by EI, but not so useful for placing greater amounts of emphasis
on searching around the current minimum, as it has only one setting which allows this
(g = 0). Recalling the meaning of the two terms in the expression for the EI, it is obvious
to see how the Weighted Expected Improvement (WEI) utility function [80]

W (fonin -g(x))cp( m*;;"*)) S w)s(x)¢( min (")) if s(x) >0

0 ifs(x) =0
4.11)

WE[I(x)] =
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FIGURE 4.5: Weighted Expected Improvement for different values of w

provides this level of control through a weighting parameter w. Notable values of w
are w = 1, which places all the emphasis on the first term (thus heavily favouring
exploitation); w = 0, which places all the emphasis on the second term (thus heavily
favouring exploration); and w = 0.5, which is equivalent to EI (subject to a scale factor
of 0.5). Again, in practice, a cooling scheme or cyclic scheme is used to vary the utility
function parameter w. For example, in [80], the value of w is cycled through the pattern
w = {0.1,0.3,0.5,0.7,0.9}. The WEI criterion (normalized to 1) is shown for several
values of w for the first iteration of the Schwefel function in Figure 4.5.

4.3.2.2 Multiple Points

As with GEI, WEI may be used to select multiple points by simply grouping maximiz-
ers of WEI together for several different values of w, and choosing one design vector
from each group to evaluate each iteration. Again, this has not been pursued in the lit-
erature, but is a natural method for selecting multiple points to evaluate each iteration.

4.4 Target Based Tunable Utility Functions

Target based tunable utility functions are characterized by allowing the balance be-
tween exploration and exploitation to be controlled by a parameter f*, which is an
estimate of the global minimum. Again, the concept of improvement is used: first, sim-

ply evaluating the design vector which maximizes the probability of achieving at least a
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particular level of improvement frin — f*(> 0); secondly, evaluating the design vector
which, if it had an objective function value of f* < fnin, would yield the most credible
surface. These utility functions may easily be used to select multiple design vectors to
evaluate, by using different estimates of the global minimum f*. In particular, values
of f* close to the current minimum fnn yield local searches, whilst values of f* < fmin

yield more exploratory searches.

4.4.1 Probability of Improvement
4.4.1.1 Single Target

Recall that, in the case of minimization, an improvement is said to occur if x has an
objective function value less than the current minimum observation fmin. It has already
been seen how the expectation value of the improvement for unevaluated design vec-
tors was used as a utility function to determine which design vector should be evalu-
ated next. This section introduces instead the probability of achieving a certain level of

improvement.

Setting f* < fmin, the probability of x having an objective function less than f* may be
calculated by integrating the area under the curve given by the random process Y. In

the case of kriging, where Y is a normal distribution, this area is [81]:

oL 59) (@12)

where @ is the normal cumulative distribution function. This is illustrated in Figure 4.6,
where the shaded area represents the probability of x* having an objective function

value T = f* < fmin.

Maximizing this probability of improvement proves to be very effective in balancing search-
ing around the current optimum, and searching in unexplored areas of objective space.
However it has one drawback, in that it is very sensitive to the value of f*: for f*
which is too close in value to fmin, the search is excessively local; for f* which is set too
small, the search is excessively global, as can be seen in Figure 4.7 for three levels of

improvement set using the equation
f* = Smin — “(fmax - fmm) (4.13)

with three values of « (lower values of a correspond to less ambitious targets).
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FIGURE 4.7: Probability of Improvement for different values of «
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TABLE 4.4: Values of « used in the enhanced probability of improvement approach, as
recommended in [14].

Target Number a | Target Number « | Target Number «
1 0.0 10 0.07 19 0.25
2 0.0001 11 0.08 20 0.30
3 0.001 12 0.09 21 0.40
4 0.01 13 0.10 22 0.50
5 0.02 14 0.11 23 0.75
6 0.03 15 0.12 24 1.00
7 0.04 16 0.13 25 1.50
8 0.05 17 0.15 26 2.00
9 0.06 18 0.20 27 3.00

A way of overcoming this sensitivity problem has already been seen: maximizing the
expected improvement, rather than the probability of improvement. However, a more
natural way, and the way recommended in [14], is to simply evaluate multiple design

vectors each iteration, by using different levels of improvement.

4.4.1.2 Multiple Targets

A way of varying f* is suggested in [14]. At each iteration, 27 values of f* were eval-
uated, using formula Equation 4.13 with the 27 values of « given in Table 4.4. The
maximizers of the 27 different utility functions tend to group together, as illustrated in
Figure 4.8 for the first iteration on the Schwefel function. Obviously evaluating so many
design vectors so close to one another is not sensible practice, and so only one design
vector is chosen from each group for evaluation (the one corresponding to the highest
target number in Table 4.4, as this encourages more global searching). Figure 4.9 shows
the iterations of this method on the Schwefel function. This method tends to be very

robust, and is one of the approaches identified in {14] for much potential.

4.4.2 Credibility of Hypothesis

One-stage algorithms were first proposed by Jones [82], and introduced to the literature
in [14]. As their name suggests, each iteration of a one-stage algorithm involves only
one-stage: locating the design vector which, if it had a given objective function value
f* (set to be an estimate of the true minimum), would yield the most credible response
surface, given the design vectors already observed. Intuitively, the ‘credibility’ of a

surface may be seen as related to its smoothness, with smoother surfaces being deemed
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FIGURE 4.8: Location of targets which maximize their respective probability of
improvement.

more credible. The method has been implemented successfully using a radial basis
function surrogate model, in an algorithm known as rbfsolve [72, 73, 74]. This section
discusses its implementation using kriging surrogate models. Two variations exist:

goal-seeking, and optimization.

4.4.2.1 Single Target

In the goal-seeking one-stage method, a target f* is set (if the true value of the ob-
jective function global minimum were known, f* would be set to this). The purpose
of the algorithm is then to determine the design vector x*, which, if it had objective
function value f*, would yield the most credible response surface interpolating it and
the examples already observed. In kriging, the credibility is given by the conditional
likelihood, that is, the likelihood of the examples already observed conditional on the
surface passing through the hypothesized point (x*, f*), which is given by [14]:

1 exp (—(y —m)TC ! (y - m)) (4.14)

where
m = 1u+r(y* —p) (4.15)
C = R—rT (4.16)
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are the conditional mean and conditional correlation matrix respectively. The next de-
sign vector to be evaluated is the one which maximizes the conditional likelihood in
Equation 4.14 (which itself is maximized over 6, p, 4 and o2 for each x*). Note that
setting the derivatives of Equation 4.14 with respect to ¢? and y equal to zero and rear-

ranging, it is found that:

—m)TC1(y —

2o m)(; (y —m) (4.17)

_1"Cy + f*r'Clr—y'Clr - f*17CIr
B 1TC~'1 - 21TC-1r + (TC-Ir

(4.18)

Substituting these two expressions into Equation 4.14 and taking logarithms, the con-

ditional log-likelihood (ignoring constant terms) is

_ nlogd? +log|C]|
2

(4.19)

In practice, it is this expression which is maximized over 6 and p for each x*; the x*

with the maximum conditional log-likelihood is then chosen to be evaluated.

The iterations of this method on the Schwefel test function are shown in Figure 4.10.
In each iteration the most credible kriging surface interpolating the observed points
and the assumed optimum is shown; the value of f* is set to be the value of the true

minimum.

4.4.2.2 Multiple Targets

As with the previous method, multiple design vectors may be chosen for evaluation by
using multiple values of f* at each iteration. Figure 4.11 shows the iterations of this

method on the Schwefel test function using values of f* as set before.

4.5 Discussion

This chapter, like [14], attempted to present an overview of the different methods avail-
able for single-objective optimization using kriging surrogate models. Unlike [14],
however, algorithms were categorized by whether or not they have tunable parameters;
those with tunable parameters were then categorized further by whether an estimate
of the global minimum was needed or not. In [14] two methods were selected as most
promising: the probability of improvement with multiple targets, and the one-stage

credibility of hypotheses method (with either single or multiple targets each iteration).
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Since their introduction in the publication of [14], one-stage methods have not received
much attention in the literature. However, very recent developments (using radial basis
functions, rather than kriging surrogate models) {74, 83] may revive interest in this

promising approach.

Even more recently, a new approach based on information theory has been proposed [84].
It outperforms the expected improvement criterion over a range of test functions and

appears to be a promising approach to take.




Chapter 5

Kriging-Assisted Multi-Objective

Optimization

5.1 Introduction

The previous chapter reviewed methods of selecting design vectors to evaluate, using
kriging surrogate models, to achieve the goal of single-objective optimization. This
chapter reviews methods of selecting design vectors to evaluate, using kriging surro-

gate models, to achieve the goal of multi-objective optimization.

5.1.1 Taxonomy of Kriging Assisted Multi-Objective Optimization Methods

At the most general level, multi-objective methods using surrogate models may be di-
vided into scalarizing and non-scalarizing methods. A proposed taxonomy of kriging
model-assisted multi-objective methods, based on this division, is given in Table 5.1.
Unlike the single-objective taxonomy, methods for selecting multiple points and sin-

1. Instead distinc-

gle points at each iteration have not been distinguished between
tion is made between the scalarizing function used in the scalarized approach (note
the weighting method is not included due to its inferiority to the weighted metric ap-

proach).

Scalarizing methods are quite simple: the multiple objectives of the MOOP are com-

bined using some function which maps from R™ — R. Then one of the methods for

lall scalarizing methods have natural methods of selecting multiple points (using different weighting
vectors for weighted metric approaches, or different values of € or different objective functions in the e-
constraint approach); methods for selecting multiple points from the single-objective taxonomy could also
be used for the scalarizing methods.

55
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TABLE 5.1:

Taxonomy of kriging model-assisted multi-objective optimization

methods.
Method for selecting search points
Scalarized Problem: Single kriging model Non-Scalarized Problem: Muitiple kriging models
Scalarizing Non-tunable Utility Functions: Tunable Utility Functions: Parameters allowing the balance be- Non-tunable Utility Functions: No parameters to set
Method No parameters to set tween exploration and exploitation to be altered
Non-target based: does not re- Target-based: requires an esti-
quire an estimate of the optimum mate f* of the opti
Surface Mini- Expected Generalized Weighted Probability Credibility (of Pareto Points Probability of Ex
mum Improvement Expected Expected (of achieving) hypothesis) of Surfaces Improvement Improvement
Improvement Improvement
e-Constraint Section 5.2.2
Method Section532 | Section 533
Weighted Section 5.2.3
Metric
TABLE 5.2: Table of scalarizing methods for transforming MOOPs to SOOPs.
Function Name Function Expression Constraints
¢e-constraint Method fi(x) fi(x) < j=12... . Mj#l
L u .
xf ) <x < x} ) i=1,2,...,d
s (L) )
Weighting Method Zw,-f,-(x) x; < x < x i=12,...,d
-1
1 v a
Weighted L, Method 1) =z 1P ) N (1 R
eighted L, Metho wi| fi(x) — 2} | x 7 <x < x i=12,...,4
i=1 T 7
Weighted Tchebycheff | maxM[wilf,-(x) —z7|] xf J<x < x§ b i=12,...,d
Method =120
s (L) (w)
Augmented Weighted | max [w;|fi(x) —z}*|] +p )_ [fi(x) — 2| x; 7 < x; < x i=1,2,...,d
Tchebycheff Method | '=%%~M i
< (n) (u)
Modified  Weighted | max {wi(lfi(x) =zt +p Y Ifilx) - zf*|)] x; 7 < x; < x i=1,2,...,4d
| Tchebycheff Method | '=12-M i

single-objective optimization from the previous chapter is used to minimize the scalar-

ized function. By varying the parameters which control how the multiple objectives

are combined, an approximation to the Pareto-optimal front can be built up. Scalariz-

ing methods are discussed in Section 5.2.

Non-scalarizing methods consider each objective function individually. The simplest

of these is just to evaluate the Pareto points predicted by the multiple surrogate mod-

els (equivalent to the strawman approach in single-objective optimization); however

more sophisticated methods are beginning to appear in the literature. Non-scalarizing

methods are discussed in Section 5.3.
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FIGURE 5.1: The e-constraint method, for different values of €.

5.2 Scalarizing Methods

5.2.1 Scalarizing Functions

The main purpose of a scalarizing function is to combine the multiple objectives of
a MOOP in such a way that the contours of the resulting function are able to cap-
ture every point on the Pareto-optimal front. Recent reviews of scalarizing methods
for multi-objective optimization in engineering may be found in [85, 86]. Some of the
most popular scalarizing functions are shown in Table 5.2. With the exception of the
e-constraint method, it is necessary to normalize each objective f; first so that it lies
in the range [0,1]. The following sections discuss these methods in more detail: in all

cases, each f; is assumed to have been normalized.

5.2.1.1 e-constraint Method

The e-constraint method considers only one of the objectives for minimization, whilst
treating the other objectives as constraints to be satisfied, thus transforming the MOOP

to a constrained SOOP. The problem to be solved becomes:

Minimize f1(x) {51)
subject to fi(x) <e€j, j=1,2....Mj#l
and x,(L) <0< x,(u) i=1,2,. .08
The way the e-constraint method works is illustrated for a two-objective problem in
Figure 5.1, where the Pareto-optimal front is displayed as a bold line. In this example,
f2 is chosen as the objective to be minimized, whereas different upper bounds €;,1 =

0,1,2,3 are shown for objective f;. In this case:
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® ¢p is too low; no feasible solution has a value of f; < €p, and so no solution is

found.
e ¢ yields solution zy; it is the solution which has the lowest f, value, for f; < €.
e ¢; yields solution zy; it is the solution which has the lowest f, value, for f; < €;.

e ¢3 does not restrict the feasible set at all, and yields solution z3; it is the solution

which has the lowest f, value in the entire feasible region.
Several important properties of these methods are discussed in [38], including:

1. The solution of Equation 5.1 is weakly Pareto-optimal.

2. x* is Pareto-optimal if and only if it is a solution of Equation 5.1Vl =1,..., M
where €; :f]-(x*),j =1,...,.M,j#L

3. If x* is the unique solution of Equation 5.1 for some [, with ¢; = f;(x*),j =

1,...,kj # 1, then x* is Pareto-optimal.

The second of these properties implies that all Pareto-optimal solutions may be found
to a MOOP using this method. Despite this appealing feature, it does require solving a
SOOP with a (potentially) high number of constraints, which is undesirable.

The remainder of the methods in this section combine the multiple objectives into a

single expression to be minimized.

5.2.1.2 Weighting Method

The weighting method is the simplest way of combining multiple objectives into one
single objective: each objective is simply associated with a weighting coefficient, and
the weighted sum is then the single objective to be minimized. Formally, the problem

becomes:

Minimize }% W fru (X) (5.2)
i=1

(u)

subject to <P <x < x; i=1,2,...,d.

i
where w; > 0Vi and Y™, w; = 1.

Several results for the weighting method are given in [38], the most significant of which

are:
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(a) Weighting method for concave MOOP. (b) Weighting method for convex MOOP.

FIGURE 5.2: Weighting method on concave and convex MOOPs.

1. The solution of Equation 5.2 is weakly Pareto-optimal.
2. The solution of Equation 5.2 is Pareto-optimal if w; > 0, Vi.
3. If the solution to Equation 5.2 is unique, then it is Pareto-optimal.

4. If the MOOP is convex, then V Pareto-optimal solutions x*, Jw € RM such that
x* is a solution of Equation 5.2.

This final theorem is illustrated in Figure 5.2. For the convex problem in Figure 5.2(b),
each solution on the Pareto-optimal front has a weighting vector associated with it such
that a contour exists which is tangential to it, and which intersects no other solution
inside the feasible region. However, for the concave problem in Figure 5.2(a), solutions
exist on the Pareto-optimal front for which no such weighting vector exists (such as
that indicated).

So clearly the simplicity of the weighting method comes at a price: only convex MOOPs
can have their Pareto-optimal fronts approximated with any degree of reliability.

5.2.1.3 Weighted L, Metric and Weighted Tchebycheff Metric

Some of the inadequacies of the previous method may be overcome by using different
metrics to define the distance of a solution from the Utopian point. A common type of
metric is the L, metric, defined as ||z! — 2%, = [ L, (|2} — 22(P)] P _Contours of the
L, and L, metrics are shown in Figure 5.3 and Figure 5.4 respectively.

Using the weighted L, metric method, the problem to be solved becomes

Minimize (i:w,lf,(x) -—z?|”); (5.3

subject to x,m <x<x
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FIGURE 5.3: Contours for the weighted L; metric.
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FIGURE 5.4: Contours for the weighted L, metric.

where 0 < p < oo. For the L, metric, one of the most important results is that the solu-
tion to Equation 5.3 is Pareto-optimal if either the solution is unique, or w; > 0, Vi [38].
Whilst appearing promising, the main drawback is in what the theorem does not say:
although solving Equation 5.3 produces Pareto-optimal solutions, it does not necessar-

ily produce all of them.

For p = oo, the metric is known as the Weighted Tchebycheff Metric, and the problem

becomes:
Minimize  max [w;|fi(x) — z]|] (54)
i=12,...M
subject to fo) o x§u) 1 =12 .8

The most significant result for the weighted Tchebycheff method is that for all MOOPs,
and for all Pareto-optimal solutions x*, 3w € RM(w > 0) such that x* is a solution of

Equation 5.4, where the reference point used is the Utopian vector z**.

Contour lines for the Weighted Tchebycheff Metric are shown in Figure 5.5. As can be
seen, solutions on the concave part of the Pareto-optimal front can indeed be located
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f2 (to be minimized)

fi (to be minimized)
FIGURE 5.5: Contour lines for the weighted Tchebycheff metric.

with this metric. The main drawback with the weighted Tchebycheff method is that,
whilst all Pareto-optimal solutions can be found using Equation 5.4, some of them may

be weakly Pareto-optimal.

5.2.1.4 Augmented Weighted and Modified Weighted Tchebycheff Metric

The inadequacy of finding weakly Pareto-optimal solutions using the weighted Tcheby-
cheff method may be overcome by varying the metric slightly. In particular, by adding
a slope to the contours of the Tchebycheff metric, weakly Pareto-optimal solutions
may be avoided. Two methods which may be used to achieve this are the augmented
weighted Tchebycheff method:

M
Minimize IlnzaxM[w,-]j}(x) —z*]+p Y Ifilx) — 2 (5.5)
=12, e

subject to £ S o= xfu) 1 =1,2,:..,d.

and the modified weighted Tchebycheff method:

M
Minimize | max, (100 ==+ 00 -5 )] 56)

=12

subject to x,(L) < x; < x,(u) 1 =1,2, 0,4

where p is a small positive scalar. The contours for the augmented weighted Tcheby-
cheff metrics are shown in Figure 5.6. The difference in the additional slopes added
to the contours of the weighted Tchebycheff metric for the augmented and modified
methods is illustrated in Figure 5.7.

Although each of these methods has the disadvantage that some Pareto-optimal so-
lutions may become impossible to find, it may be shown [87] that for every properly
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FIGURE 5.6: Contour lines for the augmented weighted Tchebycheff metric.
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FIGURE 5.7: Difference in contours for the augmented and modified weighted Tcheby-
cheff metrics.

Pareto-optimal solution x* of a MOOP, 3w € RM(w; > 0,Vi),p > 0 such that x* is a
solution to Equation 5.5 and Equation 5.6.

5.2.1.5 Discussion

Through use of increasingly sophisticated metrics, it has been seen how scalarizing
methods can be used to find:

e All Pareto-optimal solutions to convex MOOPs, using the weighted method,
e All Pareto-optimal solutions to all MOOPs, using the weighted Tchebycheff method,

e All properly Pareto-optimal solutions to all MOOPs, using variants of the weighted
Tchebycheff method.

After using any of these methods to transform a MOOP to a SOOP, any of the methods
in the previous chapter may then be used to solve the resulting SOOP. By varying the
weights used in the scalarizing method, approximations of the Pareto-optimal front can
then be built up. This gives rise to a huge number of possible cost-effective algorithms

for multi-objective optimization. Surprisingly few (other than the simplest, such as the
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weighting method combined with the ‘strawman’ approach) have been pursued in the

literature. Two notable exceptions are discussed in the remainder of this section.

5.2.2 e-constrained EGO Algorithm

In [70], the EGO algorithm is used to solve a practical MOOP, using the e-constraint
method. The viscosity of a material was chosen as the objective (which was to be mini-
mized), whilst the yield stress (which was to be maximized) was treated as a constraint,
constrained to be greater than a value of C. The method performed well, and resulted in
new materials being identified which outperformed existing materials simultaneously

in both objectives.

5.2.3 ParEGO

In [45], the EGO algorithm was used to solve MOOPs using the augmented weighted
Tchebycheff method. The algorithm, named ParEGO, was tested on a wide range of
MOOPs, and the results were compared (using several performance indicators) to the
popular NSGA-II algorithm. Unsurprisingly, ParEGO outperformed NSGA-II on al-
most every problem (NSGA-II is ‘greedy’, as opposed to cost-effective), and so perhaps
the comparison is slightly unfair. As more and more cost-effective multi-objective al-

gorithms appear, more useful comparisons should be possible in the future.

5.3 Non-Scalarizing Methods

As their name suggests, non-scalarizing methods do not combine the multiple objec-
tives of a MOOP into a single objective for a single-objective optimization algorithm
to solve. Instead, each objective function is considered individually when determining

where to evaluate next in design variable space.

Many greedy multi-objective optimization algorithms exist which are non-scalarizing,
in particular Multi-Objective Evolutionary Algorithms (MOEAs). However, non-scalarizing
methods for cost-effective multi-objective optimization have only appeared fairly re-

cently. This section discusses such methods.
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5.3.1 Strawman

In [88], a special switched reluctance motor was optimized so as to maximize the aver-
age torque, and minimize the ripple torque. Each objective was computationally ex-
pensive to evaluate, and so kriging surfaces were constructed to approximate each
separately. The Pareto-optimal points of the two surfaces were then located (using
three different optimization algorithms). The approach did not employ on-line learn-
ing: that is, once the Pareto-optimal designs (located by the optimization algorithms)
were evaluated, they were not used to create an updated kriging model, for searching
again with the optimization algorithms. Instead, a large initial experimental design
of 125 points (requiring 2375 finite element field calculations in total) was used, thus
ensuring the kriging models constructed - and therefore the Pareto-optimal set iden-
tified - were fairly accurate. However, by using a smaller initial experimental design,
along with a process of on-line learning (i. e. an iterative procedure of building kriging
models, identifying Pareto designs using an optimization algorithm, evaluating these
designs and then building updated kriging models for searching again), the approach
could have been made more efficient, as evaluations in design variable space could

have been targeted earlier towards the Pareto-optimal set.

5.3.2 Probability of Improvement

In Section 4.2.2, the concept of improvement was introduced for single-objective opti-
mization. By using the notion of dominance, this concept can easily be extended to
multi-objective optimization. Suppose at a given stage of an optimization search, a
set S of Pareto-optimal solutions exist. Then a new solution z* is said to constitute an

improvement if and only if z* is not dominated by the members of S. Thus z* may:

1. be equivalent to all members of S, or

2. dominate at least one member of S.

This is illustrated for a two-objective problem in Figure 5.8. Both shaded regions repre-
sent the area in objective function space which a solution which constitutes an improve-
ment would map into. Solutions which are equivalent to the 5 existing Pareto-optimal
solutions map to the region labeled ‘Equivalent Designs’; solutions which dominate at
least one of the 5 Pareto-optimal solutions map to the region ‘Dominating Designs’. De-
pending on where exactly the solution lies in this region, it replaces 1 or more solutions

in the Pareto-optimal set.
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FIGURE 5.9: Regions of equivalence and improvement for Npar = 5 Pareto solutions,
as used by Keane [13].

In [13, 89, 90] this idea was used to select points for evaluation. In [13, 90], a slightly
different convention is used, and solutions which expand on the frontier of the Pareto-
optimal front are considered as equivalent to the Dominating Designs, as shown in
Figure 5.9. Using this convention, the probability of a design vector constituting an
improvement (either a ‘Dominating Solution’ or an “Equivalent Solution’), is shown,

for a two-objective function problem, to be

Pl — <]p[ﬂ(ﬁ]+{1_q,[ff”"‘"—371(x>]}¢[f§”""'—9z<x)]

s1(x) s1(x) s2(x)

S5 e { [fl'*‘ yl(x)J [ff'—yl(x)]}q>[fzsi‘92"‘)] (5.7)

i=1 s1(x) s1(x) s2(x)




Chapter 5 Kriging-Assisted Multi-Objective Optimization 66

whilst the probability of it actually dominating at least one existing Pareto-optimal so-

lution is shown to be

Plljom, = o[ =209 ¢[M] }q,[m]

s1(x) s1(x) s2(x)

+N,gl {q,[fls;_gl(—x)} _q)[fls’ —91(’()} }qD[fzSM _yz(x)}(S.S)

5 s1(x) s1(x) s2(x)

The equations for a design vector constituting an improvement for an arbitrary number

of objectives are given in [89].

Both [13] and [89] report a significant weakness in this probability of improvement
utility function for MOOPs: it does not favour large improvements. Both however
suggest overcoming this weakness by instead evaluating the multi-objective equivalent

of the expected improvement.

5.3.3 Expected Improvement

In single-objective optimization, the expected improvement is the integral of the improve-
ment over the likelihood of achieving it. Defining expected improvement in multi-

objective optimization is similar:

E[I(x)] = /y . [0)PDE(y)dy (59)

where V.4 is the region of objective function space where solutions are non-dominated.

Calculating this integral is non-trivial, and different approaches exist. Both [13] and [89]
report reasonable results using the expected improvement criterion for selecting design
vectors in multi-objective optimization, and it is certainly more aggressive in its search

than the probability of improvement approach.

5.4 Discussion

The extension of cost-effective methods to multi-objective optimization has undoubt-
edly be slow. Scalarizing methods (due to them being more obvious) have been the
most popular, but even then usually only the simplest methods from single-objective

optimization are used.
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More promising has been the emergence of non-scalarizing cost-effective methods for
MOQOPs. These have only appeared very recently in the literature, and are the true
multi-objective counterparts to the utility functions for single-objective optimization

reviewed in the previous chapter.

Both scalarizing and non-scalarizing methods will be developed further in Chapter 7.




Chapter 6

Practical Issues

6.1 Introduction

So far, methods for selecting design vectors, using kriging surrogate models, have been
reviewed, for both single-objective and multi-objective optimization. This is the main
aspect of optimization discussed in the literature, but in practice, much more needs to
be considered. This chapter attempts to go some way in discussing those aspects which

are sometimes easily overlooked in the literature.

6.2 Choosing the Initial Set of Examples

Obviously, kriging surrogate models cannot be used to select every design vector to
evaluate during an optimization search: a certain minimum number of design vectors
need to be sampled before a kriging model can even be constructed. This initial set is
called an experimental design, and the theory behind selecting suitable points is known

as Design of Experiments [91].

Classical experimental designs were for real experiments involving measurements, and
as such had to account for features such as randomness and non-repeatability. Ex-
perimental designs for computer experiments do not have to take into account such
features, and so differ from their classical counterparts. Experimental designs for com-
puter experiments are commonly referred to as modern experimental designs [92, 93,
94]. In this section, two common modern experimental designs are discussed, namely

the Latin Hypercube, and the Hammersley sequence.

68
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(a) Latin hypercube, n = 10 (b) Hammersley sequence, n = 10

FIGURE 6.1: Two popular experimental designs on the unit square.

6.2.1 Latin Hypercube

A Latin square of size n may be constructed by partitioning each side into n intervals
to create an n x n grid, and then placing a point in the centre of n squares in the grid,
so that each row and each column only contains one point. The generalization of this
concept to higher dimensions is known as a Latin Hypercube. It provides a simple way
of covering a design space with relatively few points; however, some Latin Hypercubes
can be quite poor at providing a uniform spread. Latin hypercubes are very popular in
the literature for initializing surrogate-model assisted algorithms, e. g. in [70], a Latin

hypercube of size 10d was used to initialize the EGO algorithm.

Figure 6.1(a) shows a Latin Hypercube of size 10 on the unit square.

6.2.2 Hammersley Sequence

A Hammersley sequence [95, 96] provides a relatively uniform distribution of points
over a space. In particular, it provides a low discrepancy distribution of points, dis-

crepancy being a measure of the deviation of a sequence from the uniform distribution.

The formal construction of a Hammersley sequence may be found in [96]; a Ham-

mersely sequence of size 10 on the unit square is shown in Figure 6.1(b).

6.2.3 Discussion

Unlike most of the other topics in this chapter, the amount of literature on experimental
designs is huge. Papers appear regularly comparing different designs, making recom-
mendations on size and so on, however the findings of some contradict the findings of
others. No clear conclusions can be drawn easily, other than obviously the more exam-

ples included in the design, the more accurate the resulting surrogate model is likely to
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be. It also seems to be quite appealing to include the 24 corner points of design variable
space if possible (this is not feasible when the number d of design variables is large);
indeed, apart from the central point of design variable space, these are the only points
used in the radial basis function of Gutmann [72]. It also seems quite beneficial to in-
clude several points close together in design variable space, as this forces the gradient
of the resulting surrogate model to be very accurate in this region, and this seems to
increase the accuracy of the surrogate model considerably. However, all findings are
empirical, and so making general recommendations is not easy. More often than not,
as the emphasis in the literature is on selection criteria (as discussed in the previous
chapters), not much worry is put into the process, and a standard experimental design
(usually a Latin Hypercube) of a size proportional to the number of design variables
(e.g. 10d in [70]) is used.

6.3 Determining the Parameters of the Kriging Model

To construct the kriging surrogate model, the concentrated log-likelihood function (given
in Equation 3.28) needs to be maximized over the kriging parameters 8 and p. Typical
plots of the log-likelihood against these kriging parameters suggest that a deterministic
algorithm, such as the Nelder-Mead simplex algorithm [97], is suitable for this purpose.
This is used by some in the literature, e.g. [45], whilst [98] hybridizes it with a genetic

algorithm.

6.4 Choosing a Utility Function

Chapter 4 and Chapter 5 reviewed a wide range of utility functions which could be
used for selecting design vectors to evaluate during optimization. In practice however,
a choice must be made of which one to actually use. Each have their own particular
merits and drawbacks: El is simple to use as it has no parameters to set, and it provides
a natural balance between exploration and exploitation, however it can sometimes be
slow to converge on the global optimum, even when it has found its basin of attraction;
GEI, WEI and POI on the other hand, allow the balance between exploration and ex-
ploitation to be controlled, the drawback being that such control is inevitably arbitrary.
We have already seen how cooling schemes and cyclic schemes can be used to control
the parameters of these algorithms, and how using multiple values of the parameters at
each iteration can be used to select multiple points. The ‘one-stage’ method described

in Section 4.4.2 also allows this control, and has the additional advantage of being less
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vulnerable to deceptive experimental designs, however it has the drawback that it itself

becomes computationally expensive as the number of sampled points grows.

Ultimately, the choice of which utility function to use is determined by the problem,
available computing resources, and whether we wish to ever intervene to force itera-
tions to be more exploratory or exploitative. If we simply wish to start an algorithm and
then wait for the results, then EI, or GEI/WEI with a suitable cooling or cyclic scheme
would seem the most appropriate choice. If multiple computers are at our disposal, al-
lowing several evaluations each iteration, then using multiple targets with POI would
seem the most appropriate choice. If iterations are extremely expensive, and/or we
have a good estimate of the objective function value at the optimum, then the credibil-
ity utility function seems a good option, especially if multiple computers are available

for use at each iteration.

6.5 Locating the Optimum of the Utility Function

Whilst the objective functions of practical optimization problems may not display any
typical behaviour, the utility functions used in kriging-assisted single-objective opti-
mization do exhibit typical behaviour, as can be seen by examining the figures in Chap-
ter 4. Typically, the EI, GEI, WEI, POI and credibility utility functions are all highly
multimodal. The EI, GEI, WEI and POI functions all take values of zero at the sampled
points, and can be quite flat (taking values very close to zero) over large regions of
design variable space, making them difficult for deterministic algorithms to optimize;
the credibility utility function takes values of minus infinity at the sampled points, and
can also be quite flat over large regions of design variable space, again making them

potentially difficult to optimize.

Very often, the algorithm used to maximize the chosen utility function is not reported
in the literature, however it is clear (due to the existence of large numbers of local
minima, and existence of large featureless flat regions), that a good global optimization
algorithm is needed. In [70], a branch-and-bound algorithm was used to maximize
the expected improvement function in the EGO algorithm. Due to the difficulty of
implementing this algorithm, a standard genetic algorithm was instead used in [45] to

maximize the expected improvement in the ParEGO algorithm.
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6.6 Updating the Kriging Model

After each iteration of a kriging-assisted optimization algorithm, a new example (or
several new examples) exists, which should be considered in subsequent iterations. In
particular, the correlation matrix R, which depends on all the observed points, needs
to be updated. This matrix is then to be inverted, which can be computationally expen-

sive. Preferably some technique can be used to reduce this cost.

In [99], a method of updating the correlation matrix is suggested using its Cholesky fac-
torization. Such a technique could be advantageous if the number of sampled points
grows very large, however it is only useful when the kriging parameters 6 and p are
not being updated. This technique may be particularly useful for reducing the compu-
tational cost of the one-stage approach, as it could be used to update the conditional
correlation matrix C at each iteration. In the algorithms used in this thesis however, full
updates occur at every iteration: that is, the kriging parameters are optimized using the
updated log-likelihood function at each iteration, and the updated correlation matrix

R (or C in the case of the one-stage approach) is inverted.

6.7 Dealing with Failed Iterations

When running algorithms on mathematical test functions, iterations are always suc-
cessful, in the sense that whatever the design vector the algorithm chooses to evaluate
next, it can actually be evaluated. This however, is not always the case in engineering
design problems. Evaluating objective functions and constraints using CAD software
involves building a model, generating a mesh, creating a database, running a solver
and then post-processing to evaluate the outputs of interest. Any one of these stages is
prone to failure; however, if an iteration does fail, this should not subsequently mean
that the algorithm then fails. Instead mechanisms should be built into the algorithm to

deal with failed iterations.

This issue is crucial for every algorithm included in a practical optimization toolkit.
However, this topic is almost entirely overlooked in the literature. Recently however,
methods were proposed in [100] for dealing with missing data, which involved im-
puting values for failed iterations which consequently penalized that region of design

variable space.
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6.8 Inequality Constraint Handling

In Chapter 4 and Chapter 5, attention was only given to achieving the aim of minimiz-
ing the objective function(s) of an optimization problem. In particular, satisfaction of
constraints was ignored. However, the constraints are a crucial part of the problem, as
they dictate whether a solution is feasible or not: and in many cases, finding a solu-
tion which is infeasible (no matter by how little), is as good as finding no solution at
all. Clearly significant attention needs to be paid to constraint handling during an opti-
mization search. This section deals with the handling of inequality constraints, whilst

the next section deals with the handling of equality constraints.

6.8.1 Probability Methods

Probability methods work with the EI, GEI and POI utility functions ! in single-objective
optimization. They simply involve calculating the probability of each constraint being
satisfied (for an unknown design vector), and then multiplying the utility function by
this. Thus design vectors which are most probable to violate a constraint have lower

utility function values, and so are less likely to be selected for evaluation.

In [101], this method was used successfully with the EGO algorithm to optimize an
engine piston subject to certain friction constraints, and in [102] it was used with the
EGO algorithm to optimize an airfoil design subject to drag constraints. A drawback
of the method is that it seems to influence the value of the utility function too severely,
thus preventing the algorithm from exploring points along the constraint boundary
where the true optimum lies. This is because the utility function is penalized gradually

outwards from the feasible region, this impacting on the feasible region.

6.8.2 Penalty Methods

Penalty methods are perhaps even simpler than probability methods, as they work by
reformulating the constrained optimization problem as an unconstrained optimization

problem:

Minimize wgf(x)+ ):{:0 w; max(0, gi(x)) (6.1)

subject to x,(L) <x < el i=12,...,d

i

The reason probability methods cannot be used {directly) with the WEI or credibility utility functions
is because they can take positive and negative values.
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where the non-negative weighting factors w, and w; are included to place relative im-
portance on the objective and constraints, which are all assumed to be normalized. As
each inequality constraint g; is supposed to be less than or equal to zero, the penalizing
term is zero when the constraints are satisfied, and strictly positive when a constraint
is violated. All the utility functions for single-objective optimization may then be used
in the usual manner on Equation 6.1 to be minimized. This approach has been ap-
plied successfully to the radial basis function method of Gutmann [72] in the rbfsolve
algorithm [73, 103], and also to the EGO algorithm. It has the advantage that the util-
ity function is more sharply penalized at the constraint boundary, thus allowing the
optimization algorithm to locate the optimum more quickly. It is the constraint han-
dling method used with the rbfsolve and EGO algorithms in the powerful TOMLAB

optimization software.

6.8.3 Expected Violation Method

The expected violation method, proposed in [104], may be used to naturally select mul-
tiple points per iteration for evaluation. Suppose N, points are to be evaluated. Then,
a large number of potential candidates for evaluation are selected using a Latin hyper-
cube (which covers the entire search space). The expected violation of each candidate
is then a J dimensional vector, whose i" component is defined as:

(8i(x) - 0)® (%) + sg,.(x)(p(%) if 5¢,(x) > 0

0 if sg,(x) =0

EVi{(x)] = 6.2)

where §;(x) is the kriging prediction of the it constraint, and s, (x) is the mean squared
error in this prediction. The value of Equation 6.2 is high when the constraint is likely
to be violated, and when there is large uncertainty in the value of the constraint. The
method proceeds by rejecting all candidate design vectors for which the maximum
component of its expected violation vector is outside a user-defined limit. The N,
design vectors with the highest value of the EI utility function are then selected for

evaluation.

This method of inequality constraint handling suffers from the fact that the initial Latin
hypercube has to be very large in size in order for suitable design vectors to be found

(e.g. of the order of 10° candidates were used in [104].)
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6.8.4 Constrained Utility Function Method

The constrained utility function method simply transforms the unconstrained problem
of maximizing the utility function, to a constrained problem. For example, in [105, 106],

the problem of maximizing the expected improvement becomes:

min — 5 &b min_A(x)> < min*h(x)) :

Maximize E[1(q] = | U~ 70002 (2558 ) st (B0 ) its(a >0

subject to §i(x) >0 j=12,....];
KD < x; xi(u) i=1,2,...,d

where ¢;(x) is the kriging prediction of the i" constraint. This method was also used

in [107] to carry out constrained optimization on two electromagnetic devices.

Note that this method is equivalent to that proposed in [80], which modifies the WEI

utility function using

[ 0 foie —y‘(X))¢< "“';‘x;"‘)> +(1 —w)s(x)¢( mi;(—x;m)

ifs(x) >0and §i(x) <0,i=1,2,...,]
WE[I(x)] = (6.4)

0
if s(x) = 0 or Ji such that ¢;(x) > 0.

6.9 Equality Constraint Handling

In practice, strict satisfaction of computationally expensive constraints is impossible: it
is only realistic to force each equality constraint (which we cannot set ourselves) to be
within a certain tolerance of its desired value. Two ways have appeared in the literature
for achieving this: transforming the equality constraint into two inequality constraints,

and transforming the equality constraint into an objective.

6.9.1 Transformation to Two Inequality Constraints

This approach rewrites each equality constraint h;(x) = 0 instead as

L < hi(x) < el (6.5)
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LU
where |%'—|, l%'—] < 1. Thus some tolerance is acceptable in achieving the constraint.

This is the approach suggested in [106], although no results are given using it.

6.9.2 Transformation to an Objective

This approach rewrites each equality constraint h;(x) = 0 as
Minimize |h;(x)|. (6.6)

By minimizing this expression, each equality constraint is driven towards zero, which

is what is required.

In [102], an equality constraint (on the cross-sectional area of an airfoil) was dealt with
using this approach. The original constraint was that A(x) ~ A; where A(x) was the

area of the airfoil, and A; was the desired area. This was reformulated as

|A(x) = Av|

e 6.7)

Maximize 1—

It should be noted that this is equivalent to the objective in Equation 6.6, as maximiza-
tion of —|A(x) — A;] (the only variable part of Equation 6.7) is equivalent to the mini-
mization of h(x) = |A(x) — A;|. Using this approach obviously requires dealing with
multiple objectives: in [102] this was done using a MOEA, however a scalarizing ap-

proach could also have been used.

6.10 Termination Criteria

Deciding when to terminate an optimization algorithm is an important factor to be
considered. When test functions are used, a natural criterion is when the solution found
by the algorithm is within a certain tolerance of the true solution; this is impractical for
engineering problems however, as the true solution is not known. However, if goals are
set for each objective function, then these could provide a natural stopping criterion; in

effect this transforms each objective into a constraint to be satisfied.

If goals are not set, natural stopping criteria may be defined either from the point
of view of the algorithm (such as solutions converging together, no significant im-
provements being made in recent iterations, or expected improvement/probability of
improvement falling below a certain threshold), or from the user’s point of view (such
as the algorithm exceeding a certain number of iterations, or exceeding a certain time

limit).
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Chapter 7

Novel Kriging-Assisted
Optimization Algorithms

7.1 Introduction

The purpose of this chapter is to propose novel algorithms which are effective in solv-
ing computationally expensive, constrained, multi-objective optimization problems,
such as those which arise in electromagnetic design, building on the ideas of previ-
ous chapters. Of course, not all electromagnetic design problems are multi-objective:

the first section proposes a novel algorithm for single-objective problems.

Most of the algorithms in this chapter are available through use of an ‘advanced op-
tions” dialog, which allows full control over the selection criterion used at each itera-

tion. This is discussed in more detail in the next chapter.

7.2 Hybrid One-then-Two Stage Single-Objective Algorithm

In Chapter 4 a range of different utility functions was presented for use in single-
objective optimization. Each had its own particular merits and drawbacks: this mo-
tivates the algorithm proposed in this section, which attempts to draw on the strengths

of each.

7.2.1 Motivation

In [14], the credibility of hypothesis utility function is recognized as a promising utility

function for single-objective optimization. Perhaps its most attractive feature is that
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it can perform well with deceiving experimental designs, something that is certainly
not true with other utility functions. However this comes at a price: evaluating the
credibility of a hypothesis itself becomes computationally expensive when the number

of sampled points becomes large.

Expected improvement and its generalizations on the other hand, remain computa-
tionally cheap to evaluate throughout the optimization process. Thus it makes sense
to switch to using the expected improvement utility function (and its generalizations)
when the computational cost of using the credibility of hypothesis utility function be-
comes large. This is the main idea behind the following algorithm.

7.2.2 Overview of Algorithm

The proposed algorithm for locating the global minimum in d-dimensional design vari-
able space consists of three steps: initialization, one-stage experimental design, and

two-stage optimization search.

7.2.3 Initialization

The only purpose of the initialization step is to sample enough points to allow a non-
trivial kriging model to be constructed (i.e. a model which is not a hyper-plane in RY).
The space-filling Hammersley Sequence experimental design, of size 4d, is used to se-
lect the points. The experimental design size of 4d is much smaller than is normally
used (104 is suggested in [70] for example), as the philosophy of this algorithm is to use
information about objective function space to search for the minimum at the earliest

possible opportunity *.

7.2.4 One-Stage Experimental Design

Information about objective function space has now been obtained through sampling
4d points, and the aim in this second step is to use this information to strategically
choose where to sample next. Let the minimum objective function value of the 4d sam-
pled points be fmin, and let the maximum be fmax- A design vector x* is then hypoth-
esized to exist in design variable space which has an objective function value f* given

by Equation 4.13. The value of a determining f* is varied using a cyclic scheme, and

1The authors of the TOMLAB optimization toolbox also seem to appreciate that very small experimen-
tal designs can be used with one-stage algorithms {77]. In any case, at least d + 1 points are needed for a
non-trivial surrogate model to be constructed.
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the design vector chosen for evaluation at each iteration is the one which maximizes
the credibility of the hypothesis of it having objective function value f*. This step is

repeated for 6d iterations until 104 points in total have been evaluated.

7.2.5 Two-Stage Optimization Search

In this final step of the algorithm, a kriging model is constructed using the 10d sampled
points. The GEI utility function is then used (with a cooling scheme) to select points for
evaluation, until g = 1 is reached. Then the WEI utility function is used to select points
for evaluation: a cyclic scheme is used for varying the weighting parameter w. Using
WEI to finish the search allows more exploitative iterations to be used than is possible

with the GEI utility function.

Full details of the algorithm (including its performance in electromagnetic design) may
be found in [3, 4]. Constraint handling techniques may be included by penalizing the
utility function being used at each iteration using any of the methods discussed in the

previous chapter.

7.3 Kriging-Assisted Scalarizing Algorithms for Constrained
Multi-Objective Optimization

In Chapter 5, a selection of both scalarizing and non-scalarizing methods were intro-
duced for kriging assisted multi-objective optimization. From the scalarizing methods
section, it is obvious that, due to the large number of utility functions which exist
in single-objective optimization, and the large number of scalarizing functions avail-
able for transforming a MOOP into a SOOP, a plethora of algorithms are available for
cost-effective multi-objective optimization. Despite this, other than the ‘strawman’ ap-
proach, only the expected improvement utility function has been used in scalarizing
methods for MOOPs. The goal of this section is to propose new scalarizing algorithms,
making better use of the methods available from single-objective optimization. Sec-

tion 7.4 then deals with non-scalarizing algorithms.

Table 7.1 replicates the taxonomy of kriging model-assisted multi-objective optimization
methods from Chapter 5, highlighting how the novel algorithms (scalarizing and non-
scalarizing) in this chapter fit into the overall picture. Note that the e-constraint method
could alternatively have been used to develop the novel scalarizing algorithms in this
section (instead of a weighted metric approach); such scalarizing algorithms remain to

be explored.
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TABLE 7.1: Taxonomy of kriging model-assisted multi-objective optimization

methods.
Method for selecting search points
Scalarized Problem: Single kriging model Non-Scalarized Problem: Multiple kriging model.
zing N ble Utility Functi Tunable Utility Fi i P allowing the balance be- N ble Utility Functi No par to set Tunable Util-
d No parameters to set tween exploration and exploitation to be altered ity Functions
Non-target based: does not re- Target-based: requires an esti-
) quire an estimate of the optimum mate f* of the optimum
Surface Mini- Expected Generalized Weighted Probability Credibility (of Pareto Points Probability of Expected Enhanced
mum Improvement Expecled Expected (of achieving) hypothesis) of Surfaces Imp 1t Imp Probability of

P P

Section 7.3.4.2

The general procedure of the scalarizing algorithm for constrained multi-objective opti-
mization is shown in Figure 7.1. The following sections describe the main stages of the
algorithm in detail.

7.3.1 Experimental Design

As discussed in Section 6.2, several modern space-filling experimental designs now
exist, and the choice of which to use is inevitably arbitrary. However, empirical studies
(e. g [108]) suggest that uniform designs tend to give better results. For this reason, a

Hammersley sequence [96] is used for the initial selection of design vectors.

Following advice in the literature, the size of the initial experimental design, Nexp, is
scaled according to the number of design variables d. In constrained optimization how-
ever, it turns out to be quite beneficial to have at least one example in the experimental
design which is feasible (i. e. satisfies the constraints), and for this reason the experi-

mental design size is also scaled according to the number of constraints,
Nexp = 6(d + ] +2K), (7.1)

where | and K are the number of inequality and equality constraints respectively. Note,
that in the rare case of insufficient successful designs being found from the experimen-
tal design to allow construction of an initial kriging model, further experimental design

points are selected using higher order Hammersley sequences.

7.3.2 Dealing with Failed Designs

As discussed in Section 6.7, in optimal electromagnetic design the process of evaluating
objective functions and constraints typically involves building a model, generating a
finite element mesh, creating a database, running a solver and then performing some
post-processing using CAD software. Each of these stages is prone to failure, meaning

Improvement
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Select experimental

design points z*

|

Evaluate f(z*), g(z*), h(z*)
using CAD software

No Select further experimental

design points x*

Yes

Sct iter =0 ]

l

Build kriging model

using successful designs

1

Input penalized values

for failed designs

|

Determine f/e%, fmin §=1,2,..., M

for scalarization

|

Determine ¢;,1 = 1,2,..., K

for equality constraint handling

|

I Set weight vector A(iter) 1

|

I Maximize U(z)

@ No Relax constraints

Yes

‘jr‘

Evaluate f(z),g(z), h(z)
using CAD software

l

iter = iter + 1

FIGURE 7.1: General procedure for the scalarizing multi-objective optimization algo-
rithm.
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that it is not always the case that information will be obtainable from a design selected

for evaluation.

Following advice in [100], for each failed design x*, each objective function value f; is

penalized using a value of

F(x) = { f,-(x*) + s(x*) if f; is to be minimized 72)

fi(x*) — s(x*) if f; is to be maximized

where f;(x*) is the kriging prediction of f;(x*) based on the successful designs, and
s(x*) is the standard error in this prediction. The kriging predictions §;(x*), k;(x*)
(again based on successful designs) are input for the constraint vectors of each failed
design; penalization of the objective function values alone is deemed sufficient to guide

the algorithm away from the regions with high probability of failure.

7.3.3 Scalarization

Once the experimental design stage is finished, and each of the failed designs penal-
ized, the M objectives of the MOOP are normalized so that each objective function lies

within the range [0,1], using

i) = BRI 7

where fMin, fmax are the true lower and upper limits of objective f; respectively. If the
true limits ™", f™@ are unknown (as will often be the case), then the maximum and
minimum values obtained so far are used. This leads to an ideal objective function

value of z* = (0,0,...,0)T.

Once normalized, the objectives are combined using the augmented weighted Tcheby-

cheff function [38]:
M . M _
falx) = I}ljl}(/\jlf;(’() —zj[) +p ) A1 fi(x) = z}1) (7.4)
= =

with p set (arbitrarily) to 0.05. The normalized weighting vector A = [A1,A2,...,Apm] is

randomly set at each iteration.

7.3.4 Selection of Design Vectors and Constraint Handling

With the original MOOP now transformed to a SOOP, any of the selection criteria from

Chapter 4 may be used to select design vectors for evaluation [7]. In particular, two
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possibilities are:

e U(x) is the generalized expected improvement utility function. In this case, a
cooling scheme may be used to vary the value of g as iterations proceed. This is

discussed in Section 7.3.4.1.

e U(x) is the credibility of hypothesis utility function [6, 9]. In this case, as each
objective has been normalized, an ideal target value of f* = 0 may be used at

each iteration. This is discussed in Section 7.3.4.2.

To make the algorithm as versatile as possible, constraint handling techniques are in-
cluded. Each equality constraint k;(x) = 0 is transformed to two separate inequality
constraints, |h;(x)| < €;, where €; is taken to be a small percentage (x%) of the range of

the values of k; of the designs so far sampled,

X

= J0g ™ - hminy, (7.5)

€i
In this implementation, x is set to be 5. This results in a MOOP with | + 2K inequality
constraints. These are dealt with using the constrained utility function method dis-

cussed in Section 6.8.4.

7.34.1 Generalized ParEGO Algorithm

In [45], the expected improvement criterion was used to select design vectors, after the
scalarization process described in Section 7.3.3. As discussed above, a natural general-
ization of this algorithm is to use instead the generalized expected improvement crite-

rion, along with a constraint handling method such as the constrained utility function

g—k
8 ! min —J(X)
Sgik—o(*l)k<k!—<g%) (LOL) Ti
if $i(x) <0,i=1,2,...,] and
Ux) ={ hi(x)| <e,i=1,2,...,K (7.6)

method:

4

0
| if Ji such that ;(x) > O or |Bi(x)| > €.

where the terms are as defined in Section 4.3.1. This algorithm is investigated in [7],
and is the default algorithm for constrained (and unconstrained) multi-objective opti-

mization in the Vector Fields software, as discussed in Section 8.3.4.1.
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7.3.4.2 Scalarizing One-Stage Algorithm

One attractive utility function for selecting design vectors in single-objective optimization
was the credibility of hypotheses function. Surprisingly, it has received little attention
in the literature; in particular, it has not been used for multi-objective optimization.
However, by combining it with the constrained utility function method, it can easily be

used for constrained multi-objective optimization. The utility function U(x) becomes:

v—m)TC-1(y—
( (2n)"’/2(0%)"’ 2|C[172 exp( {y m)z‘(,:z ¥ m))

if §i(x) <0,i=1,2,...,J and
U(x) = J |f1,(X)| <e€,i=12,...,K (77)

0
| if 3i such that g;(x) > O or |#;(x)| > €.

where the terms are as defined in Section 4.4.2.1. Note that the conditional likelihood
(rather than the conditional log-likelihood) has been used, as this allows a penalty value
of 0 (rather than —oo) to be used when a constraint is predicted to be violated. This al-
gorithm is investigated in [9]. Whilst the hybrid one-then-two stage algorithm in the
previous section represented the first time the one-stage methodology had been used
for selection of design vectors in electromagnetic design optimization, this algorithm
represents the first time it has been used for multi-objective optimization (in any disci-

pline).

7.3.4.3 Constraint Relaxation

In each of the two scalarizing algorithms proposed, the design vector which maximizes
U is selected for evaluation. The method chosen for dealing with constraints suffers in
that it is possible for U(x) = 0 Vx (as a consequence of at least one constraint being
predicted to be violated for every x); when this happens, the constraints are gradually
relaxed, until a design vector which yields a non-zero value of U is found, and this is

then selected for evaluation.

7.3.5 Termination Criteria

After evaluation of the design vector which maximizes the utility function U, it is added
to the set of examples. The algorithm then repenalizes the failed designs, using a krig-

ing model based on the updated set of examples; objectives are then renormalized and
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rescalarized (using a different weighting vector A), and another design vector is se-
lected using the updated utility function U. This procedure continues until one of two
possible termination criteria is met: either a maximum time limit fn.x has been ex-

ceeded, or a maximum number of iterations itermax have been carried out.

7.4 Kiriging-Assisted Non-Scalarizing Algorithms for Constrained
Multi-Objective Optimization

In Section 5.3, a drawback of the probability of improvement utility function (itself
proposed independently as a result of this research [109]) was identified, namely that
it does not favour large improvements. This was overcome by extending the notion
of expected improvement to multi-objective optimization, however this approach was
rather cumbersome. Furthermore, no control was available over the utility functions
in non-scalarizing methods: no parameters were available to fine-tune the search. The

goal of this section is to propose a non-scalarizing method which allows this control.

7.4.1 Motivation

The multi-objective algorithm proposed in this section differs from those in Section 7.3
as it is non-scalarizing. The idea behind the algorithm is to provide a means of con-
trolling where exactly we wish the design vectors selected for evaluation to map to in
objective function space. The theory developed here is for the two-objective case, but

is extensible to an arbitrary number of objectives.

7.4.2 Algorithm (Two-Objective Case)

For each solution z to a MOOFP, three different types of region can be identified in ob-
jective function space: regions in which other solutions dominate z, regions in which
other solutions are equivalent to z, and regions in which other solutions are dominated
by (i.e. worse than) z. Such regions are shown for two solutions A and B in an objective
function space which has two objectives f; and f; (both to be minimized) in Figure 7.2.
Naturally these regions overlap: some regions yield improvements on both A and B;
other regions only dominate one of A or B; other regions are equivalent to one solution,
but better than the other; and so on .... This leads to the notion of there being differ-
ent levels of improvement possible in MOOPs, depending on the number of solutions

dominated by a new solution.
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| I
Equivalent to A : Worse than A : Worse than A
Equivalent to B I Equivalent to B | Worse than B
| |
e S FE—
| |
g Improvement on A : Equivalent to A : Equivalent to A
s Equivalent to B | Equivalent to B I Worse than B
| |
C A Booo
o | |
Improvement on A : Equivalent to A : Equivalent to A
Improvement on B | Improvement on B | Equivalent to B
| I
! 5
it iid

fi (to be minimized)

FIGURE 7.2: Regions of improvement, equivalence and detriment for two solutions in
a two-objective problem.

Levels of Improvement
Level 0

fi (to be minimized)

FIGURE 7.3: Probability of improvement levels for Npar = 5 Pareto solutions for a
two-objective problem.

In general, when Np,r Pareto-optimal solutions have been identified, k = Npar natural
levels of improvement may be defined, where the k' level of improvement yields a
solution which dominates exactly k of the existing Pareto-optimal solutions. In addition,
a level of equivalence may also be defined (k = 0), which yields an additional Pareto-
optimal solution which does not dominate any of the existing Pareto-optimal solutions
(i.e a design vector which maps to the region labeled “Equivalent Designs’ in Figure 5.8).
These levels of improvement are shown in Figure 7.3 for the Npar = 5 Pareto solutions

considered earlier in Chapter 5.
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As can be seen, in the two-objective case, for an improvement level k, a design vec-
tor may map to Npar — k + 1 regions of objective function space. Denoting P(I¥(x))
as the probability that an unknown design vector x yields a level of improvement k
(i.e. it dominates exactly k existing Pareto-optimal solutions), P;(I¥(x)) as the probabil-
ity that design vector x will dominate the k Pareto solutions S;;1,S;2,...,Sisk (these

sub-regions are labeled in Figure 7.3), and defining

®i(x) = (fl sl(fl)( )) (7.8)
Dj(x) = cb(f—zi;(f})(x)> (7.9)
with
M(x) = 0 (7.10)
o) = 1 (7.11)
PY(x) = 1 (7.12)
O (x) = 0 (7.13)

where fi(-) and s;(-) are the kriging predictions and standard errors for the first ob-
jective function respectively (similarly for the second objective function), and flS " is the
first objective function value of the ih Pareto solution (similarly for the second objective

function), then:

Npar—k
P(IF(x)) = Y. P(I*(x)) (7.14)
i=0
Npar—k 4
= Y (P(x) - Pi(x )) (D5 (x) — DA (x)). (7.15)
i=0

Furthermore, denoting by P*(1¥(x)) the probability that x will dominate at least k exist-
ing Pareto-optimal solutions, then

Npar Npar _/

PUIFx)) = Y 1 (950 — 04 (0) (95 (x) — ®" (). (7.16)
=k =0

By grouping together the maximizers of P (or P*) over the different levels of improve-
mentk =1,2,..., Npar, and selecting one representative design vector from each group,
it can be seen that Equation 7.15 and Equation 7.16 are two multi-objective equivalents
of the ‘enhanced probability of improvement’ in single-objective optimization, for the

case of two objectives. The method is extensible to higher numbers of objectives.
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This method has many attractive features. Firstly, as with other non-scalarizing methods,
it does not require objectives to be normalized, so upper and lower limits for the ob-
jectives do not need to be estimated. Secondly, unique to this method, effort can be
concentrated on searching for design vectors in specific regions of objective function
space, leading to a more diverse Pareto-optimal front. This simply involves locating
the design vector which maximizes the integral corresponding to the desired region
of objective function space. Thirdly, the method is naturally parallelizable, as multi-
ple design vectors, each most probable for mapping into different promising regions of

objective function space, can be identified and evaluated each iteration.

7.4.3 Constraint Handling

The non-scalarizing method may be extended to constrained optimization, by multi-
plying the probability of improvement by the probability of satisfying the constraints [10],

so e. g. Equation 7.15 becomes

/ 5.(x) . K _ hi(x h(x)—e:
Pt = T]o(- 88 [T (o) + o020
i=1 i j=1 1 g
Npar—k . . .
x Y (PH(x) — @i(x)) (PT(x) — PETH(x)). (7.17)
i=0

The design vector which maximizes this is that which is most probable to dominate k
existing non-dominated solutions and be feasible. Alternatively, the constrained utility
function method may be used to set the value of the utility function in Equation 7.15
or Equation 7.16 equal to zero when the constraints are predicted to be violated. These

methods remain to be fully investigated in the literature.




Chapter 8

Implementation

8.1 Introduction

As discussed in Chapter 1, the ultimate goal of this research is a practical optimization
tool for use in Vector Fields” electromagnetic design software, Opera. This Chapter
discusses the main details of how this tool was implemented, including how it com-
municates with the rest of Opera. User guides for the new software introduced are

given in Appendices B, C and D.

8.2 The Opera Manager

8.2.1 Introduction

A new front-end piece of software, the ‘Opera Manager’, was written, allowing access
to all of the main Opera programs (the Opera-2d Pre and Post-Processor, the Opera-3d
Modeller, the Opera-3d Pre-Processor and the Opera-3d Post-Processor), as well as the
documentation. It presents the user with a file browser display of the current project
folder (which contains the Opera files currently in use) so that known file types can
be opened using a double mouse click or the right mouse button context menu, and
a ‘Batch Processor’ window, as shown in Figure 8.1. Full details on using the Opera

Manager may be found in Appendix B.
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Opera Manager from Vector Fields - [F:\opera]

(O Ele Edt Opera-2d Opera-3d Options Windows Help

‘B AR aw
Folder | Name ; Siee ~  Twe Crested Moded ~
= CJopera || C2 Graphics Files Folder 28/11/2007 02:37:00 28/11/2007 02:37:03
# £ 2d_examples | Eheimhokz_a_fies Folder 31/12/2007 01:24:56 31/12/2007 01:26:15
= £ 3d_examples || helmhokz_durmmy_fies Folder 26/12/2007 17:45:07 3171272007 01:13:44
# (election_gun || heimhokz_fles Folder 28/11/2007 01:07:47 28/11/2007 10:0222
# (Jhelmhokz |3 helmhohz_random_files Folder 28/11/2007 02:30:07 28/11/2007 03:55.03
@ (Z)induction_heating ' (£3 opera_logs Folder 28/11/2007 01:04:21 28/11/2007 01:04:21
® (C)plate_capacitor | @D Helmhokz_post comi 1KB comi 28/11/2007 01:03:38 11/07/2007 11:3310
# ) quench i [E helmhokz_a.opn 3KB opn 3112/2007 01:24:56 31/12/2007 01:26:07
# (Dvadiation_screen | 3 hekmhotz_dummy.opn 7K8 opn 26/12/2007 17:45:07 31/12/2007 01:19.44
| [ Copy of helmhoz opn SOKB opn 28/11/2007 01:4256 28/11/2007 014224
© sesese dBD s X
BN s s i e | File Name | Program | Status [TmeStated ~ CreatedOn |
£: /opera/3d_examples/helmhotz/helmhoktz_a_files helmhokz_0001.0p3 TOSCA  running... Mon 31. Dec 01:26:15 2007 HAWE
E:/opera/3d_examples/helmhokz/heimhokz_a_fles helmhotz_0004.0p3 TOSCA  waling to start not started HAWE
E:/opeta/3d_examples/heimholtz/helmholtz_a_fles helmhokz_0002.0p3 TOSCA  waiting to start notstated  HAWE

CutentJobs | JobHistory | Optimization Resuts |

FIGURE 8.1: The Opera Manager, with the Batch Processor docked at the bottom.

8.2.2 The Batch Processor

Using the Opera Manager, unsolved Opera-3d databases (*.op3 files) and Opera-2d
data files (*.op2 files) may be sent to a ‘Batch Processor’ for solving. Handling jobs us-
ing a Batch Processor is beneficial, as it allows them to be built into a queue (which may
be reordered) before starting. Options may then be imposed on the queue as a whole:
for example, the maximum number of jobs to run simultaneously may be specified, or
the default CPU priority for each job in the queue may be altered. Full details on using
the Batch Processor may be found in Appendix C.

8.2.2.1 Batch Folders and Parallelization

Each Opera Manager has one (and only one) Batch Processor associated with it. Asso-
ciated with each Batch Processor however are two ‘batch folders”: a local batch folder
and a common batch folder, each of which are regularly monitored. Each job sent to the
batch queue is represented by a batch file (written in xml) in one of these two folders.
As a common batch folder may be shared between multiple Batch Processors (running
on different machines), creating several jobs in a common batch folder allows them to

be processed in parallel on multiple machines.
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8.2.2.2 Optimization Jobs

Jobs sent to the Batch Processor from within the Opera Manager involve only one stage:
solving the Opera *.op2 data file or *.op3 database. During optimization however, each

job generally requires three stages:

e Rebuilding and remeshing a parameterized model (the reset parameters being

the design variables of the problem).
e Creating a database from the model, and solving with an appropriate solver.

¢ Post-processing the solved database, to evaluate values of interest.

The batch file representing an optimization job therefore contains information about
how to carry out each of these stages. The results of the post-processing are then writ-
ten back to the optimization batch file by the Batch Processor, to be used by the opti-

mization tool, described in the following section.

8.3 The Optimization Tool

8.3.1 Introduction
The optimization tool consists of the following main components:

¢ An optimization dialog, allowing optimization problems to be defined from Opera

*.op2 data files or *.op3 databases.

e An optimization file, which stores the definition of an optimization problem set

up using the optimization dialog, along with results as they are obtained.

e An optimizer executable, which reads the definition of an optimization problem

from the optimization file, and writes design vectors to evaluate back to it.

e An ‘optimizer controller’ object, which handles communication between the opti-
mization dialog, the optimizer executable, the Opera Manager and the Batch Pro-

Cessor.

The optimizer controller object is ‘owned’ by the Opera Manager (in the sense that it
is an object in C++, and parented to the main Opera Manager object). Communication
between these four components and the Batch Processor occurs at twelve stages during

the entire optimization process, as shown in Figure 8.2.
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FIGURE 8.2: Communications between the Opera Manager, the optimizer controller,
the optimizer executable, and the Batch Processor.

1. The optimization process begins by the user invoking an optimization dialog
from an *.op2 data file or an *.op3 database in the Opera Manager. The optimizer

controller launches the dialog for the user to define the problem.

2. After defining the problem in the optimization dialog, the settings are written to

the optimization file.

3. The optimizer controller then launches the optimizer executable, supplying the

optimization file as an argument.

4. The optimizer reads the settings from the optimization file, along with all previ-

ous results, and runs an appropriate algorithm to determine where to evaluate

next.

5. The optimizer then writes the design vectors to evaluate next back to the opti-

mization file.

6. The optimizer executable exits, letting the optimizer controller know it has done

SO.

7. The optimizer controller reads the design vectors to evaluate from the optimization

file.
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8. The optimizer controller creates an optimization batch file in the appropriate
batch folder for the Batch Processor.

9. The Batch Processor reads the optimization batch file, and processes the opti-

mization job.

10. When the optimization job has finished, the values of interest (the optimization

outputs - see Section 8.3.2.2 below) are written back to the optimization batch file.

11. The optimizer controller reads the optimization outputs from the optimization
batch file.

12. The optimization output values, along with the design variable values, are then

written back - as a result - to the optimization file.

The process then loops back to step 3, with the optimizer controller launching the op-
timizer executable. Each time an iteration occurs, the optimizer is reading an extra
example from the optimization file. The process continues until some user specified
termination criterion is met. The rest of this section describes the different components

of the optimization tool in more detail.

8.3.2 Optimization Dialog
To define an optimization problem in Opera, the following are needed:

e A way to specify the design variables in an Opera model, and their allowed

ranges.

e A way to specify methods of calculating the objective functions (i. e. ways of

computing each f; in Equation 2.4).

e A way to specify methods of calculating the constraint functions (i. e. ways of

computing each g;, h; in Equation 2.4).

A dialog was designed to allow each of these to be defined from an Opera-3d database
or an Opera-2d data file. It consists of several different tabs (two of which are shown
in Figure 8.3) allowing design variables, objectives, constraints, and some general user
settings to be defined. The remainder of this subsection describes briefly how this was
implemented; full details of using the dialog to set up an optimization problem (in both

Opera-2d and Opera-3d) may be found in Appendix D.
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FIGURE 8.3: Examples of the optimization dialog in use.
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8.3.2.1 Specifying Design Variables: Model Dimensions

A new type of user variable - known as a ‘model dimension’ - was introduced into
Opera. When invoking the optimization dialog from an Opera database, the model
dimensions present in the corresponding model are identified, and made available for
setting as design variables. Model dimensions selected for use as design variables re-
quire a lower and upper limit to be specified, whilst those not selected require a con-

stant value to be assigned.

8.3.2.2 Specifying Objectives and Constraints: Optimization Outputs

To specify the objectives and constraints in a problem, a *.comi file ! must be supplied,
containing all the commands needed to evaluate the objective and constraint function
values and store them in user variables, which are flagged as ‘optimization outputs’.
Once specified, each optimization output is then available through two separate tabs
for use as an objective (to be minimized or maximized), and as a term in a constraint

expressions.

8.3.2.3 User Settings

User settings were deliberately kept to a minimum. Two main criteria are available
to be set: the termination criteria for the optimization algorithm, and the preferences
regarding what to do with the Opera files created during the optimization process.

Further details of these settings may be found in Appendix D.

8.3.3 Optimization File

After defining an optimization problem through the optimization dialog, the settings
of the problem are written to an ‘optimization file’ (written in xml). This contains all of
the details needed to state the optimization problem in the form of Equation 2.4. When
the optimization process begins, the results are also written to this file. As can be seen
in Figure 8.2, this file is central to the communication between the different parts of the

optimization tool.

1Each action carried out in the Opera-3d Post-Processor (and Modeller) and Opera-2d Pre and Post-
Processor is represented by a specific command. *.comi files contain sequences of these commands, thus
allowing sequences of actions to be carried out in a solved database, enabling values of interest to be
evaluated automatically.
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8.3.4 Optimizer Executable

The optimization problem and results (if any) contained in the optimization file are
read by an optimizer executable, which runs one iteration of an appropriate algorithm
to determine which design vector(s) to evaluate next 2. These are then written back to
the optimization file, and used by the optimizer controller to create optimization batch

jobs for the Batch Processor to process.

8.3.4.1 Default Methods

In previous chapters, a range of methods has been described which can be used for ef-
ficient constrained (and unconstrained) single and multi-objective optimization. Many
of these were included in the optimizer program, however, as mentioned in Section 1.2.2.1,
access to all available methods is detrimental in terms of ease-of-use of the software.
Unless the end user of the software knows and understands each of the methods avail-
able, they will not wish to be left with the decision of which method to optimize their
designs with. Therefore some choices need to be made as regards which algorithms to
use by default. The default methods chosen are summarized in Table 8.1, and explana-

tions behind their choice are given below.

The experimental design chosen was a Hammersley Sequence, as it gives the most
uniform distribution of design vectors. The size of the Hammersley Sequence de-
pends on the number of design variables d, the number of inequality constraints

J, and the number of equality constraints K.

The utility function chosen was the Generalized Expected Improvement. It provides
a level of control over the balance between exploration and exploitation (which
the Expected Improvement does not), and is non-target based, and so does not
require an estimate of the optimum from the user. One-stage methods were not
chosen as default due to their inherently high computational cost, and because

they require a target to be set by the user.

The inequality constraint handling technique chosen was the constrained utility func-
tion method. It is simpler to implement than the cumbersome expected violation
method, does not prevent exploration of the constraint boundary like the proba-
bility method, and does not require the setting of the relative importance between

constraints, as the penalty method does.

21f no previous results are provided, the designs suggested are an experimental design.
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TABLE 8.1: Choice of default methods in the optimizer.

Method Default Setting

Experimental Design Hammersley Sequence
Experimental Design Size 6(d + | + 2K)
Utility Function Generalized Expected Improvement
Utility Function Parameters Cooling scheme
Inequality Constraint Handling Technique Constrained utility function method
Equality Constraint Handling Technique Transformation to two inequalities
Scalarizing Method Augmented weighted Tchebycheff function

Maximum Number of Iterations 18d

The equality constraint handling technique chosen was the method which transforms
each equality constraint to two inequality constraints. This approach places more
emphasis on each equality constraint being satisfied than the method which trans-

forms each equality constraint to an objective.

The scalarizing method chosen was the augmented weighted Tchebycheff function,
as it allowed solutions on concave parts of Pareto-optimal fronts to be located,

something which is not true of other methods.

8.3.4.2 Advanced Control

Access to the other (non-default) methods was made available through use of an ad-
vanced control setting. This was essentially a hidden feature; its purpose was to allow
users - already familiar with research into kriging-assisted optimization methods - to
use the optimizer as a research tool. The choice of methods comes at two stages: the

experimental design stage, and then subsequently at each iteration.

At the experimental design stage, the dialog shown in Figure 8.4 is invoked. It allows
choice between two experimental designs (a Hammersley Sequence, and a Random

Design), and allows the size of the design to be explicitly set.

Following the experimental design, the optimizer proceeds by selecting design vec-
tors using utility functions. If the problem is single-objective, the dialog shown in
Figure 8.5(a) is invoked at each iteration. It allows the choice of the following utility

functions (described in Chapter 4), including setting of any parameters:

e Optimum of the kriging surface (‘Strawman’ approach).

¢ Expected Improvement (EI).
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» Select Experimental Design Pﬂf?

(3) Hammersley Sequence () Random Design

FIGURE 8.4: Experimental design dialog.

¢ Generalized Expected Improvement (GEI), including the value of g.

Weighted Expected Improvement (WEI), including the value of w.

Probability of Improvement (POI), including either the value of « or T.

Credibility of Hypothesis (CH), including either the value of « or T.

If the problem is multi-objective, the dialog shown in Figure 8.5(b) is invoked at each
iteration. It provides extra information regarding the scalarizing function used to trans-
form the MOOP to a SOOP, including values of each of the weights used.

8.3.5 Presentation of Results

Results are presented in a tab-pane (as shown in Figure 8.6) which forms part of the
Batch Processor window. As each result is obtained, it is displayed as a new row in
this tab-pane. It is possible that many details exist for each result, so only the most
important are displayed, namely:
e The rank of the example (as determined by a non-dominated sorting algorithm).
e The objective function values.

e A summary of constraint satisfaction.

e [teration number.

Name of the corresponding Opera database.

A context menu for the tab-pane, invoked by right-clicking on a result, allows other de-
tails, such as the values of the design variables, and the values of each of the constraint

expressions, to be displayed in a dialog as shown in Figure 8.7.
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(b) Advanced utility function dialog (multi-objective optimization).

FIGURE 8.5: The advanced utility function dialog.
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FIGURE 8.6: Display of optimization results in the Batch Processor.
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FIGURE 8.7: Dialog showing full details of an optimization result.

Results may be ordered by any of the column headings. To make the tab-pane clearer,
results are colour coded, with Pareto-optimal results displayed in blue, other feasible
results displayed in green, infeasible results displayed in red, and failed iterations dis-

played in grey.

Graphical output was also made possible, with graphs being plotted for:

e Normalized objective function values versus iteration number,
e Constraint values versus iteration number,
e Design variables in design variable space (2d and 3d only), and

e Objective function values in objective function space (2d and 3d only).
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FIGURE 8.8: Example graphical output of the optimization tool.

An example of the graphical output screen is shown in Figure 8.8.
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Chapter 9

Results

9.1 Introduction

In this chapter, the optimization tool described in the previous chapter is demonstrated
on four different electromagnetic design problems in Opera. The problems are cho-
sen to span the four possibilities of unconstrained SOOPs, constrained SOOPs, uncon-
strained MOOPs, and most difficult of all - and fulfilling one of the main aims of this

thesis - constrained MOQOPs.

The results given are for the default algorithms in the optimizer. Comparisons with a
random search algorithm show the default choices to be effective. A comparison of all
the algorithms possible with the optimization tool (through use of the advanced algo-
rithms), is not feasible, due to the huge range of algorithms available (especially when
different cooling schemes are considered with the tunable utility functions). Results for
other algorithms proposed in this thesis (but not used in this chapter) may be found in
e.g. [4, 11].

9.2 Single-Objective Unconstrained Optimization of a Plate Ca-

pacitor

9.2.1 Problem Definition

The voltage V (Volts) on the two outer plates of a plate capacitor, as shown in Figure 9.1,
along with their perpendicular distances dy,d> (mm) from the inner earthed plate, are
allowed to vary in order to achieve a target capacitance. The model is set up as de-
scribed in the Vector Fields Opera-3d User Guide [110], and solved using the TOSCA

104
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Vector Fields E

FIGURE 9.1: Plate capacitor arrangement in Opera-3d.

electrostatic solver. By calculating the stored energy E in the Opera-3d Post-Processor,

the capacitance C of each design may be found using the relation

E= %cvz. (9.1)

A target capacitance of 22uF is chosen, and so the unconstrained SOOP to be solved is:

Minimize |C(dy,da, V)(uF) — 22|
with 1.5<d; <£4mm 9.2)
15<d;, <4mm
5SV<BY

9.2.2 Results

A termination criteria of 35 iterations was chosen. The variation of the objective func-
tion is shown in Figure 9.2, and the positions in design variable space of the 35 iterations

are shown in Figure 9.3.

The best solution found (after 33 iterations) had a capacitance of 22.0468 yF, thus giving
an objective function value of 0.0468. By comparison, the best solution found by a
random search algorithm of 100 iterations had a capacitance of 21.4906 uF giving an
objective function value of 0.5094 (found after 77 iterations). This is shown as a target

in Figure 9.2, which the optimizer outperforms after 31 iterations.
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FIGURE 9.2: Variation of the residual capacitance during the optimization search.
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FIGURE 9.3: Positions in design variable space of iterations of the Optimizer for the
plate capacitor problem.

9.3 Single-Objective Constrained Optimization of a Coil, For-

mer and Disc

9.3.1 Problem Definition

Figure 9.4 shows a three dimensional cut view of a coil wound around an ‘E’ shaped
former made from iron, positioned close to a circular metallic disc. Using the axial
symmetry of the coil, former and disc, this may be transformed into a two-dimensional
model, as shown in Figure 9.5, to be solved using Opera-2d. Full details of how to build

this model may be found in the Opera-2d User Guide [111].

The current density Jeii( A m~2) and width w (cm) of the coil and the conductivity

k (Sm) of the disc are treated as variables in order to maximize the force on the disc,
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FIGURE 9.4: Coil, former and disc arrangement in Opera-3d.

Z [em)

FIGURE 9.5: Coil, former and disc arrangement in Opera-2d.

Fyisc, subject to a constraint on the maximum current density Jeqqy induced in the disc.
Formally, the constrained SOOP to be solved is:

Maximize Faisc(Jeoit, w, k)
Subject to Jeddy £35 x 10°P Am™?
with 0.5x 108 < Jo < 4 x 106 A m™2 9.3)

05<w<35cm
4 x10° < k < 6x10°Sm
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FIGURE 9.6: Variation of the force on the disc during the optimization search.
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FIGURE 9.7: Variation of the maximum eddy current density during the optimization

search. The eddy current density must be no greater than 3.5 x 10° A m~2 in order for
a design to be feasible.

As the problem involves calculating eddy currents, it requires the Opera-2d transient

(TR) time varying analysis.

9.3.2 Results

A termination criteria of 40 iterations was chosen. The variation of the force on the

disc is shown in Figure 9.6, and the variation of the eddy current constraint density

is shown in Figure 9.7. The positions in design variable space of the 40 iterations are

shown in Figure 9.8.
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FIGURE 9.8: Positions in design variable space of the designs chosen for evaluation by
the Optimizer in the coil, former and disc problem.

The best solution found (after 39 iterations) had a force Fgisc = 6.1059 N, with the con-
straint having a value of Jeqay = 3.489 x 105 Am~2, just within the limit. By compari-
son, the best solution found by a random search algorithm of 200 iterations had a maxi-
mum of Fyjsc = 4.691 N, with the constraint having a value of Jeqay = 3.028 x 10 A m~2
(found after 172 iterations). This is shown as a target in Figure 9.6, which the optimizer

outperforms after 33 iterations.

9.4 Multi-Objective Unconstrained Optimization of an Elec-

tron Gun

9.4.1 Problem Definition

The voltage on, and position of, the focus electrode of an electron gun, as shown in
Figure 9.9, are varied so as to achieve two objectives: to focus the beam of electrons on
the centre of the anode as much as possible, and to make the electrons hit the anode

face as perpendicular as possible.

Formally, denoting the voltage on the focus electrode by V Volts, and its perpendicular
distance from the emitting surface by d cm, the unconstrained MOOP to be solved is:

Minimize f1(V,d) = / J(r)r*ds
anode
(v +03)
d V,d = —————=dS 9.4
an f2(V,d) anode (V2 + U2 + 02) 04
with 0 <V <1000 Volts

4<d<10cm




Chapter 9 Results 110

Vector Fields .

FIGURE 9.9: Arrangement of the electron gun in Opera-3d.

where r is the radial distance from the center of the anode surface, J(r) is the current
density at 7, and the integrals are taken over the surface of the anode. vy, vy, v; are the
components of the electron velocities as they hit the surface of the anode, which lies in

the xy plane. Each analysis is carried out using the space charge solver SCALA.

9.4.2 Results

A termination criteria of 140 iterations was chosen. Six Pareto optimal points were
obtained, and are shown in Figure 9.10. The current densities on the anode surfaces
of the two extreme Pareto solutions (labelled ‘A" and ‘B’ in Figure 9.10) are shown in
Figure 9.11, whilst the electron beams in the two extreme Pareto optimal solutions are
shown in Figure 9.12. The difference in the solutions can clearly be seen: the beam in
Pareto solution A is much more focused on the centre of the anode than the beam in
Pareto solution B, whilst the electron paths in the beam in Pareto solution B are ‘more
parallel’ than the paths in the beam of solution A, and thus hit the anode surface at less

of an angle.

9.5 Multi-Objective Constrained Optimization of Helmholtz
Coils

9.5.1 Problem Definition

The arrangement of a pair of Helmholtz coils is allowed to vary so as to achieve a uni-
form central field of 5000 Gauss. Specifically, the width A, coaxial length B, and half
z separation Z; of the coils (with current density 10* A cm~2), as shown in Fig. 9.13,
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(b) Current density on anode surface of Pareto solution B.

FIGURE 9.11: Anode surface current densities in the two extreme Pareto solutions.
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(a) Electron beam in Pareto solution A.

(b) Electron beam in Pareto solution B.

FIGURE 9.12: Electron beams in the two extreme Pareto solutions.

are each allowed to vary within specific ranges. To achieve the goal of a uniform cen-
tral field of 5000 Gauss, the Legendre polynomial coefficients Ao, A20, A4, Aso Of the
z-component of the magnetic flux density are calculated over a sphere (of radius 3) cen-
tred around the origin, after solving using the TOSCA magnetostatic solver. To ensure
field uniformity, the magnitude of the error harmonics are chosen to be minimized,
whilst to achieve the desired central field value, the magnitude of the Agg coefficient is
constrained to be equal to 5000. The constrained MOOP to be solved is:

Minimize |Ax|, |A4o|,|Aeo| (Error harmonics)

Subject to | Ago| = 5000
with 0.5<A4A <5cm (9.5)
05<B<8cm

05<Z; <15cm

9.5.2 Results

A termination criteria of 100 iterations was chosen. The variation of the three objective
functions over the final iterations is shown in Figure 9.14: of these 26 designs, only 6
are infeasible, whilst the other 20 are feasible. The variation of the equality constraint
over the full 100 iterations is shown in Figure 9.15: it should be noted that the first
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Vector Fields E

FIGURE 9.13: Arrangement of Helmholtz coils in Opera-3d.
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FIGURE 9.14: Variation of the objectives at the end of the optimization search.

30 iterations are experimental design points, hence the lack of constraint satisfaction

during these iterations.

The positions of the 100 designs evaluated by the optimizer in design variable space
are shown in Figure 9.16. In total, 19 of these were Pareto-optimal; their positions in
objective function space are shown in Figure 9.17. For comparison, the 5 Pareto-optimal

designs found by a random search algorithm of 150 iterations are also shown.
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FIGURE 9.15: Variation of the equality constraint during the optimization search.
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FIGURE 9.16: Positions in design variable space of the designs evaluated by the opti-
mizer in the Helmholtz problem.
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FIGURE 9.17: Pareto solutions located by the Optimizer, and a random search algo-
rithm.
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9.6 Discussion

Through four examples, it has been demonstrated that the optimization tool imple-
mented into Opera has been capable of solving a range of optimization problems: con-
strained and unconstrained, single-objective and multi-objective. Furthermore, it has

been applied successfully to both 2d and 3d problems.

The results compare favourably to solutions obtained from random searches of con-
siderably more iterations. Hence the optimization tool is successful in being efficient

during searches.




Chapter 10

Conclusions and Further Work

10.1 Conclusions

10.1.1 Cost-Effective Optimization

The inherently high computational cost of optimization in electromagnetic design is an
important issue, and many different methods have been proposed to dealing with it.
In Chapter 3, one cost-effective technique - surrogate modelling - was reviewed, with
particular emphasis on kriging. At the start of this research, kriging was only beginning
to be identified as being useful in electromagnetic design optimization [112]; since then,
its popularity has grown, with more and more papers using kriging for electromagnetic

design optimization appearing both at conferences, and in the literature.

In Chapter 4 and Chapter 5, a review was carried out of the state-of-the-art in kriging-
assisted methods for single and multi-objective optimization. Whilst kriging-assisted
multi-objective methods are relatively new, some single-objective methods are now
quite mature, e. g. [70]. Despite this, the application of many of these methods in elec-
tromagnetic design (an ideal application, due to its high computational cost) has been
slow. Further techniques in surrogate model-assisted optimization were then reviewed

in Chapter 6, with particular emphasis on kriging.

10.1.2 Contribution of this Thesis
The main contributions of this thesis have been:

1. The proposal [109] (independently of [13] and [89]) of non-scalarizing methods

for cost-effective multi-objective optimization [5, 10].
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2. The development of a general scalarizing algorithm for cost-effective constrained

multi-objective optimization [9, 11].

3. The introduction of methods (from outside electromagnetic design optimization)
to electromagnetic design optimization, such as the one-stage approach [3, 4, 6,
11].

In single-objective optimization, many utility functions exist which use information re-
lating to the uncertainty in the prediction made by a single kriging surface (modelling
the objective function). This thesis extended the idea of using a utility function which
considers uncertainty to multi-objective optimization, by extracting and combining in-
formation from multiple kriging surfaces (each modelling a different objective). The
only way in which multiple kriging models had been used prior to this work was se-
lecting the Pareto-optimal points predicted by them [112], analogous to the ‘Strawman’
approach in single-objective optimization. By considering the uncertainties in multiple
kriging models simultaneously, true multi-objective equivalents of the probability of
improvement method, and enhanced probability of improvement method, have been

proposed.

Indeed, prior to the work in this thesis, only the ParEGO algorithm [45] made use of a
utility function from kriging-assisted single-objective optimization for multi-objective
optimization (through use of a scalarizing function). This thesis has generalized this
idea, proposing an algorithm which can make use of any arbitrary utility function from
single-objective optimization. Constraint handling techniques were included, as was a
method for dealing with failed designs, an issue often overlooked in practical design

optimization.

Finally, a range of methods from elsewhere have been discussed and used for electro-
magnetic design optimization for the first time. For example, the use of the one-stage
approach in the hybrid one-then-two stage algorithm [3, 4] was the first time it had
been used in electromagnetic design optimization; its use in [6] was the first time it had

been used for multi-objective optimization anywhere in the literature.

10.1.2.1 KTP Objectives Revisited

The KTP objectives (given in Section 1.2.2.1) were achieved through the release of two
new pieces of software: the Opera Manager, released in Opera version 11, and the
Optimizer, released in Opera version 12. The Optimizer was designed with ease-of-
use in mind, requiring a minimum number of settings from the user once a problem

was set up (a set of termination criteria, and some basic options regarding the storage
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TABLE 10.1: Work done towards satisfying the academic objectives.

Academic Work Completed

Objective

Al Non-scalarizing methods were proposed independently through this
research in [109]. The scalarizing ParEGO [45] algorithm has been
generalized to make use of other utility functions.

A2 Constraint-handling methods have been used in the general scalariz-
ing multi-objective algorithm. A method has been proposed for in-
cluding constraint-handling in non-scalarizing multi-objective algo-
rithms.

A3 The increasingly popular kriging surrogate modelling method was
used; note that at the start of this research, kriging was only begin-
ning to be identified as being useful to electromagnetic design opti-
mization [112].

A4 Sensible default methods were chosen for the optimization tool, re-
sulting in it behaving like a black-box (recall Figure 1.4) to the user.

A5 A user-friendly interface was constructed to allow setting up of an
optimization problem in Opera from just one dialog box.

Ab The methods have been demonstrated on a range of test problems:

constrained and unconstrained, single and multi-objective.

of the Opera databases created during the optimization search). The setting up of an
optimization problem in Opera was also kept as simple as possible, with all options
confined to one dialog box. The methods included in the Optimizer mean that even
constrained multi-objective optimization problems may be solved, and results on test
problems have demonstrated it to be successful in locating optimal solutions efficiently.
Further details on the software produced to satisfy the KTP objectives may be found in
Appendices B, C and D.

10.1.2.2 Academic Objectives Revisited
The academic objectives A1-A6 given in Section 1.2.2.3 are relisted in Table 10.1, along

with evidence of how they were met. In addition to these, a novel algorithm for single-

objective optimization was proposed as well [4].

10.2 Further Work

10.2.1 Extensions to the Opera Optimizer

The optimization tool introduced to Opera could be extended and improved in several

ways:
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e Allow discrete design variables.

e Integrate the optimization dialog into the Post-Processor, rather than have it ac-

cessed only from the Opera Manager.

e Introduce non-kriging methods into the optimization tool, for greater flexibility
when using the advanced utility function dialog (e. g. offer radial basis function

selection methods, such as rbfsolve [72]).

¢ Reduce the computational cost of building kriging models by using cost-effective
methods to invert the correlation matrix R when the number of examples gets

large.

o Adapt algorithms so that all available computing power is being used at all times

(e. g. taking full advantage of multi-core machines).

A comparison of the Opera Optimizer with optimization tools in other electromagnetic

design software on a range of benchmark problems would also be useful.

10.2.2 Kriging Methods

New kriging-based selection criteria are continually being proposed. One interesting
new utility function, proposed very recently [84], makes use of information theory to
select design vectors for evaluation. Results show it to outperform EGO over a range of
test functions; it appears to be very well suited to electromagnetic design optimization,

and a promising area of research.

Non-scalarizing methods have only recently appeared in the literature. Combining
constraint handling techniques with such methods was discussed in Section 7.4.3; these

approaches remain to be explored, and form an interesting area of future research.

10.2.3 Non-Kriging Methods

Radial basis functions, discussed in Chapter 3, are one of the most popular types of
surrogate model. The recently proposed ‘adaptive radial basis algorithm’ [83], which
uses a one-stage methodology similar to rbfsolve [72], appears to be a very promising
method using this surrogate model. Methods based around the one-stage methodology
are in general a very attractive area of future research for at least two main reasons: first,
results show them to work extremely well; second, very few such methods have so far

been explored.
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Another method (from the field of machine learning) which is growing in popularity
for the purposes of surrogate modelling is support vector machines (SVMs). Because
of their high accuracy, if the uncertainty in predictions made using SVMs can be quan-
tified as effectively as it has been in kriging, it could lead to a wide range of highly

efficient algorithms for both single and multi-objective optimization.
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Appendix A

Other Cost-Effective Optimization

Techniques

A.1 Hybrid Algorithms

Whilst Multi-Objective Evolutionary Algorithms (MOEAs) are highly regarded for their
ability to search globally in objective space (thus avoiding getting trapped by local min-
ima), this ability derives mainly from the large number of objective function calls it
must evaluate. On the other hand, deterministic search algorithms are highly regarded
for their local search ability, and furthermore, possess this ability without the need for

a large number of objective function evaluations.

As most optimization problems require both global and local searches, it seems natural
to combine MOEAs with deterministic search methods, to produce hybrid algorithms,
with good global and local search ability. As well as improving convergence to the
Pareto-optimal front, hybrid algorithms often require less objective function evalua-
tions to achieve a certain performance than either a MOEA or deterministic algorithm

alone.

Deterministic search methods may be used with MOEAs in variety of different ways.

Two of the most obvious are [113]:

1. A Posteriori Approach, in which the MOEA runs until a stopping criterion is met
(usually either a fixed number of generations has elapsed, or sufficient conver-
gence has occurred). The deterministic search method then runs from each of the

resulting non-dominated solutions.
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e Final MOEA solutions
¢ Final Deterministic search solutions
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FIGURE A.1: A posteriori hybrid method
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FIGURE A.2: Online hybrid method

2. Online Approach, in which the local search method modifies each solution in a

population before the MOEA proceeds to the next generation.

The a posteriori approach and online approach are shown schematically in Figure A.1

and Figure A.2 respectively.

As deterministic search methods can only optimize a single objective, the MOOP must
be transformed to a SOOP [38] prior to the deterministic method being used. Hybrid
algorithms differ in the MOEA and deterministic search methods they use, in how the
deterministic method is used with the MOEA, in the amount of local search performed,

and in which classical method is used to transform the MOOQOP to a SOOP.
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A.2 Small Population MOEAs

From an MOEA point of view, a restrictive number of objective function calls means
low population sizes, and so perhaps the most obvious way to deal with this is to
design the MOEA specifically for small populations [114]. Implementations based on
this approach differ in the exact way the algorithm is suited to low populations. The
algorithm may need few objective function evaluations to decide upon the next point,
or the algorithm may make most use of objective function calculations when choosing

the next point.

A.3 Fitness Inheritance

Fitness inheritance is a simple technique which can be used in any EA to reduce cost.
Unlike the small population MOEAs and hybrid algorithm techniques, fitness inheri-
tance does not work by reducing the total number n of objective function evaluations.
Instead, rather than all fitness values in an EA being calculated by performing the costly
evaluation of the objective function, some individuals have their fitness calculated by
estimation, the estimation being based on the fitness values of their parents. Thus, the
number of costly evaluations decreases, whilst the total number of evaluations is kept
constant; in particular, the population size of the MOEA is not reduced as it is in the

previous two techniques.

A.4 Reduction of Design Variables

The value of M in Equation 2.4 is the main determining factor in choosing an appropri-
ate algorithm to perform the optimization; the value of n on the other hand, is the main
factor determining the number of objective function evaluations ny which the chosen
algorithm will need to use to locate the optima, as it sets the number of directions in
which the algorithm may search in objective space. The relationship between n and ny
is not fixed, and also depends on the size of the intervals within which each design vari-
able may vary, but in general, the larger  is, the lager ny will be. Thus, computational

cost may be reduced by reducing n.

Reducing the number of design variables is only justified however, when there are
design variables which have little or no consequence to the objective functions. For ex-

ample, if there are five design variables set in a problem, and all are heavily influential
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to the objective functions, then design variable reduction may not be performed. How-
ever, if only two were found to be of significant consequence to the objective functions,
then the other three may be held constant, thereby reducing the number of search di-
rections available to the optimization algorithm from five to two. As a consequence,

the algorithm requires less objective function evaluations to locate the optima.
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The Opera Manager

Starting the Opera Manager

Microsoft Windows

On Microsoft Windows systems the Opera Manager is started from the
menu bar as follows:

Start -> Programs -> Vector Fields Opera -> Opera 12.0

Alternatively the Opera Manager can be started from the taskbar notifica-
tion area by clicking on the Opera icon as shown here:

-

(0,

Linux and Solaris

On Linux and Solaris systems, the Opera Manager is started from the com-
mand line by typing:

$vfdir/bin/opera_manager

where $v£dir is a shell variable set to the directory where the software is
installed.
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The Opera Manager Window

The Opera Manager is the “navigation centre” for the complete suite of
Opera software. Its main window consists of two areas:

» a workspace allowing multiple Folder Windows to be opened.
* adockable Batch Processor, which controls the running of analyses.

In addition there is a menu bar and a toolbar located under the title bar. The
menu bar gives access to all functions of the Opera Manager.

The toolbar can be used to start the interactive programs:

‘l['.l -
* Opera-2d/Pre and Post-Processor ;

N.B. The Opera-2d/Design Environment can only be started via the
menus (see Opera-2d/Design Environment [page 22]).

* Opera-3d/Modeller ‘\" , Pre-Processor and Post-Processor %,

T1/0672007 14 4740 11/06/2007 14:47'51
116KB oppre 10/11/2006 12.28:18 10/11/2006 122918
T3KB ope 1071172008 122918 10/11/2006 122918
c-core-no-background ope 56KB opc 10/11/2006 122918 10/11/2006 12:29 18
Cavity_ev oppre 24KB oppre 10/11/2006 122913 10/11/2006 122918
cavity_ss.oppre 2BKE oppre 101112006 1229:18 10/11/2006 12:26.18
A KB smit 10/11/2006 1229:18 10/11/2006 122918
13KB oppre 10/11/2006 12:29.18 10/11/2006 122918
VSTV KB ope 16/1172006 122514 10/11/2006 122914
rator_Carmen comi TKE com 10/13/2006 122818 10/11/2006 122918
17KB oppre T0/11/2006 12.29.18 10/11/2006 122918
7KB oppre 10/11/2006 122918 10/11/2006 12:26 18
1K8 comu 10/11/2006 122918 10/11/2006 12:25 18
123KB opc 10/11/2006 1229:18 10/11/2006 122918
y 13KB oppre 10/11/2006 122918 10/11/2006 12:218
) SM_example opc 132KB opc 10/11/2006 122918 10/11/2006 12:29.18
96KB opc 10/71/2006 12.29:18 10/11/2006 122918 -
Amnmaln. Aann . DENE _ama A0AIMAONE 129012 A0ALMNNEARMNIL &2

Figure 1 The Opera Manager

or to open the Opera-2d m and Opera-3d m project folders.
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Folder Windows and the Workspace

Starting the Manager for the first time

When the Manager is started for the first time, one Folder Window will be
created in the workspace. The top level folder of this window will be C: \
on Windows, or / on Linux and Solaris.

Layout of a Folder Window

A Folder Window consists of two parts: on the left hand side is a Folder
Pane, and on the right hand side is a Contents Pane. The Folder Pane shows
a tree-view of all the folders contained within the top level folder. The Con-
tents Pane shows the contents of whichever folder is selected in the Folder
Pane. The Contents Pane consists of several columns which display details
about files and folders. Columns may be hidden or displayed by right-click-
ing on a column header and checking a column to be displayed, as shown
in Figure 2.

vager f d [ 1

am

487 11 TE T LR e i e : Kl

Foider < Name e LI e Woskes ~

= @t i @ _ISTMP1DIR v Type Folder 11/12/2003 175850 11/12/2003 1758:05
+ ©_ISTMPIDR | @ STMP2DR : Folder  11/122003175651 11/12/2003 178815
# E3ISTMP2DR catbuecTsdasesasian T SO | Eoge 2007100128 11012007 100738
 CIS0T4EI7IdadER84 F 9daendinzasisg2oroson: ¥ MO | gy 131/2008 040121 17711/2006 040215
* % “ att ATDUES | Foider 22/08/2003 1656:39 22/09/2003 166659
» 3a030EHMGER | IACK Foider  25/09/20030531.08 02/11/2006 121500
= DACS | C3AD0BEAPP Folder 081772003 140615 06/112003 140876
+ CIADOBEAPP @Backup Folder  25/09/2003 090552 221022007 005655
# &Backup £¢4e840a670041 7207626 8403 Folder 1012007040051 11/01/2007 040064
® Cacdcbidatlana 17 Cankig Msi Folder  29/03/2003091743 11/D6/2007 144800
 3Conbg Msi 0L Folder 2209200316238 25092003 136329
® caDELL GaDocuments and Setings Foldar 22/098/2003 1629:50 11/01/2007 122957

Figure 2 Selecting File Details

Folder Windows may be maximized (as shown above), minimized,
restored down, or closed, by clicking on the appropriate button on the top
right of the Folder Window. For example, clicking on the restore down but-
ton will result in the view shown in Figure 3.
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Folder Pane
Context Menu

Folder 11/12/2003 174
Folder 11/12/2003 174
Foider 11/01/2007 101
17/11/2006 D41

# QBackup | E3cdcBidaBTdbe1 7967626 34 ad3
# C9cdcBdabTdbTIE | CaConkg Msi
# ConkgMsi | caDEW

 Folder FieName Progam Siskis | Time Staed |Created On

Figure 3 Folder Window Restored Down

Context Menus

Context menus may be invoked by right-clicking on an item in either the
Folder Pane or the Contents Pane. Only options relevant to the item which
was clicked will be available on the context menu.

In the Folder Pane the context menu appears as shown in Figure 4.

' #Bulk_kappa_rtable 1KE tabie 10/11/2006 12.29:18 10/11/2006 122918
P ztable 1KB table 10/11/2006 122818 10/11/2006 122913

1KB tabie 10/11/2006 12:29:18 10/11/2006 122918

die 1KB table 10/11/2006 12:29:18 10711/2006 1225 18
o 1KB table 10/11/2006 12.29:18 10/11/2006 122918
Me KB table 10/11/2006 12:29:18 10/11/2006 122918
2KB table 10/11/2006 12.29:18 10/11/2006 122918
1KB comi 10/11/2006 122318 10/11/200€ 122918

Figure 4 Folder Pane Context Menu
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Contents Pane
Context Menu

The menu items perform the following actions:

New Folder Window: Creates a new Folder Window, with the top level
folder set to be the selected folder.

Set as Top Folder: Resets the top-level folder of the current Folder
Window to be the selected folder.

Explore (Microsoft Windows only): Opens up a Windows Explorer
window with the address set to the selected folder.

Create New Folder: Creates a new folder in the selected folder.

Set as 2d Project Folder
Set as 3d Project Folder: Sets the selected folder to be the 2d or 3d

project folder.

Solve All Unsolved Files: Solves all Opera-2d data files and all
Opera-3d databases which have unsolved simulations in the selected
folder (N.B. it does not solve files in any sub-folders).

Cut/Copy/Rename/Delete: Cut/Copy/Rename/Delete the selected folder.

Paste (only available if a file/folder has been cut or copied previously):
Pastes the cut or copied file(s)/folder(s) to the folder which is selected
in the Folder Pane.

The top-level folder has an additional menu item on its context menu:

Up One Level: Makes the Folder Window show the parent folder.

In the Contents Pane a typical context menu (for a file) will be as shown in
Figure 5.

» OPTRA Manager from Vector Fields - [C:\u\gh\Test folder]

‘B ad® S R S AR R
Foldet fan Type Sew Created Modiied
= ) Test folder | BXIC magnet_fl_10_017.mesh  mesh 725M8  30/09/2005 124252 05/01/2006 121315
# (FolderA | TC_magnet_ful_10_017.002  0p2 466KB  30/09/2005 124253 11/10/2004 114238
# (Folder B ool . 16¢ 0BA0/2006 121 50172006 1213215
& (Folder C (JC_ma 05/01/2006 121308 05/01/2008 121311
# () Folder [ Emmg. B bo 29KB  23/09/2005 14:08:06 11/07/2006 15:16:32
# C)FolderE |
 CFoderF ‘ L Rl
B ooy Cc
. Paste (v
Rename
&P Delete Del

Figure 5 Contents Pane Context Menu
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The menu items perform the following actions:

* Open data files.
Starts the default program for the file and opens the file.

— *op2: Opera-2d/Pre and Post-Processor
— *opc, *.opch: Opera-3d/Modeller

—~ *oppre: Opera-3d/Pre-Processor

— *op3: Opera-3d/Post-Processor

* Open command input files

If the file is a command input file (*.comi), the first line of the file will
be read to see if it is a comment identifying the program it was written
for. The following text is used to identify which program to start:

Pre & Post-Processor: Opera-2d/Pre and Post-Processor
Modeller: Opera-3d/Modeller

Pre-Processor: Opera-3d/Pre-Processor
Post-Processor: Opera-3d/Post-Processor

Command input files without such a comment will have multiple Open
options in the context menu. Comments are automatically added to
* log files so that .comi files created from .Jog files will refer to the right
program. For example, the comment in a ./og file from the Opera-3d/
Modeller is

/ Opera-3d Modeller Version nn.nnn
» Edit: Opens the file in an editor. The editor which is used can be spec-

ified via the Options menu. Whether a file is editable or not is deter-
mined from the file type. The software contains a list of editable file

types.
» Cut/Copy/Rename/Delete: Cut/Copy/Rename/Delete the file.

If the file is an Opera-2d data file (*.0p2) or an Opera-3d database (*.op3)
containing an unsolved simulation the following option is also available:

» Solve with solver_name: Adds the Opera file to the batch queue.

If a folder is selected in the Contents Pane, the context menu will have

options similar to those available through the context menu in the Folder
Pane.

If the context menu is invoked by clicking on an empty area of the Contents
Pane, then a context menu appears with options referring to the folder
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whose contents are displayed in the Contents Pane (i.e. the folder which is
selected in the Folder Pane).

Main Menu Items

Many of the operations available for an item through a context menu are
also available via the main menu bar. The option on the menu bar will apply
to the item which is currently high-lighted, whether it is in the Folder Pane
or the Contents Pane. If no item is high-lighted, then the options will not be
available through the main menu bar.

Creating a New Folder Window

Additional Folder Windows may be created in the workspace by the menu
route (see Figure 6).

Windows -> New Folder Window

= ©3D | MBuk ks 3d Folder 172006 122978
» CRNR Wook ks 172006 1229 18
‘MCu_Cpt  Cascade Windows 1/2006 122918

HCuksp  Tie Windows 1/2006 122918

WU cse af Windows 172006 122978

ENoTiLC /2006 122318

N Dock Batch Processor * 5172006 122978

Pouench. ¢ 1/2006 122918

C:\Program Fields\Opera 12, )

Figure 6 New Folder Window

The dialog can be used to browse to an existing folder or create a new one.
Multiple new Folder Windows may be created.

Control of Windows

The Folder Windows in the workspace may be cascaded or tiled via the
menu routes:

Windows -> Cascade windows
Windows -> Tile windows

All the Folder Windows may be closed via the menu route:
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Windows -> Close all windows

A list of all existing Folder Windows within the workspace is listed at the
bottom of the Windows menu. Selecting a particular window from this
menu will make that Folder Window active.

A list of recent Folder Windows is available through the menu route:
File -> Recent Windows

This lists the paths of the most recent Folder Windows which have been
created, regardless of whether they are still open in the workspace or have
since been closed.
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Recognised File Types

The following file types are recognised by the Opera Manager. The table
shows the icons used and the program, if any, which will open the file in
response to a double-click. Those marked “editable” can be opened in an
editor from the context menu.

3d emitter data file

Icon| Type Usage Program Editable
ac Opera-2d/AC results [Opera-2d/PP
S file
backup|Opera-3d/Pre data file
bat Windows command yes
file
E‘ bh Opera-2d and Opera- yes
= 3d BH data file
cas Opera-2d/DE case file
cir SPICE type circuit
data for Opera-2d/PP
cmd yes
@ comi |Command input file |Opera-2d/PP, yes
Opera-3d/Modeller,
Opera-3d/Pre or
Opera-3d/Post (see Open
command input files
[page 14])
@ cond |Opera-3d conductor yes
- data file
csr Opera-2d/DE case yes
results
dem |Opera-2d/DE data file
% |dm Opera-2d/DM results |Opera-2d/PP
T file
dxf AutoCAD DXF data
for Opera-2d/PP
emit |Opera-2d and Opera- yes

grid |Binary tabulated data
from Opera-3d/Post
igs IGES format data for

Opera-3d/Modeller
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Icon| Type Usage Program Editable
Im Opera-2d/LM results |Opera-2d/PP
' file

log Commands issued to yes
an interactive program
Table of system varia-
bles from a transient
analysis
lop Opera-2d circuit data
Ip Dialogue file of input yes
and output of interac-
tive programs
mate |Opera-2d stress and
thermal material data
§i7] |mesh  |Opera-2d mesh file
1{& op2 Opera-2d data file Opera-2d/PP
L% op3 Opera-3d database Opera-3d/Post
@ opc Opera-3d/Modeller  |Opera-3d/Modeller
data file
& opcb |Opera-3d/Modeller |Opera-3d/Modeller
binary data file
fﬁ oppre |Opera-3d/Pre data file |Opera-3d/Pre
res Text file showing yes
progress of analysis
rm Opera-2d/RM results |Opera-2d/PP
- file
@ sa Opera-2d/SA results |Opera-2d/PP
' file
sat SAT format data for
Opera-3d/Modeller
script |Opera-2d/DE com-
mand script
sp Opera-2d/SP results |Opera-2d/PP
file
5 |st Opera-2d/ST results |Opera-2d/PP
- file
table |Opera-2d or Opera-3d yes

tabulated data file
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file

Icon| Type Usage Program Editable
th Opera-2d/TH or Opera-2d/PP
THTR results file
Opera-2d and Opera-
3d trajectory data file
1t Time table data file yes
Ixt yes
uny Universal file read by
Opera-3d/Pre and
written by Opera-3d/
Post
var Opera-2d/DE  varia- yes
bles
vl Opera-2d/VL results |Opera-2d/PP
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The Batch Processor

The Batch Processor Window

The Batch Processor is a window which may be docked at the bottom, top,
left or right of the Opera Manager, or undocked as a separate window. By
default it is docked at the bottom of the Opera Manager.

Batch Processor m

© o s B e ¥
Foldes  FileName | Program | Status | Time Started |

|

Curentobs_| Job Hisoy |

Figure 7 The Batch Processor

The Batch Processor consists of a Current Jobs Pane, a Job History Pane,
and a toolbar (see Figure 7).
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Current Jobs Pane

The Current Jobs pane shows details of analyses in the batch queue, which
are either running, or waiting to be started. The columns of the pane show
the details which are self-explanatory. Opera files are added to the batch
queue by selecting the solve option from their context menu in the Folder
Window, or by dragging and dropping them into the Current Jobs Pane
(Microsoft Windows only).

Job History Pane

The Job History pane shows details of jobs which have finished running.

Batch Toolbar

In the Current Jobs Pane, the batch toolbar allows the following operations:
. Start the queue (if it is not already running).

. B Stop the queue (if it is already running) — this option allows jobs
which have started running to finish.

. g Abort the queue (if it is already running) — this option aborts any
jobs which are currently running.

. g Clear all jobs from the batch queue (only available if the queue is
not running).

The following operations are also available via the toolbar when individual
jobs are selected in the Current Jobs Pane:

. 6 Move the job up the queue.

. é Move the job to the top of the queue.

. g Move the job down the queue.

. J Move the job to the bottom of the queue.

. G Remove the job from the queue.
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. e Run the job (if it is not already running).
. & Abort the job (if it is already running).

B & Show the solver window for the analysis (if it is not already visi-
ble).
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Batch Processor Options

The batch queue has several options which can be set via a dialog box (Fig-
ure 8) which may be invoked either via the menu route:

Options -> Batch Options

or by clicking on the Batch Options tool-button @ in the Batch Toolbar.

* Batch Options !i[—)ﬂ

General

Maximum Number of Simultaneous Jobs |1 "}
Number Of Jobs To Store In History 20 3

Default CPU Priority for Solvers @ Llow (O Nomal
BatchFolders
LocalBatchFolder  hp\Vector Fields Batch Files| | Browse |

Common Work Folder. | || Browse |

Start Time

(®) Start Queue Immediately

() StartQueue atScheduled Time | 11/06/2007  [165221 |
(©) Run Queue Daily at [10:35:04 \
(") Start On Demand (using toolbar)

Display Options
Show Solver Window (®) ShowNormal () Show Minimized

[v] Show Messages

Apply Setlings

Figure 8 Batch Options Dialog
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Enable

Numbers of Jobs

CPU Priority

Local Batch
Folder

Common Work
Folder

Start Time

The batch queue may be disabled by unchecking the “Enable Batch Queue”
box. This will result in all jobs starting immediately when they are selected
to be solved.

The maximum number of jobs which can be run simultaneously.

The number of completed jobs to store in the Jobs History Pane.

The default CPU priority level which batch jobs have when they start can
be set to low or normal.

The local batch folder holds the temporary XML files which contain details
of each pending batch job. The default locations for the folder are:

* Windows XP:
C:\Documents and Settings\username\Local Settin
gs\Temp\Vector Fields Batch Files

*  Windows Vista:
C:\Users\username\Appdata\Local\Temp\Vector Fie
lds Batch Files

* Linux and Solaris:
~/.VectorFields/hostname/Batch_Files

The common work folder is an area of disk space which is shared by sev-
eral computers. If a data file (*.0p2 or *.0p3) exists in the common work
folder or one of its sub-folders, when it is added into the batch queue for
analysis, the temporary XML file containing the details of the batch job
will be stored in the common work folder rather than the local batch folder.
Any pending batch jobs in the common work folder can be started by the
batch queue on any of the computers which share the folder. Jobs will
always be taken from the local batch folder before the common work
folder. This allows work to be distributed around computers in a local area
network.

The start time of the batch queue may also be set. The options available are:

* Start immediately (the queue is always running, with the maximum
number of jobs running at any one time being set as above).

e Start at a scheduled time




Appendix C Batch Processor User Manual 145

Solver Window

* Run the queue daily at a specified time

* Start on demand: only start the queue through use of the “Start Queue”
toolbar button.

The solver window for jobs in the queue may be displayed, minimized or
not displayed. Similarly, messages for the job (such as “job has finished”)
may either be displayed or not.
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Introduction to Optimization

e
m———

The general aim in optimization is to minimize a set of objective functions
Sioa e Sogs
subject to a set of inequality constraints
£,<0,g,<0,...,8;,<0,
and equality constraints
hy =0,hy =0,...,hg =0.
Each objective and constraint is a function of a set of design variables
NS S

each of which has a numerical lower and upper limit. A specific combina-
tion of design variables, e.g.

x%.x8, s XY
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is referred to as a design. Formally this may be stated as
Minimize Spx)m=1,2,...M
subject to gj(x) <0,j=1,2,...,J
and h(x) =0,k =12, ..,K

with XI(L) <x; SXI(U)

This is the standard formulation of an optimization problem. In general
however, each objective function may be either maximized or minimized,
and each constraint may be rewritten in many ways, €.g.

p(x)<q(x)

p(x)—q(x) = g(x)<0

The Vector Fields Optimizer allows this more general statement of the
problem via the optimization dialog.

If J=K=0, the problem is unconstrained. Otherwise, the problem is con-
strained. In constrained problems, a design may be feasible (if it satisfies
all the constraints), or infeasible (if one or more constraint is not satisfied).
If M=1, the problem is a single-objective optimization problem (SOOP).
The solution to a SOQP is simply the feasible design which minimizes the
single objective f. If M>1, the problem is a multi-objective optimization
problem (MOOP). In general, no “ideal” single solution exists for MOOPs,
which simultaneously minimizes each objective function. Instead, a set of
(feasible) designs which represent the best possible compromise between
each of the objectives are identified as solutions: these designs are called
the Pareto-optimal solutions. A design is Pareto-optimal if and only if no
other design exists which is strictly better than it in at least one objective,
and no worse in all the other objectives.
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Defining Optimization Problems in Opera

Starting the
Dialog

Prerequisites for
Opera-2d

The Optimization Dialog

All optimization problems in Opera are defined through the optimization
dialog. This dialog allows:

1.  design variables to be defined, along with their numerical limits,

2. objective functions to be defined, including whether they are to be
minimized or maximized, and

3. inequality and equality constraints to be defined.

In addition, some options may be defined for the optimization process
itself. These are:

1. termination criteria for the optimization algorithm, and

2. which Opera databases to keep. (Each iteration of the optimization
process involves the creation of an Opera database (representing a
particular design); the user can state whether each of these databases
should be kept or deleted. Alternatively, only the databases repre-
senting the best designs may be kept.)

The optimization dialog is invoked from the Opera Manager in one of two
ways. Either

1. select the op3 file (3d) or op2 file (2d) to be optimized in the Opera
Manager and then use the menu route File->Optimize, or

2. right click on the op3 file (3d) or op2 file (2d) to be optimized from
within the Opera Manager and select Optimize from the context
menu.

The prerequisites for an op?2 file being eligible for optimization are:

1. the model must be parameterized using model dimensions (for quan-
tities which are to be set as design variables), and

2. acommand file (with the same name as the op2 file) must exist (in
the same folder as the op2 file), which builds the parameterized
model.




Appendix D Optimizer User Manual 150

Prerequisites for
Opera-3d

If a comi file is used for the rebuilding of models (necessary for 2d optimi-
zation), the model dimension user variables will be available for using as
design variables from the optimization dialog. It is important that the comi
file DOES NOT reset the value of the model dimension variables. To
achieve this, it is advisable to state all user variables as constants (or param-
eters) at the start of the comi file, and use them as such in the construction
of the model. Then at the end of the comi file, change the type of all user
variables which are to be used as design variables to model dimension.

For example, here is a the start and end of a comi file:

$cons name=#a value=1l
$cons name=#b value=3
$cons name=#c value=5

... model building commands ...

//#a and #b are to be used as design variables
$modeldimension name=#a
$modeldimension name=#b

The prerequisites for an op3 file being eligible for optimization are:

1. the model used to create the database must have been parameterized
using model dimensions (for quantities which are to be set as design
variables), and

2. either
i) a parameterized opc model file (built in Opera 12 or later, with the
same name as the op3 database) must exist (in the same folder as the
op3 file), or
ii) a command file (with the same name as the op3 database) must
exist (again, in the same folder as the op3 file), which builds the
parameterized model (including preparing and meshing the model
body, but not including preparation of the database).

Defining Design Variables

The design variables in a problem are a subset of the model dimensions
used in creating the Opera model. After an op3 or op2 file has been used to
invoke the optimization dialog, the model dimensions in the file are dis-
played in the Design Variables tab of the Optimizer dialog. Each model
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dimension may be selected for use as a design variable by selecting it in the
Use column, and entering lower and upper numerical limits to define its
range; alternatively, a model dimension may be given either a constant
(numerical) value, or a value based on other model dimensions by deselect-
ing the Use column and entering a value in the Current Value column.
Note: if you wish to use one design variable as the limit of another design
variable (e.g. an inner radius must be less than an outer radius), then this
must be done through the Constraints/Goals tab. Only numerical limits
may be entered for each design variable in the Design Variables tab.

Optimization Outputs

To facilitate the evaluation of objective functions and constraints, a set of
“optimization outputs” are defined. These are user variables which are
evaluated in the Post-Processor (either 2d or 3d) using comi files. Optimi-
zation outputs may be viewed as the superset of objective functions and
“expensive” terms in constraint expressions (“expensive” terms are those
which must be evaluated in the Post-Processor). To define optimization
outputs, a comi file must be written. This comi file must:

1. carry out necessary calculations on the results of analysis,

2.  store each optimization output in a separate user variable (either a
constant, parameter or model dimension), and

3. contain a comment line containing the word “out” followed by a
space separated list of the names of the optimization output variables.

The command files setting up these optimization output quantities are
loaded in the Optimization Outputs tab of the Optimizer Dialog. (To load
a comi file, select it from the drop down list. Alternatively, press the browse
button and browse to the location of the command file you wish to use.)
Once a comi file is loaded, the output variables defined in it are listed in the
adjacent Output Variables list. Note that more than one comi file may be
used to define optimization outputs: to create additional rows in the tab,
place the cursor in the comi file list and press return.

Defining Objective Functions

When a set of optimization outputs has been loaded, each output is listed in
the Objective Functions tab. Each output may be selected as an objec-
tive, to be either minimized or maximized. At least one output must be
selected as an objective function before a problem may be defined; how-
ever not every output necessarily needs to be used as an objective function.
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Defining Constraints

The constraints of the optimization problem may be defined in the Con-
straints/Goals tab. Each constraint requires two expressions and a
required relationship (<=, ~= or >=) between them. Each expression may
be composed of terms which are either design variables, optimization out-
puts, or numbers, combined using the standard mathematical operators +,
-, /, *,and ** (for powers). Each expression may also use any of the arith-
metic, trigonometric or exponential functions valid in the Post-Processor.
Note that additional rows (for additional constraints) may be created by
placing the cursor in the list in the Expression 2 column, and pressing
return.

Note that it is good practice to keep the number of equality constraints to a
minimum; this may be achieved by rewriting each such constraint as two
separate inequality constraints instead. In the case of inexpensive equality
constraints (i.e. equality constraints on the design variables), it may be pos-
sible to change the problem definition to avoid certain equality constraints.
For example, rather than having #x and #y both selected as design varia-
bles, with the constraint that #x+#y=1, it is better to just have #x as a
design variable (say), with the value of #y “fixed” at 1-#x.

Defining Optimizer Settings

By clicking on the Optimization Settings tab, some settings for the opti-
mization process may be specified: termination criteria for the algorithm,
and solution database options.

Three different termination criteria may be imposed on the optimization
algorithm:

1. a maximum number of iterations,
2. a maximum elapsed time, or

3. aminimum convergence tolerance.

Each iteration of the optimization process involves the creation of an Opera
database or results file (corresponding to a particular design, chosen by the
optimization algorithm); the user can state whether each of these databases
should be kept or deleted. Alternatively, only databases representing the
best designs may be selected to be kept. If databases are kept (whether all
or optimal), the user can specify an upper limit (in GB) which the stored
database files must not exceed.
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The Optimization Process

Overview

Once an optimization problem has been defined through the optimization
dialog, the problem settings are saved to an “optimization file” by pressing
the OK button. The name of this file may be changed through the optimiza-
tion dialog, however its extension must be opn. Once the optimization file
has been written, the optimization process begins. The optimizer iteratively
determines which designs are to be evaluated, and sends them to the Batch
Processor for processing (ensure that the Start Queue Immediately option
is selected for the starting of jobs in the Batch Processor Options
[page 38]). The databases and results files corresponding to these designs
are located in a sub-folder (of the same name as the opn file) of the original
working folder (i.e. the folder which the original op3 or op2 file is in).

The optimization process may be summarized as follows:

1. Problem defined through the optimization dialog, and written to opn
file.

Optimizer determines initial designs to evaluate.
Initial designs sent to Batch Processor.

Initial designs processed.

Optimizer reads in processed jobs.

Optimizer determines next jobs.

Next jobs sent to Batch Processor.

Do =T O IEER O R b

Next jobs processed.

The optimization process iterates over stages 5-8 until the user-specified
termination criteria is met.

Viewing Opera Optimization Results

The results of the Opera optimization are displayed in an Optimization
Results tab in the Batch Processor. Each row in this tab corresponds to a
different design.

The first column of the results tab shows the rank of each design. This is
recalculated after each iteration. Results are ranked as follows:
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Single-Objective Optimization: Designs are simply ranked according to
their objective function value. If the problem is constrained, all feasible
designs are ranked above infeasible designs, which all have the same rank
(one below that of the last feasible design). Designs which fail to complete
(for whatever reason) are given the bottom rank.

Multi-Objective Optimization: All designs which are Pareto-optimal are
given rank 1. All remaining designs are then ranked using a recursive
method: a design is of rank m if it is Pareto-optimal in the absence of all
designs of rank n<m. So, for example, rank 2 designs are those which are
Pareto-optimal in the absence of rank 1 designs; rank 3 designs are those
which are Pareto-optimal in the absence of rank 1 and rank 2 designs, etc.
All feasible designs are ranked in this way. All infeasible designs then take
the same rank (one below that of the last feasible design). Designs which
fail to complete (for whatever reason) are given the bottom rank.

The next M columns of the results tab show the objective function values
of the design. If the problem is constrained, the next column indicates
whether each constraint has been satisfied or not by displaying a sequence
Ys or Ns: if a constraint is satisfied, a Y is displayed; if it is not satisfied an
N is displayed. The order of the sequence of Ys and Ns corresponds to the
order the constraints were defined in the optimization dialog.

The penultimate column shows the iteration number of the design, and the
final column displays the name of the database corresponding to the design.

To enable easy identification of designs of interest, the rows are colour-
coded:

1. Rank 1 designs are coloured blue.

2. Feasible designs which are not of rank 1 are coloured green.
3. Infeasible designs are coloured red.
4

Failed designs (which correspond to jobs which fail to complete) are
coloured grey.

It is possible to order the designs by any column, by clicking on the column
heading; it is also possible to display only the rank 1 designs by clicking on

the Digplay Optimal Only tool-button L-

The results may be written to a text file by clicking on the Write Results

to File tool-button = , and entering a filename in the displayed dialog.
The results are written in the order they are displayed on the results tab. The
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first line of the file written is a comment line, with self-explanatory headers
for each of the columns.

The problem settings may be altered after the optimization process has
started by clicking on the Change Optimization Problem Settings tool-
button ®. This invokes the optimization dialog for the problem. From this
dialog, the following may be altered:

1. the design variables used,
2. the ranges of the design variables,

3. the objective functions used (including whether they are to be mini-
mized or maximized),

4. the constraints used.

The set of optimization outputs cannot be changed because changing these
has the potential to render all previous iterations useless. (If it is necessary
to change the set of optimization outputs, start a new optimization prob-
lem.)

The optimization process may be stopped prematurely by clicking on the

red Stop Optimization tool-button . Clicking this button still allows
any pending optimization jobs in the Batch Processor to finish (to stop the
jobs from completing, do this as normal from the Batch Processor). Once
stopped, the optimization process may be started again by clicking on the
Restart Optimization tool-button ®. This invokes the optimization dia-
log again, allowing alterations to the problem settings to be made before
restarting.

The optimization Results tab may be hidden from the Batch Processor
at any time by right-clicking on an empty area of the Batch Processor tool-
bar and deselecting Optimization Results Pane.

Graphical Output

If gnuplot is installed, graphical output may be displayed for the optimiza-
tion results. The path to the gnuplot executable must first be supplied to the
Opera Manager by using the dialog invoked through the menu route
Options->Set External Program Paths (see Sut binicrnai P
{puge 301). Then a graphics window is displayed and updated during each
iteration of the optimization process. This graphics window displays:

rogin Puths

1. aplot of (normalized) objective function values vs. iteration number,

2. plots of each constraint vs. iteration number,
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3. aplot of the positions of the designs in design variable space (for
problems with two or three design variables), and

4. aplot of the positions of the designs in objective function space (for
problems with two or three objective functions).

The graphics window may be hidden in the usual way by clicking the win-
dows Close button, and redisplayed by clicking on the Show Graphics

Window tool-button B on the Optimization Results tab toolbar.

Use of the Optimization (OPN) File

The problem definition, along with details of each of the iterations, are
written to the optimization (opn) file. One database may be used to define
different optimization problems, each of which may be written to different
optimization files. An optimization problem may be restarted using opn
files in two ways:

1.  opening the opn file in the Opera Manager (either by double-clicking
on it, or using the Menu route File->Open), or

2. by right-clicking on the opr file from within the Opera Manager and
selecting Restart Optimization. Either method brings up the opti-
mization dialog. The problem settings may be changed before restart-
ing, however to ensure previous results can be used, the optimization
outputs cannot be changed.

The results contained in an optimization file may be viewed by right-click-
ing on the optimization (opn) file in the Opera Manager, and selecting Show
Results Pane. This brings up the Optimization Results pane, populated
with the results. The associated problem settings are as they are defined in
the opn file.
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Opera-2d Example - a Coil Former and Disc

The Optimization Problem

The example starts from the eddy current example in chapter 5 of the
Opera-2d User Guide (see Figure 9). The current density and width of the
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Figure 9 Opera-2d Optimization Example

coil and the conductivity of the disc are allowed to vary within certain lim-
its in order to maximize the force on the disc, subject to a constraint on the
maximum current density induced in the disc.

The following parameters are defined:

the current density in the coil: #cDens
the width of the coil #coilWidth

the conductivity of the disc: #discCond
the force on the disc: #forceOnDisc

the peak current density induced in the disc: #maxEddyCDens

and the problem becomes:
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Maximize

#forceOnDisc (#cDens, #coilWidth, #discCond)

subject to

#maxEddyCDens (#cDens, #coilWidth, #discCond) <3.5E6
with constraints

0.5E6<=#cDens<=4E6

0.5<=#coilWidth<=3.5

4E6<=#discCond<=6E6

Preparation of the OP2 File

The command file disc.comi builds the coil former and disc, used in chap-
ters 3 and 5 of the “Opera-2d User Guide™. It is parameterized so that the
current density is #cDens, the width of the coil is #coilWidth, and the
conductivity of the disc is #discCond. At the end of the command file
the user variables which are to be used as design variables are changed
from constants to model dimensions commands like

Smodeldimension #cDens
1. Run the command file disc.comi in Opera-2d/PP.

2. Follow the menu route File->Save, enter disc.op?2 as the file name,
and choose Save and analyse now.

Preparation of Optimization Outputs

We wish to evaluate the values of the optimization outputs (i.e. the objec-
tive functions and terms in the (expensive) constraints) in the initial solu-
tion file, and then save the commands needed to do this to a comi file. The
optimization outputs in this case are the values of the force on the disc, and
the peak current density induced in the disc. Once calculated, the values of
these outputs need to be stored in user variables, #forceOnDisc and
#maxEddyCDens.

The commands need to do this are described in chapter 5 of the “Opera-2d
User Guide”. They are given in the command file disc_post.comi. This
command file also contains an initial comment line with the word “out” fol-
lowed by a space separated list of the optimization outputs. Before defining
the optimization problem, this command file may be run in Opera-2d/PP
after reading disc.ac, in order to gain understanding of how the outputs are
calculated and stored.
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Defining the Optimization Problem

From the Opera Manager, right click on the file disc.op2, and select Opti-
mize. This invokes the optimization dialog.

Defining Design  In this case, all model dimensions are to be set as design variables, so check
the Use column for each. Enter the desired lower and upper limits for each

Variables
design variable as shown in Figure 10.

e S s S e et
DesugnVanable:  Ouiput Quantities  Obyective Funclions i

Use | Lowes Link | Nawe | UpperLimt  Descaption Cussent Vahue

v 05e+06 ¢»  BcDens i dee06

¥ 05¢e  Hoolwidth <= 35 2

v

Figure 10 Design Variables Tab

Defining Click on the Output Quantities tab, and select the file disc_post.comi
Optimization from the list in the Command File column. The outputs defined in the comi
file are then listed in the Output Variables column, as shown in Figure 11.

Outputs
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Figure 11 Output Quantities Tab

Defining
Objective
Functions

QOptimization Problem

Click on the Objective Functions tab. This displays a tab with each of the
optimization outputs listed. We wish to maximize the force on the disc so
choose to maximize #forceOnDisc, as shown in Figure 12. Leave the

Folder C:/0ptimzation Example (2d)
Rebuld Fis: disc.conn

Database. disc.op2

Optzation Fle:  dec opn = , B N
Name Min/mas | ideat Vae  Comments
HorceOnDisc v

Bmas ddyCDens iNot an obeective v

L= J{ tme ]

Figure 12 Objective Functions Tab

Ideal value blank. Leave #maxEddyCDens as Not an objective.
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Defining Click on the Constraints/Goals tab. We require the maximum eddy cur-
rent density induced in the disc, stored in #maxEddyCDens, to be less

Constraints
than 3.5E6. Select #maxEddyCDens in the Expression 1 column, the
less than or equal sign in the Condition column, and type 3.5E6 in the

Expression 2 column, as shown in Figure 13.

* Optimization Problem

Folder: C:/0ptmaation Examle (2d)
RebuldFle:  duc.com

Database: dsc op2
Optmization Fie: disc opn - —_ - -
DesignVanables ~ Output Quantities ~ Objective Functions | Constiants/Goaks  Optimezation Seltings
T 1 [Condhin [Empesssion? | Conmers
| tonaocE ddyCDene w¢e v| 3569 o

“ =i ~

. T

Figure 13 Constraints/Goals Tab

1.4.5) Defining Click on the Optimization Settings tab. Adjust the termination criteria
of the optimization algorithm, and the Solution Database Settings to

Optimization
Settings your own preference (e.g. see Figure 14).
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Starting the
Optimization
Process

Folder C:/0ptmaation Example (2d)
RebuldFle:  disc.comi
Database: disc.op2
Optimization File: | diec.opn
S ———

owvmiqwfi“”yﬂ-—?mﬁf""' Optenzzation Settngs |

Temunation Criteds

[¥] Time Limk ] “Dw:)12 2/ Hows0 < Mins
[#] Maomum Number Of ftesations. 1250 ) 3

[¥] Minwoum Probabiity of Improvement:  1.00E-10

Sohstion Database Settng:

Sohion Databases to Keep: © None oa ® Opbemal {Rank 1) Orly
Upper Lk of Sokution Databases Kept (GBY 1 8

Figure 14 Optimization Settings

All parts of the optimization problem have now been defined. When the OK
button is pressed, the settings defined in the optimization dialog box will
be written to an optimization (opn) file (of a name of our choosing), and the
optimization process will begin.

Enter disc.opn as the name of the optimization file, and press OK. The opti-
mization process begins.

Viewing Results

Results are displayed in the Optimization Results tab in the Batch Proc-
essor. They may be reordered by clicking on the appropriate column
header. If gnuplot is installed, the results are also displayed graphically, as
shown in Figure 15.

Updating Settings

If, after the optimization process has started, we wish to change the prob-
lem definition, so that the maximum induced current density allowed is
now only 2.0E6, instead of 3.5E6, the problem settings need to be updated.

1. Click on the Change Optimization Problem Settings toolbutton
®. This invokes the optimization dialog for the problem.
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Figure 15 Graph of Constraints

2. Click on the Constraints/Goals tab. Change the value of 3.5E6 to

2.0Eé6. 3.

3. Click Update to update the settings.

The updated settings are saved to the opn file. These updated settings are
used by the optimizer in subsequent iterations. As can be seen from the
Optimization Results tab, all previous results are reranked according to

the new settings.

Restarting from the OPN file.

If the optimization process has finished (either through the termination cri-

teria being reached, or by pressing the Stop Optimization button

the toolbar of the Optimization Results tab), and we wish to restart it, do

the following.

1. Right click on disc.opn in the Opera Manager and select Restart

Optimization. This invokes the optimization dialog.

2. Amend the settings if required and click Restart.

on
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Opera-3d Example: Helmholtz Coils

The Optimization Problem

The width #A, coaxial length #B, and half separation #Z of a pair of Helm-
holtz coils, as shown in Figure 16, are allowed to vary within certain limits

i unen
Figure 16 The Helmholtz Pair

in order to achieve a homogenous flux density of 5000 Gauss, inside a
sphere of radius 3 about the origin. The homogeneity of the field is charac-
terized by the coefficients of the Legendre polynomials (on a sphere of
radius 3); in this case we wish to achieve an 4, coefficient of magnitude

5000, and to minimize the magnitude of the error harmonics 45, 449, 44¢-

Formally this is stated as:

Minimize

abs (A 2 O(#A,#B,#Z)),abs(A_4_0 (#A,#B,#2)),
abs (A_6_0 (#A,#B,#2)

subject to

abs (A 0 0 (#A,#B,#Z)=5000

with constraints

0.5<#Z<15

0.5<#A<5

0.5<#B<8
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Preparation of the Database

1. Load the example file helmoholtz.opc in the modeller, by double-
clicking on it in the Opera Manager. This file contains a pair of
Helmholtz coils, parameterized such that the half separation between
the coils, the width of the coils and the coaxial length of the coils are
#Z, #A and #B respectively.

2.  Generate the surface mesh and volume mesh for the model.
(Model->Generate Surface Mesh and Model->Generate Volume
Mesh).

3. Prepare and solve the database helmholtz.op3 (see Figure 17).

<y halmbiollz.ope®  Opera 2d Modellor

CCe R w¢6C/ 7 B

CSAIROSNITR

BBAFR \ 88k NEADU LY SRS o4 B
BExxw vz QOERwA D @ e
12/40u/2007 15:47 53 Y

Option Create new database fe
——m
UwsiCos v
Elementlype Mowd  ~ Suface element hype| Cuved v

(o) [Fepmeodso] [ coea ]
‘ e s
x m‘l’dﬂln maf. 11,508 Ftarted on 17/Jul/Z007 at 16:45:48 -
mx«.-;s-;-m found in the local or homs directory
3 Lo risaecc:y [ opet opTIowNY .
Opesadd> e S s— v

oumemesh | 2 11 21 13 1 Gbalcordnate system

Figure 17 Creating the Database

(Model->Create Analysis Database and enter the name helmholtz.
Click Prepare and Solve.).

Preparation of Optimization Outputs

We wish to evaluate the values of the optimization outputs (i.e. the objec-
tive functions and terms in the (expensive) constraints) in the initial solved
database, and then save the commands needed to do this to a comi file. The
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optimization outputs in this case are the absolute values of the Lenegendre
polynomial coefficients A_ 0 0, A 2 0, A 4 0 and A_6 0O, calculated
over the surface of a sphere of radius 3, centred about the origin. Once cal-
culated, the values of these outputs need to be stored in user variables,
which we shall call #Con_1 (for the absolute value of A_0_0), #0bj 1,
#0bj_2 and #0Obj_3 (for the absolute values of A_2 0, A 4 0 and
A_6_0 respectively).

1.

Open the solved database helmholtz.op3 in the Opera-3d Post-Proc-
€SSOr.

Use Fields->Fit Legendre Polynomials to Values...

Click on set field point local coordinate system and set
Local XYZ = Global YZX to ensure that the spherical polar coordi-
nate system is correctly orientated.

Set Field component to Bz, Radius of sphere to 3, Maximum order
to 10, and select to print the values to screen, as shown in Figure 18.

Fit Legendre Polynomials

[ Set field point local coordinate system|
Field component Bz
Radius of sphere 3 ___|

Print values to ...
@) screen () Operadd_Post_nnlp O both (O neither

Figure 18 Fit Legendre Polynomials Dialog

Press OK to calculate to Legendre coefficients.

The Lengendre polynomial values are printed to screen. We wish to
store the absolute values of the components of interest (A_0 0,
A 2 0,A 4 0and A 6 0) as user variables.

From the command prompt in the console, issue the following
$CONSTANT commands:

$cons #Con_1 ABS(a_0_0)

Scons #0Obj_ 1 ABS(a_2 0)

$cons #0Obj_2 ABS(a_4_0)

$cons #0Obj 3 ABS(a_6_0)
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10.

The optimization outputs have now been evaluated, and stored in
user variables. We wish to save the commands carried out to achieve
this to a comi file.

Open the command file editor (Command Files->Command File
Editor).

Use File->Open Current Log File... to load the commands
which have been run. Copy them (Figure 19) and paste them into a

& Command File Editor [Opera3d_Post_6.log (read only)] !
O e :

y Opera~34 Post-Processor Version 11.502

/ Svarced: 18/3ul/2007 10:47:32

/ Node: DELL2E. Processor: x86/wini2. Sysvem: Windows XP (Service Pack 2)
fconx |

ACTIVATE FILE='C:\Optimization Examples\helmholtz.op3' | LOAD | SELECT
ACTION=DEFAULT | SELECT ACTION=SELECT OPTION=SURFACES | THREED OPTION=REFRESH
SET XLOCAL=0 YLOCAL=0 ZLOCAL*0 TLOCAL=90,PLOCAL=0,SLOCAL=90

FIT TYPE~LEGENDRE COMP=Bz RADIUS=3 ORDER=10 PRINT~SCREXN

foonstant $Conl ABS(A_0_0)

jeconstant $0b3L ABS(A_Z_0)

feonstant #0bIZ ABS(A_4_0)

fconstant #0b33 ABS(A_6_0)

Ini, Colt

Figure 19 The Commands in the Current Log File

new file.

Prepend an extra comment line at the start of the new comi file with
the word out, followed by a space-separated list of the optimization
outputs, to end up with a file as shown in Figure 20.

To summarize: Line 1 is the comment line stating explicitly the
names of the user variables defined in this comi file which are to be
used as optimization outputs. Lines 2-3 evaluate the Lengendre
polynomial coefficients of the Bz field over the surface of a sphere of
radius 3 (around the origin). Lines 4-7 store the (absolute) values of
the A 0 0,A 2 0,A_4 0,A 6_0 coefficients in the user variables
which are to be used as optimization outputs.

Save the file as helmholtz_post.comi in the same folder as helm-
holtz.op3.

Close the command file editor, and exit the Post-Processor.
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@ Command File Editor - [Document *

[ fle Edt Commands Windows Hebp

TR A R

fouc sconi wob3L sObIZ WOB)3
SET XLOCAL=0 YLOCAL®0 ZLOCAL=Q TLOCAL=90,PLOCAL=0,SLOCAL=90
FIT TYPR*LECENDRE COMP=Bz RADIUS=3 ORDER=10 PRINT=SCRIEN
jconscant §Conl ABS(A_0_0)

fconstant SO0b3L ABS(A_Z 0)

feonscant $0b32Z ABS(A_4_0)

feonstant #0b33 ABS(A_6_0)

Figure 20 The Post-Processor Command File

Defining the Optimization Problem

From the Opera Manager, right click on the database helmholiz.op3, and
select Optimize (Figure 21). This invokes the optimization dialog.

v_.._‘ = S — —
BT BB e o e
Foder oo Sies Tywe Cronted Modéed
= 3 Ophmczaion Exepies D opeca_oge Foides V70272000 15 4537 1720772007 154548
# () opera_logn m 72KB opo 02/07/2007 14:16:58 12/07/2007 158550
5] Open with Opera-3d Post-Processoe
Solve with TOSCA
Rebukd
oS ]
¥ o Crriex
By ooy amC
B oo
{ Rename
IR R TR e i
Fode [FloName | Pogom | Sume | TrmeStsted | Creaed On | 1
Cument Jobe Job History

Figure 21 Selecting Optimize from the Manager

Defining Design  The optimization dialog is composed of five tabs, each of which is used to
Variables define the settings of the optimization problem. The first tab displays all the
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model dimension variables defined in the model. Each model dimension
may be set:

1.  to vary between numerical limits (i.e. act as a design variable), or
2. tobe a constant, or

to take a value based on the value of other Model Dimensions (i.e.
act as a parameter).

In this case, all model dimensions are to be set as design variables, so check
the Use column for each. Enter the desired lower and upper limits for each
design variable as shown in Figure 22.

* Optimization Problem

e R

RebuldFe:  helwhotz opc

Dbl BIMRAGE: 1R NSRS SR e e

Omasonfle. hebotzopm

Design Vanables  Output Quaniibes  Objective Functons | Constsants/Goals | Opfimaation Seltings

Usmtowerti | (N =~~~ | [Upowlisk = [Dwcitn | OueortVake
0S¢ &1 = 15 Hall Z separation 3
05¢= w8 = 8 Cod aaal length 3
05¢ce WA = 5 Col widh

Figure 22 Design Variables Tab

Defining Click on the Output Quantities tab, and select the file
Optimization helmholtz_post.comi from the list in the Command File column, as shown
Outputs in Figure 23. The outputs defined in the comi file are then listed in the Out-

put Variables column.
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Defining
Objective
Functions

Folder. C:/Optnzation Examples

Rebuld Fle: helkmholz ope

Database: hekohokz.0p3

OpénzationFie: helholzopn

MV&MJWM . Dbyective Functions | Constiairts/Goals  Optimzation Seltings
d file || Dutput Varisbles | Comments.
| helmhokz_post com v jucon 1 v

* Optimization Problem

Figure 23 Output Quantities Tab

Click on the Objective Functions tab. This displays a tab with each
of the optimization outputs listed.
We wish to minimize the error harmonics A 2 0,A 4 0,A 6 0

(stored in #0bj_1, #Obj_2 and #0bj_ 3 respectively). Choose
these user variables as shown in Figure 24. The Ideal values may be

=TT

Figure 24 Objective Functions Tab
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Defining
Constraints

Defining
Optimization
Settings

Starting the
Optimization
Process

set for each objective (in this case 0), although this is not necessary.
Leave #Con_1 as Not an objective.

Click on the Constraints/Goals tab.

2. We require the magnitude of the A_0 0 Legendre polynomial coeffi-

cient, stored in #Con_ 1, to be equal to 5000. Select #Con1 in the
Expression 1 column, the equality sign in the Condition column,
and type 5000 in the Expression 2 column, as shown in Figure 25.

Folder: C:/Optimization E xamples

Rebruid File: helmholtz. ope

Database: hedmholtz.0op3

| Design Veiables | Output Quanbties | Objective Functons  Constrants/Goals | Optwazabon Settings

E: 1 | Condition E; 2 =
8Con_1 ¥~ » | 5000 v

- T

Figure 25 Constraints/Goals Tab

1. Click on the Optimization Settings tab.

2. Adjust the termination criteria of the optimization algorithm, and the
Solution Database Settings to your own preference.

All parts of the optimization problem have now been defined. When the OK
button is pressed, the settings defined in the optimization dialog box will
be written to an optimization (on) file (of a name of our choosing), and the

optimization process will begin.
Enter helmholtz.opn as the name of the optimization file, and press OK. The

optimization process begins (see Figure 26).
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Figure 26 The Optimization about to Start
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The consideration of surrogate model accuracy in single-objective
electromagnetic design optimization
G. I. Hawe, School of ECS, University of Southampton, U.K. and Vector Fields Ltd., Oxford, U.K.

(glenn.hawe@vectorfields.co.uk)

J. K. Sykulski, School of ECS, University of Southampton, U.K. (jks@soton.ac.uk)

1 Introduction

Optimization problems in electromagnetic design are
typified by features which present difficulties to most
deterministic search algorithms, e.g. the existence of
multiple local minima. Genetic Algorithms (GAs), on
the other hand, with their ability to search more
globally, are better suited for exploring complicated
objective  function  landscapes. The  high
computational cost of evaluating the objective
function in such problems, however, means that direct
use of a GA is often not feasible or impractical, due to
the general requirement for a large number of
objective function evaluations.  Additional cost-
effective techniques must be used, with the aim to
make the GA require fewer evaluations of the
objective function. Techniques used include hybrid
algorithms, GAs specially adapted for small
population sizes, and simplifying the problem by
removing irrelevant design variables. One technique,
called surrogate modelling, is the focus of this paper.

A surrogate model is a functional relationship
between the design variable space of an optimization
problem, and the objective function space, which is
constructed based on a set of design vectors which
have their objective function values known. Having
constructed a surrogate model, a GA can then use it to
predict fitness values for unevaluated design vectors,
rather than call the true expensive objective function,
thus reducing computational costs. However, ideally
the reliability of the model should be taken into
account as well, when choosing points to evaluate;
this is discussed further in Section 2. Different
methods exist to construct surrogate models,
including polynomial approximation, artificial neural
networks (ANNs) and kriging; the use of these three
types of surrogate model in electromagnetic design
optimization is discussed in Section 3. Developments
in this area outside the field of electromagnetic design
optimization are discussed in Section 4.

2 Model Accuracy
Care should be taken when using a surrogate model to

select design vectors to evaluate for optimization
purposes. In particular, the existence of false optima

(points which are optima of the surrogate model, but
which are not optima of the true objective function
space, see Figl) means that selecting points to
evaluate based entirely on their predicted objective
function value is not desirable. Instead, ideally some
measure of the reliability of the predicted objective
function value should also be considered, and so the
choice of the next point to evaluate becomes a balance
between attempting to locate the best points and
aiming at improving the accuracy of the surrogate.

trie objective function
————— surrogate moded
.

"

. .
+

~ . -

T T talse minkuun

Fig. 1 False minimum in a surrogate model

3 Surrogate-assisted single-
objective electromagnetic
design optimization

3.1  Polynomial approximations

Polynomial approximation suffers in that inclusion of
additional points into the model does not necessarily
lead to increased model accuracy. In particular, if
only the optimum of the surface is added, the model
can converge very quickly to a false optimum [1].

In [2], model accuracy was considered in several
ways. The initial set of examples was chosen so as to
minimize the condition number of the matrix [M]
which was to be inverted in order to determine the
polynomial coefficients. A dynamic weighting factor
was then used as the optimization process proceeded
to place more emphasis on the region around the
predicted optimum. Then, in order to ensure that [M]
did not become ill-conditioned as the optimization
process continued, additional learning points were
evaluated, chosen specifically so as to minimize the
condition number of [M]. The method was
successfully used to optimize a brushless permanent
magnet motor; an analysis of the errors on predicted
optima and learning points indicated that the inclusion
of leaming points was effective in improving the
accuracy of the polynomial surrogate model.
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3.2 Artificial Neural Networks

A wide range of different types of ANNs exist which
may be used to construct surrogate models. One
popular type used is a radial basis function ANN. A
method in [3] uses multiquadric radial basis functions
to successfully optimize a C-core magnet and a
magnetizer. In addition to evaluating the predicted
optimum during on-line learning, design vectors in
the most unexplored regions of design space were also
evaluated, with the aim of avoiding local minima;
however it is likely this has improved the model
accuracy globally as well.

3.3 Kriging

Kriging has recently been recognized as a useful
method for surrogate model construction for
clectromagnetic optimal design [4]. Due to its
statistical nature, useful information may be extracted
giving an indication of model accuracy and reliability.

The EGO algorithm [5] uses such information to build
up an auxiliary function, known as the expected
improvement, which automatically balances the
objective function values predicted by the kriging
model, with the uncertainty in this prediction. By
optimizing this auxiliary function, model accuracy
increases as the optimum is being searched for. A
variation of EGO, known as superEGO, has been used
to solve two electromagnetic design problems with
expensive objective functions [6], and convergence
was found to occur within tens of iterations.

4 Developments Elsewhere

Other algorithms have been developed outside the
electromagnetic design community which also
consider model reliability when searching for new
points. One such approach, based on a radial basis
function ANN surrogate model, known as rbfsolve
[7], predicts the location of a potential new optimum
(whose objective function value f* is lower than the
current minimum f,,;,) and evaluates a measure of the
credibility of the response surface which would
interpolate it and the existing data. A measure of the
“bumpiness” of the resulting response surface serves
as a measure of its credibility, with smoother surfaces
being deemed more acceptable.

Fig.2 Two response surfaces which pass through
an existing set of examples and a predicted optimum

For example, in Fig 2, the proposed optimum (x,*,*)
is preferred to the proposed optimum (x,*,f*), as the
surface which interpolates it and the existing set of
points (shown as black dots) is less “bumpy” than the
surface which interpolates (x,*,f*). The algorithm
has performed well on test functions, but has yet to be
applied to electromagnetic optimal design problems.

5 Conclusion

Surrogate models have proven to be effective in
reducing the cost of electromagnetic optimal design
problems. Model reliability has been recognised as an
important factor and attempts have been made to
ensure model accuracy improves as the optimization
search proceeds. However, suitable algorithms exist
which are yet to be implemented in electromagnetic
design optimization. The full paper will critically
assess various surrogate modelling techniques.
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Abstract— The balance between exploration and exploitation
is an important issue when attempting to find the global minimum
of an objective function. This paper describes how this balance
may be carefully controlled when using Kriging surrogate models
to approximate the objective function.

I. INTRODUCTION

A common technique for reducing computational cost in
electromagnetic optimal design problems is to use surrogate
models to approximate the relationship between the design
variable space and the objective function space. A range of
different methods are available for constructing the surrogate
model, one of which is Kriging [1]. Kriging surrogate models
have the advantage that useful information regarding their
accuracy can be obtained, which may then be exploited when
choosing the next points to evaluate during optimization, as
‘utility functions may be constructed which seamlessly
balance the predicted value of a point’s objective function
value with the uncertainty in this prediction, thus providing a
useful way to achieve the balance between exploration of
unknown regions of objective space and exploitation of
attractive areas of objective space. This paper discusses the
range of such utility functions now available.

II. UTILITY FUNCTIONS

Denote by ym, the minimum objective function value
attained in the set of examples used to construct the Kriging
surrogate model. At an unevaluated design vector x, denote its
objective function value as predicted by the Kriging surrogate
model by ¥, and the root mean squared error in this prediction
by s. Then by writing

u:)’mm_)’,

4y
s

the “expected improvement” utility function may be defined as

[2]:

EIF[1(0))= (Ve = )P W)+ sw(u) @)
where ¥ is the standard normal distribution function and y is
the standard normal density function. This utility function is
composed of two terms, the first favoring design vectors with a
small predicted objective function value, the second favoring
design vectors with large uncertainty in their predicted
objective function value. Thus the function is a fixed
compromise between exploration and exploitation.

The “generalized expected improvement” utility function is
defined as [3]:

¢ — ok x g gk
GEIF[1*(x)]=s g(—-l) (Mju T,, 3)
where
T, =—glul*™ +(k-DT,,, @)
with
T, = ®u) )
T, =—4(u). (©)

The integer parameter g in (3) controls the balance
between local and global search, with larger values of g
resulting in more emphasis being placed on searching globally.
By varying the integer g during an optimization search the
emphasis between searching globally and locally can be
controlled.

Recently, the “weighted expected improvement” utility

function has been proposed in [4]:
WEIF[I(x)] = Wy = 9)¥ )+ (1= whs (1) ™
where the real valued parameter w (which is set between 0 and
1) controls the balance between the first and second terms, and
thus between searching locally or globally. By varying the
value of w during an optimization search, the balance of
searching globally and locally can again be controlled.

{ll. RESULTS

Each of the proposed utility functions arc naturally suited
for use in electromagnetic design optimization, as they allow
the balance of exploration and exploitation to be carefully
controlled, whilst computational cost is kept to a minimum.
Results on mathematical test functions have shown them to be
very efficient in locating global minima. Details of their
performance in the optimization of electromagnetic devices
will be given in the full paper.
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A Hybrid One-Then-Two Stage Algorithm for Computationally
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Abstract. A novel kriging-assisted algorithm is proposed for computationally expensive single-objective optimization.
The principle behind the algorithm is to use information about objective function space at the earliest possible
opportunity. After constructing a very small experimental design, a one-stage optimization algorithm is used to select
further points to evaluate in design variable space. These points are then used in lieu of a traditional space-filling
experimental design to construct the initial kriging model for a normal two-stage optimization algorithm.

Key words: Optimization, Kriging, Design and Analysis of Computer Experiments (DACE).

I. INTRODUCTION

In [1], surrogate-model assisted optimization algorithms are categorized into “two-stage” and “one-stage” varieties. Two-
stage algorithms use an experimental design to construct an initial surrogate model (the first stage), and then use this model
to determine where to sample next (the second stage), e.g. [2]. This approach has several drawbacks: experimental designs
ignore information about objective function space, as they are constructed only to be space-filling in the design variable
space, and this may be viewed as being wasteful; also, the surrogate model constructed from the points sampled may not be
very accurate. One-stage algorithms do not fit a surrogate model to the observed data. Instead, they choose where to sample
next by making a hypothesis about the location of the global minimum, and determining the credibility of surrogate models
which would pass through it and the sampled points, e.g. [3]. The point chosen to be sampled is the hypothesised point
which has the most credible surrogate model passing through it. This approach has the drawback that the computational cost
of locating which point to evaluate next increases dramatically as the number of sampled points increases. In this paper, a
hybrid one-then-two stage algorithm, which uses a one-stage algorithm to initialize a two-stage algorithm, is proposed for
use with kriging surrogate models [4].

II. ONE-THEN-TWO STAGE ALGORITHM

The proposed algorithm for locating the global minimum in n-dimensional design variable space D < R” consists of three
steps: initialization, one-stage experimental design, and two-stage optimization search.

A. Initialization
The only purpose of the initialization step is to sample enough points to allow a non-trivial kriging model to be constructed

(i.e. a model which is not a hyper-plane in R"). The space-filling Hammersley Sequence experimental design [5], of size
2n, is used to select the points. The experimental design size of 2a is much smaller than is normally used (10n is suggested
in {2] for example), as the philosophy of this algorithm is to use information about objective function space to search for the
minimum at the earliest possible opportunity.

B. One-stage experimental design

Information about objective function space has now been obtained through sampling 2n points, and the aim in this second
step is to use this information to strategically choose where to sample next. Let the minimum objective function value of the
2n sampled points be f;,;,, and let the maximum be f.... A design vector x* is then hypothesized to exist in design variable

space which has an objective function value f* = foin — ¢(fax— fmin) < fmin. Where 0 < g <1. Initially g is set to ¢ = 1. Then,
the likelihood of the 2n sampled points conditional upon a kriging surface passing through (x*,£*) is [1]:
—(y-m)C'(y-m
n n 1 expl: (y ; 2 (y )} (h
= Z o
(27)* (67)?}|CJ2
where:
m=1u+r(f*-u) (2
C=R-rr" ©)
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are the conditional mean and correlation matrices. Here, R is the correlation matrix, x4 is the mean and o is the variance
predicted by the kriging model. The next point to be evaluated is the x* which maximizes (1). This value of x* is the one
which yields the most credible kriging surface which interpolates it (with objective function value f*) and the sampled
points. This process is repeated for 8 iterations until 10n points in total have been evaluated. The value of ¢ is cycled
through using ¢ = |sin((in /2n)+0.01)| at the /" iteration of this stage.

C. Two-stage optimization search

The 10n points sampled so far are now used to construct a kriging model. (In this respect, the previous stage may be viewed
as the experimental design stage). Utility functions, which balance the values predicted by a kriging model with the
uncertainty in the model, are now used to select which points to evaluate next. The generalized expected improvement
function [6]:

14 —k
GE[I* (x))=s Z( It = )ug T @
where
T, = —gluh ™ + (k- 1)T,_, ©)
with
T, =®(u) (6)

T, = —(u) ™

where @ is the standard normal distribution function and ¢ is the standard normal density function, is used first, as it places

most emphasis on regions of high uncertainty, which is what is desired at the beginning of an optimization search. The level
of emphasis placed on searching uncertain regions is determined by the value of the integer g, with higher values of g
corresponding to more emphasis. A cooling strategy [7] is employed, using high values of g to begin with, and then
progressively smaller values. When g = 1, the utility function is equivalent to the expected improvement utility function, as
used in the EGO algorithm [2]. Upon reaching g = 1, we wish to place more emphasis on searching around the current
minimum, and to do this the weighted expected improvement utility function [8] is used:

fm.n(f() o wysiog] LT &
S(x

WE(I(x)) = W(f e — /(X)) s(x)

where f(x) is the objective function value as predicted by the kriging surrogate model, and s(x) is the root mean squared

error in this prediction. The first term in this function places emphasis on searching around the current minimum, whilst the
second term places emphasis on searching regions of design variable space with high uncertainty in their values. The terms
are balanced using the weighting parameter w. Using w = 0.5 in (8) is equivalent to using g = 1 in (4), so we begin using (8)
with a value of w = 0.6 to select points. Then different values of w are cycled through, using w = 0.5 + 0.5| cos(in /2n)] at the
i use of (8). The algorithm then proceeds either for a fixed number of iterations, or until an adequate solution has been

found.

ITI. RESULTS AND CONCLUSIONS

Results on test functions have been encouraging. A full analysis of the performance of the proposed algorithm and its
application to electromagnetic device optimization will be discussed in the full paper.
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Abstract— This paper describes a novel utility function for
choosing design vectors to evaluate in multi-objective optimiza-
tion problems which are statistically most probable to be Pareto-
optimal, given the points already evaluated. The method is
tunable to the number of existing Pareto-optimal solutions that
an unevaluated design vector is sought to dominate, is naturally
parallelized, and removes any need for combining the multiple
objectives into a single objective with a scalarizing function.

I. INTRODUCTION

In [1], the probability of improvement criteria was identified
as an effective utility function to use with kriging surrogate
models [2] for locating design vectors to evaluate in single-
objective optimization. By modeling the prediction of a kriging
model as the realization of a Gaussian distribution, with mean
f(x) and standard error s(x) as given by the kriging model,
the probability of an unevaluated design vector x having an

objective function value less than T is

T-f) )
$(x)
where @ is the normal cumulative distribution function. This is
illustrated below in Fig. 1; the probability of the unevaluated
design vector x* having an objective function value less than

T is represented by the shaded region.

PU(X < T) = of (1)

Kriging prediction f(r)
Standard error

Sampled points ¢

Kriging prediction - - - - -
Unevaluated point ° o Standard error -------

Fig. 1. Uncertainty in objective function value for an unevaluated design
vector as predicted by a kriging model.

This method of selecting design vectors to evaluate suffered
one drawback however, in that it was sensitive to the level of
improvement sought (i.e. the value of T'). Two methods were
proposed in [1] for overcoming this sensitivity:

1) Evaluate the design vector which maximizes the expec-

tation of the improvement, or

2) Evaluate several design vectors per iteration, each cor-

responding to a different level of improvement (i.e. a
different value of T).

The first method led to the development of the EGO
algorithm [3], which has subscquently received significant
attention in the literature. However, the second method, re-
ferred to as ‘enhanced probability of improvement’ is the
approach recommended in [1]. It has the advantage that it is
very robust and easily parallelized, although it suffers in that
the different levels of improvement sought in each iteration
(i.e. the different values of T used) are arbitrary. This paper
extends this enhanced method to the multi-objective case,
where it shall be seen that natural levels of improvement exist.

I1. ProBaBiLITY OF IMPROVEMENT AND EXPECTED IMPROVEMENT IN
Mucri-OBIECTIVE OPTIMIZATION

The concept of improvement in multi-objective optimization
has only appeared recently in the literature. First, recall that a
solution S, (with design vector x,) is said to dominate another
solution S, (with design vector x,) if and only if S, is strictly
better than S, in at least one objective, and no worse in all
other objectives. The set of Pareto-optimal solutions are then
those solutions which are not dominated by any other existing
solution. Suppose then, that a set S of Ny, Pareto-optimal
solutions exists, § = {$1,82,..., 5w, 1 after performing an
experimental design. Then a design vector x is said to yield
an improvement if it is non-dominated by the solutions in
S [4]. This may happen in one of two ways:

1) x dominates at least one of the solutions in S, or

2) x does not dominate any solution in §, nor does any

solution in § dominate x.

This is shown in Fig. 2 for the two-objective case, when
Npar = 5 Pareto solutions exist. Design vectors which yield
an improvement map to either of the shaded regions; design
vectors which dominate at least one solution in § map to the
region labeled ‘Dominating Designs’, whilst design vectors
which do not dominate any solution in § (but which still
constitute an improvement) map to the region labeled *Equiva-
lent Designs’. Equations for the probability of an unevaluated
design vector yielding an improvement are given in [4] and [5],
and the equation for the probability of an unevaluated design
vector dominating at least one solution in S for the two-
objective case is given in [5]. Both [4] and [5] report problems
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Equivalent Designs

Dominating Designs

8 !l & ll
fi (to be minimized)

Fig. 2. Regions of dominance and equivalence for Np,r = 5 Pareto solutions.

with the probability of improvement criteria yielding searches
which are not very global, and so only small improvements
are made. Both overcome this by instead maximizing the first
moment of the probability of improvement around the Pareto-
optimal front, which is the multi-objective equivalent of the
expected improvement utility function, i.e. they use the first
method suggested in Section 1 for overcoming the equivalent
sensitivity problem in the single-objective case. The following
Section shows how to overcome this sensitivity problem in
the multi-objective case using the second method proposed
in Section 1, that is, it proposes an enhanced probability of
improvement criteria for multi-objective optimization.

II1. ENHANCED PROBARBILITY OF IMPROVEMENT IN MULTI-OBJECTIVE
OPTIMIZATION

In the multi-objective case, k = Ny, natural levels of im-
provement may be defined, where the k" level of improvement
yields a solution which dominates exactly k of the existing
Pareto-optimal solutions. In addition, a level of equivalence
may also be defined (k = 0), which yields an additional Pareto-
optimal solution which does not dominate any of the existing
Pareto-optimal solutions (i.e a design vector which maps to the
region labeled ‘Equivalent Designs’ in Fig. 2). These levels of
improvement are shown in Fig. 3 for the Ny, = 5 Pareto
solutions considered earlier.

! Levels of Improvement
Level 0
_ Level 1

)

7

f2 (to be minimized)

5

fi (to be minimized)

Fig. 3. Probability of improvement levels for Nyar = 5 Pareto solutions.

As can be seen, in the two-objective case, for an improve-
ment level X, a design vector may map to Npar—k+ 1 regions of
objective function space. Denoting P(/¥(x)) as the probability

that an unknown design vector X yields a level of improvement
k (i.e. it dominates exactly k existing Pareto-optimal solutions),
P;(I*(x)) as the probability that design vector x will dominate
the k Pareto solutions Ss1,S8is2,...,5i+x (these sub-regions
are labeled in Fig. 3), and defining

- ¢(ff" —f’n(X))

@} (x) 2
51(x)

i jg i _.f‘Z(x)

»(X) ‘D(TX)) 3)
with

x) = 0 )
o) = 1 )
®)x) = 1 6)
o) = 0 ©)

where fi(-) and s,(-) are the kriging predictions and standard
errors for the first objective function respectively (similarly for
the second objective function), and ff" is the first objective
function value of the i Pareto solution (similarly for the
second objective function), then:

Nour—k

PU ) = ) Pi*x) ®)
i=0
Npur—k

= D (@) - Bl)(@%0 - ¥4 (). (9)
=0

Furthermore, denoting by P*(I*(x)) the probability that x
will dominate at least k existing Pareto-optimal solutions, then
Now Now=j . N N
Py =) D (@ (0-0®0)(@5(0)-05 " (). (10)

j=k =0
Equations (9) and (10) are two multi-objective equiva-
lents of the ‘enhanced probability of improvement’ in single-
objective optimization, for the case of two objectives. The
method is extensible to higher numbers of objectives.

IV. CoNCLUSIONS

A novel utility function, which is easily parallelized and
which does not require normalization of objective functions,
has been proposed for use in computationally expensive multi-
objective optimization. Its performance in optimal electromag-
netic design will be discussed in the full paper.
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Abstract— A novel kriging-assisted algorithm is proposed for
computationally expensive multi-objective optimization problems,
such as those which arise in electromagnetic design. The algo-
rithm combines the multiple objectives into a single objective,
which it then optimizes using a one-stage method from single-
objective optimization. Its efficiency is demonstrated by compar-
ison to a random search on a difficult test function.

1. INTRODUCTION

One popular method of reducing the high computational
cost of evaluating objective functions in electromagnetic opti-
mal design problems is the use of surrogate models, such as
kriging [1].

Surrogate-model assisted single-objective optimization al-
gorithms may be categorized into ‘two-stage’ and ‘one-stage’
varieties [2]. At each iteration of a two-stage algorithm,
a surrogate model is constructed from the sampled points
(the first stage), and then this model is used to determine
where to sample next (the second stage), e.g. [3]. On the
other hand, one-stage algorithms choose where to sample
next by making hypotheses about the location of the global
minimum, and determining the credibility of surrogate models
which would pass through each hypothesized optimum and the
sampled points, e.g. [4]. The point chosen to be sampled is
the hypothesized point which has the most credible surrogate
model passing through it. Results on test functions show one-
stage methods to be extremely efficient.

One popular technique for solving multi-objective optimiza-
tion problems (MOQPs) is to combine the multiple objectives
into a single objective (5] and then optimize this, e. g. {6]. This
paper proposes a novel multi-objective algorithm, which uses
a one-stage kriging algorithm to optimize a MOOP, which is
scalarized using an augmented Tchbeycheff function [5]. It is
believed this is the first time one-stage methodology has been
used for multi-objective optimization.

II. ONE-STAGE KRIGING METHODOLOGY

A brief overview of the one-stage kriging methodology is
first given. Suppose that objective function f is a function of an
n-dimensional design vector, and suppose N design vectors,
x(W x®_ . x™) have been evaluated. Given the objective
function values of these N design vectors, a hypothesis is
made about the value of the objective function at the global
minimum of f. Specifically, the global minimum is hypoth-
esized to have an objective function value f*. Then defining

the Gaussian correlation function R (which expresses how two
design vectors x(¥ and x9) are correlated) as

k(3
R(x®,x()) = J[ e-oslei—sti*
k=1

0y

(where 0 determines how rapid the correlation is lost in the
k" design variable, and py determines the ‘smoothness’ of
the function in the ktP design variable), the N x 1 correlation
vector r as

r(x) = [R(x,xD), R(x,x'?), ... R(x,x"™")T, ()

the N x N correlation matrix R as the matrix whose i — ;"
entry is R(x®, %)), the N x 1 vector y as the vector filled
with the objective function values of the sampled points,

y = [fx), f(x®), . fx)T 3)

and 1 as the N x 1 vector filled with ones, then for any design
vector x*, the likelihood of the N examples conditional upon
the surface passing through (x*, f*) is [2]:

1 -y -m)TC !y - m)
(2m)N/2(o2)N/2|C[1/2 €xp ( 902 ) 4)
where
m = 18+r(x")(f* - 8) (3)
C = R-r(x")rT(x") (6)

are the conditional mean and conditional correlation matrix
respectively. The next design vector to be evaluated is the
one which maximizes the conditional likelihood in Eq. (4)
(which itself is maximized over 6 = [01,02,...,0,], p =
[P1,P2,- -, Pn), 8 and o? for each x*). This design vector is
the one which, if it had objective function value f*, would
yield the most credible kriging model interpolating it and
the N design vectors already observed. Note that setting the
derivatives of Eq. (4) with respect to o2 and 3 equal to zero
and rearranging, it is found that:

»_ (y-mTCHy - m)
N
1TCly + f*r’Cr—yCr— f*1TC'r
1TC-11 - 21TC-1r + rTC-Ir
and so Eq. (4) only needs to be maximized over § and p.

The following Section proposes a simple way of extending
the one-stage method for use in multi-objective optimization.

@)

o

®)

1 —
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III. SCALARIZING ONE-STAGE ALGORITHM FOR
MULTI-OBJECTIVE OPTIMIZATION

After normalizing the nep; objectives of the MOOP using
either known or estimated limits of the objective function
space, so that each objective function lies within the range
[0,1], they are combined using the augmented Tchebycheff
function [5]:

Mobj
Nobj

Fr(x) = max(3 f5(x)) + p 3 A f5(%) ©)
i=1

where p is a small positive value set (arbitrarily) to 0.05, and
A=[A1 A2, s An,,] is a normalized weight vector.

A Latin Hypercube experimental design [7] of size 5m is
initially carried out. This is used to initialize ny (> nonj + 1)
independent optimization searches, where each search:

« uses a different weighting vector A, so as to converge
towards a different region of the Pareto-optimal front,
o is (arbitrarily) i,,,x = 57 iterations in length, and
« uses the one-stage kriging method described in Section Il
with a target f* = k(%) fun at iteration i, where f;, is
the current minimum value of fy and x(z) = 0.95(0.5 +
3} is a scaling factor used to make the search less

2imax
exploratory (more exploitative) as the iterations proceed.

In the initial ng,j + 1 searches, ngp; extreme weighting

Q € ¢ € [
vecto:s (1 ST e TR nobj_lf)7 (nohj_l )

et ERT I ywwes  IRIY Corwsss Sirwess i ryvpens SRS 1 — ¢
(where |¢| < 1) which each heavily favor only one objective,
are used, as well as the weighting vector which places equal
emphasis on each objective, (”:hj, = :bj - n:hj ). After these
first nop; + 1 searches, a further ny — nep; — 1 searches
are then performed, with the weight vector set each time
so that the value of its components is the average of the
corresponding components of the two weight vectors which
yielded points which bound the emptiest region of objective
function space. Note that this procedure means the algorithm
has a fixed number of iterations, njer = 5(nw + 1)n.

It should be emphasized that each optimization search is
completely independent of the others: the results from one
scarch are not used in another. This has scveral benefits:

1) The algorithm may be easily parallelized.

2) The conditional correlation matrix C which is to be
inverted to calculate the credibility never exceeds a size
of 10n x 10n. This is extremely important in keeping
the computational cost of the one-stage approach as low
as possible.

3) For any given weight vector, the iterations tend to
concentrate more and more around one particular region
of design variable space. By ignoring the iterations
of other searches (using different weight vectors), the
degree to which C becomes ill-conditioned is severely
reduced.

IV. RESULTS

The algorithm was tested on a range of test functions; due
to lack of space, results are given for one only, VLMOP2 [8]:

n
S 1
Minimize fi(x) =1-exp( - ;(zi - ﬁ)Q)
3 1
and fa(x) =1-exp(-— ;(11 + ﬁ)z)
with  z; € [-4,4]
where n = 2. n, = 5 different weighting vectors were

used in the scalarizing one-stage algorithm, giving nje, = 60
iterations in total. These iterations are shown in Fig. 1 (a)
below (each iteration being identified by the weight vector
used). For comparison, a random search of 500 iterations was
also performed, and these iterations are shown in Fig. 1 (b).
As can be seen, the scalarizing one-stage algorithm is much
more efficient at locating solutions close to the Pareto-optimal
front. Similar results were observed in other test functions.

[

PRRITCTN )
v s

" w2 @ 06 ax | o n2 vy v an '

(a) 60 iterations of scalarizing one- (b) 500 iterations of random search
stage algorithm. algorithm.

Fig. 1. Results on VLMOP?2 test function.

V. CONCLUSION

A novel algorithm has been proposed which uses, for
the first time, a one-stage methodology for multi-objective
optimization. It performed efficiently on a difficult test prob-
lem; its performance in multi-objective electromagnetic design
optimization will be discussed in the full paper.
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Abstract — The use of kriging in cost-effective single-objective optimization is well established, and a
wide variety of different criteria now exist for selecting design vectors to evaluate in the search for the
global minimum. Additionly, a large number of methods exist for transforming a multi-objective
optimization problem to a single-objective problem. With these two facts in mind, this paper discusses
the range of kriging assisted algorithms which are possible (and which remain to be explored) for
cost-effective multi-objective optimization.

Selection Criteria with Kriging Models for Single-Objective Optimization

The use of kriging surrogate models in single-objective optimization is now well established (including within
the electromagnetic design community [1]) and a wide variety of methods now exist for exploiting statistical
information from them for the purpose of selecting a design vector to evaluate in the search for the global
minimum [2]. These include (but are not limited to) evaluating the design vectors which maximize: the
probability of improvement (POI) [2]; the expectation value of the improvement (EI) [3]; the generalized
expected improvement (GEI) [4]; the weighted expected improvement (WEI) [5]; the credibility of a hypothesis
(CH) about the location of the minimum [2] (also known as the one-stage approach); and most recently the
‘minimizer entropy’ (ME) criterion [6] . Due to lack of space, their exact descriptions are omitted; suffice to say
several allow the delicate balance between exploration and exploitation to be controlled through ‘cooling’
schemes; furthermore many offer the facility for selecting multiple design vectors for evaluation each iteration.

Scalarization of Multi-Objective Optimization Problems

A popular method for solving a multi-objective optimization problem (MOOP) is to transform it to a single-
objective optimization problem (SOOP), and then solve the SOOP using a single-objective optimization
algorithm. A large number of methods exist for transforming a MOOP to a SOOP including (but again not
limited to): e-constraint (¢-C); weighting method (W); weighted metrics (WM) (including the Tchbycheff
metric) method; achievement scalarizing function approach (AF); lexicographic ordering approach (LO); and the
value function method (VF), descriptions of all of which may be found in [7]. This wide variety of scalarizing
methods, coupled with the large range of selection crietria from single-objective optimization mentioned in the
previous paragraph, leads to a plethora of (scalarizing) multi-objective algorithms being possible with kriging; a
selection of these are shown in Table 1. Despite this fact, surprisingly few have been explored in the literature:
two which have been explored are labelled with their reference.

One of the potential algorithms, marked X in Table 1, was tested on an electromagnetic design problem. The
voltage on, and position of, the focus electrode of an electron gun was varied so as to achieve two objectives: to
focus the beam of electrons on the center of the anode as much as possible, and to make the electrons hit the
anode face as perpendicular as possible. Formally, deneting the voltage on the focus electrode by V Volts, and
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Table 1. The family of scalarizing multi-objective optimization algorithms made possible with kriging.

|-El 131

its perpendicular distance from the emitting surface by d cm, the objective functions to be minimized
2 2
_[ (v +v,)
= (vf -+ vj + vf )
where r is the radial distance from the center of the anode surface, J(r) is the current density at r, and the integrals
are taken over the surface of the anode. v,, v, and v, are the components of the electron velocities as they hit the

surface of the anode, which lies in the xy plane. Each analysis was carried out using the Vector Fields space
charge solver, SCALA. The Pareto optimal points found, along with one of the solutions, are shown in Fig.1.

are f,(V,d) = [J(r)r’dS and f,(V.d)= dS with ¥ [0,1000]and d €[4,10],
anode

y—

SEREN

(a) (b)

Fig.1 (a) Pareto optimal front for electron gun problem, and (b) the right-most Pareto-optimal solution (which has
the most parallel beam, as measured by objective f;), as found using algorithm X from Table 1.

Conclusions

Many advances have been made in recent years in kriging-assisted single-objective optimization. Using
scalarizing methods, it is possible to also use each in multi-objective optimization. Despite this, relatively few of
the possibilities have been explored in the literature. This paper has made it explicit the range of multi-objective
algorithms possible with kriging, and demonstrated the use of one of the algorithms on an electromagnetic
design problem. Other algorithms from the family of scalarizing algorithms will be explored in the full paper.
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Abstract

This paper shows how the simultaneous consideration
of multiple Kriging models can lead to useful metrics for
the selection of design vectors in constrained multi-
objective optimization. The savings in computational
cost with such methods make them particularly useful
for optimal electromagnetic design.

1 Introduction

In single-objective optimization, a single Kriging surface
[7] may be constructed modelling the behaviour (with
respect to the design variables) of the objective function
in question. In [3], a variety of selection criteria are
proposed for utilizing statistical information from a single
Kriging model, for the purpose of selecting a design
vector (or multiple design vectors) to evaluate in the
search for the minimum. Methods also exist for
incorporating constraint handling into these selection
criteria, e.g. [9).

in multi-objective optimization, the multiple objectives
may be combined into a single objective using a
scalarizing method [8], and a method from single-
objective optimization used for selecting design vectors,
e.g. [1, 6]. Alternatively, each objective may be
modelled by its own individual Kriging surface; this
allows the uncertainty in each objective to be modelled
separately. The simultaneous consideration of these
uncertainties then allows useful metrics for selecting
design vectors to be constructed [2, 5], which do not
suffer from the loss of information which inevitably
occurs when using scalarizing methods. This paper
proposes a method of extending the handling of non-
linear constraints into such metrics.

2 Constrained Multi-Objective Optimization

The constrained multi-objective optimization problem
(CMOOP) may be phrased as:
Minimize fi(x) i=1,... .M
subject to gi(x)<0 i=1,...,J (1)
h,’ (X) =0 = . K
where Xi 5x,~§x,~“ i=1,..,d

where the design vector x = [x;,x,....x4". If a design
vector satisfies all the constraints, it is feasible;
otherwise it is infeasible. For any two feasible design
vectors x* and x°, if fi(x®) < fi(x®) Vi, and3; such that
F(x®) <£(x"), then x* is said to dominate x°; otherwise x*
is said to be non-dominated by x". If x* is non-
dominated by x" and x” is non-dominated by x* then x*
and x" are said to be equivalent. All infeasible design
vectors are deemed to be equivalent, and dominated by
each of the feasible design vectors. The solution to (1)
is the set of feasible design vectors which are non-
dominated over the entire search space, known as the
Pareto-optimal set.

3 Probability of Improvement with Constraints

Suppose that after sampling the design variable space
(preferably using a space-filling experimental design,
such as a Hammersley Sequence [4]), a set S of N
non-dominated solutions exist (each of these solutions
are both feasible, and non-dominated by the solutions
not in S). Then it is desirable when sampling again to
select a design vector which either dominates at least
one (preferably more) solution in § whilst being feasible,
or at the very least augments the set S (i.e. is equivalent
to each solution in § and is feasible). In either case such
a selection could be said to yield an improvement, as
our solution set has improved. In unconstrained multi-
objective optimization, by constructing Kriging surfaces
for each objective individually, not only may the
probability of an unevaluated design vector dominating
at least one solution in S be calculated [5], but the
probability of it dominating a particular number of
solutions in § (representing a specific level of
improvement), may also be determined [2]. This is
ilustrated schematically in Figure 1 for the case of a
two-objective problem with Ny,=5 non-dominated
soiutions. In the presence of constraints however, it is
crucial to also ensure the feasibility of the design
vectors being selected.

As can be seen from Figure 1, for an improvement level
n (achieving a level n improvement means that a design
vector dominates n solutions in S, with a level 0
improvement meaning that it is equivalent to each
solution in §), a design vector may map to Ny, —n+l
regions of objective function space. Denote by P(I"(x))
the probability that an unknown design vector x will yield
a level of improvement n (i.e. it will dominate exactly n
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Figure 1: Levels of improvement for a two-objective
problem with 5 non-dominated solutions.

existing non-dominated solutions and be feasible), and
P{I'(x)) as the probability that design vector x will
dominate the » non-dominated solutions S, Si2, ... ,
Siwn (these sub-regions are labelled in Figure 1) and be
feasible. Define

s (x) @

for p=1,2, with
@’(x)=0, ®"~"(x)= (3), (4)
®I(x)=1, ®,;~"(x)=0 (5), (6)
where f,()) and s, () are the Kriging prediction and

standard error for each objective (p=1.2), and f," is the
value of objective p for non-dominated solution S;. Then

P-)- 1o -E03 -

i=l

£ h(x) h(x) €
H“’[ Py ] [ " ) ]

Slot)-0lw)for (-0 ()

@

where 2,() (i = 1,...5) and k() (i=l,....K) are the
Kriging predictions for each of the individual constraint
functions, s, and s, are their standard errors, and &,

(i=1,...,K) are small tolerances chosen to transform
each equality constraint into two inequality constraints.

In words, the design vector which maximizes the
expression in (7) is that which is most likely to dominate
n of the current non-dominated solutions, and be

feasible. In total this gives Np,+1 different levels of
improvement to maximize at each iteration; by grouping
the design vectors which maximize each of these levels
of improvement into clusters (using, e.g. the method
proposed in [3]), and selecting a representative design
vector from each cluster, a robust method (which is
easily parallelized) - wusing the probability of
improvement method - is made available for
constrained multi-objective optimization. Although the
description given here is for two-objective problems, the
method is extensible to higher numbers of objectives.

4 Conclusions

A novel utility function, which is easily parallelized and
which does not require normalization of the objective
functions, has been proposed for computationally
expensive constrained multi-objective optimization. It is
ideally suited for applications such as electromagnetic
design.
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